
Tracking Eye Movements over Source Code

Faith Chan
Advisor: Professor Sara Bahrami

Senior Project
Winter, Spring 2018

Computer Engineering Department
California Polytechnic State University, San Luis Obispo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219379701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Mapping Gaze to Source Code Elements with iTrace 1

Abstract 1

1. Introduction 1

2. Background 1

4. Planning and Design 1

3. Hardware and Software Components 2
3.1. iTrace . 2
3.2. Gazepoint GP3 Eye Tracker . 2

5. Development 2
5.1. GazepointTracker . 3
5.2. XMLAnalysisFilter . 3

6. Conclusions 3

7. Future Work 4

Examining Eye Gaze Movements during Code Review Tasks 5

Abstract 5

1. Introduction 5

2. Background 5

3. Experiment Overview 5

4. Variables and Hypotheses 6
4.1. Dependent Variables . 6

4.1.1. Full Gaze Path . 6
4.1.2. Visual Effort . 6
4.1.3. Efficiency . 6
4.1.4. Effectiveness . 6

4.2. Hypotheses . 6

5. Participants 6

6. Equipment and Setup 6
6.1. Code Selection Process . 6

7. Data Collection 7

8. Analysis 7

9. Threats to Validity 7

3

10. Conclusions 7

Appendix 8

References 9

1

Mapping Gaze to Source Code Elements with iTrace

Abstract

Studies on software developers’ behavior guide the devel-
opment of tools that facilitate source code reading and re-
viewing. Eye trackers have allowed researchers to study this
behavior in more detail–to pinpoint where the developer is
looking, or even to detect which source code element the de-
veloper is viewing. However, systems that map gaze to char-
acteristics as specific as source code elements are often ex-
pensive, either because of the cost of compatible eye trackers
or because of the cost of the required software. This project
aims to use existing technology to create a lower-cost system
that provides information on the source code elements that
the developer views.

1. Introduction

Eye trackers have become increasingly present in studies
on developers’ behavior. These devices offer insight into
developer behavior that previously could not easily be ob-
served, bringing researchers closer to detecting patterns in
developers’ thought processes by revealing the movements
they might even unconsciously make. Studies that track eye
movements in source code at the method level and at the line
level have already shown promising results, but information
that is even more detailed may lead to a better understanding
of any patterns that appear. The desire for this information
has given rise to tools such as iTrace, an Eclipse plugin that
maps gaze movements to source code elements.

Compatible only with expensive research-grade eye track-
ers at the time of development, iTrace and its features are
not easily accessible to the average user. Alternatives that
are compatible with lower-cost eye trackers exist, but the
required software for these tools is often expensive. The cost
of these systems in fact presented a roadblock in the early
stages of this project, which initially proposed to use the tool
in an empirical study, as well. Therefore, in its final goal
to integrate iTrace with a lower-cost eye tracker, this project
hopes to create a more accessible system that provides the
same functionality.

With this in mind, the project has two primary objectives:
1. The system shall interface the Gazepoint GP3 eye

tracker with iTrace, allowing gaze data from the GP3 to be
mapped to source code elements.

2. Using the mapped data in iTrace output files, the system
shall provide statistics on the source code elements that have
been viewed.

According to the iTrace developers, support for additional
eye trackers including the Gazepoint device, along with sup-
port for source code element mapping in different IDEs, is

being developed at the time of this project. This project nev-
ertheless aims to interface the Gazepoint system with the cur-
rent iTrace release, as the tool and its ability to map eye gaze
to source code elements are needed in this effort, as well as
in projects that will take place before the next release.

The rest of this paper will begin with an overview of rel-
evant background information and previous research, fol-
lowed by a description of the modifications made to iTrace.

2. Background

Studies using eye trackers often map gaze movements to
lines in code or to methods in code, but rarely examine gaze
movements on the source code element level. Several focus
on the amount of time spent on lines of code that contain a
defect, for example (Uwano, 2006; Sharif, 2012). Others an-
alyze movements between methods and files as well. Those
that do examine gaze on the source code element level rely on
manual efforts to map gaze data to elements in code (Kevic,
2017).

Such studies have revealed useful patterns in developer
behavior. However, information about the specific source
code elements examined while reading code can lead to even
more detailed analysis of developer behavior (Kevic, 2017).
Easier access to this information, which this project aims to
provide, would be beneficial in future studies.

4. Planning and Design

This project originally consisted of two parts: the design
and execution of an experiment on developer behavior in
code reviews, which is described in the second part of this
paper, followed by the development of a tool that would fa-
cilitate this review process based on information from that
experiment.

The use of iTrace was key in the experiment, as its ability
to map gaze data to source code elements provided additional
detail about developer behavior that had not often been seen
in previous studies. Therefore, setup for the tool began while
information was being gathered for the experiment. How-
ever, investigations into iTrace revealed that none of the eye
trackers accessible through Cal Poly were compatible, con-
trary to initial findings. Research into the trackers that were
compatible, along with discussions with the original iTrace
developers, revealed that those compatible trackers exceeded
the budget for the project. Given this, the Gazepoint GP3
was a reasonable alternative. Because this new eye tracker
was not compatible with iTrace at the time of development,
however, the task of interfacing the new device with the plu-
gin became the primary task of this project.

The added functionality–analysis of the raw mapped gaze
data–became an additional requirement of the project, in
order to supply a more readable output and summary of the

2

recorded gazes. As shown in the images below, raw output
files are perhaps difficult to analyze manually. The output
files for fixation-filtered data are similar. A need for a sim-
plified version of this output led to the development of the
analysis tool.

Figure 1. Example of raw data output from iTrace, presented
in an XML document. The file indicates which source code
elements are associated with a particular gaze location. In
this case, the highlighted line shows a gaze that was mapped
to an "if" statement. This frame appears in the iTrace demon-
stration at https://youtu.be/3OUnLCX4dXo.

Figure 2. Different view of the raw mapped gazes, output as
an XML file, from iTrace. Source code elements are outlined
in red.

3. Hardware and Software Components

This section describes the components used in the final
system. iTrace, the Eclipse plugin, remained a large part of
the project. Additional information about its functionality is
outlined here. The lower-cost eye tracker used in this project
is the Gazepoint GP3 eye tracker. Details on this tracker are
also provided in this section.

3.1. iTrace

iTrace is an Eclipse plugin that matches source code
elements–if statements, method invocations, and conditional
expressions, for example–to gaze data from an attached eye
tracker or to data from a mouse. This allows for examination

of gaze patterns on a more specific level than is often seen in
studies involving eye tracking over source code.

Additionally, iTrace records mapped data for any code
window that is open in the IDE, adjusting for scrolling and
other movements within the window. As a result, there is
minimal disruption to the developer’s normal coding experi-
ence. This is beneficial in experiment settings, as developers
are less likely to exhibit different behavior due to an altered
coding environment.

Mapped data for sessions recorded using iTrace can be
exported to XML and JSON files, and results can be run
through iTrace’s fixation filters. Results from the filters are
also available in XML or JSON format (Shaffer, 2015).

Further information about the plugin, as well as the plugin
source code, can be found at the following links:

iTrace website: http://seresl.csis.ysu.edu/iTrace/

iTrace Eclipse plugin: https://github.com/trshaffer/iTrace

3.2. Gazepoint GP3 Eye Tracker

The Gazepoint GP3 eye tracker, which offers a sampling
rate of 60 Hz, uses binocular tracking to provide eye gaze
data with 0.5 to 1-degree accuracy and 0.1-degree spatial
resolution (precision) (“Gazepoint Control User Manual”,
2017). Although not quite as precise as the research-grade
trackers currently compatible with iTrace, the GP3 has spec-
ifications that appear to be sufficient for the intended use
in this project. Although the application seeks to examine
eye gaze at a high degree of granularity, its aim is to map
gaze to source code elements. It is therefore unnecessary to
map users’ gazes to exact points on the screen. Ultimately,
considering its relatively low price, the GP3 is a reasonable
choice for this application.

The GP3 is also a viable option for its ability to commu-
nicate to the application using Java, the programming lan-
guage in which iTrace is written. Communication between
the eye tracker and the application occurs via TCP/IP con-
nection; therefore, any programming language that supports
such connections is compatible with the GP3 (“Gazepoint
Control User Manual”, 2017). Because Java supports TCP/IP
socket connections, no additional interfacing between Java
and another language (via Java Native Interface or Java Na-
tive Access, for instance) is required. The GP3 is therefore a
reasonable candidate not only for its price and eye tracking
specifications, but also for its compatibility with iTrace.

The GP3 eye tracker is used with current software that
Gazepoint provides. The software that comes with the hard-
ware is used here and is sufficient for the project.

5. Development

This section outlines the main changes made to iTrace:
the interfacing of the Gazepoint GP3 with the tool, and the
addition of the analysis filter.

3

5.1. GazepointTracker

GazepointTracker, placed in the iTrace "trackers" pack-
age, contains functions that allow iTrace to communi-
cate with the Gazepoint eye tracker. Using the structure
iTrace provides, the GazepointTracker class implements the
IEyeTracker interface, alongside the existing SystemMouse-
Tracker and TobiiTracker classes. Some aspects of its op-
erations are similar to those of SystemMouseTracker, while
others are similar to those of TobiiTracker. Because commu-
nication with the Gazepoint tracker can take place entirely
in Java, like communication with SystemMouseTracker can,
tracker threads are handled in the same way for Gazepoint-
Tracker as they are for SystemMouseTracker. This structure
is also reasonable because the Gazepoint device does not
have the main thread with which the Tobii tracker API op-
erates. However, the main loop of the SystemMouseTracker
occurs in the thread–part of a private nested class–that is
started when the tracker is initialized. To keep the functional-
ity of the tracker within the GazepointTracker class itself, the
structure of the new class follows the structure of the Tobi-
iTracker class. The Tobii tracker API appears to use a single
class instance that handles its own main loop, however, so
to emulate this, the Gazepoint tracker was implemented as a
singleton.

5.2. XMLAnalysisFilter

Figure 3. The added analysis option in the iTrace perspec-
tive. This perspective can be opened in the Eclipse IDE
when iTrace is run from the parent Eclipse application. For
additional guidance, please refer to the user manual.

This filter provides a summary of the basic mapped gaze
data that is recorded when iTrace is used. iTrace filters,
which implement the interface IFilter, are processed in the
application’s main loop with their implementations of the
read(), process(), and export() functions that IFilter requires.
XMLAnalysisFilter’s read(), based on XMLBasicFixation-
Filter’s read(), parses through the gaze-responses XML file
and records information corresponding to each gaze in a data
structure. The source code elements for the gazes in each file
are parsed through in process(); they are recorded in a nested
HashMap structure, allowing duration and other source code
element information to be recorded only once for one source
code element. For a particular method declaration, for ex-
ample, duration is updated for the corresponding element
in the data structure whenever that declaration is viewed,
but the source code element is not added as a new element
another time. In this way, XMLAnalysisFilter keeps track of

the number of times the developer has viewed any particu-
lar source code element, as well as the amount of time the
developer has spent viewing that element. These results are
written in the XML file after the corresponding source code
element. The number of times the developer has viewed the
element is marked with the tag "<times_visited>," after the
"</sce>" tag, and the eye gaze duration for that element is
marked with the tag "<duration>." The total amount of time
a file has been viewed is kept as a running total. This value
is written at the end of the XML file, with the tag "<total>."
The figure below shows an example of the output from the
new filter.

Figure 4. Example of iTrace analysis output. Duration for
the source code element is noted after the "<duration>" tag,
along with the source code information–line number and
column, for example–relevant to that element. The number
of times the element is visited is noted at the end of the line,
and the total amount of time the file was viewed is written at
the end of the information for each file.

For its functions’ similarity to XMLBasicFixationFilter’s
functions, XMLAnalysisFilter is placed in the "fixations"
package under the "filters" package. Filters in this package
group gazes into fixations based on the similarity between
gazes that are made near one another. Gazes that are similar
to those close to it are recorded as one gaze with a longer
duration, and gazes that are different indicate a shift in gaze
to another part of the code. The new filter currently uses
the mapped gaze data that is unprocessed–that is, it does not
use this fixation filtering method. However, its location in
the "fixations" package may also be useful for future imple-
mentations of the tool that may conduct analysis on fixation-
filtered data only. This was not implemented here due to the
necessity of further testing with the existing fixation filters,
which still encounter a few errors.

6. Conclusions

With the modifications made to iTrace, data from the
Gazepoint GP3 eye tracker can be used to map gaze move-
ments to source code elements. The added analysis tool
adequately filters the recorded gaze responses by provid-
ing information on the amount of time locations in code are

4

viewed, per source code element. Further testing of the sys-
tem itself is required, however, before further studies can
be conducted. The testing done while interfacing the eye
tracker to the tool revealed some potential issues with gaze
recording–gazes sometimes did not appear to be tracked as
accurately as desired, for example, and issues with lagging
surfaced during later testing. Additionally, changes could be
made to the modifications made here, as well as to the iTrace
structure that existed before this project, that could improve
the integration of the new functionality into the tool.

Overall, this system has the potential for widespread use
as a lower-cost alternative to other tools that map gaze move-
ments to source code elements. With additional testing and
adjustments, use of the tool in a variety of cases, including
studies aiming to examine developers’ gaze movements over
source code in detail, is possible.

7. Future Work

Additional analysis metrics can be added to this tool based
on iTrace output, and features offered with the Gazepoint

eye tracker–heat mapping, for example–can also be incor-
porated into that analysis. To facilitate such future additions,
the changes described in this paper could be more smoothly
incorporated into the existing structure; this would involve
adjustments not only to the new code but also to the under-
lying structure. Other improvements to the tool, including
gaze mapping to elements in files of other formats, have been
mentioned in the 2015 paper that introduces iTrace (Shaffer,
2015).

Beyond additions to the system itself, future work in-
cludes studies on developers’ eye gaze patterns that make
use of the tool, allowing researchers to examine developer
behavior in more detail. The experiment described in the
next part of this paper is one example of this. Such studies
may ultimately give rise to new tools that better facilitate the
processes of code reading and review because of that more
specific information.

5

Examining Eye Gaze Movements during Code Review Tasks

Abstract

Of the many experiments that may benefit from use of the
modified plugin, one experiment is considered here. This
study aims to explore the ways in which programmers review
code and how, if at all, any patterns in these behaviors are
related to the efficiency and effectiveness of the review. Sub-
jects’ gaze movements over source code are examined on the
source code element level, allowing for fine-grained analysis
of developer behavior.

1. Introduction

Code reviews are an important task in software develop-
ment. The outside viewpoint of the reviewers exposes errors
and design considerations that authors may not have thought
of during their routine review of the familiar code. This pre-
vents unnecessary returns to the expensive testing phase of
software development cycle. However, the introduction of a
new developer to unfamiliar code may also be expensive dur-
ing a code review; the new viewer must take time to become
familiar with the source code before a thorough assessment
can be made, or before an appropriate change can be pro-
posed. Reducing the amount of effort this requires can prove
beneficial not only for the reviewer, who may spend less time
simply searching through the code, as well as for the original
author, who may receive feedback and proceed with devel-
opment more quickly.

This study attempts to address unexplored areas in re-
search on developer behavior during code review–namely,
the realm of code element-level eye tracking as applied to
code review. Conclusions from this study may inspire future
studies on such behavior, as well as guide the development of
tools that aid in the processes of reading and reviewing code.

The rest of this paper will begin with an overview of rel-
evant background information and previous research, fol-
lowed by an outline of the empirical study.

2. Background

Previous research has demonstrated the potential of eye
tracking as applied to programming tasks such as remote pair
programming (D’Angelo, 2017), as well as its uses in the
development of tools and teaching methods to improve the
efficiency and effectiveness of common programming tasks.
Although these studies report promising results, such results
are prone to variation and ambiguity by nature because of
the presence of many confounding variables. Further testing
in these areas is therefore required to ensure repeatability.
Nonetheless, results suggest that eye tracking is worth using
in additional studies in myriad environments–both within the
scope of computer science and beyond it.

Additionally, research done for this project indicates that
eye tracking at a source code element level of granularity
has not been used in studies involving the code review pro-
cess. Few studies analyze gaze paths at the source code el-
ement level at all; some, such as the study on code review
by Uwano et al., examine gaze patterns at line-level granu-
larity, while others focus on method-level or class-level gaze
movements. Although studies involving line-level granular-
ity have demonstrated repeatable patterns in gaze movements
during code review tasks (Uwano, 2006), gaze information
about specific source code elements has been shown to be
conducive to much more detailed analysis on gaze move-
ment (Kevic, 2017). Such granularity may prove beneficial
in attempts to provide more specific guidance during the code
review process.

While research on eye gaze movements in code pro-
gresses, tools that aid in the code review process also con-
tinue to be developed. Bug tracking repositories and code
revision systems are some of the most widely used code re-
view tools, helping developers to track documented changes
in specific files or lines of code. Use of such tools has
become routine in software development process. Mean-
while, new systems to improve the efficiency of code re-
views have begun to emerge; for example, one tool uses eye
tracking to facilitate remote pair programming by displaying
a visualization of one programmer’s gaze on the partner’s
screen (D’Angelo, 2017). However, the benefits observed
with use of visualization are not necessarily due to the pres-
ence of the visualization at all. This suggests that further
testing–and further development following this–is required
to evaluate, more thoroughly, the effectiveness of such eye-
tracking enhanced systems in programming tasks. Still, these
current code review tools do not use specific eye movement
patterns to improve the review process; given the promis-
ing results from research, it seems that this more specific eye
gaze data has the potential to fill the gaps in areas that current
code revision tools are lacking.

3. Experiment Overview

This study aims to examine the characteristics of the eye
gaze movements of developers as they perform code review
tasks, and to determine any patterns in this behavior. Eye
tracking technologies are used to maximize the level of de-
tail that can be examined in pursuit of this goal, with the idea
that more specific information on eye gaze movement may
produce a clearer image of any patterns or characteristics of
gaze paths. This image can easier be used to design tools that
aid in the code review process.

Given this goal, gaze paths shall be analyzed in their en-
tirety. With the capabilities of the eye tracking technologies
used here, patterns in gaze with respect to specific source

6

code elements will be analyzed as well. Other measures,
such as time stamps, will be used to evaluate the efficiency
of the code review sessions.

The research questions to be explored during the empirical
study of this project are as follows.

RQ1. Are there patterns in developers’ eye gaze move-
ments during code review tasks?

RQ2. Does eye tracking reveal new information about eye
gaze movement that occurs during code review tasks?

RQ3. How can the code review process be made more
efficient with a gaze-based visualization?

4. Variables and Hypotheses

4.1. Dependent Variables

4.1.1. Full Gaze Path. During analysis of the collected
data, full gaze paths will be examined for patterns in eye gaze
movements. This provides an overall view of participants’
gaze path through the source code and suggests patterns that
may then be examined on a lower level. The variable will be
evaluated qualitatively, and quantitatively where additional
analysis is required.

4.1.2. Visual Effort. Visual Effort will be evaluated
based on the amount of time a participant’s gaze remains on a
specific location in code (fixations). It will also be evaluated
based on the number of times that location is revisited dur-
ing the review session. This measure is based on the Visual
Effort variable used in the Sharif study, which examined the
tendency of reviewers to perform a scan through source code
during defect detection tasks (Sharif, 2012).

Visual Effort will be evaluated on a code element level of
granularity.

4.1.3. Efficiency. The efficiency of a code review ses-
sion will be evaluated based on the duration of the entire
review of one code change example. It will also be based
qualitatively on reviewers’ descriptions of their experience
and perceived familiarity with the source code sample.

4.1.4. Effectiveness. Changes and reviews will be eval-
uated for their effectiveness based on comparisons between
reviewers’ conclusions and those described in the published
documentation for that code change.

This will be a qualitatively evaluated variable.

4.2. Hypotheses

Analysis of collected data evaluates the following null hy-
potheses, which are based on the research questions listed in
the Experiment Overview.

H10. There are no patterns in developers’ eye gaze move-
ments during code review tasks.

H20. Source code element-level eye tracking does not re-
veal additional information about eye gaze movement during
code review tasks.

5. Participants

Data will be collected for fourth year students studying
Software Engineering at Cal Poly. All should have recent
experience coding in Java and working in the Eclipse IDE.

6. Equipment and Setup

Collection of eye gaze information will be done with
the Gazepoint GP3 eye tracker along with iTrace, the open
source plugin that maps eye gaze to source code elements in
the Eclipse IDE.

The iTrace plugin is well suited to the requirements of this
study, as its ability to map eye gaze to source code elements
allows for analysis of eye gaze data on a more granular level.
This capability, which has not been used extensively in pre-
vious research on code reviews, adds a level of specificity to
the collected data–data that may be useful in the design and
development of other studies and tools to facilitate the code
reading and reviewing process.

The ability of the tool to record code element-level data
while the developer works normally within the Eclipse IDE–
that is, the developer is able to scroll within a file and
switch between files within the IDE–is also beneficial to this
study. Minimal changes to the coding environment are de-
sired when observing developer behavior, as larger changes
to that environment may skew results.

6.1. Code Selection Process

Code samples used during the study are excerpts from
open-source projects, primarily found using Gerrit and
Bugzilla for Eclipse. In order to simplify the code acclima-
tion process for the subjects and attempt to prevent any vari-
ation in results due to any confusion on the subjects’ part,
samples were chosen from only a few projects: mylyn and
SWT (the Standard Widget Toolkit).

From these projects, snippets were chosen based on sev-
eral considerations. For one, these snippets were adjusted
to the experience level of the participants. The scope of the
code samples, along with the level of documentation of those
code samples, were taken into consideration as well, and the
difficulty and number of files involved in the code to be re-
viewed were limited according to time constraints of the ex-
periment (the study was limited such that one reviewer would
have about an hour to complete the task). A variety of code
sample types–bug fixes, for example, along with function-
ality additions–were included in order to obtain data for a
wider range of code review tasks. This was also done to en-
sure that potential differences resulting from the type of code
sample could be examined, as the focus of this project is to
examine the ways in which reviewers trace through changes
during a code review. Code samples with varying levels of
difficulty, and those affecting different amounts of code, were
chosen and tested with each reviewer for the same reason.

7

7. Data Collection

The experiment will be a latitudinal study, involving a
larger number of participants who participate in several code
review tasks over a short period of time. Two sets of data
collection sessions will be conducted; for each, a separate
group of participants will perform code review tasks asso-
ciated with that set of sessions. The group that participates
in the first set of data collection sessions will make changes
to given code snippets, and then document these changes for
the next group to review. The group that participates in the
second set will review the changes that the first group has
made to the code.

Before all review sessions are conducted, all participants
will be sent briefings on their tasks–making and documenting
changes to code excerpts, or reviewing changes that have pre-
viously been made–along with descriptions of the programs
that they will be reviewing during the test session. Partici-
pants will be encouraged to ask questions about the programs
until they feel familiar with what those programs do. They
will also be given brief preliminary surveys regarding previ-
ous experience with code review.

When participants come in for the review session, they
will be asked if they require any additional clarification re-
garding the experiment process. Before the recording session
is started, the eye tracker will be calibrated to capture the
participant’s gaze. The participant will then be able to be-
gin the task whenever ready, making verbal or written notes
on the subject of the review. When the participant indicates
that he/she has finished, the review session recording will be
stopped.

Before leaving the testing session, participants will be
asked to discuss observations of the code snippet changes
they reviewed. Finally, they will be asked to complete sur-
veys after completion of the testing period.

8. Analysis

For quantitative variables–Visual Effort and Efficiency–
collected data will consider whether results are statistically
significant. Qualitative variables will be evaluated in terms of
patterns or similarities among participant responses. The in-
clusion of such qualitative variables allows for participants to
describe their thoughts, which cannot be observed using the
eye tracker. It may also provide insight into any confounding
variables and additional factors to be taken into consideration
when making conclusions about the study.

Further analysis, along with results and discussion, will be
included after the study has been conducted.

9. Threats to Validity

Empirical studies related to individuals’ programming
behaviors necessarily involve confounding variables. The
presence of an eye tracker during the study, for example,

may affect the performance of programmers in their code
reviewing–this is only one of many issues in that single vein.
Additional threats to validity may be revealed during the
study.

10. Conclusions

Previous research, along with observations from the de-
velopment process described in the first section of this pa-
per, demonstrates that iTrace, used with the Gazepoint eye
tracker, may be useful in detailed studies on developer be-
havior. However, conclusions on the hypotheses presented
here will be made after the study has been conducted.

8

Appendix

Bill of Materials

9

References

D’Angelo, S. (2017). Improving Communication Between Pair Programmers Using Shared Gaze Awareness. , 6245–6290. doi:
10.1145/3025453.3025573

Gazepoint Control User Manual. (2017).
Kevic, K. (2017). Eye Gaze and Interaction Contexts for Change Tasks - Observations and Potential. The Journal of Systems and Software,

128, 252–266. doi: 10.1016/j.jss.2016.03.030
Shaffer, T. R. (2015). iTrace: Enabling Eye Tracking on Software Artifacts within the IDE to Support Software Engineering Tasks. ,

954–957. doi: 10.1145/2786805.2803188
Sharif, B. (2012). An Eye-tracking Study on the Role of Scan Time in Finding Source Code Defects. , 381–384. doi:

10.1145/2168556.2168642
Uwano, H. (2006). Analyzing Individual Performance of Source Code Review Using Reviewers’ Eye Movement. , 133–140. doi:

10.1145/1117309.1117357

