

Smartphone Controlled Skylight

California Polytechnic State University, San Luis Obispo

Computer Engineering Senior Project, Winter 2018

James Green (jgreen23@calpoly.edu)

Advisor

Richard Murray (rimurray@calpoly.edu)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219379703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

ABSTRACT 2

PROJECT OVERVIEW 3

BACKGROUND 3

Project Goals 4

MQTT Protocol Research 4

API REST Implementation 5

JWT Authentication: Logging In 5

Swift: iOS Communication with REST Server 5

DESIGN 6

Web Service API Endpoints 6

iOS Application 7

Login and Registration. 7

Main Operation 9

SYSTEM TEST ANALYSIS 10

CONCLUSION 10

APPENDICES 12

A. Skylux Hardware 12

B. Wiring Diagram 13

ANALYSIS OF SENIOR PROJECT DESIGN 17

Summary of Functional Requirements 17

Primary Constraints 17

Economic 17

Environmental 19

Manufacturability 20

Sustainability 20

Ethical 21

Health and Safety 21

Social and Political 21

Development 21

2

ABSTRACT

There are numerous electric skylight openers available for purchase for home-use, but the

majority of them are remote based, or operated by a wall-unit. Furthermore, these devices are in

hard to reach places, so if one were to lose the remote on a remote operated system, the only

option is to contact the manufacturer for a new device. As such, my senior project, in

collaboration with Colton Sundstrom’s senior project, build upon our existing capstone project in

order to allow operation of the Internet of Things (IoT) device over the internet. Our client,

Richard Murray, was unsatisfied with the current state of his Velux skylight operator, so we

wanted to create an end-product that could allow the operation to be controllable with any of his

iOS devices, whether or not he was at home. Furthermore, the end-product should be secure, in

that only authorized users could control the device. Since my client deemed that this project is

very expansive, this project will also include a setup guide for new students to get the system

running on their own environment for further improvements in areas such as scheduling,

security, and more expansive features.

ACKNOWLEDGEMENT

A special thanks to Colton Sundstrom, a recent Cal Poly Computer Engineering graduate. His

technical advice and direction of the web server modified and used in this project.

3

PROJECT OVERVIEW

This project covers the design and development of an iOS application for integration with a

Raspberry Pi Zero-W controlling a Velux motorized skylight opener. The Velux operator

normally depends on remote operation, so if the device is lost or broken, the only way to

communicate with the device is to physically interact with it in a hard-to-reach location. My

Capstone group in June 2017, called Skylux, created a prototype version of a device which was

intended to be an Internet of Things (IoT) device. However, there were some shortcomings with

the capstone project that, due to lack of specialization when working on the project, did not get

enough dedicated development time. With this project, I have brought the software side of the

Skylux system from an initial, alpha-level prototype stage to a ready-to-use beta application. The

end product is an iOS application that utilizes a REST API in Swift 3 and Xcode 8 using key

Swift functions such as URLSession And JSONSerialization. Through the project I worked with

one of the Skylux members, Colton Sundstrom. His senior project involved designing the

backend server, which my iOS device interacted with. I then took over his side of the project and

integrated it with mine, and created a detailed user setup guide along with instructions for any

future capstone group to take over the project.

The hardware consists of a Raspberry Pi Zero-W and motor driver that are hard-wired to control

a Velux Skylight Operator (See Appendix A). The Pi is also running a Python backend, which is

handled through the paho-mqtt python library by eclipse. When the server is brought online, it

subscribes to mqtt topics on the server, which adds device numbers to the database and opens

connections to that device topics. Once the operator receives the command from the topic it is

listening to, then the device can be opened or closed.

The software consists of an iOS application acting as a MQTT client built using XCode 9 and

Swift, interfaced with a server running a MQTT broker, RESTful api, and a SQLite database for

the devices.

BACKGROUND

4

Project Goals

Originally, Skylux relied on a rudimentary web-view of a webserver hosted on the raspberry pi.

As a result, the system must have been already running and set up beforehand, which required a

lot of technical knowledge and dismantling of the system. The primary goal of my senior project

was to move the system from this solution into a more integrated system. The goal will be to

mimic the Amazon Alexa application, which has functionality when not connected to the home’s

WiFi network. The end goal of my project was to involve a server running on the Skylux

operator while the iPhone application accesses this application when on a mobile network. This

would have involved a total overhaul of the old solution, but will have used existing frameworks

and strategies for operation.

Reflecting on the goals I had set out for myself at the beginning of the quarter, I would deem this

project as mostly a success, with some minor drawbacks. The project can now be set up

anywhere with an internet connection. As long as the user has access to a computer that can run

Python, as well as administrator privileges on their network, the server can be setup to run the

messaging portion of the system. On the hardware side, the current drawback is that the user

must connect to the Pi with a display in order to configure the WiFi settings. Through discussion

with my advisor, it was deemed that the most important aspects of the project were to create a

detailed user guide with the current implementation, so that another team of students can take on

the task of the WiFi handoff. This decision was based on the fact that this step could involve

more hardware along with extensive knowledge of security topics, and I was unfamiliar with

both topics.

MQTT Protocol Research

The general MQTT terms include publish, subscribe, client, and subscriber. According to

HiveMQ1, “Publish/Subscribe decouples a client, which is sending a particular message (called

publisher) from another client (or more clients), which is receiving the message (called

subscriber).” In this case, the physical operator will be an instance of an MQTT client, defined as

“any device from a micro controller up to a full fledged server, that has a MQTT library running

and is connecting to an MQTT broker over any kind of network.” So the client will be

communicating to the server, the broker, which will filter the messages and send the commands

to the Skylux operators.

MQTT is ideal for this environment because we are running on a device which is intended to be

very passive, in that it will require little to no interaction from the user past the setup point. From

its website, “MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol.

1 "MQTT Essentials: Client, Broker and Connection Establishment

" http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment. Accessed 6
Nov. 2017.

http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment

5

It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful

for connections with remote locations where a small code footprint is required and/or network

bandwidth is at a premium.”2 In our case, this seemed like the logical next-step as an

improvement from before, as our old solution required much more network operation and a

larger code footprint. In this new environment, the code footprint is much smaller, and allows for

streamlined communication from the iOS device in code to the operator via a simplified

messaging service.

API REST Implementation

The Flask python library has an extension that allows for development of REST APIs.

REST, or REpresentational State Transfer, is a method for creating standards between computer

systems on the web, making it easier for different systems to interact with one another. Rest is

defined by a system that is stateless, separate from the client, and has a uniform interface. The

system contains commands such as GET, POST, PUT, DELETE, allowing data to be received

and sent to the server. In my case, I took over the server from Mr. Sundstrom and moved the

domain to www.skyluxservices.xyz. Once the code for the server is running, which will

be detailed in the appendices, the server will be running the API on the local network over a

dedicated port. From there, my iOS application, the client, will issue PUT and POST commands

to login and operate the server, along with GET commands to check on the status of the device.

JWT Authentication: Logging In

JSON Web Token (JWT) is a lightweight and efficient way to securely transmit data as a

JSON object. The data transmitted is signed, using an algorithm or a public and private key pair.

This verifies the authenticity of the token, allowing it to be used for authentication. JWTs are

primarily used for this purpose, authentication, or for information exchange. As the tokens can

be verified after being sent, this serves as the method of logging into the service from the iOS

device. Once the user associates a username and password to the device, that information is sent

to the server and a JWT is associated with that information. Therefore, when the user logs into

the system, they can provide a JWT, which will be saved on the device, in order to operate the

skylight operator in a secure manner.

Swift: iOS Communication with REST Server

Since my app communicates with a web application, information returned from the server is

formatted as JSON. I used the JSONSerialization3 class to convert JSON into Swift data types in

order to better utilize them. It was certainly a challenge collaborating with Colton to deserialize

the JSON objects correctly, and required a lot of work on both of our ends. It was definitely a

2
 "MQTT." http://mqtt.org/. Accessed 19 Mar. 2018.

3
 https://developer.apple.com/reference/foundation/nsjsonserialization

http://mqtt.org/
https://developer.apple.com/reference/foundation/nsjsonserialization

6

learning experience seeing how the backend server was operating, as normally the REST APIs

have been provided to me by a third party.

Utilizing the JSONSerialization class, one can translate a query method parameter into a

corresponding request object and send the HTTP request to the web service. Once a URL is

provided, a task can be created using the URLSession and passing the URL to the task. Then, the

JSON received can be decoded into useful information, such as login information and operator

status. Since the data received is raw JSON, the data must be parsed and converted into objects

usable by the application.

DESIGN

Web Service API Endpoints

To interface with the server from the user perspective, Colton Sundstrom developed an API

utilizing Flask, a python web framework, to enable iOS communication. The API utilizes POST

and PUT REST commands to request and push data with the server. All commands return status

code 200 upon successful completion, which is viewable in the XCode console if running the

debugger, or an appropriate error in accordance to the HTML standard.

Endpoint (“/skylux/api/...”) Method Parameters

register POST Username, Password, MAC

login POST Username, Password

schedule POST Token, Command, Time

status POST Token

7

status PUT Token, Status, Active, MAC

device POST Token, Command

Table 1: www.skyluxservices.xyz API Endpoints

Table 1 above lists all of the endpoints that the application accesses with the URLSession tasks.

Once the user registers a device, that user is associated with a JWT Token, which is then used for

all further operation of the application. This ensures that not anybody can operate the Skylux

operator, since only somebody with the username, password, and JWT token can issue

commands that the server will accept.

iOS Application

The application attempts to closely mimic the design of the Amazon Alexa application, which

was the original design choice . However, since the WiFi handoff portion was not implemented,

the application starts off in a state where the operator is assumed to be online and connected to

the internet. When the user launches the Skylux iOS application, they have the option to register,

or log in.

Login and Registration.

Figure 8.1: Skylux Entry Screen

Figure 8.2: Skylux Registration Screen

8

Figure 8.3: Skylight Registration Page

Figure 8.4: Skylux Login Screen

The figures above show the application screens for the registration and login process. If the user

taps the registration button in figure 8.1, they will be brought to the screen shown in 8.2. From

here, the “Set-up skylight” button is highlighted, and a tap on that button will bring the user to

8.3. From there, the user can register the skylight with a QR code or enter the information

manually. The QR code contains the device information needed on the server, and will be sent to

the server upon registration in a JSON POST request. After setting up the skylight, the user will

be brought back to the registration screen, where they will choose and confirm a username and

password. Once the correct information is provided, the username, password, and MAC address

are all sent to the server via a POST, and if the information is valid, stored in the database on the

server.

When the user navigates to 8.4, the username and password are then sent to the server in another

POST request. If the server responds with a token, then the authentication process is complete,

and the application is then moved to the main operation screen in 9.1.

9

Figure 9.1: Skylux Main Screen with Menu Pulled Out

Main Operation

Now that the user is authenticated with the token, they can start issuing commands to the API.

This is done with the OPEN/CLOSE buttons as seen in 8.1. The commands can also be issued

with the microphone, which when tapped, will start listening for voice commands like “open”,

“close”, or “status”. As previously stated, the command will be issued in a POST request, with

the parameters being the authentication token and the desired command. The server then takes

this command, decodes the token, then issues the command to the correct device. If the user

wants to see the status of their device, they can tap the STATUS button as seen in 6.1. This will

initiate a GET request with the parameters being the token and the device id which was provided

upon registration. If the token is still valid, then the user will see the skylight status, which

includes if it is open, and how open it is.

The user can also see where the last command was issued from and what it was by tapping the

history button. This is currently all stored in the application, but hopefully with further

development, this information can be stored on the server after more time is spent on developing

this senior project. The other buttons lead to screens like the FAQ section and the login screen,

along with a currently not implemented scheduling function.

10

SYSTEM TEST ANALYSIS

Through continuous development with my advisor, we were able to steer my project through a

client-driven process to work out an end goal that was agreed upon by both parties. Since time

was limited, it was agreed that the project be shifted to become more of a stepping point instead

of a polished end-product. Through this report and the end setup process that will be included in

the appendices, a new group of capstone students should be able to come in and understand the

system in a way that the client may not have been able to adequately explain. Thus, I have

focused on creating an intensive setup guide for the system, along with testing the system in

multiple controlled environments to ensure system transportability and reliability.

The system has been shown to work under any network where the user had administrative

privileges on their network and access directly to the microcontroller’s display port on the board.

However, if the user does not have those items, the system in its current state will be difficult to

set up. The setup guide is created with this in mind, and will allow for the user to interface the

Skylux iOS system with their router and network.

Since the server utilizes certain ports on the network, the user must have administrative

privileges on the network, along with access to the router. If the ports are not open, then the

services will not be visible over the internet, and the application will not run. However, the setup

process has been set up on multiple networks where there is an internet connection and an

accessible router, so the application seems to be very reliable and easy to set up though the guide

I have created.

11

CONCLUSION

The original project met all of the client’s initial goals when proposed back in the CPE 350

course in Winter 2017. While the first system worked adequately enough, it was not adequate

enough for the client’s end goal. This project took the idea and expanded on the initial

implementation to create a more fully faceted system that is truly an IoT device. The system has

been proved to work under a controlled environment, and there seems to be no issues preventing

a theoretical setup in the client’s home. However, the system is not commercially ready, since it

is not developed with a security background in mind. There are also further improvements that

could be made with the application, but the primary goal of the project was accomplished.

Areas that could be improved upon include:

1. Design

This application is very simply designed. There are very well designed tools to create

application designs, and could serve for a better user experience.

2. Security

 Currently, the information is stored in plaintext in both the phone and on the server.

While the current design is functional, further encryption is needed to ensure security

of personal information.

3. Features

 This project was started with more features in mind, such as weather data-based

operation and scheduling. This project has lead me to research these topics and even

deploy them in my own test projects, but these features did not make it into the

application.

With that being said, this project will serve as the basis for many other projects in the future

since it is so multi-faceted. So far, this has been the only project that has connected many

different software and hardware components, and these IoT concepts are especially relevant

considering the new and emerging technologies. This project has also taught me the intricacies of

developing in the iOS environment, and many useful concepts such as JSON serialization and

data parsing. Most of iOS development, if not an interactive application, is working on an

application that gathers data from outside sources and provides it in a usable manner. This

project has led me to research many of these topics I was previously unfamiliar with, and will

prove to be very valuable knowledge when it comes to my future career choices.

12

APPENDICES

A. Skylux Hardware

1. Velux Skylight Operator

2. Chain Actuator

3. Raspberry Pi-Zero-W

4. Motor Driver

5. AC-DC Converter

13

B. Wiring Diagram4

We improved to a new design by eliminating the LM2596 DC-DC converter and using a

secondary +5V supply output from the AC-DC converter.

4
 Wiring Diagram by Richard Murray, 2017

14

SKYLUX SERVER SETUP GUIDE

Overview

Here are the steps needed in order to set up the Skylux system in a new environment. Keep in

mind that this will not work at SecureMustangWireless at Cal Poly, and in its current state,

requires display connections to the Raspberry Pi Zero-W in order to configure the network.

Note that if at any time the user gets denied with the error message: “Access Denied: Insufficient

Privileges”, then the user must type >sudo su and enter the administrator’s information. Also,

to keep the server running, you must keep the windows open for the terminal with the power

constantly on for the server. To shut down the server cleanly, hit “CTRL+C”.

Procedure

1. Log in to the GoDaddy Skylux website.

2. Obtain the IP address of your router

a. This can be done at https://www.whatismyip.com, look for your public IPv4

address.

3. Navigate to the DNS management section of the website under My Products.

4. Under Records, edit the type A record.

a. The “Host” is a placeholder name, replace the “@” with your desired name

b. The “Points To” is where your local, static IP should be. Enter that IP here.

5. Log in to the server host machine with administrator privileges.

a. If not already installed, install Python5.

b. Install Python modules sqlite3,Flask, Paho-MQTT, Homebrew, Mosquitto6, JWT,

and pyjwt

i. Mosquitto can be installed from the homebrew project. See brew.sh and

then use > brew install mosquitto

6. Assign your server a static IP address on your network

a. This is usually done in network preferences. Be sure that the IP address you

choose is in the valid range and not taken by another device.

7. Run the server code

5 "Download - Python.org." https://www.python.org/downloads/. Accessed 6 Feb. 2018.
6
 "Installing MQTT Server on Mac OS – simplified. thinking.." 3 Oct. 2015,

https://simplifiedthinking.co.uk/2015/10/03/install-mqtt-server/. Accessed 23 Mar. 2018.

https://www.whatismyip.com/
https://www.python.org/downloads/
https://simplifiedthinking.co.uk/2015/10/03/install-mqtt-server/

15

a. In the command line, ensure you have admin privileges by typing

 >sudo su

b. Run the code by typing

 >python comp_mqtt.py

 (in a new tab)>python comp_app.py

c. Now the server should be running, and you should see the port and other

information in the terminal

8. Log in to the router. This procedure assumes an Apple Router is being used in the

development environment, but the steps are essentially the same for any router.7

a. Open AirPort Utility

b. Reserve a DHCPprovided IP address for the host device.

(Note this is the device that you want to access from a remote location.)

AirPort Utility > Select the base station > Edit > Network tab

c. Setup port mapping on the base station. Click the Add + button under Port

Settings. For the IP address, use the IP for the router. For the port numbers we

want to open, use 1883 and 5000.

d. After you click update, then the ports should be open. You can test this at

http://canyouseeme.org.

9. Set up Skylux Operator

a. METHOD 1

i. If a wpa_supplicant.conf file is placed into the /boot/ directory, this will be

moved to the /etc/wpa_supplicant/ directory the next time the system is

booted, overwriting the network settings; this allows a Wifi configuration

to be preloaded onto a card from a Windows or other machine that can

only see the boot partition.

ii. While unplugged, remove SD card from the operator.

iii. Plug SD card into micro SD card reader and open its contents.

iv. Create a wpa_supplicant.conf

1. A typical wpa_supplicant.conf file is:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

country=US

network={

 ssid="«your_SSID»"

 psk="«your_PSK»"

 key_mgmt=WPA-PSK

}

7 "Port Forwarding the Apple AirPort Extreme Router ... - RainMachine."

https://www.rainmachine.com/support/portforwarding/Port-Forwarding-Apple-AirPortExtreme-Router-for-
HTTPS.pdf. Accessed 13 Mar. 2018.

http://canyouseeme.org/
https://www.rainmachine.com/support/portforwarding/Port-Forwarding-Apple-AirPortExtreme-Router-for-HTTPS.pdf
https://www.rainmachine.com/support/portforwarding/Port-Forwarding-Apple-AirPortExtreme-Router-for-HTTPS.pdf

16

v. Plug SD card back into operator.

vi. Plug in operator, the operator should now connect to home network

and listen for server calls.

b. METHOD 2

i. Plug in operator

ii. Plug in mini HDMI converter and keyboard via converter to RPi

iii. Log in using username: pi password: thx1138

iv. Edit the file /etc/wpa_supplicant/wpa_supplicant.conf

1. Replace existing network information with your own

v. >sudo reboot

vi. The operator should now connect to home network and listen for

server calls.

17

ANALYSIS OF SENIOR PROJECT DESIGN

Summary of Functional Requirements

Describe the overall capabilities of functions of your project or design. Describe what your

project does. (Do not describe how you designed it.)

This project:

● Must be operational over the internet

● App must run on any current iOS device with version 9.0 or above

● Must show status information of the skylight in app

● Must be operational on a typical Local Area WiFi Network

● Must control the Skylux operator designed in Capstone 350/450 2017 with client Murray

● Must be secure and reliable

Primary Constraints

Describe significant challenges or difficulties associated with your project or implementation.

For example, what were limiting factors or other issues that impacted your approach? What

made your project difficult? What parameters or specifications limited your options or directed

your approach?

For a large portion of time, I did not have a computer that was able to develop iOS applications. It turns

out that in order to develop for the iOS environment, you must have an Apple device, and one that is quite

current in order to run the latest version of XCode. Since I was working nearly full time outside of school

to put myself through school, it was tough enough to afford a workstation to tackle the project I had

committed to unknowing of the requirements. I obtained my development machine very far into my first

quarter of development, and since I was already limited to developing in what little free time I had, I was

very inhibited with the progress of this project. I would have liked to flesh out the project more on the

application side, but that required more hardware knowledge for the Raspberry Pi, of which I was quite

unfamiliar. With that in mind, my advisor directed me to having a solid basis for the project, and

encouraged me along to the end product.

Economic

● Original estimated cost of component parts (as of the start of your project)

● Actual final cost of component parts (at the end of your project)

● Attach a final bill of materials for all components

● Additional equipment costs (any equipment needed for development?)

18

● Original estimated development time (as of the start of your project)

● Actual development time (at the end of your project)

Since my project was an extension of my Capstone group project, I will use that for my bill of materials.

Skylux Original Estimated Cost of Component Parts

Quantity Product Manufacturer Price
per Unit

Purpose

2 Raspberry Pi 3 Raspberry Pi $35 Main Board to control
the operator

2 16GB Ultra Plus Micro-
SD CL10

San Disk $15 Memory for the
Raspberry Pi Boards

1 3D Printing Funds Local $100 Casing

4 Additional Development Boards $20 Possible future iterations

1 Apple Dev License Apple $100 Access to Apple App
Store Publication

1 Circuit Components Sparkfun/Digikey $50 Circuit Elements

1 Electric Motor Driver Texas
Instruments

$5 Driver for electric motor

1 Electric Motor Mabuchi $1 Prototype

 Total $526

19

Actual Final Cost of Components to Build Each System

Quantity Product Manufacturer Price
per Unit

Purpose

1 Raspberry Pi Zero W Raspberry Pi $10.00 WiFi CPU to control the
operator

1 16GB Ultra Plus Micro-
SD CL10

San Disk $9.26 Memory for the
Raspberry Pi Board

1 Driver PCB Custom $2.00 Control motor driver

1 Mabuchi RS-385PH Mabuchi $2.15 Replacement Motors for
operator

1 Skylight Operator Velux $341.25 Manufacture Product
Integration

- Tax $32.81

 Total $397.47 Or $56.22 using an
existing donor unit

Labor

Category Estimate (hrs) Actual (hrs)

MQTT Communication 40 10

REST API Interaction 0 50

iOS Design 30 50

JSON Parsing 10 30

RPi Integration 40 0

TOTAL 120 140

Environmental

Describe any environmental impact associated with manufacturing or use.

Ideally, this project was aimed to improve the environmental impact of the user. This application

is aimed to keep the internal climate of the home regulated, and with further improvements on

20

the project, it could be more environmentally impactful. Since the home climate would be

regulated with a skylight that is easy to operate, the user would need to rely less on appliances to

regulate home climate, which all use electricity, which has a negative environmental impact, and

costs money for the user.

Manufacturability

Describe any issues or challenges associated with manufacturing

Installation of the iOS application is straight forward. Hardware implementation leverages an

off-the-shelf Raspberry Pi and a small custom PCB for the driver circuitry using a standard 2-

layer process. The most significant labor is retrofitting an existing Velux operator, which

requires careful disassembly and removal of the original Velux RF controller and replacement

with the new Skylux components.

Sustainability

● Describe any issues or challenges associated with maintaining the completed device or

system.

The issue currently maintaining the device is that it is cumbersome to transport from one

network environment to another. Currently the user must hook up to the operator in order

to reset the network information, and that is not sustainable. Maintenance is easy,

however, since the server must only be left running and the iOS device should be able to

contact it at any time.

● Describe how the project impacts the sustainable use of resources.

 The project leverages re-use of an existing skylight operator with minimal new

components and software control with an existing smartphone which makes this project

very sustainable in resource usage.

● Describe any upgrades that would improve the design of the project.

 Areas that could be improved upon include:

Design

This application is very simply designed. There are very well designed tools to create

application designs, and could serve for a better user experience.

Security

 Currently, the information is stored in plaintext in both the phone and on the

server. While the current design is functional, further encryption is needed to ensure

security of personal information.

21

Features

 This project was started with more features in mind, such as weather data-based

operation, scheduling, and a WiFi handoff . This project has lead me to research these

topics and even deploy them in my own test projects, but these features did not make it

into the application.

● Describe any issues or challenges associated with upgrading the design.

 WiFi handoff implementation may require extra hardware, and soldering to the small

 Pi Cobbler is quite difficult. There were also not many security measures taken when

 developing, so upgrading the system to be more encrypted will take a team of effort.

Ethical

Describe ethical implications relating to the design, manufacture, use or misuse of the project.

Device does not seem to have any adverse ethical implications.

Health and Safety

Describe any health and safety concerns associated with design, manufacture or use.

This system was designed assuming a typical operational environment. Situations such as power failures

or load imbalances were not taken into account in actual operation of the device. The device may fail and

cause issues with usability, but user safety is a minimal risk.

The safety of the user’s personal information is at stake as well. If a malicious actor were to gain access

into the user’s system, all of the information is stored in plaintext, so the user is opening themselves to a

cyber-attack.

Social and Political

Describe any social and political concerns associated with design, manufacture or use.

Device has minimal social or political associations.

Development

I learned nearly all of the aspects of this project outside of Cal Poly courses. Subjects such as REST API

interactions and MQTT messaging were all new to me, as were interacting with the iOS environment. All

of my previous experience coding was either in a Linux environment or a controlled system. Never before

was I able to interact with the iOS library, or any of its tools such as XCode or Swift, both of which

required extensive research outside of class.

