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A Tale Ot Two Sirtuins: The Impact Of Sirt1 And Sirt3 On The
Pathophysiology Of Shock

Abstract

Both acute blood loss and severe infection activate common cellular pathways leading to shock — a pathologic
condition characterized by systemic inflammation, oxidative stress, and mitochondrial dysfunction. Sirtuins, a
highly conserved group of NAD-dependent enzymes, play a critical role in cellular survival and many of the
benefits associated with sirtuin activation are thought to be secondary to decreased inflammation, reduced
oxidative stress, and improved mitochondrial physiology. As such, we hypothesized that sirtuin pathways play
a crucial role in shock and could be could be targeted to improve outcomes following acute blood loss and
severe infection. In a series of in vivo and in vitro experiments recapitulating hemorrhagic shock and severe
sepsis, we explored the impact of sirtuin activation on inflammation, mitochondrial function, and survival.
Following decompensated hemorrhagic shock, resuscitation with resveratrol, a SIRT1 activator, significantly
improved renal mitochondrial function and decreased oxidative damage. Similarly, resuscitation with
nicotinamide monononucleotide (NMN), a key biosynthetic NAD precursor, was found to mitigate
inflammation, support cellular energetics and improve both physiologic resilience and survival. In contrast,
impaired expression of either SIRT1 or SIRT?3 resulted in a pro-inflammatory phenotype with accelerated
mortality in sepsis. Interestingly, deletion of SIRT1 did not significantly worsen the degree of mitochondrial
dysfunction observed in septic liver, but was associated with decreased CI and CII respiration in kidney.
Deletion of SIRT3 did not significantly impact the degree of mitochondrial dysfunction observed in either
liver or kidney. Taken together, these data strongly suggest that SIRT'1 and SIRT3 play a key role in the
pathophysiology of shock. Although further research is needed to determine if SIRT'1 and SIRT3
overexpression improves outcomes or if pharmacologically manipulating NAD metabolism in conjunction
with sirtuin activation provides added benefit, targeting sirtuins appears beneficial in hemorrhagic and septic
shock.
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ABSTRACT

TARGETING SIRTUINS TO IMPROVE OUTCOMES IN SHOCK
Carrie Adelia Sims, MD
Joseph A. Baur, PhD

Both acute blood loss and severe infection activate common cellular pathways leading to
shock — a pathologic condition characterized by systemic inflammation, oxidative stress,
and mitochondrial dysfunction. Sirtuins, a highly conserved group of NAD-dependent
enzymes, play a critical role in cellular survival and many of the benefits associated with
sirtuin activation are thought to be secondary to decreased inflammation, reduced
oxidative stress, and improved mitochondrial physiology. As such, we hypothesized that
sirtuin pathways play a crucial role in shock and could be could be targeted to improve
outcomes following acute blood loss and severe infection. In a series of in vivo and in
vitro experiments recapitulating hemorrhagic shock and severe sepsis, we explored the
impact of sirtuin activation on inflammation, mitochondrial function, and survival.
Following decompensated hemorrhagic shock, resuscitation with resveratrol, a SIRT1
activator, significantly improved renal mitochondrial function and decreased oxidative
damage. Similarly, resuscitation with nicotinamide monononucleotide (NMN), a key
biosynthetic NAD precursor, was found to mitigate inflammation, support cellular
energetics and improve both physiologic resilience and survival. In contrast, impaired
expression of either SIRT1 or SIRT3 resulted in a pro-inflammatory phenotype with

accelerated mortality in sepsis. Interestingly, deletion of SIRT1 did not significantly
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worsen the degree of mitochondrial dysfunction observed in septic liver, but was
associated with decreased Cl and ClI respiration in kidney. Deletion of SIRT3 did not
significantly impact the degree of mitochondrial dysfunction observed in either liver or
kidney. Taken together, these data strongly suggest that SIRT1 and SIRT3 play a key
role in the pathophysiology of shock. Although further research is needed to determine if
SIRT1 and SIRT3 overexpression improves outcomes or if pharmacologically
manipulating NAD metabolism in conjunction with sirtuin activation provides added

benefit, targeting sirtuins appears beneficial in hemorrhagic and septic shock.

vii



TABLE OF CONTENTS

DEDIC ATION. ... i i i rrran s rannn e raaannnerns iii
ACKNOWLEDGMENT ... e s s s sssr s s rea e e em s emanens iv
2N = 25 I 23 X O iv
LIST OF TABLES......ueiiuierieesueeeteesseeseessseessenesseessessnsessseeees Xii
LIST OF FIGURES ......... oo rerrse s rse s s s e s s sma e Xiii
CHAPTER 1: OF Shock and Sirtuins.........ccoeiiiiiimcvicnien e eeeeeees 11
85T ] T 4 T T 51 30 I )N 3
SIRT1 and INflammation ......... oo e r e s e s s e s e e ma e s s e s enns s e e e e snmnsssnsennnnn 4
SIRT1 and OXIdative STreSsS ......ciciceeiiiiiiiiiriir e reea s e s s e s e e mas s s s e s nnnssssseerssnnsssnsernnnn 4
SIRT1 and Mitochondrial Biogenesis.........ccccvviiiiminiininininsss s 5
85T ] T T 51 3 ) N 7

CHAPTER 2: Nicotinamide Mononucleotide (NMN), a Key NAD
Precursor, Improves Cellular Metabolism and Physiologic

Resilience in Hemorrhagic Shock ... 10
RESUILS ... naanasaaaaaa s nnanaaanaaan e e 12
Pretreatment and resuscitation with NMN during fixed pressure
hemorrhagic shock reduces lactic acidosis.............ccveviiiiiiiiiiiiic 12
NMN increases NAD and preserves bioenergetics...........c.covviiiiiiiiiiiiiiiineninnnens 13
NMN preserves NAD dependent mitochondrial respiration................cccciiviinennnn. 14

NMN and hemorrhagic shock influence the expression of enzymes in the NAD

salvage PathWay.........ccveieiiiiiiii e 15
NMN mitigates inflammation following hemorrhagic shock and resuscitation ...... 16
NMN improves mitochondrial function in isolated hepatocytes........................... 16
The impact of NMN on organ function...........c.cocoiiiiiiiiiiiii e 17
NMN enhances physiologic reserve and decreases mortality..............c.coevviiiens 18

viii



DT e 1 1= o o 1S .19

CHAPTER 3: Resveratrol Improves Mitochondrial Function but
Increases the Risk of Hypoglycemia Following Hemorrhagic

SROCK. ... e 24
RESUIES. .. e 27
Physiologic and laboratory parameters..............ccocvoviiiiiiiiii i 27

Resveratrol supplementation during resuscitation restored mitochondrial
function following hemorrhagic shock and decreased mitochondrial ROS
[0 (oo 11 1o 1 e T o TN 28

Resveratrol treatment during resuscitation ameliorated mitochondrial oxidative
stress following hemorrhagic shock and resuscitation...................cc.cooini. 28

Resveratrol supplement increased the mRNA expression of SIRT1 and the
NAD/NADH ratio in Kidney.........ccooiuiiiiiiiiiiiii e e 29

Resuscitation with resveratrol enhances pyruvate dehydrogenase and
a-ketoglutarate dehydrogenase activity following hemorrhagic shock................. 29

Resveratrol increased transcription of PGC1-a in kidney, but did not promote
mitochondrial biogenesis..........coiiiiiiiiii i 29

Resveratrol significantly lowered blood glucose and improved insulin
resistance following resuscitation, but was associated with decreased serum
INSULIN 1@VEIS. ... s s s n s r e e enns 30

Resveratrol increases plasma glucagon-like peptide-1 (GLP-1) levels following
=T B LY o 1 - 11 Lo o PP 31

Resveratrol supplementation preserved the active form of IRS1 in both liver and
KidNeY tiSSUES.....iuiiiii i e e 31

0T e B 1= e o 1 31

CHAPTER 4: Deleting SIRT1 Promotes a Pro-Inflammatory

Phenotype in SepsSiS.....ccovoiiiiiiiiiiiiiiiiiiri i s 39
RESUIES. .. e 41
Survival rates after CLP vary depending model severity..........cccovviiiiiiiininnnn. 41
Sepsis is associated with decreasing SIRT1 expression over time in liver............ 41
Pharmacologic manipulation of SIRT1 influences survival and physiology........... 42
Deletion of SIRT1 negatively impacts survival and physiology in sepsis.............. 43

Deletion of SIRT1 negatively impacts mitochondrial function the kidney 5 days
0o =3 0 I PPN 43



Deletion of SIRT1 negatively impacts physiologic variables and organ function
36 hours POSE-CLP........co e B

Deletion of SIRT1 has minimal impact on liver mitochondrial function
FOllOWING SEPSIS. .. uuuitiiiiiiiiiii e 45

Deletion of SIRT1 significantly impacts kidney mitochondrial function following

Manipulation of SIRT1 modifies the inflammatory response in vivo
= 18 Lo BT 4 T 1 2P 46

Myeloid deletion of SIRT1 is pro-inflammatory during sepsis.............ccccceeviiinnnnn 47

{09 o Y 8 o5 L1 =3 oY 4 = 48

CHAPTER 5: Deleting SIRT3 Enhances the Inflammatory

ReSpPONSe iN SePSiS...ccciiiiiiiiiiiiiiiiiariiri i naaeas 49
RESUIES. .. e 49
Deleting SIRT3 increases early mortality but doesn’t significantly impact
MOIDIAItY...cueii i e 49
Deleting SIRT3 has minimal clinical impact within the first 36 hours post-CLP...... 50
SIRT3 status has minimal impact on mitochondrial function in sepsis................. 50
Deleting SIRT3 is pro-inflammatory..........c.ccoviiiiiiiiiiii 51
SIRT3 expression dramatically declines during sepsis in multiple tissues........... 52
CHAPTER 6: Conclusions and Future Directions..................... 53
£ |30 53
SIRT1 Activation in Hemorrhagic Shock...........ccoiiiiiiiiiiiii 54
SIRT1 Activation in Septic ShOCK. ... e 54
SIRT1 Expression in Critically lll Patients............cccocviiiiiiiii e 55
Targeting NAD in SROCK........cociiiiiiiii 57
£ |30 59
81 1113 T /7 60
CHAPTER 7: Materials and Methods............c.ccociiiiiiiiiiinne. 61
ANIMALS ... e e 61



Experimental ProCedures....... ..o s e s s s 62

NMN and Hemorrhagic ShocCK...........coiviiiiiiiiiiii e 62
NMN and Primary Hepatocytes Harvest............c.cooviiiiiiiiiiiicn e, 64
Resveratrol and Hemorrhagic Shock...........cccceiiiiiiiiiiiiiii e 64
Cecal Ligation and Puncture Sepsis.........c.cicveiiiiiiiiiiiiiiiii e e 65
Blood Chemistries and Inflammatory Cytokines.............coiciiiiiiiiiiiiiiiiiinane 66
NAD/NADH ASSAYS....uiuiuiuiuiiiiiiiiie s ra s snsasares 66
Primary HepatoCytes.........ocvuiuiiiiii i e 67
ATP Determination..........c.oiuiiiiiii i e 68
Isolation of Mitochondria............cociiiiiiiiiiii 68
Mitochondrial Respiratory Capacity Using High Resolution Respirometry............ 68
Citrate Synthase Activity..........ccccoiiiiiiiiiii 69
Total Production of Mitochondrial-Derived ROS.............ccocviiiiiiiiiiiieas 69
Measurements of plasma metabolic hormones...............ccoooiiiiii . 70
Homeostatic Model assessment (HOMA)-Insulin Resistance (IR) Index................ 70
IMMUNODBIOING.....ceeniii 71
(€Y 4 L= T b ] = =1=1 o o N 71
Statistical ANalySis.......c.coviiiiiiiii 72
TABLES.......... e Error! Bookmark not defined.
FIGURES.........o s Error! Bookmark not defined.
BIBLIOGRAPHY ... s s 109

Xi



LIST OF TABLES

Table 1: Clinical Organ Function Biomarkers in Hemorrhagic Shock Treated with NMN.

Table 2: Physiologic and laboratory parameters in hemorrhagic shock treated with
resveratrol.

Table 3: Endpoints of euthanasia scoring schema.

Table 4: Primers Used for gPCR

Xii



Figure 1:
Figure 2:
Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:
Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:
Figure 17:

Figure 18:

LIST OF FIGURES

Pathways activated in the resuscitation of shock states.
SIRT1 targets and activators.
Fixed pressure hemorrhagic shock design and experimental variables.

NMN increases NAD and NADH, and preserves renal ATP following
resuscitation from hemorrhagic shock.

NMN preserves Complex I-dependent mitochondrial respiration and enhances
mitochondrial NAD content.

NMN increases NAMPT and NMNAT3 expression following hemorrhagic
shock.

NMM mitigates inflammation following hemorrhagic shock.

NMN rescues mitochondrial function and increases NAD in isolated
hepatocytes after cytokine exposure.

NMN enhances tolerance to hemorrhagic shock.
Hemodynamics and lactate values during resuscitation with resveratrol.

RSV supplementation during resuscitation restores mitochondrial function and
decreases the production of ROS.

Resveratrol treatment during resuscitation ameliorates renal mitochondrial
oxidative stress following hemorrhagic shock and resuscitation.

Resveratrol supplementation enhances the mRNA expression of SIRT1 and
increases the NAD/NADH ratio in kidney.

Resuscitation with resveratrol enhances pyruvate dehydrogenase and a-
ketoglutarate dehydrogenase activity following hemorrhagic shock.

Mitochondrial content and expression of mitochondrial biogenesis factors in
the kidney following hemorrhagic shock and resuscitation.

Resuscitation with RSV lower blood glucose and improves insulin resistance.
RSV restores activation of IRS-1 in both liver and kidney.

Severity of cecal ligation and puncture (CLP) impacts mortality and
physiology.

Xiii



Figure 19:

Figure 20:

Figure 21:

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:
Figure 27:
Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:

The temporal expression of SIRT in liver and kidney after CLP.

Pharmacologic manipulation of SIRT1 influences survival and physiology in
severe sepsis.

SIRT1 deletion increases the severity and mortality of sepsis.

The impact of SIRT1 deletion on mitochondrial respiratory capacity in liver
and kidney tissue 5 days post-CLP.

SIRT1 deletion negatively impacts physiologic variables and organ function
36 hours post-CLP.

Impact of SIRT1 deletion on mitochondrial function and NAD content at 36
hours post-CLP.

SIRT1 deletion significantly impacts kidney mitochondrial function 36 hours
post-CLP.

SIRT1 deletion is pro-inflammatory during sepsis.
Myeloid deletion of SIRT1 is pro-inflammatory in CLP model of sepsis.
The impact of deleting SIRT3 on physiology and mortality over 5 days.

The impact of deleting SIRT3 on clinical variables and organ function 36
hours post CLP.

Deleting SIRT3 does not significantly impact mitochondrial respiration in liver
or kidney following sepsis.

Deleting SIRT3 is pro-inflammatory.

SIRT3 mRNA expression declines in multiple tissues during sepsis.

Xiv



CHAPTER 1:
Of Shock and Sirtuins
“Shock is the manifestation of the rude unhinging of the machinery of life”
Samuel V. Gross, 1872

“The pulse, however, does not respond; it grows feebler, and finally disappears, and this
‘momentary pause in the act of death’ is soon followed by the grim reality.”

John Collins Warren, 1895

In 1743, the French Army surgeon Henri Francois Le Dran coined the term “choquer”
or “shock” to describe the progressive clinical failure he observed in dying soldiers,
noting that many of those that survived their initial wounding would die hours to days
later with “purulent matter”.(65) It is now recognized that both acute blood loss and
severe infection, or sepsis, activate common cellular pathways leading to shock —a
pathological condition characterized by cardiovascular collapse and systemic
inflammation. During shock, decreased tissue perfusion leads to cellular hypoxia,
mitochondrial dysfunction, and bioenergetic failure. Concurrently, both damaged tissues
and microbial products activate the immune system through Toll-like receptors; thereby,
increasing NFkB signaling and the systemic release of pro-inflammatory cytokines.(17)
These cytokines not only enhance the recruitment of leukocytes to damaged or infected
tissues, they further exacerbate hypotension, cellular hypoxia, and oxidant stress.(208)
Without prompt intervention, shock progresses from cellular injury to organ failure, and
ultimately, to death.

Depending on the etiology of the shock state, initial therapy includes prompt
hemorrhage control, or antibiotics, along with aggressive intravenous fluids and blood
products resuscitation in order to restore perfusion pressure. Reperfusion, however,

unleashes a storm of reactive oxygen species (ROS), inflammatory cytokines, and toxic
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metabolites — all of which can further activate systemic inflammation. In response to
oxidant damage, cytokine induced neutrophil chemoattractant (CINCs) recruit
neutrophils and the pro-inflammatory cytokine IL6 up-regulate vascular expression of
intracellular adhesion molecule (ICAM) 1, an endothelial molecule that promotes the
egress of neutrophils from the circulation into tissues.(237) With increased accumulation
of tissue neutrophils, more ROS and proteolytic enzymes are released leading to
increased tissue damage and subsequently more inflammation (Figure 1). Importantly,
the severity of shock, and its concomitant inflammatory response, directly contribute to
the development of multi-organ failure (MOF).(149,208) Clinically, MOF develops in up
to 50% of hypotensive trauma patients and is a universal finding in patients with septic
shock.(6,23,56,63,168)

Although only 12% of the U.S. population is older than 65 years of age, this
demographic accounts for more than 60% of all sepsis cases and over 80% of sepsis-
related deaths.(5,160) While the elderly frequently have comorbid conditions that can
exacerbate the course of sepsis, an increasing body of clinical and experimental data
suggests that age itself is an independent risk factor for sepsis-related
death.(160,203,231,241,242) With age, two key pro-inflammatory cytokines, IL6 and
TNFa, are frequently elevated and are thought to contribute to increased oxidative
stress, mitochondrial dysfunction, and a progressive decline in physiologic function.(28)
During sepsis, however, this cytokine pattern becomes even more exaggerated and
exceeds that found in younger patients.(29,130) Because MOF accounts for nearly 50%
of all deaths in the intensive care unit (161), there is increasing interest in developing
therapies that treat shock and target the cellular pathways implicated in organ failure

Sirtuins, a highly conserved group of NAD-dependent enzymes, play critical roles in

cellular survival and may be the key to better outcomes in shock. Sirtuins were first
2



described in S. cerevisiae after the Silent information regulator 2 (S/IR2) gene was found
to confer stress resistance and promote longevity.(117) Since then, seven sirtuins have
been identified in humans; each with a discrete subcellular localization and specific
targets.(236) Sirtuins primarily regulate biologic function by removing acyl groups (most
commonly acetyl) from lysine residues or by functioning as ADP-
ribosyltransferases.(102) Because the deacetylation reaction requires NAD as a
substrate, sirtuin activity can be directly influenced by the nutritional and redox state of
the cell. Moreover, because nearly every metabolic enzyme is modified by lysine
acetylation, sirtuins can directly control and coordinate a variety of pathways in times of
cellular stress.(283) Although incompletely characterized, many of the pro-survival
benefits associated with sirtuin activation are thought to be secondary to, decreased
inflammation, reduced oxidative stress, and improved mitochondrial physiology (Figure
2).(233) As such, we hypothesized that sirtuin pathways play a key role in shock
and could be targeted to improve outcomes following acute blood loss and severe
infection.

SIRTUIN 1 (SIRT1)

SIRT1 is the best characterized mammalian S/IR2 homologue.(73) Located in the
nucleus and cytoplasm, SIRT1 is known to deacetylate over 30 target proteins and is
capable of transcriptionally influencing a number of cellular processes ranging from
gluconeogenesis to apoptosis.(236) Because SIRT1 absolutely requires NAD as
cofactor, it can respond to metabolic perturbations and nutrient stress by modulating
survival pathways. Indeed, calorie restriction is potent SIRT1 activator and has been
shown to extend lifespan in a variety of organisms including yeast, worms, mice and
rats.(50,92,146) Interestingly, short-term calorie restriction also appears to improve

survival following sepsis induced by cecal ligation and puncture (CLP) and is associated
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with decreased inflammation following hepatic ischemia-reperfusion injury in
mice.(90,190,194) When SIRT1 was pharmacologically inhibited, however, the
physiologic benefits of calorie restriction following reperfusion were lost. Taken together
these data strongly suggest that activating SIRT1 pathways could mitigate the

pathophysiology of shock.

SIRT1 AND INFLAMMATION

NFkB is considered to be the central mediator of the human immune response and
its activity increases significantly during hemorrhagic and septic shock.(179,213) As a
prominent downstream target of SIRT1, NFkB activity can be modulated to temper
inflammation.(269) By deacetylating the RelA subunit of NFkB; SIRT1 inhibits the
transcription of over 100 target genes involved in the inflammatory response, including
IL6, TNFa, CINC, cyclooxygenase -2, and ICAM-1.(179,269) In contrast, deletion of
SIRT1 results in a marked increase in NFkB activation along with increased cytokine and

ICAM 1-expression following lipopolysaccharide challenge.(77)

SIRT1 AND OXIDATIVE STRESS

Although reactive oxygen species (ROS) are routinely produced in low quantities
during normal cellular activity, significant oxidative stress is a hallmark of shock and
reperfusion injury. During shock, ROS are created by a number mechanisms including
dysfunctional mitochondria, hypoxanthine recycling by xanthine oxidase, and by
nicotinamide adenine dinucleotide phosphate oxidase (NOX) during neutrophil
activation.(148) If left unchecked, ROS can cause oxidative damage to nucleic acids and
proteins leading to further mitochondrial dysfunction, cell damage, and leukocyte
recruitment. Mitochondrial derived ROS can also serve as signaling molecules to up-

regulate inflammation. In addition to directly activating NFkB and increasing the



transcription of pro-inflammatory cytokines, ROS can enhance the cleavage and
subsequent release of mature cytokine by activating the NLRP3
inflammasome.(30,81,286) Finally, oxidative stress from vascular NOX can exacerbate
shock and local damage by causing endothelial dysfunction, which in turn leads to
platelet activation, increased vascular permeability, and loss of vasoreactivity.(21,275)
Therapies that either provide antioxidants or enhance endogenous antioxidant systems
have been shown to decrease free radical damage, decrease inflammation, and improve
organ function following hemorrhagic and septic shock.(22,68,187)

SIRT1 plays a critical role in mitigating oxidant damage. By deacetylating and
activating forkhead box O3 (FOXO3), SIRT1 augments the transcription of key
antioxidant enzymes such as superoxide dismutase and catalase.(128) SIRT1 can also
enhance antioxidant defenses by increasing the activation and expression of PGC1a.
Along with its co-regulator NRF2, PGC1a promotes increases the transcription of
antioxidant genes including superoxide dismutase, heme oxygenase-1, and glutathione
reductase.(226) Without SIRT1, however, the expression of these key antioxidants is
significantly impaired and tissues are more susceptible to oxidant stress and cellular
death. When subjected to ischemia-reperfusion injury, SIRT1 null hearts experienced
considerably more tissue infarction and damage than wild-type controls. In contrast,
SIRT1 transgenic hearts demonstrated substantially higher levels of superoxide
dismutase and were more protected following ischemia-reperfusion, with less infarcted

myocardium and better contractility.(105)

SIRT1 AND MITOCHONDRIAL BIOGENESIS

Mitochondria are subcellular organelles that utilize oxygen to create the majority of

the available ATP via oxidative phosphorylation. Any significant decrease in the



availability of oxygen, or perturbation in the electron transport chain, however, can lead
to decreased ATP levels and cellular stress. As previously described, reperfusion of
hypoxic tissues generates ROS, which, in turn, damages mitochondrial proteins and
further impairs oxidative phosphorylation in key organs. During hemorrhagic and septic
shock, arterial smooth muscle cells can also experience mitochondrial dysfunction
leading to low ATP levels. As a result Kate channels in vascular smooth muscle beds
open, leading to hyperpolarization, persistent hypotension, and on-going poor tissue
perfusion.(254)

Despite adequate resuscitation, persistent mitochondrial dysfunction may contribute
to ongoing cellular injury and organ failure following shock. In fact, patients who develop
organ failure are more likely to demonstrate early evidence of mitochondrial dysfunction
when compared to similarly injured patients.(33) Notably, septic patients also develop
mitochondrial dysfunction despite fluid resuscitation and antibiotics. When skeletal
muscle biopsies were taken within 24 hours of ICU admission, non-surviving septic
patients were found to have significantly decreased complex | activity and lower tissue
ATP levels when compared to both sepsis survivors and healthy controls. Moreover, the
severity of septic shock directly correlated with decreased muscle ATP levels.(24) The
ability to generate sufficient ATP maybe further compromised during sepsis by an overall
decrease in mitochondrial mass.(34,35,232) Indeed, patients with MOF were found to
have 30 to 50% less mitochondrial protein in both intercostal and thigh muscle relative to
non-septic controls.(70,71)

SIRT1 promotes mitochondrial biogenesis and oxidative phosphorylation by
activating PGC1a. In turn, PGC1a increases the transcription of mitochondrial proteins
and enzymes by coactivating a number of transcription factors, including NRF1 and 2,

ERRa, PPARa, and TFAM. In fact, the overexpression of PGC1a leads to a pronounced
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increase in mitochondrial mass in otherwise healthy mice.(205) Although PGC1a
expression is increased during hypoxia and in response to ROS,(258) Raju and
colleagues demonstrated that cardiac PGC1a levels fall dramatically in severe
hemorrhagic shock and are associated with impaired mitochondrial function and
recovery.(8,111,112) Resuscitation with the SIRT1 activator, resveratrol, preserved
PGC1a protein levels and increased expression of key mitochondrial transcription
factors. Importantly, mitochondrial function was also enhanced and correlated with both
improved cardiac contractility and better survival. When animals were co-treated with
sirtinol, a SIRT1 antagonist, the mitochondrial benefits of resveratrol were entirely lost,
suggesting that resveratrol’s ability to preserve PGC1a function is SIRT1 dependent. In
a similar study, Biel et al found that SIRT1 null hepatocytes were significantly more likely
to die than wild-type following ischemia-reperfusion. In contrast, genetic overexpression
or pharmacological activation of SIRT1 significantly improved mitochondrial stability,

suppressed defective autophagy, and decreased tissue damage.(18)

SIRTUIN 3 (SIRTS)
Although three sirtuins (SIRT3, SIRT4, and SIRT5), are located in the mitochondria,

only SIRT3 functions as a deacetylase and there is growing appreciation that this sirtuin,
in particular, plays a crucial role in regulating mitochondrial metabolism and oxidative
stress.(1,89,97,250) In fact, in SIRT3 knock out mice, several enzymes in the Kreb’s
cycle and multiple complexes in the electron transport chain are hyperacetylated,
suggesting that SIRT3 may directly regulate their activity.(1,69,114)

During calorie restriction, SIRT3 expression is enhanced and increased
mitochondrial NAD serves as a potent stimulus for activation of SIRT3 pathways.(14,97)

In response to a perceived energy deficit, SIRT3 coordinates a switch from glycolysis to



fatty acid oxidation.(97) Additionally, SIRT3 activates acetyl-CoA synthase 2 to increase
levels of mitochondrial acetyl CoA and deacetylates hydroxyl methylglutaryl CoA
synthase 2 to increase the production of ketone bodies, a key alternative fuel for the
heart, kidney and brain.(88,215,260) Given the entry of acetyl CoA into the Kreb’s cycle
is impaired during critical illness (138), activating SIRT3 pathways could provide an
alternative means of supporting energy metabolism.

SIRT3 serves as a major regulator of oxidative stress and can modulate both the
generation and detoxification of ROS. Not only can SIRT3 can modulate the flow, and
thus potentially the leak, of electrons through complexes |, I, and Ill, SIRT3 can
deacetylate and down-regulate enzymes that form low levels of ROS such as pyruvate
dehydrogenase, a-ketoglutarate dehydrogenase and aconitase.(1,14,69,209) SIRT3
also mitigates oxidative stress by directly activating the antioxidant enzyme manganese
superoxide dismutase (SOD2) and by increasing the concentration of reduced
glutathione through its interactions with isocitrate dehydrogenase 2, with a subsequent
increase in NADPH levels.(191,221) While SIRT3 knockout mice appear phenotypically
normal, these animals demonstrate evidence of impaired complex | function with
increased oxidative damage, reduced tissue ATP levels, and markedly elevated levels of
pro-inflammatory cytokines. Overexpression of SIRT3, on the other hand, rescues
mitochondrial function and minimize oxidative damage.(1)

Finally, there is increasing data to suggest that SIRT3 can prevent oxidant-induced
apoptosis. During shock, damage from ROS can lead to mitochondrial membrane
depolarization and activation of the membrane permeability transition pore
(mPTP).(59,137,141) SIRT3 is known to deacetylate and stabilize cyclophilin D, a key
component of the mitochondrial permeability transition pore (mPTP). When subjected to

calcium challenge, mitochondria from aged SIRT3 null mice were significantly more
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prone to swelling; a phenomenon that was completely rescued by the mPTP inhibitor
cyclosporine A.(87) Similarly, in a cisplatin induced acute kidney injury, SIRT3
overexpression mitigated ROS-induced mitochondrial membrane depolarization and
decreased autophagy.

Although there are limited studies to date specifically investigating the role of SIRT3
in either hemorrhagic or septic shock, SIRT3 appears play a vital role in mitigating
inflammation, oxidant damage, and organ dysfunction.(284) Indeed, when the leukocyte
gene expression profile in 172 blunt trauma patients presenting in hemorrhagic shock
was investigated, the inability to increase SIRT3 expression was strongly associated
with poor outcomes including infection, organ failure and death.(216)

This thesis explores the hypothesis that sirtuin pathways play a crucial role in
shock and could be could be targeted to improve outcomes. Using a model of
decompensated hemorrhagic shock in rats, we investigated the impact of
pharmacologically activating SIRT1 during resuscitation. Specifically, we found that that
nicotinamide monononucleotide (NMN) supported cellular energetics and enhanced
physiologic resilience following hemorrhagic shock. NMN is the immediate biosynthetic
precursor to NAD, and thus, provides an essential cofactor for sirtuin activation (Chapter
2). Similarly, we report that resuscitation with resveratrol, a naturally occurring SIRT1
activator, significantly improves mitochondrial function and decreases oxidative damage
(Chapter 3). In separate and ongoing investigations, we explore the impact of
manipulating SIRT1 and SIRT3 in a murine model of severe sepsis; noting that deletion
of either sirtuin results in a pro-inflammatory phenotype with accelerated mortality

(Chapter 4 and 5, respectively).



CHAPTER 2:

Nicotinamide Mononucleotide (NMN), a Key NAD Precursor, Improves Cellular

Metabolism and Physiologic Resilience in Hemorrhagic Shock

INTRODUCTION
Hemorrhagic shock is a physiologic condition that occurs with rapid blood loss and is

characterized by profound vasoconstriction, tissue hypoperfusion, and cellular hypoxia.
In response to decreased oxygen tension, there is a dramatic decline in oxidative
phosphorylation with increased anaerobic metabolism in an attempt to preserve cellular
energy status.(42) Without prompt and adequate resuscitation, hemorrhagic shock
progresses from cellular dysfunction to organ failure and, ultimately, to death.(183)

Nicotinamide adenine dinucleotide (NAD) is a ubiquitous molecule whose ability to
accept and donate electrons via interconversion with NADH is key to cellular metabolism
and energy generation. NAD is required at the GAPDH-dependent step in glycolysis
and provides reducing equivalents to complex | of the electron transport chain to drive
oxidative phosphorylation. NAD also serves as an essential co-substrate for a wide
variety of enzymes involved in cellular resilience, including sirtuins and poly (ADP
ribose) polymerases.(39) During hemorrhagic shock, the tissue concentration of NAD
falls rapidly in proportion to the severity of the injury.(262) This decreased availability of
NAD is further exacerbated by a redox shift in favor of NADH, which is no longer
efficiently reoxidized to NAD by the mitochondrial electron transport chain under hypoxic
conditions.(259) In other contexts, it is well established that NAD depletion leads to
mitochondrial dysfunction and cell death (3,248), and enhancing NAD has been shown
to improve tissue function.(38,78,83) Given the central role that NAD plays in cellular
energy metabolism, signaling, and a host of other biochemical reactions (39),

10



resuscitative strategies that restore NAD could prove therapeutically useful in
hemorrhagic shock.

While NAD can be synthesized de novo from dietary tryptophan, nicotinic acid
(niacin), or from other intermediates in the synthesis pathways, the majority of cellular
NAD comes from the recycling of liberated nicotinamide. Nicotinamide is converted to
nicotinamide mononucleotide (NMN) in a rate-limiting step catalyzed by the enzyme
nicotinamide phophoribosyltransferase (NAMPT). NMN is then converted to NAD by
one of three NMN adenylyltransferase isoforms (NMNAT1-3).(16)

Chaudry and colleagues first described using NAD precursors during the
resuscitation of hemorrhagic shock in 1976.(44) Although the infusion of NAD,
nicotinamide and nicotinic acid each increased NAD concentrations in both liver and
kidney tissue, treatment did not restore tissue ATP levels and did not improve survival.
As such, these investigators concluded that “these infusions have no salutary effects”
and research investigating the impact of NAD metabolism during hemorrhagic shock
remained relatively stagnant in the following decades. However, it is possible that the
minimal resuscitation protocol used in Chaudry’s pioneering experiments may have
limited the potential benefit of NAD supplementation. Indeed, recently, very high dose
oral niacin (1080 mg/kg) has been shown to improve lung injury following hemorrhagic
shock.(110) When given at the time of resuscitation, niacin restored lung NAD
concentrations to baseline values, mitigated inflammation, and transformed a uniformly
lethal model into one with 30% survival. Thus, the use of NAD precursors such as NMN
warrants further investigation.

Although the benefit of NMN supplementation has not been investigated in trauma,
there is a growing body of literature to suggest that NMN could prove therapeutically

useful. Providing exogenous NMN bypasses the need for NAMPT in the salvage
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pathway and has been shown to increase tissue NAD rapidly.(270) This is particularly
important given the fact that NAMPT may be suppressed in the setting of ischemia-
reperfusion and depressed NAMPT activity could contribute to the decreased NAD
observed in hemorrhagic shock.(104) Moreover, the NAMPT-catalyzed reaction is
energetically costly, and thus providing its product directly could be especially helpful
when cells are energetically stressed.(31) Importantly, there is evidence that NMN can
acutely mitigate the effects of ischemia-reperfusion injury. In a murine model of cardiac
infarction, pretreatment with NMN 30 minutes before ischemia significantly increased
basal levels of NAD, prevented a decline in NAD post-ischemic insult, and reduced
infarct size.(266) As such, using NMN as resuscitative adjunct to support metabolism
could improve cellular resilience.

In this study, we investigate the metabolic and mitochondrial impact of exogenous
NMN on hemorrhagic shock. Our findings suggest that NMN preserves oxidative
phosphorylation, enhances physiologic reserve, and improves survival after severe

shock.

RESULTS
Pretreatment and resuscitation with NMN during fixed pressure hemorrhagic

shock reduces lactic acidosis

To investigate the physiologic impact of NMN during hemorrhagic shock and
resuscitation, we subjected NMN pretreated rats (400mg/kg/day X 5 days, oral) and
controls to a fixed pressure shock followed by resuscitation with and without NMN (400
mg/kg, intravenous) (Figure 3A). NMN and control animals were maintained at a mean
arterial blood pressure (MAP) of 40 mmHg for 90 minutes. Both groups shed a similar

percentage of blood volume and had similar reductions in circulating hemoglobin (Figure
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3B, E). Although the volume of fluid required to maintain the shock state for 90 minutes
and the blood pressure following resuscitation were statistically indistinguishable
between the groups, NMN treated rats received slightly less volume overall, indicating
that they were not resuscitated more completely than controls (Figure 3C,D).
Importantly, despite experiencing the same degree and duration of blood loss, NMN
treated rats had significantly lower serum lactate than did controls during hemorrhagic
shock and resuscitation (Figure 3E). As a byproduct of anaerobic metabolism, elevated
lactate levels reflect ongoing tissue hypoperfusion and correlate with both the severity
and survivability of shock.(196) Moreover, lactate is used to gauge the success of
resuscitation in humans.(27) Thus, our findings suggest that NMN partially mitigates a
key metabolic derangement induced by hemorrhagic shock.
NMN increases NAD and preserves bioenergetics

Hemorrhagic shock results in significantly depressed pyridine and adenine
nucleotide pools, which can negatively impact the function of vital organs.(43) We
tested whether exogenous NMN could preserve NAD and ATP levels in kidney and liver
tissues following shock. In sham animals, NMN significantly increased NAD levels in
both kidney and liver (Figure 4A, 2B). Following shock, NAD levels were nearly 3 fold
higher in NMN treated animals compared to shock control animals. NADH was also
significantly higher in NMN treated animals following shock. While the decline in NAD
during hemorrhagic shock was less dramatic than in previous reports(44), we observed
robust depression of the NAD/NADH ratio (Figure 4A, B). Importantly, NMN completely
mitigated the decrease in NAD concentration and the NAD/NADH redox ratio in both
tissues.

Hemorrhagic shock and resuscitation are also known to deplete ATP reserves, likely

as a consequence of mitochondrial dysfunction, which results in increased reliance on
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anaerobic metabolism. As expected, ATP levels were significantly decreased following
shock and resuscitation in both kidney and liver (Figure 4C). NMN treatment
substantially rescued ATP levels in the kidney, whereas liver stores were more
depressed and could not be restored (Figure 4C).

NMN preserves NAD dependent mitochondrial respiration

Given the restoration of ATP in kidney and decrease in lactate accumulation, we
wondered if NMN treatment could positively impact mitochondrial respiration. We found
that hemorrhagic shock and resuscitation impaired complex | (Cl)-dependent respiration
in both tissues when fatty acids or a standard pyruvate/glutamate/malate mixture were
provided as substrates (Figure 5A, B). No defect was apparent when electrons were
supplied directly to complex Il via succinate or to complex IV via TMPD/ascorbate.
Since Cl accepts electrons from NADH, these results suggest a deficiency in the NAD
pool, an upstream factor involved in the generation of NADH, or in Cl itself. Consistent
with the possibility that NAD(H) is the limiting factor, treatment with NMN completely
preserved Cl-dependent respiration following hemorrhagic shock (Figure 5A,B).

To more directly test the hypothesis that mitochondrial NAD depletion causes the
defect in Cl-dependent respiratory capacity, we next sought to determine NAD levels in
isolated mitochondria following shock. To our knowledge, the mitochondrial NAD pool,
which is separate from the nuclear and cytosolic pool,(267) has not previously been
examined in hemorrhagic shock. Although NMN significantly increased mitochondrial
NAD in both kidney and liver, we were surprised to discover that hemorrhagic shock did
not decrease mitochondrial NAD. In fact, in contrast to whole tissue NAD, mitochondrial
levels were maintained in kidney (Figure 5C) and significantly increased in the liver of
control animals following shock (Figure 5D). NMN treatment further augmented

mitochondrial NAD concentrations (Figure 5C, D). Thus, the size of the mitochondrial
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NAD pool per se cannot account for the changes in mitochondrial respiration. NADH
was not reproducibly detected in isolated mitochondria, most likely due to collapse of the
redox potential during isolation.
NMN and hemorrhagic shock influence the expression of enzymes in the NAD
salvage pathway

To better understand the impact of hemorrhagic shock on total and mitochondrial
NAD levels, we examined the expression patterns of enzymes in the NAD salvage
pathway. Metabolic stress influences the expression of NAMPT and increasing NAMPT
can mitigate ischemic injury in a variety of models.(104,199,238,266) The expression of
NAMPT and the downstream enzymes NMNAT1-3, however, have not previously been
examined in hemorrhagic shock. Following shock, there was a trend toward increased
NAMPT gene expression in both kidney and liver (Figure 6A,E). Of the three NMNAT
isoforms, NMNAT1 (nuclear) and NMNAT3 (putatively mitochondrial) were readily
detected while NMNAT2 (which has been reported in the Golgi complex and axons) was
not.(16) Hemorrhagic shock and resuscitation had minimal impact on the renal
expression of NMNAT1, but modestly increased expression of NMNATS3. In contrast the
expression of both enzymes was reduced in liver tissue (Figure 6 C, D, G, H). Although
NMN had no effect on NAMPT or NMNAT gene expression in sham operated rats, it
enhanced the gene expression of both NAMPT and NMNAT3 relative to controls
following hemorrhagic shock (Figure 6A,D,E,H). Shock, however, was not associated
with any clear change in NAMPT protein expression at the end of resuscitation (Figure
6B,F). These results indicate that NMN can influence NAD metabolism in part via
enzyme expression independently from its direct contribution to synthesis.

NMN mitigates inflammation following hemorrhagic shock and resuscitation
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Hemorrhagic shock and resuscitation results in a pro-inflammatory state
characterized by elevated cytokine levels, oxidative stress, and insulin resistant
hyperglycemia. Circulating levels of IL6, a pro-inflammatory cytokine, strongly correlate
with mortality and directly targeting IL6 improves survival, suggesting that inflammation
mediated by this pathway is highly relevant to the pathological effects of hemorrhagic
shock.(165,227) Given the key role that NAD plays in modulating sirtuin-dependent
inflammatory pathways,(150) we hypothesized that NMN might dampen the
inflammatory response following hemorrhagic shock and resuscitation. Indeed,
pretreatment and resuscitation with NMN significantly reduced systemic IL6 cytokine
levels and tended to decrease TNFa, while substantially ameliorating shock-induced
hyperglycemia (Figure 7A, B). Interestingly, basal TNFa was significantly reduced in
sham-treated animals, suggesting that NMN can have a potent effect on this pathway,
although the repression was largely overcome during shock. At the tissue level, NMN
also significantly improved the post-resuscitation cytokine profile in the kidney (Figure
7C). Whether these changes in gene expression reflect immune cell infiltration or the
activation of inflammatory pathways in resident cells is not yet clear. In contrast, NMN
had no impact on the induction of inflammatory genes in liver (Figure7D).

NMN improves mitochondrial function in isolated hepatocytes

Because NMN improves the inflammatory status, its beneficial effects on
mitochondrial function may be secondary to either decreased inflammation or direct
protective effects in targets tissues. In order to determine whether NMN directly impacts
cellular mitochondrial function, we exposed primary hepatocytes to plasma harvested
from both sham and shocked rats. Consistent with the hypothesis that circulating
inflammatory factors can induce mitochondrial dysfunction, primary hepatocytes treated

with shocked plasma had significantly depressed Cl-dependent respiration. When
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hepatocytes were co-cultured with NMN, however, this Cl defect was completely
prevented (Figure 8A).

Given that plasma from shocked and sham animals may have varying concentrations
of many different pro-inflammatory cytokines, we also treated primary hepatocytes with a
fixed concentration of IL6. In these experiments, co-treatment with NMN again
completely prevented mitochondrial dysfunction (Figure 8B). Thus, NMN can preserve
mitochondrial function in a cell-autonomous manner, although the reduction in circulating
IL6 also likely contributes to its net benefit in vivo.

Interestingly, treatment with IL6 did not significantly impact NAD levels in our primary
hepatocytes. With the addition of NMN, however, cytokine exposed cells nearly doubled
their NAD over baseline suggesting that inflammation enhances either NMN uptake or
the enzymatic activity of NAD biosynthesis pathways, or decreases NAD turnover
(Figure 8C).(206)

The impact of NMN on organ function

In order to determine if NMN preserved organ function, blood samples were taken
from sham and shocked animals at the end of resuscitation and assayed for markers of
liver, kidney and cardiac dysfunction. Although hemorrhagic shock and resuscitation
resulted in a significant increase in markers of liver and kidney damage, values
remained within the normal range with only a trend toward decreased injury in NMN
treated animals (Table 1). The fact that these injury markers remained relatively low is
likely a reflection of the early time point examined. Even at this early time point,
however, hemorrhagic shock and resuscitation was associated with an increased in
creatine kinase activity that was mitigated by NMN. Creatine kinase levels can result
from either skeletal or cardiac muscle damage. Acute blood loss does not generally lead

to skeletal muscle damage in the absence of crush injury and is associated more
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strongly with cardiac injury.(118) Thus, NMN may have cardioprotective effects that
warrant further investigation in this model.
NMN enhances physiologic reserve and decreases mortality

Based on improvements in inflammatory status, lactate metabolism, mitochondrial
function, and trends toward decreased injury biomarkers, we hypothesized that NMN
would enhance physiologic reserve and improve survival following hemorrhagic shock.
Using a decompensated shock model, we performed a second set of experiments to
evaluate physiologic reserve, as indicated by the overall time animals could be
maintained in severe shock without resuscitation (Figure 9A). Pretreatment with NMN
increased the time animals could sustain severe shock by nearly 25%, despite equal or
greater blood loss when compared to controls (Figure. 9B, C). In spite of enduring this
more strenuous injury, animals treated with NMN maintained lower lactate levels and
exhibited improved survival (Figure 9D,F). As such, pre-treatment and subsequent
resuscitation with NMN substantially improved the ability of rats to tolerate hemorrhagic

shock.

DISCUSSION

In the United States, traumatic injury is the leading cause of death in those under the
age of 45, with nearly 40% of patients who develop hemorrhagic shock dying within the
first 24 hours.(93,122) Because both the severity of blood loss and duration of
hypoperfusion correlate directly with organ failure and mortality, current resuscitative
strategies focus on rapidly repairing the injury, restoring blood volume and improving
perfusion pressure. If the shock state is too severe or prolonged, however, cellular

metabolism remains depressed and resuscitation efforts fail to improve clinical
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outcomes. Developing therapies to restore and support cellular metabolism following
hemorrhagic shock could potentially mitigate organ dysfunction and improve survival.

During prolonged hypoperfusion there is a dramatic decline in NAD availability due to
both a reduction in the size of the NAD pool as well as a shift toward the reduced form
(NADH). Given the essential roles that NAD plays in glycolysis, oxidative
phosphorylation, and pathways that promote cellular resilience, we investigated the
possible benefit of using NMN to restore NAD levels as a treatment for hemorrhagic
shock.(41,172,270) We specifically focused on the impact on bioenergetics in kidney
and liver because these organs are at a high risk of failure following acute blood
loss.(15,91) Pretreatment and subsequent resuscitation with NMN increased NAD
levels, restored the NAD/NADH ratio, improved mitochondrial function and mitigated
inflammation. Importantly, NMN also enhanced whole organism physiologic resilience
during hemorrhagic shock and improved survival following resuscitation. As such, NMN
holds promise as a therapeutic adjunct and warrants further clinical investigation.

One of the most prominent metabolic effects of using NMN to restore NAD was the
improvement in mitochondrial function. During hemorrhagic shock, there is a
progressive defect in mitochondrial respiration when NAD-linked substrates such as
isocitrate, a ketoglutarate and B hydroxybutyrate are used, suggesting that severe blood
loss preferentially inhibits complex 1.(42,193) Although NMN has been shown to
improve overall mitochondrial respiratory capacity in chronic models of aging and
Alzheimer’s disease,(153,167) our research provides the first data demonstrating NMN
completely preserves Cl-dependent mitochondrial respiration following hemorrhagic
shock. We initially hypothesized that this rescue was secondary to NMN'’s ability to
mitigate a decline in mitochondrial NAD. Our data, however, do not support this

hypothesis. In fact, in contrast to the decline in total tissue NAD that we observed,
19



mitochondria harvested from control animals actually had preserved or increased levels
of NAD following hemorrhagic shock. Mitochondrial NAD levels were further enhanced
in NMN treated animals. Although surprisingly little is known about the concentration of
mitochondrial NAD following hemorrhagic shock, our findings do support Hift and
Strawitz’s description of increased “light absorbing material” in isolated liver
mitochondria harvested from dogs in “irreversible hemorrhagic shock”. Writing in 1961,
these investigators attributed the increased spectrophotometric absorption peak noted at
265 to 270my to “nucleotide material”.(94) In retrospect, this likely represented NADH,
with a UV absorption peak of 259 nm. Although the precise mechanisms accounting for
the generation and maintenance of the mitochondrial NAD pool remain a subject of
debate, the finding of increased mitochondrial NAD suggests either augmented
cytoplasmic to mitochondrial transfer or enhanced mitochondrial NAD recycling.(39) In
either case, the ability to increase mitochondrial NAD following hemorrhagic shock may
reflect an adaptive response to cellular stress, and suggests that the depletion of
cytosolic NAD may be even greater than indicated by bulk tissue measurements.

Given the fact that mitochondrial NAD levels are preserved during hemorrhagic
shock, there must be another mechanism by which NMN benefits mitochondrial function.
Cl is prone to oxidant damage and dysfunction, but can be rescued with the induction of
antioxidant defenses.(40,84,173,182,228) Increasing nuclear/cytosolic NAD has been
shown to modulate the response to cellular stress by up-regulating anti-inflammatory
and anti-oxidant pathways.(211) In particular, SIRT1 uses NAD as an obligatory co-
substrate to deacetylate the RelA/p65 subunit of NFkB in macrophages leading to
decreased expression of pro-inflammatory cytokines such as IL6 and TNFa.(207) SIRT1
may also decrease the damage associated with ischemia-reperfusion by deacetylating

and activating PGC1a. In turn, PGC1a increases the expression of antioxidant enzymes
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as well as SIRT3, a mitochondrial NAD-dependent deacetylase that mitigates
mitochondrial oxidative stress by directly activating isocitrate dehydrogensase 2 and
manganese superoxide dismutase.(191,277) In support of a potential role for SIRT1, we
and others have shown that resuscitation with resveratrol, a SIRT1 activator, improves
mitochondrial function, attenuates inflammation, mitigates oxidant damage, and
improves organ function following hemorrhagic shock.(8,188,252,253) Similarly, Jeung
et al demonstrated that high dose oral niacin (another NAD precursor and SIRT1
activator) attenuates systemic inflammation and is associated with decreased pulmonary
NFkB expression and oxidative stress in a rodent model of hemorrhagic shock. In this
study, NMN mitigated both the systemic and tissue specific inflammatory response.(110)
Importantly, changes in systemic inflammation were not purely responsible for improved
mitochondrial function because NMN also preserved Cl-dependent mitochondrial
respiration in permeabilized hepatocytes exposed to a controlled dose of inflammatory
cytokines. Thus, NMN also appears to have a cell-autonomous anti-inflammatory impact.
Interestingly, while NMN rescued NAD levels and mitochondrial function in both
kidney and liver, it only preserved ATP in the kidney. The total amount of ATP, however,
is influenced by both production and consumption. During hemorrhagic shock, ATP
consumption is significantly decreased in the kidney because hypotension leads to
decreased glomerular filtration and thus a decreased need for ATP dependent resorption
in the distal nephron. In contrast, ATP consumption in liver actually escalates during
hemorrhagic shock because increased sodium influx requires increased Na+-K+
ATPase activity.(9) Thus, failure to rescue ATP in the liver may not reflect a tissue
difference in how NMN impacts mitochondrial function, but rather a difference in the

degree of energetic stress experienced by these two tissues during shock.
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Very little is known about the NAD salvage pathway in hemorrhagic shock. We
wondered if decreased expression of either NAMPT or NMNAT contributed to the NAD
depletion during shock, or alternatively, whether any compensatory response would be
present. Although ischemia-reperfusion injury decreases NAMPT expression in cardiac
myocytes,(104) hemorrhagic shock appears to increase the expression of NAMPT
mRNA in liver and tended to increase it in kidney. Surprisingly, NMN supplementation
further enhanced NAMPT mRNA expression in both tissues following resuscitation, but
not in sham NMN treated controls. We were also interested in determining if the
expression of NMNAT 1-3 changed following hemorrhagic shock. NMNAT2 was not
reliably detected, but we were able to quantify transcripts for NMNAT1 and NMNATS3,
which convert of NMN to NAD in the nucleus/cytoplasm and mitochondria respectively.
Both NMNAT1 and NMNAT3 were suppressed with shock in the liver, suggesting that
NAD biosynthetic capacity may be decreased in this organ during acute blood loss. In
contrast, NMNAT1 was not affected and NMNAT3 was increased in the kidney.
Intriguingly, NMN enhanced NMNAT3 expression following shock in both organs. The
induction of transcripts related to NAD biosynthesis, particularly when precursors are
available, likely reflects an adaptive response to cellular stress and may explain why our
isolated hepatocytes only dramatically increased NAD in the presence of both IL6 and
NMN.(267) Thus, hemorrhagic shock leads to organ-specific changes in the expression
of genes related to NAD biosynthesis, and we reveal that in the setting of severe injury,
the direct contribution of NMN to the NAD pool may be augmented by the induction of
biosynthetic enzymes.

While encouraging, our study has a number of limitations. First, we investigated
pretreating and subsequently resuscitating hemorrhagic shock with NMN. This

approach suggests that NMN may be useful when significant surgical blood loss (e.g.
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cardiac or vascular surgery) or traumatic injury is anticipated (e.g. combat). However, it
will be important to determine whether NMN can be used post-injury to treat unexpected
bleeding events or trauma. We are currently planning experiments to test the benefit of
using NMN only during resuscitation and are encouraged by recent data from Yamamoto
et al demonstrating that NMN limits myocardial ischemia when given during
reperfusion.(266) Second, we did not investigate the optimal duration of therapy. This is
particularly important because the duration of increased NAD and the timing of SIRT1
activation may influence how acute inflammation progresses to a more chronic hypo-
inflammatory state.(150) Finally, although we did see a trend toward improved organ
function following hemorrhagic shock in NMN treated animals, studying early changes in
mitochondrial function required sacrificing rats at a time point that was not optimal for
these assays; future studies over an extended time course may strengthen these
findings.

Together, our findings suggest that NMN holds significant promise as an adjunct to
resuscitation. In our severe hemorrhagic shock model, NMN supported cellular
metabolism by increasing tissue NAD levels, preserving the cellular redox ratio, and
enhancing Cl-dependent mitochondrial respiration. NMN also appeared to have anti-
inflammatory properties, blunting both the systemic inflammatory response as well as
the cellular effects of cytokine exposure. Importantly, NMN’s biochemical and
immunologic benefits translated to improved physiologic resilience. NMN treated
animals were able to tolerate longer periods of hypoperfusion with improved survival.
Given these encouraging preclinical findings, future research investigating NMN’s

therapeutic potential in injured patients is warranted.
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CHAPTER 3:

Resveratrol Improves Mitochondrial Function but Increases the Risk of

Hypoglycemia Following Hemorrhagic Shock

Hemorrhagic shock remains a common cause of death in severely injured patients with a
significant number of deaths occurring as the result of multi-organ failure (MOF) days to
weeks after the initial injury.(168,240) Because impaired tissue oxygen delivery and
depletion of cellular energy stores during traumatic clearly contribute to the development
of MOF and early mortality in trauma patients,(61,170,171) current resuscitation
strategies focus on replacing circulating blood volume in an attempt to restore adequate
tissue perfusion.

While re-establishing tissue oxygenation is clearly vital, there is increasing evidence
to suggest that mitochondrial dysfunction also plays a significant role in the development
of MOF.(120,129) Under normal physiologic conditions, mitochondria provide almost
95% of the available adenosine triphosphate via oxidative phosphorylation; and oxygen
utilization by the mitochondrial electron transport system is tightly coupled to oxygen
availability.(115) “Decoupling” can occur, however, when mitochondrial complexes are
modified or there is decreased availability of NADH leading to decreased electron
flow.(4) Decoupling not only results in decreased ATP production, it is associated with
the generation of damaging free radical oxygen species.(107) With prolonged
hemorrhagic shock, there is a progression from decreased oxidative phosphorylation to
irreversible, structural damage to the mitochondria.(214,234) With resuscitation

previously hypoxic mitochondria cannot effectively transfer electrons; resulting in a
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deluge of reactive oxygen species (ROS) upon reperfusion and increased damage to
mitochondrial proteins.(57)

Importantly, mitochondrial dysfunction persists even if adequate tissue oxygen and
perfusion are restored. Using near-infrared spectroscopy (NIRS) in an a rabbit model of
severe hemorrhagic shock, Rhee et al noted that despite normalization of blood
pressure, cardiac output and tissue oxygen delivery, mitochondrial cytochrome a,a3
oxidation remained significantly decreased in splanchnic and skeletal muscle beds.(192)
In a similar experiment, decoupling of the hepatic cytochrome a,a3 redox state from
oxygen delivery was associated with increased early mortality following hemorrhagic
shock.(32) Clinically, shock-induced mitochondrial dysfunction has also been linked to
the development of MOF. In a prospective study of 24 severely injured patients
monitored continuously with NIRS, Cairns et al noted that patients who developed MOF
demonstrated a significantly higher incidence of mitochondrial decoupling early in the
course of their resuscitation when compared to those who did not develop organ
dysfunction (89% vs 13%, p<0.05).(33)

Mitochondrial dysfunction also contributes to the phenomenon of post-injury
hyperglycemia. In addition to damaging proteins, ROS can influence insulin signaling by
directly oxidizing the insulin receptor or indirectly by activating various protein tyrosine
phosphatases.(47) Importantly, the development of post-injury insulin resistance and
hyperglycemia can be minimized by blocking the production of ROS.(280) Because
hyperglycemia is an independent risk factor for adverse outcomes, including renal failure
and death in trauma patients,(135,169) resuscitation strategies that either mitigate
mitochondrial dysfunction or improve glycemic control could prove beneficial.

Resveratrol, a naturally occurring polyphenol found in red wine, has been shown to

promote mitochondrial function, reduce oxidative damage, and improve glycemic control
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in a variety of disease states.(134,154,243) Although many of resveratrol’s biological
effects are thought to be mediated by SIRT1 — a highly conserved NAD-dependent
deacetylase, its mechanism as a direct SIRT1 activator has been called into
question.(13,20,116,178) In previous studies evaluating resveratrol, fluorophore-tagged
substrates were used to assess SIRT1 activity. However, when non-tagged peptides
were used, SIRT1 activity was not enhanced, suggesting that resveratrol may be binding
to the unnatural fluorophore.(116,178) More recently, however, the Sinclair group
investigated the relationship between resveratrol, and other sirtuin activating compounds
(STACSs), using non-fluorescent techniques. In addition to discovering that resveratrol
allosterically interacts with specific hydrophobic motifs shared by SIRT1 substrates, they
found that a glutamine in SIRT1’s N-terminal domain was essential for activation.(106)
Resveratrol allosterically lowers the Km for binding peptide substrates and NAD, thereby
increasing SIRT1’s activity nearly 10 fold even when SIRT1 and NAD levels are limited.
Resveratrol can also enhance SIRT1 by activating AMPK (12,279) which in turn
enhances the expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-
limiting enzyme in the NAD salvage pathway.(74)

Although there is a growing body of literature to suggest that resveratrol significantly
reduces inflammation and mitigates organ dysfunction in rodent models of hemorrhagic
shock (111,239,273,276), there is little data regarding its impact on mitochondrial
function or glucose regulation following acute blood loss. Given resveratrol’s interaction
with SIRT1 can promote mitochondrial function a number of ways (Figure 2)
(198,205,226), we hypothesized that resuscitation with resveratrol would ameliorate

shock-induced mitochondrial dysfunction and improve hyperglycemia.

26



RESULTS

Physiologic and laboratory parameters

In contrast to previous studies, resuscitation with resveratrol (RSV) did not
significantly improve the mean arterial blood pressure (MAP) in our model (8). In fact,
blood pressure during the 18 hours post-resuscitation remained significantly lower than
baseline values in both groups (Figure 10A). As expected, our model of decompensated
hemorrhagic shock did result in severe lactic acidosis as well as a significant anemia
given the crystalloid-only resuscitation (Figure 10B, Table 2).(222) Nonetheless, when
compared to lactated Ringer’s (LR) alone, resuscitation with LR+RSV resulted in
significantly less lactate production (10.2 £ 3.0 vs. 6.9 + 3.3mmol/L, p< 0.05). At 18
hours, lactate levels in both groups had normalized. Although clinical assays of acute
kidney injury (AKI), such as BUN and creatinine, were not elevated above normal values
in either group post resuscitation, resveratrol did significantly decrease in serum
neutrophil gelatinase-associated lipocalin (NGAL) levels (Table 2). NGAL is a 25kd
protein that is covalently bound to matrix metalloproteinase 9 in neutrophils. Following
epithelial injury, the expression of NGAL is markedly induced and appears to be a more
sensitive biomarker for AKI than serum creatinine.(54,98) Elevations in NGAL precede
changes in serum creatinine and can be used to diagnose AKI up to 48 h prior to a
clinical change in creatinine or urine output. Given this sensitivity, changes in NGAL are
thought to reflect AKI in real time, and following NGAL levels may allow for the institution
of earlier, and more effective, renoprotective therapies.(98)

While previous studies have reported that resveratrol significantly decreases IL6 in
various tissues following hemorrhagic shock(239,261,272,273), only one has reported a
decrease in serum TNFa.(111) In our study, we did not appreciate a significant

decrease in serum levels of either TNFa or IL6. Given that tissue cytokines can
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contribute to local damage, it is possible that we may have observed more of a
significant difference had we directly assayed renal tissue.
Resveratrol supplementation during resuscitation restored mitochondrial function
following hemorrhagic shock and decreased mitochondrial ROS production.

Using high-resolution respirometry, we observed that hemorrhagic shock significantly
decreased the respiratory capacity of all mitochondrial complexes in both kidney and
liver (Figure 11A,B). Following resuscitation, resveratrol significantly improved Cll and
ClV-dependent respiratory capacity in the kidney and robustly restored the respiratory
capacity of all complexes in liver. Notably, resveratrol was associated with sustained
improvement in respiratory capacity 18 hours post-resuscitation. resveratrol
supplementation also significantly decreased mitochondrial ROS production following
resuscitation (Figure 11C, D). Although treatment with resveratrol continued to mitigate
ROS production in the liver 18 hours post-resuscitation, the generation ROS in the
kidney normalized by 18 hours and levels did not differ between resuscitation strategies.
Resveratrol treatment during resuscitation ameliorated mitochondrial oxidative
stress following hemorrhagic shock and resuscitation

Resuscitation with resveratrol resulted in a significant increase in the mRNA
expression of superoxide dismutase 2 (SOD2) and catalase (CAT) in kidney tissue when
compared to resuscitation with LR alone (Figure 12B). In contrast, severe hemorrhagic
shock was associated with a marked increase in the expression of cyclooxygenase 2
(COX-2) mRNA that was not influenced by either resuscitative strategy (Figure 12A).

Oxidative damage to mitochondrial proteins increased dramatically following severe
hemorrhagic shock and improved with resveratrol treatment during resuscitation. 4-
hydroxynonenal, a measure of lipid peroxidation from reactive oxygen species,

increased robustly following severe shock (Figure 12B). Resveratrol supplementation
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significantly ameliorated the degree of lipid peroxidation observed. We also measured
the degree of nitrosative stress. While 3-nitrotyrosine levels increased with LR
resuscitation, resveratrol was not associated with a significant improvement in nitrosative
stress when compared to LR (Figure 12C).
Resveratrol supplement increased the mRNA expression of SIRT1 and the
NAD/NADH ratio in kidney

Severe shock resulted in a dramatic decline in the mRNA expression of SIRT1.
Resuscitation with resveratrol, however, restored expression of SIRT1 to the levels seen
in the sham group (Figure 13A). Although hemorrhagic shock and subsequent
resuscitation with LR alone did not significantly alter NAD or NADH concentrations,
resuscitation with resveratrol significantly decreased tissue NADH levels (160.6 + 21.3
vs. 265.7 = 24.5 nmol/mg protein) and nearly doubled the NAD/NADH ratio (Figure 13B).
Resuscitation with resveratrol enhances pyruvate dehydrogenase and a-
ketoglutarate dehydrogenase activity following hemorrhagic shock

Hemorrhagic shock is known to decrease the activity of key enzymes in the Krebs
cycle including pyruvate dehydrogenase.(42) In order to determine if resveratrol
enhanced the activity of Krebs cycle enzymes, we measured the rate of NAD conversion
to NADH spectrophotometrically. As expected, after hemorrhagic shock, the activity of
all enzymes measured decreased significantly in the kidney (Figure 14). Resuscitation
with resveratrol, however, robustly enhanced the activity of pyruvate dehydrogenase and
a-ketoglutarate dehydrogenase. Future experiment will determine if this improved
activity is associated with a change in acetylation status.
Resveratrol increased transcription of PGC1-a in kidney, but did not promote

mitochondrial biogenesis
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To gain further insight into the potential impact of resveratrol on mitochondrial
biogenesis following hemorrhagic shock, we evaluated citrate synthase activity as a
proxy for mitochondrial content in the kidney, but did not observe a significant change at
any time point (Figure 15A). We also investigated the expression of mitochondrial
transcriptional regulators including PGC1a. Notably, while the mRNA expression of
PGC1a was significantly elevated in the resveratrol L resuscitation group, resveratrol did
not restore the expression of mitochondrial transcription factor A (TFAM) (Figure 15B).
Interestingly, the expression of nuclear respiratory factor (NRF) -1 was not significantly
altered by either hemorrhagic shock or by resuscitation, whereas resuscitation
significantly up-regulated the expression of NRF-2 regardless of strategy.

Resveratrol significantly lowered blood glucose and improved insulin resistance
following resuscitation, but was associated with decreased serum insulin levels

As previously described (280), hemorrhagic shock resulted in severe hyperglycemia,
hyperinsulinemia, and increased insulin resistance. Notably, resuscitation with
resveratrol lead to a significant reduction in blood glucose that persisted up to 90
minutes post-resuscitation (Figure 16A). In fact, resveratrol was associated with glucose
levels that were significantly lower than sham operated animals with roughly 33% of the
resveratrol animals developing true hypoglycemia (glucose < 70mg/dl). No animal in
any other group developed such low glucose levels. By 18 hours, the hypoglycemia had
resolved and groups were not significantly different.

Although resveratrol resulted in lower glucose levels, this was not caused by an
increase in insulin secretion. In fact, following resuscitation, resveratrol treated animals
had significantly lower serum insulin levels as well as improved insulin resistance as
measured by the Ln HOMA-IR index.(113) All glycemic parameters, however, were

similar between treatment groups 18 hours post resuscitation (Figure 16A-C).
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Resveratrol increases plasma glucagon-like peptide-1 (GLP-1) levels following
resuscitation

Decompensated hemorrhagic shock resulted in significant hyperglycemia and was
accompanied by elevated glucagon and corticosterone levels (Figure 16F, G).
Glucagon-like peptide-1, a gut-derived hormone known to enhance insulin secretion in
response to glucose, was also elevated (Figure 16E). Interestingly, when compared to
resuscitation with LR, resveratrol supplementation resulted in significantly higher levels
of GLP-1 (Figure 16E). Resveratrol did not significantly influence either glucagon or
corticosterone secretion; and at 18 hours, all hormone levels were similar regardless of
resuscitation strategy.
Resveratrol supplementation preserved the active form of IRS1 in both liver and
kidney tissues

Insulin receptor substrate-1 (IRS1) plays a key role in insulin signaling pathways and
is activated upon tyrosine phosphorylation (pY612 IRS1). Following resuscitation with
LR, the expression level of pY612 IRS1 in liver and kidney tissue was significantly
reduced and could contribute to post-injury hyperglycemia. Resveratrol, however,
preserved the expression of phosphorylated IRS1 immediately post-resuscitation (Figure
17A,B). At 18 hours, however, the expression level of pY612 IRS1 did not differ

between treatment strategies.

DISCUSSION
Resveratrol, a naturally occurring polyphenol with known antioxidant, anti-

inflammatory, and anti-glycemic properties, has been shown to be protective in various
models of human disease.(111,244,274) Given hemorrhagic shock is frequently

complicated by mitochondrial dysfunction, exuberant ROS production, and
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hyperglycemia, we hypothesized that adding resveratrol to standard fluid resuscitation
would prove beneficial.(120,280) In our model of decompensated hemorrhagic shock,
resveratrol supplementation significantly ameliorated mitochondrial dysfunction,
decreasing both the production of mitochondrial ROS and the subsequent damage from
lipid peroxidation. Resveratrol also decreased serum glucose levels and improved
insulin sensitivity by enhancing GLP-1 secretion and by preserving IRS1
phosphorylation. Finally, our data suggests that resveratrol benefits mitochondrial
function in the acute setting, not by promoting mitochondrial biogenesis, but by activating
SIRT1 and PGC1a-mediated antioxidant pathways.

Currently, the initial approach to treating hemorrhagic shock is volume replacement
with crystalloid fluids in order to increase the circulating intravascular volume, restore
blood pressure, and maintain organ perfusion.(224) Crystalloid resuscitation, however,
does not prevent systemic inflammation or oxidative stress.(2,136) Moreover, we have
previously reported that resuscitation with lactated Ringer’s does not restore
mitochondrial respiratory capacity in vital organs such as the heart, liver and
kidney.(119) Similarly, in this study, resuscitation with lactated Ringer’s did not restore
mitochondrial respiratory capacity or mitigate mitochondrial oxidative stress in the
kidney. Because mitochondrial dysfunction can further exacerbate cellular damage by
reducing aerobic ATP production and increasing the generation of reactive oxygen
species (ROS) (129), resuscitative fluids that preserve mitochondrial function or
augment antioxidant capacity could prove beneficial.

Resveratrol has previously been shown to be protective in several models of critical
illness. In septic animals, treatment with resveratrol prevented oxidative damage in
lymphocytes (7), preserved tissue morphology in the lung and kidney (125), mitigated

acute lung injury and prevented myocardial depression.(142,220) Resveratrol has also
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been shown to be beneficial in several trauma-hemorrhage models. Resuscitation with
resveratrol not only improves cardiac output (239), but has been shown to decrease
hepatic injury and inflammation following hemorrhagic shock.(276) As such, resveratrol
may provide a useful therapeutic adjunct to standard fluid resuscitation following
traumatic injury.

Although the mechanism underlying resveratrol’s benefit remains controversial (235),
resveratrol appears to attenuate injury by activating SIRT1 dependent pathways. SIRT1,
a NAD dependent “survival” enzyme, deacetylates and activates PGC1aq; a key regulator
of mitochondrial function and metabolism.(127,251) In turn, PGC1a impacts two
different pathways that may be critical to cell survival following ischemia-reperfusion
(Figure 1). Firstly, PGC1a is required for the induction of many ROS-detoxifying
enzymes, including SOD2 and catalase.(145,226) Secondly, PGC1a induces
mitochondrial biogenesis by binding to NRFs and enhancing their activity.(244) NRFs
subsequently increase the expression of TFAM, an enzyme directly responsible for the
transcription of nuclear-encoded mitochondrial proteins.(80,226) As an upstream
regulator of PGC1aq, strategies that enhance SIRT1 expression or activity may also play
an important role in regulating oxidative stress and mitochondrial biogenesis in vitro.
Importantly, the antioxidant and mitochondrial effects of resveratrol also appear to be
SIRT1 mediated. In cell culture models, knocking down SIRT1 not only blocked the
protective effects of resveratrol on mitochondrial oxidative stress (265), it also prevented
resveratrol-induced up-regulation of mitochondrial biogenesis factors.(55)

In this study, adding resveratrol to standard resuscitation with lactated ringer’s
dramatically restored mitochondrial function while mitigating oxidative damage. While
resveratrol has been shown to enhance the enzymatic activity of succinate

dehydrogenase, a protein that constitutes complex Il on the inner mitochondrial
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membrane (134), in our study, resveratrol also appears to dramatically restore CIV
activity. Although it is possible that resveratrol could directly impact CIV activity, it is
more likely that the benefit observed stems from resveratrol’s known antioxidant
effects.(244) Both ROS and lipid peroxidation products can effectively inhibit CIV activity
following ischemia-reperfusion.(46,174) In this current study, resuscitation with
resveratrol resulted in decreased ROS production and 4-hydroxynonenal damage
following hemorrhagic shock. Thus, the salutary effect of resveratrol on mitochondrial
function could be in part secondary to decreased CIV inhibition by oxidant byproducts.

Resveratrol also appears to enhance antioxidant defenses following hemorrhagic
shock. In this study, resveratrol significantly increased the expression of both SOD2 and
catalase following hemorrhagic shock, which could have contributed to the observed
decrease in mitochondrial oxidative stress. Alternatively, resveratrol supplementation in
our study effectively prevented the reduction in Cll and CIV activity following
hemorrhagic shock, which may have also contributed to the observed decrease in ROS
production. Thus, the improvement in oxidative damage observed with resveratrol may
be multifactorial — resuscitation with resveratrol may either increase antioxidant
defenses, decrease mitochondrial ROS production, or both.

In contrast to previous studies demonstrating augmented mitochondrial biogenesis
(55,134,244), resveratrol did not seem to promote mitochondrial biogenesis in our acute
hemorrhagic shock model. Although the expression of PGC1a was enhanced,
resveratrol had no effect on the other transcriptional factors regulating mitochondrial
biogenesis (e.g. NRF-1, NRF-2 and TFAM) and did not change mitochondrial content as
measured by citrate synthase activity. Since NRF-1, NRF-2 and TFAM are downstream
targets of PGC1aq, further studies with longer observation are needed to determine if

resveratrol has any long-term effects on mitochondrial biogenesis. Finally, because
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resuscitation with resveratrol increased the transcript levels of SIRT1, PGC1a, and the
downstream targets, SOD2 and catalase, we conclude that the acute benefits of
resveratrol appear to be mediated via an antioxidant, rather than mitochondrial
biogenesis pathway.

Resveratrol may also improve mitochondrial function by favorable impacting cellular
redox potential.(147,197) In this study, resveratrol supplementation significantly
decreased the NADH concentration and nearly doubled the NAD to NADH ratio. It is
possible that this favorable change in the NAD to NADH ratio have influenced SIRT1
activity in our model.(201)

We also found that resveratrol significantly enhanced the activity of two key Krebs
cycle enzymes, pyruvate dehydrogenase and a-ketoglutarate dehydrogenase. By
converting pyruvate to acetyl CoA, pyruvate dehydrogenase serves a key mediator
between glycolysis and oxidative phosphorylation. a-ketoglutarate dehydrogenase
(aKDH), on the other hand, serves as the Krebs cycle rate-limiting enzyme and can be
reversibly inhibited by ROS. As such, resveratrol’s ability to increase aKDH may be
secondary to its antioxidant effects. Moreover, using resveratrol during resuscitation
potentially promoted the entry of NADH into electron transport.

Although resveratrol is known to have anti-glycemic effects in chronic models of
obesity(12), its impact on glucose metabolism in hemorrhagic shock has not been
previously reported. Hyperglycemia and acute insulin resistance frequently develop in
injured patients and are associated with worse clinical outcomes.(123) Although a
number of mechanisms have been implicated, mitochondrial dysfunction appears to play
a key role.(140,280) Mitochondrial-derived ROS may promote insulin resistance by
serving as a second messenger and down regulating the insulin signaling

pathway.(47,124) Indeed, blocking the increase in ROS after injury prevents the acute
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development of insulin resistance and reduces the severity of hyperglycemia.(280) In
our study, resveratrol supplementation not only decreased mitochondrial ROS
production, it preserved the expression of tyrosine phosphorylated IRS1 following
hemorrhagic shock. Because only tyrosine phosphorylated IRS1 is capable of activating
downstream insulin signaling pathways,(86) it is likely that the observed decrease in
insulin resistance with resveratrol was, in part, secondary to decreased oxidant stress
and preserved of insulin signaling.

Resveratrol may also improve glycemic control by stimulating the secretion of
glucagon-like peptide (GLP-1).(58) GLP-1 is a gut-derived hormone that enhances
insulin sensitivity by inducing glucose-dependent insulin secretion while suppressing
glucagon release.(278) Although we observed an increase in GLP-1 following
resuscitation with resveratrol, we did not see a concomitant increase in insulin levels.
GLP-1, however, has been shown to have independent insulin-like effects on glucose
metabolism in rat liver, muscle and fat.(157) Even in depancreatized animals, GLP-1
can still potentiate glucose utilization in peripheral tissues and has been shown to
increase the expression and phosphorylation of IRS1.(76,204) As such, the increased
secretion of GLP-1 observed in our resveratrol treated rats may have contributed to both
lower glucose and increased phosphorylated IRS1 expression. How resveratrol
increases GLP-1 secretion, however, remains to be determined.

Consistent with previous studies, hemorrhagic shock in our model resulted in
significantly elevated TNF-a and IL-6 levels which may have directly contributed to the
development of hyperglycemia and insulin resistance.(158,264) Although resveratrol
has been shown to mitigate inflammation and reduced blood TNF-a, IL-6, and IL-13
levels in diabetic rats treated with enteral resveratrol for 30 days (180), cytokine levels

did not decrease with a single dose of resveratrol in our study. Increased dosing
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regimens and longer observation periods maybe needed to determine if resveratrol
improves the systemic cytokine profile in hemorrhagic shock.

While the potential benefit of using resveratrol to treat hemorrhagic shock is
intriguing, there may be some pitfalls. Activation of SIRT1 appears to be beneficial
during reperfusion, but some of its actions may interfere with the normal response to
acute hypoxia. SIRT1 deacetylates and inhibits the activities of hypoxia inducible factor
1a (HIF1a) and HIF2a.(64,144) Acetylated HIF1a can activate a number of adaptive
metabolic responses including a switch from oxidative phosphorylation to anaerobic
metabolism, which could promote cell survival under conditions of hypoperfusion.(60)
Similarly, while deacetylating and down-regulating its pro-inflammatory response
appears helpful, NFKB also coordinates the response to cellular stress and the up-
regulation of its activity in response to ROS may help cells resist apoptosis during
hemorrhagic shock and resuscitation.(179,213) Resveratrol can also inhibit
cyclooxygenase, thereby decreasing the production of thromboxane. Thromboxane is a
potent inducer of platelet aggregation and vasoconstriction, therefore, it is at least
theoretically possible that resveratrol could negatively impact hemostasis in a bleeding
trauma patient.

Our study has several limitations that will need to be addressed before resveratrol
can be translated into clinical care. First, we only explored the impact of resveratrol
following acute blood loss. Further studies are needed to determine if treating
hemorrhagic shock with resveratrol improves mitochondrial function or prevents organ
dysfunction in the long-term. Additionally, we only tested one dose of resveratrol. It is
possible that alternative dosing regimens may preferentially influence downstream
targets of SIRT1 or PGC1a. We also only explored the impact of resveratrol on two

tissue types. Because activating SIRT1 has been reported to both increase and
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decrease inflammation in different tissues (79,177), it is possible that resveratrol may
also have tissue-specific effects. Finally, we did not use a hyperinsulinemic-euglycemic
clamp to assess the impact of resveratrol on insulin sensitivity. While this is considered
the gold-standard method of assessing insulin sensitivity, the frequent blood samples
required would have negatively affected the hemorrhage model. Moreover, the
continuous insulin and glucose infusions required may have potentially affected
mitochondrial function. Instead, we used the Ln HOMA-IR index which has been shown
to correlate well with the hyperinsulinemic-euglycemic clamp method and is frequently
used as a clinical surrogate of insulin sensitivity.(45) Lastly, we did not treat
hypoglycemic animals. Glucose administration may provide additional benefit during
resuscitation with resveratrol, but this requires further study.

In this work we explored the effects of resveratrol on mitochondrial injury following
hemorrhagic shock and resuscitation. Resveratrol supplementation led to a restoration
of mitochondrial function, alleviated oxidative stress, and improved hyperglycemia
following hemorrhagic shock. These mitochondrial-protective effects appear to be
mediated via stimulation of a SIRT1-PGC1a-antioxidant pathway rather than by
mitochondrial biogenesis. Further work is needed, however, to determine if the
antioxidant benefits observed are mediated by interactions between SIRT1 and PGC1a.
Additionally, we will need to determine if the restoration of electron transport and Krebs
cycle enzymatic activity, as well as enhanced glycemic control, is secondary to
decreased oxidative stress or the result of resveratrol-induced post-translational
modifications. Nonetheless, adding resveratrol to standard fluid resuscitation appears to

be beneficial and warrants further investigation.
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CHAPTER 4:

Deleting SIRT1 Promotes a Pro-Inflammatory Phenotype in Sepsis

Sepsis, the physiologic response to overwhelming infection, is a major healthcare
problem in the United States with significant human and economic costs.(139) Each
year, more than 750,000 patients are hospitalized with sepsis resulting in an estimated
$17 billion in healthcare costs.(5) Despite antibiotics and supportive care, sepsis is the
most frequent cause of death in the intensive care unit and continues to claim more than
215,000 lives annually.(131) Although sepsis is characterized by a profound systemic
inflammatory state in response to infection, most patients with sepsis do not die of the
inciting infection per se. Rather, despite eradication of the underlying infection, the
majority of non-survivors die days to weeks later after developing progressive organ
failure and profound muscular weakness. Importantly, sepsis-induced organ failure
appears to occur even with adequate tissue perfusion and in the absence of significant
tissue necrosis or apoptosis.(19,101,202,249)

Recent laboratory and clinical investigations suggest that organ dysfunction may
develop in sepsis, in part, because pro-inflammatory mediators directly damage the
mitochondria. In both animal and clinical studies, sepsis results in early mitochondrial
ultrastructural abnormalities as well as functional impairment. (26,53,101,164,256)
Sepsis-induced mitochondrial dysfunction subsequently leads to increased reactive
oxygen species, bioenergetic failure and ultimately cellular dysfunction.(52,200,218)
Notably, the degree of mitochondrial dysfunction observed closely correlates with the
severity of clinical disease.(24,25) When skeletal muscle biopsies were taken within 24
hours of ICU admission, non-surviving septic patients were found to have significantly

depressed complex | activity and lower tissue ATP levels when compared to both sepsis
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survivors and healthy controls. Moreover, the severity of septic shock directly correlated
with the decrease in muscle ATP levels.(24) The ability to generate sufficient cellular
ATP may be further compromised because sepsis results in a loss of mitochondrial
mass.(34,232) Indeed, patients with MOF were found to have 30 to 50% less
mitochondrial protein in both intercostal and thigh muscle relative to non-septic
controls.(70,71) Ultimately, the ability to survive sepsis, may depend on the capacity to
recover mitochondrial function.(217)

SIRT1, a highly conserved NAD deacetylase, can activate a number of key
survival pathways during cellular stress and may hold the key to preserving
mitochondrial function in sepsis (Figure 1). SIRT1 can promote mitochondrial resilience
by suppressing NFkB-mediated inflammation, by enhancing the transcription of
antioxidant defenses including SIRT3, and by promoting mitochondrial
biogenesis.(126,128,226) Indeed, treating sepsis with the SIRT1 activator, resveratrol,
appears to dramatically decrease cytokine levels, reduce oxidant injury, minimize
mitochondrial damage, and improve both organ function and survival.(99,125,210,220)

The benefit of activating SIRT1 in sepsis, however, may not be so clear-cut and
may depend on the both the model and tissue type. While several studies have shown
that deleting or inhibiting SIRT1 in macrophages results in a strongly pro-inflammatory
phenotype (207,268,271), others studies have suggested that SIRT1 either has little
impact on the immune response or that its inhibition decreases inflammation.(51,67,156)
Moreover, pharmacologically inhibiting SIRT1 during the adaptive phase of sepsis has
been shown to improve survival in a murine model of polymicrobial sepsis.(245) Clearly,
a better understanding of the functional role, potential tissue specificity, and possible
temporal influence of SIRT1 during sepsis is needed in order to reconcile these very

divergent findings.
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In an attempt to understand the impact of SIRT1 on the pathophysiology of
sepsis, we conducted a serious of in vitro and in vivo experiments that recapitulated a
severe infection using inducible SIRT1 knock out mice, as well as various SIRT1

activators and inhibitors.

RESULTS
Survival rates after CLP vary depending model severity

Cecal ligation and puncture (CLP) is considered the “gold standard” model of sepsis.
There are many variables, however, that can affect the severity and consistency of the
model.(195) In order to determine if we were achieving reliable and reproducible results,
a series of severity experiments were performed in 3 month old C57BL/6J male mice
(Jackson Laboratories). By altering both the length of cecum ligated (full vs %2 length)
and the gauge of needle used (23g vs 25g), we were able to demonstrate a graduated
difference in survival over 7 days based on model severity (Figure 18A). Animals in the
severe sepsis model had 100% mortality, whereas moderate and mild sepsis carried
50% and 90% mortality respectively. Importantly, physiologic variables known to reflect
sepsis such as temperature and serum glucose also varied with severely septic animals
developing more pronounced hypothermia and hypoglycemia (Figure 18C,D).(176)
When endpoints of euthanasia were calculated (Table 3), differences in clinical
appearance and behavior also correlated with severity of sepsis (Figure 18B).

Sepsis is associated with decreasing SIRT1 expression over time in liver

Although SIRT1 expression has been shown to decrease promptly following
endotoxin exposure in mice (282), CLP is associated with a more gradual and less
robust cytokine response. As such, we sought to determine if CLP impacted SIRT1

expression in liver and kidney tissue of sham and CLP treated mice were harvested at 0,
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3,9, 18, and 24 hours. SIRT1 expression over time was determined by gPCR. Given
SIRT1 absolutely requires NAD, we also evaluated the impact of sepsis on the
expression of NAMPT, a critical enzyme involved in the NAD salvage pathway.

Our preliminary data suggests that SIRT1 transcripts in liver decreased
significantly within 18 hours whereas NAMPT expression was markedly elevated at 9
hours (Figure 19A). In contrast, SIRT1 expression in the kidney did not change, although
NAMPT decreased significantly by 24 hours (Figure 19B).

Pharmacologic manipulation of SIRT1 influences survival and physiology

Sepsis is characterized by an initial hyperinflammatory phase, followed by a
hypoinflammatory adaptive phase that if left unchecked may progress to a state of
prolonged immunosuppression.(100) Recent work by the McCall group suggests that
SIRT1 plays a crucial role in the epigenetics of sepsis and can be manipulated during
the adaptive phase to improve survival.(150,151) Based on our preliminary findings that
SIRT1 gene expression in liver declines significantly by 18 hours, we elected to start
pharmacologic interventions 6 hours after CLP. Starting therapy at this delayed time also
makes clinical sense because it can take several hours for a patient’s infection to
progress to a diagnosis of sepsis. Following CLP, intraperitoneal resveratrol significantly
improved survival when compared to wild type controls (Figure 20A). In contrast,
animals treated with the SIRT1 inhibitor Ex-527 demonstrated increased early mortality.
At 30 hours, however, there appeared to be an inflection point where SIRT1 inhibition
may extend survival. Interestingly, at 24 hours EX-527 also significantly improved body
temperature with a trend toward lower serum glucose (Figure 20B, C). These findings
appear to support the theory that enhancing SIRT1 may be beneficial early during
sepsis, whereas its inhibition may be protective during the adaptive phase.(245)

Additional studies, however, are needed and will be performed to confirm these findings.
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Deletion of SIRT1 negatively impacts survival and physiology in sepsis

In order to determine if deleting SIRT1 negatively impacts clinical outcomes in
polymicrobial sepsis, 3-4 month old inducible SIRT1 knock out (S1KO) mice and their
wild type littermates were treated with tamoxifen 2 weeks prior to CLP. Despite using
the same technique to induce “severe sepsis”, our in-house bred mice demonstrated
significantly less overall mortality than in mice purchased from Jackson Labs. Although
determining the reason for this difference is outside the scope of this current project,
animals bred in different locations may have different intestinal flora and we suspect
differences in mortality may be secondary to differences in the gut microbiome.(95)
Animals from different venders not only demonstrate significant differences in the viable
counts of bacteria in their feces, there are striking differences in their cecal microbiota
when PCR-derived amplicons from bacterial 16S rRNA genes are evaluated by
denaturing gradient gel electrophoresis.(96,108)

Nonetheless, when compared to WT mice from the same cohort, S1KO mice were
significantly more likely to die, with the majority of deaths occurring within the first 48
hours (p=0.026, Figure 21A). Overall, STKO mice also appeared clinically less well with
a trend toward higher Endpoints of Euthanasia scores and significantly more weight loss
over the 5 day course (Figure 21B,C). Physiologically, STKO mice appeared “more
septic” (176) with a lower core body temperature and worse hypoglycemia early during
the course of the experiment (Figure 21D,E C,D).

Deletion of SIRT1 negatively impacts mitochondrial function the kidney 5 days
post CLP

Given S1KO mice appeared more “septic” following CLP, we hypothesized that
deleting SIRT1 would be associated with significantly worse mitochondrial function 5

days post-CLP. Surprisingly, when compared to WT septic mice, deleting SIRT1 only
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significantly impaired complex Il dependent respiration in the kidney (Figure 22D).
Interestingly, complex Il, or succinate dehydrogenase, activity is directly influenced by
SIRT3.(49) Given that sepsis has recently been shown to decrease SIRT3 expression in
the kidney (284), it is possible that deleting SIRT1 further impedes the recovery of
SIRT3, thus contributing to the decreased ClI activity observed in S1KO sepsis
survivors. In order to address this question, we will be looking at the acetylation status of
succinate dehydrogenase, as well as SIRT1 and SIRT3 protein expression in WT and
S1KO mice 5 days post CLP. Additionally, we will perform control experiments in sham
WT and S1KO mice in order to assess baseline mitochondrial content, respiration, and
sirtuin expression.
Deletion of SIRT1 negatively impacts physiologic variables and organ function 36
hours post-CLP

Septic S1KO and WT mice were treated with resveratrol (20mg/kg IP every 6hrs)
and sacrificed at 36 hours post-CLP in order to determine if SIRT1 status influenced
physiologic variables or organ function. Although all septic animals were more
hypothermic and hypoglycemic than sham controls, septic STKO mice tended to have
lower temperatures and serum glucose values when compared to septic WT mice
(Figure 23A, B). Moreover, septic STKO mice also looked less clinically well, with a
trend toward higher endpoints of euthanasia scores (Figure 23C). Notably, SIRT1
activation with resveratrol did not improve these physiologic variables. While deletion of
SIRT1 negatively impacted renal function (Figure 23D), its impact on liver function was
variable and not statistically significant (Figure 23E). Again, the use of resveratrol did
not improve organ function. In order to determine if the negative trends observed in
S1KO mice are significant, additional experiments will be performed to increase the

number of biologic replicates in all groups.
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Deletion of SIRT1 has minimal impact on liver mitochondrial function following
sepsis

It is well known that sepsis negatively impacts mitochondrial function.(217) In order
to determine the impact of SIRT1 on mitochondrial respiratory capacity and redox status,
S1KO and WT mice were randomized to sham treatment, CLP or CLP with resveratrol
(20mg/kg IP every 6hrs). At 36 hours post-CLP, liver tissue homogenates were
assayed. Sepsis did not significantly change mitochondrial content in liver, but did
decrease ClI, Il, and IV respiratory capacity in WT mice (Figure A-C). S1KO mice had
significantly decreased Cl activity at baseline, however, deleting SIRT1 did not make the
degree of sepsis-induced mitochondrial dysfunction worse. In fact, following sepsis, WT
and S1KO had similar Cl, 1, and IV dependent respiration regardless of resveratrol
treatment (Figure 24).

Preliminary experiments suggest that although the redox state does not significantly
change in WT animals with sepsis, resveratrol tended to decrease NADH and thereby
increasing the NAD/NADH ratio. In contrast, S1KO mice may have decreased NAD
pools at baseline (Figure 24D)

Deletion of SIRT1 significantly impacts kidney mitochondrial function following
CLP

Given our finding that SIRT1 KO mice were more susceptible to sepsis-induced renal
dysfunction, we wondered if deleting SIRT1 was associated with increased mitochondrial
dysfunction. As previously described, S1KO and WT mice were randomized to sham
treatment, CLP or CLP with resveratrol (20mg/kg IP every 6hrs) and euthanized 36
hours later. Despite similar citrate synthase activity, S1KO mice demonstrated
significantly worse fatty acid respiration, as well as decreased Cl and Cll dependent

respiration, when compared to WT septic mice (Figure 25 A-C). There was a trend
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toward improved CI function in WT animals treated with resveratrol (Figure 25C). Renal
redox status was not influenced by SIRT1 expression remained stable regardless of
resveratrol treatment and was not influenced by SIRT1 expression (Figure 25D).
Manipulation of SIRT1 modifies the inflammatory response in vivo and in vitro

There is controversy regarding whether or not SIRT1 is pro or anti-inflammatory.
While SIRT1 inhibition has been shown to attenuate the production of pro-inflammatory
cytokines in lipopolysaccharide (LPS)-—stimulated macrophages and in septic
animals,(67,156) pharmacologic SIRT1 activation with resveratrol has similarly been
shown to be protective in sepsis.(125,210,220) In order to determine if SIRT1 tempers
the inflammatory response in sepsis, we conducted a series of in vivo and in vitro
experiments. IL 6 levels were measured serially by ELISA in WT and S1KO mice
subjected to CLP. Although baseline values were similar, IL6 levels were significantly
more elevated in S1KO mice early during the course of sepsis. Because macrophages
are a key source of IL6 during sepsis, we looked at the temporal expression of IL6 in
cultured bone marrow derived macrophages (BMDMs) treated with LPS. BMDMs
harvested from SIRT1 KO mice had a more robust inflammatory response with
significantly higher gene expression of IL6 than WT cells (Figure 26B). In order to
confirm gene expression translates to higher protein expression, however, we plan to
measure both cellular IL6 protein levels by immunoblot as well as secreted IL6 levels by
ELISA in LPS-stimulated BMDMs in future studies.

SIRT1 can also modulate inflammation by enhancing the expression of superoxide
dismutase (SOD2) and catalase (CAT)(128,226), thereby decreasing the impact of ROS.
Surprisingly, after LPS-stimulation, SIRT1 KO BMDMs actually had higher SOD2 and
CAT expression than WT cells (Figure 26C, D). Very preliminary data suggests a similar

pattern of gene expression in LPS stimulated BMDM treated with the SIRT1 inhibitor,
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EX-527 (Figure 26E). This suggests that SOD2 and CAT expression are not exclusively
controlled by SIRT1 expression and increased expression can be activated in times of
oxidative stress. This increased expression of antioxidants may reflect an overall
increased burden of ROS in S1KO cells. We will test this hypothesis in future
experiments by measuring the generation of ROS after LPS exposure in WT, S1KO, and
pharmacologically manipulated BMDMs.

Myeloid deletion of SIRT1 is pro-inflammatory during sepsis.

Although we demonstrated that deleting SIRT1 was pro-inflammatory using both in
vivo and in vitro septic challenges, it is possible that nonspecific SIRT1 deletion in the
whole organism, and not just an enhanced inflammatory response, could account for
differences in mortality. Moreover, the impact of myeloid-specific SIRT1 deletion on
inflammation remains controversial; thus differences in the inflammatory response could
theoretically be driven by SIRT1 deletion in the immune cells or in key organs such as
the kidney or liver. (51,207) In order to determine if deleting SIRT1 significantly
influenced the immune response in sepsis, SIRT1 was deleted in macrophages and
granulocytes using LysMCre. When subjected to CLP, the S1KO LysMCre mice had
significantly higher serum IL6 levels than their WT littermates at 12 hours.
S1KOLysMCre also had increased 5 day mortality. Although we have fewer mice in this
experiment, none of the WT mice died in these experiments which would be highly
unusual. Previously WT mice in our S1KO cohort experienced an 80% mortality rate.
This discrepancy is concerning and we will repeat these experiments in order to validate

that deleting SIRT1 in myeloid cells increases mortality.
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CONCLUSIONS
In this ongoing study, we report that deleting or inhibiting SIRT1 results in a pro-

inflammatory phenotype both in vivo and in vitro. Using a polymicrobial model of intra-
abdominal sepsis, whole body deletion of SIRT1 negatively impacted both survival and
physiology. The influence of SIRT1 on mitochondrial function during sepsis, however,
appears to be organ dependent. While deleting SIRT1 did not alter mitochondrial
function in the liver, it did significantly impair both mitochondrial capacity in the kidney
and was associated with decreased renal function following CLP. We further
investigated the role of SIRT1 on the on the immune response by stimulating WT and
S1KO bone marrow derived macrophages with LPS. In this cell culture model of sepsis,
SIRT1 deletion significantly increased IL6 gene expression and may be associated with
increased generation of ROS. Similar findings were appreciated when WT BMDMs were
treated with the SIRT1 inhibitor EX527. Preliminary data suggest that specifically
deleting SIRT1 in macrophages and granulocytes recapitulates the pro-inflammatory
phenotype observed in our whole body SIKO model. Although future experiments are
planned to confirm our preliminary findings, SIRT1 appears to play a vital role in sepsis

and a could potentially be a viable therapeutic target.
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CHAPTER 5:

Deleting SIRT3 Enhances the Inflammatory Response in Sepsis

As the major mitochondrial deacetylase, sirtuin 3 (SIRT3) directly modulates cellular
energetics and.is poised to play a pivotal role in coordinating the mitochondrial response
to sepsis. In addition to regulating fatty acid oxidation and several of enzymes in the
Kreb’s cycle, SIRT3 can deacetylate complexes |, I, and Il (102); thus influencing the
flow electrons through the electron transport chain as well as the generation of
damaging ROS. SIRT3 can also directly mitigate oxidative stress by activating
superoxide dismutase and by increasing the concentration of reduced
glutathione.(191,221) While SIRT3 knockout mice appear phenotypically normal, these
animals demonstrate evidence of complex | inhibition as well decreased basal ATP
levels. Overexpression of SIRT3, on the other hand, rescues mitochondrial function and
minimize oxidative damage.(1). Recently, deletion of SIRT3 in C2C12 myoblasts was
noted to decrease respiratory capacity, increase reactive oxygen species and increase
insulin resistance. Interestingly, a similar phenotype is observed in septic patients and in
LPS treated C2C12 cells.(62,72,155) In order to determine if SIRT3 could be a potential
therapeutic target in sepsis, we are currently investigating the impact of modulating

SIRT3 both in vitro and in vivo.

RESULTS

Deleting SIRT3 increases early mortality but doesn’t significantly impact morbidity
Given the central role SIRT3 plays in mitochondrial metabolism, we anticipated that
deleting SIRT3 would significantly impact the physiologic response to polymicrobial

sepsis. Surprisingly, S3KO mice and their WT littermates responded similarly to the
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septic insult. Although the deletion of SIRT3 is reported to have minimal impact on
standard biometrics (1), S3KO mice in our cohort weighed less at baseline than their WT
littermates. Both genotypes lost weight at the same rate following CLP, however, S3KO
mice lost a smaller total percentage of body weight (Figure 28 A, B). After CLP, S3KO
and WT mice had similar core body temperatures and serum glucose levels (Figure 28
C, D). Moreover, in animals that survived 5 days post-CLP, SIRT3 status did not
significantly impact organ function (Figure 28E). While the overall mortality at 5 days
was similar, S3KO animals died earlier than WT mice (Figure 28F).

Deleting SIRT3 has minimal clinical impact within the first 36 hours post-CLP
Given the increased early mortality in S3KO mice, we wondered if SIRT3 deletion
was associated with worse clinical physiology or increased organ dysfunction. In order to
address this question, septic mice were assessed every 6 hours starting 12 hours post-

CLP. S3KO and WT mice had similar core body temperatures and looked clinically
similar with nearly identical endpoints of euthanasia scores (Figure 29A, C). Although
S3KO mice had a modest, but statistically significant, increase in their serum glucose
starting at 24 hours, they were by no means hyperglycemic (Figure 29B). Both
genotypes also had a similar degree of organ dysfunction 36 hours post-CLP (Figure
29D).
SIRT3 status has minimal impact on mitochondrial function in sepsis

Using high resolution respirometry, we interrogated mitochondrial respiratory
capacity in both liver and kidney whole homogenates at 36 hour and 5 days post-CLP.
Despite its central role in mitochondrial metabolism, SIRT3 status did not significantly
impact mitochondrial content or respiratory function in our CLP model at these time
points. In fact, septic S3KO and WT mice had identical respirometry profiles. In the

liver, CLP resulted in decreased Cl and CIV activity at 36 hours and persistent CIV
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dysfunction at 5 days, regardless of genotype (Figure 30B, C). While the kidney
demonstrated significant mitochondrial dysfunction 5 days post-CLP, this dysfunction did
not appear to be influenced by SIRT3 status either (Figure 30 E, F). Thus, these data
suggest that S3KO and WT likely share a common pathophysiology that leads to the
same degree of mitochondrial dysfunction observed at the time points measured. It is
possible, however, that we missed earlier differences in mitochondrial function by waiting
until 36 hours. Indeed, Zhao and colleagues recently reported that S3KO mice
demonstrated increased sepsis-induced acute kidney injury 24 hours post-CLP.(284)
Regardless, it does not appear that differences in mitochondrial respiratory capacity
account for the increased early mortality observed in our SIRT3 cohort. It is possible that
another tissue that we didn’t examine, like macrophages or cardiac tissue, might have
mitochondrial dysfunction that could account for the differences in mortality.
Deleting SIRT3 is pro-inflammatory

In order to determine if SIRT3 status impacted the acute inflammatory response, we
serially measured serum IL6 levels in S3KO and WT mice subjected to CLP. S3KO
mice demonstrated significantly higher IL6 levels that peaked 6 hours post CLP.
Interestingly, S3KO and WT mice had similar IL6 levels starting 12 hours post CLP; and
this similarity in cytokine profile may help explain why we didn’t we observe differences
in their clinical physiology (Figure 31 A. Figure 29A, C). We then looked at LPS
stimulated BMDMs in order to determine if SIRT3 status influenced the temporal
expression of pro-inflammatory cytokines. Although the sample size was small, these
preliminary data suggest that IL6 expression may peak earlier in S3KO cells (Figure
31B). WT and S3KO BMDM were then pretreated with honokiol, a purported SIRT3
activator (185) for one hour prior to LPS stimulation in order to determine if SIRT3

activation would dampen the inflammatory response. In these preliminary studies,
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honokiol appears to decrease IL6 and TNFa expression. These results, however, did
not reach significance in our small sample size. Somewhat surprisingly, there was a
trend toward decreased IL6 expression in honokiol treated S3KO cells suggesting that
honokiol may have off —target anti-inflammatory (or antioxidant) effects (Figure 31 D, E).
Indeed, pretreatment with honokiol significantly reduced SOD2 expression in S3KO, but
not in WT cells co-cultured with LPS (Figure 31F). Additional experiments are planned
in order to explore if SIRT3 status changes the temporal expression of pro-inflammatory
cytokines in vitro. In addition, we will determine if SIRT3 overexpression mitigates the
inflammatory response in CLP and in vitro. Finally, we will determine what role ROS play
in the S3KO pro-inflammatory phenotype by co-culturing cells with the antioxidant N-
acetylcysteine.
SIRT3 expression dramatically declines during sepsis in multiple tissues

We were struck with how similar septic S3KO and WT mice were in terms of
physiology and mitochondrial function following CLP. Given these similarities, we
wondered if WT animals adopted a S3KO phenotype as a natural response to sepsis
and if this transformation was necessary in order to mount an inflammatory response. In
order to begin to address this hypothesis, we cultured WT BMDMs with LPS and
measured SIRT3 mRNA overtime. We also subjected WT mice to CLP and measured
the temporal expression of SIRT3 in liver and kidney. Our preliminary data suggest that
during sepsis, SIRT3 is down regulated in multiple tissues (Figure 32) which may explain

why septic S3KO and WT share the same phenotype at later time points.
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CHAPTER 6:

Conclusions and Future Directions

Although hemorrhagic and septic shock differ significantly in their underlying etiologies,
both conditions are associated with a pathologic state of systemic inflammation, vascular
collapse, mitochondrial dysfunction, and ultimately multiple organ failure (MOF). Given
MOF remains the most common cause of in-hospital morbidity following shock and
accounts for 50-80% of all deaths in the intensive care unit (48,66,175), there is
increasing interest in developing therapies that target shock-induced pathways. Sirtuins
play a critical role in modulating inflammation, oxidative damage, and mitochondrial
function during cellular stress. As such, we hypothesized that manipulating SIRT1 and

SIRT3 would significantly impact the pathophysiology of shock.

SIRT1
SIRT1 is a highly conserved NAD-dependent deacetylase that plays a critical role in

cellular resilience and longevity.(102) Given its absolute requirement for cytosolic NAD,
SIRT1 directly responds to cellular stress and hypoxia by providing transcriptional
regulation of key pro-survival pathways.(11,282) SIRT1 enhances mitochondrial
biogenesis by deacetylating the transcriptional co-activator PGC1a, decreases oxidative
stress by activating the FOXO3 dependent expression of superoxide dismutase and
catalase, and suppresses NFkB-mediated inflammation by deacetylating the p65 subunit
of the NFkB complex.(37,121,198) SIRT1 also deactivates and down regulates the
expression of poly (ADP-ribose) polymerase (PARP) —a NAD consuming enzyme that
triggers cell death in the setting of oxidant-mediated DNA damage. Given its ability to

modulate the inflammatory response, mitigate oxidative damage and promote cell
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survival, SIRT1 has become a key therapeutic target for many diseases characterized by

impaired mitochondria and inflammation.(12,36,134)

SIRT1 ACTIVATION IN HEMORRHAGIC SHOCK

Using a model of decompensated hemorrhagic shock, we investigated the impact of
activating SIRT1 during resuscitation using two different pharmacologic agents -
resveratrol and nicotinamide mononucleotide (NMN). Resveratrol, a polyphenol found in
red wine, is thought to increase SIRT1 activity either directly by allosteric interactions or
indirectly by activating AMPK to increase NAD levels.(12,102,103,181,243) When given
during resuscitation, we found that resveratrol enhanced mitochondrial enzymatic
activity, restored oxidative phosphorylation, mitigated oxidant damage, and preserved
renal function.(252,253) Similarly, we found that NMN, a naturally occurring NAD
precursor, preserved mitochondrial function, mitigated inflammation by decreasing the
generation of IL6, enhanced physiologic reserve and improved survival following
hemorrhagic shock.

Both resveratrol and NMN, however, have pleiotropic effects. Thus, the mechanistic
benefit of SIRT1 activation following hemorrhagic shock remains encouraging but
unproven. In order to better understand if targeting SIRT1 preserves mitochondrial
function or mitigates inflammation following hemorrhagic shock, we will conduct
complimentary experiments using inducible SIRT1 knockout (S1KO) and S1KO
LysMCre mice. By directly altering SIRT1 expression in both tissue and immune cells,
we will be able to evaluate the impact of SIRT1 signaling on bioenergetics, mitochondrial
function, and inflammation in hemorrhagic shock. Future experiments will also include
SIRT1 transgenic knock in (S1Tg) in order to determine if overexpression of SIRT1

improves physiologic function. Additionally, we will resuscitate SIKO mice with
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resveratrol and NMN in order to determine if their benefits in hemorrhagic shock are

SIRT1 dependent.

SIRT1 ACTIVATION IN SEPTIC SHOCK
Although there is some debate regarding the potential benefit (or harm) of activating

SIRT1 in sepsis (207,268,271), deleting SIRT1 in our polymicrobial model was clearly
pro-inflammatory and associated with worse clinical outcomes. Septic STKO mice
demonstrated higher levels of the inflammatory cytokine IL6, were more hypothermic,
had worse renal mitochondrial function, and died sooner than their WT counterparts.
While preliminary experiments using SIRT1 LysMCre mice suggest that many of these
findings may be secondary to a pro-inflammatory phenotype rather than a primary tissue
defect, we are conducting additional experiments given an unexpectedly high survival
rate in the WT littermates. Additionally, in order to determine if augmenting SIRT1
activity is anti-inflammatory, S1Tg mice will be subjected to CLP. In addition to
measuring serial IL6 levels, the deacetylation status of tissues prone to developing MOF
(eg. lungs, liver, and kidney) will be compared to our septic SIKO and WT mice. We will
also determine if SIRT1 overexpression improves survival.

In our sepsis survival experiments, pharmacologic activation of SIRT1 using
resveratrol decreased overall mortality. At first glance, these findings appear to
contradict those reported by Vachharajani et al. Using a similar CLP model, these
authors report that SIRT1 inhibition with EX527 administered 24 hours after the septic
insult improved survival.(245) Interestingly, EX527 appeared to have a biphasic
response in our model. When given 6 hour hours after cecal puncture, EX527 was
associated with increased mortality. However, after 24 hours, EX527 was associated

with improved clinical parameters, including serum glucose and temperature, with a
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trend toward improved late mortality. Given that sepsis has a biphasic inflammatory
response, it is possible that SIRT1 activation improves the early hyperinflammatory
phase, whereas SIRT1 inhibition promotes the adaptive phase of sepsis. Clearly, a
better understanding of the functional role, potential tissue specificity, and temporal

influence of SIRT1 activation during sepsis is needed.

SIRT1 EXPRESSION IN CRITICALLY ILL PATIENTS
Both injury and sepsis trigger an immune response that directly correlates with both

the frequency and severity of complications(63,109,159). In a recent analysis of 167
severely injured patients, Xiao et al noted that >80% of the leukocyte transcriptome was
altered within 12 hours of injury.(263) In patients whose post-injury course was
complicated by the development of MOF or infection, both the magnitude and time to
resolution of pro-inflammatory gene expression were significantly prolonged. Patients
with complicated courses also had decreased expression of genes involved in
mitochondrial function and oxidative phosphorylation. Interestingly, Xiao and colleagues
noted a significant decrease in SIRT1 expression in all severely injured patients.
Although the relationship between SIRT1 and inflammation has not been previously
explored in critically ill patients, SIRT1 activity in peripheral blood mononuclear cells
(PBMC) has been shown to correlate with severity of inflammation in chronic conditions
such as rheumatoid arthritis.(257) Because SIRT1 activity is known to modulate
inflammation, we will test the hypothesis that PBMC SIRT1 activity is suppressed in
critically ill patients following hemorrhagic and septic shock. Moreover, we further

speculate that decreased SIRT1 activity will predict the development of MOF.(282)

TARGETING NAD IN SHOCK

NAD functions as an essential cofactor in a number of cellular reactions and is
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absolutely essential for both SIRT1 activity and maximal oxidative capacity. During
hemorrhagic shock and resuscitation, tissue NAD levels fell significantly in our model,
potentially creating a competition for the limited amounts of NAD between poly (ADP-
ribose) polymerase-1 (PARP1), an NAD dependent enzyme activated during cellular
stress, and SIRT1.(10,44,219,230)(53-57) If PARP1 is preferentially activated, the
stressed cell goes on to die; whereas if SIRT1 is activated, adaptive survival pathways
are stimulated. Because the Km of PARP1 for NAD is lower than that of SIRT1, and
SIRT1 itself is a repressor of PARP1, falling NAD levels can favor activating PARP1; this
would exacerbate the loss of SIRT1 activity and make it less effective at inhibiting
inflammation or promoting cell survival. Moreover, it has been shown that repleting NAD
by overexpressing NAMPT can protect against the damage associated with PARP
overexpression in a SIRT1-dependent manner.(281) Thus, the availability of NAD plays
a major role in determining the fate of the cell and strategies to preserve or increase
NAD could tip the balance in favor of SIRT1 activation. Indeed, supplementation with
NMN in our hemorrhagic shock model significantly enhanced tissue NAD levels, restored
mitochondrial function, and improved survival.

In addition to providing precursor molecules, cellular NAD levels could be enhanced
by directly inhibiting PARP1 activity. PARP1 has previously been shown to play a key
role in the development of multiple organ damage following acute blood loss.(255) With
hemorrhagic shock and resuscitation, PARP1 is dramatically activated and correlates
with the development of intestinal injury, cardiac failure and acute lung inflammation.
Genetically knocking out PARP, however, significantly mitigates the development of
organ damage and nearly doubles the mean survival time.(143) Similarly,
pharmacologic inhibiting PARP at the time of resuscitation appears to preserve organ

function and improve cardiac function in variety of animal models.(162,229) It is unclear,
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however, if these benefits are simply related to inhibiting PARP, or if they also preserve
NAD levels and activate SIRT1 pathways.

Although we did not observe a decline in tissue NAD in our CLP model, nor did we
investigate the use of NMN, it is possible that supplementing NAD precursors could
prove beneficial in sepsis. To date, niacin is the only NAD precursor that has been
investigated in sepsis.(133) When given to endotoxemic rats, high dose niacin
significantly increased NAD levels in lung tissue and downregulated the NFkB pathway.
As a result, animals receiving niacin developed significantly less pulmonary inflammation
and were more likely to survive than placebo treated animals. All tissues in sepsis,
however, may not respond equally to increased intracellular NAD and there is some
concern that enhancing NAD in immune cells could promote the release of pro-
inflammatory cytokines in a SIRT6 dependent manner.(247)

Although our results investigating the relationship between NAD and SIRT1 in shock
are highly encouraging, many important questions remain. The optimal timing for
delivery of NAD precursors and SIRT1 activators remains unknown. It is also unclear if
strategies to prevent PARP activation can be used to concomitantly augment NAD levels
and promote SIRT1 activation. These questions are particularly relevant given the
suggestion that SIRT1 activation may have both positive and negative effects at different
times during the inflammatory response.(245,246) Lastly, the potential for synergy
between interventions that allosterically activate SIRT1 and those that restore its

cosubstrate, NAD, remains completely unexplored.

SIRT3
There is an increasing appreciation that SIRT3 plays a significant role in age-related

diseases and as the major mitochondrial deacetylase, is poised to play a pivotal role in
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coordinating the mitochondrial response to sepsis.(163) SIRT3 mitigates oxidative
stress, increasing both the availability and activity of MnSOD and isocitrate
dehydrogenase 2. SIRT3 may further minimize oxidative stress by promoting the
oxidation of fatty acids.(186) During fatty acid oxidation, some electrons shuttle from
NADH directly to the electron-transferring flavoprotein,(82) thereby bypassing complex |,
a key site of free radical generation that is frequently inhibited during shock. SIRT3 may
also modulate oxidative phosphorylation by deacetylating multiple complexes in the
electron transport chain.(102,184) Understanding how SIRT3 impacts the
pathophysiology of sepsis could potentially lead to more targeted therapies and
improved outcomes.

When subjected to CLP, S3KO mice in our study demonstrated a pro-inflammatory
phenotype with serum IL6 levels that peaked earlier in the course of sepsis. Septic
S3KO mice also had a significantly higher mortality than their WT littermates. Recently
Zhao et al reported similar findings and suggest that when challenged with a septic
insult, SIRT3 expression in the kidney decreases. SIRT3 deletion was also associated
with a significant upregulation of the NLRP3 inflammasome that was rescued with SIRT3
overexpression.(284)

Somewhat surprisingly, SIRT3 deletion did not significantly worsen the mitochondrial
respiration observed in whole homogenates of septic liver or kidney, nor did it
significantly impact tissue NAD levels. It is possible that deleting SIRT3 resulted in
mitochondrial dysfunction at an earlier time point or that mitochondria from a different
tissue (e.g., cardiac or immune cells) may be more impaired in our S3KO cohort. We
also subjected WT mice to CLP and measured the temporal expression of SIRT3 in liver

and kidney. Our preliminary data suggest that during sepsis, SIRT3 is down regulated in
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multiple tissues which may explain why septic S3KO and WT share the same phenotype
at later time points.

Given their striking physiologic similarities at 36 hours, we wondered if WT animals
adopt a S3KO phenotype as a natural response to sepsis and if this transformation was
necessary in order to mount an inflammatory response. In order to address this
hypothesis in future experiments, we will culture bone marrow derived macrophages
harvested from WT, S3KO and transgenic overexpressing SIRT3 mice (S3OE) with LPS.
In addition to measuring SIRT3 mRNA expression over time, we will quantify
mitochondrial derived reactive oxygen species as well as the activation of antioxidants
and the inflammasome. S3KO macrophages will also be co-cultured with the antioxidant
N-acetylcysteine in order to determine if reactive oxygen species are the pro-
inflammatory driver. Finally, we will compare how the systemic and tissue-based

inflammatory response to CLP changes over time in WT, S3KO, and S3OE mice.

SUMMARY
SIRT1 and SIRT3 play critical roles in mitigating the pathophysiology of shock and

represent attractive therapeutic targets. Impaired expression of either SIRT1 or SIRT3
appears to promote a pro-inflammatory phenotype, whereas pharmacologic
manipulation of either SIRT1 or the availability of their co-substrate NAD decreases

inflammation, improves mitochondrial function, and enhances physiologic resilience.
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CHAPTER 7:

Materials and Methods

All experiments were approved by the Institutional Animal Care and Use Committee at
the University of Pennsylvania and were conducted in accordance with the guidelines
established by the National Institutes of Health. All chemicals and cell culture solutions

were obtained from Sigma Aldrich or ThermoFisher Scientific unless otherwise stated.

ANIMALS

Rodents were housed with constant temperature, humidity, and a timed 12-hour
light/dark cycle. Regardless of experimental procedure, all animals were allowed access to
standard rodent chow (PMI Rodent Diet, ASAP, Quakertown, PA) and water ad lib.

For hemorrhagic shock experiments, male Long Evans rats (250-300g) were
purchased (Charles River Laboratories, Raleigh, NC) and allowed to acclimate at least 3
days. For NMN experiments, animals were randomized to either plain drinking water or
water with NMN (400mg/kg/day, Metro International Biotech, LLC, Cambridge, MA) for
five days prior to surgery. For resveratrol experiments, animals received standard
drinking water. For sepsis experiments, male C57BL/6J mice (3 month old) were
purchased from Jackson Laboratories.

Inducible whole-body SIRT1 knockout mice were generated by breeding floxed
SIRT1%** mice with tamoxifen-inducible cre ERT2 mice.(189) Heterozygous SIRT14
with ERT2 were cross matched and 10 weeks old homozygous SIRT “**ERT2 mice
and wild type littermates were treated with tamoxifen (0.1mg/g) for 5 days by gavage.
Two to four weeks later, animals were subjected to CLP (or sham) procedures or
underwent bone marrow harvest.
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SIRT1%¢** LysMCre mice were generated by crossing floxed SIRT1“***mice with

cre)lfo

LysM Cre mice (Lyz2 ™ purchased from Jacskon Laboratories in the C57BL/6J
background. These mice were also treated with tamoxifen (0.1mg/g) for 5 days by
gavage in order to directly compare with the inducible whole-body SIRT1 knockout
cohort.

SIRT3 knock out mice were originally generated by Lombard et al (152) and were

backcrossed to the C57BL/6 background for 10 generation prior experiments.

EXPERIMENTAL PROCEDURES
NMN and Hemorrhagic Shock

Spontaneously breathing Long Evans rats were anesthetized using vaporized
isoflurane by mask (2-4%) and underwent sterile placement of femoral vascular
catheters (PE50, Braintree Scientific, Inc., Braintree, MA). Mean arterial pressure
(MAP) was recorded throughout the experimental protocol (Digi-Med Signal Analyzers,
Louisville, KY). A sterile prepped 5-cm midline laparotomy was performed to simulate
soft tissue trauma. All surgical sites were bathed in 1% lidocaine (APP Fresenius Kabi,
Lake Zurich, IL) and closed in layers. Animals received 0.25% buprenorphine
(0.05mg/kg, subcutaneously, Reckitt Benkiser Healcare Ltd, Hull, England). Animals
were then placed in a plexiglass restraining apparatus and allowed to fully emerge from
anesthesia (~30 minutes).

Animals were randomized to either fixed pressure hemorrhagic shock (n=9-12 per
treatment group) or sham controls (n=5 per treatment group). Shocked animals were
passively bled via the femoral artery and maintained at a MAP of 40 mmHg for 90
minutes. If the MAP fell below a 40 mmHg, small boluses (0.2 ml) of intravenous lactated

Ringer’s (LR) were provided to maintain the MAP. At 90 minutes, animals were
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intravenously resuscitated with 4 times the shed blood volume in LR # sterile filtered NMN
(400mg/kg) over 60 minutes (60R). Sham animals were gently restrained for 90 minutes
and then were given 5ml of LR # sterile filtered NMN (400mg/kg) over 60 minutes.). Blood
samples were taken at Baseline, 90 minutes and 60R (Figure 3). Following resuscitation,
animals were again anesthetized with isoflurane (2-4%). Liver and kidney tissues were
rapidly harvested and either immediately clamp frozen in liquid nitrogen or prepared for
mitochondrial assays. Animals were euthanized under anesthesia.

In a separate survival experiment, animals were randomized to water £ NMN
(400mg/kg/day) for 5 days prior to surgery. Animals underwent general anesthesia with
vascular access, laparotomy, and full reversal as described. Animals were then
randomized to either decompensated hemorrhagic shock (223) (n=11 per treatment) or
served as sham controls (n=3 per treatment). Shocked animals were passively bled via
the femoral artery and maintained at a MAP of 40 mmHg. When the blood pressure
could no longer be maintained without fluid infusion (Decompensation), a MAP of 40
mmHg was sustained by incrementally infusing 0.2 cc boluses of LR until 40% of the
total shed volume had been returned in the form of boluses (Severe Shock). Animals
were then resuscitated with four times the shed volume in LR £ NMN (400mg/kg) over
60 minutes and followed for an additional 48 hours (Figure 9). The total time from
initiation of bleeding to the start of resuscitation represents each animal’s ability to tolerate
the shock and reflects individual physiologic resilience. Animals received buprenorphine
(0.05mg/kg, every 8 hours) and a subcutaneous LR bolus (50 ml/kg) + NMN (400 mg/kg)
at 24 hours. Blood samples were taken at Baseline, Severe Shock, 60R, 24 and 48
hours. At 48 hours, any surviving animals were anesthetized using isoflurane (2-4%) by

mask followed by tissue harvest and euthanasia.
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NMN and Primary Hepatocyte Harvest

Primary hepatocytes were isolated as previously described using a modified two-
step perfusion method.(166) Animals (n=4) were anesthetized with isoflurane (2-4%).
The abdomen was prepped and draped in sterile fashion. The inferior vena cava was
cannulated with a 24g angiocath and the portal vein was cut. The liver was then
infused with 300 ml of liver perfusion media (Invitrogen, 17701-038) at 17ml/kg/minute
to desanguinate followed by 400 ml of liver digestion media (Krebs Ringer bicarbonate
buffer (KRBB) + 20 mM HEPES (pH 7.4), 500uM CaCl,, collagenase (=20,000
units)/elastase (30 units) (Worthington, LK002066), and DNAsel (200units, Worthington
LK003170). After the perfusion, liver was removed, disrupted to release cells using cell
scrapers. The cell suspension was then filtered through 70um filter and centrifuged at
50g for 5 minutes at 4°C, washed once in KRBB and precipitated in 25% Percoll
gradient at 120g for 5 minutes at 4°C. Cells were resuspended in hepatocyte media
(M199, NaHCO3 (2.2 gm/L), glutamine 0.1g/L, 0.25% BSA, 10% Fetal Bovine Serum
(Hyclone) and 1% penicillin-streptomycin Using pre-coated collagen 6 well plates, cells
were plated at 1x10° cells/well and incubated for 12 hours (37°C, 5% CO,).

In order to obtain sham and shock plasma for hepatocyte co-culture experiments,
animals were anesthetized as described, underwent vessel cannulation, and allowed to
awaken and stabilize prior to bleeding. Sham animals (n=9) were rapidly bled into
heparinized collection tubes (BD Vacutainer) and lactate was confirmed to be <2
mmol/L. The shock animals (n=9) were bled to MAP of 40 mmmHg for 90 minutes, and
then exasanguinated into heparinized tubes. Collected blood was immediately
centrifuged (1300 rcf, 10 min, 4°C) and plasma was immediately stored at -80C.
Resveratrol and Hemorrhagic Shock

After vascular line placement, laparotomy and full reversal of anesthesia, male
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Long Evans rats were bled to a MAP of 40mmHg and subjected to decompensated
hemorrhagic shock as previously described. When 40% of the shed volume had been
returned in the form of LR boluses (Severe Shock), animals were resuscitated with four
times the shed volume in LR with or without resveratrol (30 mg/kg, 50mg/ml in 50%
DMSO, Orchid Pharmaceuticals, Lalilab, Durham NC), over 60 minutes and then
followed for 18 hours.(220) Animals (n=6 per group) were sacrificed prior to
hemorrhage (Sham), at Severe Shock, following LR Resuscitation (LR) or
resveratrol+LR Resuscitation (LR + RSV), 18 hours after LR Resuscitation (18hr LR) or
LR + resveratrol Resuscitation (18hr LR +RSV). Animals were re-anesthetized at each
time point (2% isoflurane) and blood samples and tissues were harvested.

Cecal Ligation and Puncture (CLP) Sepsis Model

CLP is considered the gold standard in sepsis research because it closely mimics
the pathophysiology observed in patients and is highly reproducible.(195) In this model,
the cecum is exposed via a midline laparotomy under 2% isoflurane. Using a 4.0 silk, the
cecum is ligated just below the ileocecal valve and punctured twice with a 23 gauge
needle. The cecum is returned and the abdominal incision is closed in 2 layers with 4.0
vicryl. Cecal perforation subsequently progresses to polymicrobial peritonitis,
bacteremia, systemic inflammation, multi-organ failure and eventually death. Control
animals also undergo laparotomy, however, the cecum is only manipulated and not
injured.

Post-CLP, all animals immediately receive normal saline (75pl/g) and
buprenorphine (0.1mg/kg) subcutaneously. Animals received subcutaneous fluids
(normal saline;75pl/g) and antibiotics (ceftriaxone 25mg/kg; flagyl 12.5mg/kg) every 12
hours starting 12 hours post-CLP for the duration of the experiment. Buprenorphine

(0.05mg/kg) was provided subcutaneously every 12 hours for the first 48 hours post
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CLP. Depending on the protocol, resveratrol (20mg/kg in solutol), EX-527 (10mg/kg in
solutol) or solutol as vehicle was given intraperitoneally starting at 6 hours post-CLP
and then given every 12 hours for the duration of the experiment.

Blood Chemistries and Inflammatory Cytokines

Blood was assayed for arterial blood gases, lactate, hemoglobin, and blood urea
nitrogen (BUN) using point of care veterinary cartridges (i-STAT, Abbot Point of Care Inc.,
Princeton, NJ). Serum creatinine aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and creatinine kinase were analyzed spectrophotometrically using
commercially available kits (Pointe Scientific, Canton, MI). Serum IL6 TNFa, and neutrophil
gelatinase-associated lipocalin (NGAL) levels were measured by enzyme-linked
immunosorbent assays (Invitrogen, ThermoFisher Scientific and Bioporto Diagnostics,
Hellerup, Denmark). Each sample was run in duplicate with known standards and
according to the manufacturer’s guidelines.

Blood glucose was determined at each time point using a standard glucometer for
rodents (AlphaTRAK, Abbott Laboratories, IL). In resveratrol experiments, blood
glucose levels post resuscitation were measured every 15 minutes for 1.5 hours and
then at 120, 240 and 360 minutes. Hypoglycemia was defined as blood glucose lower
than 70mg/dl.(285)

NAD/NADH Assays

NAD was extracted from frozen tissue samples (50mg) isolated mitochondria
(100ug), or primary hepatocytes (1X10° cells) in ice-cold 0.6M perchloric acid. Tissues
were homogenized at 20 Hz for 1 minute by tissue lyser (Qiagen). Mitochondria and
cells were vortexed hard for 30-45 seconds. After centrifugation for 10 minutes
(15,000g, 4°C), the clear supernatant was removed and diluted 1:100 in ice-cold 100mM

sodium phosphate buffer, pH 8. Using a modified Graeff and Lee enzymatic cycling
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assay (85), NAD was measured in a 96-well format. In brief, 5ul of NAD standards and
diluted tissue extracts were mixed with 95ul of cycling mixture (0.2% ethanol, 0.11/ml
alcohol dehydrogenase, 1.1mg/ml diaphorase, 20 uyM resazurin, 10uM flavin
mononucleotide, 10mM nicotinamide, and 0.1mg/ml BSA in 100mM phosphate buffer,
pH 8.0). NAD concentration was determined based on the rate of resorufin
accumulation using spectrophotometry (excitation at 544nm, emission at 590 nm,
Synergy H1, Biotek).

NADH was extracted from frozen tissue (50mg) and isolated mitochondria
(100pg) in ice-cold extraction buffer (0.25N KOH in 50% ETOH). Samples were
homogenized and centrifuged as described. The supernatant was removed and heated
at 55°C for 10 minutes to hydrolyze free NAD. After dilution in ice-cold 100 mM sodium
phosphate buffer (1:50), samples were assayed using the described enzymatic cycling
assay. The protein concentrations from the NAD and NADH extraction pellets were
determined by using a Pierce BCA Protein Assay Kkit.

Primary Hepatocytes:

Primary hepatocytes were washed with phosphate buffered saline (PBS) 12 hours
after plating. Cells were treated with sterile filtered plasma (0.22um) harvested under
shock and sham conditions, with and without NMN (100nM) for 24 hours. Cell survival
was assessed by trypan blue exclusion (89-96% survival) and did not differ between
groups.

In a separate experiment, hepatocytes were washed with PBS after 12 hours after
initial plating and the media was changed to Dulbecco’s Modified Eagle’s Medium, 10%
FBS, with 1% penicillin—streptomycin. Cells were treated with and without recombinant
rat IL6 (20ng/ml, Sigma SRP4145) + 100nM NMN for 1 hour. Survival ranged from 96-

98% and did not differ between treatment groups. Cells were immediately assessed
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using high resolution respirometry or were treated with 0.6M perchloric acid and stored
at -80° C until assayed for NAD.
ATP Determination

ATP from frozen tissues (50mg) was measured using a commercially available ATP
determination kit (Life Technologies) according to the manufacturer’s instructions.
Isolation of Mitochondria

Liver and kidney tissues (4-6 g) were immediately immersed in ice-cold mitochondrial
isolation buffer (MIB) (210 mM mannitol, 70 mM sucrose, 10 mM HEPES, 1 mM EDTA,
final pH adjusted to 7.2 using KOH, and freshly supplemented with 0.5% fatty acid-free
BSA). Tissue was homogenized in MIB with 5% BSA and mitochondria were isolated
using differential centrifugation as previously described.(252,253). The final
mitochondrial pellet was resuspended in MIB or treated with 0.6M perchloric acid for
NAD measurements. Protein concentration was measured by Pierce BCA Protein
Assay.

Mitochondrial Respiratory Capacity Using High Resolution Respirometry:

A standard substrate/inhibitor titration protocol was used for functional analysis of
mitochondrial respiratory function.(252,253) Freshly isolated mitochondria (0.15 mg)
were resuspended in respiration medium (110mM mannitol, 0.5mM EGTA, 3mM MgCl,,
20mM taurine 10mM KH,PQO,, 60mM K lactobionate, 0.3mM DTT, and 0.1% BSA (fatty
acid free), adjusted to pH of 7.1 with KOH)(132). Oxygen consumption was measured
using high-resolution respirometry at 37°C with constant stirring (Oxygraph-2k Oroboros
Instruments, Innsbruck, Austria). Following stabilization (3-5 minutes), real-time oxygen
concentration and flux data were continuously collected (DatLab software 4.3, Oroboros
Instruments, Innsbruck, Austria). After the basal respiration rate was recorded, complex

| (Cl)-dependent respiration was induced by adding 10 mM glutamate, 5 mM malate and
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1 mM ADP to the respiration chamber. In order to determine complex Il (Cll)-dependent
respiration, rotenone (0.5 uM), a selective inhibitor of Cl, was added followed by 10 mM
of succinate. Antimycin A (6 uM) was then added to inhibit complex Il (Clll); followed by
TMPD (0.5 mM) and ascorbate (2 mM) as artificial substrates for complex IV. This
protocol was completed within 60 minutes.

Similarly, isolated hepatocytes (2.5x10° cells) were resuspended in respiration buffer
and analyzed using high-resolution respirometry. After stabilization, baseline oxygen
consumption was recorded and cells were permeabilized digitonin (3 pg) and allowed to
stabilize for 10 minutes. Cells were then subjected to the substrate/inhibitor titration
protocol used for isolated mitochondria.

Citrate Synthase Activity

Citrate synthase activity is commonly used as a quantitative enzyme marker for the
presence of intact mitochondria. Citrate synthase activity was determined according to
the method described by Srere and Matsuoka (225), which couples coenzyme A to 5, 5’-
dithiobis-2-nitrobenzoic acid (DTNB) (212). Kidney and liver tissue (100 ug) were
suspended in an assay buffer that included 0.1 mM DTNB (in 1M Tris buffer, pH 8.0), 0.3
mM acetyl coenzyme A and 0.05% Triton X-100. Following the addition of 1 mM
oxaloacetate, citrate synthase activity was determined spectroph otometrically by
measuring the absorbance of thio-nitrobenzoic acid at 412 nm at 37°C.

Total Production of Mitochondrial-Derived ROS

Isolated mitochondria (10 pg) were suspended in 1 ml of buffer (250 mM
sucrose, 20 mM 3-[N-morpholino] butane sulfonic acid, 10 mM Tris-base, 100 pMPi [K],
0.5 mM Mg?*, pH 7.0; 30°C) containing Cl substrates (malate/glutamate, 2.5/2.5 mM)
and 2',7'-dichlorodihydro fluorescein diacetate (10 uM). Antimycin A was subsequently

added to inhibit Clll and measure the inherent ROS production. Background
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fluorescence was determined and was subtracted from all readings. After incubation at
30°C for 1 hour, the fluorescent signal from dichlorofluorescein (DCF) was detected
(excitation 488 nm, emission 525 nm) and quantified using a Modulus Microplate Reader
(Turner Biosystems, Sunnyvale, CA).
Measurements of plasma metabolic hormones

Blood (1.0 ml) was collected prior to sacrifice and plasma was stored at -80°C until
analysis. Insulin, corticosterone, total GLP-1and glucagon were determined by the
Radioimmunoassay and Biomarkers Core (Penn Diabetes Research Center, University
of Pennsylvania) using commercially available ELISA and radioimmunoassay kits
(Insulin and corticosterone ELISA -ALPCO Diagnostics, Windham, NH; total GLP-1 and
glucagon radioimmunoassay -EMD Millipore, Billerica, MA). All samples were performed
in duplicate.
Homeostatic model assessment (HOMA)- insulin resistance (IR) index

HOMA is a mathematical model of the relationship between glucose and insulin that
can be used to estimate insulin resistance and B cell function. The natural Log (Ln)
HOMA-IR index is used clinically to characterize abnormal glucose tolerance and assess
insulin resistance using the equation: Ln (insulin level (uU/ml) x glucose (mg/dl) /405).
(113)
Immunoblotting

For western blot analysis, frozen liver and kidney tissue was lysed in RIPA buffer
supplemented with phosphatase inhibitors (PhosSTOP, Roche), protease inhibitors
(Complete, Roche), nicotinamide (1mM) and trichostatin A (1uM) using a tissue lyzer
(Qiagen). Lysates were centrifuged for 15 minutes (15,000g, 4°C). Lysates were
denatured in 25% laemmli buffer + BME at 95°C for 5 minutes and were resolved on 4-

15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. Gels were
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transferred to polyvinylidene fluoride membranes (Millipore) blocked with nonfat soy milk
for 5 minutes.(75) Individual membranes were probed using anti-NAMPT (1:5000,
SC67020, Santa Cruz), anti-phospho-Y612-IRS-1(1:1000; Invitrogen Biosource
International, Carlsbad, CA), anti-actin antibodies (1:10.000, Abcam), in tris-buffered
saline with 0.1% Tween20.

Mitochondrial damage by reactive oxygen and nitrogen species was assessed by
measuring 4-hydroxynonenal and 3-nitrotyrosine by Western blot (Abcam,
Cambridge,MA). Briefly, mitochondrial protein (20 ug) was loaded in a 4-12%
polyacrylamide gel and separated by electrophoresis (Invitrogen, San Diego, CA).
Proteins were transferred onto a nitrocellulose membrane (Bio-Rad, Richmond, CA).
After the membranes were blocked for 1 hour at room temperature (10 mmol/L Tris, 150
mmol/L NaCl, and 0.05% Tween-20 supplemented with 5% dry milk), blots were
incubated with the respective primary antibodies at 1:1000 dilution overnight at 4°C.
After washing, membranes were incubated with peroxidase-linked donkey anti-rabbit or
sheep anti-mouse IgG secondary antibodies (Amersham, Buckinghamshire, UK) at
1:5,000 dilution for 1 hour at room temperature.

Proteins of interest were detected by chemiluminescence using horseradish
peroxidase conjugated secondary antibodies and Western Lightening Plus ECL (Perkin
Elmer). Images were captured using a Bio-Rad imaging station and quantified using
Image J (National Institutes of Health, Bethesda, MD)

Gene Expression

Liver and kidney RNA was extracted from frozen tissue using Trizol (Sigma-Aldrich)
with ethanol precipitation. RNA (1ug) was used to create cDNA using a High Capacity
cDNA Reverse Transcriptase Kit (Applied Biosystems) according to the manufacter’s

recommendation. Real-time polymerase chain reaction was performed using an Applied
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Biosystems 7900HT system with SYBR green (Applied Biosystems). Two technical
replicates per sample were obtained and relative mRNA expression levels were
calculated using the AACT method normalized to actin as a housekeeping gene.
Primers can be found in Table 4.
Statistical Analysis

Results are expressed as mean * standard error of the mean. Comparison between
two groups was performed using Students t or Mann Whitney test depending on
normality of data distribution. One-way analysis of variance was used to compare 3 or
more groups with a post hoc Students t or Mann Whitney test if statistically significant
(p<0.05). Survival was analyzed using Kaplan-Meier curves with a log rank Mantel-Cox
test. A chi square test was used to evaluate survival at 24 hours. All statistical analysis

were performed using Prism 7 (GraphPad Software, Inc).
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TABLES

Table 1: Clinical variables in hemorrhagic shock treated with NMN.

Control NMN Control NMN

Sham
Organ Function Assay Sham Shock Shock
Aspartate Aminotransferase (IU/L) 346+6.2 344142 66.9 + 4.9* 57.9+4.8§
Alanine Aminotransferase (IU/L) 141+£17 116122 34.8 +5.9* 26.6 +4.8§
Creatinine (IU/L) 192+1.3 229+09 37.3+4.8* 33.6 £4.8§
Blood Urea Nitrogen (mg/dL) 226+2.0 182+23 26 £1.2 27.4 +0.6§
Creatine Kinase (U/L) 197 £ 53 220 + 36 613 £ 81* 351 + 428

Results analyzed by one-way ANOVA followed by Student’s t test

*p<0.05 Control Sham vs Control Shock
§p<0.05 NMN Sham vs NMN Shock
#p<0.05 Control Shock vs NMN Shock
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Table 2. Physiologic and laboratory parameters in hemorrhagic shock treated with

resveratrol.

Sham Severe Shock LR LR+RSV
Characteristics

(n=6) (n=6) (n=6) (n=6)
MAP (mmHg) 111 £ 2 41 £ 78 £5°7 86 + 2°7
HR (bpm) 440 £ 12 419 + 8° 438 + 23 456 + 15
Lactate (mmol/L) 1.3+0.3 17.2+1.3° 10.2 +1.2°° 6.9 + 1.3°°
pH 7.40 £ 0.01 7.05 £ 0.09° 7.20 + 0.04*° 7.32+0.03°
PCO2 (mmHg) 47 £ 4 17 +2° 28 + 1% 33+ 1°
PO2 (mmHg) 85+4 128 + 4° 113+ 5° 105 + 2°
HCO3 (mmol/L) 29.1+20 5.4+ 1.6° 11.3+1.1%° 17.2 + 1.4>°
BUN (mg/dl) 23+2 29 + 2° 25+ 1 303
Creatinine (mg/dl) 0.28 £ 0.03 0.63 + 0.03° 0.53 + 0.05° 0.57 + 0.06°
Na* (mmol/L) 135+ 1 128 £ 1° 1303 138 + 1"
K* (mmol/L) 45+0.3 6.4 +0.6° 5.0+0.4° 54+04°
CI' (mmol/L) 103 £ 1 101 £1° 100 £ 2 112 + 3°°
Hemoglobin (g/L) 12.3 + 0.4 5.0 + 0.5 3.8+0.1° 41+0.3
NGAL (ng/ml) 60.5 +8.2 73.3423.2 107.8 + 28.5%" 53.6 +1.0°°

LR = Lactated Ringer's solution; RSV = Resveratrol; MAP = Mean Blood Pressure; HR =
Heart Rate in beats/min; BUN = Blood Urea Nitrogen. NGAL = neutrophil gelatinase-

associated lipocalin. Values are mean + SEM. n = 6.

@p<0.05 versus Sham.
p<0.05 versus Severe Shock.

°0<0.05 versus LR Resuscitation.
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Table 3. Endpoints of Euthanasia Scoring System
Adapted from the University of Pennsylvania Institutional Animal Care and Use

Physical Appearance

0 Normal

1 Lack of grooming

2 Rough coat, nasal/ocular discharge

3 Very rough coat, abnormal posture, enlarged pupils

Clinical Signs

0 Normal

1 Small changes of potential signficance

2 Body temperature change of 1-2 ‘C , respiratory rate tup to 30%

3 Body temperature change of >2 °C , respiratory rate tup to 50%, or
markedly |

Unprovoked Behavior

0 Normal

1 Minor changes

2 Abnormal, reduced mobility, decreased alertness, inactive

3 Unsolicited vocalizations, self-mutilation, ether very restless or immobile

Stimulated Behavior

0 Normal

1 Minor depression/exaggeration of response
2 Moderately abnormal responses

3 Violent reactions, or comatose

Committee Guidelines on Adopted from the University of Pennsylvania’s Institutional
Animal Care and Use Committee’s guide for Humane Endpoints for Laboratory Animals
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Table 4. Primers used for qPCR

Transcript Forward Primer Reverse Primer

B-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
IL6 TAGTCCTTCCTACCCCAACTTCC TTGGTCCTTAGCCACTCCTTC
TNFa CTGTGCCTCAGCCTCTTCTC ACTGATGAGAGGGAGCCCAT
NAMPT TCTGGAAATCCGCTCGACAC TATCCACTCCGTCCCCTTGA
NMNAT1 CAGAGCATCCGCTACTTGGT ATCGGGTGGAATGGTTGTGT
NMNAT2 TCTGACTGGATCAGGGTGGA ATGGTGCTCTAACACACTGC
NMNAT3 CCTGCGTTTGTTTGAGGTGG ATGATGCCGTTTCCATCCACT
SIRT1 CAGGTTGCAGGAATCCAAA CAAATCAGGCAAGATGCTGT
PGC1-a CCAGTCTACGGCTGTTTGGT TGGAAGAACAGATGTGCCCC
NRF1 ACAGATAGTCCTGTCTGGGGAAA TGGTACATGCTCACAGGGATCT
NRF2 TGAAGTTCGCATTTTGATGGC CTTTGGTCCTGGCATCTCTAC
TFAM GTTTCGTGCGGGTTTGTGAA GAAACTGCAATGGCTCTGCC
SOD2 GCCTGCACTGAAGTTCAATG ATCTGTAAGCGACCTTGCTC
CAT ACCCTCTTATACCAGTTGGC GCATGCACATGGGGCCATCA
COX-2 ATTCTTTGCCCAGCACTTCA ATCATCAGACCAGGCACCA
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FIGURES
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Figure 1: Pathways activated in the resuscitation of shock states.

Traumatic injury with acute blood loss results in vasoconstriction, activation of the
coagulation pathway, release of DAMPs (damage associated molecular patterns), and
the secretion of chemokines and cytokines which activate the immune response.
Similarly, infection releases PAMPs (pathogen associated molecular patterns) which
activate the immune system. Both types of shock are associated with tissue hypoxia and
hypoperfusion. Decreased oxygen and fuel substrates restrict ATP generation and lead
to reduced NAD levels. With reperfusion, there is massive generation of ROS (reactive
oxygen species) and mitochondrial dysfunction, which in turn further activates the
immune system, injures the endothelium and causes more tissue damage.

77



NAD Resveratrol

-0
O\/F')I\O

HO SIRT1

\\

INFkB  fPGCla FFOXO  JHIF1a

Inflammation Metabolism Antioxidants Angiogenesis
Mitobiogenesis Inflammation
Antioxidants
SIRT3

Figure 2: SIRT1 targets and activators.

SIRT1 can interact with a number of targets involved in the pathophysiology of shock.
Specifically, SIRT1 can inhibit NFkB and decrease inflammation. SIRT1 deacetylates
PGC1a (perioxisome proliferator-activated receptor gamma co-activator 1-alpha), a key
transcriptional co-activator that promotes mitochondrial biogenesis, coordinates a switch
to fatty acid metabolism and decreases oxidative stress. PGC1a also increases the
transcription of SIRT3, the major mitochondrial deacetylase. Interactions with FOXO
FOXO (forkhead box O) increases the expression of key antioxidant enzymes such as
manganese superoxide dismutase and catalase. Nicotinamide mononucleotide (NMN)
can be directly converted to NAD, an essential activator of SIRT1. Resveratrol also can
increase SIRT1 activity either by increasing NAD or by allosteric interactions. SIRT1
inhibits NFKkB (nuclear factor kappa-light-chain-enhancer of activated B cells), thereby
downregulating the transcription of pro-inflammatory cytokines.
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Figure 3: Fixed pressure hemorrhagic shock design and experimental variables.

(A) Animals were randomized to water + NMN (400 mg/kg/day) for 5 days (n=9 -12 per
group). Animals were bled to a mean arterial blood pressure (MAP) of 40mmHg for 90
minutes and then resuscitated with 4X the shed volume in lactated Ringer's + NMN
(400mg/kg) over 60 minutes. Control animals did not differ from NMN treated in terms of
percentage of total blood volume shed (B), the volume of LR needed to maintain a MAP
of 40 mmHg for 90 minutes (C), or the MAP after 60 minutes of resuscitation (D).
Hemoglobin was similar between groups (E). NMN treated animals had significantly
lower lactate levels during shock and following resuscitation (F). Data were analyzed by
Student’s t test or Mann Whitney as appropriate. * p<0.05.
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Figure 4: NMN increases NAD and NADH, and preserves renal ATP following
resuscitation from hemorrhagic shock.

NAD, NADH, and ATP levels were measured in extracts from snap frozen tissues. In the
kidney, NMN increased the NAD and NADH levels in both sham (n=5-6 per treatment
group) and shocked animals (9-12 per treatment group), and prevented the sharp
decline in NAD/NADH ratio observed in shocked animals (A). In the liver, NMN
increased NAD levels in both sham and shocked animals, but only increased NADH
significantly in shocked animals, while again preserving the NAD/NADH ratio (B). ATP
levels declined in both tissues following hemorrhagic shock and resuscitation (C, D).
Treatment with NMN, however, completely prevented this decline in renal tissue (C).
Data were analyzed by one way ANOVA, followed by Student’s t test or Mann Whitney
as appropriate. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 5: NMN preserves Complex I-dependent mitochondrial respiration and
enhances mitochondrial NAD content.

Following hemorrhagic shock and resuscitation, mitochondria from kidney and liver
tissue were freshly isolated and evaluated using high-resolution respirometry. In both
tissues, a defect in respiration was noted when NAD-dependent substrates such as
palmatoylcarnitine (PC) and pyruvate/glutamate/malate (Cl) were used. Pretreatment,
and subsequent resuscitation, with NMN completely restored mitochondrial respiration in
kidney (A) and preserved respiration with Cl substrates in liver (B). Without NMN
treatment, NAD content was preserved following resuscitation in kidney (C) and
increased in liver (D). NMN augmented mitochondrial NAD levels in both the sham and
shocked states (C, D). (n=5-6 per treatment group). Data were analyzed by one-way
ANOVA, followed by Student’s t test or Mann Whitney as appropriate.
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Figure 6: NMN increases NAMPT and NMNAT3 following hemorrhagic shock.

Following hemorrhagic shock, there was a trend toward increased NAMPT mRNA that
was further enhanced with NMN treatment in kidney (A) and liver (E). NAMPT protein
expression was not affected by shock in either tissue (B, F). NMNAT1 expression was
not affected in kidney (C), but declined in liver and was not affected by NMN (G).
NMNAT3 expression was increased in kidney and decreased in liver following shock, but
in both tissues was enhanced by NMN treatment only in animals that had been shocked
(D, H). (n=5-12 per treatment group) Data were analyzed by one-way ANOVA, followed
by Student’s t test or Mann Whitney as appropriate. *p<0.05, **p<0.01, ***p<0.001.
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NMN mitigates inflammation following hemorrhagic shock.

Serum IL6 and TNFa were determined by ELISA. Serum levels of both pro-inflammatory
cytokines increased with hemorrhagic shock, whereas NMN significantly lowered IL6
with a trend toward improved TNFa levels (A). The decrease in cytokines correlated with
improved hyperglycemia following shock (B). Inflammatory cytokine expression was
measured by gPCR in kidney and liver tissues. NMN partially mitigated IL6 mRNA
expression in kidney, but not in liver (C, D). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 8: NMN rescues mitochondrial function and increases NAD in isolated
hepatocytes after cytokine exposure.

After co-culture for 24 hours with plasma harvested from animals in hemorrhagic shock,
digitonin-permeabilized isolated hepatocytes exhibited a defect in complex | dependent
respiration that was mitigated by concurrent treatment with NMN (100pM) (A). When
treated with IL6 (20ng/ml) for 1hour, isolated hepatocytes developed global
mitochondrial dysfunction with decreased respiratory capacity at every complex that was
mitigated by co-treatment with NMN (100uM) (B). NMN increased NAD levels only in
cells that were co-treated with IL6 (C). (n=6-8 per group)*p<0.05, **p<0.01.
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Figure 9: NMN enhances tolerance to hemorrhagic shock.

After randomization to water £ NMN (400 mg/kg/day) for 5 days, animals were bled to a
mean arterial blood pressure (MAP) of 40mmHg and then maintained at 40 mmHg with
incremental fluid boluses until 40% of the shed blood volume had been returned.
Animals were then resuscitated with 4X the shed volume in lactated Ringer's + NMN
(400mg/kg) over 60 minutes and observed for 48 hours (n=11 per treatment group)(A).
Animals pretreated with NMN were able to sustain a shock state longer than controls (B)
but with a similar percentage of blood loss (C). NMN treated animals had lower blood
lactate concentrations following resuscitation (D) and despite having spent more time in
shock, were significantly more likely to be alive at 24 hours than were controls (E, F).
*p<0.05.
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Figure 10: Hemodynamics and lactate values during resuscitation with resveratrol.

Male Long Evan’s rats were subjected to a decompensated model of hemorrhagic shock
and then resuscitated with 4X the shed volume in lactated Ringer’s solution (LR) £
resveratrol (RSV; 30mg/kg) over 60 minutes. (A) RSV did not influence mean arterial
blood pressure. (B) Lactate levels were significantly lower in the RSV treated group at
60 minutes, but returned to baseline in both groups by 18 hours. RSV treatment did not
significantly decrease the levels of TNF-a or IL-6 when compared to LR resuscitation
alone (C,D). TNF-a and IL-6 were measured by ELISA. SS= severe shock, R = after
resuscitation. Values are mean £+ SEM, n = 6 per group. *p<0.05.
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Figure 11. RSV supplementation during resuscitation restores mitochondrial
function and decreases the production of ROS.

The respiratory capacity of individual complexes in isolated intact mitochondria was
assessed by high-resolution respirometry. Following hemorrhagic shock, mitochondrial
Cl, Cll, and CIV in the liver and kidney demonstrated decreased activity. (A) In the liver,
RSV supplementation during resuscitation robustly restored the respiratory function of all
complexes and significantly improved ClI- and CIV- dependent respiratory capacity over
baseline at 18 hours after resuscitation. (B) RSV supplementation significantly restored
kidney ClI- and CIV-dependent respiration following resuscitation and improved the
respiratory capacity of all mitochondrial complexes 18 hours later. Mitochondrial ROS
production was detected by measuring the fluorescent signal from dichlorofluorescein.
RSV supplementation significantly reduced liver (C) and kidney (D) mitochondrial ROS
production following resuscitation. LR, resuscitation with LR solution; LR + RSV,
resuscitation with LR solution plus RSV (30 mg/kg); 718hr LR, 18 hours after resuscitation
with LR solution; 718hr LR + RSV, 18 hours after resuscitation with LR solution plus RSV
(30 mg/kg). Values are mean £ SEM. n = 6. *p < 0.05 versus sham; tp < 0.05, LR
versus LR + RSV; 1p < 0.05, 18hr LR versus 18hr LR + RSV.
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Figure 12: Resveratrol treatment during resuscitation ameliorates renal
mitochondrial oxidative stress following hemorrhagic shock and resuscitation.

(A) LR+RSYV resuscitation significantly increased the mRNA expression of superoxide
dismutase 2 (SOD2) and catalase (CAT) in kidney tissue when compared to LR
resuscitation. (B) 4- hydroxynonenal (4-HNE) was measured by western blots a marker
of mitochondrial lipid peroxidation. 4-HNE levels robustly increased following Severe
Shock and were significantly reduced with LR+RSV resuscitation. (C) Expression levels
of 3-nitrotyrosine (3-NT) in mitochondria were determined by western blot. 3-NT levels
increased with LR resuscitation, but did not increase with LR+RSV resuscitation. LR =
Lactated Ringer’s solution; RSV = Resveratrol; COX = cyclooxygenase. Values are

mean = SEM. n = 6, *p<0.05 versus Sham,; Tp<0.05 versus Severe Shock; ¢p<0.05
versus LR Resuscitation.
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Figure 13: Resveratrol supplementation enhances the mRNA expression of Sirtuin
1 (SIRT1) and increases the nicotinamide adenine dinucleotide (NAD) to
nicotinamide adenine dinucleotide dehydrogenase (NADH) ratio in kidney.

(A) The decline in the mRNA expression level of SIRT1 after severe shock and LR
resuscitation was reversed with RSV administration during resuscitation. (B) NAD+,
NADH concentration and NAD+-NADH ratio in kidney tissue were obtained by detecting
the fluorescent signal of resazurin. LR+RSV resuscitation significantly decreased the
NADH concentration and nearly doubled the NAD/NADH ratio when compared to LR
resuscitation. LR = Lactated Ringer’s solution; RSV = Resveratrol. Values are mean +

SEM. n =6, *p<0.05 versus Sham; Tp<0.05 versus Severe Shock; ¢p<0.05 versus LR
Resuscitation.
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Figure 14: Resuscitation with RSV enhances pyruvate dehydrogenase and a-
ketoglutarate dehydrogenase activity following hemorrhagic shock.

Kidney tissue harvested after 60 minutes of resuscitation with lactated Ringer’s (LR) or
LR + resveratrol (30mg/kg). Enzymatic activity of Kreb cycle enzymes was assessed by
measuring by the spectrophotometric reduction of NAD+ to NADH. All enzyme activities
decreased with severe shock. When compared to LR, RSV significantly enhanced the
activity of PHD and a-KDH, but was associated with decreased IDH activity. PDH =
pyruvate dehydrogenase, IDH = isocitrate dehydrogenase, a-KDH= alpha ketoglutarate
dehydrogenase, GDH = glutamate dehydrogenase, MDH = malate dehydrogenase.
Values are mean £+ SEM. n = 6 pe