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Constitutive Modeling Of Viscoplastic Porous Single Crystals And
Polycrystals: Macroscopic Response And Evolution Of The
Microstructure

Abstract
\noindent Porosity can have a significant effect on the overall constitutive behavior of many materials,
especially when it serves to relax kinematic constraints imposed by the underlying matrix behavior. In this
study, we investigate the multiscale, finite-strain response of viscoplastic porous single crystals and porous
polycrystals. For these materials, the presence of voids leads to highly nonlinear dilatational behavior for loads
with a large hydrostatic component, even though the matrix material itself is essentially incompressible.

\vspace*{15pt}

\noindent In this study, we employ the recently developed ``fully optimized second-order" homogenization
approach, along with an iterated homogenization procedure, to obtain accurate estimates for the effective
behavior of porous single crystals and porous polycrystals with fixed states of the microstructure. The method
makes use of the effective properties of a ``linear comparison composite," whose local properties are chosen
according to a suitably designed variational principle, to generate the corresponding estimates for the actual
nonlinear porous materials. Additionally, consistent homogenization estimates for the average strain-rate and
spin fields in the phases are used to develop approximate evolution equations for the microstructures. The
model is quite general, and applies for viscoplastic porous single crystals and polycrystals with general
crystallographic texture, general ellipsoidal voids, and general ellipsoidal grains, which are subjected to general
loading conditions. The model is used to study both the instantaneous response and the evolution of the
microstructure for porous FCC and HCP single crystals and polycrystals. It is found that the intrinsic
anisotropy of the matrix phase---either due to the local crystallography in single crystals or to the texture of
polycrystals---has significant effects on the porosity evolution, as well as on the overall hardening/softening
behavior of the porous materials. In particular, the predictions of the model for porous single crystals are
found to be in fairly good agreement with the full-field, numerical results available in the literature. The results
for porous polycrystals suggest that the macroscopic behavior is controlled by porosity growth at high stress
triaxialities, while it is controlled by texture evolution of the underlying matrix at low triaxialities.
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ABSTRACT

CONSTITUTIVE MODELING OF VISCOPLASTIC POROUS SINGLE

CRYSTALS AND POLYCRYSTALS:

MACROSCOPIC RESPONSE AND EVOLUTION OF THE MICROSTRUCTURE

Dawei Song

Pedro Ponte Castañeda

Porosity can have a significant effect on the overall constitutive behavior of many

materials, especially when it serves to relax kinematic constraints imposed by the

underlying matrix behavior. In this study, we investigate the multiscale, finite-strain

response of viscoplastic porous single crystals and porous polycrystals. For these

materials, the presence of voids leads to highly nonlinear dilatational behavior for

loads with a large hydrostatic component, even though the matrix material itself is

essentially incompressible.

In this study, we employ the recently developed “fully optimized second-order” ho-

mogenization approach, along with an iterated homogenization procedure, to obtain

accurate estimates for the effective behavior of porous single crystals and porous poly-

crystals with fixed states of the microstructure. The method makes use of the effective

properties of a “linear comparison composite,” whose local properties are chosen ac-

cording to a suitably designed variational principle, to generate the corresponding

estimates for the actual nonlinear porous materials. Additionally, consistent homoge-

nization estimates for the average strain-rate and spin fields in the phases are used to

develop approximate evolution equations for the microstructures. The model is quite

general, and applies for viscoplastic porous single crystals and polycrystals with gen-

eral crystallographic texture, general ellipsoidal voids, and general ellipsoidal grains,

which are subjected to general loading conditions. The model is used to study both

the instantaneous response and the evolution of the microstructure for porous FCC

v



and HCP single crystals and polycrystals. It is found that the intrinsic anisotropy

of the matrix phase—either due to the local crystallography in single crystals or to

the texture of polycrystals—has significant effects on the porosity evolution, as well

as on the overall hardening/softening behavior of the porous materials. In particu-

lar, the predictions of the model for porous single crystals are found to be in fairly

good agreement with the full-field, numerical results available in the literature. The

results for porous polycrystals suggest that the macroscopic behavior is controlled by

porosity growth at high stress triaxialities, while it is controlled by texture evolution

of the underlying matrix at low triaxialities.
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Chapter 1

Introduction

Many materials—both man-made and natural—are aggregates of a large number of

randomly distributed single-crystal grains. More often than not, these materials con-

tain defects such as micro-voids and micro-cracks, or porosities. Porosity can have a

dramatic impact on the macroscopic behavior of these materials, especially when it

serves to relax kinematic constraints imposed by the underlying matrix behavior. For

example, it is well known that plasticity is intrinsically a volume-preserving defor-

mation mechanism. As a consequence, a single-crystal sample cannot accommodate

volumetric strains under application of a hydrostatic loading. However, the presence

of even a small amount of pores in the single crystal can make macroscopic samples

of the nominally incompressible material undergo changes in volume, which can be of

significant consequence on the macroscopic response under tensile hydrostatic load-

ings. Therefore, it is of great technological and scientific importance to be able to

characterize the macroscopic behavior of these porous materials.

Modeling of the overall constitutive behavior of porous materials has been of cen-

tral interest in the solid mechanics community over decades. Much of the motivation

for the study of porous materials comes from its fundamental connection to one of

the major failure mechanisms in ductile metallic materials, namely, the nucleation,

growth and the coalescence of voids and micro-cracks (Tvergaard, 1990; Benzerga

and Leblond, 2010; Benzerga et al., 2016). However, there are many areas, both

of theoretical and practical interest, where the effect of porosity on the constitutive
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response of materials is of critical importance. This is the case, for example, of the

development of metal alloys, as well as metal-matrix composites of these materials,

which typically exhibit non-negligible amounts of residual porosity and involve form-

ing and processing technologies (Saby et al., 2013). Another particularly important

example of the dramatic impacts of porosity is provided by minerals and geologic

materials, such as ice, which contain predominantly intra/intergranular voids. Study

of the deformation behavior of ice is crucial to further understand many large-scale

phenomena such as the flow and dynamics of glaciers and ice sheets (Schulson and

Duval, 2009).

Over the years, significant progress has been made to model the overall consti-

tutive behavior of porous materials. Up to now, most studies are carried out in

the context of two-phase material systems consisting of voided inclusions and an

isotropic (visco)plastic matrix phase, as usually characterized by von Mises yield

criterion or flow potential (e.g., Gurson, 1977; Danas and Ponte Castañeda, 2009a;

Ponte Castañeda and Zaidman, 1994; Agoras and Ponte Castañeda, 2014). However,

for more realistic and general conditions, the material surrounding the voids exhibits

anisotropic behavior—either due to local crystallography in single crystals, or to the

crystallographic texture for polycrystalline aggregates. For example, metallographic

observations of Ni-based single-crystal superalloys have shown the presence of mi-

crovoids, which can have dramatic impact on the creep deformation and failure of

such materials at high operating temperatures in jet engines (Srivastava et al., 2012).

On the other hand, there is ample of experimental evidence showing that initial

texture and its evolution can induce strong anisotropy in the overall response of poly-

crystalline aggregates, which can, in turn, affect the way they fail by void growth to

coalescence (e.g., Caré and Zaoui, 1996; Lebensohn et al., 1996). Moreover, the voids

that are present in polycrystalline solids may have different sizes relative to the size of

the single-crystal grains, thus leading to multiple length scales of the microstructure.

For instance, the pores can be much larger than the grains, as shown in Fig. 1.1(a)

for an optical micrography of a titanium foam. In this case, the porous polycrystal

can be treated as a composite of particulate microstrucutre, with a polycrystal matrix
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(a) (b)

(c)

Figure 1.1: Examples of porous polycrystals. (a) Optical micrograph of a titanium
foam (Shen et al., 2006), (b) EBSD inverse pole figure of deformed polycrystalline
specimen of Mg alloy AZ31 showing in voids in black (Boehlert et al., 2012), and (c)
Nearly isotropic granular large-grained sintered snow ice, with elongated voids inside
the grains, from Ward Hunt Ice Shelf, Ellesmere Island, Canada (photo by N. K.
Sinha, unpublished) (Shokr and Sinha, 2015).

and voided inclusions. In addition, the size of the voids may be comparable to that of

the grains, as indicated by Fig. 1.1(b), which shows the microstructure of a deformed

polycrystalline specimen containing intergranular voids (in black). The cavities can

then be treated as additional “voided” grains in the solid polycrystal (e.g., Boehlert

et al., 2012). Furthermore, the voids can be much smaller than the grains (see Fig.

1.1(c)), so that they can easily exist within the grains (Shokr and Sinha, 2015). This

is often the case when the grain size is large, or when the particles from which the

voids originate are very small.
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The modeling of the macroscopic response of porous materials is generally difficult,

even in the simplest case of two-phase porous isotropic materials, due to the strong

nonlinear features of the problem. The physical source of this nonlinearity is related

to the fact that while porosity can accommodate a hydrostatic macroscopic strain,

it has to do so by respecting the isochoric deformation constraints everywhere in the

matrix. In other words, the porous material accommodates the volumetric strain by

means of deviatoric strains everywhere in the matrix phase (which has a nonlinear

constitutive response). A simple micro-mechanical model for porous isotropic mate-

rials was developed many years ago by Gurson (1977), making use of limit analysis

of a cylindrical/spherical shell. The model has been found to be successful in pre-

dicting the macroscopic response, as well as ductile failure of metals at moderate to

large stress triaxialities (the ratio of the hydrostatic stress to the von Mises equivalent

stress). However, it becomes less accurate for low stress triaxialities since the Gurson

model neglects the change of the void shape, which is expected to be significant for

shear dominated loadings. For this reason, many attempts have been made to extend

this model by incorporating void-shape effect, first for spheroidal voids (e.g., Golo-

ganu et al., 1993), and then for more general ellipsoidal voids (Madou and Leblond,

2012a). The literature for the Gurson-type model is huge and we will refer interested

readers to the review articles by Benzerga and Leblond (2010) and Benzerga et al.

(2016) for more details.

However, it is important to note that there are several important limitations in the

Gurson approach. First, to the best knowledge of the author, it has not been possible

to extract estimates for the average strain-rate and spin fields in the pore phase using

Gurson’s approach. For this reason, it has been necessary to complement the limit

analysis estimates for the yield surfaces of porous materials with evolution laws for

the pore morphology obtained from homogenization approach (heuristically modified

according to full-field finite element simulation). Another disadvantage is related to

the use of a spherical shell (and its generalizations) as a proxy for a representative

volume element (RVE). In fact, both FFT (Bilger et al., 2005) and FEM (Fritzen et al.,

2012) simulations of porous ideally plastic solids show deformation patterns involving
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shear bands linking up voids, especially at small porosities, and even for hydrostatic

loadings. While the predictions of the Gurson-type models for the macroscopic yield

surfaces are still fairly accurate, the same is unlikely to be true for corresponding

predictions for the phases averages of the strain rate and vorticity in the pores.

Alternative, and more general models have been proposed in the framework of

homogenization approach for porous isotropic materials. Ponte Castañeda and Willis

(1988) obtained estimates for the dilatant (instantaneous) response of porous vis-

coplastic materials by means of the nonlinear Hashin-Shtrikman-type variational ap-

proach of Talbot and Willis (1985). Ponte Castañeda and Zaidman (1994) made use

of the variational homogenization (VH) method of Ponte Castañeda (1991)—based on

the notion of a linear comparison composite (LCC)—to develop a finite-strain consti-

tutive model for porous (visco)plastic materials under triaxial loadings, accounting for

the evolution of the microstructure (porosity and void shape). The model was progres-

sively generalized to incorporate the void-distribution effect (Kailasam et al., 1997),

void rotations under general nonaligned loadings (Kailasam and Ponte Castañeda,

1997), as well as strain hardening and elasticity for the matrix (Kailasam et al., 2000;

Aravas and Ponte Castañeda, 2004). Contrary to the classic Gurson model, the pre-

dictions of these homogenization models were found to be quite accurate for low stress

triaxialities but less so for high stress triaxialities, especially for low porosities and

high material nonlinearities. In order to remedy this shortcoming, Danas and Ponte

Castañeda (2009a, 2009b) proposed an improved finite-strain constitutive model, uti-

lizing the more sophisticated second-order (SO) linear comparison method of Ponte

Castañeda (2002), along with an ad hoc modification enforcing the agreement of the

SO model with exact results for spherical/cylindrical shells subjected to purely hy-

drostatic loadings. The SO model has been found to yield fairly accurate estimates

in several comparisons with numerical simulations and other exact results. However,

the SO model requires certain fitting parameters and is therefore not fully predictive.

Very recently, Agoras and Ponte Castañeda (2014) proposed a novel finite-strain con-

stitutive model for porous materials under triaxial loadings, making exclusively use of

the VH method of Ponte Castañeda (1991), albeit in a novel iterated fashion (Ponte
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Castañeda, 2012; Agoras and Ponte Castañeda, 2013). The iterated variational ho-

mogenization (IVH) model has the advantage that it does not involve any ad hoc

modification, providing estimates that coincide with the exact spherical/cylindrical

shell results under purely hydrostatic loadings (when the iteration number N →∞),

and preserving the accuracy of the traditional VH model for low stress triaxialities.

In practice, however, a relatively small number of iterations (N ≈ 5 − 10) has been

found to be sufficient to provide accurate results and, therefore, the new IVH model

is relatively easy to implement. The model was further generalized by Song et al.

(2015) to account for void rotations under general nonaligned loadings.

In comparison with the more empirical Gurson-type models, the IVH method has

several distinguishing advantages: (i) it can be generalized in a seamless fashion to

deal with multi-phase heterogeneous material systems, such as porous polycrystals,

making use of appropriate statistical measures of the microstructure, such as porosity,

orientation distribution function (texture), average shape and orientation of the pores

and grains, etc., (ii) it naturally accounts for the evolution of the microstructure

by means of consistent estimates for the average strain rate and spin fields in the

constituent phases (Agoras and Ponte Castañeda, 2014; Song et al., 2015), and (iii) it

is based on rigorous mathematical procedures that are entirely predictive and involves

no extraneous “fitting” parameters or complicated inter/extrapolations.

By contrast, much less effort has been made to investigate the constitutive behav-

ior of porous single crystals and porous polycrystals. However, constitutive theories

are already available to estimate the viscoplastic response of fully dense polycrys-

talline solids in terms of their morphological and crystallographic texture. It is im-

possible to provide here a complete review of all the work in the area of viscoplastic

polycrystals, and so we will restrict ourselves to some key references that are partic-

ularly relevant for this work. In particular, a new class of nonlinear self-consistent

methods, improving significantly on the “classical” theories (Hill, 1965; Hutchin-

son, 1976; Molinari et al., 1987; Lebensohn et al., 1993) were developed by Ponte

Castañeda and coworkers (deBotton and Ponte Castañeda, 1995; Nebozhyn et al.,

2001; Liu and Ponte Castañeda, 2004a). Like the above-mentioned theories for porous
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materials, these theories rely on the use of a LCC, consisting of a polycrystal with the

same microstructure as the nonlinear polycrystal but whose single-crystal response

is identified with a certain linearization of the corresponding nonlinear phase, guided

by appropriately designed variational principles. Among these, the most accurate

one is the second-order self-consistent theory of Liu and Ponte Castañeda (2004a),

which is a generalization of the second-order variational method of Ponte Castañeda

(2002). It yields estimates that are exact to second order in the heterogeneity con-

trast and satisfy all available bounds, including the variational self-consistent bound

of Nebozhyn et al. (2001). Comparisons with full-field numerical simulations for cubic

and hexagonal polycrystals have shown that the second-order self-consistent theory

(Liu and Ponte Castañeda, 2004a) provides the most accurate and reliable estimates

among the various nonlinear self-consistent theories available to date (Lebensohn et

al., 2004; Lebensohn et al., 2007). The significant improvements of these theories

have been identified with the use of the field fluctuations in the linearization scheme,

in contrast with the classical self-consistent theories, which only utilize the phase

averages—in an ad hoc fashion—for the linearization scheme. However, the second-

order estimates (Liu and Ponte Castañeda, 2004a) have the undesirable feature that

they are not fully stationary with respect to the properties of the LCC, which hamper

their efficient applications in practice. These include the fact that the macroscopic

behavior and field statistics in the nonlinear polycrystals do not coincide with the

corresponding estimates in the LCC, and the existence of a duality gap, i.e., the esti-

mates based on the dissipation potential and the dual stress potential are different. In

order to remedy this deficiency, Ponte Castañeda (2015) proposed a new second-order

approach, making use of a more general variational principle, such that the resulting

estimates are guaranteed to be fully stationary with respect to the properties of the

LCC, and to be exact to second-order in the heterogeneity contrast. Therefore, the

fully-optimized second-order (FOSO) estimates are expected to be more accurate,

exhibiting no duality gap, and the field statistics in the LCC can be consistently used

to estimate the field statistics in the actual nonlinear composites.

Building on the recent advances in homogenization approaches for viscoplastic
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crystalline composites, a few models have been proposed to describe the macro-

scopic behavior of porous single crystals and porous polycrystals. Idiart and Ponte

Castañeda (2007b) obtained estimates for the effective flow stress of a model two-

dimensional single crystal containing cylindrical voids with circular cross sections and

subjected to anti-plane loadings, making use of a generalization of the variational ho-

mogenization approach of deBotton and Ponte Castañeda (1995). Han et al. (2013)

developed a yield function for porous single crystals with spherical voids, utilizing

the variational homogenization approach of deBotton and Ponte Castañeda (1995),

together with an ad hoc modification inspired by Gurson limit analysis approach.

Mbiakop et al. (2015a) developed a modified variational (MVAR) homogenization

model to obtain effective flow potentials for porous single crystals containing general

ellipsoidal voids subjected to general loadings (see also Mbiakop et al., 2015b for the

corresponding results for two-dimensional porous single crystals containing cylindri-

cal voids with general elliptical cross sections). The MVAR model has been shown to

deliver fairly accurate estimates in comparison with the corresponding FEM results

for a wide range of parameters. However, the MVAR model involves certain sim-

plifications designed for single crystals with equal flow stresses for all available slip

systems. Therefore, the model is expected to be less accurate for porous single crys-

tals with large slip contrast. More recently, Ling et al. (2016) extended the model of

Han et al. (2013) to finite strains, by accounting for the evolution of the porosity and

strain hardening of the crystal matrix, although not for possible changes in the lat-

tice orientation and void morphology. In terms of recent progresses on the modeling

of porous polycrystals, Lebensohn et al. (2011) made use of a generalization of the

second-order approach of Liu and Ponte Castañeda (2004a) to obtain estimates for

the yield surfaces of polycrystalline solids containing intergranular voids. However,

the corresponding predictions for high stress triaxialities exhibit the same shortcom-

ing of the earlier homogenization models for porous materials with isotropic matrix,

and are unrealistically stiff, especially at low porosities and high nonlinearities.

For completeness, it should be mentioned that Gurson approach has also been

extended to incorporate the plastic anisotropy of matrix by Benzerga and Besson
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(2001), and was further generalized by Monchiet et al. (2006), Keralavarma and

Benzerga (2010), Morin et al. (2015) and others. These models typically assume

that the plastic matrix obeys the phenomenological orthotropic yield criterion of Hill

(1948) and, in principle, can not account for the crystallographic details, such as

the orientation and constitutive response of the available slip systems. Paux et al.

(2015) made use of a regularized Schmid law and Gurson limit-analysis to derive a

Gurson-type yield criterion for porous single crystals. However, none of these theories

are general enough to handle finite-strain constitutive behavior of viscoplastic porous

single crystals and porous polycrystals, and to account for the complex coupled effects

of porosity, void morphology and crystallographic texture.

Given this background, the objective of this study is to develop general finite-

strain constitutive models for the viscoplastic response of porous single crystals and

polycrystals, which can account for both the effect of porosity and its anisotropic

evolution, as well as for the intrinsic anisotropy of the underlying matrix material.

In particular, we will make use of the recently developed fully optimized second-

order (FOSO) approach of Ponte Castañeda (2015), together with a generalization

of the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to

obtain accurate estimates for the instantaneous response of porous single crystals and

porous polycrystals. Additionally, consistent homogenization estimates for the aver-

age strain rate and spin fields in the phases will be used to develop self-consistent

evolution equations for the microstructural variables of the materials. In their fi-

nal forms, the constitutive models to be developed may be treated as the standard

internal-variable viscoplastic models, where the microstructural variables play the

role of internal variables.

This dissertation is organized into chapters whose contents correspond to papers

that have been published, or are in preparation for publication. For convenience,

the list of such papers is provided at the end of this introduction. Next, we briefly

introduce the content of each chapter in this dissertation.

In Chapter 2, which corresponds to reference 2, we make use of a generalization

of the iterated homogenization approach of Agoras and Ponte Castañeda (2013) to
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provide bounds for the effective flow potential of porous viscoplastic single crystals

under general loading conditions. We use the developed method to investigate the

instantaneous response of low-symmetry, high-anisotropy porous HCP single crystals,

such as porous ice, under axisymmetric loading conditions. Moreover, we compute

the average strain rate in the voids to explore its implication for the evolution of the

microstructure. Finally, we deduce the intrinsic effect of the crystal anisotropy by

comparing with the corresponding results for porous materials with isotropic matrix.

In Chapter 3, which corresponds to reference 3, we develop a general finite-

strain homogenization model for viscoplastic porous single crystals, which is referred

to as the Iterated Second-order (ISO) model. The model makes use of the recently

developed FOSO method of Ponte Castañeda (2015), along with the iterated homog-

enization approach of Agoras and Ponte Castañeda (2013), to determine the effective

instantaneous response of porous single crystals with fixed states of the microstruc-

ture. Then, we make use of the homogenization estimates for the average strain-rate

and spin field in the phases, together with the standard kinematical relations, to

develop evolution laws for the microstructural variables.

Chapter 4, which corresponds to reference 4, is concerned with the applications

of the ISO model developed in chapter 3. In particular, the model is used to in-

vestigate both the instantaneous response and the evolution of the microstructure

for porous FCC and HCP single crystals. The effects of the loading conditions, in-

cluding the principal loading directions, stress triaxiality and Lode angle, on the

finite-strain behavior of porous single crystals are studied in detail. Moreover, the

complex coupled effects of porosity, void morphology and crystal anisotropy on the

overall hardening/softening behavior of porous single crystals are analyzed. The pre-

dictions of the model are also compared with the corresponding full-field, numerical

simulations available in the literature to assess the accuracy of the model.

Before moving on to the constitutive modeling of porous polycrystals, in Chapter

5, which corresponds to reference 5, we use the FOSO method of Ponte Castañeda

(2015) to generate estimates of the self-consistent type for the macroscopic behavior

and field statistics in viscoplastic solid polycrystals. Additionally, we develop evolution
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laws characterizing the texture evolution of solid polycrystals at finite strains. The

model is applied to study the effective flow stress, field fluctuation and finite-strain

response of low-symmetry HCP polycrystals, including ice polycrystals. The new

FOSO estimates are compared with the earlier homogenization estimates, as well as

with the full-field numerical simulations available in the literature, to validate the

FOSO model.

In Chapter 6, which corresponds to reference 6, we propose a general finite-strain

homogenization model for the two-scale, viscoplastic porous polycrystals, consisting

of large pores randomly distributed in a fine-scale solid polycrystal matrix (where the

size of the pores is much larger than that of the single-crystal grains). The model

makes use of the effective property of a suitably chosen two-scale linear comparison

composite (LCC)—with sub-structure identical to that of the nonlinear porous poly-

crystal of interest—to estimate the effective behavior of the nonlinear composite. The

effective properties of the LCC are determined by means of a sequential homogeniza-

tion procedure, involving the self-consistent estimates for the effective behavior of the

polycrystal matrix, and the Hashin-Shtrikman type estimates for the effective behav-

ior of the porous composite. In addition, consistent homogenization estimates for the

strain-rate and spin fields in the phases are used to develop evolution equations for the

microstructure, characterizing the evolution of the size, shape and orientation of the

pores, as well as of the morphological and crystallographic textures of the polycrystal

matrix.

In Chapter 7, which corresponds to reference 7, we consider specific applications

of the model for porous FCC and HCP polycrystals. In particular, we examine the

instantaneous effective behavior, as well as the finite-strain macroscopic response of

porous FCC and HCP polycrystals, for axisymmetric loading conditions with different

stress triaxialities and Lode parameters. The effect of the loading conditions on

the sub-structure evolution, field fluctuations, and the overall hardening/softening

behavior of the porous polycrystals is investigated in detail. In addition, the intrinsic

effect of the texture evolution of the polycrystal matrix is deduced by comparing with

corresponding results for porous isotropic materials, and found to be quite significant.
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Finally, it is remarked that in the course of this dissertation the author has also

been involved in a research project—conducted in collaboration with Dr. Michalis

Agoras and Dr. Pedro Ponte Castaneda—on the evolution of pore shape and orien-

tation in plastically deforming metals. This work resulted in one publication corre-

sponding to reference 1, which is attached in this thesis as Appendix A.
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Chapter 2

Iterated variational

homogenization model for porous

single crystals

A recently developed iterated homogenization procedure is generalized for porous

viscoplastic single crystals and applied to characterize the effective behavior of low-

symmetry high-anisotropy porous HCP single crystals (e.g., ice), focusing on the

complex coupled effects of the porosity, void shape and crystal anisotropy. Consis-

tent estimates for the average strain rate in the voids are also obtained and their

implications for the evolution of the microstructure are explored. The intrinsic ef-

fect of the strong crystal anisotropy of porous ice is deduced from comparisons with

corresponding results for porous isotropic materials, and found to be significant. In

particular, as a consequence of the strong crystal anisotropy of ice, the porosity growth

is found to be quite fast at low stress triaxiality, while the void distortion rates can

be more significant at high stress triaxialities. Finally, the coupling between the

“morphological” anisotropy induced by the void shape and the underlying crystalline

anisotropy is investigated and found to have significant effects on the void growth

and the void distortion, leading to significantly different behaviors for porous ice and

porous isotropic materials.

14



2.1 Introduction

Most metals and minerals—both man-made and natural—appear in the polycrys-

talline form. Micro-defects, such as intra/inter-granular voids and cracks, which are

usually distributed with random positions and orientations in the crystalline mate-

rial, have significant effects on the macroscopic behavior, as well as on their failure.

It is then of great interest to be able to characterize the effective response of such

porous crystalline materials in terms of the known properties of their constituents and

statistical information about their microstructures. In this work, the focus will be on

the case where the voids exist either within a homogeneous single-crystal material,

or within single-crystal grains of a polycrystalline material, and the size of the voids

is much smaller than that of the single crystal (grains), so that the stress and strain

fields around the voids develop as if they were embedded in an infinitely large single-

crystal matrix subjected to homogeneous loading conditions. The objective of this

chapter is to develop a constitutive model for the macroscopic response of porous vis-

coplastic single crystals with random microstructures, by means of a generalization of

the recently developed iterated nonlinear homogenization method (Ponte Castañeda,

2012; Agoras and Ponte Castañeda, 2013).

A classical subject in mechanics of materials that calls for such constitutive mod-

els is the ductile fracture of crystalline metals and alloys, where it has been evidenced

both theoretically and experimentally that the nucleation, growth and coalescence of

microvoids play a significant role in the creep fracture of such materials (e.g., Crépin

et al., 1996; Srivastava et al., 2012). Another particularly important subject is the

study of the grain-scale behavior of polycrystalline ice, which is of great scientific

and practical values for further understanding the large-scale geophysical phenom-

ena such as the flow of glaciers (Schulson and Duval, 2009). Since microvoids exist

predominantly within the ice single-crystal grains, the constitutive model proposed

in this work provides a useful tool for investigating the effects of the intra-granular

voids on the macroscopic behavior of ice.

Over the years, important progress has been made to characterize the behavior
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of porous single crystals. On one hand, the effect of the crystal orientation on the

void growth has been studied by means of full-field, unit-cell simulations based on

the finite element method (O’regan et al., 1997; Yerra et al., 2010; Ha and Kim,

2010; Srivastava and Needleman, 2015). On the other hand, a few models have been

proposed to describe the macroscopic behavior of porous single crystals. Han et al.

(2013) developed a yield function for porous single crystals containing spherical voids

based on the variational homogenization method developed by deBotton and Ponte

Castañeda (1995) and ad hoc modifications inspired by the limit analysis of the Gur-

son (1977) type model. Paux et al. (2015) proposed a Gurson-type yield criterion by

means of a regularized form of the Schmid law and limit-analysis calculations. These

approaches all show satisfactory agreements with the corresponding unit-cell calcu-

lations for porous FCC single crystals from the work of Han et al. (2013). However,

they all involve fitting of parameters to finite element simulations of porous FCC

single crystals, which have not been calibrated for other types of single crystals (e.g.,

BCC, HCP and etc.). In this sense, the homogenization models to be developed in

this work are more general since they are entirely predictive, involving no fitting pa-

rameters, and are applicable for porous single crystals of general type. Estimates for

porous single crystals were developed by Idiart and Ponte Castañeda (2007b), mak-

ing use of a generalization of the rigorous variational (VAR) homogenization methods

of Ponte Castañeda (1991) and deBotton and Ponte Castañeda (1995). In particu-

lar, estimates were obtained for the effective flow stress of 2D porous single crystals

containing cylindrical voids subjected to anti-plane shear loadings. More recently,

Mbiakop et al. (2015b) developed a modified variational (MVAR) homogenization

model, and used it to characterize the effective yield potential of 3D porous single

crystals containing general ellipsoidal voids under general loading conditions. The

model was derived by using the VAR procedure of Ponte Castañeda (1991), together

with an ad hoc modification, enforcing the agreement of the MVAR model with the

Gurson model for the special case of spherical voids with infinite number of equi-

angular slip systems subjected to purely hydrostatic loadings. The MVAR model has

been found to be in good agreement with the unit-cell calculations for a wide range
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of parameters. However, the limiting factor of this approach is the assumption of

equal flow stresses for all available slip systems made in its derivation, which makes

it unsuitable for porous crystals with large anisotropy, such as porous ice, where the

non-basal slip systems are known to have much larger flow stresses than the basal

slip systems.

In this work, the homogenization method to be developed is based entirely on the

nonlinear variational homogenization method, albeit used in a novel iterated fashion

(Ponte Castañeda, 2012; Agoras and Ponte Castañeda, 2013), and has the capability

of providing bounds and estimates that remain accurate for porous single crystals

with general crystal anisotropy, general ellipsoidal voids, subjected to general loading

conditions. Here, for illustrative purposes, the model is applied to porous hexagonal

closed-packed (HCP) single crystals, including porous ice, and the effects of the poros-

ity, void shape and crystal anisotropy on the new estimates for the flow potential are

investigated in some detail. In addition, the average strain rate in the voids is also

computed to explore the implications for the evolution of the microstructure.

2.2 Homogenization framework for porous single

crystals

In this work, porous single crystals are idealized as two-phase materials with single-

crystal matrix (phase 1) and vacuous inclusions (phase 2). In addition, separation

of length scales is assumed implying that the size of the voids is much smaller than

the size of the specimen and the scale of variation of the applied loadings. Further-

more, the porous single crystal is assumed to have statistically uniform and ergodic

microstructure. As shown in Fig. 2.1, consider porous single crystals containing

ellipsoidal voids (phase 2) that are aligned in a certain direction, but distributed ran-

domly in the surrounding crystal matrix with two-point probability functions for their

centers characterized by “ellipsoidal symmetry” (Willis, 1977; Ponte Castañeda and

Willis, 1995). In general, the shape of the ellipsoid characterizing the distribution can
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Figure 2.1: Schematic representation of a porous single crystal consisting of aligned,
ellipsoidal voids (solid lines) that are distributed with the same ellipsoidal symmetry
(dotted lines) in a single-crystal matrix.

be different from the shape of the ellipsoid characterizing the voids (Ponte Castañeda

and Willis, 1995; Agoras and Ponte Castañeda, 2013). However, differences between

the shape of the voids and that of the distribution are expected to have effects on the

macroscopic response that are of second order in the volume fraction and will not be

considered here for simplicity (Agoras and Ponte Castañeda, 2014; Song et al., 2015).

According to the above hypothesis, the microstructure of the porous single crystal

can be completely characterized by the set of microstructural variables

s ≡ {f,w1,w2,n1,n2,n3}, (2.1)

where f is the volume fraction of the voids (or porosity), w1 = a3/a1,w2 = a3/a2 are

the two aspect ratios characterizing the shape (and distribution) of the voids (a1,

a2 and a3 are respectively the lengths of the three semi-axes of the ellipsoid), and

n1, n2 and n3 are unit vectors along the three principal directions of the ellipsoid. It

should be mentioned that, in general, the voids (and their distribution) are of arbitrary

ellipsoidal shape, where w1 ≠ w2 ≠ 1 and ni ≠ ei, leading to additional “morphological”

anisotropy superimposed on the underlying anisotropy of the single-crystal matrix.

Single crystals are assumed to deform by multi-glide along K slip systems. For

simplicity, the constitutive behavior of the single-crystal matrix (phase 1) is taken to

be viscoplastic, and the effects of elasticity are neglected. Then, the local constitutive
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response of the single crystal can be described by

D =
∂u(1)(σ)

∂σ
, u(1)(σ) =

K

∑
k=1

φ(k)(τ(k)), (2.2)

where u(1) is the stress potential for the crystal matrix, σ is the Cauchy stress and

D is the Eulerian strain rate. The convex functions φ(k) (k = 1, ...,K) characterize

the response of the K slip systems, and depend on the resolved shear (or Schmid)

stresses

τ(k) = σ ⋅µ(k), where µ(k) =
1

2
(n(k) ⊗m(k) +m(k) ⊗ n(k)) . (2.3)

Here, the µ(k) are the second order Schmid tensors, with n(k) and m(k) denoting

respectively the unit vectors normal to the slip plane and along the slip direction of

the kth slip system. The slip potentials φ(k) are given by the common power-law form

φ(k)(τ) =
γ̇0(τ0)(k)

n + 1
∣

τ

(τ0)(k)
∣

n+1

, k = 1, ...,K, (2.4)

where γ̇0 denotes the reference strain rate, (τ0)(k) > 0 is the reference flow stress of

the kth slip system and n is the creep exponent. Note that (τ(0))(k) can be very

different for each slip system, which may lead to extreme anisotropic behavior of the

crystal matrix. Also note that the creep exponent n is taken to be the same for all

slip systems and, hence, the stress potential u(1) is a homogeneous function of degree

n+1 in σ. However, n could in general be different for different slip systems, but here

it will be assumed to be the same for simplicity. In particular, two limiting cases as n

tends to 1 and ∞ are of special interest, since they correspond to linearly viscous and

rigid ideally plastic behavior for the single crystal, respectively. On the other hand,

the stress potential of the voids (phase 2) is such that u(2)(σ) = 0 if σ is identically

zero, while u(2)(σ) =∞ otherwise.

Given the local constitutive behavior of each phase, as well as the prescribed

microstructural information (2.1), the effective response of the porous single crystal

can be described by the constitutive relation between the macroscopic Eulerian strain
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rate D and the macroscopic Cauchy stress σ, as given by

D =
∂ũ(σ)

∂σ
, ũ(σ) ≡ min

σ∈S(σ)
⟨u(x,σ)⟩. (2.5)

Here ũ is the effective stress potential of the porous single crystal, S(σ) is the associ-

ated “statically admissible” set, including all σ fields that are divergence free, satisfy

the traction continuity condition σn = 0 on the void boundaries, and are such that

⟨σ⟩ = σ. It should be noted that the symbol ⟨.⟩ denotes the volume average over

the total volume occupied by a representative volume element of the porous single

crystal.

From the homogeneity of the local potential (2.4) in σ, it follows that the effective

potential (2.5) of the porous single crystal is homogeneous of degree n+1 in σ. Then,

the effective behavior of the porous single crystal can be completely characterized by

a single equi-potential surface in σ space, i.e., ũ(Σ) = const, where any other equi-

potential surface is just a homothetic surface (Leblond et al., 1994). In particular,

the gauge surface of the porous single crystal is defined by

ũ(Σ) =
γ̇0τ

−n
0

n + 1
, (2.6)

where τ0 is a reference flow stress, which can be chosen to be, e.g., one of the reference

flow stresses (τ0)(k) (k = 1, ...,K). Note that the normal to the gauge surface indicates

the direction of the plastic flow. Also, in the limit of ideally plasticity (n →∞), the

gauge surface tends to the standard yield surface.

Alternatively, the gauge surface can be obtained by introducing a gauge factor Γ,

such that the effective stress potential can be written in the form

ũ(σ) =
γ̇0τ0

n + 1
(
Γ(σ)

τ0
)

n+1

, (2.7)

where Γ is a homogeneous function of degree 1 in σ, which depends on the creep

exponent n, the microstructural variables s defined in (2.1), and the reference flow

stresses (τ0)(k), k = 1, ...,K. Then, for any prescribed macroscopic stress σ, the

20



normalized stress tensor

Σ =
σ

Γ(σ)
(2.8)

will always lie on the gauge surface. In other words, the stress tensor Σ on the gauge

surface can be obtained by computing the effective stress potential ũ for arbitrary

σ, determining the corresponding gauge factor Γ(σ) from (2.7), and normalizing σ

according to (2.8). Similarly, it is useful to introduce the corresponding normalized

macroscopic strain rate

E =
D

γ̇0(Γ(σ)/τ0)n
=
∂Γ(σ)

∂σ
. (2.9)

Note that E is independent of the magnitude of σ, and depends only on the direction

of σ.

In this work, estimates for the effective stress potential ũ are obtained by means

of the iterated homogenization approach (Agoras and Ponte Castañeda, 2013) in

combination with the nonlinear Variational Homogenization (VH) method developed

by deBotton and Ponte Castañeda (1995), and will be referred to here as the Iter-

ated Variational Homogenization (IVH) method. It should be mentioned that the

VH method makes use of the effective property of a suitably chosen porous “linear

comparison composite” (LCC)—with uniform matrix properties and microstructure

identical to that of the nonlinear porous single crystal of interest—to estimate the

effective behavior of the nonlinear composite. However, while this method is known

to yield rigorous bounds, they tend to be overly stiff estimates for the effective be-

havior of porous single crystals, especially at low porosity, high stress triaxiality and

high nonlinearity (Agoras and Ponte Castañeda, 2013). The key idea of IVH is to

construct the porous microstructure iteratively in a self-similar fashion (see Fig. 2

and associated discussions in Agoras and Ponte Castañeda, 2013), in such a way

that, at each iteration level, the IVH involves an LCC with identical microstructure

to the corresponding nonlinear composite and with a linear single-crystal matrix, al-

lowing for a non-uniform distribution of the matrix phase in the LCC, thus leading

to improved estimates, which retain their bounding character.

In particular, the viscous compliance tensor of the LCC crystal matrix at the ith
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level is assumed to be of the form

M
(1)

[i]
=

K

∑
k=1

α
[i]

(k)
µ(k) ⊗µ(k), i = 1, ...,N, k = 1, ...,K, (2.10)

where the α
[i]

(k)
are the slip compliances (which will be specified later), and N is the

total number of iterations in the IVH procedure. Furthermore, the effective behavior

of each level LCC is computed by means of the estimates of Ponte Castañeda and

Willis (1995) (to be referred to here as PCW estimates), which are given by expression

(2.19) in the Appendix.

In their final form, the IVH estimates for the effective stress potential ũ of the

nonlinear porous single crystal can be written as

ũIV H
(σ) = (1 − f

1

N )

N

∑
i=1

f
N−i
N (

K

∑
k=1

φ(k)(τ̂
[i]

(k)
)) . (2.11)

In expression (2.11), the τ̂
[i]

(k)
are the second moment variables defined by

τ̂
[i]

(k)
=

√

µ(k) ⋅ ⟨σ ⊗σ⟩
(1)

[i]
µ(k), i = 1, ...,N, k = 1, ...,K, (2.12)

where the ⟨σ ⊗σ⟩
(1)

[i]
(i = 1, ...,N) denote the second moments of the stress fields in

the matrix of the LCC at level i, which can be computed by means of (2.22) in the

Appendix. In addition, the slip compliances α
[i]

(k)
, as determined by the application

of VH method in terms of the LCC at each level, are given by the closure conditions

α
[i]

(k)
=

φ′
(k)
(τ̂
[i]

(k)
)

τ̂
[i]

(k)

, i = 1, ...,N, k = 1, ...,K. (2.13)

In fact, ũIV H is known to be a lower bound for the effective potential of the

porous single crystals, the accuracy of which improves progressively with increasing

N . However, the fast convergence of IVH with increasing values of N (Agoras and

Ponte Castañeda, 2013) allows the use of relatively small numbers of iterations N to

get accurate results, and thus, N = 10 is used in this work, which can be shown to
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give sufficiently accurate predictions for porous single crystals.

The macroscopic constitutive behavior, as well as the average strain rate in the

voids of the nonlinear porous single crystal can then be obtained directly from those

of the LCC (Idiart and Ponte Castañeda, 2007c; Agoras and Ponte Castañeda, 2013).

In particular, the IVH estimates for the macroscopic strain rate D of the nonlinear

porous single crystal under the applied loading σ is given by

D =
∂ũIV H

∂σ
(σ) = M̃σ, (2.14)

where M̃ ≡ M̃[N] is the PCW estimate for the effective viscous compliance tensor of

the N -level LCC, as given by (2.19). Moreover, the corresponding IVH estimate for

the average strain rate in the voids D
(2)

is determined by

D
(2)
= A(2)D, (2.15)

with A(2) denoting the PCW strain-rate concentration tensor, which is given by (2.23)

together with (2.24) in the Appendix.

Given the normalized macroscopic strain rate E, as defined by (2.9), we define

correspondingly the normalized average strain rate in the voids by E
(2)
= A(2)E.

Furthermore, by using appropriate evolution laws for the porosity f and the aspect

ratios of the voids wα (α = 1,2) (Gurson, 1977; Ponte Castañeda and Zaidman, 1994),

we define the normalized porosity growth rate ḟ and the normalized rate of change

of the void aspect ratios ẇα (α = 1,2), which are respectively of the form

ḟ = (1 − f)Ekk, ẇα = wα (n3 ⊗n3 − nα ⊗nα) ⋅E
(2)
, α = 1,2. (2.16)

2.3 Application to porous HCP single crystals

In this section, we investigate the predictions of the IVH estimates for the instan-

taneous macroscopic response of porous HCP single crystals, focusing on the effect

of the crystal anisotropy, the porosity and the void shape, with particular emphasis
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on porous ice crystals. In addition, consistent IVH estimates for the average strain

rate in the voids are computed to explore the implications for the evolution of the

microstructure.

Ice single crystals belong to the class of low-symmetry, HCP crystals, with a

c/a ratio of 1.629, and a creep exponent n of 3. The relevant slip systems are the

three basal slips ({0001} ⟨1120⟩), the three prismatic slips ({1010} ⟨1120⟩) and the

six second-order ({1122} ⟨1123⟩) pyramidal-⟨c + a⟩ slips, which will be denoted by

labels A, B and C, respectively. In addition, the basal slips are taken to be the

“soft” slip systems, with reference flow stress τA, while the prismatic and pyramidal

slips are taken to be the “hard” slip systems, with the same reference flow stresses

τB = τC =MτA. For ice, M = 60 (Duval et al., 1983), but in this work we will consider

values of M such that 1 ≤M ≤ 60 to investigate the effect of the anisotropy of HCP

single crystals more generally.

First, we examine the effect of various parameters on the gauge surfaces of porous

HCP crystals for loading conditions of the type

Σ = ΣmI +Σa (−
1

3
e1 ⊗ e1 −

1

3
e2 ⊗ e2 +

2

3
e3 ⊗ e3) , (2.17)

combining the hydrostatic stress Σm and the axisymmetric shear stress Σa = Σ33−Σ11 =

Σ33 − Σ22 = ±Σe, where Σe is the macroscopic equivalent stress. For simplicity, it is

further assumed that the symmetry axis e3 of the macroscopic loading (2.17) is aligned

with the ⟨c⟩-axis of the ice single crystal. At this stage, recall that the gauge surface

is defined by (2.6), and τ0 is chosen to be τA for all results shown below. In addition,

note that the lower bound ũIV H on the effective stress potential translates into an

outer bound on the gauge surface.

Figure 2.2(a) shows gauge surfaces for porous HCP crystals, as predicted by the

IVH and Taylor method. In particular, Fig. 2.2(a) depicts the Σm−Σa cross sections

of gauge surfaces for porous crystals with porosity f = 1%, void aspect ratios w1 =

w2 = 1 and contrast parameter M = 1. Corresponding IVH results are also shown

for a viscoplastic porous isotropic material with isotropic matrix characterized by the
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Figure 2.2: IVH results for the Σa−Σm cross sections of the gauge surfaces for porous
HCP single crystals subjected to axisymmetric loadings (2.17). (a) Comparisons of
the IVH and Taylor gauge surfaces for the porous HCP crystal with porosity f = 1%,
void aspect ratios w1 = w2 = 1 and contrast parameter M = 1. Plots are also shown
for the effect of the (b) void shape, as defined by the aspect ratios w1 and w2, (c)
crystal anisotropy, as defined by the contrast parameter M , and (d) porosity f on
the gauge surfaces for porous HCP crystals.
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power-law stress potential

uiso(σ) =
γ̇0σ0

n + 1
(
σe

σ0
)

n+1

, (2.18)

where σ0 = 1.657τA denotes the reference flow stress, n = 3 is the creep exponent, and

σe is the equivalent stress. Note that σ0 is chosen such that in the linear case (n = 1),

the constitutive relation (2.2), together with (2.4), for the isotropic HCP single crystal

reduces to the isotropic power-law relation (2.18). We observe from Fig. 2.2(a) that

the effective behavior of the porous crystal withM = 1 is similar to that of the porous

isotropic material: the porous isotropic material exhibits a somewhat softer response

at high stress triaxiality XΣ = Σm/Σe and a slightly stiffer response at low stress

triaxiality. The Taylor estimate assumes a uniform strain rate in the phases, leading

to two straight lines parallel to the horizontal hydrostatic axis, and providing an outer

bound for the gauge surface of porous HCP crystals. The corresponding IVH gauge

surface lies within the Taylor gauge surface for all ranges of stress state, leading to

a tighter outer bound that is finite for all stress states. It should be mentioned that

similar results for the gauge surface of the porous crystal with M = 1 can be obtained

by means of the MVAR method developed by Mbiakop et al. (2015b). However,

we should emphasize that the MVAR method was designed for crystals with values

of M ∼ 1 and becomes progressively less accurate with increasing crystal anisotropy

(values of M), while the IVH method has the advantage of providing estimates that

are valid and should remain accurate for arbitrary crystal anisotropy.

Figure 2.2(b) shows the effect of the void shape on the IVH gauge surfaces for

porous ice (M = 60) with fixed porosity f = 1%. In particular, three different void

shapes are considered: a spherical void shape with aspect ratios w1 = w2 = 1, a

prolate void shape with w1 = w2 = 5, and an oblate void shape with w1 = w2 = 0.2.

Note that the symmetry axes of the spheroidal voids are assumed to be aligned with

the direction of the unit vector e3 and, hence, also aligned with the direction of the

⟨c⟩-axis of the ice single crystal. First, it is observed that the gauge surface of porous

ice with w1 = w2 = 1 and M = 60 becomes much larger and tilted with respect to the
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vertical deviatoric axis, when compared with the corresponding result for M = 1 in

Fig. 2.2(a). In addition, we observe from Fig. 2.2(b) that changing the void shape

changes both the size and shape of the gauge surface, suggesting that changes in void

shape should have strong anisotropic hardening or softening effects. Furthermore, we

found that the effect of the void shape exhibits a strong dependence on the crystal

anisotropy. For instance, when subjected to purely hydrostatic loadings, porous ice

(M = 60) with prolate voids (w1 = w2 = 5) is stiffer than that with spherical voids

(w1 = w2 = 1), while it is the other way around forM = 1 (the corresponding results are

not shown due to limitations of space). As expected, the IVH results corresponding

to three different void shapes all lie within the Taylor outer bound (two straight lines

parallel to the horizontal hydrostatic axis), which is independent of the void shape.

Figure 2.2(c) displays the effect of the crystal anisotropy on the IVH gauge surfaces

for porous HCP crystals with porosity f = 1%, void aspect ratios w1 = w2 = 1 and

different values of the contrast parameter (M = 1,5,10,20,60). The main observation

from Fig. 2.2(c) is that increasing M leads to the expansion of the gauge surface

and, hence, to stronger behavior for the porous crystals, as expected. However,

the gauge surface changes its shape and rotates counterclockwise as M increases,

implying a strong distortional hardening effect with increasing values of M . The

above observation has important implications on the plastic anisotropy of the porous

single crystal. For instance, when the porous crystal is subjected to purely hydrostatic

loading, the direction of the induced plastic flow, as determined by the normal to the

gauge surface, changes significantly with increasing values of M . It should also be

mentioned that when M → ∞, the corresponding gauge surface tends to infinity,

suggesting that non-basal slip is required for the overall plastic response of porous

HCP crystals, under loading condition (2.17).

Figure 2.2(d) shows the effect of the porosity on the gauge surfaces for porous ice

(M = 60) with void aspect ratios w1 = w2 = 1, where three values of porosity (f =

1%,10% and 25%) are considered. As expected, increasing f leads to the contraction

of the gauge surface for all loading directions and, thus, to softer behavior. However,

the reduction of the gauge surface with increasing values of f is more significant at

27



-10 -5 0 5 10
-0.2

0

0.2

0.4

0.6

0.8

1
f=1%

1

2

1

1

w

w

=
=

M=60

Isotropic

M=1

aE

M=5
10

20

X Σ

HCP
n=3

/
B C

B AM

τ τ
τ τ

=
=

-10 -5 0 5 10
-0.1

-0.05

0

0.05

0.1
Ice
n=3

f=10%

1

2

1

1

w

w

=
=

M=60

f=1%

f=25%

aE

/
B C

B AM

τ τ
τ τ

=
=

X Σ

(a) (b)

Figure 2.3: IVH results for the normalized macroscopic strain rate Ea (defined by
(2.9)), as functions of the stress triaxiality XΣ, for porous HCP crystals subjected to
axisymmetric loadings (2.17). Plots are shown for different values of the (a) contrast
parameter M and (b) porosity f .

high stress triaxialities, inducing a dramatic change in the shape of the gauge surface.

In particular, for high porosity (e.g., f = 25%), the shape of the gauge surface is

nearly elliptical, whereas for low porosity (e.g., f = 1%), the gauge surface tends to

become flat near the vertical deviatoric axis and develops a markedly non-elliptical

shape.

For completeness, results for the normalized macroscopic strain rate Ea =
2
3
(E33 −

E11) =
2
3
(E33 −E22) = ±Ee, as determined by expression (2.9), are presented in Figs.

2.3(a) and 2.3(b), corresponding to the cases considered in Figs. 2.2(c) and 2.2(d),

respectively. In particular, Fig. 2.3(a) depicts plots of Ea as a function of the stress

triaxiality XΣ and the contrast parameterM , for porous crystals with porosity f = 1%

and aspect ratios w1 = w2 = 1. For comparison purposes, the corresponding result for

a porous isotropic material is also presented in Fig. 2.3(a). In this context, it should

be mentioned that, for all values of XΣ considered in the following, Σa ≥ 0 is assumed,

so that XΣ = Σm/Σe = Σm/Σa. The corresponding results for Σa < 0 can be easily

obtained by symmetry considerations. It can be seen that the IVH estimate of Ea

for M = 1 is similar to that for the porous isotropic material, in agreement with
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the similarity of the corresponding gauge surfaces observed in Fig. 2.2(a). On the

other hand, Ea decreases with increasing values of M , indicating a strong effect of

increasing crystal anisotropy, as already observed in Fig. 2.2(c). In addition, Ea

reaches its maximum value at XΣ = 0 for all values of M , implying that the porous

HCP crystal with M = 1 undergoes the largest amount of shear deformation under

purely deviatoric loadings, as expected on physical grounds. On the other hand,

Fig. 2.3(b) shows plots of Ea as a function of the stress triaxiality XΣ and the

porosity f , for porous ice (M = 60) with void aspect ratios w1 = w2 = 1, where various

porosities (f = 1%,10% and 25%) are considered. Similar to the findings in Fig.

2.3(a), Ea reaches its maximum value under purely deviatoric loadings, independent

of the porosity f . However, as f increases, the curve for Ea becomes progressively

more asymmetric with respect to the vertical deviatoric axis XΣ = 0, consistent with

the developing asymmetry of the corresponding gauge surfaces with respect to the

vertical axis Σm = 0 (XΣ = 0) in Fig. 2.2(d), and indicating a strong anisotropic effect

induced by the porosity change.

Next, we present results for the porosity growth rate ḟ and the rate of change of the

void shape ẇ, as defined by the normalization (2.16), and explore their implications

for the evolution of the microstructure. For simplicity, we will only consider the case

of initially spheroidal voids (w1 = w2) here, and the symmetry axes of the voids are

assumed to be aligned with those of the applied loading (2.17), leaving the cases

of more general orientations for future consideration. Due to the symmetry of the

problem considered, ẇ1 = ẇ2 = ẇ, indicating that the initially spheroidal voids will

remain spheroidal in shape under loading condition (2.17), but will, in general, change

their size and aspect ratios. It should be mentioned that the normalized results shown

for ḟ and ẇ depend only on the direction of the applied stress σ, so that multiplication

of σ by a scalar will not change the results. In addition, larger values of ḟ imply a

faster growth of the porosity and, in particular, ḟ > 0 indicates that the porosity

increases and ḟ < 0 indicates that the porosity decreases. On the other hand, larger

magnitudes of ẇ indicate more significant void distortion rates and, in particular,

ẇ > 0 means that the voids are becoming more prolate, while ẇ < 0 means that the
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voids are becoming more oblate.

Figures 2.4(a) and 2.4(b) show respectively the effect of the crystal anisotropy on

ḟ and ẇ for porous HCP crystals with porosity f = 1%, void aspect ratios w1 = w2 = 1

and different values of the contrast parameter (M = 1,5,10,20,60). For comparison

purposes, corresponding results for porous isotropic materials are also incorporated in

the figures. It can be seen from Fig. 2.4(a) that, for all cases considered, the porosity

grows faster at high stress triaxiality, as expected. The ḟ curve for the porous HCP

crystal withM = 1 is similar to that for the porous isotropic material, consistent with

the previous observations from Figs. 2.2(a) and 2.3(a). However, as M increases,

ḟ tends to increase at small values of stress triaxiality, and to decrease at large

(positive and negative) values of stress triaxiality, indicating that increasing crystal

anisotropy facilitates the void growth at low stress triaxiality, while it suppresses it

at high stress triaxiality. On the other hand, we observe from Fig. 2.4(b) that while

ẇ is symmetric with respect to the vertical axis (XΣ = 0) for the porous isotropic

material, the corresponding curves for the porous HCP crystals become progressively

more asymmetric with increasing values of M , due to the correspondingly increasing

crystal anisotropy. In particular, for the porous isotropic material ẇ tends to zero as

XΣ →∞, suggesting that the void distortion rate becomes insignificant at high stress

triaxiality, whereas the magnitude of ẇ for porous ice (M = 60) can be quite large,

indicating significant void distortion rates, even at high stress triaxiality.

Figures 2.4(c) and 2.4(d) demonstrate the effect of the initial porosity f on ḟ and

ẇ, respectively, for porous ice (M = 60) with void aspect ratios w1 = w2 = 1. Three

values of the initial porosity (f = 1%,10% and 25%) are considered in each figure.

We observe from Fig. 2.4(c) that for a given fixed value of XΣ, the dependence

of ḟ on the initial porosity f is qualitatively the same for porous ice as for the

porous isotropic materials (which is not shown here, for brevity). However, due to

the strong anisotropy of the ice single crystal, the corresponding results for ḟ lose

their symmetry with respect to the origin. In particular, the porosity growth for

porous ice can be quite significant even at low stress triaxiality. In fact, the value of

ḟ at XΣ = 0 is comparable to that at high stress triaxiality. This behavior of porous
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Figure 2.4: IVH results for the normalized growth rates of the porosity ḟ and the
aspect ratios ẇ (as defined by (2.16)), as functions of XΣ, for porous HCP single
crystals subjected to axisymmetric loadings (2.17). Plots are shown for (a) ḟ and (b)
ẇ for different values of the contrast parameter M , as well as for (c) ḟ and (d) ẇ for
different values of the initial porosity f .
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ice is significantly different from that of the porous isotropic material, since the void

growth rate for the latter case is always zero at XΣ = 0. On the other hand, Fig.

2.4(d) shows that, for all values of f , the void distortion rates, as described by ẇ, are

more significant at high stress triaxiality than at low stress triaxiality. In particular,

note that the value of ẇ at XΣ = 10 is several times greater than that at XΣ = 0

for f = 1%. This is unlike the case of porous isotropic materials, where ẇ tends to

become relatively small at high stress triaxiality. Furthermore, we observe that the

effect of the initial porosity f on ẇ is significant at high stress triaxiality, where it is

observed that the void distortion is much faster for lower initial porosity, while the

effect of f on ẇ is negligible at low stress triaxiality.

Finally, Figs. 2.5(a) and 2.5(b) show respectively the effect of the initial void shape

on ḟ and ẇ, for porous ice (M = 60) with initial porosity f = 1%. For comparison

purposes, corresponding results for porous isotropic materials are also shown in Fig.

2.5(c) and Fig. 2.5(d), respectively. First, we observe from Fig. 2.5(c) that the

results for ḟ for porous isotropic materials with non-spherical voids are asymmetric

with respect to the origin, due to the “morphological” anisotropy induced by the

void shape. In addition, the ḟ curve for porous isotropic materials with prolate voids

(w1 = w2 = 5) approximately lies between that with oblate voids (w1 = w2 = 0.2)

and spherical voids (w1 = w2 = 1). However, this is not the case for porous ice,

where the order of the corresponding results for w1 = w2 = 5 and w1 = w2 = 1 are

interchanged (see Fig. 2.5(a)). The above facts strongly suggest that the effect of

the void shape on the porosity growth depends crucially on the crystal anisotropy,

indicating a strong coupling between the “morphological” anisotropy and the crystal

anisotropy. Similarly, it can be seen from Fig. 2.5(d) that the ẇ curves for porous

isotropic materials with non-spherical voids are asymmetric with respect to XΣ = 0

due to the above-mentioned “morphological” anisotropy. In particular, for porous

isotropic materials with w1 = w2 = 5, ẇ decreases monotonically with increasing

values of XΣ, becoming negative for XΣ > 1.25, while the opposite is true for w1 =

w2 = 0.2. However, Fig. 2.5(b) shows that all of the three ẇ curves for porous ice

with different void shapes exhibit qualitatively similar behaviors, indicating that the
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Figure 2.5: IVH results for the normalized growth rates of the porosity ḟ and the
aspect ratios ẇ (as defined by (2.16)), as functions of XΣ, for porous HCP single
crystals subjected to axisymmetric loadings (2.17). Plots are shown for (a) ḟ and (b)
ẇ for different initial void shapes. For comparison purposes, corresponding results
are also shown for the porous isotropic materials for (c) ḟ and (d) ẇ for different
initial void shapes.
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extreme anisotropy induced by the crystal matrix prevails over the “morphological”

anisotropy induced by the void shape, so that the dependence of ẇ on the stress

triaxiality XΣ for ice is qualitatively unaffected by the void shape.

2.4 Concluding remarks

In this chapter, a generalization of a recently developed iterated variational homog-

enization (IVH) method (Agoras and Ponte Castañeda, 2013) has been developed

to generate bounds for the effective flow potential of porous viscoplastic single crys-

tals. The method was then implemented for low-symmetry, high-anisotropy porous

HCP single crystals, such as porous ice, to investigate the macroscopic response of

these materials under axisymmetric loadings. In general, it was found that the over-

all size, shape and orientation of the macroscopic gauge surfaces depends sensitively

on the instantaneous values of the porosity, void shape and crystal anisotropy, sug-

gesting strong distortional hardening/softening effects in the macroscopic response

of these materials under finite-strain loading conditions (leading to evolution of the

microstructure). In particular, it was observed that strong crystal anisotropy could

significantly affect the dependence of the gauge surfaces on the porosity and void-

shape parameters. For example, it was found that while changing the void shape

from spherical to prolate has a softening effect on the effective behavior for porous

crystals with low anisotropy (M = 1)—in agreement with earlier results (Agoras and

Ponte Castañeda, 2013; Mbiakop et al., 2015b)—the opposite is true for porous crys-

tals with high anisotropy, such as ice (M = 60), with prolate voids leading to a stronger

response than spherical voids. In addition, consistent IVH estimates for the average

strain rate in the voids were computed to explore their implications for the evolu-

tion of the microstructure. Thus, it was found that strong crystal anisotropy may

lead to fast porosity growth at low stress triaxiality and to significant void distortion

rates at high stress triaxiality, which is in contrast to the corresponding results for

porous isotropic materials. Furthermore, it was found that the dependence of the

porosity growth and void distortion on the initial void shape is also strongly affected
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by the crystal anisotropy. In fact, the crystal anisotropy largely dominates over the

effect of the void shape, leading to significantly different behaviors for porous ice and

porous isotropic materials. The fact that the IVH model predicts a complex coupled

effect of the “morphological” anisotropy and crystal anisotropy provides strong en-

couragement for its further development into the finite-strain regime, thus accounting

for evolving microstructures by incorporating the effects of the lattice rotation, void

growth as well as the matrix hardening, building on the earlier models of Agoras and

Ponte Castañeda (2014) and Song et al. (2015) for porous isotropic materials. These

developments will be considered in future publications. Finally, it is noted that the

IVH method can also be used for high-symmetry crystals. Indeed, preliminary results

for porous FCC crystals indicate fairly good agreement with FEM results based on

unit cell calculations (Srivastava and Needleman, 2015). These results will be shown

in the following chapters.

2.5 Appendix: Expressions for the IVH method

In this Appendix, detailed expressions for the IVH method are provided, which are

generalizations of the corresponding expressions in the work of Agoras and Ponte

Castañeda Agoras and Ponte Castañeda (2013). In this context, it is important to

mention that these expressions are obtained by means of the PCW estimates of Ponte

Castañeda andWillis Ponte Castañeda andWillis (1995) for the LCC at each iteration

step. In addition, it is assumed for simplicity that the shape and orientation of the

voids are identical to those of their distribution. However, more general cases with

different shapes and orientations of the voids and their distribution can be accounted

for, as was done, for example, by Agoras and Ponte Castañeda Agoras and Ponte

Castañeda (2013).

We begin by recalling that the viscous compliance tensor M
(1)

[i]
of the matrix of

the i-level LCC is given by (2.10), while the effective compliance tensor M̃[i] of the
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i-level LCC is given by

M̃[i] =M
(1)

[i]
+ c(2)
[i]
[(M̃[i−1] −M

(1)

[i]
)

−1

+ (1 − c(2)
[i]
)Q[i]]

−1

, i = 1, ...,N, (2.19)

where the c
(2)

[i]
(i = 1, ...,N) are the incremental volume fractions required to satisfy

the condition f =
N

∏
i=1

c
(2)

[i]
, which will be simply chosen as c

(2)

[i]
= f 1/N (i = 1, ..,N),

and the Q[i] (i = 1, ...,N) are fourth-order microstructural tensors, depending on the

matrix property M
(1)

[i]
and the shape and orientation of the voids (see Nebozhyn et al.

(2001) for their corresponding expressions). It should be mentioned that M̃[0] → ∞

in (2.19), representing the compliance tensor of the vacuous inclusion in the first level

LCC.

Following the work of Agoras and Ponte Castañeda Agoras and Ponte Castañeda

(2013), the macroscopic stress σ[i] of the i-level LCC can be written in the form

σ[i] = [
N

∏
j=i+1

B
(2)

[j]
]σ, i = 1, ...,N − 1, and σ[N] = σ, (2.20)

where the corresponding stress concentration tensors are provided by

B
(2)

[i]
= [I + (1 − c(2)

[i]
)Q[i] (M̃[i−1] −M

(1)

[i]
)]

−1

, i = 2, ...,N, (2.21)

with I denoting the fully symmetric fourth-order identity tensor. Given expressions

(2.19), (2.20) and (2.21), the second moment of the stress field in the matrix of the

i-level LCC can be computed via

⟨σ ⊗σ⟩
(1)

[i]
=

1

1 − c(2)
[i]

σ[i] ⋅
∂M̃[i]

∂M
(1)

[i]

σ[i], i = 1, ...,N. (2.22)

On the other hand, the iterated PCW estimates for the average strain-rate field

in the voids can also be obtained, following the work of Agoras and Ponte Castañeda

Agoras and Ponte Castañeda (2013), and is given by D
(2)
= A(2)D, where A(2) is the
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associated strain-rate concentration tensor, determined by

A(2) =
N

∏
i=1

A
(2)

[i]
, (2.23)

with

A
(2)

[i]
= [c

(2)

[i]
I + (1 − c(2)

[i]
) [(M

(1)

[i]
−M(1)

[i]
Q[i]M

(1)

[i]
) (M̃[i−1])

−1
+M(1)

[i]
Q[i]]]

−1

,

i = 1, ...,N. (2.24)
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Chapter 3

Iterated second-order

homogenization model for

viscoplastic porous single crystals:

Theory

This chapter presents a homogenization-based constitutive model for the finite-strain,

macroscopic response of porous viscoplastic single crystals. The model accounts ex-

plicitly for the evolution of the average lattice orientation, as well as the porosity,

average shape and orientation of the voids (and their distribution), by means of

appropriate microstructural variables playing the role of internal variables and serv-

ing to characterize the evolution of both the “crystallographic” and “morphological”

anisotropy of the porous single crystals. The model makes use of the fully opti-

mized second-order variational method of Ponte Castañeda (2015), together with the

iterated homogenization approach of Agoras and Ponte Castañeda (2013), to char-

acterize the instantaneous effective response of the porous single crystals with fixed

values of the microstructural variables. Consistent homogenization estimates for the

average strain rate and vorticity fields in the phases are then used to derive evolution

equations for the associated microstructural variables. The model is 100% predictive,
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requiring no fitting parameters, and applies for porous viscoplastic single crystals

with general crystal anisotropy and average void shape and orientation, which are

subjected to general loading conditions. In the next chapter, results for both the

instantaneous response and the evolution of the microstructure will be presented for

porous FCC and HCP single crystals under a wide range of loading conditions, and

good agreement with available FEM results will be shown.

3.1 Introduction

The presence of microscopic voids and cracks has important effects on the constitutive

response of ductile solids. In particular, voids can give rise to significant dilatational

macroscopic strains under hydrostatic loading conditions in nominally incompressible

plastic or viscoplastic materials. Moreover, failure in ductile solids is known to take

place by the nucleation, growth and coalescence of voids. For these reasons, the

investigation of the effect of porosity and its evolution on the constitutive response

of ductile solids has been a problem of central importance in solid mechanics for

many years (see Tvergaard, 1990). While most of the work has made the simplifying

assumption of isotropy for the solid material (e.g., Gurson, 1977), it should be recalled

that metals and many other materials consist of aggregates of single-crystal grains,

and that the voids are often at scales that are small compared to the size of the

grains, in such a way that the microstructures could be idealized as aggregates of

porous single-crystal grains. In addition, there are engineering applications where

the effect of void growth in single crystals is important, including lifetime prediction

of Ni-based single-crystal superalloys for jet engine turbine applications (Srivastava

et al., 2012). For these reasons, there have already been several efforts to investigate

porous single crystals via numerical simulations (e.g., O’regan et al., 1997; Schacht

et al., 2003; Yerra et al., 2010; Han et al., 2013; Srivastava and Needleman, 2012;

2013; 2015). These studies have shown that crystallographic anisotropy can have

a significant effect on the growth and coalescence of the voids, as well as on the

macroscopic response of porous single crystals.
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Motivated by these works, our objective here is to develop constitutive models for

porous single crystals. For this purpose, we will make use of recent advances in non-

linear homogenization. We begin with a brief review of especially relevant literature

in the application of homogenization methods for porous solids with isotropic vis-

coplastic matrix phases. Bounds of the Hashin-Shtrikman type for porous isotropic

viscoplastic materials were given by Ponte Castañeda (1991) by means of a varia-

tional homogenization (VH) method making use of a linear comparison composite

(LCC). Equivalent bounds were derived by Willis (1991) by means of a nonlinear

generalization of the Hashin-Shtrikman variational principles (Willis, 1983), and by

Suquet (1992) for the special case of power-law media by means of Hölder’s inequality.

Making use of the VH method to obtain estimates for the macroscopic response, as

well as for the average strain rate in the pores, Ponte Castañeda and Zaidman (1994)

advanced a finite-strain constitutive model for porous (visco)plastic materials under

general triaxial loadings, accounting for the evolution of the microstructure (porosity

and void shape). The model was later generalized to include the effect of indepen-

dent changes in the void distribution, as measured by the “shape” and “orientation”

of the two-point correlation functions (Kailasam et al., 1997). The important effect

of void rotations under general shear loadings (with non-vanishing macroscopic vor-

ticity) was added in the works of Kailasam and Ponte Castañeda (1997; 1998). In

addition, strain hardening and elasticity for the matrix was considered by Kailasam

et al. (2000) and Aravas and Ponte Castañeda (2004).

While the VH bounds were found to improve on the Gurson estimate for purely

deviatoric loadings, they were also found to be overly stiff for hydrostatic loadings,

especially for low porosities and high nonlinearities. In order to remedy this shortcom-

ing, Danas and Ponte Castañeda (2009a, 2009b) proposed an improved finite-strain

constitutive model, utilizing the more sophisticated second-order (SO) linear com-

parison method (Ponte Castañeda, 2002), along with an ad hoc modification to bring

the predictions of the model for hydrostatic loadings into agreement with exact re-

sults for spherical/cylindrical shells subjected to purely hydrostatic loadings (see also

Danas and Aravas, 2012, for a similar ad hoc modification of the VH model). The
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SO model has been found to yield fairly good estimates for the macroscopic response

in several comparisons with numerical simulations and other exact results, and to

account for a strong dependence on the Lode angle (Danas and Ponte Castañeda,

2012), but its implementation required certain fitting parameters and was therefore

not fully predictive. More recently, Agoras and Ponte Castañeda (2014) proposed

a general finite-strain constitutive model for porous materials under triaxial load-

ings, making exclusive use of the VH method of Ponte Castañeda (1991), albeit in

a novel iterated fashion (Agoras and Ponte Castañeda, 2013). The iterated vari-

ational homogenization model has the advantage that it does not involve any ad

hoc modification, providing estimates that, in particular, recover the exact results

for spherical/cylindrical shells under purely hydrostatic loadings (as the number of

iterations N → ∞), while preserving the accuracy of the traditional VH model for

low stress triaxialities. In practice, however, a relatively small number of iterations

(N ≈ 5−10) has been found to be sufficient to provide accurate results and, therefore,

the new model is relatively easy to implement. The model was further generalized

by Song et al. (2015) to account for void rotations under general shear loadings,

including simple shear loading conditions. In agreement with earlier versions of the

model (Kailasam et al., 1997) and unit-cell calculations (Tvergaard, 2015), the model

was found to give different predictions for shear localization under simple shear and

pure shear loading conditions, highlighting the importance of void rotations.

At this point, it should also be noted that the Gurson approach has also been used

to account for void shape effects. This work has been thoroughly reviewed recently by

Benzerga and Leblond (2010) and Benzerga et al. (2016), and for this reason we will

not provide further details here, except to note that there are several important lim-

itations in the Gurson approach compared with the homogenization approach. First,

it should be recalled that it has not been possible to extract estimates for the aver-

age strain-rate and vorticity fields in the void phase using Gurson’s approach—and

for this reason it has been necessary to complement the limit analysis estimates for

the yield surfaces of porous ideally plastic materials with evolution laws for the pore

shape and orientation obtained from the above-mentioned homogenization methods
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(appropriately modified by parameters fitted to numerical simulations of the shell

problems). A second disadvantage is related to the use of a spherical shell (and gen-

eralizations thereof) as a proxy for a representative volume element (RVE). Indeed,

full-field numerical simulations of appropriately defined RVEs show deformation pat-

terns that have little in common with the radially symmetric deformation patterns

implicitly assumed in spherical shell models. For example, both FFT (Bilger et al.,

2005) and FEM (Fritzen et al., 2012) simulations of porous ideally plastic solids de-

pict deformation patterns involving shear bands linking up voids, especially at small

porosities, and even for hydrostatic loadings. While the predictions of the Gurson-

type models for the macroscopic yield surfaces are still fairly accurate, the same is

unlikely to be the case for corresponding predictions for the phases averages of the

strain rate and vorticity in the pores.

Next, moving on to homogenization approaches for anisotropic materials, includ-

ing heterogeneous materials with crystalline viscoplastic phases, we should mention

the work of deBotton and Ponte Castañeda (1995), which provided an extension

of the VH method of Ponte Castañeda (1991) by considering more general LCCs

with anisotropic phases mimicking the symmetries of the crystalline viscoplastic

phases. An alternative generalization of the VH method was given by Idiart and

Ponte Castañeda (2007a) for more general types of anisotropies and shown to have

the capability of producing tighter bounds than the method of deBotton and Ponte

Castañeda (1995), when specialized to composites with crystalline phases. However,

this second method is significantly harder to implement, and for this reason the

first method has been generally preferred for composites with crystalline phases. In

particular, Idiart and Ponte Castañeda (2007b) considered a model two-dimensional

porous single crystal consisting of aligned cylindrical voids with circular cross-section

subjected to anti-plane strain loadings. More recently, Han et al. (2013) made use

of the VH method, together with an ad hoc modification inspired by the Gurson

model, to obtain yield functions for porous FCC single crystals with spherical voids.

In addition, Mbiakop et al. (2015b) proposed an alternative ad hoc modification

(MVAR) of the VH approach of deBotton and Ponte Castañeda (1995) to obtain
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effective flow potentials for porous single crystals containing general ellipsoidal voids

and subjected to general loadings (see also Mbiakop et al. (2015a) for corresponding

results for two-dimensional single crystals containing cylindrical voids with general

elliptical cross-sections). The MVAR model made use of the assumption that all the

slip systems have nearly identical flow stresses and enforced agreement with the exact

result of a spherical/cylindrical shell for the special case of spherical/cylindrical voids

with an infinite number of equi-angular slip systems subjected to purely hydrostatic

loadings. The model of Han et al. (2013) was also further extended recently for fi-

nite strains by Ling et al. (2016), by accounting for the evolution of the porosity and

strain hardening of the crystal matrix, although not for possible changes in void shape

and orientation. A more general implementation of the VH method of deBotton and

Ponte Castañeda (1995) for porous single crystals with large anisotropy was made by

Song and Ponte Castañeda (2017a). To improve the accuracy of the predictions of the

VH model for small porosities and hydrostatic loading conditions, Song and Ponte

Castañeda (2017a) made use of the iterated approach of Agoras and Ponte Castañeda

(2013) to “discretize” the matrix phase, thereby generating tighter bounds for the ef-

fective flow potential of porous single crystals, such as porous HCP crystals. (Strictly,

the bounds apply for special classes of microstructures with hierarchical microstruc-

tures; however, these authors provided arguments suggesting that the bounds should

hold under more general conditions.) Retaining the distinguishing advantages of the

iterated approach for porous isotropic materials, the iterated variational homogeniza-

tion (IVH) model is entirely predictive, requiring no ad hoc modifications, and is

expected to remain accurate for porous single crystals with general crystallographic

anisotropy and general ellipsoidal voids, subjected to general loadings.

For completeness, it should be mentioned that early results for the growth and

collapse of isolated spherical voids in elasto-viscoplastic single crystals subjected to

far-field, axisymmetric loadings were obtained by Hori and Nasser (1988) by means

of the Eshelby method used in incremental fashion. The Gurson approach was also

extended to incorporate the plastic anisotropy of matrix by Benzerga and Besson

(2001), and was further generalized by Monchiet et al. (2006), Keralavarma and Ben-
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zerga (2010) and others. These models typically assume that the plastic matrix obeys

the phenomenological Hill-type orthotropic yield criterion and, in principle, cannot

account for the crystallographic details, such as the orientation and constitutive prop-

erties of the active slip systems. Kysar et al. (2005) made use of anisotropic slip line

theory to derive analytic solutions for the stress and deformation fields around cylin-

drical voids in FCC single crystals, and their results were in good agreement with

the FEM and experimental results of Gan et al. (2006). However, these results are

rigorously valid for dilute values of the porosity, where void-interaction effects are

relatively small. In addition, Paux et al. (2015) made use of a regularized Schmid

law and Gurson limit analysis to derive a Gurson-type yield criterion for porous single

crystals.

Given this background, the objective of this work is to develop a general finite-

strain constitutive model for porous viscoplastic single crystals, which not only pro-

vides the instantaneous response of the porous medium for a given state of the mi-

crostructure, but which can also account for the evolution of the “crystallographic”

anisotropy induced by lattice rotation, as well as the corresponding evolution of the

“morphological” anisotropy induced by changes in the porosity, and average shape

and orientation of the voids. In this part of the work, we present the theoretical de-

velopment of the proposed model. Specifically, we make use of the recently developed

fully optimized second-order (FOSO) variational approach of Ponte Castañeda (2015),

in combination with a generalization of the iterated variational homogenization pro-

cedure of Agoras and Ponte Castañeda (2013), to characterize the instantaneous

macroscopic behavior of porous single crystals. In addition, consistent homogeniza-

tion estimates for the average strain rate and spin fields in the phases are, in turn,

used to develop self-consistent evolution equations for the lattice orientation, poros-

ity, void shape and void orientation. In this context, it should be recalled that the

FOSO estimates for the the average strain rate and spin fields in the phases of the

viscoplastic porous single crystal may be obtained directly from the corresponding

average fields in the phases of the LCC. However, we expect such estimates to be able

to account—at least approximately—for strong interactions (leading to localization of
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the deformation) between the voids in the ideally plastic limit (see Ponte Castañeda,

2016). In chapter 4, we consider applications of the model for porous FCC and HCP

single crystals. We will also make use of the unit-cell FEM results of Srivastava and

Needleman (2012, 2015) to assess the predictive capability of the proposed model.

3.2 Background and formulation

In this work, porous single crystals are idealized as two-phase materials with vacuous

inclusions (phase 2) embedded in the single-crystal matrix (phase 1). The single-

crystal matrix is assumed to have a crystal lattice defined by means of three linearly

independent crystallographic axes l1, l2 and l3 (see Fig. 3.1). The lattice can be

completely general, so that l1, l2 and l3 are not necessarily mutually orthogonal or

have the same length. There are two main deformation mechanisms for the single-

crystal matrix: (i) the elastic distortion of the atomic lattice and (ii) the plastic

deformation through the motion of dislocations. In this work, however, we mainly

focus on the response of porous single crystals under large plastic deformations and,

for this reason, the elastic strains, which are typically very small (of the order 10−3),

will be neglected. However, lattice rotation will be accounted for. Thus, the crystal

matrix is assumed to deform by dislocation glide alongK well-defined crystallographic

slip systems, and the local constitutive behavior of the single crystal is taken to be

viscoplastic, and can be characterized by

D =
∂u(1)(σ)

∂σ
, u(1)(σ) =

K

∑
k=1

φ(k)(τ(k)), (3.1)

where u(1) denotes the stress potential for the crystal matrix, σ is the Cauchy stress

and D is the Eulerian strain rate. The convex functions φ(k) (k = 1, ...,K) are the

slip potentials characterizing the response of the K slip systems, and depend on the

resolved shear (or Schmid) stresses

τ(k) = σ ⋅µ(k), where µ(k) =
1

2
(n(k) ⊗m(k) +m(k) ⊗ n(k)) . (3.2)
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Here the µ(k) are the second-order Schmid tensors obtained from the symmetrized

dyadic product of n(k) and m(k), with n(k) and m(k) denoting the unit vectors normal

to the slip plane and along the slip direction of the kth slip system, respectively. Al-

though more general constitutive response could be considered for the crystal matrix,

for simplicity, the slip potentials φ(k) are assumed to be of the usual power-law form

φ(k)(τ) =
γ̇0(τ0)(k)

n + 1
∣

τ

(τ0)(k)
∣

n+1

, k = 1, ...,K, (3.3)

where γ̇0 denotes the reference strain rate, (τ0)(k) > 0 is the reference flow stress of the

kth slip system and n is the creep exponent (the inverse of the strain rate sensitivity

m = 1/n). This class of slip potentials is known to be particularly appropriate for

exploring the effect of nonlinearity and crystallographic anisotropy for a wide range

of material behaviors. Note that the (τ0)(k) can be very different for different slip

systems, which may lead to strongly anisotropic behavior for the single crystal. Also

note that the creep exponent n could be taken to be different for different slip systems,

but here, for simplicity, it will be taken to be identical for all slip systems, such that

the stress potential u(1) for the crystal matrix is a homogeneous function of degree n+1

in σ. In particular, the two limiting cases as n tends to 1 and∞ are of special interest,

since they respectively describe linearly viscous and rigid ideally plastic behavior for

the single crystal.

As shown in Fig. 3.1, the voids are assumed—on average—to be ellipsoidal in

shape, and to be aligned in a given direction, but distributed with random positions in

the surrounding single-crystal matrix, as described by two-point probability functions

(for their centers) with “ellipsoidal symmetry” (Willis, 1977; Ponte Castañeda and

Willis, 1995). In general, the ellipsoid characterizing the void distribution can be

different from the ellipsoid characterizing the voids (Ponte Castañeda and Willis,

1995; Agoras and Ponte Castañeda, 2013). However, the effect of the void distribution

on the macroscopic behavior of the porous single crystals is only of second order in

the volume fraction of the voids (porosity) and becomes less important at low to

moderate porosities. For this reason, it is further assumed that the ellipsoidal shape
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Figure 3.1: Schematic representation of a porous single crystal consisting of aligned,
ellipsoidal voids (solid lines) that are distributed with the same ellipsoidal symmetry
(dotted lines) in a single-crystal matrix.

and orientation of the distribution function are identical to the ellipsoidal shape and

orientation of the voids (Agoras and Ponte Castañeda, 2014; Song et al., 2015).

In view of these hypotheses, the microstructure of the porous single crystal under

consideration can be completely described by the set of microstructural variables

s ≡ {l1, l2, l3, f,w1,w2,n1,n2,n3}, (3.4)

where l1, l2 and l3 characterize the lattice vectors of the crystal matrix, f denotes the

volume fraction of the voids (or porosity), w1 = a3/a1,w2 = a3/a2 are the two aspect

ratios of the representative ellipsoids characterizing the shape and distribution of the

voids (a1, a2 and a3 are the lengths of the three semi-axes of the ellipsoid), and n1,

n2 and n3 are unit vectors along the three principal directions of the representative

ellipsoid (see Fig. 3.1). It is remarked that, among the above-defined microstructural

variables (3.4), l1, l2 and l3 describe the underlying anisotropy of the crystal matrix, or

the “crystallographic” anisotropy, while the others (f,w1,w2,n1,n2,n3) characterize

the “morphological” anisotropy of the porous single crystal.

For a given fixed state of the microstructure, as described by the microstructural

variables (3.4), the instantaneous effective viscoplastic response of the porous single

crystal, characterizing the relation between the average strain rate ⟨D⟩ = D and the

average stress ⟨σ⟩ = σ, may be written in the form (e.g., Ponte Castañeda and Suquet,
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1998)

D =
∂ũ(σ)

∂σ
, ũ(σ) = (1 − f) min

σ∈S(σ)
⟨u(x,σ)⟩(1). (3.5)

Here ũ is the effective stress potential for the porous single crystal, S(σ) is the set

of statically admissible stress fields, including all σ fields that are divergence free,

lead to zero traction on the void surfaces, and satisfy the condition ⟨σ⟩ = σ. The

triangular brackets ⟨⋅⟩ denote volume averages over a representative volume element

(RVE) of the porous material, while ⟨⋅⟩(r) denotes volume averages over phase r in

the RVE.

In summary, the instantaneous macroscopic response of the porous single crystals

considered in this work can be completely determined by the effective stress potential

ũ defined in (3.5). However, given the nonlinear constitutive relations of the crystal

matrix and the complexity of the random microstructure, the determination of the

exact values of ũ is impossible in practice, since it requires solving sets of nonlinear

partial differential equations with randomly oscillating coefficients. In this work, ap-

proximate estimates for the effective potential will be obtained by means of a novel

iterative homogenization scheme, making use of the recently developed fully opti-

mized second-order (FOSO) variational homogenization method (Ponte Castañeda,

2015). In the next section, for completeness, we first recall the main features of

the FOSO method in some detail. The FOSO method is then used in an iterative

fashion, following the work of Agoras and Ponte Castañeda (2013), to obtain new

estimates for the instantaneous effective behavior of porous single crystals. Finally,

consistent homogenization estimates for the average strain-rate and vorticity fields

in the phases of porous single crystals are used to develop complementary evolution

laws for the microstructural variables (3.4), characterizing the evolution of both the

“crystallographic” and “morphological” anisotropy of the porous single crystals at

finite deformations.
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3.3 Fully optimized second-order variational esti-

mates

The FOSO variational method of Ponte Castañeda (2015) makes use of the effective

behavior of an appropriately chosen porous “linear comparison composite” (LCC)—

with uniform matrix properties and microstructure identical to that of the nonlinear

porous single crystal of interest—to estimate the effective behavior of the nonlinear

composite. To set the stage for the FOSO estimates, we first describe the porous

LCC involved in the FOSO procedure.

For the class of porous single crystals defined in section 6.2, consider a porous LCC

with the same microstructure as the nonlinear porous single crystal (described by the

microstructural variables (3.4)), but with a crystal matrix (phase 1) characterized by

the quadratic stress potential

u
(1)
L (σ) =

1

2
σ ⋅M(1)σ + η(1) ⋅σ, (3.6)

where M(1) and η(1) are uniform, anisotropic fourth- and second-order tensors, re-

spectively, corresponding to the viscous compliance tensor and eigenstrain-rate tensor

of the crystal matrix, which are defined by

M(1) =
K

∑
k=1

1

2µ(k)
µ(k) ⊗µ(k), and η(1) =

K

∑
k=1

η(k) µ(k). (3.7)

Here the scalars µ(k) and η(k) (k = 1, ...,K) are respectively the positive slip viscosities

and slip eigenstrain rates, which are unknown a priori but will be specified later. Dif-

ferentiation of the stress potential (3.6) with respect to σ shows that the constitutive

relation of the LCC matrix is linear, i.e.,

D =M(1)σ + η(1). (3.8)

Note that the constitutive relation (3.8) for the matrix of the LCC, corresponding

to a linearly viscous material with prescribed eigenstrain rates, is mathematically
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analogous to that for a ‘thermoelastic’ material. On the other hand, the stress poten-

tial for the vacuous inclusion (phase 2) is also assumed to be of the form (3.6), but

with a viscous compliance tensor M(2) → ∞ and an eigenstrain-rate tensor η(2) = 0.

Then, for any prescribed macroscopic stress σ, the effective stress potential ũL for

the porous LCC may be estimated by means of the estimates of Ponte Castañeda and

Willis (1995) (to be referred to here as PCW estimates), and is given by

ũL (σ) =
1

2
σ ⋅ M̃σ + η̃ ⋅σ. (3.9)

In the above expression, M̃ and η̃ are the effective compliance tensor and the effective

eigenstrain-rate tensor of the porous LCC, respectively. They are given by

M̃ =M(1) +
f

1 − f
Q−1, and η̃ = η(1). (3.10)

Here Q is a fourth-order microstructural tensor related to the Eshelby tensor, de-

pending on the matrix property M(1) and the shape and orientation of the voids, and

is given by

Q =
1

4πw1w2
∫
∣ζ ∣=1

(M(1))
−1 − (M(1))−1H(ζ) (M(1))−1

∣Z−1ζ∣3
dS, (3.11)

where ζ is a unit vector and Hijkl = K
−1
ik ζjζl∣(ij)(kl) (the parentheses denote sym-

metrization with respect to the corresponding indices), with Kik = (M (1))
−1

imkn ζmζn

denoting the acoustic tensor. The symmetric second-order tensor Z serves to char-

acterize the shape and orientation of the voids (and their distribution), and can be

written in the form

Z = w1n1 ⊗n1 +w2n2 ⊗ n2 +n3 ⊗ n3. (3.12)

Correspondingly, the first and second moments of the stress field over the matrix

of the porous LCC, which are required by the FOSO method, are determined by

σ(1) =
1

1 − f
σ, and ⟨σ ⊗σ⟩(1) =

2

1 − f
∂ũL

∂M(1)
. (3.13)
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Following the work of Ponte Castañeda (2015), the FOSO estimates for the effective

stress potential ũ (as defined by (3.5)) of the nonlinear porous single crystals are given

by

ũSO(σ) = (1 − f)
K

∑
k=1

[αφ(k)(τ̌(k)) + (1 −α)φ(k)(τ̂(k))] , (3.14)

where α is an appropriately chosen constant weight factor between 0 and 1, the

τ̌(k) and τ̂(k) (k = 1, ...,K) are stress variables depending on both the first and second

moments of the stress field over the matrix of the porous LCC (see expression (3.13)).

They satisfy the relations (Ponte Castañeda, 2015)

ατ̌(k) + (1 − α) τ̂(k) = σ(1) ⋅µ(k) = τ (k), (3.15)

and

α (τ̌(k))
2
+ (1 − α) (τ̂(k))

2
= µ(k) ⋅ ⟨σ ⊗σ⟩(1)µ(k) = τ (k), (3.16)

where τ (k) and τ (k) correspond to the first and second moments of the resolved shear

stresses over the kth slip system of the LCC matrix. More specifically, τ̌(k) and τ̂(k)

are chosen to be such that τ̌(k) ≤ τ̂(k) and can be easily obtained by solving the set of

quadratic equations (3.15) and (3.16), so that

τ̌(k) = τ (k) −

√

1 −α
α

√

τ (k) − τ 2(k) = τ (k) −

√

1 − α
α

SD(1) (τ(k)) (3.17)

and

τ̂(k) = τ (k) +
√

α

1 −α

√

τ (k) − τ 2(k) = τ (k) +
√

α

1 − α
SD(1) (τ(k)) , (3.18)

with SD(1) (τ(k)) =
√

τ (k) − τ 2(k) denoting the standard deviation of the resolved shear

stresses over slip system k in the LCC matrix. In this connection, it should be

emphasized that the quantities τ̌(k) and τ̂(k)—depending on both the first and second

moments of the stress field over the LCC matrix—are functions of the properties of

the LCC, as determined by the variables µ(k) and η(k) in (3.7).

In turn, the properties of the porous LCC have to be specified such that the slip
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viscosities µ(k) and the slip eigenstrain rates η(k) satisfy the linearization conditions

φ′(k)(τ̂(k)) −
1

2µ(k)
τ̂(k) = η(k) = φ

′
(k)(τ̌(k)) −

1

2µ(k)
τ̌(k). (3.19)

Note that these two conditions imply that

1

2µ(k)
=

φ′
(k)
(τ̂(k)) − φ′(k)(τ̌(k))

τ̂(k) − τ̌(k)
, (3.20)

which identifies the slip viscosities µ(k) of the LCC matrix with ‘generalized secant’

linearizations of the nonlinear slip potentials for the viscoplastic single-crystal matrix,

accounting for both the first and second moments of the stress field in the crystal

matrix. (Note further that this expression reduces to the ‘tangent’ linearization when

there are no field fluctuations in the phase and the τ̂(k) → τ̌(k).) Expressions (3.17)-

(3.19) provide a system of 4K nonlinear algebraic equations for the variables τ̌(k),

τ̂(k), µ(k) and η(k) (k = 1, ..,K), which can be easily solved numerically.

As already mentioned, the macroscopic constitutive behavior and the correspond-

ing field statistics (e.g., the first and second moments of the stress and strain rate

fields) of the nonlinear porous single crystals can be obtained directly from those of

the porous LCC (Ponte Castañeda, 2015). (This follows from the full stationarity of

the FOSO estimates in the properties of the LCC, together with the results of Idiart

and Ponte Castañeda (2007c), and is independent of the choice of the weights α.)

In particular, the FOSO estimate for the macroscopic strain rate D of the nonlinear

porous single crystal under the applied loading σ is given by

D =
∂ũSO

∂σ
(σ) =

∂ũL

∂σ
(σ) = M̃σ + η̃, (3.21)

where it is recalled that M̃ and η̃ are the effective compliance tensor and the effective

eigenstrain-rate tensor of the porous LCC, respectively, which are given by (3.10).

We should emphasize that M̃ and η̃ depend nonlinearly on σ and, therefore, the

macroscopic constitutive relation (3.21) is also nonlinear, as expected.

At this point, it should be recalled (Ponte Castañeda, 2015) that the results
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discussed in this section are valid for any choice of the weights α. Unfortunately,

at the present time there is no mathematically or physically motivated prescription

available to select these weights in ‘optimal’ fashion. One alternative possibility

would be to use these weights to try to fit our theoretical predictions to the results

of numerical simulations or experimental results, but—in this first application of the

method for porous single crystals—we choose not to pursue this option, preferring

instead to make use of the simplest choice α = 1/2 (see below).

On the other hand, the average strain rate and spin fields in the voids, which

are useful for establishing the complementary equations for the evolution of the mi-

crostructure, can be consistently obtained from the PCW estimates for the corre-

sponding fields in the LCC. In particular, the average strain rate in the voids D
(2)

may be expressed in terms of the macroscopic strain rate D as

D
(2)
= A(2)D + a(2), (3.22)

where A(2) and a(2) are the associated strain-rate concentration tensors given by

A(2) = [fI + (1 − f)M(1)Q]
−1
, (3.23)

and

a(2) = − (1 − f)A(2) (I −M(1)Q)η(1), (3.24)

with I denoting the fully symmetric fourth-order identity tensor. Similarly, the aver-

age spin in the voids can be written in terms of the macroscopic strain rate D and

the macroscopic spin W as

W
(2)
=W −C(2)D −β(2), (3.25)

where C(2) and β(2) are the associated spin-concentration tensors provided by

C(2) = −(1 − f)ΠA(2), (3.26)
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and

β(2) = −(1 − f)Π(a(2) − η(1)). (3.27)

Here Π is the fourth-order Eshelby rotation tensor determining the spin of an isolated

void in an infinite linearly viscous matrix, and is given by

Π =
1

4πw1w2
∫
∣ζ ∣=1

Ĥ(ζ) (M(1))
−1

∣Z−1ζ∣3
dS, (3.28)

with Ĥijkl = K
−1
ik ζjζl∣[ij](kl) (the square bracket denotes the skew symmetric part of

the first two indices, while the round bracket denotes the symmetric part of the last

two indices). We recall that Kik = (M (1))
−1

imkn ζmζn is the acoustic tensor, and Z as

given by (3.12) is a symmetric second-order tensor describing the instantaneous shape

and orientation of the voids (and their distribution).

Next, it is necessary to determine the average slip rates γ(k) (k = 1, ...,K) over

different slip systems in the single-crystal matrix. Letting D
(1)

denote the average

strain rate in the crystal matrix, they will be required here to satisfy the relation

D
(1)
=

K

∑
k=1

γ(k)µ(k). (3.29)

Note that D
(1)

can be directly estimated from the constitutive relation (3.8) for the

LCC matrix, i.e.,

D
(1)
=M(1)σ(1) + η(1) =

K

∑
k=1

(
1

2µ(k)
τ (k) + η(k))µ(k), (3.30)

or, using (3.7), (3.15) and (3.19), from the expression

D
(1)
=

K

∑
k=1

[αφ′(k)(τ̌(k)) + (1 − α)φ
′
(k)(τ̂(k))]µ(k). (3.31)

It then follows from (3.29), (3.30) and (3.31) that the average slip rates γ(k) can be
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Figure 3.2: The ‘generalized secant’ linearization (3.20) and the ‘secant’ linearization
(3.36) of the nonlinear constitutive response of the viscoplastic single crystals. The
evaluation of the corresponding average slip rate γ(k) is also shown in the figure.

expressed in the equivalent forms

γ(k) =
1

2µ(k)
τ (k) + η(k) = αφ′(k)(τ̌(k)) + (1 − α)φ

′
(k)(τ̂(k)). (3.32)

Note that γ(k) ≠ 2D
(1)
⋅ µ(k), except when the Schmid tensors µ(k) are orthogonal

to each other for the crystal matrix. Thus, the γ(k) (k = 1, ...,K) can be estimated

directly from the LCC, whose properties are determined by (3.19) (or, equivalently,

the ‘generalized secant’ condition (3.20)). For visualization purposes, the ‘generalized

secant’ condition (3.20) and the evaluation of the corresponding γ(k) from expression

(3.32) is depicted graphically in Fig. 3.2. In particular, it can be seen that the

‘generalized secant’ condition provides a linear interpolation between the slip rates

γ̌(k) = φ
′
(k)
(τ̌(k)) and γ̂(k) = φ

′
(k)
(τ̂(k)), associated with the resolved shear stresses

τ̌(k) and τ̂(k), respectively. More importantly, the average slip rates γ(k) are seen

in Fig. 3.2 to be related to the average resolved shear stresses τ (k)—lying between

τ̌(k) and τ̂(k)—by the linearized constitutive relation (3.32)–and not by the nonlinear
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constitutive relation, i.e.,

γ(k) ≠ φ
′
(k) (τ (k)) . (3.33)

Note further that, due to the nonlinear stress-strain rate response of the single-crystal

matrix, the inequality (3.33) is to be expected. This is because the average of a

nonlinear function is generally different from the function of the average. For this

reason, the fact that the FOSO estimates (3.32) for γ(k) are entirely consistent with

(3.33) is a distinguishing feature of the FOSO method in comparison to the earlier

second-order estimates of Liu and Ponte Castañeda (2004a), which involves the use

of an “affine” approximation of the average slip rates, i.e., γ(k) = φ
′
(k)
(τ (k)), violating

the general expectation of relation (3.33). Finally, note that the weight factor α will

be chosen to be 1/2, which is the most symmetric choice, although there may be other

better choices for the value of α. This is a point that will require further investigation

in future works.

In this context, we should mention that the FOSO estimate (3.14) for ũ is a

generalization of the variational homogenization (VH) estimate of deBotton and Ponte

Castañeda (1995), which may be recovered from the FOSO estimate (3.14) by formally

setting the eigenstrain-rate tensor η(1) = 0. In its final form, the VH estimate for the

effective stress potential ũ of the nonlinear porous single crystal can be written as

ũVH
(σ) = (1 − f)

K

∑
k=1

φ(k)(τ̂(k)). (3.34)

Here the stress variables τ̂(k) depend only on the second moments of the resolved

shear stresses over the LCC matrix, which are given by

τ̂(k) =
√

τ (k) =
√

µ(k) ⋅ ⟨σ ⊗σ⟩(1)µ(k), (3.35)

where the second moment ⟨σ⊗σ⟩(1) may be obtained from the PCW estimates (3.13)2

with the η(1) = 0. In turn, the slip viscosities µ(k) in the porous LCC are given by

the conditions
1

2µ(k)
=

φ′
(k)
(τ̂(k))

τ̂(k)
. (3.36)
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Note that (3.36) identifies the slip viscosities µ(k) of the LCC matrix with ‘secant’

linearizations of the nonlinear constitutive response for the corresponding slip systems

in the viscoplastic single-crystal matrix (see the dashed straight line in Fig. 3.2),

accounting for the second moment of the stress field in the crystal matrix. Also note

that the VH estimates for the average slip rates γ(k) over different slip systems can

be obtained directly from the LCC, i.e., γ(k) = τ (k)/ (2µ(k)) ≠ φ
′
(k)
(τ (k)).

The FOSO estimates (3.14) are known to be exact to second order in the hetero-

geneity contrast (Ponte Castañeda, 2015), when used in combination with estimates

for the LCC that are exact to second order in the heterogeneity contrast (e.g., the

PCW estimates used in this work). For this reason, they are more accurate then the

VH estimates (3.34), which are only exact to first order in the heterogeneity contrast.

In fact, the VH estimate can be shown to be a rigorous lower bound for all other

estimates for the effective stress potential ũ of the porous single crystals (deBotton

and Ponte Castañeda, 1995). Although the FOSO estimates (3.14) provide fairly ac-

curate estimates in most cases, they become less accurate for low porosity and high

nonlinearity, especially at high stress triaxialities. As already noted in the context of

the VH method (Agoras and Ponte Castañeda, 2013), this drawback is attributed to

the assumption, employed in their derivation, that the matrix property in the LCC

is uniform. For this reason, in the next section we develop improved estimates by

incorporating non-uniform properties of the matrix phase in the LCC.

3.4 Iterated second-order estimates

In this section, we make use of the iterative homogenization approach of Agoras and

Ponte Castañeda (2013) in combination with the FOSO method—as discussed in

section 3.3—to obtain further improved estimates for the effective stress potential ũ

of the nonlinear porous single crystals, which will be referred to here as the Iterated

Second-Order (ISO) homogenization estimates. Following the work of Agoras and

Ponte Castañeda (2013) and as illustrated in Fig. 3.3, the key idea of the ISO method

is to construct the porous microstructure iteratively in a self-similar fashion. In the
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Iteration 1 Iteration 2 Iteration N

Figure 3.3: Schematic representation of the iterated homogenization procedure for a
porous single crystal consisting of aligned, ellipsoidal voids (solid lines) that are dis-
tributed with the same ellipsoidal symmetry (dotted lines) in a single-crystal matrix.

first iteration (i = 1), the voids are distributed in the matrix with volume fraction

c
(2)

[1]
> f and given (generally different) shapes for the voids and the distribution

ellipsoid. In the second iteration (i = 2), “composite inclusions” of the porous material

from the first iteration are distributed in the same matrix phase (including same

orientation) with volume fraction c
(2)

[2]
and with inclusion and distribution shapes

that are identical to the distribution shape of the voids in the first iteration. At

iteration 3 (i = 3), “composite inclusions” of the porous material from iteration 2 are

distributed in the same matrix phase with volume fraction c
(2)

[3]
and with inclusion

and distribution shapes identical to the distribution shape of the voids in the first

iteration. The procedure is continued N times in such a way that the final composite

(i = N) consists of a porous single crystal with the desired porosity f , such that

f =
N

∏
i=1

c
(2)

[i]
, (3.37)

where c
(2)

[i]
(i = 2, ...,N) represents the volume fraction of the “composite inclusion”

in the level-i composite. Note that the voids in the final, level-N microstructure

have the given shape (from the first iteration) and are distributed in “hierarchical

clusters,” but still possessing ellipsoidal distribution of a given (possibily different)

shape. With the above construction procedure, it can be shown (Agoras and Ponte

Castañeda, 2013) that the resulting level-N composite still belongs to the class of
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random porous materials defined in section 6.2, and is characterized by the same

set of microstructural variables (3.4). Moreover, while the hierarchical nature of the

microstructure in the iterated procedure may be expected to have an effect on the

effective properties relative to those of the original (non-iterated) microstructure, it

is known (Ponte Castañeda, 2012; Agoras and Ponte Castañeda, 2013) that the PCW

estimates for the effective properties of porous linear-elastic materials are insensitive

to the hierarchical nature of the microstructure. In other words, the PCW estimates

for the effective properties of porous linear-elastic materials with iterated and non-

iterated (single-scale) microstructures are identical and given by expressions (3.10),

provided that they both have the same porosity and void and distribution shapes

and orientations. Because of this, the assumption will be made here that the same is

true of the corresponding FOSO “linear comparison” estimates of the PCW type for

the nonlinear porous materials, keeping in mind that the reason for introducing this

iterated procedure is that it allows for the use of more general (non-uniform) “trial

fields” for the moduli of the LCC in the matrix—in a way that is consistent with the

given statistics of the random microstructures.

Estimates for the effective behavior of the porous single crystals of interest in this

work may then be obtained by applying the FOSO method iteratively to the above-

described level-N composite. Thus, the ISO procedure involves, at each iteration,

an LCC with microstructure identical to that of the corresponding nonlinear com-

posite, but with a linear single-crystal matrix and a linear (compressible) inclusion

phase. Specifically, the stress potential of the LCC crystal matrix (phase 1) at the

ith iteration is assumed to be of the form (3.6), but with the viscous compliance and

eigenstrain-rate tensors given by

M
(1)

[i]
=

K

∑
k=1

1

2µ
[i]

(k)

µ(k) ⊗µ(k), and η
(1)

[i]
=

K

∑
k=1

η
[i]

(k)
µ(k), (3.38)

respectively. Here the label [i] is used to denote the appropriate quantities of the

LCC at level i, so that the µ
[i]

(k)
and η

[i]

(k)
are respectively the slip viscosities and slip

eigenstrain rates (to be specified later), and N is the total number of iterations in the
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ISO procedure. On the other hand, the stress potential of the inclusion phase in the

LCC at level i is also assumed to be of the form (3.6), but with a viscous compliance

tensor M
(2)

[i]
and eigenstrain-rate tensor η

(2)

[i]
(i = 1, ...,N). In particular, for the LCC

at the lowest iteration i = 1, M
(2)

[1]
→ ∞ and η

(2)

[1]
= 0 correspond respectively to

the viscous compliance tensor and eigenstrain-rate tensor of the vacuous inclusion,

while, at each subsequent iterations i = 2, ...,N , M
(2)

[i]
and η

(2)

[i]
correspond respectively

to the linearized compliance tensor and eigenstrain-rate tensor of the (compressible)

composite inclusion. Furthermore, the effective behavior of the LCC at each level, and

the corresponding field statistics, can be estimated by means of the PCW estimates,

which are given in detail in Appendix I.

Next, we provide the ISO estimates for the effective stress potential ũ of the porous

single crystals in a little more detail. For later use, define σ[i] = ⟨σ⟩[i] (i = 1, ...,N)

to be the average stress field over the level-i composite, and define ũ[i] accordingly

to be the effective stress potential for the level-i composite. At the lowest iteration,

the effective behavior of the level-1 porous single crystal can be obtained by means

of expression (3.14), such that

ũISO[1] (σ[1]) = (1 − c
(2)

[1]
)

K

∑
k=1

[αφ(k)(τ̌
[1]

(k)
) + (1 − α)φ(k)(τ̂

[1]

(k)
)] , (3.39)

where the stress variables τ̌
[1]

(k)
and τ̂

[1]

(k)
(τ̌
[1]

(k)
≤ τ̂

[1]

(k)
) are determined by expressions

(3.17) and (3.18), specialized to the first iteration. They are given by setting the

superscript i = 1 in the following expressions

τ̌
[i]

(k)
= τ
[i]

(k)
−

√

1 − α
α

√

τ
[i]

(k) − (τ
[i]

(k)
)

2

= τ
[i]

(k)
−

√

1 − α
α

SD
(1)

[i]
(τ
[i]

(k)
) (3.40)

and

τ̂
[i]

(k)
= τ
[i]

(k)
+
√

α

1 −α

√

τ
[i]

(k) − (τ
[i]

(k)
)

2

= τ
[i]

(k)
+
√

α

1 − α
SD
(1)

[i]
(τ
[i]

(k)
) , (3.41)

where 0 < α < 1 is a weight factor, which will be chosen here to be 1/2 for simplicity,
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while τ
[i]

(k)
= σ

(1)

[i]
⋅µ(k), τ

[i]

(k) = µ(k) ⋅ ⟨σ ⊗σ⟩
(1)

[i]
µ(k), and SD

(1)

[i]
(τ
[i]

(k)
) =

√

τ
[i]

(k) − (τ
[i]

(k)
)

2

denote, respectively, the first moment, the second moment, and the standard deviation

of the resolved shear stress over slip system k in the level-i LCC matrix. In these

expressions, σ
(1)

[i]
and ⟨σ⊗σ⟩(1)

[i]
(i = 1, ...,N) denote, respectively, the first and second

moments of the stress field in the level-i LCC matrix, as given by (3.84)1, together

with (3.72), (3.73), and (3.88) in Appendix I.

In turn, the corresponding slip viscosities µ
[1]

(k)
and slip eigenstrain rates η

[1]

(k)
of the

LCC matrix at level 1 are obtained by setting the superscript i = 1 in the following

expressions

1

2µ
[i]

(k)

=

φ′
(k)
(τ̂
[i]

(k)
) − φ′

(k)
(τ̌
[i]

(k)
)

τ̂
[i]

(k)
− τ̌ [i]
(k)

, and η
[i]

(k)
= φ′(k)(τ̌

[i]

(k)
) −

1

2µ
[i]

(k)

τ̌
[i]

(k)
. (3.42)

Next, consider the level-2 porous single crystal, where the above homogenized

level-1 composite—with the effective stress potential ũISO
[1]

given by (3.39)—is dis-

tributed in the form of “composite inclusion” in the single-crystal matrix. Making

use of the fact that the PCW estimate for the stress field within the inclusion phase

is uniform, the ISO estimates for the effective response of the level-2 composite may

be written in the form (Ponte Castañeda, 2015)

ũISO[2] (σ[2]) = (1 − c
(2)

[2]
)

K

∑
k=1

[αφ(k)(τ̌
[2]

(k)
) + (1 − α)φ(k)(τ̂

[2]

(k)
)] + c(2)

[2]
ũISO[1] (σ

(2)

[2]
) . (3.43)

Here σ
(2)

[2]
denotes the average stress field over the inclusion phase of the level-2 LCC,

as given by (3.73) in Appendix I, while the stress variables τ̌
[2]

(k)
and τ̂

[2]

(k)
(τ̌
[2]

(k)
≤ τ̂
[2]

(k)
),

as well as the slip viscosities µ
[2]

(k)
and slip eigenstrain rates η

[2]

(k)
of the LCC matrix at

level 2, are given by setting i = 2 in expressions (3.40) to (3.42). On the other hand,

the compliance tensor M
(2)

[2]
and eigenstrain-rate tensor η

(2)

[2]
of the inclusion phase of

the LCC at level 2 have to satisfy the consistency condition

∂ũISO
[1]

∂σ
(σ
(2)

[2]
) =M

(2)

[2]
σ
(2)

[2]
+ η(2)

[2]
. (3.44)
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Making use of equation (3.21), along with the relation σ
(2)

[2]
= σ[1], we have that

equation (3.44) implies that

M
(2)

[2]
= M̃[1] and η

(2)

[2]
= η̃[1], (3.45)

where M̃[1] and η̃[1] are the PCW estimates for the effective compliance tensor and

effective eigenstrain-rate tensor of the level-1 LCC, respectively.

Next, making use of expression (3.39) for ũISO
[1]

in (3.43), the ISO estimates for the

effective stress potential of the level-2 composite may be rewritten as

ũISO[2] (σ[2]) =c
(2)

[2]
(1 − c(2)

[1]
)

K

∑
k=1

[αφ(k)(τ̌
[1]

(k)
) + (1 − α)φ(k)(τ̂

[1]

(k)
)]

+ (1 − c(2)
[2]
)

K

∑
k=1

[αφ(k)(τ̌
[2]

(k)
) + (1 − α)φ(k)(τ̂

[2]

(k)
)] . (3.46)

The ISO estimates for the effective stress potential of the porous single crystal

at each subsequent iterations i = 3, ...,N can be obtained by means of a procedure

completely analogous to the one adopted above for the derivation of (3.46). Then,

it follows that the resulting estimates at a general iteration i (i = 2, ...,N) may be

written in a form similar to (3.43), namely

ũISO[i] (σ[i]) = (1 − c
(2)

[i]
)

K

∑
k=1

[αφ(k)(τ̌
[i]

(k)
) + (1 − α)φ(k)(τ̂

[i]

(k)
)] + c(2)

[i]
ũISO[i−1](σ

(2)

[i]
). (3.47)

Starting with ũISO
[1]

in (3.39), and making use of expression (3.47) recursively for

i = 2, ...,N to estimate ũ[i] in terms of ũ[i−1], we obtain the following ISO estimates

for the final, level-N porous single crystal:

ũISO(σ) =
N

∑
i=1

(1 − c(2)
[i]
)(

N

∏
j=i+1

c
(2)

[j]
)[

K

∑
k=1

(αφ(k)(τ̌
[i]

(k)
) + (1 −α)φ(k)(τ̂

[i]

(k)
))] , (3.48)

where we have made use of the fact that σ[N] ≡ σ for the level-N composite. In

expression (3.48), the stress variables τ̌
[i]

(k)
and τ̂

[i]

(k)
(τ̌
[i]

(k)
< τ̂

[i]

(k)
), with i = 1, ...,N , are

given by expressions (3.40) and (3.41), respectively. In turn, the properties of the
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LCC must be specified such that the slip viscosities µ
[i]

(k)
and slip eigenstrain rates

η
[i]

(k)
of the LCC matrix at level i satisfy the conditions (3.42). It should be emphasized

here that the stress variables τ̌
[i]

(k)
and τ̂

[i]

(k)
(i = 1, ...,N ; k = 1, ...,K) are functions of

the properties of the LCC, as determined by the variables µ
[i]

(k)
and η

[i]

(k)
(i = 1, ...,N ,

k = 1, ...,K) in (3.38).

On the other hand, the viscous compliance tensor M
(2)

[i]
and eigenstrain-rate tensor

η
(2)

[i]
of the inclusion phase in the level-i LCC are specified to be

M
(2)

[1]
→∞, η

(2)

[1]
= 0 and M

(2)

[i]
= M̃[i−1], η

(2)

[i]
= η̃[i−1], i = 2, ...,N, (3.49)

where M̃[i] and η̃[i] are the PCW estimates for the effective compliance tensor and

the effective eigenstrain-rate tensor of the level-i LCC, respectively, as given by (3.67)

and (3.68) in Appendix I.

In summary, the computation of the ISO estimates (3.48) requires the solution of

4K ×N nonlinear algebraic equations, as given by (3.40), (3.41) and (3.42), where

the unknowns are the stress variables τ̌
[i]

(k)
(K ×N) and τ̂

[i]

(k)
(K ×N), as well as the

slip viscosities µ
[i]

(k)
(K × N) and slip eigenstrain rates η

[i]

(k)
(K × N) for the LCC

matrix at each iteration (i = 1, ...,N ; k = 1, ...,K). In general, this set of nonlinear

algebraic equations has to be solved numerically by means of an appropriate method,

e.g., Newton-Raphson method. Further details on the implementation are provided

in Appendix II.

Retaining the distinctive advantages of the FOSO estimates (3.14), the ISO esti-

mates (3.48) are exact to second order in the heterogeneity contrast. (This is because

for weakly inhomogeneous materials, field fluctuations in the constituent phases are

rather small and the ISO estimates are expected to be very similar to the correspond-

ing FOSO estimates.) Moreover, the macroscopic behavior and field statistics of the

nonlinear porous single crystal can be estimated directly from the suitably optimized

LCC (Ponte Castañeda, 2015; Agoras and Ponte Castañeda, 2013). However, as will

be seen in the next chapter, the ISO estimates (3.48) improve significantly over the

FOSO estimates for small porosity and large nonlinearity, especially at large stress
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triaxiality. In general, the accuracy of (3.48) improves progressively with increasing

N . However, the fast convergence of ISO with increasing values of N allows the use of

relatively small number of iterations N to obtain accurate results and, hence, N = 10

is used in this work, which can be shown to provide sufficiently accurate estimates

(error within 1%) of the N →∞ ISO limits for the effective behavior of porous single

crystals. On the other hand, for sufficiently large N , the specific values of the in-

clusion volume fractions c
(2)

[i]
(i = 1, ...,N) will not significantly affect the accuracy of

(3.48) and they can be simply chosen to be given by c
(2)

[i]
= f 1/N (i = 1, ...,N) (Agoras

and Ponte Castañeda, 2013). Finally, it is noted that the ISO estimates (3.48) reduce

to the FOSO estimates (3.14) for N = 1, as they should.

Given that the macroscopic constitutive relation can be conveniently extracted

from that of the LCC, the ISO estimates for the macroscopic strain rate D of the

nonlinear porous single crystal under the applied loading σ can be obtained via

D =
∂ũISO

∂σ
(σ) = M̃[N]σ + η̃[N], (3.50)

where we recall that M̃[N] and η̃[N] are the PCW estimates for the effective viscous

compliance tensor and effective eigenstrain-rate tensor of the level-N LCC, as given

by expressions (3.67) and (3.68) in Appendix I, respectively. Similar to (3.21), the

macroscopic constitutive relation (3.50) is also nonlinear, due to the nonlinear depen-

dence of M̃[N] and η̃[N] on σ. Moreover, the average strain rate D
(2)

and the average

spin W
(2)

in the voids may also be determined consistently from those of the LCC,

and their corresponding expressions are given by (3.78) and (3.83) in Appendix I,

with i = 1 (i.e., D
(2)
=D

(2)

[1] and W
(2)
=W

(2)

[1] ).

Next, we compute the ISO estimates for the average slip rates γ(k) (k = 1, ...,K),

as defined by (3.29), over different slip systems of the crystal matrix. Similar to the

FOSO method, the γ(k) can be estimated directly from those of the LCC, whose

properties must be specified according to (3.42) and (3.49). However, due to the non-

uniform distribution of the matrix phase in the LCC, we first compute the average

slip rates over the crystal matrix at each iteration separately, and then compute their
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appropriate weighted averages to obtain the corresponding average slip rates over the

total crystal matrix. Similar to (3.29), define the average slip rates γ
[i]

(k)
(i = 1, ...,N ,

k = 1, ...,K) over the level-i crystal matrix via

D
(1)

[i] =

K

∑
k=1

γ
[i]

(k)
µ(k), (3.51)

whereD
(1)

[i] denotes the average strain rate over the crystal matrix at level i. Following

a procedure similar to that used for the derivation of (3.32), we have that

γ
[i]

(k)
=

1

2µ
[i]

(k)

τ
[i]

(k)
+ η[i]
(k)
= αφ′(k)(τ̌

[i]

(k)
) + (1 − α)φ′(k)(τ̂

[i]

(k)
). (3.52)

Again, we should emphasize that the γ
[i]

(k)
are related to the average resolved shear

stresses τ
[i]

(k)
through the linearized constitutive relations instead of the nonlinear ones,

i.e., γ
[i]

(k)
≠ φ′

(k)
(τ
[i]

(k)
).

Noting that the total volume fraction of the level-i crystal matrix (over the entire

level-N composite) is given by

cM[i] = (
N

∏
j=i+1

c
(2)

[j]
)(1 − c(2)

[i]
) , (3.53)

and that the total volume fraction of the solid crystal matrix is simply given by

1 − f , the average slip rates γ(k) (k = 1, ...,K) over the entire crystal matrix can be

straightforwardly obtained from the weighted averages of γ
[i]

(k)
, namely

γ(k) =
N

∑
i=1

cM
[i]

1 − f
γ
[i]

(k)
. (3.54)

After some manipulation, the γ(k) (k = 1, ...,K) may also be written as

γ(k) =
1

1 − f
[α

N

∑
i=1

(cM[i]φ
′
(k)(τ̌

[i]

(k)
)) + (1 −α)

N

∑
i=1

(cM[i]φ
′
(k)(τ̂

[i]

(k)
))] , (3.55)

with the cM
[i]

given by (3.53), and the stress variables τ̌
[i]

(k)
and τ̂

[i]

(k)
—depending on
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both the first and second moments of the stress field in the LCC—given by (3.40)

and (3.41), respectively.

Finally, we should note that the ISO estimate (3.48) for ũ is also a generalization of

the iterated variational homogenization (IVH) estimate of Song and Ponte Castañeda

(2017a), which is related to the ISO estimate in the same fashion as the VH estimate

(3.34) is related to the FOSO estimate (3.14). Similarly, the IVH estimate may

be recovered from the ISO estimate by setting formally the eigenstrain-rate tensors

η
(1)

[i]
= 0. In its final form, the IVH estimate for ũ can be written as

ũIVH
(σ) =

N

∑
i=1

(1 − c(2)
[i]
)(

N

∏
j=i+1

c
(2)

[j]
)

K

∑
k=1

φ(k)(τ̂
[i]

(k)
). (3.56)

Here the stress variables τ̂
[i]

(k)
depend only on the second moments of the resolved

shear stresses over the LCC matrix, and are given by

τ̂
[i]

(k)
=

√

τ
[i]

(k) =

√

µ(k) ⋅ ⟨σ ⊗σ⟩
(1)

[i]
µ(k), (3.57)

where the second moments ⟨σ ⊗ σ⟩
(1)

[i]
may be computed by means of the PCW

estimates (3.88) in Appendix I, with the η
(1)

[i]
= 0. In turn, the slip viscosities µ

[i]

(k)
in

the porous LCC are given by the “modified secant” conditions (Ponte Castañeda and

Suquet, 1998)

1

2µ
[i]

(k)

=

φ′
(k)
(τ̂
[i]

(k)
)

τ̂
[i]

(k)

. (3.58)

Similar to the VH estimate (3.34), the IVH estimate (3.56) is also known to be a

rigorous lower bound for the effective potential ũ. However, the IVH bound (3.56) is

much tighter than the VH bound (3.34), especially at low porosity, high nonlinearity

and high stress triaxiality (Song and Ponte Castañeda, 2017a).
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3.5 Evolution equations for the microstructural

variables

When the porous single crystal undergoes finite-strain deformation, the microstruc-

tural variables defined in (3.4) evolve with the deformation, thereby affecting the

instantaneous macroscopic response of the porous single crystal. In this section, we

develop the corresponding evolution laws for the microstructural variables (3.4)—

characterizing both the “crystallographic” and “morphological” anisotropy of the

porous single crystal.

Due to the presence of voids in the single-crystal matrix, the deformation fields

in the matrix become highly inhomogeneous, leading to variations in the crystallo-

graphic orientation of the crystal lattice in the matrix phase. However, for the pur-

poses of homogenization, it is sufficient to keep track of the average crystallographic

orientation of the lattice during the deformation. Thus, the lattice will be assumed

to rotate rigidly (on average) with the average “microstructural” (or “elastic”) spin

ω(1)e in the crystal matrix, leading to the following evolution laws for the associated

crystallographic axes l1, l2 and l3

l̇1 = ω
(1)
e l1, l̇2 = ω

(1)
e l2, l̇3 = ω

(1)
e l3, (3.59)

where ω(1)e is defined as the difference between the average “continuum” spin W
(1)

and the average “plastic” spin W
(1)

p in the crystal matrix (Mandel, 1972), i.e.,

ω(1)e =W
(1)
−W

(1)

p . (3.60)

In the above equation, W
(1)

may be simply obtained from the global average condition

W
(1)
=

1

1 − f
(W − fW

(2)
) , (3.61)

where it is recalled that W
(2)

is the average spin tensor in the voids, which can be

obtained consistently from the ISO procedure by means of expression (3.83) with
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i = 1 (i.e., W
(2)
=W

(2)

[1] ). On the other hand, W
(1)

p can be expressed in terms of the

average slip rates γ(k) (see equation (3.55)) in the crystal matrix:

W
(1)

p =
1

2

K

∑
k=1

γ(k) (m(k) ⊗n(k) − n(k) ⊗m(k)) . (3.62)

It should be emphasized here that while we are using only phase averages to describe

the average evolution of the lattice vectors, the second moments have been used in

the characterization of the LCC determining the quantities W
(1)

and W
(1)

p .

Considering the incompressibility of the crystal matrix, the volume change of the

porous single crystal equals the volume change of the void phase. Therefore, the

evolution of the porosity f is governed by (Gurson, 1977)

ḟ = (1 − f)Dkk, (3.63)

where we recall that D is the macroscopic strain rate. Note that the void nucleation is

not considered in the above equation, but can be readily incorporated by appropriate

modifications of (3.63) (Tvergaard, 1990).

The evolution of the shape and orientation of the voids (and their distribution)

depends on the local deformation field in a complicated fashion and is, in practice,

impossible to determine exactly. However, for the purposes of a homogenization

procedure, it is again sufficient to determine how the average shape and orientation

of the voids (and their distribution) evolve. Following the work of Ponte Castañeda

and Zaidman (1994), Kailasam and Ponte Castañeda (1998) and Aravas and Ponte

Castañeda (2004), we assume that the evolution of the average shape and orientation

of the voids (and their distribution) is determined by the average strain rate D
(2)

and the average spin W
(2)

in the void phase, such that the average shape of the

voids (and their distribution) remains ellipsoidal, but can change its aspect ratios

and orientation during the deformation process. With the above hypothesis, the

evolution of the aspect ratios w1 and w2 are governed by the standard kinematical
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relations

ẇ1 = w1 (D
(2)′

33 −D
(2)′

11 ) , and ẇ2 = w2 (D
(2)′

33 −D
(2)′

22 ) , (3.64)

where D
(2)

can be consistently estimated from the ISO procedure by means of ex-

pression (3.78) with i = 1 (i.e., D
(2)
= D

(2)

[1] ), and primes in this section are used to

denote tensor components relative to axes instantaneously coinciding with the prin-

cipal directions n1, n2 and n3 of the ellipsoidal voids.

On the other hand, the evolution of the orientation vectors nl (l = 1,2,3) along the

three principal directions of the ellipsoidal voids (and their distribution) is governed

by

ṅ1 = ω
(2)n1, ṅ2 = ω

(2)n2, ṅ3 = ω
(2)n3. (3.65)

Here ω(2) is the spin of the Eulerian axes of the average deformation gradient of the

voids (Aravas and Ponte Castañeda, 2004); its non-zero components are given by

(Ogden, 1984)

(1 −
w2

q

w2
p

)ω(2)
′

pq = (1 −
w2

q

w2
p

)W
(2)′

pq + (1 +
w2

q

w2
p

)D
(2)′

pq , p, q = 1,2,3, p ≠ q, (3.66)

with w3 = a3/a3 = 1. Note that for the special cases in which at least two of the

aspect ratios are equal, e.g., wp = wq (p ≠ q), (3.66) has a clear interpretation, i.e., the

principal directions of the voids should be chosen such that D
(2)′

pq = 0 and ω
(2)′

pq =W
(2)′

pq .

At this point, it is important to emphasize that separate evolution laws for the

shape and orientation of the voids and their distribution could be taken into account,

for example, by assuming that the shape and orientation of the void distribution

evolve with the macroscopic strain rate D and the macroscopic spin W (Kailasam

et al., 1997). However, for simplicity, this will not be pursued here, since we mainly

focus on porous single crystals with low to moderate porosities prior to void coales-

cence, where the effect of the void distribution on the macroscopic behavior of the

porous single crystal is not expected to be significant. Finally, it is remarked that

strain hardening of the single-crystal matrix will be neglected in this work, again for

simplicity, so that the reference flow stresses (τ0)(k) of all slip systems remain fixed
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during the entire deformation process. However, the effect of matrix hardening can

be easily incorporated by employing an appropriate hardening law for the crystal

matrix, e.g., the phenomenological Voce-type hardening law (Balasubramanian and

Anand, 2002).

In summary, the instantaneous effective constitutive relation (3.50), along with

the evolution laws (3.59) and (3.63) to (3.65) for the microstructural variables (3.4),

provide a complete viscoplastic model for the macroscopic response and field statistics

of porous single crystals with general crystallographic anisotropy, general ellipsoidal

voids, subjected to general, finite-strain loading conditions. In particular, the ISO

model incorporates the effect of the lattice rotation, as well as the changing size, shape

and orientation of the voids, capturing the complex coupled effect of the “crystallo-

graphic” and “morphological” anisotropy of the porous single crystals. The model

requires only the initial lattice orientation, as well as the initial porosity and average

shape and orientation of the voids, and can predict the evolution of these variables for

prescribed loading conditions by straightforward numerical integration of the above-

mentioned microstructural evolution laws. The integration of the ISO constitutive

model can be effectively carried out by means of an explicit, forward-Euler integration

scheme, as adopted in the work of Liu (2003). Finally, it should be emphasized that

the ISO model is entirely predictive, since it does not make use of parameters to be

fitted to finite element simulations or experimental results.

3.6 Concluding remarks

In this chapter, we have developed a finite-strain constitutive model for the macro-

scopic response of porous viscoplastic single crystals subjected to general three-

dimensional loading conditions. The model makes use of the fully optimized second-

order (FOSO) variational method of Ponte Castañeda (2015), in combination with an

appropriate generalization of the iterated homogenization procedure of Agoras and

Ponte Castañeda (2013), to determine the instantaneous effective response of porous

single crystals, accounting for microstructural variables such as the average crystallo-
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graphic orientation of the matrix, the porosity, and the average shape and orientation

of the voids. In addition, consistent homogenization estimates for the average strain

rate and spin in the matrix and void phases were used to derive the evolution laws

for these microstructural variables. In its final form, the iterated second-order (ISO)

homogenization model can be treated as a standard internal-variable viscoplastic

model with the aforementioned microstructural variables playing the role of internal

variables.

The new ISO model has several distinguishing advantages in comparison to other

models that have been proposed in the literature for porous single crystals. First,

the ISO model is the first model to consistently account for the evolution of both the

“crystallographic” anisotropy induced by lattice rotation, as well as the “morphologi-

cal” anisotropy induced by changes in size, shape and orientation of the voids. These

distinctive features are crucial for the frame indifference of the resulting constitutive

models. Second, the ISO methodology provides estimates that are exact to second

order in the heterogeneity contrast for the instantaneous response of two-phase com-

posite materials, and therefore improves on the recently developed iterated variational

homogenization (IVH) model of Song and Ponte Castañeda (2017a), which provides

bounds that are only exact to first order in the heterogeneity contrast. Correspond-

ingly, the ISO model also provides improved estimates for the average strain rate and

spin fields in the phases, thus leading to more accurate predictions for the evolution

of the microstructure. As will be seen in chapter 4, the predictions of the ISO model

for the special case of porous FCC single crystals are in fairly good agreement with

the FEM results of Srivastava and Needleman (2012, 2015) for a wide range of load-

ing conditions. Third, the ISO model applies for porous single crystals with general

crystallographic anisotropy (e.g., cubic, hexagonal), general material nonlinearity and

general ellipsoidal voids. Importantly, the ISO can be used for porous single crystals

with large crystal anisotropy, where the flow stresses of different slip systems can be

very different. For this reason, the ISO will be seen in chapter 4 to improve on the

MVAR model of Mbiakop et al. (2015b), which made certain simplifications designed

for porous single crystals with nearly equal flow stresses for all slip systems and is
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expected to become less accurate for large crystal anisotropy (Mbiakop et al., 2015b).

Fourth, with the choice made for the weight parameters α, the ISO model is ‘predic-

tive’ in the sense that it does not require calibration by fitting of parameters to either

numerical or experimental results. In other words, given the constitutive properties

of the single-crystal matrix and the initial state of the microstructure, the ISO model

can provide estimates for the time-dependent macroscopic response of the porous

single crystals under general loading conditions. This is a major advantage relative

to other more macroscopic models requiring recalibration/redevelopment for porous

material with different matrix crystallography or void morphology, not to mention

different constitutive properties (e.g., strain-rate sensitivity, etc) of the matrix phase.

Having said this, the method is still subject to potential improvements by means

of other, yet-to-be-developed choices of the weights α (that could be determined by

either mathematically or physically motivated prescriptions). At the very least, the

weights α could be used as fitting parameters, in particular, to improve the results

for hydrostatic loadings. However, for simplicity, we have chosen not to pursue this

strategy in this first application of the method for porous single crystals. Finally, it

should be mentioned that the effects of elastic strains and matrix hardening that were

neglected for simplicity in this work can be incorporated—at least approximately—

into the ISO method in a relatively straightforward manner. This would allow the

model to be implemented into constitutive subroutines for standard finite element

codes (e.g., ABAQUS), as has already been done for porous materials with isotropic

matrix phases (Aravas and Ponte Castañeda, 2004; Danas and Aravas, 2012).

3.7 Appendix I: Detailed expressions for the LCC

in the ISO method

In this Appendix, explicit expressions for the macroscopic constitutive relation and

field statistics of the LCC are provided. These expressions are needed for the ISO

method and provide generalizations of corresponding expressions in the work of Ago-
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ras and Ponte Castañeda (2013) and Song and Ponte Castañeda (2017a) for the

simpler iterated variational homogenization (IVH) procedure. Different from the lin-

early viscous LCC that was used in the previous IVH approach, the LCC utilized

in the new ISO method is linearly viscous with a general non-zero eigenstrain rate,

being mathematically analogous to a linear thermoelastic material. In this context, it

is important to mention that the expressions provided in this Appendix are obtained

by means of the estimates of PCW type (Ponte Castañeda and Willis, 1995) for the

LCC at each iteration step. In addition, the first and second moments of the fields

in the matrix and inclusion phases of the LCC can be used directly to estimate the

corresponding quantities in the actual nonlinear composite (Ponte Castañeda, 2015).

Furthermore, as already mentioned, the shape and orientation of the voids are as-

sumed to be identical to those of their distribution, for simplicity. However, more

general expressions with different shapes and orientations of the voids and their dis-

tribution can be derived building on the work of Agoras and Ponte Castañeda (2013)

for the IVH model.

We begin by recalling that the viscous compliance tensor M
(1)

[i]
and the eigenstrain-

rate tensor η
(1)

[i]
of the matrix of the level-i LCC are given by (3.38). Then, the effective

compliance tensor M̃[i] of the level-i LCC is given by

M̃[i] =M
(1)

[i]
+ c(2)
[i]
[(M̃[i−1] −M

(1)

[i]
)

−1
+ (1 − c(2)

[i]
)Q[i]]

−1

, i = 1, ...,N, (3.67)

where it is recalled that the c
(2)

[i]
(i = 1, ...,N) are the volume fractions of the inclusion

phase in the level-i LCC, which can be simply chosen as c
(2)

[i]
= f 1/N (i = 1, ..,N),

and the Q[i] (i = 1, ...,N) are fourth-order microstructural tensors, depending on the

matrix compliance tensor M
(1)

[i]
and the shape and orientation of the voids, which may

be computed via equation (3.11) (with M(1) in (3.11) replaced by M
(1)

[i]
). Note that

M̃[0] →∞ in (3.67), representing the compliance tensor of the voided inclusion in the

first level LCC. Note further that the matrix compliance tensor M
(1)

[i]
is singular due

to the incompressibility of the single-crystal matrix. Therefore, it is necessary to add

a “fictitious” compressible term 1/(3κ)J (J is the standard fourth-order spherical pro-
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jection tensor) to M
(1)

[i]
and take the appropriate incompressibility limit (i.e., κ →∞)

when evaluating the kernel of the integral (3.11). However, the resulting expressions

are too complicated and will not be reported here for brevity.

On the other hand, the effective eigenstrain-rate tensor η̃[i] of the level-i LCC is

given by

η̃[i] = η
(1)

[i]
+ c(2)
[i]
(B
(2)

[i]
)

T

(η̃[i−1] − η
(1)

[i]
) , i = 1, ...,N, (3.68)

where the B
(2)

[i]
are the corresponding stress-concentration tensors provided by

B
(2)

[i]
= [I + (1 − c(2)

[i]
)Q[i] (M̃[i−1] −M

(1)

[i]
)]

−1

, i = 1, ...,N, (3.69)

with I denoting the fully symmetric fourth-order identity tensor. Note that η̃[0] = 0

in (3.68), denoting the eigenstrain-rate tensor of the voided inclusion in the first level

LCC.

The associated PCW estimates for the volume averages of the stress and strain-

rate fields over the phases of each level LCC may also be determined iteratively

following the work of Agoras and Ponte Castañeda (2013). In particular, letting

σ
(2)

[i]
= ⟨σ⟩

(2)

[i]
(i = 1, ...,N) denote the average stress field over the inclusion phase in

the level-i LCC, it follows that σ
(2)

[i]
is determined by

σ
(2)

[i]
= B

(2)

[i]
σ[i] +b

(2)

[i]
, i = 1, ...,N. (3.70)

Here we recall that σ[i] is the average stress field over the level-i LCC, and the

B
(2)

[i]
and b

(2)

[i]
(i = 1, ...,N) are the associated stress-concentration tensors, with B

(2)

[i]

provided by (3.69) and b
(2)

[i]
given by

b
(2)

[i]
= (1 − c(2)

[i]
)B
(2)

[i]
Q[i] (η

(1)

[i]
− η̃[i−1]) , i = 1, ...,N. (3.71)

Next, making use of (3.70) recursively for i = N, ...,1, together with the facts that

σ[N] = σ and σ[i−1] = σ
(2)

[i]
, i = N, ...,2, (3.72)

74



it can be shown that σ
(2)

[i]
may be written in terms of the macroscopic stress σ and

the associated stress-concentration tensors B
(2)

[i]
and b

(2)

[i]
as

σ
(2)

[i]
= [

N

∏
j=i

B
(2)

[j]
]σ +

N

∑
j=i+1

(

j−1

∏
k=i

B
(2)

[k]
)b
(2)

[j]
+ b(2)

[i]
, i = 1, ...,N. (3.73)

Similarly, the average strain rate D
(2)

[i] over the inclusion phase of the level-i LCC is

given by

D
(2)

[i] = A
(2)

[i]
D[i] + a

(2)

[i]
, i = 1, ...,N, (3.74)

where D[i] = ⟨D⟩[i] (i = 1, ...,N) denotes the average strain-rate field over the level-i

LCC, and the A
(2)

[i]
and a

(2)

[i]
(i = 1, ...,N) are the associated strain-rate concentration

tensors given by

A
(2)

[i]
= {c

(2)

[i]
I + (1 − c(2)

[i]
) [(M

(1)

[i]
−M(1)

[i]
Q[i]M

(1)

[i]
) (M̃[i−1])

−1
+M(1)

[i]
Q[i]]}

−1

,

i = 1, ...,N, (3.75)

and

a
(2)

[i]
= −(1 − c(2)

[i]
)A

(2)

[i]
(I −M(1)

[i]
Q[i])(η

(1)

[i]
−M(1)

[i]
M̃−1[i−1]η̃[i−1]) , i = 1, ...,N. (3.76)

Following a development completely analogous to that used above for the derivation

of (3.73), and accounting for the relations

D[N] =D and D[i−1] =D
(2)

[i] , i = N, ...,2, (3.77)

D
(2)

[i] may be written in terms of the macroscopic strain rate D and the associated

strain-rate concentration tensors A
(2)

[i]
and a

(2)

[i]
as

D
(2)

[i] = [

N

∏
j=i

A
(2)

[j]
]D +

N

∑
j=i+1

(

j−1

∏
k=i

A
(2)

[k]
)a
(2)

[j]
+ a(2)
[i]
, i = 1, ...,N. (3.78)

Correspondingly, the average spin field over the inclusion phase of the level-i LCC
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can also be obtained by means of the PCW estimate

W
(2)

[i] =W[i] −C
(2)

[i]
D[i] −β

(2)

[i]
, i = 1, ...,N, (3.79)

where the W[i] = ⟨W⟩[i] (i = 1, ...,N) are the average spin field over the level-i LCC,

and the C
(2)

[i]
and β

(2)

[i]
(i = 1, ...,N) are the associated spin-concentration tensors

determined by

C
(2)

[i]
= (1 − c(2)

[i]
)Π[i] (M

(1)

[i]
M̃−1[i−1] − I)A

(2)

[i]
, i = 1, ...,N, (3.80)

and

β
(2)

[i]
=(1 − c(2)

[i]
)Π[i] [(M

(1)

[i]
M̃−1[i−1] − I)a

(2)

[i]
+ η(1)

[i]
−M(1)

[i]
(M̃[i−1])

−1
η̃[i−1]] ,

i = 1, ...,N. (3.81)

Here the Π[i] (i = 1, ...,N) are fourth-order Eshelby rotation tensors depending on the

matrix compliance tensor M
(1)

[i]
and the shape and orientation of the voids, which can

be computed via (3.28) (withM(1) replaced byM
(1)

[i]
). Making use of (3.79) recursively

for i = N, ...,1, and accounting for the relations

W[N] =W and W[i−1] =W
(2)

[i] , i = N, ...,2, (3.82)

W
(2)

[i] may be written in the form

W
(2)

[i] =W − (
N

∑
j=i

C
(2)

[j]
D[j]) −

N

∑
j=i

β
(2)

[j]
, i = 1, ...,N, (3.83)

where we recall that the D[i] (i = 1, ...,N) are determined by (3.77) and (3.78). In

this connection, it should be mentioned that the corresponding average fields over the

vacuous inclusion of the porous LCC can be obtained from equation (3.73), (3.78)

and (3.83), respectively, with i = 1 (i.e., σ(2) = σ
(2)

[1]
, D

(2)
=D

(2)

[1] and W
(2)
=W

(2)

[1] ).

The average stress and strain rate fields over the matrix phase of the level-i LCC
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can be easily obtained from the global average conditions, that is,

σ
(1)

[i]
=

1

1 − c(2)
[i]

(σ[i] − c
(2)

[i]
σ
(2)

[i]
) and D

(1)

[i] =
1

1 − c(2)
[i]

(D[i] − c
(2)

[i]
D
(2)

[i] ) , i = 1, ...,N.

(3.84)

Finally, the effective stress potential of the level-i LCC may be written in the form

ũL[i] (σ[i]) =
1

2
σ[i] ⋅ M̃[i]σ[i] + η̃[i] ⋅σ[i] +

1

2
g̃[i], i = 1, ...,N, (3.85)

where the M̃[i] and η̃[i] (i = 1, ...,N) are determined by expressions (3.67)-(3.73), and

the g̃[i] (i = 1, ...,N) denote the corresponding effective energy under zero applied

stress, and are given by

g̃[i] = c
(2)

[i]
[(η̃[i−1] − η

(1)

[i]
) ⋅ b(2)

[i]
+ g̃[i−1]] , i = 1, ...,N, (3.86)

with g̃[0] = 0 representing the energy at zero stress of the voided inclusion in the first

level LCC. Then, the second moment of the stress field in the matrix of the level-i

LCC can be computed by differentiation of expression (3.85) with respect to M
(1)

[i]
to

obtain the result that

⟨σ ⊗σ⟩
(1)

[i]
=

1

1 − c(2)
[i]

⎛

⎜

⎝

σ[i] ⋅
∂M̃[i]

∂M
(1)

[i]

σ[i] + 2
∂η̃[i]

∂M
(1)

[i]

⋅σ[i] +
∂g̃[i]

∂M
(1)

[i]

⎞

⎟

⎠

, i = 1, ...,N, (3.87)

where ∂M̃[i]/∂M
(1)

[i]
, ∂η̃[i]/∂M

(1)

[i]
and ∂g̃[i]/∂M

(1)

[i]
are eighth-, sixth- and fourth-order

tensors, respectively. Note that the first and second terms on the right-hand side

of (3.87) involve the summation over indices corresponding to the numerators of

the eighth- and sixth-order tensors, respectively. After some calculations, expression

(3.87) can be further rewritten as

⟨σ ⊗σ⟩(1)
[i]
= σ

(1)

[i]
⊗σ

(1)

[i]
−

1

c
(2)

[i]

(σ
(1)

[i]
−σ[i])⊗ (σ

(1)

[i]
−σ[i])−

1

c
(2)

[i]

[Q−1[i] (σ
(1)

[i]
−σ[i])] ⋅

∂Q[i]

∂M
(1)

[i]

[Q−1[i] (σ
(1)

[i]
−σ[i])] , i = 1, ...,N, (3.88)
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where ∂Q[i]/∂M
(1)

[i]
is an eighth-order tensor that can be computed via equation (3.11),

with the kernel of the integral (3.11) replaced by its derivative with respect to the ma-

trix compliance tensor. Note that the last term of (3.88) also involves the summation

over indices corresponding to the numerator of ∂Q[i]/∂M
(1)

[i]
.

3.8 Appendix II: Numerical aspects of the ISO

model

In this Appendix, we briefly summarize the procedure for computing the ISO esti-

mates (3.48) in Section 6.3.2, characterizing the instantaneous response of the porous

single crystal with a fixed state of the microstructure (as described by the microstruc-

tural variables (3.4)). For finite-strain deformation, the microstructural variables

(3.4) are updated by integrating the evolution laws (3.59) and (3.63)-(3.65) provided

in Section 3.5 using an explicit forward-Euler scheme. The numerical integration of

the evolution laws has been discussed in detail for porous isotropic materials by Ar-

avas and Ponte Castañeda (2004) (see also Danas and Ponte Castañeda, 2009a), and

will not be repeated here for brevity.

As already discussed in Section 6.3.2, the determination of the ISO estimates

(3.48) requires the solution of 4N ×K nonlinear algebraic equations (3.40), (3.41) and

(3.42) for the unknown variables τ̌
[i]

(k)
, τ̂
[i]

(k)
, µ
[i]

(k)
and η

[i]

(k)
(i = 1, ...,N ; k = 1, ...,K).

Here the stress variables τ̌
[i]

(k)
and τ̂

[i]

(k)
are chosen to be the primary unknowns, while

the slip viscosities µ
[i]

(k)
and slip eigenstrain rates η

[i]

(k)
are taken to be functions of the

primary unknowns, as given by (3.42). The original problem is then reduced to the

solution of 2N ×K nonlinear equations, as given by (3.40) and (3.41), for the primary

unknowns τ̌
[i]

(k)
and τ̂

[i]

(k)
(i = 1, ...,N ; k = 1, ...,K). The above set of 2N ×K nonlinear

equations can be efficiently solved by means of Newton-Raphson method as follows.

1. For a prescribed macroscopic stress σ, initial guesses for the primary unknowns

τ̌
[i]

(k)
and τ̂

[i]

(k)
(i = 1, ...,N ; k = 1, ...,K) are assumed.

2. With current guesses of τ̌
[i]

(k)
and τ̂

[i]

(k)
, the slip viscosities µ

[i]

(k)
and eigenstrain
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rates η
[i]

(k)
(i = 1, ...,N ; k = 1, ...,K) are computed by means of (3.42), and the

viscous compliance tensor M
(1)

[i]
and eigenstrain rate tensor η

(1)

[i]
(i = 1, ...,N) are

computed by means of (3.38) for the LCC matrix at each iteration.

3. The effective compliance tensor M̃[i], the effective eigenstrain rate tensor η̃[i], as

well as the corresponding stress concentration tensors B
(2)

[i]
and b

(2)

[i]
(i = 1, ...,N),

for the LCC at each iteration are computed by means of equations (3.67)-(3.69)

and (3.71). Note that this step requires the computation of the fourth-order

tensors Q[i] (i = 1, ...,N), whose components are two-dimensional integrals (see

(3.11)) that need to be evaluated numerically in general (see below).

4. The first and second moments of the stress field over the LCC matrix at each

iteration, σ
(1)

[i]
and ⟨σ ⊗σ⟩

(1)

[i]
(i = 1, ...,N), are computed via equations (3.72),

(3.73), (3.84)1 and (3.88). Then, the first and second moments of the resolved

shear stresses τ
[i]

(k)
and τ

[i]

(k) (i = 1, ...,N ; k = 1, ...,K) are computed by project-

ing the corresponding stress moments on the Schimid tensor µ(k) for each slip

system in the LCC matrix (see their detailed expressions in the paragraph after

equation (3.41)). Note that the computation of the second moment by (3.88)

requires the evaluation of the eighth-order tensors ∂Q[i]/∂M
(1)

[i]
(i = 1, ...,N),

whose components are also two-dimensional integrals that need to be evaluated

numerically in general, constituting the most sensitive and time-consuming part

for the implementation of the ISO model (see below).

5. The residues are computed for equations (3.40) and (3.41). If the sum of the

magnitudes of the residues is smaller than a prescribed tolerance (typically

10−8), convergence is reached. If not, the Jacobian is computed to update the

solutions for τ̌
[i]

(k)
and τ̂

[i]

(k)
. Then, steps 2-5 are repeated until convergence is

reached.

As a final remark, the integrals required in the computation ofQ[i] and ∂Q[i]/∂M
(1)

[i]

(i = 1, ...,N) are evaluated by means of a two-dimensional Gaussian quadrature in-

tegration scheme. Details for the calculation of these integrals have been discussed

79



thoroughly in Appendix 2 of Liu et al. (2003) and will not be repeated here for

brevity. However, we should emphasize that these integrals depend on the matrix

compliance tensor M
(1)

[i]
as well as the shape and orientation of the voids. In particu-

lar, when the compliance tensor M
(1)

[i]
is strongly anisotropic, or when the shape of the

voids is significantly distorted (i.e., the aspect ratios of the voids are very different

from unity), a relatively large number of Gaussian integration points are needed to

guarantee the accuracy of these integrals. The number of Gaussian points considered

in the application of the ISO model is provided in chapter 4 of this work.
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Chapter 4

Iterated second-order

homogenization model for

viscoplastic porous single crystals:

Applications

In chapter 3, a new homogenization-based constitutive model was developed for the

finite-strain, macroscopic response of porous viscoplastic single crystals. In this chap-

ter, the new model is first used to investigate the instantaneous response and the

evolution of the microstructure for porous FCC single crystals for a wide range of

loading conditions. The loading orientation, Lode angle and stress triaxiality are

found to have significant effects on the evolution of porosity and average void shape,

which play crucial roles in determining the overall hardening/softening behavior of

porous single crystals. The predictions of the model are found to be in fairly good

agreement with numerical simulations available from the literature for all loadings

considered, especially for low triaxiality conditions. The model is then used to inves-

tigate the strong effect of crystal anisotropy on the instantaneous response and the

evolution of the microstructure for porous HCP single crystals. For uniaxial tension

and compression, the overall hardening/softening behavior of porous HCP crystals is
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found to be controlled mostly by the evolution of void shape, and not so much by the

evolution of porosity. In particular, porous HCP crystals exhibit overall hardening

behavior with increasing porosity, while they exhibit overall softening behavior with

decreasing porosity. This interesting behavior is consistent with corresponding results

for porous FCC crystals, but is found to be more significant for porous HCP crystals

with large anisotropy, such as porous ice, where the non-basal slip systems are much

harder than the basal systems.

4.1 Introduction

In chapter 3, we have developed a homogenization-based constitutive model for the

characterization of both the instantaneous macroscopic response, as well as the evolu-

tion of the microstructure, for porous viscoplastic single crystals subjected to general

three-dimensional loading conditions. The model is based on the fully-optimized

second-order variational approach of Ponte Castañeda (2015) used in iterated fashion

(Agoras and Ponte Castañeda, 2013), and is referred to as the Iterated Second-Order

(ISO) homogenization model. The ISO model is capable of accounting for the evolu-

tion of the “crystallographic” anisotropy induced by lattice rotation, as well as that

of the “morphological” anisotropy due to changes in size, shape and orientation of

the voids. In particular, the internal variables serving to characterize the underlying

microstructure of porous single crystals have been defined by the set

s ≡ {l1, l2, l3, f,w1,w2,n1,n2,n3}, (4.1)

where l1, l2 and l3 are the three linearly independent crystallographic axes of the

lattice, f is the porosity, w1 = a3/a1,w2 = a3/a2 are the two aspect ratios characterizing

the average shape (and distribution) of the ellipsoidal voids (a1, a2 and a3 are the

lengths of the three semi-axes of the ellipsoidal voids), and n1, n2 and n3 are unit

vectors along the three principal directions of the ellipsoidal voids (see Fig. 3.1).

This chapter is concerned with the applications of the ISO model for two different
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types of porous single crystals: (i) porous (high-symmetry) FCC single crystals and

(ii) porous (low-symmetry) HCP single crystals. Specifically, we will first investigate

the instantaneous response (section 4.2) and the evolution of the microstructure (sec-

tion 4.3) for porous FCC single crystals subjected to triaxial loadings with different

stress triaxialities, Lode angles and loading orientations (relative to the crystal lattice

axes). The complex, coupled effect of the intrinsic crystallographic anisotropy and

the deformation-induced morphological anisotropy will be explored. The predictions

of the ISO model will also be compared with those of earlier models and numerical

results available from the literature in order to validate the model. We will also make

use of the ISO model to predict the instantaneous response, as well as the evolution

of the microstructure (section 4.4), for porous HCP single crystals, such as porous

ice, under axisymmetric loadings. In particular, the effect of the crystal anisotropy

on the macroscopic response of the porous HCP crystals will be investigated in some

detail. Finally, we summarize our findings and provide some concluding remarks in

section 4.5.

4.2 Porous FCC single crystals:

Instantaneous macroscopic response

In this section, we consider the application of the ISO model to generate estimates

for the instantaneous macroscopic response of porous FCC single crystals. The high-

symmetry, FCC single crystals are assumed to deform by dislocation glide on a set of

four slip planes of the type {111}, along three slip directions (per plane) of the type

⟨110⟩, which constitute the set of twelve primary octahedral slip systems with ap-

propriately defined Schmid tensor µ(k) (see equation (3.2) for its definition). Among

these, five are linearly independent, thus allowing arbitrary (isochoric) plastic defor-

mation for the single crystal. For simplicity, all slip systems are assumed to have the

same reference flow stresses, i.e., (τ0)(k) = τ0 (k = 1, ...,12), and hardening is neglected.

In addition, the reference strain rate γ̇0 and the creep exponent n are also assumed
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to be identical for all slip systems (see equation (3.3)). Following the work of Srivas-

tava and Needleman (2015), these material parameters are taken to be τ0 = 245MPa,

γ̇0 = 1.53 × 10−9s−1 and n = 5, corresponding to Ni-based single-crystal superalloys.

In general, the effective behavior of porous FCC single crystals depends on the

applied stress σ and the microstructure, as characterized by the set of microstructural

variables s defined in (4.1). For simplicity, we consider a fixed crystal orientation with

the [100], [010] and [001] crystallographic orientations aligned with the laboratory

frame axes e1, e2 and e3, respectively. (Note that l1, l2 and l3 in (4.1) can be simply

chosen to be the [100], [010] and [001] crystallographic axes, respectively.) However,

we allow the principal directions of the applied stress σ to be aligned with possibily

different crystallographic orientations. For simplicity, we further assume that the

principal axes of the ellipsoidal voids n1, n2 and n3 are aligned with the principal

loading directions, and we will confine our attention to the effects of the loading

orientation, porosity and void shape on the instantaneous response of porous FCC

crystals, leaving consideration of void orientations for future work.

Next, we briefly recall the definition for the gauge surface. From the homogeneity

of the local potential u(1) in σ, it follows that the effective potential ũ(σ) of the

porous single crystal is a positively homogeneous function of degree n+1 in σ. Then,

the effective behavior of the porous single crystal may be conveniently described by

means of the gauge surface, generalizing the notion of the yield surface from standard

plasticity to viscoplasticity (Leblond et al., 1994). Thus, the effective stress potential

ũ(σ) can be expressed in the form

ũ(σ) =
γ̇0τ̃0

n + 1
(
Γ(σ)

τ̃0
)

n+1

, (4.2)

where τ̃0 is a reference flow stress, which can be chosen to be, e.g., one of the reference

flow stresses (τ0)(k) (k = 1, ...,K), and Γ(σ) is the gauge factor, depending on the

creep exponent n, the microstructural variables s defined in (4.1), and the reference

flow stresses (τ0)(k), k = 1, ...,K. As already mentioned, for the porous FCC single

crystals of interest in this section, all the reference flow stresses are identical and τ̃0
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will be set equal to τ0. Then, noting that Γ(σ) is homogeneous of degree 1 in σ, it

follows that the normalized stress tensor

Σ(σ) =
σ

Γ(σ)
(4.3)

is homogeneous of degree 0 in σ. Making use of the relation (4.2), along with the fact

that Γ(σ) is homogeneous of degree 1 in σ, we can easily see that Σ(σ) will always

lie on an equi-potential surface

ũ(Σ) =
γ̇0τ̃

−n
0

n + 1
, (4.4)

which is defined to be the gauge surface. Therefore, the stress tensor Σ on the gauge

surface may be conveniently obtained by computing the stress potential ũ for σ of

arbitrary magnitude, determining the corresponding gauge factor Γ(σ) from (4.2),

and then normalizing σ according to (4.3). It should be recalled here that the normal

to the gauge surface indicates the direction of the macroscopic plastic flow. Moreover,

the gauge surface tends to the standard yield surface in the ideally plastic limit n→∞.

Finally, it is also noted that a lower bound for the effective stress potential ũ translates

into an outer bound for the gauge surface (4.4).

Next, we describe the various loading conditions considered in this work. We

consider triaxial states of stress, such that the macroscopic stress tensor is given by

σ = σ11x1 ⊗ x1 + σ22x2 ⊗ x2 + σ33x3 ⊗ x3, where x1, x2 and x3 is a set of orthonormal

vectors (not necessarily aligned with the laboratory axes). However, it is convenient

to introduce the hydrostatic stress σm, the von Mises equivalent stress σe, and the

third invariant of the deviatoric stress J3, which are defined by

σm =
tr (σ)

3
, σe =

√

3

2
σ
′
⋅σ

′
, J3 = det (σ

′

) , (4.5)

where σ
′

= σ − σmI denotes the deviatoric stress tensor, and I is the second-order

identity tensor. We then define the stress triaxiality Xσ (−∞ ≤ Xσ ≤ ∞), the Lode
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angle θ (0 ≤ θ < 2π) and the Lode parameter L (−1 ≤ L ≤ 1) via the relations

Xσ =
σm

σe

, cos(3θ) =
27

2

J3

σ3
e

, L =
2σII − σI − σIII

σI − σIII

, (4.6)

where σI ≥ σII ≥ σIII are the (ordered) principal stresses. Note that σ can be written

in the alternative form

σ = σmI +
2

3
σe [−cos(θ +

π

3
)x1 ⊗ x1 − cos(θ −

π

3
)x2 ⊗ x2 + cos (θ)x3 ⊗ x3] . (4.7)

Thus, our state of stress can be described by the hydrostatic stress σm (or stress

triaxiality Xσ), together with a loading configuration, which is defined by the loading

directions xl (l = 1,2,3) and the Lode angle θ (or parameter L). Here, we consider two

different loading orientations characterized by the orientation of the principal loading

axes x1-x2-x3 relative to the crystallographic orientations: (i) [100]-[010]-[001] and

(ii) [110]-[110]-[001]. For the first loading orientation, the principal loading axes

are aligned with the laboratory frame axes, i.e., xl = el (l = 1,2,3), while for the

second loading orientation, the principal loading axes are given by x1 = (e1 + e2) /
√

2,

x2 = (−e1 + e2) /
√

2 and x3 = e3. For each loading orientation, we consider all pos-

sible states of axisymmetric tension (AXT ), axisymmetric compression (AXC) and

pure shear (PS). While, in principle, there are 24 such loading configurations, be-

cause of the symmetry of the FCC single crystal, only 8 of them are independent,

and they are listed in Table 4.1. For example, the label AXT [001] (AXC[001])

denotes axisymmetric tension (compression) with the symmetry axis aligned with

the [001] crystallographic orientation, while the label PS[001]-[100] stands for pure

shear with an equal amount of tension and compression along the [001] and [100]

crystallographic orientations, respectively. Note that cases I-III correspond to the

[100]-[010]-[001] loading orientation, whereas cases IV-VIII correspond to the [110]-

[110]-[001] loading orientation. The corresponding normalized macroscopic stress

tensor Σ in (4.3)—having the same “shape” as σ but with a different magnitude—

can be defined similarly by means of equation (4.7) along with Table 4.1, with σm and

σe in (4.7) replaced by Σm and Σe, respectively. Note that XΣ = Σm/Σe = Xσ = σm/σe.
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Cases Loading configuration θ L Loading orientation

I AXT [001] 0 −1
II AXC[001] π 1 [100]-[010]-[001]
III PS[001]-[100] 11π/6 0

IV PS[110]-[110] π/2 0
V AXT [110] 2π/3 −1
VI PS[110]-[001] 5π/6 0 [110]-[110]-[001]
VII AXC[110] 5π/3 1
VIII PS[001]-[110] 11π/6 0

Table 4.1: Different loading configurations corresponding to axisymmetric and pure
shear stress states (assuming that σm = 0), with two different loading orientations
relative to the crystallographic orientations: (i) [100]-[010]-[001] and (ii) [110]-
[110]-[001].

Figures 4.1 show the Σm-Σe cross sections of the ISO gauge surfaces for porous

FCC crystals with porosity f = 1% and void aspect ratios w1 = w2 = 1, for loading

conditions of type I (refer to Table 4.1). Figure 4.1(a) shows the effect of the iteration

number N on the ISO gauge surfaces, where different values of N are considered

(N = 1,2,5,10). The corresponding Iterated Variational Homogenization (IVH) gauge

surfaces of Song and Ponte Castañeda (2017a), which are known to be outer bounds,

are also included for comparison (dashed lines). We observe from Fig. 4.1(a) that

the ISO gauge surfaces become gradually tighter with increasing values of N for large

stress triaxialities, converging to a certain limit for large values of N (the ISO result

for N = 20 is practically indistinguishable to that for N = 10 and is not shown). In

particular, the hydrostatic point for the ISO gauge surface withN = 10 is nearly half of

that for the SO gauge surface (corresponding to the ISO gauge surface with N = 1),

indicating a significant improvement of the ISO estimates over the SO estimates,

which are known to be too stiff at large stress triaxialities. On the other hand,

increasing N has no significant effect on the ISO gauge surfaces for small triaxialities

(e.g., XΣ < 1), consistent with the fact that the SO estimates (corresponding to

the ISO estimates with N = 1) are already fairly accurate in this case. The above

observations also hold for the associated IVH gauge surfaces. However, for a given

value of N , the ISO gauge surface lies well below the corresponding IVH outer bound
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Figure 4.1: The Σm-Σe cross sections of gauge surfaces for porous viscoplastic (n =
5) FCC single crystals with porosity f = 1% and void aspect ratios w1 = w2 = 1,
subjected to loading conditions of type I (refer to Table 4.1). (a) The effect of the
iteration number N on the ISO gauge surfaces (solid lines), where different values
of N are considered (N = 1,2,5,10). The corresponding IVH gauge surfaces of Song
and Ponte Castañeda (2017a) are also shown (in dashed lines) for comparison. (b)
Comparison of the ISO gauge surface with the corresponding Taylor, IVH (Song and
Ponte Castañeda, 2017a) and MVAR (Mbiakop et al., 2015b) gauge surfaces. The
FEM results in the work of Mbiakop et al. (2015b) are also shown.

for all stress triaxialities, except in the purely hydrostatic limit (XΣ →∞), when the

ISO gauge surface coincides with the IVH bound. Finally, we emphasize that the ISO

and IVH gauge surfaces converge very rapidly with increasing values of N . In fact,

numerical studies show that a relatively small number of iterations (e.g., N = 10)

can provide quite accurate estimates (with error less than 1%) for the corresponding

N →∞ limits of the ISO and IVH results. Hence, all the ISO and IVH results to be

shown in the following will be computed for N = 10.

Figure 4.1(b) shows a comparison of the ISO gauge surface with the corresponding

gauge surfaces obtained by the Taylor, IVH (Song and Ponte Castañeda, 2017a) and

MVAR (Mbiakop et al., 2015b) models, as well as with the FEM results of Mbiakop

et al. (2015b). The following observations can be made from this figure. The Taylor

gauge surface, which is obtained by assuming a uniform strain rate in the material,

is a straight line parallel to the horizontal hydrostatic axis (and hence unbounded for
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hydrostatic loadings), providing an outer bound for the gauge surfaces of the porous

FCC crystals. By contrast, the IVH gauge surface exhibits a finite hydrostatic limit

and lies within the Taylor gauge surface for all stress triaxialities, thus leading to an

outer bound that is much more restrictive than the Taylor bound. Consistent with

their bound status, both the Taylor and IVH gauge surfaces tend to overestimate

the FEM result especially at large stress triaxialities (of course, the IVH estimate

is in much better agreement with the FEM result than the Taylor estimate). On

the other hand, both the ISO and MVAR gauge surfaces (which are not bounds) lie

within the IVH and Taylor gauge surfaces for all stress triaxialities. Moreover, for

0 ≤ ∣XΣ∣ ≤ 3 (note the difference in the horizontal and vertical scales), the ISO result

is in excellent agreement with the corresponding FEM result, while the MVAR result

underestimates the FEM result. Note that for this range of the stress triaxiality, the

normal to the gauge surface—dictating the direction of the induced plastic flow—

is significantly different for the ISO and MVAR estimates. On the other hand, for

very large stress triaxialities (∣XΣ∣ ≳ 3), the ISO estimate is somewhat stiffer than

the FEM result and tends to the IVH outer bound in the purely hydrostatic limit

(∣XΣ∣ → ∞), while the MVAR estimate slightly underestimates the FEM result and

shows better agreement with the FEM. In particular, the ISO prediction for the

hydrostatic point is about 25% larger than the corresponding FEM result in this

particular case. Improved homogenization results for large stress triaxialities may be

possible by means of the more general FOSO method of Ponte Castañeda (2016), used

in combination with the iterated approach. As shown in section 5 of this reference,

this more general method involves one less approximation than the method of Ponte

Castañeda (2015) for crystalline materials and may lead to improved results, but

is more difficult to implement. A similar situation has already been noted in the

context of the variational method of deBotton and Ponte Castañeda (1995) by Idiart

and Ponte Castañeda (2007b), where it was shown that the bounds of deBotton and

Ponte Castañeda (1995) could be obtained by a “relaxation” procedure from the more

general method of Idiart and Ponte Castañeda (2007a), and that they provide strictly

weaker (relaxed) bounds.
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Figure 4.2: Σm-Σe cross sections of the gauge surfaces for porous viscoplastic FCC
single crystals with porosity f = 1%, subjected to loading conditions of type I (refer
to Table 4.1). Comparisons of the ISO gauge surfaces with the corresponding FEM
results of Mbiakop et al. (2015b) are shown for (a) void aspect ratios w1 = w2 = 1 and
different creep exponents (n = 1,2,5,10), and (b) void aspect ratios w1 = 1, w2 = 1/3
and two different creep exponents (n = 1 and 10). (c) Zoomed-in view of (a) for the
range of stress triaxiality 0 ≤ XΣ ≤ 3, where the dashed line indicates the direction
of XΣ = 3. (d) Zoomed-in view of (b) for the range of stress triaxiality −3 ≤ XΣ ≤ 3,
where the dashed lines indicate the directions of XΣ = −3 and 3.
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Figure 4.2 shows additional comparisons for the Σm-Σe cross sections of the ISO

gauge surfaces with the corresponding FEM results of Mbiakop et al. (2015b) for

porous FCC single crystals subjected to loading conditions of type I (refer to Ta-

ble 4.1). Figure 4.2(a) displays the ISO gauge surfaces for porous FCC crystals

with porosity f = 1%, void aspect ratios w1 = w2 = 1 and different creep exponents

(n = 1,2,5,10). In addition, a zoomed-in view of Fig. 4.2(a) for the range of stress

triaxiality 0 ≤ XΣ ≤ 3 is shown in Fig. 4.2(c), where the dashed line indicates the

direction of a constant stress triaxiality XΣ = 3. We can see from Figs. 4.2(a) and

4.2(c) that, for 0 ≤ XΣ ≤ 3, the ISO gauge surfaces are in good agreement with the

corresponding FEM results for all creep exponents, except for n = 10, where the ISO

slightly overestimates the FEM result for XΣ = 3 (see Fig. 4.2(c)). On the other

hand, for very large stress triaxialities, while the ISO gauge surface for n = 1 remains

in fairly good agreement with the FEM results, the ISO gauge surfaces for higher

creep exponents (n = 2,5,10) are “stiffer” than the FEM results, with the largest

difference at the hydrostatic point. Fig. 4.2(b) shows the corresponding ISO gauge

surfaces for porous FCC crystals with porosity f = 1%, void aspect ratios w1 = 1,

w2 = 1/3, and for two different creep exponents (n = 1 and 10). Fig. 4.2(d) provides

a zoomed-in view of Fig. 4.2(b) for the range of stress triaxiality ∣XΣ∣ ≤ 3, where the

dashed lines indicate the directions of constant triaxialities XΣ = −3 and 3. Similar

to the observations made in the context of Figs. 4.2(a) and 4.2(c), the ISO gauge

surface for n = 1 is in good agreement with the FEM results for all triaxialities (see

Fig. 4.2(b)), while the ISO gauge surface for n = 10 agrees fairly well with the FEM

results for ∣XΣ∣ ≤ 3 (see Fig. 4.2(d)) but overestimates the FEM results for larger

magnitudes of the stress triaxiality (see Fig. 4.2(b)).

In Fig. 4.3, we investigate the effect of the loading configuration (as defined by the

loading orientation as well as the Lode angle), porosity and average void shape on the

ISO gauge surfaces for porous FCC single crystals. In particular, Fig. 4.3(a) shows

the effect of the loading configuration on the ISO gauge surfaces for porous FCC crys-

tals with porosity f = 1% and aspect ratios w1 = w2 = 1, for different loadings of type

I, III, IV and V. Recall that loadings I and III refer to the [100]-[010]-[001] loading
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Figure 4.3: The effect of the (a) loading configuration (defined by the loading orienta-
tion relative to the crystallographic axes and the Lode angle as shown in Table 4.1),
(b) porosity f , (c) and (d) average void shape, as characterized by the two aspect
ratios w1 and w2, on the Σm-Σe cross sections of the ISO gauge surfaces for porous
viscoplastic (n = 5) FCC single crystals subjected to different types of loadings (refer
to Table 4.1). In (b) and (c), results are shown for both loading I (solid lines) and
loading IV (dashed lines), while in (d) results are shown for loading V.
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orientation, while loadings IV and V refer to the [110]-[110]-[001] loading orienta-

tion. In addition, loadings I and V correspond to axisymmetric loadings with Lode

parameter L = −1, whereas loadings III and IV correspond to pure shear loadings with

superimposed hydrostatic pressures and Lode parameter L = 0. The main observation

from Fig. 4.3(a) is that the loading configuration has a significant effect on the macro-

scopic behavior of porous FCC single crystals, especially for small magnitudes of the

stress triaxiality. In particular, the gauge surfaces for loadings IV and V are much

larger than those for loadings I and III, indicating that the macroscopic response of

porous FCC crystals for the [110]-[110]-[001] loading orientation is much stronger

than that for the [100]-[010]-[001] loading orientation. In addition, it is found that

the effect of the Lode parameter L on the macroscopic response of the porous crystals

depends on the specific loading orientation. For instance, for the [100]-[010]-[001]

loading orientation, changing the Lode parameter from L = −1 (loading I) to L = 0

(loading III) leads to slightly softer behavior for the porous crystal under purely

deviatoric loadings. However, the opposite is true for the [110]-[110]-[001] loading

orientation, where changing the Lode parameter from L = −1 (loading V) to L = 0

(loading IV) leads to significantly stronger behavior for the material under purely

deviatoric loadings. In this context, it is remarked that the differences between gauge

surfaces for different loading configurations are of the same order as those between

the corresponding gauge surfaces for fully dense FCC single crystals (which are not

shown here for brevity), suggesting that the dependence of the effective behavior of

the porous crystal on the loading configuration is a direct consequence of the intrinsic

anisotropy of the crystal matrix. Furthermore, we observe that the gauge surfaces

for loadings III and IV exhibit perfect symmetries with respect to the deviatoric axis

(Σm = 0), in contrast with the cases for loadings I and V, where the corresponding

gauge surfaces are slightly asymmetric with respect to the deviatoric axis. In fact, by

flipping the gauge surfaces for loadings I and V with respect to the deviatoric axis,

we obtain the corresponding gauge surfaces for loadings II and VII (refer to Table

4.1), respectively, due to the corresponding symmetries of the loadings (these results

are not shown in the figure again for brevity). Finally, note that the gauge surfaces
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for different loading configurations coincide in the hydrostatic limit (∣XΣ∣ → ∞), as

they should.

Figure 4.3(b) shows the effect of the porosity on the ISO gauge surfaces for porous

FCC crystals with void aspect ratios w1 = w2 = 1 for loading conditions of type I

(solid lines) and type IV (dashed lines), and different values of the porosity (f = 1%,

5% and 10%) are considered. We observe from Fig. 4.3(b) that, for both loading

configurations (I and IV), increasing porosity leads to the reduction of the gauge

surface for all stress triaxialities and, hence, to softer behavior for the material, as

expected on physical grounds. In addition, changing porosity also induces changes

in the shape of the gauge surfaces for both loading configurations. For instance, for

larger porosity (f = 10%), the curvature of the gauge surfaces is quite sharp near the

deviatoric axis, while for smaller porosity (f = 1%) the corresponding gauge surfaces

become relatively flat near the deviatoric axis. Furthermore, the effect of the porosity

is found to be sensitive to the loading configuration, especially for small magnitudes

of the stress triaxiality. For instance, for purely deviatoric loadings (XΣ = 0), the

reduction of the gauge surface with increasing porosity is more significant for loading

IV than for loading I. However, such differences tend to disappear for large triaxialities

(∣XΣ∣→∞).

Figures 4.3(c) and 4.3(d) show the effect of the void shape on the ISO gauge

surfaces for porous FCC crystals with a fixed porosity f = 1% for loading conditions of

type I (solid lines in Fig. 4.3(c)), IV (dashed lines in Fig. 4.3(c)) and V (Fig. 4.3(d)).

In Fig. 4.3(c), we consider three different void shapes: (i) spherical (w1 = w2 = 1),

(ii) prolate spheroidal (w1 = w2 = 5) and (iii) oblate spheroidal (w1 = w2 = 0.2). In

addition, the symmetry axis n3 of the spheroidal voids is assumed to be aligned with

the direction of the laboratory axis e3 and, thus, also with the [001] crystallographic

orientation of the FCC single crystal. We can see from Fig. 4.3(c) that, for both

loading configurations (I and IV), changes in the void shape lead to changes in both

the size and shape of the gauge surfaces, suggesting that evolution of the void shape

should have strong distortional hardening or softening effects, depending on the stress

triaxiality. For instance, changing the void shape from spherical (w1 = w2 = 1) to
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prolate (w1 = w2 = 5) has a softening effect for purely hydrostatic loadings, while it has

a slightly hardening effect for uniaxial tension (loading I withXσ = 1/3). Furthermore,

we observe from Fig. 4.3(c) that, for loading I, changing the void shape from spherical

to spheroidal induces significant changes in the orientation of the gauge surfaces: the

gauge surfaces corresponding to spheroidal voids are dramatically asymmetric with

respect to the vertical deviatoric axis. This is in contrast with the results for loading

IV, where the gauge surfaces for different void shapes remain perfectly symmetric

with respect to the deviatoric axis.

Figure 4.3(d) displays the corresponding gauge surfaces for loading V, where re-

sults for a general ellipsoidal void shape (w1 = 5, w2 = 0.2) are also included, in

addition to the three different void shapes (w1 = w2 = 1, 5 and 0.2) considered in Fig.

4.3(c). It can be seen that, for a given spheroidal void shape (e.g., w1 = w2 = 0.2), the

gauge surface for loading V (Fig. 4.3(d)) is substantially different from those for load-

ings I and IV (Fig. 4.3(c)), which confirms the findings in the context of Fig. 4.3(a)

that the loading configuration has a significant effect on the macroscopic behavior of

porous crystals. In addition, we observe from Fig. 4.3(d) that the gauge surface for

ellipsoidal voids is markedly different from those for spherical and spheroidal voids:

the porous crystal with ellipsoidal voids (w1 = 5, w2 = 0.2) exhibits a softer behavior

than that with oblate voids (w1 = w2 = 0.2) for positive stress triaxialities (XΣ > 0),

while it exhibits a dramatically softer behavior than those with spherical (w1 = w2 = 1)

and prolate (w1 = w2 = 5) voids for all stress triaxialities, especially for moderate to

large magnitudes of the stress triaxiality. In particular, note that the hydrostatic

strength for porous crystals with ellipsoidal voids (w1 = 5, w2 = 0.2) is less than half

of that for porous crystals with spherical voids (w1 = w2 = 1).

In conclusion, we have found that the effect of the porosity and average void

shape on the instantaneous macroscopic response of porous FCC crystals exhibits a

strong dependence on the loading configuration (as defined by the loading orientation

and Lode angle), suggesting a complex coupled effect of the intrinsic crystallographic

anisotropy with the morphological anisotropy.

At this point, it should be recalled that the implementation of the ISO model
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requires the computation of the fourth-order tensors Q[i] and their derivatives, whose

components are two-dimensional Eshelby integrals (over the unit sphere) that need

to be evaluated numerically in general. In this work, a two-dimensional Gaussian

quadrature integration scheme is used to evaluate these integrals in spherical coordi-

nates. Note that when the crystal matrix is strongly anisotropic, or when the aspect

ratios w1 and w2 are very different from unity, a relatively large number of Gaussian

points is required to guarantee the accuracy of these integrals. In particular, for the

ISO gauge surfaces presented in this section for porous FCC crystals, 50 Gaussian

points in each direction are used. Further increasing the number of Gaussian points

will not significantly affect the results for the gauge surfaces and, therefore, the above

choice is thought to be sufficient to obtain fairly accurate results. While this rather

large number of Gaussian points can significantly slow down the computations, im-

provements in the computational algorithms of these integrals are certainly possible

and will be attempted in future works.

4.3 Porous FCC crystals: Microstructure evolu-

tion and finite-strain response

In this section, we make use of the ISO model to investigate the finite-strain response

of porous FCC single crystals, including the associated evolution of the microstruc-

ture, for a wide range of loading conditions. In addition, we compare the ISO results

with the corresponding unit-cell, finite-element simulations (FEM) of Srivastava and

Needleman (2012, 2015) in order to assess the predictive capability of the ISO model.

In this context, it is important to emphasize that the ISO model does not contain

any fitting parameters.

We consider a porous FCC single crystal containing initially spherical voids dis-

tributed randomly and isotropically (w1 = w2 = 1) in the crystal matrix, with an

initial porosity f0 = 1%. As already discussed at the beginning of section 4.2, the

[100], [010] and [001] crystallographic orientations of the FCC-crystal matrix are
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initially parallel to the fixed laboratory frame axes e1, e2 and e3, respectively. In

addition, hardening of the crystal matrix is neglected, so that (τ0)(k) = τ0 = 245MPa

(k = 1, ...,12), γ̇0 = 1.53 × 10−9s−1 and n = 5. In this section, we consider loading

conditions that belong to the 8 types of loading configuration defined in Table 4.1,

where the applied loading σ may be written in the form (4.7), and the Lode angle θ

as well as the loading orientation are provided in Table 4.1. Furthermore, the applied

stress σ is assumed to be fixed in time, which automatically guarantees a loading

history with a constant stress triaxiality Xσ. In particular, we set σe = 750MPa, and

prescribe the stress triaxiality Xσ by setting σm =Xσσe.

The porous FCC single crystal initially exhibits mirror symmetry with respect to

the planes normal to the (two sets of) principal loading axes x1, x2 and x3. Con-

sequently, it can be shown that the average “elastic” spin in the crystal matrix (see

equation (3.60) in chapter 3) is zero, given that both the average “continuum” spin

and the average “plastic” spin in the crystal matrix are zero, leading to no lattice

rotation on average throughout the deformation (although the crystal lattice is ex-

pected to rotate locally in the matrix due to the heterogeneity in the deformation

fields induced by the voids). On the other hand, during the deformation, the average

shape of the voids evolves from the initial spherical shape into a general ellipsoidal

shape, while its orientation vectors remain aligned with the principal loading axes, i.e.,

nl = xl (l = 1,2,3). Thus, the loading conditions considered in this work affect the

porosity f and the average void shape, as characterized by the aspect ratios w1 and

w2, but not the average lattice and void orientation. We should emphasize, however,

that the ISO model is capable of handling more general loading conditions leading to

the rotation of both the crystal lattice and the voids, but such more complex loading

conditions will be pursued in future work.

Due to the symmetry of the applied loading σ, the principal directions of the

resulting macroscopic strain rate D are also aligned with the principal loading axes,

such that D = D11x1 ⊗ x1 +D22x2 ⊗ x2 +D33x3 ⊗ x3, and the macroscopic equivalent
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strain rate is given by

De =

√

2

3
D
′

⋅D
′

=

√

2

3

√

(D11 −D22)
2
+ (D22 −D33)

2
+ (D33 −D11)

2
, (4.8)

with D
′

denoting the macroscopic deviatoric strain rate tensor. Then, it follows that

the macroscopic logarithmic strain tensor E is given by

E = E11x1 ⊗ x1 +E22x2 ⊗ x2 +E33x3 ⊗ x3, (4.9)

where E11 = ∫
t

0
D11dt, E22 = ∫

t

0
D22dt and E33 = ∫

t

0
D33dt are the three principal

values of E, and t denotes time. The corresponding macroscopic equivalent strain is

given by an expression completely analogous to expression (4.8) for De.

In this context, it is useful to also define the corresponding (uniform) strain rate

for a homogeneous fully dense single crystal, i.e.,

D∞ =
K

∑
k=1

γ̇0 ∣
τ (k)

(τ0)(k)
∣

n

sgn (τ (k))µ(k), (4.10)

where the τ (k) = σ ⋅ µ(k) (k = 1, ...,K) are the resolved shear stresses. Given that

D∞ is purely deviatoric (D∞kk = 0) for a fully dense crystal, the associated equivalent

strain rate is simply given by D∞e =
√

2
3
D∞ ⋅D∞.

The finite-strain macroscopic response of the porous crystal exhibits a strong de-

pendence on the specific loading conditions, as characterized by the stress triaxiality

and the loading configuration (defined by the orientation of the loading axes relative

to the crystal axes and the Lode angle). We will explore separately the effect of the

stress triaxiality and the loading configuration on the evolution of the microstructure,

as well as on the macroscopic behavior of the porous FCC crystals. We first consider

loading conditions with the same stress triaxiality (Xσ = 1/3), but for seven different

loading configurations (I-VII) provided in Table 4.1. We will then consider loading

conditions with several values of the stress triaxiality for three representative load-

ing configurations (I, II and IV), and the effect of the triaxiality will be investigated

separately for each loading configuration. We will also make comparisons with the
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corresponding FEM results of Srivastava and Needleman (2012; 2015). However, we

should emphasize that the ISO results pertain to porous crystals with random mi-

crostructures, while the FEM results (Srivastava and Needleman, 2012; 2015) involve

single-void, unit-cell calculations for porous crystals with periodic microstructures.

For this reason, great care should be exercised when comparing the ISO and FEM

results due to the possible sensitivity of the effective behavior of the porous medium

to the void distribution (random vs. periodic). In fact, experimental results show

that the plastic flow tends to localize along bands seeking the voids. Moreover, it

should be kept in mind that the constitutive behavior for the single-crystal matrix

is assumed to be elasto-viscoplastic for the FEM, while it is assumed to be purely

viscoplastic for the ISO. However, the effect of elasticity is expected to be relatively

small, provided that no unloading takes place. Furthermore, all the FEM results to

be shown below are from the work of Srivastava and Needleman (2015), where the

single crystals undergo only steady creep (as is the case for the ISO), with two ex-

ceptions where results will also be taken from the work of Srivastava and Needleman

(2012) for single crystals undergoing both primary and steady creep. As pointed

out by Srivastava and Needleman (2015), primary creep has very small influence on

the results (when plotted against the macroscopic strain) and, therefore, the com-

parisons between the FEM and the ISO (which incorporates only steady creep) for

the porosity and void shape evolution should still be meaningful. The first excep-

tion is concerned with the evolution of the void aspect ratios, because the work of

Srivastava and Needleman (2015) did not include results for the aspect ratios. The

second exception is concerned with high-triaxiality conditions. In fact, the works of

Srivastava and Needleman (2012) and Srivastava and Needleman (2015) make use of

different measures of macroscopic strain, and while the different measures seem to

give consistent results for low-triaxiality conditions, some appreciable differences are

observed for high-triaxiality conditions. Finally, we should note that the FEM results

are for two different unit cells, characterized by the orientation of the edges of the

unit cell (determining the symmetry axes for the periodic distribution of the voids)

relative to the crystal axes: [100]-[010]-[001] and [110]-[110]-[001]. For this reason,
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these two cases correspond to two different periodic distributions of the voids and, in

particular, the FEM results for the first orientation are depicted with solid symbols,

while those for the second orientation, with empty symbols.

Under certain loading conditions leading to void collapse, the voids can become

considerably distorted and the use of an average ellipsoidal void shape becomes in-

sufficient, since the surfaces of the voids may come into contact prior to the complete

closure of the voids (Hutchinson and Tvergaard, 2012). Hence, we define the aspect

ratio w to be the ratio of the length of the minor semi-axis amin to that of the ma-

jor semi-axis amax of the voids, i.e., w = amin/amax, so that w describes the largest

amount of void distortion. However, the directions of the major and minor axes of the

voids depend on the applied loading and, thus, the aspect ratio w may have different

functional forms in terms of the two voids aspect ratios w1 and w2 (e.g., w = w1,

w = 1/w1, w = w1/w2, etc.) for different loading conditions. The condition for a

severely distorted void shape will be taken to correspond to the (arbitrarily chosen)

aspect ratio w = 0.1. This point will be indicated in the figures with open triangles ;

results beyond this point (shown in dotted lines) may not be physically relevant and

may need to be modified, due to the possible contact of the void faces. In this con-

text, it should be mentioned that, for the evolution results to be shown below for

porous FCC crystals, at most 64 Gaussian points are used in each direction for the

numerical quadratures of the two-dimensional Eshelby integrals, and this choice has

been found to be enough to obtain sufficiently accurate results, at least prior to the

possible contact of the void surfaces (indicated by open triangles). For the evolution

results beyond those open triangles (shown in dotted lines), it is possible that an even

larger number of Gaussian points are required to obtain accurate results, due to the

extremely distorted void shape. However, this is not pursued in this work, since those

results are not expected to be physically relevant anyway.

4.3.1 The effect of the loading configuration.

Figure 4.4 shows the strong effect of the loading configuration on the microstructure

evolution and on the macroscopic response of porous FCC single crystals, for applied
100



0 0.2 0.4 0.6 0.8 1

ISO, I
ISO, II
ISO, III
ISO, IV
ISO, V
ISO, VI
ISO, VII
FEM, I
FEM, II
FEM, III
FEM, IV
FEM, V
FEM, VI
FEM, VII

0

0.5

1

1.5
FCC
n=5

ISO

f / f
o

eE

Loading

0.1w =△

1/ 3Xσ =

(a)

0 0.2 0.4 0.6 0.8 1

ISO, I
ISO, II
ISO, III
ISO, IV
ISO, V
ISO, VI
ISO, VII
FEM, I
FEM, II
FEM, III

0

0.2

0.4

0.6

0.8

1
FCC
n=5

ISO

eE

w
0.1w =△

1/ 3Xσ =

(b)

0 0.2 0.4 0.6 0.8 1

ISO, I
ISO, II
ISO, III
ISO, IV
ISO, V
ISO, VI
ISO, VII

1

1.05

1.1

1.15

1.2
FCC
n=5

eE

Loading

e

e

D

D∞ 0.1w =△

1/ 3Xσ =

(c)

0 4 8 12 16

ISO, I
ISO, II
ISO, III
ISO, IV
ISO, V
ISO, VI
ISO, VII
FEM, I
FEM, II
FEM, III
FEM, IV
FEM, V
FEM, VI
FEM, VII

0

0.2

0.4

0.6

0.8

1

FCC
n=5

eE

t (107 s)

0.1w =△

1/ 3Xσ =

(d)

Figure 4.4: ISO results for porous FCC single crystals with an initially isotropic
distribution of spherical voids (w1 = w2 = 1) in f0 = 1% initial porosity, subjected to
different loading conditions I-VII defined in Table 4.1 with the same stress triaxiality
Xσ = 1/3. Plots are shown for the evolution of the (a) normalized porosity f/f0, (b)
aspect ratios w = amin/amax, where w = a1/a3 = 1/w1 for loadings I, III and VII, w =
a3/a1 = w1 for loadings II, V and VI, while w = a2/a1 = w1/w2 for loading IV (a1, a2 and
a3 are the lengths of the three semi-axes of the voids along the void principal axes n1,
n2 and n3, respectively, and nl = xl (l = 1,2,3)), (c) normalized macroscopic equivalent
strain rate De/D∞e , as functions of the macroscopic equivalent logarithmic strain Ee.
Plots are also shown for (d) the evolution of the macroscopic equivalent logarithmic
strain Ee as a function of time t. The corresponding FEM results available in the
work of Srivastava and Needleman (2012, 2015) are also included for comparison.
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loadings with the same stress triaxiality Xσ = 1/3, but with different loading configu-

rations (I-VII in Table 4.1). For comparison purposes, the FEM results of Srivastava

and Needleman (2012; 2015) are also included. The results for loading VIII are very

similar to those for loading VI and are not included for brevity. The ISO results

for axisymmetric loadings (L = ±1) are shown in solid lines and the corresponding

FEM results are denoted by circles, while the ISO results for pure shear loadings

(L = 0) with superimposed hydrostatic pressure are shown in dashed lines and the

corresponding FEM results are denoted by squares. Figure 4.4(a) presents plots for

the normalized porosity f/f0 as a function of the macroscopic equivalent strain Ee.

We observe that f/f0 may increase slightly, remain nearly a constant, or even decrease

with Ee, depending on the specific loading configuration. Moreover, the ISO model

can be seen to capture quite well the main features of the corresponding FEM results.

In particular, for loadings I and V, f/f0 slightly increases with Ee and saturates at

a finite value, while for loadings II and IV, f/f0 first increases with Ee and then

decreases continuously to zero, leading to void collapse.

Figure 4.4(b) shows the corresponding plots for the (smallest) aspect ratio w versus

the macroscopic equivalent strain Ee. We can see that w decreases monotonically

with Ee for all loading configurations. However, it is important to emphasize that

the aspect ratios displayed in Fig. 4.4(b) for different loading configurations have

different functional forms in terms of w1 and w2, i.e., w = a1/a3 = 1/w1 for loadings

I, III and VII, w = a3/a1 = w1 for loadings II, V and VI, while w = a2/a1 = w1/w2

for loading IV, indicating that the initially spherical void shape evolves into different

ellipsoidal shapes, depending on the loading configuration. Specifically, the average

void shape becomes prolate spheroidal for loading I, while it becomes oblate spheroidal

for loading II, with the symmetry axes of the spheroidal voids aligned with the [001]

crystallographic orientation. However, for other loading configurations (III to VII),

the average void shape evolves into a general ellipsoidal shape with its principal axes

aligned with the principal loading directions (e.g., an ellipsoidal void shape with its

major and minor axes aligned with the [001] and [100] crystallographic orientations,

respectively, for loading III, while with its major and minor axes aligned with the [110]
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and [110] crystallographic orientations, respectively, for loading IV). Interestingly, the

ISO predictions are found to agree fairly well with the corresponding FEM results for

loadings I, II and III (no FEM results are available for loadings IV-VII).

Figure 4.4(c) presents plots for the normalized macroscopic equivalent strain rate

De/D∞e as a function of Ee. We note thatDe/D∞e is a measure of the normalized effec-

tive (nonlinear) viscous compliance for the porous crystals and, therefore, increasing

De/D∞e implies softening, while decreasing De/D∞e implies hardening. In addition,

De/D∞e ≥ 1 at any stage of the deformation, since the effective behavior for a porous

crystal is always softer than that for a fully dense crystal. We observe from Fig. 4.4(c)

that De/D∞e depends strongly on the loading configuration, due to the fact that the

evolution of porosity and void shape—acting as hardening or softening mechanisms

for the macroscopic behavior of the porous crystals (see Figs. 4.3(b)-4.3(d))—differ

significantly between the various loading configurations (Figs. 4.4(a) and 4.4(b)).

In particular, the De/D∞e plots for loadings I and V (uniaxial tensions along the

[100] and [110] crystallographic orientations, respectively) decrease slightly with Ee,

indicating (weak) hardening for the porous crystal, even though the corresponding

porosities increase (slightly) with Ee (Fig. 4.4(a)) suggesting a softening effect. This

can be explained by the fact that changes in the void shape (Fig. 4.4(b)) has a hard-

ening effect that dominates the softening arising from porosity growth, thus leading

to overall hardening of the material. On the other hand, the De/D∞e plots for the rest

of the loading configurations exhibit behaviors that are consistent with the behaviors

of the corresponding f/f0 plots (Fig. 4.4(a)), indicating that the overall hardening

or softening of the material is controlled by the porosity evolution. Note that the

De/D∞e curves for loadings II and IV exhibit abrupt upturns at the very end of the

deformation (in dotted lines), suggesting dramatic softening behavior for the porous

crystals. This is induced by the sharp drop of the aspect ratio w prior to void collapse

(see Fig. 4.4(b)), which has a strong softening effect that dominates the hardening

due to porosity reduction (Fig. 4.4(a)). However, as already mentioned, the above

predictions may not be physically relevant since the softening occurs at fairly small

aspect ratios (w < 0.1), where void surface contact may already have taken place, thus

103



completely shutting down the void collapse mechanism responsible for such softening

behavior (Hutchinson and Tvergaard, 2012). It would be interesting to explore this

effect further either experimentally or numerically.

Figure 4.4(d) displays plots for the macroscopic equivalent strain Ee. We observe

that the macroscopic strain Ee increases almost linearly with time for all loading

configurations. This is due to the fact that, throughout the deformation, the porosity

remains small (f < 1.3%) for all loading configurations (see Fig. 4.4(a)) and, thus,

the Ee plots for the porous crystals are nearly identical to those for the fully dense

crystals. However, the slopes of the Ee curves exhibit a strong dependence on the

loading configuration. In particular, the time evolution of Ee is the slowest for loading

IV, while the fastest for loading III, consistent with the fact that for Xσ = 1/3 the

porous FCC crystal exhibits the strongest behavior for loading IV while the softest

behavior for loading III (see Fig. 4.3(a)). In addition, the ISO predictions for Ee are

in quite good agreement with the corresponding FEM results and capture very well

the hierarchy of the time evolution of Ee with respect to the loading configuration.

4.3.2 The effect of the stress triaxiality.

In Fig. 4.5, we investigate the effect of the stress triaxiality on the evolution of the

porosity and average void shape, as well as on the macroscopic response of porous

FCC single crystals, for loadings of type I (L = −1) always leading to prolate spheroidal

void shapes. Different values of the stress triaxiality Xσ ranging from −3 to 3 are con-

sidered, with results for positive triaxialities (Xσ > 0) shown in red, and for negative

triaxialities (Xσ < 0) in blue. Figure 4.5(a) shows the evolution of the normalized

porosity f/f0 with the macroscopic equivalent strain Ee. For comparison purposes,

the corresponding FEM results for positive triaxialities (Xσ = 3, 2/3 and 1/3) are

also included (negative triaxialities were not considered in the works of Srivastava

and Needleman (2012; 2015)). We observe from Fig. 4.5(a) that, for large values of

the triaxiality (Xσ = 3 and 2/3), the normalized porosity f/f0 increases continuously

with Ee, whereas for negative triaxialities (Xσ < 0), f/f0 decreases with Ee until the

porosity goes to zero. (As already seen, for Xσ = 1/3, f/f0 increases initially with
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Figure 4.5: ISO results for porous FCC single crystals with an initially isotropic
distribution of spherical voids (w1 = w2 = 1) in f0 = 1% initial porosity, subjected to
loading conditions of type I (defined in Table 4.1) always leading to prolate spheroidal
voids, for different values of the stress triaxiality Xσ. Plots are shown for the evolution
of the (a) normalized porosity f/f0, (b) aspect ratio w = amin/amax = a1/a3 = a2/a3 =

1/w1 = 1/w2, (c) normalized macroscopic equivalent strain rate De/D∞e , as functions
of the macroscopic equivalent logarithmic strain Ee. Plots are also shown for (d) the
evolution of the macroscopic equivalent logarithmic strain Ee as a function of time t.
The corresponding FEM results available in the work of Srivastava and Needleman
(2012, 2015) are also included for comparison.
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Ee and approaches an asymptote.) In addition, we can see that f/f0 grows faster

for larger values of Xσ in the range Xσ > 0, while f/f0 decreases faster for smaller

values of Xσ in the range Xσ < 0, as expected. Furthermore, the ISO results for f/f0

are in good qualitative agreement with the corresponding FEM results for Xσ > 0.

In this context, it should be noted that, in addition to the FEM results of Srivastava

and Needleman (2015) (depicted with solid circles), the corresponding FEM results

of Srivastava and Needleman (2012) are also shown in Fig. 4.5(a) (with cross sym-

bols) for Xσ = 3 and 1/3 (Xσ = 2/3 was not considered by Srivastava and Needleman

(2012)). It can be seen that, while for Xσ = 1/3 the two sets of FEM results are

rather similar, for Xσ = 3 they are somewhat different. Those differences would ap-

pear to be due to the different definitions for the overall effective creep strain (against

which the normalized porosity f/f0 is plotted) for the two sets of FEM results (see

the corresponding references for details). In this context, it should be noted that

the overall effective creep strain defined by Srivastava and Needleman (2012) is more

consistent with the effective equivalent logarithmic strain Ee defined in the present

work. This observation may help explain the better quantitative agreement of the

ISO estimates with the FEM results of Srivastava and Needleman (2012). However,

because a more complete set of loading conditions was considered by Srivastava and

Needleman (2015), and because the two sets of FEM results are not expected to be

very different (especially for low stress triaxiality such as Xσ = 1/3), from now on,

all the comparisons for the porosity evolution will be made with the FEM results of

Srivastava and Needleman (2015). In summary, the ISO gives excellent quantitative

agreement for Xσ = 1/3, but the agreement deteriorates somewhat for large triaxial-

ity (Xσ = 3). This is consistent with earlier observations for the corresponding gauge

surfaces. However, it should also be kept in mind that, while the FEM results for

the gauge surfaces were obtained for unit cells with a random distribution of voids,

the FEM results in this figure are for cubic (periodic) distributions of voids. For the

higher triaxiality (Xσ = 3), the porosity increases and the results can be strongly af-

fected by the periodicity of the microstructure (e.g., stronger directional interactions

between the voids for the FEM results that would not be expected for the random mi-
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crostructures considered for the ISO estimates). In addition, the differences between

the FEM results for Xσ = 3 are of the same order of magnitude as the differences

between the ISO estimates and FEM results.

Figure 4.5(b) displays plots for the aspect ratio w = a1/a3 = a2/a3 = 1/w1 = 1/w2

(the ratio of the length of the void semi-axis in the transverse direction to that in

the axial direction) as a function of the macroscopic equivalent strain Ee. The main

observation from Fig. 4.5(b) is that the aspect ratio w starts from one and decreases

monotonically with Ee for all values of Xσ, suggesting that the average shape of the

voids deforms continuously from spherical to prolate spheroidal. However, the drop

of w is faster for smaller values of Xσ. In particular, for Xσ = 1/3 the aspect ratio

w decreases rather slowly and tends to zero as Ee →∞ (as already discussed in Fig.

4.4(b)). For Xσ > 1/3, the decreasing rate of w is even slower than for Xσ = 1/3, while

for Xσ < 1/3, w decreases with a faster rate and tends to zero at the same (finite)

strain that f/f0 tends to zero, indicating that the voids collapse into infinitely thin

needles. For Xσ = 1/3, the ISO result for w compares qualitatively well with the

corresponding FEM result, but slightly overestimates the drop in w. On the other

hand, for Xσ = 3, the ISO and FEM results for w are in good agreement up to a small

amount of strain (Ee ≈ 0.1), but the two results deviate from each other at larger

strains: the ISO result decreases continuously with Ee while the FEM result starts

to increase with Ee. This discrepancy is likely due, at least in part, to the different

void distributions for the ISO and the FEM (random vs. periodic). In particular, for

Xσ = 3, the porosities for both the ISO and FEM increase rapidly with strain (see

Fig. 4.5(a)) and, hence, the effect of the void distribution becomes progressively more

significant. As pointed out by Srivastava and Needleman (2012), the increase of w

at larger strains in the FEM simulation is induced by the necking of the inter-void

ligament in the x1 and x2 directions (simultaneously), leading to rapid increases of the

void radii in these directions. However, there is no well-defined inter-void ligaments

for random microstructures and such “local” effects can not be captured by the ISO

homogenization model.

Figure 4.5(c) shows plots for the normalized macroscopic equivalent strain rate

107



De/D∞e versus the macroscopic equivalent strain Ee. We observe that for large posi-

tive triaxialities (Xσ = 3 and 2/3), De/D∞e increases monotonically with Ee indicating

softening of the material with the deformation. However, for negative triaxialities

(Xσ < 0), De/D∞e decreases with Ee indicating hardening. This correlates with Fig.

4.5(a), which shows that the porosity grows towards one for Xσ = 3 and 2/3 and

decreases to zero for Xσ < 0, acting as a softening and hardening mechanism, respec-

tively. As discussed earlier, for Xσ = 1/3 (uniaxial tension), De/D∞e decreases with

strain, indicating overall hardening (although the porosity increases with strain (Fig.

4.5(a)) inducing a softening effect). Furthermore, it can be seen from Fig. 4.5(c)

that the variation of De/D∞e with Ee is more significant for Xσ = ±3 than for other

values of Xσ. This is consistent with the fact that the porosity exhibits the fastest

growth (or reduction) for Xσ = 3 (or −3), thus leading to the strongest softening (or

hardening) behavior for the material.

Next, Fig. 4.5(d) presents results for the macroscopic equivalent strain Ee as a

function of time. The corresponding FEM results for Xσ = 3, 2/3 and 1/3 are also

included. We can see that forXσ = 3, the macroscopic strain Ee increases very rapidly

in time with a progressively faster rate, as a consequence of the rapid growth of the

macroscopic strain rate observed in Fig. 4.5(c). As already mentioned, this strong

softening behavior is induced by the significant porosity growth (Fig. 4.5(a)), which

is expected to lead to final failure of the material by void coalescence. By contrast,

for other values of Xσ, the macroscopic strains Ee increase almost linearly with time

and are very similar to each other. This is because for Xσ ≤ 2/3 the porosity remains

fairly small (f < 3.5%) throughout the deformation and, therefore, the corresponding

Ee curves for porous crystals are almost identical to that for a fully dense crystal

(which is not shown here for simplicity). Furthermore, the ISO results for Ee are

found to be in fairly good agreement with the corresponding FEM results. This is

true even for Xσ = 3, in spite of the fact that the corresponding predictions for the

evolution of the aspect ratio were not in agreement, suggesting that at these large

triaxialities the evolution of the aspect ratio is not very important.

Figure 4.6 shows the effect of the stress triaxiality on the evolution of the porosity
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Figure 4.6: ISO results for porous FCC single crystals with an initially isotropic
distribution of spherical voids (w1 = w2 = 1) in f0 = 1% initial porosity, subjected to
loading conditions of type II (defined in Table 4.1) always leading to oblate spheroidal
voids, for different values of the stress triaxiality Xσ. Plots are shown for the evolution
of the (a) normalized porosity f/f0, (b) aspect ratio w = amin/amax = a3/a1 = a3/a2 =

w1 = w2, (c) normalized macroscopic equivalent strain rate De/D∞e , as functions of
the macroscopic equivalent logarithmic strain Ee. Plots are also shown for (d) the
evolution of the macroscopic equivalent logarithmic strain Ee as a function of time t.
The corresponding FEM results available in the work of Srivastava and Needleman
(2012, 2015) are also included for comparison.
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and void shape and on the effective behavior of the porous FCC single crystals for

loadings of type II (L = 1) always leading to oblate spheroidal void shapes. The

corresponding FEM results for positive stress triaxialities (Xσ = 3, 2/3 and 1/3) are

also included for comparison. In particular, in Figs. 4.6(a) and 4.6(d), two sets of

the FEM results corresponding to two different unit-cell orientations ([100]-[010]-

[001] and [110]-[110]-[001]) are shown for each positive Xσ, while in Fig. 4.6(b),

only the FEM results corresponding to the [100]-[010]-[001] unit-cell orientation are

shown. Figs. 4.6(a) and 4.6(b) present plots for the normalized porosity f/f0 and the

aspect ratio w = a3/a1 = a3/a2 = w1 = w2 (the ratio of the length of the void semi-axis

in the axial direction to that in the transverse direction), respectively, versus the

macroscopic equivalent strain Ee, for different values of the stress triaxiality. We can

see by comparing these figures to the corresponding figures for loading I (Figs. 4.5(a)

and 4.5(b)) that the general trends for loading II are similar to those for loading I, but

there are some differences. Most importantly, for loading II the porosity and aspect

ratio tend to zero for triaxialities Xσ ≤ 1/3, while for loading I this clearly happens

only for Xσ = −3. This suggests that void collapse to penny-shaped cracks (lying in

the x1-x2 ([100]-[010]) plane) will be more likely for loading II than void collapse

to needles for loading I. In addition, the ISO results for f/f0 are seen to be in fairly

good agreement with the corresponding FEM results for positive triaxialities. (Note

that for each positive Xσ, the two sets of FEM results corresponding to different

unit-cell orientations are very similar and stay on top of each other, except for Xσ = 3

where there are some noticeable differences.) Although there are no FEM results to

compare with for negative stress triaxialities, the predictions of the ISO model for

Xσ < 0 that the initially spherical voids collapse into infinitely thin needles under

loadings of type I while into penny-shaped micro-cracks under loadings of type II are

qualitatively consistent with the results of Hori and Nasser (1988) for the behavior

of an isolated spherical void in an elasto-viscoplastic FCC single crystal subjected to

remote, incremental, axisymmetric loadings.

Figure 4.6(c) presents plots for the normalized macroscopic equivalent strain rate

De/D∞e versus the macroscopic equivalent strain Ee for loadings of type II at dif-
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ferent values of the stress triaxiality. We observe that for the larger positive stress

triaxialities (Xσ ≥ 2/3), De/D∞e exhibits a behavior that is largely consistent with

the corresponding f/f0 plot (Fig. 4.6(a)), indicating that the overall softening of the

material is dominated by the porosity evolution. On the other hand, for Xσ ≤ −1/3,

the behavior is much more complex, exhibiting regimes of both hardening and soft-

ening. In particular, for large negative values of the stress triaxiality (Xσ = −2/3 and

−3), De/D∞e first decreases with Ee (hardening) and then increases abruptly (strong

softening) prior to void collapse. Referring to the corresponding plots for the porosity

and aspect ratio, it is deduced that the initial hardening is associated with the reduc-

tion in the porosity, while the softening for larger strains is explained by the sudden

shape changes associated with void collapse. Note that for Xσ = −2/3 (and also for

−1/3), the abrupt upturn of De/D∞e (strong softening) occurs when the aspect ratio

w is very small (w < 0.1). As already mentioned, such results could be questioned

on physical grounds because void surface contact may have already taken place, thus

arresting the softening effect induced by void collapse (Hutchinson and Tvergaard,

2012). However, it is interesting to note that, for Xσ = −3, the softening induced by

the change of the void shape takes place before void surface contact is expected to

occur—and could, therefore, be physically relevant. In fact, the numerical simulations

of Srivastava and Needleman (2015) have shown that an overall enhanced creep rate

may occur during void collapse, albeit for a different loading condition.

Figure 4.6(d) shows the corresponding plots for the macroscopic equivalent strain

Ee as a function of time. It can be seen that for all values of Xσ considered, the

Ee curves for loading II (Fig. 4.6(d)) are very similar to the corresponding curves

for loading I (Fig. 4.5(d)). However, it should be emphasized that, the evolution

of the macroscopic logarithmic strain tensor E is quite different for loadings I and

II, due to the different loading types (different Lode parameters). Furthermore, the

ISO predictions are found to agree quite well with the corresponding FEM results for

positive stress triaxialities. (For each positive Xσ, the two sets of the FEM results

for different unit-cell orientations are nearly identical.)

In Fig. 4.7, we explore the effect of the stress triaxiality on the evolution of
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Figure 4.7: ISO results for porous FCC single crystals with an initially isotropic
distribution of spherical voids (w1 = w2 = 1) in f0 = 1% initial porosity, subjected
to loading conditions of type IV (defined in Table 4.1) leading to voids of general
ellipsoidal shape, for different values of the stress triaxiality Xσ. Plots are shown for
the evolution of the (a) normalized porosity f/f0, (b) aspect ratio w = amin/amax =

a2/a1 = w1/w2, (c) normalized macroscopic equivalent strain rate De/D∞e , as functions
of the macroscopic equivalent logarithmic strain Ee. Plots are also shown for (d) the
evolution of the macroscopic equivalent logarithmic strain Ee as a function of time t.
The corresponding FEM results available in the work of Srivastava and Needleman
(2012, 2015) are also included for comparison.
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the microstructure and on the effective behavior of the porous FCC single crystals for

loading conditions of type IV (L = 0) leading to voids of general ellipsoidal shape. It is

important to note that loading IV refers to the [110]-[110]-[001] loading orientation,

which is different from the [100]-[010]-[001] loading orientation for loadings I and

II considered above. Figs. 4.7(a) and 4.7(b) show plots for the normalized porosity

f/f0 and the aspect ratio w = a2/a1 = w1/w2 (in the x1-x2 ([110]-[110]) plane),

respectively, versus the macroscopic equivalent strain Ee, for different values of Xσ.

The corresponding FEM results for positive stress triaxialities (Xσ = 3, 2/3 and 1/3)

are also included in Fig. 4.7(a) (no FEM results are available for the aspect ratio w).

We observe from Figs. 4.7(a) and 4.7(b) that the plots for the normalized porosity

f/f0 and the aspect ratio w for loading IV are qualitatively similar to those for loading

II in Figs. 4.6(a) and 4.6(b), indicating that the effect of the stress triaxiality on the

microstructure evolution is qualitatively similar for the above two different loading

configurations. However, for given values of Xσ, both f/f0 and w evolve much more

rapidly with Ee for loading IV than for loading II. Our interpretation of this result

is as follows. The FCC crystal matrix exhibits stronger behavior and is much more

resistant to finite-strain plastic deformation for loading IV than for loading II. As

a consequence, larger fractions of the macroscopic deformation are accommodated

by the voids, leading to faster evolution of porosity and void shape with increasing

macroscopic strain. In addition, we can see from Fig. 4.7(a) that the ISO results for

f/f0 agree very well with the corresponding FEM results. Note that for Xσ = 2/3

and 1/3, the FEM simulations of Srivastava and Needleman (2015) terminate at

t = 18 × 107s, where the corresponding values of the macroscopic strain Ee are still

relatively small (this explains the abrupt ends of the FEM results for Xσ = 2/3 and

1/3).

Figure 4.7(c) shows the corresponding results for the normalized macroscopic

equivalent strain rate De/D∞e versus the macroscopic equivalent strain Ee, for load-

ings of type IV. We can see that while the De/D∞e plots for loading IV (Fig. 4.7(c))

are qualitatively similar to those for loading II (Fig. 4.6(c)), they evolve much more

rapidly with Ee in quantitative terms. This is consistent with the observation made
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in Figs. 4.7(a) and 4.7(b) for the evolution of porosity and void shape, which play

the role of hardening or softening mechanisms for the macroscopic behavior of porous

crystals. On the other hand, we can see from Fig. 4.7(d) that the effect of the stress

triaxiality on the time evolution of Ee for loading IV is qualitatively similar to those

for loadings I and II: for large triaxiality (Xσ = 3) Ee increases very rapidly in time

with an increasing rate, while for other values of the triaxiality Ee increases almost

linearly in time with a much slower rate. However, for given values of Xσ, the time

evolution of Ee is significantly slower for loading IV than for loadings I and II (note

that the time scale in Fig. 4.7(d) is much larger than those in Figs. 4.5(d) and

4.6(d)). This is in accordance with the fact that, for the range of the stress triaxiality

considered, the macroscopic behavior for the porous FCC crystal is much stronger

(leading to much slower creep rate) for loading IV than for loadings I and II (see Fig.

4.3(a)). Furthermore, we observe from Fig. 4.7(d) that the ISO results are in very

good agreement with the corresponding FEM results for Xσ > 0.

At this point, it should be remarked that the evolution of the microstructure and

the macroscopic response of porous FCC crystals subjected to loadings I-III with the

[100]-[010]-[001] loading orientation are quite similar to the corresponding results

for porous isotropic materials (e.g., Ponte Castañeda and Zaidman, 1994; Danas and

Ponte Castañeda, 2009b), indicating that the finite-strain macroscopic behavior of

porous FCC crystals for this loading orientation is rather “isotropic”. However, this

is not true for the corresponding results for loadings IV-VII with the [110]-[110]-[001]

loading orientation, which are actually quite different from the corresponding isotropic

results. This observation provides justification for the need of homogenization-based

constitutive models, such as the ISO model, that can account more accurately for the

coupled effect of crystallographic anisotropy and deformation-induced morphological

anisotropy. Next, we consider porous single crystals with stronger crystal anisotropies.
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4.4 Porous HCP single crystals

In this section, we make use of the ISO model to explore both the instantaneous

and finite-strain response for porous, low-symmetry, HCP single crystals. The corre-

sponding results obtained with the IVH model (Song and Ponte Castañeda, 2017a)

will also be included for comparison purposes (unfortunately, no FEM results are

available to compare with).

We consider HCP single crystals with a c/a ratio of 1.629, and a creep exponent

n of 3, which are known to be appropriate for ice. The principal slip systems are

the three basal slips ({0001} ⟨1120⟩), the three prismatic slips ({1010} ⟨1120⟩) and

the six second-order ({1122} ⟨1123⟩) pyramidal-⟨c + a⟩ slips, which will be denoted

by labels A, B and C, respectively. Note that the three basal slips together with the

three prismatic slips provide only four (two each) linearly independent slip systems,

allowing no straining along the ⟨c⟩-axis. However, the six second-order pyramidal-⟨c+

a⟩ slips contain sets of five linearly independent slip systems, thus allowing arbitrary

(isochoric) plastic deformation. The reference flow stresses (τ0)(k) in expression (3.3)

are taken to be identical for each family of slip systems, but generally different for

different families of slip systems. The basal slips are taken to be the “soft” slip

systems, with a reference flow stress τA, while the prismatic and pyramidal slips are

taken to be the “hard” slip systems, with the same reference flow stresses τB = τC . For

later use, we define M = τB/τA = τC/τA to be the contrast parameter, characterizing

the anisotropy of HCP crystals. Note that M ≈ 60 for ice (Duval et al., 1983), but

here we will consider more general values of M (1 ≤M ≤ 60) to investigate the effect

of the anisotropy of HCP crystals (as a case study for the highly anisotropic material

systems).

4.4.1 Instantaneous macroscopic response

In this subsection, we examine the instantaneous macroscopic response of porous

HCP crystals for given fixed states of the microstructure, by means of the gauge

surface defined by (4.4), focusing on the effect of the crystal anisotropy (values of

115



M), porosity and void shape. The new ISO results will be compared with the IVH

results of Song and Ponte Castañeda (2017a), which provide outer bounds for the

gauge surfaces.

We consider porous HCP crystals subjected to axisymmetric loadings of the type

Σ = ΣmI +Σa (−
1

3
e1 ⊗ e1 −

1

3
e2 ⊗ e2 +

2

3
e3 ⊗ e3) , (4.11)

combining the hydrostatic stress Σm and the axisymmetric shear stress Σa = ±Σe,

where it is recalled that Σe is the macroscopic equivalent stress. Note that loading

(4.11) with Σa > 0 is identical to loading I (L = −1) in Table 4.1 for porous FCC

crystals, while loading (4.11) with Σa < 0 is identical to loading II (L = 1) in Table

4.1. For simplicity, we further assume that the ⟨c⟩-axis of the HCP-crystal matrix is

aligned with the symmetry axis e3 of the applied loading (4.11). (Note that l1 and l2

in (4.1) may be chosen to be any two linearly independent crystallographic axes lying

in the basal plane, and l3 is aligned with the ⟨c⟩-axis.) In addition, we choose τ̃0 = τA

in (4.4), so that all results for the gauge surfaces of porous HCP crystals shown below

are normalized by τA.

Figure 4.8 shows Σm-Σa cross sections of the gauge surfaces for the porous HCP

crystals. In Fig. 4.8(a), we investigate the effect of the crystal anisotropy (M =

1,5,10,20,60) on the ISO gauge surfaces for porous HCP crystals with porosity f =

1%, void aspect ratios w1 = w2 = 1. For comparison purposes, the corresponding IVH

gauge surfaces (Song and Ponte Castañeda, 2017a) are also shown in Fig. 4.8(a) in

dashed lines, while the corresponding MVAR gauge surfaces (Mbiakop et al., 2015b)

are shown in Fig. 4.8(b). We can see from Fig. 4.8(a) that increasing M leads to the

expansion of the ISO gauge surface for all stress triaxialities and, thus, to stronger

effective behavior for the porous HCP crystal. Nonetheless, both the shape and

orientation of the ISO gauge surfaces change significantly as M increases, indicating

a strong distortional hardening effect. In addition, the ISO results are found to be

very similar to the corresponding IVH outer bounds, except for the “corner” regions,

where the slopes of the ISO and IVH surfaces are rather different (indicating that the
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Figure 4.8: The Σm-Σa cross sections of the gauge surfaces for porous viscoplastic
(n = 3) HCP crystals subjected to axisymmetric loadings (4.11). Results are shown
for the effect of the crystal anisotropy, as defined by the contrast parameterM , on the
(a) ISO gauge surfaces (solid lines), IVH gauge surfaces of Song and Ponte Castañeda
(2017a) (dashed lines), and (b) MVAR gauge surfaces of Mbiakop et al. (2015b), for
porous HCP crystals. Results are also shown for the effect of the (c) porosity f , and
(d) average void shape, as characterized by the aspect ratios w1 and w2, on the ISO
(solid lines) and IVH (dashed lines) gauge surfaces for porous ice (M = 60).
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direction of the induced plastic flow can also be quite different for the ISO and IVH).

On the other hand, we observe from Fig. 4.8(b) that, while the MVAR gauge

surface for M = 1 is very similar to the corresponding ISO and IVH gauge surfaces

(as expected from the results for porous FCC crystals), the MVAR gauge surfaces

for M ≥ 5 are much smaller than the corresponding ISO and IVH surfaces, indicating

a dramatically softer response, especially for moderate to large magnitudes of the

stress triaxiality. In this context, we should recall that the MVAR model was based

on certain simplifying assumptions designed for porous crystals with equal (or similar)

reference flow stresses for all available slip systems (M ∼ 1). In this regard, it is inter-

esting to note that both the ISO and IVH gauge surfaces tend to infinity as M →∞,

indicating that non-basal slip is necessary for non-vanishing overall plastic deforma-

tion of the porous HCP crystals (under loading condition (4.11)). However, this is

not the case for the MVAR gauge surface, which—contrary to expectations—tends

to a finite limit for all stress triaxialities. In fact, the full-field, unit-cell simulations

of Mbiakop et al. (2015b) have shown that, when only three basal slips are available,

the porous HCP crystal cannot undergo macroscopic plastic deformation (under load-

ing (4.11))—which is consistent with the ISO and IVH predictions, but not with the

MVAR results. In addition, as already noted by Mbiakop et al. (2015b), the MVAR

model does predict a rigid overall response if it is assumed (from the start) that there

are only three basal slips (with equal flow stresses), instead of twelve slips, where the

flow stresses of the non-basal systems are allowed to tend to infinity, as mentioned

above. Clearly, this is an inconsistency with the MVAR method, which suggests that

the results of Fig. 4.8(b) cannot be accurate for large values of M .

Figure 4.8(c) shows the effect of the porosity on the ISO gauge surfaces for porous

ice (M = 60) with spherical voids (w1 = w2 = 1) and different values of the porosity

(f = 1%, 10% and 25%). We also include, for comparison, the corresponding IVH

gauge surfaces (in dashed lines) of Song and Ponte Castañeda (2017a). We observe

that, for given values of f , the gauge surfaces for porous ice are much larger and less

symmetric with respect to the vertical deviatoric axis (Σm = 0) than the corresponding

results for porous FCC crystals (solid curves in Fig. 4.3(b)), indicating a strong effect
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of the crystallographic anisotropy (HCP vs. FCC) on the effective behavior of porous

crystals. In addition, we can see from Fig. 4.8(c) that increasing porosity has a

definite softening effect on porous ice for all stress triaxialities, similar to the findings

in Fig. 4.3(b) for porous FCC crystals. However, for porous ice the contraction of

the gauge surface with increasing values of f exhibits a much stronger dependence on

XΣ, thus leading to substantial changes in the shape of the gauge surfaces. The ISO

results are quite similar to the corresponding IVH outer bounds. Nonetheless, the

maximum relative difference between the ISO and IVH results is found to be larger

for high porosities (e.g., approximately 8% at XΣ ≈ −0.9 for f = 25%) than for low

porosities (e.g., approximately 5% at XΣ ≈ −2.8 for f = 1%).

Figure 4.8(d) shows the effect of the void shape on the ISO gauge surfaces for

porous ice (M = 60) with the same porosity f = 1%, but with three different void

shapes: (i) spherical (w1 = w2 = 1), (ii) prolate spheroidal (w1 = w2 = 5) and (iii)

oblate spheroidal (w1 = w2 = 0.2). It is further assumed that the symmetry axis n3

of the voids is aligned with the loading axis e3 and, thus, also aligned with the ⟨c⟩-

axis of the crystal matrix. The corresponding IVH gauge surfaces are also included

for comparison. First, we observe that the porous ice gauge surface for a given void

shape is substantially different from that for porous FCC crystals (solid curves in Fig.

4.3(c)), demonstrating a significant effect of the crystallographic anisotropy (HCP vs.

FCC) on the macroscopic behavior of porous crystals. In addition, it can be seen

from Fig. 4.8(d) that the change of the void shape has strong distortional hardening

or softening effects on the macroscopic behavior of porous ice, in agreement with

the observations made for porous FCC crystals in Figs. 4.3(c) and 4.3(d). However,

the effect of the void shape exhibits a strong dependence on the crystallographic

anisotropy. For instance, while the hydrostatic strength for porous ice with prolate

spheroidal voids (w1 = w2 = 5) is much larger than that with spherical voids (w1 =

w2 = 1), the opposite is true for porous FCC crystals (see solid curves in Fig. 4.3(c)).

This observation reveals a complex, coupled effect of the morphological anisotropy

induced by the void shape and the crystallographic anisotropy. The ISO results are,

again, rather similar to the corresponding IVH outer bounds, except for the “corner”
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regions of the gauge surfaces.

At this point, we should remark that for axisymmetric loadings (4.11) that are

aligned with the ⟨c⟩-axis of the crystal matrix, as well as with the symmetry axis

of the spheroidal voids (w1 = w2), the two-dimensional Eshelby integrals involved in

the calculation can be reduced to one dimension, so that a one-dimensional Gaussian

quadrature integration scheme can be used to improve the numerical efficiency. In

particular, 120 Gaussian points are used for the cases withM ≤ 20, while 240 Gaussian

points are used for M = 60 corresponding to the most sensitive cases.

4.4.2 Microstructure evolution and finite-strain response

In this subsection, we investigate the microstructure evolution and the finite-strain

response for porous HCP crystals under uniaxial loading conditions, also focusing on

the effect of the crystal anisotropy (values of M). Thus, we consider porous HCP

crystals with initially random, isotropic distributions of spherical voids (w1 = w2 = 1)

and porosity f0 = 1%, subjected to uniaxial loadings of the type σ = σ33e3 ⊗ e3. We

investigate two cases: (i) uniaxial tension with σ33 > 0 (Xσ = 1/3, L = −1), and uniaxial

compression with σ33 < 0 (Xσ = −1/3, L = 1). Given that the ⟨c⟩-axis of the crystal

matrix is initially aligned with the loading direction e3, it can be shown that the

average “elastic” spin in the crystal matrix (see equation (3.60) in chapter 3) is zero,

as a consequence of the fact that both the average “continuum” spin and the average

“plastic” spin in the crystal matrix are identically zero. Therefore, the average lattice

orientation remains fixed throughout the deformation. In addition, it can be shown

that the average void shape deforms from initially spherical to spheroidal (w1 = w2),

with the symmetry axis n3 of the voids always parallel to the loading axis e3 (also

parallel to the ⟨c⟩-axis of the crystal matrix). Furthermore, the resulting macroscopic

logarithmic strain E (and macroscopic strain rateD) can be shown to be axisymmetric

of the form (4.9) with E11 = E22 (or D11 =D22), and xl = el (l = 1,2,3). For simplicity,

it is further assumed that all slip systems are non-hardening, so that the reference

flow stresses τA, τB, τC and the contrast parameter M remain fixed throughout the

deformation.
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Figure 4.9: ISO results for porous HCP single crystals with an initially isotropic
distribution of spherical voids (w1 = w2 = 1) in f0 = 1% initial porosity, subjected to
uniaxial tensions (Xσ = 1/3 and L = −1) aligned with the ⟨c⟩-axis of the crystal, where
different values of the contrast parameter M are considered (M = 1, 5, 10, 20 and
60). Plots are shown for the evolution of the (a) normalized porosity f/f0, (b) aspect
ratio w = amin/amax = a1/a3 = a2/a3 = 1/w1 = 1/w2, and (c) normalized macroscopic
axial strain rate D33/D∞e , as functions of the macroscopic axial logarithmic strain
E33. The corresponding IVH results are also shown for comparison. Fig. 4.9(d)
shows the magnitude of the normalized macroscopic axial strain rate ∣D33∣/D∞e as a
function of the magnitude of the macroscopic axial logarithmic strain ∣E33∣ for uniaxial
compressions (Xσ = −1/3 and L = 1), and will be discussed in the context of Fig. 4.10.
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Uniaxial tension. Figures 4.9(a)-4.9(c) present ISO and IVH results for the evolu-

tion of the microstructure and for the macroscopic response of porous HCP single

crystals subjected to uniaxial tension for different values of the contrast parameter

(M = 1,5,10,20,60). Figure 4.9(a) depicts the normalized porosity f/f0 versus the

macroscopic axial strain E33. We observe that the ISO estimate for f/f0 initially

increases with E33 and saturates at a finite value at large enough strains for all values

of M . However, as M increases, the ISO estimate for f/f0 grows more rapidly with

E33 and approaches a larger asymptote, indicating that porosity growth can be quite

significant at low stress triaxiality (Xσ = 1/3) for porous HCP crystals with large

crystal anisotropy. Note that the porosity evolution for porous HCP crystals with

M = 1 is rather similar to that for porous FCC single crystals in Fig. 4.5(a) with

Xσ = 1/3 (uniaxial tension), while the corresponding plot for porous ice with M = 60

initially grows with a rate that is roughly 20 times larger than that for M = 1, and

tends to a significantly larger asymptote around 6 (not shown in the figure). The

above observations also hold for the IVH results. However, for given values ofM , the

porosity growth predicted by the IVH is much weaker than for the ISO.

Figure 4.9(b) gives the corresponding results for the aspect ratio w = a1/a3 =

a2/a3 = 1/w1 = 1/w2 (the ratio of the length of the void semi-axis in the transverse

direction to that in the axial direction). It can be seen that the ISO results for w

start from one and decrease continuously to zero as E33 → ∞ for all values of M ,

indicating that the initially spherical void shape becomes progressively more prolate

tending to a cylindrical void shape as the deformation continues to increase. Moreover,

we observe that increasing M has the effect of accelerating the change in shape of

the voids towards their limiting values. The IVH results for w are found to be

qualitatively similar, although the evolution is a bit slower. Thus, our results show

that the evolution of the porosity and void shape with the macroscopic axial strain

is faster for porous HCP crystals with larger crystal anisotropies. Given that the

capacity of the crystal to accommodate axial extension is progressively reduced with

increasing values of M , a larger proportion of the macroscopic axial extension must

be accommodated by the voids, thus leading to faster porosity growth and axial void
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elongation.

Figure 4.9(c) presents the corresponding results for the normalized macroscopic

axial strain rate D33/D∞e as a function of E33 for uniaxial tension. It can be seen

that the ISO results forD33/D∞e decreases monotonically with E33 for all values ofM ,

indicating overall hardening for the porous HCP crystals (even though the correspond-

ing porosity grows with E33 suggests softening). This overall hardening behavior is

induced by the change of the void shape from spherical to prolate spheroidal (Fig.

4.9(b)), which, as shown in Fig. 4.8(d), has a hardening effect that can dominate

the softening due to porosity growth (Fig. 4.9(a)). In addition, we can see from

Fig. 4.9(c) that the drop in D33/D∞e becomes progressively sharper with increasing

values of M , indicating stronger hardening for porous HCP crystals with larger crys-

tal anisotropy. The above observation also holds for the IVH results. However, for

given values of M , the IVH estimates for D33/D∞e are considerably lower than the

corresponding ISO estimates, consistent with the fact that the IVH estimates for the

effective behavior of porous crystals are stiffer than the corresponding ISO estimates.

Uniaxial compression. Figures 4.10 and 4.9(d) show the effect of the crystal anisotropy

(values of M) on the microstructure evolution and on the macroscopic response of

porous HCP crystals subjected to uniaxial compression. First, we note that the

corresponding results for uniaxial compression are significantly different from those

for uniaxial tension, as expected on physical grounds. Next, Figs. 4.10(a) and 4.10(b)

present results for the normalized porosity f/f0 and the aspect ratio w = a3/a1 =

a3/a2 = w1 = w2, respectively, as functions of the magnitude of the macroscopic axial

strain ∣E33∣. We can see that for all values ofM , the ISO estimates for both f/f0 and

w decrease monotonically with ∣E33∣ and tend to zero simultaneously at sufficiently

large strains, indicating that the initially spherical voids collapse into penny-shaped

cracks lying on the e1-e2 plane. In addition, we observe from Figs. 4.10(a) and 4.10(b)

that increasing M leads to a faster reduction of both the normalized porosity f/f0

and the aspect ratio w and, therefore, to faster collapse of the voids. In particular, the

ISO plots for f/f0 and w for porous HCP crystals with M = 1 are similar to those for

porous FCC crystals in Figs. 4.6(a) and 4.6(b) for Xσ = −1/3 (uniaxial compression),
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Figure 4.10: ISO results for porous HCP single crystals with an initially isotropic
distribution of spherical voids (w1 = w2 = 1) in f0 = 1% initial porosity, subjected to
uniaxial compressions (Xσ = −1/3 and L = 1) aligned with the ⟨c⟩-axis of the crystal,
where different values of the contrast parameter M are considered (M = 1, 5, 10, 20
and 60). Plots are shown for the evolution of the (a) normalized porosity f/f0, and
(b) aspect ratio w = amin/amax = a3/a1 = a3/a2 = w1 = w2 as functions of the magnitude
of the macroscopic axial logarithmic strain E33. The corresponding IVH results are
also shown for comparison.

while the corresponding results for porous ice with M = 60 exhibit much faster drops

with ∣E33∣, tending to zero at an axial strain that is more than 10 times smaller than

that for M = 1. The physical explanation for this result is that, as M increases, the

capability of the crystal matrix to accommodate axial contraction is progressively

reduced and, therefore, larger fractions of the macroscopic axial contraction must be

accommodated by the voids. The IVH estimates for f/f0 and w are qualitatively

similar to the corresponding ISO estimates, but again underestimate the evolution

of both variables, especially for smaller values of M (the relative differences between

the ISO and IVH results can be more than 50%).

Figure 4.9(d) provides the corresponding results for the magnitude of the normal-

ized macroscopic axial strain rate ∣D33∣/D∞e versus the magnitude of the axial strain

∣E33∣. We can see that for all values of M , the ISO estimates for ∣D33∣/D∞e increase

monotonically with ∣E33∣, indicating overall softening for the material (even though

the corresponding porosities decrease with ∣E33∣ inducing a hardening effect). This
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counterintuitive overall softening behavior is found to be a consequence of the rapid

change of the void shape from spherical to oblate spheroidal (void collapse), which pre-

vails over the hardening expected from porosity reduction. Furthermore, we observe

that increasing M results in faster growth in ∣D33∣/D∞e , indicating stronger softening

for porous HCP crystals with larger anisotropy (values of M). In this connection, it

should be emphasized that the softening behavior for porous HCP crystals is fairly

smooth and can occur quite early in the deformation—well before any possible void

surface contact. The above observation is also true for the IVH estimates with the

only difference that the IVH estimates are somewhat lower than the corresponding

ISO estimates. As already mentioned earlier, this is expected since the IVH leads to

stiffer estimates for the effective behavior of porous crystals when compared with the

ISO.

In conclusion, it has been found that, for both uniaxial tension and compression,

the overall hardening or softening of porous HCP crystals is largely controlled by

the evolution of the void shape (with the porosity playing a smaller role). This is

especially the case for porous HCP crystals with large crystal anisotropies, such as

porous ice, where the hardening or softening induced by the void shape changes can

be quite significant.

4.5 Concluding remarks

In this chapter, the Iterated Second-Order (ISO) homogenization model, developed

in chapter 3 of this work, was used to generate estimates for both the instantaneous

response and the evolution of the microstructure for porous viscoplastic FCC and

HCP single crystals. The resulting estimates were found to be in quite good agree-

ment with FEM results available from the literature (Srivastava and Needleman,

2012; 2015; Mbiakop et al., 2015b), demonstrating a remarkable predictive capabil-

ity for the ISO model. Specifically, it was found that the effective instantaneous

response of porous single crystals exhibits a strong dependence on the “crystallo-

graphic” anisotropy induced by the preferred orientation and constitutive properties
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of the active slip systems, as well as on the “morphological” anisotropy determined

by the instantaneous values of the porosity and void shape. In addition, the intrinsic

crystallographic anisotropy was found to have a significant effect on the dependence

of the macroscopic response of the porous single crystals on the porosity and void

morphology, indicating a complex, coupled interaction between the two different types

of anisotropies. Furthermore, the evolution of the microstructure and the finite-strain

response of porous crystals were found to be quite sensitive to the specific loading

conditions, as characterized by the loading orientation, Lode angle and stress triaxi-

ality. In particular, the ISO model revealed a significant effect of the crystallographic

anisotropy on the evolution of the microstructure, which in turn has implications

for the overall hardening (or softening)—and therefore also for shear localization—in

these materials.

The ISO model is based on the recently developed fully optimized second-order

method (Ponte Castañeda, 2015), and uses this homogenization procedure in an it-

erated fashion (Agoras and Ponte Castañeda, 2013) to “discretize” the properties of

the matrix and thereby generate significantly improved estimates, especially for high

triaxiality conditions and small porosities. Earlier homogenization models based on

the variational (VAR) linear comparison approach (deBotton and Ponte Castañeda,

1995) provide rigorous bounds for porous single crystals, but they are too “stiff”

for large triaxialities and small porosities. For this reason, Mbiakop et al. (2015b)

proposed an ad hoc modification of the VAR approach (called MVAR), which was

designed to give accurate results for the gauge surfaces of porous crystals with nearly

equal flow stresses for all active slip systems. In addition, Song and Ponte Castañeda

(2017a) proposed an alternative modification (IVH) that was also based on the it-

erated approach of Agoras and Ponte Castañeda (2013). Compared to these earlier

approaches, the new ISO method was found to give somewhat improved predictions

relative to the IVH method, and to give similarly accurate predictions to the MVAR

method, for the instantaneous response of porous single crystals with small crystal

anisotropy (e.g., porous FCC crystals). On the other hand, the ISO and IVH models

were found to give significantly improved estimates for the instantaneous response of
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porous single crystals with large anisotropy (e.g., porous ice). However, the main ad-

vantage of the ISO model lies in its ability to predict rather well the evolution of the

microstructure and associated macroscopic response for large-deformation processes,

which is something that no other method can do presently.

Thus, the results of this chapter helped confirm the important effect of crystal-

lographic anisotropy on the overall constitutive response of porous single crystals,

suggesting an additional level of complexity in the modeling of such materials. Due

to its ability to deal with broad classes of materials with different crystallographic

anisotropies, material nonlinearities, porosities and void morphologies—without the

need for fitting parameters requiring recalibration for different material systems—the

ISO homogenization model provides a powerful tool for effectively handling the effect

of porosity in single crystals. Having said this, the ISO model is still amenable to

potential improvements, especially for hydrostatic loadings. In addition, the effects

of elastic strains and matrix hardening that were neglected in the present work can

also be accounted for—at least approximately—in a straightforward fashion. As a

final remark, we note that the ISO model developed in this work can be generalized

in seamless fashion for porous polycrystals, thus accounting for the coupled effects of

morphological and crystallographic textures, whose evolution is crucial for modeling

the macroscopic behavior of porous low-symmetry materials, such as porous Ti and

ice polycrystals. A first step in this direction was provided in the work of Lebensohn

et al. (2011), where a less accurate homogenization approach was used to examine

the instantaneous response of polycrystalline solids containing intergranular voids,

but much remains to be done in this area, in particular, to be able to handle mor-

phological and crystallographic texture evolution in finite-strain processes. This will

be pursued in the following chapters.
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Chapter 5

Fully optimized second-order

homogenization model of

viscoplastic polycrystals

In this chapter, we present a fully optimized second-order (FOSO) homogenization

model for the finite-strain response of viscoplastic polycrystals. The model makes

use of a recently developed variational homogenization method, together with the

self-consistent estimates for the instantaneous response of an optimally selected linear

comparison composite (LCC), to generate the corresponding estimates for a nonlinear

polycrystal. The estimates are guaranteed to be exact to second order in the het-

ergeneity contrast, and to satisfy all known bounds. Unlike the earlier second-order

estimates, the FOSO estimate has the advantage that the macroscopic behavior and

field statistics in the nonlinear composite can be conveniently extracted from those in

the LCC. Moreover, consistent homogenization estimates for the average strain-rate

and spin fields are used to derive the evolution equations for the morphological and

crystallographic textures of the polycrystals at finite strains. In particular, the FOSO

model is applied to investigate the effective behavior and field statistics of untextured

HCP polycrystals, and the effects of the rate sensitivity and grain anisotropy are

studied in detail. It is found that the new FOSO estimates are in the best agreement

with available numerical results. Finally, the FOSO model is used to predict the
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texture evolution for HCP polycrystals under uniaxial compression at finite strains.

It is found that a strong basal texture develops as a consequence of the predominant

basal slips, and the material exhibits an interesting softening-hardening behavior due

to texture evolution.

5.1 Introduction

Many minerals and industrial materials are aggregates of randomly orientated and

distributed single-crystal grains. One example is ice, which is a common mineral on

the earth’s surface. The study on the grain-scale rheology of ice has received much

attention especially at a time of climate change, due to its crucial importance for un-

derstanding a wide variety of large-scale geophysical phenomena such as the flow and

dynamics of glaciers and ice sheets. Another example is the metal alloys (titanium,

magnesium and etc.), which exhibit excellent mechanical and biological properties

and are thus widely used for transportation, defense and biomedical applications.

For these reasons, it is of great scientific and technological value to be able to char-

acterize the effective behavior of polycrystalline samples, from the known properties

of their constituents and given statistical information of their microstructures. In ad-

dition, when the polycrystalline samples are subjected to finite-strain deformations,

their microstructures—such as the grain shape and the distribution of the crystallo-

graphic orientations—evolve as the deformation progresses, which can in turn affect

the effective response of the polycrystals. Thus, the objective of the present work is

to develop homogenization models to characterize the effective response, as well as

the evolution of the microstructure for viscoplastic polycrystals at finite strains.

Several constitutive models are already available in the literature to estimate the

viscoplastic response of polycrystalline solids. Among these, the simplest and most

commonly used is the uniform strain rate approximation of Taylor (1938). There is

also the complementary uniform stress approximation of Reuss (1929). These esti-

mates are known to provide the upper and lower bounds, respectively, for the effective

flow stress of the polycrystals. However, because of their uniform field assumptions,
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the Taylor and Reuss estimates are not expected to be very accurate, especially when

the single-crystal behavior becomes highly nonlinear and anisotropic. For example,

while the Taylor model yields fairly good estimates for the macroscopic constitutive

response and texture evolution of certain highly symmetric polycrystals (e.g., Kocks

et al., 1998), they may predict overly stiff material properties and qualitatively incor-

rect texture evolutions for polycrystals with highly anisotropic grains (e.g., Siemes,

1974).

Improved estimates were developed by means of various nonlinear generalizations

of the self-consistent estimates (Hershey, 1954; Kröner, 1958; Willis, 1977), which

are known to be very accurate for linearly viscous polycrystals. The central idea

of these nonlinear self-consistent methods is to suitably linearize the constitutive

relation, and to use the self-consistent estimates for a linear polycrystal to obtain

the corresponding estimates for a nonlinear polycrystal. However, the main difficulty

consists of finding the ‘right’ linearization scheme to select the linear polycrystal in

an ‘optimal’ fashion. The earlier nonlinear self-consistent methods utilize only first-

moment information of the stress fields, together with various ad hoc linearization

schemes, to approximate the grain interactions. Among these, perhaps the most

popular are the incremental method of Hill (1965) and Hutchinson (1976), and the

tangent method of Molinari et al. (1987) and Lebensohn et al. (1993). In particular,

the tangent, or the viscoplastic self-consistent (VPSC), model was widely used to

predict the texture evolution in viscoplastic polycrystals, see, for example, Castelnau

et al. (1996, 1997). While the incremental and tangent methods provide estimates

that are quite similar for polycrystals with weak nonlinearity, they yield significantly

different estimates for strongly nonlinear polycrystals. For instance, for polycrystals

with isotropic textures, the incremental estimates for the effective flow stress tend

to the Taylor upper bound, while the corresponding tangent estimates tend to the

Reuss lower bound. The discrepancy among these estimates is particularly dramatic

for materials with high grain anisotropy, including minerals such as ice and olivine,

and industrial alloys such as titanium and zirconium, where the Taylor upper bound

can be several times the Reuss lower bound.
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Significantly improved nonlinear self-consistent methods were developed by Ponte

Castañeda and coworkers, making use of linearization schemes depending not only

on the first moment, but also on the second moment of the stress field. These meth-

ods are derived from rigorous variational principles, which express the potential of

a nonlinear polycrystal in terms of that of a linear comparison composite (LCC),

whose properties play the role of trial fields in the variational principles. Thus, the

linearization condition can be identified as the stationary condition associated with

the variational principle. Along these lines, Nebozhyn et al. (2001) proposed a vari-

ational self-consistent method employing the variational principle of deBotton and

Ponte Castañeda (1995), and building on the earlier work of Ponte Castañeda (1991)

for isotropic materials. This method involves a ‘secant’ linearization of the nonlinear

response evaluated at the second moments of the stresses in the grains. Due to their

extremal character, the variational estimates for the effective flow stress provide rig-

orous upper bounds for all other self-consistent estimates. The latter fact is used to

demonstrate the inconsistency of the incremental estimates, which are often found

to violate the rigorous bounds. Moreover, the stationary character of the variational

estimates allows the use of the macroscopic behavior and field statistics in the LCC

to estimate the corresponding quantities in the nonlinear polycrystal. The varia-

tional method was later used by Liu et al. (2003) to predict the texture evolution

in titanium polycrystals. Compared with the earlier homogenization estimates, the

variational results are found to be in much better agreement with the experimental

and numerical results. However, precisely because of their bounding properties, the

variational predictions are expected to be overestimates for the effective behavior.

More accurate estimates of the self-consistent type were developed by Liu and

Ponte Castañeda (2004a), making use of a generalization of the second-order vari-

ational method of Ponte Castañeda (2002). This method involves a ‘generalized

secant’ linearization of the nonlinear response, incorporating dependence on both the

first and second moments of the stress field, and yields estimates that are exact to

second order in the heterogeneity contrast. The method was then employed to predict

the texture evolution of viscoplastic polycrystals by Liu et al. (2005) and Lebensohn
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et al. (2007), and was found to yield the most accurate estimates among the var-

ious self-consistent theories available to date. However, the second-order estimates

have the undesirable feature that the macroscopic behavior and field statistics in the

nonlinear polycrystals do not coincide with the corresponding quantities in the LCC,

due to the lack of full stationarity of the estimates with respect to the properties of

the LCC. In fact, Idiart and Ponte Castañeda (2007a) have shown that additional

terms involving difficult-to-compute derivatives are required to obtain consistent es-

timates for the above quantities in the nonlinear polycrystals, hindering the efficient

implementation of the second-order method. In order to remedy this deficiency, Ponte

Castañeda (2015) proposed a new ‘generalized secant’ second-order approach, making

use of a more general variational principle, such that the estimates are fully stationary

with respect to the properties of the LCC, and are still exact to second order in the

heterogeneity contrast. This new method requires the same amount of information

on the field statistics (i.e., the first and second moments of the stress field), but has

all the advantages of the earlier variational estimates in that the macroscopic con-

stitutive relation and field statistics in the LCC can be directly used to estimate the

corresponding quantities in the nonlinear polycrystals.

In this work, the fully optimized second-order (FOSO) method will be used for

the first time to generate estimates of the self-consistent type for the macroscopic

behavior and field statistics (e.g., phase averages and field fluctuations) for viscoplas-

tic polycrystals with given fixed states of the microstructure. In addition, consistent

homogenization estimates for the average strain rate and spin fields will be used to

account for the evolution of the microstructure at finite strains. Furthermore, applica-

tions of the FOSO model for HCP polycrystals will be considered, and the new FOSO

estimates will be compared with the earlier nonlinear homogenization estimates, as

well as with the full-field, Fast Fourier Transform (FFT) results of Lebensohn et al.

(2004, 2007). The effect of the nonlinearity and anisotropy of the single-crystal grains

on the macroscopic behavior and field statistics in the polycrystals will be investi-

gated separately in detail. Finally, the finite-strain response and texture evolution of

the HCP polycrystals under uniaxial compression will be considered.
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5.2 Background and formulation

In this work, polycrystals are taken to be aggregates of randomly distributed, perfectly

bonded (anisotropic) single-crystal grains with varying orientations. Separation of

length scales is assumed so that the size of the grains is much smaller than the size of

the specimen and the scale of variation of the loading conditions. Furthermore, the

polycrystal is assumed to have statistically uniform and ergodic microstructure.

Here we confine our attention to monolithic polycrystals, so that the single-crystal

grains differ from each other only in terms of crystallographic orientation, but not in

crystallographic structure or composition. For simplicity, it is further assumed that

the crystal orientations take on a set of discrete values, characterized by (orthogonal)

rotation tensors Q(r) (r = 1, ...,N), so that the lattice vectors l
(r)
i (i = 1,2,3) for a

given crystal orientation are related to the corresponding lattice vectors li (i = 1,2,3)

for a ‘reference’ single-crystal via l
(r)
i = (Q(r))

T
li (i = 1,2,3). The polycrystal is

assumed to occupy a region of space Ω, while all the grains with a given orientation

Q(r) occupy (disconnected) subregions Ω(r) (r = 1, ...,N) and will be collectively

referred to as ‘phase r’. Let the symbols ⟨⋅⟩ and ⟨⋅⟩(r) denote volume averages over

the polycrystal (Ω) and phase r (Ω(r)), respectively. The distribution of various phases

can be described by the indicator functions χ(r)(x), which are defined to be equal

to 1 if the position vector x is in Ω(r) and 0 otherwise. In the random context, it

is necessary to consider the ensemble averages of the indicator functions χ(r)(x). In

particular, the ensemble average of χ(r)(x) defines the one-point probability p(r)(x)

of finding phase r at point x, while the ensemble average of χ(r)(x)χ(s)(x′) defines

the two-point probability p(rs)(x,x′) of finding simultaneously phase r at x and phase

s at x′. Due to the ergodic hypothesis, it is possible to replace the ensemble averages

by the volume averages, so that the one-point probability p(r)(x) can be identified

with the volume fraction of phase r, as given by c(r) = ⟨χ(r)(x)⟩, while the two-point

probability p(rs)(x,x′) can be identified with the volume average ⟨χ(r)(x)χ(s)(x′)⟩.

Note that the volume fractions c(r) (r = 1, ...,N) and the rotation tensors Q(r) (r =

1, ...,N) determine the orientation distribution function (ODF) of the polycrystals,
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characterizing the crystallographic texture, while the two-point statistics p(rs)(x,x′)

(r, s = 1, ...,N) serve to describe the distribution of the grains in space, characterizing

(in an approximate way) the morphological texture.

In particular, we assume that the two-point probabilities p(rs)(x,x′) exhibit “ellip-

soidal” symmetry (Willis, 1977), as can be characterized by a symmetric second-order

tensor Z, so that p(rs)(x,x′) = p(rs)(∣Z(x − x′)∣). In this case, the tensor Z correlates

with the ellipsoidal average grain shape, and is defined by

Z = w1n1 ⊗n1 +w2n2 ⊗ n2 +n3 ⊗ n3, (5.1)

where w1 = a3/a1, w2 = a3/a2 are the two aspect ratios characterizing the average

shape of the ellipsoidal grains (a1, a2 and a3 are respectively the length of the three

semi-axes of the grain), and ni (i = 1,2,3) are unit vectors along the three principal

directions of the ellipsoidal grains. For later use, we define a rotation tensor G(g)

that relates the grain axes ni (i = 1,2,3) to the sample axes ei (i = 1,2,3), such

that ni = (G
(g))

T
ei (i = 1,2,3). Then, the microstructure of the polycrystal can be

described by the set of microstructural variables

{Q(r),w1,w2,G
(g)
}, (5.2)

with r = 1, ...,N . Note that with the above choice of the microstructural variables,

the evolution of the ODF in large deformations is characterized by the rotation of the

tensors Q(r) (r = 1, ...,N), while the corresponding volume fractions c(r) (r = 1, ...,N)

of the single-crystal phases are taken to be fixed, due to the incompressibility of the

single-crystal grains (this is why we do not include c(r) in the microstructural variables

(5.2)). However, it should be mentioned that there are other ways to describe the

evolution of the ODF (see, e.g., Dawson and Marin, 1997). Note further that the

microstructural variables (5.2) include only up to two-point statistics and, thus, do not

suffice to determine exactly the properties of the polycrystals. However, the objective

of this work is to obtain estimates of the self-consistent type for the macroscopic

response of the polycrystals, and it is well known that these estimates depend only
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on the one- and two-point statistics.

In this work, the single-crystal grains are assumed to deform by dislocation glide

along K well-defined crystallographic slip systems. In addition, the constitutive be-

havior of the single-crystal phases is taken to be viscoplastic (elasticity is neglected

for simplicity), so that the local constitutive response of the polycrystal is given by

D =
∂u(r)

∂σ
, u(x,σ) =

N

∑
r=1

χ(r)(x)u(r)(σ), u(r)(σ) =
K

∑
k=1

φ
(r)

(k)
(τ
(r)

(k)
), (5.3)

where D is the Eulerian strain rate, σ is the Cauchy stress, and u and u(r) are the

convex stress potentials for the polycrystal and single-crystal phase with orientation

Q(r), respectively. The functions φ
(r)

(k)
(k = 1, ...,K) are the slip potentials characteriz-

ing the response of the K slip systems in a crystal with orientation Q(r), and depend

on the resolved shear (or Schmid) stresses

τ
(r)

(k)
= σ ⋅µ(r)

(k)
, where µ

(r)

(k)
=
1

2
(n
(r)

(k)
⊗m

(r)

(k)
+m(r)

(k)
⊗n(r)

(k)
) . (5.4)

Here the µ
(r)

(k)
are the second-order Schmid tensors with n

(r)

(k)
and m

(r)

(k)
denoting,

respectively, the unit vectors normal to the slip plane and along the slip direction of

the kth slip system, for a crystal with orientation Q(r). Note that the Schmid tensors

µ
(r)

(k)
for the polycrystal are related to the corresponding Schmid tensors µ(k) for a

‘reference’ single crystal via µ
(r)

(k)
= Q(r)

T
µ(k)Q

(r). For simplicity, the slip potentials

of all grains are assumed to be of the power-law form

φ(k)(τ) =
γ̇0(τ0)(k)

n + 1
∣

τ

(τ0)(k)
∣

n+1

, (5.5)

where γ̇0 denotes the reference strain rate, (τ0)(k) > 0 is the reference flow stress of the

kth slip system, and m = 1/n is the strain rate sensitivity (n is the viscous exponent).

Note that the two limiting cases as n tends to 1 and ∞ are of special interest, as they

describe linearly viscous and rigid ideally plastic behavior, respectively.

The effective viscoplastic response of the polycrystals may be written in the form
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(e.g., Hutchinson, 1976; Ponte Castañeda and Suquet, 1998)

D =
∂ũ(σ)

∂σ
, ũ(σ) = min

σ∈S(σ)
⟨u(x,σ)⟩ = min

σ∈S(σ)

K

∑
r=1

c(r)⟨u(r)(σ)⟩(r), (5.6)

where ũ is the effective stress potential for the polycrystal, D = ⟨D⟩ and σ =

⟨σ⟩ are the macroscopic strain rate and Cauchy stress, and S(σ) = {σ,div σ =

0 in Ω, and ⟨σ⟩ = σ} is the set of statically admissible stress fields.

A dual formulation of the problem may be given in terms of the dissipation po-

tentials w(r) of the phases, which are defined by the Legendre transform

w(r)(D) = (u(r))∗(D) = max
σ
{σ ⋅D − u(r)(σ)}. (5.7)

Then, the local constitutive relation of the polycrystal can be characterized by

σ =
∂w

∂D
, w(x,D) =

N

∑
r=1

χ(r)(x)w(r)(D), (5.8)

while its effective response is given by

σ =
∂w̃(D)

∂D
, w̃(D) = min

D∈K(D)
⟨w(x,D)⟩ = min

D∈K(D)

K

∑
r=1

c(r)⟨w(r)(D)⟩(r). (5.9)

Here w̃ is the effective dissipation potential, and K(D) is the set of kinematically

admissible strain-rate fields D, such that there exists a continuous velocity field v

satisfying D = (∇v +∇vT ) /2 in Ω and v =Dx on ∂Ω. Furthermore, it can be shown

that the above two formulations in terms of stress and dissipation potentials are

exactly equivalent to each other in the sense of Legendre duality, i.e., w̃ = ũ∗. In

general, the effective potentials ũ and w̃ for nonlinear polycrystals cannot be com-

puted exactly, except for certain special cases where both the microstructure and the

response of the slip systems are very simple. In this work, approximate estimates for

these potentials will be computed by means of the recently developed fully optimized

second-order (FOSO) method of Ponte Castañeda (2015), as will be seen in Section

5.3.
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For later use, here we define the relevant field statistics in the polycrystals. The

first moments of the stress, strain-rate and spin fields over phase r are defined via

σ(r) = ⟨σ⟩(r), D
(r)
= ⟨D⟩(r), and W

(r)
= ⟨W⟩(r), which are required to satisfy the

global average conditions σ = ∑N
r=1 c

(r)σ(r), D =∑N
r=1 c

(r)D
(r)

, andW =∑N
r=1 c

(r)W
(r)

,

with W denoting the macroscopic spin. The von Mises equivalent measures for σ(r)

and D
(r)

are defined by σ(r)e =

√
3
2
σ(r)

′
⋅σ(r)

′
, where σ(r)

′

denotes the average stress

deviator in phase r, and D
(r)

e =

√

2
3
D
(r)
⋅D
(r)

(D
(r)

is purely deviatoric due to the

incompressibility of the single-crystal phases). Furthermore, the second moments of

the stress and strain-rate fields over phase r are defined via ⟨σ⊗σ⟩(r) and ⟨D⊗D⟩(r),

while the corresponding phase fluctuation covariance tensors are given by

C
(r)
σ ≐ ⟨(σ −σ

(r)
)⊗ (σ −σ(r))⟩(r) = ⟨σ ⊗σ⟩(r) −σ(r) ⊗σ(r), (5.10)

and similarly for C
(r)
D

. In particular, we will make use of the statistical quantities

τ
(r)

(k)
= σ(r) ⋅µ(r)

(k)
, τ

(r)

(k) = µ
(r)

(k)
⋅ ⟨σ ⊗σ⟩(r)µ

(r)

(k)
, and SD(r)(τ

(r)

(k)
) =

√

τ
(r)

(k) − (τ
(r)

(k)
)

2

(5.11)

to denote the first moment, the second moment and the standard deviation of the

resolved shear stress τ
(r)

(k)
over slip system k in phase r. We will also make use of the

standard deviations for the equivalent stress and strain rate over phase r:

SD(r)(σe) =

√

⟨σ2
e − (σ

(r)
e )

2
⟩(r), SD(r)(De) =

√

⟨D2
e − (D

(r)

e )

2

⟩(r). (5.12)

Completely analogous expressions can be obtained for the overall fluctuation covari-

ance tensors Cσ and CD, as well as for the corresponding overall standard deviations

SD(σe) and SD(De). For example, Cσ = ⟨σ ⊗σ⟩ −σ ⊗σ, and SD(σe) =
√

⟨σ2
e − σ

2
e⟩.
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5.3 Fully optimized second-order homogenization

approach

In this section, we make use of the fully optimized second-order (FOSO) variational

method of Ponte Castañeda (2015) to obtain estimates for the effective potential

(5.6)2, or equivalently (5.9)2, for the viscoplastic polycrystals. The central idea of

the FOSO method is to make use of the effective behavior of a linear comparison com-

posite (LCC)—with the same microstructure as the nonlinear polycrystal of interest

and with local properties determined by a suitably designed variational principle—to

determine the effective behavior of the actual nonlinear composite. In particular, the

local stress potentials for the LCC are given by the (quadratic) functions

uL(x,σ) =
N

∑
r=1

χ(r)(x)u
(r)
L (σ), u

(r)
L (σ) =

1

2
σ ⋅M(r)σ + η(r) ⋅σ, (5.13)

where

M(r) =
K

∑
k=1

1

2µ
(r)

(k)

µ
(r)

(k)
⊗µ(r)

(k)
, and η(r) =

K

∑
k=1

η
(r)

(k)
µ
(r)

(k)
(5.14)

are the uniform viscous compliance tensor and uniform eigenstrain-rate tensor, respec-

tively, for phase r of the LCC, and the scalars µ
(r)

(k)
and η

(r)

(k)
are the slip viscosities and

slip eigenstrain rates, respectively. Differentiation of the stress potential (5.13)2 with

respect to σ shows that the constitutive relation for the phases in the LCC is mathe-

matically analogous to that for a linear thermoelastic material, i.e., D =M(r)σ+η(r).

Making use of (5.6)2, we have that the effective response of the LCC can be

characterized by the effective stress potential

ũL(σ) = min
σ∈S(σ)

⟨uL(x,σ)⟩ = min
σ∈S(σ)

K

∑
r=1

c(r)⟨
1

2
σ ⋅M(r)σ + η(r) ⋅σ⟩(r). (5.15)

In this work, ũL is computed by means of the estimates of the self-consistent (SC)

type (Hershey, 1954; Willis, 1977), which depend on the microstructural variables

(5.2) and are known to be very accurate for linear polycrystals (e.g., Lebensohn et

al., 2004). The corresponding expressions for the SC estimates are briefly recalled in
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Appendix I.

Following Ponte Castañeda (2015), the effective stress potential ũ in (5.6) for the

nonlinear polycrystal can be written in the form

ũ(σ) =
N

∑
r=1

c(r)
K

∑
k=1

[α
(r)

(k)
φ
(r)

(k)
(τ̌
(r)

(k)
) + (1 −α(r)

(k)
)φ
(r)

(k)
(τ̂
(r)

(k)
)] , (5.16)

where α
(r)

(k)
is an appropriately chosen ‘weight factor’ between 0 and 1 (see further

discussions on choosing α
(r)

(k)
below), and τ̌

(r)

(k)
and τ̂

(r)

(k)
are stress variables given by

τ̌
(r)

(k)
= τ
(r)

(k)
−

¿

Á
Á
Á
ÁÀ

1 −α(r)
(k)

α
(r)

(k)

√

τ
(r)

(k) − (τ
(r)

(k)
)

2

= τ
(r)

(k)
−

¿

Á
Á
Á
ÁÀ

1 − α(r)
(k)

α
(r)

(k)

SD(r) (τ
(r)

(k)
) , (5.17)

and

τ̂
(r)

(k)
= τ
(r)

(k)
+

¿

Á
Á
Á
ÁÀ

α
(r)

(k)

1 −α(r)
(k)

√

τ
(r)

(k) − (τ
(r)

(k)
)

2

= τ
(r)

(k)
+

¿

Á
Á
Á
ÁÀ

α
(r)

(k)

1 − α(r)
(k)

SD(r) (τ
(r)

(k)
) . (5.18)

Here we recall that τ
(r)

(k)
, τ
(r)

(k) and SD(r) (τ
(r)

(k)
), as defined by (5.11), are the first

moment, the second moment, as well as the standard deviation, respectively, of the

resolved shear stress over slip system k in phase r of the homogenization problem

for the LCC defined by expression (5.15), while the explicit expressions of the SC

type for σ(r) and ⟨σ ⊗σ⟩(r) in the LCC are provided by equation (5.41) and (5.42),

respectively, in Appendix I.

In turn, the properties of the LCC, as determined by the slip viscosities µ
(r)

(k)
and

slip eigenstrain rates η
(r)

(k)
in (5.14), are required to satisfy the optimality conditions

1

2µ
(r)

(k)

=

φ
(r)′

(k)
(τ̂
(r)

(k)
) − φ(r)

′

(k)
(τ̌
(r)

(k)
)

τ̂
(r)

(k)
− τ̌ (r)
(k)

, and η
(r)

(k)
= φ

(r)′

(k)
(τ̌
(r)

(k)
) −

1

2µ
(r)

(k)

τ̌
(r)

(k)
. (5.19)

Note that (5.19)1 identifies the slip viscosities µ
(r)

(k)
of the LCC with ‘generalized

secant’ linearizations for the corresponding slip potentials of the viscoplastic poly-
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crystals, accounting for both the first and second moments of the stress field for a

given grain orientation. Expression (5.17)-(5.19) provide a set of 4N ×K nonlinear

algebraic equations for the variables τ̂
(r)

(k)
, τ̌
(r)

(k)
, µ
(r)

(k)
and η

(r)

(k)
(r = 1, ...,N , k = 1, ...,K),

which need to be solved numerically in general. In this work, a simple fixed-point

method is used to solve these equations, and is found to be numerically efficient.

It is known (Idiart and Ponte Castañeda, 2007c; Ponte Castañeda, 2015) that

the macroscopic constitutive relation, as well as the first and second moments of the

stress and strain-rate fields in the nonlinear polycrystals can be estimated directly

from the LCC, whose properties are given by the optimality conditions (5.19). In

particular, the FOSO estimates for the macroscopic constitutive relation is given by

D =
∂ũ

∂σ
(σ) =

∂ũL

∂σ
(σ) = M̃σ + η̃, (5.20)

where M̃ and η̃ are the effective viscous compliance tensor and the effective eigenstrain

rate tensor of the LCC, as given by (5.40)1 and (5.40)2, respectively, in Appendix

I. Note that M̃ and η̃ depend nonlinearly on the applied loading σ and, thus, the

relation (5.20) is nonlinear, as expected. Moreover, the first and second moments of

the stress and strain-rate fields σ(r), ⟨σ⊗σ⟩(r), D
(r)

and ⟨D⊗D⟩(r) in the nonlinear

polycrystals are given by expression (5.41), (5.42), (5.46) and (5.47), respectively, in

Appendix I. Furthermore, we can similarly show that the first and second moments of

the spin field W
(r)

and ⟨W⊗W⟩(r) in the nonlinear polycrystals can also be directly

obtained from the corresponding quantities in the ‘optimized’ LCC, by means of an

appropriate generalization of the results of Idiart and Ponte Castañeda (2007c) (see

Appendix II for details).

At this point, it should be remarked that the results discussed in this section are

valid for any choice of the weights α
(r)

(k)
appearing in (5.16). Unfortunately, we do

not yet have any mathematically or physically based prescription to select α
(r)

(k)
in an

optimal fashion, although the recent work of Michel and Suquet (2017) suggests that

α
(r)

(k)
could be related to higher moments of the stress field. For simplicity, we choose

α
(r)

(k)
= 1/2 (r = 1, ...,N ; k = 1, ...,K), which is the most symmetric choice. There may
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be other better choices for the values of α
(r)

(k)
, and this will be investigated in future

work. However, as will be seen in section 5.5, the above choice of α
(r)

(k)
can provide

reasonably accurate results.

The average slip rates γ
(r)

(k)
over slip system k in phase r of the polycrystal, which

are required to satisfy the condition

D
(r)
=

K

∑
k=1

γ
(r)

(k)
µ
(r)

(k)
, (5.21)

can be once again estimated from the LCC, and are given by (Song and Ponte

Castañeda, 2017b)

γ
(r)

(k)
=

1

2µ
(r)

(k)

τ
(r)

(k)
+ η(r)
(k)
= α

(r)

(k)
φ
(r)′

(k)
(τ̌
(r)

(k)
) + (1 − α(r)

(k)
)φ
(r)′

(k)
(τ̂
(r)

(k)
). (5.22)

Recall that

γ
(r)

(k)
≠ φ

(r)′

(k)
(τ
(r)

(k)
), (5.23)

consistent with the fact that the average of a nonlinear function is generally different

from the function of the average. Similar results have been given in the context of

porous single crystals in chapter 3, as shown schematically in Fig. 3.2.

In this context, note that the FOSO estimate (5.16) is exact to second order in

the heterogeneity contrast, and provides a generalization of the partially optimized

second-order (POSO) estimate of Liu and Ponte Castañeda (2004a), which is also

exact to second order in the heterogeneity contrast, but is not fully stationary with

respect to the properties of the LCC. In particular, the variables µ
(r)

(k)
and η

(r)

(k)
for

the POSO method are still given by (5.19), but with τ̌
(r)

(k)
= τ

(r)

(k)
and τ̂

(r)

(k)
= τ

(r)

(k)
±

SD(r)(τ
(r)

(k)
), where the plus sign has to be taken when τ

(r)

(k)
≥ 0, and the minus sign

when τ
(r)

(k)
< 0. As shown by Liu and Ponte Castañeda (2004a), the above choice of

τ̌
(r)

(k)
and τ̂

(r)

(k)
leads to estimates that are stationary with respect to µ

(r)

(k)
, but not with

respect to η
(r)

(k)
, and that

ũ(σ) =
N

∑
r=1

c(r)
K

∑
k=1

[φ
(r)

(k)
(τ̂
(r)

(k)
) + φ(r)

′

(k)
(τ
(r)

(k)
)(τ

(r)

(k)
− τ̂ (r)
(k)
)] (Energy). (5.24)
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Due to the lack of fully stationarity of the POSO estimate, the macroscopic response

and field statistics in the nonlinear polycrystals do not coincide with the correspond-

ing quantities in the LCC, and additional terms involving difficult-to-compute numer-

ical derivatives are required in general (Idiart and Ponte Castañeda, 2007c). For the

sake of simplicity, an alternate version of the POSO estimate may be generated by di-

rectly using the effective constitutive relation of the LCC (Liu and Ponte Castañeda,

2004a), as given by (5.21) with

γ
(r)

(k)
= φ

(r)′

(k)
(τ
(r)

(k)
) (Constitutive relation). (5.25)

However, the estimate (5.25) does not possess an associated stress potential ũ, and is

not exact to second-order in the heterogeneity contrast. In addition, it is found that

(5.25) contradicts with the general expectation of relation (5.23).

The FOSO estimate (5.16) also provides a generalization of the variational (VAR)

estimate of deBotton and Ponte Castañeda (1995), which is only exact to first order

in the heterogeneity contrast. The VAR estimate may be recovered from the FOSO

estimate (5.16) by formally setting the slip eigenstrain rates η
(r)

(k)
= 0, and by iden-

tifying the slip viscosities µ
(r)

(k)
with ‘modified secant’ linearizations of the nonlinear

slip potentials evaluated at the second moments of the resolved shear stress, i.e.,

1/(2µ
(r)

(k)
) = φ

(r)′

(k)
(τ̂
(r)

(k)
)/τ̂

(r)

(k)
with τ̂

(r)

(k)
=

√

τ
(r)

(k). The final result has been shown to be

a rigorous lower bound for all other SC estimates for ũ, such that

ũ(σ) ≥
N

∑
r=1

c(r)
K

∑
k=1

φ
(r)

(k)
(τ̂
(r)

(k)
). (5.26)

Note that the VAR estimate (5.26) is also fully stationary, so that the macroscopic

behavior and field statistics in the LCC can be used directly to estimate the corre-

sponding quantities in the actual nonlinear polycrystals. In particular, the macro-

scopic strain rate D is given by (5.21) with

γ
(r)

(k)
=

φ
(r)′

(k)
(τ̂
(r)

(k)
)

τ̂
(r)

(k)

τ
(r)

(k)
. (5.27)
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In summary, the FOSO estimate (5.16) combines the advantages of the earlier

estimates, being exact to second-order in the heterogeneity contrast, as well as being

fully stationary with respect to the properties of the LCC. It should be remarked that

the FOSO estimate requires the same level of statistical information as that needed

for the POSO and VAR estimates (i.e., the first and second moments of the stress

field in the LCC), without extra computational complexity.

5.4 Microstructure evolution

In this section, we make use of consistent homogenization estimates for the average

strain rate and spin fields, together with standard kinematical arguments, to de-

termine the microstructure evolution for viscoplastic polycrystals under finite-strain

deformations.

Following Ponte Castañeda (1999) and Liu et al. (2005), the evolution of the

granular microstructures of polycrystals is assumed to be governed by the macroscopic

flow. More specifically, the average shape and orientation of the grains (or more

accurately, of the two-point probability functions) are assumed to be controlled by

the macroscopic strain rate D and the macroscopic spin W. This is the simplest

assumption consistent with preservation of the polycrystal integrity, i.e., the aggregate

of different grains is required to fill the whole space. With the above hypotheses, the

average grain shape remains ellipsoidal, but can change its aspect ratios and principal

directions during the deformation. Thus, the evolution of the aspect ratios w1 and

w2 for the ellipsoidal grains is governed by the kinematical relations

ẇ1 = w1 (D
′

33 −D
′

11) , and ẇ2 = w2 (D
′

33 −D
′

22) , (5.28)

where D is the macroscopic strain rate given by (5.20), and the primes in this sec-

tion denote tensor components relative to axes instantaneously coinciding with the

principal directions of the ellipsoidal grains.

On the other hand, the principal directions of the ellipsoidal grains can be charac-
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terized by a rotation tensor G(g), which can be written in terms of three Euler angles

ϕ
(g)
1 , ψ(g) and ϕ

(g)
2 by means of Bunge’s notation (Bunge and Esling, 1982)

G(g) =

⎛

⎜
⎜
⎜
⎜

⎝

C1C2 − S1S2C S1C2 +C1S2C S2S

−C1S2 − S1C2C −S1S2 +C1C2C C2S

S1S −C1S C

⎞

⎟
⎟
⎟
⎟

⎠

, (5.29)

where C1 = cosϕ
(g)
1 , C = cosψ(g), C2 = cosϕ

(g)
2 , S1 = sinϕ

(g)
1 , S = sinψ(g) and S2 =

sinϕ
(g)
2 . Then, the change of the grain orientation can be completely determined by

the evolution of the rotation tensor G(g):

Ġ(g) = −G(g)ω(g), (5.30)

where ω(g) is the spin of the Eulerian axes of the macroscopic deformation gradient,

with its non-zero components given by (Ogden, 1984)

(1 −
w2

q

w2
p

)ω(g)
′

pq = (1 −
w2

q

w2
p

)W
′

pq + (1 +
w2

q

w2
p

)D
′

pq, p, q = 1,2,3, p ≠ q, (5.31)

with w3 ≡ 1. Note that if any two of the aspect ratios wp and wq for p ≠ q are equal,

equation (5.31) implies that the principal directions of the grains should be chosen in

such a way that D
′

pq = 0, and ω
(g)′

pq =W
′

pq.

Next, it is necessary to determine the lattice orientation of the single-crystal phase

within each grain. Due to the intragranular heterogeneity in the deformation fields,

local lattice reorientation is expected to occur within each grain. However, in the

context of a homogenization procedure, it is sufficient to consider the evolution of

the average lattice orientation for each grain, as characterized by the rotation tensor

Q(r). Note that Q(r) can be written in a form completely analogous to that of G(g)

in (5.29), with the set of three Euler angles ϕ
(g)
1 , ψ(g) and ϕ

(g)
2 replaced by ϕ

(r)
1 , ψ(r)

and ϕ
(r)
2 , respectively. The evolution of Q(r) is assumed (Ponte Castañeda, 1999; Liu

et al., 2003; 2005) to be governed by the “microstructural” (or “elastic”) spin ω(r)e ,

144



and is given by

Q̇(r) = −Q(r)ω(r)e , (5.32)

where ω(r)e is given by the difference between the average continuum spin W
(r)

in

phase r and the average plastic spin W
(r)

p in phase r (Mandel, 1972), i.e.,

ω(r)e =W
(r)
−W

(r)

p . (5.33)

Expressions for W
(r)

are provided by (5.48) in Appendix I, while W
(r)

p can be ob-

tained via

W
(r)

p =
1

2

K

∑
k=1

γ
(r)

(k)
(m

(r)

(k)
⊗ n

(r)

(k)
−n(r)

(k)
⊗m

(r)

(k)
) , (5.34)

in terms of expression (5.22) for the average slip rates γ
(r)

(k)
.

It should be remarked that equation (5.28) and (5.30) characterize the evolution

of the morphological texture, while (5.32) characterizes the evolution of the crystallo-

graphic texture of the polycrystal. The above differential equations can be effectively

integrated by means of an explicit forward Euler integration scheme, as adopted by

Liu (2003). Strain hardening for the single-crystal phases will be neglected here,

so that the reference flow stresses for all slip systems remain fixed throughout the

deformation. However, strain hardening can be easily accounted for by utilizing an

appropriate hardening law, e.g., the Voce-type hardening law (Balasubramanian and

Anand, 2002), as employed by Liu et al. (2005) in the context of the earlier POSO

method.

5.5 Instantaneous response for hexagonal

polycrystals

In this section, the FOSO method is used to generate estimates for the macroscopic

response and field statistics of hexagonal-close-packed (HCP) polycrystals for given

fixed states of the microstructure. The results are compared with the predictions of

earlier nonlinear homogenization methods, and with the full field, numerical results
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available in the literature.

Here we consider HCP polycrystals with a prescribed c/a ratio, and with three fam-

ilies of principal slip systems: basal slip ({0001} ⟨1120⟩), prismatic slip ({1010} ⟨1120⟩),

and second-order ({1122} ⟨1123⟩) pyramidal-⟨c + a⟩ slip, which will be denoted by

labels A, B and C, respectively. Note that the three basal slips plus the three pris-

matic slips provide only four (two each) linearly independent slip systems, allowing

no straining along the ⟨c⟩-axis. However, the six second-order pyramidal-⟨c + a⟩ slips

contain sets of five linearly independent slip systems, thus allowing arbitrary plastic

deformation. The reference flow stresses (τ0)(k) in expression (5.5) are assumed to

be identical for each family of slip systems, but generally different for different fami-

lies of slip systems, so that the slip families A, B and C are taken to have reference

flow stresses τA, τB and τC , respectively. For later use, we define M1 = τB/τA and

M2 = τC/τA to be the contrast parameters, characterizing the grain anisotropy of the

HCP crystals.

In this section, the HCP polycrystals are assumed to be untextured, with isotropic

two-point statistics (w1 = w2 = 1), and to be loaded in uniaxial tension. Since the

FOSO method requires solving a large set of nonlinear equations with a number of

unknowns proportional to the total number of available slip systems, it is of interest to

use as few crystallographic orientations as possible. Taking advantage of the crystal

and loading symmetry (Van Houtte and Aernoudt, 1976; Kocks et al., 1998), it is

possible to consider a reduced set of orientations on an appropriate spherical triangle

(see, e.g., Nebozhyn, 2000). In this work, 45 equispaced orientations are used, which

have been found to be sufficient to obtain accurate results for the effective behavior

and field statistics in untextured polycrystals (Liu and Ponte Castañeda, 2004a).

Due to the fact that the viscous exponent n is identical for all the slip systems,

the effective stress potential ũ of the polycrystal is a homogeneous function of degree

n + 1 in the macroscopic stress σ. Moreover, due to the incompressibility of the

polycrystal, ũ depends on σ only through its deviatoric part σ′, such that

ũ(σ) =
γ̇0σ̃0

n + 1
(
σe

σ̃0
)

n+1

. (5.35)
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Here σe =

√
3
2
σ′ ⋅σ′ is the macroscopic equivalent stress, and σ̃0 is the effective flow

stress of the polycrystal, which depends on the loading condition and microstructure

of the polycrystal. For untextured polycrystals with isotropic crystallographic and

morphological textures, σ̃0 can be shown (Dendievel et al., 1991) to be a function

only of the Lode angle θ, as defined by cos(3θ) = (27/2)det(σ′/σe). Note that θ is a

dimensionless quantity related to the third invariant of the macroscopic stress tensor,

and characterizes the type of shear in the deviatoric space. In particular, θ = 0 for

uniaxial tension considered in this work, corresponding to axisymmetric shear.

5.5.1 The effect of the rate sensitivity

In this subsection, we present results for HCP polycrystals with a fixed value of the

grain anisotropy, M1 = 10 and M2 →∞, but with different rate sensitivities m = 1/n.

Moreover, the c/a ratio of the HCP crystal is taken to be 1.633. Due to the ab-

sence of the pyramidal slips (τC →∞), only four linearly independent slip systems are

available for each grain. Thus, strong interactions between grains with different orien-

tations are expected to occur in order to accommodate general plastic deformations.

Predicting accurately the macroscopic response of these materials is a challenging

problem that may serve to discriminate among different nonlinear homogenization

approaches. Fig. 5.1(a) shows plots for the FOSO estimates of the effective flow

stress σ̃0, normalized by the reference flow stress τB, as a function of the rate sen-

sitivity m = 1/n. The corresponding VAR upper bounds of the SC type (Nebozhyn

et al., 2001), POSO estimates of the SC type (Liu and Ponte Castañeda, 2004b),

tangent estimates (Lebensohn et al., 1993), as well as the Reuss lower bounds are

also included for comparison. Note that the Taylor upper bounds tend to infinity

in this case, due to the lack of five linearly independent slip systems. Note further

that two different versions of the POSO estimates are presented: (i) the energy (E)

version derived from expression (5.24) in solid lines, and (ii) the constitutive (C)

version derived from expression (5.25) in dashed lines. We observe from Fig. 5.1(a)

that, while the FOSO, POSO, VAR and tangent estimates coincide in the linear case
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Figure 5.1: The effective flow stress and field fluctuations for untextured, HCP poly-
crystals with isotropic two-point statistics (w1 = w2 = 1), and with contrast param-
eters M1 = τB/τA = 10 and M2 = τC/τA → ∞, for uniaxial tension, as functions of
the rate sensitivity m = 1/n. Plots are shown for (a) the effective flow stress normal-
ized by the reference flow stress τB, and (b) the overall standard deviations of the
equivalent stress SD(σe), and of the equivalent strain rate SD(De), normalized by
the macroscopic equivalent stress σe, and the macroscopic equivalent strain rate De,
respectively.

(m = 1), they deviate from each other for smaller values of m, with the tangent esti-

mates tending to the Reuss lower bounds as m → 0. On the other hand, the FOSO

estimates, as well as both versions of the POSO estimates, lie within the VAR upper

bounds and Reuss lower bounds for all values of m. In particular, both the FOSO

and POSO estimates decrease monotonically with decreasing values of m, with the

FOSO results lying somewhat above the POSO results, while the opposite is true for

the VAR bounds, which increase monotonically with decreasing values of m.

Figure 5.1(b) displays the corresponding plots for the FOSO estimates of the over-

all standard deviations of the equivalent stress and equivalent strain rate, SD(σe) and

SD(De), normalized by the macroscopic equivalent stress σe and strain rate De, re-

spectively. The corresponding VAR and POSO results are also shown for comparison.

It can be seen from this figure that, for both the stress and strain rate fluctuations,

the FOSO and VAR estimates stay fairly close to each other for all values of m,

where the stress fluctuations increase monotonically with decreasing values of m,
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while the corresponding strain rate fluctuations remain almost a constant. (Note

that the similarity of the FOSO and VAR estimates for the overall field fluctuations

is coincidental and not a general result, as will be seen below.) By contrast, the

corresponding POSO estimates exhibit a qualitatively different behavior, where as

m decreases the stress fluctuation varies non-monotonically, while the correspond-

ing strain rate fluctuation increases significantly, exceeding the stress fluctuations for

m ≲ 0.6. The above observation would first appear to be in contradiction with the

observations made in Fig. 5.1(a), where the FOSO estimates stay closer to the POSO

estimates than to the VAR estimates. This may be explained in terms of the fact

that the POSO estimates shown in Fig. 5.1(b) (and all the POSO estimates below)

make direct use of the field fluctuations in the LCC to estimate the corresponding

quantities in the actual nonlinear polycrystals, although the field fluctuations in the

nonlinear composite and in the LCC are known (Idiart and Ponte Castañeda, 2007c)

to be different for the POSO estimates, due to the lack of full stationarity. In fact,

this reference suggests that additional terms involving difficult-to-compute numerical

derivatives are required—in addition to the field fluctuations in the LCC—to recover

the field fluctuations in the actual nonlinear composite. However, this requires rather

heavy numerical computations and is not pursued here for simplicity. On the other

hand, both the FOSO and VAR estimates are fully stationary, so that the field fluctu-

ations in the LCC are entirely consistent with those in the nonlinear polycrystals. As

already mentioned, this is a remarkable advantage of the new FOSO estimates, which

can yield as byproducts estimates of the field fluctuations in the actual nonlinear

composites, without additional computational cost.

5.5.2 The effect of the grain anisotropy

In this subsection, we consider HCP polycrystals with a c/a ratio of 1.629, and a

fixed value of the creep exponent n = 3, which are known to be appropriate for ice at

−10○. In addition, the basal slips are taken to be the “soft” slip systems, while the

prismatic and pyramidal slips are taken to be the “hard” slip systems with identical

flow stresses, such that M1 =M2 =M ≥ 1. As a case study, we will consider different
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values of M to explore the effect of the grain anisotropy of HCP crystals.

Fig. 5.2 presents results for the effective flow stress and the overall fluctuations of

the stress and strain rate fields, as functions of the grain anisotropyM . In particular,

Fig. 5.2(a) shows plots for the FOSO estimates of the effective flow stress σ̃0, normal-

ized by the reference flow stress τA, in linear scales. For comparison purposes, plots

are also included for the corresponding Taylor upper bounds, Reuss lower bounds,

VAR upper bounds of the self-consistent type, POSO estimates (two different ver-

sions), tangent estimates, as well as the full-field FFT results of Lebensohn et al.

(2007). Fig. 5.2(b) shows the same set of plots in logarithmic scales. We can see

that all estimates grow linearly with M and tend to infinity as M increases, except

for the tangent estimates and Reuss lower bounds, which saturate at a finite value

leading to overly soft response. Thus, the behavior of the new FOSO estimates is

consistent with the scaling law obtained by Nebozhyn et al. (2001) based on the

VAR bounds, suggesting that non-basal slips are required to accommodate arbitrary

plastic deformations. In addition, we observe that for all values of M considered, the

FOSO estimates lie between the two different versions of the POSO estimates, and lie

somewhat below the VAR upper bounds. (Note that the VAR upper bounds are much

tighter than the Taylor upper bounds, especially for large grain anisotropy.) Finally,

the new FOSO estimates are seen to be in excellent agreement with the corresponding

FFT results.

Figure 5.2(c) shows the corresponding plots for the overall stress fluctuations

SD(σe), normalized by the macroscopic equivalent stress σe, as a function of the

grain anisotropy M . The corresponding FFT results of Lebensohn et al. (2004)

are also included for comparison. (Note that FFT results for the field fluctuations

are not provided in the work of Lebensohn et al. (2007).) The main observation

from this figure is that, the FOSO estimates are rather similar to the corresponding

POSO and VAR estimates, where the overall stress fluctuation increases with M in

the beginning and approaches an asymptote at large values of M . Furthermore, the

above estimates are found to be in fairly good agreement with the corresponding

FFT results. On the other hand, the tangent, Taylor and Reuss estimates are seen
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Figure 5.2: The effective flow stress and field fluctuations for untextured, HCP poly-
crystals with isotropic two-point statistics (w1 = w2 = 1) and n = 3, loaded in uniaxial
tension, as functions of the grain anisotropy M = τB/τA = τC/τA. Plots are shown for
the effective flow stress σ̃0, normalized by the reference flow stress τA, in (a) linear
scales, as well as in (b) logarithmic scales. Plots are also shown for the overall stan-
dard deviations of (c) the equivalent stress SD(σe), and of (d) the equivalent strain
rate SD(De), normalized by the macroscopic equivalent stress σe, and the macroscopic
strain rate De, respectively.
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to significantly underestimate the stress fluctuations, with the Reuss estimates giving

identically zero values, due to the uniform stress assumption.

Figure 5.2(d) gives the corresponding results for the overall strain rate fluctua-

tions SD(De), normalized by the macroscopic strain rate De, as a function of the

grain anisotropy M . (Note that the POSO results shown in this figure are computed

by means of the constitutive version (5.25).) For comparison purposes, the corre-

sponding FFT results of Lebensohn et al. (2004) are also included. It is observed

that, while the FOSO, POSO and VAR estimates exhibit qualitatively similar behav-

iors, predicting saturation of the strain rate fluctuations, they are quite different in

quantitative terms. In particular, the new FOSO estimates lie between the POSO

and VAR estimates, yielding the best agreement with the corresponding FFT re-

sults. However, the FOSO still underestimates somewhat the FFT results, especially

at large values of M , with the largest error being around 25%. However, it should

be noted that, as mentioned by Lebensohn et al. (2004), the FFT results for the

strain rate fluctuations may not be very accurate, especially for the case of large

grain anisotropy. Therefore, improved FFT results should be used to assess the new

FOSO estimates, and this will be pursued in future work. On the other hand, the

tangent and Taylor estimates severely overestimate and underestimate, respectively,

the FFT results, with the Taylor estimates being of course identically zero. Finally,

we observe that the corresponding Reuss estimates are qualitatively different from

the FFT results, predicting a sharp transition to the saturating value at rather small

values of M . However, it is interesting to note that the Reuss estimates capture

roughly the magnitudes of the FFT results in this particular case.

Next, we investigate the orientation dependence of the per-phase averages and

fluctuations of the stress and strain-rate fields. Given the crystal and loading sym-

metry already alluded to, it is sufficient to restrict our attention to an appropriate

spherical triangle, as shown, for example, in Fig. 5.3, with its left, right and top

vertices {0001}, {1210} and {1100}, respectively. Note that the standard inverse

pole figure is used to represent crystal orientations in Fig. 5.3, where the uniaxial

loading axis is plotted in terms of the local crystal axes of different crystal grains in
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Figure 5.3: Plots for the FOSO estimates of the per-phase averages of the equivalent

stress σ(r)e , and the equivalent strain rate D
(r)

e are shown on the left- and right-hand
sides, respectively, as functions of orientation in the spherical triangle, for isotropic
HCP polycrystals with n = 3, and grain anisotropy M = τB/τA = τC/τA. Parts (a) and
(b), (c) and (d), (e) and (f) correspond to the following values of M : 1, 10 and 60.

153



the polycrystal. Thus, a given point in the spherical triangle corresponds to a grain

that is orientated such that the loading axis is aligned with such a direction in the

grain. Note further that equal-area projection is used throughout this chapter.

Figure 5.3 displays plots for the FOSO estimates of the averages over grains with

a given orientation r of the equivalent stress σ(r)e , and the equivalent strain rate D
(r)

e ,

normalized by the macroscopic equivalent stress σe and strain rate De, respectively,

for different values of the grain anisotropy (M = 1, 10 and 60). We can see from

Fig. 5.3 that, as M increases, both the average stress and strain rate become less

uniform over the polycrystal, indicating the development of significant intergranular

field fluctuations. In addition, the average strain rate reaches its maximum for a band

intermediate between the {0001} and {1210} directions, except for M = 1, where the

average strain rate is the largest for the {0001} orientation. Note that the average

strain rate for this orientation decreases significantly with increasing values of M ,

consistent with the fact that the pyramidal slips become stronger leading to more

viscous behavior of the grains along the ⟨c⟩-axis. Note further that the corresponding

phase averages of the stress exhibit roughly the opposite behavior. This suggests

that for the “soft” grain orientations, relatively small magnitude of stress can induce

fairly large strain rate, while the opposite is true for the “hard” grain orientations.

Finally, it should be mentioned that the FOSO estimates are qualitatively consistent

with the corresponding POSO and VAR estimates (not shown), while there are some

quantitative differences, especially for the average strain-rate field. For instance, the

POSO estimates for the average strain rate are less uniform than the corresponding

FOSO estimates, suggesting larger intergranular fluctuations, while the opposite is

true for the VAR estimates. This trend would appear to be consistent with the overall

strain-rate fluctuations shown in Fig. 5.2(d).

Figure 5.4 presents results for the FOSO estimates of the corresponding standard

deviations over grains with a given orientation r (intragranular fluctuations) of the

equivalent stress SD(r)(σe), and the equivalent strain rate SD(r)(De), normalized

by the macroscopic equivalent stress σe and strain rate De, respectively. It can be

observed that, while the stress and strain rate fluctuations are rather small over all
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Figure 5.4: Plots of the per-phase standard deviation of the equivalent stress SD(σe),
and the equivalent strain rate SD(De) are shown on the left- and right-hand sides,
respectively, as functions of orientation in the spherical triangle, for isotropic HCP
polycrystals with n = 3, and grain anisotropy M = τB/τA = τC/τA. They are normal-
ized by σe and De, respectively. Parts (a) and (b), (c) and (d), (e) and (f) correspond
to the following values of M : 1, 10 and 60.
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grain orientations for M = 1, they increase significantly with increasing values of M .

For instance, forM = 60, the largest stress fluctuation, occurring at a thin band lying

halfway between the {0001} and {1210} orientations, can be more than 10 times

larger than that for M = 1. Moreover, it is found that the phase fluctuations for

both the stress and strain rate become less uniform as M increases. For example,

in contrast to the almost uniform stress fluctuation for M = 1, the corresponding

stress fluctuation for M = 60 develops a pattern where it gradually decreases from

its maximum at the intermediate thin band, to its minimum at the corners of the

spherical triangle. The fluctuations for the strain rate are found to have roughly

the opposite patterns. Again, the FOSO estimates are found to be qualitatively

similar to the corresponding POSO and VAR estimates (not shown). In quantitative

terms, while the stress fluctuations predicted by these estimates are quite similar, the

corresponding strain rate fluctuations are somewhat different. For instance, the POSO

estimates for the strain rate fluctuations could be 50% larger than the corresponding

FOSO estimates.

In summary, among the different nonlinear homogenization estimates considered

above, the new FOSO estimates are found to be the most accurate ones when com-

pared with available full-field numerical results. In particular, the FOSO estimates

for the effective flow stress, as well as for the corresponding stress fluctuations are

in excellent agreement with the numerical results. The corresponding strain rate

fluctuations, however, underestimate somewhat the numerical results. As already

mentioned, this discrepancy could be, at least partially, due to the probable inac-

curacy of the numerical results (Lebensohn et al., 2004). Further assessment of the

FOSO estimates by using improved numerical results should be considered, and this

will be pursued in future work.
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5.6 Finite-strain macroscopic response for poly-

crystalline ice

In this section, we make use of the new FOSO model to obtain estimates for the

finite-strain macroscopic response, as well as for the evolution of the microstructure,

for polycrystalline ice under uniaxial compression. A better understanding of the

deformation process of ice under compressive loadings is of crucial significance in

glaciology, since compression (together with shear) is one of the main deformation

modes of glaciers and ice sheets. Furthermore, the corresponding POSO and VAR

estimates will also be included for comparison purposes, while the corresponding

Taylor, Reuss and tangent estimates, which have been found to be less accurate in

section 5.5, will not be shown for conciseness.

As already discussed in section 5.5.2, polycrystalline ice is taken to be made of

aggregates of HCP single crystals with a c/a ratio of 1.629, and a creep exponent

of n = 3. The non-basal slips for ice are known to be much harder than the basal

slips (Duval et al., 1983), so that the contrast parameter M = τB/τA = τC/τA ≫ 1. In

this context, it should be mentioned that, the grain anisotropies of ice measured from

experimental results for single-crystal (Castelnau et al., 1996) and (strongly textured)

polycrystalline ice (Castelnau et al., 1997) can be quite different, where M ≈ 20 for

the former case while M ≈ 70 for the latter. In this work, a relatively large contrast

M = 60 is used, as a case study to discriminate among the different homogenization

estimates. Recall that strain hardening is neglected for all the available slip systems,

so that the grain anisotropy remains a constant throughout the deformation process.

We consider an initially (approximately) isotropic polycrystalline aggregate of ice,

consisting of N = 500 randomly orientated single-crystal grains with equal volume

fractions c(r) = 1/N (r = 1, ...,N). In addition, the grains are assumed to be equiaxed

with w1 = w2 = 1. The initial crystallographic texture, as represented by the equal-

area projection of the basal poles ((0001)-poles), is shown in Fig. 5.5. (Note that

the basal poles correspond to the ⟨c⟩-axes of the HCP-crystal grains.) In particular,

we consider uniaxial compression loading conditions σ = σ33e3 ⊗ e3 (σ33 < 0), with e3
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1

2 (0001)

Figure 5.5: The initial crystallographic texture represented by the equal-area projec-
tion of the (0001)-poles (with a total of 500 grains)

denoting the loading axis. For later use, we define the quantities

De =

√

2

3
D ⋅D, and Ee =

√

2

3
E ⋅E, (5.36)

where De and Ee denote, respectively, the macroscopic equivalent strain rate and

macroscopic equivalent logarithmic strain (E is the macroscopic logarithmic strain).

Fig. 5.6 presents results for the equal-area projections of the basal poles at dif-

ferent strain levels, as predicted by the FOSO, POSO and VAR model. The main

observation from Fig. 5.6 is that all three models give qualitatively similar results

for the texture evolution, where the basal poles rotate gradually towards the load-

ing direction e3 with increasing strains. (The above observation is also qualitatively

consistent with the corresponding Taylor, Reuss, and tangent estimates of Castelnau

et al., 1996, although they used different contrast parameters.) In particular, at the

strain level Ee = 0.3, the basal poles are found to have rotated only through a small

amount towards the loading axis e3 (when compared with the initial pole figure in

Fig. 5.5). The rotation of the basal poles is then intensified for the moderate strain

levels 0.3 < Ee < 0.9, and a clear concentration of the basal poles near the loading

axis is observed at Ee = 0.9. For Ee = 1.5, the basal poles are almost perfectly aligned

with the loading axis, indicating a strong basal texture of the polycrystalline ice. On

the other hand, there are some quantitative differences between the FOSO, POSO
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Figure 5.6: Texture evolution of polycrystalline ice under uniaxial compression shown
by the (0001)-pole figures. The corresponding FOSO (left), POSO (center) and VAR
(right) estimates are shown at the macroscopic strain levels Ee = 0.3, 0.6, 0.9, 1.2 and
1.5.
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and VAR estimates, where the POSO (center column) yields the most rapid texture

development, while the VAR (right column) the slowest, and the new FOSO estimates

(left column) lie between them. It should be noted that the rotation of the basal poles

is induced by the predominant basal dislocations, which have the smallest reference

shear stress and are thus much easier to activate.

Fig. 5.7(a) shows the relevant activities (RA) of different modes of slip systems,

as predicted by the FOSO, POSO and VAR model. Note that the relative activity

for a given slip mode (e.g., basal or pyramidal) is defined to be

RAmode =

∑N
r=1 c

(r)∑mode ∣γ
(r)

(k)
∣

∑N
r=1 c

(r)∑K
k=1 ∣γ

(r)

(k)
∣

, (5.37)

where the numerator denotes the sum of the magnitudes of the slip rates on all

the slip systems that belong to a given slip mode, while the denominator denotes

the sum over all the available slip systems. We can see from Fig. 5.7(a) that the

basal activity predicted by the FOSO model increases with Ee, being much larger

than the corresponding pyramidal activity, as expected from the fact that the basal

slips are much softer than the pyramidal slips. In addition, the FOSO estimates

for the pyramidal activity are found to non-negligible (around 20%), indicating that

the strain accommodation requires the activation of the 60 times harder pyramidal

slips. In this connection, it should be remarked that significant contributions of non-

basal slips involving the ⟨c⟩-component dislocations for ice flow have been recently

evidenced by Chauve et al. (2017). Thus, the predictions of the above models would

appear to be qualitatively consistent with the experimental results. Furthermore, the

FOSO results are found to lie between the corresponding POSO and VAR results,

similar to the observation made in the context of Fig. 5.6.

Fig. 5.7(b) shows the overall stress and strain rate standard deviations SD(σe)

and SD(De), normalized by the macroscopic equivalent stress σe and strain rate

De, respectively, as functions of the equivalent strain Ee. It can be seen from Fig.

5.7(b) that the FOSO estimates for the stress fluctuation increase slightly with strain

at the beginning, and then decrease monotonically afterwards. On the other hand,
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Figure 5.7: FOSO, POSO and VAR results for an initially untextured polylcrystal
ice subjected to uniaxial compression loading conditions. Plots are shown for the
(a) relative activities for the basal and pyramidal slip systems, (b) overall stress and
strain rate fluctuations, and (c) normalized macroscopic strain rate. (d) The FOSO
estimates for the Σa-Σs cross sections of the gauge surfaces for ice polycrystals, at
the strain level Ee = 0, 0.3, 0.6, 0.9 and 1.5.
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the FOSO estimates for the strain rate fluctuations increase monotonically with Ee,

indicating stronger localizations of the deformation in the polycrystals. In addition,

we can see that while the POSO and VAR results are fairly similar to the FOSO results

for the stress fluctuations, they are rather different for the strain-rate fluctuations.

In particular, the POSO estimates for the strain-rate fluctuations are much larger

than the corresponding FOSO and VAR estimates. (This trend is consistent with the

observations made in the context of Fig. 5.1(b) and 5.2(d).) It should be recalled

that all three models make direct use of the quantities in the LCC to estimate the

corresponding ones in the actual nonlinear polycrystal. Although the above usage

has been justified for the new FOSO and VAR estimates, it is no so for the POSO

estimates, where extra terms are needed to reproduce the actual quantities in the

nonlinear composites, as already mentioned. For this reason, the POSO estimates

shown here may introduce some errors as a result of the approximation used.

Fig. 5.7(c) presents plots for the macroscopic equivalent strain rate De, normal-

ized by its initial value D0 at the beginning of the deformation, as a function of the

macroscopic strain Ee. Note that the quantity De/D0 is a measure of the normal-

ized effective viscous compliance of ice polycrystals. Hence, increasing De/D0 implies

softening, while decreasing De/D0 implies hardening of the materials. We observe

from Fig. 5.7(c) that the FOSO estimates for De/D0 first increase up to a certain

amount of strain (softening), and then decrease continuously with strain (hardening).

Since we have neglected strain hardening for all the slip systems, the above soften-

ing/hardening behavior of the polycrystal can only be induced by texture evolution,

as observed in Fig. 5.6. Moreover, the corresponding POSO and VAR results are

found to be qualitatively similar to the FOSO results, but with some quantitative

differences. In particular, while the FOSO, POSO and VAR estimates are fairly close

for small strains, they deviate from each other at larger strain levels, with the FOSO

estimates lying between the POSO and VAR estimates.

For a better understanding of the overall softening/hardening response of poly-

crystalline ice, we consider below the evolution of the gauge surfaces (Leblond et al.,

1994) of ice polycrystals. Recall that the gauge surface is defined to be the equi-
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potential surface given by

ũ(Σ) =
γ̇0τ̃

−n
0

n + 1
, (5.38)

where Σ is the normalized stress lying on the gauge surface, and τ̃0 is a reference flow

stress, which can be chosen to be one of the reference flow stresses (τ0)(k) (k = 1, ...,K).

In this work, τ̃0 = τA is used, so that the results are normalized by τA. It should be

remarked that the gauge surface (5.38) tends to the standard yield surface in the

ideally plastic limit n → ∞. For details on how to compute the gauge surfaces,

readers are referred to the recent work of Song and Ponte Castañeda (2017a, 2017c).

Fig. 5.7(d) displays the FOSO estimates for the evolution of the Σa-Σs cross

section of the gauge surface for polycrystalline ice. Note that Σs =

√

Σ
2

13 +Σ
2

23,

and Σa = ∣(Σ11 +Σ22)/2 −Σ33∣ /

√

3 are the two incompressible, transversely isotropic

invariants of the stress tensor, corresponding to the longitudinal and axisymmetric

shear, respectively. It can be seen from Fig. 5.7(d) that the gauge surface at Ee = 0 is

almost circular, indicating that the initial response of the untextured polycrystalline

ice is rather isotropic. (Note that the gauge surface also depends on the third invariant

of the applied stress and, thus, it is not perfectly circular.) However, the gauge surface

is strongly distorted with increasing values of strain, indicating the development of

strong anisotropy, as expected. In particular, for 0 ≤ Ee ≲ 0.3, the gauge surface

contracts along the Σa (axisymmetric shear) axis suggesting a softening behavior,

while for Ee ≥ 0.3 it expands along the Σa axis suggesting a hardening behavior. This

result is consistent with the non-monotonic macroscopic strain rate observed in Fig.

5.7(c). Interestingly, the gauge surface always contracts along the Σs (longitudinal

shear) axis with increasing strain, indicating a continuous softening behavior for this

loading direction.

5.7 Concluding remarks

In this work, the recently developed fully optimized second-order (FOSO) homog-

enization method (Ponte Castañeda, 2015) was used, for the first time, to obtain

estimates of the self-consistent type for the finite-strain response and texture evo-
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lution of viscoplastic polycrystals. The central idea is the use of the classic self-

consistent estimates for linear thermoelastic polycrystals (or more rigorously, linearly

viscous polycrystals with eigenstrain rates) to generate the corresponding estimates

for nonlinear viscoplastic polycrystals. The method involves a ‘generalized secant’ lin-

earization of the nonlinear constitutive response, incorporating dependence on both

the first and second moments of the stress fields, and gives estimates that are exact

to second-order in the heterogeneity contrast. Moreover, consistent homogenization

estimates for the average strain rate and spin fields in the polycrystals were used to

develop evolution laws for both the morphological and crystallographic textures at

finite-strain deformations.

Compared with the earlier partially optimized second-order (POSO) estimates

of Liu and Ponte Castañeda (2004a), the new FOSO estimates have several distin-

guishing advantages. First, the FOSO estimates are fully optimized with respect to

the properties of the LCC, so that the macroscopic constitutive behavior and field

statistics of the nonlinear polycrystals can be directly extracted from those of the

LCC. Second, the FOSO estimates exhibit no duality gap, so that their formulations

in terms of the stress or dissipation potential are entirely equivalent, resulting in

more accurate predictions. Note that these features were already present in the ear-

lier variational (VAR) estimates of deBotton and Ponte Castañeda (1995), which are

nonetheless only exact to first order in the heterogeneity contrast and thus less accu-

rate. Therefore, the FOSO method effectively combines the advantages of the earlier

VAR and POSO methods, while at the same time requires no extra computational

cost.

The FOSO method was first used to investigate the effective flow stress and field

statistics of untextured HCP polycrystals with varying degree of rate sensitivity and

grain anisotropy. It was found that the FOSO estimates for the effective flow stress

satisfy all known bounds, and show excellent agreement with the available FFT re-

sults. In particular, while the improvements over the earlier POSO estimates are

only moderate for the effective flow stresses, they are rather significant for the field

statistics, especially for low rate sensitivity and high grain anisotropy.
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The FOSO model was then employed to study the finite-strain response and tex-

ture evolution for initially isotropic ice-like HCP polycrystals, subjected to uniaxial

compression. It was found that a strong basal texture develops as a result of the dom-

inant basal slips, being in qualitative agreement with the earlier results of Castelnau

et al. (1996) and Lebensohn et al. (2007). In addition, the HCP polycrystal was

found to develop a strong anisotropy as the deformation progresses, and to exhibit

an overall softening-hardening behavior. Furthermore, it was found that the FOSO

estimates for the texture evolution, macroscopic behavior and field fluctuations lie

roughly between the corresponding VAR and POSO estimates. Among these, the

FOSO model is expected to provide the most accurate estimates, due to its excellent

performance in predicting the instantaneous response and field fluctuations for un-

textured polycrystals. Further assessment of the FOSO model by means of full-field,

numerical simulations should be pursued, and this will be considered in future work.

5.8 Appendix I: Detailed expressions for the LCC

In this Appendix, we provide expressions for the macroscopic behavior and field statis-

tics in the LCC, which in turn can be used to estimate the corresponding quanti-

ties in the actual nonlinear polycrystals (Idiart and Ponte Castañeda, 2007c; Ponte

Castañeda, 2015).

As already mentioned, the LCC is mathematically analogous to a thermoelastic

composite. Thus, the associated effective stress potential (5.15) can be written in the

form

ũL (σ) =
1

2
σ ⋅ M̃σ + η̃ ⋅σ +

1

2
g̃, (5.39)

where M̃, η̃ and g̃ are the effective viscous compliance, effective eigenstrain rate and

effective potential at zero stress, respectively, and are given by

M̃ =
N

∑
r=1

c(r)M(r)B(r), η̃ =
N

∑
r=1

c(r) (B(r))
T
η(r), and g̃ =

N

∑
r=1

c(r)η(r) ⋅ b(r). (5.40)

Here B(r) and b(r) are the stress concentration tensors, which relate the average stress
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σ(r) over phase r of the LCC and the macroscopic stress σ via the relation (Laws,

1973; Willis, 1981)

σ(r) = B(r)σ + b(r). (5.41)

Note that B(r) and b(r) depend on the specific homogenization method utilized, and

the estimates of the self-consistent (SC) type will be used in this work (see below).

Moreover, the second moment of the stress field ⟨σ ⊗σ⟩(r) over phase r of the LCC

may be obtained by differentiation of expression (5.39) with respect to M(r), i.e.,

⟨σ ⊗σ⟩(r) =
2

c(r)
∂ũL

∂M(r)
. (5.42)

Further details for the numerical implementation of (5.42) have been discussed thor-

oughly in Appendix 3 of Liu (2003) (see also Lebensohn et al., 2007), and will not be

included here for brevity.

Next, we provide expressions for the SC estimates of the above defined quantities

in the LCC (Laws, 1973; Willis, 1981). In particular, the effective viscous compliance

tensor M̃ is given by the solution of the implicit equation

M̃ = {
N

∑
r=1

c(r) [M(r) + M̃∗]
−1
}

−1

− M̃∗, (5.43)

where M̃∗ = Q̃−1 − M̃, and Q̃ is a fourth-order microstructural tensor given by

Q̃ = L̃ − L̃P̃L̃, P̃ =
1

4πdet(Z) ∫
∣ζ ∣=1

H̃∣Z−1ζ∣−3dS,

H̃ijkl = (K̃
−1
)
ik
ζjζl∣(ij)(kl), K̃ik = L̃ijklζjζl, (5.44)

with L̃ = M̃−1. As already discussed in section 6.2, the second-order tensor Z in

(5.44)2 characterizes the “shape” of the angular dependence of the two-point proba-

bility, which correlates with the average shape of the grains, while the parentheses in

the subscripts of (5.44)3 indicate symmetrization with respect to the corresponding

indices.
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Furthermore, the SC estimates for the associated stress concentration tensors are

given by

B(r) = [M(r) + M̃∗]
−1
Q̃−1, and b(r) = [M(r) + M̃∗]

−1
[η̃ − η(r)] . (5.45)

Making use of the local (linear) constitutive relation of the LCC, the first and second

moments of the strain rate over phase r of the LCC can be expressed in terms of the

corresponding moments of the stress:

D
(r)
=M(r)σ(r) + η(r), and (5.46)

⟨D⊗D⟩(r) =M(r)⟨σ ⊗σ⟩(r)M(r) + (M(r)σ(r))⊗ η(r) + η(r) ⊗ (M(r)σ(r))+

η(r) ⊗ η(r). (5.47)

Note that (5.46) and (5.47) may be written in a form completely analogous to (5.41)

and (5.42), respectively, in terms of the associated strain-rate concentration tensors

and the effective dissipation potentials. Such expressions are also available in the work

of Laws (1973) and Willis (1981), and will not be shown here for brevity. Finally, the

average spin W
(r)

in phase r of the LCC is related to the macroscopic spin W and

the macroscopic strain rate D through

W
(r)
=W −RP−1 (D −D

(r)
) , (5.48)

where R is a fourth-order microstructural tensor given by an expression similar to

(5.44)2, except that the symmetric parts in H̃ with respect to the indices i and j

must be replaced by the corresponding anti-symmetric parts.
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5.9 Appendix II: Statistic moments of the spin

field in the nonlinear polycrystals

In this Appendix, we make use of the procedure developed by Idiart and Ponte

Castañeda (2007c) to compute the moments of the spin field in the phases of the

nonlinear polycrystals. The key idea is to introduce a perturbing parameter in the

local potentials, such that differentiation of the corresponding effective potential with

respect to the parameter yields the volume average of the desired quantity.

For our purposes, it is more convenient to work with the dissipation potential. In

particular, we consider a nonlinear polycrystal with local potential defined by (5.8).

Then, the FOSO estimates for the effective dissipation potential w̃ of the nonlinear

polycrystal is given by (Ponte Castañeda, 2015)

w̃(D) = stat
µ
(r)

(k)
,η
(r)

(k)

{w̃L(D) +
N

∑
r=1

c(r)
K

∑
k=1

V
(r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
)} . (5.49)

Here the ‘stat’ denotes a stationary operation, the V
(r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
) (r = 1, ...,N , k =

1, ...,K) are the error functions given by equation (3.26) together with (3.24) in the

work of Ponte Castañeda (2015), and will not be repeated here for brevity. Moreover,

w̃L = ũ
∗
L is the corresponding effective dissipation potential of the LCC with local

potential

wL(x,D) =
N

∑
r=1

χ(r)(x)w
(r)
L (D),

w
(r)
L (D) = (u

(r)
L )

∗

(D) =
1

2
D ⋅L(r)D + τ (r) ⋅D + f (r), (5.50)

where L(r), τ (r) and f (r) are, respectively, the viscosity, eigenstress and energy at

zero strain rate for phase r of the LCC, and are related to the corresponding viscous

compliance M(r) and eigenstrain rate η(r) in (5.14) via the relations

L(r) = (M(r))
−1
, τ (r) = −(M(r))

−1
η(r), and f (r) =

1

2
η(r) ⋅ (M(r))

−1
η(r). (5.51)
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Note that the estimates (5.49) and (5.16) are completely equivalent to each other (no

duality gap) involving precisely the same LCC (Ponte Castañeda, 2015).

Following the idea of Proposition 3.1 of Idiart and Ponte Castañeda (2007c), the

first moment of the spin field in phase r of the nonlinear polycrystal is given by

W
(r)
=

1

c(r)
∂w̃s

∂s(r)
(D,W)∣

s(r)=0

, (5.52)

where s(r) is a constant, antisymmetric, second-order tensor, and w̃s denotes the

effective potential of a polycrystal with (perturbed) local potential

ws(x,D,W) =
N

∑
s=1

χ(s)(x)w(s)(D) + χ(r)(x)s(r) ⋅W. (5.53)

When the above results (5.52) and (5.53) are applied to the LCC with local potential

(5.50), we have that

W
(r)

L =
1

c(r)
∂w̃Ls

∂s(r)
(D,W)∣

s(r)=0

, (5.54)

where we have used the subscript L to denote the appropriate quantities in the LCC,

and w̃Ls denotes the effective potential of a composite with (perturbed) local potential

wLs(x,D,W) =
N

∑
s=1

χ(s)(x)w
(s)
L (D) + χ

(r)
(x)s(r) ⋅W. (5.55)

Then, it follows from (5.49) that the effective dissipation potential of the perturbed

nonlinear polycrystals can be written as

w̃s(D,W) = stat
µ
(r)

(k)
,η
(r)

(k)

{w̃Ls(D,W) +
N

∑
r=1

c(r)
K

∑
k=1

V
(r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
)} . (5.56)

Noting that the functions V
(r)

(k)
are independent of the perturbation parameter s(r),

and using the chain rule and the stationarity of (5.56) with respect to the variables

µ
(r)

(k)
and η

(r)

(k)
, it is easy to see that the quantities ∂w̃s/∂s(r) and ∂w̃Ls/∂s(r) (evaluated
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at the optimal values of µ
(r)

(k)
and η

(r)

(k)
) are identical. By setting s(r) = 0, we have that

W
(r)
=W

(r)

L , (5.57)

which suggests that the phase averages of the spin field in the nonlinear polycrystals

can be estimated consistently from those in the ‘optimized’ LCC.

Similarly, it is also possible to show by means of an appropriate generalization of

Corollaries 3.3 of Idiart and Ponte Castañeda (2007c) that the second moments of the

spin field in the nonlinear polycrystals can be directly estimated from the ‘optimized’

LCC, i.e.,

⟨W⊗W⟩(r) = ⟨W ⊗W⟩(r)L . (5.58)
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Chapter 6

Iterated second-order

homogenization model for

viscoplastic porous polycrystals

with large voids: Theory

In this chapter, we propose a finite-strain homogenization model for the macroscopic

response of viscoplastic porous polycrystals consisting of large pores embedded in a

fine-scale polycrystalline matrix. Specifically, the porous polycrystal is modeled as

a two-scale composite, which has a porous meso-structure at the larger length scale,

and a granular structure for the underlying matrix at the smaller length scale. The

instantaneous response of the porous polycrystal for a fixed state of the sub-structure

is determined by means of a generalization of the recently developed iterated second-

order homogenization method. The method makes use of a linear comparison com-

posite (LCC) with the same sub-structure as the actual nonlinear composite, but

whose local properties are chosen optimally via a suitably designed variational princi-

ple. The effective properties of the resulting two-scale LCC are determined by means

of a sequential homogenization procedure, involving the self-consistent estimates for

the effective behavior of the polycrystalline matrix, and the Hashin-Shtrikman type
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estimates for the effective behavior of the porous composite. In addition, the iterated

homogenization procedure is used to “discretize” the properties of the matrix in the

LCC to obtain improved results, especially for low porosities and high triaxialities.

Furthermore, consistent homogenization estimates for the average strain rate and spin

fields in the phases are used to develop evolution laws for the sub-structural variables,

accounting for the evolution of porosity, pore morphology, as well as the texture of

the underlying matrix. The model is quite general, and applies to two-scale porous

polycrystals with general ellipsoidal pores and grains, and general crystallographic

anisotropy, which are subjected to general three-dimensional loading conditions.

6.1 Introduction

Most ductile metals are polycrystalline aggregates consisting of large numbers of ran-

domly distributed single-crystal grains. These materials usually also contain random

distributions of micro-voids and micro-cracks, which are generated either from the

manufacturing process (e.g., powder metallurgy), or which nucleate in the material

from second-phase particles and eventually grow and coalescence leading to material

failure (Tvergaard, 1990). In many cases, the size of the voids is much larger than

that of the single-crystal grains, so that the porous material can be idealized as a

fine-scale polycrystalline matrix containing large void inclusions. Up to now, most

studies on porous materials were carried out in the context of two-phase material

systems, with the simplifying assumption that the matrix surrounding the voids is

homogeneous and isotropic (e.g., Gurson, 1977). However, there is ample experi-

mental and numerical evidence showing that the initial texture and its evolution can

induce strong anisotropy in the response of polycrystalline materials (e.g., Bache and

Evans, 2001; Caré and Zaoui, 1996; Lebensohn et al., 2013), which, in turn, could

significantly affect the void growth and coalescence.

Motivated by these observations, we propose to develop a finite-strain constitutive

model for porous viscoplastic polycrystals containing large pores, while accounting

for the coupled interactions between the porosity growth and the texture evolution
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for the polycrystalline matrix. More specifically, we will make use of recently devel-

oped nonlinear homogenization techniques (Song and Ponte Castañeda, 2017b; Ponte

Castañeda, 2015) to characterize the instantaneous macroscopic behavior of porous

polycrystals given the current state of the microstructure, as well as the evolution of

the microstructure at finite-strain deformations. We begin by briefly reviewing some

key references on the application of homogenization approaches for porous materi-

als with isotropic matrix. Ponte Castañeda (1991) made use of a variational (VAR)

statement for the properties of a linear comparison composite (LCC), together with

the standard (linear) Hashin-Shtrikman bounds for the LCC, to obtain corresponding

bounds for the effective flow potential of porous isotropic materials (see also Willis,

1991 and Michel and Suquet, 1992 for derivations of equivalent bounds using other

methods). Ponte Castañeda and Zaidman (1994) made use of the VAR method of

Ponte Castañeda (1991) to develop a finite-strain constitutive model for porous vis-

coplastic materials, accounting for the evolution of the porosity and void shape under

triaxial loading conditions. By making use of the linear estimates of Ponte Castañeda

and Willis (1995), the model was progressively generalized to incorporate the void dis-

tribution effects (Kailasam et al., 1997), void rotations under shear loading conditions

(Kailasam and Ponte Castañeda, 1997), as well as elasticity and strain hardening of

the matrix (Kailasam et al., 2000; Aravas and Ponte Castañeda, 2004).

While the predictions of the VAR method are found to be quite accurate for de-

viatoric loading conditions, where the effects of void shape changes are significant,

they are overly stiff for high-triaxiality loading conditions, especially for low porosi-

ties and high nonlinearities. In order to resolve this deficiency associated with the

VAR model, Danas and Ponte Castañeda (2009a) developed an improved finite-strain

constitutive model, making use of the more advanced second-order (SO) homogeniza-

tion method of Ponte Castañeda (2002), along with an ad hoc modification, enforcing

the agreement of the predictions of the SO model with the exact results of spheri-

cal/cylindrical shells for purely hydrostatic loadings. While the SO model provides

estimates that are in good agreement with FEM results, it involves certain fitting

parameters and is therefore not fully predictive. More recently, Agoras and Ponte
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Castañeda (2014) developed a finite-strain model for porous materials under triaxial

loadings, making sole use of the VAR approach of Ponte Castañeda (1991), albeit

in an iterative fashion (Ponte Castañeda, 2012; Agoras and Ponte Castañeda, 2013).

The iterated variational method also provides estimates that recover the exact re-

sults of spherical/cylindrical shells for purely hydrostatic loadings (as the number of

iteration I → ∞), but has the additional advantage of being entirely predictive, not

requiring any fitting parameters. In practice, it can be shown (Agoras and Ponte

Castañeda, 2013) that a relatively small number of iterations (I ≈ 5− 10) is sufficient

to provide accurate estimates for the corresponding I →∞ limits, so that the IVAR

method is still relatively easy to implement. The iterated variational homogeniza-

tion model was further generalized by Song et al. (2015) to incorporate the effects of

void rotations under general shear loading conditions with non-vanishing macroscopic

spin. In particular, it was found that void rotations can dramatically enhance the

susceptibility of the porous materials to shear localizations for simple shear loading

conditions.

In this connection, it should be remarked that Gurson’s approach has also been

generalized to account for void shape effects (e.g., Gologanu et al., 1993; Madou and

Leblond, 2012a), as well as for the plastic anisotropy of the matrix (e.g., Benzerga and

Besson, 2001; Monchiet et al., 2006; Keralavarma and Benzerga, 2010). These works

have been reviewed in detail by Benzerga and Leblond (2010) and Benzerga et al.

(2016) and we will not provide further details here. However, it should be mentioned

that the Gurson’s approach is less general than the homogenization method in several

aspects. First, to the best knowledge of the authors, it has not been possible to obtain

consistent estimates for the average strain-rate and spin fields in the voids by means

of Gurson’s approach. Thus, it has been necessary to combine the Gurson’s limit

analysis estimates for the yield surfaces of porous materials with evolution laws for

the shape and orientation of the voids derived from the homogenization approach

(improved through numerical fitting to FEM simulations of confocal shells). Second,

Gurson’s approach is difficult to generalize for a multi-phase porous polycrystal, and

it is so far unable to capture the effects of texture and its evolution for polycrystal
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solids.

By contrast, homogenization theories are already available to estimate the macro-

scopic response of fully dense viscoplastic polycrystals in terms of their morphological

and crystallographic texture. In particular, a new class of nonlinear homogenization

methods, improving significantly on the “classical” theories (e.g., Hill, 1965; Hutchin-

son, 1976; Molinari et al., 1987; Lebensohn et al., 1993), were developed by Ponte

Castañeda and coworkers. Like the above-mentioned homogenization methods for

porous viscoplastic materials, these theories rely on the use of a linear comparison

composite (LCC), whose microstructure is identical to that of the nonlinear poly-

crystal, but whose single-crystal behavior is identified with a certain linearization of

the corresponding nonlinear response, guided by suitably designed variational prin-

ciples. Among these, Nebozhyn et al. (2001) made use of the variational principle

of deBotton and Ponte Castañeda (1995) (a generalization of the VAR method of

Ponte Castañeda, 1991), together with the standard (linear) self-consistent estimates

(Kröner, 1958; Willis, 1977) for the LCC, to obtain rigorous bounds of the self-

consistent type for the effective flow stress of the nonlinear polycrystals. Improved

bounds were obtained by Idiart (2011), making use of a more general variational prin-

ciple of Idiart and Ponte Castañeda (2007a). However, this method requires to solve a

more complicated optimization problem, and is therefore much harder to implement.

Precisely because of the bounding status of the above estimates, they are expected

to overestimate the effective flow stress of polycrystals. More accurate self-consistent

estimates were developed by Liu and Ponte Castañeda (2004a), making use of a gen-

eralization of the SO method of Ponte Castañeda (2002). The SO self-consistent

estimates have been found to be fairly accurate in several comparisons with full-field

numerical simulations (e.g., Lebensohn et al., 2004; Lebensohn et al., 2007). However,

the SO method has some undesired features, including the facts that the macroscopic

constitutive relation and field statistics cannot be extracted directly from the LCC,

and that it exhibits a duality gap (i.e., the estimates resulting from the primary and

complementary variational statements are different). These deficiencies are due to

the lack of fully stationarity of the variational principle with respect to the properties
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of the LCC. In order to remedy this shortcoming, Ponte Castañeda (2015) recently

proposed a refined fully optimized second-order (FOSO) variational approach, in such

a way that the resulting estimates are allowed to be fully stationary, while retaining

all the distinctive advantages of the earlier SO method of Liu and Ponte Castañeda

(2004a). Very recently, Song and Ponte Castañeda (2017d) made use of the FOSO

method to obtain estimates of the self-consistent type for the macroscopic behavior,

as well as for the evolution of the microstructure for hexagonal polycrystals. Com-

parisons with available full-field numerical results show that the FOSO method of

Ponte Castañeda (2015) provides the most accurate and reliable estimates among the

various nonlinear self-consistent methods available to date.

While significant progress has been made in the modeling of the macroscopic

behavior and microstructure evolution in fully dense polycrystals, far fewer mod-

els are available for porous polycrystals. Lebensohn et al. (2004) made use of the

“affine” procedure of Masson et al. (2000), originally designed for solid polycrystals,

to model the viscoplastic response of porous polycrystals containing intergranular

voids (where the voids and crystal grains are of similar sizes). It was found that the

anisotropy induced by texture evolution has important effects on the porosity growth

and macroscopic response of these voided polycrystals. However, the model cannot

handle purely hydrostatic loadings (Lebensohn et al., 2004), and it becomes necessary

to introduce an ad hoc linearization procedure to artificially soften the response at

high triaxialities. More recently, Lebensohn et al. (2011) made use of a generalization

of the SO method of Liu and Ponte Castañeda (2004a) to obtain estimates for the

effective flow potential of porous polycrystals containing intergranular voids. While

the predictions of this method are in excellent agreement with numerical simulations

for low triaxialities, the corresponding results at high triaxialities exhibit the same

shortcoming of the earlier homogenization models for porous materials with isotropic

matrix, and are unrealistically stiff, especially at low porosities.

In this context, it should be remarked that accurate homogenization models have

been proposed to describe the macroscopic behavior of porous single crystals (e.g.,

Mbiakop et al., 2015a; Song and Ponte Castañeda, 2017a; 2017b; 2017c), making

176



use of recent advances in homogenization approaches. In particular, Song and Ponte

Castañeda (2017a) employed the VAR method of deBotton and Ponte Castañeda

(1995) to generate bounds for the effective flow potential of porous single crystals.

Moreover, the iterated homogenization procedure of Agoras and Ponte Castañeda

(2013) was used to “discretize” the properties of the matrix, thus obtaining tighter

bounds at high triaxialities. Improved estimates for the effective flow potential of

porous single crystals were recently obtained by Song and Ponte Castañeda (2017b,

2017c), making use of the more advanced FOSO method of Ponte Castañeda (2015)

along with a generalization of the iterated homogenization method. In addition,

these authors made use of consistent homogenization estimates for the strain-rate and

spin fields in the phases to develop evolution laws for the microstructure, accounting

for lattice rotation, as well as for changes in the size, shape and orientation of the

voids. The iterated second-order (ISO) model was then used to investigate both the

instantaneous and finite-strain macroscopic response of porous FCC and HCP single

crystals, demonstrating a complex coupled interactions between the crystallographic

anisotropy induced by the preferred slip directions, and the morphological anisotropy

induced by the ellipsoidal geometry of the voids. In particular, the predictions of the

model are found to be in good agreement with the full-field simulations of Srivastava

and Needleman (2015) for porous FCC single crystals.

Motivated by the above considerations, in this chapter we develop a general finite-

strain constitutive model for porous polycrystals consisting of large pores that are dis-

tributed in a fine-scale polycrystalline matrix, by means of a generalization of the ISO

model of Song and Ponte Castañeda (2017b) for porous single crystals. The model

provides estimates not only for the instantaneous response of the porous polycrystal

for a given state of the microstructure, but also for the evolution of the pore geometry

and matrix texture at finite-strain deformations. More specifically, the porous poly-

crystal is modeled as a two-scale composite, with a particulate structure at the larger

length scale, and with a granular structure for the matrix at the smaller length scale.

We make use of the recently developed FOSO method of Ponte Castañeda (2015),

appropriately generalized for a two-scale composite, to characterize the instantaneous
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macroscopic response of porous polycrystals. We will also make use of the iterated

homogenization approach of Agoras and Ponte Castañeda (2013) to “discretize” the

polycrystalline matrix to obtain improved results for the macroscopic response of

porous polycrystals, especially at low porosities and high triaxialities. Furthermore,

we make use of consistent homogenization estimates for the average strain rate and

spin fields in the phases to develop consistent evolution laws for the two-scale sub-

structure, as characterized by the porosity, void morphology, grain morphology, as

well as the crystallographic texture of the polycrystal. In the next chapter, we will

consider specific applications of the model for porous FCC and HCP polycrystals.

6.2 Background and formulation

6.2.1 Sub-structural characterization

In this work, we consider polycrystalline solids containing “large” voids, where the

size of the voids is much larger than that of the single-crystal grains, while still much

smaller than the size of specimen. The porous polycrystal can then be modeled as a

two-scale composite material, whose sub-structural features are shown schematically

in Fig. 6.1. Specifically, Fig. 6.1(a) shows—at the mesoscale—a representative vol-

ume element (RVE) Ω of the material, which consists of vacuous inclusions (phase

2) distributed randomly in a polycrystalline matrix (phase 1), occupying the sub-

regions Ω(2) and Ω(1), respectively. On the other hand, Fig. 6.1(b) shows—at the

microscale—an RVE Ω∗ inside of the polycrystalline matrix Ω(1), which is assumed

to be a random aggregate of perfectly bonded single-crystal grains. For simplicity, we

restrict our attention to a monolithic polycrystalline matrix, so that the grains differ

from each other only in terms of crystallographic orientation, but not in composi-

tion. Moreover, we assume that the crystal orientations take on a set of N discrete

values, and define phase r (r = 1, ...,N) to be given by all the grains with the same

crystallographic orientation, and occupying the sub-region Ω(1,r). In the following,

we make use of the symbols ⟨⋅⟩, ⟨⋅⟩(q) (q = 1,2) and ⟨⋅⟩(1,r) (r = 1, ...,N) to denote
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Figure 6.1: Schematic representation of a porous polycrystal consisting of aligned,
ellipsoidal voids (solid lines) that are distributed with ellipsoidal symmetry (dotted
lines) in a polycrystalline matrix, with the size of the voids much larger than that of
the single-crystal grains. (a) Macroscopic RVE: porous polycrystals with a particulate
meso-structure, (b) Mesoscopic RVE: polycrystalline matrix with a granular micro-
structure, (c) Average pore geometry in the macroscopic RVE, (d) Average grain
geometry in the mesoscopic RVE.

volume averages of fields over Ω, Ω(q) and Ω(1,r), respectively. Letting L1, l1, L2, l2

characterize respectively the size of the RVE Ω, the size of a typical void, the size

of an RVE within the polycrystalline matrix and the size of a typical grain (see Fig.

6.1), we make use of the hypothesis of separation of the length scales, defined by

l2 ≪ L2 < l1 ≪ L1. (6.1)

For convenience, the heterogeneity induced by the voids at the mesoscale scale will

be referred to as the meso-structure, while that induced by the different phases of

single-crystal grains at the microscale will be referred to as the micro-structure. It is
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assumed that both the meso- and micro-structures of interest are statistically uniform,

ergodic and possess no long-range order (Willis, 1981). It is further assumed that

the meso-structure is statistically independent from the underlying micro-structure

(Smyshlyaev and Willis, 1998).

The sub-structure of the two-scale porous polycrystals in Fig. 6.1 can be com-

pletely characterized by the indicator functions of the phases

θ(q,r)(x) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1, if x ∈ Ω(q,r)

0, otherwise

, (6.2)

where the first superscript q = 1,2, while the second superscript r = 1, ...,N if q = 1,

and r = 1 if q = 2 (this is because the void phase Ω(2) is homogeneous at both

the meso- and micro-scale). It is remarked that the θ(q,r) are two-scale functions,

since they incorporate sub-structural information both over the microscale l2 and the

mesoscale l1. A more precise description of the latter statement may be given by

introducing a new spatial variable y = x/ǫ, with ǫ being a small parameter, together

with the following decomposition

θ(q,r)(x) = χ(q)(x)χ(q,r)(y). (6.3)

Here the indicator functions χ(q)(x) and χ(q,r)(y) characterize respectively the meso-

structure (Fig. 6.1(a)) and the micro-structure (Fig. 6.1(b)) of the two-scale com-

posite, and are defined by

χ(q)(x) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1, if x ∈ Ω(q)

0, otherwise,

χ(q,r)(y) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1, if y ∈ Ω(q,r)

0, otherwise.

. (6.4)

Note that the functions χ(q)(x) and χ(q,r)(y) are now single-scale functions, where the

χ(q) (q = 1,2) are defined over Ω and vary over l1, while the χ(q,r) (q = 1,2, r = 1, ...,N)

are defined over Ω(q) and vary over l2.

In general, the sub-structure of the random porous polycrystal can be described by
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means of the two-scale multi-point statistics, which are appropriate ensemble averages

of the two-scale indicator functions θ(q,r)(x) (see Agoras and Ponte Castañeda, 2011

for details). However, due to the assumption that the meso- and micro-structure of

the porous polycrystal are statistically independent, the two-scale statistics of the

composite may be conveniently expressed in terms of the corresponding mesoscopic

multi-point statistics, i.e., p(q)(x), p(pq)(x,x′), etc., as well as the microscopic multi-

point statistics, i.e., p(q,r)(y), p(q,rs)(y,y′), etc. Thus, we prescribe more precisely

the meso- and micro-structure of the porous polycrystals in the following.

Meso-structure of the porous medium

At the meso-scale, the porous material is assumed to have a random, particulate

meso-structure of the “ellipsoidal” type (Ponte Castañeda and Willis, 1995). As

shown in Fig. 6.1(a), the pores (phase 2) are assumed to be of ellipsoidal shape (on

average), and to be aligned, but distributed randomly in the matrix (phase 1), in such

a fashion that the two-point statistics for the distribution of the centers of the pores

are also “ellipsoidal”, but of possibly different shape and orientation. These meso-

structural features may be formally prescribed through the one-point statistics of the

phases p(q)(x) = ⟨χ(q)(x)⟩ = c(q) = ∣Ω(q)∣/∣Ω∣ (q = 1,2), along with two positive-definite,

symmetric second-order tensors Zp and Zd, defining the ellipsoidal shape of the pores

and of the angular dependence of the two-point probability for the distribution of their

centers. More specifically, the ellipsoidal pores occupy regions described by

Ω(2) = {x ∶ ∣Zpx∣ ≤ 1} , (6.5)

and their centers are distributed with two-point probability functions

p(d)(x,x′) = p(d)(x − x′) = p(d) (∣Zd
(x − x′)∣) . (6.6)

Note that, in the above expressions, we have made use of the fact that the meso-

structures are statistically uniform and ergodic, so that the one-point probabilities
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are constants, the two-point probabilities depend only on the relative position x−x′,

and the ensemble averages can be replaced by the corresponding volume averages.

Note further that the effect of the void distribution on the macroscopic behavior of

the porous polycrystals is only of second order in the volume fraction of the voids

(porosity) and becomes less important at low to moderate porosities. For this reason,

we further assume that the ellipsoidal shape and orientation of the distribution func-

tion are identical to the ellipsoidal shape and orientation of the voids, i.e., Zp
= Zd

(Song et al., 2015; Song and Ponte Castañeda, 2017b). Here we define f = c(2) to be

the volume fraction of the voids (or porosity), wp
1 = a

p
3/a

p
1,w

p
2 = a

p
3/a

p
2 to be the two

aspect ratios of the representative ellipsoids characterizing the shape and distribu-

tion of the voids (where ap1, a
p
2 and ap3 are the lengths of the three semi-axes of the

ellipsoid), and n
p
1, n

p
2 and n

p
3 to be unit vectors along the three principal directions

of the representative ellipsoid (see Fig. 6.1(c)). Note that the principal directions

of the voids can be more compactly denoted by a single rotation tensor Gp, which

relates the void axes n
p
i (i = 1,2,3) and sample axes ei (i = 1,2,3) via the relation

n
p
i = (G

p)
T
ei (i = 1,2,3).

Micro-structure of the polycrystalline matrix

At the micro-scale, the polycrystalline matrix occupying Ω(1) is assumed to have a

granular micro-structure (see Fig. 6.1(b)), where the N single-crystal phases are

distributed with a prescribed orientation distribution function (ODF) and associated

two-point statistics. The ODF determines the crystallographic texture, while the

corresponding two-point statistics correlate with the average grain shape and serve

to characterize approximately the morphological texture. The lattice orientations of

the different single-crystal phases are assumed to take on a set of discrete values, as

characterized by the rotation tensors Q(1,r) (r = 1, ...,N), so that the lattice vectors

l
(1,r)
i (i = 1,2,3) for a given crystal orientation are related to the corresponding lattice

vectors li (i = 1,2,3) for a ‘reference’ single-crystal via l
(1,r)
i = (Q(1,r))

T
li (i = 1,2,3).

Making use of the statistical uniformity and ergodicity of the micro-structure, the one-

point probability of phase r can be identified with the corresponding volume fraction
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of phase r, such that p(1,r)(y) = ⟨χ(1,r)(y)⟩(1) = c(1,r) = ∣Ω(1,r)∣/∣Ω(1)∣ (r = 1, ...,N). In

addition, the two-point probability function of finding simultaneously phase r at y

and phase s at y′ are assumed to exhibit “ellipsoidal” symmetry (Willis, 1977), as

characterized by a second order tensor Zg, i.e.,

p(1,rs)(y,y′) = p(1,rs)(y − y′) = ⟨χ(1,r)χ(1,s)⟩(1) = p(1,rs) (∣Zg
(y − y′)∣) . (6.7)

The above assumption implies that, on average, all grains have the same ellipsoidal

shape, as determined by the two aspect ratios wg
1 = a

g
3/a

g
1,w

g
2 = a

g
3/a

g
2 (where a

g
1, a

g
2 and

a
g
3 are the lengths of the three semi-axes of the grain ellipsoid), together with the three

principal axes ng
1, n

g
2 and n

g
3 of the grains (see Fig. 6.1(d)). Similarly, the orientation

of the grains can be described by a rotation tensor Gg, which relates the grain axes ng
i

(i = 1,2,3) to the sample axes ei (i = 1,2,3) via the relation n
g
i = (G

g)
T
ei (i = 1,2,3).

In this context, it should be remarked that, the above described one- and two-

point probabilities associated with the meso- and micro-structures do not suffice to

determine exactly the properties of the two-scale porous polycrystals. However, in this

work we will make use of the estimates of the Ponte Castañeda and Willis (PCW) type

(Ponte Castañeda and Willis, 1995) for the particulate meso-structure, together with

the estimates of the self-consistent (SC) type (Hershey, 1954; Kröner, 1958; Willis,

1977) for the granular micro-structure, to obtain accurate estimates for the effective

behavior of these two-scale composites. It is well known that the above estimates

depend only on the one- and two-point statistics. Thus, for our purposes, the two-

scale sub-structure of the porous polycrystals may be completely characterized by the

set of sub-structural variables

s ≡ {f,w
p
1,w

p
2,G

p;Q(1,r),wg
1,w

g
2,G

g
}, (6.8)

where the variables {f,wp
1,w

p
2,G

p} describe the meso-structure of the composite,

while the other variables {Q(1,r),wg
1,w

g
2,G

g} describe the micro-structure of the com-

posite. Note that, in this work, the volume fraction c(1,r) of each single-crystal phase

is taken to be fixed, due to the incompressibility of the single-crystal grains (this
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is why we do not include c(1,r) in the sub-structural variables (6.8)). Thus, during

finite-strain deformations, the evolution of the ODF for the polycrystalline matrix is

characterized by the evolution of the rotation tensors Q(1,r) (r = 1, ...,N), but not

c(1,r) (r = 1, ...,N). However, it should be mentioned that there are other ways to

describe the evolution of the ODF (see, e.g., Dawson and Marin, 1997).

6.2.2 Local material behavior

In this work, we mainly focus on the behavior of porous polycrystals under large

plastic deformations and, thus, the elastic deformation of the single-crystal phases

(which is typically very small) will be neglected. In addition, the single-crystal grains

are assumed to deform by dislocation creep along well-defined crystallographic slip

systems, and the constitutive response of the single-crystal grains will be taken to be

viscoplastic, as can be described by

D =
∂u(1,r)

∂σ
(σ), u(1,r)(σ) =

K

∑
k=1

φ
(r)

(k)
(τ
(r)

(k)
). (6.9)

Here D is the Eulerian strain rate, σ is the Cauchy stress, and u(1,r) is the stress

potential for the rth single-crystal phase. The convex functions φ
(r)

(k)
(k = 1,⋯,K)

characterize the response of the K slip systems in the rth single-crystal phase with

orientation Q(1,r), and depend on the resolved shear (or Schmid) stresses

τ
(r)

(k)
= σ ⋅µ(r)

(k)
, where µ

(r)

(k)
=
1

2
(n
(r)

(k)
⊗m

(r)

(k)
+m(r)

(k)
⊗n(r)

(k)
) . (6.10)

In addition, the µ
(r)

(k)
are second-order tensors obtained from the symmetrized dyadic

product of the unit vectors n
(r)

(k)
, normal to the slip plane, and m

(r)

(k)
, along the slip

direction, for the kth system in a crystal with orientationQ(1,r). Note that the Schmid

tensors µ
(r)

(k)
for a monolithic polycrystalline matrix are related to the corresponding

tensors µ(k) for a ‘reference’ crystal via µ
(r)

(k)
= (Q(1,r))

T
µ(k)Q

(1,r). A commonly used
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model for the slip potentials is given by the power-law form:

φ
(r)

(k)
(τ) =

γ̇0 (τ0)
(r)

(k)

n + 1

RRRRRRRRRRRRR

τ

(τ0)
(r)

(k)

RRRRRRRRRRRRR

n+1

, (6.11)

where n ≥ 1 is the creep exponent (or the inverse of the strain-rate sensitivity m = 1/n),

(τ0)
(r)

(k)
> 0 is the reference flow stress of the kth slip system, and γ̇0 is a reference strain

rate. Note that the creep exponent n could, in general, be different for different slip

systems, but, for simplicity, it will be taken here to be the same for all slip systems.

In particular, the limits as n tends to 1 and ∞ are of special interest, since they

correspond to linearly viscous and rigid–ideally plastic behavior.

On the other hand, the stress potential of the voids (phase 2 in the porous meso-

structure) is such that u(2)(σ) = 0 if σ is identically zero, while u(2)(σ) =∞ otherwise.

Given the local properties of each phase described above, the local constitutive

relation between the Eulerian strain rate D and the Cauchy stress σ in the two-scale

porous polycrystal is given by

D =
∂u

∂σ
(x,σ) , (6.12)

where u(x,σ) is the local stress potential of the composite, defined by

u(x,σ) = χ(1)(x)
N

∑
r=1

χ(1,r)(y)u(1,r)(σ) + χ(2)(x)u(2)(σ). (6.13)

Note that in the above expression use has been made of the relation (6.3).

6.3 Instantaneous effective response

For a given fixed state of the two-scale sub-structure, the instantaneous effective

response of the porous polycrystal, characterizing the relation between the average

strain rate ⟨D⟩ =D and the average stress ⟨σ⟩ = σ, may be written in the form (Hill,

1963)

D =
∂ũ(σ)

∂σ
, (6.14)
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where ũ is the effective stress potential for the porous polycrystal given by

ũ(σ) = min
σ∈S(σ)

⟨u(x,σ)⟩ = (1 − f) min
σ∈S(1)(σ)

⟨u(x,σ)⟩(1)

= (1 − f) min
σ∈S(1)(σ)

N

∑
r=1

c(1,r)⟨u(1,r)(σ)⟩(1,r). (6.15)

Here S(σ) is the set of statically admissible stress fields, including all stress fields

σ that are divergence free and satisfy the condition ⟨σ⟩ = σ, while S(1)(σ) denotes

a subset of S(σ), including all stress fields σ that are divergence free, lead to zero

traction on the void surfaces, and satisfy the condition ⟨σ⟩(1) = (1 − f)−1σ. It should

be emphasized that the effective stress potential (6.15) depends not only on the local

properties of the phases, but also on the instantaneous state of the sub-structure of

the composite, as characterized by the set of sub-structural variables (6.8).

Due to the nonlinear constitutive relation of the single-crystal phases and the

random character of their distributions, the effective potential (6.15) can not be

obtained exactly. In this work, we make use of the recently developed fully optimized

second-order (FOSO) variational homogenization method (Ponte Castañeda, 2015),

together with the iterated homogenization procedure (Agoras and Ponte Castañeda,

2013; Song and Ponte Castañeda, 2017b), to generate accurate estimates for the

instantaneous response of the two-scale porous polycrystals. In the following, we

first recall the main features of the FOSO method. The FOSO method is then used

in an incremental fashion (Song and Ponte Castañeda, 2017b) to obtain improved

estimates.

6.3.1 Fully optimized second-order variational estimates

The central idea of the FOSO method is to express the effective potential of a non-

linear composite in terms of that of a linear comparison composite (LCC), whose

sub-structure is identical to that of the actual composite. In addition, the properties

of the LCC have to be chosen optimally according to a suitably designed variational

principle. For later use, we first describe the LCC involved in the FOSO method.
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Here we consider a two-scale porous LCC with the same sub-structure as the

nonlinear porous polycrystal (see Fig. 6.1), but with local stress potential given by

uL(x,σ) = χ
(1)
(x)

N

∑
r=1

χ(1,r)(y)u
(1,r)
L (σ) +χ(2)(x)u(2)L (σ). (6.16)

In this expression, the u
(1,r)
L (σ) (r = 1, ...,N) are quadratic functions of the stress σ,

as given by

u
(1,r)
L (σ) =

1

2
σ ⋅M(1,r)σ + η(1,r) ⋅σ, (6.17)

where M(1,r) and η(1,r) are the viscous compliance tensor and eigenstrain-rate tensor

of the rth single-crystal phase in the LCC. They are defined by (Ponte Castañeda,

2015)

M(1,r) =
K

∑
k=1

1

2µ
(r)

(k)

µ
(r)

(k)
⊗µ

(r)

(k)
, and η(1,r) =

K

∑
k=1

η
(r)

(k)
µ
(r)

(k)
, (6.18)

where the scalars µ
(r)

(k)
are the positive slip viscosities, while the η

(r)

(k)
are the slip

eigenstrain rates (k = 1, ...,K). Similarly, the function u
(2)
L (σ) is the stress potential

for the vacuous phase in the LCC, and can be written in a form completely analogous

to (6.17), but with the viscous compliance M(2) →∞ and the eigenstrain-rate tensor

η(2) = 0. Note that the stress potential of the LCC described above is mathematically

analogous to that of a thermoelastic composite. Note further that µ
(r)

(k)
and η

(r)

(k)
are

unknown a priori, and are to be determined by an optimization procedure to be

described below.

The effective stress potential ũL of the LCC can then by obtained from the fol-

lowing two-scale homogenization problem

ũL(σ) = min
σ∈S(σ)

⟨uL(x,σ)⟩ = (1 − f) min
σ∈S(1)(σ)

⟨uL(x,σ)⟩
(1). (6.19)

Following the work of Agoras and Ponte Castañeda (2011), the stress potential (6.19)

for the LCC may be determined by means of a two-step sequential homogenization

procedure, decomposing the original two-scale problem into two single-scale problems

for the associated meso- and micro-structures. In particular, at the micro-scale, we
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make use of the estimates of the self-consistent (SC) type (Hershey, 1954; Kröner,

1958; Willis, 1977) to determine the effective behavior of the linear polycrystalline

matrix. Then, at the meso-scale, we make use of the estimates of the Ponte Castañeda

and Willis (PCW) type to obtain the macroscopic behavior of the porous LCC with

the homogenized polycrystalline matrix. The final result of ũL can be expressed as

ũL(σ) =
1

2
σ ⋅ M̃σ + η̃ ⋅σ +

1

2
g̃, (6.20)

where the effective viscous compliance tensor M̃, effective eigenstrain rate tensor η̃,

and the effective energy at zero applied stress g̃ in (6.20) are, respectively, given by

expression (6.60), (6.61) and (6.63) in Appendix I. In these expressions, M1, η(1) and

g(1) are given by (6.55)-(6.58) in Appendix I, while M(2) →∞, η(2) = 0, g(2) = 0, and

c(2) = f . Note that the effective properties of the porous LCC depend on the local

properties (6.18), as well as on the sub-structural variables (6.8).

Following a similar development of Ponte Castañeda (2015), the FOSO estimates

for the effective stress potential ũ (as defined by (6.15)) of the two-scale nonlinear

porous polycrystal can be shown (see Appendix II) to be given by

ũSO(σ) = (1 − f)
N

∑
r=1

c(1,r)
K

∑
k=1

[α
(r)

(k)
φ
(r)

(k)
(τ̌
(r)

(k)
) + (1 − α(r)

(k)
)φ
(r)

(k)
(τ̂
(r)

(k)
)] , (6.21)

where the α
(r)

(k)
(0 < α

(r)

(k)
< 1) are appropriately chosen ‘weight factors’, while τ̌

(r)

(k)
and

τ̂
(r)

(k)
are stress variables determined by the stationary conditions (6.88) and (6.89) in

Appendix II. In particular, τ̌
(r)

(k)
and τ̂

(r)

(k)
are chosen to be such that τ̌

(r)

(k)
≤ τ̂

(r)

(k)
, and

can be obtained by solving the set of quadratic equations (6.88) and (6.89), so that

τ̌
(r)

(k)
= τ
(r)

(k)
−

¿

Á
Á
Á
ÁÀ

1 − α(r)
(k)

α
(r)

(k)

√

τ
(r)

(k) − (τ
(r)

(k)
)

2

= τ
(r)

(k)
−

¿

Á
Á
Á
ÁÀ

1 −α(r)
(k)

α
(r)

(k)

SD(1,r) (τ
(r)

(k)
) , (6.22)
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and

τ̂
(r)

(k)
= τ
(r)

(k)
+

¿

Á
Á
Á
ÁÀ

α
(r)

(k)

1 − α(r)
(k)

√

τ
(r)

(k) − (τ
(r)

(k)
)

2

= τ
(r)

(k)
+

¿

Á
Á
Á
ÁÀ

α
(r)

(k)

1 −α(r)
(k)

SD(1,r) (τ
(r)

(k)
) . (6.23)

Here

τ
(r)

(k)
= σ(1,r) ⋅µ(r)

(k)
, τ

(r)

(k) = µ
(r)

(k)
⋅ ⟨σ ⊗σ⟩(1,r)µ(r)

(k)
, and

SD(1,r) (τ
(r)

(k)
) =

√

τ
(r)

(k) − (τ
(r)

(k)
)

2

(6.24)

are the first moment, the second moment, and the standard deviation, respectively, of

the resolved shear stress over slip system k in single-crystal phase r of the two-scale

LCC. In the above expressions, σ(1,r) and ⟨σ ⊗σ⟩(1,r) are, respectively, the first and

second moment of the stress field over the rth single-crystal phase in the LCC, as

given by (6.78) and (6.80) in the Appendix I.

Making use of the stationary condition (6.87) in Appendix II, it follows that the

local properties of the two-scale porous LCC, as determined by the slip viscosities

µ
(r)

(k)
and slip eigenstrain rates η

(r)

(k)
in (6.18), satisfy the ‘generalized secant’ condition

1

2µ
(r)

(k)

=

φ
(r)′

(k)
(τ̂
(r)

(k)
) − φ(r)

′

(k)
(τ̌
(r)

(k)
)

τ̂
(r)

(k)
− τ̌ (r)
(k)

, and η
(r)

(k)
= φ

(r)′

(k)
(τ̌
(r)

(k)
) −

1

2µ
(r)

(k)

τ̌
(r)

(k)
. (6.25)

Expressions (6.22), (6.23) and (6.25) constitute a set of 4N ×K nonlinear algebraic

equations for the variables τ̂
(r)

(k)
, τ̌
(r)

(k)
, µ

(r)

(k)
and η

(r)

(k)
(r = 1, ...,N , k = 1, ...,K). In

general, these equations need to be solved numerically by means of an appropriate

method, e.g., a fixed-point method.

Due to the fully stationarity of the FOSO estimate (6.21) with respect to the

properties of the LCC (Ponte Castañeda, 2015), the macroscopic constitutive relation

and the corresponding field statistics of the nonlinear porous polycrystals can be

estimated directly from those in the LCC (Idiart and Ponte Castañeda, 2007c). Thus,
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the macroscopic stress-strain rate relation for the nonlinear composite is given by

D =
∂ũSO

∂σ
(σ) =

∂ũL

∂σ
(σ) = M̃σ + η̃. (6.26)

Here M̃ and η̃ are, respectively, the effective compliance tensor and the effective

eigenstrain-rate tensor of the two-scale LCC, as provided by (6.60) and (6.61) in

Appendix I. It is important to note that, despite its appearance, the relation (6.26)

is nonlinear, due to the nonlinear dependence of M̃ and η̃ on the applied stress σ.

In this context, it should be remarked that the results discussed in this section

are valid for any choice of the weight factors α
(r)

(k)
appearing in (6.21). Unfortunately,

at this stage we do not have any mathematically or physically based prescription to

select α
(r)

(k)
in an optimal fashion, although recent work by Michel and Suquet (2017)

suggests that the selection of the α
(r)

(k)
could depend on higher moments of the stress

field. For simplicity, we choose α
(r)

(k)
= 1/2 (r = 1, ...,N ; k = 1, ...,K), which is the most

symmetric choice. However, it should be kept in mind that there may be other better

choices for the values of α
(r)

(k)
, and this will be investigated in future work.

The average slip rates γ
(r)

(k)
over slip system k in single-crystal phase r of the

polycrystalline matrix, which are required to satisfy the condition

D
(1,r)
=

K

∑
k=1

γ
(r)

(k)
µ
(r)

(k)
, (6.27)

may also be estimated directly from the LCC, and are provided by (Song and Ponte

Castañeda, 2017b)

γ
(r)

(k)
=

1

2µ
(r)

(k)

τ
(r)

(k)
+ η(r)
(k)
= α

(r)

(k)
φ
(r)′

(k)
(τ̌
(r)

(k)
) + (1 − α(r)

(k)
)φ
(r)′

(k)
(τ̂
(r)

(k)
). (6.28)

It should be emphasized that γ
(r)

(k)
≠ φ

(r)′

(k)
(τ
(r)

(k)
), since the average of a nonlinear

function is generally different from the function of the average (see, e.g., Fig. 3.2 in

chapter 3).

At this point, it is remarked that the FOSO estimate (6.21) for ũ is a generalization

of the variational (VAR) homogenization estimate of deBotton and Ponte Castañeda
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(1995), which may be recovered from the FOSO estimate (6.21) by formally setting

the slip eigenstrain rates η
(r)

(k)
= 0 (and therefore η(1,r) = 0). In its final form, the

VAR estimate for the effective stress potential ũ of the nonlinear porous polycrystal

is given by

ũVAR
(σ) = (1 − f)

N

∑
r=1

c(1,r)
K

∑
k=1

φ
(r)

(k)
(τ̂
(r)

(k)
). (6.29)

Here the stress variables τ̂
(r)

(k)
are given by

τ̂
(r)

(k)
=

√

τ
(r)

(k) =

√

µ
(r)

(k)
⋅ ⟨σ ⊗σ⟩(1,r)µ

(r)

(k)
, (6.30)

where the second moment ⟨σ ⊗σ⟩(1,r) may be obtained from equation (6.80) in Ap-

pendix I, with the eigenstrain rate tensor η(1,r) = 0. In turn, the slip viscosities µ
(r)

(k)

in the two-scale LCC are given by the ‘secant’ conditions

1

2µ
(r)

(k)

=

φ
(r)′

(k)
(τ̂
(r)

(k)
)

τ̂
(r)

(k)

. (6.31)

Note that the VAR estimates for the average slip rates γ
(r)

(k)
over different slip systems

can also be estimated directly from the LCC, i.e.,

γ
(r)

(k)
=

φ
(r)′

(k)
(τ̂
(r)

(k)
)

τ̂
(r)

(k)

τ
(r)

(k)
≠ φ

(r)′

(k)
(τ
(r)

(k)
). (6.32)

The FOSO estimates (6.21) are known (Ponte Castañeda, 2015) to be exact to

second order in the heterogeneity contrast, thus being more accurate then the VAR

estimates (6.29), which are only exact to first order in the heterogeneity contrast. In

fact, it can be shown that the VAR estimates provide rigorous lower bounds for all

other estimates for the effective stress potential ũ (deBotton and Ponte Castañeda,

1995), and in particular, for the FOSO estimates (6.21), assuming that the same

estimates are used for the LCC. While the FOSO estimates (6.21) are fairly accurate in

most cases, they are found to be too strong for cases of low porosity, high nonlinearity,

especially at high stress triaxialities. As already noted in the earlier context of porous
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Iteration 1 Iteration 2 Iteration N

Figure 6.2: Schematic representation of the iterated homogenization procedure for a
two-scale porous polycrystal consisting of aligned, ellipsoidal pores (solid lines) that
are distributed with the same ellipsoidal symmetry (dotted lines) in a polycrystalline
matrix. The size of the pores are much larger than the size of the single-crystal grains
(see iteration 1), and the grids within the matrix phase schematically represents the
anisotropy. Note that the homogenized polycrystalline matrix phase is the same for
all iterations, and the size of the grains is much smaller than the size of the pores for
all iterations.

isotropic materials (Agoras and Ponte Castañeda, 2011) and porous single crystals

(Song and Ponte Castañeda, 2017a; 2017b; 2017c), this deficiency may be ascribed

to the fact that the property of each single-crystal phase in the LCC is uniform (see

(6.18)). However, it is possible to generate improved estimates by incorporating non-

uniform properties for each single-crystal phase in the LCC, as will be seen below.

6.3.2 Iterated second-order method

Song and Ponte Castañeda (2017b) have recently used the FOSO approach of Ponte

Castañeda (2015), together with the iterated homogenization procedure of Agoras

and Ponte Castañeda (2011), to generate second-order variational estimates for the

effective stress potential of porous viscoplastic single crystals. This iterated second-

order (ISO) approach allows the use of non-uniform matrix properties for the LCC

and, therefore, can provide improved estimates compared with the non-iterated FOSO

method. In this work, we will employ a generalization of the ISO procedure to obtain

improved estimates for the effective stress potential ũ of the two-scale, viscoplastic

porous polycrystals. The crux of the ISO procedure is to reconstruct the porous sub-

structure incrementally in a “self-similar” fashion (see Fig. 6.2). In the first iteration
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(i = 1), the pores are distributed in the polycrystalline matrix (the left most figure of

Fig. 6.2) with a volume concentration of c
(2)

[1]
> f , and with the shape and distribution

of the pores characterized by the second-order tensor Zp and Zd, respectively. At

each subsequent iteration i, the composite material from the lower i − 1 iteration

level is distributed in the form of “composite inclusion” in the same polycrystalline

matrix (including the same morphological and crystallographic texture) with a volume

fraction c
(2)

[i]
, and with inclusion and distribution shapes that are identical to the

distribution shape of the pores at the first iteration (as described by Zd). This

procedure is repeated I times until we reach the final, level-I composite with the

desired porosity f , such that

f =
I

∏
i=1

c
(2)

[i]
, (6.33)

where the c
(2)

[i]
(i = 2, ..., I) are the volume fractions of the “composite inclusion”

in the level-i composite, and I is the total number of iteration. With the above

construction procedure, it can be shown (Agoras and Ponte Castañeda, 2013) that

the resulting I-level composite still belongs to the class of random porous polycrystals

defined in section 6.2.1, as characterized by the set of sub-structural variables (6.8).

At this point, it should be remarked that, while the hierarchical structure of the I-

level composite (with separation of the multiple length scales) is expected to have

an effect on the macroscopic behavior relative to the original (non-iterated) sub-

structure, it has been shown (Ponte Castañeda, 2012; Agoras and Ponte Castañeda,

2013) that the PCW estimates (depending only on the one- and two-point statistics)

for the macroscopic behavior of linearly viscous porous materials are insensitive to

the hierarchical nature of the sub-structure. Therefore, it will be assumed here that

the same is true for the corresponding FOSO estimates of the PCW type for the

nonlinear viscoplastic porous materials, keeping in mind that the iterated procedure

is designed to better discretize the single-crystal phase in the matrix of the LCC.

Note that because of separation of length scales, the size of the single-crystal grains

in the polycrystalline matrix is always much smaller than the size of the inclusion

phases for all iterations.
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The effective properties of the porous polycrystals of interest may then be de-

termined by sequentially homogenizing the above constructed I-level composite. At

each iteration level i = 1, ..., I, the effective behavior of the composite may be obtained

by means of the FOSO method (Ponte Castañeda, 2015). Thus, the ISO procedure

involves, at each iteration level, an LCC with sub-structure identical to that of the

corresponding nonlinear composite, but with a linear polycrystalline matrix and a

linear (compressible) inclusion phase (where the size of the inclusions is much larger

than that of the single-crystal grains in the matrix). In particular, the stress poten-

tial of the rth single-crystal phase in the polycrystalline matrix at the ith iteration

is assumed to be of the form (6.17), but with the viscous compliance tensor and

eigenstrain-rate tensor given by

M
(1,r)

[i]
=

K

∑
k=1

1

2µ
(r,k)

[i]

µ
(r)

(k)
⊗µ

(r)

(k)
, and η

(1,r)

[i]
=

K

∑
k=1

η
(r,k)

[i]
µ
(r)

(k)
, (6.34)

respectively. In the above expression, the label [i] is used to denote the associated

quantities in the i-level LCC, e.g., µ
(r,k)

[i]
is the slip viscosity of slip system k in single-

crystal phase r of the polycrystalline matrix at the level-i LCC, while η
(r,k)

[i]
is the

corresponding slip eigenstrain rate. Furthermore, the effective behavior of each level

LCC is computed by means of the two-step sequential homogenization procedure,

along with the estimates of the SC and PCW type, as discussed in Appendix III.

Generalizing the estimate of Song and Ponte Castañeda (2017b) for porous sin-

gle crystals, the ISO estimate for the effective stress potential ũ of the two-scale,

viscoplastic porous polycrystal may be written as

ũISO(σ) =
I

∑
i=1

(1 − c(2)
[i]
)(

I

∏
j=i+1

c
(2)

[j]
)×

[

N

∑
r=1

c(1,r)
K

∑
k=1

(α
(r)

(k)
φ
(r)

(k)
(τ̌
(r,k)

[i]
) + (1 −α(r)

(k)
)φ
(r)

(k)
(τ̂
(r,k)

[i]
))] . (6.35)

Here the stress variables τ̌
(r,k)

[i]
and τ̂

(r,k)

[i]
are given by expressions completely analogous
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to (6.22) and (6.23), that is,

τ̌
(r,k)

[i]
= τ
(r,k)

[i]
−

¿

Á
Á
Á
ÁÀ

1 − α(r)
(k)

α
(r)

(k)

√

τ
(r,k)

[i] − (τ
(r,k)

[i]
)

2

= τ
(r,k)

[i]
−

¿

Á
Á
Á
ÁÀ

1 − α(r)
(k)

α
(r)

(k)

SD
(1,r)

[i]
(τ
(r,k)

[i]
) (6.36)

and

τ̂
(r,k)

[i]
= τ
(r,k)

[i]
+

¿

Á
Á
Á
ÁÀ

α
(r)

(k)

1 − α(r)
(k)

√

τ
(r,k)

[i] − (τ
(r,k)

[i]
)

2

= τ
(r,k)

[i]
+

¿

Á
Á
Á
ÁÀ

α
(r)

(k)

1 − α(r)
(k)

SD
(1,r)

[i]
(τ
(r,k)

[i]
) ,

(6.37)

where the weight factors α
(r)

(k)
(0 < α

(r)

(k)
< 1) will be set equal to 1/2, for simplicity,

while

τ
(r,k)

[i]
= σ

(1,r)

[i]
⋅µ(r)
(k)
, τ

(r,k)

[i] = µ
(r)

(k)
⋅ ⟨σ ⊗σ⟩

(1,r)

[i]
µ
(r)

(k)
, and

SD
(1,r)

[i]
(τ
(r,k)

[i]
) =

√

τ
(r,k)

[i] − (τ
(r,k)

[i]
)

2

(6.38)

are, respectively, the first moment, the second moment, and the standard deviation

of the resolved shear stress over slip system k in single-crystal phase r in the poly-

crystalline matrix at the level-i LCC. In these expressions, σ
(1,r)

[i]
and ⟨σ⊗σ⟩(1,r)

[i]
are

the first and second moments of the stress field, respectively, over single-crystal phase

r in the polycrystalline matrix at the level-i LCC, as given by expression (6.111) and

(6.112) in Appendix III.

In turn, the properties of the LCC must be specified such that the slip viscosities

µ
(r,k)

[i]
and slip eigenstrain rates η

(r,k)

[i]
of the rth single-crystal phase at level-i LCC

satisfy the ‘generalized secant’ condition

1

2µ
(r,k)

[i]

=

φ
(r)′

(k)
(τ̂
(r,k)

[i]
) − φ(r)

′

(k)
(τ̌
(r,k)

[i]
)

τ̂
(r,k)

[i]
− τ̌ (r,k)
[i]

, and η
(r,k)

[i]
= φ

(r)′

(k)
(τ̌
(r,k)

[i]
) −

1

2µ
(r,k)

[i]

τ̌
(r,k)

[i]
. (6.39)

Note that the ISO estimate (6.35) requires the solution of a set of 4K×N ×I nonlinear

algebraic equations, as given by (6.36), (6.37), and (6.39), for an equal amount of

unknown quantities τ̌
(r,k)

[i]
, τ̂
(r,k)

[i]
, µ

(r,k)

[i]
and η

(r,k)

[i]
associated with each slip system
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(k = 1, ...,K), each single-crystal phase (r = 1, ...,N), and each iteration (i = 1, ..., I).

While the above set of equations contain rather large number of unknowns, they can

be efficiently solved by means of a simple fixed-point method. Further details on the

computation of (6.35) are provided in Appendix IV.

As noted by Song and Ponte Castañeda (2017b), the ISO estimate (6.35) is also

exact to second order in the heterogeneity contrast, retaining the distinguishing fea-

ture of the FOSO estimate (6.21). Moreover, due to the fully stationarity of the

ISO estimates, the macroscopic behavior and field statistics of the nonlinear porous

polycrystal can also be extracted directly from the LCC. However, as will be seen

in Chapter 7, the ISO improves significantly over the FOSO for the cases of small

porosity, large nonlinearity and large stress triaxiality, which are of crucial importance

in practical applications. In general, the accuracy of the ISO improves progressively

with increasing values of I, thus being optimal when I →∞ (Ponte Castañeda, 2012).

However, the fast convergence of the ISO with increasing values of I allows the use of

relatively small number of iterations (I ∼ 5−10) to obtain very accurate results (Ago-

ras and Ponte Castañeda, 2013). Therefore, I = 10 will be used in this work, which

has been found to provide sufficiently accurate estimates for the effective behavior of

the porous polycrystals (with error less than 1% relative to the corresponding limits

as I → ∞). Furthermore, it should be remarked that the specific values of the con-

centration variables c
(2)

[i]
(i = 1, ..., I) in (6.33) will not significantly affect the accuracy

of the ISO, given that the total number of iteration I is large enough. In this work,

we choose c
(2)

[i]
= f 1/I (i = 1, ..., I), for simplicity.

Making use of the fact that the macroscopic behavior of the nonlinear porous

polycrystal can be estimated directly from the suitably chosen LCC, the effective

constitutive relation of the nonlinear composite may be obtained via

D =
∂ũISO

∂σ
(σ) = M̃[I]σ + η̃[I], (6.40)

where M̃[I] and η̃[I] are the effective viscous compliance tensor and effective eigen-

strain rate tensor, respectively, of the final level-I LCC, as given by expression (6.90)
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and (6.91) in Appendix III. It should be recalled that relation (6.40) is nonlinear,

since M̃[I] and η̃[I] depend nonlinearly on the applied stress σ.

The average slip rate γ
(r)

(k)
over each slip system k of the rth single-crystal phase

in the polycrystalline matrix, as defined by (6.27), can also be estimated directly

from those in the LCC. However, due to the non-uniform distribution of each single-

crystal phase in the LCC, it is necessary to first compute the average slip rates over the

single-crystal phase at each level LCC, and then compute the appropriate weighted

averages to obtain the desired average slip rates over the single-crystal phase in the

whole polycrystalline matrix. Following a development similar to that of Song and

Ponte Castañeda (2017b), it can be shown (see Appendix III) that the average slip

rate γ
(r)

(k)
is given by

γ
(r)

(k)
=

1

1 − f
[α
(r)

(k)

I

∑
i=1

(cm[i]φ
(r)′

(k)
(τ̌
(r,k)

[i]
)) + (1 − α(r)

(k)
)

I

∑
i=1

(cm[i]φ
(r)′

(k)
(τ̂
(r,k)

[i]
))] , (6.41)

where the cm
[i]

(i = 1, ..., I) are the total volume fraction of the level-i polycrystalline

matrix over the entire level-I composite, as given by equation (6.115) in Appendix

III.

Finally, it should be remarked that a generalization for porous polycrystals of the

iterated variational (IVAR) homogenization estimate (Song and Ponte Castañeda,

2017a) for porous single crystals may be obtained by formally setting η
(r,k)

[i]
= 0 (and

therefore η
(1,r)

[i]
= 0). In particular, the IVAR estimate for ũ is given by

ũIVAR
(σ) =

I

∑
i=1

(1 − c(2)
[i]
)(

I

∏
j=i+1

c
(2)

[j]
)[

N

∑
r=1

c(1,r)
K

∑
k=1

φ
(r)

(k)
(τ̂
(r,k)

[i]
)] , (6.42)

where the stress variables τ̂
(r,k)

[i]
depend on the second moment of the resolved shear

stress over the rth single-crystal phase at the level-i LCC:

τ̂
(r,k)

[i]
=

√

τ
(r,k)

[i] =

√

µ
(r)

(k)
⋅ ⟨σ ⊗σ⟩

(1,r)

[i]
µ
(r)

(k)
. (6.43)

Here the second moments ⟨σ ⊗ σ⟩
(1,r)

[i]
are given by expression (6.112) in Appendix
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III, with the eigenstrain rate tensor η
(1,r)

[i]
= 0. In turn, the slip viscosities µ

(i,r)

(k)
are

determined by the ‘secant’ conditions

1

2µ
(r,k)

[i]

=

φ
(r)′

(k)
(τ̂
(r,k)

[i]
)

τ̂
(r,k)

[i]

. (6.44)

Note that the IVAR estimate (6.42) is also a rigorous lower bound for the effective

stress potential ũ of the porous polycrystals. However, the IVAR bound is expected

to be more accurate than the VAR bounds, especially at low porosity, high nonlinear-

ity and high stress triaxiality (Agoras and Ponte Castañeda, 2013; Song and Ponte

Castañeda, 2017a).

6.4 Evolution of the sub-structure

During a finite deformation process, the sub-structure of the porous polycrystals, as

characterized by the sub-structural variables (6.8), evolves as a consequence of the

finite changes in the geometry of the materials at large strains. In this section, we

make use of standard kinematics, along with estimates for the average strain rate

and spin fields in the pores and grains, to develop approximate evolution laws for the

sub-structural variables (6.8). Making use of the hypothesis of separation of length

scales (see (6.1)), and of the fact that the meso-structure is statistically independent

from the micro-structure, the evolution of the sub-structural variables (6.8) may be

determined separately for the meso- and micro-structure.

6.4.1 Porosity evolution

Due to the incompressibility of the polycrystalline matrix, the volume change of the

porous polycrystal should equal the volume change of the pores. Therefore, the

porosity evolution is governed by (Gurson, 1977)

ḟ = (1 − f)Dkk, (6.45)
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where it is recalled that D is the macroscopic strain rate, as given by (6.40).

6.4.2 Pore morphology evolution

The evolution of the shape and orientation of the pores (and their distribution) de-

pends on the local fields in a complex fashion, which are extremely difficult to deter-

mine exactly. However, in the context of a homogenization procedure, it is sufficient

to obtain evolution laws for the average shape and orientation of the pores. Therefore,

it is assumed (Ponte Castañeda and Zaidman, 1994; Kailasam and Ponte Castañeda,

1998; Aravas and Ponte Castañeda, 2004) that the average shape and orientation of

the pores (and their distribution) evolve with the average strain rate D
(2)

and the

average spin W
(2)

in the pores. Then, the average shape of the pores (and their dis-

tribution) remains ellipsoidal, but can change its aspect ratios and orientation during

the deformation process. Making use of standard kinematical arguments for ellip-

soids subjected to uniform deformations, we obtain the following evolution laws for

the aspect ratios wp
1 and wp

2:

ẇp
1 = w

p
1 (D

(2)′

33 −D
(2)′

11 ) , and ẇp
2 = w

p
2 (D

(2)′

33 −D
(2)′

22 ) . (6.46)

Here the average strain rate D
(2)

can be consistently estimated by means of the ISO

procedure, as provided by (6.104) with i = 1 (D
(2)
=D

(2)

[1] ) in Appendix III. Note that

the primes in this section denote the tensor components relative to coordinate axes

that are instantaneously aligned with the principal directions of the ellipsoidal voids.

On the other hand, the evolution of the principal directions of the pores, as char-

acterized by the orthogonal tensor Gp in (6.8), is governed by

Ġp
= −Gpωp, (6.47)

where ωp is the spin of the Eulerian axes of the average deformation gradient of the
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pores, with its non-zero components given by (Ogden, 1984)

[1 −
(w

p
t )

2

(w
p
s)

2
]ω
(2)′

st = [1 −
(w

p
t )

2

(w
p
s)

2
]W

(2)′

st + [1 +
(w

p
t )

2

(w
p
s)

2
]D

(2)′

st , s, t = 1,2,3, s ≠ t,

(6.48)

where wp
3 = a

p
3/a

p
3 = 1, and W

(2)
denotes the average spin tensor in the pore phase, as

provided by (6.109) with i = 1 (W
(2)
=W

(2)

[1] ) in Appendix III. It should be remarked

that, when any two of the aspect ratios are equal, i.e., wp
s = w

p
t (s ≠ t), the principal

directions of the voids should be chosen in such a way that D
(2)′

st = 0 and ω
(2)′

st =W
(2)′

st .

At this point, it should be noted that the evolution equations (6.45)-(6.47) com-

pletely characterize the evolution of the porous meso-structure. We will next derive

evolution laws for the granular micro-structure of the underlying polycrystalline ma-

trix.

6.4.3 Grain morphology evolution

For the granular micro-structure of the polycrystal solids, it will be assumed that the

average shape and orientation of the single-crystal grains are controlled by the average

strain rate D
(1)

and spin W
(1)

in the polycrystalline matrix (Liu et al., 2005). This

is the simplest hypothesis that is consistent with the preservation of the integrity of

the composite—the grains are required to fill the entire space. Thus, the aspect ratios

w
g
1 and wg

2 for the ellipsoidal grains are governed by kinematical relations completely

analogous to (6.46), that is,

ẇg
1 = w

g
1 (D

(1)′

33 −D
(1)′

11 ) , and ẇg
2 = w

g
2 (D

(1)′

33 −D
(1)′

22 ) , (6.49)

where D
(1)

can be obtained by means of the global average condition D
(1)
= (1 −

f)−1(D − fD
(2)
).

Similarly, the principal directions of the ellipsoidal grains, as described by the

orthogonal tensor Gg in (6.8), are governed by a kinematical relation completely

analogous to (6.47):

Ġg
= −Ggωm, (6.50)
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where ωm denotes the spin of the Eulerian axes of the average deformation gradient

of the polycrystalline matrix. In particular, the non-zero components of ωm are given

by expressions similar to (6.48), but with wp
i (i = 1,2,3), D

(2)
and W

(2)
replaced by

w
g
i (i = 1,2,3), D

(1)
and W

(1)
, respectively. Here W

(1)
is the average spin in the

polycrystalline matrix, which may be determined from the global average condition

W
(1)
= (1 − f)−1(W − fW

(2)
), with W denoting the macroscopic spin, and W

(2)

given by (6.109) with i = 1.

6.4.4 Crystallographic texture evolution

The crystallographic orientation of the lattice inside of the rth single-crystal grain, as

characterized by the rotation tensorQ(1,r) in (6.8), is assumed to evolve—on average—

with the average “elastic” spin in the rth single-crystal phase, i.e.,

Q̇(1,r) = −Q(1,r)ω(1,r)e . (6.51)

Here the average “elastic” spin ω(1,r)e is given by the difference between the average

“continuum” spin W
(1,r)

and the average “plastic” spin W
(1,r)

pl in the single-crystal

phases (Mandel, 1972), that is

ω(1,r)e =W
(1,r)
−W

(1,r)

pl . (6.52)

Note that the average continuum spin W
(1,r)

is given by (6.118) in Appendix III,

while the average plastic spin W
(1,r)

pl can be written in terms of the average slip rates

γ
(r)

(k)
(see (6.41)) in the rth single-crystal phase:

W
(1,r)

pl =
1

2

K

∑
k=1

γ
(r)

(k)
(m

(r)

(k)
⊗n(r)

(k)
− n(r)

(k)
⊗m(r)

(k)
) . (6.53)

In summary, the instantaneous macroscopic constitutive relation (6.40), together

with the evolution equations (6.45)-(6.47) and (6.49)-(6.51), constitute a complete

viscoplastic model—referred to here as the ISO model—for the finite-strain macro-
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scopic response of the two-scale porous polycrystals. In this context, it should be

remarked that, for a given sub-structural configuration characterized by (6.8), the

effective constitutive response (6.40) is completely determined by the set of variables

τ̌
(r,k)

[i]
, τ̂
(r,k)

[i]
, µ
(r,k)

[i]
and η

(r,k)

[i]
(r = 1, ...,N ; k = 1, ...,K; i = 1, ..., I), which are obtained

by solving the set of nonlinear equations (6.36), (6.37) and (6.39). Moreover, the

evolution of the sub-structural variables (6.8) may be determined by straightforward

numerical integration of the aforementioned evolution equations, by means of an ap-

propriate integration scheme, e.g., the forward-Euler scheme (Liu, 2003; Danas and

Ponte Castañeda, 2009a). It should be emphasized that, except for the ad hoc choice

made for the weight factors α
(r)

(k)
, the ISO model is fully predictive, in the sense that it

requires no fitting parameters to experimental results or numerical simulations, and

applies to two-scale porous polycrystals with general ellipsoidal voids and grains (with

possibly different ellipsoidal shape from that of the voids), general crystallographic

texture, subjected to general loading conditions. Finally, note that the elasticity of

the grains has been neglected in this work, but could be easily incorporated, at least

approximately, as already done in the context of porous isotropic materials (e.g.,

Aravas and Ponte Castañeda, 2004).

6.5 Concluding remarks

In this chapter, we developed a novel finite-strain homogenization model for vis-

coplastic porous polycrystals consisting of large voids distributed in a fine-scale poly-

crystalline matrix, subjected to general three-dimensional loading conditions. The

porous polycrystal is idealized as a random two-scale composite, which has a par-

ticulate meso-structure at the larger length scale, and a granular micro-structure for

the matrix at the smaller length scale. The instantaneous macroscopic response of

the porous polycrystal is determined by means of the fully optimized second-order

(FOSO) homogenization procedure of Ponte Castañeda (2015), together with an ap-

propriate generalization of the iterated homogenization approach of Agoras and Ponte

Castañeda (2013). More specifically, the effective behavior of the nonlinear porous
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polycrystal is estimated in terms of that of a linear comparison composite (LCC),

with a two-scale sub-structure identical to that of the nonlinear composite of inter-

est. The effective behavior of the two-scale LCC is determined sequentially through

the combined use of the self-consistent estimates (Hershey, 1954; Willis, 1977) for

the polycrystalline matrix, and the PCW estimates (Ponte Castañeda and Willis,

1995) for the porous composite. Moreover, the iterated homogenization procedure

of Agoras and Ponte Castañeda (2013) is used to “discretize” the properties of the

polycrystalline matrix to obtain significantly improved results at high triaxialities,

especially for low porosities and high nonlinearities. Furthermore, consistent homog-

enization estimates for the average strain-rate and spin fields in the phases are used

to establish evolution laws for the relevant sub-structural variables, accounting for

the evolution of porosity, average shape and orientation of the pores, as well as the

morphological and crystallographic texture of the underlying polycrystalline matrix.

In its final form, the iterated second-order (ISO) homogenization model can be viewed

as a standard internal-variable viscoplastic model, with the sub-structural variables

playing the role of internal variables.

Compared to other models that have been developed in the literature for porous

materials, the new ISO model has several distinctive features. First, to the best

knowledge of the authors, the ISO model is the first constitutive model that accounts

explicitly for the two-scale structure of the porous polycrystals. Most importantly,

the model can consistently account for the combined effects of the evolution of pore

geometry and matrix texture. Second, unlike the classical homogenization techniques,

the ISO model makes use of a linearization scheme depending on the field fluctuations

in the phases, which endows it the capability to handle strongly nonlinear effects and

dilatational response in nominally incompressible materials due to the presence of

pores. Third, the ISO model applies for porous polycrystals with general ellipsoidal

voids and grains, general crystallographic anisotropy (e.g., cubic, hexagonal) and gen-

eral material nonlinearities, which are subjected to general three-dimensional loading

conditions. Fourth, except for the ad hoc choice made for the weight parameters α
(r)

(k)
,

the ISO model is fully predictive in the sense that no fitting parameters or compli-
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cated interpolations are required. Thus, given the local behavior of the constituents

and the initial state of the sub-structure, the ISO model can provide estimates for the

time-dependent, finite-strain macroscopic response of the porous polycrystals under

general loading conditions. This constitutes one of the main advantages relative to

other phenomenological models, which require recalibration/redevelopment for porous

materials with different crystallography, void morphology, and constitutive proper-

ties (e.g., nonlinearity) of the matrix. However, the ISO model is still amenable to

potential improvements by using other choices of the weight parameters α
(r)

(k)
. In

fact, recent work of Michel and Suquet (2017) suggests that α
(r)

(k)
could be related

to higher moments of the stress field, and this could provide insight into developing

mathematically or physically motivated prescriptions for α
(r)

(k)
. Finally, it should be

remarked that, the ISO model can be implemented numerically into constitutive sub-

routines for general-purpose finite element codes, as has already been done for porous

materials with isotropic matrix phases (Aravas and Ponte Castañeda, Aravas and

Ponte Castañeda; Danas and Aravas, 2012). In the next chapter, we consider specific

applications of the ISO model for porous viscoplastic FCC and HCP polycrystals.

6.6 Appendix I: Two-scale LCC in the FOSO

method

This Appendix deals with the determination of the effective properties and field statis-

tics of the two-scale linear comparison composite (LCC) involved in the FOSO proce-

dure in section 6.3.1. As already stated, the homogenization problem for the two-scale

LCC may be decomposed into two single-scale problems: (i) a micro-scale homoge-

nization problem for the polycrystalline matrix (Fig. 6.1 (b)), and (ii) a meso-scale

homogenization problem for the porous medium (with a homogenized matrix) (Fig.

6.1 (a)). As will be detailed further below, the effective behavior of the polycrys-

talline matrix is determined by means of the estimates of the self-consistent (SC)

type (Hershey, 1954; Kröner, 1958;Willis, 1977), while that of the porous medium is
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obtained by means of the estimates of the Ponte Castañeda and Willis (PCW) type

(Ponte Castañeda and Willis, 1995). In general, it is necessary to first homogenize the

polycrystalline matrix at the micro-scale, and then homogenize the porous medium

at the meso-scale, as will be discussed below.

6.6.1 Homogenization at the micro-scale

Recalling that the viscous compliance tensor and eigenstrain rate tensor of the single-

crystal phase are given by (6.18), the effective stress potential for the polycrystalline

matrix may be written in the form (Willis, 1981)

u
(1)
L (σ

∗
) =

1

2
σ∗ ⋅M(1)σ∗ + η(1) ⋅σ∗ +

1

2
g(1), (6.54)

where σ∗ in (6.54) denotes the volume average of the stress field over the RVE Ω∗

inside of the polycrystalline matrix (see Fig. 6.1(b)), and M(1), η(1), and g(1) are ,

respectively, the effective viscous compliance, effective eigenstrain rate and effective

energy at zero applied stress of the polycrystal. They are given by

M(1) =
N

∑
r=1

c(1,r)M(1,r)B(1,r), η(1) =
N

∑
r=1

c(1,r) (B(1,r))
T
η(1,r), and

g(1) =
N

∑
r=1

c(1,r)η(1,r) ⋅b(1,r), (6.55)

where B(1,r) and b(1,r) are stress-concentration tensors for the rth single-crystal phase

in the polycrystalline matrix. Note that in (6.55)3 use has been made of the fact that

the energy at zero stress g(1,r) = 0 for all the single-crystal phases.

In particular, the SC estimates for the effective viscous compliance tensor M(1) is

given by the solution of the implicit equation

M(1) = {
N

∑
r=1

c(1,r) [M(1,r) +M∗]
−1
}

−1

−M∗, (6.56)

where M∗ = (Q(1))
−1 −M(1) is the constraint tensor, and Q(1) is a fourth-order mi-
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crostructural tensor given by

Q(1) = L(1) −L(1)P(1)L(1), P(1) =
1

4πdet(Zg
)
∫
∣ζ ∣=1

H(1)

∣ (Zg
)
−1
ζ∣3

dS,

H
(1)
ijkl = (K

(1)
)
−1

ik
ζjζl∣(ij)(kl), K

(1)
ik = L

(1)
ijklζjζl, (6.57)

with L(1) = (M(1))−1, and with the parentheses in the subscripts of (6.57)3 denoting

symmetrization with respect to the corresponding indices. Recall that the second-

order tensor Zg in (6.57) characterizes the “shape” of the two-point probability func-

tions, and correlates with the average shape of the single-crystal grains.

Furthermore, the SC estimates for the associated stress-concentration tensors are

given by

B(1,r) = (M(1,r) +M∗)
−1
(Q(1))

−1
, and b(1,r) = (M(1,r) +M∗)

−1
(η(1) − η(1,r)) .

(6.58)

6.6.2 Homogenization at the meso-scale

Having determined the effective properties of the polycrystalline matrix M(1), η(1)

and g(1) by means of the micro-scale homogenization, the effective stress potential

ũL for the porous LCC, as defined by (6.19), is given by expression (6.59) in section

6.3.1.

ũL(σ) =
1

2
σ ⋅ M̃σ + η̃ ⋅σ +

1

2
g̃, (6.59)

where M̃, η̃ and g̃ are, respectively, the effective viscous compliance, eigenstrain rate

and energy at zero applied stress for the porous LCC. For later use, in this subsection

we provide expressions that are valid for an LCC of a particulate microstructure with

general non-vacuous inclusions.

The PCW estimates for the effective compliance tensor M̃ of the LCC is given by

M̃ =M(1) + c(2) [(M(2) −M(1))
−1
+ (1 − c(2))Q]

−1

, (6.60)
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where it is recalled that c(2) denotes the volume fraction of the inclusions, M(2) is the

viscous compliance tensor for the inclusions, and Q is a fourth-order microstructural

tensor given by (6.57), with Zg in (6.57)2 replaced by Zp characterizing the average

shape of the pores and their distribution.

On the other hand, the effective eigen-strain rate tensor of the LCC is given by

η̃ = η(1) + c(2) (B(2))
T
(η(2) − η(1)) , (6.61)

where B(2) is the corresponding stress-concentration tensor given by

B(2) = [I + (1 − c(2))Q(M(2) −M(1))]
−1
, (6.62)

with I being the fully symmetric fourth-order identity tensor, and η(2) denoting the

eigenstrain rate for the inclusions. Furthermore, the effective energy g̃ of the LCC at

zero applied stress is given by

g̃ = c(2) [(η(2) − η(1)) ⋅ b(2) + g(2)] + (1 − c(2))g(1), (6.63)

where b(2) denotes the corresponding stress-concentration tensor provided by

b(2) = (1 − c(2))B(2)Q(η(1) − η(2)) , (6.64)

and g(2) is the energy at zero stress for the inclusion phase.

At this point, it should be noted that the corresponding expressions for a porous

LCC may be easily obtained by taking the appropriate limits as the inclusions become

infinitely soft, and by taking the inclusion concentration to be the porosity. i.e.,

M(2) →∞, η(2) = 0, g(2) = 0, and c(2) = f in (6.60)-(6.64).

6.6.3 Field statistics in the two-scale LCC

Having obtained the effective stress potential ũL (see (6.59)) of the two-scale LCC,

we can compute the first and second moments of the stress field in the phases of the
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LCC by taking the derivative of ũL with respect to the appropriate modulus tensor

of the phases (see, e.g., Ponte Castañeda and Suquet, 1998). In this context, it is

important to recall that the field statistics in the LCC can be used directly to estimate

the corresponding quantities in the actual nonlinear composite.

First, we determine the field statistics in the matrix and inclusions at the meso-

scale. Once again, the expressions provided below are valid for a two-scale LCC with

general non-vacuous inclusions. The corresponding expressions for a porous LCC may

be obtained by taking the appropriate limits as already discussed above. For a given

macroscopic stress σ, the first moment, or the phase average, of the stress field over

the matrix phase may be determined by

σ(1) =
1

1 − c(2)
∂ũL

∂η(1)
= B(1)σ + b(1), (6.65)

where B(1) and b(1) are the associated stress-concentration tensors for the matrix

phase at the meso-scale, and can be obtained by means of the global average condi-

tions:

B(1) =
1

1 − c(2)
(I − c(2)B(2)) , and b(1) = −

c(2)

1 − c(2)
b(2). (6.66)

It is recalled that B(2) and b(1) are provided by equation (6.62) and (6.64), respec-

tively. Moreover, the second moment of the stress field over the matrix phase may be

computed via

⟨σ ⊗σ⟩(1) =
2

1 − c(2)
∂ũL

∂M(1)
=σ(1) ⊗σ(1) −

1

c(2)
(σ(1) −σ)⊗ (σ(1) −σ)−

1

c(2)
[Q−1 (σ(1) −σ)] ⋅

∂Q

∂M(1)
[Q−1 (σ(1) −σ)] . (6.67)

Here ∂Q/∂M(1) is an eighth-order tensor, the evaluation of which is detailed in Ap-

pendix 3 of Liu (2003). Note that the last term of (6.67) involves the summation over

indices corresponding to the numerator of ∂Q/∂M(1).

Similarly, it can be shown that the average strain rate D
(2)

in (6.67) in the inclu-
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sion phase can be determined by means of

D
(2)
= A(2)D + a(2), (6.68)

where A(2) and a(2) are the associated strain-rate concentration tensors given by

A(2) = {c(2)I + (1 − c(2)) [(M(1) −M(1)QM(1)) (M(2))
−1
+M(1)Q]}

−1

, (6.69)

and

a(2) = −(1 − c(2))A(2) (I −M(1)Q) [η(1) −M(1) (M(2))
−1
η(2)] . (6.70)

Then, the average strain rate D
(1)

in the matrix phase may be obtained from the

global average condition

D
(1)
=

1

1 − c(2)
(D − c(2)D

(2)
) . (6.71)

Correspondingly, the PCW estimate for the average spin field over the inclusion phase

is given by

W
(2)
=W −C(2)D −β(2), (6.72)

where W is the macroscopic spin field, while C(2) and β(2) are the associated spin-

concentration tensors determined by

C(2) = (1 − c(2))R [(M(2))
−1
− (M(1))

−1
]A(2), (6.73)

and

β(2) = (1 − c(2))R{[(M(2))
−1
− (M(1))

−1
]a(2) + (M(1))

−1
η(1) − (M(2))

−1
η(2)} .

(6.74)

Here the fourth-order tensor R is given by

R =
1

4πdet(Zp
)
∫
∣ζ ∣=1

Ĥ(1)(ζ)

∣ (Zp
)
−1
ζ∣3

dS, (6.75)
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where Ĥ(1)(ζ) is given by (6.57)3, but with the symmetric parts with respect to the

indices i and j replaced by the corresponding skew-symmetric parts. Then, it follows

that the average spin in the polycrystalline matrix is given by the global average

condition

W
(1)
=

1

1 − c(2)
(W − c(2)W

(2)
) . (6.76)

Next, we determine the field statistics in each single-crystal phase r underlying

the matrix phase at the micro-scale. Making use of a procedure similar to (6.65), the

first moment of the stress field over the rth single-crystal phase is given by

σ(1,r) =
1

(1 − c(2)) c(1,r)
∂ũL

∂η(1,r)
=

1

(1 − c(2)) c(1,r)
(
∂ũL

∂η(1)
∂η(1)

∂η(1,r)
+
∂ũL

∂g(1)
∂g(1)

∂η(1,r)
) ,

(6.77)

where the chain rule has been used in (6.77). Making use of expression (6.65), (6.55)

and (6.63), it can be shown that σ(1,r) may be rewritten in a simpler form:

σ(1,r) = B(1,r)σ(1) + b(1,r), (6.78)

where σ(1) is the average stress field in the matrix phase (at the meso-scale) given by

(6.65). Interestingly, the first moment σ(1,r) in the single-crystal phase, as given

by (6.78), is identical to the first moment computed by assuming that the solid

polycrystalline matrix is subjected to a mesoscopic stress σ(1).

Similarly, the corresponding second moment of the stress field over the rth single-

crystal phase may be determined by

⟨σ ⊗σ⟩(1,r) =
2

(1 − c(2)) c(1,r)
∂ũL

∂M(1,r)

=
2

(1 − c(2)) c(1,r)
(
∂ũL

∂M(1)
∂M(1)

∂M(1,r)
+
∂ũL

∂η(1)
∂η(1)

∂M(1,r)
+
∂ũL

∂g(1)
∂g(1)

∂M(1,r)
) ,

(6.79)

where use has been made of the chain rule in (6.79). Making use of expression (6.67),
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(6.65) and (6.63), it follows that ⟨σ ⊗σ⟩(1,r) in (6.79) may be rewritten as

⟨σ ⊗σ⟩(1,r) =
1

c(1,r)
(
∂M(1)

∂M(1,r)
⋅ ⟨σ ⊗σ⟩(1) + 2

∂η(1)

∂M(1,r)
⋅σ(1) +

∂g(1)

∂M(1,r)
) , (6.80)

where ∂M(1)/∂M(1,r), ∂η(1)/∂M(1,r), and ∂g(1)/∂M(1,r) are eighth-, sixth- and fourth-

order tensors, respectively, the determination of which is detailed in Appendix 3 of

Liu (2003), and ⟨σ ⊗ σ⟩(1) is the second moment of the stress field in the matrix

phase at the meso-scale, as given by (6.67). In this context, it is important to remark

that (6.80) is different from the second moment computed by assuming that the

solid polycrystalline matrix is subjected to a mesoscopic stress σ(1). This is because

⟨σ ⊗σ⟩(1) ≠ σ(1) ⊗σ(1), due to the field fluctuations in the matrix phase.

The average strain rate in the rth single-crystal phase may be estimated by using

the linear constitutive relations of the single-crystal phases in the LCC, i.e.,

D
(1,r)
=M(1,r)σ(1,r) + η(1,r). (6.81)

Similarly, the corresponding average spin W
(1,r)

in the rth single-crystal phase is

given by

W
(1,r)
=W

(1)
−R(1) (P(1))

−1
(D

(1)
−D

(1,r)
) , (6.82)

where P(1) is a fourth-order microstructural tensor given by (6.57)2, and R(1) is given

by expression (6.75), with Zp in (6.75) replaced by Zd. Recall that W
(1)

and D
(1)

are given by (6.76) and (6.71), respectively.

6.7 Appendix II: FOSO estimates for the two-scale

porous polycrystal

In this Appendix, we provide detailed derivations of the FOSO estimates for the

effective stress potential ũ of the two-scale viscoplastic porous polycrystals.

Following Ponte Castañeda (2015), the local stress potential u(1,r) (see (6.9)) of

the nonlinear porous polycrystal can be rewritten by means of a variational repre-
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sentation, in terms of the local potential u
(1,r)
L (see (6.17)) of the two-scale LCC, so

that

u(1,r)(σ) = stat
µ
(r)

(n)
,η
(r)

(n)

n=1,...,K

{u
(1,r)
L (σ) −

K

∑
k=1

V
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
)} , (6.83)

where the ‘stat’ denotes a stationary operation, and the V
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
) are error

functions given by

V
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
) = α

(r)

(k)
V̌
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
) + (1 − α(r)

(k)
)V̂
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
). (6.84)

Here α
(r)

(k)
(0 < α

(r)

(k)
< 1) is a weight factor, and the functions V̌

(1,r)

(k)
and V̂

(1,r)

(k)
are

given by (Ponte Castañeda, 2015)

V̌
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
) = stat

τ̌
(r)

(k)

⎧
⎪⎪
⎨
⎪⎪
⎩

τ̌
(r)

(k)
η
(r)

(k)
+

1

4µ
(r)

(k)

(τ̌
(r)

(k)
)
2 − φ(r)

(k)
(τ̌
(r)

(k)
)

⎫
⎪⎪
⎬
⎪⎪
⎭

, and

V̂
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
) = stat

τ̂
(r)

(k)

⎧
⎪⎪
⎨
⎪⎪
⎩

τ̂
(r)

(k)
η
(r)

(k)
+

1

4µ
(r)

(k)

(τ̂
(r)

(k)
)
2 − φ(r)

(k)
(τ̂
(r)

(k)
)

⎫
⎪⎪
⎬
⎪⎪
⎭

. (6.85)

It should be emphasized here that V̌
(1,r)

(k)
and V̂

(1,r)

(k)
are different functions in gen-

eral, since they are evaluated at different stationary points τ̌
(r)

(k)
and τ̂

(r)

(k)
(see Ponte

Castañeda, 2015 for details).

Substituting expression (6.83) of u(1,r) into (6.15), and interchanging the order

of the minimum and stationary operations, the effective stress potential ũ of the

nonlinear porous polycrystal can be written as

ũ(σ) = stat
µ
(s)

(n)
,η
(s)

(n)

s=1,...,N
n=1,...,K

{ũL(σ) − (1 − f)
N

∑
r=1

c(1,r)
K

∑
k=1

V
(1,r)

(k)
(µ
(r)

(k)
, η
(r)

(k)
)} , (6.86)

where use have been made of expression (6.19) for ũL. Note that the trial fields in the

variational principle (6.86) are the slip viscosities µ
(r)

(k)
and the slip eigenstrain rates

η
(r)

(k)
for the LCC, which are not subjected to any differential constraints and have

been chosen to be piecewise constants in (6.86). Note further that the conditions for
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equilibrium and compatibility are enforced through the LCC.

Now, we spell out the stationary conditions associated with the variational esti-

mate (6.86). In particular, the stationary conditions for the variables τ̌
(r)

(k)
and τ̂

(r)

(k)
,

implicit in the definitions (6.85) for the functions V̌
(1,r)

(k)
and V̂

(1,r)

(k)
, are given by

φ
(r)′

(k)
(τ̂
(r)

(k)
) −

1

2µ
(r)

(k)

τ̂
(r)

(k)
= η
(r)

(k)
= φ

(r)′

(k)
(τ̌
(r)

(k)
) −

1

2µ
(r)

(k)

τ̌
(r)

(k)
. (6.87)

Next, we consider the stationary conditions for the variables η
(r)

(k)
and µ

(r)

(k)
. When

taking derivative of the term ũL with respect to these variables, we make use of

expression (6.18) and of the chain rule to write the derivatives with respect to η
(r)

(k)

and µ
(r)

(k)
, respectively, in terms of the first and second moments of the stress field

in the LCC via expression (6.77) and (6.79). Then, it follows that the stationary

condition with respect to η
(r)

(k)
are given by

α
(r)

(k)
τ̌
(r)

(k)
+ (1 −α(r)

(k)
)τ̂
(r)

(k)
= σ(1,r) ⋅µ(r)

(k)
= τ
(r)

(k)
, (6.88)

where σ(1,r) denotes the first moment of the stress field over the rth single-crystal

phase in the LCC, as given by expression (6.78) in Appendix I, while τ
(r)

(k)
is the first

moment of the resolved shear stress over slip system k in single-crystal phase r of the

LCC. Similarly, the stationary conditions with respect to the slip viscosities µ
(r)

(k)
are

given by

α
(r)

(k)
(τ̌
(r)

(k)
)

2

+ (1 − α(r)
(k)
)(τ̂

(r)

(k)
)

2

= µ
(r)

(k)
⋅ ⟨σ ⊗σ⟩(1,r)µ

(r)

(k)
= τ
(r)

(k), (6.89)

where ⟨σ ⊗σ⟩(1,r) denotes the second moment of the stress field over the rth single-

crystal phase in the LCC, as given by expression (6.80) in Appendix I, while τ
(r)

(k) is

the second moment of the resolved shear stress over slip system k in single-crystal

phase r of the LCC.

Making use of the stationary conditions (6.88) and (6.89) in (6.86), it can be easily

shown that the effective stress potential ũ may be rewritten in a simplified form given
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by (6.21).

6.8 Appendix III: Expressions for the LCC in the

ISO method

In this Appendix, we provide expressions for the macroscopic behavior and field

statistics in the LCC involved in the ISO model for the two-scale porous polycrystals.

These expressions provide generalizations of the corresponding expressions in the work

of Song and Ponte Castañeda (2017b) for porous single crystals. Similar to the ISO

procedure of Song and Ponte Castañeda (2017b), the sub-structure of the LCC in

the present work is of the “self-similar” type (see Fig. 6.2), with the matrix phases

possessing different properties at different iterations (i = 1, ..., I). However, in the

present work the matrix phase at each iteration is a polycrystalline aggregate, which

has a fine-scale granular micro-structure.

Given the local properties (6.34) of the single-crystal phases at each iteration,

the effective behavior of the polycrystalline matrix may be obtained by means of

the SC estimates, as already discussed in Appendix I. In particular, the effective

viscous compliance tensor M
(1)

[i]
, effective eigenstrain rate η

(1)

[i]
, and effective energy at

zero stress g
(1)

[i]
for the level-i polycrystalline matrix may be computed via equation

(6.56), (6.55)2 and (6.55)3, respectively, with M(1,r) and M∗ in (6.56) replaced by the

corresponding quantities M
(1,r)

[i]
andM∗

[i]
at the ith iteration. Moreover, the associated

stress-concentration tensors B
(1,r)

[i]
and b

(1,r)

[i]
for the rth single-crystal phase at the ith

iteration are given by equations completely analogous to (6.58), with the quantities

η(1), η(1,r) and Q(1) in (6.58) replaced by the corresponding quantities η
(1)

[i]
, η
(1,r)

[i]
and

Q
(1)

[i]
, respectively, at the ith iteration. Applying the above described procedure for

each iteration level, we can obtain the homogenized properties for the polycrystalline

matrix at each iteration (i = 1, ..., I), as well as the associated stress-concentration

tensors.

Having obtained the effective properties of the polycrystalline matrix at each
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iteration, the effective properties of the LCC may be determined by means of the

PCW estimates (Ponte Castañeda and Willis, 1995) at each iteration, following the

development of Song and Ponte Castañeda (2017b). Making use of equation (6.60)

in Appendix I, the viscous compliance tensor M̃[i] of the level-i LCC is given by

M̃[i] =M
(1)

[i]
+ c(2)
[i]
[(M̃[i−1] −M

(1)

[i]
)

−1
+ (1 − c(2)

[i]
)Q[i]]

−1

, i = 1, ..., I, (6.90)

where it is recalled that the c
(2)

[i]
(i = 1, ..., I) are the volume fractions of the inclusion

phase in the level-i LCC, which can be simply chosen as c
(2)

[i]
= f 1/I (i = 1, .., I), and the

Q[i] (i = 1, ..., I) are fourth-order microstructural tensors, depending on the matrix

property M
(1)

[i]
and pore morphology. It should be mentioned that M̃[0] →∞ in (6.90),

denoting the compliance tensor of the pores at the first iteration.

In addition, the effective eigenstrain-rate tensor η̃[i] of the level-i LCC is given by

η̃[i] = η
(1)

[i]
+ c(2)
[i]
(B
(2)

[i]
)

T

(η̃[i−1] − η
(1)

[i]
) , i = 1, ..., I, (6.91)

where the stress concentration tensor B
(2)

[i]
for the inclusion phase is given by

B
(2)

[i]
= [I + (1 − c(2)

[i]
)Q[i] (M̃[i−1] −M

(1)

[i]
)]

−1
, i = 1, ..., I, (6.92)

Note that η̃[0] = 0 in (6.91), representing the eigenstrain-rate tensor of the pores at

the first iteration. The effective energy g̃[i] of the level-i LCC is then given by

g̃[i] = c
(2)

[i]
[(η̃[i−1] − η

(1)

[i]
) ⋅ b(2)

[i]
+ g̃[i−1]] + (1 − c

(2)

[i]
)g
(1)

[i]
, i = 1, ..., I, (6.93)

where the stress-concentration tensor b
(2)

[i]
is provided by

b
(2)

[i]
= (1 − c(2)

[i]
)B
(2)

[i]
Q[i] (η

(1)

[i]
− η̃[i−1]) , i = 1, ..., I. (6.94)

Now, letting σ[i] = ⟨σ⟩[i] denote the average stress field over the level-i LCC,

and σ
(2)

[i]
denote the corresponding average stress field over the inclusion phase of the
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level-i LCC, it follows that

σ
(2)

[i]
= B

(2)

[i]
σ[i] +b

(2)

[i]
, i = 1, ..., I. (6.95)

Now, making use of (6.95) recursively for i = I, ...,1, along with the fact that

σ[I] = σ and σ[i−1] = σ
(2)

[i]
, i = I, ...,2, (6.96)

it can be shown that σ
(2)

[i]
may be expressed in terms of the macroscopic stress σ and

the stress-concentration tensors B
(2)

[i]
and b

(2)

[i]
(at different iterations) as

σ
(2)

[i]
= [

I

∏
j=i

B
(2)

[j]
]σ +

I

∑
j=i+1

(

j−1

∏
l=i

B
(2)

[l]
)b
(2)

[j]
+ b(2)

[i]
, i = 1, ..., I. (6.97)

Then, the effective stress potential of the level-i LCC is given by

ũL[i] (σ[i]) =
1

2
σ[i] ⋅ M̃[i]σ[i] + η̃[i] ⋅σ[i] +

1

2
g̃[i], i = 1, ...,N, (6.98)

where σ[i] may be determined by equation (6.96) and (6.97), while M̃[i], η̃[i] and g[i]

are given by expression (6.90), (6.91) and (6.93), respectively.

Making use of expression (6.67), the second moment of the stress field in the

matrix phase of the level-i LCC is given by

⟨σ ⊗σ⟩(1)
[i]
= σ

(1)

[i]
⊗σ

(1)

[i]
−

1

c
(2)

[i]

(σ
(1)

[i]
−σ[i])⊗ (σ

(1)

[i]
−σ[i])−

1

c
(2)

[i]

[Q−1[i] (σ
(1)

[i]
−σ[i])] ⋅

∂Q[i]

∂M
(1)

[i]

[Q−1[i] (σ
(1)

[i]
−σ[i])] , i = 1, ...,N. (6.99)

Following a procedure similar to that used for computing σ
(2)

[i]
, the average strain

rate D
(2)

[i] over the inclusion phase of the level-i LCC is given by

D
(2)

[i] = A
(2)

[i]
D[i] + a

(2)

[i]
, i = 1, ..., I, (6.100)

where D[i] = ⟨D⟩[i] (i = 1, ..., I) denotes the average strain-rate field over the level-i
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LCC, and the A
(2)

[i]
and a

(2)

[i]
(i = 1, ..., I) are the associated strain-rate concentration

tensors provided by

A
(2)

[i]
= {c

(2)

[i]
I + (1 − c(2)

[i]
) [(M

(1)

[i]
−M(1)

[i]
Q[i]M

(1)

[i]
) M̃−1[i−1] +M

(1)

[i]
Q[i]]}

−1

,

i = 1, ..., I, (6.101)

and

a
(2)

[i]
= −(1 − c(2)

[i]
)A

(2)

[i]
(I −M(1)

[i]
Q[i])(η

(1)

[i]
−M(1)

[i]
M̃−1[i−1]η̃[i−1]) , i = 1, ..., I. (6.102)

Following a development completely analogous to that used above for the derivation

of (6.97), and accounting for the relations

D[I] =D and D[i−1] =D
(2)

[i] , i = I, ...,2, (6.103)

D
(2)

[i] may be expressed by means of the macroscopic strain rate D and the associated

strain-rate concentration tensors A
(2)

[i]
and a

(2)

[i]
(at different iterations) as

D
(2)

[i] = [

I

∏
j=i

A
(2)

[j]
]D +

I

∑
j=i+1

(

j−1

∏
l=i

A
(2)

[l]
)a
(2)

[j]
+ a(2)
[i]
, i = 1, ..., I. (6.104)

The average spin field over the inclusion phase of the level-i LCC can also be

obtained by means of the PCW estimate

W
(2)

[i] =W[i] −C
(2)

[i]
D[i] −β

(2)

[i]
, i = 1, ..., I, (6.105)

where the W[i] = ⟨W⟩[i] (i = 1, ..., I) are the average spin field over the level-i LCC,

and the C
(2)

[i]
and β

(2)

[i]
(i = 1, ..., I) are the associated spin-concentration tensors de-

termined by

C
(2)

[i]
= (1 − c(2)

[i]
)R[i] [M̃

−1
[i−1] − (M

(1)

[i]
)

−1
]A
(2)

[i]
, i = 1, ..., I, (6.106)
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and

β
(2)

[i]
= (1 − c(2)

[i]
)R[i] {[M̃

−1
[i−1] − (M

(1)

[i]
)

−1

]a
(2)

[i]
+ (M(1)

[i]
)

−1

η
(1)

[i]
− M̃−1[i−1]η̃[i−1]} ,

i = 1, ..., I. (6.107)

Here the R[i] (i = 1, ...,N) are fourth-order microstructural tensors depending on the

matrix compliance tensor M
(1)

[i]
and the pore morphology, and are given by expressions

similar to (6.75). Making use of (6.105) recursively for i = I, ...,1, and accounting for

the relations

W[I] =W and W[i−1] =W
(2)

[i] , i = I, ...,2, (6.108)

W
(2)

[i] may be written in the form

W
(2)

[i] =W − (
I

∑
j=i

C
(2)

[j]
D[j]) −

I

∑
j=i

β
(2)

[j]
, i = 1, ..., I, (6.109)

where we recall that the D[i] (i = 1, ...,N) are determined by (6.103) and (6.104).

At this point, it should be noted that the average stress, strain-rate and spin fields

over the pores of the LCC can be obtained from equation (6.97), (6.104) and (6.109),

respectively, by setting i = 1 (i.e., σ(2) = σ
(2)

[1]
, D

(2)
=D

(2)

[1] and W
(2)
=W

(2)

[1] ).

Then, the average stress, strain-rate and spin fields over the matrix phase of the

level-i LCC can be easily obtained from the global average conditions:

σ
(1)

[i]
=

1

1 − c(2)
[i]

(σ[i] − c
(2)

[i]
σ
(2)

[i]
) , D

(1)

[i] =
1

1 − c(2)
[i]

(D[i] − c
(2)

[i]
D
(2)

[i] ) ,

W
(1)

[i] =
1

1 − c(2)
[i]

(W[i] − c
(2)

[i]
W
(2)

[i] ) , i = 1, ..., I. (6.110)

At this stage, it is important to note that we have obtained the field statistics

in the inclusion (phase 2) and matrix (phase 1) of the LCC at each iteration. Next,

we determine, at each iteration, the field statistics in the single-crystal phases (r =

1, ...,N) underlying the polycrystalline matrix.

The first moment of the stress field in the rth single-crystal phase in the level-i
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polycrystalline matrix can be determined by means of equation (6.78), i.e.,

σ
(1,r)

[i]
= B

(1,r)

[i]
σ
(1)

[i]
+ b(1,r)

[i]
. (6.111)

As already discussed at the beginning of Appendix III, the stress-concentration ten-

sors B
(1,r)

[i]
and b

(1,r)

[i]
in (6.111) for the rth single-crystal phase at the ith iteration

are given by expressions similar to (6.58), with the quantities M(1), η(1), η(1,r) and

Q(1) in (6.58) replaced by the corresponding quantities M
(1)

[i]
, η

(1)

[i]
, η

(1,r)

[i]
and Q

(1)

[i]
,

respectively, at the ith iteration. Similarly, the corresponding second moment of the

stress field may be obtained by means of equation (6.80), i.e.,

⟨σ ⊗σ⟩
(1,r)

[i]
=

1

c
(1,r)

[i]

⎛

⎜

⎝

∂M
(1)

[i]

∂M
(1,r)

[i]

⋅ ⟨σ ⊗σ⟩
(1)

[i]
+ 2

∂η
(1)

[i]

∂M
(1,r)

[i]

⋅σ(1)
[i]
+

∂g
(1)

[i]

∂M
(1,r)

[i]

⎞

⎟

⎠

, (6.112)

where it is recalled that ⟨σ ⊗ σ⟩
(1)

[i]
is given by (6.99), and the computation of the

derivatives in (6.112) has been discussed in detail in Appendix 3 of Liu (2003).

Making use of the linear constitutive relations of the single-crystal phases in the

LCC, together with equation (6.34) and (6.36)-(6.39), the average strain rate over the

rth single-crystal phase in the i-level polycrystalline matrix can be written as

D
(1,r)

[i] =M
(1,r)

[i]
σ
(1,r)

[i]
+ η(1,r)

[i]
=

K

∑
k=1

⎛

⎜

⎝

1

2µ
(r,k)

[i]

τ
(r,k)

[i]
+ η(r,k)
[i]

⎞

⎟

⎠

µ
(r)

(k)

=

K

∑
k=1

[α
(r)

(k)
φ
(r)′

(k)
(τ̌
(r,k)

[i]
) + (1 − α(r)

(k)
)φ
(r)′

(k)
(τ̂
(r,k)

[i]
)]µ

(r)

(k)
. (6.113)

Then, the average strain-rate field over the rth single-crystal phase in the entire I-

level LCC (with contributions from all iterations) can be straightforwardly obtained

from the weighted average of D
(1,r)

[i] in (6.113), i.e.,

D
(1,r)
=

I

∑
i=1

cm
[i]

1 − f
D
(1,r)

[i] , (6.114)

where the cm
[i]

(i = 1, ..., I) are the total volume fraction of the level-i polycrystalline
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matrix over the entire level-I composite, as given by

cm[i] = (
I

∏
j=i+1

c
(2)

[j]
)(1 − c(2)

[i]
) . (6.115)

Making use of equation (6.113) and (6.114), it follows that the average slip rates γ
(r)

(k)

over slip system k in single-crystal phase r, as defined in (6.27), are given by equation

γ
(r)

(k)
=

1

1 − f
[α
(r)

(k)

I

∑
i=1

(cm[i]φ
(r)′

(k)
(τ̌
(r,k)

[i]
)) + (1 −α(r)

(k)
)

I

∑
i=1

(cm[i]φ
(r)′

(k)
(τ̂
(r,k)

[i]
))] . (6.116)

The average spin field W
(1,r)

[i] over the rth single-crystal phase in the level-i polycrys-

talline matrix is given by an expression similar to (6.82), that is,

W
(1,r)

[i] =W
(1)

[i] −R
(1)

[i]
(P
(1)

[i]
)

−1
(D

(1)

[i] −D
(1,r)

[i] ) , (6.117)

where R
(1)

[i]
and P

(1)

[i]
are fourth-order microstructural tensors depending on the matrix

property M
(1)

[i]
and the grain morphology, and are given by expressions similar to those

for R(1) and P(1), respectively, in Appendix I. Recall that W
(1)

[i] and D
(1)

[i] are given

by (6.110)3 and (6.110)2, respectively. Similarly, the average spin field over the rth

single-crystal phase in the entire I-level LCC can be obtained from the weighted

average of W
(1,r)

[i] in (6.117), namely

W
(1,r)
=

I

∑
i=1

cm
[i]

1 − f
W
(1,r)

[i] . (6.118)

6.9 Appendix IV: Numerical Implementation of

the ISO model

In this Appendix, we provide details on the numerical implementation of the ISO

model. The ISO model consists of two main ingredients: (i) the determination of the

instantaneous response of the porous polycrystal, as characterized by the effective

stress potential (6.35), for given fixed values of the sub-structural variables (6.8), and

220



(ii) the prediction of the evolution of the sub-structural variables (6.8) in large defor-

mations. For part (ii), the sub-structural variables (6.8) can be updated by means of

straightforward numerical integration of the evolution laws (6.45)-(6.47), and (6.49)-

(6.51). In this work, the explicit forward-Euler integration scheme is used, as adopted

by Aravas and Ponte Castañeda (2004) and Danas and Ponte Castañeda (2009a) in

the context of porous materials with isotropic matrix. Since the numerical integration

of the evolution laws has been discussed thoroughly in the above references, we will

not provide further details here for brevity. In the following, we will focus on part (i)

of the ISO model.

As already mentioned in section 6.3.2, the computation of the ISO estimates (6.35)

requires the solution of a set of 4 ×N ×K × I nonlinear algebraic equations (6.36),

(6.37) and (6.39) for the unknown variables τ̌
(r,k)

[i]
(N ×K ×I), τ̂ (r,k)

[i]
(N ×K ×I), µ(r,k)

[i]

(N×K×I) and η(r,k)
[i]

(N×K×I), where it is recalled that the first two sets of unknowns

are stress variables depending on the first and second moments of the stress field in

the LCC, while the last two sets of unknowns correspond to the properties (i.e., slip

viscosities and slip eigenstrain rates) of the LCC. Here the stress variables τ̌
(r,k)

[i]
and

τ̂
(r,k)

[i]
are chosen to be the primary unknowns, while the slip viscosities µ

(r,k)

[i]
and slip

eigenstrain rates η
(r,k)

[i]
are taken to be functions of the primary unknowns, as given

by (6.39). (Note that it is also possible to choose µ
(r,k)

[i]
and η

(r,k)

[i]
to be the primary

unknowns, but this choice is found to be numerically less stable.) Thus, the original

problem is reduced to the solution of 2 ×N ×K × I nonlinear algebraic equations, as

given by (6.36) and (6.37), for an equal amount of primary unknowns τ̌
(r,k)

[i]
and τ̂

(r,k)

[i]
.

The above equations can be efficiently solved by means of the fixed-point method as

follows.

1. Given the macroscopic stress σ, the initial guesses for the primary unknowns

τ̌
(r,k)

[i]
and τ̂

(r,k)

[i]
(i = 1, ..., I; r = 1, ...,N ; k = 1, ...,K) are assumed. Here we use

the symbols (τ̌
(r,k)

[i]
)
j
and (τ̂

(r,k)

[i]
)
j
to denote the current guesses for the primary

unknowns at the jth fixed-point loop, where j = 1 for the initial guesses.

2. With the current guesses (τ̌
(r,k)

[i]
)
j
and (τ̂

(r,k)

[i]
)
j
for the primary unknowns, the
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slip viscosities µ
(r,k)

[i]
and slip eigenstrain rates η

(r,k)

[i]
(i = 1, ..., I; r = 1, ...,N ; k =

1, ...,K) are determined by means of (6.39), and the viscous compliance tensor

M
(1,r)

[i]
and viscous eigenstrain rate tensor η

(1,r)

[i]
(i = 1, ..., I; r = 1, ...,N) are

computed by means of (6.34) for each single-crystal phase in the polycrystalline

matrix at each iteration.

3. The effective viscous compliance tensor M
(1)

[i]
, effective eigenstrain rate tensor

η
(1)

[i]
, effective energy at zero applied stress g

(1)

[i]
, and the corresponding stress-

concentration tensors B
(1,r)

[i]
and b

(1,r)

[i]
(i = 1, ..., I; r = 1, ...,N) are computed for

the polycrystalline matrix at each iteration, by means of equation (6.55)-(6.58),

where the quantities in (6.55)-(6.58) should be replaced by the corresponding

quantities at the ith iteration, as already discussed at the beginning of Appendix

III.

4. The derivatives of the effective properties of the polycrystalline matrix,
∂M

(1)

[i]

∂M
(1,r)

[i]

,

∂η(1)
[i]

∂M
(1,r)

[i]

, and
∂g
(1)

[i]

∂M
(1,r)

[i]

, are computed for each iteration and each single-crystal phase

(i = 1, ..., I; r = 1, ...,N). Detailed formulations for computing these derivatives

are provided in Appendix 3 of Liu (2003), and will not be repeated here for

brevity.

5. The effective compliance tensor M̃[i], the effective eigenstrain rate tensor η̃[i], as

well as the corresponding stress-concentration tensors B
(2)

[i]
and b

(2)

[i]
(i = 1, ...,N),

for the LCC at each iteration are computed by means of equations (6.90)-(6.92)

and (6.94).

6. The first and second moments of the stress field over the polycrystalline matrix

(phase 1) at each iteration, σ
(1)

[i]
and ⟨σ ⊗ σ⟩

(1)

[i]
(i = 1, ..., I), are computed by

means of (6.96), (6.97), (6.99) and (6.110)1.

7. The first and second moments of the stress field over the rth single-crystal

phase in the polycrystalline matrix at each iteration, σ
(1,r)

[i]
and ⟨σ ⊗ σ⟩

(1,r)

[i]

(i = 1, ..., I; r = 1, ...,N), are computed by means of equation (6.111) and (6.112),
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respectively. Then, the first and second moments of the resolved shear stress

τ
(r,k)

[i]
and τ

(r,k)

[i] (i = 1, ..., I; r = 1, ...,N ; k = 1, ...,K) are computed by means of

equation (6.38).

8. The new estimations for the primary unknowns, (τ̌
(r,k)

[i]
)
new

and (τ̂
(r,k)

[i]
)
new

, are

computed by means of (6.36) and (6.37), respectively.

9. The sum of the magnitudes of the relative errors between the new estimations

and old guesses for the primary unknowns are computed. If the error is smaller

than a prescribed tolerance (typically 10−8), convergence is reached. If not, the

guesses for the primary unknowns are updated by means of a ‘partial’ update

scheme:

(τ̌
(r,k)

[i]
)
j+1
= (1 − β)(τ̌ (r,k)

[i]
)
j
+ β (τ̌ (r,k)

[i]
)
new

,

(τ̂
(r,k)

[i]
)
j+1
= (1 − β)(τ̂ (r,k)

[i]
)
j
+ β (τ̂ (r,k)

[i]
)
new

, (6.119)

where β (0 < β ≤ 1) is a weight factor that controls the fraction of the solutions

that are updated in each fixed-point loop. (Note that the standard fixed-point

method corresponds to β = 1.) It should be emphasized that, for the cases

of high nonlinearities, a relatively small value of β should be used in order to

achieve smooth convergence. In this work, β = 1/3 is used for nonlinearities

n ≤ 3, while β = 1/8 is used for n > 3. Then, steps 2-9 are repeated until

convergence is reached.

Finally, it should be remarked that the ISO model requires the computation of

fourth-order microstructural tensors and their derivatives (e.g., Q[i] and ∂Q[i]/∂M
(1)

[i]
),

whose components are two-dimensional integrals that need to be evaluated numer-

ically in general. In this work, a two-dimensional Gaussian quadrature integration

scheme is adopted to compute these integrals in spherical coordinate systems. In par-

ticular, when the polycrystalline matrix phase M
(1)

[i]
is strongly anisotropic, or when

the shape tensors Zp or Zd are very different from the identity tensor, a relatively

large number of Gaussian points is required to guarantee the accuracy of these inte-
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grals. In the next chapter, 200 Gaussian points are used for each integration direction,

which are found to be sufficient to generate accurate results.
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Chapter 7

Iterated second-order

homogenization model for

viscoplastic porous polycrystals

with large voids: Applications

In chapter 6 of this work, a new homogenization model was developed for the macro-

scopic behavior of the two-scale porous polycrystals consisting of large pores dis-

tributed in a fine-scale polycrystalline matrix. In this chapter, the model is used to

investigate both the instantaneous effective behavior and the finite-strain macroscopic

response of porous FCC and HCP polycrystals for axisymmetric loading conditions.

The stress triaxiality and Lode parameter are found to have significant effects on

the evolution of the sub-structure, which in turn have important implications on the

overall hardening/softening behavior of the porous polycrystal. The intrinsic effect

of the texture evolution of the polycrystalline matrix is deduced by comparing with

corresponding results for porous isotropic materials, and found to be significant. In

particular, it is found that the macroscopic behavior of the porous polycrystal is

controlled by porosity growth at high triaxialities, while it is controlled by texture

evolution of the matrix at low triaxialities, with a sharp transition between the poros-
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ity controlled regime and texture controlled regime.

7.1 Introduction

In chapter 6, we have proposed a finite-strain model for the macroscopic behavior of

two-scale porous polycrystals containing large pores distributed in a fine-scale poly-

crystalline matrix. The model is based on the fully optimized second-order (FOSO)

method of Ponte Castañeda (2015) used in incremental fashion (Agoras and Ponte

Castañeda, 2013), and is referred to as the Iterated Second-order (ISO) model. The

ISO model consists of two main ingredients: (i) the determination of the instantaneous

response of the porous polycrystals for fixed values of the sub-structural variables,

and (ii) the prediction of the evolution of the sub-structural variables at finite strains.

In this model, the sub-structural variables characterizing the two-scale structure

of the porous polycrystals are given by the set

s ≡ {f,w
p
1,w

p
2,G

p;Q(1,r),wg
1,w

g
2,G

g
}. (7.1)

Here f is the volume fraction of the pores (porosity), wp
1 = a

p
3/a

p
1, and w

p
2 = a

p
3/a

p
2 are

the two aspect ratios of the representative ellipsoids characterizing the shape (and

distribution) of the pores (ap1, a
p
2 and ap3 are the lengths of the three semi-axes of the

ellipsoid), Gp is a second-order rotation tensor characterizing the principal axes of

the pores relative to the sample axes (see Fig. 6.1 in chapter 6). In addition, Q(1,r)

(r = 1, ...,N) is a rotation tensor describing the crystallographic orientation of the

rth single-crystal phase in the polycrystalline matrix, wg
1 = a

g
3/a

g
1 and wg

2 = a
g
3/a

g
2 are

two aspect ratios characterizing the average ellipsoidal shape of the crystal grains

(ag1, a
g
2 and ag3 are the lengths of the three semi-axes of the grain ellipsoid), and Gg

is a second-order rotation tensor describing the principal directions of the ellipsoidal

grains relative to the sample axes. Among the above sub-structural variables (7.1),

the first four variables (f , wp
1, w

p
2, and Gp) describe the porous meso-structure of the

composite (see Fig. 6.1 (a) of chapter 6), while the remaining variables characterize
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the underlying micro-structure of the polycrystalline matrix (see Fig. 6.1 (b) of

chapter 6).

The ISO model makes use of the effective behavior of a suitably chosen two-

scale linear comparison composite (LCC)—with sub-structure identical to that of

the nonlinear porous polycrystal of interest—to estimate the effective behavior of

the nonlinear composite. In particular, the two-scale homogenization problem for

the LCC is decomposed into two single-scale problems for the associated meso- and

micro-structure, so that the effective behavior of the LCC can be determined by

means of a two-step sequential homogenization approach. At the micro-scale, the

effective properties of the linear polycrystalline matrix are determined by means of

the self-consistent estimates (Hershey, 1954; Kröner, 1958; Willis, 1977), while at

the meso-scale, the effective properties of the porous LCC are obtained by means

of the estimates of the Ponte Castañeda and Willis (1995) type. In addition, the

iterated homogenization procedure of Agoras and Ponte Castañeda (2013) is used to

“discretize” the polycrystalline matrix, in such a way that non-uniform properties

of the polycrystalline matrix are used for the LCC, thereby generating improved

estimates for the effective behavior of the nonlinear porous polycrystal, especially for

low porosities and high stress triaxialities. Furthermore, consistent homogenization

estimates for the strain-rate and spin fields in the pores and grains are used to develop

evolution equations for the sub-structural variables (7.1), characterizing the evolution

of the size, shape and orientation of the pores (at the meso-scale), as well as of

the morphological and crystallographic texture of the polycrystalline matrix (at the

micro-scale).

In this chapter, we consider specific applications of the ISO model for two different

types of porous polycrystals, including the porous (high-symmetry) FCC polycrystals

in section 7.2 and porous (low-symmetry) HCP polycrystals in section 7.3. In each

section, we examine the instantaneous effective behavior of the porous polycrystals

for fixed states of the sub-structure, as well as the finite-strain macroscopic response

of the porous polycrystals with evolving sub-structures, under axisymmetric load-

ing conditions for different stress triaxialities and Lode parameters. The effect of
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the loading conditions on the sub-structure evolution, field statistics, and the over-

all hardening/softening behavior of the porous polycrystals is investigated in detail.

In addition, the intrinsic effect of the texture evolution for the polycrystalline ma-

trix is deduced by comparing with the corresponding results for the porous isotropic

materials. Finally, some general conclusions will be drawn in section 7.4.

7.2 Applications to porous FCC polycrystals

In this section, we employ the ISO model to study the instantaneous effective proper-

ties and finite-strain response of porous FCC polycrystals. The corresponding results

generated by the IVAR model will also be included for comparison purposes.

For FCC single crystals, the deformation takes place through slip on a set of four

slip planes of the type {111} along three slip directions (per plane) of the type ⟨110⟩,

which constitute the 12 octahedral slip systems. Of these, five are linearly indepen-

dent, thus allowing arbitrary plastic deformation for the single-crystal grains. For

simplicity, all slip systems are assumed to be non-hardening with the same reference

flow stresses, i.e., (τ0)(k) = τ0 (k = 1, ...,12). In addition, the reference strain rate γ̇0

and the creep exponent n are also assumed to be identical for all slip systems.

7.2.1 Instantaneous effective response

In this subsection, we make use of the ISO model to generate estimates for the

instantaneous effective behavior of porous FCC polycrystals for fixed states of the

sub-structure. For simplicity, the FCC polycrystalline matrix is taken here to be un-

textured, with “equiaxed” (wg
1 = w

g
2 = 1) single-crystal grains and uniformly distributed

crystallographic orientations, such that the polycrystalline matrix exhibits an overall

isotropic behavior.

For later use, we briefly recall the definition of gauge surface (Leblond et al.,

1994). Given that the viscous exponent n is identical for all the available slip systems

in the polycrystalline matrix, it can be shown (Ponte Castañeda and Suquet, 1998)

that the effective stress potential ũ is a homogeneous function of degree n + 1 on the
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macroscopic stress σ, so that it can be expressed in the form

ũ(σ) =
γ̇0σ0

n + 1
(
Γ(σ)

σ0
)

n+1

, (7.2)

where σ0 is a reference stress that will be defined later, and Γ(σ) is the gauge factor,

which depends on the sub-structural variables (7.1) of the composite and on the

material parameters n and (τ0)(k). Noting that Γ(σ) is homogeneous of degree one

in σ, it can be easily shown that the normalized tensor

Σ(σ) =
σ

Γ(σ)
(7.3)

always lies on an equi-potential surface

ũ(Σ) =
γ̇0σ

−n
0

n + 1
, (7.4)

which is defined to be the gauge surface. Thus, we can determine the gauge surface by

computing the effective stress potential ũ for σ of an arbitrary magnitude, determining

the corresponding gauge factor Γ(σ) from (7.2), and then normalizing σ according to

(7.3). Note that in the ideally plastic limit (n →∞), the gauge surface (7.4) tends to

the standard yield surface. Note further that the normal to the gauge surface dictates

the direction of the induced macroscopic plastic flow.

Noting that a porous untextured polycrystal is effectively a two-phase porous

material with a homogeneous isotropic matrix, it is of interest to compare the new

results with the corresponding results for a porous von Mises solid. For this purpose,

we choose the reference flow stress σ0 in (7.4) to be the effective flow stress σ̃0 of the

corresponding untextured fully dense polycrystal. Recall that the effective flow stress

σ̃0 is defined by the relation

ũ(σ) =
γ̇0σ̃0(L)

n + 1
(

σe

σ̃0(L)
)

n+1

, (7.5)

where σe =

√

3/2σ′ ⋅σ′ is the von Mises equivalent stress (σ′ is the deviatoric stress
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tensor), and L (−1 ≤ L ≤ 1) is the Lode parameter defined by

L =
2σII − σI − σIII

σI − σIII

, (7.6)

where σI ≥ σII ≥ σIII are the (ordered) principal stresses. Note that L is related to the

third invariant of the macroscopic stress tensor, and characterizes the type of shear

in the deviatoric space. In particular, L = −1 (or 1) corresponds to axisymmetric

shear, with the maximum (or minimum) principal stress aligned with the symmetry

axis, while L = 0 corresponds to simple shear. The symbol σ̃0(L) in (7.5) is used

to emphasize that the effective flow stress σ̃0 is not a constant, but depends on the

Lode parameter L (see, e.g., Ponte Castañeda and Suquet, 1998). In the following,

the reference stress in (7.4) is taken to be σ0 = σ̃0(−1) = σ̃0(1), corresponding to

the effective flow stress of the fully dense polycrystal under axisymmetric shear. For

brevity, we will simply use σ̃∗0 to denote the above effective flow stress. In general,

the exact results of σ̃∗0 are not available, and we will make use of the fully optimized

second-order (FOSO) method of Ponte Castañeda (2015) to obtain estimates of the

self-consistent type for σ̃∗0 (see below).

In this work, we confine our attention to axisymmetric loadings (L = ±1) with the

symmetry axis aligned with e3, so that we can write the macroscopic stress tensor σ

as

σ = σmI + σe (
1

3
Le1 ⊗ e1 +

1

3
Le2 ⊗ e2 −

2

3
Le3 ⊗ e3) , (7.7)

where σm = tr(σ)/3 is the mean stress. Note that loading (7.7) with L = −1 cor-

responds to axisymmetric tension (σ11 = σ22 ≤ σ33), while loading (7.7) with L = 1

corresponds to axisymmetric compression (σ11 = σ22 ≥ σ33). The corresponding nor-

malized stress tensor Σ, as defined by (7.3), may be written in a form completely

analogous to (7.7), with σm and σe replaced by the corresponding normalized quan-

tities Σm and Σe, respectively. Note that Σ is proportional to σ, but has a generally

different magnitude. We define the stress triaxiality to be

XΣ = Σm/Σe = Xσ = σm/σe. (7.8)
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Figure 7.1: (a) Inverse pole figure of the isotropic texture of the FCC polycrystal
(matrix), using 45 equally weighted and uniformly distributed orientations in a stere-
ographic triangle. (b) Effective flow stress σ̃∗0 , normalized by the slip stress τ0, for
untextured fully dense FCC polycrystals subjected to axisymmetric shear, as func-
tions of the rate sensitivity m = 1/n.

At this point, it should be recalled that the ISO model requires solving a set

of nonlinear equations with the total number of unknowns proportional to the total

number of slip systems. For this reason, it is of great interest to use as few crys-

tallographic orientations as possible to represent the texture of the polycrystalline

matrix. Provided that the crystallographic texture of the polycrystalline matrix is

isotropic, and that the loading condition (7.7) is axisymmetric, it is possible to con-

sider a reduced number of orientations on a spherical triangle (Nebozhyn, 2000; Van

Houtte and Aernoudt, 1976). In this work, we make use of 45 equally weighted ori-

entations on an appropriate spherical triangle, as shown in the inverse pole figure in

Fig. 7.1(a), where the loading axis e3 is plotted in terms of the local crystal axes

of different single-crystal grains in the polycrystal. Therefore, various points in the

spherical triangle of Fig. 7.1(a) denotes the direction of the loading axis e3 as seen

from the local crystal axes. Moreover, equal-area projection is used in Fig. 7.1(a)

and in all inverse pole figures shown in this chapter. Contributions from the orien-

tations outside of this triangle are taken into account by proper symmetrization of

the averages over the triangle (Nebozhyn, 2000), making use of the symmetry of the

crystal and loading. Note that the above choice of crystallographic orientations has
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been found to be sufficient to obtain accurate estimates for the effective flow stress

and field statistics in untextured fully dense FCC polycrystals (e.g., Liu and Ponte

Castañeda, 2004a).

Next, we make use of the FOSO method of Ponte Castañeda (2015) to compute

the estimates of the self-consistent type for the effective flow stress σ̃∗0 for untextured

FCC polycrystals, under axisymmetric shear stress (7.7) with σm = 0. (Note that

the results are the same for L = −1 and 1). Fig. 7.1(b) shows the FOSO estimates

of σ̃∗0 , normalized by the reference flow stress τ0 for each slip system, for different

rate-sensitivity exponents m = 1/n ranging from 1 (linearly viscous) to 0 (ideally

plastic limit). For comparison purposes, the corresponding results are also included

for the Taylor upper bounds, Reuss lower bounds, variational (VAR) upper bounds of

the self-consistent type (Nebozhyn et al., 2001), as well as the full-field FFT results

(Lebensohn et al., 2007). The main observation in the context of Fig. 7.1(b) is that

the FOSO estimates of the self-consistent type are in excellent agreement with the

FFT results for the entire range of m. Moreover, the FOSO results lie between the

VAR (and Taylor) upper bounds and Reuss lower bounds for all values ofm. Although

the VAR bounds are much tighter than the Taylor bounds, they still overestimate

the FFT results, especially for low rate sensitivities. In particular, for n = 5 the

VAR bounds are approximately 6% larger than the FOSO and FFT results. Given

that we have full access to the FOSO self-consistent estimates, and that the FOSO

estimates for the effective flow stress of solid polycrystals are in excellent agreement

with numerical results available in the literature (see also Song and Ponte Castañeda,

2017d), we will make use of the FOSOmethod to compute the self-consistent estimates

for the effective flow stress σ̃∗0 for all the isotropic solid polycrystals involved in this

work.

In the following, we investigate the effective properties of porous FCC polycrystals

by means of gauge surfaces, as defined by (7.4). More specifically, we present results

for the gauge surfaces computed by means of the ISO and IVAR method developed in

chapter 6. It should be recalled that both methods make use of the effective behavior

of a linear comparison composite (LCC)—with the same two-scale sub-structure as
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Figure 7.2: The Σm-Σe cross sections of the ISO gauge surfaces for the porous untex-
tured FCC polycrystals (n = 5) with porosity f = 1% and spherical pores (wp

1 = w
p
2 = 1),

subjected to axisymmetric loadings (7.7) with L = −1 (σ11 = σ22 ≤ σ33). (a) The effect
of the iteration number I on the ISO gauge surfaces, where different values of I are
considered (I = 1,2,5,10). (b) Comparison of the ISO and IVAR gauge surfaces for
porous FCC polycrystals, where the corresponding results for a porous von Mises
material are also included.

the nonlinear composite of interest—to estimate the effective behavior of the nonlinear

porous polycrystal. The effective properties of the two-scale LCC are determined by

means of a two-step sequential homogenization approach, where the self-consistent

estimates are used to compute the effective response of the linear polycrystalline

matrix at the micro-scale, and the PCW estimates (Ponte Castañeda and Willis,

1995) are used to compute the effective properties of the porous LCC at the meso-

scale. Note that the properties of the LCC are unknown a priori, and need to be

chosen in an optimal fashion according to suitably designed variational principles. In

particular, the ISO method makes use of a ‘generalized secant’ linearization of the

nonlinear response, incorporating dependence on both the first and second moments

of the stress field in the LCC. On the other hand, the IVAR method makes use of

a secant linearization of the nonlinear response, evaluated at the second moment of

the stress field. Note that the IVAR estimates for the gauge surfaces are thought to

provide outer bounds for the gauge surfaces of the porous polycrystals.

Fig. 7.2 shows the Σm-Σe cross sections of the ISO gauge surfaces for a porous
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untextured FCC polycrystal with a viscous exponent n = 5, porosity f = 1%, and

pore aspect ratios wp
1 = w

p
2 = 1, subjected to axisymmetric loadings (7.7). The above

considered porous polycrystal exhibits overall isotropic behavior and, thus, the corre-

sponding gauge surface depends only on the three isotropic invariants of the normal-

ized stress (Σm, Σe and L). In general, the gauge surfaces are different for L = 1 and

L = −1. However, it is straightforward to show that the gauge surfaces for L = 1 and

L = −1 are symmetric with respect to the purely deviatoric axis Σm = 0. Thus, we will

only present results for L = −1, keeping in mind that the corresponding results for

L = 1 may be obtained by flipping the results for L = −1 with respect to the deviatoric

axis.

Fig. 7.2(a) shows the effect of the iteration number I on the ISO gauge surfaces

for the porous FCC polycrystals. The main observation from Fig. 7.2(a) is that

the ISO gauge surface becomes progressively tighter with increasing values of I for

large triaxialities, tending to a certain limit at sufficiently large values of I. (The ISO

gauge surface for I > 10 is practically indistinguishable to that for I = 10 and, thus, no

additional results are shown.) The improvement over the non-iterated FOSO gauge

surface (I = 1) is found to be quite significant: the hydrostatic strength for the ISO

gauge surface with I = 10 is nearly half of that for the FOSO gauge surface. On the

other hand, the ISO gauge surface is rather insensitive to the iteration number I for

small triaxialities, indicating that the FOSO gauge surface (I = 1) is already quite

accurate. Furthermore, the convergence of the ISO gauge surface with increasing

values of I is very fast, so that a relatively small number of iterations (I = 5 − 10)

is sufficient to achieve most of the improvement. Thus, all the ISO results presented

below for the porous FCC polycrystals are computed for I = 10, which are found to

be sufficiently accurate, with error expected to be less than 1% when compared with

the corresponding I →∞ limits (computed numerically for very large values of I).

Fig. 7.2(b) shows the comparison between the ISO and IVAR gauge surfaces

for the porous polycrystals. We also include the corresponding IVAR gauge surface

(Agoras and Ponte Castañeda, 2013) for a porous von Mises solid with the isotropic

matrix characterized by a stress potential completely analogous to (7.5), but with the
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effective flow stress σ̃0(L) in (7.5) replaced by a constant flow stress σvM
0 . In particular,

we choose σvM
0 = σ̃∗0 , so that the gauge surface for a fully dense polycrystal or von

Mises material is given by the straight line Σe = 1. We observe from Fig. 7.2(b) that

the ISO gauge surface for the porous polycrystal lies within the corresponding IVAR

outer bound for all triaxialities, except for the purely hydrostatic loadings (XΣ →∞),

where the ISO gauge surface coincides with the IVAR bound. Moreover, we can see

that the ISO gauge surface always lies within the corresponding gauge surface for

the solid FCC polycrystal (Σe = 1), as expected on physical grounds. By contrast,

the IVAR gauge surface for the porous polycrystal exceeds the surface Σe = 1 for the

range of the triaxiality 0 ≲ ∣XΣ∣ ≲ 3, indicating that the IVAR estimate is too large.

Furthermore, we observe that for 0 ≲ ∣XΣ∣ ≲ 2, the ISO gauge surface for the porous

polycrystal is very similar to the IVAR gauge surface for the porous von Mises solid.

However, for large magnitudes of the triaxiality, the ISO gauge surface are somewhat

larger than the IVAR (von Mises) gauge surface.

In this connection, it is important to remark that the IVAR (von Mises) gauge

surface has been found to be in very good agreement with the full-field, numerical

results available in the literature for von Mises matrix materials at all triaxialities

(e.g., Agoras and Ponte Castañeda, 2013). The fact that the hydrostatic strength of

the porous untextured polycrystal is expected to be similar to that of the porous von

Mises solid suggests that the ISO gauge surface in Fig. 7.2(b) may overestimate the

effective behavior of the porous FCC polycrystal at high triaxialities. Finally, it should

be noted that improved estimates may be obtained by means of the more general

FOSO method of Ponte Castañeda (2016) used in an iterated fashion. This more

general method involves one less approximation than the method of Ponte Castañeda

(2015) for crystalline solids, and is expected to yield improved results, although at the

expense of increased implementation complexities. Alternatively, improvements could

also be made by using other, yet-to-be-developed choices for the weight factors α
(r)

(k)

in the ISO model. At the very least, the weights could be used as fitting parameters

to improve the results for hydrostatic loadings. However, for simplicity, we have

chosen not to pursue this strategy in this first application of the method for porous
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polycrystals.

7.2.2 Finite-strain macroscopic response

In this subsection, we explore the sub-structure evolution and the finite-strain macro-

scopic response for porous FCC polycrystals. In particular, we consider a porous

FCC polycrystal with an initially random, isotropic distribution of spherical pores

(wp
1 = w

p
2 = 1) in porosity f0 = 1%. Moreover, the FCC polycrystalline matrix is

taken to be initially untextured, with “equiaxed” grains (wg
1 = w

g
2 = 1) and uniformly

distributed crystallographic orientations (see Fig. 7.1(a)). Hardening of the crystal

grains is neglected, so that (τ0)(k) = τ0 (k = 1, ...,12) throughout the deformation. In

particular, the material parameters are taken to be τ0 = 245MPa, γ̇0 = 1.53 × 10−9s−1

and n = 5, which are known to be appropriate for Ni-based single crystals (Srivastava

and Needleman, 2015). We consider axisymmetric loadings of type (7.7), and σ is

taken to be fixed in time. In particular, we set σe = τ0 = 245MPa, and prescribe the

stress triaxiality by setting σm = Xσσe. In this subsection, we restrict our attention

to uniaxial loading conditions:

(i) Uniaxial tension (Xσ = 1/3 and L = −1), and

(ii) Uniaxial compression (Xσ = −1/3 and L = 1).

Due to the symmetry of the applied loadings and material, the average shapes of

the pores and grains evolve from their initially spherical shapes to (generally differ-

ent) spheroidal shapes (wp
1 = w

p
2 = w

p, and w
g
1 = w

g
2 = w

g), while the principal axes

of the pores and grains remain fixed during the deformation (Gp = Gd = I), with

the symmetry axes of the pores and grains always aligned with the loading axis e3.

Moreover, the crystallographic texture of the polycrystalline matrix, as characterized

by the rotation tensors Q(1,r) in (7.1), also evolves during the deformation, leading

to the development of possibly strong crystallographic anisotropy of the matrix. Fur-

thermore, the resulting macroscopic strain rate D can be shown to be axisymmetric,

as given by D =Dp(e1⊗e1+e2⊗e2)+Dne3⊗e3, where Dn and Dp denote, respectively,

the strain rate along and transverse to the loading axis e3. Then, the macroscopic
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equivalent strain rate is given by

De =

√

2

3
D
′
⋅D
′
=
2

3
∣Dn −Dp∣ , (7.9)

where D
′
is the macroscopic deviatoric strain rate. For future reference, it is useful

to introduce the time-like variable

Ee = ∫
t

0
Dedt =

2

3 ∫
t

0
∣Dn −Dp∣dt, (7.10)

where t denotes time.

Similarly, the macroscopic logarithmic (creep) strain E
c
is also axisymmetric, and

is provided by

E
c
= E

c

p(e1 ⊗ e1 + e2 ⊗ e2) +E
c

ne3 ⊗ e3, (7.11)

where E
c

n = ∫
t

0
Dndt and E

c

p = ∫
t

0
Dpdt denote, respectively, the creep strain compo-

nent along and transverse to the symmetry axis e3. The corresponding macroscopic

equivalent strain is given by

E
c

e =
2

3
∣E

c

n −E
c

p∣ =
2

3
∣∫

t

0
(Dn −Dp)dt∣ . (7.12)

Note that the macroscopic equivalent creep strain E
c

e may increase or decrease with

time, while the time-like variable Ee is guaranteed to increase monotonically with

time (unless Dn = Dp). In particular, when the sign of the term (Dn −Dp) remains

unchanged throughout the deformation, we have that Ee = E
c

e. In fact, this is found

to be the case for most loading conditions considered in this work, except for certain

high triaxiality loadings when (Dn −Dp) can change sign at very large strains. For

this reason, we make use of Ee as a time-like variable (and not E
c

e).

For later use, it is pertinent to define the macroscopic equivalent strain rate D
0

e

for the corresponding fully dense untextured polycrystal under axisymmetric shear,

i.e.,

D
0

e = γ̇0 (
σe

σ̃∗0
)

n

, (7.13)
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where it is recalled that σ̃∗0 denotes the effective flow stress of the untextured fully

dense solid polycrystal under axisymmetric shear, as estimated by the FOSO proce-

dure.

As already mentioned, during the finite-strain deformation of a porous polycrystal,

the porosity, pore morphology, as well as the underlying texture of the matrix can

evolve (see Fig. 7.3(a)), resulting in contributions to the macroscopic response due to

both the geometrical changes in the pores and the texture evolution of the matrix. For

this reason, we also consider the case for a porous polycrystal with a fixed isotropic

texture for the matrix, but still with evolving porosity and void morphology (see Fig.

7.3(b)). In this case, the porous polycrystal is effectively a two-phase porous material

with a homogeneous isotropic matrix. Comparisons between the results for a porous

polycrystal (Fig. 7.3(a)) and for a porous isotropic material (Fig. 7.3(b)) will allow

us to assess the intrinsic effects of the texture evolution for the polycrystalline matrix,

as opposed to the effect associated with porosity evolution.

Evolution 
in time

(a)

Evolution 
in time

(b)

Figure 7.3: Schematic representation of (a) a porous polycrystal with changes in
both the pore geometry and the underlying texture for the matrix, and (b) a porous
polycrystal with changes in the pore geometry, but with a fixed isotropic texture for
the matrix. The porous polycrystal in (b) is equivalent to a two-phase porous material
with an isotropic matrix phase.
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Uniaxial tension

Fig. 7.4 shows the ISO and IVAR results for the evolution of the sub-structure for

porous FCC polycrystals subjected to uniaxial tension (Xσ = 1/3 and L = −1). The

corresponding results for a porous isotropic material (without texture evolution for

the matrix) are also included for comparison. Fig. 7.4(a) presents results for the

normalized porosity f/f0 versus the time-like variable Ee. We observe from Fig.

7.4(a) that the ISO plot of f/f0 for a porous FCC polycrystal increases with Ee with

a progressively slower rate, and saturates at a finite value around 1.39 at sufficiently

large strains. Moreover, the ISO results for a porous FCC polycrystal and for a

porous isotropic material are initially very similar, but they deviate from each other

at larger strains (Ee > 0.2), with the former growing more rapidly than the latter. This

could suggest that the FCC polycrystalline matrix becomes progressively harder to

deform (see discussion of Fig. 7.5(a) below) and, as a consequence, more deformation

has to be accommodated by the pores. The above observation also holds for the

corresponding IVAR plots, with the only difference that the IVAR predictions for the

porosity growth are much smaller than the ISO, as expected from the fact that the

IVAR estimates for the macroscopic behavior of the porous medium are stronger than

the corresponding ISO estimates for Xσ = 1/3 (see Fig. 7.2(b)).

Fig. 7.4(b) shows the corresponding results for the pore aspect ratio wp = w
p
1 = w

p
2,

as well as for the grain aspect ratio wg = w
g
1 = w

g
2. It is observed that for the porous

FCC polycrystal, the ISO results for both wp and wg start from one and increase

monotonically with Ee, with wp growing more rapidly than wg. This implies that

the average shapes of the pores and grains evolve from their initially spherical shapes

towards prolate spheroidal shapes. Given that the porosity approaches a finite value

at large strains (Fig. 7.4(a)), the pores tend to become cylindrical with infinite aspect

ratio. Moreover, the ISO plot of wp for the porous FCC polycrystal is very similar to

that for the porous isotropic material, with the former increasing slightly faster than

the latter. This suggests that the texture evolution for the polycrystalline matrix

has no significant effect on the pore shape changes. Of course, the ISO result for the
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Figure 7.4: ISO results for porous FCC polycrystals with an initially isotropic dis-
tribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to uniaxial

tension (Xσ = 1/3 and L = −1). The polycrystalline matrix is taken to be initially un-
textured, and the solid lines correspond to cases with texture evolution for the matrix
(see Fig. 7.3(a)), while the dashed lines correspond to cases without texture evolution
for the matrix (so that the matrix is always isotropic) (see Fig. 7.3(b)). Plots are
shown for the (a) normalized porosity f/f0, (b) pore aspect ratios wp = wp

1 = w
p
2, and

grain aspect ratios wg = w
g
1 = w

g
2, as functions of the time-like variable Ee. (c) ISO

results for the inverse pole figure of the FCC polycrystalline matrix at Ee = 0.3, and
(d) Ee = 0.6. In (a) and (b), the corresponding IVAR results are also included for
comparison.
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grain aspect ratio wd for the porous isotropic material remains constant throughout

the deformation. The above observations are also true for the corresponding IVAR

results. However, the IVAR plots for wp grow more slowly than the ISO, as expected.

Finally, it is interesting to note that the ISO and IVAR plots for the grain aspect ratio

wg of the porous polycrystal show almost identical predictions, with pores changing

shape faster than the grains on average.

Fig. 7.4(c) and 7.4(d) show the ISO predictions for the crystallographic texture

of the FCC polycrystalline matrix at Ee = 0.3 and 0.6, respectively. We can see that

the poles shift towards the [11̄1̄] and [001] directions, indicating the development of

a bimodal texture, with the density for the poles being larger on the [11̄1̄] corner.

In fact, the texture evolution for the FCC polycrystalline matrix is very similar to

that for a fully dense polycrystal (not shown). As will be seen next, the evolution

of the sub-structural variables shown in Fig. 7.4 has significant implications for the

macroscopic response of the porous polycrystal.

Fig. 7.5 displays the corresponding ISO and IVAR results for the macroscopic

response, as well as for the field fluctuations in the matrix phase of the porous FCC

polycrystals. Fig. 7.5(a) presents results for the macroscopic equivalent strain rate

De as a function of Ee. These results are normalized by the FOSO estimate of D
0

e (see

(7.13)), which is the macroscopic equivalent strain rate of an untextured fully dense

FCC polycrystal. We also include, for comparison, the corresponding results for a

porous isotropic material (dashed lines) and for a fully dense FCC polycrystal (dotted

lines). Note that De/D
0

e is a measure of the normalized effective viscous compliance

for the composites and, hence, increasing De/D
0

e implies softening, while decreasing

De/D
0

e implies hardening. In particular, we observe that the ISO plot for a solid

FCC polycrystal decreases monotonically with Ee, indicating a progressively hard-

ening behavior of the material. Given that strain hardening for the crystal grains

has been neglected, the hardening behavior can only be attributed to the texture

evolution observed in Fig. 7.4(c) and 7.4(d). Moreover, the macroscopic behavior of

the porous FCC polycrystal is found to be qualitatively similar to that of the fully

dense polycrystal, but to be significantly different from that of the porous isotropic
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Figure 7.5: ISO results for porous FCC polycrystals with an initially isotropic dis-
tribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to uniaxial

tension (Xσ = 1/3 and L = −1). The polycrystalline matrix is taken to be initially
untextured, and the solid lines correspond to cases allowing texture evolution for the
matrix, while the dashed lines correspond to cases allowing no texture evolution for
the matrix (so that the matrix is always isotropic). Results are shown for (a) the

normalized macroscopic equivalent strain rate De/D
0

e as a function of Ee, (b) the
macroscopic equivalent creep strain E

c

e as a function of time, (c) the ISO gauge sur-
faces of the porous FCC polycrystal at different strain levels (Ee = 0, 0.3, 0.6 and 0.9),
and (d) the standard deviations of the von Mises stress SD(1)(σe), and the equiva-
lent strain rate SD(1)(De) in the polycrystalline matrix, respectively, normalized by

the average von Mises stress σ(1)e and equivalent strain rate D
(1)

e in the matrix, as
functions of Ee.
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material (the latter exhibits only a very weak hardening behavior induced by the pore

shape change). These observations strongly suggest that the overall behavior of the

porous FCC polycrystal for this particular loading is controlled by the texture evolu-

tion of the matrix, and is largely unaffected by the porosity evolution and pore shape

changes. The IVAR model leads to predictions that are qualitatively similar to the

ISO estimates, but exhibiting higher nonlinear viscosity in quantitative terms. (Note

that the IVAR results for De are also normalized by the FOSO estimates of D
0

e.) In

particular, the macroscopic behavior of the porous FCC polycrystal estimated by the

IVAR model is even more stronger than that of a fully dense solid polycrystal esti-

mated by the FOSO model, suggesting that the IVAR predictions are overly viscous

and cannot be very accurate.

Fig. 7.5(b) gives the corresponding results for the macroscopic equivalent creep

strain E
c

e as a function of time. It can be seen that the ISO plots for both the

porous and fully dense FCC polycrystals increase monotonically in time with pro-

gressively decreasing slopes, consistent with the decreasing macroscopic strain rates

observed in Fig. 7.5(a). As already discussed, this hardening behavior is due to the

texture evolution for the FCC polycrystal (matrix). In contrast, the ISO plot for the

porous isotropic material increases almost linearly in time with a faster rate, since

the porosity evolution and pore shape change have no significant effects on the over-

all hardening or softening behavior of the material for this particular loading. The

IVAR model yields qualitatively similar results, but underestimates the growth of E
c

e,

as expected.

Fig. 7.5(c) shows the evolution of the ISO gauge surfaces for the porous FCC

polycrystal during uniaxial tension, for different strain levels (Ee = 0, 0.3, 0.6 and

0.9). It can be seen that the gauge surface expands along the uniaxial tension loading

direction (XΣ = 1/3) with increasing values of Ee, indicating a hardening behavior

of the material, consistent with the findings in Fig. 7.5(a). On the other hand,

the gauge surface is found to contract with increasing Ee for large magnitudes of the

triaxiality, implying a softening behavior. The above observations clearly demonstrate

a distortional hardening (or softening) effect due to the evolution of the sub-structure.
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In addition, it is expected that the porous polycrystal will gradually develop overall

anisotropy as the deformation progresses. This effect could be shown by the evolution

of other cross sections (e.g., the longitudinal shear versus the axisymmetric shear) of

the gauge surfaces. However, such more general results are beyond the scope of this

work, and will be pursued in future work.

Fig. 7.5(d) display the ISO results for the standard deviations of the von Mises

stress (SD(1)(σe)) and equivalent strain rate (SD(1)(De)) in the polycrystalline matrix,

as functions of Ee. These results are normalized, respectively, by the average von

Mises stress σ(1)e and equivalent strain rate D
(1)

e in the matrix. For comparison

purposes, the corresponding results are also included for the porous isotropic material

and fully dense FCC polycrystal. There are two sources giving rise to field fluctuations

in the polycrystalline matrix : (i) the heterogeneity due to the presence of voids (at

the meso-scale), and (ii) the heterogeneity induced by different orientations of the

single-crystal grains in the matrix (at the micro-scale). We observe from Fig. 7.5(d)

that both the stress and strain rate fluctuations in the polycrystalline matrix become

progressively weaker with increasing Ee. Moreover, they are rather similar to the

field fluctuations in a fully dense FCC polycrystal, but are quite different from those

in an isotropic matrix (being almost constants), suggesting that the field fluctuations

are controlled by the texture evolution of the polycrystalline matrix, but not so much

by the porosity evolution. This is consistent with the fact that the texture of the

polycrystalline matrix evolves significantly (see Fig. 7.4(c) and 7.4(d)), while the

porosity does not change significantly (see Fig. 7.4(a)).

Uniaxial compression

Fig. 7.6 presents ISO and IVAR plots for the sub-structure evolution of porous FCC

polycrystals under uniaxial compression (Xσ = −1/3 and L = 1). We also include, for

comparison, the corresponding results for a porous isotropic material. We observe

from Fig. 7.6(a) and 7.6(b) that the ISO estimates for the normalized porosity f/f0

and the pore aspect ratio wp = w
p
1 = w

p
2 decrease monotonically with Ee and tend to

zero simultaneously at Ee ≈ 0.5. This implies that the initially spherical pores evolve
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Figure 7.6: ISO results for porous FCC polycrystals with an initially isotropic dis-
tribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to uniaxial

compression (Xσ = −1/3 and L = 1). The polycrystalline matrix is taken to be ini-
tially untextured, and the solid lines correspond to cases with texture evolution for
the matrix, while the dashed lines correspond to cases without texture evolution for
the matrix (so that the matrix is always isotropic). Plots are shown for the (a) nor-
malized porosity f/f0, (b) pore aspect ratios wp = w

p
1 = w

p
2, and grain aspect ratios

wg = w
g
1 = w

g
2, as functions of the time-like variable Ee. (c) ISO results for the inverse

pole figure of the FCC polycrystalline matrix at Ee = 0.2, and (d) Ee = 0.4. In (a)
and (b), the corresponding IVAR results are also included for comparison.
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continuously towards oblate spheroidal ones, and finally collapse into penny-shaped

micro-cracks. Moreover, we observe from Fig. 7.6(b) that the ISO results for the

grain aspect ratio wg = w
g
1 = w

g
2 decrease with Ee in a slower rate, and terminate at

a finite value when the porosity goes to zero. This means that the initially equiaxed

grains tend to become flat, leading to the development of morphological anisotropy

of the polycrystalline matrix. Furthermore, we can see from Fig. 7.6(a) and 7.6(b)

that the ISO plots of f/f0 and wp are very similar for the porous FCC polycrystal

and for the porous isotropic material, suggesting that the texture evolution of the

polycrystalline matrix has no significant effect on the behavior of the voids for this

specific loading condition. The above observations are also true for the corresponding

IVAR plots, with the only difference that the IVAR plots of f/f0 and wp vary much

more slowly with Ee, leading to slower collapse of the voids.

Fig. 7.6(c) and 7.6(d) display the ISO results for the crystallographic texture of

the FCC polycrystalline matrix at Ee = 0.2 and 0.4, respectively. We observe that

all the poles shift gradually towards the [011] corner with increasing values of Ee,

leading to a unimodal [011] texture. Moreover, it is found that the texture evolution

for the polycrystalline matrix shown in Fig. 7.6(c) and 7.6(d) is, again, very similar

to that for a fully dense FCC polycrystal (not shown). In this connection, it should

be remarked that the evolution of the sub-structure for uniaxial compression (Fig.

7.6) is significantly different from that for uniaxial tension (Fig. 7.4), as expected on

physical grounds.

Fig. 7.7 presents the ISO and IVAR results for the finite-strain macroscopic re-

sponse, as well as for the field fluctuation of the porous FCC polycrystals subjected

to uniaxial compression. For comparison purposes, we also include the correspond-

ing results for a porous isotropic material (dashed lines) and for a fully dense FCC

polycrystal (dotted lines). Fig. 7.7(a) display plots for the normalized macroscopic

strain rate De/D
0

e as a function of Ee. We can see from Fig. 7.7(a) that De/D
0

e

for the fully dense FCC polycrystal does not change much with increasing values

of Ee, indicating that the developing [011] texture has no significant effects on the

macroscopic behavior of the polycrystal. As a consequence, the ISO estimate for the
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Figure 7.7: ISO results for porous FCC polycrystals with an initially isotropic dis-
tribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to uniaxial

compression (Xσ = −1/3 and L = 1). The polycrystalline matrix is taken to be ini-
tially untextured, and the solid lines correspond to cases allowing texture evolution
for the matrix, while the dashed lines correspond to cases allowing no texture evo-
lution for the matrix (so that the matrix is always isotropic). Results are shown for

(a) the normalized macroscopic equivalent strain rate De/D
0

e as a function of Ee, (b)
the macroscopic equivalent creep strain E

c

e as a function of time, (c) the ISO gauge
surfaces of the porous FCC polycrystal at different strain levels (Ee = 0, 0.2, 0.3 and
0.4), and (d) the standard deviations of the von Mises stress SD(1)(σe), and the equiv-
alent strain rate SD(1)(De) in the polycrystalline matrix, respectively, normalized by

the average von Mises stress σ(1)e and equivalent strain rate D
(1)

e in the matrix, as
functions of Ee.
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macroscopic response of the porous FCC polycrystal is very similar to that for the

porous isotropic material, with the former being only slightly softer than the latter.

This suggests that the simplifying assumption on the isotropy of the matrix could be

a good approximation for this special loading condition. The above observations also

hold for the corresponding IVAR results, but the IVAR predictions are much more

viscous than the corresponding ISO predictions.

In this context, note that the De/D
0

e curves for the porous medium exhibit abrupt

upturns at the end of the deformation, indicating a strong softening behavior. As

already discussed in detail in the previous work (e.g., Agoras and Ponte Castañeda,

2014; Song et al., 2015; Song and Ponte Castañeda, 2017c), this is induced by the

sharp drop of the pore aspect ratio wp prior to void closure (see Fig. 7.6(b)), which has

a dramatic softening effect that controls the overall behavior of the porous medium.

However, this result may not be physically relevant, since the softening occurs at

very small aspect ratios (wp ≈ 0.05), where void surface contact may have already

taken place (not captured by the ISO model), thus suppressing the softening effect

due to void collapse (Hutchinson and Tvergaard, 2012). From now on, we will ignore

this strong softening behavior prior to void collapse, unless otherwise noted. In any

event, the behavior of the porous polycrystal is expected to be similar to that of a

fully dense polycrystal after void closure, although the presence of already formed

micro-cracks may be important for other loading conditions.

Fig. 7.7(b) presents plots for the macroscopic creep strain E
c

e versus time. We

observe that the ISO plots for the porous FCC polycrystal and porous isotropic

material stay very close to each other, and they increase almost linearly with time.

This is in agreement with the fact that the corresponding macroscopic strain rates are

rather similar and are almost constants throughout the deformation (see Fig. 7.7(a)).

Furthermore, the ISO plots for the porous medium are also quite similar to that for

a fully dense FCC polycrystal, due to the low porosity in the materials. The IVAR

model yields qualitatively similar results, but it underestimates the growth of E
c

e, as

expected.

Fig. 7.7(c) shows the corresponding ISO gauge surfaces for the porous FCC poly-
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crystal during uniaxial compression, for Ee = 0, 0.2, 0.3 and 0.4. We can see that

the gauge surface does not evolve significantly along the uniaxial compression load-

ing direction (XΣ = −1/3), implying that the macroscopic response of the material

does not change much for this particular loading direction, as already seen in Fig.

7.7(a). However, the gauge surface may extend or contract with increasing strain for

other triaxialities, indicating strong distortional hardening or softening effects of the

sub-structure evolution shown in Fig. 7.6.

Fig. 7.7(d) gives the ISO results for the normalized standard deviation of the

von Mises stress (SD(1)(σe)/σ
(1)
e ) and equivalent strain rate (SD(1)(De)/D

(1)

e ) in the

matrix of the porous polycrystal, as functions of Ee. We also include, for comparison,

the corresponding results for the porous isotropic material (dashed lines) and solid

FCC polycrystal (dotted lines). We observe from Fig. 7.7(d) that both the stress and

strain rate fluctuations in the polycrystalline matrix become stronger with increasing

Ee, which are significantly different from those for uniaxial tension (Fig. 7.5(d)).

In particular, we observe that the field fluctuations in the polycrystalline matrix

are qualitatively similar to those in the solid polycrystal for 0 ≤ Ee ≲ 0.4, while

qualitatively similar to those in the porous isotropic material for larger strains. This

suggests that the texture evolution of the matrix governs the field fluctuations at the

beginning, while the geometrical changes in the pores take over at large strains.

In summary, the texture evolution for the polycrystalline matrix surrounding the

voids can have significant effects on the macroscopic response, as well as on the field

fluctuations of the porous polycrystal. In particular, for low triaxiality loading con-

ditions (e.g., uniaxial tension), the macroscopic behavior of the porous polycrystal

can be largely controlled by the texture evolution of the matrix, with porosity play-

ing a minor role. However, as will be seen in the next section, for high triaxiality

conditions, porosity evolution may assume a dominant role.
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7.3 Applications to porous HCP polycrystals

In this section, we make use of the ISO model to investigate both the instantaneous

and finite-strain behavior of porous HCP polycrystals. We consider HCP crystals

with a c/a ratio of 1.59, a creep exponent n of 6.25, and a reference strain rate

γ̇0 = 0.001s−1. These parameters are known to be appropriate for commercially pure

titanium at 750○C (Balasubramanian and Anand, 2002). The principal slip sys-

tems for these materials are taken to be (i) basal slip ({0001} ⟨112̄0⟩), (ii) prismatic

slip ({101̄0} ⟨112̄0⟩), and (iii) first- ({101̄1̄} ⟨1123⟩) and second-order ({112̄2} ⟨112̄3⟩)

pyramidal-⟨c + a⟩ slip. These three different families of slip systems will be denoted

by labels A, B and C, respectively. Note that the three basal slips plus the three

prismatic slips supply only four (two each) linearly independent slip systems, allowing

no straining along the hexagonal crystal axis. However, the twelve first-order pyra-

midal slips and the six second-order pyramidal slips each contain sets of five linearly

independent slip systems. In addition, the reference flow stresses (τ0)(k) (k = 1, ...,24)

are taken to be identical for each family of slip systems, but generally different for

different families of slip systems. Here we take the basal and prismatic slips to be the

“soft” slip systems with identical reference flow stress τA = τB, while the first- and

second-order pyramidal slips to be the “hard” slip systems with a reference flow stress

τC . Then, we define a contrast parameter M = τC/τA = τC/τB to describe the crystal

anisotropy of the HCP crystals. In particular, M = 10 is used for titanium crystals

(Balasubramanian and Anand, 2002). However, we will consider more general values

of M to investigate the effect of the crystal anisotropy.

7.3.1 Instantaneous effective response

In this subsection, we use the ISO model to generate estimates for the instantaneous

effective response of porous HCP polycrystals for fixed states of the microstructure,

focusing on the effect of the crystal anisotropy (M), porosity, and the average pore

shape.

The HCP polycrystalline matrix is assumed to be untextured, so that the single-
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crystal grains are equiaxed (wg
1 = w

g
2 = 1), and the crystallographic orientations are

uniformly distributed. Moreover, the loading conditions are taken to be axisymmetric,

as given by (7.7). As already mentioned, the ISO model requires solving sets of

nonlinear algebraic equations with a number of unknowns proportional to the total

number of available slip systems in the polycrystalline matrix. Therefore, it is of

interest to use as few crystallographic orientations as possible. Taking advantage of

the symmetry for the crystal and loadings (Van Houtte and Aernoudt, 1976; Kocks

et al., 1998), it is possible to reduce the number of required orientatons (see, e.g.,

Nebozhyn, 2000). In particular, a set of 45 equi-spaced orientations on an appropriate

spherical triangle (Liu and Ponte Castañeda, 2004b; Nebozhyn, 2000) is found to yield

very good accuracy. Furthermore, we choose σ0 = σ̃∗0 in (7.4), so that all the gauge

surfaces shown below are normalized by the effective flow stress of the corresponding

untextured fully dense HCP polycrystal under axisymmetric shear.

Fig. 7.8 shows the Σm-Σe cross sections of the ISO gauge surfaces for the porous

HCP polycrystals with untextured matrix, and for axisymmetric loading (7.7) with

L = −1. As already discussed, the corresponding results for L = 1 can be obtained

by flipping the results for L = −1 with respect to the deviatoric axis Σm = 0. Fig.

7.8(a) shows the effect of the iteration number I on the ISO gauge surfaces for porous

Ti polycrystals (M = 10) with porosity f = 1% and spherical pores (wp
1 = w

p
2 = 1),

where different iteration numbers are considered (I = 1, 2, 5 and 10). It can be seen

from Fig. 7.8(a) that the behavior of the ISO gauge surface as a function of I for

the porous Ti polycrystals is quite similar to that for the porous FCC polycrystals

(see Fig. 7.2(a)), suggesting that the effect of the iteration number I is rather similar

for both types of crystal symmetries (HCP and FCC). In particular, we observe from

Fig. 7.8 that the ISO gauge surface becomes progressively tighter with increasing

values of I for large triaxialities, converging to a certain limit for large values of I.

However, the ISO gauge surface does not change significantly with increasing I for

small triaxialities, in agreement with the fact that the FOSO gauge surface (I = 1)

is already very accurate. As already mentioned, I = 10 is found to be sufficient to

obtain accurate estimates (with error less than 1%) for the corresponding I → ∞
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Figure 7.8: The Σm-Σe cross sections of gauge surfaces for viscoplastic (n = 6.25)
porous HCP polycrystals, subjected to loading conditions (7.7) with L = −1 (σ11 =

σ22 ≤ σ33). The effect of the (a) iteration number I, (b) crystal anisotropy (M =

τC/τA = τC/τB), (c) porosity f , and (d) average pore shape, as described by the pore
aspect ratios wp

1 and wp
2, on the ISO gauge surfaces are shown.
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limit. Therefore, all the ISO results shown below for the porous HCP polycrystals will

be computed for I = 10.

Fig. 7.8(b) presents results for the ISO gauge surfaces of porous HCP polycrystals

with porosity f = 1% and spherical pores (wp
1 = w

p
2 = 1), but with different crystal

anisotropies (M = 1,5,10). The corresponding IVAR gauge surface (Agoras and Ponte

Castañeda, 2013) for a porous von Mises solid is also shown for comparison. It can

be seen from Fig. 7.8(b) that the ISO gauge surfaces for the porous polycrystals

are fairly independent of the crystal anisotropy M , as expected from the fact that

the homogenized response for the untextured HCP polycrystalline matrix is isotropic,

regardless of the values of M . Similar to the observations made in Fig. 7.2(b), for

0 ≲ ∣XΣ∣ ≲ 2 the ISO gauge surfaces for all values ofM are in very good agreement with

the IVAR (von Mises) results, while for large triaxialities (∣XΣ∣ > 2) the corresponding

ISO gauge surfaces are somewhat stronger than the IVAR (von Mises) gauge surfaces.

Fig. 7.8(c) shows the effect of the porosity on the ISO gauge surfaces for porous

Ti polycrystals (M = 10) with spherical pores (wp
1 = w

p
2 = 1), where different values of

the porosity (f = 1%, 5% and 10%) are considered. We can see from Fig. 7.8(c) that

as f increases, the ISO gauge surface becomes tighter for all values of XΣ, indicating

a softer response for the material, as expected. Moreover, the contraction of the ISO

gauge surface with increasing values of f is found to be more significant at large

triaxialities, thus leading to changes in the shape of the gauge surfaces. In particular,

note the significant differences in the curvature of the ISO gauge surfaces near the

deviatoric axis (Σm = 0).

Fig. 7.8(d) shows the effect of the average pore shape on the ISO gauge surfaces

for porous Ti polycrystals (M = 10) with a fixed porosity f = 1%. More specifically,

we compare the ISO gauge surfaces for porous Ti polycrystals with spherical pores

(wp
1 = w

p
2 = 1), prolate spheroidal pores (wp

1 = w
p
2 = 5) and oblate spheroidal pores

(wp
1 = w

p
2 = 0.2). In addition, the symmetry axis of the pores is taken to be aligned

with the symmetry axis of the loading e3. It is observed from Fig. 7.8(d) that changing

the pore shape can induce significant changes in the size, shape and orientation of the

gauge surfaces. In addition, the effect of the pore shape on the ISO gauge surfaces
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exhibits a strong dependence on the stress triaxiality. For instance, changing the pore

shape from spherical (wp
1 = w

p
2 = 1) to prolate spheroidal (wp

1 = w
p
2 = 5) leads to softer

response of the material at purely hydrostatic loadings, while it leads to stronger

response of the material for a certain range of low to moderate stress triaxialities.

This fact suggests that the pore shape evolution could have a strong distortional

hardening or softening effect on the macroscopic response of porous polycrystals.

7.3.2 Finite-strain macroscopic response

In this subsection, we use the ISO model to investigate the finite-strain macroscopic

response of porous Ti polycrystals, focusing on the effect of the stress triaxiality and

Lode parameter. Specifically, we consider a porous Ti polycrystal (M = 10) consisting

of initially spherical pores distributed randomly and isotropically (wp
1 = w

p
2 = 1) in a

polycrystalline matrix, with an initial porosity f0 = 1%. The matrix is assumed to

have initially isotropic morphological (wg
1 = w

g
2 = 1) and crystallographic texture. For

simplicity, strain hardening of the polycrystalline matrix is neglected, so that the

reference flow stresses τA, τB, τC and the contrast parameter M for the crystal grains

remain fixed throughout the deformation. We consider axisymmetric loadings (7.7)

with σ being fixed in time. In this subsection, we consider the following two cases:

(i) Axisymmetric tension with L = −1 (σ11 = σ22 ≤ σ33), and

(ii) Axisymmetric compression with L = 1 (σ11 = σ22 ≥ σ33).

For each case, we consider different values of the stress triaxiality. In particular, we set

σe = τA, and prescribe the stress triaxiality by setting σm =Xσσe. With the objective

of studying the intrinsic effect of the texture evolution for the polycrystalline matrix,

we also include the corresponding results for a porous isotropic material obtained by

fixing the initially isotropic texture of the polycrystalline matrix (see Fig. 7.3(b)).

Axisymmetric tension

In Fig. 7.9, we investigate the effect of the stress triaxiality on the evolution of the

sub-structure of porous Ti polycrystals, for axisymmetric loadings (7.7) with L = −1
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Figure 7.9: ISO results for porous Ti (M = 10) polycrystals with an initially isotropic
distribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to ax-

isymmetric loadings (7.7) with L = −1 (σ11 = σ22 ≤ σ33) and various triaxialities Xσ.
The polycrystalline matrix is taken to be initially untextured, and the solid lines
correspond to cases with texture evolution for the matrix, while the dashed lines
correspond to cases without texture evolution for the matrix (so that the matrix is
always isotropic). Plots are shown for the evolution of the (a) normalized porosity
f/f0, (b) pore aspect ratios wp = w

p
1 = w

p
2, (c) grain aspect ratios wg = w

g
1 = w

g
2, and

(d) basal texture factor along the loading axis e3, as functions of the time-like variable
Ee.
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(σ11 = σ22 ≤ σ33). We also include, for comparison, the corresponding results for

a porous isotropic material (dashed lines) and a fully dense Ti polycrystal (dotted

lines). We consider eight values of Xσ ranging from −3 (strong compressive loadings)

to 3 (strong tensile loadings), with the results for positive triaxialities (Xσ > 0) shown

in red, and negative triaxialities (Xσ < 0) shown in blue. Fig. 7.9(a) shows the ISO

plots for the normalized porosity f/f0 as a function of Ee. We can see that for large

positive triaxialities (Xσ = 3, 2 and 1), the porosity increases monotonically with Ee,

while for negative triaxialities the porosity decreases continuously to zero leading to

void collapse. For Xσ = 1/3 (uniaxial tension), f/f0 initially increases with Ee and

saturates at a finite value around 1.33, similar to the observation made for the porous

FCC polycrystals in Fig. 7.4(a). As expected, f/f0 grows faster for larger values of

Xσ in the range Xσ ≥ 1, while f/f0 decreases faster for smaller values of Xσ in the

range Xσ ≤ 1/3. For a given value of Xσ, the f/f0 plots for the porous polycrystal and

for the porous isotropic material are qualitatively similar, but have some quantitative

differences. In particular, the evolution of f/f0 is found to be slightly slower for the

porous polycrystal than for the porous isotropic material.

Fig. 7.9(b) displays the corresponding ISO results for the pore aspect ratio wp =

wp
1 = w

p
2. It is observed that wp increases monotonically with Ee for all values of Xσ,

indicating that the average pore shape deforms continuously from spherical to prolate

spheroidal. Moreover, the growth of wp is found to be faster for smaller values of Xσ.

In particular, for Xσ = −2 and −3 the pore aspect ratio wp tends to infinity when f/f0

goes to zero (see Fig. 7.9(a)), indicating that the initially spherical pores collapse into

infinitely thin needles. For given values ofXσ, the wp plots for the porous polycrystals

are, once again, qualitatively similar to those for the porous isotropic materials. In

quantitative terms, the growth of wp is found to be slower for the porous polycrystal

than for the porous isotropic material for Xσ < 1/3, while the opposite is true for

Xσ > 1/3.

Fig. 7.9(c) gives the corresponding ISO results for the grain aspect ratio wg =

w
g
1 = w

g
2, characterizing the morphological texture of the polycrystalline matrix. We

observe that when Xσ ≤ 1, the wg plots for the porous polycrystals are rather insen-
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sitive to the stress triaxiality: they all start from one and increase progressively with

Ee, suggesting that the average grain shape evolves from spherical towards prolate

spheroidal. Moreover, these curves are found to be very similar to the corresponding

curve for a fully dense polycrystal. (Recall that results for the fully dense polycrystal

are independent of the stress triaxiality, since the behavior of a fully dense polycrystal

is insensitive to the hydrostatic pressure.) Therefore, the behavior of the wg plots is

quite different from that of the corresponding wp plots, which exhibit a strong depen-

dence on the stress triaxiality (see Fig. 7.9(b)). For Xσ = 3 and 2, while the wg plots

are initially similar to those for Xσ ≤ 1, they increase more rapidly at larger values

of Ee. Of course, wg = 1 for the porous isotropic material, since the morphological

texture of the matrix is fixed during the deformation.

Fig. 7.9(d) presents results for the evolution of the crystallographic texture for

the polycrystalline matrix. In particular, we use the basal texture factor (Lebensohn

et al., 2007) along the axial loading direction e3 to characterize the evolving crystallo-

graphic texture. The basal texture factor is defined to be the weighted average of the

projections of the ⟨c⟩-axes along the axial loading direction e3, i.e., ⟨cos2φ(r)⟩, with

φ(r) denoting the angle between the ⟨c⟩-axes of the rth single-crystal grain and the

loading axis e3. Note that the basal texture factor equals to one when the ⟨c⟩-axes of

all the grains are aligned with the axial loading direction e3, while it equals to zero

when the ⟨c⟩-axes of all the grains are perpendicular to the axial loading direction

e3. We observe from Fig. 7.9(d) that for all values of Xσ, the basal texture factor

starts from 1/3 (the value for an isotropic crystallographic texture) and decreases

monotonically with Ee, implying that the ⟨c⟩-axes of the single-crystal grains tend

to become perpendicular to the loading axis e3. Moreover, it can be seen that the

texture evolution of the polycrystalline matrix is fairly independent of the triaxiality,

being rather similar to the texture evolution for a fully dense Ti polycrystal. Ac-

cording to the observations made in the context of Fig. 7.9(c) and 7.9(d), it can be

deduced that the evolution of both the morphological and crystallographic texture

of the polycrystalline matrix is fairly insensitive to the stress triaxiality for the cases

considered here. Finally, it is noted that the basal texture factor remains a constant
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1/3 for a porous isotropic material, since the crystallographic texture is fixed during

the deformation process.

Fig. 7.10 shows the corresponding ISO results for the relative slip activities and

macroscopic response of the porous Ti polycrystals. In particular, Fig. 7.10(a) gives

results for the relative activities for the three different families of slip systems (basal,

prismatic and pyramidal slips). The relative activity (RA) for a given slip mode

(basal, prismatic, or pyramidal) is defined to be

RAmode =

∑N
r=1 c

(1,r)∑mode ∣γ
(r)

(k)
∣

∑N
r=1 c

(1,r)∑K
k=1 ∣γ

(r)

(k)
∣

, (7.14)

where the numerator denotes the sum of the absolute values of the slip rates on all the

slip systems that belong to a given slip mode, while the denominator denotes the sum

over all the available slip systems. It can be seen from Fig. 7.10(a) that the activities

for the soft systems (basal and prismatic) are much larger than that for the hard

systems (pyramidal), indicating that most shear deformations in the polycrystalline

matrix are accommodated by the soft slip systems, as expected on physical grounds.

In addition, for all values of Xσ the prismatic activity increases progressively with

strain, while the basal activity decreases with strain. The results for the relative

activities for Xσ = 3 at large strains (beyond Ee ≈ 1.42) are not expected to be

physically relevant, since they occur for very large porosities, and void coalescence

may have already taken place leading to failure of the material. It is important to

note that, the basal slips can not accommodate axisymmetric shear deformation when

the ⟨c⟩-axis of the grain is aligned or perpendicular to the axial loading direction e3.

Thus, as the ⟨c⟩-axes of the grains become progressively perpendicular to the e3 (see

Fig. 7.9(d)), a large amount of grains that are initially favorably orientated for basal

slips (e.g., grains with their ⟨c⟩-axes lying between the axial and transverse directions)

become gradually less favorably oriented, leading to the overall reduction of the basal

activity. Furthermore, it is interesting to note that the pyramidal activity is almost

zero up to Ee ≈ 0.5, but it starts to increase with Ee at larger strains, indicating that

the strain accommodation starts requiring the activation of the (10 times harder)
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Figure 7.10: ISO results for porous Ti (M = 10) polycrystals with an initially isotropic
distribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to axisym-

metric loadings (7.7) with L = −1 (σ11 = σ22 ≤ σ33) and various triaxialities Xσ.
The polycrystalline matrix is taken to be initially untextured, and the solid lines
correspond to cases with texture evolution for the matrix, while the dashed lines cor-
respond to cases without texture evolution for the matrix (so that the matrix is always
isotropic). Results are shown for (a) the relative activities for different families of slip

systems, (b) the normalized macroscopic strain rate De/D
0

e for positive triaxialities,
and (c) the corresponding results in (b) for negative triaxialities, as functions of the
time-like variable Ee. Results are also shown for (d) the macroscopic creep strain E

c

e

as a function of time t.
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pyramidal slip systems. Finally, note that the slip activities for the polycrystalline

matrix are qualitatively similar to those for the fully dense polycrystal (dotted lines),

while the slip activities for the isotropic matrix are almost constants throughout the

deformation (not shown for brevity).

Fig. 7.10(b) and 7.10(c) display results for the macroscopic equivalent strain rate

De, normalized by the equivalent strain rate D
0

e for the corresponding untextured Ti

polycrystal (see (7.13)), as a function of Ee. We also include, for comparison, the

corresponding results for a porous isotropic material (dashed lines) and a solid poly-

crystal (dotted lines). The results for positive triaxialities are shown in Fig. 7.10(b),

while the results for negative triaxialities are shown in Fig. 7.10(c). In particular,

we observe from Fig. 7.10(b) that the De/D
0

e plot for a fully dense polycrystal ini-

tially increases with Ee (softening) and then decreases with Ee (hardening), which is

induced by the texture evolution observed in Fig. 7.9(c) and 7.9(d). In addition, we

observe that for Xσ = 3 and 2, the De/D
0

e plots for the porous polycrystal and porous

isotropic material are fairly similar to each other (but are dramatically different from

the corresponding plot for the solid polycrystal): they both increase very rapidly with

Ee suggesting strong softening behaviors. This softening is clearly induced by the sig-

nificant porosity growth observed in Fig. 7.9(a). Therefore, it can be deduced that for

large positive triaxialities, the overall behavior of the porous polycrystal is controlled

by porosity growth, with the texture evolution of the matrix playing a diminished

role. On the other hand, for Xσ ≤ 1 the macroscopic behavior of the porous polycrys-

tal is quite different from that of the porous isotropic material (see Fig. 7.10(b) and

7.10(c)), although the evolution of the porosity and pore shape for these materials are

very similar (see Fig. 7.9(a) and 7.9(b)). For instance, for Xσ = 1, 1/3 and −1/3, the

porous polycrystal exhibits a softening–hardening behavior largely consistent with

that of the solid polycrystal, regardless of how the porosity and pore shape evolve,

suggesting that the overall behavior of the porous polycrystal for small triaxialities is

strongly controlled by the texture evolution of the matrix. Note that for Xσ = −3, the

porous polycrystal exhibits a complex hardening–softening–hardening behavior. By

referring to the corresponding plots for the porosity evolution (Fig. 7.9(a)), we can
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deduce that the initial hardening is due to the significant porosity reduction, while

the subsequent behavior—being almost identical to that of the solid polycrystal—is

due to the texture evolution for the matrix. Finally, it is well worth emphasized

that the transition between the texture controlled regime and the porosity controlled

regime is very sharp and takes place between Xσ = 1 and 2.

Fig. 7.10(d) presents results for the macroscopic creep strain E
c

e as a function of

time. It is observed that, for Xσ = 3 and 2, the plots of the E
c

e for both the porous

polycrystals and porous isotropic materials are fairly similar: they all grow very

rapidly in time with monotonically increasing rates, in agreement with the increasing

macroscopic strain rate observed in Fig. 7.13(b). As already discussed, this strong

softening behavior is due to the significant porosity growth, which would be expected

to lead to final failure of the material by void coalescence. For Xσ ≤ 1, the plots of E
c

e

for the porous polycrystals have “S” shapes with non-monotonic changes in the slope,

consistent with the non-monotonic behavior of the corresponding De/D
0

e plots in Fig.

7.10(b) and 7.10(c). These curves are qualitatively similar to that for a fully dense

Ti polycrystal, but are significantly different from the corresponding curves for the

porous isotropic materials (with more or less uniform slopes), which again confirms

that the macroscopic behavior of the porous polycrystal at low triaxialities is largely

controlled by the texture evolution of the matrix.

Fig. 7.11 shows ISO plots for the standard deviations of the von Mises stress

(SD(1)(σe)) and equivalent strain rate (SD(1)(De)) in the polycrystalline matrix, as

functions of Ee. They are normalized, respectively, by the average von Mises stress

σ(1)e and equivalent strain rate D
(1)

e in the matrix. It can be seen from Fig. 7.11(a)

that, for very large triaxialities (Xσ = 3 and 2), the stress fluctuations increase rapidly

with Ee. This is induced by the rapid porosity growth observed in Fig. 7.9(a), which

leads to the presence of more heterogeneities (i.e., vacuous inclusions) in the poly-

crystalline matrix. However, for smaller triaxialities (Xσ ≤ 1), the stress fluctuations

in the matrix are fairly similar to that in a fully dense polycrystal. This is because

the porosity remains fairly low in these cases (e.g., f is less than 7% for Xσ = 1, and

f is even lower for other triaxialities), and the stress fluctuation is mainly governed
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Figure 7.11: ISO results for porous Ti (M = 10) polycrystals with an initially isotropic
distribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to axisym-

metric loadings (7.7) with L = −1 (σ11 = σ22 ≤ σ33) and various triaxialities Xσ.
Results are shown for the standard deviation of (a) the von Mises stress SD(1)(σe),
and (b) the equivalent strain rate SD(1)(De), normalized by the average von Mises

stress σ(1)e and equivalent strain rate D
(1)

e in the matrix, respectively, as functions of
the time-like variable Ee.

by the underlying texture of the polycrystalline matrix. The above observations also

hold for the strain rate fluctuations shown in Fig. 7.11(b), with the difference that

the magnitudes of the strain rate fluctuations are somewhat smaller.

Axisymmetric compression

In Fig. 7.12, we examine the effect of the stress triaxiality Xσ on the evolution of the

sub-structure of porous Ti polycrystals, for axisymmetric loadings (7.7) with L = 1

(σ11 = σ22 ≥ σ33), and for different triaxialities. For comparison purposes, we also

include the corresponding results for a porous isotropic material (in dashed lines) and

a fully dense polycrystal (in dotted lines). Fig. 7.12(a) and 7.12(b) present ISO plots

for the normalized porosity f/f0 and pore aspect ratio wp = w
p
1 = w

p
2, respectively, as

functions of Ee. We observe from Fig. 7.12(a) that the general features of the f/f0

plots are similar for L = 1 and for L = −1 (Fig. 7.9(a)). This suggests that the effect of

the stress triaxiality on the porosity evolution is qualitatively similar for these loading

conditions, where the porosity grows faster for larger triaxialities (Xσ ≥ 1), while it
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Figure 7.12: ISO results for porous Ti (M = 10) polycrystals with an initially isotropic
distribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to axisym-

metric loadings (7.7) with L = 1 (σ11 = σ22 ≥ σ33) and various triaxialities Xσ. The
polycrystalline matrix is taken to be initially untextured, and the solid lines corre-
spond to cases with texture evolution for the matrix, while the dashed lines corre-
spond to cases without texture evolution for the matrix (so that the matrix is always
isotropic). Plots are shown for the evolution of the (a) normalized porosity f/f0, (b)
pore aspect ratios wp = w

p
1 = w

p
2, (c) grain aspect ratios wg = w

g
1 = w

g
2, and (d) basal

texture factor along the loading axis e3, as functions of the time-like variable Ee.
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decreases faster for smaller triaxialities (Xσ < 1/3). However, for given negative

triaxialities, the f/f0 plots drop much more rapidly with Ee for L = 1 than for

L = −1, indicating that voids are more prone to collapse for L = 1 than for L = −1.

On the other hand, we observe from Fig. 7.12(b) that wp decreases with Ee for all

triaxialities, implying that the initially spherical pores evolve gradually towards oblate

spheroidal pores. In addition, the pore shape evolution is found to be more rapid for

low triaxialities, similar to the findings in Fig. 7.9(b). In particular, for Xσ ≤ 1/3, wp

goes to zero at the same strain when f/f0 goes to zero (see Fig. 7.12(a)), indicating

that the initially spherical pores collapse into penny-shaped micro-cracks. Finally,

note that the behavior of the pores for the porous polycrystals and for the porous

isotropic materials are qualitatively similar, with slight quantitative differences.

Fig. 7.12(c) and 7.12(d) present the corresponding results for the evolution of

the morphological and crystallographic texture, respectively, for the underlying poly-

crystalline matrix. The corresponding results for a fully dense polycrystal are also

included in dotted lines for comparison. We observe from Fig. 7.12(c) that the grain

aspect ratio wg = w
g
1 = w

g
2 starts from one and decreases monotonically with Ee for all

values of Xσ, indicating that the initially equiaxed grains evolve progressively towards

oblate spheroidal grains. On the other hand, the basal texture factor in Fig. 7.12(d)

starts from 1/3 and increases monotonically with Ee for all triaxialities, which implies

that the ⟨c⟩-axes of the grains tend to be aligned with the loading axis e3 forming

strong basal textures. Therefore, the texture evolution for L = 1 is opposite to that

for L = −1 (Fig. 7.9(c) and 7.9(d)), demonstrating a significant effect of the Lode

parameter. Again, the texture evolution is found to be fairly insensitive to the tri-

axiality, and to be rather similar to that of a solid polycrystal, except for Xσ = 3

and 2, when the texture evolves more rapidly at large strains. For porous isotropic

materials, both the grain aspect ratio and basal texture factor are constants, taking

the value 1 and 1/3, respectively, since the texture of the matrix is fixed.

Fig. 7.13 shows the corresponding results for the relative activities and for the

finite-strain effective behavior of the porous Ti polycrystal. Fig. 7.13(a) displays

plots for the relative activities of the basal, prismatic and pyramidal slip systems.
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Figure 7.13: ISO results for porous Ti (M = 10) polycrystals with an initially isotropic
distribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to axisym-

metric loadings (7.7) with L = 1 (σ11 = σ22 ≥ σ33) and various triaxialities Xσ. The
polycrystalline matrix is taken to be initially untextured, and the solid lines corre-
spond to cases with texture evolution for the matrix, while the dashed lines corre-
spond to cases without texture evolution for the matrix (so that the matrix is always
isotropic). Results are shown for (a) the relative activities for different families of slip

systems, (b) the normalized macroscopic strain rate De/D
0

e for positive triaxialities,
and (c) the corresponding results in (b) for negative triaxialities, as functions of the
time-like variable Ee. Results are also shown for (d) the macroscopic creep strain E

c

e

as a function of time t.
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We observe from Fig. 7.13(a) that the evolution of the basal and prismatic activities

for L = 1 is roughly opposite to that for L = −1 (Fig. 7.10(a)): the basal activity

increases with Ee, while the prismatic activity decreases with Ee. Specifically, the

basal slips are seen to contribute to more than 50% of the total shear deformations in

the matrix throughout the deformation, which may lead to the development of strong

basal textures, as already observed in Fig. 7.12(d). Note that as the ⟨c⟩-axes of the

grains rotate towards the loading axis e3, a large amount of grains that are initially less

favorably orientated for basal slips (e.g., grains with their ⟨c⟩-axes perpendicular to

e3) become more favorably oriented to accommodate shear deformation through basal

slips, thus resulting in the overall growth of the basal activity. Furthermore, we can

see that the pyramidal activity increases with Ee for all triaxialities, indicating that

more pyramidal slips are required to accommodate shear deformations in the matrix.

Finally, note that the evolution of the relative activities for the porous polycrystal

is very similar to that for a fully dense polycrystal, except for very large triaxialities

(Xσ = 3 and 2), where the evolution of the relative activities is somewhat faster.

Fig. 7.13(b) and 7.13(c) present the corresponding ISO results for the normalized

macroscopic equivalent strain rate De/D
0

e for the porous polycrystals. The corre-

sponding plots for a porous isotropic material (dashed lines) and for a fully dense

Ti polycrystal (dotted lines) are also included for comparison. We can see from Fig.

7.13(b) that the De/D
0

e plot for a solid polycrystal decreases monotonically with Ee,

suggesting a continuous hardening behavior (due to texture evolution), which is sig-

nificantly different from the case for L = −1. For large positive values of the triaxiality

(Xσ = 3 and 2), the porous polycrystal exhibits a strong softening behavior similar to

that of the porous isotropic material. As already discussed, this behavior is induced

by the significant porosity growth (see Fig. 7.12(a)), which has a strong softening

effect that completely dominates the hardening effect of texture evolution. On the

other hand, for Xσ ≤ 1, the De/D
0

e plot for a porous polycrystal exhibits a behavior

largely consistent with that for a solid polycrystal, but dramatically different from

that for a porous isotropic material. For instance, for Xσ = 1 the porous polycrys-

tal exhibits an initial hardening behavior followed by a strong softening behavior at
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very large strains. This clearly demonstrates the competition between the hardening

mechanism provided by texture evolution and the softening mechanism provided by

porosity growth. For Xσ < 0 (see Fig. 7.13(c)), while the De/D
0

e curves for the porous

polycrystal start from different values, depending on the triaxiality, they quickly tend

to the corresponding plot for the fully dense polycrystal. This is because the porosity

decreases in these cases and the behavior of the porous polycrystal becomes progres-

sively closer to that of a fully dense polycrystal. Again, the macroscopic response

of the porous polycrystal exhibits a sharp transition between the texture controlled

regime and the porosity controlled regime, and the transition occurs between Xσ = 1

and 2.

Fig. 7.13(d) shows plots of the macroscopic equivalent creep strain E
c

e versus

time. It is observed that for large positive triaxialities (Xσ = 3 and 2), the E
c

e plot

for the porous polycrystal grows very rapidly with increasing slopes, exhibiting a

behavior qualitatively similar to that of the porous isotropic material. On the other

hand, for Xσ ≤ 1 the E
c

e plots for the porous polycrystal increase in time with a

progressively decreasing rate, exhibiting a behavior qualitatively similar to that of the

solid polycrystal. These observations confirm the fact that porosity growth controls

the macroscopic response of the porous polycrystal at high triaxialities, while the

texture evolution of the matrix takes over at low triaxialities.

Fig. 7.14 presents the corresponding ISO plots for the standard deviations of the

von Mises stress (SD(1)(σe)) and equivalent strain rate (SD(1)(De)) in the polycrys-

talline matrix, as functions of Ee. They are normalized, respectively, by the average

von Mises stress σ(1)e and equivalent strain rate D
(1)

e in the matrix. By comparing the

stress fluctuations for L = 1 in Fig. 7.14(a) with those for L = −1 in Fig. 7.11(a), we

can see that the general trends for L = 1 and −1 are very similar, but there are some

differences. Most importantly, for Xσ ≤ 1/3, the stress fluctuations become progres-

sively weaker for L = 1, while they exhibit more complex (non-monotonic) behavior

for L = −1. These discrepancies are mainly due to the significantly different texture

evolutions in the matrix for L = 1 and −1 (see Fig. 7.12(d) and 7.9(d)). In addition,

the stress fluctuations in the polycrystalline matrix at low triaxialities are found to
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Figure 7.14: ISO results for porous Ti (M = 10) polycrystals with an initially isotropic
distribution of spherical pores (wp

1 = w
p
2 = 1) in f0 = 1% porosity, subjected to axisym-

metric loadings (7.7) with L = 1 (σ11 = σ22 ≥ σ33) and various triaxialities Xσ. Results
are shown for the standard deviation of (a) the von Mises stress SD(1)(σe), and (b) the
equivalent strain rate SD(1)(De), normalized by the average von Mises stress σ(1)e and

equivalent strain rate D
(1)

e in the matrix, respectively, as functions of the time-like
variable Ee.

be similar to those in the solid polycrystal, consistent with the fact that the porosity

remains quite low for these cases and the fluctuations are largely determined by the

underlying texture of the matrix. On the other hand, we can see from Fig. 7.14(b)

that the strain rate fluctuations increase significantly with Ee, suggesting stronger

localizations of the deformation in the polycrystalline matrix. Note that for negative

triaxialities, the strain rate fluctuations increase abruptly at the end of the deforma-

tion. As already mentioned, these results could be questioned on physical grounds,

since they occur at very small pore aspect ratios (wp < 0.1) prior to void collapse,

where the contact of the void surface may have already taken place, thus changing

the field distributions in the matrix.

7.4 Concluding remarks

In chapter 6, a finite-strain homogenization model was developed for the macro-

scopic response of two-scale porous polycrystals consisting of large pores distributed
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randomly in a fine-scale polycrystalline matrix. The model is based on the fully op-

timized second-order (FOSO) homogenization method of Ponte Castañeda (2015), as

well as on a generalization of the iterated homogenization procedure of Agoras and

Ponte Castañeda (2013), and is referred to as the Iterated Second-Order (ISO) ho-

mogenization model. In particular, the ISO model developed in this work for porous

polycrystals provides a generalization of the model of Song and Ponte Castañeda

(2017b) for porous single crystals, by allowing the underlying matrix to have a fine-

scale micro-structure consisting of single-crystal grains of different orientations.

In this chapter, the ISO model was used to generate estimates for both the in-

stantaneous response and the evolution of the sub-structure for porous FCC and

HCP polycrystals, subjected to axisymmetric loadings with different Lode parame-

ters (L = −1 or 1) and stress triaxialities. The intrinsic effect of the texture evolution of

the polycrystalline matrix was deduced by comparing with the corresponding results

for porous isotropic materials, and found to be quite significant. More specifically,

due to texture evolution the polycrystalline matrix may become progressively harder

(or softer) to deform and, as a consequence, more (or less) deformation is accom-

modated by the pores. Similar observations have also been made by Lebensohn et

al. (2004), although in the context of polycrystalline solids containing intergranular

voids. Moreover, the texture evolution of the polycrystalline matrix was found to be

fairly independent of the stress triaxiality, but to be quite sensitive to the Lode pa-

rameter. For instance, for porous HCP polycrystals the hexagonal axes of the crystal

grains may tend to be perpendicular to, or aligned with, the axisymmetric loading

axis, depending on the Lode parameter (L = −1 or 1). Thus, texture evolution can

lead to strong crystallographic anisotropy of the polycrystalline matrix, which has

important implications on the macroscopic response of the porous polycrystals. Fur-

thermore, it was found that the porous polycrystal exhibits a behavior qualitatively

similar to that of a fully dense polycrystal at low triaxialities, while it exhibits a

strong softening behavior similar to that of a porous isotropic material at high triax-

ialities. These results strongly suggest that the overall hardening/softening behavior

of the porous polycrystal is controlled by the texture evolution of the matrix at low
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triaxialities, while it is controlled by porosity growth at high triaxialities, with a sharp

transition from one regime to the other.

In summary, the results of this chapter help confirm the significant effect of the

texture evolution of the matrix on the macroscopic response of porous materials,

suggesting the need of accounting for the combined effects of porosity growth and

texture evolution. Therefore, the capability of the ISO model to effectively handle

the multi-scale nature of the porous polycrystals constitutes one of the distinctive ad-

vantages relative to other more empirical models. In addition, the ISO model is fully

predictive—without the need of fitting parameters requiring recalibration for different

material systems—and applies for a wide range of porous polycrystals with different

crystallographic anisotropies, porosities, void morphologies and material nonlineari-

ties. Having said this, the ISO model may still be susceptible to potential improve-

ments, especially for high-triaxiality loadings. Improved results may be possible by

means of other, yet-to-be-developed choices of the weight factors α
(r)

(k)
, and this will

be pursued in future work.
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Chapter 8

Closure

In this dissertation, a general nonlinear homogenization framework was developed for

viscoplastic porous single crystals and porous polycrystals subjected to finite defor-

mations. The framework has the ability to account for the instantaneous effective

behavior of porous crystals for given fixed states of the microstructure, as described

by the porosity, average pore morphology and the texture of the underlying matrix,

as well as for the evolution of the microstructure at finite-strain deformations. The

model is based on the recently developed fully optimized second-order homogeniza-

tion approach of Ponte Castañeda (2015), and makes use of the effective behavior of

a linear comparison composite (LCC)—with the same microstructure as the nonlin-

ear composite of interest—to obtain the effective properties of the actual nonlinear

composite. In particular, the above homogenization procedure is used in an itera-

tive fashion (Agoras and Ponte Castañeda, 2013) to “discretize” the properties of

the matrix in the LCC, thus generating significantly improved estimates, especially

for high triaxialities and low porosities. , consistent homogenization estimates for

the average strain rate and spin in the phases are used to develop evolution laws for

the microstructural variables. In its final form, the model can be treated as a stan-

dard internal variable viscoplastic model, with microstructural variables serving as

internal variables. The theoretical framework developed in this dissertation was used

to generate estimates for the instantaneous macroscopic behavior and microstruc-

ture evolution for porous FCC and HCP single crystals and polycrystals. Next, we
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summarize the main results in this dissertation.

In Chapter 2, a generalization of a recently developed iterated variational ho-

mogenization (IVH) method (Agoras and Ponte Castañeda, 2013) was used to obtain

bounds for the effective flow potential of porous viscoplastic single crystals. The

method was then implemented for low-symmetry, high-anisotropy porous HCP single

crystals, such as porous ice, to investigate the macroscopic response of these ma-

terials under axisymmetric loading conditions. It was found that the overall size,

shape and orientation of the macroscopic gauge surfaces exhibit a strong dependence

on the instantaneous values of the porosity, void shape and crystal anisotropy, sug-

gesting strong distortional hardening/softening effects in the macroscopic response

of these materials under finite-strain loading conditions (leading to evolution of the

microstructure). In addition, consistent IVH estimates for the average strain rate

in the voids were computed to explore their implications for the evolution of the

microstructure. Thus, it was found that strong crystal anisotropy may lead to fast

porosity growth at low stress triaxiality and to significant void distortion rates at

high stress triaxiality, which is in contrast to the corresponding results for porous

isotropic materials. Furthermore, it was found that the dependence of the porosity

growth and void distortion on the initial void shape is also strongly affected by the

crystal anisotropy. In fact, the crystal anisotropy largely dominates over the effect of

the void shape, leading to significantly different behaviors for porous ice and porous

isotropic materials.

In Chapter 3, the fully optimized second-order (FOSO) variational method of

Ponte Castañeda (2015), in combination with an appropriate generalization of the it-

erated homogenization procedure of Agoras and Ponte Castañeda (2013), was used to

advance a finite-strain homogenization model for porous viscoplastic single crystals.

The Iterated Second-order (ISO) homogenization model provides estimates that are

exact to second order in the heterogeneity contrast for the instantaneous response of

two-phase composite materials, and therefore improves on the IVH model developed

in Chapter 2, which provides bounds that are only exact to first order in the hetero-

geneity contrast. Correspondingly, the ISO model also provides improved estimates
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for the average strain rate and spin fields in the phases, thus leading to more accurate

predictions for the evolution of the microstructure. In particular, the ISO model is

the first model to consistently account for the evolution of both the “crystallographic”

anisotropy induced by lattice rotation, as well as the “morphological” anisotropy in-

duced by changes in size, shape and orientation of the voids. These distinguishing

features are crucial for satisfying the overall objectivity requirements.

In Chapter 4, the ISO developed in Chapter 3 was used to generate estimates for

both the instantaneous response and the evolution of the microstructure for porous

viscoplastic FCC and HCP single crystals. The resulting estimates were found to be

in quite good agreement with FEM results available from the literature (Srivastava

and Needleman, 2012; 2015; Mbiakop et al., 2015b), demonstrating a remarkable

predictive capability for the ISO model. Specifically, it was found that the effective

instantaneous response of porous single crystals exhibits a strong dependence on the

“crystallographic” anisotropy induced by the preferred orientation and constitutive

properties of the active slip systems, as well as on the “morphological” anisotropy

determined by the instantaneous values of the porosity and void shape. In addition,

the intrinsic crystallographic anisotropy was found to have a significant effect on the

dependence of the macroscopic response of the porous single crystals on the porosity

and void morphology, indicating a complex, coupled interaction between the two

different types of anisotropies. Furthermore, the evolution of the microstructure and

the finite-strain response of porous crystals were found to be quite sensitive to the

specific loading conditions, as characterized by the loading orientation, Lode angle

and stress triaxiality. In particular, the ISO model revealed a significant effect of

the crystallographic anisotropy on the evolution of the microstructure, which in turn

has implications for the overall hardening (or softening)—and therefore also for shear

localization—in these materials.

In Chapter 5, the FOSO method of Ponte Castañeda (2015) was used, for the

first time, to obtain estimates of the self-consistent type for the finite-strain response

and texture evolution of viscoplastic fully dense polycrystals. The FOSO model was

first used to investigate the effective flow stress and field statistics of untextured HCP
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polycrystals with varying degree of rate sensitivity and grain anisotropy. It was found

that the FOSO estimates for the effective flow stress satisfy all known bounds, and

show perfect agreement with the available FFT results. In particular, while the im-

provements over the earlier POSO estimates are only moderate for the effective flow

stresses, they are rather significant for the field statistics, especially for low rate sen-

sitivity and high grain anisotropy. The FOSO model was then employed to study the

finite-strain response and texture evolution for initially isotropic HCP polycrystals,

subjected to uniaxial compression. It was found that a strong basal texture develops

as a result of the dominant basal slips. In addition, the HCP polycrystal was found to

become strongly anisotropic, and to exhibit an overall softening-hardening behavior.

Chapter 6 was concerned with the development of a finite-strain homogenization

model for the macroscopic response of viscoplastic porous polycrystals consisting of

large pores embedded in a fine-scale polycrystalline matrix. The porous polycrystal

was modeled as a two-scale composite, which has a porous meso-structure at the larger

length scale, and a granular structure for the underlying matrix at the smaller length

scale. The instantaneous response of the porous polycrystal for a fixed state of the

sub-structure was determined by means of a generalization of the ISO homogeniza-

tion method developed in Chapter 3. The method makes use of a linear comparison

composite (LCC) with the same sub-structure as the actual nonlinear composite, but

whose local properties are chosen optimally via a suitably designed variational princi-

ple. The effective properties of the resulting two-scale LCC were determined by means

of a sequential homogenization procedure, involving the self-consistent estimates for

the effective behavior of the polycrystalline matrix, and the Hashin-Shtrikman type

estimates for the effective behavior of the porous composite. Additionally, consistent

homogenization estimates for the average strain rate and spin fields in the phases

were used to develop evolution laws for the sub-structural variables, accounting for

the evolution of porosity, pore and grain morphology, as well as the crystallographic

texture of the matrix. The model is quite general, and applies to two-scale porous

polycrystals with general ellipsoidal pores and grains, general crystallographic tex-

ture and general crystal anisotropy, which are subjected to general three-dimensional
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loading conditions.

In Chapter 7 , the ISO model developed in Chapter 6 for porous polycrystals was

used to generate estimates for both the instantaneous response and the evolution of

the sub-structure for porous FCC and HCP polycrystals, subjected to axisymmetric

loadings with different Lode parameters (L = −1 or 1) and stress triaxialities. The

intrinsic effect of the texture evolution of the polycrystalline matrix was deduced by

comparing with the corresponding results for porous isotropic materials, and found

to be quite significant. More specifically, due to texture evolution the polycrystalline

matrix may become progressively harder (or softer) to deform and, as a consequence,

more (or less) deformation is accommodated by the pores. Similar observations have

also been made by Lebensohn et al. (2004), although in the context of polycrystalline

solids containing intergranular voids. Moreover, the texture evolution of the polycrys-

talline matrix was found to be fairly independent of the stress triaxiality, but to be

quite sensitive to the Lode parameter. For instance, for porous HCP polycrystals the

hexagonal axes of the crystal grains may tend to be perpendicular to, or aligned with,

the axisymmetric loading axis, depending on the Lode parameter (L = −1 or 1). Thus,

texture evolution can lead to strong crystallographic anisotropy of the polycrystalline

matrix, which has important implications on the macroscopic response of the porous

polycrystals. Furthermore, it was found that the porous polycrystal exhibits a behav-

ior qualitatively similar to that of a fully dense polycrystal at low triaxialities, while

it exhibits a strong softening behavior similar to that of a porous isotropic material at

high triaxialities. These results strongly suggest that the overall hardening/softening

behavior of the porous polycrystal is controlled by the texture evolution of the matrix

at low triaxialities, while it is controlled by porosity growth at high triaxialities.

In summary, the results in this dissertation helped confirm the significant effect of

the anisotropy of the matrix—either due to the local crystallography in single crystals

or to the texture of polycrystals—on the overall constitutive response of porous single

crystals and porous polycrystals, suggesting an additional level of complexity in the

modeling of such materials. Due to its ability to deal with broad classes of materials

with different crystallographic anisotropies, material nonlinearities, porosities and
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void morphologies—without the need for fitting parameters requiring recalibration

for different material systems—the ISO homogenization model provides a powerful

tool for effectively handling the effect of porosity in viscoplastic single crystals and

polycrystals.

Although significant progress has been made in modeling the behavior of porous

single crystals and porous polycrystals, much remains to be done along these lines.

First, the ISO model developed in this work is still amenable to potential improve-

ments, especially for hydrostatic loading conditions, by means of other choices of

the weight parameters α
(r)

(k)
involved in the ISO model. In this regard, it is worth

mentioning the recent work of Michel and Suquet (2017), which suggests that α
(r)

(k)

could be related to higher-order moments of the stress field. This could be helpful

in developing mathematically or physically motivated prescriptions for choosing α
(r)

(k)

in an optimal fashion. At the very least, the weights α
(r)

(k)
could be used as fitting

parameters to improve the results for hydrostatic loadings. Second, at this stage, the

ISO model only applies for porous polycrystals containing large pores, with the pore

size much larger than the grain size. In reality, the voids present in polycrystalline

solids may have different sizes relative to the grain size. For this reason, a further

generalization of the ISO method to model the behavior of polycrystalline solids con-

taining voids with different sizes is of great interest. Third, the main deformation

mechanism in this work is taken to be dislocation creep of the single-crystal phases.

The effects of other important mechanisms, such as twinning, dislocation climb, grain

boundary sliding and dynamic recrystallization, should be considered in future work.

Fourth, the effect of infinitesimal elasticity that was neglected in this work should be

pursued in future work. This would allow us to further account for elastic distortions

of the single-crystal phases, as well as to deal with cyclic loading conditions, where

the effect of elastic unloading is crucial. Moreover, this will allow the model to be im-

plemented into constitutive subroutines in commercial FEM codes (e.g., ABAQUS).

Fifth, this work assumes that all crystals with the same initial orientation rotate to-

gether as one unit (phase), as governed by the average elastic spin over all grains in

that phase. This assumption is similar to that made by most mean-field theories and,
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as a consequence, the orientation of crystals in a given phase remain uniform through-

out the deformation. However, the stress, strain rate and spin fields inside the grains

can exhibit significant fluctuations, especially for low rate sensitivity and high grain

anisotropy. Therefore, the above assumption could be too simplistic, and improved

evolution laws making use of additional field-fluctuation information—being already

available in the current homogenization model—should be pursued in future work.
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Appendix A

The evolution of pore shape and

orientation in plastically deforming

metals: implications for

macroscopic response and shear

localization

A constitutive model is proposed for the macroscopic response of porous plastic metals

at finite strains. Besides taking into account the porosity evolution, which leads to

pressure sensitivity and dilatant response, the model can also account for changes in

the average shape and orientation of the pores by means of suitable microstructural

variables which play the role of internal variables and serve to characterize the evolving

anisotropy of the material. In particular, the model is used to determine the evolution

of the average shape and orientation of the voids under simple shear loading, as well

as to explore the concomitant implications for the macroscopic response and shear

localization. The intrinsic effect of the void rotations is deduced from comparisons

with corresponding results for pure shear loading (where the voids change shape,

but undergo no rotation on average), and found to be significant. In addition, more
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general loading conditions, involving combined tension and shear, are considered, and

the effect of the stress triaxiality is investigated. It is found that there is an abrupt

transition in the localization strain at a certain value of the triaxiality of about 0.3,

with the localization strain dropping sharply both as the triaxiality increases, or

decreases from this value. Furthermore, the results suggest that void rotations can

dramatically enhance the susceptibility of the material to shear localization for a

certain range of triaxiality values (between, approximately, 0.3 and 0.8).

A.1 Introduction

Ductile metals are known to contain random distributions of micro-voids, which are

produced either as a consequence of the forming process itself (e.g., HIPPing and

forging), or which nucleate in the material from second-phase particles and eventually

grow and coalesce leading to material failure (Tvergaard, 1990; Benzerga and Leblond,

2010). When such porous materials are subjected to finite strains, the size, shape and

orientation of the voids, as well as the positions of the voids relative to each other,

evolve with the deformation. This work is concerned with the use of certain recently

developed homogenization approaches (Agoras and Ponte Castañeda, 2013; Agoras

and Ponte Castañeda, 2014) to describe the instantaneous macroscopic response of

porous viscoplastic (including rigid plastic in the rate-insensitive limit) materials given

the current state of the microstructure, as well as the evolution of the microstructure

with the deformation, and its implications for failure through shear localization. In

the present work, however, we focus on loading conditions involving macroscopic shear

strains and leading to significant void rotations (as well as changes in porosity and

void shape).

It should be emphasized that over the years there have been several other ap-

proaches that have been proposed to model the behavior of porous ductile materials.

Gurson (1977) made use of limit analysis for a spherical shell to propose an isotropic,

pressure-sensitive plasticity model accounting for dilatant behavior. This model has

been shown to be accurate for nearly hydrostatic loading conditions (i.e., for high
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stress triaxialities), but less so for deviatoric loadings and, in particular, cannot ac-

count for void shape and orientation changes leading to anisotropy development for

such loadings. Yamamoto (1978) considered the effects of compressibility and porosity

evolution on theoretical predictions for shear localization in porous media, and found

that localization is facilitated by increasing triaxiality. In particular, these Gurson

model prediction indicate that the material should become more resistant to failure

by shear localization at low to vanishingly low stress triaxialities. However, this is

in contradiction with recent experimental observations (Bao and Wierzbicki, 2004;

Barsoum and Faleskog, 2007), which suggest that lower triaxialities tend to facili-

tate failure by shear localization at sufficiently low triaxialities. Motivated by these

experimental results, Nahshon and Hutchinson (2008) have recently proposed a phe-

nomenological modification of the constitutive model of Gurson (1977), consisting in

a reinterpretation of the porosity evolution law as an isotropic damage evolution law

to empirically account for the effects of the third invariant of the loading (Lode angle)

on the material response at low triaxialities. By introducing suitable parameters and

fitting them to appropriate experimental data, this approach has been successful in

modeling certain features of material failure at low triaxialities (Xue et al., 2013). On

the other hand, the homogenization models of interest in this work aim to be entirely

predictive, by introducing suitable microstructural variables directly accounting for

the changes in shape and orientation of the voids, and the associated changes in the

overall anisotropy and instantaneous hardening of the material. While capturing this

level of detail is certainly more challenging, the potential gains in terms of predictive

capabilities could justify the added computational cost, which would still be much

smaller than that required for full-field numerical simulations.

Additional approaches include micro-mechanical approaches attempting to gener-

alize the work of Gurson (1977) by considering more general spheroidal and ellipsoidal

void shapes (Gologanu et al., 1993; Madou and Leblond, 2012a). The advantage of

these approaches is that they give accurate predictions for high-triaxiality loading

conditions, but they are less general than the homogenization approaches, in partic-

ular, because it has not been possible to derive corresponding evolution equations
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for the void rotation by means of these analyses. In this sense, the homogenization

approaches to be developed in this work are more general since they provide con-

sistent estimates for the average strain rate and vorticity in the voids, which can in

turn be used to generate self-consistent evolution equations for the average void shape

and rotation (Ponte Castañeda and Zaidman, 1994; Kailasam and Ponte Castañeda,

1998). Recently, Madou and Leblond (2013a) and Madou et al. (2013b) have pro-

posed a combined approach making use of the Gurson limit analysis approach to

obtain accurate estimates for the yield surface at high triaxialities, and of the homog-

enization approach of Ponte Castañeda and Zaidman (1994) and Kailasam and Ponte

Castañeda (1998), improved through numerical fitting to finite-element simulations

of confocal shells, to model the evolution of the void shape and rotation in the porous

materials at low triaxialities.

A third approach is to make use of full-field numerical simulations, such as the ones

recently carried out by Srivastava and Needleman (2013) and Tvergaard (2012; 2014),

building on earlier work (e.g., Needleman, 1972; Tvergaard, 1981). These simulations

typically assume periodicity of the microstructure so that the numerical calculation

can be restricted to a unit cell of the microstructure. While this approach is expected

to be more accurate than the approximate homogenization models of interest in this

work, the assumption of periodicity of the microstructure is a limiting factor, the

microstructures of actual porous metals normally being random. Furthermore, the

numerical results for periodic distributions of voids show great sensitivity to the

microstructural parameters, suggesting that accounting for the randomness of the

porosity distribution may be crucial. In this sense, the homogenization estimates to

be discussed below offer the capability of accounting for the random distribution of

the voids by means of the two-point correlation functions for their centers, as well as

changes in the average shape and orientation of the voids.

The first homogenization estimates accounting for the overall compressibility in

the instantaneous response of porous viscoplastic solids were given by Ponte Castañeda

and Willis (1988), making use of the nonlinear Hashin-Shtrikman-type variational

approach of Talbot and Willis (1985). Improved estimates were obtained by Ponte
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Castañeda (1991) making use of a new variational approach for a linear comparison

composite (LCC) (see also Willis, 1991, and Michel and Suquet, 1992 for derivations

of these estimates by other methods). Ponte Castañeda and Zaidman (1994) made

use of the LCC variational homogenization method of Ponte Castañeda (1991) to ad-

vance constitutive models for porous viscoplastic solids accounting for the evolution of

the microstructure (i.e., porosity and average void shape) under finite-strain loading

conditions. In that work, the changes in pore shape were found to have a significant

effect on the macroscopic response of the material at low stress triaxialities. In par-

ticular, it was shown that shear localization could take place at low triaxialities by

void collapse—something that could not be accounted for by the Gurson model. By

making use of the linear estimates of Ponte Castañeda and Willis (1995), this model

was generalized to account for void-distribution effects (Kailasam et al., 1997), void

rotations under general non-vanishing spin loadings (Kailasam and Ponte Castañeda,

1997), as well as strain-hardening and elasticity for the matrix phase (Kailasam et al.,

2000; Aravas and Ponte Castañeda, 2004). The numerical implementation of these

models in general purpose finite-element codes (e.g., ABAQUS) was considered by

Aravas and Ponte Castañeda (2004).

While the predictions generated by these variational models have been found to

be quite good for deviatoric loadings, where void shape changes are dominant, they

become progressively less accurate with increasing stress triaxiality, especially for low

porosities and high material nonlinearities (see Ponte Castañeda and Suquet, 1998 for

more details). For this reason, several attempts have been made to obtain improved

homogenization estimates for porous viscoplastic materials. In particular, building

on the earlier work by Danas et al. (2008), Danas and Ponte Castañeda (2009a,

2009b) proposed an improved constitutive model for porous materials with evolving

microstructures. The model was derived by making use of the more sophisticated

“second-order” LCC procedure of Ponte Castañeda (2002), together with an ad hoc

interpolation/extrapolation scheme, enforcing the exact agreement of the second-

order model with the Gurson model for the special case of spherical/cylindrical voids

subjected to purely hydrostatic loadings. The second-order model was found to deliver

283



fairly accurate results for the macroscopic response in several comparisons with FEM

and other exact results. The model was also found to predict the development of shear

localization instabilities due to void collapse at small stress triaxialities (Danas and

Ponte Castañeda, 2012), although some of the predictions may need to be corrected

to account for the possibility of contact of the void faces (Hutchinson and Tvergaard,

2012). In addition, it should be mentioned that Idiart (2008) has developed estimates

based on sequentially layered microstructures, which have the distinguishing feature

of reproducing exactly the hydrostatic point for spherical shells.

In this work, we will pursue an alternative approach that is based entirely on

the variational linear comparison homogenization procedure—albeit used in a novel

incremental fashion (Ponte Castañeda, 2012). This approach can account for the ex-

pected non-uniformity of the properties of the matrix phase in the porous LCC—and

leads to results that are also in complete agreement with the predictions of the Gur-

son approach for high triaxialities. Thus, Agoras and Ponte Castañeda (2013) have

developed an incremental procedure for generating constitutive models for porous vis-

coplastic materials consisting of random “ellipsoidal” distributions of ellipsoidal voids,

where the shape and orientation of the voids may be different from that of their dis-

tribution. The method makes use of the work of Agoras and Ponte Castañeda (2011)

to provide estimates for a finite number N of iterations of the macroscopic viscoplas-

tic stress potential for porous materials with given, fixed microstructure. When the

number of iterations is N = 1, the method recovers exactly the predictions of the

earlier variational linear comparison method (Ponte Castañeda, 1991), and leads to

progressively more accurate estimates as the number of iterations N is increased,

especially for high triaxialities. In the limit as N → ∞ the iterated estimates of

Agoras and Ponte Castañeda (2013) recover identically those of Ponte Castañeda

(2012), when the shape of the pores and the distribution are identical, and therefore

they also recover the well-known exact result for purely hydrostatic loadings of the

composite-sphere assemblage (Leblond et al., 1994) and the infinite-rank sequentially

laminated microstructures (Idiart, 2008). In practice, however, it can be shown that

a small number of iterations (N ≃ 5 − 10) is sufficient to generate accurate results,
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which implies that the new iterated estimates are also relatively easy to compute.

In recent work, Agoras and Ponte Castañeda (2014) have made use of the iterated

variational procedure of Agoras and Ponte Castañeda (2013) to obtain consistent

evolution equations for the average void shape under general triaxial, finite-strain

loading conditions. In the present work, we propose to consider more general load-

ing conditions incorporating the effects of void rotations due to shear-type loadings.

This will be accomplished following similar developments in the context of the earlier

variational procedure by Kailasam and Ponte Castañeda (1998) (see also Aravas and

Ponte Castañeda, 2004), which make use of consistent homogenization estimates for

the average strain-rate and vorticity in the porous phase to generate evolution equa-

tions for the void orientation, as well as the porosity and average shape of the pores.

To bring out the significant effect of the pore shape and orientation, some results will

be shown for the effective yield surfaces of porous plastic materials with various values

of the pore aspect ratios and orientation angles. In addition, we will consider simple

shear loading and investigate the effect of void rotations by comparisons with pure

shear loadings, which result in void shape changes, but not in void rotations. Then,

the model will be used to investigate the effect of the stress triaxiality on the macro-

scopic response and possible development of shear band instabilities in rigid-plastic

porous materials with power-law strain hardening that are subjected to combined

shear and tension under plane strain conditions. Our focus will be on the effect of the

evolution of the pore orientation (and shape) on the anisotropic response and failure

of the porous materials.

A.2 The iterated variational linear comparison

homogenization model

In this section, we summarize the basic variables and equations of the Iterated Vari-

ational linear comparison Homogenization model developed by Agoras and Ponte

Castañeda (2013, 2014), which we will henceforth refer to as the IVH model for
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Figure A.1: Schematic representation of a porous metal consisting of aligned, el-
lipsoidal voids (solid lines) that are distributed with the same ellipsoidal symmetry
(dotted lines) in a metal matrix.

short. We first introduce the internal variables of the IVH model, which characterize

the hardening of the matrix (metal), porosity, shape and orientation of the voids.

Next, we provide the macroscopic constitutive relation of the rigid-plastic porous

metals and evolution laws for the above-mentioned internal variables. At last, ex-

pressions for the overall hardening rate are derived. For simplicity, elastic strains

will be neglected in this work. However, it is straightforward to include such strains

approximately, as was done, for example, by Aravas and Ponte Castañeda (2004).

A.2.1 Internal variables

The porous material is made up of two phases. The matrix material (phase 1) is

isotropic, incompressible and rigid-plastic, and obeys the von Mises yield criterion:

Φ(σ) = σ2
e − σ

2
y = 0, (A.1)

where σe =
√

3
2
σd ⋅σd is the equivalent stress (σd is the stress deviator tensor) and

σy is the yield stress under uniaxial tension. In addition, isotropic hardening of the

matrix is assumed so that σy is a function of the accumulated plastic strain εpM , such

that

σy (ε
p
M) = σ0 (1 +

ε
p
M

ε0
)

M

, (A.2)
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where σ0 is the initial tensile yield stress, ε0 is the reference yield strain, and M is

the strain hardening exponent of the matrix.

As shown in Fig. A.1, the voids (phase 2) are assumed to be of ellipsoidal shape

(on average), and to be aligned, but distributed randomly in the matrix with a two-

point correlation function for their centers characterized by “ellipsoidal” symmetry

(Willis, 1977; Ponte Castañeda and Willis, 1995). In this work, for simplicity (Ago-

ras and Ponte Castañeda, 2014), it is further assumed that the ellipsoidal shape and

orientation of the distribution (i.e., the dashed ellipsoids in Fig.A.1) is identical to

the ellipsoidal shape and orientation of the voids (i.e., the solid ellipsoids in Fig.A.1).

However, it should be emphasized that, in general, the ellipsoid characterizing the dis-

tribution can be different from the ellipsoid characterizing the voids (Ponte Castañeda

and Willis, 1995; Agoras and Ponte Castañeda, 2013).

According to the above hypothesis, the porous metal can be completely described

by the set of internal variables defined by

s ≡ {ε
p
M , f,w1,w2,n1,n2,n3}, (A.3)

where εpM characterizes the hardening of the matrix through equation (A.2), f is the

volume fraction of the voids (porosity), w1 = a3/a1,w2 = a3/a2 are two aspect ratios

characterizing the shape of the voids and distribution (a1, a2 and a3 are respectively

the lengths of the three semi-axes of the ellipsoid), and n1, n2 and n3 are unit vec-

tors along the three principal directions of the ellipsoid. It is remarked here that,

among the above-defined internal variables (A.3), εpM describes a property of matrix

phase, while the others (f , w1, w2, n1, n2, n3) characterize the microstructure of the

porous metal. In addition, under the assumption that the ellipsoid characterizing

the shape and orientation of the voids coincides with that of the distribution, the

porous metal exhibits orthotropic behavior, with the axes of orthotropy coinciding

with the principal directions of the voids. Note that these axes generally rotate with

the deformation.
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A.2.2 Macroscopic constitutive behavior

The macroscopic constitutive relation of the porous material is given by the iterated

variational homogenization (IVH) estimate of Agoras and Ponte Castañeda (2013),

which makes use of the effective properties of an appropriately chosen “linear com-

parison composite” (LCC), to estimate the effective behavior of the nonlinear porous

material of interest. The key idea of the IVH is to construct the porous microstructure

iteratively in a self-similar fashion, such that a more accurate description of the local

fields in the porous metal can be achieved through appropriate statistics (i.e., second

moments). In addition, the effective behavior of the LCC is computed iteratively by

means of the estimates of Ponte Castañeda and Willis (1995) (to be referred to here

as PCW estimates). As detailed in Agoras and Ponte Castañeda (2014), the effective

yield surface of the porous material is given by

Φ̃IV H
(σ; s) = (σ

(1)

e (σ; s))
2

− σ2
y = 0, (A.4)

where Φ̃IV H is the effective yield function, and σ
(1)

e denotes the square root of the

second moment of the equivalent stress field over the matrix phase, depending on

both the macroscopic stress σ and internal variables s. For given σ and s, the deter-

mination of σ
(1)

e in (A.4) requires the solution of a system of N nonlinear equations

σ
(1)

e = [F[i] (r[2], ..., r[N])]
1/2
, i = 1, ...,N, (A.5)

where the functions F[i] (r[2], ..., r[N]) are defined by expressions (A.29) in the Ap-

pendix, the variables r[i] > 0 (i = 2, ..,N) correspond to the remaining N − 1 un-

knowns (see Agoras and Ponte Castañeda, 2014 for their physical meaning), and N is

the number of iterations used in IVH. It should be mentioned here that the accuracy

of the IVH improves progressively with increasing N . However, the fast convergence

of the IVH with increasing values of N (Agoras and Ponte Castañeda, 2013) allows

the use of relatively small numbers of iterations N to get accurate results, and hence,

N = 10 is used in this work, which can be shown to give sufficient accurate predictions.
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In particular, when porous materials consisting of initially spherical voids dis-

tributed isotropically in the matrix (w1 = w2 = 1) are subjected to purely hydrostatic

loading condition σ = σmI, where σm = trσ/3 and I is the second-order identity tensor,

the solution to the system of equations (A.5) can be shown to be given by

σ
(1)

e =
3

2

⎛

⎜

⎝

N

∑
j=1

1 − c(2)
[j]

√

c
(2)

[j]

⎞

⎟

⎠

−1

∣ σm ∣, r[i] =

⎛

⎜
⎜

⎝

¿

Á
Á
Á
ÁÀ

c
(2)

[i]

c
(2)

[1]

i−1

∏
k=1

c
(2)

[k]

⎞

⎟
⎟

⎠

−1

, i = 2, ...,N. (A.6)

where the c
(2)

[i]
> 0 (i = 1, ...,N) are incremental volume fractions in the IVH model,

which are required to satisfy the condition f =
N

∏
i=1

c
(2)

[i]
. It should be noted here that

the specific values of c
(2)

[i]
(i = 1, ...,N) will not significantly affect the accuracy of

the IVH (Agoras and Ponte Castañeda, 2014) and they can be simply chosen as

c
(2)

[i]
= f 1/N (i = 1, ...,N). For general microstructures and applied loadings, the

system of equations (A.5) has to be solved numerically by means of an appropriate

method, e.g., the Newton-Raphson method, where the above solution (A.6) can be

used as an initial guess.

The macroscopic constitutive behavior of the porous metal is governed by the

normality rule:

D = λ̇N, N ≡
∂Φ̃IV H

∂σ
= 2σ

(1)

e

∂σ
(1)

e

∂σ
, (A.7)

where D is the macroscopic Eulerian strain-rate tensor, λ̇ ≥ 0 is the plastic multiplier,

which can be determined from the “consistency condition,” as will be discussed in

section A.2.4, andN is the normal to the yield surface. For the effective yield function

Φ̃ defined by relation (A.4) and (A.5), it can be shown (Agoras and Ponte Castañeda,

2014) that

N =
3

γ
M̂PCW
[N] (r[j])σ, with γ ≡ f

1 − c(2)
[1]

c
(2)

[1]

+
N

∑
i=2

(1 − c(2)
[i]
)(

N

∏
j=i+1

c
(2)

[j]
)

1

r[i]
, (A.8)

where M̂PCW
[N]
(r[j]) is the normalized viscous compliance tensor given by expression

(A.28) in the Appendix.
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A.2.3 Evolution of the internal variables

When the porous metals undergo finite-strain deformation, the internal variables de-

fined in (A.3) evolve, and in turn, affect the instantaneous effective constitutive rela-

tion of the materials. In this subsection, evolution equations for the internal variables

defined in (A.3), characterizing both the hardening of matrix and the microstructure

of the porous metals, are developed.

The evolution law for the accumulated plastic strain εpM is given by (Gurson, 1977)

ε̇pM = λ̇
σ ⋅N
(1 − f)σy

, (A.9)

where use is made of the condition that the macroscopic plastic work, σ ⋅D = λ̇σ ⋅N, is

equal to the microscopic plastic work in the matrix phase, (1− f)σy ε̇
p
M . It is recalled

here that the tensile yield stress σy depends on the accumulated plastic strain ε
p
M

through relation (A.2).

Considering the incompressibility of the matrix phase, the change in volume of

the porous material equals the change in volume of the voids, and the evolution law

for the porosity f takes the form (Gurson, 1977)

ḟ = (1 − f)Dkk, (A.10)

where it is recalled that D is the macroscopic Eulerian strain-rate tensor. Note that

this expression can also be consistently derived from the variational homogenization

methods (Ponte Castañeda and Zaidman, 1994).

The evolution of the shape and orientation of the voids (and distribution) depends

on the local fields in a very complicated fashion, which is in practice, extremely diffi-

cult to determine exactly. However, for the purpose of homogenization, it is sufficient

to know how the average shape and orientation of the voids (and distribution) evolve.

Following the work of Ponte Castañeda and Zaidman (1994), Kailasam and Ponte

Castañeda (1997, 1998) and Aravas and Ponte Castañeda (2004), it is assumed that

the shape of the voids and distribution remain ellipsoidal during the deformation pro-
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cess, but change their aspect ratios and orientations. More specifically, it is assumed

that, on the average, the voids (and distribution) change their shape and orientation

with the average strain-rate and spin field in the voids. Making use of these assump-

tions and of standard kinematical arguments for evolution of ellipsoid under uniform

field, it follows that the evolution law of the aspect ratios wα (α = 1,2) is given by

ẇα = wα (n3 ⊗n3 − nα ⊗ nα) ⋅D
(2)
, α = 1,2, (A.11)

where D
(2)
= A(2)D is the average strain-rate tensor in the void phase, A(2) is the

strain-rate concentration tensor determined by expressions (A.31) and (A.32) in the

Appendix.

Correspondingly, the following evolution equations are obtained for the unit vec-

tors nα (i = 1,2,3) along the three principal directions of the voids, namely

ṅα = ωnα, α = 1,2,3, (A.12)

where ω is an anti-symmetric tensor. Since the principal directions of the voids

coincide with the Eulerian axes of the average deformation gradient of the voids, ω

is determined by the well-known kinematical relation ( e.g., Ogden, 1984)

ω =W
(2)
+
1

2

3

∑
α,β=1
α≠β

wα≠wβ

w2
α +w2

β

w2
α −w2

β

[(nα ⊗nβ + nβ ⊗ nα) ⋅D
(2)
]nα ⊗ nβ, (A.13)

where w3 = a3/a3 = 1, and W
(2)

is the average spin tensor of the voids. The tensor

W
(2)

can be determined consistently from the IVH procedure in terms of the macro-

scopic strain-rate D and macroscopic spin W, by means of expression (3.83), along

with (A.34) and (A.35), as shown in the Appendix. For cases in which at least two

aspect ratios are identical, special care needs to be taken, and this will be discussed

later in this section.

For later use, we also provide the expression for the Jaumann derivative
▽

nα of the
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orientation vectors, namely

▽

nα = ṅα −Wnα = (ω −W)nα, α = 1,2,3. (A.14)

The above equation may be rewritten in terms of the plastic spin W
p
= W − ω

(Dafalias, 1985; Aravas and Ponte Castañeda , 2004), representing the spin of the

continuum relative to the microstructure, in the form

▽

nα = −W
p
nα, α = 1,2,3. (A.15)

Making use of expression (A.13) and (3.83), the plastic spinW
p
can be given explicitly

by expression (A.36) in the Appendix.

It should be noted that when at least two of the aspect ratios are the same,

certain components of W
p
become indeterminate. For example, when w1 = w3, the

porous metal becomes transversely isotropic about the n2 direction, which leaves

W
p

13 indeterminate. Since W
p

13 then becomes inconsequential, it can be set equal to

zero. In other words, ω13 = W 13 in this case. In addition, for spherical voids where

w1 = w2 = w3, the porous metal becomes isotropic, and similarly, we can set W
p
= 0

and ω =W.

With the evolution laws for the internal variables provided above, the porous

medium remains orthotropic throughout the deformation process, although the axes

of orthotropy can rotate in general. However, it should be recalled here that separate

evolution laws for the shape and orientation of the voids and distribution can be

considered (Kailasam et al., 1997; Kailasam, 1998). However, this will not be pursued

in this work, since the effect of distribution is not expected to be significant for porous

materials at low to moderate porosities.
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A.2.4 The consistency condition and macroscopic hardening

rate

The consistency condition is given by

˙̃ΦIV H
(σ; s) =

∂Φ̃IV H

∂σ
⋅
▽

σ +
∂Φ̃IV H

∂ε
p
M

ε̇
p
M +

∂Φ̃IV H

∂f
ḟ +

2

∑
α=1

∂Φ̃IV H

∂wα

ẇα+

3

∑
α=1

∂Φ̃IV H

∂nα

⋅
▽

nα = 0,

(A.16)

where
▽

σ = σ̇ −Wσ +σW is the Jaumann derivative of the macroscopic stress tensor.

In connection with (A.16), we recall that ε̇pM , ḟ , ẇα and
▽

nα are given by the associated

evolution laws (A.9), (A.10), (A.11) and (A.15) respectively. Making use of these

evolution laws, the consistency condition (A.16) may be rewritten as

N ⋅
▽

σ − λ̇HJ = 0, (A.17)

where λ̇ is the plastic multiplier and HJ is the macroscopic Jaumann hardening rate

of the porous metal, given by

HJ =Hε +Hf +Hw +Hn, (A.18)

with

Hε =
2σ ⋅N
1 − f

dσy

dε
p
M

, Hf = −(1 − f)Nkk

∂Φ̃IV H

∂f
,

Hw = −
2

∑
α=1

[(n3 ⊗ n3 −nα ⊗ nα) ⋅A(2)N]
∂Φ̃IV H

∂wα

,

Hn =Ω
p
⋅

3

∑
α=1

(
∂Φ̃IV H

∂nα

⊗ nα) , (A.19)

where Ω
p
is given by expression (A.38) in the Appendix.

Making use of the consistency condition (A.17), the plastic flow rule (A.7) may
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be rewritten in standard form as

D =
N ⋅

▽

σ

HJ

N, (A.20)

where it is recalled that N is given by (A.8), and HJ is given by expressions (A.18)

and (A.19).

In conclusion, the plastic flow rule (A.20), combined with the yield criterion (A.4)

and evolution laws (A.9), (A.10), (A.11) and (A.15), constitute a (complete) internal

variable plasticity model, referred to here, for brevity, as the IVH model. It should

be emphasized that the model incorporates the effect of void rotation, which then

can be applied for general loading conditions including those involving simple shears.

Under given loading conditions for the rigid-plastic porous metal, the IVH model has

to be implemented incrementally, and the key ingredients of the procedure are: (1)

the computation of the instantaneous response of the material at the end of each

increment, and (2) the update of the internal variables (A.3) through the integration

of the evolution laws. Here, we will adopt the backward Euler method proposed in

the work of Aravas and Ponte Castañeda (2004) for the integration of the IVH model.

At last, it should be emphasized that the IVH model is fully predictive, as it does not

involve any fitting parameters. In other words, given the constitutive properties of

the ductile matrix material and the initial values of the microstructural variables, the

model provides estimates for the time-dependent, anisotropic response of the porous

plastic metal.

In the next sections, we consider several applications of the IVH model. First,

we provide results for the instantaneous macroscopic properties of porous materials

subjected to combined shear and hydrostatic stress, with the goal of investigating

the various effects of porosity, void shape and void orientation on the macroscopic

yield surface of porous materials with prescribed (fixed) microstructures. Additional

results for the effect of the porosity and pore shape (but not void orientation) for

other types of loading conditions, as well as comparisons with other models and

numerical results, have been given by Agoras and Ponte Castañeda (2013). Next,
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we will consider the time-dependent response of the porous material under simple

shear loading, investigating the evolution of the void shape and orientation and its

implications for the macroscopic response and shear localization. The results will be

compared to the earlier results of Agoras and Ponte Castañeda (2014) for pure shear

loading, where void rotations are not expected, in particular, to assess the effect of

void rotations under simple shear conditions. Finally, we will consider more general

loading conditions involving combined shear and tension under plane strain conditions

to investigate the effect of stress triaxiality on the macroscopic response of the porous

materials, as well as implications for shear localization.

A.3 Instantaneous response: Macroscopic yield

surfaces for combined shear and hydrostatic

loading

In this section, we investigate the predictions of the IVH model for the instantaneous

macroscopic response of porous metals, focusing on the effect of the microstructural

variables, and especially on the effect of the void rotation. For simplicity, we restrict

our considerations on microstructural configurations such that the principal axis n2

of the voids is always fixed and aligned with the corresponding laboratory axis e2, so

that the average void orientation is completely characterized by the angle θ formed

by the microstructural vector n1 and the laboratory axis e1, as shown in Fig. A.2. In

this case, the microstructural variables reduce to the porosity, f , the two aspect ratios

characterizing the ellipsoidal shape of the voids (and their distribution), w1 = a3/a1

and w2 = a3/a2, as well as the average orientation angle of the voids, θ.

We examine the effect of the microstructural variables on the yield surface of a

porous metal for loading conditions of the type

σ = σmI + σ13 (e1 ⊗ e3 + e3 ⊗ e1) , (A.21)
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Figure A.2: Schematic representation (on the plane e1-e3) of the stress states and the
associated pore average shape and orientation considered in the results of Fig. A.3.

combining hydrostatic stress σm and shear stress σ13 = ±σe/

√

3 (see also Fig. A.2),

where σe is the macroscopic equivalent stress.

Figure A.3(a) shows σm − σ13 cross sections of the yield surfaces for f = 1%,3%

and 10% porosity, with the pore average shape taken in all cases to be ellipsoidal

with aspect ratios w1 = 0.1 and w2 = 0.2, and orientation angle θ = 0. The main

observation from Fig. A.3(a) is that increasing the porosity f leads to the reduction of

the yield surface (especially at high stress triaxialities) and, thus, to softer behavior,

as expected. In addition, note that the yield surfaces tend to become flat for low

triaxialities (near the shear stress axis), especially for low porosities. This strongly

nonlinear behavior is a well-known feature of porous plasticity.

On the other hand, Fig. A.3(b) shows σm −σ13 cross sections of the yield surfaces

of materials with fixed porosity f = 10% and orientation angle θ = 0 for three different

types of pore shape: an oblate pore shape with aspect ratios w1 = w2 = 0.2, a prolate

pore shape with w1 = w2 = 5, and a more general, ellipsoidal pore shape with w1 = 0.2

and w2 = 5. In general, we observe from Fig. A.3(b) that changing the pore shape

(i.e., changing the aspect ratios w1 and w2) has the effect of changing both the size and

the shape of the yield surface, although not its orientation, which in turn implies that

the pore shape may have anisotropic hardening or softening effects. In particular, we
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observe that the material with oblate pores (w1 = w2 = 0.2) is quite softer than that

with prolate pores (w1 = w2 = 5) for all combinations of shear σ13 and hydrostatic

stress σm. Note that the differences between these two yield curves are of the same

order as those between the yield curves for porosities f = 1% and f = 3% or for

porosities f = 3% and f = 10% in Fig. A.3(a), indicating that the effect of the pore

shape may be accordingly of the same order as that of the porosity and, therefore,

quite significant. The material with more general, ellipsoidal pores (w1 = 0.2 and

w2 = 5) is softer than the other two under hydrostatic loading σm and harder than

the other two under pure shear loading σ13, suggesting that the void shape change

may have a strong hardening or a strong softening effect, depending on the loading

direction.

Finally, Figs. A.3(c) and A.3(d) examine the effect of the pore orientation angle

θ on the σm − σ13 cross section of the yield surface of a porous metal with f = 10%

porosity. More specifically, Fig. A.3(c) compares yield curves for orientation angles

θ = 0, π/4 and π/6 of ellipsoidal pores with aspect ratios w1 = 0.1 and w2 = 0.2, while

Fig. A.3(d) compares yield curves for orientation angles θ = 0, π/4 and −π/4 of oblate

pores with aspect ratios w1 = w2 = 0.2. In the context of these results, it should be

remarked that the yield stress of the material under purely hydrostatic loading σm

is independent of the angle θ, as a result of the isotropic character of this loading.

Note that the symmetry of the yield curves for θ = π/4 and θ = −π/4 about the axes

σm = 0 and σ13 = 0 (see Fig. A.3(d)) reflects the corresponding symmetry of the

applied loading with respect to the orientations θ = π/4 and θ = −π/4. In addition, it

is observed that changes in the orientation of the pores result in changes not only in

the size and shape of the yield surface, as in Figs. A.3(a) and A.3(b), but also in its

orientation. The rotation of the yield surface induced by the corresponding rotation

of the voids, as observed in Figs. A.3(c) and A.3(d), has important implications on

the plastic anisotropy, as well as on the overall hardening/softening of the material.

Note, for instance, that when the porous material is subjected to pure hydrostatic

tension (or compression) σm the direction of the induced plastic flow, as defined by

the normal N to the yield curves in Figs. A.3(c) and A.3(d), may vary substantially,
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Figure A.3: The effect of the (a) porosity f , (b) pore average shape, as defined by
the aspect ratios w1 and w2, (c) and (d) pore average orientation, as defined by the
angle θ (Fig. A.2), on the yield surface of a porous material subjected to a mean
stress σm combined with a shear stress σ13 (see Fig. A.2). In each case, yield curves
on the plane σm −σ13 are shown for different values of the variable the effect of which
is being considered.
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depending on the orientation of the voids, e.g., while for θ = 0 the plastic flow is purely

dilatational, for θ = π/4 the plastic flow involves both a dilatational and a substantial

shear component. An analogous conclusion can be drawn for the case that a pure shear

stress σ13 is applied. Furthermore, we observe that the hydrostatic stress σm required

to produce (instantaneously) simple shear deformation of the material, i.e., plastic

flow parallel to the σ13 axis, is zero when the orientation of the voids is parallel to the

direction of the applied shear (θ = 0), but it reaches a value which is comparable to

the corresponding shear stress σ13 when the voids are inclined at an angle θ = π/4, π/6

or −π/4 with respect to the direction of the applied shear deformation.

A.4 Finite-strain response under plane strain con-

ditions: Microstructure evolution,

macroscopic stress-strain behavior and local-

ization

In this section, we consider porous materials consisting of initially spherical voids

distributed randomly and isotropically (w1 = w2 = 1) in a rigid-plastic matrix, with a

yield stress σy characterized by the isotropic strain hardening relation (A.2), where

ε0 = 0.001 and M = 0.1. This material is subjected to plane strain loading conditions,

prescribed by the affine velocity field v = Lx, where L is the velocity gradient tensor

and x stands for the points on the boundary of the specimen. The components of L

are independent of x, but not necessarily fixed in time, so that special conditions such

as fixed stress triaxiality during the loading may be enforced when the components

of L are allowed to evolve in time. Specifically, letting Lij denote the components of

L relative to a fixed coordinate system ei, two different cases corresponding to non-

symmetric and symmetric L, respectively, are considered, as shown schematically in

Figs. A.4(a) and A.4(b):
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Figure A.4: Schematic representation of the (a) non-vanishing spin and (b) vanishing
spin, plane strain loading conditions, defined by (A.22) and (A.23), respectively, along
with the associated in-plane, average deformation of a representative void (sphere to
ellipsoid). The void shape and orientation in the deformed state are defined by the
associated aspect ratios w1 = a3/a1 and w2 = a3/a2, and the orientation angle θ,
respectively. The geometrical features of the localization band that may develop at
a certain critical strain are also shown.
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Note that a loading of the type (A.22) is a combination of uniaxial straining

with shear, while a loading of the type (A.23) corresponds to bi-axial straining. In

general, a loading of the type (A.22) is expected to affect not only the porosity f and

the average void (ellipsoidal) shape, as defined by the aspect ratios w1 = a3/a1 and

w2 = a3/a2, but also the average void orientation in the e1 − e3 plane, as defined by

the angle θ in Fig. A.4(a). On the other hand, a loading of the type (A.23) affects

the porosity and the average void shape, but not the void orientation, i.e., under

the loading conditions (A.23) the void orientation vectors ni coincide with the fixed

vectors ei throughout the deformation (see Fig. A.4(b)).

For future reference, it is convenient to also introduce the macroscopic equiva-

lent strain Ee =

t

∫
0

Dedt, where t denotes the time variable, and De =

√
2
3
Dd ⋅Dd

is the equivalent strain-rate (with Dd denoting the strain-rate deviator tensor). In

particular, for the case of the non-vanishing spin loading (A.22),

De =
2

3
(D

2

33 + 3D
2

13)

1/2

, (A.24)
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while for the case of the vanishing-spin loading (A.23),

De =
2

3
(D

2

11 −D11D33 +D
2

33)

1/2

. (A.25)

As we have seen in the previous section, the variations of the various microstruc-

tural variables (f , w1, w2 and θ) during the deformation process may each have

hardening or softening effects, the competition or synergy among which determines

the overall hardening or softening of the macroscopic response of the material. As a

consequence, there may be a certain critical strain during the loading process at which

the softening effects may prevail over the hardening effects and, thus, the porous ma-

terial may become unstable. In this work, we will consider specifically macroscopic,

or material instabilities, which are characterized by localization of the plastic defor-

mation within a thin band (or loss of strong ellipticity). As given by Rice (1977), the

critical conditions for strain localization in rigid-plastic solids are:

(i) the normal N to the yield surface must be of the form

N =
1

2
(µ⊗ n + n⊗µ), (A.26)

where n denotes the unit normal to the plane of the localization band and µ is a

suitably determined vector, and

(ii) the Jaumann hardening modulus HJ must be equal to the following critical value

Hcr =
1

2
∣µ∣2(σµµ − σnn), (A.27)

where σµµ and σnn are the normal stresses in the directions of µ and n, respectively.

Note that condition (A.26) is equivalent to requiring the localization plane to be

a non-deforming plane. It can be easily shown that under the plane strain loading

conditions (A.22) or (A.23) there exist two non-deforming planes (interchange the role

of n and µ in (A.26)), both of which are parallel to the constrained direction e2. For

the non-vanishing spin loading (A.22), one of these planes has normal e3 and the other

has normal oriented at an angle ψ = tan−1α with respect to e1 (see Fig. A.4(a)). On
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the other hand, for the vanishing-spin loading (A.23), the two non-deforming planes

are symmetrical relative to the directions e1 and e3, with their normals forming equal

angles φ = tan−1
√
β with the direction e3 (see Fig. A.4(b)). Note also that the vector

µ may be easily obtained in terms of n and N by solving the linear equation (A.26),

given that the normal N to the yield surface may be readily determined by means of

the IVH estimate (A.8) for any given microstructural configuration and stress state

during a loading of the type (A.22) or (A.23). It can also be shown that the vectors

n and µ are symmetrical with respect to the principal directions of N on the plane

n −µ, which in the case of the vanishing spin loading (A.23) coincide with the fixed

directions e1 and e3. An implication of the latter result is that σµµ = σnn (since σ

is co-axial with N) and, therefore, the critical condition (A.27) reduces to Hcr = 0

for the case of the vanishing-spin loading (A.23). Moreover, it should be mentioned

that for vanishing-spin loading (A.23), the critical condition Hcr = 0 is reached on

the two possible localization planes simultaneously, due to symmetry. However, for

non-vanishing spin loading (A.22), the critical condition (A.27) on the two possible

localization planes are not met at the same time. In fact, for the loading (A.22)

considered in this work, it is found that the localization condition is always first met

on the plane with unit normal e3, which is parallel to the shear loading plane. For

this reason, only the critical conditions corresponding to this plane are shown in the

following results for non-vanishing spin loading (A.22).

It should also be recalled that the predictions of the IVH model for vanishing-

spin loadings (A.23), with β chosen to be constant throughout any given deformation

history (fixed strain trixiality) have been discussed in detail in Agoras and Ponte

Castañeda (2014). In the present work, we focus on the predictions of the IVH

model for the non-vanishing spin loading (A.22). In order to highlight the effect of

void rotations, however, we will compare the new IVH results for non-vanishing spin

loadings (A.22) with corresponding IVH results for vanishing-spin loadings (A.23).

More specifically, in subsection A.4.1, we consider the special cases α = 0 in (A.22)

and β = 1 in (A.23), corresponding to simple and pure shear deformation, respectively.

In subsection A.4.2 we also consider plane strain loadings of the type (A.22) and
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(A.23), where the parameters α and β are computed such that the stress triaxiality

Xσ ≡ σm/σe is held fixed to a prescribed value throughout the deformation. Note that,

constitutive models of the Gurson type, which account for the porosity but not for the

shape and orientation of the voids, can not discriminate between the non-vanishing

spin and vanishing-spin type of loadings considered in this work.

In addition, it should be remarked that for all results discussed in the following

subsections the critical conditions for strain localization (HJ =Hcr) are labelled with

filled circles. At this point, we recall that for the non-vanishing spin loading (A.22),

the critical condition is first reached on the plane parallel to the shear loading plane

and, for this reason, only the critical conditions corresponding to this plane are marked

in the following results. Although shown for completeness, it should be emphasized

that any IVH results beyond the filled circles may not be physically relevant, since

a post-bifurcation study (which is beyond the scope of the present work) would be

needed after the onset of localization. Furthermore, it should be recalled that under

conditions of void collapse, i.e., when the aspect ratios w1 and w2 assume very small

(or very large) values, the hypothesis adopted in the context of the IVH model that

the pore shape remains ellipsoidal may become questionable on physical grounds,

given that contact of the void surfaces is expected to take place prior to the complete

void closure (Hutchinson and Tvergaard, 2012). For this reason, and given that for

the loading conditions considered here we always have w1 ≤ w2 ≤ 1, conditions of

considerably distorted pore shapes corresponding to the (arbitrarily chosen) aspect

ratio w1 = 0.1 are marked in the plots by open squares.

A.4.1 Simple and pure shear loading

It should be remarked that both simple shear deformation and pure shear deformation

are isochoric loadings (Dkk = 0) and, therefore, do not alter the porosity f in the

material. The main difference between these loadings is that, while simple shear

induces the evolution of both the average void shape and orientation, pure shear

produces changes in the void shape, but not in the void orientation.

Figure A.5 shows plots of the predictions of the IVH model for the internal vari-
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Figure A.5: IVH results for simple shear deformation of initially isotropic porous
materials with porosities f = 1%,3%,10% and 30% (f = f0 =fixed). Plots are shown
for the evolution of the void aspect ratios (a) w1 = a3/a1 and (b) w2 = a3/a2, (c) void
orientation angle θ, (d) yield stress σy of the matrix.
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ables, as functions of the applied strain Ee under simple shear deformation, for initial

porosities f0 = 1%,3%,10% and 30% (f = f0 =fixed). We observe that the aspect

ratios w1 (Fig. A.5(a)) and w2 (Fig. A.5(b)) decrease monotonically with increasing

strain Ee and tend to zero as Ee →∞, indicating that the average void shape deforms

continuously from spherical (w1 = w2 = 1) to flat (w1,w2 → 0), while the average orien-

tation of the voids (Fig. A.5(c)), as defined by the angle θ (see Fig. A.2), undergoes

a continuous, clockwise rotation towards the horizontal axis. As expected, the yield

stress of the matrix σy (Fig. A.5(d)) increases monotonically with increasing strain

Ee with a rate that is initially very large, but then slows down as Ee continues to

increase. Note further that the value of the porosity f0 does not have a significant

effect on the evolution of the internal variables.

Fig. A.6 shows the corresponding plots for the macroscopic response of the porous

materials under simple shear deformation. From the results of Fig. A.6(a) for the

macroscopic shear stress σ13, we observe that the porous metal exhibits a softer be-

havior for larger values of the porosity f0 (note, for example, that σ13 is substantially

smaller for f0 = 30% than for f0 = 1% porosity), as expected on physical grounds. In

addition, we observe that, for any given f , σ13 increases initially with increasing Ee up

to a certain critical strain, depending on f , at which it reaches a maximum (marked

by a dot), and then drops continuously with further increases in Ee. The afore-

mentioned critical strain corresponds to the situation where the Jaumann hardening

modulus HJ in Fig. A.6(c) reaches the critical value Hcr, implying the localization of

the plastic deformation in a shear band, parallel to the shear plane of the loading (see

Fig. A.4(a)). The initial hardening regime in the stress-strain response of Fig. A.6(a)

is a consequence of the corresponding strain hardening of the matrix (Fig. A.5(d)),

while the subsequent softening regime is induced by the anisotropic evolution of the

microstructure (Figs. A.5(a)-A.5(c)), since the porosity f does not change during the

loading. From the results of Fig. A.6(a), we also observe that the onset of localiza-

tion occurs at smaller strains for higher values of the porosity f , indicating that the

softening effect of the anisotropic evolution of the microstructure may be stronger for

higher porosities.
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Figure A.6: IVH results for simple shear deformation of initially isotropic porous
materials with porosities f = 1%,3%,10% and 30% (f = f0 =fixed). Plots are shown
for the evolution of (a) average shear stress σ13, (b) average mean stress σm and (c)
macroscopic Jaumann hardening rate HJ . (d) The actual stress state (loading point)
and associated σ13−σ33 cross section of the yield surface for the material with f = 10%
porosity are shown at the strain levels: (A) Ee = 0, (B) Ee = 0.037, (C) Ee = 1.095
and (D) Ee = 1.999; the remaining non-zero (fixed) stress components on the yield
curves shown are: (A) σ11 = 0 and σ22 = 0, (B) σ11 = 0.051σ0 and σ22 = 0.047σ0, (C)
σ11 = 0.876σ0 and σ22 = 0.722σ0, and (D) σ11 = 0.981σ0 and σ22 = 0.680σ0.
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Figure A.7: Comparison of IVH results for simple shear deformation of an initially
isotropic porous material with f = 10% porosity with corresponding results for pure
shear deformation. Plots are shown for the evolution of the (a) void aspect ratio w1,
(b) void orientation angle θ.

The main observation from the results of Fig. A.6(b) is that the average mean

stress σm produced in the porous material by the applied simple shear deformation

reaches unexpectedly large values. In particular, for any given porosity f , we observe

that σm is initially zero, but increases monotonically up to a certain strain level

and then drops continuously with increasing strain. Note that, for each value of f ,

the maximum value of the mean stress σm is comparable with the corresponding

maximum shear stress σ13, although σm < σ13 (see Figs. A.6(a) and A.6(b)).

Fig. A.6(d) shows additional results for the evolution of the stress state (loading

point) in the material with f = 10% porosity. In particular, this figure shows plots of

the σ13 −σ33 cross section of the yield surface, including the loading point, under the

(fixed) conditions: (A) Ee = 0, σ11 = 0 and σ22 = 0, (B) Ee = 0.037, σ11 = 0.051σ0 and

σ22 = 0.047σ0, (C) Ee = 1.095, σ11 = 0.876σ0 and σ22 = 0.722σ0, and (D) Ee = 1.999,

σ11 = 0.981σ0 and σ22 = 0.680σ0. From these results, we observe that the yield surface

expands from Ee = 0 to Ee = 1.03 and contracts from Ee = 1.03 to Ee = 1.999,

reflecting accordingly the effect due to the strain hardening of the matrix as well as

the hardening and softening effects of the anisotropic evolution of the microstructure

(Figs. A.5(a)-A.5(c)) on the macroscopic response of the material (Figs. A.6(a) and
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Figure A.8: Comparison of IVH results for simple shear deformation of an initially
isotropic porous material with f = 10% porosity with corresponding results for pure
shear deformation. Plots are shown for the evolution of the (a) average equivalent
stress σe, (b) average mean stress σm, and macroscopic Jaumann hardening rate HJ

for (c) simple shear and (d) pure shear.
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A.6(b)). In addition, we observe that the yield surface rotates and translates along

both the σ13 and the σ33 axis (as well as along the axes σ11 and σ22) with increasing

strain, which in turn lead to the gradual development of large hydrostatic stresses σm

during the simple shear deformation of the material (notice the shift of the loading

point with increasing Ee), as observed in Fig. A.6(b).

Figure A.7 and A.8 compare the response of a porous material with f = 10%

porosity under simple and pure shear deformations. The results of Fig. A.7(a) for

w1 show that the evolution of the pore shape under simple shear is very similar with

that under pure shear, with w1 being only slightly larger in the former than in the

latter case. Similar observations apply for the void aspect ratio w2 and, thus, we

omit the corresponding plot. On the other hand, from Fig. A.7(b) we observe that

the void rotation is substantially different for the two types of loading, since the void

orientation angle θ changes substantially under simple shear, while it remains fixed

(aligned with the loading axes) under pure shear. It is also noted for completeness

that the evolution of the yield stress of the matrix σy for pure shear is very similar

with that for simple shear (Fig. A.5(d)) and, for this reason, the corresponding

comparison for σy is also omitted. More interestingly, we observe from Figs. A.8(a)

and A.8(b) that the stress-strain response of the porous material is almost identical

for the two types of loading up to Ee ≈ 0.3. At larger strains, the two curves deviate

from each other, with the stress-strain curve for pure shear increasing continuously

with increasing Ee and the curve for simple shear exhibiting a softening behavior

after a certain strain level. Accordingly, Fig. A.8(d) shows that under pure shear

the critical condition (HJ = 0) for strain localization is never met, while Fig. A.8(c)

shows that under simple shear the associated critical condition (HJ =Hcr) is satisfied

at a given strain, at which the material behavior localizes into a shear band. The

above observations indicate that the rotation of the voids (on average) has a strong

softening effect at large enough strains which ultimately leads to the development of

instabilities in the macroscopic behavior of the material.
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A.4.2 Plane-strain loading at fixed stress triaxiality Xσ

Figure A.9-A.11 show plots of the IVH estimates for the evolution of the internal

and macroscopic variables, as a function of the macroscopic equivalent strain Ee,

for the non-vanishing spin (continuous curves) and vanishing-spin (dotted curves)

loading conditions (A.22) and (A.23), respectively. In these plots, the values of α

and β are allowed to change with the deformation such that the stress triaxiality

Xσ remains fixed throughout the loading process. Results are shown for an initially

isotropic distribution of spherical voids with initial porosity f0 = 10%, subjected

to stress triaxialities Xσ = −1,−0.1,0.1,0.3,0.6,1. Since the evolution of σy for the

loading conditions considered here is similar to that discussed earlier for simple shear

deformation (Fig. A.5(d)), the corresponding plots are omitted for brevity.

High triaxiality (Xσ = 1). When the porous material is subjected to the relatively large

stress triaxiality Xσ = 1, under either non-vanishing spin or vanishing-spin loading

conditions, we observe that the porosity f (Fig. A.9(a)) grows continuously and

very rapidly with increasing strain Ee, indicating accordingly a strong softening of

the material. The changes on the average shape and orientation of the voids with

increasing Ee, as defined by the evolution of the microstructural variables w1 (Fig.

A.9(b)), w2 (Fig. A.9(c)) and θ (Fig. A.9(d)), are not significant, when compared with

the evolution of the porosity f . In addition, comparing the results for the evolution of

the microstructure under non-vanishing spin (continuous curves) and vanishing-spin

(dotted curves) loading, we infer that void rotation has practically no effect on the

evolution of the porosity (Fig. A.9(a)), although it has some effect at large enough

strains on the pore shape change (Figs. A.9(b) and A.9(c)).

From the results of Figs. A.10(a) and A.10(c) for the non-vanishing spin loading,

we observe that at the early stages of the deformation the macroscopic response of the

material exhibits hardening, which is due to the strain hardening of the matrix phase.

However, as can be seen from Fig. A.11(a), the macroscopic hardening modulus HJ

drops rather quickly, and at some critical value of the strain, it reaches the appro-

priate critical value Hcr, indicating the onset of strain localization. Subsequently,
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Figure A.9: IVH results for an initially isotropic porous material with f0 = 10% initial
porosity subjected to plane strain loading with fixed stress triaxiality Xσ. The evo-
lution of the associated internal variables is shown as a function of the macroscopic
equivalent strain Ee for the cases of non-vanishing spin loadings (continuous curves)
and vanishing-spin loadings (dotted curves). (a) Porosity f for both cases. Void as-
pect ratios (b) w1 ≡ a3/a1 and (c) w2 ≡ a3/a2, also for both cases. (d) Void orientation
angle θ for non-vanishing spin loadings.
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the material exhibits continuous softening and the shear and normal components of

the stress drop (see Figs. A.10(a) and A.10(c)). Furthermore, we observe that the

evolution of the stress-strain curves (Figs. A.10(a) and A.10(c)) and of the hardening

modulus (Fig. A.11(a)) for the non-vanishing spin loading are almost identical with

the corresponding results for the vanishing-spin loading (Figs. A.10(b), A.10(d) and

A.11(b)), which is consistent with our earlier observation that void rotation has a

negligible effect on the evolution of the porosity (Fig. A.9(a)). The above observa-

tions indicate that, under either non-vanishing spin or vanishing-spin conditions, for

the loading case Xσ = 1 the macroscopic response of the material is dominated by the

softening effect due to the growth of the porosity, while the effects of the pore shape

and orientation are negligible.

Moderate triaxiality (Xσ = 0.6). From the results for Xσ = 0.6, under either non-

vanishing spin or vanishing-spin conditions, we observe that the porosity f (Fig.

A.9(a)) grows once again, but with a smaller growth rate than for the case Xσ = 1.

Thus, the evolution of the porosity acts again as a softening mechanism, but this time

has a weaker effect. The void aspect ratio w1 (Fig. A.9(b)) decreases gradually with

increasing strain Ee, as for the case Xσ = 1, but at a faster rate. On the other hand,

the evolution of both w2 (Fig. A.9(c)) and θ (Fig. A.9(d)) is significantly different for

Xσ = 0.6 than for Xσ = 1, with w2 and θ evolving faster and reaching smaller values

in the present case. Comparing the evolution of the microstructural variables f , w1

and w2 for non-vanishing spin and vanishing-spin loadings (with Xσ = 0.6), it may

be inferred that void rotation has the effect of accelerating void growth (Fig. A.9(a))

and decelerating the void shape change (Figs. A.9(b) and A.9(c)).

From the results of Figs. A.10(a) and A.10(c), we observe that the initial hard-

ening regime of the macroscopic response for the case Xσ = 0.6 extends for larger

strains than that for Xσ = 1, while from Fig. A.11(a) we observe that the drop of

the hardening modulus HJ is slower for Xσ = 0.6 and, accordingly, the onset of strain

localization occurs at a larger strain. Note that both these observations are consistent

with our earlier observation that the softening effect due to the porosity growth is
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weaker for Xσ = 0.6 than forXσ = 1 (see Figs. A.9(a)). Quite interestingly, we observe

from Fig. A.11(b) that the critical strain at the onset of localization for the case of

the vanishing-spin loading is more than twice that for the case of the non-vanishing

spin loading (see Fig. A.11(a)). Similar to the case of simple shear loading discussed

in subsection A.4.1, this observation for Xσ = 0.6 suggests that void rotation may

have a dramatic destabilizing effect on the macroscopic response of the material. In

addition, it should be remarked that, for the non-vanishing spin conditions, localiza-

tion takes place while the void shape is still quite rounded (the average aspect ratio

w1 reaching a value of 0.1 at nearly twice the critical strain). On the other hand,

for the vanishing-spin conditions, the localization condition is met much later when

the void shape is already quite flat and contact of the void faces may have already

taken place. This suggests that shear localization may indeed be more physically

relevant for non-vanishing spin conditions, where void rotations are significant, than

for vanishing-spin conditions, where void rotations are not expected.

Small triaxiality (Xσ = 0.3). The evolution of the porosity f (Fig. A.9(a)) forXσ = 0.3

is substantially different from that for the cases Xσ = 0.6 and Xσ = 1, discussed above.

In particular, for Xσ = 0.3, we observe that the porosity f increases slightly up to a

certain strain and then decreases continuously and tends to zero with increasing Ee,

indicating that the porosity evolution plays the role of a hardening mechanism in this

case. Furthermore, we observe that the aspect ratios w1 and w2 (Figs. A.9(b) and

A.9(c)) decrease faster for Xσ = 0.3 than forXσ = 0.6 and go to zero at the same strain

that f goes to zero, indicating a tendency of the voids to collapse to micro-cracks.

In addition, we observe that the rotation of the voids, as defined by the evolution

of the angle θ (Fig. A.9(d)), is only slightly faster for Xσ = 0.3 than for Xσ = 0.6.

Comparing the evolution of the porosity f (Fig. A.9(a)) and aspect ratios w1 (Fig.

A.9(b)) and w2 (Fig. A.9(c)) under non-vanishing spin and vanishing-spin loading,

we observe that void rotation has the effect of decelerating the void collapse rate, i.e.,

the variables f , w1 and w2 go to zero at a larger strain for the non-vanishing spin

loading.
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Figure A.10: IVH results for an initially isotropic porous material with f0 = 10%
initial porosity subjected to plane strain loading with fixed stress triaxiality Xσ. The
evolution of the associated macroscopic variables is shown as a function of the macro-
scopic equivalent strain Ee for the cases of non-vanishing spin loadings (continuous
curves) and vanishing-spin loadings (dotted curves). Average equivalent stress σe for
(a) non-vanishing spin loadings and (b) vanishing-spin loadings. Average mean stress
σm for (c) non-vanishing spin loadings and (d) vanishing-spin loadings.
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Figure A.11: IVH results for an initially isotropic porous material with f0 = 10% initial
porosity subjected to plane strain loading with fixed stress triaxiality Xσ. Results
are shown for the macroscopic Jaumann hardening modulus HJ for (a) non-vanishing
spin and (b) vanishing-spin loadings.

The macroscopic stress-strain curves in Fig. A.10(a) show that the material re-

sponse is harder for Xσ = 0.3 than for Xσ = 0.6, which is consistent with the fact

that the evolution of the porosity (Fig. A.9(a)) acts as a hardening mechanism (at

large enough strains) in the former case and as a softening mechanism in the latter.

In addition, comparing the stress-strain curves for non-vanishing spin loading (Figs.

A.10(a) and A.10(c)) with the corresponding curves for vanishing-spin loading (Figs.

A.10(b) and A.10(d)), we observe that the macroscopic behavior of the porous metal

is slightly softer for the former than for the later type of loading, which is consistent

with the fact that the slower reduction of the porosity in the former case (see Fig.

A.9(a)) leads to a weaker hardening behavior of the material.

The most remarkable feature of the results shown in Fig. A.11 for Xσ = 0.3, for

both the non-vanishing spin and the vanishing-spin loading, is that the macroscopic

behavior of the material becomes unstable at sufficiently large strains, despite the

hardening induced by the reduction of the porosity (Fig. A.9(a)). As argued by Ago-

ras and Ponte Castañeda (2014) in the context of vanishing-spin loading conditions

with fixed strain triaxiality, the basic mechanism responsible for this instability is the

collapse of the voids, which has a softening effect that at the critical strain becomes
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sufficiently strong to overcome the corresponding hardening effects due to the reduc-

tion of the porosity and the strain hardening of the matrix phase. Note that for the

non-vanishing spin loading the instability occurs at a slightly larger strain than for

the vanishing-spin loading, suggesting that for the loading case Xσ = 0.3 void rotation

may have a (weak) hardening effect, which is consistent with the fact that the void

collapse rate for the non-vanishing spin loading is slower (i.e., the aspect ratios w1 and

w2 in Figs. A.9(b) and A.9(c) decrease with slower rates) than for the vanishing-spin

loading.

In contrast with the loading cases Xσ = 0.6 and Xσ = 1, we observe that for

Xσ = 0.3 the onset of strain localization takes place for relatively small aspect ratios

(e.g., under the non-vanishing spin loading, w1 ≈ 0.05 and w2 ≈ 0.1). As already

mentioned, the relevance of this prediction could be questioned on the basis of the

fact that void surface contact is expected to take place earlier and to have a hardening

effect that could ultimately prevent strain localization (Hutchinson and Tvergaard,

2012). In this connection, it should be remarked that the recent (unit cell) numerical

analysis by Tvergaard (2014) on the development of shear localization instabilities

in elastic-plastic porous materials has shown that void surface contact delays the

onset of localization, but it does not completely eliminate it. Although quantitative

comparisons of the predictions of the IVH model with results from the latter work can

not be made due to differences in the microstructural features and loading conditions

considered, it is interesting to remark that, at least for the case of the non-vanishing

spin loading, the predictions of the IVH model for relatively small stress triaxialities

(e.g., Xσ = 0.3) are qualitatively consistent with the corresponding numerical results

of Tvergaard (2014) for shear localization, as well as for the propensity of the voids to

collapse to micro-cracks, which in the context of the IVH model provides the required

softening mechanism for strain localization.

Very small and negative triaxialities (Xσ = 0.1,−0.1,−1). The evolution of the internal

and macroscopic variables in Fig. A.9-A.11 for the stress triaxialities Xσ = 0.1,−0.1

and −1 is qualitatively similar with that for the loading caseXσ = 0.3, discussed above.
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Note, however, that for smaller values of Xσ the voids collapse to micro-cracks faster,

i.e., the variables f (Fig. A.9(a)), w1 (Fig. A.9(b)) and w2 (Fig. A.9(c)) drop to zero

faster with decreasing values of Xσ (for Xσ ≤ 0.3). As a result, void closure (f = 0)

occurs at smaller strains, while the softening effect due to void collapse becomes

stronger for smaller values of Xσ, thus leading to instabilities at smaller strains.

The differences between the results for the non-vanishing spin (continuous curves)

and vanishing-spin (dotted curves) loading, for any given variable in Fig. A.9-A.11,

decrease with decreasing Xσ and forXσ = −1 there are practically no differences for the

two types of loading, suggesting that void rotations play no role on the macroscopic

response of the porous materials at these levels of triaxiality.

A.4.3 Failure curves

We conclude this section with a discussion of the effect of the stress triaxiality on

the ductile failure of porous materials, as defined by the onset of macroscopic strain

localization. To this end, Fig. A.12 shows plots of the critical equivalent strain E
cr

e

at the onset of localization as a function of the applied stress triaxiality Xσ. Fig.

A.12(a) presents results for the non-vanishing spin loading (A.22), with fixed Xσ,

for f0 = 1%,10% and 30% initial porosity, while Fig. A.12(b) compares the failure

curve for f0 = 10% of Fig. A.12(a) with corresponding results for the vanishing-spin

loading (A.23) with fixed Xσ. The dashed portion of each failure curve in Fig. A.12

corresponds to instabilities occurring for void aspect ratios wcr
1 < 0.1 (wcr

2 > w
cr
1 ).

In this connection, we recall that under loading conditions leading to the collapse

(w1,w2 → 0) of the voids, partial contact of the opposite faces of the voids is expected

to take place prior to complete void closure (Hutchinson and Tvergaard, 2012) and,

thus, the approximation that the void shape remains ellipsoidal is expected to become

invalid for sufficiently small values of the void aspect ratios. It should be emphasized,

however, that the ellipsoidal pore-shape assumption adopted by the IVH model refers

not to the shape of any individual void but to the shape of the voids on average.

Thus, it could be argued that partial contact of opposite faces in any given void is

equivalent to splitting the void into two (or more) voids, the average shape of which
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may still be (approximately) described by a characteristic ellipsoid. For this reason,

it is plausible that the average ellipsoidal-shape assumption may still be physically

relevant even after contact of the void faces has occurred in individual voids. In other

words, despite the fact that the IVH model does not account for void surface contact,

the instabilities of Fig. A.12 for wcr
1 < 0.1 may still be physically relevant.

From the results of Fig. A.12(a), we observe that the failure curves exhibit a

maximum at a certain value X∗σ of the stress triaxiality Xσ, which for porosities

f0 = 10% and 30% is X∗σ ≈ 0.3 and for f0 = 1% is X∗σ ≈ 0.4. For any given f0, we

observe that the material becomes progressively more unstable (i.e., the critical strain

E
cr

e becomes smaller) with either increasing or decreasing Xσ from Xσ = X∗σ . This

behavior may be understood to be a consequence of the fact that the effect of the

underlying softening mechanisms that are responsible for failure become progressivey

stronger with either increasing or decreasing Xσ from Xσ = X∗σ . In this connection,

we recall from the results of the previous subsection for f0 = 10% that the dominant

failure mechanism in the range of stress triaxialities Xσ < 0.3 is void collapse, while

in the range Xσ > 1 it is void growth. Thus, it would appear that void rotations can

also have a significant effect for intermediate values of Xσ.

The failure curves of Fig. A.12(b) for non-vanishing spin and vanishing-spin load-

ings are very similar for stress triaxialities in the regions Xσ < 0.3 and Xσ > 1,

suggesting accordingly that the effect of void rotation is relatively weak for loadings

with Xσ < 0.3 or Xσ > 1. On the other hand, for values 0.3 ≲ Xσ ≲ 1 we observe that

the failure curves of Fig. A.12(b) are substantially different, indicating that the effect

of void rotation is rather significant in this intermediate range. In particular, note

that for the vanishing-spin loading the critical strain E
cr

e →∞ as Xσ → 0.5, while for

the non-vanishing spin loading E
cr

e ≈ 0.8 for Xσ = 0.5.

Finally, it should be recalled in the context of Fig. A.12 that, for any given f0,

there is a region of stress triaxialities within which strain localization occurs for sub-

stantially distorted pore shapes, i.e., for pore shapes characterized by an aspect ratio

wcr
1 < 0.1 (see dashed portions of the curves in Fig. A.12). The main conclusions con-

cerning the instabilities in this range of stress triaxialities, as discussed above, could
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Figure A.12: (a) The critical strain E
cr

e at the onset of macroscopic localization in
initially isotropic porous materials subjected to non-vanishing spin loading of the
type (A.22) with fixed stress triaxiality Xσ, is plotted as a function of Xσ, for f0 =
1%,10% and 30%. (b) The failure curve of Part (a) for f0 = 10% is compared with
corresponding results for vanishing-spin loading of the type (A.23) with fixed Xσ.
The dashed portion of each failure curve corresponds to instabilities occurring at a
void aspect ratio w1 < 0.1.

be affected quantitatively by the fact that contact of the void surfaces is expected

to take place before the onset of localization. However, at least for non-vanishing

spin loadings, the recent work by Tvergaard (2014) suggests that contact of the void

surfaces does not change the propensity of the material to localize, although such

void surface contact may delay the onset of localization, relative to the predictions of

the IVH model (which ignores contact of the void surfaces).

A.5 Concluding remarks

In this paper, we have extended the constitutive model of Agoras and Ponte Castañeda

(2013, 2014) for porous rigid-plastic materials to account for void rotations under

general finite-deformation loading conditions. The model makes use of the iter-

ated variational linear comparison homogenization (IVH) method developed by Ponte

Castañeda (2012) to characterize the instantaneous macroscopic response of porous

metals by means of yield surfaces depending on the current values of the porosity, the
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average shape and orientation of the pores, as well as the shape and orientation of the

distribution function for the centers of the pores. In addition, consistently derived

homogenization estimates for the average strain-rate and vorticity in the pores are

used to derive corresponding evolution equations for the porosity, average shape and

orientation of the voids (and their distribution). In its final form, the IVH model can

be regarded as a standard “internal variable” plasticity model, where the evolution of

the microstructural variables accounts for “geometrical” contributions to the overall

hardening/softening of the porous material, adding to the usual “constitutive” con-

tributions already accounted for through the evolution of the yield stress in the solid

matrix material.

The model was first applied to investigate the macroscopic response of initially

isotropic rigid-plastic porous metals under simple shear loading. It was found that

significant stress triaxialities develop in the material as a result of a strong in-plane

anisotropy that is induced by the change in the pore average shape from spherical

to flat ellipsoids. This finding is in qualitatively agreement with earlier results of

Kailasam and Ponte Castañeda (1997) and Danas and Ponte Castañeda (2009a),

but quite different from the prediction of Gurson-type models, where the material

is assumed to remain isotropic, so that no normal stresses (or stress triaxiality) can

develop under simple shear loading. In addition, strain localization was predicted to

take place in a shear band parallel to the shear plane of the loading. By means of

suitable comparisons with the corresponding results for pure shear loading—where the

voids undergo no rotation on average and no shear localization occurs—we deduced

that the rotation of the voids for simple shear loading conditions has a strong softening

effect, which tends to dramatically enhance the susceptibility of the material to fail

by shear localization. In this context, it is crucial to note that the average rotation of

the voids is a consequence of non-vanishing macroscopic spin associated with simple

shear loading conditions, since the vanishing-spin conditions associated with pure

shear loading for initially isotropic distributions of spherical voids would produce no

void rotations on average.

Next, the macroscopic response of the porous metal was investigated for com-
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bined plane strain tension and shear with prescribed, fixed stress triaxiality Xσ. It

was found that the stress triaxiality has a strong effect on the evolution of the poros-

ity and average shape of the pores, which has a very significant effect on both the

shear and normal components of the macroscopic stress, leading to the development

of shear localization at sufficiently large strains. In particular, consistent with ear-

lier observations (Agoras and Ponte Castañeda, 2014), the main failure mechanism is

found to be void growth at large stress triaxialities (Xσ ≳ 1) and void collapse at small

stress triaxialities (Xσ ≲ 0.3), such that the localization strain decreases both with

increasing triaxialities at the larger triaxialities, and with decreasing triaxialities at

the lower triaxialities. For these ranges of triaxialities, voids rotations were found to

have no significant effects on the macroscopic hardening of the material and therefore

no implications for shear localization. On the other hand, for intermediate values of

Xσ (0.3 ≲ Xσ ≲ 1), it was found that void rotations tend to destabilize the macro-

scopic response of the porous materials leading to much lower localization strains

than when void rotations are not present (as in biaxial straining of the material).

This stronger susceptibility to failure by shear localization for shearing loading condi-

tions (i.e., with non-vanishing spin) would appear to be consistent with recent finite

element simulation results (Tvergaard, 2014) for porous plastic media with periodic

microstructures (although great care should be exercised when comparing instabil-

ity results for random and periodic microstructures, due to the great sensitivity of

these results to the initial distribution of the pores as determined, for example, by

the shape of the unit cell in the periodic context). In this context, it is also impor-

tant to recall that the IVH model does not take into account the possible contact of

void surfaces (Hutchinson and Tvergaard, 2012) at sufficiently low stress triaxialities.

However, while contact of the void faces is expected to have a hardening effect on

the macroscopic response, which may indeed slow down the possible development of

shear localization instabilities, the finite element results of Tvergaard (2014) show

that at least for shear loading conditions contact of the void faces is not enough to

completely stop the development of shear bands. In this sense, our results are at

the very least qualitatively consistent with the FEM results in that porous materials

322



are predicted to be more susceptible to failure by shear localization for “shearing”

loading conditions leading to non-vanishing spins of the voids than for “axial” loading

conditions where no void rotations are expected.

This observation translates into an additional level of complexity in modeling the

macroscopic response of porous plastic materials. While experimental results have

shown that the stress triaxiality does not suffice to characterize the failure of porous

metals at low stress triaxialities, and other measures such as the Lode parameter must

be introduced, the observations of the previous paragraph strongly suggest that even

the triaxiality and the Lode parameter may not be enough to completely describe

failure of porous metals in the low to moderate stress triaxiality regime. Indeed, the

results of this work strongly suggest that the macroscopic spin, or vorticity can have

strong implications for shear localization at intermediate values of the triaxiality. In

turn this suggests that to really be able to model and predict failure of porous plastic

materials it may be necessary to implement a more microscopic point of view, since

these failure mechanisms may ultimately be controlled by microscopic features such

as the evolution of the average size, shape and orientation of the voids. While macro-

scopic stress measures such as the triaxiality and the Lode parameter certainly have

implications for failure on porous ductile materials, their effects are only indirect—

through the corresponding effects on the evolution of the microstructure. In this

sense, it would appear that it may be necessary to directly account for such mi-

crostructural evolution effects, something that could only be accomplished with more

sophisticated constitutive models accounting for additional microstructural variables

beyond the porosity. It is precisely for these reasons that homogenization models,

such as the one developed in the context of this work, have a distinct advantage,

since they allow the direct incorporation of appropriate statistical variables, such as

the average void shape and orientation, suitably describing the state and anisotropic

evolution of the porous microstructure. In addition, these homogenization models

can be generalized in a seamless fashion to account for additional microstructural

features, such as crystallographic texture, whose evolution is known to be crucial in

modeling the response of certain low-symmetry materials, such as magnesium and
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polar ice. Thus, the techniques developed in this work could be generalized to model

the combined effect of porosity and crystallographic texture in porous low-symmetry

polycrystals, building on recent work by Lebensohn et al. (2011) making use of less

sophisticated homogenization methods to determine macroscopic yield surfaces of

porous polycrystals.

A.6 Appendix: Detailed expressions for the model

In this Appendix, we provide the required detailed expressions for the IVH model,

referring to Agoras and Ponte Castañeda (2013) and Agoras and Ponte Castañeda

(2014) for their derivations. In this context, it is important to recall that these

expressions are obtained by means of the (PCW) estimates of Ponte Castañeda and

Willis (1995) for the LCC at each iteration step. In addition, use is made of the results

of Idiart and Ponte Castañeda (2007c) to relate the averages and second moments of

the fields in the matrix and vacuous phases of the LCC to the corresponding quantities

in the actual nonlinear porous material.

We begin by recalling that the normalized effective viscous compliance tensors

M̂PCW
[i]

of the i-level LCC is given by

M̂PCW
[1] = K + c(2)

[1]
[Q̂(p) − c(2)

[1]
Q̂(d)]

−1

,

M̂PCW
[i] = r−1[i]K + r

−1
[i]c
(2)

[i]
[(r[i] M̂

PCW
[i−1] −K)

−1

+ (1 − c(2)
[i]
)Q̂(d)]

−1

≡ M̂PCW
[i] (r[2], ..., r[i]), i = 2, ...,N, (A.28)

where K is the fourth-order identity tensor in the deviatoric space, the variables c
(2)

[i]

(i = 1, ...,N) are incremental volume fractions, the variables r[i] (i = 2, ...,N) are

normalized shear moduli in the LCC (see Agoras and Ponte Castañeda, 2014 for

details), Q̂(p) and Q̂(d) are the fourth-order microstructural tensors, accounting for

the shape and orientation of the pores and their distribution, respectively. In this

Appendix, it is assumed for generality that the shape and orientation of the pores and

distribution may be different. However, in the body of the paper, and in all the results
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presented therein, it has been assumed that the shape and orientation of the pores

are identical to those of their distribution, and hence that Q̂(p) = Q̂(d) = Q̂(wα,ni).

In general, these microstructural tensors have to be computed numerically, as shown

in the work of Aravas and Ponte Castañeda (2004).

For the rigid plastic porous metal, the second moment of the equivalent stress

field over the matrix phase (σ
(1)

e )

2

can be shown to satisfy the relations (Agoras and

Ponte Castañeda, 2014)

(σ
(1)

e )

2

=
3

2

1

1 − c(2)
[1]

σ ⋅ [
N

∏
j=2

B
(2)

[j]
]

T

M̂PCW
[1] [

N

∏
j=2

B
(2)

[j]
]σ ≡ F[1](r[2], ..., r[N]),

(σ
(1)

e )

2

=
3

2

r[i]

1 − c(2)
[i]

σ ⋅ [
N

∏
j=i+1

B
(2)

[j]
]

T

[M̂PCW
[i] − c(2)

[i]
(B
(2)

[i]
)
TM̂PCW

[i−1] B
(2)

[i]
] [

N

∏
j=i+1

B
(2)

[j]
]σ

≡ F[i](r[2], ..., r[N]), i = 2, ...,N, (A.29)

where the corresponding stress concentration tensors are provided by

B
(2)

[i]
= [I + (1 − c(2)

[i]
)Q̂(d) (r[i] M̂

PCW
[i−1] −K)]

−1

≡ B
(2)

[i]
(r[2], ..., r[i]), i = 2, ...,N.

(A.30)

In this last expression, I is the fully symmetric, fourth-order identity tensor. As

mentioned in section A.2.2, for given applied loading σ and internal variables s of

the porous metal, the N unknowns σ
(1)

e and r[i] (i = 2, ...,N) can be fully determined

from the system of N nonlinear equations (A.29).

The iterated estimates of the PCW type for the average strain-rate in the voids is

given by D
(2)
= A(2)D, where A(2) is the associated strain-rate concentration tensor,

determined by (Agoras and Ponte Castañeda, 2013; Agoras and Ponte Castañeda,

2014)

A(2) =
N

∏
i=1

A
(2)

[i]
≡ A(2)(r[2], ..., r[N]), (A.31)
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with

A
(2)

[1]
= [c

(2)

[1]
I +K(Q̂(p) − c(2)

[1]
Q̂(d))]

−1

,

A
(2)

[i]
= [c

(2)

[i]
I + (1 − c(2)

[i]
) [(K −KQ̂(d)K) (r[i] M̂

PCW
[i−1] )

−1

+KQ̂(d)]]
−1

≡ A
(2)

[i]
(r[2], ..., r[i]), i = 2, ...,N. (A.32)

It should be noted that A
(2)

[1]
, which corresponds to the strain-rate concentration tensor

at the first level LCC, depends on the shape and orientation of both the pores and

distribution, through the microstructural tensors Q̂(p) and Q̂(d); however, the other

strain-rate concentration tensors A
(2)

[i]
(i = 2, ...,N), which correspond to higher level

LCCs, only depend on the shape and orientation of the pore distribution, through

the tensor Q̂(d).

Similarly, the average spin tensor of the voids can be obtained iteratively from

the corresponding estimates of the PCW type for the LCC at each increment, and is

given by

W
(2)
=W −C(2)D, (A.33)

where C(2) is the associated spin concentration tensor in the voids, determined by

C(2) =
N

∑
i=1

[C
(2)

[i]
(

N

∏
j=i+1

A
(2)

[j]
)] , (A.34)

with

C
(2)

[1]
= −(Π(p) − c(2)

[1]
Π(d))A

(2)

[1]
,

C
(2)

[i]
= (1 − c(2)

[i]
)Π(d) [K(r[i]M̂

PCW
[i−1] )

−1

− I]A(2)
[i]

≡ C
(2)

[i]
(r[2], ..., r[i]), i = 2, ...,N. (A.35)

Note that Π(p) and Π(d) are the fourth-order Eshelby microstructural tensors, which

correspond to the rotation of pores and their distribution, respectively. In the present

work, where the shape and orientation of the pores are identical to that of their
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distribution, Π(p) = Π(d) = Π(wα,ni). The tensor Π can be computed numerically

following the procedure developed by Aravas and Ponte Castañeda (2004). Similar to

the strain-rate concentration tensor, the spin concentration tensor C
(2)

[1]
corresponding

to the first-level LCC, depends on the shape and orientation of both the pores and

distribution; the other spin concentration tensors C
(2)

[i]
(i = 2, ...,N) corresponding to

higher-level LCCs, depend only on the shape and orientation of the pore distribution.

Given the above expressions (3.83), (A.34), (A.35), along with relation (A.13),

the plastic spin W
p
=W −ω can be given by

W
p
= −

1

2

3

∑
α,β=1
α≠β

wα≠wβ

w2
α +w2

β

w2
α −w2

β

[(nα ⊗nβ + nβ ⊗nα) ⋅ (
N

∏
i=1

A
(2)

[i]
)D]nα ⊗nβ

+
N

∑
i=1

[C
(2)

[i]
(

N

∏
j=i+1

A
(2)

[j]
)]D. (A.36)

Consistent with the work of Aravas and Ponte Castañeda (2004), the plastic spin may

then be rewritten as

W
p
= λ̇Ω

p
, (A.37)

where Ω
p
is given by

Ω
p
= −

1

2

3

∑
α,β=1
α≠β

wα≠wβ

w2
α +w2

β

w2
α −w2

β

[(nα ⊗nβ + nβ ⊗ nα) ⋅ (
N

∏
i=1

A
(2)

[i]
)N]nα ⊗ nβ

+
N

∑
i=1

[C
(2)

[i]
(

N

∏
j=i+1

A
(2)

[j]
)]N. (A.38)
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Idiart, M. I., Ponte Castañeda, P, 2007a. Variational linear comparison bounds for

nonlinear composites with anisotropic phases. I. General results. Proc. R. Soc.

Lond. A 463, 907-924.
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Song, D., Ponte Castañeda, P., 2017f. A finite-strain multiscale homogenization

model for viscoplastic porous polycrystals with large voids: II– Applications. In

preparation

Srivastava, A., Gopagoni, S., Needleman, A., Seetharaman, V., Staroselsky, A.,

Banerjee, R., 2012. Effect of specimen thickness on the creep response of a Ni-

based single-crystal superalloy. Acta. Mater. 60, 5697–5711.

Srivastava, A., Needleman, A., 2012. Porosity evolution in a creeping single crystal.

Modelling Simul. Mater. Sci. Eng. 20, p.035010.

Srivastava, A., Needleman, A., 2013. Void growth versus void collapse in a creeping

single crystal. J. Mech. Phys. Solids 61, 1169-1184.

Srivastava, A., Needleman, A., 2015. Effect of crystal orientation on porosity evolution

in a creeping single crystal. Mech. Mater. 90, 10–29.

Suquet, P., 1992. On bounds for the overall potential of power law materials con-

taining voids with an arbitrary shape. Mechanics Research Communications 19,

51–58.

Talbot, D.R.S.., Willis, J. R., 1985. Variational principles for inhomogeneous non-

linear media. I.M.A. J. appl. Math. 35, 39–54.

339



Taylor, G.I., 1938. Plastic strain in metals. J. Inst. Metals. 62, 307-324.

Tvergaard, V., 1981. Influence of voids on shear band instabilities under plane strain

conditions. Int. J. Fracture 17, 389–407.

Tvergaard, V., 1990. Material failure by void growth. Adv. Appl. Mech. 27, 83–151.

Tvergaard, V., 2012. Effect of stress-state and spacing on voids in a shear-field.

International Journal of Solids and Structures 49, 3047–3054..

Tvergaard, V., 2014. Bifurcation into a localized mode from non-uniform periodic

deformations around a periodic pattern of voids. J. Mech. Phys. Solids 69, 112–

122.

Tvergaard, V., 2015. Study of localization in a void-sheet under stress states near

pure shear. Int. J. Solids Struct. 75-76, 134–142.

Van Houtte, P., Aernoudt, E., 1976. Considerations on the crystal and the strain

symmetry in the calculation of deformation textures with the Taylor theory. Mater.

Sci. Eng. 23, 11-22.

Willis, J. R., 1977. Bounds and self-consistent estimates for the overall moduli of

anisotropic composites. J. Mech. Phys. Solids 25, 185–202.

Willis, J. R., 1981. Variational and related methods for the overall properties of

composites. Adv. Appl. Mech. 21, 1-78.

Willis, J. R., 1983. The overall response of composite materials, ASME J. Appl. Mech.

50, 1202–1209.

Willis, J.R., 1991. On methods for bounding the overall properties of nonlinear

composites. J. Mech. Phys. Solids 39, 73–86.

Xue, Z,. Faleskog, J., Hutchinson, J. W., 2013. Tension-torsion fracture experiments

Part II: Simulations with the extended Gurson model and a ductile fracture crite-

rion based on plastic strain. Int. J. Solids Struct. 50, 4258–4269.

340



Yamamoto, H., 1978. Conditions for shear localization in the ductile fracture of void

containing materials. Int. J. Fract. 14, 347-365.

Yerra, S.K., Tekog, C., Scheyvaerts, F., Delannay, L., Van Houtte, P., Pardoen, T.,

2010. Void growth and coalescence in single crystals. Int. J. Solids Struct. 47,

1016–1029.

341


	University of Pennsylvania
	ScholarlyCommons
	2017

	Constitutive Modeling Of Viscoplastic Porous Single Crystals And Polycrystals: Macroscopic Response And Evolution Of The Microstructure
	Dawei Song
	Recommended Citation

	Constitutive Modeling Of Viscoplastic Porous Single Crystals And Polycrystals: Macroscopic Response And Evolution Of The Microstructure
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Contents
	List of Tables
	List of Figures
	Introduction
	Iterated variational homogenization model for porous single crystals
	Introduction
	Homogenization framework for porous single crystals
	Application to porous HCP single crystals
	Concluding remarks
	Appendix: Expressions for the IVH method

	Iterated second-order homogenization model for viscoplastic porous single crystals: Theory
	Introduction
	Background and formulation
	Fully optimized second-order variational estimates
	Iterated second-order estimates
	Evolution equations for the microstructural variables
	Concluding remarks
	Appendix I: Detailed expressions for the LCC in the ISO method
	Appendix II: Numerical aspects of the ISO model

	Iterated second-order homogenization model for viscoplastic porous single crystals: Applications
	Introduction
	Porous FCC single crystals: Instantaneous macroscopic response
	Porous FCC crystals: Microstructure evolution and finite-strain response
	The effect of the loading configuration.
	The effect of the stress triaxiality.

	Porous HCP single crystals
	Instantaneous macroscopic response
	Microstructure evolution and finite-strain response

	Concluding remarks

	Fully optimized second-order homogenization model of viscoplastic polycrystals
	Introduction
	Background and formulation
	Fully optimized second-order homogenization approach
	Microstructure evolution
	Instantaneous response for hexagonal polycrystals
	The effect of the rate sensitivity
	The effect of the grain anisotropy

	Finite-strain macroscopic response for polycrystalline ice
	Concluding remarks
	Appendix I: Detailed expressions for the LCC
	Appendix II: Statistic moments of the spin field in the nonlinear polycrystals

	Iterated second-order homogenization model for viscoplastic porous polycrystals with large voids: Theory
	Introduction
	Background and formulation
	Sub-structural characterization
	Meso-structure of the porous medium
	Micro-structure of the polycrystalline matrix

	Local material behavior

	Instantaneous effective response
	Fully optimized second-order variational estimates
	Iterated second-order method

	Evolution of the sub-structure
	Porosity evolution
	Pore morphology evolution
	Grain morphology evolution
	Crystallographic texture evolution

	Concluding remarks
	Appendix I: Two-scale LCC in the FOSO method
	Homogenization at the micro-scale
	Homogenization at the meso-scale
	Field statistics in the two-scale LCC

	Appendix II: FOSO estimates for the two-scale porous polycrystal
	Appendix III: Expressions for the LCC in the ISO method
	Appendix IV: Numerical Implementation of the ISO model

	Iterated second-order homogenization model for viscoplastic porous polycrystals with large voids: Applications
	Introduction
	Applications to porous FCC polycrystals
	Instantaneous effective response
	Finite-strain macroscopic response
	Uniaxial tension
	Uniaxial compression


	Applications to porous HCP polycrystals
	Instantaneous effective response
	Finite-strain macroscopic response
	Axisymmetric tension
	Axisymmetric compression


	Concluding remarks

	Closure
	Appendix
	The evolution of pore shape and orientation in plastically deforming metals: implications for macroscopic response and shear localization
	Introduction
	The iterated variational linear comparison homogenization model 
	Internal variables
	Macroscopic constitutive behavior
	Evolution of the internal variables
	The consistency condition and macroscopic hardening rate

	Instantaneous response: Macroscopic yield surfaces for combined shear and hydrostatic loading
	Finite-strain response under plane strain conditions: Microstructure evolution, macroscopic stress-strain behavior and localization
	Simple and pure shear loading
	Plane-strain loading at fixed stress triaxiality X
	Failure curves

	Concluding remarks
	Appendix: Detailed expressions for the model



