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ABSTRACT

Applying Neural Networks for Tire Pressure Monitoring Systems

Alex Kost

A proof-of-concept indirect tire-pressure monitoring system is developed using

neural networks to identify the tire pressure of a vehicle tire. A quarter-car model

was developed with Matlab and Simulink to generate simulated accelerometer output

data. Simulation data are used to train and evaluate a recurrent neural network with

long short-term memory blocks (RNN-LSTM) and a convolutional neural network

(CNN) developed in Python with Tensorflow. Bayesian Optimization via SigOpt

was used to optimize training and model parameters. The predictive accuracy and

training speed of the two models with various parameters are compared. Finally,

future work and improvements are discussed.
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Chapter 1

INTRODUCTION

1.1 Background

It is difficult to understate how important properly pressurized tires are to the perfor-

mance and safety of a vehicle and its operator, respectively. The National Highway

Traffic Safety Administration (NHTSA) estimates that 11,000 tire-related crashes oc-

cur annually in the US, with 200 people estimated to be killed in these crashes [28].

Furthermore, under-inflated tires contribute to the following performance issues when

driving [37]:

1. Poor fuel economy, wasting an estimated 3.5 million gallons daily and costing

drivers as much as 11 cents per gallon in the US.

2. Longer stopping distances and sluggish/ineffective handling, resulting in more

dangerous driving conditions.

3. Faster tire wear, reducing the average life of a tire by 4,700 miles.

Tire-pressure monitoring systems (TPMS) became federally mandated in 2000 by the

Transportation Recall Enhancement, Accountability, and Documentation Act, where

legislators ruled to “require a warning system in new motor vehicles to indicate to

the operator when a tire is significantly under inflated” [38]. More specifically, all

motor vehicles must have a system that is capable of detecting when one or more

of the vehicle’s tires, up to all four tires, is 25% or more below the manufacturer’s

recommended inflation pressure or a minimum activation pressure specified in the

standard, whichever is higher [25]. Nonetheless, a study performed in April 2009

showed that 45% of TPMS-enabled vehicles still have under-inflated tires [26].

Therefore, for obvious moral and legal reasons, it is imperative that drivers know that

their tires are inflated properly. It is in the individual’s and society’s best interests
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to improve safety, performance, and savings while on the road.

1.2 Purpose

The most commonly used TPMS in vehicles today is a simple pressure sensor mounted

within the tire to directly measure the pressure of the air within the tire. When the

integrated battery dies on these sensors, the sensors must be replaced manually. Time,

money, and labor are spent to replace this simple sensor. It would be advantageous

if the TPMS architecture was created such that maintenance and repair were not

needed.

As advancements in machine learning and deep learning techniques continue, it is

no longer a question of how or why to apply these techniques, but where to apply

them. In this work, a proof-of-concept TPMS architecture is suggested that uses

accelerometer data and deep learning algorithms to determine whether the tires on a

vehicle are under, over, or nominally inflated. This work is comprises four chapters:

1. Chapter 1 introduces the legal and moral motivations behind TPMSs in to-

day’s vehicles. This chapter also outlines the content of this work.

2. Chapter 2 serves as a literature review for this work. Three specific fields of

study are defined: a mechanical review of automotive suspension systems and

tires, current TPMS frameworks and sensing capability, and current technolo-

gies and research in artificial neural networks.

3. Chapter 3 presents the work done to create a proof-of-concept classifier using

simulated data. The simulated model and its limitations are discussed, as well

as the architecture and modifications done on the artificial neural network.

4. Chapter 4 compares the final performance of the implemented classifiers and

concludes this work with a discussion on the meaning and limitations of the

results. Suggestions for future work are also made.

2



Chapter 2

THEORY

2.1 Suspension and Tires

Vehicle suspensions and tires are designed to optimize the traction, ride comfort,

handling, and fuel consumption of the vehicle. The suspension links the wheels—

tires mated to rims—to the vehicle chassis and allows relative motion, while the tire

transfers energy between the vehicle and the road to allow the vehicle to move [16].

Together, the suspension and tires are the defining aspects of a vehicle’s combined

stiffness and damping coefficients.

A simplified representation of a vehicle suspension system is used in this work. Known

as a Quarter Car Model, the representation has only one degree-of-freedom and can

only move vertically. The vehicle is rigid; only vibrations transferred from the ground

to the tires, axles, and suspension systems are considered. This representation also

does not consider any forces or reactions due to the geometry of the vehicle; it is

only looking at a single wheel on this “vehicle.” The representation is presented in

Figure 2.1 [16].

The unsprung mass mu refers to all masses that are attached to and not supported by

the spring, such as the wheels, axles, or brakes. In this representation, the unsprung

mass is the weight of the tire and the weight of the air of the tire. In an actual

vehicle, suspension stiffness and damping values ks and cs are functions of suspension

type, tire geometry, tire pressure, vehicle geometry, and vehicle weight. These values

should be constant in vehicles without active suspension systems, so the only changing

parameter in this model is the unsprung mass’s stiffness ku. Any damping in parallel

with ku is negligible with respect to cu and is thus not included in the representation.
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Figure 2.1: A free-body diagram of the quarter-car model. Taken from
Jazar et al. [16].

2.2 TPMS Architectures

The NHTSA provides vehicle manufacturers three ways to comply with the law:

direct, indirect, and hybrid TPMS [27]. Direct TPMS consists normally of pressure

sensors located inside each wheel to directly measure the pressure in each tire. Indirect

TPMS compares speed data collected from vehicle’s anti-lock braking system wheel

speed sensors to compare rotational speeds of tires against one another to determine

the pressure. Direct systems are more accurate and precise, whereas indirect systems

are less hardware-dependent and more robust for each vehicle. The NHTSA leaves the

definition of a hybrid TPMS purposefully vague and suggests such a system would use

a combination of direct and indirect methods to fulfill the regulatory requirements.

Although direct TPMS dominates the method today, indirect TPMS is expected to

become the dominant TPMS in the coming years.

A note should be made that not all direct and indirect TPSM are created equal:

individual features differ from system to system. As shown in Kubba and Jiang [21],

various direct TPMS systems use different power sources and sensing solutions.

Research of indirect TPMS frameworks has grown and continues to grow because

of their perceived advantages over direct TPMS as computing power increases. For
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example, Persson, Gustafsson, and Drev [31] presented in 2002 an indirect TPMS

combining vibration and wheel radius analyses was able to detect pressure losses

larger than 15% in one, two, three, or four tires and identify the underinflated tire

within 1 minute.

2.3 Artificial Neural Networks

An artificial neural network (ANN) is a machine learning algorithm used to solve

advanced non-linear problems such as handwriting or speech recognition. Neural

networks connect computational nodes together to form a singular “network,” where

each computational node is performing a calculation on its input and outputting the

result to all outgoing connections. The output of a node can be the input to at least

one other node or to many other nodes. Outputs can be scaled and biased by weights

and biases respectively; think the canonical linear function y = mx + b, where y is

the original output, m is the weight, x is the new output, and b is the bias. Often,

activation functions are added to the networks; these further define the output with

a linear or non-linear function. As shown by Ramachandran et. al [34], the most

commonly used activation function in deep learning projects is the rectified linear

unit (ReLU). In summary, interconnected computational nodes perform linear and

non-linear operations on inputs.

At first, all ANN models do not perform well because the weights and biases are not

tuned; that is, the model is not trained. Neural networks can learn a hierarchical

feature representation from raw data automatically [40]; that is, they “learn” or

can be trained through example. In this work, we train our models via supervised

learning—that is, with labeled training data—and compare the model’s predictions

to the actual labels. By repeatedly minimizing the error between prediction and

truth, the model updates the trainable parameters and its accuracy improves. This

updating is based on minimizing a cost (generally inversely proportional to accuracy)

via some optimization strategy. Gradient Descent strategies are often implemented;

in this work, the Adaptive Moment Estimation (Adam) strategy is applied. Adam

computes adaptive learning rates for each parameter and takes advantage of the
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idea of momentum to more quickly converge on the global minima with reduced

oscillation [20].

Furthermore, models hyperparameters can be tuned such that they can more quickly

be trained and perform more optimally. Grid search tuning is a standard method

where an exponentially large grid of possible hyperparameter combinations is sys-

tematically searched. Alternatively, Bayesian Optimization tuning promises a more

intelligently search by learning from prior hyperparameter combinations and their re-

sults to intelligently suggest better combinations [6]. Grid searches are exponentially

expensive whereas Bayesian optimization are only linearly expensive, as visualized

in Figure 2.2. In this work, the software-as-a-service product SigOpt is applied to

perform Bayesian optimization techniques for quick, intelligent tuning.

(a) (b)

Figure 2.2: (a) Grid Search vs. (b) Bayesian Optimization techniques for
tuning, where each yellow dot indicates a model evaluation. Notice that
grid searches could be searching along a potentially-coarse grid, whereas
Bayesian optimization techniques test any possible combination within the
space and intelligently suggests combinations to reach optimal solutions
with fewer evaluations.

The type of input data generally defines the type of ANN to be used; in this case,

the models are interpreting time series data. As defined by Dorffner [8], a time

series is a sequence of vectors depending on time t such that ~x(t), t = 0, 1, 2, and so

on. The components of ~x at each time t (referred to as datapoints in this work) are

distinct from one another but are not informative enough to extrapolate meaningful

6



information from the time series; instead, each datapoint in a time series must be

analyzed in relation to the rest of the time series. We discuss two major model types

for interpreting time series data below: the recurrent neural network (RNN) and

convolutional neural network (CNN).

Figure 2.3: A visual representation of a single block in a recurrent neural
network (RNN). Taken from [29].

Recurrent neural networks (RNNs) interpret time-series data successfully by adding

feedback loops to the standard ANN network architecture [22] [9]. Some RNNs use

more complex computational nodes known as long short-term memory (LSTM) blocks

to mitigate an issue common in RNNs known as the vanishing gradient problem [9].

Figure 2.4: Visualization of a 5x5 filter convolving around an input volume
and producing an output. Taken from [5].

Convolutional neural networks (CNNs) interpret clusters of datapoints (e.g. time-

series, images, sentences, sound recordings, so on) together to preserve spatial or

temporal relationships. CNNs apply kernels or filters—i.e. a weight matrices—to

recognize and extract features or patterns [19].

The first few layers of a typical ANN act as feature extractors ; that is, they are

responsible for extracting meaningful information from the input data. For example,
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RNNs build an internal memory and CNNs use pattern matching. This meaningful

information is then fed into a classifier. Classifiers are generally fully-connected layers

(each node is connected to one another; see Figure 2.5) with n outputs, where n is

the number of classes in the input data.

Figure 2.5: Visualization of a fully-connected layer. Taken from Holle-
mans et al. [13].

ANNs have been applied in the automotive industry for decades. In 1990, Wiggins

presented a neural network that could identify engine faults based on the vehicle’s

engine controller data [39]. Neural networks were used to control the air-to-fuel ratio

in fuel injection systems as shown by Alippi et al. in 2003 [2]. More recently, ANNs

have driven advances in automated vehicle control (“self-driving”) that can detect,

identify, and respond to objects and pedestrians on the road in real time. While Tesla,

Mercedes-Benz, and BMW were first introduce these features to consumer vehicles,

the technology is becoming increasingly ubiquitous [17]. A NHTSA investigation

conducted in January 2017 found crash rates Tesla crash rates have dropped by

almost 40% since enabling self-driving capabilities in 2015 [12].

Applying ANNs to automobiles requires dedicated software and hardware on the vehi-

cle. Unlike data centers, portable implementations are limited primarily by the size,

energy, and computational power of the device they are operating on [33]. Size is

generally not a constraint for automotive manufacturers. Energy and computational

power are proportional: therefore, research has been focused on improving micropro-

cessing architectures to minimize energy draw (hardware) or improving the efficiency
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of the algorithm to reduce computational load (software). With respect to hardware,

in February 2016, researchers presented a convolutional neural network accelerator

chip that uses 10X less power and requires 4.7x fewer DRAM accesses per pixel than

a mobile GPU [4]. Similarly, with respect to software, AlphaGo, a Google project,

demonstrated that integrating classification trees with neural networks significantly

reduces the computational burden, making what people once thought impossible—a

computer defeating a world-champion Go player in real time—possible [35]. Many

more examples like these can be found.
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Chapter 3

WORK

With the desire to explore alternative indirect TPMS frameworks and inspired by

deep learning is seemingly infinite applications, this work explores a deep learning

framework that analyzes vehicle suspension acceleration data to classify the vehicle

tires as under-inflated, nominally inflated, or over-inflated. To validate this idea, work

was broken into the following sections:

1. Collecting Data. The accuracy and capability of the ANN is largely depen-

dent on the size of our data—ANNs tend to improve when there is more data

for training. In this work, data was simulated by a quarter-car model written

in Matlab and Simulink. The data serves as the training, validation, and test

sets for the ANN.

2. Creating the Algorithm. Using the data from the prior step, an RNN-LSTM

and CNN are developed in Python with Google’s open-source TensorFlow API.

Tuning model and training parameters are done using Bayesian Optimization

via SigOpt.

3.1 Collecting Data

A Matlab model for the quarter-car representation as shown in Figure 2.1 was run

at various tire pressures and step-sizes to generate simulated examples of a vehicle

suspension system experiencing a step response (in an attempt to be analogous to

a pothole or speed bump). The simulation solves the system of ordinary differential

equations for every time step for the position, velocity, and accelerations of the sprung

mass ms and unsprung mass mu. The simulation inputs are presented below in

Table 3.1 and their accompanying derivations are presented in Appendix A.
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Table 3.2: Inflation classifications, pressures, and labels.

Inflation Classification Pressure Range (psi) Label (int)

Under 26–30 0

Nominal 30–34 1

Over 34–38 2

Table 3.1: Simulation input variables.

Variable Description Value [Units]

pu Tire pressure Varies [psi]

y Step size Varies [m]

ms Sprung mass 277.25 [kg]

mu Unsprung mass 34.69 [kg]

ks Sprung stiffness 557.97 [kPa]

cs Sprung damping 6218.35 [Pa-sec]

ku Unsprung stiffness Varies [kPa]

g Gravity 9.81 [m/sec2]

The simulation was performed for pu = 25.5, 26, 26.5, 27, ..., 38.5 and for y = 0.10, 0.15, 0.2, ...

2.0, generating 633 total examples. Every 1.5-second-long run is composed of 1500

data points and labeled according to the inflation classifications as defined by Ta-

ble 3.2. These classifications are 10% of 32 psi, well within the 25% specification

as defined by the TREAD Act. The label of the simulation and the sprung’s mass

acceleration ẍs are saved in individual .csv files to be parsed by the algorithm. An

example of the generated data is presented below in Table 3.3 (note that the first row

is only shown here for clarification and is not included in the raw output).

Table 3.3: Example of simulated data: Sim 35.5psi 0.75m.csv.

label ẍs, t = 0.000s ẍs, t = 0.001s ... ẍs, t = 0.420s ẍs, t = 0.421s

2 -0.00073852 -0.00067152 ... -1.3974 -1.2822
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Plots were developed of xs vs. time as a quick sanity check. The plots make intu-

itive sense–higher pressure correlates with greater stiffness, which then increases the

natural frequency, slows the settling speed of the mass, and reduces the maximum

amplitude. The simulation is sound.

Figure 3.1: Sprung mass vs. time for pu = 26, 32, 38 psi for step size y = 2
m.

3.2 Building the Algorithm

3.2.1 Specifications

For this work, TensorFlow was used to build, train, and evaluate a RNN and a CNN.

Development of each neural network followed the same specifications as listed below.

1. Import the simulated data into the Python environment.

(a) The input data shall be shuffled randomly.

(b) The input data shall be split into a training set (60%), validation set (20%),

and test set (20%).

12



2. Build the model of the neural network.

(a) The model shall be fed labeled input data and output predicted labels.

(b) The input data should be fed in batches to minimize computational load

between parameter updates. Generally, the recommended starting batch

size is 32 [3]

(c) The model shall prevent overfitting by applying dropout to the outputs of

at least one fully-connected layer [32].

(d) Batch normalization shall be applied after various layers to reduce the

internal covariate shift within the model [15].

(e) Model logits shall be converted to classification predictions using the soft-

max activation function.

3. Evaluate the predictive capabilities and training speed of the model.

(a) The cost shall be calculated using the cross-entropy function between the

input data labels and model predictions [24].

(b) The accuracy shall be calculated by comparing the model’s predicted labels

to the input data labels.

(c) The training speed shall be minimized by tuning the model hyperparam-

eters.

4. Train the model parameters.

(a) The training shall end after a predefined number of epochs and not be

stopped early to observe any overfitting in the model.

(b) The training method shall minimize the batch’s average cross-entropy loss

using Adam Optimization strategy [20].

(c) The learning rate shall be static or exponentially decaying.

3.2.2 Development

The RNN-LSTM and CNN models are self-contained in RNNModel and CNNModel

respectively. Both models are similar except for the feature extraction near the input

13



layer of the model.

(a) (b)

Figure 3.2: (a) RNN-LSTM and (b) CNN model visual graphs as created
by TensorBoard.

A DataProcessor class was written to provide methods to scan a directory for all files

and perform various preprocessing operations. In this work, DataProcessor scans

the simulated data directory; generates lists of all files found across all labels; shuffles

and splits the filenames across test, validation, and training sets; and loads the feature

data and label data found in each files from each set into member variables to be used

for training.

The training class TrainModel is the entry point to train the model. Instantiating

TrainModel builds the desired model with a provided learning rate learning rate

and dropout rate dropout rate. Calling train model trains the model for a desired

number of epochs n epochs using feature and label data inherited from DataProcessor.

Every 1
n checks

, the model’s accuracy and cost are evaluated across the entire training

and validation datasets and reported to TensorBoard for visualization. The test set

accuracy is evaluated before and after training.
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3.2.3 Tuning

The model parameters were tuned via SigOpt to identify optimal values for various

model hyperparameters. Tuning classes GridSearchTune and SigOptTune were de-

veloped to perform a grid search or connect to SigOpt to perform a Bayesian search

respectively. It was estimated that a grid search over the entire model space would

take over two weeks of computations per model, whereas SigOpt’s more-intelligent

Bayesian search strategy would take days instead. Thus, only SigOptTune was used

in this work.

Two SigOpt experiments were run for each model to optimize the training speed

and accuracy respectively. The parameters under investigation are listed below in

Table 3.4.

Table 3.4: Parameters optimized via SigOpt Bayesian optimization. *
denotes that the parameter is related to Adam optimization strategy

Name Description RNN-LSTM CNN

dropout rate Dropout rate X X

learning rate* Learning rate X X

beta1* 1st moment estimates exponential decay rate X X

beta2* 2nd moment estimates exponential decay rate X X

epsilon* Numerical stability constant X X

num filt 1 Number of filters in convolutional layer X

kernel size Kernel size in convolutional layer X

num fc 1 Number of neurons in first fully-connected layer X X

n layers Number of hidden layers in model X

n hidden Number of features per hidden layer in LSTM X

All source code is available in Appendix B.
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Chapter 4

RESULTS AND CONCLUSIONS

4.1 Initial Results

Tuning the Adam-specific hyperparameters gave insight in a recurring issue with the

LSTM-RNN: The model would not improve in performance after 200 steps (40 epochs

with batch size = 128). Figure 4.1 shows multiple training curves with various

values for learning rate, beta 1, beta 2, and epsilon. where the cross-validation

accuracy would remain at 33.3%, or the same accuracy as randomly guessing.

Figure 4.1: RNN-LSTM: Training classification accuracy for various Adam
optimization strategy optimization parameters learning rate, beta 1,
beta 2, and epsilon.

These results can be from the RNN-LSTM’s inability to identify any meaningful

features after 40 epochs of the 633 training examples. The same results were seen

when the model was trained for 200 epochs: The RNN-LSTM underfit the simulated

data every time. Therefore, all model hyperparameters were increased. The result-

ing models successfully fit the input data and achieved significantly better accuracy

when classifying the test set data. Further hyperparameter tuning showed that in-

creasing the number of layers to be greater than 1 results in the model fitting the

data appropriately. After 100 observations, Sigopt reported the RNN achieved 96.2%

accuracy.
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The CNN did not require much hyperparameter tuning. The CNN achieved near

state-of-the-art success (accuracy > 95%) on the first try. The CNN achieved 100%

accuracy after 15 optimization evaluations with SigOpt.

The final model hyperparameters were based on the first evaluation that classified

the test set with 100% accuracy. These values are shown in Table 4.1. Similarly, the

final performances are shown below in Figure 4.2.

Table 4.1: Final hyperparameters chosen for both models.

Name RNN-LSTM CNN

dropout rate 0.672 0.309

learning rate 0.00001 0.033

beta1 0.9 0.684

beta2 0.999 0.845

epsilon 1e-08 0.282

num filt 1 - 16

kernel size - 4

num fc 1 31 6

n layers 4 -

n hidden 22 -

4.2 Final Results and Discussion

Overall, both CNN and RNN models achieved above 90% accuracy on the validation

and test dataset given sufficient time. Figure 4.2 depicts the accuracy curves during

training across the training and validation datasets.

Different training parameters and hyperparameters were defined for each model to

achieve these results. The training parameters of both models saw a change in the

batch size batch size and number of epochs n epochs. The batch size was increased

from 32 to 256 so each model update would better represent the dataset. The models
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Figure 4.2: Classification Accuracy During Training

were ran until a validation dataset accuracy above 90% was observed, hence the final

value n epochs = 1000.

The CNN requires significantly less time to train than the RNN-LSTM. This can be

explained by looking at the mathematics behind the architectures. At each time step

t, a RNN-LSTM must perform the following computations:

gu = σ(Wuht−1 + Iuxt + bu)

gf = σ(Wfht−1 + Ifxt + bf )

go = σ(Woht−1 + Ioxt + bo)

gc = tanh(Wcht−1 + Icxt + bc)

mt = gf �mt−1 + gu � gc

ht = tanh (go �mt)

(4.1)

where σ is the logistic sigmoid function, � represents elementwise multiplication,

Wu,Wf ,Wo,Wc are recurrent weight matrices, Iu, If , Io, Ic are projection matrices,

b is the bias vector, and h and m are hidden and memory vectors responsible for

controlling state updates and outputs [18]. On the other hand, the input to some

unit xli in layer l is the sum of the previous layer’s cells contributions y multiplied by
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a filter ω with size m [11]. More clearly,

xli =
m∑
a=0

ωay
l−1
i+a + bi (4.2)

Compared directly against the fundamental equations behind a 1D convolution layer,

one can see a stark contrast in complexity. Even if the filter or the number of previous-

layer inputs are large in size, the CNN model is significantly simpler than the RNN-

LSTM model and thus is easier and faster to train.

The CNN also outperformed the RNN-LSTM model in classification capability. The

RNN-LSTM model feeds the hidden layer from the previous layer from the previous

step into the next step to provide information for tasks requiring long-range contextual

information, but the input data here is based on short, simulated step responses. The

additional computations aren’t needed for classifying the data in this work; in fact,

the RNN-LSTM is incorrectly biased on the built-up memory. The CNN is looking

for specific patterns within windows of time within the time-series data. The clean,

short simulated data does not vary in sequence length and has repeatable patterns

within the data so the CNN is able to quickly train and accurately classify input data.

4.3 Future Work

This work laid down a foundation to explore an ANN-based TPMS, but much more

work needs to be done before this technology can be applied. Future work should

attempt to address the following aspects not covered here.

1. Improve the simulated data. In this work, all data was generated from a

quarter-car model simulation. The simulation made many assumptions and is

not representative of a real car model. A better simulation can be made by using

a half-car or full-car model instead of a quarter-car model or making generally

less assumptions.

2. Collect experimental data. Even better than simulated data is real exper-
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imental data. Collecting and analyzing real data can result in a better, more

generalized classifier with no issues arising from training on simulated data.

Furthermore, the data should be generalized away from a step function profile

to the acceleration profile of general driving such that the TPMS can identify

underpressurized tires at all times.

3. Develop the hardware. Instead of assuming the computational and electrical

power required for the system exists, a more-thorough investigation should be

performed to determine the validity of the claim. A theoretical system with the

properly specified requirements would bring this work one step closer to reality.

4. Improve the algorithm. Further fine-tuning the training parameters and

hyperparameters as well as adding and removing layers and features from the

model architecture may result in more efficient and effective models.

4.4 Conclusion

Considering the various limitations of the work, these ANN-based TPMSs are far

away from being applied across the automotive industry. Nonetheless, this work

showed that both a CNN and RNN-LSTM model can be developed and trained on

simulated training data to accurately classify unseen simulation data. This proves the

algorithm’s ability to identify unique patterns across each class and sort accordingly,

all without any explicit instruction on the mechanical principles behind the data.

With better data and appropriate hardware, vehicles may one day be equipped with

ANN-based TPMS.
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APPENDICES

Appendix A

DERIVATIONS OF SIMULATION INPUT PARAMETERS

All constants used as simulation input variables are derived as follows. Except for

identifying mu, all of these calculations are performed in CalculateTireStiffness.m

and

CalculateSuspensionStiffnessDamping.m.

A.1 ms

ms is simply taken from [14] and divided by 4 to account for the quarter-car model.

ms = 1109 kg/4 = 277.25 kg (A.1)

A.2 ks

Assuming that the tire in use across all vehicles is a radial-ply 165x13 tire (a very

common tire size found on most passenger vehicles), a linear model for static stiffness

based on tire inflation pressure can be used [30]. The model is graphically presented

in Figure A.1 and expressed by equation A.2. The model is only accurate above

15 psi—an acceptable limitation as 15 psi is well below the threshold for “under-

pressurized.”

ks = 30.185pu + 46.375 (A.2)
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Figure A.1: Static stiffness vs. inflation pressure for a radial-ply car
tire. [30]

A.3 mu

Utilizing the average quarter-car ratio of the sprung to unsprung masses and the one

can identify the expected value for mu [16]:

ε =
ms

mu

= 8⇒ mu =
ms

ε

=
277.25 kg

8

= 34.69 kg

(A.3)

It should be noted that mu should vary with tire pressure due to the additional air

inside the tires. However, the mass of the air is insignificant relative to the rest of

the unsprung mass ( (< 0.1%). Nonetheless, the mass of the air is calculated and

included in the unsprung mass for these simulations. The calculations are performed

in CalculateTireWeight.m.
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A.4 ks and cs

To identify the suspension’s stiffness and damping coefficients, assume that the sus-

pension is tuned for a properly-inflated tire. With pu = 32 psi, equations A.2 and A.3

give the ku = 6979.53 kPa and mu = 34.69 kg respectively. With these values, one

can find the natural frequency of the unsprung mass ωu:

ωu =

√
ku
mu

=

√
6979.53 kPa

34.69 kg

= 448.612 Hz

(A.4)

The average quarter-car ratio for sprung and unsprung natural frequences is used to

identify the sprung mass’s natural frequency ωs.

α =
ωs

ωu

= 0.1⇒ ωs = αωu

= (0.1)(448.61 Hz)

= 44.86 Hz

(A.5)

We already know that ms = 277.25 kg, so identifying ks is trivial.

ωs =

√
ks
ms

⇒ ks = ωs
2ms

= (44.86 Hz)2(277.25 kg)

= 557.97 kPa

(A.6)

To calculate cs, we can use the relationship between ωs and the damping ratio ζ = cs
c

,

where c is the critical damping coefficient. Numerous sources suggest the proper

damping ratio in passenger vehicles to be between 0.2 and 0.3 [7] [10]. For this work,

we define ζ = 0.25.
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ζ =
cs

2msωs

⇒ cs = 2ζmsωs

= 2(0.25)(277.25 kg)(44.86 Hz)

= 6218.8 Pa− s

(A.7)
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Appendix B

SOURCE CODE

B.1 cnn model.py

1 """Created on 24 June 2017.

2 @author: Alex Kost

3 @description: Main python code file for Applying CNN as a TPMS.

4 """

5

6 # Basic Python

7 import logging

8

9 # Extended Python

10 import tensorflow as tf

11

12 # Alex Python

13 from data_processor import SIM_LENGTH_SEQ

14

15

16 class CNNModel(object):

17 """

18 CNNModel is a class that builds and trains a CNN Model.

19

20 Attributes:

21 accuracy (TensorFlow operation): step accuracy (predictions vs. labels)

22 beta1 (float): exponential decay rate for the 1st moment estimates

23 beta2 (float): exponential decay rate for the 2nd moment estimates

24 cost (TensorFlow operation): cross entropy loss

25 dropout_rate (float): dropout rate; 0.1 == 10% of input units drop out

26 epsilon (float): a small constant for numerical stability

27 kernel_size (int): kernel size in conv layer

28 learning_rate (float): learning rate, used for optimizing

29 logger (logger object): logging object to write to stream/file

30 n_classes (int): number of classifications: under, nominal, over pressure

31 n_features (int): number of features in input feature data: sprung_accel

32 num_fc_1 (int): number of neurons in first fully connected layer

33 num_filt_1 (int): number of filters in conv layer
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34 optimizer (TensorFlow operation): AdamOptimizer operation used to train

the model↪→

35 summary_op (TensorFlow operation): summary operation of all tf.summary

objects↪→

36 trainable (TensorFlow placeholder): boolean flag to separate

training/evaluating↪→

37 x (TensorFlow placeholder): input feature data

38 y (TensorFlow placeholder): input label data

39 """

40

41 def __init__(self):

42 """Constructor."""

43 # HYPERPARAMETERS

44 self.num_filt_1 = 16 # number of filters in conv

layer↪→

45 self.kernel_size = 5 # kernel size in conv layer

46 self.num_fc_1 = 30 # number of neurons in first

fully connected layer↪→

47 self.dropout_rate = 0.2 # dropout rate; 0.1 == 10% of

input units drop out↪→

48 self.learning_rate = 0.001 # learning rate, used for

optimizing↪→

49 self.beta1 = 0.9 # exponential decay rate for

the 1st moment estimates↪→

50 self.beta2 = 0.999 # exponential decay rate for

the 2nd moment estimates↪→

51 self.epsilon = 1e-08 # a small constant for

numerical stability↪→

52

53 # CONSTANT

54 self.n_features = 1 # sprung_accel

55 self.n_classes = 3 # classifications: under,

nominal, over pressure↪→

56 self.logger = logging.getLogger(__name__) # get the logger!

57

58 # MODEL MEMBER VARIABLES

59 self.x = None # input data

60 self.y = None # input label

61 self.cost = None # cross entropy loss

62 self.accuracy = None # step accuracy (predictions

vs. labels)↪→

63 self.optimizer = None # optimizing operation

64 self.trainable = tf.placeholder(tf.bool, name='trainable') # flag to

separate training/evaluating↪→
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65 self.summary_op = None # summary operation to write

data↪→

66

67 def build_model(self):

68 """Build the CNN Model."""

69 input_shape = [None, SIM_LENGTH_SEQ, self.n_features] if self.n_features >

1 else [None, SIM_LENGTH_SEQ]↪→

70 self.x = tf.placeholder(tf.float32, shape=input_shape, name='input_data')

71 self.y = tf.placeholder(tf.int64, shape=[None], name='input_labels')

72

73 with tf.variable_scope("Reshape_Data"):

74 # tf.nn.conv2d requires inputs to be shaped as follows:

75 # [batch, in_height, in_width, in_channels]

76 # so -1 = batch size, should adapt accordingly

77 # in_height = "height" of the image (so one dimension)

78 # in_width = "width" of image

79 x_reshaped = tf.reshape(self.x, [-1, SIM_LENGTH_SEQ, self.n_features])

80 self.logger.debug('Input dims: {}'.format(x_reshaped.get_shape()))

81

82 with tf.variable_scope("ConvBatch1"):

83 x_bn = tf.contrib.layers.batch_norm(inputs=x_reshaped,

84 is_training=self.trainable,

85 updates_collections=None)

86

87 conv1 = tf.layers.conv1d(inputs=x_bn,

88 filters=self.num_filt_1,

89 kernel_size=[self.kernel_size])

90 self.logger.debug('Conv1 output dims: {}'.format(conv1.get_shape()))

91

92 with tf.variable_scope("Fully_Connected1"):

93 conv2_flatten = tf.layers.flatten(conv1, name='Flatten')

94 fc1 = tf.contrib.layers.fully_connected(inputs=conv2_flatten,

95 num_outputs=self.num_fc_1,

96

weights_initializer=tf.contrib.layers.xavier_initializer(),↪→

97

biases_initializer=tf.constant_initializer(0.1),↪→

98

normalizer_fn=tf.contrib.layers.batch_norm,↪→

99

normalizer_params={'is_training':

self.trainable,

↪→

↪→

100

'updates_collections':

None})

↪→

↪→
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101 fc1 = tf.layers.dropout(inputs=fc1, rate=self.dropout_rate,

training=self.trainable)↪→

102 self.logger.debug('FCon1 output dims: {}'.format(fc1.get_shape()))

103

104 with tf.variable_scope("Fully_Connected2"):

105 pred = tf.contrib.layers.fully_connected(inputs=fc1,

106 num_outputs=self.n_classes,

107

weights_initializer=tf.contrib.layers.xavier_initializer(),↪→

108

biases_initializer=tf.constant_initializer(0.1))↪→

109 self.logger.debug('FCon2 output dims: {}'.format(pred.get_shape()))

110 tf.summary.histogram('pred', pred)

111

112 # MEASURE MODEL ERROR

113 # Cross-Entropy: "measuring how inefficient our predictions are for

describing the truth"↪→

114 # http://colah.github.io/posts/2015-09-Visual-Information/

115 #

https://stackoverflow.com/questions/41689451/valueerror-no-gradients-provided-for-any-variable↪→

116 # Use sparse softmax because we have mutually exclusive classes

117 # logits must be [batch_size, num_classes], label must be [batch_size]

118 # tf.reduce_mean = reduces tensor to mean scalar value of tensor

119 with tf.variable_scope("Softmax"):

120 cross_entropy =

tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred,

labels=self.y)

↪→

↪→

121 self.cost = tf.reduce_mean(cross_entropy, name='cost')

122 tf.summary.scalar('cross_entropy_loss', self.cost)

123

124 # EVALUATE OUR MODEL

125 # tf.argmax = returns index of the highest entry in a tensor along some

axis.↪→

126 # Predictions are probabilities corresponding to class (ex. [0.7 0.2

0.1])↪→

127 # tf.argmax returns the most probable label (ex. 0)

128 # tf.equal = compares prediction to truth, returns list of bools (T if

correct, F if not)↪→

129 # tf.reduce_mean = reduces tensor to mean scalar value of tensor

130 # tf.cast = convert bools to 1 and 0

131 with tf.variable_scope("Evaluating"):

132 correct_pred = tf.equal(tf.argmax(pred, 1), self.y)

133 self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

134 tf.summary.scalar('accuracy', self.accuracy)

135
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136 # OPTIMIZE OUR MODEL

137 with tf.variable_scope("Optimizing"):

138 self.optimizer = tf.train.AdamOptimizer(self.learning_rate,

139 beta1=self.beta1,

140 beta2=self.beta2,

141

epsilon=self.epsilon).minimize(self.cost)↪→
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B.2 rnn model.py

1 """Created on 24 June 2017.

2 @author: Alex Kost

3 @description: Main python code file for Applying RNN as a TPMS.

4 """

5

6 # Basic Python

7 import logging

8

9 # Extended Python

10 import tensorflow as tf

11

12 # Alex Python

13 from data_processor import SIM_LENGTH_SEQ

14

15

16 class RNNModel(object):

17 """

18 RNNModel is a class that builds and trains a RNN model with LSTM cells.

19

20 Attributes:

21 accuracy (TensorFlow operation): step accuracy (predictions vs. labels)

22 beta1 (float): exponential decay rate for the 1st moment estimates

23 beta2 (float): exponential decay rate for the 2nd moment estimates

24 cost (TensorFlow operation): cross entropy loss

25 dropout_rate (float): dropout rate; 0.1 == 10% of input units drop out

26 epsilon (float): a small constant for numerical stability

27 learning_rate (float): learning rate, used for optimizing

28 logger (logger object): logging object to write to stream/file

29 n_classes (int): number of classifications: under, nominal, over pressure

30 n_features (int): number of features in input feature data: sprung_accel

31 n_hidden (int): number of features per hidden layer in RNN

32 n_layers (int): number of hidden layers in model

33 num_fc_1 (int): number of neurons in first fully connected layer

34 optimizer (TensorFlow operation): AdamOptimizer operation used to train

the model↪→

35 summary_op (TensorFlow operation): summary operation of all tf.summary

objects↪→

36 trainable (TensorFlow placeholder): boolean flag to separate

training/evaluating↪→

37 x (TensorFlow placeholder): input feature data

38 y (TensorFlow placeholder): input label data
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39 """

40

41 def __init__(self):

42 """Constructor."""

43 # HYPERPARAMETERS

44 self.n_hidden = 8 # number of features per

hidden layer in LSTM↪→

45 self.num_fc_1 = 16 # number of neurons in first

fully connected layer↪→

46 self.n_layers = 2 # number of hidden layers in

model↪→

47 self.dropout_rate = 0.5 # dropout rate; 0.1 == 10% of

input units drop out↪→

48 self.learning_rate = 0.0001 # learning rate, used for

optimizing↪→

49 self.beta1 = 0.9 # exponential decay rate for

the 1st moment estimates↪→

50 self.beta2 = 0.999 # exponential decay rate for

the 2nd moment estimates↪→

51 self.epsilon = 1e-08 # a small constant for

numerical stability↪→

52

53 # CONSTANT

54 self.n_features = 1 # sprung_accel

55 self.n_classes = 3 # classifications: under,

nominal, over pressure↪→

56 self.logger = logging.getLogger(__name__) # get the logger!

57

58 # MODEL MEMBER VARIABLES

59 self.x = None # input data

60 self.y = None # input label

61 self.cost = None # cross entropy loss

62 self.accuracy = None # step accuracy (predictions

vs. labels)↪→

63 self.optimizer = None # optimizing operation

64 self.trainable = tf.placeholder(tf.bool, name='trainable') # flag to

separate training/evaluating↪→

65 self.summary_op = None # summary operation to write

data↪→

66

67 def build_model(self):

68 """Build the RNN model."""

69 input_shape = [None, SIM_LENGTH_SEQ, self.n_features] if self.n_features >

1 else [None, SIM_LENGTH_SEQ]↪→

70 self.x = tf.placeholder(tf.float32, shape=input_shape, name='input_data')
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71 self.y = tf.placeholder(tf.int64, shape=[None], name='input_labels')

72

73 if input_shape == [None, SIM_LENGTH_SEQ]:

74 with tf.variable_scope("Reshape_Data"):

75 # tf.nn.conv2d requires inputs to be shaped as follows:

76 # [batch_size, max_time, ...]

77 # so -1 = batch size, should adapt accordingly

78 # max_time = SIM_LENGTH_SEQ

79 # ... = self.n_features

80 x_reshaped = tf.reshape(self.x, [-1, SIM_LENGTH_SEQ,

self.n_features])↪→

81 self.logger.debug('Input dims: {}'.format(x_reshaped.get_shape()))

82

83 with tf.variable_scope("LSTM_RNN"):

84 # add stacked layers if more than one layer

85 if self.n_layers > 1:

86 cell = tf.contrib.rnn.MultiRNNCell([self._setup_lstm_cell() for _

in range(self.n_layers)],↪→

87 state_is_tuple=True)

88 else:

89 cell = self._setup_lstm_cell()

90

91 # outputs = [batch_size, max_time, cell.output_size]

92 # outputs contains the output of the last layer for each time-step

93 outputs, _ = tf.nn.dynamic_rnn(cell=cell,

94 inputs=x_reshaped,

95 dtype=tf.float32)

96

97 self.logger.debug('dynamic_rnn output dims:

{}'.format(outputs.get_shape()))↪→

98

99 # We transpose the output to switch batch size with sequence size -

http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/↪→

100 outputs = tf.transpose(outputs, [1, 0, 2]) # Now shape =

[max_time, batch_size, cell.output_size]↪→

101 last = outputs[-1] # Last slice is of

shape [batch_size, cell.output_size]↪→

102 self.logger.debug('last output dims: {}'.format(last.get_shape()))

103

104 with tf.variable_scope("Fully_Connected1"):

105 fc1 = tf.contrib.layers.fully_connected(inputs=last,

106 num_outputs=self.num_fc_1,

107

weights_initializer=tf.contrib.layers.xavier_initializer(),↪→
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108

biases_initializer=tf.constant_initializer(0.1),↪→

109

normalizer_fn=tf.contrib.layers.batch_norm,↪→

110

normalizer_params={'is_training':

self.trainable,

↪→

↪→

111

'updates_collections':

None})

↪→

↪→

112

113 fc1 = tf.layers.dropout(inputs=fc1, rate=self.dropout_rate,

training=self.trainable)↪→

114 self.logger.debug('FCon1 output dims: {}'.format(fc1.get_shape()))

115

116 with tf.variable_scope("Fully_Connected2"):

117 pred = tf.contrib.layers.fully_connected(inputs=fc1,

118 num_outputs=self.n_classes,

119

weights_initializer=tf.contrib.layers.xavier_initializer(),↪→

120

biases_initializer=tf.constant_initializer(0.1))↪→

121 self.logger.debug('FCon2 output dims: {}'.format(pred.get_shape()))

122 tf.summary.histogram('pred', pred)

123

124 # MEASURE MODEL ERROR

125 # Cross-Entropy: "measuring how inefficient our predictions are for

describing the truth"↪→

126 # http://colah.github.io/posts/2015-09-Visual-Information/

127 #

https://stackoverflow.com/questions/41689451/valueerror-no-gradients-provided-for-any-variable↪→

128 # Use sparse softmax because we have mutually exclusive classes

129 # logits must be [batch_size, num_classes], label must be [batch_size]

130 # tf.reduce_mean = reduces tensor to mean scalar value of tensor

131 with tf.variable_scope("Softmax"):

132 cross_entropy =

tf.nn.sparse_softmax_cross_entropy_with_logits(logits=pred,

labels=self.y)

↪→

↪→

133 self.cost = tf.reduce_mean(cross_entropy, name='total')

134 tf.summary.scalar('cross_entropy_loss', self.cost)

135

136 # EVALUATE OUR MODEL

137 # tf.argmax = returns index of the highest entry in a tensor along some

axis.↪→
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138 # Predictions are probabilities corresponding to class (ex. [0.7 0.2

0.1])↪→

139 # tf.argmax returns the most probable label (ex. 0)

140 # tf.equal = compares prediction to truth, returns list of bools (T if

correct, F if not)↪→

141 # tf.reduce_mean = reduces tensor to mean scalar value of tensor

142 # tf.cast = convert bools to 1 and 0

143 with tf.variable_scope("Evaluating"):

144 correct_pred = tf.equal(tf.argmax(pred, 1), self.y)

145 self.accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

146 tf.summary.scalar('accuracy', self.accuracy)

147

148 # OPTIMIZE OUR MODEL

149 with tf.variable_scope("Optimizing"):

150 self.optimizer = tf.train.AdamOptimizer(self.learning_rate,

151 beta1=self.beta1,

152 beta2=self.beta2,

153

epsilon=self.epsilon).minimize(self.cost)↪→

154

155 """ Helper Functions """

156 def _setup_lstm_cell(self):

157 """Creates an LSTM Cell to be unrolled.

158

159 There's a bug in tf.contrib.rnn.MultiRNNCell that requires we create

160 new cells every time we want to a mult-layered RNN. So we use this

161 helper function to create a LSTM cell. See more here:

162 https://github.com/udacity/deep-learning/issues/132#issuecomment-325158949

163

164 Returns:

165 cell (BasicLSTMCell): BasicLSTM Cell

166 """

167 # forget_bias set to 1.0 b/c

http://proceedings.mlr.press/v37/jozefowicz15.pdf↪→

168 cell = tf.nn.rnn_cell.BasicLSTMCell(self.n_hidden, forget_bias=1.0,

state_is_tuple=True)↪→

169

170 return cell
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B.3 data processor.py

1 """Created on 17 December 2017.

2 @author: Alex Kost

3 @description: Main python code file for preprocessing data

4

5 Attributes:

6 SIM_DATA_PATH (str): Local simulation data output folder path

7 SIM_LENGTH_FIX (int): bias to datapoint length due to slicing ops in Matlab,

datapoints↪→

8 SIM_LENGTH_SEQ (int): simulation length, datapoints

9 SIM_LENGTH_TIME (float): simulation time, sec

10 SIM_RESOLUTION (float): simulation resolution, sec/datapoint

11 """

12

13 # Basic Python

14 import logging

15 import os

16

17 # Extended Python

18 import numpy as np

19

20 # Simulation Constants

21 SIM_LENGTH_TIME = 1.5 - .45

22 SIM_RESOLUTION = .001

23 SIM_LENGTH_FIX = 2

24 SIM_LENGTH_SEQ = int(SIM_LENGTH_TIME / SIM_RESOLUTION) + SIM_LENGTH_FIX

25 SIM_DATA_PATH = 'Data/simulated_labeled'

26

27

28 class DataProcessor(object):

29 """

30 DataProcessor is a class that processes datasets.

31

32 Attributes:

33 logger (logger object): logging object to write to stream/file

34 n_classes (int): number of classifications: under, nominal, over pressure

35 n_features (int): number of features in input feature data: sprung_accel

36 test_data (np.array): loaded data from test dataset

37 test_files (list of strings): list of filenames in test dataset

38 train_data (np.array): loaded data from training dataset

39 train_files (list of strings): list of filenames in training dataset

40 val_data (np.array): loaded data from validation dataset
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41 val_files (list of strings): list of filenames in validation dataset

42 """

43 def __init__(self, n_classes, n_features):

44 """Constructor

45

46 Args:

47 n_classes (int): label classifications

48 n_features (int): features per example

49 """

50 # assign input variables

51 self.n_classes = n_classes

52 self.n_features = n_features

53

54 # FILENAME LISTS

55 self.train_files = []

56 self.val_files = []

57 self.test_files = []

58

59 # LOADED DATA

60 self.train_data = None

61 self.val_data = None

62 self.test_data = None

63

64 self.logger = logging.getLogger(__name__) # get the logger!

65

66 def preprocess_all_data(self):

67 """Shuffle all data and then preprocess the files."""

68 all_files = self._create_filename_list(SIM_DATA_PATH)

69 np.random.shuffle(all_files)

70

71 train_val_test_files = self._split_datafiles(all_files) # train_set,

val_set, test_set↪→

72 self.train_files = train_val_test_files[0]

73 self.val_files = train_val_test_files[1]

74 self.test_files = train_val_test_files[2]

75

76 # Report sizes and load all datasets

77 self.logger.info('Train set size: %d', len(self.train_files))

78 self.logger.info('Validation set size: %d', len(self.val_files))

79 self.logger.info('Test set size: %d', len(self.test_files))

80 self._load_all_datasets()

81

82 def preprocess_data_by_label(self):

83 """Simulation data is organized by label. This method mixes and splits up

the data."""↪→
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84 for i in range(self.n_classes):

85 modified_data_path = os.path.join(SIM_DATA_PATH, str(i))

86 class_files = self._create_filename_list(modified_data_path)

87

88 # get files for each thing

89 result = self._split_datafiles(class_files) # train_set, val_set,

test_set↪→

90 self.train_files.extend(result[0])

91 self.val_files.extend(result[1])

92 self.test_files.extend(result[2])

93 self.logger.debug('%d/%d/%d added to train/val/test set from class

%d.',↪→

94 len(result[0]), len(result[1]),

95 len(result[2]), i)

96

97 # Shuffle data

98 np.random.shuffle(self.train_files)

99 np.random.shuffle(self.val_files)

100 np.random.shuffle(self.test_files)

101

102 # Report sizes and load all datasets

103 self.logger.info('Train set size: %d', len(self.train_files))

104 self.logger.info('Validation set size: %d', len(self.val_files))

105 self.logger.info('Test set size: %d', len(self.test_files))

106 self._load_all_datasets()

107

108 """ Helper Functions """

109 def _load_all_datasets(self):

110 """Assign class member variables after processing filenames."""

111 self.train_data = self._load_data(self.train_files) # features, labels

112 self.val_data = self._load_data(self.val_files) # features,

labels↪→

113 self.test_data = self._load_data(self.test_files) # features,

labels↪→

114

115 @staticmethod

116 def _create_filename_list(data_dir):

117 """Identify the list of CSV files based on a given data_dir.

118

119 Args:

120 data_dir (string): local path to where the data is saved.

121

122 Returns:

123 filenames (list of strings): a list of CSV files found in the data

directory↪→
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124 """

125 filenames = []

126 for root, _, files in os.walk(data_dir):

127 for filename in files:

128 if filename.endswith(".csv"):

129 rel_filepath = os.path.join(root, filename)

130 abs_filepath = os.path.abspath(rel_filepath)

131 filenames.append(abs_filepath)

132

133 return filenames

134

135 @staticmethod

136 def _split_datafiles(data, val_size=0.2, test_size=0.2):

137 """Spit all the data we have into training, validating, and test sets.

138

139 By default, 60/20/20 split

140 Credit:

https://www.slideshare.net/TaegyunJeon1/electricity-price-forecasting-with-recurrent-neural-networks↪→

141

142 Args:

143 data (list): list of filenames

144 val_size (float, optional): Percentage of data to be used for

validation set↪→

145 test_size (float, optional): Percentage to data set to be used for

test set↪→

146

147 Returns:

148 train_set (list): list of training example filenames

149 val_set (list): list of validation example filenames

150 test_set (list): list of test example filenames

151 """

152 val_length = int(len(data) * val_size)

153 test_length = int(len(data) * test_size)

154

155 val_set = data[:val_length]

156 test_set = data[val_length:val_length + test_length]

157 train_set = data[val_length + test_length:]

158

159 return train_set, val_set, test_set

160

161 def _load_data(self, filenames):

162 """Load data from the filenames

163

164 Args:

165 filenames (list of strings): filenames
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166

167 Returns:

168 features, labels (np.array, np.array): loaded features and labels

169 """

170 # Get features and labels from dataset

171 features, labels = [], []

172 for example_file in filenames:

173 example_data = np.loadtxt(example_file, delimiter=',')

174

175 ex_label = example_data[0, 0] if self.n_features > 1 else

example_data[0]↪→

176 ex_feature = example_data[:, 1:] if self.n_features > 1 else

example_data[1:]↪→

177

178 features.append(ex_feature)

179 labels.append(ex_label)

180

181 # stack features

182 features = np.vstack(features)

183

184 return features, labels
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B.4 train.py

1 """Created on 24 June 2017.

2 @author: Alex Kost

3 @description: Training class for CNN and RNN models

4

5 Attributes:

6 DEFAULT_FORMAT (str): Logging format

7 LOGFILE_NAME (str): Logging file name

8 OUTPUT_DIR (str): TensorBoard output directory

9 """

10

11 # Basic Python

12 import logging

13 import os

14 from time import strftime

15 from math import ceil

16

17 # Extended Python

18 import progressbar

19 import tensorflow as tf

20

21 # Alex Python

22 from data_processor import DataProcessor

23 from rnn_model import RNNModel # RNN MODEL

24 from cnn_model import CNNModel # CNN MODEL

25

26 # Progressbar config

27 progressbar.streams.wrap_stderr()

28

29 # Constants

30 DEFAULT_FORMAT = '%(asctime)s: %(levelname)s: %(message)s'

31 LOGFILE_NAME = 'train.log'

32 OUTPUT_DIR = 'output'

33

34

35 class TrainModel(DataProcessor):

36 """

37 TrainModel is a class that builds and trains a provided model.

38

39 Attributes:

40 batch_size (int): number of examples in a single batch

41 dropout_rate (float): dropout rate; 0.1 == 10% of input units drop out
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42 learning_rate (float): learning rate, used for optimizing

43 logger (logger object): logging object to write to stream/file

44 model (TensorFlow model object): Model to train and evaluate

45 n_checks (int): number of times to check performance while training

46 n_epochs (int): number of times we go through all data

47 summary_op (TensorFlow operation): summary operation of all tf.summary

objects↪→

48 """

49 def __init__(self, model, n_epochs=20, batch_size=32):

50 """Constructor.

51

52 Args:

53 model (TensorFlow model object): Model to train and evaluate

54 n_epochs (int, optional): number of times we go through all data

55 batch_size (int, optional): number of examples in a single batch

56 """

57 # TRAINING PARAMETERS

58 self.n_epochs = n_epochs

59 self.batch_size = batch_size

60

61 # CONSTANT

62 self.model = model

63 self.summary_op = None

64 self.logger = logging.getLogger(__name__)

65 self.n_checks = 5

66

67 # INPUT DATA/LABELS

68 super(TrainModel, self).__init__(self.model.n_classes,

self.model.n_features)↪→

69 self.preprocess_data_by_label()

70

71 # HELPER VARIABLES

72 self._ex_per_epoch = None

73 self._steps_per_epoch = None

74 self._train_length_ex = None

75 self._train_length_steps = None

76 self.calculate_helpers()

77

78 def calculate_helpers(self):

79 """Calculate helper variables for training length."""

80 self._ex_per_epoch = len(self.train_files)

81 self._steps_per_epoch = int(ceil(self._ex_per_epoch /

float(self.batch_size)))↪→

82 self._train_length_ex = self._ex_per_epoch * self.n_epochs

83 self._train_length_steps = self._steps_per_epoch * self.n_epochs
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84

85 self.logger.debug('self._ex_per_epoch: %d', self._ex_per_epoch)

86 self.logger.debug('self._steps_per_epoch: %d', self._steps_per_epoch)

87 self.logger.debug('self._train_length_ex: %d', self._train_length_ex)

88 self.logger.debug('self._train_length_steps: %d',

self._train_length_steps)↪→

89

90 def train_model(self, use_tensorboard=True):

91 """Train the model.

92

93 Args:

94 use_tensorboard (bool, optional): Description

95

96 Returns:

97 TYPE: Description

98 """

99

100 # SETUP TENSORBOARD FOR NEW RUN

101 if use_tensorboard:

102 checkpoint_prefix, run_dir = self._setup_tensorboard_directories()

103 saver = tf.train.Saver(tf.global_variables())

104 else:

105 self.logger.info('*** NEW RUN ***')

106 self._log_training_and_model_params()

107 self.summary_op = tf.summary.merge_all()

108

109 # TRAIN

110 with tf.Session() as sess:

111 # Initialization

112 progress_bar =

progressbar.ProgressBar(max_value=self._train_length_steps)↪→

113 sess.run(tf.global_variables_initializer())

114 if use_tensorboard:

115 train_writer = tf.summary.FileWriter(run_dir + '/train',

sess.graph)↪→

116 val_writer = tf.summary.FileWriter(run_dir + '/val')

117 batch_idx = 0

118 progress_bar.start()

119 progress_bar.update(0)

120

121 self.logger.info("The training shall begin.")

122 try:

123 _, acc_test_before, _ = self.evaluate_model_on_data(sess, 'test')

124 for step in range(self._train_length_steps):

125 # Reset/increment batch_idx
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126 if step % self._steps_per_epoch == 0:

127 batch_idx = 0

128 else:

129 batch_idx += 1

130

131 if use_tensorboard:

132 do_full_eval = step % ceil(self._train_length_steps /

float(self.n_checks)) == 0↪→

133 do_full_eval = do_full_eval or (step ==

self._train_length_steps - 1)↪→

134 if do_full_eval:

135 # Check training and validation performance

136 cost_train, acc_train, _ =

self.evaluate_model_on_data(sess, 'train')↪→

137 cost_val, acc_val, summary =

self.evaluate_model_on_data(sess, 'val')↪→

138

139 # Report information to user

140 self.logger.info('%d epochs elapsed.', step /

self._steps_per_epoch)↪→

141 self.logger.info('COST: Train: %5.3f / Val:

%5.3f', cost_train, cost_val)↪→

142 self.logger.info('ACCURACY: Train: %5.3f / Val:

%5.3f', acc_train, acc_val)↪→

143

144 # Save to Tensorboard

145 val_writer.add_summary(summary, step)

146 saver.save(sess, checkpoint_prefix, global_step=step)

147

148 # # If model is not learning immediately, break out of

training↪→

149 # if acc_val == acc_test_before and step > 100:

150 # self.logger.info('Stuck on value: %d', acc_val)

151 # break

152

153 # Training step

154 x_batch, y_batch = self._generate_batch(batch_idx)

155 _, summary = sess.run([self.model.optimizer, self.summary_op],

156 feed_dict={self.model.x: x_batch,

157 self.model.y: y_batch,

158 self.model.trainable: True})

159

160 # Save to Tensorboard, update progress bar

161 if use_tensorboard:

162 train_writer.add_summary(summary, step)
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163 progress_bar.update(step)

164 except KeyboardInterrupt:

165 self.logger.info('Keyboard Interrupt? Gracefully quitting.')

166 finally:

167 progress_bar.finish()

168 _, acc_test_after, _ = self.evaluate_model_on_data(sess, 'test')

169 self.logger.info("The training is done.")

170 self.logger.info('Test accuracy before training: %.3f.',

acc_test_before)↪→

171 self.logger.info('Test accuracy after training: %.3f.',

acc_test_after)↪→

172 if use_tensorboard:

173 train_writer.close()

174 val_writer.close()

175

176 return acc_test_after

177

178 def evaluate_model_on_data(self, sess, dataset_label):

179 """Evaluate the model on the entire training data.

180

181 Args:

182 sess (tf.Session object): active session object

183 dataset_label (string): dataset label

184

185 Returns:

186 float, float: the cost and accuracy of the model based on the dataset.

187 """

188 try:

189 dataset_dict = {'test': self.test_data,

190 'train': self.test_data,

191 'val': self.val_data}

192 dataset = dataset_dict[dataset_label]

193 except KeyError:

194 raise '"dataset" arg must be in dataset dict:

{}'.format(dataset_dict.keys())↪→

195

196 cost, acc, summary = sess.run([self.model.cost, self.model.accuracy,

self.summary_op],↪→

197 feed_dict={self.model.x: dataset[0],

198 self.model.y: dataset[1],

199 self.model.trainable: False})

200

201 return cost, acc, summary

202

203 @staticmethod
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204 def reset_model():

205 """Reset the model to prepare for next run."""

206 tf.reset_default_graph()

207

208 """ Helper Functions """

209 def _setup_tensorboard_directories(self):

210 """Set up TensorBoard directories.

211

212 Returns:

213 checkpoint_prefix, run_dir (string, string): checkpoint prefix, output

root folder↪→

214 """

215 timestamp = str(strftime("%Y.%m.%d-%H.%M.%S"))

216 model_type = self.model.__class__.__name__.replace('Model', '')

217 model_name = timestamp + '_' + model_type

218 out_dir = os.path.abspath(os.path.join(os.path.curdir, OUTPUT_DIR))

219 run_dir = os.path.abspath(os.path.join(out_dir, model_name))

220 checkpoint_dir = os.path.abspath(os.path.join(run_dir, "checkpoints"))

221 checkpoint_prefix = os.path.join(checkpoint_dir, "model")

222 if not os.path.exists(checkpoint_dir):

223 os.makedirs(checkpoint_dir)

224

225 # Logging the Run

226 self.logger.info('*** NEW RUN ***')

227 self.logger.info('filename: %s', model_name)

228

229 return checkpoint_prefix, run_dir

230

231 def _log_training_and_model_params(self):

232 """Record new run details."""

233 model_type = self.model.__class__.__name__

234

235 self.logger.info(' *** TRAINING ***')

236 self.logger.info(' n_epochs: %d', self.n_epochs)

237 self.logger.info(' batch_size: %d', self.batch_size)

238 self.logger.info(' *** MODEL ***')

239 if 'CNN' in model_type:

240 self.logger.info(' num_filt_1: %d', self.model.num_filt_1)

241 self.logger.info(' kernel_size: %d', self.model.kernel_size)

242 self.logger.info(' num_fc_1: %d', self.model.num_fc_1)

243 elif 'RNN' in model_type:

244 self.logger.info(' n_hidden: %d', self.model.n_hidden)

245 self.logger.info(' num_fc_1: %d', self.model.num_fc_1)

246 self.logger.info(' n_layers: %d', self.model.n_layers)

247
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248 self.logger.info(' dropout_rate: %f', self.model.dropout_rate)

249 self.logger.info(' learning_rate: %f', self.model.learning_rate)

250 self.logger.info(' beta1: %f', self.model.beta1)

251 self.logger.info(' beta2: %f', self.model.beta2)

252 self.logger.info(' epsilon: %f', self.model.epsilon)

253

254 def _generate_batch(self, batch_idx):

255 """Generate a batch and increment the sliding batch window within the

data."""↪→

256 features = self.train_data[0]

257 labels = self.train_data[1]

258

259 start_idx = batch_idx * self.batch_size

260 end_idx = start_idx + self.batch_size - 1

261

262 # Error handling for if sliding window goes beyond data list length

263 if end_idx > self._ex_per_epoch:

264 end_idx = self._ex_per_epoch

265

266 if self.n_features > 1:

267 x_batch = features[:, start_idx:end_idx]

268 else:

269 x_batch = features[start_idx:end_idx]

270

271 y_batch = labels[start_idx:end_idx]

272 self.logger.debug('batch_idx: %d', batch_idx)

273 self.logger.debug('Got training examples %d to %d', start_idx, end_idx)

274

275 return x_batch, y_batch

276

277

278 def main():

279 """Sup Main!"""

280 models = [CNNModel(), RNNModel()]

281 for model in models:

282 model.build_model()

283 train = TrainModel(model, n_epochs=200, batch_size=128)

284 train.train_model()

285 train.reset_model()

286

287

288 if __name__ == '__main__':

289 # create logger with 'spam_application'

290 logger = logging.getLogger()

291 logger.setLevel(logging.DEBUG)
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292 # create file handler which logs even debug messages

293 fh = logging.FileHandler(LOGFILE_NAME)

294 fh.setLevel(logging.INFO)

295 # create console handler with a higher log level

296 ch = logging.StreamHandler()

297 ch.setLevel(logging.INFO)

298 # create formatter and add it to the handlers

299 formatter = logging.Formatter(DEFAULT_FORMAT)

300 fh.setFormatter(formatter)

301 ch.setFormatter(formatter)

302 # add the handlers to the logger

303 logger.addHandler(fh)

304 logger.addHandler(ch)

305

306 main()
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B.5 tune.py

1 """Created on 6 Jan 2017.

2 @author: Alex Kost

3 @description: mastermind tuning script for model

4

5 Attributes:

6 DEFAULT_FORMAT (str): Logging format

7 LOGFILE_NAME (str): Logging file name

8 OUTPUT_DIR (str): TensorBoard output directory

9 """

10

11 # Basic Python

12 import logging

13

14 # Extended Python

15 from sigopt import Connection

16

17 # Alex Python

18 from train import TrainModel

19 from rnn_model import RNNModel # RNN MODEL

20 from cnn_model import CNNModel # CNN MODEL

21

22 # Constants

23 DEFAULT_FORMAT = '%(asctime)s: %(levelname)s: %(message)s'

24 LOGFILE_NAME = 'tune.log'

25 #EXPERIMENT_ID = 34189 # CNNModel Accuracy v1

26 #EXPERIMENT_ID = 34205 # CNNModel Accuracy v2

27 #EXPERIMENT_ID = 34424 # CNNModel Accuracy v3

28

29 EXPERIMENT_ID = 34631 # RNNModel Accuracy v1

30

31

32 class SigOptTune(object):

33 def __init__(self):

34 """Constructor."""

35 self.logger = logging.getLogger(__name__) # get the logger!

36

37 self.conn =

Connection(client_token="XWCROUDALHMNJFABTLYVXBUHISZQKKACUGULCENHPSZNQPSD")↪→

38 self.conn.set_api_url("https://api.sigopt.com")

39 self.experiment = None

40 self.suggestion = None
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41

42 self.model = None

43 self.acc = None

44

45 def create_cnn_experiment(self):

46 """Create experiment. Modify as needed."""

47 self.experiment = self.conn.experiments().create(

48 name="CNNModel Accuracy v3",

49 parameters=[dict(name="learning_rate",

50 bounds=dict(min=0.00001, max=0.1),

51 type="double"),

52 dict(name="dropout_rate",

53 bounds=dict(min=0.2, max=0.9),

54 type="double"),

55 dict(name="beta1",

56 bounds=dict(min=0.0001, max=0.999),

57 type="double"),

58 dict(name="beta2",

59 bounds=dict(min=0.0001, max=0.999),

60 type="double"),

61 dict(name="epsilon",

62 bounds=dict(min=1e-8, max=1.0),

63 type="double"),

64 dict(name="num_filt_1",

65 bounds=dict(min=1, max=40),

66 type="int"),

67 dict(name="kernel_size",

68 bounds=dict(min=1, max=10),

69 type="int"),

70 dict(name="num_fc_1",

71 bounds=dict(min=1, max=40),

72 type="int")

73 ])

74

75 self.logger.info('Experiment created! ID %d.', self.experiment.id)

76

77 def create_rnn_experiment(self):

78 """Create experiment. Modify as needed."""

79 self.experiment = self.conn.experiments().create(

80 name="RNNModel Accuracy v1",

81 parameters=[dict(name="learning_rate",

82 bounds=dict(min=0.00001, max=0.1),

83 type="double"),

84 dict(name="dropout_rate",

85 bounds=dict(min=0.2, max=0.9),
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86 type="double"),

87 dict(name="beta1",

88 bounds=dict(min=0.0001, max=0.999),

89 type="double"),

90 dict(name="beta2",

91 bounds=dict(min=0.0001, max=0.999),

92 type="double"),

93 dict(name="epsilon",

94 bounds=dict(min=1e-8, max=1.0),

95 type="double"),

96 dict(name="n_hidden",

97 bounds=dict(min=1, max=40),

98 type="int"),

99 dict(name="num_fc_1",

100 bounds=dict(min=1, max=40),

101 type="int"),

102 dict(name="n_layers",

103 bounds=dict(min=1, max=10),

104 type="int")

105 ])

106

107 self.logger.info('Experiment created! ID %d.', self.experiment.id)

108

109 def get_suggestions(self):

110 """Create suggestions for next iteration."""

111 try:

112 self.suggestion =

self.conn.experiments(EXPERIMENT_ID).suggestions().create()↪→

113 logger.info('Created new suggestions.')

114 except:

115

self.conn.experiments(EXPERIMENT_ID).suggestions().delete(state="open")↪→

116 self.suggestion =

self.conn.experiments(EXPERIMENT_ID).suggestions().create()↪→

117 logger.info('Deleted old and created new suggestions.')

118

119 def update_parameters(self):

120 """Update model parameters with suggestions."""

121 #model_type = self.model.__class__.__name__.replace('Model', '')

122

123 params = self.suggestion.assignments

124 # if model_type == 'CNN':

125 # self.model.num_filt_1 = int(params['num_filt_1'])

126 # self.model.kernel_size = int(params['kernel_size'])

127 # self.model.num_fc_1 = int(params['num_fc_1'])
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128 # elif model_type == 'RNN':

129 # self.model.n_hidden = int(params['n_hidden'])

130 # self.model.num_fc_1 = int(params['num_fc_1'])

131 # self.model.n_layers = int(params['n_layers'])

132

133 #self.model.dropout_rate = params['dropout_rate']

134 self.model.learning_rate = params['learning_rate']

135 self.model.beta1 = params['beta1']

136 self.model.beta2 = params['beta2']

137 self.model.epsilon = params['epsilon']

138

139 def report_observation(self):

140 """Report observation to SigOpt."""

141 self.conn.experiments(EXPERIMENT_ID).observations().create(

142 suggestion=self.suggestion.id,

143 value=float(self.acc),

144 value_stddev=0.05)

145

146 def optimization_loop(self, model):

147 """Optimize the parameters based on suggestions."""

148 for i in range(100):

149 self.logger.info('Optimization Loop Count: %d', i)

150

151 # assign suggestions to parameters and hyperparameters

152 self.get_suggestions()

153

154 # update model class

155 self.model = model()

156 self.update_parameters()

157 self.model.build_model()

158

159 # update training class

160 train = TrainModel(self.model, n_epochs=200, batch_size=128)

161

162 # run the training stuff

163 self.acc = train.train_model()

164 train.reset_model()

165

166 # report to SigOpt

167 self.report_observation()

168

169

170 class GridSearchTune(object):

171 def __init__(self):

172 """Constructor."""
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173 self.logger = logging.getLogger(__name__) # get the logger!

174

175 def tune_cnn_with_gridsearch():

176 """Grid search to identify best hyperparameters for CNN model."""

177 cnn_model_values = []

178 n_epoch_list = [100, 200, 300, 400, 500] #

5↪→

179 batch_size_list = [16, 32, 64, 128, 256] #

5↪→

180 learning_rate_list = [.0001, .0005, .00001, .00005] #

4↪→

181 dropout_rate_list = [0.2, 0.5, 0.7] #

3↪→

182

183 try:

184 for n_epoch in n_epoch_list:

185 for batch_size in batch_size_list:

186 for learning_rate in learning_rate_list:

187 for dropout_rate in dropout_rate_list:

188 for num_filt_1 in [8, 16, 32]: # CNN ONLY

# 3↪→

189 for num_filt_2 in [10, 20, 30, 40]: # CNN ONLY

# 4↪→

190 for num_fc_1 in [10, 20, 30, 40]: # CNN ONLY

# 4↪→

191 CNN = TrainModel(CNNModel, n_epoch,

batch_size, learning_rate,

dropout_rate)

↪→

↪→

192 CNN.model.num_filt_1 = num_filt_1

193 CNN.model.num_filt_2 = num_filt_2

194 CNN.model.num_fc_1 = num_fc_1

195 CNN.model.build_model()

196 CNN.calculate_helpers()

197 acc = CNN.train_model()

198 CNN.reset_model()

199

200 results = [acc, n_epoch, batch_size,

learning_rate, dropout_rate,

num_filt_1, num_filt_2, num_fc_1]

↪→

↪→

201 cnn_model_values.append(results)

202 except:

203 pass

204 finally:

205 best_cnn_run = max(cnn_model_values, key=lambda x: x[0])

206 logger.info('Best CNN run: {}'.format(best_cnn_run))
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207 logger.info('All CNN runs: {}'.format(cnn_model_values))

208

209 def tune_rnn_with_gridsearch():

210 """Grid search to identify best hyperparameters for RNN."""

211 rnn_model_values = []

212 n_epoch_list = [200, 400, 600, 800, 1000] #

5↪→

213 batch_size_list = [16, 32, 64, 128, 256] #

5↪→

214 learning_rate_list = [.001, .005, .0001, .0005] #

4↪→

215 dropout_rate_list = [0.2, 0.5, 0.7] #

3↪→

216

217 for n_epoch in n_epoch_list:

218 for batch_size in batch_size_list:

219 for learning_rate in learning_rate_list:

220 for dropout_rate in dropout_rate_list:

221 for n_hidden in [8, 16, 32]: # RNN ONLY

222 for num_fc_1 in [10, 20, 30, 40]: # RNN ONLY

223 for n_layers in [1, 2, 3]: # RNN ONLY

224 RNN = TrainModel(RNNModel, n_epoch,

batch_size, learning_rate, dropout_rate)↪→

225 RNN.model.n_hidden = n_hidden

226 RNN.model.num_fc_1 = num_fc_1

227 RNN.model.n_layers = n_layers

228

229 RNN.model.build_model()

230 RNN.calculate_helpers()

231 acc = RNN.train_model()

232 RNN.reset_model()

233

234 rnn_model_values.append([acc, n_epoch,

batch_size, learning_rate, dropout_rate,

n_hidden, num_fc_1, n_layers])

↪→

↪→

235

236 best_rnn_run = max(rnn_model_values, key=lambda x: x[0])

237 logger.info('Best RNN run: {}'.format(best_rnn_run))

238 logger.info('All RNN runs: {}'.format(rnn_model_values))

239

240

241 def main():

242 """Sup Main!"""

243 tune = SigOptTune()

244 #tune.create_cnn_experiment()
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245 #tune.optimization_loop(CNNModel)

246 #tune.create_rnn_experiment()

247 tune.optimization_loop(RNNModel)

248

249 if __name__ == '__main__':

250 # create logger with 'spam_application'

251 logger = logging.getLogger()

252 logger.setLevel(logging.INFO)

253 # create file handler which logs even debug messages

254 fh = logging.FileHandler(LOGFILE_NAME)

255 fh.setLevel(logging.INFO)

256 # create console handler with a higher log level

257 ch = logging.StreamHandler()

258 ch.setLevel(logging.INFO)

259 # create formatter and add it to the handlers

260 formatter = logging.Formatter(DEFAULT_FORMAT)

261 fh.setFormatter(formatter)

262 ch.setFormatter(formatter)

263 # add the handlers to the logger

264 logger.addHandler(fh)

265 logger.addHandler(ch)

266

267 main()
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B.6 main.m

1 %% Quarter Model Simulation MAIN

2 % Alex Kost

3 % Thesis

4 %

5 % Main file for quarter model simulation procedure.

6 %

7 % Arguments (see 'Test Parameters' section):

8 % num_psis = num of psis to simulate

9 % psi_min = minimum PSI to simulate

10 % psi_max = maximum PSI to simulate

11 % num_steps = num of step sizes to simulate

12 % step_min = minimum step size to simulate

13 % step_max = maximum step size to simulate

14 % sim_tim = how long to run the simulation

15 % snr = signal-to-noise ratio per sample, dB

16 % save_path = path to save the simulation data

17 %

18 % Simulation data will output as plots and CSVs

19

20 %% Reset workspace and hide figures

21 clc

22 clear all

23 close all

24 set(0, 'DefaultFigureVisible', 'off');

25 set(0, 'DefaultFigureWindowStyle', 'docked');

26

27 %% Test parameters (user-provided)

28 num_psi = 25; % number of psis to simulate

29 psi_min = 25.5; % minimum psi

30 psi_max = 38.5; % maximum psi

31

32 num_steps = 39; % number of step sizes to simulate

33 step_min = .1; % minimum step size, m

34 step_max = 2; % maximum step size, m

35

36 sim_time = 1.5; % simulation time, s

37 snr = 0; % signal-to-noise ratio per sample, dB

38

39 % save data path

40 save_path = '/Users/alexkost/Dropbox/Grad Life/thesis/Data/simulated_labeled/';

41 %% Test parameters (predefined)
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42 % Create a range of PSIs and Steps using defined values above

43 psi_all = linspace(psi_min, psi_max, num_psi);

44 steps_all = linspace(step_min, step_max, num_steps);

45

46 % ICs for simulations (cannot be nested in functions)

47 IC = [-1.74412834455962e-12

48 -2.44861738501480e-06

49 -5.70054231468026e-11

50 -7.99748963336152e-05];

51

52 %% Run simulations and get outputs (CSVs and plots)

53 for i=1:num_steps

54 step_size = steps_all(i);

55 figure(i)

56 hold on;

57 for j=1:num_psi

58 % run simulation

59 psi = psi_all(j);

60 simout = QuarterModelSimulation(psi, ...

61 step_size, ...

62 sim_time);

63

64 % Add white gaussian noise if snr > 0

65 if snr > 0

66 for k=1:size(simout, 2)

67 simout(:,k) = awgn(simout(:, k), snr);

68 end

69 end

70

71 % interpret simulation outputs

72 sprung_pos = simout(:,1);

73 %sprung_vel = simout(:,2);

74 %unsprung_pos = simout(:,3);

75 %unsprung_vel = simout(:,4);

76 step = simout(:,5); % constant every run

77 time = simout(:,6); % constant every run

78 sprung_acc = simout(:,7);

79 %unsprung_acc = simout(:,8);

80

81 % Plot individual run

82 str = strcat(num2str(psi, '%.1f'), ' psi');

83 plot(time, sprung_pos, 'DisplayName', str);

84

85 % calculate label value

86 if psi < 30
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87 label_val = 0;

88 elseif psi <= 34

89 label_val = 1;

90 elseif psi > 34

91 label_val = 2;

92 end

93

94 % Output to CSV

95 % Modifications done for Tensorflow

96 % use sprung acceleration data only (1 feature)

97 % transpose so each row is independent example

98 % remove first .45 seconds of data

99 filename = strcat('Sim_', ...

100 num2str(psi, '%.1f'), 'psi_', ...

101 num2str(step_size, '%.2f'), 'm.csv');

102 fullfilename = fullfile(save_path, num2str(label_val), filename);

103 acc_transposed = [sprung_acc]';

104 M = acc_transposed(:,(.45/.001):end);

105 label_val_column = ones(size(M, 1),1) * label_val;

106 csvwrite(fullfilename, horzcat(label_val_column, M));

107 end

108

109 % create figure with step

110 plot(time, step,'--','DisplayName','Step');

111 hold off;

112 title(sprintf('Quarter-Car Motion\nStep size = %g [m]', step_size));

113 xlabel('Time (s)');

114 ylabel('Vehicle height (m)');

115 legend('show');

116

117 % save figure

118 filename = sprintf('Plot_step_size_%g.png', step_size);

119 fullfilename = fullfile(save_path, filename);

120 print(figure(i),fullfilename,'-dpng','-r300');

121 end
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B.7 QuarterModelSimulation.m

1 function [ simout ] = QuarterModelSimulation(psi, y, sim_time)

2 % QuarterModelSimulation runs a Simulink model based on provided PSI

3 % and outputs the relevant data to be used elsewhere

4

5 global m_s m_u c_s k_s k_u g alpha zeta

6

7 %% Constants

8 N_over_lb = 4.448; % [N / lb]

9 m_over_in = .0254; % [m / in]

10 m_over_mm = .001; % [m /mm]

11 Pa_over_psi = 6894.76; % [Pa / psi]

12 g = 9.81; % gravity, m/s^2

13

14 %% Vehicle parameters (user-provided)

15 m_s_full = 1109; % full body mass, kg

16 zeta = .25; % dampening ratio

17 epsilon = 8; % sprung/unsprung mass ratio

18 alpha = .1; % natural frequency ratio

19

20 %% Vehicle parameters (calculated)

21 m_s = m_s_full / 4; % quarter body mass, kg

22 m_air = CalculateTireWeight(psi); % mass of air in tire, kg

23 m_u = (m_s / epsilon) + m_air; % quarter unsprung mass, kg

24

25 %% Calculate suspension values from ideal conditions (32 psi)

26 Pa_over_psi = 6894.76; % [Pa / psi]

27 k_u_eng = 30.185 * psi + 46.375; % unsprung stiffness, lb/in

28 k_u = k_u_eng * Pa_over_psi; % unsprung stiffness, N/m

29 omega_u = sqrt(k_u/m_u); % unsprung natural freq, Hz

30 k_s = alpha^2 * m_s * omega_u^2; % sprung stiffness, N/m

31 omega_s = sqrt(k_s/m_s); % sprung natural freq, Hz

32 c_s = 2 * zeta * sqrt(k_s * m_s); % spring damping, N/(m/s)

33

34

35 [ k_s, c_s, omega_s ] = CalculateSuspensionStiffnessDamping(32);

36

37 %% Calculate tire stiffness from PSI

38 % Unsprung mass refers to all masses that are attached to and not supported by the

spring, such as wheel, axle, or brakes.↪→

39 [ k_u, omega_u ] = CalculateTireStiffness(psi);

40
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41 %% Check we have all the values we need for the simulation

42 debug = 0;

43 if debug

44 fprintf('psi = %f [psi]\n', psi);

45 fprintf('step_size = %f [m]\n', y);

46 fprintf('m_s = %f [kg]\n', m_s);

47 fprintf('m_u = %f [kg]\n', m_u);

48 fprintf('c_s = %f [N/(m/s)]\n', c_s);

49 fprintf('k_s = %f [N/m]\n', k_s);

50 fprintf('k_u = %f [N/m]\n', k_u);

51 fprintf('g = %f [m/s^2]\n', g);

52 % And print out the stuff that we don't need anyways

53 fprintf('omega_s = %f [Hz]\n', omega_s);

54 fprintf('omega_u = %f [Hz]\n', omega_u);

55 end

56

57 %% run Simulink simulation

58 sim('QuarterModelMatrix.slx', sim_time);

59

60 end
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B.8 CalculateSuspensionStiffnessDamping.m

1 function [ k_s, c_s, omega_s ] = CalculateSuspensionStiffnessDamping(psi)

2 % Function to identify stiffness and damping coefficients based on tire psi

3 % Other important parameters are defined by globals

4 global m_s m_u alpha zeta

5

6 %% Constants

7 Pa_over_psi = 6894.76; % [Pa / psi]

8

9 %% Calculations

10 k_u_eng = 30.185*psi + 46.375; % unsprung stiffness, lb/in

11 k_u = k_u_eng * Pa_over_psi; % unsprung stiffness, N/m

12 omega_u = sqrt(k_u/m_u); % unsprung natural freq, Hz

13 k_s = alpha^2 * m_s * omega_u^2; % sprung stiffness, N/m

14 omega_s = sqrt(k_s/m_s); % sprung natural freq, Hz

15 c_s = 2 * zeta * sqrt(k_s * m_s); % spring damping, N/(m/s)

16

17 end
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B.9 CalculateTireStiffness.m

1 function [ k_u, omega_u ] = CalculateTireStiffness(psi)

2 % Function to identify stiffness and damping coefficients based on tire psi

3 % Other important parameters are defined by globals

4 global m_u

5

6 %% Constants

7 Pa_over_psi = 6894.76; % [Pa / psi]

8

9 %% Calculations

10 k_u_eng = 30.185*psi + 46.375; % unsprung stiffness, lb/in

11 k_u = k_u_eng * Pa_over_psi; % unsprung stiffness, N/m

12 omega_u = sqrt(k_u/m_u); % unsprung natural freq, Hz

13

14 end
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B.10 SimFunc.m

1 function [ xDD ] = SimFunc(u)

2 % SimFunc is used in QuarterModelMatrix.slx

3 % All motions of equation are in matrix form and done here to keep

4 % the simulink model clean. GUIs can be painful sometimes.

5

6 global m_s m_u c_s k_s k_u g

7

8 % Reassign Simulink values for readability

9 x_s = u(1); % sprung mass height, m

10 x_s_d = u(2); % sprung mass velocity, m/s

11 x_u = u(3); % unsprung mass height, m

12 x_u_d = u(4); % unsprung mass velocity, m/s

13 y = u(5); % road height (step input), m

14

15 % Assign matrix elements

16 M11 = m_s;

17 M12 = 0;

18 M21 = 0;

19 M22 = m_u;

20

21 C11 = c_s;

22 C12 = -c_s;

23 C21 = -c_s;

24 C22 = c_s;

25

26 K11 = k_s;

27 K12 = -k_s;

28 K21 = -k_s;

29 K22 = k_s + k_u;

30

31 F11 = m_u*(-g);

32 F21 = k_u*y + m_s*(-g);

33

34 % Assemble matrices

35 M = [M11 M12;

36 M21 M22];

37

38 C = [C11 C12;

39 C21 C22];

40

41 K = [K11 K12;
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42 K21 K22];

43

44 F = [F11;

45 F21];

46

47 X_d = [x_s_d;

48 x_u_d];

49

50 X = [x_s;

51 x_u];

52

53 % Assemble the matrix form of the equation of motion

54 A = F - (C*X_d) - (K*X);

55

56 % Calculating x_s_ddot and x_u_ddot

57 % https://www.mathworks.com/help/matlab/ref/mldivide.html

58 xDD = M\A;

59

60 % % Equation form

61 % F_s = -k_s*(x_s - x_u) - c_s*(x_s_d - x_u_d);

62 % F_u = k_s*(x_s - x_u) + c_s*(x_s_d - x_u_d) - k_u*(x_u - y);

63 %

64 % xDD = [F_s/m_s;

65 % F_u/m_u];

66

67 end
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B.11 QuarterModelMatrix.slx

Figure B.1: QuarterModelMatrix.slx
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