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Abstract

This paper seeks to describe the process of developing a new FPGA architecture

from nothing, both in terms of knowledge about FPGAs and in initial design material.

Specifically, this project set out to design an FPGA architecture which can implement

a simple state machine type design with 10 inputs, 10 outputs and 10 states. The

open source Verilog-to-Routing FPGA CAD flow tool was used in order to synthesize,

place, and route HDL files onto the architecture. This project was completed in terms

of the spirit of the original goals of implementing an FPGA from scratch. Although,

the project resulted in an architecture which slightly underperformed in its ability to

route 100% of 10 input, 10 output, 10 state designs due to the general place and route

algorithm used and the lack of non-contrived 10 input 10 output 10 state FSM designs.
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1 Introduction

1.1 Overview

FPGAs are some of the most complicated digital circuits on the market today. They can

help companies build a custom digital circuit with years less development time compared to

an ASIC design process. This project aims to be an exploratory exercise into the implemen-

tation details of the FPGA through the creation of a basic FPGA architecture. This new

architecture will be simple in nature yet still achieve all of the major hallmarks of an FPGA,

most importantly being in-circuit reconfigurable.

This project will focus on pulling together the many basic overviews provided by the

research sources listed in the bibliography. The main technical overview that will be used to

guide the development of this new architecture is Muhammad Imran Masuds master’s thesis

(FPGA Routing Structures: A Novel Switch Block and Depopulated Interconnect Matrix

Architectures) [6]. Masud provides a wealth of general overview details of both switch block

and interconnect matrix designs before presenting his own variations on them. As the target

of this project is just to develop a basic working FPGA design, the focus will be on using

the general overview of these complicated blocks rather than Masuds experimental versions

to increase simplicity of the design.

While this project will not create any ripples in the electrical and computer engineering

field, it will be an extremely useful exercise in digital circuit design, verification, and tool

production. Designing the new architecture is only a slice of the overall time requirement

of this project. A large amount of time must also be spent verifying this design, which will

provide much practice with simulation/verification software due to the complicated nature

of this circuit. The individual blocks of this circuit should be straightforward to test, but

when performing system level testing, a design must first be created and loaded into the

FPGA which presents an interesting challenge. This challenge leads into the last part of this

project, tool development. As this is a completely new FPGA architecture, completely new

place, route, and bitstream generation tools must be created in order to implement designs
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and actually use this project. Fortunately, early on in the development of this project,

the open source Verilog-to-Routing [5] CAD flow tool was discovered. This mean that the

exceptionally complicated place and route component of this project did not need to be

created from scratch. Together, the three separate components of this project (design, test,

and software tools) come together to provide an exercise encompassing a large breadth of

the computing field.

The following sections of the Introduction section will consist of a brief overview of the

basics of the different blocks of FPGA’s as well as how they fit together in an architecture.

1.2 Basic Logic Element

The most fundamental of all parts of an FPGA architecture is the basic logic element (BLE).

The BLE is the component which does the computation in the circuit. BLEs are made up

of a combination of configurable look-up tables and flip flops. Given enough of these BLEs,

any digital circuit can be created; this provides the basic foundation for the FPGAs circuit

emulation capabilities.

(a) Simple BLE design (Figure from [2]) (b) Xilinx XC4000 BLE design (Figure from [1])

Figure 1: Comparison of BLE design

There are many variable factors that determine the form and function of a BLE in any

given architecture (as can be seen in Figure 1): Number of inputs to the block, number of

LUTs, size of each LUT, and number of flip-flops to name a few. As a general rule, the
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more complicated the BLE, the less signals need to be routed by the global interconnect.

This makes logical sense seeing as when a circuit is broken into more sub-circuits (as needed

with a few input BLE) there are more nets connecting BLEs together. This increases the

minimum bus width of the interconnect fabric in order to achieve the same route-ability as

an architecture featuring a more complicated BLE design.

In opposition, a large BLE design with many LUTs and flip flops may reduce congestion

on the interconnect fabric but makes the architecture more prone to inefficient use of its logic

resources, since there may be a significant unused portion of each LUT in each complicated

BLE. Ultimately, the most efficient BLE design is dependant on the use case for the final

hardware, with general purpose FPGAs often using a combination of 2 4-LUTs paired with

a smaller 3-LUT and 2 flip flops, as in the Xilinx XC4000EX architecture (Figure 1b) [1].

This allows the routing software to use this BLE as 2 separate 4-LUT BLEs or one larger

5-LUT BLE, thereby partially circumventing the inefficiency problem.

1.3 Connection Box

Figure 2: 3 input 3 output connection box
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The Connection Box (CB) is a unidirectional switching block allowing signals to enter

and exit the general fabric bus of the FPGA. A simple (fully-connected) CB design would

consist of each output pin from the module being connected to a mux which could select

from any of the inputs (or none of them). Another of way to implement this module would

be to have two buses of wires running perpendicular to each other on different layers of

silicon. These two buses would be connected at each crossing with a transistor which can

short the circuit between the two different bus domains as can be seen in Figure 2. Both

of these simple Connection Box designs allow any of the input pins to be directed to any

number of the output pins.

1.4 Logic Cluster

Figure 3: General logic cluster diagram (Figure from [6])

A strategy to put less stress on the fabric of the FPGA while also retaining a simple

BLE design is to use the concept of a Logic Cluster to introduce a separation in global

routing resources and local routing resources. A Logic Cluster is simply a group of BLEs

combined with a connection box (now referred to as an interconnect matrix) so that a more
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complex operation can be performed without being routed through the general interconnect.

Usually, there are 4 to 16 BLEs per Logic Cluster [6] which all have their outputs connected

as inputs into the main interconnect matrix as well as out of the module (into the general

interconnect). This enables other BLEs in the same logic cluster to use those outputs,

enabling more complicated designs to be created without using global routing resources at

all (for the intermediate signals).

1.5 Switch Block

The switch block is fundamentally just as important as the BLE is to the basic FPGA

architecture. Combinations of this block create the entire FPGA routing scheme and allow

signals to be dynamically routed throughout the design so that any digital circuit can be

implemented. A switch block is generally designed as a bidirectional switch that acts as the

interchange for the intersection of 4 buses of the FPGA fabric. There are also unidirectional

switch blocks, although these designs require larger bus widths to achieve the same route-

ability in exchange for the simpler switch design.

Figure 4: Comparison of connection patterns of modern switch blocks (Figure from [4])

There are many different strategies to determine which bus wires are able to be connected

to each other as seen in Figure 4. The simplest of these is the disjoint connection pattern.
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As the name suggests, this strategy creates separate routing domains from each wire in each

bus and once a signal is in one domain it is not able to be routed through any other domain.

For example, if 4 10-bit buses are using a disjoint switch block as an interchange, the first

wire in the top bus can only be connected to the first wire in the other 3 buses, not any of

the other wires. This does decrease route-ability due to having separate domains but is also

a very predictable and easily understandable strategy. Other strategies (such as the Wilson

or universal patterns) create several orders of magnitudes greater number of possible routes

to get from point to point and thus require much more complicated routing algorithms. The

main example of this point is that with a disjoint switch block based fabric, once a signal is

in the fabric it will always remain on the same track. This is not true for the other switch

patterns and allows for less assumptions to be made about track use throughout the fabric.

1.6 Input/Output Block

Figure 5: Xilinx XC4000 IO block (Figure from [1])

The IO block is another of the essential components of an FPGA, although its function
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is notably simpler than any of the other blocks previously discussed. The IO block’s purpose

is as simple as it sounds, provide a configurable way for signals to get onto and off of the

chip. As is a reoccurring theme in FPGA design, this is a fairly simple block to grasp

yet there are very complex implementations of them on modern commercial FPGA’s as

can be seen with the XC4000’s IO block (Figure 5). This example of a fully featured IO

block contains both input and output flip-flops, output slew rate control, pull down/pull

up resistors, and configurable output voltage levels. This however, is not necessary as the

simplest implementation is simply 2 transmission gates and 2 buffers which allow the isolation

and selection of the input/output lines from the pad.

1.7 Architecture

Figure 6: General island-style FPGA architecture (Figure from [3])

When all of these types of previously discussed blocks are put together into a complete

design, the result looks something like the architecture in Figure 6. The logic clusters (which

feature the computational elements and are labeled CLB for configurable logic block in this
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diagram) act as the ’islands’ while the general interconnect fabric resides in the channels in

between. The term fabric will be used throughout this report and is a general term to refer

to the both the buses of wires connecting each switch block and the switch blocks themselves.

At each crossing of vertical and horizontal fabric buses a switch block is placed to allow the

connection of different bus wires. This is the most popular style of FPGA currently in use

today due to its vast amount of routing resources and repetitive design elements.

1.8 Design Approach

This new FPGA architecture, at a high level, will consist of three types of blocks: IO, switch,

and logic cluster. Each of these blocks will be completely configurable ’in circuit’ via the

use of chained shift registers throughout the entire chip. Once again, due to the potential

complexity of this circuit and the desire to complete this project, only a basic working

design is being targeted. This means that no one circuit design metric will be targeted to be

improved on from other existing FPGA architectures. The rough scope/goals for the final

circuit will be the ability to implement simple finite state machine type circuits with less

than 10 inputs, less than 10 outputs, and less than 10 states. Although with the use of

Verilog-to-Routing, any verilog design which fits onto the architecture may be implemented.

This project consists of essentially three parts of equal time and value: circuit design,

circuit validation, and implementation tools. This document contains many design decisions.

From research, it is clear what a generalized FPGA design looks like and how it is routed.

What has become increasingly difficult is specifying the actual values of the device. Width of

interconnect buses, interconnect redundancy, and routing connectedness to IO blocks are all

examples of things that are educated guesses based on all available research. The following

sections represent a rough hashing out of such values. These were constantly re-evaluated

throughout the design process to insure that each value provides a meaningful connection

towards the final 10-input, 10-output, 10-state FSM implementation goal.

The justification for the aim to create a device which can emulate any 10-input, 10-

output, 10-state FSM is the hope that such a specific goal will help to ground the abstract
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Figure 7: Basic finite state machine block diagram (Figure from [7])

nature of FPGA’s. With this goal in mind, design decision ’tiebreakers’ can be handled

more easily because the answer to the difficult question of deciding on important variables

is always ”Which value will give better results to the goal FSM circut?”. The basic setup

of this FSM type design can be seen in Figure 7 above. The FSM structure also provides

the use of storage elements without muddying the division between clock signals and data

signals. On real FPGA’s data signals can be used as global clock signals and fed into flip

flops where multiple clocks can be selected from. This would create additional complexity

vs a FSM targeted system where the next state is updated on each clock rising edge.

1.9 Report Organization

The following pages of the report will consist of the design sections followed by verification

and finally the conclusion. The design section will begin with the low level hardware specifi-

cation of the FPGA itself (Section 2) and move towards the software tools with each section

thereafter. The design section will be followed by Section 3 which will cover the integration

of the open source Verilog-to-Routing place and route tool into this project. The bitstream

generation tool will be discussed next in Section 4. After the three design sections, the

verification section (Section 5) will show the FPGA and toolset in action with a select set of

Verilog designs. Lastly, the conclusion will review the final results of the project, highlighting

some important points brought up in the design and verification sections.
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2 Circuit Design

2.1 Architecture

Figure 8: Block diagram for new architecture

The design of this architecture attempts to mimic the well established island FPGA

architecture from Section 1.7. The specific internal block diagram for this project can be

seen in Figure 8, made up of 20 IO blocks, 5 switch blocks, 12 connection boxes, and 4 logic

clusters. The fabric of the FPGA is 10 wires wide represented by the thicker lines connecting
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the switch blocks and connection boxes.

The general size of this architecture was decided based on the need for an architecture

which could be routed by hand if enough progress was not made on the place/route/bitstream

software tool set. This size is definitely limiting when attempting to implement general

verilog designs but is actually very helpful when working out and planning a configuration

for a gate-level diagram by hand which was done many times during the development process

to get a better understanding of how each block works together. In alignment with the

overarching goal for this circuit to implement the medium sized FSM, this design provides

the correct amount of IO’s and provides more than 5 times the required amount of state

storage. This gives much lenience to the HDL programmer to design state storage in less

efficient (but more logical) ways and leaves plenty of room to implement next state and

output conversion logic (Figure 7).

The design has 4 Banks of 5 IO blocks. The north and south blocks are biased towards

inputs as they can be routed to the input pins of a logic cluster by going through only a

single switch block. The east and west blocks are biased towards outputs as they can be

routed to from a logic cluster in one or less switch block connections. This decision attempts

to remove the necessity of the use of global routing resources by allowing a number of signals

in well designed circuits to avoid going through the center switch block (where each signal

can consume a maximum of 10% of the total global wires).

On an implementation note, the use of tri-state buses is prevalent throughout this Verilog

design as the entire FPGA fabric is based on the idea of configurable bidirectional buses

between each of the switches. From this use of tri-state comes additional complexity in

terms of creating the bitstream with defaults that ensure when a programmable multiplexer

is not configured from its default state (zero’s) that it does not drive the wire it is connected

to. This was accomplished with the creation of a high z line which is connected to each

non-interconnect matrix connection box’s zero bit input. This ensures that the hardware

design supports the idea of a default zero state. This idea is also carried over to the switch

block where any wire being driven with the default select bits (”00”) is connected to a high
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z line.

Through debugging many undefined signal simulation errors it was found that this strat-

egy would not prove to be successful with the interconnect matrix. The problem was that

any high z wire which was an input into a look up table would cause the lut output to be

undefined (yes, even though the result would have been the same had that line been either

a 1 or a 0!). This default high z wire was replaced with a constant ground for intercon-

nect matrices. It is not clear whether this precaution would actually be necessary for a real

chip design since the wire would be forced to either a 1 or 0, although it was required for

simulation.

2.2 Programming Circuit

Figure 9: Block diagram for new architecture with programming order

As is required to achieve the design goals for this circuit, all of the settings for each

block are completely configurable through a snake of shift registers that runs throughout the
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circuit (Figure 9). The programming order chosen was based on connecting spatially close

blocks. Originally, this was done with only clock and data wires. An additional enable wire

was added to both decrease the probability of the circuit being changed by noise during use,

and to more easily internally detect when the in-circuit programming was complete. Overall

there are 1480 configuration bits in one bitstream to specify an implemented design for this

architecture.

2.3 Basic Logic Element

Figure 10: Basic logic element circuit diagram

The basic logic element, as discussed in Section 1.2, is the computational center of the

FPGA, it contains the look up tables and the memory storage elements. The design of the

BLE block used in this project is very basic. The block design can be seen in Figure 10 and

the verilog code can be found here. The BLE contains 3 2-bit muxes, 1 16-bit mux, and 2 19-

bit shift registers, 16-bits of which are used in the 4-LUT. The remaining 3 bits are used to:

enable the feedback path from the flip flop to input A of the 4-LUT, enable the use of input

D as the enable input to the flip flop, and lastly to select the flip flop as output or the 4-LUT

as the output. This design will aid in simplicity of circuit verification and in implementation

routing. The addition of two sets of shift registers was discovered to be required during

simulation as the circuit would enter into invalid states while being programmed and cease

to continue simulating. To combat this problem, there are two banks of shift registers. The

first is used only while the device is being programmed (as told by the prog enable signal).

The second is only filled when the final control signals are in the programming shift registers
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(falling edge of prog enable signal). In total, there are 19 configuration bits to fully specify

BLE functionality.

2.4 Connection Box

Figure 11: Circuit diagram of a programmable multiplexer

The connection box, as discussed in Section 1.3, is the way in which signals get onto

and out of the fabric buses of the FPGA. The connection box implementation is based on

the combination of many less complicated logic blocks called programmable multiplexers

(prog mux). A prog mux is simply a mux combined with a shift register which is in the

configuration chain of the FPGA. This enables the logic block to be connected to a number

of inputs in hardware but have the ultimate selection of which wire to drive to the output

done at programming time as part of the bitstream. A graphical representation of this block

can be seen in Figure 11.

Once the prog mux block is created, the design for a connection box is relatively simple

as described in Section 1.3. A prog mux is created for each output pin. The size (number

of select bits) of the prog mux is determined by taking the ceiling of the log base 2 of the

number of inputs. The use of Verilog parameters (as seen here and here) makes both the

connection box and the prog mux reusable throughout the rest of the HDL design.

There are 4 locations where the connection box block is used: getting inputs from the IO

blocks to the fabric, getting outputs from the fabric to the IO blocks, getting logic cluster
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outputs into the fabric, and as an interconnect matrix inside of a logic cluster. Respectively

these implementations require 30 bits, 20 bits, 30 bits, and 80 bits to configure.

2.5 Logic Cluster

Figure 12: Logic cluster diagram (including output connection box)

The logic cluster is a combination of a connection box and multiple basic logic elements as

discussed in Section 1.4. The number of BLE’s was chosen to be 5. This was a value that

seemed reasonable in regards to how much total memory and logic resources it produced.

It also allowed the use of 16 input prog muxes (instead of 32 input) with a 10-bit fabric

bus. The choice of 6 BLE’s also would have allowed the use of 16 input prog muxes but

5 BLE’s times 4 logic clusters already provided more than enough resources to achieve the

FSM goal. A complete logic cluster takes 175 bits to program (this number is the sum of all

configuration bits of the sub blocks as the logic cluster itself has no additional configuration

capabilities).
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The graphic in Figure 12 is a good way to represent the entire view of a logic cluster.

This diagram was printed out and used to walk though the place and route problem in

complete detail. Lines can be drawn in both connection boxes to show connections to and

from BLE’s while gate level diagrams can be drawn in each BLE block and then translated

into the look up table equivalent. This process was done many times during development to

ensure understanding of how everything fit together.

2.6 Switch Block

The switch block design uses the disjoint connection pattern to create the simplest possible

fabric structure to connect each of the individual buses in the FPGA fabric. The block has

4 10-bit wide bus connections which are all bidirectional. The internal makeup of the switch

block is (like the connection box) just made up of many prog muxes driving the output

pins of each pin of the bus connections with an additional connection for not driving the

output (High Z). To fully specify the configuration of a switch block 80 bits of information

are required.

2.7 Input/Output Block

The IO block was influenced by the complicated Xilinx model referenced in Figure 5 but

reduced significantly. It consists of the minimum setup (a few tri-state drivers) plus pull

up/down resistors with pass transistor enables, and the shift registers required to program

it. The pull-up and pull-down resistors however, are not applicable when dealing with this

Verilog implementation and static digital simulation. Due to the simplicity of this block,

only 3 bits are required to program the IO block.
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3 Verilog-to-Routing

3.1 Introduction

Verilog-to-Routing (VTR) [5] is the premiere open source FPGA CAD flow for FPGA aca-

demic research. This tool allows any FPGA architecture to be worked on with the use of

its architecture description language to specify every detail about the architecture. The

fact that this tool was discovered (through extensive background research) aided the project

tremendously due to how many complex algorithms could be left to VTR to handle. VTR

is comprised of 3 separate tools: Odin, ABC, and VPR. Odin is used to synthesize and

elaborate Verilog files into BLIF netlist files which can be implemented on the specified ar-

chitecture. The next tool executed is ABC which optimizes the netlist. Versatile Place and

Route (VPR) is the final step in the flow which takes the netlist produced in the previous

step and places the individual groups of logic and routes the nets on the architecture. VPR

also provides a graphical representation to view how the circuit is implemented on the device.

While the original goal of this project was to create an FPGA from scratch (including

the software tools) the use of VTR was deemed to be a good decision for two main reasons.

First, VTR is a sort of academic standard and provides all sorts of additional features (not

used in this project) to help benchmark and compare FPGA architectures. Therefore, this

was seen as a good opportunity to learn a new toolset in a hands-on manor for possible

future projects in this area of study. Second, the algorithms that VTR handles are complex

(NP-Hard) and also creates the opportunity to implement Verilog designs instead of hand

produced netlists and logic. Specifically the VPR tool provides a way to avoid writing a new

place and route algorithm which would have been passable with this size of architecture but

would have struggled with any increase in size (as a good place and route algorithm could

be a whole senior project on its own).
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3.2 Architecture Description

Figure 13: VTR parse and stylized rendering of new architecture (programming signals

omitted)

In order to integrate with the VTR CAD flow both a Verilog file and an architecture descrip-

tion file must be provided. The Verilog is straightforward and marks a huge improvement

over hand drawing circuits and feeding them into a hand-written tool, but the architecture

description language is a whole other concept to grasp. This language uses an XML format

to specify every possible variable within an architecture including: setup-hold times, switch

block connection strategy, block locations, BLE size, and much more. For this project, all

timing information was deemed to be out of scope so there are placeholder times, resistances,
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and capacitances where real values should be (VTR did not accept the concept of an ’ideal’

FPGA and refused to route it). This file can be found here and it produces the graphical

representation found in Figure 13.

As can be seen in Figure 13, there are slight differences in how VTR perceives this

architecture vs how it was designed (Figure 8). These differences are mainly present in the

fabric and switch block layout and are due to the lack of granularity control in specifying

the location of the fabric and switch blocks. The VTR tool makes the assumption that the

architecture being specified is a regular island type architecture (which has a very regular

fabric structure) and spends much more effort in understanding the various clb’s (complex

logic blocks: IO, logic cluster, BLE). This difference is entirely cosmetic as there is still a

strict equivalence between the channels from the designed to the interpreted architectures

which is important for generating the bitstream.

Another notable diversion from the design specified is that many of the auxiliary control

signals for the BLE implementation are missing from the architecture specification file (in-

ternal feedback and flip flop enable) due to being unable specify them in the architecture

file. These features are still in the HDL implementation of the device and still accessible via

hand programming although they will be unknown (and unusable) to the VTR flow.

3.3 Example

The main example that will be used in this report is a simple sequence detector circuit

with an output bus that drives a seven-segment display with the current state. This is a

classic example of a FSM type of design although it only has 3 inputs (including clock) and

7 outputs. The design recognizes the 9-bit long sequence ”101100100” which takes 9 states

(one for each bit of the sequence) and one additional state for an initial zero. This can be

seen in more detail in the code listing for this example (found here). Figure 14 showcases this

example circuit implemented on the new architecture. Some notable observations include

how the concept of input and output biased IO banks are not taken into account. Also it

is surprising to see 100% BLE utilization within the architecture with this design. Usually,
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routing resources are the main obstacle in the implementation onto an FPGA. Anywhere

from 85%-90% logic utilization is usually where commercial place and route algorithms begin

to struggle to successfully route designs.

Figure 14: VTR rendering of sequence detector implementation
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4 Bitstream Generation

The main software tool which was produced for this project was the bitstream generation

tool. The 2 objectives for this piece of software are: parse and make sense of the VTR output

files, and output this virtual representation of the implemented design into a bitstream which

will program the device. The first of these objectives proved to be a rigorous exercise in

reading sparse documentation.

The first of these output files is the Berkeley Logic Interchange Format (BLIF). This

file describes (at a high level) what the inputs, outputs, and how each of the outputs are

calculated. This file is created with the overall architecture LUT size in mind so the logic

descriptions can be directly parsed as LUT settings. It also specifies which of the BLE’s flip

flops are used.

The next file to be parsed is the place file (.place). This file is the simplest to be parsed

and only contains a description of what internal names (used in the net file) correspond

to which coordinates within the architecture. Once the coordinates are known the type of

block can be determined. This file also allows a quick way to see where each of the IO’s were

placed (bank [NESW], subblock[0-4]) for easy reading off for testbench setup.

After the place file, the route file (.route) is parsed. For each net that uses global routing

resources an entry is created in this file to describe what the source, sink and the switch

path which is taken to connect those points together (switches, tracks used, etc).

The final and most extensive output file that is parsed is the .net file. This is a XML

based file which enumerates every non-switch block in the architecture and maps the im-

plementation details of each of them. The net file provides the glue which allows all of the

previously parsed information to be combined and put into a virtual representation of the

architecture, like which IO’s are inputs or outputs, which logic cluster each net’s LUT is

placed, and which signals to send to which BLE’s.

During the parsing of the net file, an ’FPGA’ object is created and filled out with the

various settings described in the VTR output files. Once the parsing is complete, the FPGA

object is prompted to print out all of the settings it contains in a valid bitstream.
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This software was written using Java. This decision was made due to it being somewhat

similar to C but also providing much more extensive library support for all of the string

and XML parsing tasks required. This decision kept the line count reasonable while still

providing a lot of functionality.
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5 Circuit Verification

Verification/bug fixing this circuit was a very difficult task due to the sheer number of signals

as well as the overall complexity of the circuit. Debugging and verifying this circuit consisted

in the repetition of (1) identifying there was an error (2) identifying where the incorrect signal

originated (2) identifying the source of the incorrect signal (3) figuring out why an incorrect

configuration was produced and fixing the parsing tool to handle it in the future. This

process was made time consuming because of the difficulty in tracking signals through the

architecture and comparing that to where they were supposed to be. This required the

simultaneous use of Vivado (testbench simulation), IntelliJ (Bitstream Java development),

and the interactive VTR graphical tool (to see what the correct settings should be) in order

to identify and fix bugs.

The next three subsections will provide simulation results for three different Verilog

designs implemented on the new FPGA architecture. In order to run these simulations,

first, a Verilog design was created (Example here). Then, this Verilog file was run through

the VTR toolset which outputs the files discussed in the previous section (.net, .place, .blif,

.route). These output files are then used as inputs for the bitstream generation tool which

then outputs a 1480-bit long bitstream. This bitstream is then copied into a testbench

that instantiates the Verilog FPGA architecture and connects the inputs and outputs to the

design as seen in the next 3 sections.

5.1 Adder

This adder circuit is one of the simplest designs that an FPGA can implement which still

requires a moderate amount of intermediate nets to route. As seen in Figure 15 there is

an ’out’ signal as well as a ’correct’ signal. The out signal comes directly from the Verilog

FPGA while the ’correct’ signal is computed by the simulator. The programming signals are

omitted due to length and lack of clarity added (a zoomed out screenshot of a design being

programmed can be seen in Section 5.3). Notice all test cases showing equal results between

the computed output and the correct output.
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Figure 15: Output of 4-bit adder testbench

5.2 Register

The next example circuit is a simple set-clear register to demonstrate the use of memory

elements in the architecture. As with the previous adder example, both output and correct

signals are provided for easy verification.

Figure 16: Output of register testbench

5.3 Sequence Detector

The testbench for this circuit uses the same FSM design from Section 3.3. As can be seen

in the testbench code (found here) the actual FSM Verilog file was, in addition to being

implemented on the FPGA, also instantiated in the simulator so that the correct output

could be known easily. In addition, a logic block is included in the test bench to convert the
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seven segment display formatted output into a regular number representation.

Figure 17: Programming the sequence detector testbench

The following timing diagrams were generated from the Vivado simulator, the program-

ming signals are shown in Figure 17 at a very high level. Figure 18 shows the state machine

advance through all of its internal states as the desired sequence is passed into the design

(”101100100”) one by one. The ”led out” signal is the output from the FPGA while the

”correct” signal is the simulation software’s interpretation of the FSM design. The ”state”

signal is the converted ”led out” value into a regular number. It can be seen clearly that the

FPGA output is always consistent with the correct output.

Figure 18: Output of sequence detector testbench

Next an incorrect sequence will be fed into the state machine in Figure 19. ”100” are the

first three bits fed into the FSM. This will cause the design to advance to state 2 (on the

2nd bit) but then fall to state zero after reading the 3rd bit due to it being incorrect.
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Figure 19: Output of sequence detector testbench

The next simulation shows the bits ”1011011001000” being fed into the FSM. This causes

the behavior of advancing from state 1 to 5 and then falling back to 3 before advancing to

state 9. This happens due to the error in state 5. The next bit should be a 0, but a 1 is

given. Instead of going back to state 1 however, the last 3 bits entered match with state

3 (which represents the pattern ”101”). The next bits are then entered correctly until the

sequence is matched.

Figure 20: Output of sequence detector testbench

The final simulation shows the use of the reset input. The correct sequence is fed into

the FSM and before it can advance to the 6th state the reset pin is set to 1. Notice that the

correct output and the FPGA output diverge from the reset going high until the next rising

edge of the clock. This is due to the reset being specified as asynchronous in the Verilog

design, while the FPGA architecture is unable to implement such constructs. All flip flops

in any implemented designs are tied to the same global clock line.
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Figure 21: Output of sequence detector testbench
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6 Conclusion

Overall, this project was a success in spirit but slightly missed the stated goal of creating a

10-input 10-output 10-state capable FPGA architecture. The main reason that this project

fell slightly short is that the FSM target really needed a contrived example design to meet

the 10 input, 10 output requirements as FSM designs typically rely on smaller amounts of

inputs and outputs. This was partially overcome through the sequence detector example

due to the internal state being converted to a seven segment display format which occupied

more output pins. Still this design fell short of being able to implement an FSM with the

10-inputs and 10-outputs originally desired.

This small failure however, does not truly impact the usability of the design as the

majority of 10-state FSM’s will not require that many IO’s. This points to a small design

flaw in which the ratio of logic resources to IO’s is not optimal, however future designers

should be weary of decreasing the number IO’s too much as it could have the impact of

reducing the routeability of the architecture due to decreasing the number of IO pins in

desirable areas and therefore increasing the need for global routing resources.

The next reason that this project fell slightly short of it’s goals is that the FSM design

hoping to be implemented onto this architecture needs to be manipulated and ”worked”

in order to fit in the architecture. This can be seen by the fact that the sequence decoder

example utilized 100% of available logic resources and two fabric buses above 80% of available

track resources. In fact, just switching the desired pattern from ”101100100” to ”101100101”

caused the design to be unroutable. This means that the desired FSM design size has a

possibility of fitting onto this architecture, but there is a large subset of designs which have

10 states which will not fit on this architecture.

This utilization difficulty is caused to a substantial degree by the VTR place and route

algorithm. As pointed out in the VTR section, upon inspection of the implemented sequence

detector design, many of the IO blocks have not been placed in ideal locations. Inputs/Out-

puts seem to be placed in a somewhat random fashion, with little regard to the design’s IO

biases. It was not uncommon to see an output from the NE logic cluster be routed all the
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way across the chip to the west IO bank. This is likely due to the general purpose nature of

the algorithm where a more specific place and route algorithm would have performed better

on this architecture.

Aside from these two slight failures, the rest of the project went successfully. The ability

to implement a select group of medium sized FSM designs onto a completely new FPGA

architecture designed in Verilog with the ability to program the device ’in-circuit’ with a

custom bitstream generation tool integrated with the academic standard of place route tools

should not be understated.
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7 Appendix

7.1 Github

The github project can be found at this URL: https://github.com/JosephPrachar/fpga
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