
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Mechanics Of Colloidal Assemblies
Daniel James Strickland
University of Pennsylvania, dstric@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Mechanics of Materials Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3007
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Strickland, Daniel James, "Mechanics Of Colloidal Assemblies" (2017). Publicly Accessible Penn Dissertations. 3007.
https://repository.upenn.edu/edissertations/3007

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/283?utm_source=repository.upenn.edu%2Fedissertations%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3007?utm_source=repository.upenn.edu%2Fedissertations%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3007
mailto:repository@pobox.upenn.edu


Mechanics Of Colloidal Assemblies

Abstract
Amorphous solids -- solids that lack long-range order of their constituent particles -- are common in both
nature and industry. Window glass, dense polymers, and food grains are three examples of amorphous solids
familiar to us. In many amorphous solids, shear banding -- plastic deformation in which strain is accumulated
in a thin band of the material -- is common. Consequently, many amorphous solids are brittle, a trait which has
limited the technological adoption of otherwise promising materials such as metallic glasses. Therefore, a
fundamental understanding of shear banding -- i.e., the progression from particle level plastic events to a
macroscopic shear band, identification of the sites in the material from which shear banding is most likely to
originate, the effect of structural modifications on shear banding, and mechanisms that arrest shear band
operation before failure -- is crucial for predicting failure and engineering ductility in amorphous materials.

This dissertation describes efforts to illuminate elements of plasticity in amorphous solids using model
systems of colloidal particles. The bulk of the results focuses on colloidal pillars subjected to uniaxial
compression. Results from instrumented compression experiments reveal that the pillars exhibit a scaling of
strength with stiffness that is similar to the scaling found in metallic glasses, which we interpret in the context
of the energetics and kinematics of a critical shear band nucleus. In 4D \emph{in-situ} compression
experiments we are able to observe the microscopic evolution of a shear band and the associated mechanical
response in and around the shear band. The results from this experiment lend credence to the interpretation
of shear banding as localized, anisotropic glass transition.

In addition to the pillar geometry, we perform confined compression experiments on a confined colloidal
glass to investigate the structural fingerprints of the particles that are most likely to rearrange in an amorphous
solid. The results from these experiments are interpreted in the context of a recently introduced machine-
learning based approach to the identification of particles most susceptible to rearrangement termed "softness".
We report preliminary application of softness to the shear banding pillars.
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ABSTRACT

MECHANICS OF COLLOIDAL ASSEMBLIES
Daniel James Strickland

Daniel S. Gianola

Amorphous solids – solids that lack long-range order of their constituent particles –

are common in both nature and industry. Window glass, dense polymers, and food

grains are three examples of amorphous solids familiar to us. In many amorphous

solids, shear banding – plastic deformation in which strain is accumulated in a thin

band of the material – is common. Consequently, many amorphous solids are brittle,

a trait which has limited the technological adoption of otherwise promising materials

such as metallic glasses. Therefore, a fundamental understanding of shear banding

– i.e., the progression from particle level plastic events to a macroscopic shear band,

identification of the sites in the material from which shear banding is most likely to

originate, the effect of structural modifications on shear banding, and mechanisms

that arrest shear band operation before failure – is crucial for predicting failure and

engineering ductility in amorphous materials.

This dissertation describes efforts to illuminate elements of plasticity in amorphous

solids using model systems of colloidal particles. The bulk of the results focuses

on colloidal pillars subjected to uniaxial compression. Results from instrumented

compression experiments reveal that the pillars exhibit a scaling of strength with

stiffness that is similar to the scaling found in metallic glasses, which we interpret in

the context of the energetics and kinematics of a critical shear band nucleus. In 4D

in-situ compression experiments we are able to observe the microscopic evolution of

a shear band and the associated mechanical response in and around the shear band.
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The results from this experiment lend credence to the interpretation of shear banding

as localized, anisotropic glass transition.

In addition to the pillar geometry, we perform confined compression experiments

on a confined colloidal glass to investigate the structural fingerprints of the particles

that are most likely to rearrange in an amorphous solid. The results from these

experiments are interpreted in the context of a recently introduced machine-learning

based approach to the identification of particles most susceptible to rearrangement

termed “softness”. We report preliminary application of softness to the shear banding

pillars.
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Chapter 1

Introduction

Amorphous solids – solids that lack the long range order found in their crystalline

counterparts – are both common in nature and technologically important1. Window

glass, dense polymers, and food grains are three examples of amorphous solids familiar

to us. The ubiquity of amorphous solids arises in part because they can be formed

from a broad array of constituent particles. These particles span orders of magnitude

in size, giving rise to a spectrum of amorphous solids with very different characteristic

length scales and particle-particle interactions (see Figure 1.1). Two examples from

the extremes of the spectrum are metallic glasses (MGs), which are composed of

metallic elements (particle size of angstroms) that are disordered at the atomic scale,

and a sand castle, which is composed of silica grains (particle size of microns) that

are disordered at the granular scale.

Despite their abundance, a fundamental understanding of plasticity – or irre-

versible deformation – in amorphous solids remains elusive. While one may expect

that the mechanisms underlying the deformation of an MG are completely unrelated to

those underlying the deformation of a sand castle, there appears to be some similarity

between the two. One piece of evidence for a connection between the mechanisms is

that shear banding, or plastic deformation in which strain is accumulated in a thin

band of the material, is a common mode of failure in both MGs and sand pillars

1



Figure 1.1: From left, a Zr59Ta5Cu18Ni8Al10 metallic glass alloy, whose disordered
structure is evident in the transmission electron micrograph (image reprinted from Ref.
2 with permission). Next, an SEM image of an amorphous film of nearly-spherical, 25
nm TiO2 particles (image reprinted from Ref. 3 with permission). Thermal effects
are important in nanoparticle assemblies and, depending upon the solvent and colloid
material, multiple types of particle-particle interactions may be present4. Third,
a confocal micrograph of a colloidal glass composed of a mixture of 2.4 and 3.0
µm diameter poly-methyl methacrylate particles (image reprinted from Ref. 5 with
permission). Colloidal particles are delineated from nanoparticles by their size; the
particle-particle interactions found in nanoparticle systems are also present in colloidal
systems. Finally, an image of an amorphous granular packing composed of mustard
seeds (image courtesy of the Jaeger Lab, University of Chicago). In granular packings,
the large particle size makes temperature unimportant.

(see Figure 1.2). Additional support is found in the intermittent stress fluctuations

observed in flowing MGs6, foams7, and grains8 and the strain-softening behavior

observed in MGs9, colloids10, and granular materials7. While these observations alone

are not sufficient to conclude that the mechanisms underlying plasticity in amorphous

solids are universal, they do motivate researchers to search for commonalities.

In this Introduction, we will review the properties of glasses 1 and some observa-

1For brevity, the terms “amorphous solid”, “disordered solid”, and “glass” will be used inter-
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Figure 1.2: Shear bands developed in (a) a Zr-based metallic glass11, (b) a colloidal
micropillar12, and (c) a sandstone pillar13.

tions of universal behavior observed within this class of material, outline the current

understanding of plasticity in amorphous solids with a focus on plasticity in MGs, and

review the impact of model systems in advancing materials science. The findings and

outstanding questions presented herein motivate the research that will be presented

in this dissertation.

1.1. Amorphous Solids

Amorphous solids are solids in which the equilibrium positions of the constituent

particles are disordered; that is, they do not lie on a translationally invariant lattice as

they would in a crystalline solid1, 14. As mentioned previously, amorphous solids may

changeably. Technically, the term glass is reserved for an amorphous solid that has been formed by
quenching the liquid melt1.
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be formed from many different types of constituent particles and prior research has

shown that they share certain properties, irrespective of constituent particle type. We

review several examples of commonality in behavior – often referred to as universality

– below.

1.1.1. Glass Formation and Kinetics

When a liquid is cooled below the melting temperature, Tm, the liquid phase

becomes thermodynamically unstable with respect to the crystal phase and the liquid

is said to be supercooled15. Density fluctuations in a supercooled liquid are favorable

nucleation sites for the lower-energy crystal phase and the system-spanning growth of

these nuclei results in a first-order phase transformation from the liquid to a crystalline

solid. Being first-order, this transformation is distinguished by a discontinuity in first

derivatives of the free energy, such as the volume or entropy16, 17.

However, if one cools the liquid quickly enough, crystal nucleation and growth

can be suppressed and the supercooled liquid state can be maintained at temperatures

well below Tm (see Figure 1.3). Further cooling results in a dramatic slowing of the

particle dynamics, which manifests as an orders-of-magnitude increase in viscosity,

and the material is said to undergo a glass transition18–20. Unlike crystallization,

where there is a discontinuous jump in viscosity at Tm, viscosity changes continuously

during the glass transition. Similarly, volume and entropy do not show a discontinuity

as they do in crystallization, indicative that the glass transition is not a first-order

4



phase transition. Indeed, the glassy state may not be a thermodynamic transition at

all but simply a kinetic constraint in which the dynamics of the particles are so slow

that the material cannot equilibrate on laboratory timescales21.

Figure 1.3: Routes to solidification from quenching the liquid melt. Crystallization
is a first order transition marked by a discontinuity in the specific volume at the
melting temperature Tm (red line). In glass formation, however, no such discontinuity
is observed (blue and purple lines). As the cooling rate is reduced, the glass remains
in equilibrium with the supercooled liquid to lower temperatures, resulting in a lower
Tg.

Because glasses are out of thermodynamic equilibrium, their properties are

history dependent22. This dependency can be readily seen by considering two glasses

of identical composition cooled at different rates. The quickly cooled glass falls out

5



of equilibrium with the supercooled liquid at a higher temperature than the slowly

cooled glass, resulting in a higher glass transition temperature, Tg
2. In addition to

the difference in Tg, the specific volume of the quickly cooled glass is larger than that

of the slowly cooled glass at a given temperature. The discrepancies in Tg and specific

volume highlight two points: Tg is not a thermodynamic quantity, as it may be varied

by changing the formation protocol, and different processing techniques – the glass’s

history – result in different material properties. A fundamental understanding of the

path dependence of glass properties is an ongoing effort23–25, but we note that the

increased “tunability” accessible via formation26 and processing techniques27, 28 opens

exciting engineering opportunities for glass design and application.

The enormous slowing of dynamics that occurs during the glass transition in an

atomic or molecular glass former has analogs in other types of thermal amorphous

solids. In colloidal suspensions, a similar slowing of the particle dynamics is observed

upon increasing the packing fraction from a dilute suspension29, 30. The sluggish

dynamics are evident in both an increase in viscosity29 and in direct measures of the

particle mobilities30. Just like the glass transition, the increase in viscosity or decrease

in mobility with increased packing fraction is continuous and there is no observable

discontinuity in an order parameter. Foam is another example of an amorphous solid

that exhibits glassy dynamics. Dense foams, which are mixtures of a gas phase in

a fluid matrix31, are known to behave as solids below a certain critical stress level.

2While there is no single convention to define Tg
19, a commonly used definition extrapolates the

temperature-dependent specific volume in the supercooled liquid and glass phases and takes their
intersection as Tg

6



Above this critical stress, they flow32 and the relaxation time in the flowing regime has

been shown to decrease continuously with increased stress33 (the relaxation time is

proportional to the inverse viscosity). In all of these cases – reducing the temperature

of a glass-forming liquid, increasing the packing fraction of a colloidal suspension,

and increasing the stress applied to a flowing foam – the relaxation time decreases

continuously as the solid phase is approached. The continuity implies a critical point

and has motivated attempts to unify the flowing-solid transition in what is known

as the jamming transition34, 35. Jamming, the dramatic slowing in dynamics without

an obvious structural transition, is an archetype of universality observed in many

amorphous solids. Below, we review several other observations of universal behavior

in amorphous solids.

1.1.2. Universal Behavior in Amorphous Solids

In addition to a continuous slowdown in dynamics, amorphous solids also exhibit

an excess in the number of low-energy vibrational modes in comparison to the Debye

model for crystals. Debye estimated the phononic contribution to a solid’s heat

capacity by considering the allowed vibrational modes for a periodic, repeating lattice

of harmonic oscillators36. In Debye’s model, the vibrational density of states (VDOS)

for phonon frequency ω, D(ω), in three dimensions is given by:

D(ω) =
ω2

2π2v3
s

7



where vs is the velocity of the phonon. Experiments and simulations of various

amorphous solids have found that the actual D(ω) is larger than what Debye’s model

would predict at low ω. In atomic glasses, these excess modes manifest as a plateau

in the low temperature heat capacity37 and can be observed in Raman scattering

spectra38. In 2D packings of soft particles39 and 3D colloidal glasses40, D(ω) may

be measured directly from real-space imaging of the particle positions. Again, both

systems show an excess in the number of low-energy modes. Simulations of confined

spherical particles that interact with a simple harmonic repulsive potential also exhibit

this property41. The origin of the excess low-energy modes may be system-specific,

but evidence suggests that density fluctuations intrinsic to the amorphous structure

are responsible for this behavior. These density fluctuations lead to the localization of

phonons, resulting in an excess number of low energy modes42.

Another phenomenon observed in many glass-forming systems is so-called dynam-

ical heterogeneity. Dynamical heterogeneity is the transient spatial variation in the

local particle dynamics. For example, the displacement of a given particle may show

sudden intermittent bursts in displacement followed by periods of little movement43–45.

Another particle may move in a similar fashion, or move more frequently, or move

not at all. One way to quantify the dynamics of a system is the self-intermediate

scattering function, Fs(k, t), given by43, 46, 47:

Fs(k, t) =

∫
G(r, t) exp (−ikr) dr (1.1)

8



with:

G(r, t) =
1

N

∑
j

δ (r − [rj(t)− rj(t = 0)]) (1.2)

where k is the wavenumber and rj(t) is the position of particle j at time t. G(r, t) may

be interpreted as the probability that a particle has moved distance r in time t, and

Fs(k, t) is the Fourier transform of G(r, t). Fs(k, t) can be either directly measured

using scattering experiments or calculated using real-space positions for individual

particles. For a fluid, the form of G(r, t) is well-approximated by a Gaussian:

G(r, t) =
1

(π3/2W (t)3)
exp

(
− r2

W (t)2

)

For times less than the timescale of collisions between particles, motion is expected

to be ballistic and W (t) = t
√

2/βm. At long times, motion is expected to be

diffusive, W (t) = 2
√
Dt, where D is the long time diffusion coefficient. Inserting

this approximation into Equation 1.1 results in a scaling prediction for: Fs(k, t) =

exp (−k2Dt). However, supercooled liquids and glasses show so-called “stretched

exponential” behavior, where Fs(k, t) = exp (−t/τ(k))β(k). Stretched exponential

behavior is characteristic of glassy systems and a fingerprint of dynamical heterogeneity.

For example, dynamical heterogeneity has been observed in an amorphous granular

system upon the application of a shear stress. Similar to the aforementioned foam,

9



shearing the system induces flow and “unjams” the solid packing48. By tracking

particles directly, Dauchot et al. were able to determine Fs(k, t). For length scales on

the order of the particle-particle distance (k ∼ 2π), Fs(k, t) indeed shows stretched-

exponential behavior at intermediate times. Because individual particle positions are

accessible in the experiment, Dauchot et al. were also able to calculate the four-point

correlation function – which measures correlation in motion over a set time window

between two points in the material – and find that the dynamics are quite heterogeneous

and spatially correlated48. Similar behavior has been found in a super-cooled colloidal

liquid where so-called “fast particles” – those with average displacements much larger

than the mean – are found to be spatially concentrated30. As the volume fraction is

increased towards the glass transition, the size of these concentrated regions decreases.

In sum, dynamical heterogeneity is observed in many glass-forming systems43 and is

another example of a commonality observed in amorphous solids.

Furthermore, amorphous solids are known to exhibit stress fluctuations upon

yielding49–51 and similar rheological behavior52–55. Taken as a whole, the many

manifestations of common behavior in amorphous solids suggest that at least some of

their properties emerge from the disordered structure itself and are relatively insensitive

to the details of the interactions between the constituent particles. Additionally,

universality propounds that the findings from studying one disordered solid may yield

insights that are applicable to other disordered solids. For instance, atomic solids,

which are challenging to study at the particle scale, may be modeled using systems of
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larger, observable particles. With this in mind, we turn our attention to the manner

in which amorphous solids permanently deform.

1.2. Plasticity in Amorphous Solids

In comparison to the aforementioned manifestations of universal behavior, com-

monalities in plasticity in amorphous solids of various length and energy scales remain

relatively unexplored. First, however, it is informative to compare the deformation

behavior of amorphous solids to the behavior of crystalline solids. The technological

importance of crystalline metals made the study of crystalline plasticity an area of

intense research in the early 20th century. Specifically, an understanding of the stress

necessary to cause yield, or the onset of plastic deformation, was necessary to advance

the design of alloys. Frenkel predicted the yield stress, τy,ideal, of a perfect crystal

by estimating the energy necessary to cooperatively shear crystallographic planes56.

In Frenkel’s model the shear stress, τ , to deform two crystallographic planes can be

approximated as:

τ = τmax sin

(
2π

a
x

)

where τmax is the peak shear stress, a is the lattice spacing of the crystal in the

direction of shear, and x is the displacement of the sheared plane (see Figure 1.4).

The displacement x can be rewritten in terms of the shear strain, γ = x
b
, where b

11



is the lattice spacing perpendicular to the direction of shear. Assuming a ≈ b and

γ � 1, τ can be rewritten as:

τ = τmax sin

(
2π

a
x

)
≈ 2πτmaxγ

Using elasticity, we can identify 2πτmax as the shear modulus, G, and arrive at an

expression for the ideal shear strength as a function of G:

τmax = τy,ideal ≈
G

2π

Experimental strengths of crystalline metals, however, are found to fall orders-of-

magnitude short of Frenkel’s ideal strength, suggestive that plasticity results from

mechanisms other than cooperative slip along crystallographic planes57. In real

bulk crystals, microstructural defects, such as dislocations, grain boundaries, and

surfaces, become active at stresses well below τy,ideal, implying a transition to a far less

cooperative plastic deformation mechanism. Controlling the character and number

density of these defects mediates the strength of crystals; for instance, the Hall-Petch

relationship for polycrystals58 59 states that τy ∼ d−1/2 where τy is the yield strength

and d is the grain size (thus controlling the fraction of planar defects), and Taylor

strengthening60 predicts τy ∼ ρ1/2 where ρ is the dislocation density. The ability to

tailor material strength is a reflection of the large catalog of plastic events found
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in crystals and the associated broad range of energies necessary for their operation.

In such defected crystals, the highly cooperative shear mechanism that defines the

intrinsic ideal strength is superseded by mechanisms that require the motion of only a

few atoms (e.g., dislocation glide or climb), rather than the coordinated motion of

many atoms.

Figure 1.4: a) A shear stress applied to an ideal, defect free crystal with in-plane lattice
spacing a and out-of-plane lattice spacing b results in a displacement x of the top
plane. Displaced atoms are indicated by the dark blue circles. b) Frenkel’s estimate
of the shear stress required to generate a displacement x, which varies sinusoidally
along the crystal lattice.

The situation is quite different in amorphous solids, where well-defined lattice

defects like dislocations and grain boundaries cannot be identified61. Just as the

increased industrial adoption of crystalline metals accelerated research on their me-

chanical properties, research on plasticity in amorphous solids has intensified with

advancements in the formation of MGs. The first MG was created in 1960 by melt-

spinning a Au-Si alloy62. In simple alloys like Au-Si, extremely high cooling rates are

necessary to avoid crystallization. Melt-spinning, in which a stream of the liquid alloy
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is dripped onto a cooled, rotating wheel, was one of the few techniques capable of

generating the necessary cooling rates. However, the size and geometries of specimens

that can be formed by melt-spinning are limited to extremely thin ribbons. A great

advance came with the discovery of bulk glass formers, where the critical cooling

rates needed to avoid crystallization are much smaller than those necessary in alloys

like Au-Si27, 63, 64. These alloys, or BMGs, allowed for the formation of specimens

millimeters or more in size, thereby opening new potential applications for MGs and

invigorating research on their mechanical properties.

The unique properties of MGs make them attractive engineering materials. Like

crystalline metallic alloys, MGs are stiff with typical values of the Young’s modulus

between 40-100 GPa65. However, the yield strengths of MGs approach Frenkel’s

theoretical limit (∼ 0.025G), which is an order-of-magnitude greater than the strength

of most crystalline alloys66, 67. Some MGs also exhibit significant toughness, although

this property is more sensitive to the MG alloy composition than yield strength is.

For example, most iron-based MG alloys have a low toughness that is comparable to

brittle ceramics, while zirconium-based MG alloys exhibit toughness values similar to

tough crystalline alloys like steel65. MGs are also mechanically resilient; when loaded

elastically, they dissipate very little energy65. This property makes MGs attractive

materials for applications that require the storage of elastic strain energy, such as

micro-scale resonators, springs, or actuators. Additionally, MGs have the capacity to

be moulded using processes similar to those used to form oxide glasses66, 68. When
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heated into the supercooled liquid regime, an MG behaves like a Newtonian fluid

and can be formed into complex shapes using only small driving forces69. Upon

cooling, the volume change in the MG is quite small, thereby allowing the solidified

material to retain the shape of the mould68. Other desirable traits of MGs include

corrosion resistance65 and their magnetic properties70. However, because MGs often

fail in a brittle, catastrophic manner at low temperatures, their adoption as structural

materials has been limited66. Therefore, methods to design tougher glasses that can

sustain significant plastic flow before fracture are needed to advance their practical

usefulness. Rational design of toughness in an MG requires an understanding of its

plastic behavior at the particle-scale, which we review in the subsequent sections.

1.2.1. Basic Phenomenology of Plasticity in Metallic Glasses

Partitioning a material’s deformation behavior into flow regimes – elastic, plastic

homogeneous, plastic heterogeneous, etc. – is useful for illuminating the plastic

mechanisms that are dominant at different levels of applied stress, deformation

rate, and temperature. For example, in crystalline metals, varying the temperature

and strain rate induces transitions between dislocation glide, dislocation creep, and

diffusional flow71. Deformation maps may be used to ascertain the activation energies

of the underlying plastic mechanisms and guide rational material design principles.

Like crystalline metals, the deformation behavior of MGs is also governed by the

applied shear stress τ , the shear rate γ̇, and the temperature T . The τ and T

15



dependence of the flow behavior is depicted in the deformation map in Figure 1.5.

In the low temperature, low stress regime, where T/Tg < 0.8 and τ < 0.025G, the

behavior is elastic on laboratory timescales. For larger values of τ , yield occurs and

strain localizes in shear bands. In this regime the yield strength decreases slightly

with increased T and with increased γ̇ 9, 72, 73, although some alloys have been found

to have a strain-rate independent strength74. At high temperature and low stress,

plastic flow is homogeneous and may be either Newtonian (γ̇ ∝ τ) or non-Newtonian

(γ̇ ∝ τn, where n is the stress sensitivity). The non-Newtonian regime is typically

observed at T < Tg.

Figure 1.5: Following the review of Schuh, Hufnagel, and Ramamurty66, the stress
and temperature dependence of deformation in MGs. At low temperatures and low
applied stress, the response is elastic (white region). At high levels of applied stress,
deformation becomes inhomogeneous and manifests as shear bands (tan region). At
high temperature and low levels of applied stress, the flow is homogeneous and the
strain-rate dependence may be either Newtonian or non-Newtonian based upon the
temperature and applied strain rate.
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Two theoretical frameworks to explain the observed stress, temperature, and

rate dependence of plastic behavior in MGs were put forth by Spaepen and Argon.

In Spaepen’s model, the underlying mechanism for plastic flow is envisaged as an

individual atomic jump that is activated by an applied shear stress75. Following Polk

and Turnbull76, Spaepen assumed that these jumps create disorder at the atomic scale

and generate an excess of local free volume. In Argon’s model77, the fundamental

mechanism is the so-called shear transformation (ST), in which an applied shear

stress activates the rearrangement of ∼100 particles. Like Spaepen’s jumps, STs are

dilatory – they result in increased local free volume – and generate a long-ranged

elastic stress field in the surrounding glass. The enhanced local stress, which Argon

modeled following Eshelby’s solution for an inclusion in an elastic matrix, can trigger

subsequent STs to operate.

Spaepen’s and Argon’s mechanisms share two common characteristics in that

1) they introduce excess free volume or disorder in the material and 2) they are

thermally activated. The major difference between the frameworks is the nature of

the fundamental plastic event, with Spaepen’s atomic jump being discrete (involving

only one atom) and Argon’s STZ being the cooperative rearrangement of tens to

hundreds of atoms. Computer simulations78, 79 and model systems80, 81 of amorphous

solids that allow for direct observation of rearrangements support Argon’s cooperative

ST. In both models, a framework for thermally activated plasticity is used to connect

the fundamental plastic event to macroscopic plastic flow. For a thermally activated
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plastic process in which the activation energy is biased by an applied stress, the rate

of plastic events ω can be written as:

ω = ν exp

(
−Q− τV

kBT

)

where ν is an attempt frequency on the order of the Debye frequency, Q is the energy

barrier of ST operation, τ is the applied stress, V is the activation volume of the ST,

kB is Boltzmann’s constant, and T is the temperature. Each plastic event results in a

characteristic strain, γo, so the strain rate, γ̇ = αγoω, can be written as:

γ̇ = αγoν exp

(
−Q− τV

kBT

)

where the prefactor α is of order 1 and accounts for geometrical factors. Because STs

have a direction – they can operate both forwards and backwards – we can write the

net forward rate as:

γ̇ = αγoν

[
exp

(
−Q− τV

kBT

)
− exp

(
−Q+ τV

kBT

)]
= αγoν exp

(
− Q

kBT

)
sinh

(
τV

kBT

)
(1.3)

The flow rate given by Equation 1.3 can be be used to separate the deformation map

18



into the homogeneous and inhomogeneous flow regimes whose boundaries are set by

the competition between the free volume created by an atomic jump and the free

volume annihilated by diffusion. In the homogeneous regime, the rate of free volume

annihilation is equal to the rate of free volume production, and localized, runaway

softening does not occur.

The Newtonian and non-Newtonian behavior is evident upon consideration of the

small and large-stress limits of Equation 1.6. When τ � kBT/V , sinh(τV/kBT ) ≈ τ),

so:

γ̇ = αγoν exp

(
− Q

kBT

)
τ (1.4)

and γ̇ ∝ τ , which is Newtonian behavior. When τ � kBT/V , sinh(τV/kBT ) ≈

exp(τV/kBT ), and:

γ̇ = αγoν exp

(
−Q− τV

kBT

)
(1.5)

which essentially eliminates the “backwards” operation of STs. Here, the flow is

non-Newtonian as γ̇ ∝ exp
(
−Q−τV

kBT

)
.

The boundary between homogeneous and inhomogeneous flow may also be

constructed by setting an equivalency between the strain rate due to the nucleation of

a critical shear event and the steady state strain rate given by Equation 1.3. Argon
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estimated the strain rate of the nucleation event as:

γ̇ = γ̇s exp

−CsτsΩs

(
1− τ

τs

)2

kBT

 (1.6)

The expression in the numerator of the exponent in Equation 1.6 is determined from

the maximum in the enthalpy for nucleating a loop in an elastic solid of radius R,

where Ωs = aπR2 is the volume of the loop and a is the loop thickness.

While these phenomenological expressions are useful in broadly delineating flow

regimes, they often break down when applied to real specimens. For example, specimen

size, internal structural variations, and stress gradients are all known to significantly

alter the morphology of plastic deformation within the inhomogeneous flow regime28, 66.

To make further progress, one must understand the nascent stages of shear banding –

nucleation – and the growth of a shear band nucleus into a macroscopic shear band.

1.2.2. Nucleation of Shear Bands

After identifying the building blocks of plasticity in MGs, one must connect the

operation of individual STs to macroscopic plastic flow. It is widely believed that

shear band formation is a nucleation event. This assertion rests on the strain rate

and temperature dependence of the shear band generation rate, which is found to

increase with increased strain rate and increased temperature82 as would be expected
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in transition-state theory (see Equation 1.6). If shear banding is a nucleation process,

two related questions arise: from where do shear bands nucleate and, after nucleating,

how does the nucleus grow into a macroscopic shear band?

We turn first to the question of where nucleation originates in MGs. In crystalline

metals, it is known that vacancies83, grain boundaries84, surfaces85, and other defects

are favorable nucleation sites for dislocation loops. Their favorability is a result

of the lower energy barrier that must be overcome to form a dislocation loop at a

defect, which is termed heterogeneous nucleation, in comparison to the energy barrier

for homogeneously nucleating a loop in the bulk crystal83, 86. Modification of the

population of nucleation sites in crystalline metals can be used to alter their strength

and ductility. For example, the reduction in heterogeneous nucleation sites that

accompanies a reduction in sample size is responsible for the extremely high strengths

observed in nano-scale crystals85, 87–89.

In a disordered material, where defects are not well defined, the categorization of

nucleation sites is not straightforward. Zhao et al. introduced a framework to classify

nucleation sites in disordered materials based on the concept of “connected atomistic

free volume” (CAFV)90. CAFV quantifies the extent and connectivity of atomic

coordination with respect to the perfect crystal. For example, the CAFV spectrum in

a crystal, which is illustrated in Figure 1.6, consists of delta functions at 0 for perfectly

coordinated particles, −12Å3 for interstitial defects, and 12Å3 for vacancies. Extended

defects like dislocation loops and grain boundaries have smooth distributions at larger

21



values of CAFV. In a disordered structure, the delta functions at small CAFV are

replaced by a continuous distribution. Below a cutoff volume on the order of the

vacancy CAFV, the CAFV spectrum is referred to as “intrinsic heterogeneity” and is

a direct result of the disordered structure. CAFV larger than a vacancy is termed

“extended heterogeneity”. Just as in crystalline materials, modification of an MG’s

CAFV distribution can be used to tune its mechanical response; these techniques will

be explored further in Section 1.2.4.

Figure 1.6: Following Zhao et al.90, classification of defects in crystal and glasses
according to their connected atomistic free volume (CAFV). In crystals, the defect
spectrum consists of delta functions with well-defined characteristic CAFV. In glasses,
the spectrum is smooth, reflecting the wide-range of local atomic structures in the
amorphous state. The CAFV spectrum below the size of a crystal vacancy arises from
intrinsic heterogeneity in the glass structure. Larger defects are associated with flaws
such as voids, shear bands, and surfaces.

22



Within the intrinsic heterogeneity spectrum of a glass, the identification of flow

defects – structural motifs that are most likely to rearrange under an applied stress

– a priori has been an intense area of research91–95. The free volume approach to

flow defect identification, in which local volume is compared to a reference structure

such as the crystal or the density of the ideal hard-sphere glass96, has proven to be a

poor predictor of rearrangements95, 97. An alternative approach uses a Voronoi-index

as a measure of the local structure92–94. In simulations of MG alloys, the packing’s

structure is tesselated using Voronoi’s method98, 99 and the resulting polyhedra are

classified by counting the number of faces with a certain number of edges; i.e. for

the Voronoi-index convention < n3, n4, n5, n6 >, the vector < 0, 0, 12, 0 > indicates a

polyhedron with 12 pentagonal faces100. Sheng et al. and Cheng et al. find a strong

correlation between local atomic mobility and structure: particles with a local structure

of < 0, 0, 12, 0 > are found to compose a majority of the “slow” particles in the system

while “geometrically unfavored motifs”, or GUMs, like < 0, 3, 6, 1 > and < 0, 2, 8, 0 >

polyhedra, are more mobile than the average. Other approaches that have been used

to identify flow defects include local measures of the equilibrium stress101, 102, elastic

modulus103, or yield stress104. As a whole, these structural approaches to defect

identification have shown varied levels of success in their predictive capabilities95 and

appear to be strongly system-specific.

Alternative frameworks to the exclusively structural methods of flow defect

identification incorporate knowledge of the particle dynamics along with structural
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information. One approach links flow defects to the particles that participate most in

low-energy vibrational modes105–107, where a strong correlation is found between a

particle’s participation ratio in these modes and its likelihood to rearrange under shear.

However, because determination of the particle-particle interactions in experimental

systems is often challenging, the vibrational analysis is difficult to apply in laboratory

settings. A second approach incorporates the particle dynamics, as quantified by the

mean squared displacement, 〈r2〉, along with structure97 in the so-called flexibility

volume. The flexibility volume is defined as vf = 〈r2〉 a, where a is the average atomic

spacing. The quantity vf proves to be a robust predictive metric for the shear modulus

G in many different MG alloys and also correlates strongly with rearrangements,

whereas free volume alone does not. An added benefit of this approach is that

vf can be accessed experimentally at the macroscopic scale97 through scattering

measurements.

Recently, a new exclusively-structural predictive framework that leverages ad-

vances in machine learning has proven to be very effective at identifying flow de-

fects108–110. Here, a particle is first characterized by M measures of its local environ-

ment at a time t. These M measures, which encode radial density and bond-angle

information, constitute a vector in an M -dimensional space. Next, a measure of local

plasticity is chosen to identify particles that rearrange in a time window between

t and t + ∆t. Finally, the particles are segregated into two groups: particles that

exceed a threshold in the plasticity measure are labeled “soft” and particles with
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plasticity below this threshold are labeled “hard”. Using a support vector machine,

the hyperplane that best separates the two classes of particles is found. The distance

of a particle from the plane in this hyperspace is defined as its “softness”, with positive

softness reserved for the soft side of the hyperplane. Once the hyperplane is found,

softness can be applied to particles whose future plastic activity is unknown. Softness

proves to be a powerful predictive metric as soft particles are found to have a 90%

probability of rearranging109. Additionally, softness has proven an excellent predictor

of system dynamics in both the super-cooled liquid109 and glass110 regimes. The

correlation between softness and dynamics has proven robust, and the application of

softness to studying plasticity is a promising avenue for future study.

Flow defects are the most favorable sites for ST operation, and therefore the

most likely site for shear band nucleation. However, not all STs result in a shear

band; indeed, it is well known that STs are active well below the macroscopic elastic

limit111–113. The progression from an individual ST to a critical shear band nucleus

remains poorly understood, but the current understanding is that the initial ST

triggers other STs in its vicinity through elastic interactions82. This clustering of

STs proceeds until the nucleus reaches a critical size and then transitions to directed

growth along directions of high shear stress. The size and shape of the critical nucleus

are not firmly established. Experimental evidence suggests that the critical nucleus

size in an MG is 107 times larger than the size of an ST82. Moreover, modeling of shear

band nucleus growth highlights the role of applied stress: at a critical level of stress,
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runaway nucleus growth, which is modeled as an oblate spheroidal inclusion in an

elastic matrix, becomes thermodynamically favorable114. This transition is extremely

sharp with respect to the applied stress. Propagation continues until the shear band

is arrested by an obstacle or there is a sufficient reduction in the driving stress. The

length and time scales associated with this propagation in MGs are extremely small,

thereby making experimental studies quite challenging. Therefore, the structural

changes, operating temperatures, and interactions of these propagating bands – all

properties that are critical for devising methods to arrest this runaway process – have

been a recent experimental and theoretical focus.

1.2.3. Propagation of Shear Bands

Once a shear band has nucleated, be it homogeneously or heterogeneously,

continued applied stress causes the nucleus to grow into a macroscopic shear band.

While this growth process remains poorly understood, several models of shear band

operation have been proposed. In Shimizu et al.’s ARGL model, an operating shear

band has four distinct regions: a liquid region at the rear of the band, a glue region,

a rejuvenated region, and an aged region in front of the band115, 116. In the liquid

region, the friction generated by shear results in temperatures above Tm and negligible

resistance to flow. In the glue region, shear has also increased the temperature but it

remains below Tg. Therefore, the glue region is more viscous that the liquid region

and provides significant resistance to flow. The rejuvenated region remains at ambient
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temperature but shear has generated structural disordering. The aged region in front

of the band is undeformed and behaves elastically. An alternative model proposed

by Cao et al.117 envisages the shear band growth process in only two stages: 1) the

operation of STZs along a system-spanning band of material which induces structural

rejuvenation followed by 2) sliding along this rejuvenated path. In the two-stage

model, the temperature in the rejuvenated path prior to sliding need not increase

above Tm.

Experimental evidence has shown that the extreme temperatures associated with

the ARGL are not necessary for shear band formation. While deformation experiments

coupled with methods to measure temperature have confirmed heat generation during

shear deformation118, 119, this heating is often generated by sliding during fracture and

not shear band formation itself. Indeed, compression experiments performed with an

extremely stiff loading apparatus show that shear band formation need not generate

a temperature rise at all120, a finding in direct contradiction to the ARGL model.

Additionally, compression experiments recorded with high speed video121 reveal that

a shear offset forms simultaneously across the entire sample, which is also in conflict

with the ARGL model’s propagating shear front. Indentation experiments on several

MG alloys have also revealed that shear bands do not form at the point of maximum

shear stress but instead develop along a path in which the stress exceeds a critical

value122, further supporting the propagating rejuvenation proposal of the “two stage”

model.
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During the propagation stage of shear banding, significant structural evolution

occurs within the band. Simulations have shown that this evolution includes dila-

tion115, 117, 123, the preference for higher-energy atomic structures124, and reduced

atomic ordering125. Experimentally, electron and neutron diffraction126, 127 have been

used to probe structural change in shear bands in MGs. Here, a shift in the position

of the first peak in the radial distribution function indicates volumetric dilation.

Moreover, the evolution of radial distribution function at larger length scales actually

indicates that certain atomic spacings are actually over-coordinated with respect to

the undeformed glass, which is indicative of significant anisotropy in the structure

induced by deformation. This finding is similar to the structural changes observed in

sheared colloidal glasses128, 129. As discussed in Section 1.1.2, the jamming framework

recognizes that both stress and temperature affect the rheology of an amorphous

solid. Therefore, one may ask whether mechanically induced flow – shear banding

– and thermally induced flow – the glass transition – share common structural and

dynamical properties. In MGs, support for such a connection is founded in the fact

that the energetics of the thermally activated β-relaxation and ST operation are

almost identical130, 131, although the length-scale and kinematics of the β-relaxation

are not firmly established132. In an extension of this equivalency, Liu et al. predicted

a scaling of the yield strength with temperature by equating the mechanical work done

in the formation of a shear band and the heat necessary to induce a glass transition133.

A derivation of this model accounts for the MG’s structural state, as quantified by the
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fictive temperature (see Section 1.2.4 for details), to describe the processing depen-

dence of the yield strength134. Further support for a mechanical yield/glass transition

connection is found in the self-similarity of iso-viscosity curves with proximity to

the glass transition and magnitude of applied stress52–55, which is suggestive of an

equivalence between the glass transition and stress required for flow. However, the

studies in Refs. 52–54 do not specify whether plasticity is spatially homogeneous or

localized in shear bands, and other studies draw a distinction between shear banding

and the glass transition. In experiments on a sheared colloidal glass, Chikkadi et al.135

find a discontinuity in a dynamical order parameter that distinguishes shear banding

from a glass transition, in which the dynamics of the latter vary continuously18.

Similarly, a structural order parameter that segregates pre- and post-yield glasses

classifies mechanical yield as a first-order transition136. Others have delineated be-

tween the glass transition and mechanical yield by contrasting the microstates induced

by strain and increased temperature137 and anisotropy of dynamical correlations138,

which are different for the thermal and mechanical transitions. While it appears that

mechanical yielding in disordered solids shares at least some characteristics with the

glass transition, the extent of the correlation is not yet agreed upon. Furthermore, the

microscopic details of shear bands as they mature to macroscopic localization have

yet to be elucidated.

One unambiguous attribute of shear bands is that they are responsible for

catastrophic failure in MGs and, consequently, render MGs more brittle and less tough
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than their crystalline counterparts. Accordingly, methods for controlling the density of

nucleation sites and pre-existing shear band density underpin state-of-the-art methods

for toughening MGs.

1.2.4. Strategies for Toughening Metallic Glasses

A material’s toughness is defined as the amount of energy it can absorb before

fracture57. While crystalline metals generally yield at lower levels of stress than MGs,

their intrinsic hardening mechanisms allow for them to accumulate significant plastic

strain before fracturing139. In MGs, STs cause local softening which results in unstable,

catastrophic fracture soon after yield. Therefore, MGs are typically less tough than

crystalline metals66. However, MGs do have the capacity for plastic flow, so routes

to engineer toughness appear feasible113. Here, we review approaches to enhance the

toughness of MGs. Broadly, we separate the toughening strategies according to the

part of the CAFV spectrum – intrinsic or extended heterogeneity – that they modify.

First, we focus on toughening strategies that modify an MG’s intrinsic structure

without introducing extended defects. The toughness of MGs is alloy-specific; alloys

with a small ratio of G/B, where B is the bulk modulus, are generally tougher140.

This trend has been explained in the context of the material response around a crack

tip: in MGs that are less resistant to shear (low G/B), shear band propagation is

more favorable than crack tip opening. By suppressing crack opening, fracture can be

avoided141. However, the G/B ratio alone cannot explain why thermal processing of an
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MG alloy can significantly alter its toughness without affecting G/B 142. Apparently,

toughness is also sensitive to the details of the intrinsic structure. While the intrinsic

structure of a glass is difficult to quantify in a single state variable, the “fictive

temperature,” Tf , has been widely used to quantify its thermomechanical history.

Briefly, a higher Tf reflects a more ”liquid-like” state. Bending experiments performed

on multiple MG alloys with different Tf ’s reveal that the strain before failure increases

for specimens with high Tf , although the extent of the increased ductility is alloy-

specific. The underlying reason for the increase in ductility remains unclear – are

STs in the high Tf state more diffuse spatially, thereby leading to more diffuse shear

bands? Other strategies used to impart intrinsic toughness modify the triaxiality or

heterogeneity of the stress state in the glass. Recent experiments have demonstrated

that MGs actually have the capacity for strain hardening. In a notched MG pulled

in tension, the deformed notched region actually shows an increase in hardness in

comparison to the as-cast glass143. This hardening is attributed to diffusion-like

structural relaxation, which is presumably promoted by the large component of

hydrostatic stress in the notch. More evidence for hydrostatic stress-driven relaxation

is found in indentation experiments. Here, an indenter imparts a static load on an

MG in which the peak stress is below the yield stress. After unloading, the hardness

of the glass is increased111. Increasing the stress heterogeneity has also been shown to

impart ductility in MGs. MGs subjected to cryogenic temperature cycling, in which

a specimen is repeatedly heated and cooled between room temperature and 77K,
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possess large spatial fluctuations in the residual stress concentrations144. The stress

is caused by spatial heterogeneity in the thermal expansion coefficient, which results

in significant non-affine strains during temperature cycling. The cryogenically-cycled

specimen can withstand 5% plastic strain before fracture28, which is a significant

increase in comparison to the as-cast glass.

The population of extended defects may also be used to tune the toughness of

MGs. Extended defects can both seed and arrest shear band operation. Some extended

defects alter the stress state in the glass. For example, surface roughness can be

envisaged as many particle-scale notches that, like macroscopic notches, increase the

stress triaxiality. Computer simulations show that ductility is enhanced in nano-scale

MGs where the surface roughness becomes a significant fraction of the specimen

size145. While strain hardening is not observed in this work, the large hydrostatic

tensile stress appears to make a larger fraction of the specimen available to plastic flow.

Additionally, the large stress gradients near the surface arrest shear band propagation

before the band becomes system-spanning. The population of extended defects can

also be modified by processes such as high energy electromagnetic or ion irradiation

and mechanical treatments like cold-rolling or shot-peening28. Ion irradiation of

nano-scale MG wires has been shown to impart enhanced ductility134, 146. This effect

was analyzed in the context of increased fictive temperature induced by the irradiation.

Extended defects introduced by cold-rolling an MG have also been shown to increase

ductility147, 148. Here, geometrical constraints during the cold-rolling process allow for
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the generation of extreme amounts of plastic strain without fracture and the creation

of a large number of shear bands. These pre-existing shear bands are reactivated under

applied stress but their propagation is hindered by the hard, un-deformed matrix,

thereby preventing them from becoming system spanning. Mechanical treatments

like cold rolling introduce a directionality to the material because the shear bands

they generate form along preferred directions113. When the processed material is

subjected to load, the orientation of the load with respect to the pre-existing shear

bands determines the mechanical response.

Processing methods that modify the intrinsic or extrinsic defect population in

MGs have proven effective at enhancing toughness. However, in many cases – such

as ion irradiation and cryogenic cycling – the structural modifications are subtle,

difficult to measure, and the direct connection between structural alteration and shear

band nucleation remains mysterious. To this end, model systems – where particle

scale structure may be measured directly – may advance our understanding of the

relationship between structural modification and incipient plasticity in glasses.

1.3. Model Systems

Great advances in imaging instrumentation have been made over the past century.

The development of the transmission electron microscope149, 150 and the atomic force

microscope151 have allowed researchers to visualize materials with atomic resolution.

Powerful diffraction techniques are now capable of measuring spatially-varying strain
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fields in nano-scale specimens152, 153. However, despite these and numerous other

advances, the ultimate goal of resolving the position of every atom in a material and

monitoring atomic displacements upon the application of some external field remains

outside the capabilities of current technology. Therefore, model systems have been and

remain a crucial tool in guiding and confirming our understanding of atomic solids.

Model systems have several beneficial properties. In many cases, the exact

locations of particles in a model system may be determined directly. This capability

is a huge advantage in comparison to atomic systems, where the techniques necessary

for atomic-level imaging may be impossible or impractical and where diffraction or

scattering techniques yield only ensemble-averaged quantities. In studying phenomena

such as the nucleation of shear bands, the fluctuations in particle-scale quantities

are imperative to understanding the incipient mechanisms and are not detectable

in ensemble-averaged measures. In addition to particle-scale resolution, some model

systems may also allow for the interactions between the particles to be tuned by

varying both their range and magnitude. For example, salt may be added to colloidal

suspensions to tune the range of interactions154. This ”tunability” enables researchers

to isolate the effect of particle-particle interactions from structure in a material’s

response.

The bubble raft of Bragg and Nye is an example of a well-known model sys-

tem155 156. In their experiments, Bragg and Nye formed two-dimensional packings of

air bubbles by bubbling air into a soap solution. The air bubbles crystallize into a
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two-dimensional foam on the solution’s surface and form with observable defects like

dislocations, grain boundaries, and vacancies. By shearing or compressing the bubble

raft, Bragg and Nye were able to study the way these defects behaved under an applied

stress. Specifically, they studied the nucleation of dislocations, which they found

preferentially occurred at the edges of the bubble raft. Because of the macroscopic

scale of the system, the propagation of the nucleated dislocations across the raft

and the resulting shear offsets were readily observable and provided confirmation of

Taylor’s theory of dislocation motion60, which had been proposed more than a decade

prior.

Model systems have played a particularly important role in the study of amorphous

solids. Simpson and Hodkinson modified Bragg and Nye’s crystalline bubble raft

experiment by mixing bubbles of different sizes157 to create an amorphous foam. They

found that the Young’s modulus of the amorphous raft showed a similar reduction in

comparison to a crystalline raft as amorphous silica did in comparison to crystalline

silica. Argon and Kuo80 also used an amorphous bubble raft to study the mechanics

of the amorphous structure77, but instead of measuring the elastic response, they used

their raft to observe the plastic events that occurred during shear and compression. By

measuring the particle-scale displacement fields that they observed during deformation,

they confirmed the cooperative nature of the rearrangements and strengthened Argon’s

proposed shear transformations77.

Colloidal systems have been widely used as models for atomic glasses. The
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reasons for their widespread use are manifold, but we highlight three benefits in

particular: 1) colloidal particles are large enough to be imaged using optical or laser-

scanning confocal microscopes, 2) the interactions between the particles can be tuned

from repulsive to attractive to nearly hard-sphere, and 3) the volume fraction and

polydispersity of the particles can be used to form different phases154, 158. Weeks et

al. used a confocal microscope to measure the aging of a colloidal glass at packing

fractions near the glass transition30, 159. These experiments were the first to directly

measure individual particle dynamics at various proximities to the glass transition,

making them instrumental in guiding theories of the glass transition. Schall et al. used

a three-dimensional packing of silica particles to study thermal and shear-induced

rearrangements81. Using confocal microscopy, they observed rearrangements in the

quiescent and sheared glass. Under shear, they found the signature quadrupolar strain

field predicted by Eshelby’s solution for an ellipsoidal inclusion, which they interpreted

as more evidence of Argon’s ST. Additionally, they were able to observe the STs

coalesce into a network under continued shear, which they suggested is the nascent

stage of shear banding. Jensen et al. performed similar shear experiments but analyzed

the resulting strain fields differently160. Instead of attempting to identify individual

STs, Jensen et al. quantified the spatial correlations in strain. The correlations are

found to be nearly identical to the correlations predicted by the analytical solution

for Eshelby’s inclusion, thereby providing further support for the cooperative nature

and long range elastic field of shear transformation zones.
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Granular systems have also been used extensively as model systems. Granular

systems are distinguished from colloidal systems in that the larger granular particles

do not perform Brownian motion, making granular systems athermal. In the granular

pillar compression experiments of Rieser and Durian161, 162, granular pillars composed

of plastic rods oriented vertically on a substrate are compressed using a platten. During

compression, images of the pillar are collected using a camera mounted above the

apparatus. Because the individual rods can be tracked individually, the particle-scale

deformation can be quantified precisely. Indeed, the chains of particles oriented along

directions of high shear show intermittent burst in shear strain rate – a shear band.

Rieser et al. find a spatial correlation between these bands and a novel measure of

the local structure.

Most of the model system studies previously discussed seek to understand the

bulk behavior of the material of interest; as such, efforts are taken to mitigate the

effects of extrinsic features like boundaries. Additionally, because confining forces

are often necessary to stabilize these model systems, the effects of free surfaces have

received little attention. While specimen size and surfaces are known to influence

the deformation behavior of MGs145, 163, the underlying reasons for their effects

remain open89, 146, 164. Therefore, should one be able to create a model glass with free

surfaces and variable specimen size, an opportunity exists to connect macroscopic size

effects with variations in the microscopic mechanisms thereby adding insight to the

size-dependent behavior of atomic glasses.
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1.4. Summary and Thesis Outline

This review of the current state-of-the-art demonstrates that glasses of different

characteristic length scales possess certain shared properties, including a glass/jamming

transition, an excess of low-energy vibrational modes, dynamical heterogeneity, and

rheological behavior. Strain localization – the propensity for strain to accumulate in

thin bands of a material – is a universal feature of amorphous solids that has been

less well-explored. Moreover, because strain localization is often accompanied by

runaway, catastrophic fracture, strategies to detect and mitigate its nascent stages are

applicable in applications as diverse as soil handling and polymer design. Of particular

interest is the mitigation of shear banding in MGs, a class of material that possesses

many desirable properties but has seen limited industrial acceptance due in part to

limited ductility.

Despite recent progress in the field, there are numerous unresolved questions

pertaining to plasticity in amorphous solids. While the nature of the fundamental

plastic event – the shear transformation – has been observed in many amorphous solids,

a satisfactory description of the ST’s structural fingerprint, dynamics, and interaction

with other STs remains unsettled. The identification of STs a priori remains an

outstanding challenge; consequently, the extent to which a universal description of

flow defects may be established in all amorphous solids remains debatable.

Additionally, the progression from individual STs to a critical shear band nucleus
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remains poorly understood. For instance, the challenge of defining a universal critical

shear band nucleus in the context of ST density, a structural descriptor such as

softness or flexibility volume or some other metric remains unsolved. In MGs, it

has been established that altering the structure of the glass through thermal and

mechanical treatments can significantly alter a glass’s ductility. The root cause(s) for

this enhancement remain unclear: are the spatial distributions of flow defects altered,

is the shear band nucleation process somehow affected, or is there another basis for

the increased ductility? Satisfactory resolution of this question is dependent on a

more robust definition of the shear band nucleation process.

Finally, the defining structure and dynamics of a mature shear band remain

debatable. Specifically, the equivalence between a mature shear band and the isotropic

glass/jamming transition remains ambiguous. Can a shear band be identified simply

as an anisotropic glass transition, or are the structure and dynamics within the shear

band distinct from the isotropic case?

Methods to toughen glasses to overcome or mitigate their intrinsic strain-softening

behavior are needed to accelerate their adoption in technical applications, and the

aforementioned outstanding questions often preclude progress. Moreover, due to the

extremely small time and length scales associated with shear banding in MGs, experi-

mental characterization of their nucleation, operation, and interaction is challenging.

Therefore, model systems which mimic the behavior of an MG at an observable length

scale are desirable.
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In this thesis, we present experiments on colloidal pillars, which prove to be an

appropriate model system. In Chapter 2, we describe a method to form colloidal pillars

and discuss the effects of particle size and material on the morphology of the pillars. In

Chapter 3, we report results of instrumented compression tests on amorphous pillars.

Here, we observe shear banding and mechanical response that is strikingly similar to

the behavior of MGs. In Chapter 4, we describe 4D in situ compression experiments,

which allow us to study deformation in a pillar at the particle scale as shear banding

proceeds. Finally, in Chapter 5 we highlight possible future directions of study and

potential applications of our findings.
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Chapter 2

Synthesis of Colloidal Pillars

Soft matter is a class of material that is composed of mesoscopic particles dispersed

in a solvent of much smaller particles165. Aerosols (solid or liquid particles dispersed

in a gas), emulsions (liquid particles dispersed in a liquid), and foams (gas particles

dispersed in a liquid or solid) are three examples of common soft materials. In a soft

material, the energy of the inter-particle interactions normalized by the particle mass

is small in comparison to the interactions between atoms166. Just as atomic matter

can exist as a solid, a liquid, or a gas, soft matter can also take on different phases.

Two types of soft solids are colloidal and granular packings that are distinguished by

particle size and particle-scale thermalization. In common lexicon, “colloidal” refers

to particles that have a size of less than 1µm; conversely, “granular” particles are

larger than 1µm. In a colloidal packing, the small particle size and/or the presence of

a viscous surrounding fluid results in non-negligible Brownian motion of the particles

and a finite temperature; in a granular packing, the Brownian motion is unimportant

and the system can be considered athermal167.

In this chapter, we will present a method for the preparation of colloidal pillars.

The particles used in these pillars range in size from 85 nm to 7 µm. This range

spans the 1µm boundary commonly used to delineate colloidal from granular systems

– to avoid confusion, we will refer to all of the pillars as ”colloidal”. These colloidal
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pillars are unique in that they are free from confining boundaries. In addition, the

small constituent particle size differentiates these pillars in comparison to other dry

colloidal/granular systems reported in literature. We introduce a method to alter

the pillar structure, which we will later show alters the mechanical response. The

pillars are an excellent model system to investigate some of the outstanding questions

regarding plasticity in amorphous solids.

2.1. Materials and Methods

2.1.1. Synthesis of Colloidal Pillars

Colloidal pillars are synthesized by filling glass capillaries with suspensions of

colloidal particles (details on the suspensions are given in Sections 2.1.2 and 2.1.3).

As-purchased glass capillaries are cut into shorter pieces with a length of ∼4 cm using

a glass cutter. The two ends of each capillary are polished using a polishing wheel

with a 6 µm diamond-impregnated polymer film to make the faces of the capillary

flat and smooth. The polished capillaries are cleaned with isopropanol to remove any

contamination introduced during the polishing process.

After cutting the capillaries to length, the empty capillaries are silanized with

octadecyltrichlorosilane (OTS) in toluene to render the inner surface hydrophobic and

to limit the adhesion of particles to the inner walls of the capillaries during the drying

process (Figure 2.1a and b).
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The colloidal particle suspension is subsequently injected into the capillaries

using a disposable syringe. The open end of the syringe is fitted with a 304 stainless

steel and polytetrafluoroethylene (PTFE) dispensing needle and plastic tubing to

help direct the suspension flow into the capillaries (Figure 2.1c). The filled capillary

is placed horizontally on a bench or on a rotating wheel at room temperature and

allowed to dry. The rotating wheel is used to prevent separation of particles by size

due to gravimetric sedimentation. The drying process typically takes 3 days. After the

water in the capillary has completely evaporated, a dense pillar remains (Figure 2.1d).

Figure 2.1: Procedure for forming colloidal pillars in capillary tube. a) An empty
capillary tube is first b) silanized with OTS to make the inner surface hydrophobic.
The capillary is c) filled with a suspension containing colloidal particles. After drying,
a d) dense pillar remains.

2.1.2. Pillars for Instrumented Compression Experiments

Multiple combinations of colloidal particles and capillary diameters are used to

form pillars for instrumented compression experiments. A summary of the particles

and capillaries used is presented in Table 1.
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colloid

material

colloid

size (nm)

capillary

diameter (µm)
structure cracked

SiO2 85 ±15 580 amorphous yes

SiO2 250 580 amorphous yes

SiO2 7000 580 amorphous no

SiO2 7000 900 amorphous no

PS 500 580 amorphous yes

PS 500 900 amorphous yes

PS 6150 580 polycrystalline no

PS 6150 900 polycrystalline no

PS 3000/6150 580 amorphous no

PS 3000/6150 900 amorphous no

Table 1: Combinations of colloids and capillaries used in the synthesis of pillars for
instrumented compression experiments.
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Spherical SiO2 particles with an average diameter of 85 nm (30-31 wt% suspension

in isopropanol, particle sizes ranging between 70 nm and 100 nm) are obtained from

Nissan Chemical America Corporation. 250 nm spherical SiO2 nanoparticles with

standard deviation <10% are purchased from Fiber Optic Center, Inc. 7 µm spherical

SiO2 particles are obtained. Polystyrene (PS) spheres with diameter 500 nm are

obtained. PS spheres with diameters of 3.004 ± 0.065 µm (2.64% solid-latex) and

6.15 ± 0.188 µm (10% solids) are purchased from Polyscience, Inc. and Bangs

Laboratories, Inc., respectively. Standard glass capillaries with inner diameter (ID) of

580 µm and outer diameter (OD) of 1,000 µm are purchased from World Precision

Instruments, Inc. Borosilicate glass capillaries with ID 900 µm and OD 1,000 µm are

purchased from Produstrial LLC.

A 25 wt% 250 nm SiO2 aqueous suspension is prepared for the pillar fabrication.

The as-received 85 nm SiO2 and 6.15 µm PS suspensions are concentrated using a

centrifuge at 1000 rpm for 10 min by removing a significant amount of the supernatant.

After drying, the pillars are extruded from the capillary tube and imaged using

an optical or confocal microscope. We find that pillars composed of particles with

diameter less than ∼ 1µm develop cracks during drying (Figure 2.2a and b), while

pillars composed of larger particles (Figure 2.2c) do not. While not exhaustively

explored, the propensity of a pillar to form cracks appears to be influenced mainly by

particle size and not pillar diameter or colloid material (Figure 2.2d). This result is

consistent with previous observations on the effect of colloid size on crack formation
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Figure 2.2: 580 µm diameter pillars composed of a) 85 nm SiO2 spheres, b) 250 nm
SiO2 spheres, and c) a mixture of 3 and 6 µm PS spheres. Cracks are evident in
the pillars composed of 85 nm and 250 nm SiO2 particles. Scale bar is the same
for each image. d) Pillars composed of larger particles show no evidence of the
cracking observed in the pillars composed of smaller particles. Pillars composed of
SiO2 particles are indicated by blue markers. Pillars composed of PS particles are
indicated by red markers. Squares denote pillars composed of monodisperse particles
and triangles denote pillars composed of bidisperse particles. Open symbols indicate
pillars that form with cracks and filled symbols indicate pillars that form crack-free.

in drying colloidal thin-films168. Pillars composed of 6.15 µm PS show crystallization

due to the small polydispersity. To avoid crystallization, we prepare a bidisperse

suspension by mixing the 3 µm PS suspension and 6.15 µm PS suspension with a

volume ratio of 3.78169 (hereafter referred to as the 3/6 µm PS pillars).
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Mechanical Annealing

In addition to the stochastic structural variation that results from the synthesis

process, we developed a mechanical annealing procedure to reproducibly alter the

packing fraction, φ, of the pillars. This procedure was applied only to the 3/6 µm PS

pillars. After allowing the suspension of colloidal particles to dry within the capillary

tube, two steel wires with diameters slightly smaller than the capillary diameter

are inserted into both ends, rendering the packing fully confined (Figure 2.3). A

piezoelectric actuator is brought into contact with one of the wires and the opposite wire

is coupled to a force transducer, enabling measurement of the axial force. Sinusoidal

displacements (f = 0.5 − 5 Hz, A = 0.60 − 3.60 µm) are produced by the actuator,

which remains in contact with the wire. The piston periodically loads and unloads

the pillar about the mean confining force (Fconf ∼ 0.1− 10 N), resulting in a gradual

densification of the pillar and an increase in φ. After mechanically annealing the pillar

from one side, the capillary tube orientation is reversed and the process is repeated

from the other side to promote uniform compaction. Varying the confining force in

addition to the amplitude, frequency, and number of displacement cycles allows for

some control of compaction.

Following annealing, the average packing fraction of the confined pillar, 〈φ〉, is

determined by measuring the diameter, D, length, L, and mass, mfilled, using high-

resolution optical microscopy and microbalance measurements, respectively. Upon
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Figure 2.3: The mechanical annealing setup. The colloidal pillar is confined within
a capillary by two steel wires between the actuator and the force transducer, and a
sinusoidal displacement is generated by the actuator, leading to compaction of the
pillar.

completion of mechanical testing, the mass of the empty capillary tube, mempty, is

measured. Using the density of PS, ρPS, the average packing fraction is determined

as:

〈φ〉 = Vsolid/Vbulk =
(mfilled −mempty)/ρPS

πD2L/4

Our mechanical annealing procedure produced pillars with 0.528 ≤ 〈φ〉 ≤ 0.684. For

our mixture of 3/6 µm PS particles, the random close packing limit (RCP) is predicted

to be φ = 0.683170. The lower bound, random loose packing (RLP), for a bidisperse

mixture of frictional, cohesive particles is not known, but rheology measurements on a

bidisperse mixture of hard-spheres with similar diameter (DL

DS
) and total volume (NLVL

NSVS
)

ratios show a fluidity limit, marked by a large increase in viscosity, at φ = 0.550171.

Thus, our 3/6 µm PS pillars span the full spectrum of glass packing.
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2.1.3. Pillars for 4D in-situ Compression Experiments

In addition to the pillars prepared for instrumented compression experiments, we

also synthesized pillars specifically for 4D in-situ compression experiments. Thin-wall

glass capillary tubes with an ID of 300 µm and an OD of 450 µm are obtained from

Produstrial LLC. The capillary tubes are cut and polished following the same procedure

described in Section 2.1.1. After polishing, an aqueous mixture of polyethylenimine

(PEI) and silica particles is passed through the capillaries and allowed to dry. The

capillaries are heated to fuse the silica particles to the inner walls of the capillary. This

procedure adds roughness to the walls and suppresses crystallization of the colloidal

particles near the walls.

After fusing the silica to the capillary walls, a suspension of 3.3 µm fluorescent

poly(methyl methacrylate) (PMMA) (Andrew Schofield laboratory, University of

Edinburgh) particles is injected into the capillary tube. Polydispersity of between

6% and 8% in the particle sizes suppresses crystallization, resulting in an amorphous

packing. After the suspension has dried, the capillary tube is secured to a #0 glass

cover slip (Goldseal) using UV-curable adhesive (Norland Optical Adhesive No. 61).

Once secured, a length of the pillar is forced out of the capillary tube to form a free-

standing compression specimen. Prior to extruding the specimen, the dried suspension

is re-wetted using bromocyclohexane (CXB) to increase the cohesion between the

particles and prevents the extruded specimen from crumbling.
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2.2. Conclusions

We have presented a novel method for the preparation of free-standing pillars

composed of various colloidal particles. Pillars composed of particles less than ∼ 1µm

in size dry with a significant population of cracks due to the large capillary forces

relative to the particle mass. Pillars composed of larger particles dry without visible

cracks. An amorphous pillar structure can be attained by using a bidisperse mixture

of particles. We also presented a method to alter the average packing fraction of the

pillars, 〈φ〉, using mechanical annealing. The annealed pillars appear to span the

range of solid, amorphous densities for our particular mixture of particle sizes.
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Chapter 3

Instrumented Compression Testing
of Colloidal Pillars

Uniaxial compression is an effective method for evaluating the elastic and plastic

response of a material. In a uniaxial compression test, a cylindrical or rod-shaped

sample is subjected to a displacement or stress-controlled deformation along its major

axis without confinement along the secondary axes. The material’s response prior

to yield can be used to determine its elastic constants. The material’s compressive

strength may be determined from the yield point. Finally, the post-yield morphology

of plastic deformation can be used to infer the mechanisms underlying yield.

In this Chapter, we will present a method for the instrumented (the force imposed

on the sample is measured) uniaxial compression of the colloidal pillars described

in Section 2.1.2. Our results show that the pillars are an excellent model system to

investigate some of the outstanding questions regarding plasticity in amorphous solids.

3.1. Compression Experiments

Following the synthesis procedure outlined in Section 2.1.2, a polished steel wire

is inserted into the capillary and brought into contact with the confined pillar. The

smooth wire face ensures uniform contact between the wire and pillar and aids in
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preserving the initial pillar structure. The length of the wire is adjusted so that several

centimeters remain exposed from the capillary after contact with the pillar is made.

The capillary/wire assembly is secured to a custom grip using a clamp (see Figure 3.1a)

and the exposed face of the wire is brought into contact with a finely-threaded drive

screw. Turning the screw pushes the pillar through the capillary and allows for precise

control of the length of the exposed pillar that emerges from the opposite end. In

uniaxial compression, the sample geometry is known to affect the deformation mode

observed172. To promote shearing, as opposed to buckling or barreling, the aspect

ratios of the pillars (lo/D, where lo is the exposed pillar length and D is the pillar

diameter) are maintained at values between ∼2.2 and ∼2.6. The wire also serves to

backstop the pillar during the compression experiment.

Figure 3.1: a) The custom grip. A wire is used to push the pillar out of the capillary.
A finely-threaded drive screw allows for precise control of the exposed pillar length. b)
Compression testing apparatus for colloidal pillars. The capillary is secured to a custom
grip using a clamp and the grip is fixed to a load cell. A displacement is generated
using a silanized silicon punch attached to a piezoelectric actuator. The setup may be
operated in the field-of-view of both optical and laser confocal microscopes to observe
the pillar deformation during compression. Inset: an exposed pillar, scale bar 500 µm.
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Once the capillary is secured to the grip, the grip is attached to a load cell

(GSO Series - Transducer Techniques, 0-100 mN, 0-1 N, and 0-10 N force ranges) so

that the transmitted force may be recorded. A groove machined in the grip ensures

axial alignment of the capillary and the load cell axis. The load cell is mounted to

a combined translation/rotation stage (see Figure 3.1b). A piezoelectric actuator

(P-212 Series, Physik Instrumente, 0-60 µm and 0-120 µm actuation ranges) is secured

to a second translation/rotation stage opposite from the load cell. The stages allow

for precise alignment of the actuator and load cell to ensure that the direction of

compression is aligned with the pillar axis. A silicon wafer treated with OTS is fixed

to the end of the actuator and is used as a punch. The OTS minimizes friction and

adhesion with the pillar face, which have been shown to suppress shearing modes by

confining the sample laterally164, 172, 173. Determination of the in-pillar displacement

(∆l = lo − l, where lo is the initial pillar length and the sign convention is adopted to

give positive values in compression) is made using the absolute displacement of the

punch and the measured stiffness of each load cell.

The pillars do not dry with a flat surface and uneven contact between the punch

and the pillar face results in large local stresses and crumbling at the pillar face. To

minimize this effect, the pillar faces are formed prior to compression by extruding

a small length of pillar (∼20 µm for a 580 µm diameter pillar) and flattening the

exposed pillar with the punch. Remnant particles are removed with compressed air

and the pillar is then extruded to the desired length.
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The compression testing apparatus is positioned in the focal plane of an optical

or laser scanning confocal microscope (reflectance mode, λ = 639 nm). Digital images

collected during compression allow for correlation of measurements of mechanical

response with macroscopic events such as crack propagation or shear band propagation.

Particles larger than ∼5 µm are distinguishable at magnifications as low as 50x and

provide substantial image contrast and digital image correlation is used to measure

surface displacements from a series of images174–176. Full-field strain maps of the pillar

surface are calculated from the spatial gradients of the displacement fields. The image

sequences also allow for the correlation of any pillar slip within the capillary tube to

recorded load drops.

3.2. Results and Discussion

3.2.1. Pre-Cracked Pillars

In situ micrographs and the mechanical response from a representative compres-

sion experiment of a 580 µm diameter pillar composed of 85 nm SiO2 spheres are

shown in Figure 3.2. As discussed in Section 2.1.2, these pillars dry with a signif-

icant population of macroscopic cracks. The distribution of these defects governs

deformation behavior. The force-displacement response may be partitioned into ini-

tial stiffening from ≈0-0.005, linear response from ≈0.005-0.010, and a subsequent

series of crack opening and propagation. Stiffening results from non-uniform contact
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between the pillar face and punch, which is mitigated in subsequent experiments

by conditioning the pillar face according to the procedure outlined in Section 3.1.

Once the pillar-punch contact area becomes approximately constant, force increases

linearly with ∆l/lo. No changes in the geometry of the cracks are observed during the

stiffening and linear compression phases. The transition from linear to non-linear force

response correlates with the opening of a crack near the punch face. During opening,

the crack separates along the direction of maximum tensile stress (perpendicular to

the direction of compression) while the crack tip remains fixed. The crack remains

stable (no observable tip movement) up to point b, after which it propagates along a

direction approximately parallel to the direction of compression. Crack propagation

correlates with the first force drop at point c. The sequence of crack opening and

propagation continues as ∆l/lo is increased further (see Figure 3.2d and e).

The behavior of a 580 µm diameter pillar composed of larger 250 nm SiO2 spheres,

which also forms with pre-existing macroscopic cracks, shows similar crack evolution

during loading. The face of the pillar was conditioned prior to compression and no

initial stiffening is observed. Linear force response is observed up to ≈0.015 after

which a crack propagates down the pillar axis, resulting in a relatively large load

drop. In contrast to the 85 nm SiO2 pillar, no crack opening is observed prior to

crack propagation, which occurs initially at a load of ∼34 mN. The first active crack

in the 250 nm SiO2 pillar propagates the full length of the pillar axis. Therefore,

the load-bearing ability of the pillar is greatly reduced, and subsequent displacement
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Figure 3.2: a) compression experiment on a 580 µm diameter pillar composed of 85
nm SiO2 spheres. The red dots in frame f correspond to the micrographs. The pillar
behaves quasielastically up to point a, after which one of the cracks slowly opens
(frame b). The crack, highlighted by the black arrows in frame c, becomes unstable
and propagates down the axis. This event corresponds to the first sudden load drop
(frame f). Subsequent loading opens and activates other cracks (frames d and e). The
arrows in frame e indicate the crack corresponding to the load drop between frames d
and e.

fails to produce forces more than ∼1/2 of that required to activate the first crack.

By comparison, the first active crack in the 85 nm SiO2 pillar propagated ∼1/2 of

the pillar length, and subsequent displacement generated forces larger than the force

required to activate the first crack.

The compression experiments discussed are representative of the response observed

in more than 5 85 nm pillars and more than 15 250 nm SiO2 pillars. Collectively,

we observe that the pillars composed of 85 nm and 250 nm SiO2 dry with a large

population of cracks, which ultimately dominate the mechanical response. Similar

to fracture processes observed in brittle solids, the yield force and peak force of our

pre-cracked pillars are governed by the initial flaw population and its evolution during
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compression177. The force required for crack growth and propagation depends on the

crack geometry (orientation and size) and particle-particle cohesion. While pillars

with large populations of cracks are potentially interesting for fracture mechanics

investigations, they are not suitable for probing shear banding behavior as the forces

required to activate the cracks are less than the force required to nucleate shear bands.

Thus, we next turn our attention to pillars synthesized with no visible pre-existing

flaws.

3.2.2. Pristine Amorphous Pillars

Pillars composed of 3 and 6 µm polystyrene spheres dry without cracking, and

the deformation mode observed in these pillars is different from the crack open-

ing/propagation found in pillars composed of smaller particles. As mentioned in

Section 2.1.1, a bidisperse colloid size mixture is used to suppress crystallization and

the resulting amorphous structure is confirmed from micrographs of the surface. Mi-

crographs and the mechanical response from a representative compression experiment

of a 580 µm diameter pillar composed of 3 and 6 µm polystyrene spheres are shown

in Figure 3.3.

Upon initial loading, force increases approximately linearly with ∆l/lo strain and

the strain throughout the pillar is relatively uniform with only a slight enhancement

of compressive strain near the punch (see Figure 3.3a and b). As ∆l/lo increases, the

magnitude of strain near the punch increases relative to the strain in the rest of the
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Figure 3.3: a) Optical micrographs acquired during compression of a 580 µm diameter
pillar composed of 3 and 6 µm PS spheres. The punch is located at the top face of
the pillar and actuates downward. The inset at the lower right shows the mechanical
response (loading stiffness = 2.3 MPa, dashed line to denote linear response). At
the point marked b, a shear band begins to form. The mature shear band is
indicated in frames c and d.

pillar. At a critical force of ∼12.5 mN, the pillar begins to soften and each incremental

displacement step results in a decrease in force. This softening corresponds to the

nucleation of a shear band near the punch face, as seen in Figure 3.3c and d. During

this nucleation stage, which persists from ∆l/lo ≈ 0.030− 0.033, structural evolution

is observable along the shear band region despite the absence of a clear shear offset

at the pillar surface. Further displacement induces shear band propagation during

which slip is observable along the shear band and a detectable shear offset develops

at the surface. While the full orientation of the shear band is not determinable from

the micrographs, it appears that the band forms along a direction approximately 45◦

from the direction of compression, which is parallel to the direction of maximum shear
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stress.

It is interesting to compare the deformation that we observe in the 3/6 µm

pillars with the modes found in other amorphous systems. The shear bands that

develop in the pillars have a finite thickness. From inspection of micrographs acquired

during shear band propagation, we estimate the thickness to be ∼5 particle diameters.

This thickness is consistent with the values reported in a sheared suspension of

colloidal PMMA particles178. The shear band orientation of approximately 45◦ from

the direction of compression is similar to the angle observed in experiments179 and

simulations180 of compression of other granular solids. The examination of deviations

from this angle has been suggested as a method to gain insight on the pressure

dependence of yielding in disordered solids66. We consistently observe shear bands

that originate at the pillar/punch interface and grow to intersect a free surface.

Without the confining walls found in other granular compression experiments, there is

no restoring force for radial displacements. Therefore, local softening due to dilatory

structural evolution is concentrated near the punch and results in the preferential

location for shear band formation. This behavior more closely resembles that found in

compression experiments of micro-scale BMG pillars11, 181, 182.

3.2.3. Effect of Ambient Humidity

Although the orientation and location of the shear bands are consistent from pillar

to pillar, the normalized force at shear banding onset, F/Ao, is found to vary from
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47 to 830 kPa. While structural variation from pillar to pillar surely affects the peak

force value, we believe that fluctuating humidity may also account for the variability.

All of the experiments reported to this point were performed in ambient conditions

with no special provisions taken to control humidity levels. To explore the effect of

humidity on pillar response, an environmental chamber capable of varying relative

humidity (RH) from <2% RH to >98% RH was constructed for the compression

testing apparatus.

Multiple compression cycles of a single pillar at various levels of RH illustrate the

impact of environmental conditions on the mechanical response. A 900 µm diameter

pillar composed of 3/6 µm PS spheres is compressed 25 times to displacements much

less than the values necessary to cause shear banding (∆l/lo < 0.003). Over the course

of the compressions, RH is adjusted from near saturation (96% RH) to dry (<2%

RH) and then back to near saturation. Eight of the response curves are plotted in

Figure 3.4a. The plot ordering follows the sequence of testing, with the left-most

plot corresponding to the first compression and the right-most plot corresponding to

the last compression. Blue, red, green, and black plots correspond to 96% RH, 51%

RH, 21% RH, and <2% RH environments, respectively. It is found that decreasing

RH results in significant stiffening of the pillar, and the subsequent increase of RH

restores the compliance of the pillar. To quantify the variation, polynomials are fit

to the load and unload responses, expressed as F/Ao vs. ∆l/lo, for each of the 25

compression experiments. The maximum instantaneous stiffness, as determined from
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the maximum value of lo
Ao

dF
d∆l

over the range of ∆l/lo, is extracted for each compression

cycle. Figure 3.4b plots the maximum instantaneous load and unload stiffnesses for

different values of RH. A low RH environment results in a pillar that is 10x stiffer than

the same pillar compressed in a high RH environment. The decrease in unload stiffness

with increasing RH is non-monotonic and reaches a maximum between 35-50% RH,

where we observe a two-fold increase in the unload stiffness over the stiffness at <2%

RH. The magnitude of the stiffness increase is similar to that observed in a colloidal

crystal indented at various levels of RH183. The cross-over region between the extreme

values of stiffness extends over a wide range of RH (30-70% RH) that overlaps with

typical ambient RH variation.

Increasing environmental RH increases the moisture content in the pillar due to

capillary condensation. In the limit of a completely dry pillar, a state not realizable

in our system, particle-particle cohesion due to water-bridges vanishes. At low RH,

water-bridges form at the contact points between particles and increase cohesion.

When these water-bridges remain distinct, the pillar is said to be in the pendular

state184 defined for wet granular media. Increasing RH further results in some of the

water-bridges merging and completely filling some of the voids in the pillar and the

pillar is said to be in the funicular state. Higher RH may saturate the pillar, filling all

of the voids, and the pillar is said to be in the capillary state.

Dynamic vapor sorption (DVS) is performed to quantify the water content in

the pillar as a function of RH. DVS employs a precision microbalance to measure
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Figure 3.4: a) Eight sequential response curves for a pillar compressed at different
RH. b) The variation of the maximum instantaneous stiffness on load and unload
with changes in RH. c) Confocal micrographs from a pillar compressed at 96% RH.
Top frame shows entire pillar, lower left frame shows region denoted by red box prior
to compression, and the lower right frame shows the same region after compression.
Significant structural evolution of a previously sheared region is observed. d) Confocal
micrographs from a pillar compressed at <2% RH. Top frame shows entire pillar,
lower left frame shows region denoted by red box prior to compression, and the lower
right frame shows the same region after compression. Little structural evolution of a
previously sheared region is observed.

the change in the mass of a sample with changes in RH. The relative change in mass

of the pillar is given by m(RH)/mdry where mdry is the mass of the dry pillar and

m(RH) is the mass of the pillar at a given RH. The bulk volume, Vbulk, of the pillar

is determined by measuring the pillar dimensions using optical microscopy and the
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void volume, Vvoid, is determined through the relation:

Vvoid = Vbulk −
mdry

ρPS

where ρPS is the density of PS (1.06 g/cc). For the 900 µm diameter pillar composed

of 3/6 µm PS spheres, Vvoid/Vbulk = 0.24. The water content in the pillar is quantified

by the dimensionless water content:

Vwater
Vbulk

=
m(RH)−mdry

ρH2O × Vvoid

where ρH2O is the density of water (1.00 g/cc). The relative changes in mass and RH

during a DVS experiment are plotted against time in Figure 3.5a, and the equilibrium

relative change in mass and water content are plotted against RH in Figure 3.5b. It is

found that the relationship between water content and RH is not linear, with a sharp

increase in water content for RH values >80%.

Particle-particle cohesion and friction are markedly different in the pendular,

funicular, and capillary states184 and these variations are reflected in the distinct

mechanical responses observed at different RH. In the pendular state, where 0 <

Vwater/Vvoid < 0.10-0.25179, cohesive forces are the result of water-bridges that form

between particles. In the capillary state, where Vwater/Vvoid > 0.90, cohesion is the

result of suction generated in the fluid phase containing the particles. In the funicular

63



Figure 3.5: a) The relative change in mass and RH plotted against time for a 900 mm
diameter pillar composed of 3/6 mm PS spheres. b) The equilibrium relative change
in mass and water content as a function of RH on adsorption and desorption. c) The
efficiency, a measure of the work recovered during a compression cycle, as a function
of RH. d) The ratio of the maximum instantaneous stiffness on unload, Emax,unload, to
the maximum instantaneous stiffness on loading, Emax,load.

state, cohesion is a combination of the cohesive interactions characteristic of the

pendular and capillary states. Friction is greatly reduced in the capillary state, where

the large water content serves as a lubricant between particles. In comparing the

compression data with water content, we see that the maximum unloading stiffness

achieved at 50% RH corresponds to a water content of ∼0.12-0.15, a value associated

with the pendular regime. Increasing RH beyond 50% results in a significant decrease

in the loading and unloading stiffnesses which we attribute to increased plasticity.
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We quantify the extent of plasticity at a given RH through two metrics: efficiency,

η, and the ratio of the maximum instantaneous stiffness on unload to the maximum

instantaneous stiffness on load. We define η as the ratio of the work done by the

system on unloading to the work done on the system during loading:

η =

∫ 0

xmax
Funload(x)dx∫ xmax

0
Fload(x)dx

η = 1 would indicate a perfectly elastic process and η = 0 would indicate a perfectly

plastic, or dissipative, process. The efficiency of the compression cycles as a function

of RH is plotted in Figure 3.5c. At low RH, η ≈ 0.8, which is the maximum value

observed. At RH > 30%, η drops significantly and settles to values ∼0 at 70% RH.

Near saturation, several negative efficiency values are measured, indicating that the

net work done on the pillar during unloading is positive (i.e., energy is put into the

system on unloading). We attribute this effect to strong adhesion between the pillar

face and the punch; pulling the pillar face off of the punch involves breaking many

water-bridges that form between the surfaces during compression, which requires

energy. The precipitous drop in η at RH values above 30% is indicative of significantly

increased plasticity that occurs through dissipative mechanisms like particle-particle

sliding and rolling. This assertion is reinforced by the drastic increase in the ratio

of the maximum instantaneous stiffness on unload to the maximum instantaneous

stiffness on load, Emax,unload/Emax,load, which increases from ∼2 at RH < 40% to
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values between 4 and 9 at 40% < RH < 70%, corresponding to water content values

∼0.16-0.22. Taken as a whole, the water content and stiffness data indicate maximum

cohesion at 50% RH and increased plasticity at >30% RH.

Confocal micrographs of a single pillar compressed to larger values of ∆l/lo show

a fundamental change in deformation in two extreme RH environments (see Figure 3.4c

and d). In Figure 3.4c and d, the top image is the pillar prior to compression, the

lower left image is the region outlined by the dashed red-box prior to compression, and

the lower right image is the same region after compression. At 96% RH (Figure 3.4c),

significant evolution of a previously sheared region (indicated by the red arrows) is

observed during compression. Conversely, the sheared region in the very dry (<2%

RH, Figure 3.5d) pillar shows little evolution.

The effect of varying levels of cohesion and friction on shear band nucleation and

propagation is not clear. However, we have shown that the macroscopic quasi-elastic

response of our pillars is a strong function of RH. The strong correlation between water

content within the pillars and measurements of mechanical stiffness and efficiency

suggest that RH strongly affects particle-particle cohesion and friction. In BMGs, a

high ratio of the bulk modulus, B, to the shear modulus, G, has been associated with

increased fracture toughness and plasticity185. This relationship has been rationalized

by equating a high bulk modulus with the suppression of dilation and a low shear

modulus with lower resistance to plastic flow. Therefore, large B/G promotes more

shear band operation prior to final fracture. Exploring the effect of varying macroscopic
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elastic properties in our model pillar packings, which can be controlled via tunable

particle interactions, on the packings’ plasticity and fracture may guide refinement of

predictive models for design of tough atomic solids.

3.2.4. Scaling of Strength and Elastic Modulus

After the initial studies on the various pillars described to this point, a systematic

study of the effect of structure on the mechanical response of the amorphous 3/6 µm

PS pillars was conducted. These pillars were prepared using the mechanical annealing

procedure described in Section 2.1.2 and the packing fraction, 〈φ〉, of each pillar was

measured prior to compression. Additionally, RH was held constant at 30%, 50%,

or 60% RH over the duration of an experiment to ensure constant particle-particle

interactions.

The measured ultimate strengths and effective elastic moduli for 27 3/6 µm PS

pillar specimens are shown in Figure 3.6a and b. Both σmax = Fmax/Ao and Eload are

found to vary by more than 2.5 orders-of-magnitude over the range of 〈φ〉 studied,

corresponding to relatively loose and dense packings in the limit of low and high 〈φ〉,

respectively. We contend that σmax is the best measure of the intrinsic strength of the

pillar because plastic activity localized near the punch, which occurs at lower levels of

applied stress, is likely a result of surface roughness and not representative of the bulk

structure of the pillar. Surprisingly, σmax and Eload appear to be relatively insensitive

to RH in the range covered in these experiments.
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Our measurements demonstrate a strong correlation between σmax and Eload

of individual disordered pillars (Figure 3.6c), with a slope of 0.009± 0.0009 that is

invariant to 〈φ〉 and RH (shown by coloring and shape of markers, respectively, in

Figure 3.6c). The robust relationship between σmax and Eload is suggestive of a unique

and cooperative plastic event that establishes the maximum strain the pillars can

withstand before macroscopically failing. The insensitivity of this universal scaling to

RH also suggests that the details of inter-particle interactions do not influence the

critical strain, which implies a plasticity mechanism that is universal to disordered

solids with the capacity for finite plastic flow. This notion is further bolstered by

the remarkable similarity of our measured scaling to that compiled from compressive

behavior of MGs by Johnson and Samwer67 and Qu et al.186. We further note that

such scaling between strength and elastic constants has been reported in atomistic

simulations of nanocrystalline alloys187 which in the limit of diminishingly small grain

sizes have been shown to exhibit cooperative mechanisms of plasticity reminiscent of

metallic glasses (e.g. shear banding, pressure-sensitive yield criteria)188.

To understand the scaling relationship in our relatively athermal colloidal pillars,

we model the fundamental building block of cooperative plastic flow in the framework

of Eshelby-like elasticity. Specifically, we consider the change in free energy associated

with the introduction of an ellipsoidal inclusion – representing the cooperative shear

transformation – in an elastic matrix subjected to an applied far-field stress. This

approach is motivated by experiments80, 81, 160, 190 and simulations101, 191 on the de-
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Figure 3.6: a) The normalized maximum transmitted force, σmax vs. 〈φ〉, and b)
the normalized stiffness, Eload, vs. 〈φ〉. c) The normalized maximum transmitted
force, σmax, vs. Eload showing a robust correlation that is relatively invariant with 〈φ〉
(represented by data marker color; black represents pillars where 〈φ〉 measurements
were not available). Colloidal pillar measurements are compared with yield strength
and Young’s modulus values for metallic glasses67 and glassy polymers189. The dashed
line shows the best linear fit to the colloidal data with slope 0.009±0.0009, representing
the critical strain for failure.

formation of amorphous solids that suggest that the fundamental plastic event is a

cooperative, shear-induced rearrangement of ∼10-100 particles77 referred to as a shear

transformation (ST) (see Figure 3.7). After operation, in which the ST evolves from

the initial to the deformed state, an elastic strain field is generated in the ST and the

surrounding matrix owing to elastic compatibility. The corresponding change in the

Gibbs free energy due to the introduction of an inclusion in a finite elastic matrix

subjected to an applied stress has been analyzed using Eshelby’s method, where the
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confined transformation is modeled by allowing for a stress-free unconfined transforma-

tion followed by reinsertion into and elastic accommodation by the matrix114, 192, 193.

In addition to the elastic energy of the confined shear transformation, the applied

stress field interacts with the stress field generated by the inclusion, resulting in an

extra part of the Gibbs free energy (see Appendix A). Taken together, the elastic

energy and interaction terms yield a simple expression for the change in the Gibbs

free energy associated with the introduction of the inclusion:

∆G = −1

2

∫
Ω

σIijε
T
ijdV −

∫
Ω

σ∞ij ε
T
ijdV (3.1)

∆G = −Ω

2
σIijε

T
ij − Ωσ∞ij ε

T
ij (3.2)

Here, σIij is the stress field inside the confined inclusion, εTij is the unconfined transfor-

mation strain of the inclusion, σ∞ij is the applied far-field stress, and Ω is the volume

of the inclusion. The integrals are readily evaluated because the stress and strain

fields inside of an ellipsoidal inclusion are spatially uniform. The stress field inside the

inclusion can be written as:

σIij = Cijkl(Sklmn − δkmδln)εTmn (3.3)
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Figure 3.7: a) An idealized cooperative rearrangement induced by an applied shear
stress (top row) and a continuum representation of the rearrangement (lower row). b)
The reference axes defined for the energy analysis. The ellipsoids major axis, a, lies
along x1 and its minor axis, c, lies along x2.

where Cijkl is the stiffness tensor, Sklmn is Eshelby’s tensor, and δij is the Kronecker

delta. Eshelby’s tensor relates the unconfined transformation strain of the inclusion

to the confined strain of the inclusion (i.e., the strain after being reinserted in the

matrix)192. The shear bands that form in the pillars are oriented approximately

45◦ from the pillar axis, which is similar to the orientation of shear bands found

in compressed BMGs164 and soil pillars194. While it is believed that the nature of

external loading may bias the orientation of shear bands (towards the pillar axis

in compression195), we lack the ability to measure shear band orientation to such

precision. Therefore, for the energy analysis we neglect any strong pressure-dependent

yielding and assume a tri-axial (i.e., each axis is unique in its length, a > b > c)

ellipsoidal inclusion with the major axis, a, lying along the direction of maximum
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shear stress, α = 45◦ (see Figure 3.7). Following the work of Argon and Shi, we define

the transformation strain of the unconfined inclusion as:

εTij =
εTo
3


1 0 0

0 1 0

0 0 1

+
γTo
2


0 1 0

1 0 0

0 0 0

 (3.4)

which can be described by the scalar dilatational strain magnitude εTo and the scalar

shear strain magnitude γTo . Furthermore, we assume that the transformation dilatancy

β ≡ εCo /γ
C
o ≈ 1196. The superscript C denotes the confined transformation strain

and may be related to the unconfined transformation strain with superscript T by

Eshelby’s tensor Sijkl
196. Assuming an isotropic elastic medium, Equation 2 reduces

to:

σIij =
2EεTo

9(ν − 1)


1 0 0

0 1 0

0 0 1

+
EγTo (7− 5ν)

30(ν2 − 1)


0 1 0

1 0 0

0 0 0

 (3.5)

where E is Youngs modulus and ν is Poissons ratio79. This expression represents

the self-stress of the inclusion, which is completely defined by the material’s elastic

constants, E and ν, and the transformation strain magnitudes εTo and γTo . For uniaxial

compression and the reference basis defined in Figure 3.7, σ∞ij can be written as:
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σ∞ij =
σ

2


e− 1 1 0

1 −1 0

0 0 0

 (3.6)

where σ = F/Ao is the applied stress, and compression is negative. Equation 3.1 then

reduces to:

∆G =
ΩE

ν2 − 1

[
ν + 1

9

(
εTo
β

)2

+
7− 5ν

60

(
γTo
)2

]
+

ΩσγTo
2
− ΩσεTo

3β
(3.7)

With the assumption β = 1, εTo can be related to γTo (see Appendix A). We assume that

at σmax, ∆G = 0, and upon a further increase in the applied stress, the introduction of

an inclusion (i.e. operation of a shear transformation) becomes energetically favorable.

The relationship between strength and stiffness thus becomes (see Appendix A for full

expression for Θ):

σmax
E

= γTo Θ(ν, β = 1) (3.8)

We assume E = Eload and values of ν between 0.153 and 0.45 and find a best fit for

the data with γTo as the free parameter. Over the range of ν considered, γTo ranges

from 0.026 for ν = 0.45 to γTo = 0.033 for ν = 0.15; thus γTo is largely insensitive to ν.

Because our system is dissipative, the true elastic modulus is larger than the stiffness

measured on loading. Assuming that 50% of the work done on the system during
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loading is stored as elastic energy12, the true elastic modulus is underestimated by

a factor of 2 (2Eload = Eelastic, see Appendix A for load-unload measurements and

evidence of quasi-linear loading). This error results in an overestimation of γTo by

a factor of 2. Therefore, we take γTo /2 and γTo as bounds on the magnitude of the

characteristic transformation shear strain. Dissipation is likely a result of a combination

of frictional sliding at particle contacts and ST activity. Recent experiments of sheared

jammed particles at an interface [12] have shown that below a critical strain of 2%,

ST activity, while present, is minimal. In this confined system, the dramatic increase

in ST operation at the critical strain results in a rapid increase in the loss modulus.

In our free-standing pillars, the instability manifests as macroscopic yield and the

development of shear bands. Our motivation in setting ∆G = 0 at σmax is to extract

a critical strain at which STs are sufficiently active so as to lead to shear banding.

The magnitude of γTo found using this analysis of our pillar data is similar

to the values found in simulations of Lennard-Jones particles79 and experiments

of sheared bubble rafts80 in which displacement fields can be measured directly.

Dasgupta et al. compared the non-affine displacement fields generated by an ST in a

molecular dynamics simulation to the displacement field generated by a general Eshelby

transformation strain79. These authors found good agreement between the fields when

using a traceless Eshelby transformation strain with two non-zero eigenvalues and

γTo = 0.08, which agrees well with our value of ∼ 0.03. Argon estimated a shear

transformation strain value γTo = 0.125 based on observations of bubble rafts77 and
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Argon and Shi later extracted a range of γTo ≈ 0.10 ∼ 0.14 for MGs196 using a

viscoplasticity model. Particle-level measurements of the transformation strain around

a rearrangement in a sheared colloidal glass find γTo ≈ 0.08 ∼ 0.2681. Recent kinetic

Monte Carlo (kMC) simulations of MGs that have been successful in capturing shear

band formation employ a characteristic ST strain γTo = 0.10 when determining the

free-energy change associated with ST operation114, 197, 198. This similarity in shear

transformation kinematics surprisingly extends to other classes of amorphous solids.

Simulations of sheared amorphous silicon – a network glass with strongly directional

bonding – show γTo ∼ 0.015199. The authors of this study note that while the

characteristic size of shear transformations appears to be bonding dependent (∼1 nm

in metallic glasses, ∼3 nm in amorphous silicon, and ∼10 nm in glassy polymers199),

γTo remains similar across systems. Indeed, glassy polymers that are known to develop

shear bands upon yielding, such as polymethyl methacrylate (PMMA)200 and PS201,

show shear transformation strains similar to those of MGs (γTo ≈ 0.11 and γTo ≈ 0.08

for PMMA and PS, respectively189). See the Appendix A for a table of compiled

experimental values of γTo and γy for MGs, glassy polymers, and the colloidal pillars

in this work. The robust critical strain appears to break down in glasses which show

deformation morphology other than shear banding. For example, the macroscopic

critical shear strain in amorphous silica nanowires that exhibit brittle behavior and

cleavage fracture is γy ≈ 0.2202, much larger than the value found in MGs and glassy

polymers. Thus, the cooperative shear mechanism discussed in this work hinges on
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the intrinsic capacity for plastic flow that precedes final fracture.

3.2.5. Load-Drop Statistics

Many solids deform in discrete bursts. For example, nano-scale crystals exhibit

sudden load drops or displacement bursts associated with dislocation slip when

driven beyond yield203–205. The magnitudes of these bursts often reflect an internal

length-scale, such as the spacing between dislocations206, that is characteristic of the

material’s structure. In disordered solids like MGs50 or sheared granular packings51,

these discrete events are associated with ST operation. Because an individual ST can

trigger subsequent STs, the magnitudes of these events span a broad range and are

emblematic of the way STs interact with one another.

A simple lattice model for plasticity makes predictions about the distribution of

the magnitudes of these events49, 207. In the model, a solid is discretized in a lattice

where each lattice site may be occupied by a particle. Lattice sites that are occupied

couple to other occupied sites elastically. Each occupied site has a slip stress τS,i.

When the stress at site i exceeds τS,i, the site slips and the stress at the site drops to

an arrest threshold stress, τS,a. The stress relieved from this site is then redistributed

to neighboring sites; this relaxation and redistribution can then trigger more slip

events. After slipping, the threshold stress is reduced by an amount ε, which captures

the strain-softening behavior of amorphous materials.
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Figure 3.8: The dynamic phase behavior of the lattice model. By varying the amount
of weakening (ε) and the packing fraction (φ ∝ νc), the material exhibits either
fluid-like or solid-like behavior.

The model predicts two φ and ε-dependent dynamic phases: a fluid phase in

which only small avalanches are observed and a solid phase in which both power-law

and quasiperiodic avalanche statistics are found (see Figure 3.8). In the fluid phase,

increased dissipation limits the elastic interaction between sites, which effectively

truncates the interaction length and leads exclusively to small avalanches. In the solid

phase, dissipation is less pronounced, resulting in larger, system-spanning avalanches

in addition to small, localized events.
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In a mean field theory solution of the lattice model, the complementary cumulative

distribution, C (∆S), of the load drops in the solid phase is given by:

C(∆S) = a×∆S−τ+1exp

[
−
(

∆S

∆Smax

)2
]

(3.9)

where a is a constant, ∆S is the magnitude of a stress drop, τ is a scaling exponent,

and ∆Smax is a cutoff stress drop magnitude. The scaling exponent τ is predicted to

be 1.5 and the cutoff stress drop magnitude should show a packing fraction-dependence

where ∆Smax ∼ (1− φ)−2.

We extract load drop statistics for the colloidal pillars at three packing fractions

at 30% and 60% RH and compare the statistics to the model’s prediction. For each

compression cycle, a median filter with a window of 20 samples is applied to the

force signal. Because the typical duration of an avalanche is several seconds for our

quasi-static compression experiments and the force signal is acquired at 120 Hz, this

procedure does not filter the events we are interested in. For each compression cycle, a

linear fit is performed on the unloading portion of the compression cycle and the RMS

error for the fit is taken as the experimental noise in the signal. We set a minimum

threshold for a detectable stress-drop as 10x the RMS value of the linear fit. Because

the range of the force transducer used for the φ=0.559 and φ=0.572 specimens is 0-100

mN and the transducer used for the φ=0.673 specimens is 0-1 N, the noise floor is not

the same for each specimen. The complementary cumulative distribution function,
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Figure 3.9: Representative compression cycles at RH = 30% for colloidal pillars with
φ = 0.559 (top row), φ = 0.572 (middle row), and φ = 0.673 (bottom row). The left
column shows an entire compression cycle and the right column is a magnification
that highlights the discrete force drops. Red and green circles indicate the start and
end of a stress drop, respectively.
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sample τ ∆Smax (Pa) count (N)

φ = 0.559, RH=30% 2.10 448000 211

φ = 0.559, RH=60% 2.34 57700 285

φ = 0.572, RH=30% 1.49 73600 327

φ = 0.572, RH=60% 1.43 111000 223

φ = 0.673, RH=30% 1.29 296000 189

φ = 0.673, RH=30% 1.35 368000 205

Table 2: Colloidal pillar load drop statistics fitting parameters at various packing
fractions and RHs.

C(∆S), is then calculated for each value of φ and RH (see Figure 3.10).

The denser pillars (φ = 0.572 and φ = 0.673) generally follow the scaling

prediction at both levels of RH, with τ ∼ 1.5 at φ = 0.572 and τ ∼ 1.3 at φ = 0.673

(see Table 2 and Figures 3.10 and 3.11). Both packing fractions show distributions with

an exponential cutoff with the cutoff stress increasing for the higher packing fraction,

as predicted. The number of small events is increased at 60% RH in comparison to

30% at all three packing fractions. However, the pillars with φ=0.559 show much

different statistics than the denser pillars show: here, τ ∼ 2.1− 2.3 and there is no

exponential tail; these pillars exhibit the dynamic behavior predicted in the fluid

regime. We cannot measure the weakening parameter ε directly, so it is difficult to

estimate where our pillars fall on the dynamic phase diagram.
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3.3. Conclusions

We have presented a method for instrumented uniaxial compression testing of

colloidal pillars. The deformation behavior of pillars that form with pre-existing cracks

is dominated by the propagation of these cracks. Amorphous, flaw-free pillars, on the

other hand, exhibit shear banding upon yield. We also found that the water content

in the pillars, which is set by RH, can dramatically alter the quasi-elastic response

of the pillars. Dissipation in the pillars is lowest at RH < 40%, where the capillary

bridges that form between particles are distinct. Higher RH results in the coalescence

of the bridges and a significant fraction of the pillars becomes saturated with water,

resulting in increased dissipation.

We then performed a systematic study of the amorphous, flaw-free pillars at

various packing fractions and controlled levels of RH. In these experiments, we found

a strong relationship between the strength and stiffness of the pillars, independent of

RH. This scaling of strength and stiffness is understood by considering the energetics

of an ellipsoidal inclusion in an elastic solid; this model is founded in the kinematics

of a shear transformation, which has been shown to be the fundamental plastic event

in amorphous solids. At a critical value of applied stress, STs become energetically

favorable and the similarity in their kinematics, which is reflected in the eigenstrain

of the inclusion, makes the yield transition sharp. The robustness of the correlation

between σmax and Eload for a wide range of structural configurations brought about

by mechanical annealing suggests that incipient operation of STs and macroscopic
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plastic flow along shear planes occur nearly simultaneously. In other words, the

transition from the quasi-elastic to plastic regimes is sharp with respect to stress.

The sharpness of the transition can be inferred as a signature of a system driven in

the athermal limit with a relatively narrow distribution of barrier energies defining

the fundamental unit of plastic deformation. In contrast to thermal systems, such

as metallic glasses, maneuvering within the complex potential energy landscape of

our athermal colloidal systems is not aided by thermal activation. We assert that our

system is athermal by considering the non-dimensional parameter kBT
ε

, where kB is

Boltzmann’s constant, T is the temperature, and ε is a measure of the interaction

energy between particles assuming Hertzian contact. This parameter is a measure of

the thermal energy relative to the elastic energy stored in the particles and vanishes

in the athermal limit. For our system, kBT
ε
∼ 1 × 10−14, much less than the value

found in other systems treated as athermal55. The significance of rate effects that

could arise from capillary bridge formation is quantified in the parameter γ̇τ , where

γ̇ is the strain rate and τ is the timescale associated with the nucleation of water

capillaries. Assuming a capillary nucleation timescale similar to that measured on

silicon surfaces208, γ̇τ ∼ 1×10−11, indicating that nucleation events occur at timescales

much smaller than the timescale associated with the imposed strain. With thermal

fluctuations absent, the applied stress alone surmounts the local energy maxima,

ultimately driving the cooperative events. In turn, the compatibility constraint of the

elastic matrix upon shear transformation (cooperative rearrangement of a collection
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of particles with a characteristic shear strain γTo ) provides the long-range interaction

to drive localized failure. Taken as a whole, the similarities in macroscopic yielding

strain, characteristic ST strain, and shear band morphology between our colloidal

packings and metallic glasses, despite the dissipative nature of our particle-particle

interactions, lend support to the notion of a universal, cooperative plastic event unique

to amorphous solids with the capacity for plastic flow.

Additionally, we collected avalanche statistics in the compressed pillars and

compared our experimental data to the predictions of a discrete lattice model. For

φ > 0.572, we found that the stress drop statistics generally follow the prediction

of the model and exhibit power-law scaling. However, at φ = 0.559, the statistics

are quite different – the avalanche size distribution falls off more quickly than the

solid-phase exponent – and indicate a transition to fluid-like behavior.

The simple ST model for the yield strain presented here does not capture the

complex dynamical interaction of activated and nucleating STs that determine the

ultimate deformation morphology, which likely governs the extent of plastic deformation

and the spatio-temporal evolution from individual ST operation to macroscopic shear

localization. Indeed, the fluid-like stress drop statistics of the low φ pillars suggests

that the spatial organization of the STs in this regime is distinct from the organization

of STs in the higher φ pillars even though the yield strain in both regimes is constant.

The change in flow behavior is reminiscent of the change observed in an MG’s flow

behavior upon cryogenic cycling28, which appears to alter the nature of shear band
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nucleation sites. As discussed in Section 1.2.4, controlling the spatial distribution

of these nucleation sites is crucial when attempting to engineer toughness in MGs.

An experimental technique capable of resolving the nucleation and evolution of shear

bands at the particle scale is therefore necessary to attain this information. In Chapter

4, a method for in situ 4D compression experiments, where such data may be collected,

is presented.
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Figure 3.11: The scaling exponent τ (top panel) and cutoff avalanche size ∆Smax
(bottom panel) as a function of the packing fraction φ. The denser pillars generally
follow the scaling prediction at both levels of RH, with τ ∼ 1.5 at φ = 0.572 and
τ ∼ 1.3 at φ = 0.673, while the φ=0.559 pillar shows much different statistics than
do the denser pillars with τ ∼ 2.1− 2.3. The exponential cutoff ∆Smax does increase
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scaling, while the φ=0.559 does not exhibit an exponential cutoff in C(∆S).

86



Chapter 4

In-situ 4D Compression Experiments
of Colloidal Pillars

The results presented in Chapter 3 establish that the plastic morphology and

scaling of strength and stiffness in colloidal pillars strongly resemble the behavior

observed in MGs. The experiments presented thus far are limited in that they measure

only macroscopic properties of the pillars. In order to study the nascent stages of

shear band nucleation and growth, particle-scale resolution is required. To achieve

this, we combine a modified version of the pillar compression experiments with laser

scanning confocal microscopy in in-situ 4D compression experiments.

4.1. Confocal Microscopy

As outlined in Section 1.3, one of the advantages of some model systems is the

ability to locate individual particles in real-space. Laser scanning confocal microscopy

(LSCM) is a widely used tool for imaging colloidal systems at the particle scale154, 209.

Unlike a typical optical microscope, an LSCM uses a point-source – typically a laser –

to illuminate the sample. Steerable mirrors in the microscope’s optical path raster the

point source across the sample. The light reflected or emitted by the sample must pass

through a small pinhole located in the sample’s conjugate focal plane. The pinhole

87



blocks out-of-focus signal and results in a small depth-of-field. After passing through

the pinhole, the reflected light is collected by a photomultiplier tube or an avalanche

photodiode detector and the measured signal is recorded as the pixel intensity. Each

raster point results in a single pixel in the micrograph.

As mentioned previously, a major advantage of an LSCM is its very small depth-

of-field in comparison to a standard optical microscope. This enhanced axial resolution

makes an LSCM ideal for optical sectioning, in which a series of 2D micrographs at

different focal planes are compiled into a single 3D volume. The focal plane is adjusted

by precisely moving the objective lens along the optical axis. When optical sectioning

is applied to fluorescent samples immersed in a medium with the same refractive index,

the 3D structure of the fluorescent object can be reconstructed with high precision.

4.2. 4D in-situ Compression Experiments

The pillars used for 4D in-situ compression experiments are synthesized following

the procedure outlined in Section 2.1.3. Briefly, these pillars are 300 µm in diameter

and are composed of fluorescent 3.3 µm PMMA particles. After extruding a pillar from

the capillary tube, the free-standing specimen is secured to a custom-built compression

apparatus (see Figure 4.1a and b). The apparatus consists of a fluid reservoir and

linkage that allow for the displacement of a piston that is sealed within the reservoir.

The reservoir is filled with bromocyclohexane (CXB), which matches the refractive

index of the PMMA particles. The top of the reservoir is sealed with a thin piece
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of coverglass to allow for imaging using an LSCM operating in fluorescence mode

with an excitation wavelength of 488 nm. During the compression experiment, high-

magnification images are collected with an Olympus UPLFLN 100XO2 oil-immersion

microscope. This objective was selected in part because its long working-distance of

200 µm allows for imaging deep into the pillar. A low-magnification micrograph of an

extruded pillar and a high-magnification micrograph of the consituent particles are

shown in Figure 4.1c and d, respectively.

The compression experiment proceeds by displacing the linkage with a piezoelec-

tric actuator, which drives the piston and imposes a deformation on the pillar. A

sequence of micrographs of the pillar is then collected. Typical displacement increments

for the punch are 0.6µm (≈ 0.2Dpart). A Labview (National Instruments) program is

used to control the piezoelectric actuator, trigger the collection of micrographs, control

the objective’s piezoelectric actuator, and adjust the laser power. Each volume takes

∼8 minutes to collect.

4.3. Particle Identification and Tracking

4.3.1. Finding and Tracking Algorithm

A 4D compression experiment results in a series of volumes – each volume being

a stack of confocal micrographs – collected at each timestep in the experiment. In

each volume, software is used to identify the positions of individual particles. The
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Figure 4.1: (a) A top-down and (b) side view of the experimental setup. The capillary
tube containing the colloidal pillar is secured to a glass coverslip, which is fixed above a
fluid reservoir. A piston with a flat punch is used to compress the exposed pillar. (c) A
low-magnification image of an extruded pillar and the punch. (d) A high-magnification
image of the colloidal particles that compose the pillar. (e) A 3D reconstruction of
the pillar section imaged during the experiments using the identified particle positions
(image generated with Ovito, see Ref 210). The particles are shaded by coordination
number, highlighting the curved free surface.

positions are then linked into particle trajectories that span the entire compression

experiment.
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The particle identification algorithm proceeds as follows. The raw micrographs

are corrected using an image flattening algorithm to eliminate optical distortion. The

parameters for the flattening algorithm are selected by correcting micrographs of a

target grid so that the rows are straight and undistorted in the entire field of view.

After flattening, the 2D micrographs are compiled into 3D volumes. The volumes are

filtered by convolution with a three-dimensional Laplacian of Gaussian (LoG) kernel,

L(x, y, z):

L(x, y, z) =
1

A

(
(x2/σ2

x + y2/σ2
y + z2/σ2

z − 3
)

exp
(
−(x2/σ2

x + y2/σ2
y + z2/σ2

z)/2
)

(4.1)

where the normalization constant is A = 2
√

2π3/2σxσyσz. The kernel width σi is

chosen so that the full-width half-max of the kernel is the average particle size in

pixels along each dimension, σi = Ri/
√

2ln(2). After the raw volume is filtered with

the LoG kernel, local maxima in intensity are identified following the method outlined

in Ref. 211 by comparing each voxel’s intensity to the intensity of every neighbor in a

3× 3× 3 pixel region. After local maxima are identified, a centroiding algorithm is

used to identify particle centers with sub-voxel resolution. Prior to the centroiding, a

low pass filter is applied to the raw volumes by convolution with a three-dimensional

Gaussian kernel. The centroiding operation is then performed for each of the local

maxima identified in the previous step. In dense samples, this operation can suffer
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from systematic errors due to small particle-particle spacing and the properties of

the imaging apparatus. To reduce the influence of neighboring particles, a spherical

binary mask is applied around each intensity maximum, with the mask size given by

the expected particle size. A recursive centroiding algorithm is then applied, referred

to as “fracshift” in Ref. 212, that consists of repeating the centroiding operation until

displacement between iterations is below a threshold. Gao et al.212 showed that this

recursive centroiding method is necessary to achieve subvoxel positions without bias.

An example of a reconstructed pillar is shown in Figure 4.1e.

Once particles are identified in each volume, the positions are linked from volume

to volume to create trajectories. Given a particle with position ri(t) at time t, the

tracking algorithm searches for positions at time t+ 1 within a spherical neighborhood

of radius 0.5Dpart of ri(t). If a particle is found, position ri(t + 1) is added to the

trajectory for particle i. The average displacement between the two timesteps is

found: δ̄(t, t+ 1) =
∑

i ri(t + 1)− ri(t). Next, the positions at time t that have not

been associated with a position at time t + 1 are shifted by δ̄(t, t + 1). Again, the

search for neighbors is performed with search radius 0.5Dpart. This process is repeated

iteratively until the search radius is Dpart. This process ensures that particles whose

displacements deviate from the average, which is common in regions of high plastic

activity, are not “lost”. Trajectories that deviate most from the mean displacement

are inspected visually to check for mis-identification.
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4.3.2. Position Accuracy

Because all of the particle-scale structure and strain measurements depend on the

precision of the particle finding algorithm, it is important to quantify the accuracy with

which particle centers are determined. We make two estimates of the experimental

uncertainty in locating particle centers by 1) measuring the variance in the particle

displacements of a dense, quiescent sample and 2) adding random noise to particle

positions and measuring the resulting noise floor in D2
min.

Using a dense, quiescent sample, the variance in displacement values between

timesteps is determined as:

σ∆x =

√√√√ 1

N

N∑
i=1

(∆xi − 〈∆x〉)2 (4.2)

where 〈∆x〉 is the mean displacement. The variances in each dimension between

timesteps are shown in Figure 4.2a and the average variances for all timesteps are

shown in Table 3. Because the pillar used for this measurement approaches the random

close packing limit, the mobility of particles is extremely small and the displacements

can be used as a noise floor for our particle finding accuracy. As expected, the

uncertainties in the x and y dimensions are smaller than in the z dimension. This is a

result of the larger voxel size in the z-dimension and the inherently lower resolution

along the optical axis. Overall, the particle identification accuracy is quite good, with

uncertainty in x and y of ∼1.7% of the particle diameter and uncertainty in z of
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∼2.4% of the particle diameter.

dimension σ∆x(µm) σ∆x/Dpart

x 0.0568 0.0172

y 0.0547 0.0166

z 0.0775 0.0235

Table 3: Particle position uncertainty in 4D in-situ compression experiments.

A second estimate of the uncertainty in particle positions is made by adding a

displacement of fixed magnitude and random direction to the positions identified at

t = 0. Using the displaced positions, we calculate D2
min according to the procedure

outlined in Section 4.4. The noise floors in D2
min for displacement magnitudes of 20

nm, 50 nm, 100 nm, and 250 nm are shown in Figure 4.2. The experimental noise

floor lies between 50 nm and 100 nm of random noise, which agrees well with the

RMS displacement uncertainty estimate of ∼ 60− 80 nm.

4.4. Results and Discussion

The fraction of successful compression experiments is quite low and we were only

able to capture the growth and operation of a shear band in a single experiment. Some

of the issues contributing to the low experimental yield were the pillars’ propensity

to break apart upon filling the reservoir with CXB, a restricted field-of-view which
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Figure 4.2: D2
min as a function of strain for four magnitudes of random particle

displacements. The experimental noise floor in D2
min (red markers) lies between the

50 nm and 100 nm random displacements, which agrees with the position uncertainty
estimate of ∼ 60− 80nm from the RMS displacement values.

resulted in shear bands that formed outside the imaging region being lost, and shear

banding that occurred with such large displacements between timesteps that particle

tracking was made impossible. The results discussed in the following Section focus on

the details of the experiment in which we were able to capture the growth of a single

shear band. In this experiment, we focus on the interplay of structure and response in

an operating shear band.

4.4.1. Measures of Strain and Structure

We quantify strain in the pillar at the particle scale. First, we find the best affine

deformation tensor Jk for particle k. Jk maps particle k’s neighbors at time t to their

positions at time t+ ∆t by minimizing the total non-affine displacement78:
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D2
min,k =

1

N

N∑
i=1

[ ri(t+ ∆t)− Jkri(t)] 2

A particle’s neighbors are identified using a cut-off distance of 2Dpart. D2
min,k can

be interpreted as diffusive-like deformation that cannot be accounted for with a

combination of rotation and strain operations. The strain tensor εk is found by

extracting the symmetric part of Jk:

εk =
1

2
[Jk + Jk

T ]

which allows for the calculation of the shear strain γk =
√

1
2
Tr(εk −∆kI) where

∆k = 1
3
Tr(εk) is the hydrostatic strain invariant. Once strain is calculated, we

determine the spatial autocorrelation of γ(r) at each timestep as:

χγ(dr) =
〈γ(r)γ(r + dr)〉 − 〈γ(r)〉2

〈γ(r)2〉 − 〈γ(r)〉2
(4.3)

We calculate several measures of the macroscopic and particle-scale structure.

The packing fraction, φ, in a volume V is calculated as:

φ =
N

V

πD3
part

6
(4.4)
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We also perform a Voronoi tesselation and extract the volumes, VV oronoi, of

the resulting polyhedra. The three-dimensional radial distribution function, g (r),

is calculated following the procedure in Appendix B. From g (r), the isotropic pair

correlation function g (r) is calculated by integrating g (r) in a spherical shell of radius

r. Local structural anisotropy is not captured in φ, the VV oronoi statistics, or g (r). It

has been shown that the structural distortion that occurs during shear deformation

of glasses is quite anisotropic128, 129, 213, and a more detailed measure of the local

structure is necessary to resolve this anisotropy. We measure a directional coordination,

Z(θ, ω), which can be extracted from the pair correlation function, g (r), as follows.

After calculating g (r), a direction vector is chosen at an orientation parameterized by

azimuthal angle ω and elevation angle θ (see Figure 4.5). A cone with its axis along

the direction vector is defined so that the solid angle of the cone is given by Ω. All

points within the cone are selected, and then the directionally dependent coordination

Z(θ, ω) =
∫ rmin

0
ηg (r) dr is calculated where rmin is the value of r at the first minimum

in g (r) and η is the particle number density N/V .

4.4.2. Discussion

We observe strain concentrated in a region near the interface with the punch,

which is hereafter referred to as “the shear band” (see Figure 4.3). Further from the

punch, the pillar remains relatively undeformed and this region will be referred to

as “the matrix”. A timestep t refers to a specific volume with t = 0 corresponding
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to the first volume collected. The shear band was somewhat deformed before the

first timestep, so the nascent nucleation of the shear band is not captured in this

experiment (see Figure 4.3b, c, and d).

However, we are able to observe the evolution of this already-nucleated shear band

as deformation proceeds and find that its maturation shows a striking resemblance to

a localized, shear-driven colloidal glass transition. The shear band region dilates such

that φ decreases to approximately the colloidal glass transition value φg ≈ 0.58. We

note that the exact value of φg for hard-sphere colloids remains uncertain and may

have some dependence on the polydispersity of the system214–216; this is reflected in

the shading of Figure 4.3b. Further compression does not decrease φ further. Dilation

is also visible in the evolution of the distribution of Voronoi volumes P (VV oronoi)

(Figure 4.3c and d), which shifts to a higher mean value and broadens, reflected

particularly in the large volume tail. The matrix, on the other hand, shows little

dilation and a nearly static P (VV oronoi). g (r) in the shear band and in the matrix

shows broadening of the nearest neighbor peak (Figure 4.3a and b). Density beyond

the first neighbor shows significantly more evolution in the shear band than in the

matrix.

Figures 4.5b and c show the directional coordination, Z(θ, ω), in the matrix

and shear band, respectively, at three timesteps. It is apparent that the shear
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Figure 4.3: (a) Shear strain in a slice of the pillar at t = 13. Strain is localized in
bands near the punch. The white rectangles indicate the delineation of the “shear
band” and “matrix” regions. (b) The evolution of the packing fraction, φ, in the
shear band and matrix. Significant dilation is measured in the shear band from t = 0
to t = 10, after which point φ remains approximately constant. The matrix shows
little dilation. The shaded region highlights the range of φg reported in polydisperse
colloidal systems214. The distribution of Voronoi volumes in the matrix (c) and shear
band (d). The distribution in the matrix is static, while the distribution in the shear
band evolves to a larger mean volume as deformation proceeds.
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Figure 4.4: The radial distribution function g (r) (top row) and change in g (r) (bottom
row) at different timesteps for a) the shear band and b) the matrix. The g (r) plots
are offset for clarity. Both the shear band and matrix show subtle changes in nearest
neighbor peak height and location during deformation. The shear band shows extended
fluctuations for r ∼ 4− 8µm while g (r) in the matrix is unchanged at these distances.

band, which was pre-deformed at t = 0, is, on average, under-coordinated with

respect to the matrix, with particular under-coordination along {θ ≈ π/2, ω ≈ π}

(see Figures 4.5d and e for the mean, minimum and standard deviation in Z for the

matrix and shear band). As deformation proceeds, Z in the shear band continues to

decrease and becomes more anisotropic, which is reflected in the increasing standard

deviation in Z (Figure 4.5e), with the most under-coordinated directions finally

lying along {θ ≈ π, ω ≈ π} and {θ ≈ 0, ω ≈ 0}. The closest-packed directions are

along {θ ≈ π/4, ω ≈ π/2} and {θ ≈ 3π/4, ω ≈ 3π/2}, which correspond to directions

of minimum (deviatoric) shear for the uniaxial compression geometry. This result is
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in contrast to previous studies, which find more coordination along directions of high

shear129.

It has long been recognized that shear transformations in amorphous solids

result in an increase in the free volume in the region around the shear transfor-

mation75, 77, 217, 218. In thermal systems, the competition between shear-induced

generation of free volume and diffusion-driven annihilation of free volume results in

temperature and strain rate dependent flow behavior. At high temperatures and

low strain rates, free volume diffusion and annihilation can suppress run-away free

volume generation, resulting in homogeneous plastic flow. At lower temperatures

and high strain rates, annihilation cannot keep up with free volume generation, and

strain localization, or heterogeneous plastic flow, occurs. For our nearly athermal,

hard-sphere system, we expect that the annihilation of any excess free volume is

insignificant in comparison to the shear-driven generation, thereby resulting in overall

dilation with increasing strain. What is striking, however, is how abruptly the dilation

process in our experiments terminates at the transition φ.

It is apparent that the shear band, which was pre-deformed at t = 0, is, on average,

under-coordinated with respect to the matrix, with particular under-coordination

along {θ ≈ π/2, ω ≈ π} (see Figures 4.5d and e for the mean, minimum and standard

deviation in Z for the matrix and shear band). As deformation proceeds, Z in the

shear band continues to decrease and becomes more anisotropic, which is reflected in

the increasing standard deviation in Z (Figure 4.5e), with the most under-coordinated
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directions finally lying along {θ ≈ π, ω ≈ π} and {θ ≈ 0, ω ≈ 0}. The closest-packed

directions are along {θ ≈ π/4, ω ≈ π/2} and {θ ≈ 3π/4, ω ≈ 3π/2}, which correspond

to directions of minimum (deviatoric) shear for the uniaxial compression geometry.

This result is in contrast to previous studies, which find more coordination along

directions of high shear129.

Figure 4.5: (a) The spherical coordinate conventions used to determine the average
coordination along a given direction. A cone with solid angle Ω and its axis along
a vector with azimuthal angle ω and elevation angle θ is defined. All points in g (r)
within the cone are selected, and vector with azimuthal angle ω and elevation angle θ
is defined. Integration along the direction vector yields g (r), which is then used to
determine the coordination. The angular coordination in the matrix (row (b)) and the
shear band (row (c)) at three timesteps. Little change in the coordination is observed
in the matrix. The shear band, however, shows a decrease in the mean coordination
and a decrease in the anisotropy of the coordination. These changes in Z in the matrix
and shear band are quantified in (d) and (e), respectively, which show the evolution
of the mean and minimum of Z with timestep. The error bars represent the standard
deviation in Z, which is clearly enhanced in the shear band.

In stark contrast, Z in the matrix shows little change in both the mean and

minimum coordination (see Figure 4.5d). On average, the shear band lacks one

neighbor in comparison to the matrix, with the most under-coordinated directions
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having only ∼ 10 neighbors in comparison to the matrix’s mean value of 12. The

evolution of Z in the shear band shows the same behavior as φ in that it remains

static after t = 10.

Figure 4.6: Slices along the x-y, x-z, and y-z planes of the strain correlation functions
in both the a) shear band and b) the matrix. An ellipsoid is fit to an iso-intensity
surface of the 3-D correlation. The decay along the ellipsoid’s major axis is used to
quantify the maximal extent of the correlation, as shown in Figure 4.7. The anisotropy
of the ellipsoid is quantified by the ratio of the major axis length to the minor axis
length.

Evidently, compression drives significant changes in the structure within the

shear band. To quantify how this structural change affects mechanical response, we

analyze spatial correlations in shear strain. χγ is found to be quite anisotropic, but

generally ellipsoidal, with particular directions exhibiting strong correlation at large
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distances. The correlation is shown at three timesteps in both the shear band and

the matrix in Figure 4.6. To quantify changes in the correlations as deformation

proceeds, an ellipsoid is fit to an iso-intensity surface for each χγ(dr). The value

of χγ along the ellipsoid’s major axis (see Figure 4.7a and b) is a measure of the

maximum extent of the correlation in strain. At each timestep, we find the value

of χγ (σ = 10) where σ = r/Dpart. These values are plotted against φ at the same

timestep in Figure 4.7c. In the matrix, the correlations are relatively unchanged

throughout the experiment, with zero correlation beyond σ = 4, suggestive of minimal

plastic activity. Note that for our definition of the correlation, uniform strain, as would

be expected in perfectly elastic response, results in χγ(dr) = 0 everywhere. In the

shear band, the spatial extent of the correlations is much larger initially and decays

as deformation proceeds. At φ > 0.60, the correlation at σ = 10 is significant with

χγ (σ = 10) ≈ 0.2− 0.4. Further dilation, however, reduces χγ (σ = 10). Notably, the

timestep where χγ (σ = 10)→ 0 corresponds to the same timestep where both φ and

Z sharply saturate. This decay in the extent of correlations in shear strain signifies a

transition from a solid-like to liquid-like response, which accompanies the changing

structure within the shear band. We also find that the anisotropy of the correlation,

quantified by the ratio of the ellipsoid’s major to minor axis, decays with dilation in

the shear band from ' 3 to ' 1.5. The correlation in the matrix is isotropic, with

anisotropy values ' 1.1 that persist throughout the experiment.
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Figure 4.7: Decay of the strain autocorrelation χγ along the major ellipsoidal axis in
both the a) shear band and b) matrix at different timesteps. c) The strain correlation
at 10 particle diameters χγ (σ = 10) at various packing fractions. Data points for
t ≥ 15 have the same coloring.

4.5. Confined Compression Experiments

As discussed in Section 1.2.2, a new machine learning based approach has proven

to be effective in predicting rearrangements in amorphous solids. The technique is

dependent upon many structural descriptors of a particle’s neighborhood; therefore,

real space structural data is required to apply the method. Additionally, the accuracy

of the method is improved by including many rearrangement events when determining

the hyperplane that separates “hard” and “soft” particles219. The application of the
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softness method to shear banding has the potential to engender robust definitions

of a critical shear band nucleus and a mature shear band, both of which would

mark significant advancements in our understanding of plasticity in glasses. However,

the pillar geometry discussed thus far is not conducive to collecting the volume of

data necessary for applying the softness method; capturing the shear band in the

microscope’s field of view is challenging, resulting in many experiments with minimal

amounts of plastic activity that are not useful for hyperplane determination.

A more apt geometry for collecting large amounts of data is a confined compression

cell. Here, a small reservoir is filled with a dense suspension of the fluorescent

d = 3.3 µm PMMA particles. The reservoir is constructed such that one wall is

movable, which allows for the packing to be deformed (see Figure 4.8a and b). The

top of the reservoir is sealed using a thin piece of coverglass to allow for imaging using

the confocal microscope.

The deformation experiment proceeds by displacing the movable wall via a piezo-

electric actuator and then collecting a sequence of micrographs of the packing that are

assembled into a volume. The volumes collected are always tens of particle diameters

away from any walls to minimize the effects of boundaries. Typical displacement

increments were 0.6µm (≈ 0.2d). The displacement profile imposed is a sine wave

with increasing amplitude from one cycle to the next. The same algorithm outlined in

Section 4.3 is used to identify particles and determine trajectories.
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Figure 4.8: (a) Isometric and (b) top-down views of the compression cell for the
confined compression experiments. The reservoir is filled by injecting a syringe
containing a concentrated suspension of colloidal particles. A piezoelectric actuator is
used to displace one of the walls of the reservoir. (c) A confocal micrograph of the
dense suspension in the reservoir. The red box denotes the box that is used to define
macroscopic deformation. (d) The macroscopic shear invariant generated during a
cyclic displacement experiment. While the displacement applied by the piezoelectric
actuator is sinusoidal, the displacement transmitted to the piston deviates from applied
displacement due to hysteresis and slip in the linkage. Moreover, dissipation within
the colloidal packing itself results in complicated displacement profiles.

To quantify the rearrangement of particle i between times t and t + ∆t, we

calculated D2
min(i; t) following Equation 4.2. A particle i at time t is said to be

rearranging if D2
min(i, t) > D2

min,0. Here, we chose D2
min,0 = 0.075d2.

107



Because the imposed deformation was not uniform between timesteps, the in-

cremental strain also varied non-uniformly between timesteps. To place the times t

and t+ ∆t on equal footing, we constructed an artificial box near the boundaries of

the imaging volume. From one timestep to the next, we map the deformation of the

box using the displacements of particles within a small distance of the planes that

define the box’s faces. We then use the displacements of the box’s corners to find the

displacement gradient tensor, J, and the macroscopic strain tensor ε = 1
2

(
JTJ− I

)
.

We calculate the shear (deviatoric) invariant:

γ =

√
1

2
Tr (ε− εmI)2, (4.5)

of the system between timestep t and each subsequent timestep t′. Here, εm = 1
3
Trε

is the hydrostatic strain invariant. Then, for each timestep t, we chose ∆t so that the

shear invariant of the system was greater than a threshold, γ > γ0. In this case, we

chose our threshold to be γ0 = 0.04.

We characterized the local structure around particle i with a set of M = 157

structure functions, defined as:
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G(k;µ) =
∑
i

e(rik−µ)2/L2

(4.6)

Ψ(k; ξ, λ, ζ) =
∑
i,j

e(r2ik+r2jk+r2ij)/ξ2 (1 + λ cos θkij)
ζ (4.7)

The summations are performed for all particles within a radius RS
c

108. Our results are

insensitive to changes in RS
c so long as we include the first few neighboring shells108.

In this work, we set RS
c = 2.5d and fixed L = 0.05d.

It was found that particles with diameters less than 0.95d (as estimated by the

method described in Ref. 220) were significantly more mobile than larger particles.

To ensure that our SVM really classified rearrangements and not simply large and

small particles, we excluded these particles from our training set. Because particles

near the boundary of the imaged volume have fewer neighbors than particles in the

interior, the structure functions in these two regions differ. This difference could throw

off our training. Thus, we also excluded particles less than 2.5d from the boundary

from our training set. To construct our training set, we then chose all Nr = 739

rearranging particles in our system, and Nn = 739 particles from t = 20 with the

lowest cumulative D2
min over τ = 76 timesteps, 78% of the length of the experiment, as

non-rearranging particles221. Typically, τ is chosen to be on the order of the relaxation

time of the system, but because so few particles rearranged in this experiment, τ was

chosen to be large with respect to the length of the experiment but also to avoid the
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aging regime near the beginning of the experiment. This value of τ is more than 10

times the average lag time, ∆t, chosen for the instantaneous D2
min calculations used to

determine rearrangements.

It is not possible to specify a hyperplane that completely separates rearranging

particles from non-rearranging ones. Thus, the SVM is designed to penalize particles

whose classification is incorrect. This misclassification penalty is controlled by the

parameter C where larger C values correspond to fewer incorrect classifications. This

parameter was chosen to be C = 1.0 by nested cross validation222. For this value of

C, we find that 77% of rearrangements occur at particles with softness S > 0.

After determining the best hyperplane, the softness of particles in the shear

banding pillar is calculated (see Figure 4.9a). Not surprisingly, soft particles (softness

> 0) are concentrated in the shear band and the population of soft particles increases

up until t = 10, generally following the behavior of φ. Again, because the incipient

nucleation of the shear band is not captured in the experiment, we are not able to

observe the initial evolution of softness near the punch-pillar interface.

Figure 4.9b shows only the soft particles in the pillar at t = 25 (the particle

shading is by z position to enhance perspective). Clearly, the soft particles are

concentrated in the shear band. We investigated whether a change in the density of

soft particles or their connectivity showed an abrupt change at t = 10. While the

density of soft particles does stop evolving after this point, defining a critical density
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Figure 4.9: (a) An operating shear band in a colloidal pillar colored by softness.
The plane shown is the same as the plane shown in Figure 4.3. Soft particles are
concentrated in the shear banding region. This concentration is evident in panel (b),
which shows only the soft particles in the pillar at t = 25. The particles are shaded by
their z position to enhance visibility.

is challenging because of the complex geometry of the shear band. No obvious change

in the connectivity of the particles was found at this timestep.

4.6. Conclusions

We have presented a method to perform 4D in-situ compression experiments

on colloidal pillars that allow for the acquisition of individual particles trajectories.

While we were unable to capture the nucleation of a shear band during one of these

experiments, we were able to observe the maturation of an already-nucleated shear

band. The results show that continued deformation induces a transition, as measured

by φ, Z, and χγ, that is found to be quite abrupt despite our crude partitioning of
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shear band and matrix regions. Indeed, a significant fraction of the shear band region

remains rather undeformed (see Figure 4.3). We adjusted the size of the shear band

region to test whether the observed trends in φ, P (VV oronoi), and χγ (σ = 10) are

sensitive to the size of the region considered. This exercise demonstrates that the

exact values are sensitive to the size of the region considered, but the general trends

are independent of the exact dimensions.

Overall, our results quantitatively support the interpretation of shear banding as

a driven, localized glass transition and therefore supports the equivalency proposed in

Section 1.2.2. Quasi-static deformation drives a reduction in φ in a thin band of the

solid until φ approaches φg, at which point there is a sharp transition and dilation

ceases. Dilation is accompanied by a decay in the extent and anisotropy of spatial

correlations in strain, signifying a transition from solid-like to liquid-like response.

While we cannot rule out a first-order transition in the particle dynamics, the observed

continuous changes in structure and mechanical response are consistent with the

behavior of a glass as it approaches the glass transition from the solid phase. By

definition, the spatial extent of the changes in structure and response is heterogeneous,

and the resulting microstructure is clearly distinct from a microstructure that may

be obtained from isotropic dilation, which is consistent with the conclusions drawn

in137, 138. Our results, providing the microscopic origins of such driven transitions,

lend credence to an equivalency between mechanical shear banding and the glass

transition provided that careful consideration of the spatial extent of the system is
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given.

Additionally, we applied the recently introduced “softness” approach to identifying

particles that are particularly susceptible to rearranging using a confined compression

cell. Here, a dense colloidal glass is deformed under cyclic, confined compression and

individual particle trajectories are determined. These trajectories are used in the

determination of the “softness” hyperplane, which is then applied to the particles in

the shear banding pillar. As expected, the shear band is found to have an excess of

soft particles in comparison to the matrix region, although no abrupt change in their

density or connectivity is found at the transition from solid-like to liquid-like behavior.

113



Chapter 5

Conclusions and Prospectives

In this dissertation, we have described the mechanical properties of colloidal

assemblies. First, we discussed instrumented uniaxial compression tests in which the

macroscopic response of the pillars is measured. In amorphous, flaw-free pillars that

exhibit shear banding, a scaling of strength and stiffness similar to that observed in

MGs is found. To understand this relationship, we considered the energetics of the

critical events underlying shear banding. The universal kinematics of the events result

in a characteristic yield strain, which is reflected in the scaling relationship between

strength and stiffness. Building on these experiments, we developed an apparatus

to perform in situ 4D compression experiments on the colloidal pillars. In these

experiments, the positions of individual particles are determined in real space, thereby

allowing for the quantification of particle-scale structure and deformation. In one of

these experiments, we were able to observe the maturation of a shear band at the

particle-scale. We found a transition from solid-like to liquid-like mechanical response

and structure that accompanied deformation in the shear band. Finally, we performed

preliminary confined, in situ 4D compression experiments on a colloidal glass.

Our experiments are by no means exhaustive of the colloidal pillar modality’s

potential. There remain promising avenues for further experimentation with the

colloidal pillars, several of which we discuss below. In addition, we consider alternative
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loading geometries that may be more amenable to addressing certain outstanding

questions and more forgiving experimentally. Finally, we highlight the application of

confocal microscopy to study of a practical fabrication method.

5.1. Key Findings

• We demonstrated the synthesis of novel, free-standing pillars composed of

colloidal particles by using capillary tubes as templates. Pillars composed of

particles less than ∼ 1µm in size were found to dry with a significant population

of cracks. Pillars composed of larger particles dry without visible cracks. An

amorphous pillar structure can be attained by using a bidisperse mixture of

particles.

• We developed an apparatus to perform instrumented uniaxial compression on

the free standing colloidal pillars. A piezoelectric actuator is used to impose

deformation on the pillar and the transmitted force is measured using a load

cell. The pillar is positioned in the field of view of a white-light optical or laser

scanning confocal microscope to allow for micrographs to be collected during

compression.

• The deformation behavior of pillars that form with pre-existing cracks is domi-

nated by the propagation of these cracks.

• Amorphous, flaw-free pillars exhibit shear banding when deformed in uniaxial
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compression. The plastic morphology of these pillars is strikingly similar to the

morphology observed in metallic glass micropillars.

• The ambient relative humidity, which controls the water content in the colloidal

pillars, alters the quasi-elastic response of the pillars. Plastic dissipation in the

pillars is lowest at humidity levels less than 40%, where the capillary bridges

that form between particles are distinct. Higher humidity levels result in the

coalescence of the bridges and a significant fraction of the pillars becomes

saturated with water, resulting in increased dissipation.

• In a systematic study of the strengths of the amorphous, flaw-free pillars at

various packing fractions and controlled levels of RH, we found a strong relation-

ship between the strength and stiffness of the pillars, independent of RH. This

scaling of strength and stiffness is understood by considering the energetics of

an ellipsoidal inclusion in an elastic solid, which models a shear transformation.

The robustness of the correlation between σmax and Eload for a wide range of

structural configurations brought about by mechanical annealing suggests that

incipient operation of STs and macroscopic plastic flow along shear planes occur

nearly simultaneously. The sharpness of the transition can be inferred as a signa-

ture of a system driven in the athermal limit with a relatively narrow distribution

of barrier energies defining the fundamental unit of plastic deformation.

• Load drop statistics collected for the compressed pillars are compared to the

mean field predictions of a discrete lattice model for plasticity. For φ > 0.572,
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we found that the stress drop statistics generally follow the predicted power-law

scaling of the model. However, at the lowest packing fraction of φ = 0.559,

the statistics deviate from those observed in the denser pillars, indicative of a

transition to fluid-like behavior.

• In an attempt to understand the particle-scale dynamics accompanying the

sharp yielding and subsequent shear banding in our pillars, we performed in

situ 4D compression experiments. While we were unable to capture shear

band nucleation in an experiment, we were able to observe the maturation of

an already nucleated shear band. We found that the developing shear band

is accompanied by structural evolution, including dilation and a reduction

in particle coordination. Moreover, the extent of the spatial correlations in

strain gradually decays as the shear band matures, indicative of a transition

from solid-like to liquid-like response. These results quantitatively support the

interpretation of shear banding as a driven, localized glass transition.

• We constructed a confined, triaxial compression apparatus suitable for acquiring

large amounts of deformation data with significant plasticity. The trajectories

from these experiments were used to apply a new structural predictor of plasticity

termed “softness” to our colloidal system. The “softness” metric was then applied

to the pillar where shear band maturation was observed. We examined whether

the transition in behavior found in the maturing shear band was accompanied

by a change in the density or connectivity of soft particles, but were unable to
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find a significant change in either measure.

5.2. Shear Banding in the Context of Softness

In Sections 1.2.2 and 4.5, we discussed the application of machine learning methods

in elucidating structure-property relationships of rearrangements in amorphous solids.

We described confined compression experiments on a colloidal glass which are amenable

to the collection of a large number of rearrangements, which can be used to construct

the hyperplane that defines “softness”.

Preliminary efforts to analyze the shear band in the context of softness – specifi-

cally, by attempting to identify a percolation threshold or change in the density of soft

particles at the solid-like to liquid-like transition – were not successful. To successfully

perform these proposed experiments, one must overcome the challenges associated

with observing a shear band in the pillars; specifically, one must capture the incipient

nucleation in the LSCM field-of-view and stabilizing operation so that untrackable

large displacements are avoided. Moreover, the packing fraction of the colloidal glass

is more easily altered in the confined setup than in the pillar geometry, which opens

the possibility of studying a possible connection between softness and the colloidal

glass transition.
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5.3. Stress Heterogeneity

As discussed in Section 1.2.4, multiple processing methods can be used to tune the

heterogeneity in atomic stresses in an MG, thereby altering its toughness and ductility.

However, the underlying mechanism responsible for enhanced ductility remains unclear

and axiomatic design principles remain elusive. In some cases, it appears stress

heterogeneity actually induces hardening. Hardening is believed to be the result of

the high-temperature relaxation mechanisms in MGs, which are apparently enhanced

by increased triaxiality in the stress. In other cases, the stress heterogeneity may

delay the coalescence of STs into a shear band. Because of the large gradients, the

continuous driving stress necessary for avalanche behavior is suppressed and strain

localization is delayed.

Colloidal systems have the potential to elucidate the coupling between stress

heterogeneity and ductility. Recently, Lin et al. introduced a method for calculating

the particle-scale stress in colloidal systems223, 224. The so-called SALSA method

(“stress analysis from local structural anisotropy”) uses the time-averaged radial

distribution function and thermodynamic considerations to calculate the stress tensor

at the particle-scale. Using the SALSA method, Lin et al. studied the stress fields

generated by dislocations, grain boundaries, and vacancies in a colloidal crystal.

Interestingly, their experimental findings show that linear elasticity alone is often not

sufficient to predict the stress fields generated by these defects.
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It would be interesting to apply the SALSA method to the colloidal pillars,

where free surfaces are present. Several modifications to the experimental procedures

outlined in this dissertation would need to be made to use SALSA. Because thermal

fluctuations underpin the SALSA method, it would be beneficial to increase thermal

effects in our system. The simplest way to achieve this increase would be to use

smaller particles. The dynamic timescale of a colloidal particle is the time τr it takes

for the particle to diffuse a distance equal to its radius r, which scales as τr ∝ r3 154.

Reducing the particle size from 3.3µm to 1µm would result in an order-of-magnitude

reduction in timescale and the system will explore more states in the same amount of

laboratory time.

Studying the influence of surface roughness on the stress state near the surface

is one potential application of the SALSA technique. In a method similar to that

outlined in Section 2.1.1, the roughness of the pillars can be altered by varying the size

of the silica particles used to line the inner walls of the capillaries. The measurements

collected in these experiments may be able to address questions such as the relationship

between surface roughness and stress intensity and the scaling of the decay in stress

from the surface notches. A major drawback to the compression experiments is the

difficulty in capturing the shear banding event. In this sense, studying a static pillar

is less challenging experimentally. In addition to surface roughness, it would also be

interesting to consider the impact of packing fraction on the stress heterogeneity.

The confined, triaxial compression setup described previously is also amenable
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to studying this problem, especially if force transducers are incorporated into the

compression cell. In such a compression cell, there is the potential to change both the

stress triaxiality and the timescale of the particles. The triaxiality could be adjusted by

controlling the confining stress, and the timescale could be adjusted by either varying

the applied strain rate or changing the size of the particles. The ability to adjust these

parameters independently may yield interesting insight into the problem. For example,

does the characteristic eigenstrain, in terms of the shear and dilatational component,

differ as the triaxiality is adjusted? If this is the case, then the elastic response in the

matrix would be affected, potentially altering strain localization. Recent indentation

experiments on MGs found a bimodal distribution of the nucleation events leading

to strain localization, which was attributed to two distinct types of events with one

being more diffusive in nature.

5.4. Application to Printing

The colloidal pillars described in this dissertation have been presented as a model

system for studying plasticity in atomic solids. Of course, colloids also have wide-

ranging industrial and technological uses. In many of these applications, colloids are

used as the building blocks for larger-scale assemblies225, 226. Some examples include

micro-electromechanical machines227, 228, structural composites229, sensors230, 231, and

photonics232. Because the structure of the colloidal assembly often dictates its prop-

erties, and therefore device performance, precise control of the assembly process is
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desirable.

In self-assembly, particles assemble into a thermodynamically-stable state233–235.

The nature of the stable state can be modified by altering the range and directionality

of inter-particle interactions, the shape of the colloids, etc. As the particles perform

Brownian motion, the system explores the energy landscape, gradually moving to

lower energy states and eventually reaching thermodynamic equilibrium. Because the

timescale for self-assembly is set by diffusion, the process can be quite slow.

Directed assembly is a potentially higher-throughput and more precise method of

forming colloidal materials. Here, an external driving force is used to guide particles

into the desired geometry and the resulting structures can have high-aspect ratios

and sharp features not attainable with self-assembly. Direct write printing is a

versatile directed assembly technique in which a colloidal ink is extruded from a

robotically controlled nozzle236, 237. The extruded suspension can be solidified either

by evaporation of the solvent or by a temperature-induced phase change, leaving a

solid packing of colloidal material.

Recently, acoustic focusing has been coupled with standard direct write printing

techniques in an effort to achieve even greater control over the printing process238, 239.

In this method, piezoelectric actuators are used to generate a standing pressure wave

in the microfluidic channel used in the printing process. These standing waves can be

used to both align and trap colloidal particles. A precise understanding of the trapping
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parameters and surface functionalization on the resulting agglomerate structure has

yet to be developed.

Confocal microscopy has the potential to add insight to several steps in this

printing process (see Figure 5.1 for an example). If the trapping process itself can

be imaged in real time, for example, the impact of trapping parameters – particle

size, shape, surface chemistry, etc – on the agglomerate structure can be explored.

One outstanding question concerns the condition at which agglomerates break free of

the trapping forces. What is there about the geometry of the structure, the resulting

hydrodynamics forces, etc., that causes the particle to exit the trapping zone?

Confocal microscopy also has the potential to be applied to the printed structure.

During the drying process, the hydrodynamic forces induced by the receding liquid

meniscus may impart significant forces. How much do these forces alter the structure

from its state in the trapping zone? How does the structure evolve with the drying

front? Understanding how all of these parameters impact the printed structure will

allow for the optimization of the printed structure so that it is as tough and robust as

possible.
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10 µm

Figure 5.1: An assembly of 1.56 µm silica particles (Spherotech, functionalized with
streptavidin) generated via acoustic focusing. The assembly is suspended in a mixture
of 75% glycerol and 25% water with fluorescence, which results in dark particles on
a bright background when illuminated with the confocal microscope’s 488 nm laser.
Image courtesy of Drew Melchert, UCSB.
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Appendix A

Gibbs Free Energy of an Inclusion

in an Elastic Matrix

A.1. Gibbs Free Energy of an Inclusion in an Elastic Matrix

For completeness, we reproduce the derivation by T. Mura193 of the change in the
Gibbs Free Energy, G, of an inclusion in an elastic matrix with an applied traction.
Define:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
≡ total strain

ε∗ij ≡ eigenstrain or transformation strain

eij ≡ elastic strain

σij = Cijklekl ≡ stress

The elastic strain energy of a body subjected to an applied traction σ∞ij and an internal
stress due to inclusion σij is given by:

W ∗ =
1

2

∫
V

(
σ∞ij + σij

) (
ε∞ij + εij − ε∗ij

)
dV with σ∞ij = Cijkle

∞
kl (A.1)

Equilibrium ensures that σij,j = 0 and σijnj = 0 at the surface. Integration by parts
gives:

∫
V

σ∞ij
(
ε∞ij + εij

)
dV =

∫
V

σ∞ij
(
u∞i,j + ui,j

)
dV

= σij
(
u∞i,j + ui,j

)
|V=S −

∫
V

σij,j
(
u∞i,j + ui,j

)
dV = 0 (A.2)

Similarly σ∞ij = 0. Since ε∞ij = e∞ij and eij = εij − ε∗ij and using the symmetry
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Cijkl = Cklij:

∫
V

σ∞ij
(
εij − ε∗ij

)
dV =

∫
V

Cijklu
∞
k,l

(
ui,j − ε∗ij

)
dV =

∫
V

u∞k,lCklijeijdV =∫
V

u∞k,lσkldV = u∞klσkl|V=S −
∫
V

u∞k,lσkl,ldV = 0 (A.3)

So:

W ∗ = −1

2

∫
V

σijε
∗
ijdV +

1

2

∫
V

σ∞ij ε
∞
ij dV (A.4)

The total potential energy is given by:

G = W ∗ −
∫
S

F∞i (ui + u∞i ) dS (A.5)

Where the second term is the work done at the boundary by the applied traction and
F∞i = σ∞ij nj. Without any inclusions (ε∗ij = 0), G = Go:

Go =
1

2

∫
V

σ∞ij ε
∞
ij dV −

∫
S

F∞i uijdS (A.6)

Without any applied tractions (σij = 0), G = G1:

G1 = −1

2

∫
V

σ∞ij ε
∗
ijdV (A.7)

The interaction between the strain field generated by the inclusions and the applied
traction is:

∆G = G−Go −G1 = −
∫
S

σ∞ij uinjdS = −
∫
V

σ∞ij ui,jdV

= −
∫
V

σ∞ij (ui,j − ε∗ij)dV −
∫
V

σ∞ij ε
∗
ij = −

∫
V

σ∞ij ε
∗
ij (A.8)

by Gausss theorem and the fact that
∫
V
σ∞ij (ui,j − ε∗ij)dV = 0 (see above). Therefore,

with spatially homogeneous stress and strain fields:

∆G = −
∫
V

σ∞ij ε
∗
ijdV = −σ∞ij ε∗ij (A.9)

For the case where the body is under an applied traction and inclusions are introduced,
the change in free energy is given by:

∆G = G−Go = ∆G+G1 = −1

2
σijε

∗
ij − σ∞ij ε∗ij (A.10)
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Which is Equation 1 in the manuscript.

A.2. Derivation of the Stress Field for a Prescribed Transfor-
mation Strain

The tensorial infinitesimal strain, εij, is given by:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

 ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 =

 ε11
γ12
2

γ13
2

γ12
2

ε22
γ23
2

γ13
2

γ23
2

ε33

 (A.11)

Define the stiffness tensor, Cijkl, for an isotropic homogeneous solid as:

Cijkl =
Eν

(1 + ν)(1− 2ν)
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk) (A.12)

and the constitutive relation:

σij = Cijklεkl (A.13)

where εkl is now the elastic component of the strain. Argon and Shi196 use Eshelby’s
tensor for a spherical inclusion, given by:

Sijkl =
5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk) (A.14)

To relate the confined strain, εCij, to the transformation strain, εTij, of the inclusion:

εCij = Sijklε
T
kl (A.15)

The authors assume two components of εTij:

εTij =
εT0
3

 1 0 0
0 1 0
0 0 1

+
γT0
2

 0 1 0
1 0 0
0 0 0

 (A.16)

Where the first term accounts for dilatation and the second a pure shear. The stress
inside the inclusion, σIij, is given by:

σIij = Cijkl
(
Sklmnε

T
mn − εTkl

)
(A.17)

The elastic energy in both the inclusion and matrix is given:

Eelastic = −1

2

∫
Ωf

σIijε
T
ijdV (A.18)
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For the case of a spherical inclusion, in which σIij and εTij are constants, this expression
becomes:

Eelastic = −1

2
σIijε

T
ijΩf (A.19)

Considering only the dilatational component of εTkl and using the relationship E =
2µ(1 + ν):

σIij =
2EεT0

9(ν − 1)

 1 0 0
0 1 0
0 0 1

 and Eelastic =
E

9(ν − 1)
(εT0 )2

=
2µ(1 + ν)

9(ν − 1)
(εT0 )2 (A.20)

Which is the same as the second term of Equation 7 in196. Now, considering only the
shear component of εTkl yields:

σIij =
EγT0 (7− 5ν)

30(ν2 − 1)

 0 1 0
1 0 0
0 0 0

 (A.21)

and

Eelastic =
E(7− 5ν)

60(ν2 − 1)
(γ0)2 =

µ(7− 5ν)

30(ν2 − 1)
(ε0)2 (A.22)

Which is the same as the first term of Equation 7 in196. In the presence of an applied
far-field stress, the change in Gibbs free energy becomes (see previous section):

∆G = −1

2
σIijε

T
ijΩf − σ∞ij εijΩf (A.23)

For uniaxial compression and our assumed orientation of the inclusion, the applied
stress is:

σij =
σ

2

 −1 1 0
1 −1 0
0 0 0

 (A.24)

So the change in free energy is:

∆G =
E

ν2 − 1

[
ν + 1

9
(εTo )2 +

7− 5ν

60
(γTo )2

]
− σ(2εTo − 3γTo )

6
(A.25)

Argon and Shi define the transformation dilatancy as:
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β =
εco
γco

=
45(1− ν)2εTo

2(1 + ν)(4− 5ν)γTo
(A.26)

From measurements on an amorphous bubble raft, the authors estimate β ≈ 1196. So:

εTo = γTo
2(1 + ν)(4− 5ν)

45(1− ν)2
(A.27)

With this relationship:

∆G =
ΩE

ν2 − 1

[
ν + 1

9

(
2(1 + ν)(4− 5ν)

45(1− ν)2
γTo

)2

+
7− 5ν

60
(γTo )2

]

+
ΩσγTo

2
− ΩσγTo

3

2(1 + ν)(4− 5ν)

45(1− ν)2
(A.28)

Setting ∆G = 0 and rearranging yields:

σ

E
= γTo

5, 675ν5 − 33, 365ν4 + 70, 934ν3 − 74, 578ν2 + 39, 967ν − 8, 761

270(ν − 1)3(55ν3 − 111ν2 − 147ν + 119)
TΘ(/nu) (A.29)
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Appendix B

Determination of the 3D Radial Dis-

tribution Function with Imaging Bound-

aries

B.1. Determination of the 3D Radial Distribution Function
with Imaging Boundaries

It is important to properly account for experimental boundaries when calculating
g (r) using real-space positions of particles. The radial distribution function is defined
as:

g (r) =
1

η

dN (r)

dr
(B.1)

where η = N
V

is the particle number density and dN(r)
dr

is the number of particles in the
volume element at position r. This function can be interpreted as the probability of
finding a particle in the volume element dr at position r, given that there is a particle
at the origin, normalized by the probability of finding a particle in the volume, which
is η.

Experimental boundaries can complicate determination of g (r) because certain vec-
tors r are sampled more frequently than others. Consider a 3-dimensional rectangular
box containingN particles with imaging bounds given by lx,min, lx,max, ly,min, ly,max, lz,min,
and lz,max. For particles located near the boundaries of the box, only a fraction of
their neighboring particles are located within the bounds of the imaging volume.
Obviously, missing neighbors are a result of the boundaries and not a feature of the
actual structure. Failure to properly account for the ”missing volume” can lead to
artificially low values of g (r) at values of r = ‖r‖ approaching half the box size and
incorrect asymmetries for imaging boxes without equal edge lengths.

One computational algorithm that accounts for boundaries is described as follows:

1. Construct a 3-dimensional array X = [−xl : dx : xl;−yl : dy : yl;−zl : dz : zl] of
distances r that sets the extent of g (r) to be calculated
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2. Consider one particle i with position [xi, yi, zi] and determine the vectors rij
from the particle to its neighbors within cutoff distance rmax =

√
x2
l + y2

l + z2
l

3. Using X, construct a 3-dimensional histogram of particle i’s neighbor locations
Ni by binning the xij, yij, and zij components of the rij vectors

4. Now consider the extent of:

Xi = [−xl + xi : dx : xl + xi;−yl + yi : dy : yl + yi;−zl + zi : dz : zl + zi]

contained within the imaging volume. Create a 3-dimensional array Ti of the
same size as Xi with all entries set to 1. Now set all Ti (Xi < lx,min) = 0,
Ni (Xi > lx,max) = 0, etc. Ti (Xi) can be considered the number of attempts of
finding a particle at X for particle i.

5. Repeat steps 2-4 for all N particles in the imaging volume and compute N =∑N
i=1 Ni and T =

∑T
i=1 Ti

6. Now the probability P = N � T of finding a particle at position X may be
computed, where � denotes the element-wise quotient.

7. P can now be normalized by η to give the pair-correlation function g (r) dis-
cretized on the grid X
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