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Abstract
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service providers provide on-demand service to consumers. A hallmark of this arrangement is that providers
decide for themselves when, where, and how much to work. In other words, the platform does not set its
capacity's schedule; instead its capacity "self-schedules." This decentralization of decision making can create
value for providers. The platform's challenge is then to devise a contract with its capacity that allows it to
capture some of this value. I study the platform's contracting problem in three chapters. In the first, I show that
the platform can benefit from allowing its providers to self-schedule. In the second, I study the platform's
strategy when coordinating supply and demand across multiple states of the world. I show that the resulting
dynamic pricing policy can be beneficial to consumers, despite widespread dislike of the real-world practice. I
also show that, in many cases, the platform need not independently vary payments to providers to achieve
near-optimal profit. Instead the platform may pay its providers a fixed percent commission on the price paid
by consumers per completed service. In the final chapter, I argue that the findings above are distinct from the
traditional two-sided markets literature. Though a classic two-sided market model experiences near-optimal
performance of the fixed commission in many cases, the market conditions that produce poor fixed
commission performance differ between the gig-economy model and the two-sided markets model. Because
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ABSTRACT

MANAGING SELF-SCHEDULING CAPACITY

Kaitlin M. Daniels

Gerard P. Cachon

Gig-economy platform like Uber, Lyft, Postmates, and Instacart have created markets in

which independent service providers provide on-demand service to consumers. A hallmark

of this arrangement is that providers decide for themselves when, where, and how much

to work. In other words, the platform does not set its capacity’s schedule; instead its

capacity “self-schedules.” This decentralization of decision making can create value for

providers. The platform’s challenge is then to devise a contract with its capacity that

allows it to capture some of this value. I study the platform’s contracting problem in three

chapters. In the first, I show that the platform can benefit from allowing its providers

to self-schedule. In the second, I study the platform’s strategy when coordinating supply

and demand across multiple states of the world. I show that the resulting dynamic pricing

policy can be beneficial to consumers, despite widespread dislike of the real-world practice.

I also show that, in many cases, the platform need not independently vary payments to

providers to achieve near-optimal profit. Instead the platform may pay its providers a fixed

percent commission on the price paid by consumers per completed service. In the final

chapter, I argue that the findings above are distinct from the traditional two-sided markets

literature. Though a classic two-sided market model experiences near-optimal performance

of the fixed commission in many cases, the market conditions that produce poor fixed

commission performance differ between the gig-economy model and the two-sided markets

model. Because the two-sided market model does not accurately predict poor gig-economy

fixed commission performance, it is important to study a model tailored the gig-economy

to understand gig-economy specific applications.
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PREFACE

Here I study markets in which a firm relies on capacity to provide a good or service that

it does not directly control. This capacity is the aggregation of individual producers or

service providers who produce/serve according to their own self-interest. These individuals

face non-trivial, non-constant, and private opportunity costs for the time spent produc-

ing/serving through the firm, so each individual only provides capacity to the firm if his

earnings from doing so exceed his opportunity cost. In other words, the firm does not set

its capacity’s service/production schedule, instead its capacity “self-schedules.”

Self-scheduling arrangements are most associated with the on-demand service industry com-

monly known as the gig-economy. Gig-economy firms serve as platforms that connect

customers with self-scheduling service providers. Noteworthy examples include the ride-

sharing platforms Uber and Lyft, the delivery platforms Postmates and Instacart, and

the on-demand labor platforms TaskRabbit and Bellhops. According to Farrell and Greig

(2016), between 2012 and 2015 the fraction of JPMorgan Chase account holders receiving

monthly income from participation in the gig-economy grew 10-fold, constituting 1% of ac-

count holders in 2015. Furthermore, the proportion of account-holders having ever received

income from participation in the gig-economy grew 47-fold, indicating that 4.2% of account

holders worked a gig at some point during that time period (Farrell and Greig, 2016).

Providers report that their primary attraction to the gig-economy is their ability to self-

schedule. A recent Benenson Strategy Group survey of Uber drivers reports that 87% of

respondents partner with Uber “to be my own boss and set my own schedule” (Hall and

Krueger, 2015a). The key consequence of this framework is that decentralization decision

making can create value for providers. However, it does not immediately follow that this

arrangement also benefits the platform or consumers.

In three chapters, I study the firm’s contracting problem. First I pursue the most funda-

mental question: whether self-scheduling can be more profitable than a traditional capacity

ix



arrangement. Second I derive a firm’s profit optimal dynamic pricing contract and de-

termine its effect on consumer welfare. Finally, I illustrate the differences between the

gig-economy and the traditional two-sided markets literature.

The first chapter is motivated by a setting with self-scheduling capacity that existed long

before the gig-economy: the electricity market. “Curtailment contracts” in electricity mar-

kets allow a firm to pay electricity consumers not to use electricity and to sell this foregone

consumption as “virtual” generation on the electricity market. In the firm’s contract with

electricity consumers, it may either allow consumers to curtail their consumption as they

wish (i.e. self-schedule) or it may require consumer to commit to a level of curtailment. In

this context, the firm evaluates the profitability of self-scheduling in a market where the

firm is a price taker and price decreases in the production of the firm. I find that the firm

generally prefers self-scheduling when consumers face sufficiently varied opportunity costs

and when the slope of the price curve is sufficiently small.

The second chapter is motivated by the dynamic pricing strategies used by some gig-

economy firms (most notably Uber’s “Surge Pricing”). The firm chooses a pricing strategy

to coordinate its self-scheduling capacity with variable demand. The firm’s profit maximiz-

ing incentive structure charges consumers a demand-contingent price and offers providers a

demand-contingent wage. I consider the profit and consumer surplus implications of restrict-

ing prices to be constant across all demand regimes and, alternatively, allowing demand-

contingent prices but restricting wages to be a fixed percentage of prices (i.e. providers earn

a fixed commission). I find that while restricting the firm to a fixed price causes significant

profit loss for the firm, requiring a fixed commission generally produces near-optimal profit.

I further demonstrate that consumers can benefit from demand-contingent prices due to

depressed prices in low demand regimes and expanded access to service in high demand

regimes.

In the final chapter, I argue that the findings described above are distinct from predictions

made by the traditional two-sided markets literature. In that literature, membership on the
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platform happens on a much longer time scale than in the gig-economy, so the classic models

ignore capacity constraints that are very relevant to the operations of the gig-economy. For

example, a retailer chooses to accept American Express based on the volume of customers

that carry American Express. In contrast, an Uber driver can only serve one customer

at a time, so even if there are many customers demanding rides at the same time, the

Uber driver only cares that he is assured a passenger. I find that these difference lead

the two models to make significantly different predictions. In particular, I focus on the

profitability of a fixed commission in each setting. I show that though a classic two-sided

market model experiences near-optimal performance of the fixed commission in many cases,

the market conditions that produce poor fixed commission performance differ between the

gig-economy model and the two-sided markets model. Because the two-sided market model

does not accurately predict poor gig-economy fixed commission performance, it is important

to study a model tailored the gig-economy to understand gig-economy specific applications.

The goal of this work is to guide practitioners, regulators, and theoreticians in their under-

standing of self-scheduling capacity. I demonstrate that practitioners can profit from a self-

scheduling arrangement, and that the challenge of providing sufficient capacity when facing

variable demand and heterogeneous workers can be overcome through dynamic prices and

wages. I additionally show regulators that the profitability of self-scheduling does not pre-

clude benefit to consumers and workers. For example, consumers can benefit from dynamic

prices precisely because workers self-schedule - dynamic prices can improve consumers’ ac-

cess to service at busy times while decreasing the time workers spend idle during slow times.

Furthermore, I demonstrate to theoreticians the importance of considering the details that

distinguish the gig-economy from classic examples of two-sided markets.

xi



CHAPTER 1 : Demand Response in Electricity Markets: Voluntary and

Automated Curtailment Contracts

1.1. Introduction

Electricity markets today suffer from a fundamental flaw: consumption does not respond

to market signals. This is a result of the organization of the electricity supply chain, as

illustrated in Figure 1. Conventional generators submit a menu of prices and production

levels to the market’s clearinghouse, the Independent System Operator (ISO). The ISO

constructs the market supply curve by ordering these bids from least to most expensive per

kilowatt hour (kWh). Market demand determines the price at which all consumption is

purchased, which is known as a uniform-price auction. However, consumers do not satisfy

their demand by purchasing electricity on the market themselves. Instead, consumers are

served by local utilities and other electricity retailers that buy on the market at the market

price and sell to consumers at a fixed fee per kWh. Though the market price varies, end-

consumers only experience their fixed fee, even in times of peak load. As a result, consumers

that would otherwise be priced out of the market continue to consume, and demand can

creep dangerously close to the system’s limit, threatening black- and brown-outs.

There are two well studied ways of addressing the insulation of consumption from market

prices. The first, called real time pricing, removes the middle man and allows consumers

to pay the market price. Alternatively, curtailment contracts, the topic of interest of this

paper, insert a new middle man called the Curtailment Service Provider (CSP), who pays

consumers not to consume and sells the induced foregone consumption on the market as

virtual supply (see Figure 1). The CSP acts as a generator in the electricity market, only

the electricity it sells is not newly generated but is instead electricity made available by the

curtailment of contracted consumers’ demand. Curtailment contracts have been shown to

achieve the same efficiency as real time pricing (Chao and Wilson, 1987) and, as a result

of a recent policy change, are growing in popularity as a demand management tool. In
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2011 the Federal Energy Regulatory Commission mandated that foregone end-consumption

be treated as conventional generation during peak load events, meaning the extra supply

created by curtailed consumption can be sold on the market for the full market price.1 In the

next 5 years curtailment contracts, along with other demand response efforts, are projected

to decrease peak demand by more than 4% 1 In the next 5 years curtailment contracts,

along with other demand response efforts, are projected to decrease peak demand by more

than 4%.2.

When a consumer curtails his consumption, he incurs an opportunity cost which varies

based on the value of his initial consumption. For example, a residential consumer’s value

of air conditioning is increasing in the ambient temperature, so his opportunity cost from

curtailing his electricity is higher during a heat wave than on a normal summer day. Under a

curtailment contract, the CSP calls upon contracted consumers to reduce their consumption

when market conditions make selling virtual load a profitable endeavor. Typically, the CSP

participates the electricity market during peak load events, caused by extreme demand

or generation outages. Because consumers do not anticipate peak load events, the value

of the curtailed consumption is uncertain ex ante. Furthermore, a consumer’s value of

consumption is private information.

Curtailment contracts can be partitioned into two classes. Traditionally consumers relin-

quish control over their curtailment decisions, allowing the CSP to remotely adjust their

consumption during peak load events. We will call this an automated curtailment contract.

The curtailment amount automatically imposed by the CSP is determined by the consumer

in advance of any particular peak load event. Therefore, curtailment under an automated

contract is determined in expectation of the consumer’s value of consumption at the time of

curtailment. Technological advances in smart metering have introduced a new generation

of curtailment contracts which we will call voluntary. Under the voluntary contract con-

sumers decide the level of curtailment provided to the CSP at the time of the peak event.

1FERC Order 745 - http://www.ferc.gov/EventCalendar/Files/20110315105757-RM10-17-000.pdf
2EIA 2011 report - http://www.eia.gov/todayinenergy/detail.cfm?id=650
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The voluntary contract, therefore, allows consumers to make curtailment decisions with full

knowledge of their cost.

In this paper, we study a CSP’s choice of contract class to offer a set of consumers. In

practice, CSPs offer distinct contracts to different customer segments (e.g. residential,

commercial). A contract is designed for a particular subset of consumers who have similar

attributes. We assume that the consumers within this subset have a homogeneous value

distribution of electricity consumption. For example, interior heating and cooling represents

nearly a third of the residential electricity consumption in the United States 3. The value of

this consumption varies as a function of temperature, which affects consumers in the same

geographic area equally.

The CSP’s choice between automated and voluntary contracts echoes the trend in the

service industry toward allowing service providers to self-schedule. Just as firms like Uber

allow service providers to choose when and how much to work, a voluntary curtailment

contract allows consumers to choose whether and how much to curtail their loads. Like

electricity consumers curtailing their loads, self-scheduling service providers encounter an

opportunity cost when they offer their services. The burgeoning operations literature on

this topic considers providers with independent and identically distributed opportunity

costs (e.g. Cachon et al. (2017), Gurvich et al. (2015), Ibrahim and Arifoglu (2015)).

Curtailment contracts offer an appropriate application to extend this literature by studying

a self-scheduling environment in which opportunity costs are correlated.

We characterize a CSP’s choice of contract class as a function of market conditions and

consumer characteristics. We find that the voluntary contract’s value to the firm can be

characterized by the difference between the expected curtailed load under the voluntary and

automated contracts for a given payment; for a sufficiently large difference the firm prefers

the voluntary contract. The sensitivity of market price to changes in consumption drives

how large this difference must be; the larger the market sensitivity, the larger the difference

must be for the firm to choose the voluntary contract. In the specific case of a symmetric

3
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Figure 1: Structure of the Market with Curtailment Contracts

cost distribution, the firm’s contract decision is driven simply by the variance of cost. This

application also allows us to measure the environmental effect of the CSP’s contract choice.

While the profit maximizing CSP contract choice also maximizes the positive environmental

impact of demand response, the incentives of the CSP and a welfare maximizing social

planner are not aligned. We characterize the market and customer conditions that create

this misalignment, those in which a social planner should encourage voluntary contracts

even though the CSP would rather adopt the automated contract.

Below we frame the aforementioned analysis in terms of the relevant literature (Section 2).

In Section 3, we discuss the consumer’s problem and in Section 4 the firm’s contract choice.

In Section 5, we analyze the impact of the CSP’s contract choice on market coordination.

Though many curtailment contracts observed in the market are linear in nature, we are

interested in the firm’s optimal choice. Therefore, in Section 6 we relax the linear payment

restriction and analyze the unrestricted “optimal” contract. To relate the optimal and linear

contracts we study a numerical example in Section 7. We verify our results under the linear

contract and find that the linear contract profit is a good approximation of the optimal

contract profit. To streamline the presentation, we relegate all proofs to the Appendix.
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1.2. Literature Review

The management of non-storable goods with periodic demand, such as electricity, has long

been of interest to economists. The peak load pricing literature studies capacity and pricing

decisions made by a firm facing demand that periodically shifts from low to high. For a

thorough review please see Crew et al. (1995). When demand is stochastic, a firm with finite

capacity faces a non-zero probability that its supply will be insufficient to satisfy demand

during peak load events. In the electricity setting this means that a utility will interrupt

its service to a fraction of its customers. To efficiently allocate its electricity, a utility

may segment the service it provides based on the reliability of the service. Many papers

have been dedicated to characterizing the optimal menu of price and reliability contracts

to offer under this service differentiation based on reliability. See Chao and Wilson (1987),

Marchand (1974), Chao et al. (1986), Smith (1989), Oren and Doucet (1990), and Oren

and Smith (1992). These contracts are the direct ancestors of the automated curtailment

contracts studied in this paper. Both sets of contracts allow utilities to reduce demand

to address insufficient supply. However, the incentives facing the firm in our model differ

from those listed above. Previous papers have considered contracts that maximize social

welfare. In contrast, our model incorporates the monetary incentives for efficient demand-

side management, so our firm is purely a profit maximizer. Furthermore, previous models

have assumed service delivery to be binary; a consumer’s electricity needs are either met

or not. The ubiquity of smart meters today makes the question of how much electricity to

curtail from a consumer both relevant and important. We incorporate this dimension by

including a continuous load curtailment decision variable.

Iyer et al. (2003) study an electricity supplier’s decision to incentivise demand postpone-

ment. The supplier faces a two period decision horizon and has the option to delay a

proportion of demand until the second period. This postponement comes at an exogenous

cost per unit of demand postponed. The authors study how postponement influences the

supplier’s capacity investment decisions in both periods. The structure of the supplier’s
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interaction with consumers resembles the curtailment contracts studied in our model. As

in our model, Iyer et al. (2003) must remunerate consumers in return for their participation

in the demand management program. However, unlike our model the authors do not allow

the supplier to determine how best to reward consumer participation. Their reimbursement

is linear and exogenous.

Our work is born of a rich literature studying demand-side management. Our key inno-

vation is the introduction of the voluntary curtailment contracts and the characterization

of when it should be preferred over the automated type. Both the reliability-based service

differentiation literature and Iyer et al. (2003) assume that all demand management uses

contracts that we consider “automated.” Specifically, service reliability is determined before

service interruption and interruption is controlled by the firm. Similarly, the engineering

literature on demand response has primarily focused on how to optimally activate a portfo-

lio of automated load curtailment customers (see for example Goyal et al. 2013 and Taylor

and Mathieu 2014). Wu and Kapuscinski (2013) show how curtailment of intermittent

generation can also benefit the system by reducing uncertainty for conventional generation

sources. While under reliability-based service contracts consumers may sort themselves effi-

ciently given their ex-ante understanding of their value for electricity, we expect consumers

to have a better understanding of their valuation at the time they wish to consume electric-

ity. The automated structure affords consumers no flexibility at the time of consumption.

Allowing consumers to adjust their service curtailment based on new information at the

time of consumption certainly generates extra value for consumers. In the analysis that

follows we will show when that extra value can also benefit the firm.

In parallel to the supply-chain literature, one can consider the CSP firm as a retailer, while

the customer is the supplier of curtailment. Under uncertain supplier cost, the flexibility of a

voluntary supply contract can benefit both players. Kim and Netessine (2013) show how to

design contracts to encourage collaboration in the supply chain. There are several contracts

designed to create supply flexibility for firms facing stochastic demand (backup agreements
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as in Eppen and Iyer (1997) and quantity flexible contracts as in Tsay and Lovejoy (1999)).

Barnes-Schuster et al. (2002) show that these contracts are special cases of a larger problem

in which the firm can purchase options from a supplier at a specified exercise price. The

resulting chain coordinating contract is a piece-wise linear exercise price. However, flexibility

is not necessarily profit improving when suppliers are not forced to comply with capacity

requests from a manufacturer who has private information about demand. Cachon and

Lariviere (2001) show that a manufacturer inducing capacity investment in a supplier, based

on asymmetric information about demand, must perform a costly act (increase capacity

requested or committed order size, lump sum transfer) to induce the appropriate capacity

investment in the supplier. Similarly, suppliers in our chain are not forced to comply with

capacity requests under the voluntary contract. In the analysis that follows we will show

when supply flexibility is beneficial to the firm and when the firm is better off enforcing

compliance.

The cost uncertainty and the flexibility of the voluntary contract also introduces uncertainty

into the supply of the firm. The firm designs the voluntary contract to extract curtailment

from consumers to sell on the market. Because the firm decides the contract structure before

the consumer decides his curtailment level, the firm bears the risk of the uncertain curtail-

ment supply. Issues of supply uncertainty have been thoroughly explored in the operations

literature, see Yano and Lee (1995) for a review. Uncertainty mitigation strategies generally

fall into two categories: inventory strategies and sourcing strategies. Inventory strategies

hedge against stock-outs by increasing inventory levels. For example, Kim et al. (2010)

show that a performance based contract can encourage the supplier to increase invento-

ries and mitigate supply risk. Sourcing strategies balance supplier procurement costs with

reliability (more reliable suppliers are more expensive). Since electricity is not practically

storable, inventory strategies are infeasible in our setting. Instead ours is fundamentally

a question of sourcing. How should a firm decide between offering an automated contract

(reliable source) and a voluntary contract (unreliable source)? Yang et al. (2012), Babich

et al. (2007), and Wu and Babich (2012) delineate scenarios in which a firm is willing to sac-
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rifice reliability to achieve lower procurement cost or to allocate risk appropriately. Tomlin

(2006) studies how the characteristics of the unreliable source, in terms of % uptime and

expected disruption length, determine a firm’s choice between a reliable and an unreliable

source with fixed procurement costs. Yang et al. (2009) investigates a firm’s willingness to

pay for reliability information when a supplier’s reliability is private information. Similarly,

Wang et al. (2010), Kim (2011), and Liu et al. (2010) explore a firm’s decision to invest in

endeavors that will improve the reliability of its supplier. This parallels the premium we

show that the firm pays to consumers under an automated contract.

1.3. Consumer Behavior

In this section we describe the behavior of a customer who has decided to participate

in a contract offered by the CSP, henceforth referred to as the firm. Suppose the firm

has an exogenously determined number of consumers, N, who are enrolled in the firm’s

curtailment contract. Each consumer will be called upon by the firm during peak load

events to reduce his energy consumption in return for payment. We would like to emphasize

that the dynamics of our model are the opposite of a conventional supply chain; here the

firm buys from the consumer to sell on the market instead of the other way around. In

most applications the firm contracts with a pool of consumers. We characterize the time

until the next event as a single period. We assume that consumers have a baseline value of

curtailment, q, defined by

V (q) = −Cq2

where the parameter C governs the consumer’s value of the forgone consumption. Because

consumers have a positive valuation of their baseline consumption, their value for curtail-

ment is negative and increasing in the amount of consumption they forgo. The cost of a

given level of curtailment, q, varies depending on the task that is interrupted by curtailment.

To capture this, we allow C to vary over time. Furthermore, we assume that consumers are

similar in the pattern of their valuation of consumption over time. For example, commercial

consumers all value their ability to light their stores more during the holiday shopping sea-
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son than during an off season, and residential consumers all increasingly value their ability

to turn on their air conditioners the hotter the weather is. Hence we assume that consumers

are homogeneous in the value coefficient, C, and that this value coefficient varies over time.

Under a curtailment contract, the firm offers each consumer incentives to alter his con-

sumption pattern. These incentives are offered in response to peak load events, which we

assume consumers do not predict. Furthermore, the firm does not observe C, so from both

firm and consumer point of view, this quantity is uncertain. We therefore define C to be a

random variable, with density g, distribution G and finite support {CL, CH}. In our model

both the firm and consumers have full knowledge of the distribution of C. Whether the

consumers decide their actual curtailment with full knowledge of C distinguishes the two

contracts studied in this paper.

1.3.1. Linear Automated Contracts

Under the automated contract the firm offers a linear payment, w, per unit of the consumer’s

load curtailment. The

firm also offers a fixed transfer per transaction, f , which may be positive or negative. When

f = 0 the firm simply offers a wholesale price contract. A consumer’s corresponding value

function is

VA(q) = E[wq − Cq2 + f1{q > 0}].

Given knowledge of (w, f) a consumer chooses to participate in the contract and must

specify the load reduction quantity, qA that he will provide to the

firm at the next peak load event. This decision is made in advance of the peak load event,

so neither consumers nor the firm know the realization of C. In practice, firms offering

automated contracts remotely control load reduction so, once the curtailment level is set,

the consumer cannot change it. The consumer determines his consumption, qA, to maximize
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his value given the payment structure:

qA = argmaxVA(q) =
w

2E[C]
.

1.3.2. Linear Voluntary Contracts

In contrast with the automated contract, under the voluntary contract each consumer learns

the realization of C before choosing their curtailment. A consumer’s corresponding value

function is

VV (q)− wq − Cq2 + f1{q > 0}.

In response to the firm’s offered payment, (w, f), each consumer chooses his curtailment to

maximize his value:

qv = argmaxVV (q) =
1

2C
.

1.4. Firm’s Contract Choice

Given the consumer behavior described above, the

firm wishes to maximize her expected profit. Under a given contract type, the lever at her

disposal is the payment level (w, f). By reducing either w or f the firm lowers her cost.

However, the

firm is restricted to payment schemes under which consumers will participate. Furthermore,

we expect each consumer’s load reduction choice to be an increasing function of the payment

they receive. Lowering w also reduces the load reduction delivered to the firm by each

consumer. This leaves the firm with a smaller amount of virtual generation to sell on the

market at the market price, P (q). Recall that the market price is an increasing function

of aggregate demand, meaning the market price is a decreasing function of q, the demand

removed from the market. The firm’s optimal contract must balance these countervailing

forces. We assume that the change in market price from the CSP’s participation in the
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market will not be large enough to demonstrate higher order effects, we approximate the

market price curve as P (q) = a− bq. Let qij denote consumer i’s curtailment under contract

type j. We can characterize the firm’s expected profit under contract type j as

max
wj ,fj

Π(wj , fj) = E

[
P

(
N∑
i=1

qij

)
N∑
i=1

qij −
N∑
i=1

wjq
i
j − fj

]

s.t.Vj(q
i
j) ≥ 0∀i.

Note that qij(wj , fj) is independent of fj . As a result the firm uses fA to extract all of the

expected consumer surplus under the automated contract. However, because the consumer

decides to participate after observing his cost under the voluntary contract, the voluntary

contract only extracts all consumer surplus if the consumer’s cost achieves its highest value.

The optimal payments and profits are summarized in Table 1.

Table 1: Linear Contract Parameters

Voluntary Automated

Full Linear Model E[qL(wLj )]
wL

V
2 E

[
1
C

] wL
A
2

1
E[C]

wLj
aE[ 1

C ]
2E[ 1

C ]+bN(V ar( 1
C )+E[ 1

C ]
2
)−1/CH

aE[C]
E[C]+bN

fLj,2 − (wL
V )2

4CH
− (wL

A)2

4E[C]

ΠL a2E[ 1
C ]

2
N

4(2E[ 1
C ]+bNV ar( 1

C )+bNE[ 1
C ]

2−1/CH)

a2N
4(E[C]+bN)

Wholesale Model E[qW (w)] wV
2 E

[
1
C

]
wA
2

1
E[C]

wWj
aE[ 1

C ]
2E[ 1

C ]+bN(V ar( 1
C )+E[ 1

C ]
2
)

aE[C]
2E[C]+bN

fWj 0 0

ΠW a2E[ 1
C ]

2
N

4(2E[ 1
C ]+bN(V ar( 1

C )+E[ 1
C ]

2
))

a2

4(2E[C]+bN)

In Table 1 we use the superscript L to denote quantities under the optimal contract where

the fixed payment is non-zero. This is to differentiate from the special case where the fixed

payment is zero, which we refer to as the wholesale contract and denote with the superscript

W . Notice that in the first row the expected value of the individual load reduction for a
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given wj and fj under the voluntary contract is at least as large as the load reduction under

the automated. This follows from Jensen’s inequality which requires

E[
1

C
] ≥ 1

E[C]
.

By Jensen’s inequality we see that the optimal unit payment wLj is no larger under the

voluntary than under the automated. These two rows confirm that the voluntary contract

has option value to consumers. Consumers are willing to accept smaller payments for the

same load provided to the firm in exchange for the flexibility of the voluntary contract. In

other words, the firm must pay a premium for a certain (reliable) supply of curtailment.

We include in Table 1 the special case wholesale contract where fWj = 0 as a reference for

future analysis. While many contracts currently in use follow this format, it is easy to see

that ΠL
j ≥ ΠW

j for either the voluntary or the automated. We will focus our analysis on

the two-part linear payment scheme (denoted by the superscript L), returning to use the

wholesale contract as a benchmark in the numerical experiments of Section 7. Of primary

interest is the fourth row in Table 1. This row describes the expected optimal profit under

the voluntary and automated contracts respectively. The difference between voluntary and

automated contract profit is

ΠV −ΠA = E[C]− 2

E[1/C]
+

1

CHE[1/C]
− bNc2

v (1.1)

where cv is the coefficient of variation of 1/C. The relative profitability of the two contract

types under consideration is both a function of market conditions and customer charac-

teristics. In particular, the market affects a firm’s choice of contract type through b, the

slope of the market price curve and N , the number of contracted consumers. Customers in

influence profitability through the distribution of their cost coefficient, C. The slope of the

market price curve, b, changes how cost uncertainty affects profitability. On average, the

voluntary contract receives more load reduction from each consumer for the same level of

per-unit payment. However, the variance in the load reduction quantity delivered under the
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voluntary contract also causes variance in the total load curtailed, which affects the market

price faced by the firm. We can conclude from (1.1) that in sufficiently sensitive markets

the risk of low market price from the variance in load curtailed under the voluntary contract

hurts expected revenue more than the gains from paying consumers less. Similarly, the more

consumers the firm contracts, the larger the impact variance has on the load curtailed under

the voluntary contract. In choosing between these contracts, the firm weighs this price risk

against the lower wages per unit curtailment achieved under the voluntary contract.

To understand the role of the consumer’s distribution of C on contract performance, we

must disentangle three statistics: E[C], E[1/C], and V ar(1/C). Fixing the average cost

E[C], we show in Theorem 1 the choice of contract depends on the Jensen Gap, which is

the slackness of the Jensen inequality, E[1/C]− 1/E[C].

Theorem 1. For a given E[C] there exists ȳ ≥ z̄ such that

1. for all E
[

1
C

]
≥ ȳ, ΠL

A ≤ ΠL
V

2. for all E
[

1
C

]
≤ z̄, ΠL

A ≥ ΠL
V .

For a fixed E[C] decreasing E[1/C] decreases the Jensen Gap: a sufficiently small Jensen’s

Gap favors the automated contract and a sufficiently large Jensen’s Gap favors the voluntary

contract. Notice that the Jensen Gap is the difference in expected curtailment under the

voluntary and automated contracts for a given unit payment. The larger this difference,

the larger the payment required by the automated contract to obtain the same curtailment

as the voluntary. At some point, the voluntary contract allows the firm to offer a small

enough payment that the cost savings under the voluntary contract outweigh the price risk

the firm must bear.

Theorem 2. For symmetric distribution G with a given mean, increasing the variance of

C increases the Jensen Gap.

For symmetric distributions, the intuition guiding the firm’s decision simplifies. The more

varied the consumer cost of curtailment, the more consumers value flexibility. The firm
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partially internalizes this value through its per transaction fee, fV , causing firms to prefer

voluntary contracts for sufficiently varied distributions of C.

1.5. System Welfare and Environmental Impact

In this section, we will consider the contract choice decision from the perspective of an

integrated system. Instead of maximizing profit, the centralized decision maker’s objective

is to maximize system welfare, i.e. the sum of the consumer and firm surplus. Transfers

between entities are no longer considered, so system welfare may be expressed as

Wj = E

[(
a− b

N∑
i=1

qij

)
N∑
i=1

qij − CsumN
i=1(qij)

2

]
.

Using Table 1 yields:

WA =
a2N

4(E[C] + bN)

WV =
q2E[1/c]2N

2(2E[1/C] + bNE[1/C2]− 1/CH)
− a2E[1/C]2N(bNE[1/C2] + E[1/C])

4(2E[1/C] + bNE[1/C2]− 1/CH)

Note that the firm extracts all consumer surplus under the automated contract so WL
A =

ΠL
A.. We can show, however, that welfare under the voluntary contract exceeds the value

of the firm’s profit. This demonstrates that consumers benefit from the flexibility of the

voluntary contract. From this fact we derive the following theorem.

Theorem 3. 1. If ΠL
V ≥ ΠL

A, then WV ≥WA.

2. If WA ≥WV , then ΠL
A ≥ ΠL

V .

Theorem 3 demonstrates that the firm’s and the central planner’s incentives can be aligned,

but it also indicates that this is not always the case. Figure 2 demonstrates the alignment,

or lack thereof, of firm and social planner incentives. In Region A, both the firm and

the centralized decision maker respond to the high market price sensitivity and prefer the

automated contract. In Region C, the firm and system planner similarly both prefer the
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voluntary contract in response to low market price sensitivity and high cost uncertainty.

However, in Region B the firm chooses an automated contract where the central planner

prefers the voluntary contract. We conclude that a regulator may be inclined to encourage

the voluntary contract in markets where the ratio of price sensitivity and cost uncertainty

is not sufficient for the firm to adopt this contract.

Figure 2: This figure illustrates the firm’s and the social planner’s contract choices as
functions of market price sensitivity and cost variance. In Region A ΠL

A ≥ ΠL
V and WL

A ≥
WL
V , in Region B ΠL

A ≥ ΠL
V but WL

V ≥WL
A , and in Region C ΠL

V ≥ ΠL
A and WL

V ≥WL
A .

From an environmental perspective, consider a regulator whose objective is to minimize

energy consumption, which is to maximize the total load reduction delivered by the cur-

tailment contract. As shown in the following theorem, in this case the firm and the social

planner prefer the same contract.

Theorem 4. ΠL
V ≥ ΠL

A if and only if E[qLV ] ≥ E[qLA].

This means the more profitable contract is the one that induces more actual expected load

reduction. This can also be shown for the wholesale contract. As a result a conservationist
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social planner’s incentives are aligned with those of a profit maximizing firm’s.

1.6. Optimal Curtailment Contracts

We have thus far assumed that the firm is restricted to paying the consumer linearly. While

this is a common contract structure, we are interested in the firm’s optimal choice. In this

section we will relax the linear payment restriction and study outcomes when the firm offers

payment w(q) as a general function of q.

1.6.1. The Optimal Automated Contract

As before, the consumer determines his curtailment quantity to maximize his value from

participating in the contract:

q∗A ∈ argmaxqAw(qA)− E[C]q2
A.

The firm uses her understanding of the consumer’s response to the payment function w(q)

to maximize her profit:

max
w()

ΠA = (a− bq∗A)q∗A − w(q∗A)

s.t. w(q∗A)− E[C](q∗A)2 ≥ 0.

Clearly the firm will choose w(q∗A) so that the participation constraint is tight; increasing

w(q∗A) hurts profit. The tightness of the participation constraint allows w(q∗A) to be written

as

w(q∗A) = E[C](q∗A)2

which expresses the payment for the consumer’s chosen curtailment quantity as a function

of that quantity. Because of this direct relationship, we may rewrite the firm’s program as
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a maximization over induced curtailment quantities instead of over payments:

max
q∗A

ΠA = (a− bNq∗A)Nq∗A − E[C]N(q∗A)2.

Solving the first order condition of this concave function, we find the curtailment quantity

that the firm wishes to prompt from the consumer is qOA = a
2(bN+E[C]) . The payment that

produces this curtailment quantity is w(qOA) = E[C] a
2(Nb+E[C])

2, which yields the optimal

profit, ΠO
A = a2N

4(Nb+E[C]) . This is the same expected firm profit produced under a linear

contract where payment is the sum of a per unit payment, wA/q = aE[C]
E[C]+bN , plus a fixed

payment, fA = − a2E[C]
4(E[C]+bN)2

, where in this case the fixed payment is a fee paid by the

consumer. This is precisely the optimal payment scheme outlined in the previous section,

so we conclude that the linear automated contract achieves optimality.

1.6.2. Optimal Voluntary Contracts

Under the voluntary contract, the firm again solves:

max
wV ()

ΠO
V = (a− bNq∗V )Nq∗V − wV (q∗V )N

s.t. wV − C(q∗V )2 ≥ 0 ∀C

where q∗V is the consumer’s best response to the firm’s chosen payment menu. However,

unlike the automated contract the consumer’s curtailment quantity varies in his realization

of C. Though this information is hidden from the firm, its determination of the consumer’s

curtailment quantity allows the firm to infer the consumer’s cost. So instead of paying

consumers a per-unit rate for curtailment, the firm can offer a menu of payments that

correspond to different levels of curtailment. Let us call the optimal payment menu (wOV , q
O
V ).

By the revelation principle (Myerson, 1981), the solution to the program above is payoff-

equivalent to the solution to the following program which restricts the solution to truth-
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revealing mechanisms:

max
wV (),qV ()

EC [(a− bNqV (C))NqV (C)− wV (C)N ]

s.t. wV (C)− Cq2
V (C) ≥ wV (Ĉ)− Cq2

V (Ĉ) ∀C, Ĉ (IC)

wV (C)− Cq2
V (C) ≥ 0 ∀C. (PC)

Under the linear contract the firm understands how the consumer should choose qV as a

function of his cost, C: the consumer’s curtailment choice is inversely proportional to his

cost. The incentive compatibility (IC) constraint requires that the optimal menu preserve

the firm’s understanding of the functional relationship between a consumer’s curtailment

choice and his cost and hence can infer the consumer’s cost from his chosen curtailment

quantity. The firm performs this profit maximization with the additional participation

constraint (PC) that requires all types receive a positive payoff. The resulting payment

menu and induced curtailment quantities as functions of C are outlined in the following

theorem.

Theorem 5. If the distribution of −C has a non-decreasing failure rate then the optimal

contract menu is

qOV (C) =
ag(C)

2
(
(b+ C)g(C) +G(C)

) ;wOV (C) =

∫ CH

C
qOV (s)2ds+ CqOV (C)2,

which yields optimal expected profit

ΠO
V =

a2N

4
E

[
1

bN + C + G(C)
g(C)

]
. (1.2)

Notice that expected firm profit under the optimal contract resembles expected profit under

the linear contract; profit is inversely related to the slope of the market price, b, and, holding

all else constant, is increasing in E[1/C]. However, beyond these observations the optimal

contract is not analytically tractable. We will therefore rely on numerical analysis in the
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following section to understand how it relates to the linear contracts studied in previous

sections. In particular, we will demonstrate that the expected profit of the two-part tariff

is a good approximation of the profit earned under the optimal contract. We conclude that

it is sufficient to study the two-part tariff to understand the benefits and disadvantages of

voluntary curtailment contracts.

1.7. Numerical Results

To demonstrate the theoretical intuition established above, we report the results of a nu-

merical experiment. We calibrate the market conditions of our experiment using market

price data from PJM Interconnection, the Regional Transmission Organization serving the

Mid-Atlantic region of the US. For simplicity, we assume a curtailment event to last 1 hour.

Market payment for demand response is assumed to follow a linear model P (q) = a − bq,

where a = 300$/MW and b = .03$/MW 2 are estimated using PJM’s May 2013 supply

curve data. Additionally, we use a case study by EnerNOC3, a CSP, to calibrate the range

of consumer curtailment costs.

EnerNOC has an automated contract agreement with Four Seasons, a large produce whole-

saler whose temperature-controlled warehouse requires high electricity input. Four Seasons

reportedly earned $11,000 for its participation in the contract over 25 curtailment events

averaging 400kW of load reduction during the winter events and 1MW of load reduction

during the summer events. The case study includes no information about fixed payments, so

we assume this contract is an wholesale contract for our cost calibration. Using the expres-

sions for the optimal curtailment quantity under an automated contract we estimate Four

Season’s E[C] to be approximately 15000$/MW 2. Given the limited information about the

distribution of C we assume C to be normally distributed with mean E[C] and standard

deviation σ, truncated over the support [1 + 1500000
σ , 30001− 1500000

σ ]. We vary σ to observe

it’s impact on profit for EnerNOC and the welfare of the system.

3Four Seasons Produce Turns to EnerNOC for Fresh Ideas in Reducing Energy Use -
http://www.enernoc.com/our-resources/case-studies/four-seasons-produce-turns-to-enernoc-for-fresh-
ideas-in-reducing-energy-use
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Figure 3: A comparison of contract performance for the firm’s profit

Figure 3 reports the profit performance of each contract studied above for varied values of

the standard deviation of C. From Theorem 2, we know that the variance of a symmetric

distribution is directly related to the Jensen gap, which affects the profit difference between

contract types. Figure 3 demonstrates this result: for sufficiently high variance the voluntary

profit curve crosses the automated profit curve for both the full linear and wholesale models.

Notice that the two-part tariff linear voluntary profit mirrors the optimal voluntary profit.

At its best the two-part tariff achieves 99.9% of the optimal profit, and the two profits are

at their closest in the region in which the firm would pick a voluntary contract over an

automated contract. As in Cachon and Zhang (2006), we find that the linear contract is a

practical substitute for the optimal voluntary contract.

From a social planner’s perspective, Figure 4 shows how a firm’s contract decision affects

the system welfare. Without fixed payments, both the firm and the social planner prefer

the voluntary contract; firm and social planner incentives are aligned. In contrast, using

two-part linear payments, the social planner prefers the voluntary contract for a broader

set of consumer types than the firm. Unlike under the wholesale contract, the full two-part

tariff linear contract fails to coordinate firm and social planner incentives.
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Figure 4: A comparison of contract performance for the social welfare.

Based on our assumptions about the market price of electricity and the curtailment cost

of the customer, our model makes several practical recommendations. EnerNOC would

be better off introducing a participation fee to extract extra surplus from Four Seasons

instead of a no-fixed payment contract. For low levels of cost uncertainty, an automated

contract with a two-part tariff is EnerNOC’s most profitable contract choice. For high cost

uncertainty, EnerNOC earns a higher profit by offering a voluntary contract. Note that a

simple linear voluntary contract is relatively close to optimal in this region.

Furthermore, our experiment suggests that firm and social planner incentives are aligned

when the variance of cost is either small or large. When the standard deviation of cost is

roughly between [4600, 8200]$/MW 2, the voluntary contract creates more welfare for the

system, but EnerNOC prefers the automated one. In this region, the automated contract

allows the firm to extract more surplus, therefore the social planner and the firm incentives

are not aligned.

1.8. Conclusion

In this paper we introduce the voluntary contract to the domain of electricity curtailment

contracts and compare its performance with the conventional automated contract. We
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assume that a curtailing consumer’s load reduction is limited by a stochastic curtailment

cost, which is unobserved until the curtailment event. The consumer derives value from

the voluntary contract which allows the consumer to observe his curtailment cost before

committing to a particular load reduction level. In contrast, the automated contract requires

the consumer to commit to a load reduction level without knowledge of his cost. Critically,

the firm is punished for suboptimal load delivery through changes in the market price. When

deciding between these contracts the firm faces a trade off between the cost of procuring

load and the price impact of the load reduction.

Comparing the performance of these two contracts we find that a firm’s and a social plan-

ner’s preferences are driven both by market conditions and consumer characteristics. In

markets with prices that are highly sensitive to supply, the certainty of the level of cur-

tailed load delivered under the automated contract is more valuable to the firm than the

reduction in the payments made to consumers under the voluntary contract. This difference

in firm profits is also displayed in social welfare. It follows that firms serving as emergency

reserves, when the market price curve is at its steepest, should offer automated contracts

exclusively. Consumers also determine a firm’s contract choice through their cost profiles.

If market price sensitivity is not too high and the curtailment cost distribution has a large

Jensen’s gaps, the voluntary contract yields higher firm profit and social welfare. This

result distills the contract choice intuition into a single attribute of the consumer’s cost

distribution. Furthermore, we show that, for symmetric cost distributions, a firm can use

the variance of cost to distinguish between customers that should be offered voluntary or

automated contracts: higher variance favors voluntary contracts. As curtailment contracts

become more broadly used we hope that these findings will serve as a guide for practitioners

to tailor their programs to their market and their customers.

These results build on the literature studying firms that allow flexibility to autonomous

suppliers (in this paper, consumers supply curtailment to the firm). In our model, the price-

taking firm faces consumers with perfectly correlated cost of curtailment. This correlation
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causes the firm to bear price risk, or face uncertain market price caused by the variable

curtailment allowed by the voluntary contract. When the market price is sensitive and when

consumers derive little value from the flexibility of the voluntary contract, the cost of this

price risk outweighs the benefits of flexibility, and the firm prefers the automated contract.

This work has practical implications for regulators in the field of electricity demand re-

sponse. We show that, from an environmental perspective, a deregulated market for demand

response leads to the ideal contract choice (maximum electricity consumption is avoided).

On the other hand, considering the economic surplus of the customer and the curtailment

service provider, the firm does not always choose the welfare maximizing contract. A social

planner could improve the welfare of the system by encouraging voluntary contracts in some

cases in which low cost volatility or high market price sensitivity cause the firm to prefer

the automated contract.
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CHAPTER 2 : The Role of Surge Pricing on a Service Platform with

Self-Scheduling Capacity

2.1. Introduction

1 The rise of the “sharing economy” has transformed the way firms can deliver service to

consumers. The firm no longer must centrally schedule its capacity by assigning workers to

shifts. Instead, workers may act as independent service providers who determine their own

work schedules, and the firm’s role becomes that of a platform which connects providers

to consumers. (See Katz and Krueger (2016) for data on the growth of alternative work

arrangements in the United States.) Although the platform has far less control over how

many providers work at any one time, providers gain the freedom to “self-schedule” the

hours they work, presumably allowing them to better integrate their work with the other

activities in their lives (Hall and Krueger (2015b)). To make these new relationships viable,

customers must be charged a reasonable fee and be adequately served.

Examples of relatively new platforms that feature self-scheduling capacity include Uber and

Lyft for local transportation, and Postmates and Instacart for local delivery. A potential

provider for one of these platforms must first make the long-term decision of whether to

join the platform or not. This decision has implications for several months or years, and

providers join only if they expect to earn more with the platform than with their next best

alternative. If a person joins a platform as a provider, then they must make short-term

decisions about when and how often to work. These decisions are made on a daily or hourly

basis, so the participation decision is relevant over a much shorter time interval than the

joining decision. The participation decision is based in part on the wage providers receive

per service. It is also based on providers’ expectations of how likely they are to get work,

which is a function of the overall level of demand and the number of providers working at

that time on the platform. For example, an Uber driver may know that demand is higher on

1Reproduced with permission. Copyright, INFORMS, http://www.informs.org
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rainy days but may also know that other drivers are more likely to drive as a consequence.

What matters to the provider is the amount of demand relative to the amount of offered

capacity at a particular time.

In this paper we focus on the contractual forms a monopoly platform could select to make

a viable market with self-scheduling capacity. We study a stylized model with the following

features: (i) there exists a large pool of potential providers, (ii) providers join the platform

only if their rational expectation of their earnings from participation on the platform exceeds

the stochastic opportunity cost of their next best activity, (iii) the platform sets a price

for consumers, a wage paid to providers for work completed and regulates the maximum

number of providers who join the platform, (iv) the platform cannot directly determine when

providers work and, instead, the providers who joined the platform self-schedule their offered

capacity, (v) demand is stationary but varies in predictable ways (e.g., more consumers seek

transportation on a rainy evening), (vi) if the offered capacity exceeds demand, providers

share the available demand equally, but if the offered capacity is less than demand, then

demand is randomly rationed (i.e. all consumers are equally likely to receive the scarce

service), (vii) the platform’s price and wage can depend on the current level of demand

and (viii) provider’s opportunity costs are independent and identically distributed across

providers and time.

There are three key features of the model that make this environment distinctive and capture

some of the interesting dynamics of these service platforms in practice. First, providers

self-schedule their offered capacity. Consequently, even if the number of providers who have

joined the platform is sufficient to satisfy demand, it is possible that either demand rationing

(too few providers choose to work) or capacity rationing (too many providers choose to work)

can occur. Both forms of rationing represent costly inefficiencies for the platform. Second,

the platform can offer demand-contingent prices and wages. Demand-contingent prices are

often called dynamic prices. Uber and Lyft employ versions of dynamic prices and wages

called surge pricing and prime time respectively. There is a large literature on dynamic
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prices, while the literature on dynamic wages is far less extensive, and there is no work on

the interaction between dynamic prices and dynamic wages. Third, capacity decisions are

made at two different time scales: providers make a “long run” decision to join the platform

or not and then in the “short term” decide whether to participate or not. At the time the

participation decision is made, the joining decision (and cost) is sunk.

The platform’s primary goal with the design of its contract is to maximize its profit. Doing so

requires a contract that assures providers that join sufficient expected profit. However, the

contract must not give providers too much of an incentive to participate, which could lead

to an excess of providers, nor too little incentive, which could entice too little participation

from providers to satisfy demand.

Although maximizing profit is a clear objective for the platform, it is not the platform’s

only concern. A number of controversies have emerged with this new business model. Some

people believe providers are not adequately compensated because they are not given bene-

fits and rights associated with being employees (Isaac and Singer (2015), Scheiber (2015)).

Others worry that customers are unfairly discriminated against as a result of dynamic pric-

ing (Kosoff (2015), Stoller (2014)). Consequently, with a view towards potential litigation

and regulation, a platform should be concerned with both provider and consumer welfare.

In particular, it is important to understand the degree to which there is a tension between

maximizing the platform’s profit and the surplus earned by the other relevant stakeholders,

the providers and consumers.

We focus on five possible operating models, or contracts, for the platform. With the simplest

possible contract, called the fixed contract, the platform offers providers a fixed wage and

charges consumers a fixed price. Next, we consider contracts in which the the platform

either chooses dynamic prices (with a fixed wage), or dynamic wages (with a fixed price).

We refer to the former as the dynamic price contract and the latter as the dynamic wage

contract. A commission contract, which resembles surge pricing used in practice, allows the

platform to dynamically adjust both prices and wages in response to demand, but imposes
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the constraint of a fixed commission, i.e., a fixed ratio between the two. The commission

contract is used in practice; for example Uber offers its drivers a fixed 80% commission

in most markets (Huet (2015)). It has been argued that this constraint may substantially

lower the platform’s profit (Economist (2014)). Finally, the platform’s optimal contract

dynamically adjusts both prices and wages without the constraint of a fixed commission.

A closed form solution for the best version of each of these contracts is unavailable, but

we analytically determine how to determine the best form of each contract with a single

dimensional search over a bounded space. In addition, we are able to analytically determine

conditions under which a commission contract is optimal for the platform. Via numerical

analysis over the set of feasible and plausible parameters, we compare profits, consumer

surplus and provider surplus across all five contracts. Those results are consistent with the

analytical results derived from a special case of the model.

To preview our main results, we find that the optimal contract provides the platform sub-

stantially higher profit relative to the fixed contract and self-scheduling is a profitable

arrangement for the platform relative to central-scheduling. Although not optimal, the

commission contract is nearly optimal, and given its simplicity, this may explain its use

in practice. We find that consumers indeed have a reason to be skeptical about dynamic

pricing: relative to the fixed contract, adding dynamic pricing (with a fixed wage) reduces

consumer surplus - the platform uses dynamic pricing to extract consumer surplus for its

own profit. However, again relative to the fixed contract, adding dynamic pricing and dy-

namic wages together can increase consumer surplus even though that combination also

maximizes the platform’s profit - the added value created by reducing capacity and demand

rationing allows all parties to be better off. It does so when the fixed contract rations

demand when demand is high, which is when demand rationing due to limited capacity is

particularly costly. Thus, if the lack of dynamic prices and wages leads to poor service for

customers in high demand periods, then consumers actually benefit from the introduction

of dynamic pricing, like Uber’s surge pricing.
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2.2. Literature Review

Our work is primarily connected to three domains in the existing literature: research on

capacity and pricing, revenue management models, and recent papers on peer-to-peer plat-

forms and self-scheduling capacity. For simplicity and consistency, we refer to the various

components in other papers using the terms relevant for our model. For example, the

“platform” is the organization responsible for designing the market, “providers” generate

capacity, “dynamic prices” are demand-contingent payments from consumers to the plat-

form in exchange for service, and “dynamic wages” are demand-contingent payments from

the platform to providers.

Several papers study competition among multiple providers and establish that competition

can lead to excessive entry (e.g. Mankiw and Whinston (1986)) and a platform should

discourage competition to mitigate the losses in system value due to this issue (e.g. Bernstein

and Federgruen (2005), Cachon and Lariviere (2005)), but those papers do not consider

dynamic wages or prices.

A set of papers considers peak-load pricing, the practice of charging higher prices during

peak periods of demand (e.g. Gale and Holmes (1993)). The primary motivation of peak-

load pricing is to increase revenue by shifting demand from the peak period to the off-peak

period. We do not incorporate this capability into our model. For example, consumers in

need of transportation during a rainy evening are unable to postpone their need to a time

with better weather.

There is work on the value of dynamic prices in systems that experience congestion, but

with fixed capacity: e.g., Celik and Maglaras (2008), Ata and Olsen (2009), and Kim and

Randhawa (2015). Banerjee, Johari, and Riquelme (2015) considers the value of dynamic

pricing in a model with random arrivals of consumers and providers. Unlike us, they find

that dynamic pricing provides no benefit in terms of maximizing the platform’s expected

profit or system welfare, but they have a single demand regime whereas in our model some
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periods (importantly) have predictably higher demand than others for a given price.

There is a considerable literature on “two-sided markets” in which platforms earn rents

by creating a market for buyers and sellers to transact (e.g., a game console maker as the

platform between game developers and consumers). These papers tend to focus on which

side of the market the platform charges based on the various externalities within the system

but they do not consider dynamic demand (e.g., Rochet and Tirole (2006)).

Peer-to-peer service platforms have attracted significant academic interest; e.g. Kabra,

Belavina, and Girotra (2015), Hong and Pavlou (2014), Snir and Hitt (2003), Moreno and

Terwiesch (2014), and Yoganarasimhan (2013). Those papers investigate how to subsi-

dize different market players to accelerate the growth of a peer-to-peer platform, whether

consumers have geographic preferences over providers, the influence of platform design on

provider quality, and how provider reputation impacts the market. We do not explore those

issues: our providers are ex-ante homogeneous and do not build reputations. Fraiberger and

Sundararajan (2015) investigate the interaction between ownership and sharing on a peer-

to-peer marketplace, a dynamic that is not addressed in our model. Cohen et al. (2016) use

Uber transaction data to measure the amount of consumer surplus generated given the im-

plementation of surge pricing, but they do not estimate a counterfactual consumer surplus

level with other contractual forms.

There is modeling and empirical work on the competition between peer-to-peer service mar-

ketplaces and existing markets: Einav, Farronato, and Levin (2015), Zervas, Proserpio, and

Byers (2016), Seamans and Zhu (2013), Cramer and Krueger (2016), and Kroft and Pope

(2014). We do not directly consider the competition between the platform and incumbents.

Several papers (e.g. Hu and Zhou (2015) and Allon, Bassamboo, and Çil (2012)) explore

the process for matching providers to consumers when capacities are exogenous and all

participants have preferences for the match they receive (e.g. a courier prefers to be matched

to a nearby consumer). We do not consider matching because our consumers and providers
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are homogeneous, so careful matching does not provide a benefit.

Closest to our work are papers on self-scheduling capacity. Ibrahim and Arifoglu (2015)

considers a model in which the platform chooses the number of providers and providers

are either assigned by the platform to work in one of two different periods or they self

select which of the two periods they work in. Unlike in our model, the platform can

directly control the number of providers in the system. Taylor (2016) and Bai et al. (2016)

study queuing systems in which a platform creates a market for service where arrivals of

consumers and servers are endogenously determined based on decisions to seek and provide

service respectively. Their models do not consider dynamic prices or wages, and the number

of potential providers is exogenous (i.e., capacity decisions are made on a single, short-term,

time scale). Gurvich, Lariviere, and Moreno (2015) studies a model in which a platform

directly chooses the number of available providers, the wage for each provider who chooses

to work, and a cap on the number of providers who are allowed to work: given the platform’s

prevailing wage, more providers may want to work than the platform wants. They do not

include dynamic pricing - in all versions of their model the platform selects a single price.

They also do not impose an earnings constraint for providers. Instead, they impose an

exogenous minimum wage. In our model providers decide whether to join the platform

based on rational expectations of future earnings.

2.3. Model

Figure 5: Timeline of events

As shown in Figure 5, the interaction between the platform, providers, and consumers

occurs over two stages, or periods. At the start of the first period the platform announces

the terms of trade, consisting of prices charged to consumers, wages paid to providers, and

the maximum number of providers allowed to join the platform. A large pool of potential
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providers then decides whether to join the platform or not. We refer to this as the “joining”

decision. This period represents the providers’ long-term decision. With a ride-sharing

platform such as Uber, period 1 would represent a provider’s decision to sign up for Uber

instead of Postmates, for example. The second period represents the short-term decisions to

work on the platform or not. We refer to this as the “participation” decision. For example,

once on the platform, providers for Uber must decide whether to offer their service during a

particular day or even a particular hour. Consequently, the participation decision is relevant

over a much shorter time interval than the joining decision. Hence, the provider expects to

make many of these short-term decisions. For simplicity, we collapse these decisions into a

single period.

In period 1 a provider incurs an opportunity cost, c1, for joining the platform and in period

2 the provider can earn a profit from participation on the platform. Hence a provider

joins in period 1 only if the provider expects to earn in period 2 at least c1. All providers

share the same opportunity cost, so either all are willing to join or none are. Our model

approximates a market with a deep pool of potential providers and a highly elastic supply

curve: if expected earnings are less than c1, then the number of interested providers drops

substantially, but if greater than c1, then there is an ample number of interested providers.

There are two types of uncertainty. The first is each provider’s cost to participate on the

platform in period 2. For example, on some days participation might be costly (e.g. a

child needs to visit a doctor) while on other days participation isn’t costly (the provider has

nothing else to do that day). Each provider can anticipate in period 1 that they will incur a

participation cost in period 2, but they do not know what that cost will be. They learn their

participation cost at the start of period 2 before their participation decision. In particular,

let c2 be a provider’s realized participation cost in period 2. The stochastic participation

cost is independently and identically distributed across providers with distribution G(c) and

density g(c), which are known at the start of period 1 at the time of the provider’s joining

decision. We assume G(c) is strictly increasing and differentiable, G(0) = 0, and there does
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not exist a finite c such that G(c) = 1. In section 2.5 we consider a simplified version of the

model in which the participation is fixed across all providers.

The demand level is the second type of uncertainty. Demand occurs only in period 2

and it can be either “high” or “low”. For example, for a ride-sharing platform, “high”

demand could be a rainy evening on a holiday weekend, whereas “low” demand could be

a warm Wednesday evening. The platform and the providers can anticipate in period 1

that demand can be either high or low, but they only learn the actual state of demand

at the start of period 2, after their joining decision but before their participation decision.

Thus, providers make their joining decision before either uncertainty is resolved, but they

make their participation decision after observing both demand and participation cost. Note,

while each provider observes their own c2, the platform does not observe each provider’s

participation cost, so only demand uncertainty is resolved for the platform.

The platform faces a linear demand curve with an uncertain intercept. To be specific,

demand for the platform’s service is Dj = (aj − bpj)+, where pj is the price charged to

consumers, b is a constant, and the demand state can either by low or high, aj ∈ {al, ah},

where al < ah. Let fj , j ∈ {l, h} be the probability of state j demand, where fl + fh = 1.

Each participating provider can serve up to a single unit of demand in period 2. The

parameter b has no impact on the qualitative results, so b = 1 is assumed throughout.

At the start of period 1 the platform announces the terms of trade for providers joining the

platform. The terms consist of (i) an upper bound, N, on the number of providers who can

join (e.g. Uber imposes a cap on the total number of drivers that can operate in a city), (ii)

a price charged to consumers in each demand state, pj , and (iii) a wage paid in each demand

state to each provider for service, wj . We say that the platform uses demand-contingent,

or dynamic, prices if pl 6= ph. The platform can also choose a single price no matter the

demand state, i.e. pl = ph. The same applies for wages.

For a particular demand realization, price, and wage, it is possible that demand exceeds
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the capacity of participating providers. In that case demand is randomly rationed: some

demand is not served while all participating providers serve one unit of demand. Alter-

natively, it is possible that capacity exceeds demand. In that case capacity is rationed:

participating providers utilizes only a portion of their capacity. To be specific, let φj be a

provider’s utilization in demand state aj , where φj is the fraction of capacity offered by the

participating providers used to serve demand. When demand is rationed, φj = 1, whereas

when capacity is rationed, φj < 1.

A participating provider earns revenue φjwj in period 2. All providers (who joined in period

1) with participation cost φjwj or lower choose to participate, while providers unfortunate

to have high participation costs choose not to participate. We require that providers make

maximizing decisions based on rational expectation regarding their earnings. (See Farber

(2015) and Chen and Sheldon (2015) for evidence that taxi drivers and Uber providers

respectively make decisions based on rational expectations to maximize their return.) Thus,

assuming N providers join the platform in period 1, in equilibrium

φj =


1 NG(wj) ≤ aj − pj

aj−pj
NG(φjwj) aj − pj ≤ NG(wj)

Note that in the second case with capacity rationing, i.e. aj − pj ≤ NG(wj), a recursive

relationship determines the equilibrium utilization. This equilibrium utilization exists and

is unique.

Let πj be a provider’s expected profit conditional on joining for a given demand state aj ,

wage wj , and price pj :

πj = (wjφj − Ec2 [c2|c2 ≤ wjφj ])G(wjφj) =

∫ wjφj

0
G(c)dc
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Let Π be a provider’s expected profit from joining the platform:

Π(p, w,N) =
∑

j∈{l,h}

(∫ wjφj

0
G(c)dc

)
fj

If c1 ≤ Π(p, w,N), then all potential providers attempt to join the platform, but the

platform’s imposed cap of N limits the number that actually join to the N. However, if

Π(p, w,N) ≤ c1, then no providers join. Hence, for the platform to function, it must offer

terms such that c1 ≤ Π(p, w,N). Throughout we assume that such terms are offered and

hence N providers join the platform.

The platform’s objective is to choose price, wage, and recruitment to maximize its expected

profit subject to the (already mentioned) constraint that providers are willing to join the

platform:

max
w,p,N

U(p, w,N) =
∑

j∈{l,h}

(pj − wj)φjNG(φjwj)fj

s.t. c1 ≤ Π(p, w,N)

It is helpful for our analysis to implicitly define four parameters, w′, w′′,φ̄l, and c1:

∫ w′
0 G(c)dc = c1;

∫ w′′
0 G(c)dcfh = c1;

∫ φ̄lw
0 G(c)dcfl +

∫ w
0 G(c)dcfh = c1; c̄1 =

∑
j∈{l,h}

∫ aj
0 G(c)dcfj

The first, w′, is the smallest wage that induces providers to join when they can assume that

they are assured to be paid w′ in either demand state in equilibrium. The second, w′′, is

similar to w′, except this is the lowest wage that induces providers to join when they are

assured to receive w′′ payment in the high demand state and no payment in the low demand

state. (If al ≤ p, then there are no customers to serve in the low demand state.) The third,

φ̄l, which applies when w′ < w < w′′, is the rational expectations equilibrium utilization

when providers expect to be rationed in the low demand state but not in the high demand

state. The fourth, c1, is the maximum joining cost that allows for a positive surplus in the
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system (i.e., if c1 < c1 then a provider wouldn’t join the platform even if she were the only

provider on the platform and the platform allowed her to keep all of the possible profit).

As c1 < c1 means this market cannot function, we assume c1 < c1 throughout.

Beside its own profit, the platform may have an interest in consumer and provider sur-

plus, especially if the platform’s practices are potentially controversial, thereby motivating

negative publicity, lawsuits, or government regulation. We measure consumer surplus un-

der a linear stochastic demand in a similar fashion to Cohen, Lobel, and Perakis (2015):

S =
∑

j∈{l,h} 0.5 min((aj − pj)2, (aj − pj)NG(φjwj))f(aj). Consumer surplus decreases in

the prices charged and increases in the number of consumers served. The latter depends

on the number of providers that join the platform, N , and the fraction of those recruited

providers that decide to participate. Provider surplus increases in the number of recruited

providers and in those providers’ expected earnings. If each provider earns exactly c1 con-

ditional on joining (as is shown in each of the contracts we consider), then total provider

surplus is c1N .

2.4. Contract Design

We focus on five contract designs that vary by the amount of flexibility given to the platform

to adjust its prices and wages in response to observed demand in period 2. A closed form

solution for the platform’s best version of each contract is unavailable, but the following

five theorems indicate that the platform’s best contract within each design can be found

via a single dimensional search over a bounded interval (even though each contract involves

up to five decisions: a price and wage for each demand state and the number of providers

to allow on the platform). Proofs are available in the appendix.

2.4.1. Fixed Contract

With the fixed contract the platform chooses a single per-service wage, w, to pay providers

and a single per-service price, p, to charge consumers. These quantities are independent of

the realized demand state. As a result, the platform is subject potentially to two inefficien-
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cies: demand rationing and capacity rationing. With demand rationing, the offered wage is

too low to induce enough providers to participate relative to realized demand, leaving some

customers without service. With capacity rationing, the offered wage is too high because

too many providers participate relative to realized demand. For a given contract, it is pos-

sible that demand is rationed in the high demand state and capacity is rationed in the low

demand state, as is illustrated in Figure 6. In the low demand state, NG(φlw) providers

participate, which exceeds demand, Dl = al−p. In the high demand state, NG(w) providers

participate, all are allocated a customer, but Dh−NG(w) customers do not receive service,

even though the number of providers on the platform, N, may be adequate to serve all

demand.

Figure 6: An example of demand and capacity rationing with a fixed contract.

The fixed contract may not be able to earn a positive profit (given c1 < c1), but if it does

so, then Theorem 6 describes the best fixed contract for the platform, which can be divided

into two types: (i) the platform serves both demand states, or (ii) the platform only serves

high demand. There are two extreme versions of serving demand in both states. In the

first, which we refer to as the poor service version, capacity matches low demand, meaning

that there is no capacity rationing and providers are fully utilized in all states. However,

while all customers are served in the low demand state, in the high demand state ah − al

of demand is lost. In the second version, which we refer to as the poor utilization version,

capacity matches high demand. Customers are fully served in either state, but in the low

demand state too many providers participate, chasing too little demand, leading to capacity

rationing.

Theorem 6. Conditional on earning a positive profit, the best fixed contract has one of the

following two characteristics:
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1. The platform serves both demand states. In particular, w ∈ [w′,min(al, w
′′)],

p = max
(
(al + w) /2,

(
G(w)al − φ̄lG(φ̄lw)ah

)
/
(
G(w)− φ̄lG(φ̄lw)

))
there is demand rationing only in the high state ( i.e. N = (al − p)/ (φlG(φlw))), there is

capacity rationing only in the low state (i.e. φl = φ̄l ≤ 1 and φh = 1), and each provider’s

joining constraint is binding, i.e. c1 = Π(p, w,N).

2. The platform serves only high demand. In particular, w = min {w′′, ah}, al < p =

(ah + w)/2, N = (ah − p)/G(w), and participating providers are fully utilized, i.e. φh = 1.

2.4.2. Dynamic Wage Contract

With the dynamic wage contract the platform charges consumers a fixed price, p, but

pays providers a wage, wj , that depends on the demand state aj . Relative to the fixed

contract, the dynamic wage contract allows the platform to address the issue of capacity

rationing due to excessive provider participation. For example, suppose the platform’s fixed

contract rations capacity in the low demand state. The platform could lower its wage in

the low demand state while leaving providers no worse off; providers would be paid less

but, because fewer providers participate, their utilization would increase. Consequently,

the platform’s profit would strictly increase. Alternatively, suppose the platform’s fixed

contract rations demand in the high demand state. This is the best fixed contract when

it is too costly to regulate provider participation with a single wage, so it is regulated by

restricting recruitment in the first stage, N . However, because a demand-contingent wage

gives the platform a greater ability to regulate provider participation, the platform may

no longer need to rely exclusively on restricting recruitment, allowing higher N , thereby

mitigating some demand rationing. In fact, according to Theorem 7, the dynamic wage

contract is capable of eliminating capacity rationing in all demand states. However, the

best dynamic wage contract may still ration demand, which is why it may not be able to

earn a positive profit.
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Theorem 7. Conditional on earning a positive profit, the best dynamic wage contract has

one of the following two characteristics:

1. The platform serves both demand states. In particular,

c1 =

∫ wl

0
G(c)dcfl +

∫ wh

0
G(c)dcfh

p = max

(
ahG(wl)− alG(wh)

G(wl)−G(wh)
,min

(
al,

al
2

+
fhG(wh)wh + flG(wl)wl
2(G(wh)fh +G(wl)fl)

))

there is demand rationing only in the high state ( i.e. N = (al − p) /G(wl)), there is no

capacity rationing, i.e. φl = φh = 1, and each provider’s joining constraint is binding, i.e.

c1 = Π(p, w,N).

2. The platform serves only high demand. In particular, wh = min {w′′, ah}, p = (ah +

wh)/wh, N = (ah − p)/G(wh), and participating providers are fully utilized, i.e. φh = 1.

2.4.3. Dynamic Price Contract

With the dynamic price contract, the platform selects a price for each demand state, pj ,

but pays providers a fixed wage. The dynamic price contract enables the platform to

manage demand rationing. For example, suppose the best fixed contract has poor service.

Capacity is restrictive because higher capacity would lead to costly capacity rationing in

the low demand state. However, with dynamic prices the platform can increase its price

in the high demand state without affecting providers, thereby reducing demand rationing

while increasing its revenue and profit. With the other extreme, suppose the best fixed

contract has poor utilization. In the high demand state, the platform would prefer to

raise the price further. But doing so would exacerbate the problem of capacity rationing

in the low demand state. Once the platform has the ability to charge dynamic prices, it

can indeed raise its price in the high demand state while also lowering its price in the low

demand state, both of which help to mitigate capacity rationing while still avoiding demand
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rationing. Nevertheless, a positive profit is not always feasible.

Theorem 8. Conditional on earning a positive profit, the best dynamic price contract has

one of the following two characteristics:

1. The platform serves both demand states. In particular, w ∈ [w′,min(al, w
′′)], pl =

(al + w) /2, ph = ah −G(w)N , N = (al − w) /
(
2φ̄lG(φ̄lw)

)
, there is no demand rationing,

there is capacity rationing only in the low state, i.e. φl = φ̄l ≤ 1, and φh = 1, and each

provider’s joining constraint is binding, i.e. c1 = Π(p, w,N).

2. The platform serves only high demand. In particular, w = min {w′′, ah}, p = (ah+w)/w,

N = (ah − p)/G(w), and participating providers are fully utilized, i.e. φh = 1.

2.4.4. Commission Contract

The commission contract, which resembles Uber’s surge pricing policy, adjusts both price

and wage in response to demand, but also imposes the constraint that the two have a

constant ratio. In particular, the platform charges a demand-contingent price, pj , and pays

providers wj = βpj , where β is the (fixed) commission rate. Given the market is viable

(c1 < c1), there exists a sufficiently high commission rate that enables the market to function

and the platform to earn some profit.

For a given commission, there is a unique best wage schedule and recruitment level satisfying

the optimality conditions in the following theorem, but a line search is required to find the

best commission.

Theorem 9. For a given β ∈
[
w′

ah
, 1
]
, the best fixed commission contract is uniquely defined,

earns a positive profit for the platform and satisfies:

pj = max
{
aj −NG(ŵj),

1
2aj
}

; φj = min

(
1,

aj
2NG( 1

2
βφjaj)

)
; c1 =

∑
j∈{l,h}

∫ wjφj
0 G(c)dcfj

where ŵj is uniquely defined by ŵj = β(aj −NG(ŵj)). The providers’ joining constraint is

binding. Capacity rationing is possible, but demand rationing does not occur.
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2.4.5. Optimal Contract

The optimal contract allows the platform complete flexibility: both wages and prices may

vary according to the demand state without the constraint of a fixed ratio between the two.

With these two levers, the platform maximizes its profit, it eliminates both demand and

capacity rationing, it always serves demand in all demand states, and it maximizes system

surplus (the sum of platform and provider expected profits).

Theorem 10. (i) The platform earns a positive profit with the optimal contract (for all

c1 < c1), (ii) the optimal contract is uniquely defined by w, p, and N satisfying,

wj = aj − 2NG(wj); pj = aj −NG(wj); c1 =
∑

j∈{l,h}
∫ wj

0 G(c)dcfj

iii) there is no capacity rationing, i.e. φl = φh = 1, nor demand rationing, (iv) each

provider’s joining constraint is binding, i.e. c1 = Π(p, w,N), and (v) system surplus (the

sum of platform and provider profits) is maximized.

For a given N , the system of the first two equations uniquely identifies prices and wages.

A search over N finds the contract that satisfies all three equations.

Unlike the commission contract, the optimal contract is not burdened with the constraint

of a fixed ratio between wage and price. Nevertheless, there are cases in which the op-

timal contract is a commission contract (i.e., the commission contract is optimal for the

platform). For example, the optimal wage to price ratio, (wj/pj) = wj/ (wj +NG(wj)),

is independent of the demand state (i.e., constant across states) if participation costs are

uniformly distributed (i.e., G(c) is linear in c). Alternatively according to Theorem 11, the

commission contract is optimal if joining costs are either very low or very high. To explain,

when the joining cost, c1, approaches its upper bound c̄1, the optimal contract gives nearly

all revenue to providers to recruit them. This is equivalent to a commission contract with

β → 1. When c1 instead approaches zero, the platform can recruit many providers and

encourage enough participation with a very small wage. In the limit, the optimal contract
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offers almost no wages, which is equivalent to a commission contract with β → 0.

Theorem 11. The commission contract is optimal (i.e., yields the same profit for the

platform as the optimal contract) if (i) c1 → c̄1 or (ii) c1 → 0.

2.5. Fixed Participation Cost

In this section we consider a specialized version of the main model in which, instead of

heterogeneous and stochastic participation costs with infinite support described by the

distribution function G(·), all providers have a fixed participation cost, c2, in period 2.

(i.e., G(c|c < c2) = 0 and G(c|c2 ≤ c) = 1.) All other aspects of the main model remain.

Hence, this fixed c2 model, retains most of the critical features of the main model: e.g.,

providers act on rational expectations, capacity and demand rationing are possible, and

supply decisions are made over two time scales.

To conserve space, we focus on three contract types with the fixed c2 model: (1) a fixed

contract, (2) the optimal contract (i.e., dynamic prices and wages), and (3) the commission

contract (i.e., dynamic prices and a fixed ratio between wage and price). With the fixed

contract the platform selects a fixed price and compensates the providers so that their

joining constraint binds, i.e., they each earn c1. Hence, the fixed contract in this model

is comparable to the fixed contract in the main model.2 For notational convenience, let

a = flal + fhah and ĉ = c2 + c1/fh. See the online appendix for proofs and derivations of

results.

The primary objective of the fixed c2 model is to use its additional tractability to derive

analytically (i) the conditions under which the optimal contract increases consumer surplus

relative to the fixed contract, and (ii) a lower bound for the platform’s profit with the

commission contract relative to the optimal contract. The numerical calculations in the

subsequent section demonstrate that these results carry over to the (more general) main

2This compensation can be achieved with a fixed wage for service (equal to c2, so that all providers who
participate receive demand) and a fixed salary for joining the platform (equal to c1, to ensure the joining
constraint is satisfied).
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model.

In the fixed c2 model, the best fixed contract adopts one of three possible versions: (i) a

“poor service” version with demand rationing; (ii) a “poor utilization” version with capacity

rationing; (iii) a “only high demand” version in which no demand is served in the low demand

state. The optimal contract, serves both demand states and sets recruitment, N, equal to

high demand.

Proposition 1 identifies the situations in which the optimal contract increases consumer

surplus relative to the fixed contract. If providers are relatively expensive (high c1) then

the fixed contract involves demand rationing (poor service) and consumers benefit from

switching from the fixed contract to the optimal contract. In these cases the fixed contract

is unable to provide adequate supply and even though consumers pay more in the high

demand state with the optimal contract, the additional supply available with the optimal

contract leads to higher consumer surplus. However, if providers are relatively cheap (low c1)

then the fixed contract rations capacity (e.g., the poor utilization version), and consumers

are worse off with a switch to the optimal contract.

Proposition 1. In the fixed c2 model, the optimal contract has higher consumer surplus

than the fixed contract if and only if “poor service” or “only high demand” is the best version

of the fixed contract.

The commission contract is the third contract of interest. There are three versions of the

commission contract - three of them yield closed form solutions whereas the fourth does not.

The fourth version is not problematic for two reasons - it is the least likely of the versions

to be the best commission contract, and it is not necessary to include in the derivation of

the lower bound profit ratio in Proposition 2.)

The optimal contract is a commission contract when the joining cost is sufficiently high: if

fh (ah − al) < c1 then the optimal contract chooses the same commission in either demand

state, so a commission contract with a single commission can replicate the optimal contract.
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In contrast, if the joining cost is “low” (i.e., c1 ≤ fh (ah − al)), then the optimal contract

chooses commission rates that differ across the demand states, i.e., βl = wl/pl 6= wh/ph =

βh. In these cases the commission contract must select a commission rate that is sub-optimal

in one or both states, reducing the platform’s profit with the commission contract relative

to the optimal contract.

Proposition 2. The following is a lower bound for the ratio of the platform’s profit with the

commission contract, Uβ, and the platform’s profit with the optimal contract, Uo: min {Uβ/Uo} =(
1 +
√
fh
)
/2. This bound is achieved either when c1 = 0 or c2 = 0.

Proposition 2 reports on a lower bound for the platform’s profit with the commission con-

tract. The commission contract performs poorly when one of the two costs is very low

(either c1 or c2) and the probability of high demand is small. In the extreme, as fh → 0,

the fixed commission contract earns only 1/2 of the profit of the optimal contract. However,

when the two demand states are equally likely, the commission contract earns at least 85%

of the optimal profit
(

(1/2)
(

1 +
√

1/2
))

. As c2 → 0, the optimal contract chooses a low

commission when demand is low (to prevent too much participation) and, when demand

is high, chooses a sufficiently high commission to give providers enough profit (c1/fh) to

justify joining the platform. This disparity in the two commissions creates a challenge for

the commission contract, which is required to choose a single commission. With the other

extreme, c1 → 0, the joining constraint is not important. Instead, the focus is on the in-

centive for providers to participate. Because pl < ph, which implies c2/ph < c2/pl, the best

commission with low demand is higher than with high demand (because both states must

yield at least c2 for the providers to participate). Again, the commission contract does not

do well with this disparity in commissions. Note, according to Theorem 11, the commission

contract yields the optimal profit as c1 → 0 in the main model, which contrasts sharply with

its performance in the fixed c2 model. The difference occurs because in the fixed c2 model

G() has finite support whereas in the main model it has infinite support. Consequently, in

the fixed c2 model the average participation cost conditional on participation is independent

of the number of joining providers, N, (i.e., it is always c2), whereas in the main model it
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decreases in N (i.e., for the same desired number of participating providers, increasing N

lowers the average participation cost).

Although there are cases in which the commission contract performs poorly relative to

the optimal contract, this does require special parameters. For example, consider only

the extreme cases in which fh = 0.05, which yields a lower bound of Uβ/Uo = 0.612.

Evaluation of 3,600 evenly spaced observations throughout the feasible parameter space

yields a minimum profit ratio close to the lower bound, Uβ/Uo = 0.629.3 (The lower bound

is not achieved because the extreme border conditions c1 = 0 or c2 = 0 are not included.)

However, the average ratio is Uβ/Uo = 0.982 and the median ratio is Uβ/Uo = 1.000. We

conclude that for the majority of parameters, the commission contract yields nearly the

optimal profit in the fixed c2 model. In the next section we report that this also matches

the numerical analysis of the main model.

To summarize the main results from the fixed c2 model: (i) according to Proposition 1

the optimal contract has higher consumer surplus than the fixed contract if and only if

“poor service” is the best version of the fixed contract, and (ii) Proposition 2 provides a

lower bound for the platform’s profit with the commission contract relative to the optimal

contract.

2.6. Numerical Study

To study the performance of the five contracts in our main model, we constructed 14,700

scenarios with the goal to cover the set of feasible and plausible parameters. Table 2

summarizes the parameters used to create the scenarios. Without loss of generality, the

demand intercept is set to ā = flal + fhah = 100. The two demand states are al = δā

and ah = (2 − δ)ā, which includes from a minimal level of variance in demand outcomes

(δ = 0.9) to nearly the maximal variance (δ = 0.1). The probability of the low demand

3These 3,600 cases are constructed from the following combinations: fh = 0.05; al/ā = {0.1, 0.2, ..., 0.9};
a = 100; ah = 200 − al; c2/al = {0.025, 0.075, ..., 0.975}; c1/ĉ1 = {0.025, 0.075, ..., 0.975}, where ĉ1 =
fh(ah − al) + (al − c2) is the maximum feasible value for c1.
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state ranges from a low of 0.05 to the high of 0.95. (Proposition 2 suggests that the fl and

fh = 1−fl probabilities are important for comparing the optimal and commission contracts.)

In all scenarios the provider’s participation cost, c2, is Gamma distributed, with mean µ and

standard deviation σ. The coefficient of variation of the participation cost ranges from a low

0.05 to a relatively high 1.5. The mean of the participation cost, µ, is selected relative to the

average demand intercept value, a, by adjusting G(a) to correspond to a particular fractile

of the distribution, ranging from 0.01 to 0.99. In the former case the average participation

cost is high relative to consumer willingness to pay, i.e., a � µ, whereas in the latter case

participation costs are relatively low, i.e., µ � a. Finally, the joining cost, c1, spans the

range from a low value (0.05c̄1), to nearly its upper bound (0.95c̄1).

Parameters Included values

δ {0.1, 0.25, 0.5, 0.75, 0.9}
fl {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}
σ/µ {0.05, 0.1, 0.25, 0.5, 1, 1.5}
G (a) {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99}
c1/c1 {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}

Table 2: Tested parameter values. All combinations of these values constitute 14,700 sce-
narios.

Table 3 reports on the frequency of different versions of the fixed contract. When the fixed

contract serves both demand states (2,253 scenarios), it does so with one of two extreme

versions. The poor service version is more common (73.8% of 2,253 scenarios) - capacity is

set to the low demand state so that providers are fully utilized but demand is rationed. The

other extreme is the “poor utilization” version - capacity is set to the high demand state,

which never rations demand but leaves providers with poor utilization when low demand

occurs. As expected, the low capacity (poor service) version is more prevalent when the

joining cost, c1, is high, otherwise the high capacity (poor utilization) version tends to be

selected. As is true in the fixed c2 model, no scenarios were found which have both capacity

and demand rationing.

45



Version Number of
scenarios

%

“Poor utilization” - capacity equals high demand, capacity rationing occurs 591 4.0%

“Poor service” - capacity equals low demand, demand rationing occurs 1,662 11.3%

Only the high demand state served 10,926 74.3%

Neither state served - unable to earn a positive profit 1,521 10.3%

Table 3: Frequency of different versions of the fixed contract.

2.6.1. Profit comparison

Table 4 reports (left side) on the profit performance of the four sub-optimal contracts

relative to the optimal contract in all 14,700 scenarios. In this table, and in the remaining

discussion, we use the subscripts f, w, p, β, and o to refer to the fixed, dynamic wage,

dynamic price, commission and optimal contracts, respectively. On average, the fixed,

dynamic wage and dynamic price contracts perform poorly relative to the optimal contract,

earning only on average 75.5%, 76.2% and 79.1% of the optimal profit respectively. However,

this is due to the very poor performance of a few scenarios: the median performance of

those three contracts is considerably better: 96.6%, 97.1%, 98.1%. Furthermore, while the

dynamic wage and the dynamic price contracts perform better than the fixed contract,

their incremental performance on average is not substantial. This suggests that in this

context it is insufficient to operate dynamically only on one dimension (price or wage). In

contrast, while the commission contract is not optimal, its performance is nearly optimal -

the average profit earned with the commission contract is 99.3% of the optimal profit and

with 95% of the scenarios the commission contract earns at least 96.6% of the profit of the

optimal profit. (A similar result is obtained in the fixed c2 model.) However, there are

a few scenarios in which the commission contract performs poorly - in the worst scenario

the commission contract earns only 63.7% of the optimal profit. That performance is close

to the analytical lower bound from the fixed c2 model (Proposition 2) for these scenarios,

Uβ/Uo = 1
2

(
1 +
√

0.05
)

= 0.612.

Table 4 also reports (right side) on the subsample of 2,253 scenarios in which the fixed

contract serves demand in both states. These scenarios are considered to be less extreme
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Uf/Uo Uw/Uo Up/Uo Uβ/Uo

Minimum 0.000 0.000 0.000 0.637
5% 0.000 0.000 0.000 0.966
25% 0.620 0.632 0.752 0.998
50% 0.966 0.971 0.981 1.000
75% 1.000 1.000 1.000 1.000
95% 1.000 1.000 1.000 1.000

Maximum 1.000 1.000 1.000 1.000
Average 0.757 0.762 0.791 0.993

Uf/Uo Uw/Uo Up/Uo Uβ/Uo

Minimum 0.000 0.000 0.005 0.824
5% 0.046 0.046 0.326 0.970
25% 0.460 0.475 0.797 0.997
50% 0.738 0.792 0.939 1.000
75% 0.904 0.943 0.983 1.000
95% 0.976 0.988 0.997 1.000

Maximum 0.995 0.997 0.999 1.000
Average 0.652 0.680 0.844 0.994

Table 4: Relative Profitability of Suboptimal Contracts. Profit performance of the four
suboptimal contracts relative to the optimal contract in all 14,700 scenarios (left table)
and in the 2,253 scenarios in which the fixed contract serves both demand states (right
table). The subscripts f, w, p, β, and o to refer to the fixed, dynamic wage, dynamic price,
commission and optimal contracts, respectively.
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(and therefore more plausible) because the variance in demand is not so large and provider

cost is not so high as to cause the platform to restrict attention exclusively to a single

demand state. In this sample, three of the sub-optimal contracts perform worse than in

the broader sample. Adding only dynamic wages to the fixed contract provides only a

marginal improvement, whereas adding only dynamic pricing boosts the platform’s profit

considerably. However, there are substantial losses in profit even with dynamic pricing. In

contrast, the commission contract improves its performance in this sample, in particular its

worst case performance is better (yielding 82.4% of optimal profit).

It is worth emphasizing that the fixed contract performs poorly relative to the optimal

contract (or the commission contract) because it charges too little during high demand and

it charges too much during low demand. The popular press likes to emphasize higher prices

during peak demand periods, but it is important to recognize that a fixed price leads to

poor utilization among providers during low/normal demand and that destroys some value

in the system, value that can be recaptured through the use of dynamic pricing. Thus, while

consumers may (understandably) dislike the elevated prices paid during high demand, they

should appreciate the benefit of paying a lower price when low/normal demand prevails.

The overall conclusions from these results are (i) it is insufficient to dynamically adjust

only wage or only price, i.e., the platform should adjust both price and wage in response

to demand and (ii) although the commission contract constrains the platform with the

requirement of a fixed ratio between wage and price, the platform is nevertheless able to

earn nearly the optimal profit in the vast majority of scenarios.

2.6.2. Membership fee contract

Although the commission contract is nearly optimal in the vast majority of cases, it is

worth asking if there exists another simple contract that might perform even better. One

option is a membership fee contract that has been applied in several industries (Rochet

and Tirole (2006)) and has been specifically suggested for ride-sharing (Economist (2014)).
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With a membership fee contract the platform sets dynamic prices, providers keep all of the

revenue they earn (as in a 100% commission) and the platform earns revenue by charging

providers a fixed fee to join the platform. Providers join the platform only if their earnings

net of the joining fee exceeds their requirement, c1, and participation behavior continues

to be governed by rational expectations. Unfortunately, the membership contract lacks a

mechanism to limit excessive participation in the low demand state, which is an important

feature of the commission and optimal contracts. Consequently, there can be a considerable

loss in system value and that limits the platform’s potential earnings. Let Um be the

platform’s best profit with the membership fee contract. In our preferred sample of 2,253

scenarios, the median ratio of the platform’s profit with the membership fee contract to the

optimal profit, Um/Uo, is only 0.858 and the lowest ratio is 0.565. Thus, the membership

fee contract is not a suitable alternative to the commission contract. (Details to evaluate

the membership fee contract are available from the authors.)

2.6.3. Consumer, provider and system surplus

Turning to consumer surplus, we use the fixed contract as the benchmark. Tables 5 and

6 provide consumer surplus results for the set of scenarios with poor utilization or poor

service with the fixed contract. The impact of adding a dynamic component to the fixed

contract depends starkly on which component is made dynamic. If dynamic wages are added

to the fixed contract, then consumers are always better off (i.e., 1 < Sw/Sf in all cases).

To explain, the fixed contract with poor utilization mitigates the capacity rationing in the

low demand state by constraining recruitment. Restricting recruitment limits the excess

participation in the low demand state that causes capacity rationing. Once a dynamic

wage is allowed, the platform can mitigate capacity rationing in the low demand state by

lowering the wage in that state. This enables the platform to increase recruitment, which

is beneficial to consumers. Similarly, the fixed contract with poor service substantially

restricts recruitment to eliminate capacity rationing. But then a considerable amount of

demand rationing occurs in the high demand state. The addition of dynamic wages allows
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fractile Sw/Sf Sp/Sf Sβ/Sf So/Sf Nw/Nf Np/Nf Nβ/Nf No/Nf

Minimum 1.001 0.333 0.723 0.706 0.847 0.539 0.603 0.629
5% 1.003 0.541 0.780 0.777 0.871 0.686 0.748 0.756
50% 1.025 0.854 0.957 0.956 0.995 0.911 0.945 0.946
95% 1.130 0.975 0.992 0.992 1.043 0.985 0.989 0.989

Maximum 1.234 0.986 0.994 0.994 1.099 0.989 0.993 0.994

Table 5: Relative Consumer Surplus with Poor Utilization. The ratio of consumer surplus
and number of providers with the dynamic wage, dynamic price, commission or optimal
contract to the fixed contract in the 591 scenarios with poor utilization.

the platform to increase the number of recruited providers while ensuring that providers

continue to be fully utilized in both demand states. The increase in recruitment again

benefits consumers.

Although adding dynamic wages is beneficial to consumers, the same cannot be said of

dynamic prices (i.e., Sp/Sf < 1 in all cases). This is particularly evident with the fixed

contract with poor service (Table 6). In this case, dynamic prices can address demand

rationing without changing recruitment or the wage: the platform simply increases the

price in the high demand state so that demand in both states matches the number of

providers willing to participate under the fixed wage. The same number of consumers are

served, but the high price screens consumers by their willingness to pay, improving platform

profit, but lowering consumer surplus. (Better screening improves consumer surplus, but

always by less than the loss of consumer surplus due to a higher price.) Dynamic prices

are also problematic for consumers with the fixed contract with poor utilization (Table 5).

In this case the fixed contract selects an intermediate wage and price which results in too

little demand in the low demand state and too much demand in the high demand state.

The addition of dynamic prices allows the platform to let its prices diverge - a low price in

the low demand state and a high price in the high demand state. Increasing price in the

high demand state reduces the maximum demand, so the platform can offer a smaller wage

and recruit fewer providers. Neither the reduction in available supply nor the higher price

benefits consumers.
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fractile Sw/Sf Sp/Sf Sβ/Sf So/Sf Nw/Nf Np/Nf Nβ/Nf No/Nf

Minimum 1.000 0.001 1.001 1.001 1.000 1.000 1.014 1.015
5% 1.002 0.115 1.005 1.005 1.000 1.000 1.028 1.029
50% 1.053 0.716 1.138 1.128 1.025 1.000 1.283 1.298
95% 1.580 0.952 3.962 3.912 1.336 1.000 6.335 6.378

Maximum 2.644 0.976 190.175 190.016 1.975 1.944 360.601 360.491

Table 6: Relative Consumer Surplus with Poor Service. The ratio of consumer surplus and
number of providers with the dynamic wage, dynamic price, commission or optimal contract
to the fixed contract in the 1,662 scenarios with poor service.

The optimal contract combines the dynamic wage contract, which is good for consumers,

with the dynamic price contract, which is bad for consumers. Consequently, the optimal

contract presents a mixed result for consumers, but one with a clean demarcation - con-

sumers are better off with the optimal contract if the fixed contract chooses the poor service

version (Table 6) and consumers are worse off with the optimal contract if the fixed contract

chooses the poor utilization version (Table 5). Proposition 1 yields the same result for the

fixed c2 model

The commission contract provides nearly the same consumer surplus as the optimal contract,

which is to be expected given that the two contracts yield similar surplus (i.e., profit) for

the platform. Furthermore, as the poor service version of the fixed contract is more likely

as the joining cost increases, it is expected that consumer surplus with the commission

contract is more likely to increase relative to the fixed contract when the selected commission

rate is high because the platform offers a high commission generally when providers incur

high joining costs. Figure 7 confirms this intuition. The figure plots consumer surplus

with the commission contract relative to the fixed contract (y-axis) as a function of the

selected commission (x-axis). While there is variation, the general pattern is clear - as the

commission rate increases, consumers are more likely to be better off with the commission

contract than the fixed contract. As a point of reference (and with the understanding that

our model is stylized), ride-sharing platforms tend to offer an 80% commission. Among

the 864 scenarios that select a commission of 80% or higher, consumers surplus with the

commission contract is higher than with the fixed contract in 859 scenarios (or 99.4% of
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Figure 7: Relative Consumer Surplus as a Function of Commission. The ratio of consumer
surplus with the commission contract to consumer surplus with the fixed contract as a
function of the commission earned by providers with the commission contract in the 2,253
scenarios in which the fixed contract serves both demand states. Squares indicate the
average ratio for scenarios grouped by the commission contract commission in 0.05 intervals.

them) and always higher whenever the commission is 82% or higher.

Tables 5 and 6 also report on provider surplus, which equals Nc1 with all contracts. Thus,

provider surplus is determined by the number of providers who join the platform, N. As

with consumers, whether providers are better off from a switch from the fixed contract to

the optimal or the commission contract depends on which of the two versions of the fixed

contract is adopted. The poor utilization version of the fixed contract recruits too many

providers relative to the optimal, so the optimal contract reduces the number of providers,

decreasing their total surplus. In contrast, the poor service version of the fixed contract

does not recruit enough providers, so total provider surplus increase with a switch to the

optimal (or commission) contract.

2.7. Self-Scheduling vs. Central-Scheduling of Capacity

As an alternative to self-scheduling (providers deciding when it is best to participate),

the platform could decide how many and which providers participate, a practice we call

“central-scheduling.” The key advantage of central-scheduling is that it allows the platform

to eliminate the inefficiency of capacity rationing: the platform would never choose to
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have more providers working than necessary as that lowers the providers’ earnings, making

recruiting them more costly. It can also assist with demand rationing: if the number of

providers on the platform exceeds demand, then all demand can be served. However, the

key limitation of central-scheduling is that the platform does not observe the providers’

participation costs. It would simply be too costly to credibly learn the details of every

provider’s planned outside activities at every possible moment. Consequently, when the

platform uses central-scheduling, it can regulate the number of providers who participate,

but it must select a random sample of providers, which may not be the set with the lowest

participation costs. Providers anticipate that they may be scheduled to participate at less

than ideal times, which affects their decision to join the platform.

The optimal contract with self-scheduling use dynamic prices and wages to eliminate ca-

pacity and demand rationing (given the pool of providers who join, N). Thus, central-

scheduling is not advantageous relative to self-scheduling in terms of capacity and demand

rationing, but it suffers the disadvantage of not being able to select the providers who have

the lowest participation costs - because providers lack control over when they participate,

they demand higher compensation to join the platform and the platform is forced to recruit

fewer providers. Consequently, it is straightforward to prove that the platform earns higher

profit and providers earn higher surplus with self-scheduling than with central-scheduling

of capacity.

In contrast, Gurvich, Lariviere, and Moreno (2015), show that self-scheduling is less prof-

itable for a platform than central-scheduling. Unlike Gurvich, Lariviere, and Moreno (2015),

in our model providers make joining decisions based on rational expectations of their fu-

ture earnings. This forces the platform to internalize the costs faced by providers. Hence,

because providers value the flexibility of self-scheduling, so does the platform.

Based on our sample of 14,700 scenarios from the numerical study, the platform’s best

profit with central-scheduling is only 35.7% of the best profit with self-scheduling providers

on average. Providers earn only 33.6% on average with central-scheduling relative to self-
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scheduling. In sum, self-scheduling, by allowing providers to self-select when it is best to

participate, is considerably better for the platform and providers than central-scheduling.

2.8. Discussion

Our model captures some key features of platforms with self-scheduling capacity. In par-

ticular, demand and capacity rationing can occur because demand varies considerably over

time (high and low demand periods), long run capacity is rigid and too many providers

may choose to participate, thereby destroying rents in the short term and reducing the

attractiveness of joining the platform in the long term. However, our model abstracts away

from a number of other issues that affect these platforms in practice. We discuss several

possible extensions in this section that merit further investigation.

We assume there exists a large pool of potential providers who all require at least c1 in

expected profit as a threshold before they are willing to join. Once providers join, we assume

they all can provide the same amount of capacity to the platform in period 2. In practice,

there is heterogeneity in the wages a provider requires to join the platform and heterogeneity

in the number of hours they are willing to work. It is possible to add heterogeneity in c1to

our model in the form of a two point distribution: there are M providers with joining cost

cl and an unlimited number with a higher joining cost, ch. For M sufficiently large, the best

version of all contracts remains the same as if c1 = cl. For M sufficiently small, the marginal

provider has a joining cost of ch and earns zero surplus from joining the platform, while the

M providers with the lower joining cost, cl, enjoy some surplus from joining. Due to this

increasing supply curve, we anticipate that the profit and surplus gaps between the fixed

contract and the optimal contract are reduced relative to our observations with a fixed c1:

the optimal (and commission) contract benefits from increased recruitment of providers,

but an increasing supply curve mitigates the optimal contract’s ability to take advantage

of recruiting a larger pool of providers.

In our model the platform does not incur explicit recruiting costs and providers do not quit
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the platform once they join. Furthermore, there is no learning in our model - providers

correctly anticipate their future earnings. In practice, platforms are indeed concerned with

provider recruitment costs and retention. Such issues could influence how the platform

matches customers to providers - we assume random matching but that may not be the

best for a platform that wants to manage retention.

Our platform neither faces competition from another platform or from other firms offering

similar services. Even with competition it is important for the platform to recruit the

correct number of providers and to ensure that they are utilized properly. But competition

could alter the attractiveness of the contracts we consider, both in terms of the competition

for customers as well as the competition for providers. For example, Liu and Zhang (2012)

show that competing firms may prefer to commit to fixed pricing rather than dynamic

pricing.

We use a single joining period to represent long-term capacity decisions and a single period

to represent short-term participation decisions. These are most appropriate when a plat-

form has achieved steady-state and providers make many participation decisions which are

both similar and uncorrelated. In practice a platform may experience growth over time,

which should be represented with multiple joining periods. Similarly, one could consider

a model with multiple short-term participation decisions. Such a model would allow the

investigation of the impact of demand correlation over time as well as correlation between

demand and participation costs (e.g., “high demand” in a period could be associated with

“high participation” costs for providers).

2.9. Conclusion

We study a platform that offers a service via a pool of independent providers. Providers self-

schedule when they offer their service to the customers on the platform and decide whether

or not to join the platform based on their earnings expectations. Demand varies over the

long-term but is predictable in the short-term. Two inefficiencies can arise: (i) demand
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can be rationed either because too few providers join the platform or too few choose to

participate; and (ii) capacity can be rationed because competition for a limited number

of jobs leads too many providers to participate. Demand rationing is costly because some

customers are unable to access the service that they value at the price charged, and the

customers that do get the service might not be the ones that value it the most. Capacity

rationing is costly because participating providers are not fully utilized but still incur their

full opportunity cost of joining the platform. Both forms of rationing factor into the decision

of providers as to whether to join the platform or not.

Although self-scheduling removes some control from the platform (it cannot directly control

the number of providers who work), it allows providers to self-select when it is most ben-

eficial for them to work. We show that this additional flexibility is beneficial to providers,

the platform and consumers.

We study several contractual forms that vary in whether prices and/or wages respond to

demand. The most basic contract, the fixed contract, sets a single price and wage no matter

what demand level occurs. To the fixed contract the platform could add either dynamic

wages or dynamic prices. The optimal contract requires that the platform chooses both a

price and a wage contingent on demand. We find that adding one dynamic component to

the fixed contract (either wage or price but not both) increases the platform’s profit but

still leaves the platform with substantially lower profit than what it could earn with the

optimal contract, which is dynamic in both components. A commission contract chooses

both price and wage dynamically, but includes the added constraint of a fixed ratio between

the two. The commission contract mimics pricing used in practice, such as Uber’s surge

pricing. Our main result is that even though the commission contract is not optimal, it

yields nearly the optimal profit for the platform in the vast majority of plausible scenarios.

While maximizing profit is clearly an important objective for the platform, it isn’t the only

relevant one. A considerable amount of controversy has arisen over whether self-scheduling

providers should be treated like employees (e.g. given additional rights and benefits) and
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whether surge pricing gouges consumers. Hence, a platform should also be concerned with

how it influences both provider and consumer surplus.

The optimal contract leads to ambiguous welfare implications, which depend on how the

fixed contract manages demand and capacity. If providers are relatively inexpensive (i.e.

their opportunity cost to join the platform is low), then the fixed contract recruits an

ample number of providers and underutilizes them during low demand periods. Adding

dynamic prices and wages to that situation always works to the disadvantage of providers

and consumers because the platform recruits fewer providers and, in the high demand state,

charges more and serves fewer customers. However, if providers have a high opportunity

cost, then the fixed contract recruits a limited number of providers and forces customers

during peak demand to suffer through poor service. In those cases, providers and consumers

are better off with the introduction of dynamic prices and wages: capacity expands to serve

more customers in all demand states. To frame this in the context of ride-sharing, if with

the fixed contract (e.g. taxis) it is hard to find service at peak demand times (e.g. a rainy

evening), then Uber’s introduction of surge pricing (i.e., dynamic pricing and wages) is

likely to make all stakeholders (Uber, drivers, and consumers) better off.
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CHAPTER 3 : Distinguishing the Gig-Economy from Two-Sided Markets

3.1. Introduction

“Gig-economy” platforms like Uber, TaskRabbit, and Postmates have created market-

places in which services are performed on-demand for consumers by independent providers.

Providers decide whether, when, and how much service to offer via the platform, and cus-

tomers demand immediate service when their need arises. This setting has motivated an

emerging stream of literature studying the platform’s optimal strategy to coordinate its

decentralized labor force.

Naturally a provider’s interest in working depends on the amount of money he earns from a

completed service (Farber (2015), Chen and Sheldon (2015)). A platform may then manage

its workforce indirectly by manipulating the “wage” it offers providers per service. Typically

the platform pays providers a commission, meaning providers earn a percentage of the price

paid by the consumer. Consequently the firm may incentivize working by manipulating

either the price charged to consumers or the commission percentage. For example, Uber

manipulates price through its “Surge Pricing” policy, which increases price during peak

demand to entice drivers to offer rides, while Lyft manipulates the commission percentage

through its “Power Driver Bonus” program, which pays a higher percentage to drivers that

complete a high volume of rides during peak hours.

Providers also respond to the availability of demand to serve. In on-demand service market-

places, a provider must already be available in order to receive customers service requests.

For example, Uber drivers are matched with nearby passengers, so drivers must already be

on the road to receive a ride request. As a result, providers incur the opportunity cost of

their time whether or not they are serving a customer. The more time a provider expects

to spend serving customers, the more likely participating in the market will be worth the

opportunity cost of his time.
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In broad strokes, a gig-economy marketplace resembles a two-sided market. The volume

of agents on one side of the market depends on the volume of agents on the other side

(e.g. the number of providers working depends on the volume of demand for service). The

platform manages the volume of transactions from which it profits by manipulating the

price (or wage) charged to each side. Furthermore, agents may be heterogeneous in their

valuation of the transaction (e.g. customers have heterogeneous value of receiving service)

and in their valuation of membership in the platform (e.g. providers have heterogeneous

opportunity cost of time).

However, the classic literature studying two-sided market limits its analysis in some im-

portant ways: it does not consider agent capacity constraints or inter-agent competition

(e.g Rochet and Tirole (2003), Armstrong (2006), Rochet and Tirole (2006), Weyl (2010)).

These limitations are appropriate in applications where participation in the platform’s mar-

ket is a long term decision (e.g. markets for credit cards, video game consoles). In these

settings, consumers seek many interactions via the platform and are largely variety seeking.

For example, a credit card holder wants use his card at the grocery store, at the barber,

and at the veterinarian, while the gamer wants to play many different games on her con-

sole. Consequently, service providers expect to interact with many consumers, and their

interaction with a consumer does not cannibalize interactions between that consumer and

other providers. Further, because consumers remain in the market for a long time, providers

have the opportunity to completely satisfy demand even in the face of short term capacity

constraints. For example, a video game producer may backorder a consumer’s request for

their product, but it is likely that the consumer will still be using the same gaming console

by the time she receives her delayed order.

In contrast, gig-economy customers and providers make decisions about participation on

a platform on a much shorter time scale. Consequently, the capacity constraints faced

on both sides of the market become relevant: customers can demand only one service at

a time and providers can offer service to only one customer at a time. Furthermore, gig-
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economy providers are largely homogeneous from the consumer’s point of view, so providers

compete for limited demand. Extant work in this area captures this by characterizing the

volume of transactions from which the platform profits as the number of successful provider-

customer matches, and the volume of providers as a function of their expected utilization.

Banerjee et al. (2015) propose a queueing model of on-demand services where the volume

of providers depends on the expected time until a successful match. Chen and Hu (2016)

study a dynamic model in which each provider decides how long to wait before offering

service, a decision based the probability of successfully matching at each time t. Otherwise,

the extant literature captures the dependence of provider volume on aggregate demand via

the ratio of demand volume to supply volume (e.g. Cachon et al. (2017), Hu and Zhou

(2017), Bai et al. (2016), Taylor (2016)). Keeping with this precedent, the model below

links provider volume to the ratio of demand and supply.

The goal of much of the gig-economy literature is to understand pricing in a gig-economy

setting. Of particular interest is dynamic pricing. Dynamic prices may be used to solve

mismatches in supply and demand arising from stochastic customer and provider arrival

processes. However, Banerjee et al. (2015) and Chen and Hu (2016) demonstrate that gains

from dynamic prices in this setting are small. Dynamic prices may also be used to correct

mismatches in supply and demand across states of the world (e.g. peak and off-peak times).

As shown by Cachon et al. (2017), dynamic prices dramatically improve platform profit in

this setting. It is then natural to ask whether the common practice of paying providers a

fixed percentage of this dynamic price, called a “fixed commission,” is a good policy relative

to a dynamic commission. Bai et al. (2016) provides examples of the profit loss resulting

from a fixed commission, Bimpikis et al. (2016) studies the consequences of spatial layout on

the cost imposed by a fixed commission, and Cachon et al. (2017) and Hu and Zhou (2017)

provide bounds on the relative profitability of a platform with a fixed commission and a

platform with a dynamic commission. Bimpikis et al. (2016), Cachon et al. (2017), and Hu

and Zhou (2017) both demonstrate that a fixed commission can be optimal in some cases,

while Cachon et al. (2017) and Hu and Zhou (2017) show that in many cases it reasonably
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approximates platform profit with a dynamic commission.

The purpose of this paper is to determine whether the modeling differences between the

classic two-sided market literature and the emerging gig-economy are significant. Since much

extant gig-economy work focuses on the performance of the fixed commission contract, my

outcome of interest is the profitability of a fixed commission relative to a state-dependent

commission. I consider a platform that faces two states of the world, which are distinguished

by their latent demand (i.e. the number of customers demanding a free service) and latent

supply (i.e. the number of providers offering service for an infinite wage). I restrict my

attention to markets where the peak state has (i) higher latent demand than the off-peak

state, (ii) insufficient latent supply to satisfy latent demand, and (iii) relatively less latent

supply than the off-peak state. This captures a common dynamic faced by gig-economy

platforms. For example, Uber notoriously faces dramatically higher peak demand, during

which passengers must (i) wait for a ride and (ii) wait longer for a ride, indicating capacity

is both scarce and scarcer than during off-peak hours Hall et al. (2015). I use latent demand

and supply to measure three sources of imbalance: demand imbalance across states, supply

scarcity imbalance across states, and the imbalance between supply and demand within the

peak state. It is natural to expect the fixed commission to perform well both in settings

with little imbalance and also in settings with extreme imbalance, which cause the platform

to effectively serve just one state. The analysis that follows will demonstrate the extent to

which this intuition is correct.

In this context, I construct a model of a gig-economy platform and a corresponding model

of a two-sided market platform. I derive for each model the best price and commission

structure with and without the fixed commission restriction. I show that the inclusion of

inter-agent competition and capacity constraints cause the gig-economy platform to match

supply and demand, whereas a two-sided market platform has no such objective. The prof-

itability of matching supply and demand causes the fixed commission to respond differently

to sources of imbalance with the gig-economy model than with the two-sided market model.
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In particular, fixed commission performance depends on both between-state imbalances and

within-state imbalance with the gig-economy model, while only depending on between-state

imbalances with the two-sided market model. Numerically I show that, unexpectedly, the

gig-economy fixed commission performs better with large demand imbalance across states

and large peak supply scarcity than with small demand imbalance and small peak supply

scarcity. This stands in contrast to the two-sided market fixed commission, which is in-

different to large and small demand imbalance and is independent of peak supply scarcity.

Finally I show that, while the conditions that cause poor fixed commission performance dif-

fer across models, the fixed commission generally performs nearly optimally. Hence, it is not

the efficacy of the fixed commission that distinguishes the gig-economy but the conditions

that reverse this result.

3.2. Model

In platform economics, the platform coordinates the actions of independent agents. In the

setting of interest, agents fall into two categories: on one side are customers demanding

service, on the other are service providers. Service providers are equally able to serve each

customer and customers do not have preferences over service providers. Let J denote the

set of states of the world, indexed by subscript j. The platform’s challenge is to manage

the number of service providers and customers in each state of the world. The platform

does this by charging a price, pj , to customers and by offering a commission, βj , to service

providers. Service providers earn βjpj per service.

Customers have heterogeneous valuations for the service. Customers enjoy this value and

pay the platform’s price each time they transact with a service provider. Denote by φDj

the number of transactions a customer expects to have with service providers. Service

providers have heterogeneous costs of making themselves available to serve customers. Ser-

vice providers earn a percentage of the price paid per interaction with a customer but incur

the same cost regardless of the number of interactions with customers. For example, Uber

drivers are only matched to customers nearby, so Uber drivers must already be on the road
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to be matched with a passenger. Consequently, drivers incur their opportunity cost of time

independently of the number of passengers they serve. Denote by φSj the number of trans-

actions a service provider expects to have with customers. Then a customer with valuation

v demands service in state j if

(vj − pj)φDj ≥ 0

and a service provider with cost c offers service in state j if

βjpjφ
S
j − c ≥ 0.

The platform earns its margin on each transaction between a customer and a service

provider. The platform wishes to maximize its profit, π, which is the product of its margin,

(1− βj)pj , and the volume of transactions, Vj :

π
.
=
∑
j∈J

(1− βj)pjVj .

The purpose of this analysis is to compare the platform’s performance using the definition

of transaction volumes in a gig-economy setting versus in a traditional two-sided market

setting. With a classic two-sided market model, the volume of transactions a customer

(service provider) has is linearly increasing in the number of active service providers (cus-

tomers), and the total number of transactions from which the platform profits is the product

of the populations on either side of the market. In contrast, a gig-economy model captures

a service provider’s capacity constraint (normalized to a single customer), and a customer’s

desire for a single service. Agents in the gig economy respond the volume of other-side

agents through its effect on the probability of that the agent is successfully matched.

Of particular interest to the emerging literature studying gig-economy operations is the

performance of a fixed commission (e.g. Bai et al. (2016), Banerjee et al. (2015), Cachon

et al. (2017), Hu and Zhou (2017)). With a fixed commission, the platform restricts its
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wage in state j to be constant multiple, β, of price. This interest is motivated by the

prevalence of this pricing scheme in practice (e.g. Uber, Airbnb, Postmates). The analysis

below echoes this interest. In each setting (e.g. gig-economy, two-sided market), I analyze

the model with and without the fixed commission restriction.

The analysis below is based on the following standard assumptions. Let dj denote latent

demand, the mass of customers interested in service were service free in state j. Assume

that customer valuations are independent and identically distributed with cumulative dis-

tribution function F and probability density function f . Let sj denote latent supply, the

mass of service providers willing to serve if the wage were infinite in state j. Assume that

service provider costs are independent and identically distributed with cumulative distri-

bution function G and probability density function g. Then demand for service in state

j is Dj = djF̄ (pj) and supply of service in state j is Sj = sjG(βjpjφj). I further as-

sume F (0) = G(0) = 0, and f and g are log-concave, which characterizes many common

distributions (for more details, see Bagnoli and Bergstrom (2005)).

Let us assume that the platform faces only two states of the world, called “low” and “high.”

In the high state, the platform faces higher demand than in the low state and has insufficient

capacity to satisfy demand, i.e. dl < dh and sh < dh. Furthermore, capacity is relatively

less available in the high state, i.e. sh/dh < sl/dl. This captures a common dynamic faced

by gig-economy platforms. For example, Uber notoriously faces dramatically higher peak

demand, during which passengers must (i) wait for a ride and (ii) wait longer for a ride,

indicating that capacity is both scarce and scarcer than during off-peak hours (Hall et al.,

2015). The following parameters, all of which belong to the interval [0, 1], measure a source

of imbalance for the platform:

α
.
= dl/dh

ρ
.
= sh/dh

γ
.
=
sh/dh
sl/dl

.
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The first measures imbalance in latent demand across states; the second measures imbalance

in latent supply and demand in the high state; the third measures the imbalance in latent

supply scarcity across states. It is natural to expect the fixed commission to perform well

both in settings with little imbalance and also in settings with extreme imbalance, which

cause the platform to effectively serve a single state. In the analysis that follows, I identify

the role that each of these parameters play in the performance of the fixed commission.

3.3. Gig Economy

In the gig-economy, customers demand a single service and service providers cannot serve

more than one customer. The platform randomly matches available service providers to cus-

tomers requesting service. Customers and service providers must decide whether to request

service and make themselves available to serve, respectively, in advance of matching. Conse-

quently, φDj = min{Sj/Dj , 1} is the probability that a customer receives service (conditional

on being willing to pay pj). Similarly, φSj = min{Dj/Sj , 1} is the probability that a service

providers receives a customer to serve (conditional on being available). As described above,

Dj = djF̄ (pj) and Sj is implicitly defined by the relationship Sj = sjG(βjpj min{Dj/Sj , 1}).

The platform profits from the total volume of matches, Vj = min{Dj , Sj}.

First consider the solution to the platform’s optimal price and commission decision. As

described in Proposition 3, at optimal the platform uses price to match supply and demand

in every state of the world. The platform’s resulting objective is quasiconcave in βj with a

guaranteed interior solution.

Proposition 3. The platform’s optimal price and commission structure is uniquely defined

by poj and βoj satisfying the following conditions:

djF̄ (poj) = sjG(βoj p
o
j)

(1− βoj )poj = G(βoj p
o
j)/g(βoj p

o
j) + F̄ (poj)/f(poj)

Notice that the platform’s choice of commission depends on the state only through poj .
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Consequently, if poj does not vary across states, then the commissions in all states are equal.

Corollary 1. The fixed commission is optimal if sj/dj = s−j/d−j∀j.

Stated differently, the platform chooses a fixed commission when γ = 1. If there is no

variation across states in latent supply scarcity, then the platform has no use for a dynamic

commission. This is a direct result of the platform’s desire to match supply and demand in

each state.

It is, however, common for a platform to experience such imbalance in supply scarcity across

states. If the platform were restricted to offer the same commission in every state even with

γ < 1, then the platform’s price and commission structure is described by the following:

Proposition 4. There exists an optimal commission, βc in the interval [minj{βoj },minj{βoh}].

For any βc, the platform’s chooses price to be pcj, which is uniquely defined by

max{p̂(sj/dj , βc), p∗}

where p̂(sj/dj , β) : Dj = Sj and p∗ = F̄ (p∗)/f(p∗).

The best fixed commission ensures that demand is satisfied in each state of the world while

offering a commission no smaller than the smallest dynamic commission but no larger than

the largest dynamic commission. While there exists a special case in which a platform expe-

riences no profit loss from fixing its commission, in general the fixed commission restriction

costs the platform something. Existing literature demonstrates that in many cases this cost

is not too great (e.g. Cachon et al. (2017), Hu and Zhou (2017)). However, the literature

also demonstrates that a platform can lose nearly half of its possible profit by choosing to

fix its commission (Cachon et al., 2017). In the analysis that follows, I will illustrate which

market conditions make the fixed commission costly. In particular, I will study the effect

of different measures of imbalance, α, γ, and ρ.

Define platform profit with and without the fixed commission restriction to be πcg and πog
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respectively. Then measure the gap in profit by

Pg
.
= πcg/π

o
g .

Theorem 12. Pg has the following properties:

1. Pg is maximized at extreme an value of α, i.e. α = 0, 1

2. Pg ≥ maxj{πog,j/πog}, which is maximized at an extreme value of γ and ρ

The first result parallels intuition. On the one hand, removing demand imbalance intuitively

improves fixed commission performance. On the other hand, with α = 0, the platform faces

just one state of the world and the fixed commission must be optimal.

The second result provides a bound on fixed commission performance. This bound indicates

that the fixed commission achieves at least half of the platform’s optimal profit. Note that

this bound does not require restrictions like linear demand curve (Cachon et al., 2017) or

concave supply curve (Hu and Zhou, 2017).

Of further interest is the bound’s dependence on γ and ρ. Due to the non-monotonicity of

βoj in γ and ρ, evaluation of Pg’s dependence on those parameters is intractable. Instead,

I turn to the bound in Theorem 12 to illustrate the effect of γ and ρ on fixed commission

performance. Theorem 12 shows that the bound is maximized at an extreme value of γ and

ρ. Again, this parallels the intuition that small imbalances benefit the fixed commission

and large imbalances cause the platform to effectively serve just one state, making the fixed

commission optimal.

3.4. Two-Sided Markets

In the traditional two-sided market literature, an agent’s utility is linearly increasing in the

number of other side agents. This model is tailored to settings in which membership in the

market lasts significantly longer than in a gig-economy market. To see how well this model
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extends to the gig economy, consider the following model. A customer in state j with value

v has utility

(v − pj)Sj

and a service provider with cost c in state j has utility

βjpjDj − c.

This is a special case of the classic model in Rochet and Tirole (2006), where customers

have no membership benefit and providers have no per-transaction benefit beyond their

associated monetary gain. The resulting populations on either side of the market are Dj =

djF̄ (pj) and Sj = sjG(βjpjDj). The volume of transactions from which the platform profits

is then DjSj , so the platform solves

max
p,w

∑
j

(1− βj)pjDjSj .

Proposition 5. As before, define p∗ = F̄ (p∗)/f(p∗). The platform’s optimal price and

commission structure is uniquely defined by poj and βoj satisfying the following conditions:

(1− βoj )pojDj = G(βoj p
o
jDj)/g(βoj p

o
jDj)

poj = p∗

Notice that the optimal price is independent of both the state and the platform’s choice of

commission. This contrasts with the importance of dynamic prices for profit maximization

in the gig-economy model, as demonstrated by Cachon et al. (2017). The state-independence

of optimal price also means the platform offers the same commission in all states when

differences between states are the result of supply side effects.

Corollary 2. A fixed commission is optimal with a classic model if dj = d−j∀j.

Stated differently, the platform elects to offer a fixed commission when α = 1. When states
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are differentiated only based on their latent supply, then the platform has no use for a

dynamic commission. However, platforms typically face variability in latent demand. If the

platform were restricted to offer the same commission in every state while α < 1 then the

platform’s price and commission structure is described by the following:

Proposition 6. There exists an optimal commission, βc in the interval [minj{βoj },maxj{βoj }].

The corresponding best price in state j is pcj = p∗.

The fixed commission restriction does not change the platform’s pricing structure. The

resulting fixed commission balances profit loss in each state and consequently must lie

between the smallest and the largest optimal commission.

Corollaries 1 and 2 indicate that it is possible for a fixed commission to be optimal with

a gig-economy model but not with a two-sided market model, and vice versa. To better

understand the profit gap created by the fixed commission restriction in a two-sided market,

define the profit gap by

Pt
.
= πct/π

o
t

where πct and πot refer to profit with the optimal fixed and dynamic commissions, respec-

tively.

Theorem 13. Pt has the following properties:

1. Pt is maximized by an extreme value of α, i.e. α = 0, 1

2. Pt is maximized by an extreme value of γ

3. Pt is independent of ρ

Theorem 13 illustrates similarities and differences between the performance of the fixed

commission with the gig-economy and the traditional two-sided market model. Like the

gig-economy, the fixed commission performs best at extreme values of α. As before, the

platform effectively faces a single state of the world when α = 0. From Corollary 2, the fixed

commission is optimal when α = 1. Also as in the gig-economy, the fixed commission per-
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formance is maximized at an extreme value of γ. Unlike the gig-economy, the performance

of the fixed commission does not depend ρ. Because the gig-economy platform wishes to

match supply and demand in all states, fixed commission performance depends not only on

the variation in supply scarcity across states but also on the magnitude of the imbalance

in supply and demand within each state. The two-sided market platform, however, does

not seek to match supply and demand. Consequently, the fixed commission’s performance

is independent of within state imbalance, i.e. Pt is independent of ρ. This represents a key

difference in the behavior of the fixed commission with a gig-economy model versus and

two-sided market model.

3.5. Numerical Analysis

To explicitly compare the performance of the fixed commission with a gig-economy model

and a two-sided market model, I construct 104,976 scenarios designed to cover the set of

feasible parameters. Table 7 summarizes the parameter values used in these scenarios. I

normalize dh to 1 and vary the values of dl, sh, and sl by varying the values of α, γ, and

ρ, all of which must belong to the interval [0, 1]. I assume that both consumer demand

and provider cost are distributed according the gamma distribution. Each distribution is

defined by a mean µk and a coefficient of variation CVk, where the subscript denotes the

distribution to which the quantity belongs. For each distribution, the coefficient of variation

ranges from 0 to 1.

Parameters Values

γ {.1, .2, .3, .4, .5, .6, .7, .8, .9, .99}
α {.1, .2, .3, .4, .5, .6, .7, .8, .9, .99}
ρ {.1, .2, .3, .4, .5, .6, .7, .8, .9, .99}
µf {.5, 1, 5}
CVf {.25, .5, .75, .9}
µg {.5, 1, 5}
CVg {.25, .5, .75, .9}

Table 7: A summary of tested parameter values. All combinations of these values constitute
104,976 numerical experiments.

First observe that the gig-economy fixed commission captures most of the profit generated
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by the dynamic commission. Specifically the fixed commission yields 99.58% of optimal

profit on average. This replicates the findings in Cachon et al. (2017) which demonstrate

that, in the gig-economy, the fixed commission is generally a good approximation of platform

profit without the fixed commission restriction.

The efficacy of the fixed commission, however, is not a phenomenon unique to the gig-

economy. The second row in Table 8 demonstrates that the fixed commission also captures

most of the platform’s optimal profit with the two-sided market model, yielding 99.60% of

optimal profit on average.

Both models experience poor fixed commission performance in a minority of cases. The third

row in Table 8 indicates that the conditions that create poor performance with one model

are not the same with the other. Therefore to understand the differences between these

two models, it is necessary to understand the conditions that create poor fixed commission

performance with each model.

Minimum Q1 Median Mean Q3 Maximum

Pg .8876 .9973 .9997 .9958 1.000 1.000
Pt .7289 .9993 .9999 .9960 1.000 1.000

Pg/Pt .8877 .9985 .9999 1.0001 1.0001 1.3690

Table 8: Quartiles and mean of Pg, Pt and Pg/Pt.

To understand these settings, consider the plots in Figure 8. Each illustrates the spectrum

of possible behaviors of fixed commission performance as a function of each measure of

imbalance. Each plot is maximized at an extreme value of the imbalance measure, as

predicted by Theorems 12 and 13. The numerical experiments are useful for identifying

which extreme maximizes fixed commission performance with each model.

Considering the first column, the two-sided market fixed commission is maximized at both

extremes of α. This is consistent with the intuition that little imbalance (i.e. α = 1) pro-

duces good fixed commission performance, and that large imbalance (i.e. α = 0) causes the

platform to focus on only one state of the world, producing good fixed commission perfor-
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Figure 8: Illustrative plots. All plots have µg = 1, CVg = .5, and CVf = .25. In the first
row, curves are defined by {γ, ρ, µf}, where red has {.1, .3, 5}; blue has {.1, .7, 5}; green has
{.6, .3, 5}; black has {.1, .3, 1}. In the second row, curved are defined by {α, ρ, µf}, where
red has {.5, .3, 5}; blue has {.5, .7, 5}; green has {.1, .3, 5}; black has {.5, .3, 1}. In the third
row, curves are defined by {α, γ, µf} where red has {.5, .1, 5}; blue has {.5, .5, 5}; green has
{.1, .1, 5}; black has {.5, .1, 1}.
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mance. The gig-economy fixed commission is maximized at only the latter extreme. This

results from the supply-demand matching that happens in the gig-economy model. Remov-

ing latent demand imbalance across states is insufficient to allow the platform to match

supply and demand with a single price in all states. Said differently, if γ < 1, α = 1 is not

enough to guarantee near-optimal performance of the gig-economy fixed commission. Con-

sequently, the gig-economy fixed commission performs worse with little demand imbalance

than with large demand imbalance.

Similarly, the gig-economy fixed commission is maximized with large peak state supply-

demand imbalance. Though ρ = 1 removes this imbalance, with γ < 1 it is insufficient

to produce near-optimal fixed commission performance. However, small ρ produces small

absolute difference in the prices required to match supply and demand in each state, leading

to near-optimal fixed commission performance. Hence the gig-economy fixed commission

performs worse with little imbalance than with large imbalance. This dependence stands in

contrast to the two-sided market fixed commission, whose performance is independent of ρ.

It is only in γ that fixed commission performance behaves similarly across models. Both

models prefer less imbalance across states in supply scarcity.

Figure 8 demonstrates the following key takeaways. First, two-sided market fixed commis-

sion performance depends only on across-state imbalance. In contrast, gig-economy fixed

commission performance depends both on across-state and within-state imbalance because

of the supply-demand matching required to maximize platform profit in this model. Un-

expectedly, gig-economy fixed commission performance is worse with small imbalance in α

and ρ relative to large imbalance. This is again a result of the gig-economy platform’s need

to match supply and demand; removing demand imbalance or supply-demand imbalance

in the peak state is insufficient to match supply and demand across states. Consequently,

one model cannot predict poor fixed commission performance in the other. This justifies

the study of a model specifically tailored to the gig-economy to understand gig-economy

behavior.
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3.6. Conclusion

In this paper, I build fixed and dynamic commission models in two settings. One uses

traditional two sided markets assumptions (i.e. agent utility grows linearly in other side

agent population, and the platform profits from all possible combinations of agents), while

the other uses assumptions tailored to the gig-economy (i.e. agents are capacity constrained

and compete with each other). Analysis of these models indicates that the difference in

profitability of a fixed commission in one model versus the other is tied to imbalances

in latent supply and demand across and within states. Fixed commission performance

in the two-sided market model depends on between-state variability (and is maximized

in the absence of such variability) and is independent of the mismatch in peak supply and

demand. In contrast, fixed commission performance in the gig-economy model depends both

on between-state differences and within-state differences and, in some cases, improves with

greater mismatches. I numerically show that while both models generally predict near-

optimal fixed commission performance, one model cannot predict poor fixed commission

performance in the other.

This analysis solidifies the position of gig-economy research as distinct from the body of

two-sided market literature. The capacity constraints and inter-agent competition inherent

in the gig-economy create a dependence on within-state mismatches that is absent from the

two-sided market model. Similarly, the profitability in the gig-economy of matching supply

with demand in each state of the world allows fixed commission performance to suffer from

small imbalance in latent demand and peak supply scarcity. These differences cause the

two-sided market model to fail to predict the poor performance in the worst case scenarios

of the gig-economy model. It is therefore all the more important to study the optimal form

of a fixed commission offered by the likes of Uber using a model tailored to the gig-economy.

74



APPENDIX

A.1. Proofs of Chapter 1 Theorems

Proof of Theorem 1

Part 1. ΠL
V ≥ ΠL

A if and only if

a2NE
[

1
C

]2
4(2E

[
1
C

]
+ bNV ar

(
1
C

)
+ bNE

[
1
C

]2 − 1/CH)
≥ a2N

4(E[C] + bN)

E

[
1

C

]2

E[C] + E

[
1

C

]2

bN ≥ 2E

[
1

C

]
+ bNV ar

(
1

C

)
+ bNE

[
1

C

]2

− 1

CH

1

bN
(E

[
1

C

]2

E[C]− 2E

[
1

C

]
+

1

CH
) ≥ V ar

(
1

C

)

From Seaman and Odell (1985), we may bound V ar
(

1
C

)
≤ (1/CL − 1/CH)/4, so the

difference between the voluntary and automated profits maybe expressed by

1

bN
(E

[
1

C

]2

E[C]− 2E

[
1

C

]
+

1

CH
)−

1
CL
− 1

CH

4

and is greater than zero when

E

[
1

C

]
6∈ [y, ȳ] =

[ 1

E[C]
− 1

E[C]

√
1− E[C]K,

1

E[C]
+

1

E[C]

√
1− E[C]K

]
where K = 1

CH
− b( 1

CL
− 1

CH
)2/4. Thus if E

[
1
C

]
≥ ȳ then ΠL

V ≥ ΠL
A.

Part 2. ΠL
A ≥ ΠL

V if and only if

a2N

4(E[C] + bN)
≥

a2E
[

1
C

]2
4(2E

[
1
C

]
+ bNE[ 1

C

2
]− 1/CH)

⇐⇒ 2E

[
1

C

]
+ bNE[

1

C2
]− 1

CH
≥ E

[
1

C

]2

(E[C] + bN)
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By Jensen’s Inequality we know E[ 1
C2 ] ≥ E

[
1
C

]2
. If follows that ΠL

A ≥ ΠL
V if

2E

[
1

C

]
+ bNE

[
1

C

]2

− 1

CH
≥ E

[
1

C

]2

(E[C] + bN)

⇐⇒ 2E

[
1

C

]
− 1

CH
≥ E

[
1

C

]2

E[C]

⇐⇒ 0 ≥ E
[

1

C

]2

E[C]− 2E

[
1

C

]
+

1

CH
. (*)

The final expression is a concave quadratic in E
[

1
C

]
, so we can easily find the range of

E
[

1
C

]
satisfying (*):

E

[
1

C

]
∈ [z, z̄] =

 1

E[C]
−

√
1− E[C]

CH

E[C]
,

1

E[C]
+

√
1− E[C]

CH

E[C]



Clearly E[C] ≤ CH so such a set of E
[

1
C

]
always exists and has a subset in the feasible

range, i.e. z̄ ≥ 1
E[C] . Furthermore, z ≤ 1

E[C] so any feasible E
[

1
C

]
≤ z̄ leads to higher

expected profit under the automated contract than under the voluntary contract.

Finally notice that K ≤ 1/CH . Therefore ȳ ≥ z̄.

Proof of Theorem 2

E[1/C] may be expressed as
∫ CH

CL

1
xg(x)dx. Consider the approximation of E[1/C] =∑

A
1
xA
gA where gA is the discretized version of g. Let us call the support of this dis-

cretized distribution {x−N , x−N+1, ..., x−1, x0, x1, ...xN−1, xN} where x0 is the mean around

which each pair {x−A, xA} is centered. In particular x−A+1− x−A = xA− xA−1 = ∆A ≥ 0

for all A. To maximize this approximation of E[1/C] we solve

maxg

N∑
A=−N

1

xA
gA
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subject to

g−A = gA∀A
N∑

A=−N
= 1

gA ≥ 0∀A

where the first constraint imposes symmetry and the second and third constraints ensure

that the resulting weights for a proper probability distribution. The knapsack nature of this

problem indicates that the program will assign weight either to a single symmetric pair of

points or to the mean. The assignment is determined by the ratio of value in the objective

to cost in the constraint,
1/xA+1/x−A

2 .

The program does not assign weight to the mean if

0 ≤ 1/x1 + 1/x−1

2
− 1/x0

=
1

x0+∆1
+ 1

x0−∆1

2
− 1/x0

=
x0

x2
0 −∆2

1

− 1/x0

= x2
0 − x2

0 + ∆2
1

which is satisfied by the assumption that ∆A ≥ 0∀A.

The program prefers to weight the pair {x−n, xn} over {x−n+1, xn−1} if

1/xn + 1/x−n
2

≥ 1/xn−1 + 1/x−n+1

2
=

1
xn+∆n

+ 1
x−n−∆n

2
.
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This condition simplifies to

xn + x−n
xnx−n

≥ xn + x−n
(x−n + ∆n)(xn −∆n)

=
xn + x−n

x−nxn − x−n∆n + xn∆n −∆2
n

which is satisfied as long as xn ≥ x−n + ∆n which always holds by assumption that ∆A ≥

0∀A.

We conclude that E[1/C] is increasing in the weight placed on symmetric pairs further from

the mean. In other words E[1/C] is increasing in the variance of C. We can generalize this

result by taking the limit as N →∞ and ∆A → 0∀A.

Proof of Theorem 3

We must begin by showing that WL
V ≥ ΠL

V . From Table 1

ΠL
V =

a2NE
[

1
C

]2
4(2E
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1
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+ bNE[ 1

C2 ]− 1
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)
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]
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−
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)
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)2
. (*)

It follows that WL
V ≥ ΠL

V if and only if

(∗) ≤
a2NE

[
1
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]2
2(2E
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1
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+ bNE[ 1

C2 ]− 1
CH
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−
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+ bNE[ 1

C2 ]− 1
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=⇒ bNE[
1

C2
] + E

[
1

C

]
≤ bNE[

1

C2
] + 2E

[
1

C

]
− 1

CH

which is always true because E
[

1
C

]
≥ 1

CH
.

Now that we know that WL
V ≥ ΠL

V , we need only note that WL
A = ΠL

A to complete the

proof. For Part 1, if ΠL
V ≥ ΠL

A = WL
A then surely WL

V ≥ WL
A . Similarly for Part 2, if

ΠL
A = WL

A ≥WL
V then surely ΠL

A ≥ ΠL
V .
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Proof of Theorem 4

Plugging wLj into E[qLIN (wj)] in Table 1 yields

E[qLV (wLV )] =
aE
[

1
C

]2
2(2E

[
1
C

]
+ bNE[ 1

C

2
]− 1

CH
)

E[qLA(wLA)] =
a

2(E[C] + bN)

Reorganizing demonstrates that E[qLV (wLV )] ≥ E[qLA(wLA)] if and only if E[C]−(2− 1
CHE[ 1

C ]
) 1
E[ 1

C ]
≥

bN
V ar( 1

C )
E[ 1

C ]
2 , which is exactly the necessary and sufficient condition for ΠL

V ≥ ΠL
A.

Proof of Theorem 5

Let us call θ = −C where θ is continuous between θL and θH with probability and cumulative

density functions f and F respectively. Given a menu (wV (θ̂), qV (θ̂)) the consumer chooses

his payment and quantity by reporting a type θ̂. The consumer with true type θ has value

from reporting type θ̂:

U(θ̂, θ) = wOV (θ̂) + θqOV (θ̂)2.

The firm must choose the form of the menu (wOV (θ̂), qOV (θ̂)) to maximize its profits such that

consumers participate (participation constraint: PC) and report their true types (incentive

compatibility: IC):

maxwV (),qV ()

∫ θH

θL

((a− bNqV (θ))NqV (θ)− wV (θ)N)f(θ)dθ

subject to

U(θ, θ) ≥ U(θ̂, θ) for all θ̂ (IC)

U(θ, θ) ≥ 0 for all θ. (PC)
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This is a standard adverse selection problem for a continuum of types. We may reduce the

continuum of constraints imposed on the firm’s problem to the three below.

Lemma 1. The following three conditions are necessary and sufficient to ensure that the

constraints (IC) and (PC) above hold.

1. wOV (θ) = U(θL, θL) +
∫ θ
θL
qOV (s)2ds− θqOV (θ)2

2. qOV (θ) is non-decreasing in θ

3. U(θL, θL) ≥ 0.

Proof of Lemma 1

Necessity: Suppose (IC) and (PC) hold. Define v(θ) = U(θ, θ). From (IC) U1(θ, θ) = 0 so

v̇(θ) = U2(θ, θ) where the subscript indicates the argument with respect to which a partial

derivative is taken. U2(θ, θ) = q(θ)2 so integrating

v(θ)− v(θL) =

∫ θ

θL

v̇(θ) =

∫ θ

θL

q(s)2ds

and then plugging in the expression for v(θ)

w(θ) + θq(θ)2 − v(θL)− v(θL) =

∫ θ

θL

q(s)2ds

which, when reorganized, is condition 1. Also by (IC) the taxation principle holds, i.e.

(w(), q()) ∈ argmaxw + θq2.

The right hand side of the expression above has increasing differences, i.e. δ2(w+θq2)
δθδq = 2q ≥

0, so it follows that q(θ) is non-decreasing in θ.

Sufficiency We want to show that θ ∈ argmaxθ̂U(θ̂, θ) and that q(θ) is non-decreasing in
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θ . Differentiate U with respect to θ̂:

δU

δθ̂
= ẇ(θ̂) + 2θq(θ̂)q̇(θ̂).

We know 2θq(θ̂)q̇(θ̂) ≤ (≥)2θ̂q(θ̂)q̇(θ̂) for all θ̂ > (<)θ if q(θ) is non-decreasing in θ which

implies

δU(θ̂, θ)

δθ̂
= ẇ(θ̂) + 2θq(θ̂)q̇(θ̂) ≤ (≥)ẇ(θ̂) + 2θ̂q(θ̂)q̇(θ̂ =

δU(θ̂, θ̂)

δθ̂
= 0

for all θ̂ < (>)θ where the final relationship follows from the assumption that condition (1)

holds at θ̂. We have shown that U(θ̂, θ) is pseudoconcave in θ̂ with unique maximizer θ̂ = θ,

implying (IC) is satisfied.

We may then write the firm’s problem as

maxwV (),qV ()

∫ θH

θL

((a− bNqV (θ))NqV (θ)−NwV (θ))f(θ)dθ (A.1)

subject to

wOV (θ) = U(θL, θL) +

∫ θ

θL

qOV (s)2ds− θqOV (θ)2

δqOV (θ)

δθ
≥ 0

U(θL, θL) ≥ 0.

Plugging the expression for wOV (θ) into (A.1):

maxqV (),U(θL,θL)

∫ θH

θL

(
aNqV (θ)−bN2qV (θ)2−N

(
U(θL, θL)+

∫ θ

θL

qV (s)2ds−θqV (θ)2
))
f(θ)dθ

(A.2)

Notice that (A.2) is linearly decreasing in U(θL, θL) so at optimum UL(θL, θL) = 0. Now

81



let us address the problem of the double integral in (A.2). Integrating by parts:

∫ θH

θL

(

∫ θ

θL

qV (s)2ds)f(θ)dθ =

[ ∫ θ

θL

q2
V (s)dsF (θ)

]θH
θL

−
∫ θH

θL

qV (θ)2F (θ)dθ =

∫ θH

θL

(1−F (θ))qV (θ)2dθ

which allows us to rewrite the firm’s problem as

maxqV ()

∫ θH

θL

((
aNqV (θ)− bN2qV (θ)2 + θNqV (θ)2

)
f(θ)−N(1− F (θ))qV (θ)2

)
dθ (A.3)

subject to

dqOV (θ)

dθ
≥ 0.

Maximizing pointwise, we find that the solution to the relaxed problem satisfies its con-

straint when θ has a non-decreasing failure rate.

A.2. Proofs of Chapter 2 Theorems

Proof of Theorem 6. With a fixed contract the platform chooses p, w, and N . Price can

be selected from one of two regions, corresponding to whether demand is served in both

demand states or only in the high-demand state: p < al and al ≤ p < ah. We consider each

region separately. Suppose p < al. The platform’s expected profit is

U =


(p− w)G(w)N G(w)N ≤ al − p

(p− w)((al − p)fl +G(w)Nfh) al − p ≤ G(w)N ≤ ah − p

(p− w)((al − p)fl + (ah − p)fh) ah − p ≤ G(w)N
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and the utilization of a provider is implicitly defined by φj = min{1, (aj − p)/NG(φjw)}.

The provider’s expected profit conditional on joining in period 1 is Π,

Π =



∫ w
0 G(c)dc G(w)N ≤ al − p∫ φlw
0 G(c)dcfl +

∫ w
0 G(c)dcfh al − p ≤ G(w)N ≤ ah − p∫ φlw

0 G(c)dcfl +
∫ φhw

0 G(c)dcfh ah − p ≤ G(w)N

The best contract does not exist exclusively in the first domain of the provider profit function

- U strictly increases in N while Π is independent of N , so N must be at least (al−p)/G(w).

The optimal solution does not exist exclusively in the third domain of the provider profit

function - φj is decreasing in N , so decreasing N allows w to be decreased, strictly increasing

U . So N must be at most (ah − p)/G(w).

Given the optimal contract is in the second domain of U , the platform’s profit is strictly

increasing in N . This implies that either the provider profit constraint binds, c1 = Π, or the

upper bound on the feasible region binds, NG(w) = ah−p. If the former is not true but the

latter is, i.e. c1 < Π and NG(w) = ah − p , then the platform’s profit is strictly decreasing

in w. As φlw is increasing in w, a reduction in w is feasible (because c1 < Π ), which

increases platform profit, which leads to a contradiction. Thus, if the optimal solution has

p < al, then it must be that al − p = Nφ̄lG(φ̄lw), which, when substituted into U and the

feasible region constraint yields

U = (p− w)(al − p)
(
fl +G(w)fh/

(
φ̄lG(φ̄lw)

))
(A.4)

and

p̄ =
(
G(w)al − φ̄lG(φ̄lw)ah

)
/
(
G(w)− φ̄lG(φ̄lw)

)
≤ p (A.5)

As the platform profit (A.4) is concave in p, the optimal price, subject to the constraint

(A.5), is p = max ((al + w)/2, p̄), which satisfies the p < al constraint as long as w′ < w < al.
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To satisfy the 0 ≤ φ̄l ≤ 1 constraint, it must be that w′ ≤ w ≤ w′′. Thus, a search over

w ∈ [w′,min (w′′, al)] finds the optimal wage.

Suppose al < p < ah. The provider joining constraint is
∫ w

0 G(c)dcfh ≥ c1. The platform’s

expected profit is

U =


(p− w)G(w)Nfh 0 < G(w)N ≤ ah − p

(p− w)(ah − p)fh ah − p ≤ G(w)N

If ah − p < G(w)N , then the platform’s profit is strictly decreasing in w, so the best fixed

contract must satisfy G(w)N ≤ ah − p. In this regime, U is strictly increasing in N, so it

must be that G(w)N = ah− p. Therefore, U = (p−w)(ah− p)fh, which is strictly concave

in p, so the optimal price is p = max{(ah + w)/2, al}. With either price, the platform’s

profit is strictly decreasing in w, so with the optimal contract the optimal wage is w = w′′

because that is the wage, by definition, that results in Π = c1.

Proof of Theorem 7

To simplify notation and without loss of generality, we assume wj is paid for participation

rather than for service - the wj wage paid for participation is equivalent to the wage wj/φj

paid for service. Suppose the platform serves both demand states, i.e. p < al. The provider

joining constraint is

Π(w) =
∑
j

(∫ wj

0
G(x)dx

)
fj ≥ c1

The platform’s profit conditional on aj is

Uj =

 (p− wj)G(wj)N NG(wj) ≤ aj − p

p (aj − p)− wjG(wj)N aj − p < NG(wj)

In an optimal solution with positive profit, either N = (al − p)/G(wl), or N = (ah −

p)/G(wh). To explain, for a particular aj , either N = (aj−p)/G(wj) is optimal or N = 0 is
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optimal. As Uj is linear in N , one of three values for N is selected in the optimal solution:

N = (al− p)/G(wl), or N = (ah− p)/G(wh), or N = 0, but the latter option does not yield

a positive profit.

In an optimal solution the provider profit constraint is binding, i.e. Π = c1. This can be

proven by contradiction. Suppose Π > c1 and (al − p)/G(wl) ≤ (ah − p)/G(wh). As there

are only two possible values for N , the profit in the low state is

Ul =

 (p− wl)(al − p) N = (al − p)/G(wl)

p (al − p)− wlG(wl)(ah − p)/G(wh) N = (ah − p)/G(wh)

With either value of N the platform’s profit is decreasing in wl, but because Π > c1 allows

a reduction in wl, the current solution cannot be optimal. Suppose (ah − p)/G(wh) <

(al − p)/G(wl). Now Uh is decreasing in wh, which contradicts that Π > c1 is optimal.

Thus, in an optimal solution, Π(w) = c1. Define the function wh(wl) to return the unique

wh value such that Π(w) = c1 for the given wl. From the implicit function theorem:

∂wh/∂wl = −q/γ(1− q), where for shorthand q = fl, (1− q) = fh, and γ = G(wh)/G(wl).

In the optimal solution there is no capacity rationing, i.e. N = min {(al − p)/G(wl), (ah − p)/G(wh)} .

This can be proven by contradiction. First suppose in the optimal solution (al−p)/G(wl) <

(ah − p)/G(wh) = N . Then U is decreasing in wl, and so contradicts the initial as-

sumption that the proposed solution is optimal. Second suppose in the optimal solution

(ah − p)/G(wh) < (al − p)/G(wl) = N . Then U is increasing in wl, which contradicts the

assumption that the proposed solution is optimal.

In the optimal solution there is no demand rationing in the low demand state, i.e. N = (al−

p)/G(wl) ≤ (ah−p)/G(wh). To prove this, note that we have already shown that providers

are not rationed in the optimal solution, i.e. either N = (al − p)/G(wl) ≤ (ah − p)/G(wh)

or N = (ah − p)/G(wh) ≤ (al − p)/G(wl). It remains to show that N = (ah − p)/G(wh) <

(al− p)/G(wl) cannot be optimal. Proof by contradiction. Suppose in the optimal solution
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N = (ah − p)/G(wh) < (al − p)/G(wl), i.e. (ah − p)/(al − p) < γ. Differentiate U :

dU

dwl
= −q(p− wl)

(ah − p)
γ2

∂γ

∂wl

Assuming wl < p, it is optimal to increase wl until the constraint (ah − p)/(al − p) < γ

binds, which means demand rationing does not occur in the low demand state.

To demonstrate that wl < p indeed holds in an optimal solution, define wl such that

ah
al

= γ(wl) It follows that (ah − p)/(al − p) < γ can only be satisfied for wl values such

that wl < wl, which implies 1 < ah/al < γ, which implies G(wl) < G(wh), which implies

wl < wh. For the profit function to be positive, one of these wages must be less than the

price, so it follows that in an optimal solution with a positive profit, wl < p.

Given the previous results, the optimal contract is the solution to the following optimization:

maxwl,p U = q(p− wl)G(wl)N + (1− q)(p− wh)G(wh)N

s.t. γ = G(wh)
G(wl)

≤ ah−p
al−p

(A.6)

where wh = wh(wl), and N = (al − p)/G(wl). Given that γ is decreasing in wl and the

right hand side of the constraint (A.6) is increasing in p, there exists a p′, which is possibly

0, such that the constraint is satisfied for all p′ ≤ p ≤ al. As U is concave in p, for a fixed

wl the optimal price is

p = max

{
p′,

al
2

+
(1− q)γwh + qwl
2 ((1− q)γ + q)

}
(A.7)

In the optimal solution wl ≤ w′. This can be proven by contradiction. Assume in the

optimal solution w′ < wl, which implies γ < 1, wh < wl and p′ = 0. Hence, the optimal

price must be p = al
2 + (1−q)γwh+qwl

2((1−q)γ+q) . Differentiation of the platform’s profit function shows
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U to be quasiconcave in wl :

dU

dwl
= (al − p)(1− q)(p− wh)

∂γ

∂wl

which can only be zero if p = wh < wl, but if the price is less than all wages, the platform’s

profit cannot be positive, contradicting the assumption that the solution is optimal. Hence

a search over wl in the range [0, w′] yields the optimal solution.

Suppose the platform only serves high demand, i.e. al < p < ah. This regime is the same

as the high price regime in Theorem 1.

Proof of Theorem 8

Suppose pl < al. Given wage, w, and recruitment, N , in state aj platform profit is

Uj =


(pj − w)G(w)N, G(w)N ≤ aj − pj

(p− w)(aj − pj), aj − pj ≤ G(w)N

In the first region, demand exceeds participation so provider utilization is φj = 1. Con-

sequently changes in p have no impact on the providers’ profit. Platform profit increases

in p, so the platform increases p until G(w)N = aj − pj . Hence, the optimal policy has

aj −NG(w) ≤ pj for all demand states. The platform’s problem is therefore

max
N,pl,ph,w

U = (pl − w)(al − pl)fl + (ph − w)(ah − ph)fh

s.t.

∫ φlw

0
G(c)dcfl +

∫ φhw

0
G(c)dcfh ≥ c1

aj −G(w)N ≤ pj ∀j (A.8)

where φj = min{1, (aj − pj)/NG(φjw)}. Ignoring the constraints, the platform’s profit is a

concave function of each price with unique maximizers p∗j = (aj +w)/2, and p∗j satisfies the

constraint (A.8) for all N̄j ≤ N , where N̄j = (aj − w)/(2G(w)). Because N̄l ≤ N̄h, there
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are three possible regions for N : N < N̄l, N̄l ≤ N ≤ N̄h, N̄h < N .

Show that with the optimal contract, N̄l ≤ N ≤ N̄h. Proof by contradiction. Suppose

N̄h < N . In this case p∗j is feasible for j = l, h, and there is some provider rationing, i.e.

φj < 1. The platform’s profit is independent of N and decreasing in w for all w < al (which

ensures that U > 0). Therefore, N can be decreased, thereby increasing φj , which allows

the platform to lower w. This increases the platform’s profit, contradicting that the policy

is optimal. Suppose N < N̄l. Prices are constrained so that demand and participation

match, i.e. pj = aj − G(w)N . For each demand state, φj = 1. The platform’s profit is

concave in N with maximizer N∗ =
(∑

j∈{l,h} ajfj − w
)
/2G(w) ≥ N̄l, a contradiction.

The optimal price schedule is pl = p∗l and ph = ah − G(w)N , so φl < 1 and φh = 1.

Assuming w < al, the platform’s problem is

max
N,pl,ph,w

U =
(al − w)2

4
fl + (ah −G(w)N − w)G(w)Nfh

s.t.

∫ φlw

0
G(c)dcfl +

∫ w

0
G(c)dcfh ≥ c1 (A.9)

N̄l ≤ N ≤ N̄h

Ignoring constraint (A.9), the platform’s profit is increasing in N over the interval [N̄l, N̄h].

The platform chooses the largest N such that Π ≥ c1 and N̄h ≥ N . Suppose Π > c1 under

the optimal solution. Then N = N̄h, prices are ph = (ah − w)/2 and pl = (al − w)/2 < al,

and the platform’s profit is decreasing for all w < al. Because Π is increasing in w, this

contradicts the optimality of Π > c1. Thus, under the optimal recruitment, Π = c1, which

implies φl = φ̄l and N = al − w/2φ̄lG(φ̄lw). A search over w ∈ [w′,min(al, w
′′)] leads to

the optimal w.

If pl > al then the contract is identical to the high demand-only case in the fixed model.

Proof of Theorem 9. Let wages be a fixed commission, β, of price, i.e. wj = βpj . Let ŵj

be the unique wage that matches supply and demand, i.e. ŵj = β(aj − NG(ŵj)). The
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platform’s expected profit for wj ≤ ŵj is Uj = (1/β − 1)wjNG(wj), which is increasing in

wj . Hence, the optimal wage is at least ŵj . The platform’s expected profit for wj > ŵj is

U = (1/β − 1)wj(aj − wj/β), which is concave in wj . Thus, the profit maximizing wage is

for a given aj is max{w̃j , ŵj}, where w̃j = βaj/2.

Now consider the platform’s optimal recruitment for a given commission. The optimal

wage schedule is a function of recruitment: ŵj ≤ w̃j if and only if aj/2 ≤ NG(ŵj) where

differentiation shows thatNG(ŵj) is an increasing function of N . Define N̄j > 0 to be the

unique recruitment threshold for which ŵj < w̃j if and only if N̄j < N and define provider

utilization given wage w̃j to be φ̃j = aj/2NG(φ̃jw̃j). Then expected profit of a provider for

a given aj is

Πj =


∫ w̃j φ̃j

0 G(c)dc, N̄j < N∫ ŵj

0 G(c)dc, N̄j ≥ N

Notice w̃jφ̃j is a decreasing function of N , so Πj is a monotonically decreasing function of

N . In contrast, the platform’s expected profit from a realization aj is a weakly increasing

function of N :

Uj =


(1− β)a2

j/4, N̄j < N

(1/β − 1)ŵj(aj − ŵj/β), N̄j ≥ N

It follows that the platform chooses recruitment so that Π =
∑

j∈{l,h}Πjfj = c1.

It remains to search over β. Because wj is decreasing in both N and β, we may find an

lower bound on β from maxj wj(N = 0) = ŵh(N = 0) = βah ≥ w′. Search for the profit

maximizing commission on the interval [w′/ah, 1].

Proof of Theorem 10. Suppose the platform selects a price pj and a wage wj for each

demand state aj to maximize the system’s profit (the sum of platform and provider surplus).

Although the platform makes two decisions for each demand state, it is possible to reduce

this to a single decision because it is never optimal to choose a price/wage combination

such that demand doesn’t exactly match supply: if demand exceeds supply, system profits
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can be increased by raising the price; and if demand is less than supply, system profit can

be increased by decreasing the wage. Hence, for any demand state aj , the price and wage

selected must satisfy NG(wj) = aj−pj . Let Sj(pj(wj), wj) be the system’s expected profit

given a wage and demand realization:

Sj(pj(wj), wj) = (aj−pj)(pj−wj)+N
∫ wj

0
G(c)dc = NG(wj)(aj−NG(wj)−wj)+N

∫ wj

0
G(c)dc

The system’s expected profit, including the cost of having N providers join, is S(wj , N) =

Sl(wl)fl + Sh(wh)fh −Nc1. Because Sj(wj) is quasi-concave, there exists a unique w∗j that

maximizes system profit for each demand state aj : w
∗
j +2NG(w∗j ) = aj , which is decreasing

in N . Changing N affects system surplus:

dS
dN =

∑
j

(
G(w∗j )(aj − 2NG(w∗j )− w∗j ) +

∫ w∗j
0 G(c)dc

)
fj − c1 =

∑
j

(∫ w∗j
0 G(c)dc

)
fj − c1

∂2S
∂N2 =

∑
j

∂w∗j
∂N G(w∗j )fj < 0

.

Thus, system profit is concave in N and there exists a unique N∗ that maximizes system

profit. With N = N∗ providers earn their minimum profit, i.e. Π(N∗) = c1. It follows

that the system optimal solution is also the contract that maximizes the platform’s profit

subject to Π ≥ c1. Finally, a series of substitutions yields p∗j = w∗j (1 +NG(w∗j )/w
∗
j ).

The optimal contract yields a bound on the largest feasible provider reservation price. As

c1 becomes large, the platform extracts all surplus from consumers by charging p∗j → aj

and passes all profit to providers via w∗j → aj . The platform earns weakly positive profit

and providers earn
∑

j∈{l,h}
∫ aj

0 G(c)dcfj . Then the largest c1 for which the platform can

feasibly operate is

c̄1 =
∑

j∈{l,h}

∫ aj

0
G(c)dcfj . (A.10)

Proof of Theorem 11

1. As c1 approaches c̄1, the optimal contract parameters behave as follows: No → 0,
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woj → aj , p
o
j → aj . Similarly, under the commission contract, N → 0. Consequently,

N < N̄j ∀j, so wj = β(aj − NG(wj)) → βaj and providers are fully utilized. To

maintain feasibility, the platform must choose β → 1, which recovers the optimal

contract.

2. As c1 approaches 0, the optimal contract parameters behave as follows: No → ∞,

woj → 0, poj → aj/2. Similarly, under the commission contract, the payment to

providers approaches zero and N → ∞. Consequently, N > N̄j ∀j, so wj = ajβ/2,

which implies pj = aj/2. N → ∞ causes φ̄j → 0, so the per participation payment

(ajφ̄jβ)/2→ 0, which recovers the optimal contract.

A.2.1. Fixed c2 Model

This part derives the results for the “fixed c2” model. The fixed c2 model is identical

to the main model with the one exception that the participation cost for all providers in

period 2 is fixed at c2. Assume c2 < al (so that the low demand state is viable), and

c1 < fh (ah − al) + al − c2 (so the optimal policy can earn positive profit). For notational

convenience, let a = flal + fhah and ĉ = c2 + c1/fh.

They key difference between the fixed c2 model and the main model is how the providers’

participation cost varies in the number of joining providers, N , who can potentially partici-

pate in period 2. In the fixed c2model each participating provider incurs cost c2 independent

of N. In the main model, because provider participation costs are heterogeneous and in-

dependent across providers, holding the number of participating providers constant, their

average participation cost decreases in N. For example, the average participation cost of the

100 providers with the lowest realized participation costs is lower if they are selected from

a set of N = 1, 000 providers rather than a set of N = 200 providers. Consequently, in the

main model, if the joining cost is small, it is in the interest of the platform to have a large

number of providers join (i.e., large N) because that ensures their average participation

cost will be low among the providers who actually participate. This does not occur in the
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fixed c2 model, which means the platform has a lower incentive to increase the number of

joining providers in that model. Thus, the two models behave differently for low values of

c1.

Participation equilibrium

When there is hetergeneity in participation costs (as in the main model) the equilibrium

participation strategies can be described as a threshold - a provider participates if his/her

participation cost is less than the threshold, otherwise they don’t participate. In contrast,

when participation costs are fixed and common across all providers, providers use a mixed

strategy.

If demand exceeds the number of providers, then all providers participate as long as the

wage they receive exceeds c2 (the participation constraint).

If demand is less than the number of providers in a given state, i.e., aj − pj < N , then

providers must decide whether to participate or not. Let φ be the probability a provider

participates. In equilibrium

φ = min

{(
wj
c2

)(
aj − pj
N

)
, 1

}

To explain, if

c2 ≤ wj
(
aj − pj
N

)
then all providers participate, i.e., φ = 1, even though some are rationed because the

participation constraint is not binding. Otherwise, only a fraction of providers participate

and they all earn 0 profit (i.e., the participation constraint is binding). Provider earnings

are thus

πj = max

{
wj
aj − pl
N

− c2, 0

}
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As in the main model, it is costly for the platform and the system to have excessive par-

ticipation - the platform can increase its wage, but this might have zero impact on the

providers’ earnings because they squander the higher wages with excessive participation

that leads to providers with less than full utilization. Thus, as in the main model, the

platform has the challenge of providing sufficient capacity when demand is high but not too

much capacity when demand is low.

Fixed price

Suppose the platform charges the same price, p, in both demand states and compensates

providers such that their joining constraint is binding, as occurs in the fixed contract in

the main model. Hence, the platform’s costs include c2 for each participating provider

and c1 for each joining provider. This compensation can be achieved with a fixed wage

for service (equal to c2, so that all providers who participate receive demand) and a fixed

salary for joining the platform (equal to c1, to ensure the joining constraint is satisfied).

Alternatively, it can be achieved with a base wage that is paid in all states (equal to c2)

and a supplemental wage that is paid in the high demand state (equal to c1/fh) - in the

main model that would be analogous to the dynamic wage contract. It cannot be achieved

with a fixed wage: unlike in the main model, with a fixed wage some surplus is lost due to

idle providers who nevertheless incur participation costs.

Only three possible strategies can be optimal for the platform, which we describe as “poor

service”, “poor utilization”, and “only high demand”. While optimal prices, profits and

surplus are derived in closed form for each case, simple conditions do not exist to determine

which of the three strategies is optimal for a particular setting. Nevertheless, it is trivial to

compare them numerically.

Case 1: Poor service: p < al, N = al − p

With this strategy demand and price are the same in both states. Hence, there is demand
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rationing in the high demand state. The platform’s profit is

Uf (p) = (al − p)(p− c1 − c2)

The optimal price is

p∗f =
al + c1 + c2

2

and the platform’s resulting profit is

Uf (p∗f1) =
(al − c1 − c2)2

4

Consumer surplus is

Sf (p) =
1

2
fl (al − p)2 +

1

2
fh (ah − p) (al − p)

which yields

S∗f = Sf (p∗f1) =
1

8

(
(a− c1 − c2)2 − f2

h (ah − al)2
)

Case 2: Poor utilization: p < al, N = ah − p

With this strategy the platform matches capacity to demand in the high state. Hence, there

is capacity rationing in the low demand state. The platform’s profit is

Uf (p) = fl(al − p)(p− c2) + fh(ah − p)(p− c2)− (ah − p)c1

The optimal price is

p∗f = min

{
a+ c1 + c2

2
, al

}
and the platform’s resulting profit is (assuming p∗f2 < al)

Uf (p∗f ) =
1

4
(a− c1 − c2)2 − fl (ah − al) c1
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Consumer surplus is

Sf (p) =
1

2

(
fl (al − p)2 + fh (ah − p)2

)
which yields

S∗f = Sf (p∗f ) =
1

8
(a− c1 − c2)2 +

1

2

(
fla

2
l + fha

2
h − a2

)

Case 3: Only high demand: al < p, N = ah − p

With this strategy the platform sets price sufficiently high to only serve demand in the high

state. The platform’s profit is

Uf (p) = fh(ah − p)(p− c2)− (ah − p)c1

The optimal price is

p∗f = max

{
ah + ĉ

2
, al

}
and the platform’s resulting profit is (assuming al < p∗f )

Uf (p∗f ) =
fh
4

(ah − ĉ)2

Consumer surplus is

Sf (p) =
1

2
fh (ah − p) (ah − p)

which yields

S∗f = Sf
(
p∗f
)

=
1

8
fh (ah − ĉ)2

Optimal Contract

The optimal contract specifies a price, pj , and a wage, wj , for each state. For ease of

comparison with the fixed commission contract, the optimal contract can also be defined in

terms of a state-specific price and commission, βj = wj/pj , as is done in this section.
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We begin with several properties that hold for the optimal contract:

• The number of joining providers, N, must equal the highest realized demand. If N

exceeds the highest demand, then it can be reduced and profits weakly increase for

both providers and the platform. If N is less than the highest realized demand, then

in that state an increase in price increases both the platform’s and the provider’s

profit.

• Both demand states are served - the platform and providers are always able to earn

some profit from a demand state conditional on the actions in the other demand state.

• Demand in the high state cannot be strictly lower than demand in the low state, i.e.,

ah − ph < al − pl = N is not optimal. If that were to occur, then the optimal prices

are pl = (al + ĉ) /2 and ph = (ah + c2) /2. But with those prices, demand in the

high demand state is greater than demand in the low demand state, contradicting the

original assumption.

Two possibilities for the optimal contract remain (all serving demand in both states). If

c1 < fh (ah − al) then the optimal contract yields al − pl < ah − ph = N , otherwise with

the optimal contract al − pl = ah − ph = N . In the later case, the optimal contract can be

implemented with a single commission rate, i.e., βl = βh = β.

Case 1: al − pl < ah − ph

Assume with the optimal contract al − pl < ah − ph (meaning that there can be capacity

rationing in the low demand state), all participating providers in the low demand state are

fully utilized (thereby there is no loss of system value due to idle providers), providers earn

zero profit in the low-demand state, all providers participate in the high demand state and

providers earn c1/fh in the high demand state. If such a contract is found, then it is an

optimal contract for the platform because it maximizes system surplus while the providers’

joining constraint is binding (i.e., providers earn their minimum requirement).
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To construct the desired contract, the participation constraint in the low-demand state

should bind, i.e., βlpl = c2 so that precisely al − pl providers participate (and all of them

are fully utilized). The joining constraint is then

c1 ≤ Π = fl (βlpl − c2) + fh (βhph − c2)

or

ĉ ≤ βhph

which should also bind, i.e., βh = ĉ/ph.

Under these conditions, the platform’s profit can be written as

Uo = fl (pl − c2) (al − pl) + fh (ph − ĉ) (ah − ph)

The optimal prices and commission rates are

pol = al+c2
2

poh = ah+ĉ
2

βol = 2c2
al+c2

βoh = 2ĉ
ah+ĉ

The resulting profit is

Uo =
fl
4

(al − c2)2 +
fh
4

(ah − ĉ)2

The original assumption that demand in the high state is greater than demand in the low

state requires

al − pl < ah − ph

or

c1 < fh (ah − al)
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Note that βoh is increasing in c1, while βol is constant, and βoh < βol for low values of c1. In

particular, βol ≤ βoh when

(
c2

al

)
fh (ah − al) ≤ c1 < fh (ah − al)

Case 2: al − pl = ah − ph

In the second form of the optimal contract al − pl = ah − ph, meaning that there isn’t

capacity rationing in either state. The platform operates under several constraints

c2 ≤ βlpl

c2 ≤ βhph

c1 ≤ fl (βlpl − c2) + fh (βhph − c2)

pl = ph − (ah − al)

pl ≤ al

ph ≤ ah

The first two are participation constraints, the third is the joining constraint, the fourth

ensures that demand is equal in both states and the last two ensure demand is served in

both states. By removing redundant constraints, the above set can be written as

c2/βl + (ah − al) ≤ ph

c2/βh ≤ ph
c1+c2+flβl(ah−al)

flβl+fhβh
≤ ph

ph ≤ ah

The first two are the participation constraints, the third is the joining constraint and the

fourth ensures demand is positive in the high state.

Assume the platform can find commission rates such that the participation and joining

constraints are satisfied and the joining constraint is binding. In that case, the platform’s
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profit is

Uo = fl (pl − c2) (al − pl) + fh (ph − c2) (ah − ph)− c1 (ah − ph)

= (ah − ph) (ph − c1 − c2 − (1− fh) (ah − al))

The resulting optimal prices are

poh = 1
2 (ah + c1 + c2 + (1− fh) (ah − al))

pol = 1
2 (al + c1 + c2 − fh (ah − al))

and the resulting profit for the platform is

Uo =
1

4
(flal + fhah − c1 − c2)2

It is possible to achieve the optimal profit with different commission rates in both states

because in both states the commission rate serves to transfer profit to the providers (so that

the joining constraint is satisfied) without the concern of idle providers (because N equals

demand in both states). However, it is also possible to achieve the optimal profit with a

single commission rate. Assuming βl = βh = β, the joining constraint and the solution for

poh yields the optimal commission:

βo =
2 (c1 + c2)

a+ (c1 + c2)

Finally, the ph < ah constraint implies c1 + c2 < a, which can be written as

c1 < fh (ah − al) + al − c2
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Consumer Surplus

Consumer surplus is

So(pl, ph) =
1

2
fl (al − pl)2 +

1

2
fh (ah − ph)2

which yields with the optimal prices

So = So(p
o
l , p

o
h) =


sl(c1) c1 < fh (ah − al)

sh(c1) fh (ah − al) < c1

where

sl(c1) =
1

8

(
fl (al − c2)2 + fh (ah − ĉ)2

)
and

sh(c1) =
1

8
(a− c1 − c2)2

Proof of Proposition 1

Each subsection compares consumer surplus with one of the three fixed-price strategies to

the optimal contract. Switching from the fixed price contract to the optimal contract de-

creases consumer surplus only when the fixed-price strategy implements the poor utilization

version (i.e., capacity is rationed). Otherwise, switching to the optimal contract increases

consumer surplus.

Case 1: Poor service

Consumer surplus with the optimal pricing strategy is greater than a single-price strategy

with demand rationing.
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The optimal surplus is greater when fh (ah − al) < c1 because clearly

S∗f < sh(c1).

Now assume c1 ≤ fh (ah − al). Define

y (c1) =
1

8
(a− c1 − c2)2

Clearly

S∗f < y(c1)

so it is sufficient to show that

y(c1) ≤ sl(c1)

To see this, note that

y (fh (ah − al)) = sl (fh (ah − al))

and

0 >
∂y(c1)

∂c1
>
∂sl(c1)

∂c1

Case 2: Poor utilization

Consumer surplus with the optimal contract is less than a fixed-price contract with capacity

rationing.

The result, So < S∗f , clearly applies when fh (ah − al) < c1.

Now assume c1 ≤ fh (ah − al). First note that

sl(0) < S∗f (0)
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and

sl(fh (ah − al)) < S∗f (fh (ah − al))

To confirm that sl(c1) < S∗f (c1), note that

0 >
∂S∗f
∂c1

>
∂sl(c1)

∂c1

Case 3: High demand only

Straightforward algebra and the constraint c1 + c2 < al demonstrates that the optimal

contract increases consumer surplus relative to the fixed contract that only serves high

demand.

Fixed commission

Let β be the fixed commission the platform pays in both states.

It is possible to quickly rule out several cases for the fixed commission contract. It is not

optimal to serve only low demand: Given prices and β for a low demand case, it is always

possible to find a ph that generates some high-state demand and therefore higher profit. It

is also intuitive that it is not optimal to choose parameters such that low demand exceeds

high demand. Three possible versions of the optimal fixed commission contract remain.

Case 1: Only high demand

Suppose the platform chooses a commission rate such that it abandons the low demand

market. For example, if β < c2/al then al < pl is required for participation, which is clearly

not profitable. This may occur because the joining cost is sufficiently low, which means the

platform’s optimal commission is small.
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The platform profit is then

Uβ = fh (1− β) ph (ah − ph)

s.t. c2 ≤ βph

ph ≤ ah

c1 ≤ Π

The combination of the constraints yields

ĉ/β ≤ ph ≤ ah

The optimal price and commission rates are

p∗h = ah+ĉ
2

β∗ = 2ĉ
ah+ĉ

and the resulting platform profit is

Uβ = fh
(ah − ĉ)2

4

For the platform to not be willing to partcipate in the low demand market, it must be that

the price that induces participation is so high that it also yields zero demand, i.e.,

al ≤
c2

β∗

which can be written as

c1 ≤ fhc2

(
ah

2al − c2
− 1

)
Hence, the fixed commission contract ignores low demand only when the joining cost is

sufficiently low.

Case 2: High demand exceeds low demand
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There are two versions of the contract that have high demand exceeding low demand. In

the first, the joining constraint is binding. If this contract exists, it is the optimal fixed

commission contract. In the second, the joining constraint does not bind. The first is

analytically tractable but the second is not. Nevertheless, the first provides a lower bound

on the platform’s fixed commission profit.

Subcase 1: Binding joining constraint

Let’s derive a fixed commission contract in which there is no welfare loss in the low demand

state and the joining constraint is binding, i.e.,

βpl = c2

and

ĉ = βph

If this contract exists, conditional that demand is served in both states, then it is the

optimal fixed commission contract because surplus is maximized and the provider’s profit

is minimized.

The pl ≤ al constraint implies

c2

al
≤ β

The ph ≤ ah constraint implies

ĉ

ah
≤ β

The al − pl < ah − ph constraint implies

c1

fh (ah − al)
< β
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It can be shown that the first constraint, pl ≤ al, is the most restrictive of the three if

c1 <

(
c2

al

)
fh (ah − al)

and the third constraint, al − pl < ah − ph, is the most restrictive of the three if

(
c2

al

)
fh (ah − al) < c1

The platform’s profit can be written as

Uβ = fl (c2/β − c2) (al − c2/β) + fh (ĉ/β − ĉ) (ah − ĉ/β)

=
(

1−β
β

)(
flc2al + fhĉah −

flc
2
2+fhĉ

2

β

)
The platform’s profit function is quasi-concave in β and the optimal β is

β∗ =
2
(
flc

2
2 + fhĉ

2
)

flc2al + fhĉah + flc
2
2 + fhĉ2

The resulting profit is

Uβ =
(flc2al+fhĉah−flc22−fhĉ2)

2

4(flc22+fhĉ2)

= (flc2(al−c2)+fhĉ(ah−ĉ))2

4(flc22+fhĉ2)

Note that as fh → 1 then β∗approaches the optimal contract high-demand commission,

βoh. And as fh → 0 then β∗approaches the optimal contract low-demand commission, βol .

Thus, min {βol , βoh} ≤ β∗ ≤ max {βol , βoh}. As with the optimal contract, there are no idle

providers, providers earn zero in the low-demand state, and providers earn c1/fh in the

high-demand state. However, this fixed commission contract is not optimal because either

pl is too low and ph is too high (when βol < βoh) or pl is too high and ph is too low (when

βoh < βol ).
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If

c1 =

(
c2

al

)
fh (ah − al)

then

β∗ =
2c2

al + c2

which yields the optimal profit.

If

c1 <

(
c2

al

)
fh (ah − al)

then the constraint to satisfy is pl ≤ al, which is written as

c2

al
≤ β∗

If (
c2

al

)
fh (ah − al) < c1

then it must be that

c1

fh (ah − al)
< β∗ <

2ĉ

ah

The lower bound is needed to satisfy al−pl < ah−ph. The upper bound is needed to ensure

that it is optimal for the platform to make the joining constraint bind with β∗. To explain,

for a fixed β the optimal ph is ah/2, whereas the ph that makes the joining condition bind

is ĉ/β∗. Hence, for the joining constraint to bind in the optimal solution it must be that

ah/2 ≤ ĉ/β∗.

Subcase 2: Non-binding joining constraint

Let’s derive a fixed commission contract in which there is no welfare loss in the low demand

state and the joining constraint is NOT binding, i.e.,

βpl = c2
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and

ĉ < βph

The platform may choose this contract because it does not want to abandon the low demand

state, but doing so requires a relatively high commission to ensure participation, and that

high commission leaves providers with more than enough surplus in the high demand state

to cover their joining constraint.

The platform’s profit is

Uβ = fl (c2/β − c2) (al − c2/β) + fh (1− β) ph (ah − ph)

The optimal ph is ah/2, leaving the platform profit to be

Uβ = (1− β)
(
fl (c2/β) (al − c2/β) + fh

(
a2
h/4
))

It is possible to show that Uβ is quasi-concave in β, but a closed form solution is messy:

∂Uβ
∂β

=
(2− β) c2

2fl − flalβc2 − fh
(
a2
h/4
)
β3

β3

Case 3: High demand equals low demand

This contract mimics the optimal contract with equal demand in both states.

The platform’s profit is

Uβ = fl (pl − c2) (al − pl) + fh (ph − c2) (ah − ph)− c1 (ah − ph)

= (ah − ph) (ph − c1 − c2 − (1− fh) (ah − al))
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The resulting optimal prices are

p∗h = 1
2 (ah + c1 + c2 + (1− fh) (ah − al))

p∗l = 1
2 (al + c1 + c2 − fh (ah − al))

The condition ph ≤ ah and the joining constraint require

βfh (ah − al) ≤ c1 ≤ fh (ah − al) + al − c2

The optimal profit is

Uβ = (fl(al−c2)+fh(ah−ĉ))2
4

The optimal fixed commission is

β∗ =
2 (c1 + c2)

a+ (c1 + c2)

As β∗ is concave and increasing in c1, there exists a ĉ1 such that the condition for this

contract, βfh (ah − al) ≤ c1, is satisfied for all ĉ1 ≤ c1. Note that ĉ1 < fh (ah − al) .

Proof of Proposition 2

Our interest is to derive a lower bound on the performance of the fixed commission con-

tract relative to the optimal contract. To begin, there are conditions in which the fixed

commission is optimal. For example, if

c1 =

(
c2

al

)
fh (ah − al)

then

β∗ = βol = βoh.

In this case the parameter values align such that in the optimal contract it turns out that

the fixed commission rates are identical in the two states. We suspect a comparable result
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would not extend to the case of multiple demand states. So this is viewed as a special case

with less interest (i.e., less generality).

The fixed commission contract is also optimal if

fh (ah − al) < c1 ≤ fh (ah − al) + al − c2

To explain, these are situations in which the joining cost is sufficiently high that even with

the optimal contract it is not desirable to serve more customers in the high demand state

(though they are charged a higher price). Consequently a single commission rate is sufficient

to maximize the platform’s profit. This is likely to be generally true even with multiple

demand states.

Our interest is to derive a lower bound on the ratio of fixed commission to optimal platform

profits, Uβ/Uo. Thus, we assume c1 < fh (ah − al)in the subsequent discussion because

those are the cases in which Uβ < Uo.

In the fixed c2 model it is possible to evaluate the profit functions for the entire parameter

space. We observe that the ratio Uβ/Uo is minimized with either c2 → 0 or c1 → 0.

Therefore, we derive the bound for those two cases. Furthermore, because we do not have

a closed form solution for Uβ when the high demand exceeds low demand but the joining

constraint is not binding, we use the comparable solution with a binding joining constraint

as a lower bound. Hence, for those situations are derived lower bound is not tight. We

observe in most situations our bound is indeed tight.

We derive the lower bound in two cases, c2 → 0 or c1 → 0. Consider the c2 = 0 case first.

With the optimal policy,

Uo (c2 = 0) = fl
4 a

2
l + fh

4 (ah − c1/fh)2
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With the fixed commission contract and only-high demand or with 0 < al − pl < ah − ph,

Uβ (c2 = 0) = fh
(ah−c1/fh)2

4

With the fixed commission contract and 0 < al − pl = ah − ph :

Uβ (c2 = 0) = (flal+fh(ah−c1/fh))2

4

The fixed commission profit is

Uβ = max

{
fh (ah − c1/fh)2

4
,
(flal + fh (ah − c1/fh))2

4

}
(A.11)

For notational convenience, let x = ah − c1/fh. Note that the constraint c1/fh < ah − al

implies al < x. The first term of A.11 is the optimal fixed commission, when

al

(
1− fh√
fh − fh

)
< x

The profit ratio is

Uβ
Uo

=
fh(ah−c1/fh)2

4
fl
4 a

2
l + fh

4 (ah − c1/fh)2

which can be written as

Uβ
Uo

=
fhx

2

fla
2
l + fhx2

which is increasing in x. Hence the profit ratio is minimized at the lower bound of the

feasible region for x. Simplification of the lower bounds yields

min

{
Uβ
Uo

}
=

1

2

(
1 +

√
fh

)
. (A.12)

The second term in A.11 is the optimal fixed commission profit when

x < al

(
1− fh√
fh − fh

)
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and the ratio of the fixed commission profit to the optimal profit is

Uβ
Uo

=
(flal+fh(ah−c1/fh))2

4
fl
4 a

2
l + fh

4 (ah − c1/fh)2

which can be written as

Uβ
Uo

=
(flal + fhx)2

fla
2
l + fhx2

which is decreasing in x. Hence the minimum ratio occurs at the upper bound of x. After

simplification, the lower bound matches (A.12). Thus, (A.12) is a lower bound for the case

c2 = 0.

Now let’s consider the c1 = 0 case. With the optimal policy,

Uo (c1 = 0) = fl
4 (al − c2)2 + fh

4 (ah − c2)2

With the fixed commission contract and only-high demand

Uβ (c1 = 0) = fh
(ah−c2)2

4

With the fixed commission contract and 0 < al − pl < ah − ph or 0 < al − pl = ah − ph,

Uβ (c1 = 0) = (fl(al−c2)+fh(ah−c2))2

4

Thus, the fixed commission profit is

Uβ = max

{
fh

(ah − c2)2

4
,
(fl (al − c2) + fh (ah − c2))2

4

}
(A.13)

The latter term in (A.13) is optimal if

(√
fh − fh

)
(ah − c2) < fl (al − c2)
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which can be written as

ah − c2

al − c2
<

(
1− fh√
fh − fh

)
(A.14)

The ratio of profit to optimal profit is then

Uβ
Uo

=
(fl(al−c2)+fh(ah−c2))2

4
fl
4 (al − c2)2 + fh

4 (ah − c2)2

which can be written as

Uβ
Uo

=

(
fl + fh

(
ah−c2
al−c2

))2

fl + fh

(
ah−c2
al−c2

)2

which is decreasing in

ah − c2

al − c2

Thus, the profit ratio is minimized when (A.14), which after simplification yields the bound

(A.12).

If the first term in (A.13) is optimal then the ratio is

Uβ
Uo

=
fh

(ah−c2)2

4
fl
4 (al − c2)2 + fh

4 (ah − c2)2

which can be written as

Uβ
Uo

=
fh

fl

(
al−c2
ah−c2

)2
+ fh

which is increasing in

ah − c2

al − c2

meaning that the ratio is again minimized at the break point (A.14). Hence, the lower

bound is again (A.12).
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A.2.2. Membership Fee Contract

Suppose the platform charges a membership fee, f , to all workers that join the platform

and leaves all other revenues to providers, i.e. wj = pj . The platform’s profit is

U = fN

and providers expect to earn

Π =
∑

j∈{l,h}

∫ φjpj

0
G(c)dcfj − f.

The platform solves

max
f,N,pl,ph

U

s.t.Π ≥ c1.

To identify the solution to the platform’s problem, first notice that U is increasing in f

while Π is decreasing in f . For given recruitment and prices, that platform selects the

membership fee that sets Π = c1, i.e.

f∗ =
∑

j∈{l,h}

∫ φjpj

0
G(c)dcfj − c1.

Using this membership fee, the platform’s profit is

U(f∗) = N(
∑

j∈{l,h}

∫ φjpj

0
G(c)dcfj − c1).

To find the profit maximizing prices, we may consider the profit earned in each demand
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state separately:

U(f∗) =
∑

j∈{l,h}

Uj − c1

where

Uj = N

∫ φjpj

0
G(c)dcfj

and

∂Uj
∂pj

= NG(φjpj)

(
φj + pj

∂φj
∂pj

)
=

NG(φjpj)

NG(φjpj) + φjpjNg(φjpj)
(φjNG(φjpj)− pj))

=
NG(φjpj)

NG(φjpj) + φjpjNg(φjpj)
(aj − 2pj)

where the last equivalence follows from the definition of φj :

φj = (aj − pj)/(NG(φjpj)).

It follows that, for a given level of recruitment, Uj is quasiconcave in pj with maximizer

p∗j = aj/2.

It remains to optimize over the recruitment level, N . Define φ̃j = φj(pj = aj/2) =

aj/(2NG(φ̃jaj/2)). The platform’s profit as a function of recruitment is

U(N) =


N(
∑

j∈{l,h}
∫ aj/2

0 G(c)dcfj − c1), N < al/2G(al/2)

N(
∫ alφ̃l/2

0 G(c)dcfl +
∫ ah/2

0 G(c)dcfh − c1), al/2G(al/2) ≤ N ≤ ah/2G(ah/2)

N(
∑

j∈{l,h}
∫ aj φ̃j/2

0 G(c)dcfj − c1), ah/2G(ah/2) < N

The optimal N does not fall into the first regime because U(N) is strictly increasing in that

domain. The optimal value of N may be revealed via a search over its feasible range.

To derive an upper bound on N , recall that with the commission model and a give com-
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mission, β, optimal wages were described by w∗j = max{ŵj , βaj/2}. Define φj(wj) as a

function of wages:

φj(wj) = (aj − wj/β)/(NG(φj(wj)wj)).

Optimal recruitment with the commission contract, Nβ, satisfies

0 =
∑

j∈{l,h}

∫ w∗jφj(w∗j )

0
G(c)dcfj − c1

=
∑

j∈{l,h}

∫ φj(βaj/2)βaj/2∗1{βaj/2>ŵj}+ŵj1{ŵj>βaj/2}

0
G(c)dcfj − c1

For β = 1, Nβ:

0 =
∑

j∈{l,h}

∫ φj(aj/2)aj/21{aj/2>ŵj}+ŵj1{ŵj>aj/2}

0
G(c)dcfj − c1

≥
∑

j∈{l,h}

∫ aj φ̃j/2

0
G(c)dcfj − c1

Notice that the last line is the second term of U(N : ah/(2G(ah/2) < N)), i.e.

U(N : ah/(2G(ah/2) < N)) = N(
∑

j∈{l,h}

∫ aj φ̃j/2

0
G(c)dcfj − c1),

so U(Nβ) ≤ 0. Consequently, Nβ for β = 1 is an upper bound for recruitment in the

membership fee model. It follows that any valid upper bound on Nβ is also a valid upper

bound for recruitment in the membership fee model when evaluated at β = 1.

A.2.3. Heterogeneous c1

Consider the scenario in which the platform faces a population of providers with heteroge-

nous joining cost, c1. Specifically, the platform faces a finite population, M , with joining

cost cL, while the rest of the population has joining cost cH . The platform recruits providers

in order of joining cost, so the joining cost the platform faces is an increasing function of
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recruitment, defined as C(N) = cL1{N ≤M}+ cH1{M < N}. Define w′k, w
′′
k , and φ̄k as

∫ w′k

0
G(c)dc = ck

∫ w′′k

0
G(c)dcfh = ck

∫ φ̄kw

0
G(c)dcfl +

∫ w

0
G(c)dcfh = ck.

Fixed Contract

As in the proof of Theorem 1, the optimal fixed contract must have al−p ≤ NG(w) ≤ ah−p,

and never has NG(w) = ah − p while C(N) < Π. The platform maximizes

U = (p− w)((al − p)fl +NG(w)fh)

subject to 0 ≤ φl ≤ 1 and C(N) ≤ Π, where

Π =

∫ φlw

o
G(c)dcfl +

∫ w

0
G(c)dcfh.

It is never optimal for φl = 1 and C(N) < Π. To explain, suppose φl = 1 while C(N) < Π.

Then U is strictly decreasing in w while Π is strictly increasing in w. It is therefore not

optimal for the constraint C(N) ≤ Π not to bind. Consequently, at optimal there exists

optimal recruitment N∗ : Π = C(N∗). Let p′ be the smallest price for which the marginal

recruited provider has joining cost cH for a given wage. Then optimal recruitment may be

expressed as a function of price:

N∗ =


G(w)/(φ̄LG(φ̄Lw)), p′ < p

G(w)/(φ̄HG(φ̄Hw)), p ≤ p′
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Platform profit as a function of price is

U =


(p− w)(al − p)(fl + fhG(w)/(φ̄LG(φ̄Lw))), p′ < p

(p− w)(al − p)(fl + fhG(w)/(φ̄HG(φ̄Hw))), p ≤ p′.

The unconstrained optimal price, (al+w)/2, is unaffected by the joining cost of the marginal

provider. However, price must ensure that N∗G(w) ≤ ah − p. The constraint imposed on

price is a function of w. If w such that p′ < (al+w)/2, then p∗ = max((al+w)/2, (G(w)al−

φ̄LG(φ̄Lw)ah)/(G(w)−φ̄LG(φ̄Lw))), otherwise p∗ = max((al+w)/2, (G(w)al−φ̄HG(φ̄Hw)ah)/(G(w)−

φ̄HG(φ̄Hw))). A search over w ∈ [w′L,min(al, w
′′
L)] ∪ [w′H ,min(al, w

′′
H)] yields the optimal

contract.

Dynamic Wage Contract

There are three cases to consider. First, the contract described in Theorem 2 with c1 = cL

has N < M . Second, Theorem 2 with c1 = cL has M < N and the platform chooses

M < N . Third, Theorem 2 with c1 = cL has M < N and the platform chooses N ≤ M .

In the first two cases Theorem 2 characterizes the optimal contract where Theorem 2 is

evaluated with c1 = cL and c1 = cH respectively. We show that the third case simply

requires an additional constraint on the optimal price to account for the new constraint,

N ≤M .

To characterize the dynamic wage contract in the third case, we consider without loss of

generality the problem of a per participation wage instead of a per service wage. Platform

profit in demand state j is

Uj =


(p− wj)NG(wj), NG(wj) ≤ aj − p

p(aj − p)− wjNG(wj), aj − p < NG(wj)
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and provider profit is

Π =
∑

j∈{l,h}

∫ wj

0
G(c)dcfj .

Clearly the optimal contract must have minj{(aj−p)/G(wj)} ≤ N ≤ maxj{(aj−p)/G(wj)}.

Otherwise, platform profit is either monotonically increasing or decreasing in N while Π is

independent of N . To see that it is never the case that M < minj{(aj − p)/G(wj)}, notice

that if M < minj{(aj − p)/G(wj)} platform profit would be monotonically increasing in p,

a contradiction.

Optimal platform profit is linear in N :

U =


NG(wh)(p− wh)fh + flp(al − p)− wlNG(wl)fl, (al − p)/G(wl) < (ah − p)/G(wh)

NG(wl)(p− wl)fl + fhp(ah − p)− whNG(wh)fh, (ah − p)/G(wh) ≤ (al − p)/G(wl)

Suppose (al − p)/G(wl) < (ah − p)/G(wh). Then there are three cases. If wlG(wl)fl <

G(wh)(p − wh)fh then U is increasing in N . Consequently recruitment is M if M <

(ah−p)/G(wh), and (ah−p)/G(wh) otherwise. In either case U is decreasing in wl meaning

either (al − p)/G(wl) = (ah − p)/G(wh) or Π = cL. To see that it is never optimal to have

(al − p)/G(wl) = (ah − p)/G(wh) and Π > cL consider the following. In the first case this

implies that M < (al − p)/G(wl), a contradiction. In the second case, U is decreasing in

wh, which means Π = cL, a contradiction.

If instead U is decreasing inN , thenN = (al−p)/G(wl). In this case U is again decreasing in

wl, so the optimal low wage satisfies one of the following conditions: wlG(wl)fl = G(wh)(p−

wh)fh, (al − p)/G(wl) = (ah − p)/G(wh), or Π = cL. In the first case, the analysis in the

previous paragraph applies. We now show that the optimal low wage does not satisfy the

second case without satisfying the third. If the second condition is satisfied, U is decreasing

in wh, meaning the third case must be satisfied.

We conclude from the above analysis that at optimal wh(wl) : Π = cL. We now show that
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N = (al−p)/G(wl). There are two alternatives to rule out. The first is N = (ah−p)/G(wh),

in which case platform profit is decreasing in wl, which violates (al − p)/G(wl) < (ah −

p)/G(wh(wl)). The second is N = M < (ah − p)/G(wh(wl)), in which case U is again

decreasing in wl, which contradicts N = M < (ah − p)/G(wh(wl)).

A symmetric analysis applies to the case where (ah−p)/G(wh(wl)) < (al−p)/G(wl). Specif-

ically the optimal contract in this case has wh(wl) : Π = cL and N = (ah − p)/G(wh(wl)).

We now show that recruitment is (al − p)/G(wl). Suppose N = (ah − p)/G(wh(wl)) <

(al−p)/G(wl). Then platform profit is increasing in wl, which violates (ah−p)/G(wh(wl)) <

(al − p)/G(wl).

It remains to solve

max
wl,p

(al − p)
(
G(wh(wl))

G(wl)
(p− wh(wl))fh + (p− wl)fl

)
s.t.al − p ≤MG(wl)

(al − p)G(wh(wl)) ≤ (ah − p)G(wl).

Platform profit is concave in p with maximizer

p∗ =
al
2

+
wh(wl)G(wh(wl))fh + wlG(wl)fl

2(G(wh(wl))fh +G(wl)fl)
.

Define p′ and p′′ as the lower bounds on price such that the constraints in the program

above are satisfied respectively.

p′ = al −MG(wl)

p′′ =
alG(wh)− ahG(wl)

G(wh)−G(wl)
.

The optimal price is then max{p∗, p′, p′′}. A search over wl ∈ {w′L, w′′L} reveals the optimal

dynamic wage contract.
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A.3. Dynamic Price Contract

As in the proof of Theorem 3, the optimal price schedule is max{aj −NG(w), (aj +w)/2}.

As before, the platform does not choose a contract with pj = (aj + w)/2∀j or pj = aj −

NG(w)∀j. Platform profit is

U =
(al − w)2

4
fl + (ah −NG(w)− w)NG(w)fh

and provider expected profit is

Π =

∫ φlw

0
G(c)dcfl +

∫ w

0
G(c)dcfh

Platform profit is increasing in N while Π−C(N) is decreasing in N , so recruitment is the

largest N satisfying Π ≥ C(N). A search over w ∈ [w′L,min(al, w
′′
L)] ∪ [w′H ,min(al, w

′′
H)]

yields the optimal contract.

Fixed Commission Contract

The optimal wage schedule is defined as in Theorem 4. Platform profit continues to be

weakly increasing in N and provider expected profit is monotonically decreasing in N .

Consequently, optimal recruitment ensures that the profit constraint binds, and a search

over the commission ∈ [0, 1] identifies the optimal contract.

Optimal Contract

There are three cases to consider. First, the optimal contract described in Theorem 5 with

c1 = cL has N < M . Second, Theorem 5 with c1 = cL has M < N and the platform chooses

M < N . Third, Theorem 5 with c1 = cL has M < N and the platform chooses N ≤ M .

In the first two cases Theorem 5 characterizes the optimal contract where Theorem 5 is

evaluated with c1 = cL and c1 = cH respectively. To characterize the optimal contract in
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the third case we will show that, at optimal Π = cL and aj − pj = NG(wj) ∀j.

Platform profit in demand state j is

Uj =


(pj − wj)NG(wj), pj < aj −NG(wj)

(pj − wj)(aj − pj), aj −NG(wj) ≤ pj

and provider profit in demand state j is

Πj =


∫ wj

0 G(c)dc, pj < aj −NG(wj)∫ φjwj

0 G(c)dc, aj −NG(wj) ≤ pj .

Suppose the platform maximizes U = Ulfl +Uhfh s.t. N ≤M and Π ≥ c1. Platform profit

is monotonically increasing in pj for small pj (i.e. in the first regime) and Π is independent

of pj so the platform must pick aj−NG(wj) ≤ pj at optimal. In this regime U is decreasing

in wj , while Π is increasing in wj , so it must be that Π = cL at optimal. Furthermore, U

is independent of N while Π is decreasing in N in this regime. Consequently the platform

can lower N to decrease wj until either aj − NG(wj) = pj or Π = cL. If wj constrained

by aj − NG(wj) ≤ pj then the platform can further decrease N until wj : Π = cL. The

platform is then free to decrease w−j until a−j − NG(w−j) = p−j . So at optimal it must

be the demand and participation match in all demand states.

It remains to solve

max
N,wl,wh

∑
j∈{l,h}

(aj − wj −NG(wj))NG(wj)fj

s.t.wh : Π = cL

N ≤M
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Platform profit is concave in N with maximizer

N ′ =

∑
j∈{l,h}(aj − wj)G(wj)fj

2
∑

j∈{l,h}G
2(wj)fj

.

The platform chooses as its recruitment min(N ′,M). A search over wl ∈ [w′L, w
′′
L] reveals

the optimal contract.

A.4. Proofs of Chapter 3 Theorems

Definitions:

p̂(r, β) : F̄ (p̂) = rG(βp̂)

p∗ = F̄ (p∗)/f(p∗)

rj = sj/dj

Furthermore, denote by πm,j(β) the profit earned in market m (e.g. g ig-economy or two-

sided market) in state j with commission β. The dependence of this quantity on β is

replaced with a superscript i ∈ {c, o} when evaluated at the best commission for a given

model (e.g. fixed commission or optimal), i.e. πcg,l is the profit earned with the optimal

fixed commission in the gig-economy in the low state. Similarly, the total profit earned

with commission model i in market m evaluated at the best commission for that model is

denoted by πim.

Proof of Proposition 3

Without the fixed commission constraint, the platform maximizes its profit independently

in each state of the world. In state j, the platform solves:

max
pj ,βj

(1− βj)pj min{Dj , Sj}.
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Denote profit in state j as πj . Then

∂πj
∂pj

=


(1− βj)dj

(
F̄ (pj)− f(pj)pj

)
, Dj ≤ Sj

(1− βj)Sj , Sj < Dj .

Profit is increasing in pj if Sj < Dj , so it must be that pj is large enough so that Dj ≤ Sj .

In that regime,

∂πj
∂βj

= −pjDj

so profit is decreasing in βj . Consequently, it must be that Dj = Sj at optimal, i.e.

pj = p̂(rj , β).

Differentiating with respect to βj yields

∂πj
∂βj

= −pjDj + (1− βj)dj(F̄ (pj)− pjf(pj))
∂pj
∂βj

=
djpjf(pj)g(βjpj)

djf(pj) + sjβjg(βjpj)

(
−dj

F̄ (pj)

g(βjpj)
− sj

F̄ (pj)

f(pj)
+ sj(1− βj)pj

)
=

djpjf(pj)sjg(βjpj)

djf(pj) + sjβjg(βjpj)

(
−G(βjpj)

g(βjpj)
− F̄ (pj)

f(pj)
+ (1− βj)pj

)

where the second line follows from

∂p̂

∂β
(βj) = − sjpjg(βjpj)

djf(pj) + βjsjg(βjpj)

and the third line follows from the fact that Dj = Sj at pj . From the assumption that f and

g are log concave, it follows that g(x)/G(x) is decreasing in x and f(x)/F̄ (x) is increasing

in x. Because pj is decreasing in βj and

∂pjβ

∂β
(βj) = pj

(
1− sjβjg(βjpj)

sβjg(βjpj) + djf(pj)

)
≥ 0
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it follows that at optimal

−G(βjpj)

g(βjpj)
− F̄ (pj)

f(pj)
+ (1− βj)pj = 0 (A.15)

because the left hand side above is decreasing in βj and so πj is quasiconcave in βj .

Proof of Proposition 4

Suppose Sj < Dj . Then profit in state j is (1−β)pjSj , which is increasing in pj (and profit

in other states is independent of pj). So at optimal it must be that in each state Dj ≤ Sj

and price pj is uniquely defined by max{p̂j , p∗}, where p̂j : Dj = Sj and p∗ = F̄ (p∗)/f(p∗).

Notice that p̂(rl, β) ≤ p̂(rh, β) and p̂(r, β) is decreasing in β.

In this regime, profit is

π =
∑
j

(1− β)pjDj

which is decreasing in β, so it must be that Dh = Sh.

I now show that the fixed commission must belong to the interval [minj{βoj },maxj{βoj }].

There are two cases to consider. If pl = p̂(rl, β), then βc solves

∂π

∂β
=
∂πl
∂β

+
∂πh
∂β

= 0 (A.16)

where

∂πj
∂β

= −pjdjF̄ (pj) + (1− β)dj(F̄ (pj)− pjf(pj))
∂pj
∂β

.

By definition of βoj , ∂πj/∂β < 0∀β > maxj{βoj } and ∂πj/∂β > 0∀β < minj{βoj }. Hence the

solution to (A.16) must lie in the interval [minj{βoj },maxj{βoj }].

If instead pl = p∗, then βc solves

∂π

∂β
= −p∗F̄ (p∗) +

∂πh
∂β

= 0. (A.17)
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The condition pl = p∗ implies that at optimal p̂(rl, β
c) < p∗ which, from the definition of βol

implies that βol < βc. And again by the definition of βoh, (A.17) < 0 for all β > βoh. Hence

the optimal fixed commission must exist in the interval [minj{βoj },maxj{βoj }].

Proof of Proposition ??

Without a fixed commission, the platform maximizes its profit in each state independently of

other states. Refer to profit in state j as πj = (1−βj)DjSj = (1−βj)djF̄ (pj)sjG(βjpjdjF̄ (pj)).

Then

∂πj
∂pj

= (1− βj)
(
DjSj +

(
pjSj

∂Dj

∂pj
+ pjDj

∂Sj
∂pj

))
= (1− β)Sj

(
Dj + p

∂Dj

∂pj
+

(
Dj + p

∂Dj

∂pj

)(
pjDjβj

g(βjpjDj)

G(βjpjDj)

))
= (1− β)Sjdjf(pj)(

F̄ (pj)

f(pj)
− pj)

(
1 + pjDjβj

g(βjpjDj)

G(βjpjDj)

)

where the second line follows from

∂Sj
∂pj

= βjsjg(βjpjDj)

(
Dj + p

∂Dj

∂pj

)
.

Because

1 + pjDjβj
g(βjpjDj)

G(βjpjDj)
≥ 0

∀βjpjDj ≥ 0 and

F̄ (pj)

f(pj)
− pj

is decreasing in pj , πj is quasiconcave in pj with maximizer poj = p∗
.
= F̄ (p∗)/f(p∗). Notice

that poj is independent of the choice of βj and also from the state.
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Now consider the platform’s optimal choice of βj :

∂πj
∂βj

= −p∗DjSj + (1− βj)p∗Dj
∂Sj
∂βj

= p∗Djsjg(βjp
∗Dj)

(
−G(βjp

∗Dj)

g(βjp∗Dj)
+ (1− βj)p∗Dj

)
.

From the log-concavity of g, πj is quasiconcave in βj with maximizer βoj : (1 − βoj )p∗Dj =

G(βoj p
∗Dj)/g(βoj p

∗Dj).

Proof of Proposition 6

As above, the optimization of pj is independent of the value of β in state j, and is conse-

quently unaffected by the restriction βj = β∀j.

To see that βc ∈ [minj{βoj },maxj{βoj }], consider

∂π

∂β
=
∑
j

p∗Djsjg(βp∗Dj)

(
(1− β)p∗Dj −

G(βp∗Dj)

g(βp∗Dj)

)
. (A.18)

Evaluated at minj{βoj }, (A.18) must be positive by the definition of the βoj . Similarly,

evaluated at maxj{βoj }, (A.18) must be negative by the definition of the βoj . It follows that

there is an interior solution βc satisfying the first order condition (A.18) = 0.

Proof of Theorem 12

Consider Pg
.
= πcg/π

o
g as a function of α. The platform’s profit depends on α via its choice

of commission and via dl. So,

∂πig
∂α

=
∂πig
∂β

∂βi

∂α
+

1

α
πig,l =

1

α
πig,l,

where i ∈ {c, o} refers to the commission model employed by the platform and πig,l refers
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to platform profit accumulated in the low state. It follows that

∂Pg
∂α
∝ 1

α

(
πog,hπ

c
g,l − πcg,hπog,l

)
which depends on α only through βc. There are two cases to consider. If βol ≤ βoh,

then πg,l(β
c)/α decreases in βc, while πg,h(βc) increases in βc. Furthermore, ∂βc/∂α ∝

∂πg,l(β)/∂β|βc ≤ 0. Hence, Pg is quasiconvex in α or monotonically decreasing in α. If

instead βoh < βol then πg,l(β
c)/α increases in βc, πg,h(βc) decreases in βc, and βc increases

in α. Hence Pg is quasiconvex in α.

I now derive a lower bound for Pg. Note that

Pg =
πg,l(β

c) + πg,h(βc)

πog

≥
πg,l(β

o
j ) + πg,h(βoj )

πog

≥
πoj

πog,l + πog,h
.

It follows that Pg ≥ maxj{πoj/πog}. Now consider how this bound moves as a function of γ

and ρ.

Lemma 2. πoj is increasing in r
.
= s/d.

Proof: Differentiating yields:

∂πog,j
∂r

=
∂πog,j
∂β

∂βoj
∂r

+ (1− βoj )dj
∂

∂p
pF̄ (p)|poj

∂poj
∂r

= djp
o
j F̄ (poj)

∂poj/∂r

∂poj/∂β

= dj
G2(βoj p

o
j)

g(βoj p
o
j)

≥ 0.

where the second line follows from the definition of βoj and the third line follows from the
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definition of pog,j . This implies that πog,l ≥ απog,h.

From Lemma 2 demonstrates that πog,l is decreasing in γ while πog,h is independent of γ. It is

easy to see that then πog,l/π
o
g is decreasing in γ, and πog,h/π

o
g is increasing in γ. This bound

must be maximized at extreme values of γ.

Lemma 3. βohp
o
h ≥ βol pol .

Proof: If βoh ≥ βol , then because p̂(r, β) is decreasing in r and p̂β is increasing in β, it must

be that βol p
o
l ≤ βol p̂(rh, βol ) ≤ βohpoh. If alternatively βol > βoh, then

G(βohp
o
h)

pohg(βohp
o
h)

+
F̄ (poh)

pohf(poh)
= 1− βoh > 1− βol =

G(βol p
o
l )

pol g(βol p
o
l )

+
F̄ (pol )

pol f(pol )
,

which implies

G(βohp
o
h)

g(βohp
o
h)

>
poh
pol

(
G(βol p

o
l )

g(βol p
o
l )

+
F̄ (pol )

f(pol )

)
−
F̄ (poh)

f(poh)
.

To see that the right hand side above is greater thanG(βol p
o
l )/g(βol p

o
l ), notice that if βoh < βol ,

then it must be that pol < poh. If this were not the case, then (1 − βol )p
o
l F̄ (pol ) < (1 −

βoh)pohF̄ (poH), which contradicts the claim proved above that πoj is increasing in r. Remem-

bering the log-concavity of f(), it follows that 1 < poh/p
o
l and 0 < F̄ (pol )/f(pol )−F̄ (poh)/f(poh).

Because g() is log-concave, G(βohp
o
h)/g(βohp

o
h) > G(βol p

o
l )/g(βol p

o
l ) implies βohp

o
h ≥ βol pol .

To see how the lower bound of Pg responds to changes in ρ, consider

∂πog,l/π
o
g

∂ρ
∝ πog,hα

G2(βol p
o
l )

γg(βol p
o
l )
− πog,l

G2(βohp
o
h)

g(βohp
o
h)

From Lemma 3, πog,l ≥ απog,h. If pol > poh then

G2(βol p
o
l )

γg(βol p
o
l )

= F̄ (pol )
G(βol )

ρg(βol )
< F̄ (poh)

G(βohp
o
h)

ρg(βohp
o
h)

=
G2(βohp

o
h)

g(βohp
o
h)

.
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So if pol > poh, then πog,l/π
o
g is decreasing in ρ. If instead poh ≥ pol , then

∂πog,l/π
o
g

∂ρ
∝ αρ

γ
(1− βoh)pohG(βohp

o
h)
G2(βol p

o
l )

γg(βol p
o
l )
− αρ

γ
(1− βol )polG(βol p

o
l )
G2(βohp

o
h)

g(βohp
o
h)

= (1− βoh)poh
G(βol )

g(βol )
− (1− βol )pol

G(βohp
o
h)

g(βohp
o
h)

=
F̄ (poh)

f(poh)

G(βol p
o
l )

g(βol p
o
h)
−
F̄ (pol )

f(pol )

G(βohp
o
h)

g(βohp
o
h)

≤ 0.

If poh > pol then πog,l/π
o
g is again decreasing in ρ. Notice that

∂πo
g,l/π

o
g

∂ρ ∝ −∂πo
g,h/π

o
g

∂ρ . It follows

that πog,h/π
o
g is increasing in ρ.

Proof of Theorem 13

Because βc is independent of ρ, clearly Pt is also independent of ρ.

As shown in Corollary 2, Pt = 1 if α = 1. Furthermore, as α → 0, the platform faces only

one state of the world, so Pt → 1. It follows that Pt is minimized in α at a value in the

range (0, 1).

To see that Pt is quasiconvex in γ, observe that

∂Pt
∂γ
∝ −γπct,lπot,h + γπct,hπ

o
t,l (A.19)

where

πit,j = (1− βij)djsjp∗F̄ (p∗)G(βijp
∗djF̄ (p∗)).

Notice that the right side of (A.19) depends on γ only via βc. There are two possible cases

to consider. First, if βol ≤ βoh, then πct,l is decreasing in βc, πct,h is increasing in βc, and βc

is increasing in γ. It follows that (A.19) is increasing in γ. If instead, βoh < βol , then πct,l is

increasing in βc, πct,h is decreasing in βc, and βc is decreasing in γ. It follows that (A.19) is

increasing in γ. I conclude that Pt is quasiconvex in γ.
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