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ABSTRACT   

The insulin-like growth factor-1 (Igf1) system as a potential biomarker for nutritional 

status and growth rate in Pacific rockfish (Sebastes spp.)  

Nicole Leslie Hack 

 

 

Growth performance in vertebrates is regulated by environmental factors 

including the quality and quantity of food, which influences growth via endocrine 

pathways such as the growth hormone (GH) / insulin-like growth factor somatotropic 

axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 

(Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 

levels may serve as an indicator of growth variation for fisheries and aquaculture 

applications. Here, I tested whether plasma Igf1 concentrations might serve as an 

indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among 

dozens of rockfishes important to commercial and recreational fisheries in the Northern 

Pacific Ocean. I reared juvenile olive rockfish under food ration treatments of 1% or 4% 

wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish 

in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in 1% 

ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual 

Igf1 levels correlated positively with growth rate, as well as with individual variation in 

hepatic igf1 mRNA levels. These data in olive rockfish support the possible use of 

plasma Igf1 as a positive indicator of growth rate variation in rockfishes. Using my 

findings from this experiment, I further investigated the use of this biomarker in wild 

rockfish by examining patterns of Igf1 variation in blue rockfish (Sebastes mystinus) 

caught within and outside of two Marine Protected Areas (MPAs) along California’s 

coast: Piedras Blancas MPA and Point Buchon MPA. Individual Igf1 levels correlated 

positively with increasing size as seen in laboratory reared fish. After correcting plasma 

Igf1 values for body size, circulating Igf1 was observed to be higher in blue rockfish 

within the boundaries of the Piedras Blancas MPA compared to fish from an adjacent site 

with no fishing restrictions. Igf1 levels in blue rockfish caught within the Point Buchon 

MPA, however, were similar to those outside of that MPA. These results suggest that 

blue rockfish within the Piedras Blancas MPA may experience enhanced growth relative 

to conspecifics outside of that MPA’s boundaries, and that such growth increases may be 

specific to MPA locations. My findings support previous studies that Igf1 is a positive 

indicator for growth in teleost fish and can be used as a tractable biomarker in wild 

rockfish which could enhance management efforts of fish stocks within marine protected 

areas. 
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INTRODUCTION 

Over-harvesting of marine species occurs globally and is considered one of the most 

detrimental influences of humans on marine ecosystems especially for coastal regions of 

California (Gray, 1997; Halpern et al., 2008). Such overexploitation of marine fish and 

invertebrates not only leads to collapses in populations of these harvested species, but can 

also undermine entire marine ecosystems by changing trophic cascades and triggering 

ecological phase shifts in marine communities (e.g. Mumby et al., 2006; Ling et al., 

2009). Additional stressors of variable temperatures, upwelling, and food availability 

each can impact fish population dynamics such as recruitment success, reproductive 

output, and density-dependent growth (Caselle et al., 2010; VenTresca et al., 1996). 

Nutritional stress in the form of reduced food quantity or quality, in particular, severely 

affects growth performance in fish thus hampering reproduction and survival. For 

populations of marine fishes, the lack of noninvasive metrics for determining spatial and 

temporal variation in growth performance has limited the ability to predict variation in 

fish stock reproduction and recruitment, along with links to natural changes in prey 

availability, temperature, or other environmental factors. 

While somatic growth serves as a reliable indicator of individual and population 

fitness, this has historically been an evasive measurement in fishes in the wild. Currently, 

commonly used methods for quantifying individual growth rates of wild fishes require 

terminal sampling (otolith analysis), time consuming tagging (mark-recapture), or have 

limited value as indicators of somatic growth (RNA:DNA ratios) (Andrews et al., 2011). 

The development of rapid, non-lethal methods for quantifying growth rates is needed to 

provide data necessary for informed fisheries management.  
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External environmental influences are translated into changes in growth in part 

via the altered secretion of stimulatory or inhibitory hormones within the somatotropic 

endocrine axis.  Blood hormone concentrations have shown to be easily accessible 

indicators of growth regulation and metabolism (Möstl and Palme, 2002). The growth 

hormone (GH)/insulin-like growth factor (Igf) system, specifically, has been shown to be 

a key regulator of changes in somatic growth with variation in nutritional status (Fuentes 

et al., 2013; Picha et al., 2008a; Reindl and Sheridan, 2012). Changes in nutritional 

conditions have been shown to alter liver production of the somatomedin hormone Igf1 in 

fishes. Given that relationship between Igf1 and nutritional status, it has been proposed 

that circulating concentrations of Igf1 may serve as a reliable indicator of recent growth 

rate in fishes (Beckman, 2011; Picha et al., 2008a; Reinecke, 2010). In most vertebrates, 

insulin-like growth factor-1 (Igf1) is the predominant mediator of growth following 

activation of the GH/Igf axis (e.g. Duan, 1997; Perez-Sanchez and Le Bail, 1999; 

Reinecke et al., 2005). In brief, GH secreted from the anterior pituitary binds the GH 

receptor to stimulate hepatic production of Igf1, which regulates somatic tissue growth by 

binding Igf1 receptors in target tissues while exerting negative feedback on pituitary GH 

production (Duan et al., 2010; Fuentes et al., 2013; Le Roith et al., 2001; Wood et al., 

2005). Conserved amongst vertebrates, Igf1 regulates growth by promoting cell 

proliferation, cartilage growth, and skeletal elongation (Reinecke et al., 2005; 

McCormick et al., 1992; Duan, 1997; Chen et al., 2000; Wood et al., 2005). The function 

of Igf1 is controlled in part by Igf binding proteins (Igfbps) which modulate the activity 

of Igf1 and Igf2 by binding to the hormones thus limiting the amount of Igf hormone 

available to activate receptors, effectively inhibiting or prompting Igf action.  
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Only a handful of studies have examined the relationship between Igf1 and 

growth variation in fishes (Beckman, 2011; Picha et al., 2008a). Variations in growth 

caused by manipulated food quantities has been attributed to differences in Igf1 

concentrations (e.g., Kelley et al., 2001; Picha et al., 2008a; Reinecke, 2010; Shimizu and 

Dickhoff, 2017). It is thought that these changes in plasma Igf1 with food ration result 

from GH resistance in the liver, as GH levels tend to be inversely related to Igf1 levels 

(e.g., Fox et al., 2006). Positive correlations between plasma Igf1 and growth rate have 

been seen in tilapia (Uchida et al., 2003), coho salmon (Beckman et al., 2004a,b), and 

chum salmon (Oncorhynchus keta,  Kaneko et al., 2015).  

 Individual variation in hepatic igf1 mRNA levels were correlated with plasma 

Igf1 (Gabillard et al., 2003; Pierce et al., 2005) and over all liver igf1 mRNAs have been 

shown to decrease in relative abundance in fish experiencing restricted food rations or 

fasting conditions in a variety of taxa (Pierce et al., 2005; Vera Cruz et al., 2006; 

Monserrat et al., 2007; Kawanago et al., 2014). Although the liver is commonly accepted 

as the main tissue of Igf1 synthesis, extrahepatic Igf1 production also appears important 

for regulating growth of some tissues via autocrine or paracrine effects (e.g., Firth and 

Baxter, 2002; Franz et al., 2016), and can be regulated in a tissue-specific pattern (Eppler 

et al., 2010; Fox et al., 2010). Just as in the liver, food restriction has been observed to 

alter extrahepatic igf1 mRNA levels in select tissues of fish (Fox et al., 2010; Norbeck et 

al., 2007, Peterson and Waldbieser, 2009; Terova et al., 2007). Both Igf1 and Igf2 have 

been demonstrated to increase igf1 transcription in cultured myocytes from gilthead sea 

bream (Azizi et al., 2016). Supporting this idea, muscle igf1 transcription has also been 
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shown to respond to acute changes in food intake in Atlantic salmon, rainbow trout, and 

tilapia; in these species, igf1 is downregulated by fasting and upregulated immediately 

following refeeding (Breves et al., 2016; Bower et al., 2008; Fox et al., 2010; Gabillard et 

al., 2006; Monserrat et al., 2007; Picha et al., 2008b).  

Igfbps are critical for modulating the effects of Igf hormones, and the ratio of 

Igf:Igfbp in circulation plays a critical role in regulating Igf1 availability for receptor 

binding (Clemmons, 2016). Igfbp1 proteins – which have been duplicated in teleosts – 

are thought to be among of the highest concentration binding proteins in circulation in 

fishes, and Igfbp1 has been shown to bind Igf1 with high affinity in several teleost 

species (Shimizu and Dickhoff, 2017). The expression of both Igfbp1a (regarded as the 

28-32 kDa Igfbp protein in fishes) and Igfbp1b (regarded as the 20-25kDa Igfbp) has 

been shown to be altered by nutritional status, sometimes in patterns that appear more 

responsive to feeding than even Igf1 in some teleosts (Shimizu et al., 2006; Picha et al., 

2008a). Generally, both Igfbp1a and 1b show elevated hepatic and plasma expression 

under nutritional restriction (Shimizu and Dickhoff, 2017). Overexpression of hepatic 

Igfbps is generally thought to increase relative Igf1 binding in circulation, thereby 

reducing Igf1 stimulation of growth in peripheral tissues (Clemmons, 2016).  

Previous experimental studies in juvenile Sebastes rockfishes have shown that 

individual plasma Igf1 concentrations correlate positively with individual SGR variation 

(Chapter 1; Hack et al., unpub. results), indicating that concentrations of Igf1 can provide 

an instantaneous picture of an individual’s relative growth rate in these fishes. Ecological 

factors such as water temperature, upwelling intensity, and turbidity influence quantity of 

food resources available to coastal marine species thus indirectly affecting reproductive 
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output, recruitment success, and density-dependent growth (e.g., Frank et al., 2007; 

Frederiksen et al., 2006; Harley et al., 2006; Hunt and McKinnell 2006; Caselle et al., 

2010; VenTresca et al., 1996; White and Caselle, 2008). Hormonal biomarkers are 

currently mostly used within the aquaculture industry to monitor growth and health of 

farmed stocks. By expanding the assessment to recreationally and commercially 

important species, this tool could be used to measure the regional variation in population 

production and size, as well as how these correlate to ecosystem processes, fishing 

pressures, and decadal oscillations. 

In the present study, we assessed the relationship between circulating Igf1 and 

growth rate in olive rockfish, one of several Sebastes rockfishes important as recreational 

and commercial groundfish fisheries in the Northern Pacific Ocean. By feeding groups of 

juvenile olive rockfish two different ration amounts (1% or 4% wet mass per d) for 98 d, 

we intentionally generated differences in SGR, with rockfish given the 4% ration 

growing 60% faster in mass and 22% more rapidly in length per day compared to fish 

given the 1% ration. We then used these ration-induced differences in growth to evaluate 

how growth variation links to changes in circulating Igf1, as well as relative mRNA 

levels of igf1 and several other genes encoding proteins involved in the somatotropic 

endocrine axis. Finally, we tested the use of this biomarker in the field by measuring 

plasma Igf1 concentrations in blue rockfish from within and outside of MPAs along the 

central coast of California.  
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CHAPTER 1 

Insulin-like growth factor I (IGF-I) as a physiological biomarker for growth rate in 

juvenile Sebastes rockfishes 

 

1.1. Abstract 

Currently, commonly used methods for quantifying individual growth rates of wild 

fishes require terminal sampling (otolith analysis), time consuming tagging (mark-

recapture), or have limited value as indicators of somatic growth (RNA:DNA ratios). The 

development of rapid, non-lethal methods for quantifying growth rates is needed to 

provide data necessary for informed fisheries management. Blood hormone 

concentrations have shown to be accessible indicators of growth regulation and 

metabolism. Specifically, insulin like growth factor-I (Igf1) has a low clearance rate and 

robust relationship to somatic growth in several fishes, making it a potential endocrine 

biomarker of specific growth rate for fisheries applications. Here, we tested whether 

plasma Igf1 concentrations could be used as a tractable indicator of somatic growth and 

nutritional status in Sebastes rockfishes, a group of species important to commercial and 

recreational fisheries on the Pacific coast of N. America. To test associations between 

Igf1 and growth rate, we collected juvenile olive rockfish (Sebastes serranoides) from 

central California, USA, and reared them in captivity under food rations of 1% (n=27) or 

4% (n=26) wet mass per day to experimentally generate growth variation. Fish raised 

under higher rations exhibited high plasma total Igf1 concentrations as well as lower 

hepatic mRNA levels for Igf binding protein-1a (igfbp1a), Igf binding protein-1b 
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(igfbp1b) and higher skeletal muscle mRNA levels of Igf binding protein-5a (igfbp5a) 

and Igf binding protein-5b (igfbp5b). 

  



 8 

1.2. Introduction 

Nutritional stress in the form of reduced food quantity or quality affects growth 

performance in fish, which in turn can impact population-level processes such as 

recruitment success or reproductive output (Caselle et al., 2010; VenTresca et al., 1996). 

For populations of marine fishes, the lack of noninvasive metrics for determining spatial 

and temporal variation in growth performance has limited the ability to predict variation 

in fish stock reproduction and recruitment. The effects of nutritional stress on somatic 

growth in fishes, however, are regulated in part via changes in a variety of endocrine 

pathways including those involved in the somatotropic, thyroid, and glucocorticoid 

endocrine axes (Picha et al., 2008a; Power et al., 2001; Sadoul and Vijayan, 2016; Won 

and Borski, 2013), and indices of these endocrine pathways may be useful as biomarkers 

for assessing growth variation in fish culture as well as in wild fish stocks.  

The growth hormone (GH)/insulin-like growth factor (Igf) system, in particular, 

has been shown to be a key regulator of changes in somatic growth with variation in 

nutritional status (Fuentes et al., 2013; Picha et al., 2008a; Reindl and Sheridan, 2012). In 

most vertebrates, insulin-like growth factor-1 (Igf1) is the predominant mediator of 

growth following activation of the GH/Igf axis (e.g. Duan, 1997; Pérez-Sánchez and Le 

Bail, 1999; Reinecke et al., 2005). In short, GH secreted from the anterior pituitary binds 

the GH receptor to stimulate hepatic production of Igf1, which regulates somatic tissue 

growth by binding Igf1 receptors in target tissues while exerting negative feedback on 

pituitary GH production (Duan et al., 2010; Fuentes et al., 2013; Le Roith et al., 2001; 

Wood et al., 2005).  
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Teleost fishes have also evolved at least six types of Igf binding proteins (Igfbps), 

which themselves evolved into multiple isoforms following gene duplication events in 

some teleost lineages (Daza et al., 2011; Shimizu and Dickhoff, 2017). Igfbps modulate 

the activity of Igf1 and Igf2 by binding the hormones and regulating the amount of Igf 

hormone available to activate receptors, effectively inhibiting or prompting Igf action. 

There is also evidence, however, that some Igfbps have their own biological activity and 

can activate Igf1 receptors or other cell-surface or intranuclear proteins (e.g., 

transforming growth factor-5 receptor, peroxisome proliferator-activated receptor ) 

independent of Igf hormone binding (Baxter, 2015; Chan et al., 2009; Clemmons, 2007, 

2016; Duan and Xu, 2005; Huang et al., 2003; Jogic-Brahim et al., 2009).  

For fish experiencing food limitation or deprivation, circulating concentrations of 

Igf1 decrease while some Igfbps increase, ultimately contributing to reduced muscle and 

skeletal growth (e.g., Kelley et al., 2001; Picha et al., 2008a; Reinecke, 2010; Shimizu 

and Dickhoff, 2017). Such declines in circulating Igf1 with food restriction have been 

observed in a wide variety of fishes, including Mozambique tilapia (Oreochromis 

mossambicus, Breves et al., 2014; Uchida et al., 2003), Arctic charr (Salvelinus alpinus, 

Cameron et al., 2007), gilthead sea bream (Sparus aurata, Pérez-Sánchez et al., 1995), 

and several species of salmonids (Beckman et al., 2004a,b; Bower et al., 2008; Breves et 

al., 2016; Kaneko et al., 2015; Pierce et al., 2005; Wilkinson et al., 2006). Igfbp 

expression in fishes has also been found to be responsive to variation in food 

consumption. Although the number of Igfbp isoforms that have evolved appear to differ 

across teleost fish taxa, variation in food availability has been shown to influence 

expression of the type 1 form of Igfbp (Igfbp1) across several taxa. For instance, Igfbp1 
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protein levels in blood circulation have been observed to decline in post-smolt coho 

salmon, Oncorhynchus kisutch, in the hours after feeding (Shimizu et al., 2009), and 

fasted coho salmon were found to have higher plasma Igfbp1 levels than fish not 

experiencing food restriction (Shimizu et al., 2006). Mechanistically, at least some of 

these nutrition-associated changes in Igfbp expression appear to be caused by inhibition 

of Igfbp1 gene expression. This is supported by the observation of elevated mRNAs 

encoding the type 1 igfbp gene in the liver of Atlantic salmon, Salmo salar, smolts under 

food restriction (Hevrøy et al., 2011).  Breves et al. (2016) likewise observed increased 

hepatic igfbp1a1 mRNA levels in Atlantic salmon parr fasted for 3 to 10 d.  

In this study, the relationships between growth rate and the Igf1 system were 

examined in juvenile olive rockfish (Sebastes serranoides) by creating a range of positive 

growth rates and exploring differences between experimental treatments as well as 

variation that occurred among individuals within treatments. Rockfishes of genus 

Sebastes are an important component of commercial and recreational groundfish fisheries 

in the northern Pacific Ocean (e.g., Miller et al., 2014; Parker et al., 2000), and several 

species are being explored for their economic viability and best rearing practices in 

mariculture (e.g., Lee, 2001; Son et al., 2014). Juvenile olive rockfish were reared for 98 

d under differing ration levels, and then examined for differences in growth rate, plasma 

Igf1 concentration, and the relative abundance of gene transcripts encoding igf1, igf2, as 

well as isoforms of type 1, 2 and 5 igfbps in the liver and skeletal muscle. The link 

between somatic growth and transcript expression levels was also examined for Igf1 

receptors a (igf1ra) and b (igf1rb) in skeletal muscle, to assess how variation in 

nutritional status and growth alters components of Igf axis signaling in this target tissue. 
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1.3. Materials and Methods 

1.3.1. Animal collection and husbandry 

Young-of-the-year juvenile (3-10 mo) olive rockfish (S. serranoides) were 

collected from San Luis Bay in Central California, USA between 5 May and 10 July 

2016. All fish were collected using a Standard Monitoring Unit for the Recruitment of 

Fishes (SMURF) (Ammann, 2004), which was placed under California Polytechnic State 

University’s Center for Coastal Marine Sciences pier facility (35°10'12.3"N 

120°44'27.2"W). The SMURF was deployed approximately 1 to 3 m below the surface 

for durations varying between 3 to 11 (4.35 ± 1.66) days.  

Upon collection, juvenile rockfish were transferred to flow-through 340 L tanks 

where they were maintained in captivity under ambient salinity (33‰), temperature 

(range: 12.4 – 18.9C), and photoperiod conditions. Fish were fed ad libitum daily with 

commercial fish pellet feed (BioPro2 pellets, 1.5 mm, BioOregon, Longview, WA, USA) 

for at least 3 weeks prior to the start of the experiment. All procedures were approved by 

the Institutional Animal Care and Use Committee of California Polytechnic State 

University (Protocol # 1504). 

 

1.3.2. Species identification 

Juvenile S. serranoides can be difficult to identify to the species level using only 

morphological traits, especially from the sympatric congener yellowtail rockfish, S. 

flavidus. Therefore a ~369 bp region of the mitochondrial DNA D-loop control region (S. 

serranoides, DQ678575 and S. flavidus, DQ678548) was amplified and sequenced for 

each fish used in the experiment to confirm species identity. PCR was performed using 
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degenerate primers to the mtDNA D-loop region developed by Hyde and Vetter (2007). 

Nucleotide sequences for those primers were as follows: (forward) 5-

CCTGAAAATAGGAACCAAATGCCAG-3, and (reverse) 5-

GAGGAYAAAGCACTTGAATGAGC-3. Genomic DNA was isolated from skeletal 

muscle of each fish using the DNeasy Cell and Tissue Kit (Qiagen, Valencia, CA, 

USA), and the resulting genomic DNA was amplified in 50 l PCR reactions containing 

25 l of GoTaq Colorless Master Mix (Promega Corp., Madison, WI, USA), 18 l 

nuclease-free H2O, 1 l each of forward and reverse primer (10 mM), and 5 l of 

genomic DNA (69.5-154 ng/l). All reactions were conducted using a thermal profile of 

95C for 5 min followed by 38 cycles of 95C for 30 s, 54C for 30 s, and 72C for 1 

min, and then a 2 min final extension at 72C. The resulting PCR products were 

examined on 1.2% EtBr gels before being cleaned (QIAquick PCR Purification Kit, 

Qiagen) and Sanger sequenced (Molecular Cloning Labs, South San Francisco, CA, 

USA). The resulting sequences were then aligned using Sequencher v5.1 software 

(GeneCodes Corp., Ann Arbor, MI, USA) against existing mtDNA D-loop sequences 

from GenBank to confirm species identity. 

 

1.3.3. Sequencing of partial cDNAs linked to IGF signaling from olive rockfish 

 Total RNA was extracted from the liver and skeletal muscle tissues of an olive 

rockfish (86.8 mm standard length [SL], 12.77 g body mass) using TriReagent® 

(Molecular Research Center, Inc., Cincinnati, OH, USA) and bromochloropropane for 

phase separation. Extracted RNA was then quantified by spectrophotometry (260:280 = 
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2.02; P300 NanoPhotometer, Implen, Inc., Westlake Village, CA, USA) and DNase 

treated (TURBO DNA-free kit, Life Technologies, Grand Island, NY, USA).  

 First strand cDNA was generated by reverse transcription (GoScript™ Reverse 

Transcription System, Promega) in 20 µl reactions containing 4.88 µg total RNA 

template (8 µl), 4 µl 5X buffer, 3 µl MgCl2, 1 µl random primers, 1µl dNTPs, 0.5 µl 

RNase inhibitor, 1 µl reverse transcriptase, and 1.5 µl nuclease-free water. Reactions 

were incubated at 25 °C for 5 min, 42 °C for 1 h, followed by 70 °C for 15 min to 

inactivate the reverse transcriptase enzyme. 

 Degenerate primers were used to perform PCR to amplify partial cDNAs 

encoding igf1, igf2, and the Igf1 receptors igf1ra and igf1rb as well as select igfbps from 

olive rockfish (Table 1). Degenerate primers were designed from consensus regions of 

these genes identified by BLAST search of the genome assemblies for flag rockfish 

(Sebastes rubrivinctus, GCA_000475215) and tiger rockfish (Sebastes nigrocinctus, 

GCA_000475235), which were the only Sebastes taxa with genomes available at the time 

of primer design.  Partial cDNAs encoding igf1 (accession no. AF481856), elongation 

factor 1-alpha (ef1, KF430623), and ribosomal protein L17 (rpl17, KF430620) from 

Schlegel’s black rockfish (Sebastes schlegelii), and igf2 (Y16643) from shorthorn sculpin 

(Myoxocephalus scorpius) were also used as part of the alignments for primer design. 

The resulting partial sequences were aligned using Sequencher v5.1 software 

(GeneCodes Corp.) to find consensus nucleotide regions, and degenerate primers were 

synthesized by Eurofins Genomics (Louisville, KY, USA). 

 PCR was performed with degenerate primers in 50 µl reactions containing 25 µl 

GoTaq® Polymerase Colorless Master Mix (Promega), 2 µl cDNA, 1 µl each of forward 
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and reverse primers (10-50 mM), and 21 µl nuclease-free H2O. Reactions were amplified 

under a thermal profile of 95 ˚C for 2 min, 37 cycles of 95 ˚C for 30 s, 53 ˚C for 30 s, and 

72 ˚C for 1 min and 20 s, succeeded by 2 min of 72 ˚C. PCR products were then tested by 

gel electrophoresis on 1.2% agrose gels. Any products that were of expected size were 

cleaned (QIAQuick PCR Kit, Qiagen) and Sanger sequenced (Molecular Cloning Labs).  

 

1.3.4. Food ration treatments  

Each olive rockfish was implanted intraperitoneally with a passive integrated 

transponder (PIT) tag (7 mm, Loligo Systems, Inc., Viborg, Denmark) for individual 

identification, which allowed for repeated measurements of standard length (SL, mm) 

and body mass (g) from the same fish. Fish were then systematically assigned to one of 

six 340 L tanks (0.97 m diameter x 0.48 m depth) to ensure each tank had the same 

average wet body mass (2.95 ± 0.12 g, F5,46 = 0.0827, p = 0.9946) prior to commencing 

food ration treatments. Tanks were randomly assigned to one of the following two food 

rations: 1) high feed (4% mass of feed per fish wet mass; n = 25 fish), or 2) low feed (1% 

mass of feed per fish wet mass; n = 27 fish) with three replicate tanks per treatment 

group. Each tank contained 7 to 10 fish to allow for social interactions, and fish were fed 

1.5 mm pellet feed (BioPro2 pellets, Bio-Oregon®) daily. 

Fish standard lengths and weights were measured at day 0 (baseline) and then at 

time points of day 24, day 48, day 75, day 91, and day 98 of the experimental treatments 

to quantify body size and growth variation. Lengths (SL) and weights were used to 

quantify body condition factor (K), calculated as (mass/standard length3) * 100 (e.g., 
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Ricker, 1975; Lambert and Dutil, 1997), as well as specific growth rate (SGR), calculated 

as follows (e.g., Lugert et al., 2014): 

𝑆𝐺𝑅 = log(
𝑚𝑎𝑠𝑠𝑓𝑖𝑛𝑎𝑙 −𝑚𝑎𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑡𝑜𝑡𝑎𝑙𝑑𝑎𝑦𝑠
× 100) 

After 98 days of the experimental ration treatments, fish were euthanized (tricaine 

methanesulfonate, MS222, Argent Aquaculture, LLC, Redmond, WA, USA) and blood 

was collected by severing the caudal peduncle. Blood was centrifuged at 3,000 x g for 10 

min at 4C, and the resulting plasma was collected and stored at -80C. Liver and skeletal 

muscle tissues were also dissected from each fish, frozen immediately in liquid N2, and 

kept at -80°C until RNA extraction. 

 

1.3.5. Plasma Igf1 quantification 

Plasma total (combined bound and unbound to Igfbps) Igf1 concentrations were 

determined using a time-resolved fluoroimmunoassay (TR-FIA) with DELFIA assay 

reagents (Perkin-Elmer) and anti-Igf1 antiserum to barramundi (Lates calcarifer) 

(GroPep BioReagents, Ltd., Thebarton, SA, Australia). This TR-FIA and barramundi 

anti-IGF-I antiserum was previously validated for use in Sebastes rockfishes.  

 

1.3.6. Quantification of Igf system gene transcripts 

 The relative abundance of gene transcripts for igf1 and igf2, Igf1 receptors a 

(igfra) and b (igfrb), and isoforms of Igf binding proteins type 1 (igfbp1a, and -1b), type 

2 (igfbp2a, and -2b), and type 5 (igfbp5a, and -5b) were quantified in the liver and 

skeletal muscle using real-time quantitative reverse transcription PCR (qRT-PCR).   
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Total RNA was extracted from liver and muscle tissues using TriReagent® 

(Molecular Research Center, Inc.) and bromochloropropane. RNA was subsequently 

DNase treated (TURBO DNA-free kit, Life Technologies) and quantified by 

spectrophotometry (260:280 = 2.02, P300 NanoPhotometer, Implen, Inc.). RNA from 

each fish was then diluted to 68.6 ngl-1 for liver and 20.8 ngl-1 for skeletal muscle to 

standardize total RNA concentrations prior to reverse transcription. RNA was reverse 

transcribed in 24 µl reactions with 2.86 µg (liver) or 0.87 µg (muscle) DNase-treated 

RNA template (10 µl), 4.8 µl 5X buffer (GoScript™, Promega), 3.775 µl MgCl2 (3.9 mM 

concentration), 1.2 µl dNTPs (0.5 mM each dNTP), 1.2 µl random primers, 0.125 µl 

RNase (Recombinant RNasin® Ribonuclease Inhibitor, Promega), 0.9 µl GoScript™ 

reverse transcriptase (Promega), and 2 µl nuclease-free water.  Reverse transcription 

reactions were conducted at 25˚C for 5 min, 42˚C for 60 min, and then completed with a 

reverse transcriptase inactivation at 70˚C for 15 min. 

Primers for SYBR Green qRT-PCR were designed to the protein coding regions 

of each olive rockfish partial cDNA using the PrimerQuest tool of Integrated DNA 

Technologies (Coralville, IA, USA). Primers were also designed to amplify ef1a and 

rpl17 for use as reference genes. All primers were synthesized by Eurofins Genomics 

(Louisville, KY) and kept at -20℃ until use.  

Quantitative real-time PCR assays were conducted in 16 µl reactions with 8 µl 

iTaq™ Universal SYBR® Green Supermix (BioRad Laboratories, Inc., Hercules, CA, 

USA), 1 µl of both forward and reverse primers (10 mM), 4.5 µl nuclease-free H2O, and 

1.5 µl cDNA template. All SYBR Green qRT-PCR reactions were run on a CFX 

Connect™ Real-Time PCR System (Bio-Rad Laboratories, Inc.) under a thermal profile 
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of 95°C for 2 min, 42 cycles of 95 °C for 5 s and 60 °C for 30 s, followed by 65˚C for 15 

s. For each gene, a standard curve was made from a pool of RNA from samples 

comprised of fish from both ration treatments.  This pooled sample was serially diluted 

and each standard concentration assayed in triplicate. Correlation coefficients (r2) for the 

standard curves were always greater than r2 = 0.96.  Melt curve analyses were also 

performed to confirm amplification of a single product and the absence of primer–dimers 

during each quantitative PCR run.  PCR efficiencies for each gene were calculated using 

the equation: %𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  [10(−1 𝑠𝑙𝑜𝑝𝑒⁄ )– 1] × 100; mean efficiencies are 

provided in Table 2.  

For each gene, relative mRNA levels were calculated using the standard curve 

and normalized to the geometric mean of rpl8 and ef-1 mRNA expression.  Abundance 

values of each gene of interest were then expressed as a relative level by dividing the 

resulting values by the mean value of the low treatment group to obtain a value of 1.  

Specificity of the primer sets was also assessed by Sanger sequencing select PCR 

products for each gene. 

 

1.3.7. Statistical Analyses 

Repeated-measures ANOVA models were used to test for effects of ration 

treatment on body mass, length, and condition factor (K) over the 98 d experimental 

period. There were no within treatment tank effects, which was found by comparing 

ANOVA models with and without ‘tank’ as a fixed effect, so ‘tank’ was not considered in 

the analysis. Student t-tests were then used to test for differences in mass, length, and 

condition factor between the high and low food ration treatments at each measurement 
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day. Pearson’s correlations were also used to examine relationships between Igf1 and 

both mass-specific SGR and length-specific SGR for all fish combined. Associations 

between plasma Igf1 concentrations and both hepatic and muscle igf1 mRNA levels for 

all fish, as well as within treatments, were tested using Pearson’s correlations. All 

statistics were conducted using R v3.3.2 through RStudio v1.0136. 

 

 

1.4. RESULTS 

1.4.1. Identification of partial cDNAs from olive rockfish 

Degenerate primer PCR amplified partial cDNAs encoding igf1 (362 bp, 

GenBank accession no. MG366820) and igf2 (451 bp, MG366821) for olive rockfish, as 

well as cDNAs for the following Igfbps: igfbp1a (679 bp, MG366822), igfbp1b (702 bp, 

MG366823), igfbp2a (519 bp, MG366824), igfbp2b (678 bp, MG366825), igfbp5a (200 

bp, MG366826), and igfbp5b (707 bp, MG366827). Partial cDNAs were also sequenced 

for the Igf1 receptors a (igf1ra, 426 bp, MG366828) and (igf1rb, 340 bp, MG366829). 

BLAST analyses using GenBank (https://www.ncbi.nlm.nih.gov/) combined with 

phylogenetic analysis of the deduced amino acid sequences for the partial cDNAs 

encoding Igfbps confirmed the identity of these cDNAs. 

Partial sequences encoding 416 bp of the cDNA for elongation factor 1- (ef1) 

(MG366830) and 399 bp of a cDNA for 60S ribosomal protein L17 (rpl17) (MG366831) 

were also amplified and sequenced from olive rockfish for use as internal reference genes 

in real-time quantitative reverse-transcription PCR.    

 

https://www.ncbi.nlm.nih.gov/)
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1.4.2. Ration differences generate variation in growth rate 

There were no significant differences in body size parameters (mass, standard 

length, and condition factor) between rockfish in the two ration treatments at the start of 

the experiment (day 0, p > 0.24), prior to commencing feeding. However, fish in the 4% 

ration treatment were significantly larger in mass (F1,50 = 58.12, p < 0.001) and body 

condition factor (F1,50 = 28.65, p < 0.0001) after 24 d, and were larger in SL (F1,50 = 

27.46, p < 0.0001) after 48 d (Fig. 1), compared to fish in the 1% ration treatment.  

Rockfish in the 4% ration treatment remained larger in mass and length and also 

had a higher condition factor until the end of the experiment on day 98 (Fig. 1). As 

expected by those body size differences, fish in the 4% ration treatment ultimately 

exhibited greater mass-specific SGR (F1,50 = 146.77, p < 0.0001) and length-specific SGR 

(F1,48 = 59.37, p < 0.0001) compared to fish in the 1% ration treatment (Fig. 2). 

Variances in mass were even across all tanks in each treatment prior to the 

experiment (F5,46 = 0.397, p = 0.8484) as well as after 98 d of manipulated feed (F5,46 = 

1.841, p = 0.1235). Standard lengths similarly showed equal variances in initial (F5,46 = 

0.3281, p = 0.8935) and final measurements (F5,46 = 1.299, p = 0.281, Fig. 3). 

 

1.4.3. Effect of ration amount on plasma Igf1 concentrations 

 Plasma Igf1 concentrations were significantly higher in rockfish from the high 

ration treatment (F1,48 = 9.509, p = 0.0034) (Fig. 4). When looking at all fish mass and 

length specific SGR were both strongly correlated to plasma Igf1 levels (Fig. 5), whereas 

Igf1 concentrations showed no relationship with change in body condition factor (r = -

0.042, p = 0.769).  
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Mass-specific SGR amongst all fish was more strongly correlated than length-

specific SGR but both correlated to plasma Igf1 concentrations for multiple time periods 

(Table 3). All time intervals for mass-specific SGR were correlated to plasma Igf1 except 

the last 7 days (day 91-98, Table 3). Excluding the last 7 days, SGR for mass became 

more strongly correlated to Igf1 at later time periods. Length-specific SGR was 

significantly correlated to Igf1 concentrations at every time point. There were no 

significant correlations within ration treatments.  

 

1.4.4. Regulation of mRNAs encoding Igfs and Igfbps in liver 

 There was no difference between treatments for transcripts of igf1 (F1,45 = 1.663, p 

= 0.2038) or igf2 (F1,45 = 1.366, p = 0.2487) in the liver (Fig. 6A). Of the binding 

proteins, igfbp1a (F1,44 = 11.63, p = 0.0014) and igfbp1b (F1,45 = 24.30, p < 0.0001) had 

the only differences between treatments with approximately 3 and 4-fold greater 

abundance, respectively, in fish from the low ration treatment (Fig. 6B). Liver igfbp2a, 

igfbp2b, igfbp5a and igfbp5b did not differ in relative mRNA abundance between ration 

treatments. 

 Plasma Igf1 and hepatic igf1 mRNA correlated strongly across all fish (r = 

0.5447, p = 0.0001; Fig. 7). Within treatments, Igf1 also correlated to liver igf1 with the 

low ration having a stronger correlation (r = 0.7031, p = 0.0005; Fig. 8A) than the high 

ration (r = 0.5537, p = 0.0050; Fig. 8B).  

No significant correlations were observed between plasma Igf1 and mRNA levels 

for igfbp1a (r = -0.119, p = 0.44), igfbp1b (r = -0.227, p = 0.14), or any other Igfbp gene 

transcript in the liver (p = 0.50-0.89). On the other hand, there were many correlations 
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amongst liver mRNA transcripts with the low treatment having more correlates than the 

high ration treatment (Table 4). 

 

1.4.5. Ration effects on Igf system-associated mRNAs in skeletal muscle 

 Transcripts encoding igf1 were significantly more abundant in the skeletal muscle 

of rockfish in the high ration treatment than in the low ration (F1,44 = 30.50, p < 0.0001) 

but igf2 did not differ between treatments (F1,44 = 3.468, p = 0.0692; Fig. 9A). While 

igfbp1a, igfbp1b, igfbp2a and igfbp2b mRNA levels did not show any differences 

between treatments, igfbp5a (F1,44 = 5.963, p = 0.0187) and igfbp5b (F1,45 = 9.919, p = 

0.0029) levels where significantly higher in the high ration treatment compared to 

respective low treatment fish (Fig. 9B). None of the examined Igf1 receptors showed any 

difference in mRNA abundance between treatments (Fig. 9C).   

Muscle igf1 mRNA abundance correlated to plasma Igf1 when grouping all fish (r 

= 0.4880, p = 0.0007; Fig. 10A) but this relationship was driven by rockfish in the high 

ration treatment only (r = 0.4144, p = 0.0493; Fig. 10B), as the relationship was not 

significant when fish in the low treatment were analyzed separately (r = 0.1487, p = 

0.509; Fig. 10C). Relatively few mRNA transcripts correlated amongst fish in the same 

treatment but similar to liver tissue, the low treatment had more correlates than the high 

ration fish (Table 5). 
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1.5. Discussion 

Fish in the wild experience shifting conditions of food abundance or quality, 

temperature, photoperiod, and other environmental parameters that can affect rates of 

development and somatic growth. Such external environmental influences are translated 

into changes in growth in part via the altered secretion of stimulatory or inhibitory 

hormones within the somatotropic endocrine axis. In particular, changes in nutritional 

conditions have been shown to alter liver production of the somatomedin hormone Igf1 in 

fishes (Breves et al., 2014; Breves et al., 2016). Given that relationship between Igf1 and 

nutritional status, it has been proposed that circulating concentrations of Igf1 may serve 

as a reliable indicator of recent growth rate in fishes (Beckman, 2011; Picha et al., 2008a; 

Reinecke, 2010).  

 In the present study, the relationship between circulating Igf1 and growth rate was 

examined in olive rockfish, one of several Sebastes rockfishes important as recreational 

and commercial groundfish fisheries in the Northern Pacific Ocean. By feeding groups of 

juvenile olive rockfish two different ration amounts (1% or 4% wet mass per d) for 98 d, 

differences in SGR were intentionally generated, with rockfish given the 4% ration 

growing 60% faster in mass and 22% more rapidly in length per day compared to fish 

given the 1% ration. Ration-induced differences in growth were then used to evaluate 

how growth variation, both between treatments and among all fish, links to changes in 

circulating Igf1, as well as relative mRNA levels of igf1 and several other genes encoding 

proteins involved in the somatotropic endocrine axis.  
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1.5.1. Variation in growth related to plasma Igf1 

Juvenile olive rockfish experiencing faster growth under the high ration treatment 

exhibited higher plasma Igf1 concentrations. Similar differences in circulating Igf1 

concentrations linked to variation in food ration have been observed previously in other 

fishes including tilapia (Breves et al., 2014; Uchida et al., 2003), sea bream (Pérez-

Sánchez et al., 1995), and salmon (e.g., Beckman et al., 2004a; Breves et al., 2016; Pierce 

et al., 2005).  It is thought that these changes in plasma Igf1 with food ration result from 

GH resistance in the liver, as there are typically negative correlations between plasma GH 

and Igf1 levels in food restricted fish, and positive correlations in fed individuals (e.g., 

Fox et al., 2006). Supporting this idea, olive rockfish displayed a positive correlation 

between plasma Igf1 and hepatic igf1 mRNA levels, suggesting that the variation in 

plasma Igf1 observed was at least in part a result of variation in hepatic Igf1 production.   

Individual variation in plasma Igf1 in olive rockfish correlated positively with 

individual variation in growth rate, supporting the previously proposed idea that variation 

in circulating Igf1 concentration may serve as a physiological indicator of growth rate 

variation across a variety of fishes (Beckman, 2011; Picha et al., 2008a). The strength of 

this correlation between plasma Igf1 and growth rate varied from approximately r = 0.29 

to 0.43, depending on whether SGR was measured using body length or mass, and 

generally was observed as more robust with measurements of mass-specific SGR (Table 

3).  

To date, only a handful of studies have examined the relationship between Igf1 

and growth variation in fishes (Beckman, 2011; Picha et al., 2008a). Igf1 was found to 

correlate positively with SGR in tilapia (Uchida et al., 2003), coho salmon (Beckman et 
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al., 2004a,b), and chum salmon (Oncorhynchus keta,  Kaneko et al., 2015). Generally, 

studies that have examined associations between plasma Igf1 concentrations and SGR in 

teleost fishes have observed correlations with coefficients within the range of r = 0.26 to 

0.76 (Beckman, 2011). While some studies have observed that circulating Igf1 correlates 

more robustly with length-specific SGR (Beckman et al., 2004a, see also Beckman, 

2011), the data shown here indicates that circulating Igf1 may correlate more strongly to 

mass-specific SGR in olive rockfish. Conversely, Igf1 concentrations did not correlate 

well with condition factor which agrees with results seen in other teleost fish (Beckman 

et al., 2004a).  

While the reason for the discrepancy in length- versus mass-specific SGR 

correlations is not entirely clear, it is possible that species-level variation in length-weight 

growth relationships may lead to differences in which SGR measurements exhibit a more 

robust relationship with plasma Igf1 variation. What is more, the relationships between 

nutritional status, plasma Igf1, and growth rate can be responsive to conditions such as 

day length, salinity, and water temperature (Beckman, 2011). Future studies seeking to 

evaluate Igf1 as a physiological indicator of growth variation in rockfishes should 

therefore examine both mass- and length-specific SGR in the context of variation in 

environmental parameters relevant to the ecological conditions experienced by these 

species in the wild.  

Interestingly, plasma Igf1 concentrations in olive rockfish also correlated over the 

last 7 d of growth to length-specific SGR but not to mass-specific SGR, despite mass-

specific SGR showing strongly correlative relationships at all other measured time 

intervals (Table 3). In contrast, other studies have observed Igf1 concentrations having 
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the strongest correlation over the most recent growth history (e.g., Beckman et al., 

2004a). Again, given that somatic growth rates can vary due to a variety of ecological 

factors in addition to food ration amount, such as changes in life history stage, 

photoperiod, temperature, or toxicants—and that the relative effects of such factors on 

growth can vary among species (Beckman et al., 2011; Picha et al., 2008a)—any one of 

several factors may have contributed to the weaker statistical relationship between mass-

specific SGR and plasma Igf1 during the last measurement time interval (day 91-98). 

Such effects are often linked to variation in feeding efficiency, which can lead to changes 

in growth even with equivalent diet composition and food consumption rates (Mingarro 

et al., 2002; Vera Cruz et al., 2006). In Pacific rockfishes, growth rate velocities have 

been demonstrated to change with development age (Tsang et al., 2007), and both 

temperature and body size can impact growth in these taxa (e.g., Boehlert and Yoklavich, 

1983; Kamimura et al., 2012). Due to changes in water temperature, fish growth typically 

slows in the fall in conjunction with lowered plasma Igf1 levels (Larson et al., 2001; 

Mingarro et al., 2002). Given that the last sampling date (day 98) was 21 October 2016 – 

and that fish were reared under ambient photoperiod and ocean temperatures – the 

absence of a significant correlation between Igf1 and mass-specific SGR across the final 

7 d of the experimental period may have resulted from a slowing of growth with the 

transition into the fall season. 

 

1.5.2. Growth-related variation in hepatic and muscle Igf1 and Igf2 gene expression 

 Liver igf1 mRNAs have been shown to decrease in relative abundance in fish 

experiencing restricted food rations or fasting conditions in a variety of taxa, including 
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chinook salmon (O. tshawytscha, Pierce et al., 2005), Nile tilapia (O. niloticus, Vera Cruz 

et al., 2006), rainbow trout (O. mykiss, Monserrat et al., 2007), and yellowtail (Seriola 

quinqueradiata, Kawanago et al., 2014). Studies in other fishes, such as Mozambique 

tilapia (Breves et al., 2014) and Atlantic salmon (Breves et al., 2016), however, did not 

observe any changes in hepatic igf1 mRNAs when food was withheld. Hepatic igf1 

similarly failed to track changes in plasma Igf1 in masu salmon (O. masu) during 

compensatory growth (Kawaguchi et al., 2013). The present results with olive rockfish 

correspond with those later studies as there was no alteration in liver igf1 mRNA levels 

with differences in ration amount or growth rate. However, individual variation in hepatic 

igf1 mRNA levels were correlated with plasma Igf1 in olive rockfish, as seen in other fish 

species undergoing varied positive growth (Gabillard et al., 2003; Pierce et al., 2005).  

Although the liver is commonly accepted as the main tissue of Igf1 synthesis, 

extrahepatic Igf1 production also appears important for regulating growth of some tissues 

via autocrine or paracrine effects (e.g., Firth and Baxter, 2002; Franz et al., 2016), and 

can be regulated in a tissue-specific pattern (Eppler et al., 2010; Fox et al., 2010). Just as 

in the liver, food restriction has been observed to alter extrahepatic igf1 mRNA levels in 

select tissues of fish (Fox et al., 2010; Norbeck et al., 2007; Peterson and Waldbieser, 

2009; Terova et al., 2007). In the current study, rockfish from 4% ration treatments had 

elevated relative levels of igf1 mRNAs in skeletal muscle. Both Igf1 and Igf2 have 

demonstrated to increase igf1 transcription in cultured myocytes from gilthead sea bream 

(Azizi et al., 2016), so the higher muscle igf1 mRNA levels observed in rockfish from the 

4% ration treatment may result directly from the higher circulating levels of Igf1 in these 

fish, and indirectly as a result of the elevated ration amount. Supporting this idea, muscle 
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igf1 transcription has also been shown to respond to acute changes in food intake in 

Atlantic salmon, rainbow trout, and tilapia; in these species, igf1 is downregulated by 

fasting and upregulated immediately following refeeding (Breves et al., 2016; Bower et 

al., 2008; Fox et al., 2010; Gabillard et al., 2006; Monserrat et al., 2007; Picha et al., 

2008b). 

 Monserrat and colleagues (2007) hypothesized that fish muscle igf1 gene 

transcription may exhibit a more rapid response capacity than igf1 gene expression in 

liver tissue, which might be expected if changes in hepatic GH stimulation results in a 

rapid release of Igf1 or Igf2 in advance of any subsequent upregulation of gene 

expression for these hormones. Muscle igf1 mRNA levels have been found to change 

within days of initiating fasting (Breves et al., 2016; Montserrat et al., 2007) and 

refeeding (Chauvigné et al, 2003; Fuentes et al., 2012; Gabillard et al., 2006), while liver 

igf1 mRNAs may not change even after 12 weeks of restricted feed (Gabillard et al., 

2003). Alternatively, it is possible that liver igf1 transcription only responds strongly to 

severe nutritional stresses, such as complete fasting (Kawanago et al., 2014; Montserrat 

et al., 2007; Uchida et al., 2003). Regardless of response rate, locally produced Igf1 

seems to play an important role in regulating growth, at least in vertebrates with a 

conserved Igf system given that liver Igf1-knockout mice exhibit normal growth (Le 

Roith et al., 2001). 

While some studies in teleost fishes have observed notable responses of Igf2 

signaling in reaction to nutritional deprivation (e.g., Gabillard et al., 2006), olive rockfish 

did not display any response in hepatic or muscle igf2 mRNA levels when given a limited 

ration amount. Similarly, Montserrat and colleagues (2007) did not observe any changes 
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in igf2 mRNA levels in the liver or muscle of rainbow trout under differing feeding 

regimes, although this study was conducted on older fish undergoing starvation and may 

not be comparable. The majority of studies that looked at igf2 transcription response to 

nutritional status focused on testing the effects of extreme nutritional deprivation (i.e., 

fasting) followed by refeeding, and as such it not entirely comparable to the current study 

(Bower et al, 2008; Chauvigné et al, 2003; Peterson and Waldbieser, 2009). These 

previous findings along with the current findings imply that igf2 gene expression may 

only be altered under severe nutritional stress but more research is needed in variation in 

positive growth rate. 

 

1.5.3. Responses of Igfbp and Igf1 receptor mRNA abundance to ration amount 

Igfbps are critical for modulating the effects of Igf hormones, and the ratio of 

Igf:Igfbp in circulation plays a critical role in regulating Igf1 availability for receptor 

binding (Clemmons, 2016). In this study only total Igf1 concentrations in plasma were 

measured, thus it is impossible to evaluate any changes in the Igf1 bound:unbound ratio 

that could result from changes in nutrition and growth rate. Even so, by examining the 

relative mRNA abundance of several igfbps in liver and muscle tissue, this study provides 

an initial picture of how Igfbp expression is impacted by variation in growth resulting 

from differences in food consumption 

 Igfbp1 proteins – which have been duplicated in teleosts – are thought to be 

among of the highest concentration binding proteins in circulation in fishes, and Igfbp1 

has been shown to bind Igf1 with high affinity in several teleost species (Shimizu and 

Dickhoff, 2017). The expression of both Igfbp1a (regarded as the 28-32 kDa Igfbp 



 29 

protein in fishes) and Igfbp1b (regarded as the 20-25kDa Igfbp) has demonstrated to be 

altered by nutritional status, sometimes in patterns that appear more responsive to feeding 

than even Igf1 in some teleosts (Shimizu et al., 2006; Picha et al., 2008a). Generally, both 

Igfbp1a and 1b show elevated hepatic and plasma expression under nutritional restriction 

(Shimizu and Dickhoff, 2017). Juvenile olive rockfish experiencing limited food seem to 

follow the same pattern as they had higher hepatic abundance of both igfbp1a and 

igfbp1b transcripts. These high levels of hepatic igfbp1a and 1b mRNAs under food 

restriction correspond to the findings of previous studies in fasted Atlantic salmon 

(Breves et al., 2016), masu salmon (Kawaguchi et al., 2013), and Mozambique tilapia 

(Breves et al., 2014). 

Overexpression of hepatic Igfbps is generally thought to increase relative Igf1 

binding in circulation, thereby reducing Igf1 stimulation of growth in peripheral tissues 

(Clemmons, 2016). Due to the lack of response in the olive rockfish liver from all other 

binding proteins, it is likely that igfbp1a and igfbp1b play a key role in modulating the 

amount of available Igf1 in circulation, ultimately contributing to the observed 

differences in growth. In juvenile salmon, for instance, circulating Igfbp1a and Igfbp1b 

levels both correlated inversely with growth rate (Kawaguchi et al., 2013). In light of that 

relationship, Kawaguchi and coworkers (2013) proposed that plasma Igf1 may serve as a 

reliable, positive indicator of growth, while plasma Igfbp1b may be a negative indicator. 

In olive rockfish, there were no significant correlations between individual hepatic 

igfbp1a or igfbp1b mRNA levels and individual growth rate. Nonetheless, given the 

magnitude of hepatic igfbp1 mRNA responses to food limitation, it is still possible that 
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igfbp1a and igfbp1b levels are more sensitive to shifts in food consumption than plasma 

Igf1 under some conditions of nutritional stress (Picha et al., 2008a). 

Generally, transcripts encoding igfbp1a and igfbp1b are at lower abundance in 

skeletal muscle than in liver (Bower et al., 2008; Bower and Johnston, 2010; Breves et 

al., 2014; Fuentes et al., 2013; Safian et al., 2012). Because of this, igfbp1 mRNAs are 

less frequently measured in muscle tissues from teleosts exposed to food manipulation 

experiments, and relatively little is known about the role of extrahepatic Igfbp1 

production in regulating muscle growth. There were no observed changes in olive 

rockfish muscle igfbp1a or igfbp1b mRNA levels to differences in food ration, even 

though both transcripts were at detectable levels in this tissue. Notably, there are 

conflicting findings concerning the expressional regulation of igfbp1 mRNAs in skeletal 

muscle in fishes, even across studies using the same species. In Atlantic salmon, for 

instance, some studies have been unable to detect igfbp1 mRNAs in homogenized fast-

twitch (white) muscle tissue or isolated, cultured myocytes (Bower et al., 2008; Bower 

and Johnston, 2010). Other work with this species, however, not only detected igfbp1 

transcript expression in this same tissue, but also observed expressional regulation in 

response to temperature (Hevroy et al., 2015). These incongruent findings suggest that 

muscle igfbp1 expression may vary with several factors besides nutritional status, such as 

development age or ecological conditions, which may interact to obscure clear patterns of 

igfbp1 regulation in muscle, depending on the experimental testing conditions.  

Similar to other teleosts, olive rockfish possess mRNA encoding two distinct 

igfbp2 mRNAs (igfbp2a and igfbp2b). In teleosts, igfbp2 transcripts are found at the 

highest relative levels in liver and white muscle (e.g., Safian et al., 2012), with plasma 
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Igfbp2 functioning as the primary carrier of Igfs in blood circulation (Shimizu and 

Dickhoff, 2017). The role of Igfbp2 in teleost fishes represents a distinct change in the 

function of this protein compared to mammals where Igfbp3 is the main transporter of 

Igfs (Shimizu and Dickhoff, 2017). Surprisingly, overexpression of Igfbp2 inhibits cell 

proliferation and DNA synthesis in both cultured mammalian and zebrafish (Danio rerio) 

cells (Duan et al., 1999). Additionally, hepatic igfbp2 mRNA expression is elevated by 

GH and suppressed by prolonged food deprivation (Duan et al., 1999; Chen et al., 2014; 

Gabillard et al., 2006; Kelley et al., 2001; Safian et al., 2012). This implies that hepatic 

Igfbp2 production increases under GH stimulation to help dampen the concurrent release 

of Igfs from the liver but is downregulated to shift the bound:unbound ratio of Igfs in 

plasma under severe nutritional stresses.  

In the rockfish studied here, liver and muscle igfbp2a and igfbp2b mRNA levels 

were unaffected by food ration. In studies using other teleosts, expressional regulation of 

hepatic igfbp2 transcripts have been observed largely in the context of fasting/refeeding 

experimental manipulations. Liver igfbp2 has shown to respond to fasting in several 

fishes (Chen et al., 2014; Duan et al., 1999; Safian et al., 2012), although not all species 

(Breves et al., 2014; Gabillard et al., 2006). Muscle igfbp2 has also been observed to be 

downregulated during fasting in fine flounder (Paralichthys adspersus, Safian et al., 

2012) and rainbow trout (Gabillard et al., 2006), and then return to basal levels after 

refeeding. Given that the experimental treatments with rockfish involved differences in 

ration amount and not complete food deprivation/fasting, it appears that the severity of 

nutritional stress in the 1% ration treatment was insufficient to induce changes in Igfbp2 

gene expression. Future studies, however, should examine whether a more severe fasting 
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stress would result in altered hepatic or muscle expression of Igfbp2 mRNAs in rockfish, 

as has been observed in other fishes.  

Igfbp5 is expressed in many tissues and has been linked to bone growth (Duan et 

al., 2005), juvenile development (Salih et al., 2004), and skeletal muscle differentiation 

(Ren et al., 2008; Safian et al., 2012). Transcripts encoding igfbp5a and igfbp5b are 

present in the liver of many teleost fishes (Breves et al., 2014; Gabillard et al., 2006; 

Kamangar et al., 2006; Safian et al., 2012; Pedroso et al., 2009; Zheng et al., 2017), but 

have generally not been shown to be sensitive to variation in nutritional status in this 

tissue (e.g., Breves et al., 2014; Gabillard et al., 2006). In skeletal muscle, however, 

Igfbp5 gene transcription does appear to be regulated by nutrition (Bower et al., 2008; 

Bower & Johnston, 2010; Gabillard et al., 2006; MacQueen et al., 2011; Zheng et al., 

2017; but see Amaral & Johnston, 2011). For instance, in fine flounder, muscle igfbp5 

mRNAs were downregulated while fasting and upregulated during refeeding (Safian et 

al., 2012). Olive rockfish showed elevated mRNA levels for both igfbp5a and igfbp5b in 

muscle supporting those previously observed effects of nutritional variation on Igfbp5 

expression in this tissue. While the function and mechanism of action for Igfbp5 

regulation in muscle remains unclear, Bower and Johnston (2010) observed that amino 

acid addition alone led to an increase in igfbp5 expression in cultured myotube cells from 

Atlantic salmon, suggesting that specific composition of nutritional variation may in part 

influence the dynamics of muscle Igfbp5.  

 Partial cDNAs were amplified and sequenced encoding two forms of Igf1 

receptors (igf1ra and igf1rb) from olive rockfish. Multiple Igf1 receptors have been 

likewise detected in other fish species (Azizi et al., 2016; Chan et al., 1997; Escobar et 
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al., 2011; Greene and Chen, 1999), and these different Igf1r forms have been found to 

exhibit dissimilar patterns of tissue expression in some contexts (e.g., Maures et al., 

2002). In target tissues such as skeletal muscle, the effects of Igf1 on cell proliferation, 

differentiation, and migration occur via type 1 Igf receptors, which activate intracellular 

transduction cascades including the phosphatidylinositol 3-kinase (PI3K)-Akt pathway 

(Dupont and LeRoith, 2001).  

Although juvenile rockfish under differing food rations did not alter Igf1r mRNA 

levels in liver or muscle tissue, based on prior studies in other fishes, the 1% ration 

treatment may not have been a sufficient enough reduction in food to induce 

transcriptional changes in these genes.  In other studies of teleost fishes, extreme 

nutritional stresses such as fasting have been shown to influence Igf1r transcript levels. In 

Atlantic salmon, transcript abundance for igf1ra – but not for igf1rb – declined in white 

muscle over a period of 3 to 14 d when fish switched from fasting to satiation feeding 

(Bower et al., 2008). Similarly, in rainbow trout, fasting increased muscle igf1ra mRNA 

abundance which decreased during re-feeding while igf1rb was unresponsive (Chauvigné 

et al., 2003). Taken together, these findings point to functional specialization of the two 

teleost Igf1r types, at least in salmonids. Evidence for hormonal regulation of muscle Igf1 

receptors supports such functional differentiation, as Azizi and coworkers (2016) recently 

found that Igf1 downregulated both igf1ra and igf1rb transcripts while Igf2 upregulated 

only igf1rb in culture myocytes from sea bream.  
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1.6. Conclusions 

 Individual variation in circulating Igf1 concentrations were positively correlated 

with individual variation in SGR in juvenile olive rockfish, supporting the possibility of 

using Igf1 levels as an index of growth variation in Sebastes rockfishes for aquaculture or 

fishery management applications. Correlation coefficients between Igf1 and SGR ranged 

from r = 0.29 to 0.43, depending on the size measure (mass, length) used to calculate 

growth rate, as well as the time period evaluated. Correlations were generally found to be 

more robust when using mass-specific SGR measures than for length-specific SGR 

measures, except for the final several days. What is more, this study provides further 

evidence for induction of hepatic igfbp1a and igfbp1b transcription in teleost fishes 

experiencing food limitation. That finding reinforces the proposed functional role of these 

Igfbps in catabolism (e.g., Shimizu and Dickhoff, 2017), and supports the possibility of 

using Igfbp1a or Igfbp1b protein or mRNA measurements as negative endocrine indices 

of growth rate in teleost fishes.  
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1.7. Tables 

 

Table 1.1.  Degenerate primers used for amplification and sequencing of partial cDNAs 

from olive rockfish, Sebastes serranoides.  

 
Transcript Primer Nucleotide sequence (5' to 3') 

Insulin-like growth factor-1 

(igf1) 

igf1-for1    CGC AAT GGA ACA AAG TSG GAA TAT       

igf1-for2    CGC TCT TTC CTT TCA GTG GCA T 

igf1-for3    GCT GCG ATG TGY TGT ATC TCC T 

 igf1-rev3   CCT GGT TTA CTG AAA TAA AAG CCT 

CTC 

 igf1-rev2    GTG CTC TYG GCA TGT CTG TGT 

 igf1_rev1    CAA TTC CTA CAC AAA ATG TAA GMA 

GCT 

Insulin-like growth factor-2 

(igf2) 

 

igf2-for1   GGA TAG CAG CAG AAT GAA GGT CAA G 

igf2-for2   AGA TGT CTT CGT CCA GTC GTG C 

igf2-rev2   CTG CCA CGC CTC GTA TTT GG 

 igf2-rev1   TAG TTG TCC GTG GCG AGC AAG A 

Insulin-like growth factor 

binding protein 1a (igfbp1a) 

IGFBP1a-for1 GTG GTG CTG ACA GGG ACT CTG 

IGFBP1a-for2 GTC CAG AGC CGA TCC GCT 

IGFBP1a-rev2 ATC TTC TTG CCG TTC CAG GAG 

 IGFBP1a-rev1 TAA GGG CAC TCG GCG TCT G 

Insulin-like growth factor 

binding protein 1b (igfbp1b)  

IGFBP1b-for1 ATG TCT GGA TTA CAT GAG AAG CTG A 

IGFBP1b-for2 CAT CCG CTG TGC CGT CTG TA 

 IGFBP1b-rev2 GTC ACC GAA CAG GTY GCT CGA TC 

 IGFBP1b-rev1 GCG ACT TCT TGA TGA CAC TCT GAG T 

Insulin-like growth factor 

binding protein 2a (igfbp2a) 

IGFBP2a_for CAG CTT GCT GAT CCT CTC C 

IGFBP2a_rev GGT TAT CTC TGA AGG GCA TCT T 

Insulin-like growth factor 

binding protein 2b (igfbp2b) 

IGFBP2b_for CTG TTT GCA TAC TTT GCT TTG CC 

IGFBP2b_rev TTT AGG CGT TGC GGG AAT C 

Insulin-like growth factor 

binding protein 5a (igfbp5a) 

IGFBP5a_for1 CCT GTG GGA GAA GAC TGG ATA A 

IGFBP5a_for2 CAG AGC ATG AAG GAC ACT TCT 

IGFBP5a_rev2 CTC CGG CGT AGT TGA TGC C 

 IGFBP5a_rev1 GCT GCT GTC CAG GTC TTT 

Insulin-like growth factor 

binding protein 5b (igfbp5b) 

IFGBP5b_for GTT TCT GAG TCT CTG CCT CTT G 

IFGBP5b_rev TCC GCT GTA GTC TGT GCC A 

Insulin-like growth factor-1 

receptor A (igf1rA) 

IGF1rA_for CCT CCT CAT CAA CGA CAA GAC 

IGF1rA_rev AGG TCC AAC AGC GGT AGT C 

Insulin-like growth factor-1 

receptor B (igf1rB) 

IGF1rB_for CAA CAA CAA CAT CAA CCA GGA TGT C 

IGF1rB_rev ACC TTT CTG GCA GTG ATT GG 

elongation factor-1 (ef1) EF1a-for1d    CGG TGA GTT TGA GGC TGG TAT CTC 

EF1a-rev2d    GGC TTC TGT GGG ATC AGT TTG AC 

 EF1a-for2d    CGT TGG AGT CAA CAA GAT GGA CTC 

 EF1a-rev1d   CCT TGG TCT CAA CAG ACT TGA TGA C 

RPL17-for1d   ATG GTC CGC TAC TCT CTC GAC 
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ribosomal protein L17 

(rpl17) 

RPL17-for2d    AAG TCG AGG GGC TCC AAT CTC 

 RPL17-rev2d   TAG GGG TTG ATG CGT CCG T 

 RPL17-rev1d    ACC TCC TCC TCT GGT TTG GG 

 

Table 1.2.  Gene-specific primers for SYBR green quantitative PCR in olive rockfish. 

 
Transcript Primer Nucleotide Sequence (5 to 3) Amplicon 

length (bp) 

% 

efficiency 

(avg.)  

igf1 for CTC TTT CCT TTC AGT GGC ATT TAT 90 102.39 

 rev CGC ACA GCA GTA GTG AGA G   

igf2  for GCA GTT CGT CTG TGA AGA CA 108 99.19 

 rev CTA CGG AAA CAA CAC TCC TCT AC   

igfbp1a for GAC AAA CAC GGG CTC TAC AA 96 96.20 

 rev GGA GTT CAC GCA CCA ACA   

igfbp1b for CTT GGA GAG AGG TTC ACA ACT T 131 96.63 

 rev TTC CCG TTC CAG GAA GAA AC   

igfbp2a for ATC CGA AAG CCC AGC AAA 94 101.41 

 rev TGG TCT TCA TCT TGG TCT TCA TC   

igfbp2b for ACA ACT CAT CCA CGG TTT AGG 97 103.02 

 rev GGT CCC TTG CAC CTC ATT T   

igfbp5a for CGA GAC GGC TTA CAC TGT TT 97 102.44 

 rev GCA TGA AGG ACA CTT CTA GGG   

igfbp5b for GCA CCA ACG AGA AAG GAT ACA 102 102.64 

 rev GCT GCA GCT CCT CAG TAA TC   

igf1rA for GGG CGT AGT TGT AGA AGA GAT TG 104 100.10 

 rev CGA CTA CCT GCT GCT GTT T   

igf1rB for TCT GCT ACC TGG ACT CCA TAG 87 100.00 

 rev ACT CCT TGG ACT GCT TGT TC   

ef-1 for GAG GTG AAG TCT GTG GAG ATG 96 98.84 

 rev CTC CTT GAC GGA CAC ATT CTT   

rpl17 for CCT CCT GCA CAT GCT CAA A 96 99.97 

 rev GCC TTG TTG ACC TGG ATG T   
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Table 1.3. Mass and length-specific somatic growth rates (SGR) calculated across 

different time intervals. 

 

 Day 0 – 98 24 – 98 48 – 98 75 – 98 91 – 98 

Mass SGR 
r = 0.4156 

p = 0.0027 

r = 0.4171 

p = 0.0026 

r = 0.4243 

p = 0.0021 

r = 0.4266 

p = 0.0020 

r = 0.2361 

p = 0.0988 

Length SGR 
r = 0.3358 

p = 0.0171 

r = 0.3181 

p = 0.0244 

r = 0.3135 

p = 0.0267 

r = 0.2895 

p = 0.0414 

r = 0.3868 

p = 0.0150 
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Table 1.4.  Liver mRNA gene correlation matrix. Correlations are Pearson’s product-moment correlations. Bolded and stared values 

indicate significant correlations (FDR corrected P > 0.05). 

 Mean SD igf1 igf2 igfbp1a igfbp1b igfbp2a igfbp2b igfbp5a igfbp5b 

igf1 
h = 0.55 

l = 0.61 

h = 0.20 

l = 0.23 
-        

igf2 
h = 0.67 

l = 0.64 

h = 0.32 

l = 0.46 

h = -0.37 

*l = 0.57 
-       

igfbp1a 
h = 0.85 

l = 3.26 

h = 1.88 

l = 4.77 

h = -0.03 

l = 0.33 

h = 0.22 

*l = 0.69 
-      

igfbp1b 
h = 0.36 

l = 1.65 

h = 0.59 

l = 1.54 

h = 0.10 

*l = 0.48 

h = -0.05 

*l = 0.53 

h = 0.50 

*l = 0.65 
-     

igfbp2a 
h = 0.67 

l = 0.92 

h = 0.40 

l = 0.79 

h = -0.40 

l = 0.38 

h = 0.46 

*l = 0.72 

h = 0.48 

*l = 0.46 

h = 0.33 

l = 0.40 
-    

igfbp2b 
h = 0.68 

l = 0.80 

h = 0.31 

l = 0.56 

h = -0.29 

*l = 0.49 

h = 0.42 

*l = 0.81 

*h = 0.56 

*l = 0.66 

h = 0.30 

*l = 0.46 

*h = 0.95 

*l = 0.94 
-   

igfbp5a 
h = 0.75 

l = 0.89 

h = 0.40 

l = 0.45 

h = -0.09 

*l = 0.52 

h = -0.09 

*l = 0.60 

h = 0.16 

l = 0.34 

h = 0.12 

l = 0.27 

h = 0.26 

*l = 0.63 

h = 0.29 

*l = 0.66 
-  

igfbp5b 
h = 0.92 

l = 0.86 

h = 0.47 

l = 0.69 

h = -0.46 

l = 0.40 

h = 0.42 

*l = 0.83 

h = 0.37 

*l = 0.68 

h = 0.19 

*l = 0.52 

*h = 0.94 

*l = 0.91 

*h = 0.92 

*l = 0.93 

h = 0.28 

*l = 0.54 
- 
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Table 1.5. Muscle mRNA gene correlation matrix. Correlations are Pearson’s product-moment correlations. Bolded and stared values 

indicate significant correlations (FDR corrected P > 0.05). 

 

  

 Mean SD igf1 igf2 igfbp1a igfbp1b igfbp2a igfbp2b igfbp5a igfbp5b igfra igfrb 

igf1 
h = 0.84 

l = 0.39 

h = 0.37 

l = 0.21 
-         

 

igf2 
h = 0.97 
l = 0.82 

h = 0.24 

l = 0.29 

h = 0.49 
l = -0.20 

-        
 

igfbp1a 
h = 1.29 
l = 1.16 

h = 0.99 

l = 1.13 

h = 0.08 
l = -0.39 

h = 0.25 
l = 0.34 

-       
 

igfbp1b 
h = 0.81 
l = 0.97 

h = 0.86 

l = 1.77 

h = 0.12 
l = -0.19 

h = 0.23 
l = -0.15 

h = -0.08 
l = 0.44 

-      
 

igfbp2a 
h = 0.95 

l = 0.77 

h = 0.44 

l = 0.36 

h = 0.31 

l = -0.03 

h = 0.40 

*l = 0.67 

*h = 0.62 

l = 0.30 

h = -0.03 

l = -0.12 
-     

 

igfbp2b 
h = 0.69 
l = 1.42 

h = 1.42 

l = 2.65 

h = -0.12 
l = -0.22 

h = -0.31 
l = -0.03 

h = -0.04 
l = 0.50 

h = 0.01 
l = 0.58 

h = -0.15 
l = -0.02 

-    
 

igfbp5a 
h = 0.82 
l = 0.64 

h = 0.27 

l = 0.24 

h = 0.37 
*l = 0.58 

h = 0.56 
l = 0.33 

h = 0.07 
l = -0.08 

h = 0.02 
l = -0.19 

h = 0.30 
l = 0.16 

h = -0.14 
l = -0.30 

-   
 

igfbp5b 
h = 0.86 
l = 0.67 

h = 0.22 

l = 0.19 

h = 0.50 
l = 0.06 

h = 0.40 
*l = 0.75 

h = 0.30 
l = 0.34 

h = 0.15 
l = -0.28 

h = 0.53 
*l = 0.56 

h = -0.10 
l = -0.11 

h = 0.45 
l = 0.49 

-  
 

igfra 
h = 1.10 

l = 1.21 

h = 0.24 

l = 0.45 

h = 0.21 

l = -0.36 

h = 0.10 

l = 0.44 

h = 0.43 

l = 0.16 

h = 0.02 

l = 0.00 

h = 0.37 

l = 0.28 

h = 0.19 

l = 0.06 

h = 0.25 

l = -0.21 

*h = 0.71 

l = -0.09 
- 

 

igfrb 
h = 1.08 
l = 1.07 

h = 0.27 

l = 0.44 

h = -0.02 
l = -0.34 

h = 0.32 
*l = 0.59 

h = 0.42 
l = 0.48 

h = 0.19 
l = 0.22 

h = 0.54 
l = 0.49 

h = -0.16 
l = 0.18 

h = -0.02 
l = -0.03 

h = 0.44 
l = 0.38 

h = 0.37 
l = 0.63 

- 
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1.8. Figures 

 

Figure 1.1. Mean (±SEM) values of (A) mass, (B) standard length, and (C) condition 

factor for rockfish reared under high ration (4% wet wt.) or low ration (1% wet wt.) 

conditions. Mass and body condition factor differed between treatments beginning on day 

24, while length differed beginning on day 48. 

  

A

B

C
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Figure 1.2. High (4%) ration fish (dark gray bars, n = 25) showed a greater (A) mass-

specific and (B) length-specific somatic growth rate (SGR) than low (1%) ration fish 

(light gray bars, n = 26). Bars represent group means (±SEM) of percent change per day 

with p-values from student t-tests. 

A 

B 
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Figure 1.3. Mass and standard length (SL) relations separated by treatment before and 

after experimental manipulation. Initial measures prior to the experiment (day 0 - 

triangles) are lower and have shallower slopes than final measurements (day 98 – circles). 
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Figure 1.4. Comparison of mean (±SEM) plasma total Igf1 concentrations between high 

ration (4% wet wt.) and low ration (1% wet wt.) treatments. Rockfish in the high ration 

treatment (n = 24) had significantly higher plasma Igf1 than low ration fish (n = 26). 
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Figure 1.5. Individual (A) mass-specific specific growth rate (SGR) and (B) length-

specific SGR both correlated positively to plasma Igf1 concentration. SGR values shown 

are calculated from the body size change across the entire experimental period (day 0 to 

98). Lines represent Pearson correlation relationships for fish from both ration treatments 

combined (n = 50).  
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Figure 1.6. Relative hepatic mRNA levels from the high and low ration treatments. (A) 

Levels of igf1 and igf2 did not differ between treatments. (B) Transcripts encoding Igf 

binding proteins igfbp1a and igfbp1b were expressed at higher relative levels in rockfish 

reared under the low (1%) ration treatment. Data are shown as mean (±SEM) values. 

Lines indicate significant differences between treatments (Student’s t-test: *P < 0.05, **P 

< 0.01, ***P < 0.0001). 

A 

B 
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Figure 1.7. Individual variation in liver igf1 mRNA levels correlated positively with 

plasma Igf1 concentrations. Pearson’s product-moment correlation line shows the 

relationship for all fish combined (n = 50). Ration treatments are shown for reference. 
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Figure 1.8. Individual variation in liver igf1 mRNA levels correlated positively with 

plasma Igf1 concentrations within both (A) high (n = 24) and (B) low (n = 19) treatments. 

Pearson’s product-moment correlation line shows the relationship for fish in each 

treatment. 

A 

B 
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Figure 1.9. Relative mRNA levels for igf1, igf2, and several genes encoding Igfbps in 

skeletal muscle of rockfish from the high (4%) and low (1%) ration treatments. (A) 

Transcript abundance for igf1, but not igf2, was higher in fish from the high ration 

treatment. (B) Only igfbp5a and igfbp5b mRNA levels in muscle differed between the 

two ration treatment groups. (C) There were no differences between treatments for both 

Igf receptors. Data are plotted as mean (±SEM) values, and lines indicate significant 

differences between treatments (Student’s t-test: *P < 0.05, **P < 0.01, ***P < 0.0001). 

  

A 

B 

C 
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Figure 1.10. Correlation between plasma Igf1 concentrations and relative levels of 

mRNAs encoding igf1 in skeletal muscle for (A) all fish combined (n = 50), (B) high 

treatment, and (C) low treatment fish.  The line represents a significant Pearson 

correlation relationship. for Treatments shown for reference in all fish combined. 

 

A 

B C 
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CHAPTER 2 

Spatial and temporal variation in plasma insulin-like growth factor-1 (Igf1) in blue 

rockfish (Sebastes mystinus) in MPAs 

 

2.1. Abstract 

Marine protected areas (MPAs) were created to protect the marine environment 

and sustain fisheries, yet monitoring of these areas has been difficult as current methods 

for quantifying growth rates of wild fish require terminal sampling (otolith analysis) or 

time-consuming tagging (mark-recapture). The development of rapid, non-lethal methods 

for quantifying fish growth rates is needed to better evaluate the performance of MPAs 

and manage the incorporated fish stocks. Blood concentrations of the hormone insulin 

like growth factor-1 (Igf1) relate positively with individual growth rate in several fishes, 

including Pacific rockfishes. Given the relationship between plasma Igf1 and growth, we 

explored spatial and temporal patterns of Igf1 concentrations in Blue Rockfish (Sebastes 

mystinus), one of several Sebastes rockfishes important to commercial and recreational 

fisheries. By quantifying circulating Igf1 concentrations in blue rockfish caught within 

and outside MPAs on the Central California coast, we were able to test whether Igf1 

concentrations varied in patterns associated with habitat protection status, which would 

imply differences in fish growth rates between MPA and non-MPA sites. Blue Rockfish 

were caught by hook-and-line within and adjacent to the Piedras Blancas and Point 

Buchon MPAs in August and September 2016. Circulating Igf1 concentrations in Blue 

Rockfish associated positively with body size regardless of habitat protection status, as 

has been observed in other fishes. After controlling for size variation, we detected higher 
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Igf1 concentrations in Blue Rockfish within the Piedras Blancas MPA compared to its 

non-MPA reference site. Point Buchon MPA, however, showed no difference in fish Igf1 

concentrations. We also observed declining IgfI levels from August to September at both 

locations. These patterns of Igf1 variation imply spatial patterns of growth in Blue 

Rockfish that do not link simply to protection status and suggest that this hormonal 

‘bioindicator’ approach might help identify local habitats supporting faster fish growth. 
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2.2. Introduction 

The population dynamics of marine fishes are influenced by a variety of 

ecological processes including bottom-up forces such as water temperature, upwelling 

intensity, and the quality and quantity of food resources (e.g., Frank et al., 2007; 

Frederiksen et al., 2006; Harley et al., 2006; Hunt and McKinnell 2006). The relevance of 

these bottom-up influences varies depending on ocean conditions (Gertseva et al., 2017; 

von Biela et al., 2015, 2016), which in turn alter food availability to affect population-

level processes including reproductive output, recruitment success, and density-

dependent growth (Caselle et al., 2010; VenTresca et al., 1996; White and Caselle, 2008). 

Food resource availability is therefore often considered a limiting factor for density-

dependent processes such as adult fecundity, juvenile growth and survival, and habitat 

selection, which together can influence the size and age structure of marine fish 

populations (Le Pape and Bonhommeau, 2013). Given the proposed importance of food 

resource variation as a regulatory influence on marine fish populations, studies evaluating 

the role of nutritional availability on growth rates in wild fishes are crucial to predicting 

variation in marine fish populations relevant to commercial and recreational fisheries.  

Obtaining data on individual growth rates of wild fish, however, is challenging. 

The most commonly used method for obtaining growth rate data is capture-mark-

recapture, but this method requires the tagging of large numbers of fish and subsequently 

recapturing those same individuals (Pradel, 1996); such recaptures can be particularly 

challenging in large ocean areas. A common alternative to capture-mark-recapture is the 

use of otolith structure to back-calculate past growth (Campana, 1990). However, 

calculating fish growth from otoliths has its own disadvantages, perhaps the greatest of 
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which is that fish under investigation must be terminally sampled. Other methods that 

have also been proposed for assessing growth, such as quantifying RNA:DNA ratios 

(Chícaro and Chícaro, 2008), can have restricted utility depending on the ecological 

conditions and the range of growth rate variation being sampled (Kaneko et al., 2015). 

Even so, data obtained from approaches such as those stated above are used to 

provide growth rate estimates that can then be examined in the context of abiotic and 

biotic oceanographic determinants such as water temperature, chlorophyll a 

concentration, or estimates of prey abundance (e.g., Hahlbeck et al., 2007; Jennings and 

Collingridge, 2015; Malick et al., 2015; Ware and Thompson, 2005). While useful, 

growth measures using capture-mark-recapture or otoliths may not successfully link 

oceanographic conditions to growth variation, given that the time frame of growth 

measures may not relate clearly to the temporal scale of variation in ocean conditions, 

and that the time durations across which growth is measured often varies among 

individual fish examined using these techniques. In light of those challenges, the 

development and application of new methods that provide accurate estimates of 

individual growth rate have the potential to provide valuable insights into how the growth 

rates of wild fish are affected by changing food availability, temperature, or other 

ecologically-relevant factors, especially if the growth rate estimation method reliably 

reflects a fish’s recent nutritional experience.  

Physiological approaches can provide tractable, quantitative tools for measuring 

nutritional status, and there is now abundant evidence that the blood concentrations of 

some hormones serve as accessible indicators of growth rate and metabolic state in fishes 

(Beckman, 2011; Picha et al., 2008; Reinecke, 2010). Of the many hormones that have 
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been studied in fish, insulin-like growth factor-1 (Igf1) has been shown to be the best 

direct indicator of growth rate due to the low clearance rate, delayed onset, and strongest 

relationship that circulating concentrations of this hormone exhibit to body growth 

(Larsen et al, 2001; Wilkinson et al., 2006). Igf1 is a protein hormone that is synthesized 

and released by the liver into blood circulation in response to growth hormone (GH) 

stimulation from the pituitary gland. Igf1 in circulation then regulates growth by 

promoting cell proliferation, cartilage growth, and skeletal elongation (Reinecke et al., 

2005; Duan, 1997; Chen, et al. 2000; Wood et al., 2005). Plasma concentrations of Igf1 

have been shown in laboratory studies to positively associate with specific growth rates 

(SGR) in several fish species including coho salmon (Oncorhynchus kisutch; Beckman et 

al. 2004a,b; Shimizu et al., 2009), Chinook salmon (O. tshawytscha; Beckman et al., 

1998), masu salmon (Kawaguchi et al., 2013), Atlantic cod (Davie et al., 2007), gilthead 

sea bream (Pérez-Sánchez et al., 1995; Mingarro et al., 2002), tilapia (Oreochromis 

mossambicus; Uchida et al., 2003), and several other fishes (e.g., Dyer et al., 2004; Picha 

et al., 2006). Such studies have revealed that individual variation in plasma Igf1 

concentration associates with individual variation in somatic growth rate across a variety 

of teleost fish (Picha et al., 2008; Beckman, 2011). 

Previous experimental studies in juvenile Sebastes rockfishes have shown that 

individual plasma Igf1 concentrations correlate positively with individual SGR variation 

(Chapter 1; Hack et al., unpub. results), indicating that concentrations of Igf1 can provide 

an instantaneous picture of an individual’s relative growth rate in these fishes. Here, Igf1 

hormone concentrations are assessed in blue rockfish (Sebastes mystinus) with relation to 

differences in habitat protection status off the coast of Central California, USA to 
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evaluate the use of this hormone as a biomarker for growth in wild rockfishes. 

Specifically, rockfish were collected by hook-and-line fishing within and outside of two 

Marine Protected Areas (MPAs) along California’s coast: the Piedras Blancas MPA and 

the Point Buchon MPA. These two MPAs are part of a network of no-take reserves 

established in central California in 2007 to protect abundance and diversity of marine life 

in these coastal waters (Gleason et al., 2013). The collection of S. mystinus blood samples 

from these MPAs was conducted as part of the California Collaborative Fisheries 

Research Program (CCFRP), which surveyed fishes weekly from commercial passenger 

fishing vessels in order to monitor and assess the effectiveness of these MPAs for 

protecting populations of nearshore fishes—mainly rockfishes (Starr et al., 2015; Wendt 

and Starr, 2009; Yochum et al., 2011). Spatial and temporal patterns of variation in 

plasma Igf1 levels of blue rockfish in these MPAs and in two adjacent, non-protected 

(i.e., non-MPA) locations were analyzed to assess its use as an index of relative growth. 

These comparisons were made to evaluate whether Igf1 levels were higher in blue 

rockfish caught within the protected MPAs, and to assess whether the two MPA sites 

generate similar patterns of growth variation in these species. 

 

 

2.3. Methods 

2.3.1. Animals 

Rockfishes of the genus Sebastes are important species for commercial and 

recreational hook-and-line fisheries in the North Pacific Ocean (e.g., Miller et al., 2014; 

Parker et al., 2000). Blue Rockfish (Sebastes mystinus) are an abundant, semi-pelagic 
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nearshore species that inhabits rock reefs and kelp forests in areas generally less than 100 

m in depth from the Gulf of Alaska to Baja California (Allen et al., 2006; Love et al., 

2002). Blue rockfish are considered a planktivore that feeds largely on pelagic gelatinous 

taxa including ctenophores, thaliaceans, and schyphozonans, but will also consume 

pelagic hydrozoans and gastropods, and young-of-the-year fishes and squid (Hallacher 

and Roberts 1985; Hobson and Chess, 1988; Love et al., 2002). Tagging studies indicate 

that blue rockfish typically have small home ranges (~0.23 km2) and high residency to 

particular habitat sites (Green et al., 2014), and movement of fish is generally limited to 

than less than 100 m from the central core of their range (Jorgensen et al., 2006). These 

home range sites are often associated spatially with submarine structures including rock 

pinnacles and the seaward edges of kelp beds (Jorgensen et al., 2006; Hallacher and 

Roberts 1985, Hobson et al. 1996). Notably, however, a minor proportion of blue 

rockfish tagged and tracked in the Monterey Bay region of Central California were 

observed to shift home ranges when tracked over time scales of ~1 yr (Green et al., 

2014). Those home range shifts were observed following a 4-6 month period of 

residency, and the range shifts occurred between April and June, when upwelling activity 

is pronounced along the California coast (Green et al., 2014).  

 

2.3.2. Study Sites  

Immature blue rockfish under 270 mm in total length (TL) were caught by hook-

and-line fishing from commercial passenger vessels in August and September 2016 at 

two MPA locations: the Piedras Blancas MPA (26.9 km2) (PBL) and the Point Buchon 

MPA (17.4 km2) (PBN) (Fig. 1). Both MPAs are closed to all commercial and 
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recreational fishing. These MPAs were established in 2007 along with several other MPA 

sites along the central coastline of California (Gleason et al., 2013).  

Fishing occurred during 15 min drifts inside 500 m2 cells within the two MPAs 

and associated ‘reference’ (REF) sites (see also Starr et al., 2015), which had no 

recreational or commercial fishing restrictions. Cells were positioned over rocky habitats 

in water less than 40 m in depth. The two REF sites were located 0.5–10 km away from 

their corresponding MPA, and were positioned within areas open to both recreational and 

commercial fishing. The Piedras Blancas site had a total of 57 cells, while the Point 

Buchon site had 22 cells. Which cells were selected for fish sampling on a given 

sampling day was determined randomly prior to departing for fishing. Sampling at each 

site followed a paired sampling design, so that at each location an MPA was sampled on 

one day and the corresponding REF site was sampled the following day—weather 

permitting. All paired sites were sampled within 48 hours of each other. 

Fish were collected between 8 am and 3 pm by volunteer anglers using a mixture 

of fishing gear including barbless baited hooks, lures and metal jigs. Each captured fish 

was identified to species and measured to total length (measured from the tip of the snout 

to the posterior edge of the flattened caudal fin). The latitude and longitude location and 

depth of the site where each fish was collected was recorded. A ~2 mL blood sample was 

then collected from the caudal vein of each fish. Fish were wrapped in a wet towel and 

processed in under 2 min in order to ensure proper recovery from handling. Blood 

samples were collected using sterile needles (¼ in diameter) and syringes, and transferred 

to heparinized microcentrifuge tubes (1.5 ml) that were maintained on ice. Blood was 
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then centrifuged at 3,000 x g for 10 min at 4C, and the resulting plasma was collected 

and stored at -80C. All fish were then tagged with a T-bar anchor tag and released. 

A total of 401 blood samples were collected from blue rockfish between June and 

September 2016. A subset of 264 of those samples were analyzed for plasma Igf1 

concentrations resulting in a total of 127 fish from Piedras Blancas and 137 from Point 

Buchon. At Piedras Blancas, n = 78 and n = 49 fish were sampled from the MPA and 

REF sites respectively. At Point Buchon, blood samples were analyzed from n = 89 fish 

from the MPA and n = 48 fish from the REF. Fish were not sexed due to inability to 

externally sex rockfish and immaturity of fish collected (< 270 mm in TL). The estimate 

size for blue rockfish at 50% maturity is 270 mm for males and 290 mm for females, with 

1st maturity for both sexes being seen at 220 mm (Echeverria, 1987). 

 

2.3.3. Plasma Igf1 Quantification 

Plasma total Igf1 (combined bound and unbound to Igfbps) concentrations were 

determined using a time-resolved fluoroimmunoassay (TR-FIA) using DELFIA assay 

reagents (Perkin-Elmer) and anti-Igf1 antiserum to barramundi (Lates calcarifer) 

(GroPep BioReagents, Ltd., Thebarton, SA, Australia). This TR-FIA and barramundi 

anti-IGF-I antiserum was previously validated for use in Sebastes rockfishes. Plasma 

samples (25 l) were assayed in duplicate, and the %B/Bo values for all samples ranged 

from 40-80% on the standard curve. Any sample duplicates with a % CV greater than 

12% were re-assayed. The resulting % CV for the assay was 4.78  3.34 % (mean  SD). 
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2.3.4. Statistical Analyses 

Body size (TL) of rockfish were examined using a two-factor ANOVA model 

with site (Piedras Blancas vs. Point Buchon) and habitat protection status (MPA vs. REF) 

and the interaction between these factors. Student’s t-tests were subsequently used to 

examine pairwise comparisons between levels of factors found to have significant effects 

on variation in body size. 

Any outlier  3SD from the total mean of plasma Igf1 values were excluded from 

analysis, which resulted in only one sample being excluded. Because plasma Igf1 

concentration have been observed to be associated positively with body size in fishes 

(Beckman et al., 2004b; Ferris et al., 2014; Mingarro et al., 2002; Uchida et al., 2003), we 

first tested for a relationship between plasma Igf1 concentration and body size (TL) using 

a Pearson’s product moment correlation.  Since a significant positive relationship 

between Igf1 and TL was observed (see Results below), plasma Igf1 levels were 

standardized using a linear regression model where Igf1 values are adjusted to 

incorporate the effect of body size (TL). Residual Igf1 values from this regression model 

were then used as ‘standardized Igf1’ (Igf1STD) hormone values in all further analyses. 

We then used a linear regression model to test for differences in Igf1STD levels between 

locations (PBL vs. PBN), protection status (MPA vs. REF), and paired sampling dates. 

Pairwise comparions were subsequently calculated using Student’s t-tests. All statistics 

were conducted using R v3.3.2 through RStudio v1.0136. ESRI ArcGIS was also used to 

show kernel densities of standardized Igf1 concentrations using GPS coordinates for each 

fish. 



 60 

Principal Components analysis was conducted on wind speed, swell height, wave 

height, wave direction, turbidity (secchi depth), surface temperature, and depth of 

collection. Wave height, wave direction, and temperature were supplied by NOAA’s 

Diablo Canyon Waverider Buoy (station 46215) which is 0.46 m below the water line. 

Wind speed and swell height were estimated by sight and depths were recorded by 

onboard vessel instruments averaged for each drift. Secchi depth was measured on the 

calmer side of the vessel not in a shadow and without the use of sunglasses using marked 

line attached to a secchi disk at half meter increments. Final principal components were 

selected using Kaiser’s criterion and significance in predicting Igf1STD. 

 

 

2.4. Results 

2.4.1. Body size  

The mean body length (TL) of blue rockfish evaluated for plasma Igf1 

concentrations was 20.81  3.39 cm (mean  SD, N = 269). The body length of sampled 

rockfish varied with both site and habitat protection status (two-factor ANOVA, site * 

protection status interaction: F1,269 = 5.255, p = 0.023). Overall, blue rockfish collected at 

Piedras Blancas (MPA and REF combined) were larger in size (21.87  3.73 cm, mean  

SD, n = 128) compared to conspecifics collected from Point Buchon (19.86  2.72 cm) (t 

= -5.002, p < 0.0001; Fig. 2). Within each sample site, the mean size of blue rockfish 

collected with the protected MPA habitat and associated REF locations were similar in 

body size (Fig. 2).  
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However, the group of blue rockfish sampled on 1 August 2016 within the 

boundaries of the Piedras Blancas MPA were significantly smaller than those caught in 

the corresponding REF locations the following day (Fig. 3a, t = 2.056, p = 0.0439). Blue 

rockfish collected at Point Buchon on 8 and 9 August 2016 showed the opposite pattern 

of size variation, with fish sampled within the REF locations being smaller in size 

compared to fish caught within the MPA (Fig. 3b, t = 2.951, p = 0.0046); this size 

variation, however, was only observed at Point Buchon on the first set of paired sampling 

dates (t = 1.785, p = 0.0783). While we observed differences in the length of blue 

rockfish collected within and outside of these MPAs on select paired sampling dates, a 

more extensive evaluation of the size of blue rockfish caught between 2007 and 2013 at 

these MPAs, as well as two other MPAs along the Central California coast, did not 

observe any differences in the length of blue rockfish within our outside of the MPAs 

(Starr et al., 2015).  

 

2.4.2. Plasma Igf1 standardization  

 Unstandardized plasma Igf1 concentrations showed a significant positive 

relationship with body length (Fig. 4; F1,267 = 19.822, p < 0.0001). That relationship did 

not differ between groups of fish collected at Piedras Blancas or Point Buchon, so all fish 

from both MPA sites were analyzed together for standardization of plasma Igf1 levels. 

After standardizing plasma Igf1 levels for this significant positive relationship to body 

length, Igf1STD did not correlate to length (Fig. 5, F1,262 < 0.0001, p = 1.00). 
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2.4.3. Plasma Igf1 variation with habitat protection status 

 Plasma Igf1STD differed between MPA sites, with rockfish collected in the Piedras 

Blancas MPA and adjacent REF locations having significantly higher Igf1STD levels than 

fish collected from Point Buchon (Fig. 6, t = -5.67, p < 0.0001). Plasma Igf1STD levels 

were also observed to be significantly higher in blue rockfish collected within the Piedras 

Blancas MPA compared to the adjacent REF locations for this MPA (Fig. 6; t = -2.753, p 

= 0.0068). This habitat protection effect, however, was limited to Piedras Blancas, as 

Igf1STD levels were similar for blue rockfish collected within and outside of the Point 

Buchon MPA boundaries (Fig. 6; t = -0.386, p = 0.7001). 

More detailed examinations of Igf1STD levels by paired sampling date revealed 

that blue rockfish collected within the boundaries of the Piedras Blancas MPA showed 

elevated plasma Igf1STD levels on the 1-2 August 2016 sampling dates (Fig. 7a; t = -

2.478, p = 0.0158), but not on the subsequent 15-17 August 2016 dates (Fig. 7a; t = -

1.755, p = 0.0844). At Point Buchon, plasma Igf1STD levels were consistently similar 

between fish collected within or outside of the MPA boundaries on both paired sampling 

dates (Fig. 7b; Aug: t = 0.630, p = 0.0531; Sept: t = 0.121, p = 0.904).  

Plasma Igf1 levels standardized to regional lengths on paired sampling dates 

showed particular hot spots for relatively high or low levels within Piedras Blancas (Fig. 

8; relative kernel densities) and Point Buchon (Fig. 9). Hot and cold spots relate to the 

relative mean of paired sampling dates for each location and increase or decrease in hue 

with values farther from the mean as well as with more fish per a given GPS location. 
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2.4.4. Environmental influences on plasma Igf1 

 Plasma concentrations of Igf1 can to be influenced by several ecological factors 

including water temperature and photoperiod (Gabillard et al., 2003; Hevroy et al., 2013; 

Hevroy et al., 2015). We observed that mean plasma Igf1STD levels in blue rockfish 

declined from early to mid August at Piedras Blancas (t  = -1.991 p = 0.0486) and from 

early August to early September at Point Buchon (t  = -3.339, p = 0.0011) (Fig. 10).   

 Principal Components Analysis (PCA) shows variable abiotic factors between 

locations (Fig. 11), protection status (Fig. 12), and sampling dates (Fig. 13). Principal 

components 1-3 explain 32.8%, 24.8%, and 16.1% of the variance respectively which 

totals to 73.7% explained variance. There is a significant effect of PC1 (p = 0.0248), PC2 

(p = 0.0012), PC3 (p = 0.0003), as well as PC5 (p = 0.0002) on IgfSTD when run in a 

multivariate model (Fig. 14). PC1 is comprised mainly by wave height and wave 

direction in one direction and temperature in the negative direction while PC2 is 

primarily secchi depth (i.e. water turbidity) in the positive direction and wind speed and 

swell in the negative direction (Table 1.). On the other hand, PC3 is mainly explained by 

depth and PC5 includes wind speed and swell (Fig. 15). 

 

 

2.5. Discussion 

This study reports spatial and temporal patterns of variation in plasma Igf1 levels 

in blue rockfish in Point Buchon and Piedras Blancas MPAs and in two adjacent, non-

protected (i.e., non-MPA) reference locations along the West Coast of North America. 

Plasma Igf1 concentrations have been validated as a physiological index of growth rate in 
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a variety fishes under controlled, laboratory studies (Beckman et al., 1998; Perez-Sanchez 

et al., 1995; Pierce et al., 2001; for review, see Beckman, 2011). And, recent 

experimental work in Sebastes rockfishes confirmed that individual variation in plasma 

Igf1 likewise associates positively to growth rate. Igf1 concentrations in olive rockfish 

(Sebastes serranoides) reared in captivity with differing positive rates of growth 

generated by varied feeding rates showed a positive correlation with mass- and length-

specific growth rate (see: Chpt 1). Similarly, individual variation in plasma Igf1 was 

observed to correlate positively to individual growth rate in juvenile copper rockfish 

(Sebastes caurinus) raised in captivity under differing conditions of food availability 

(Hack et al., unpub. data).  

Given the relationship between plasma Igf1 and growth in fishes, a variety of 

studies have begun using plasma Igf1 as a physiological index to identify spatial or 

temporal (i.e., seasonal, annual) variation in growth in wild fish (Andrews et al., 2001; 

Beckman et al., 2000, 2004; Beaudreau et al., 2011; Ferriss et al., 2014; Wechter et al., 

2017). The relationships between plasma Igf1 levels and growth rate arise from the 

positive influence that food consumption has on pituitary gland production of GH, which 

stimulates the liver to produce Igf1 and enhance somatic growth (e.g., Picha et al., 2008; 

Reinecke, 2010).   

 

2.5.1. Plasma Igf1 variation with habitat protection status 

As has been observed in other fishes (e.g, Ferris et al., 2014; Beckman et al., 

2011; Uchida et al., 2003; Picha et al., 2006), plasma Igf1 levels correlated positively to 

body size in wild blue rockfish. We therefore standardized plasma Igf1 values to remove 
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the influence of body size and analyzed differences between MPAs and reference sites 

within each location as well as, patterns between locations. 

After standardizing hormone values for body size, we found that plasma Igf1STD 

levels were higher in blue rockfish within the Piedras Blancas MPA compared to fish 

caught in the adjacent unprotected reference site. Fish caught in this MPA on 1 August 

2016 were also smaller in size but had significantly higher Igf1STD than those caught in 

the corresponding reference site the following day. This reinforces the finding that 

although fish in the MPA were smaller, they experienced more rapid growth in the recent 

past than fish in the reference site.  

At the Point Buchon location, however, mean Igf1STD levels were found to be 

similar in blue rockfish sampled within the Point Buchon MPA and adjacent fished area 

on both paired sampling dates. This lack of variation between protected and unprotected 

areas illustrates how this approach of using Igf1 as a physiological index can provide 

important, overlooked information about MPA efficacy. While there are typically larger 

fish caught within MPAs compared to unfished reference sites (Starr et al., 2015), we did 

not see the same trend overall. Although there were larger fish caught within the Point 

Buchon MPA on 09 Aug 2016, the Igf1STD values indicate that these fish are feeding and 

growing at a rate similar to smaller blue rockfish caught in the associated reference site. 

Without the added information from Igf1, managers could assume Point Buchon MPA 

was effective at supporting a more productive ecosystem for blue rockfish, as counts and 

size of fish are some of the main parameters used currently for monitoring fish stocks in 

these MPAs (Murphy and Jenkins, 2010).  
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2.5.2. Environmental influences on plasma Igf1 

Ecological factors such as water temperature, upwelling intensity, and turbidity 

influence quantity of food resources available to coastal marine species thus indirectly 

affecting reproductive output, recruitment success, and density-dependent growth (e.g., 

Frank et al., 2007; Frederiksen et al., 2006; Harley et al., 2006; Hunt and McKinnell 

2006; Caselle et al., 2010; VenTresca et al., 1996; White and Caselle, 2008). In this way, 

food limitation impacts size and age structure of marine fish populations, which in turn 

dictates population fecundity, juvenile growth and survival, and habitat selection (Le 

Pape and Bonhommeau, 2013).  

Environmental conditions on the days that fish were sampled varied between 

sampling locations, and it is possible that some of that environmental variation 

contributed to patterns of Igf1 variation. Here we found environmental differences in 

location including wave activity and temperature with Point Buchon having higher 

temperatures and less wave activity. Alternately, differences in protection status were due 

to aspects of turbidity likely caused from upwelling. Interestingly, reference sites showed 

higher turbidity and less swell and wind. California’s longshore current typically runs 

North to South pushing surface water into protected coves and bays. This causes 

upwelling along exposed coasts and calm, clearer water leeward of coastal heads. The 

reference sites for the two locations sampled here have opposite locations—Piedras 

Blancas downcurrent and Point Buchon upcurrent. Although these coastlines vary in 

contour, they should have similar exposures indicating that these differences in wave 

activity are likely due to daily variation in weather patterns. That daily variation becomes 

evident when comparing identical locations between days. Green and colleagues (2014) 
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found that blue rockfish in California occurred at deeper depths when there was increased 

wave height and lower water temperatures. Variation in Igf1 concentrations similarly 

tracked these ecological changes represented by the greater significance of PCs compared 

to location or protection status. Because of this, future use of Igf1in monitoring growth in 

wild fish will need to take into account ecological parameters and time of year in order to 

properly assess health of stocks.  

 Hormonal biomarkers are currently mostly used within the aquaculture industry to 

monitor growth and health of farmed stocks (Picha et al, 2008). By expanding the 

assessment to recreationally and commercially important species, this tool could be used 

to measure the regional variation in production and size of wild fish populations, as well 

as how population parameters relate to ecosystem processes, fishing pressures, and 

decadal oscillations. Consideration of biomarker data in relation to other management 

practices will also help determine whether MPAs are achieving their expected outcome of 

enhancing fish growth, and thus contribute to efforts to redefine MPAs to best maintain 

rockfish populations—species that serve a critical role as predatory fish in California’s 

kelp forest ecosystems. Data on spatial variation in fish growth is essential to quantify 

both the impact MPAs are having on fish populations, and the environmental health status 

of coastal ocean systems broadly. Having an accurate way to access growth rate of many 

individuals will lead to better identification of the factors that might modulate growth of 

fish populations, thus ensuring ecosystem functions are maintained and help accurately 

determine how fish growth rates link to local environmental conditions in light of current 

overexploitation of fish stocks and climate change. 
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2.6. Conclusion 

 In this study, blue rockfish were collected from within and outside two MPAs on 

the central coast of California to validate the use of Igf1 as a biomarker for growth. After 

adjusting for the positive relationship between plasma Igf1 and body size, we saw higher 

levels of Igf1 in Piedras Blancas than Point Buchon as well as higher levels within 

Piedras Blancas MPA compared to the reference site. These differences are likely 

attributed to the ecological parameters of each habitat but to a larger extent due to 

changes in weather patterns that shift regional ecological factors on a daily basis. 
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2.7. Tables 

 

Table 2.1. Principal component loadings. Variable in order are wind speed, swell height, 

wave height, wave cardinal direction, secchi depth, surface temperature, and depth. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

wind sp 0.176378 -0.57061 0.061878 -0.39538 0.588246 -0.32259 0.181788 

swell 0.251546 -0.52544 0.047245 -0.37166 -0.63274 0.339599 -0.0677 

wave ht 0.522429 0.277007 -0.32247 -0.04516 0.049755 0.266548 0.686137 

wave dir 0.470697 0.265961 -0.42383 -0.2835 0.113986 -0.1058 -0.65078 

secchi -0.05253 0.481096 0.445795 -0.625 -0.21221 -0.32694 0.15654 

temp -0.51712 0.096047 -0.21823 -0.46607 0.300925 0.605567 -0.03535 

depth 0.375442 0.100819 0.681145 0.123639 0.320235 0.474099 -0.2057 
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2.8. Figures 

 

 

Figure 2.1. Map showing sampling locations in Central California with Marine Protected 

Areas (MPA) shown in blue. Sampled 500 m2 cells were fished within (1) Piedras 

Blancas and (2) Point Buchon MPAs and also in associated reference sites (REF). 
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Figure 2.2. Mean (±SEM) values of total lengths for blue rockfish caught at Piedras 

Blancas (PBL) and Point Buchon (PBN) within the marine protected area (MPA) and at 

adjacent reference sites (REF). Fish caught at Piedras Blancas were significantly larger 

than those caught at Point Buchon. Number of samples are indicated inside each bar. 

Stars indicate significant differences between treatments (Student’s t-test: NS - not 

significant, *P < 0.05, **P < 0.01, ***P < 0.0001).  
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Figure 2.3. Mean (±SEM) values of total lengths for blue rockfish caught at (A) Piedras 

Blancas and (B) Point Buchon within the marine protected area (MPA) and at adjacent 

reference sites (REF) separated by sampling date. Number of samples are indicated inside 

each bar. Stars indicate significant differences between treatments (Student’s t-test: NS - 

not significant, *P < 0.05, **P < 0.01, ***P < 0.0001).  

A 

B 
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Figure 2.4. Linear regression (r2 = 0.066) of total lengths by plasma Igf1 concentrations 

for all fish combined. Regression and standard error (gray) include both locations and all 

sampled cells. Protection status only shown for reference. 
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Figure 2.5. Linear regression (r2 = -0.004) of total lengths by length standardized plasma 

Igf1 concentrations for all fish combined. Protection status only shown for reference. 
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Figure 2.6. Mean (±SEM) values of length standardize plasma Igf1 for blue rockfish 

caught at (A) Piedras Blancas and (B) Point Buchon within the marine protected area 

(MPA) and at adjacent reference sites (REF). Stars indicate significant differences 

between treatments (Student’s t-test: NS - not significant, *P < 0.05, **P < 0.01, ***P < 

0.0001).  
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Figure 2.7. Mean (±SEM) values of length standardize plasma Igf1 for blue rockfish 

caught at (A) Piedras Blancas and (B) Point Buchon within the marine protected area 

(MPA) and at adjacent reference sites (REF) separated by sampling date. Number of 

samples are indicated inside each bar. Stars indicate significant differences between 

treatments (Student’s t-test: NS - not significant, *P < 0.05, **P < 0.01, ***P < 0.0001).  

  

A 

B 
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Figure 2.8. Kernel densities for length standardized plasma Igf1 concentration at Piedras 

Blancas. Igf1 concentrations are standardized to regional lengths on paired sampling 

dates. All dates are shown. 
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Figure 2.9. Kernel densities for length standardized plasma Igf1 concentration at Point 

Buchon. Igf1 concentrations are standardized to regional lengths on paired sampling 

dates. All dates are shown. 
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Figure 2.10. Individual plasma Igf1 values standardized to total length for all fish caught 

in Piedras Blancas (PBL) and Point Buchon (PBN) marine protected areas (MPA) and at 

adjacent reference sites (REF) separated by sampling date.  
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Figure 2.11. Principal components analysis showing relation of highest components in 

relation to Location. Piedras Blancas (PBL, green) exhibits higher wave action (wave 

height and secchi turbidity) while Point Buchon (PBN, yellow) has higher temperatures. 
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Figure 2.12. Principal components analysis showing relation of highest components in 

relation to protection status. Marine Protected Areas (MPA) had higher swell and wind 

speed while reference sites (REF) has higher turbidity (secchi). 
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Figure 2.13. Principal components analysis showing relation of two highest components 

in relation to sampling date. August 17, 2016 has notably high wave height and cloud 

cover. 
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Figure 2.14. Principal components analysis showing relation of two highest components 

in relation to total length standardized Igf1. Green are higher than expected Igf1 levels 

for their length and redder points are lower than expected Igf1 levels. 
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Figure 2.15. Principal components analysis showing relation of highest components in 

relation to protection status. Marine Protected Areas (MPA) had higher swell and wind 

speed while reference sites (REF) has higher turbidity (secchi). 
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