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Bayesian Nonparametric Methods For Causal Inference And Prediction

Abstract
In this thesis we present novel approaches to regression and causal inference using popular Bayesian
nonparametric methods. Bayesian Additive Regression Trees (BART) is a Bayesian machine learning
algorithm in which the conditional distribution is modeled as a sum of regression trees. We extend BART into
a semiparametric generalized linear model framework so that a portion of the covariates are modeled
nonparametrically using BART and a subset of the covariates have parametric form. This presents an attractive
option for research in which only a few covariates are of scientific interest but there are other covariates must
be controlled for. Under certain causal assumptions, this model can be used as a structural mean model. We
demonstrate this method by examining the effect of initiating certain antiretroviral medications has on
mortality among HIV/HCV coinfected subjects. In later chapters, we propose a joint model for a continuous
longitudinal outcome and baseline covariates using penalized splines and an enriched Dirichlet process
(EDP) prior. This joint model decomposes into local linear mixed models for the outcome given the
covariates and marginals for the covariates. The EDP prior that is placed on the regression parameters and the
parameters on the covariates induces clustering among subjects determined by similarity in their regression
parameters and nested within those clusters, sub-clusters based on similarity in the covariate space. When
there are a large number of covariates, we find improved prediction over the same model with Dirichlet
process (DP) priors. Since the model clusters based on regression parameters, this model also serves as a
functional clustering algorithm where one does not have to choose the number of clusters beforehand. We use
the method to estimate incidence rates of diabetes when longitudinal laboratory values from electronic health
records are used to augment diagnostic codes for outcome identification. We later extend this work by using
our EDP model in a causal inference setting using the parametric g-formula. We demonstrate this using
electronic health record data consisting of subjects initiating second generation antipsychotics.
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ABSTRACT

BAYESIAN NONPARAMETRIC METHODS FOR CAUSAL INFERENCE AND PREDICTION

Bret Michael Zeldow

Jason A. Roy

In this thesis we present novel approaches to regression and causal inference using popular

Bayesian nonparametric methods. Bayesian Additive Regression Trees (BART) is a Bayesian ma-

chine learning algorithm in which the conditional distribution is modeled as a sum of regression

trees. We extend BART into a semiparametric generalized linear model framework so that a por-

tion of the covariates are modeled nonparametrically using BART and a subset of the covariates

have parametric form. This presents an attractive option for research in which only a few covariates

are of scientific interest but there are other covariates must be controlled for. Under certain causal

assumptions, this model can be used as a structural mean model. We demonstrate this method by

examining the effect of initiating certain antiretroviral medications has on mortality among HIV/HCV

coinfected subjects. In later chapters, we propose a joint model for a continuous longitudinal out-

come and baseline covariates using penalized splines and an enriched Dirichlet process (EDP)

prior. This joint model decomposes into local linear mixed models for the outcome given the covari-

ates and marginals for the covariates. The EDP prior that is placed on the regression parameters

and the parameters on the covariates induces clustering among subjects determined by similarity

in their regression parameters and nested within those clusters, sub-clusters based on similarity in

the covariate space. When there are a large number of covariates, we find improved prediction over

the same model with Dirichlet process (DP) priors. Since the model clusters based on regression

parameters, this model also serves as a functional clustering algorithm where one does not have

to choose the number of clusters beforehand. We use the method to estimate incidence rates of

diabetes when longitudinal laboratory values from electronic health records are used to augment

diagnostic codes for outcome identification. We later extend this work by using our EDP model in

a causal inference setting using the parametric g-formula. We demonstrate this using electronic

health record data consisting of subjects initiating second generation antipsychotics.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 : INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dirichlet Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Bayesian Additive Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Bayesian methods in causal inference . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 : BAYESIAN SEMIPARAMETRIC REGRESSION AND STRUCTURAL MEAN MODELS

WITH BART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Semi-BART Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Data Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 3 : OUTCOME IDENTIFICATION IN ELECTRONIC HEALTH RECORDS USING PRE-

DICTIONS FROM AN ENRICHED DIRICHLET PROCESS MIXTURE . . . . . . . 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



CHAPTER 4 : PARAMETRIC G-FORMULA FOR A LONGITUDINALLY RECORDED OUTCOME

USING AN ENRICHED DIRICHLET PROCESS PRIOR . . . . . . . . . . . . . . 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

CHAPTER 5 : CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



LIST OF TABLES

TABLE 2.1 : Efficiency of Semi-Bart for a continuous outcome without effect modification. 20
TABLE 2.2 : Efficiency of Semi-BART for a continuous outcome with effect modification. 21
TABLE 2.3 : Efficiency of Semi-BART for a binary outcome without effect modification. . 21
TABLE 2.4 : Efficiency of Semi-BART for a binary outcome with effect modification. . . . 22

TABLE 3.1 : Simulation results for n = 1000 showing mean L1 and L2 errors over 100
datasets for predictions at t = 0.75. . . . . . . . . . . . . . . . . . . . . . . . 40

TABLE 3.2 : Simulation results for n = 5000 showing mean L1 and L2 errors over 100
datasets for predictions at t = 0.75. . . . . . . . . . . . . . . . . . . . . . . . 40

TABLE 3.3 : Simulation results for n = 1000 showing mean L1 and L2 errors over 100
datasets for predictions at t = 0.75 when the standard mixed effects model
is correctly specified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

TABLE A.1 : Efficiency of Semi-BART for a continuous outcome (standard deviation =
0.01) with no effect modification. . . . . . . . . . . . . . . . . . . . . . . . . 72

TABLE A.2 : Efficiency of Semi-BART for a continuous outcome (standard deviation = 2)
with no effect modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

TABLE A.3 : Efficiency of Semi-BART for a continuous outcome (standard deviation = 3)
with no effect modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

TABLE A.4 : Efficiency of Semi-BART for a continuous outcome (standard deviation =
0.01) with effect modification. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

TABLE A.5 : Efficiency of Semi-BART for a continuous outcome (standard deviation = 2)
with no effect modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

TABLE A.6 : Efficiency of Semi-BART for a continuous outcome (standard deviation = 3)
with no effect modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

TABLE B.1 : Simulation results for n = 1000 showing mean l1 and l2 errors over 100
datasets for predictions at t = 0.75 using cubic B-splines. . . . . . . . . . . . 83

TABLE B.2 : Simulation results for n = 5000 showing mean l1 and l2 errors over 100
datasets for predictions at t = 0.75 using cubic B-splines. . . . . . . . . . . . 83

TABLE B.3 : Simulation results for n = 5000 showing mean l1 and l2 errors over 100
datasets for predictions at t = 0.75 when the standard mixed effects model
is correctly specified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



LIST OF ILLUSTRATIONS

FIGURE 1.1 : Draws from a Dirichlet process. . . . . . . . . . . . . . . . . . . . . . . . . 3
FIGURE 1.2 : Example of a regression tree in a univariate covariate space. . . . . . . . . 6
FIGURE 1.3 : Illustration of a BART fit with a univariate predictor space. . . . . . . . . . . 8

FIGURE 2.1 : Effect of mtNRTIs on death using semi-BART on cohort of individuals with
HIV-HCV coinfection newly initiating HAART. . . . . . . . . . . . . . . . . . 27

FIGURE 3.1 : Hypothetical example of data from electronic health records. . . . . . . . . 32
FIGURE 3.2 : Figure of structure of clusters for simulations. . . . . . . . . . . . . . . . . 41
FIGURE 3.3 : Clustering results for HbA1c model. . . . . . . . . . . . . . . . . . . . . . . 45
FIGURE 3.4 : Clustering results for fasting glucose model. . . . . . . . . . . . . . . . . . 46
FIGURE 3.5 : Clustering results for random glucose model. . . . . . . . . . . . . . . . . . 47

FIGURE 4.1 : Trace plot for causal effect on fasting glucose . . . . . . . . . . . . . . . . . 61

FIGURE A.1 : Trace plot for analysis without effect modification. . . . . . . . . . . . . . . 76
FIGURE A.2 : Trace plots for analysis with effect modification for continuous FIB-4 (cen-

tered around 3.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
FIGURE A.3 : Trace plots for analysis with effect modification for binary FIB-4 (cutpoint =

3.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



CHAPTER 1

INTRODUCTION

Bayesian inference combines the full data likelihood of all observed and unobserved quantities with

prior distributions for the unknown parameters. These priors reflect some degree of prior knowledge

(or lack thereof) of the parameter values. By conditioning on observed data, we can calculate or

approximate posterior distributions for the unknown parameters, combining information from the

model assumptions, the prior distributions, and the observed data.

A potential drawback of Bayesian methods is that the full data likelihood must be specified. Data

typically arise from complex scenarios that require many parameters to adequately describe it,

but in usual statistical applications, often few parameters are of immediate scientific interest. For

example, a researcher interested in the causal effect of a drug on a disease may not be concerned

in reporting details as to why and in what situations doctors prescribe the drug, but such information

may be essential for estimation of the parameter of interest. As such, it is necessary to include such

information in the full data likelihood. Parameters describing parts of the likelihood that are not of

scientific interest are often called nuisance parameters or the nuisance model. When the nuisance

model is mispecified, such mispecification can affect the estimates for the parameters of interest in

the form of bias, loss of efficiency, etc. Thus, the downside of the Bayesian setup is clear: correctly

specifying a full data likelihood can be a daunting and even impossible task.

In classical (or frequentist) statistics, researchers have developed nonparametric or semiparametric

methods which allow for all or part of the full data likelihood to remain unspecified. If the nuisance

model is left unspecified, the researcher can proceed without fear of inducing bias due to the mis-

pecification of the nuisance model. Fortunately, there is a Bayesian analog to these nonparamet-

ric and semiparametric methods, for which we use the umbrella term Bayesian nonparametrics.

Bayesian nonparametrics are often more computationally intensive than their parametric counter-

parts but have experienced a boom in recent decades due to improvements in computing power.

The idea behind Bayesian nonparametrics is simple. We cannot avoid full specification of the like-

lihood, but we can be as flexible as possible by introducing infinite dimensional parameters with

appropriate priors. Commonly, these are priors on function spaces or probability measure spaces.
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In this introduction, we will briefly demonstrate Bayesian nonparametrics with Dirichlet process pri-

ors, which are the most common nonparametric prior on the space of probability distributions. We

also explore priors on function spaces that can be used in nonparametric Bayesian settings.

Dirichlet Process

The Dirichlet process (DP) is a popular Bayesian nonparametric prior (Ferguson, 1973) that can

be used as a prior on the space of probability measures. The DP G ∼ DP(G0, α) is parameterized

by a probability measure G0 around which the DP is centered, and α > 0, the mass parameter,

which governs how close a draw from G is to G0. Each draw from G is itself a probability measure.

Two important properties of DPs are its discreteness–any draw from G can be written as an infinite

sum of weighted point masses–and that G can weakly approximate any measure that has the same

support as G0 (Müller et al., 2015). These two properties are fundamental to the ubiquity of DPs

in Bayesian nonparametrics, and we will demonstrate how this makes using a DP prior a departure

from the usual parametric assumptions.

The base measure G0 is the mean of G, written E(G) = G0. As α grows larger, each draw from G

is closer to G0. The following is an illustration of DPs. Let G0 be a normal distribution with mean

0 and variance 1. Figure 1.1 shows 25 draws from the DP G as α varies from 0.5, 1, 10, and 100.

For each α, the distribution function for G0 over the interval [−4, 4] is shown in bold. When α = 0.5,

few atoms contain the majority of the mass and the draws are clearly distinct (but centered around)

G0. This is true as well for α = 1, but the mass is more spread out across the atoms. As α = 10,

draws from G are noticeably nearer to G0 and when α = 100, draws from G are essentially G0. The

fact that the draws of G are step functions demonstrates its discreteness.

The discreteness of G has its drawbacks, however. When dealing with continuous density estima-

tion, using a DP as the target distribution can be problematic. Instead, the DP is often used as a

mixing distribution on a parametric distribution (Ferguson, 1983). That is,

2



Figure 1.1: Draws from a Dirichlet process.
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Draws from a Dirichlet process G ∼ DP (G0, α) with base measure G0, which is normal with mean
0 and variance 1. The mass parameter α varies between 0.5 and 100. (a) 25 draws when α = 0.5.
The draws are distinct from G0 and consist mostly of a point that contains the majority of the mass.
(b) 25 draws when α = 1. Draws are still distinct from G0 but the mass is spread around to several
points. (c) Draws with α = 10 are starting to resemble G0. (d) With α = 100, a draw from G is nearly
G0 itself.

yi|θi ∼ f(·; θi); (1.1)

θi|G ∼ G;

G ∼ DP(G0;α),

3



where yi is a continuous random variable with density fy(·) parameterized by θi. Here the density

of yi is given a known parametric form. Each observation has its own θi but having been drawn

from the discrete measure G, there is a positive probability of ties for θi among observations. Thus,

some observations share the same θi. Integrating out the random probability measure yields an

infinite mixture of parametric distribution.

fG(y) =

∫
f(y; θ)dG(θ) (1.2)

=

∞∑
j=1

wjf(y; θ̃), (1.3)

for some weights wj depending on G.

Contrast this to the parametric Bayesian model below:

yi|θ ∼ fy(·; θ); (1.4)

θ ∼ G0.

In the parametric version, the density is assumed to be of the form fy(·; θ). In the nonparametric

version with a DP mixture, the density is an infinite mixture of fy(·; θ), which may assume arbitrary

shape. In this density estimation example, we achieve greater flexibility merely by placing a DP

prior in lieu of the parametric setup in which accuracy depends on correctly specifying the model

in equation (1.4). In the following section, we continue our examination of nonparametric Bayesian

priors focusing on function spaces.

Bayesian Additive Regression Trees

Consider an outcome Y and a vector of covariates X. To estimate Y given X = x, we may assume

that E(Y |X = x) = f(x) for some function f(·). The function f(·) can be parameterized by β so

that f(x;β) = xβ, as in linear regression (McCullagh, 1984). However, if we don’t want to make

that strong an assumption, we may consider the function f(·) as unknown and random and, under

4



the Bayesian paradigm, place a prior on f(·) itself. One such option is the Gaussian process prior

(Rasmussen, 2006). Note that we don’t have to place the probability model directly on f(·). Instead,

we can expand f(·) to be a sum of basis expansions (f(x) =
∑
βiφi(x)) and put priors on the basis

coefficients (Müller et al., 2015). In the next chapter of this dissertation, we adhere to this latter

method using Bayesian Additive Regression Trees (BART) and write f(·) as a sum of Bayesian

regression trees (Chipman, George, and McCulloch, 2010).

BART is a machine learning algorithm used to estimate an unknown function and make predictions

of the outcome given covariates. To understand how BART works, it is necessary to understand ter-

minology and methodology for a single regression tree (Chipman, George, and McCulloch, 1998).

In the regression tree framework, the study population is split into subgroups based on a sequence

of rules. Within each subgroup subjects have a similar mean response. Trees consists of interior

nodes, splitting rules, and terminal nodes. Terminal nodes are the last node in a given sequence

of interior nodes and splitting rules at which point the outcome Y is summarized. An example of a

regression tree is shown in Figure 1.2. In this example, there is a single covariate predictive of a

countinuous outcome. A subject with x = 4 would follow the leftmost path in the example figure, and

the mean outcome of all subjects following this path (i.e., with 3.6 ≤ x < 5.6) is −0.84. Regression

trees are widely available in off-the-shelf statistical software. However, they yield non-smooth esti-

mates of the conditional distribution of Y given X, which may not be desirable in some applications.

For an example of this, see Figure 1.3. We randomly choose points uniformly within the univari-

ate predictor space x ∈ [0, 2π]. The outcome y is related to x through the relation y = sin(x) + ε

where ε is a normal error term. We assume the relationship between y and x is unknown and that

the function relating y to x is the target of inference. Since the function sin(x) is non-linear, linear

regression is the incorrect approach (solid line). Using a regression tree (dotted-dashed line) is a

better fit than linear regression, but it still fails to capture the smoothness of the true function.

On the other hand, BART’s sum-of-trees structure is adept at capturing the smoothness (dashed

line in Figure 1.3). To implement BART, we set f(x) =
∑
ωi(x) where ωi(x) is a regression tree

and each ωi(x) is restricted to be small (few terminal nodes). The sum-of-trees is more flexible

and can better handle complex interactions and nonlinearities than a single tree. BART also has

relatively few tuning parameters, which makes it an attractive option when one doesn’t want to as-

sume a parametric form for the unknown function. In the following chapter, we insert BART into a

5



generalized linear model setting where only a subset of the covariates are of scientific interest. The

nuisance component is modeled with BART and the covariates of interest are modeled parametri-

cally.

Figure 1.2: Example of a regression tree in a univariate covariate space.

x ∈ [0, 2π] and is related to the outcome y through the relation y = sin(x) + ε where ε is a normal
error term. Each interior node contains a splitting rule. If an observation satisfies the rule, the
observation follows the leftmost path from that rule, until reaching the next splitting rule or terminal
node. The summary at the terminal nodes refers to the mean outcome among all observations
which follow the same sequence.
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Bayesian methods in causal inference

Literature involving Bayesian methods in causal inference has grown in recent years. These in-

clude implementations of marginal structural models (Roy, Lum, and Daniels, 2016; Saarela et al.,

2015) and the g-formula (Roy et al., 2017). In this dissertation, we aim to add to the literature by

developing nonparametric Bayesian methods with emphasis on causal methods. In Chapter 2, we

present a semiparametric regression model where only a small subset of covariates are of scientific

interest using BART to control for confounding from other covariates. We show how this model can

be used as a structural mean model, which has the advantage of avoiding g-estimation which is not

possible for the probit and logit link functions, two popular link functions with binary outcomes. In

Chapter 3, we present joint model for a continuous longitudinal outcome and the covariates using

an enriched Dirichlet process, an improvement of a standard DP when the dimension of covariates

is high. This offers improved prediction over competitor models and also serves as a functional

clustering algorithm. In Chapter 4, we use this joint model for causal inference using the parametric

g-formula.
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Figure 1.3: Illustration of a BART fit with a univariate predictor space.
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Here, x ∈ [0, 2π] and mean response y = sin(x) + ε. The solid line is the fit using linear regression,
the dashed line is the fit of BART, and the dashed-dotted line is the fit of a single tree.
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CHAPTER 2

BAYESIAN SEMIPARAMETRIC REGRESSION AND STRUCTURAL MEAN MODELS WITH

BART

Introduction

Semiparametric models, which include generalized estimating equations (GEE) and proportional

hazards models, are some of the most commonly used models in statistics (Tsiatis, 2006). While

the scope of semiparametrics is wide, the basic tenet is that we have a specific research ques-

tion that is of interest (e.g., the effect of a treatment on an outcome) but in order to answer that

question we must handle another part of the data that may not be of immediate scientific interest

(e.g., adjusting for confounders). This latter part is referred to as the nuisance. A fully parametric

model would need to model the nuisance parameters as well as the parameter of interest with a

parametric form, but a model can be semiparametric by leaving the part for the nuisance param-

eters unspecified. Ideally, the semiparametric model can answer the scientific question of interest

without inducing bias by the misspecification of the nuisance model.

The semiparametric framework is important in causal inference (Kennedy, 2016), which largely

avoids fully parametric models for the aforementioned reasons. One of the most popular causal

models, the marginal structural model, is semiparametric by leaving part of the conditional dis-

tribution of the outcome unspecified (Robins, Hernan, and Brumback, 2000). Marginal structural

models were developed for longitudinal settings to adjust for time-varying confounding. A related

but less used causal model, the structural mean model (SMM), is also semiparametric and was

also developed for scenarios with time-varying confounding (Robins, 1986; Robins, 1994). Both

marginal structural models and structural mean models can be used in the setting of an exposure

at a single time point and still parameterize a meaningful causal contrast (Robins, 2000). Solving for

the causal parameters in each of these models has been well documented in the literature (Hernán

and Robins, 2018; Hernán, Brumback, and Robins, 2000). In particular, solving for the parameters

of a SMM requires g-estimation, which amounts to solving estimating equations when the identity

or log link function is used, as is typical for continuous or count outcomes (Hernán and Robins,

2018). When the outcome is binary and the common logit or probit link functions are preferred, no
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easy solution exists for solving for the parameters of SMMs (Vansteelandt and Goetghebeur, 2003).

Methods for this case have been proposed but require specifying a second model, which may in-

troduce bias if specified incorrectly (Robins and Rotnitzky, 2004; Vansteelandt and Goetghebeur,

2003).

Recently, there have been Bayesian implementations of marginal structural models (Roy, Lum,

and Daniels, 2016; Saarela et al., 2015). However, no Bayesian implementation of SMMs exists,

though a fully parametric likelihood based model has been developed (Matsouaka and Tchetgen

Tchetgen, 2014). Our aim is to develop the first fully Bayesian SMM, yielding posterior distributions

for the causal parameters of interest while sidestepping the need for g-estimation and thus making

estimation more robust when the outcome is binary. In doing so, we also find that our method is

suitable for more general regression models, when causal assumptions might not be realistic or

of interest, and can be used as a robust and intuitive semiparametric regression model in place

of parametric regression. Our method can be easily implemented using our R package semibart,

which is available on the author’s website (https://www.github.com/zeldow/semibart).

The rest of the paper is organized as follows. Section 2 describes relevant background and a

literature review. In Section 3, we describe the types of semiparametric models we are fitting,

including SMMs and Bayesian semiparametric regression. Section 4 gives simulation results. In

Section 5 we complete a data analysis on the effect of initiating certain antiretroviral drugs on death

among adults with HIV infection who are newly initiating an antiretroviral regimen. In Section 6, we

discuss strengths and limitations of our method.

Background

Let y be an outcome and let X be predictors of y. When y is continuous, consider the regression

scenario yi = ω(xi) + εi, with error terms ε assumed to be from from a distribution with mean

zero. For non-continuous outcomes, we consider the model E(y|X) = g(ω(X)) for a given link

function g. The parametric linear regression which asserts that ω(xi;β) =
∑p
j=1 βjxij with error

terms εi
iid∼ N(0, σ2) is easily solved using Bayesian methods when prior distributions are placed

on β and the regression error variance σ2 (Gelman et al., 2014). For the remainder of this paper,

we focus on relaxing the assumption that ω(xi;β) =
∑p
j=1 βjxij , which can yield biased estimates

if this assumption is far from the truth.
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Our approach in modeling the relationship between Y and X targets the conditional mean of Y

given X, which we denote as ω(·). There is large statistical literature focused on modeling ω(·)

flexibly; we review some of these with added emphasis on Bayesian methods. We can think of ω(·)

as a random function by placing a prior distribution on the function space. One possible prior is

the Gaussian process prior whose covariance structure can be specified such that the posterior

captures nonlinear structures (Rasmussen, 2006). Other options for modeling ω(·) include the use

of basis functions (Müller et al., 2015) like splines (Eilers and Marx, 1996) or wavelets and placing

prior distributions on the coefficients. Splines have been used extensively in Bayesian nonpara-

metric and semiparametric regression. Biller (2000) presented a semiparametric generalized linear

model where one variable is modeled using splines and the remaining variables were part of a

parametric linear model(Biller, 2000). Holmes and Mallick (2001) developed a flexible Bayesian

piecewise regression using linear splines (Holmes and Mallick, 2001). The approach in Denison

et al (1998) involved piecewise polynomials and was able to approximate nonlinearities (Denison,

Mallick, and Smith, 1998c). Biller and Fahrmeir (2001) introduced a varying-coefficient model with

B-splines with adaptive knot locations (Biller and Fahrmeir, 2001).

Two of the most commonly used semiparametric methods that predict an outcome Y given co-

variates X are generalized additive models (GAM) (Hastie and Tibshirani, 1990) and multivariate

adaptive regression splines (MARS) (Friedman, 1991), both of which were developed as frequentist

procedures and are available in commonly used statistical software. GAM allows each predictor to

have its own functional form using splines. The downside of GAM is that any interactions between

covariates must be specified by the analyst, which can pose problems in high-dimensional problems

in which there may be many multi-way interactions. Bayesian versions of GAM based on P-splines

exist (Brezger and Lang, 2006) but do not have the widespread availability in statistical software

that the frequentist version has. MARS is a fully nonparametric procedure which can automatically

detect nonlinearities and interactions through basis functions also based on splines. A Bayesian

MARS algorithm has also been developed (Denison, Mallick, and Smith, 1998b) but also lacks off-

the-shelf software. A third option for nonparametric estimation of Y given X is Bayesian additive

regression trees (BART), which like MARS, is adept at capturing nonlinearities and interactions

between covariates, while being a fully Bayesian procedure (Chipman, George, and McCulloch,

2010). The details of BART are presented in more detail below.
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Bayesian Additive Regression Trees

Bayesian additive regression trees (BART) is a machine learning algorithm designed to model an

outcome as a function of covariates and a normal, additive error term. Let Y = ω(X)+ ε where Y is

a continuous outcome, ε ∼ N(0, σ2), and ω(·) is the unknown functional relating the predictors X to

the outcome Y . For binary Y the probit link function is used, that is Pr(Y = 1|X) = Φ(ω(X)), where

Φ(·) is the distribution function of a standard normal random variable. While other link functions

for binary data (e.g., logit) are possible, using a probit link function simplifies Bayesian compu-

tations and is used in software implementing BART. BART estimates the function ω(·) through a

sum of regression trees, where a regression tree is a sequence of binary choices based on predic-

tors X which yield predictions of Y within clusters of observations with similar covariate patterns.

Classification and regression trees are typically frequentist procedures, but Bayesian versions of

regression trees have also been developed (Chipman, George, and McCulloch, 1998; Denison,

Mallick, and Smith, 1998a). The BART sum-of-trees model can be written as ω(x) =
∑m
i=1 ωi(x),

where each ωi(x) is itself a tree. Typically, the number of trees m is chosen to be large and each

tree is restricted to have a small number of end nodes. This setup restricts the influence of any

single tree while allowing detection of nonlinearities and interactions that would be not possible

with one tree. An example of a BART fit to a nonlinear mean function y = sin(x) + ε is shown in

Figure 1.3 over a univariate predictor space x restricted to [0, 2π], along with comparision to the fit

of a single regression tree and linear regression.

The algorithm for BART utilizes Bayesian backfitting (Hastie, Tibshirani, et al., 2000). We review the

algorithm for the case of continuous outcomes; the case for binary outcomes is a simple extension

which utilizes the underlying normal latent variable formulation (Albert and Chib, 1993). Recall that

yi =
∑m
j=1 ωj(xi) + εi where εi is assumed zero-mean normal with unknown variance σ2. The algo-

rithm iterates between updating the error variance σ2 and updating the fit of the trees ωj . The error

variance σ2 is updated by obtaining the residuals from the current fit and drawing the posterior from

an inverse chi-square distribution when the conjugate inverse-chi square prior is used. Second,

each tree ωj is updated. For this step, we compute the residuals of the outcome by subtracting

off the fit of the other m − 1 trees. When updating tree ω1, the residuals y∗i = yi −
∑m
i=2 ωj(xi)

are calculated. The fit for ω1(·) is updated through a proposed change to the tree (grow, prune,

swap, or change) which is accepted or rejected through a Metropolis-Hastings step. The trees
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ω2(·), ω3(·), . . . , ωm(·) are all updated in the same fashion. More details are available in elsewhere

(Chipman, George, and McCulloch, 2010). In the next section, we propose a semiparametric ex-

tension of BART, which we call semi-BART, where a small subset of covariates are allowed to have

linear functional form and the rest are modeled with BART.

Semi-BART Model

Notation

Suppose we have n independent observations. Let Y denote the outcome, which we assume to be

either binary or continuous. Denote by L the set of predictor variables. The outcome for individual

1 ≤ i ≤ n will be denoted as Yi, with similar notation for covariates Li.

Semiparametric Generalized Linear Model

Our model imposes linearity on just a small subset of covariates of interest, while remaining flexible

in modeling the rest of the covariates, whose exact functional form in relation to the outcome may be

considered a nuisance. The predictors are partitioned into two distinct subsets so that L = L1 ∪L2

and L1 ∩ L2 = ∅. Here, L1 represents nuisance covariates that we must control for but is not of

primary interest and L2 represents covariates that do have scientific interest. For continuous Y , we

write Yi = ω(L1) + h(L2;ψ) + εi, where h(·) is a linear function of its covariates in ψ (as in linear

regression) but ω(·) is a function with unspecified form. The errors εi are iid mean zero and normally

distributed with unknown variance σ2. More generally, we write g [E(Y |L1,L2)] = ω(L1) + h(L2),

for a given link function g. We estimate ω(·) using BART. Note that this implies that if L1 = L and

L2 = ∅, we have a nonparametric BART model. On the other hand if L1 = ∅ and L2 = L, we have

a fully parametric regression model. While there is no restriction on the dimensionality of L1 and

L2, in the typical case L1 is large enough that BART is a reasonable choice of an algorithm and L2

contains only a few covariates that are of particular interest.

Special Case: Structural Mean Models

We now consider the special case of a causal inference setting with observational data. We in-

troduce further notation specific to this section. The exposure of interest is denoted A and can

be either binary or continuous. The counterfactual Y a denotes the outcome that would have been
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observed under exposure A = a. For the special case of binary A, each individual has two coun-

terfactual outcomes – Y 1 and Y 0 – but we observe at most one of the two, corresponding to the

actual level of exposure received. That is, Y = AY 1 + (1−A)Y 0. Let X be the set of confounders.

We can further subset X into X = (X1,X2), where X2 is the subset of variables that modify the

causal effect of A and X1 are the other covariates. From the notation in the previous subsection,

we can then think of L2 = (A,X2) as the variables of primary interest and L1 = X1 as the variables

that are not of interest but need to be controlled for.

Structural nested mean models are causal models developed by Robins to deal with time-varying

confounding for longitudinal exposures (Robins, 1994, 2000). In the case of point treatment, struc-

tural nested mean models are referred to as structural mean models (SMMs) and parameterize a

useful causal contrast even though time-varying confounding is not a concern (Vansteelandt and

Joffe, 2014; Vansteelandt and Goetghebeur, 2003). This contrast encodes the mean effect of treat-

ment among the treated given the covariates. The model can generally be written as:

g {E (Y a|X = x, A = a)} − g
{
E
(
Y 0|X = x, A = a

)}
= h∗(x, a;ψ∗), (2.1)

where g is a known link function. Here we switch from h(·;ψ) to h∗(·;ψ∗) to indicate that ψ∗ rep-

resents a causal effect, but the two functions and parameters are otherwise identical. The goal of

this paper is to provide a Bayesian solution to (2.1). First, we impose some restrictions on h(·;ψ∗).

We require that under no treatment or when there is no treatment effect the function h∗(·;ψ∗) must

equal 0. That is, h∗(x, a;ψ∗) satisfies h∗(x, a; 0) = h∗(x, 0;ψ∗) = 0. Some examples of h∗(·;ψ∗) are

h∗(x, a;ψ∗) = ψa or h∗(x, a;ψ∗) = (ψ1 + ψ2x)a, when x is thought to be an effect modifier.

While expression (2.1) cannot be evaluated directly because of the unobserved counterfactuals,

two assumptions are needed to identify it with observed data (Vansteelandt and Joffe, 2014).

1. Consistency: If A = a, then Y a = Y ;

2. Ignorability: A ⊥ Y 0|X.

The consistency assumption says that we actually get to see an individual’s counterfactual corre-

sponding to the exposure received. Ignorability ensures that there is no unmeasured confounding

between the exposure A and the counterfactual under no treatment Y 0. Under these two assump-
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tions together with the parametric assumption of h∗(·), the contrast on the left hand side of (2.1) is

identified, and the SMM from (2.1) can be rewritten using observed variables as

g {E (Y |X,A)} = ω(L2) + h∗(L1;ψ∗), (2.2)

where ω(L1) is unspecified and h∗(L2;ψ∗) is a linear function of X2 and A (Vansteelandt and

Joffe, 2014). While we use the above assumptions for the remainder of this paper, the left hand

side of (2.1) can be nonparametrically identified with a third assumption, dropping the parametric

assumption of h∗(·). That is,

3. Positivity: Pr (A = a|X = x) > 0 ∀ x such that Pr(X = x) > 0.

The positivity assumption states that within all covariate levels X = x that have positive probability

of occurring, there is positive probability that an individual is treated. This assumption is violated in

situations where treatment is deterministic at specific levels of X = x.

It should be noted that we have chosen a parametric form for all of X2, including the main effects

of effect modifiers. In principal, one could include X2 in the nonparametric part and only model the

interaction X2×A parametrically. For example, if a researcher posits the relationship h∗(x, a;ψ∗) =

(ψ1 + ψ2x)a, the variable x in principle could be modeled nonparametrically. In simulations, we

have found that including the covariates X2 into the BART model as well generally leads to poorer

performance (bias, under coverage) of the causal effect posterior distributions. As a result, we

would opt for the linear model h∗(x, a;ψ∗) = (ψ1 +ψ2x)a+ψ3x in our example. Further, in practice

if researchers are interested in effect modification by X2 they might also be interested in interpreting

the main effect.

Hill, 2011 has previously modeled causal effects on the treated using BART. The methods de-

scribed in that paper correspond to our setting in equation (2.2) where g is the identity link function

and ψ∗ is a scalar describing only an effect of treatment with no effect modification. Our method

extends this setup to settings with binary outcomes, continuous-valued treatment, or where low-

dimensional summaries of effect modification are of interest. In settings with continuous outcomes,

binary treatment, and no effect modification, the methods presented in Hill, 2011 may be preferred.

We explore these differences using simulations.
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Computations

The algorithm for semi-BART follows the BART algorithm with an additional step. We briefly re-

viewed the algorithm in Section 2.2.1. Below, we describe the basics of our algorithm for semi-

BART. We are solving equation (2.2), where ω(L2) can be written as the sum-of-trees
∑m
j=1 ωj(L2).

Each tree ωj(L2) has a vector of parameters θj associated with it. The mean of the kth endnode of

the jth tree is assumed to be normally distributed with mean µjk and variance σ2
jk.

Recall that when the outcome is continuous, we assume independent errors distributed N(0, σ2).

The algorithm for semi-BART for continuous outcomes is as follows. First, we initialize all values

including the error variance σ2, the parameters ψ∗, and the tree structure ω(L1) for all m trees. Next

we begin our MCMC algorithm and iterate through the following steps. First update the m trees one

at a time. When updating the jth tree, subtract the fit of the remaining m − 1 trees at their current

parameter values as well as the fit of the linear part h∗(L2;ψ∗) at the current value of ψ∗ from the

value of y for each individual. That is, we calculate y∗i = yi−ω−j(L1i)−h∗(L2i;ψ
∗), where ω−j(L1i)

indicates the fit of the m− 1 without the jth tree. A modification of the jth tree is now proposed. We

either grow the tree (add a split point to what was previously an endnode), prune the tree (collapse

two endnodes into one), change a splitting rule (for nonterminal nodes), or swap the rules between

two nodes. Once a modification is proposed, we accept or reject this modification with a Metropolis-

Hastings step (Chipman, George, and McCulloch, 1998). The parameters θj are then updated from

draws based on the conjugate priors (normal priors for µjk and inverse chi-squared for σ2
jk).

Next we update ψ∗. To do this, we calculate the residuals after subtracting off the fit of all m

trees. That is, calculate y∗i = yi − ω(L1i). With a conjugate multivariate normal prior with mean

ψ0 and variance σ2
ψI on ψ∗ where I is the identity matrix of appropriate dimension, updating ψ∗ is

simply a draw from a multivariate normal distribution. The posterior for ψ is multivariate normal with

covariance Σψ =
[
LT2 L2

σ2 + I
σ2
ψ

]−1
and mean Σψ

[
L2y

∗

σ2 + ψ0

σ2
ψ

]
(Gelman et al., 2014).

Finally, we update σ2. We calculate the residuals by conditioning on the fitted trees θi and the

parametric part ψ∗ and subtracting off the fit of all m trees and the linear part h∗(·). That is,

calculate y∗i = yi − ω(L1i)− h(L2i;ψ
∗). We use a conjugate inverse chi squared distribution for σ2

and draw from an updated inverse chi squared distribution. We then return to updating each of the

m trees and continue until the posterior distributions are well approximated.
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The algorithm for binary outcomes with a probit link uses the underlying latent continuous variable

formulation of (Albert and Chib, 1993) and is inserted into the algorithm in lieu of updating the

error variance σ2. Further details of the latent variable step as well as other steps pertaining to

BART such as choosing a variable for a split point or choosing the splitting rule can be found in

(Chipman, George, and McCulloch, 2010). The full implementation of our algorithm is available at

https://www.github.com/zeldow/semibart.

Simulations

We used simulation to assess performance of our model under both continuous and binary out-

comes. We generated five binary covariates (x1, . . . , x5) from independent Bernoulli random vari-

ables and twenty continuous covariates (x6, . . . , x25) from a multivariate normal distribution for a

total of 25 predictors. The binary covariate x1 is considered to be the treatment variable. The co-

variates x6, . . . , x10 were generated with non-zero correlation with each other but independent of

the rest, as were covariates x11, . . . , x15, covariates x16, . . . , x20, and covariates x21, . . . , x25. Exact

distributions for covariate generation are given in the Appendix (Section A). Outcomes were gener-

ated with both linear and non-linear mean functions and were related to only the first 10 covariates.

In the continuous case, outcomes were generated from a normal distribution with standard devia-

tions 0.1, 1, 2, and 3 (results in the main text are presented with a standard deviation of 1). In the

linear cases, outcomes were given mean µ`,1 = 1+2x1+2x5+2x6−0.5x7−0.5x8−1.5x10 when only

the effect of x1 was of interest, or µ`,2 = 1 + 2x1 + 2x5 + 2x6 − 0.5x7 − 0.5x8 − 1.5x10 − x1x6 when

effect modification of x6 on x1 was also of interest. For nonlinear models, outcomes were given

mean µnl,1 = 1 + 2x1 + 2x6 + sin(πx2x7)− 2 exp(x3x5) + log
(
| cos(π2x8)|

)
− 1.8 cosx9 + 3x3|x7|1.5 or

µnl,2 = 1+2x1 +2x6 +sin(πx2x7)−2 exp(x3x5)+log
(
| cos(π2x8)|

)
−1.8 cosx9 +3x3|x7|1.5−x1x6, for

no effect modification and effect modification, respectively. Our goal was to predict the treatment

effect of x1 and when appropriate, the effect modification of x6 on x1. For the linear case, linear

regression is the correctly specified model. In the non-linear cases, the treatment effect and the

effect modification are linear but the rest of the covariates have a nonlinear relationship with the

outcome. In addition to comparing semi-BART and linear regression, we also estimated effects

with doubly robust g-estimation with logistic regression for the treatment model and linear regres-

sion for the outcome model. Since the treatment is generated independently, the treatment model

is correctly specified with coefficients of 0. In cases with no effect modification, we also estimated
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the treatment effect using Hill’s estimate of the treatment effect on the treated using BART (Hill,

2011).

For binary outcomes, we generated 25 covariates in the same way, but outcomes were generated

from a Bernoulli distribution. For the linear case with no effect modification, outcomes were gener-

ated with probability p`,1 = Φ(0.1+0.3x1+0.1x2+0.04x6−0.02x7+0.04x9−0.03x10), where Φ(·) is the

distribution function for a standard normal variable. For the linear case with effect modification (of

x6 on x1), outcomes were generated with probability p`,2 = Φ(0.1+0.3x1 +0.1x2 +0.04x6−0.02x7 +

0.04x9−0.03x10−0.1x1x6). In the nonlinear case, outcomes were generated with probability pnl,1 =

Φ(0.1+0.3x1 +0.04x6− sin(πx2x7)+ 1
10 exp(x7/3)+1[x9>2] cos(x8)+1[x9<1] cos(x10)−0.01x7x8x10)

when there was no effect modification and pnl,2 = Φ(0.1+0.3x1+0.04x6−sin(πx2x7)+ 1
10 exp(x7/3)+

1x9>2 cos(x8) +1x9<1 cos(x10)− 0.01x7x8x10− 0.1x1x6) with effect modification between x6 and x1.

Again, we are interested in extracting the treatment effect of x1 on the outcome, and if applicable,

the effect modification of x6 on x1. We estimate these effects from semi-BART and probit regres-

sion and compare results from the two models. For the linear case, probit regression is the correctly

specified model.

For all scenarios, we generated 500 datasets each at sample sizes of n = 250, 1000, and 5000. All

models are compared on mean bias, 95% coverage probability of the confidence or credible interval,

and mean squared error (MSE). For semi-BART, we used 10,000 total iterations the first 2,500 of

which were burn-in. For the BART part of the model we used 200 trees. The prior distribution on

the parameters of interest was independent mean zero normal with a standard deviation of 4, which

is a diffuse prior given that the outcome was scaled and centered to be between − 1
2 and 1

2 . For

Hill’s treatment on the treated with BART, we used all default values from the BayesTree package

in R (Chipman, George, and McCulloch, 2010).

Continuous Outcome - No Effect Modification

The results of our simulations for continuous outcomes with no effect modification is shown in

Table 2.1. Outcomes were generated with a standard deviation of 1. The true parameter for the

treatment effect is ψ = 2.0. In the linear case (shown in the top half of the table and generated by

mean function µ`,1), linear regression is the correctly specified model. As expected, it has lower

MSE than the methods using BART, particularly at the smaller sample sizes. However, both semi-
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BART and the pure BART results are unbiased and are nearly as efficient as linear regression at

n = 5000 (MSE = 0.001 for all). G-estimation, being comprised of linear models as well, is nearly

equivalent to linear regression in terms of bias, coverage, and MSE. The lower half of Table 2.1

shows the results when the mean function is largely non-linear, generated through mean function

µnl,1. In this scenario, semi-BART and BART have much lower MSE than linear regression at all

sample sizes. All methods are unbiased with good coverage. Note that at n = 250, the MSE

for BART is 0.066 while the MSE for semi-BART is 0.104. Results for these simulations using

outcomes drawn with standard deviations 0.1, 2, and 3 are displayed in Appendix B, Tables B.1,

B.2, and B.3, respectively. The results are similar to those in Table 2.1.

Continuous Outcome - Effect Modification

The results of our simulations with a continuous outcome and a continuous effect modifier for the

treatment effect are shown in Table 2.2. The true value for the treatment effect is ψ1 = 2.0 and

the true value for the effect modification of x6 on the treatment is ψ2 = −1.0. In the top half of the

table denoting the linear case generated by mean function µ`,2, linear regression is the correctly

specified model. At n = 250, linear regression has lower MSE for ψ1 than semi-BART (0.126 vs.

0.153) and for ψ2 (0.025, 0.031). At n = 5000, the two methods have the same rounded MSE

(0.005 for ψ1 and 0.001 for ψ2). All methods are unbiased with coverage around the nominal level.

In the non-linear case (generated by mean function µnl,2, the bias for ψ1 using linear regression is

slightly larger in absolute value than for semi-BART or g-estimation (-0.07 for linear regression and

-0.03 for the rest). In terms of MSE, semi-BART is much more efficient than linear regression for

both parameters and all sample sizes compared to linear regression and g-estimation with linear

models. Results for these simulations using outcomes drawn with standard deviations 0.1, 2, and 3

are displayed in Appendix B, Tables B.4, B.5, and B.6, respectively. The results are similar to those

in Table 2.2.

Binary Outcome - No Effect Modification

The simulation results with a binary outcome and no effect modification are shown in Table 2.3.

The true value for the treatment effect is ψ = 0.3. In the linear case, outcomes are generated with

probability p`,1 and probit regression is the correctly specified model. In the non-linear case with

probabilities pnl,2, there is some bias at n = 250 for both models, slightly larger for semi-BART (0.07
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Table 2.2: Efficiency of Semi-BART for a continuous outcome with effect modification.

Semi-BART Linear Regression g-estimation

Mean Function n Bias Cov. MSE Bias Cov. MSE Bias Cov. MSE

Linear

250 ψ1 -0.01 0.96 0.153 0.02 0.96 0.126 0.01 0.93 0.141
ψ2 0.00 0.96 0.031 -0.01 0.95 0.025 -0.00 0.93 0.029

1000 ψ1 -0.00 0.96 0.029 -0.00 0.96 0.027 0.00 0.95 0.027
ψ2 0.00 0.97 0.006 0.00 0.96 0.005 0.00 0.95 0.005

5000 ψ1 0.01 0.95 0.005 0.00 0.96 0.005 0.00 0.96 0.005
ψ2 -0.00 0.96 0.001 -0.00 0.95 0.001 -0.00 0.96 0.001

Non-linear

250 ψ1 -0.03 0.98 0.450 -0.07 0.94 1.570 -0.03 0.94 1.991
ψ2 0.01 0.96 0.102 0.03 0.94 0.332 0.01 0.92 0.432

1000 ψ1 -0.00 0.95 0.039 -0.01 0.94 0.332 -0.01 0.96 0.362
ψ2 0.01 0.94 0.008 0.01 0.94 0.073 0.00 0.96 0.082

5000 ψ1 -0.00 0.95 0.006 0.01 0.96 0.068 0.02 0.96 0.075
ψ2 0.00 0.95 0.001 -0.00 0.94 0.015 -0.01 0.96 0.017

The true value for the treatment effect is ψ1 = 2.0 and the true value pertaining to effect modification
between x1 and x6 is ψ2 = −1.0. The column g-estimation is also used for continuous outcomes
only refers to doubly robust g-estimation using logistic regression for the treatment model and linear
regression for the outcome model

Table 2.3: Efficiency of Semi-BART for a binary outcome without effect modification.

Semi-BART Probit Regression

Mean Function n Bias Cov. MSE Bias Cov. MSE

Linear
250 0.07 0.92 0.059 0.04 0.92 0.052
1000 0.03 0.93 0.011 0.01 0.95 0.009
5000 0.01 0.95 0.002 -0.00 0.95 0.002

Non-linear
250 -0.02 0.91 0.058 -0.04 0.91 0.056
1000 -0.01 0.95 0.012 -0.04 0.92 0.012
5000 -0.00 0.94 0.002 -0.05 0.79 0.004

The true value for the treatment effect is ψ = 0.3.

for semi-BART and 0.04 for probit regression). The bias gets smaller for both models as the sample

size increases. The MSE for probit regression is smaller than semi-BART at all sample sizes, but

the difference is not as pronounced as with continuous outcomes in Table 2.1. In the non-linear

case with outcomes generated with probability, pnl,1, there is slight initial bias for semi-BART (-0.02)

and probit regression (-0.04). However, the bias for probit regression is persistent at all sample

sizes whereas the bias vanishes in the semi-BART model. In terms of MSE, semi-BART and probit

regression are similar, except perhaps at n = 5000 where the MSE with semi-BART is 0.002 versus

0.004 for probit regression.
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Table 2.4: Efficiency of Semi-BART for a binary outcome with effect modification.

Semi-BART Probit Regression

Mean Function n Bias Cov. MSE Bias Cov. MSE

Linear

250 ψ1 0.07 0.92 0.322 0.04 0.93 0.291
ψ2 -0.01 0.93 0.063 -0.01 0.92 0.057

1000 ψ1 0.04 0.95 0.057 0.02 0.95 0.049
ψ2 -0.01 0.93 0.011 -0.01 0.93 0.010

5000 ψ1 0.00 0.94 0.010 -0.01 0.94 0.009
ψ2 0.00 0.94 0.002 0.00 0.94 0.002

Non-linear

250 ψ1 0.00 0.94 0.294 -0.02 0.94 0.276
ψ2 -0.01 0.95 0.055 0.00 0.94 0.052

1000 ψ1 -0.01 0.94 0.054 -0.04 0.94 0.049
ψ2 0.00 0.95 0.011 0.01 0.94 0.010

5000 ψ1 0.00 0.95 0.011 -0.05 0.92 0.011
ψ2 -0.00 0.97 0.002 0.02 0.93 0.002

The true value for the treatment effect is ψ1 = 0.3 and the true value for the effect modification
parameter is ψ2 = −0.1.

Binary Outcome - Effect Modification

Results for a binary outcome with a continuous effect modifier for the treatment effect are shown

in Table 2.4. The true value for the treatment effect is ψ1 = 0.3 and the true value for the effect

modification parameter is ψ2 = −0.1. In the linear case, outcomes were generated with probability

p`,2. Here, probit regression is more efficient than semi-BART at low sample sizes (the MSE for

both parameters is about 1.1 times higher at n = 250). There is some bias at n = 250, that of

semi-BART is higher than that of probit regression (0.07 verus 0.04 for ψ1). However, at n = 5000,

the results from the two models are nearly identical, as the bias in semi-BART went to 0. For the

non-linear case, outcomes were generated with probability pnl,2. Here, probit regression shows

some persistent bias for ψ1, which is not the case for semi-BART. Despite this, the MSEs for probit

regression and semi-BART are nearly identical, driven by the lower empirical variance of estimates

from probit regression.

Data Application

To illustrate our method we analyzed data from the Veterans Aging Cohort Study (VACS) from

2002 to 2009, which is a cohort of HIV-infected patients being treated at Veterans Affairs facilities

in the United States. Our study sample consisted of patients with HIV/Hepatitis C coinfection who

were newly initiating antiretrovirals (including at least one nucleoside reverse transcriptase inhibitor

[NRTI]) and had at least six months of observations recorded in VACS prior to initiation. Certain
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NRTIs are known to cause mitochrondial toxicity. These mitochrondial toxic NRTIs (mtNRTIs) in-

clude didanosine, stavudine, zidovudine, and zalcitabine (Soriano et al., 2008). While these drugs

are no longer part of first line HIV treatment regimens, they are still used in resource-limited settings

or in salvage regimens (Günthard et al., 2016).

Exposure to mtNRTIs may increase the risk of hepatic injury which in turn may increase the risk

of hepatic decompensation and death (Scourfield et al., 2011). The goal of this analysis was to

determine if initiating an antiretroviral regimen containing a mtNRTI increased the risk of death ver-

sus antiretroviral containing a NRTI that is not a mtNRI. VACS data contains a number of variables

confounding the relationship between mtNRTI use and death including subject demographics, year

of antiretroviral initiation, HIV characteristics such as CD4 count and HIV viral load, concomitant

medications, and laboratory measures relating to liver function.

One of the covariates included in our analysis is Fibrosis-4 (FIB-4), an index that measures hepatitic

fibrosis with higher values indicating larger injury. Specifically FIB-4 > 3.25 (no units) indicates

advanced hepatic fibrosis. FIB-4 can be calculated as:

[age (years)× AST (U/L)] /
[
platelet count(109/L)×

√
ALT (U/L)

]

(Sterling et al., 2006). Here, AST stands for aspartate aminotransferase and ALT for alanine amino-

transferase. There is some concern in that mtNRTI use in subjects with high FIB-4 will result in

higher risk of liver decompensation and death than in subjects who have low FIB-4. Thus, we

consider FIB-4 as a possible effect modifier of the effect of mtNRTIs on death.

The outcome is a binary indicator of death within a two-year period after the subject initiated an-

tiretroviral therapy. While covariates were updated in the study, we only considered baseline values

for this analysis. There were some missing values among the predictors that were handled through

a single imputation. A previous analysis of this data used multiple imputation to handle missing

covariates but found that results were very similar across imputations. All continuous covariates

were centered at meaningful values. For example, age was centered around 50 years and year of

study entry was centered at 2005.

In the first analysis we sought to determine the effect of mtNRTI use on death without considering
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effect modification, and to this extent we fit a Bayesian SMM with a probit link. The estimand can

be written as

Φ−1 {E (Y a|X = x, A = a)} − Φ−1
{
E
(
Y 0|X = x, A = a

)}
= ψa, (2.3)

where Y is the indicator of death, A represents whether mtNRTIs were part of the antiretroviral

regimen at baseline (A = 1 if mtNRTI were included in the regimen), and X all other covariates,

including FIB-4. In the second and third analysis, we considered FIB-4 to be an effect modifier,

once as a continuous covariate and once as a binary indicator which equaled 1 whenever FIB-4

> 3.25. This estimand can be written as

Φ−1 {E (Y a|X = x, A = a)} − Φ−1
{
E
(
Y 0|X = x, A = a

)}
= ψ1a+ ψ2ax1, (2.4)

where x1 corresponds to the appropriate FIB-4 variable.

The analysis was conducted using m = 200 trees with 20,000 total iterations (5,000 burn-in). The

prior distribution on the ψ parameters were independent Normal(0, 42). In the first analysis the

mean estimate of the posterior distribution for ψ was 0.15 (95% credible interval (CI): -0.02, 0.33).

Notably the interval includes 0, but the direction of the point estimate indicates that subjects initiating

antiretroviral therapy with an mtNRTI had greater risk of death within 2 years than subjects initiating

therapy without an mtNRTI. We can interpret this coefficient in terms of E
(
Y 0|X = x, A = a

)
and

E (Y a|X = x, A = a) through the causal contrast in equation (2.3). Figure 2.1a shows the value of

E(Y 1|X = x, A = 1) as a function of E(Y 0|X = x, A = 1) for ψ = 0.15. As an example, suppose the

unknowable quantity E(Y 0|X = x, A = 1) = 0.20. This means that subjects treated with a mtNRTI

(A = 1) with covariates X = x would have had a probability of death of 20% within 2 years had they

been untreated (A = 0). However, given ψ = 0.15 we see that if E(Y 0|X = x, A = 1) = 0.20 then

E(Y 1|X = x, A = 1) = 0.24, an increase of 4%. One can examine the change in probability for

other base probabilities E(Y 0|X = x, A = 1) by examining the graph in Figure 2.1a. The trace plot

for this analysis is given as Figure A.1 in Section A.3 of the Appendix.

We conducted a second analysis with FIB-4 as a continuous effect modifier (centered around 3.25)

with the same settings as the previous one. This analysis corresponds to the contrast from equa-

tion (2.4). Here, the estimate for the main effect of mtNRTI was ψ1 = 0.18 (0.00, 0.36) and the
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interaction between mtNRTI use and FIB-4 was ψ2 = 0.07 (0.02, 0.12). The results can be viewed

in Figure 2.1b. Again, for illustration, consider the special case where E(Y 0|X = x, A = 1) = 0.20.

When FIB-4 is 3.25, then E(Y 1|X = x, A = 1) = 0.25. However, at larger values such as a FIB-4

of 5.25, E(Y 1|X = x, A = 1) = 0.30. The trace plot for this analysis is given as Figure A.2 in

Section A.3 of the Appendix.

Finally we did a third analysis with FIB-4 as a binary effect modifier (> 3.25 vs. ≤ 3.25). Here

we found that ψ1 = 0.07 (-0.12, 0.26) and ψ2 = 0.38 (0.07, 0.69). These results can be viewed in

Figure 2.1c. Here, we see that if E(Y 0|X = x, A = 1) = 0.20, then E(Y 1|X = x, A = 1) = 0.22

for subjects with FIB-4 ≤ 3.25 and E(Y 1|X = x, A = 1) = 0.35 for subjects with FIB-4 > 3.25. The

trace plot for this analysis is given as Figure A.3 in Section A.3 of the Appendix.

Discussion

We presented a new Bayesian semiparametric model, which can be implemented with an R pack-

age semibart that is available from the author’s GitHub page (https://github.com/zeldow/semibart).

Our model allows for flexible estimation of the nuisance parameters while being fully parametric

for covariates that are of immediate scientific interest, providing a viable and intuitive alternative to

fully parametric regression. Under some causal assumptions, this model can as be interpreted as

a SMM, which also provides the first fully Bayesian SMM. This is particularly useful in the case of

binary outcomes where g-estimation is not possible. Vansteelandt (2003) provided approaches for

estimating SMMs with binary outcomes in frequentist settings; our method is consistent with their

suggestions but incorporates the added flexibility of BART (Vansteelandt and Goetghebeur, 2003) .

In simulations we showed that semi-BART performs nearly as well as probit and linear regression

when the probit or linear model is correctly specified. On the other hand, when there is nonlinearity

in the mean functions or many interactions between covariates, using semi-BART provided consid-

erable benefits in our simulations in terms of efficiency (lower MSE for continuous outcomes) or bias

(lower bias for binary outcomes). G-estimation is possible for SMMs with continuous outcomes. In

our simulations with continuous outcomes, we used doubly robust g-estimation with linear models

for both the treatment and the response, which we chose for simplicity and because the model for

the treatment was correctly specified which would provide unbiased estimators. In practice, it may

often be preferable to use machine learning algorithms to model one or both as one would not know
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the true data generating distribution. Another method we examined was Hill’s treatment effect on

the treated which we used in simulations with continuous outcomes and no effect modifier for treat-

ment (Hill, 2011). In this scenario, using Hill’s method is preferable because all covariates including

treatment can be modeled together using BART, whereas the semi-BART model utilizes the treat-

ment variable in a separate step from the other covariates. However, the modeling advantage of

semi-BART is that it provides a useful alternative to other Bayesian models when low-dimensional

summaries of effect modification are of interest. Furthermore, when in the settings of SMMs with

binary outcome, semi-BART is an alternative to other models, as g-estimation is not possible.

Some limitations of semi-BART are that it currently does not accommodate instrumental variables or

longitudinal treatment measures. Furthermore, its Bayesian implementation makes handling issues

such as censoring bias using inverse probability weights difficult (Robins, Hernán, and Wasserman,

2015). As seen in simulations, semi-BART performs best at higher sample sizes, though we found

reasonable results at n = 250 with 25 covariates. Semi-BART is currently being extended to handle

the logit link.
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Figure 2.1: Effect of mtNRTIs on death using semi-BART on cohort of individuals with HIV-HCV
coinfection newly initiating HAART.
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Results of data application using semi-BART on cohort of individuals with HIV-HCV coinfection
newly initiating HAART. A = 1 indicates receipt of HAART with a mtNRTI and A = 0 indicates
receipt of HAART without a mtNRTI. The x-axis shows possible mean values for E(Y 0|X, A = 1)
which indicates the mean probability of death if the treated A = 1 had in fact been untreated A = 0
given X. This quantity is unknown so we consider a spectrum of reasonable values. The y-axis
E(Y 1|X, A = 1) gives the effect of treatment A on the quantity given by the x-axis. No causal
effect of A would be indicated by a line with slope 1 through the origin. (a) In this analysis, we
only consider that effect of mtNRTI (A) on death (Y ) with no effect modifiers. The figure shows
that if E(Y 0|X, A = 1) = 0.20 then E(Y 1|X, A = 1) = 0.24, providing evidence that treatment A
is harmful. The magnitude of the causal effect of A on Y is determine in part by the assumed
value of E(Y 0|X, A = 1). (b) We consider the effect modification of mtNRTI on death by continuous
FIB-4. The solid line indicates the causal effect curve when FIB-4 = 3.25 (the value we center FIB-4
around). At this value, assuming the base probability of death is 20%, that is E(Y 0|X = x, A =
1) = 0.20, we find that treatment increases this risk to 25%. However, the mean risk of death for
individuals with a higher FIB-4 of 5.25 (indicated by the dashed line) is even higher at 30%. The
dotted-dashed line shows the mean for FIB-4 = 4.25 and is inbetween the other two estimates.
c) We consider the effect modification of mtNRTI on death by a dichotomized FIB-4.The solid line
indicates the causal effect curve when FIB-4 ≤ 3.25. Assuming the base probability of death is
20%, that is E(Y 0|X = x, A = 1) = 0.20, we find that treatment increases the mean risk to 22%.
However, the mean risk of death for individuals with high FIB-4 > 3.25 (indicated by the dashed
line) is even higher at 35%.
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CHAPTER 3

OUTCOME IDENTIFICATION IN ELECTRONIC HEALTH RECORDS USING

PREDICTIONS FROM AN ENRICHED DIRICHLET PROCESS MIXTURE

Introduction

Electronic health records (EHR), now a critical component of health care, make a large quantity

of data available for researchers. Challenges in using EHR for statistical analyses, however, are

well-documented (Sciences, Engineering, and Medicine, 2017). The focus of this paper is on the

challenge of outcome identification. Many diseases can be identified in the data from diagnostic

codes. However, this is unlikely to fully capture outcomes. EHR data often contain longitudinal

measures from laboratory tests (labs) which can be used for the diagnosis of diseases and for

disease monitoring. In practice, labs are sometime used to identify additional outcomes (beyond

those identified from diagnostic codes). For instance, subjects at risk for diabetes can have fasting

glucose labs monitored over time, which can be instrumental in diagnosing the disease (Associa-

tion, 2014). From a statistical perspective, one challenge is that labs may be abundant for some

subjects and sparse or missing for others. Unlike in planned observational studies with primary

data collection, labs are not necessarily observed at ideal times. Correspondingly, it may be helpful

to model these labs and to use this model to make predictions at time points of interest for EHR

containing missing or sparse data. To this end, we propose a flexible joint model for the distribution

of a continuous longitudinal outcome (lab values) and baseline covariates. The parameters from

the joint model are all given a Dirichlet process (DP) prior with the enrichment proposed in Wade,

Mongelluzzo, and Petrone, (2011). Our model provides a flexible framework for prediction as well

as serving as a functional clustering algorithm in which one does not specify the number of clusters

a priori.

The Dirichlet process (DP) mixture is a popular Bayesian nonparametric (BNP) model (Escobar

and West, 1995; Ferguson, 1973, 1983) found in many applications, including topic modeling (Teh

et al., 2004), survival analysis (Hanson and Johnson, 2004), regression (Hannah, Blei, and Powell,

2011), classification (Cruz-Mesı́a, Quintana, and Müller, 2007), and causal inference (Roy et al.,

2017). Consider the regression setting of Shahbaba and Neal, (2009) and Hannah, Blei, and
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Powell, (2011), where there is an outcome Y which we would like to regress on covariates X. In a

Bayesian generalized linear model (GLM) setup (McCullagh, 1984), the predictors X are restricted

to be a linear combination of the unknown regression parameters. Because of this, GLMs are

not appropriate to model nonlinear response curves when the regression coefficients are given

normally distributed priors (Gelman et al., 2014). In contrast, placing a DP prior on the regression

coefficients (DP-GLM) instead of a parametric prior allows for nonlinearities despite the underlying

GLM framework, and this flexibility can often be achieved with only modest additional computational

burden. The power of the DP prior stems in part from its partitioning properties (Müller et al., 2015),

where it clusters observations and fits local regressions among subjects with similar relationships

between covariates and the outcome (Hannah, Blei, and Powell, 2011).

Wade, Mongelluzzo, and Petrone, 2011 showed that with a high number of covariates X, the

likelihood contribution of X can dominate the posterior of the partition so that clusters form based

more on similarity of covariates than on regression parameters. This leads to a high number of

clusters with few observations per cluster and can result in poor predictive performance that can

be improved by using an enriched DP (EDP) mixture instead of a DP mixture (Wade et al., 2014).

The EDP mixture allows for nested clustering, where one can have clusters based solely on the

regression coefficients governing Y on X and within those, nested clusters based on similarity in

the covariate space. The benefits of the EDP mixture were demonstrated in simulation and in a real

data analysis (Wade et al., 2014).

In this paper, we extend the EDP mixture model to longitudinal settings with a continuous outcome.

Some alternatives to our EDP approach to longitudinal data have been proposed in the literature.

Müller and Rosner, (1997) modeled blood concentrations in a pharmacokinetic study using DP

mixtures with a DP prior on the covariate parameters and the regression coefficients. Li, Lin,

and Müller, (2010) developed a flexible semiparametric mixed model with smoothing splines and

a DP prior on the random effects with a uniform shrinkage prior for its hyperparameters. Das et

al., (2013) fit a bivariate longitudinal model for sparse data with penalized splines for the effect

of time and DP priors on the random effects. Quintana et al., (2016) developed a longitudinal

model with random effects and a Gaussian process with DP mixtures on covariance parameters of

the Gaussian process. This allows for flexible modeling of the correlation structure. Bigelow and

Dunson, (2009) fit a joint model for a binary outcome and functional predictor where the functional
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predictor was modeled with cubic B-splines whose basis coefficients were given a DP prior. Scarpa

and Dunson, (2014) developed an enriched (unrelated to the enriched DP) stick-breaking process

which incorporated curve features to better fit functional data.

Our model is unique in that the regression parameters and the parameters for the covariates are

given an EDP prior rather than the usual DP prior. As a result, the partitions are not dominated

by the covariates as may otherwise happen. Along with improved prediction over DP priors, our

model serves as a functional clustering algorithm in which subjects with similar trajectories over

time are likely to be part of the same cluster. This aspect also benefits from the EDP prior as

functions cluster separately on the regression parameters and covariates. Functional clustering

can illuminate distinct patterns among different groups of subjects. A review of functional clustering

can be found in Jacques and Preda, (2014). Notably, frequentist and parametric Bayesian methods

often require prior specification of the number of clusters, often chosen through model fit statistics.

Our EDP model requires no such specification; new clusters may form and existing clusters may

vanish throughout the Markov Chain Monte Carlo (MCMC) algorithm.

Our motivating example is a study of individuals who newly initiate a second-generation antipyschotic

(SGA). SGAs are known to increase incidence of diabetes (De Hert et al., 2012; Newcomer, 2005).

A previous analysis explored the value of incorporating elevated laboratory test results as part of the

definition of the outcome of incident diabetes, defined by diagnosis codes and dispensing claims of

antidiabetics (Flory et al., 2017). However, many subjects had no recorded lab values or had them

measured outside the narrow study window. In this paper, we demonstrate our model by regressing

each of three lab values indicative of diabetes (hemoglobin A1c, fasting glucose, and random glu-

cose) on baseline covariates and time. Throughout the MCMC algorithm, values are predicted for

each subject at the end of the individual’s follow-up, either at one year post SGA initiation or earlier

if censored prior to that time. We then combine each set of predictions with the observed data so

that each draw can be thought of as an imputed lab values. We then calculate the incidence of dia-

betes using a multiple imputation procedure (Rubin, 2004). Lastly, we demonstrate how our model

can be used for functional clustering by examining posterior clustering patterns resulting from the

model.

The rest of the paper is organized as follows. In section 2, we write out the details of our model and

describe key components. In section 3, we discuss computations and making predictions from our
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model. In section 4, we test our method on simulated datasets. In section 5, we apply our method

to the SGA dataset. We discuss the paper in section 6 including limitations and future directions.

Model

To motivate our model, first consider a hypothetical planned observational study, where the outcome

of interest is diabetes status one year following initiation of an SGA. In that hypothetical study, we

would collect laboratory data, such as hemoglobin A1c (HbA1c) at the end of the study. We might

then classify people as having the outcome if their HbA1c value was ≥ 6.5%.

Now consider a study with the same goals, but using EHR data. Figure 3.1 shows four hypothetical

subjects with longitudinal measurements of HbA1c over a period of about 15 months. We are

interested in determining whether HbA1c levels are ≥ 6.5% at month 12. However, none of the four

subjects have data collected precisely at month 12, so we need to interpolate from observed data to

classify them as elevated or not at month 12. How we classify them is dependent on the algorithm

used. Naive algorithms might include basing classification on the value closest to month 12, on

the value closest to month 12 that is prior to month 12, or on the maximum value prior to month

12. For instance, it is clear that subject (a) can be classified as either elevated or not depending on

the algorithm implemented. Subject (b) has many observations but only one is above the critical

threshold and the overall trend suggests their value at month 12 would not elevated. The data

for subject (c) has highly variable data and it is uncertain what their month 12 value would be.

All subjects have varying degrees of uncertainty in their classifications. These naive classification

methods do not use all of the data and do not account for uncertainty in the prediction/imputation.

Our BNP model, described below, was designed to impute outcomes at any time or times of interest,

while fully utilizing all of the data (covariates and labs over time). It uses all available data and

predicts the outcome at unobserved time points periodically throughout the MCMC algorithm. Thus,

for each subject we estimate the distribution of the outcome at the time point of interest rather than

just a single prediction.

Notation

Let yij denote the jth occurrence (1 ≤ j ≤ ni) of a continuous outcome for subject i, i ∈ [1, . . . , n],

observed at time tij . Let y denote the vector of outcomes for all subjects and yi denote the vector
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Figure 3.1: Hypothetical example of data from electronic health records.

0
.0

6
.5

0
1
2

HbA1c

(a
)

0
.0

6
.5

0
1
2

(b
)

0
.0

6
.5

0
1
2

M
o

n
th

HbA1c

(c
)

0
.0

6
.5

0
1
2

M
o

n
th

(d
)

The four panels represent the hemoglobin A1c (HbA1c) values for four subjects over a 12+ month
period. The vertical dashed line at month 12 indicates the time point of interest. The horizontal
dashed line represents the critical value (6.5%) of HbA1c above which or equal to indicates dia-
betes. The cross marks indicate the observed values for each subject. None of the four subjects
have values taken precisely at month 12 so interpolation is necessary. Panel (a) shows a subject
who has a rising trajectory but doesn’t cross the threshold until after month 12. Panel (b) shows
a subject who crosses the threshold once prior to month 12 but is stable below the threshold for
many other observations. Panel (c) shows a subject with highly variable data around the threshold
before and after month 12. Panel (d) shows a subject below the threshold for all observed data.

of outcomes for the ith subject. Let ti denote the vector of time points at which yi were recorded so

that both ti and yi are length ni. The covariates for subject i are measured at baseline and denoted

by the p-dimensional vector xi. Without loss of generality, let the first p1 values xi be binary and
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the remaining p2 be continuous with p = p1 + p2. Let n denote the total number of subjects and N

denote the total number of observations, accounting for multiple observations per subject.

We model the distribution the outcome yij as a function of covariates xi and time tij jointly with

the marginal distributions of xi. To allow for nonlinearities across time, we use splines with k pre-

specified knots at (q1, . . . , qk) with q1 ≤ · · · ≤ qk. Bigelow and Dunson, (2009) considered B-splines

(Hastie and Tibshirani, 1990) and Li, Lin, and Müller, (2010) used P-splines. We opt for penalized,

thin plate splines which have good mixing properties in Bayesian analysis (Crainiceanu, Ruppert,

and Wand, 2005). The choice of penalized splines also allows us to choose a large number of

knots, reducing the dependency of the model fit on the selection of knot locations. However, any

number of basis expansions are possible, including wavelets (Ray and Mallick, 2006). For thin plate

splines, let Z denote the N by k matrix with each row corresponding to the basis functions evalu-

ated at each observed time point t. The matrix Z is calculated as Z = ZkΩ
−1/2
k , where the rows of

Zk are equal to
{
|tij − q1|3, . . . , |tij − qk|3

}
and the penalty matrix Ωk is a k × k matrix where the

(l,m)th entry is |ql − qm|3 (Crainiceanu, Ruppert, and Wand, 2005). The penalty matrix prevents

overfitting by penalizing the coefficients of Zk. Each subject i in the sample contains a ni by k

submatrix zi of Z which corresponds to the basis functions evaluated at each tij .

We fit the model

yi|xi, ti,βi,ηi, ui, σ
2
i ∼ N(x∗i βi + ziηi + ui, σ

2
i I), (3.1)

xij |ψi ∼ N(µij , σ
2
µ,ij) (for continuous covariates); (3.2)

xij |ψi ∼ Bernoulli(pij) (for binary covariates); (3.3)

ui ∼ N(0, σ2
u);

(θi,ψi)|P ∼ P ;

P ∼ EDP(αθ, αψ, P0);

σ2
u, αθ, αψ ∼ Inv-Ga(au, bu)×Ga(aθ, bθ)×Ga(aψ, bψ);

where θi = (βi, σ
2
β,i,ηi, σ

2
η,i, σ

2
i ) are the regression parameters. The notation EDP (αθ, αψ, P0)

means that Pθ ∼ DP (αθ, P0θ) and Pψ|θ ∼ DP (αψ, P0ψ|θ), where αθ and αψ are positive valued

parameters and P0 = P0θ × P0ψ|θ is the base distribution with parameters ψ and θ independent.
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Here,

P0θ ∼ Inv-Ga(aβ , bβ)︸ ︷︷ ︸
σ2
β

× N(β0, σ
2
β,iI)︸ ︷︷ ︸

β

× Inv-Ga(aη, bη)︸ ︷︷ ︸
σ2
η

× N(0, σ2
η,iI)︸ ︷︷ ︸

η

× Inv-Ga(ay, by)︸ ︷︷ ︸
σ2

;

and

P0ψ|θ ∼
p1∏
i=1

Beta(ax, bx)×
p1+p2∏
i=p+1

scaled Inv-χ2(ν0, τ
2
0 )× N(µ0, τ

2/c),

where the first product is among binary covariates followed by a product over the continuous co-

variates. The notation x∗i indicates the vector xi with time tij possibly added, as would be the case

if splines were omitted.

We assume that continuous variables are (locally) normally distributed and that binary predictors

are Bernoulli. Other distributions can be used, but these distributions are convenient for their conju-

gacy properties. The parameter ψi,j corresponds to the two dimensional parameter with mean µij

and variance σ2
µ,ij if the jth covariate is continuous or the one dimensional probability parameter pij

if the jth covariate is binary. Integrating out the subject specific parameters ψi and θi as in Wade

et al., (2014), our model can be thought as a countable mixture of linear mixed models where each

subject is assigned to one of the mixture components.

We do not posit any a priori relationship between time and the outcome. In some applications where

the overall trend may be known (for example, the amount of medication in blood may decrease over

time after a drug is administered in a pharmacokinetic study), we may posit a model for equation

(4.1) incorporating such knowledge, as in Müller and Rosner, (1997) which assumed a piecewise

linear structure.

Clustering

A consequence of using the EDP prior on the regression coefficients is that subjects cluster based

on their regression parameters θi (that is, for some i 6= j, θi = θj), and within these clusters, will

form sub-clusters based on their covariate parameters ψi. Since θi includes ηi, the coefficients

on the spline basis functions for time, subjects with similar trajectories of their outcomes over time

will likely be assigned the same cluster. However, subjects are also clustered by the parameter

σ2
i , which governs variability of outcomes. Thus, it is possible to have clusters with small variability
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that follow a precise trajectory over time, and it is possible to have clusters whose large variability

defines the cluster, or some combination of the two. The total number of clusters depend on the

data and the parameters αθ and αψ, where values closer to 0 indicate fewer clusters.

For this paper, we use the term θ-cluster to indicate clusters based on the parameters θ. A ψ-cluster

denotes a cluster nested within a θ-cluster and indicates closeness in the covariate space governed

by covariate parametersψ. The ψ-clusters are only meaningful with respect to the θ-cluster in which

it is nested.

While an advantage of the BNP appraoch is not having to select the number of clusters, this creates

added difficulty in summarizing the clusters. We use the strategy employed in Medvedovic and

Sivaganesan, (2002), which employed a distance metric based off of empirical pairwise probabilities

of subjects being in the same cluster. To do this, we create a n × n matrix where each element

indicates the number of times two corresponding subjects were in the same θ-cluster over all post

burn-in MCMC iterations. From the rows of this matrix, we compute a distance matrix using the

supremum norm. We then use Ward’s hierarchical agglomerative clustering method implemented

by Murtagh and Legendre, (2014). This last step requires choosing a number of clusters, which we

choose from the median of the posterior distribution on the number of θ-clusters. R code for this

calculation is provided in the Appendix B.4.

Computations

Draws from the posterior distribution of all parameters are obtained through Gibbs sampling. We

use an extension of algorithm 8 by Neal (2000) (Neal, 2000) accommodating the nested partitioning

of the EDP (Wade et al., 2014) and repeated measurements. Algorithm 8 involves generating m

sets of auxiliary parameters corresponding to m clusters that currently have no members. Broadly,

at each iteration we alternate between updating cluster membership for each subject, and then

within each cluster we update the parameters (θi,ψi). Let si = (si,y, si,x) denote the cluster mem-

bership for the ith subject, where si,y denotes the θ-cluster corresponding to θi and si,x denotes

the ψ-cluster nested within si,y corresponding to ψi. Let θ∗k denote the value of θ corresponding to

the kth unique value of si,y. Similarly, let ψ∗j|k denote the value of ψ corresponding to the jth unique

value of si,x within the kth unique value of si,y. Note that if si,y = sj,y, then θi = θj . Furthermore,

let nθk denote the number of subjects in the kth unique cluster of si,y and nψj|k denote the number
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of subjects in the jth unique cluster of si,x nested within the kth unique value of si,y. The notation

n−i,θk and n−i,ψj|k denote the size of the clusters with the ith subject removed. Recall that the similar

notation with no superscript, ni, refers to the number of observations for the ith individual.

The first step of our algorithm updates the value of si for every individual. First, remove individual

i from their current cluster. The probability that an individual is in any given cluster depends on

the current values of αθ and αψ, the number of subjects within that cluster, the values of θ∗ and

ψ∗ as well as the observed data. In choosing clusters, there are three possibilities: subjects can

be assigned to an existing ψ-cluster within an existing θ-cluster, a new ψ-cluster within an existing

θ-cluster, or a new θ-cluster and a new ψ-cluster. An individual is assigned to an existing cluster

(k, j) with probability proportional to:

n−i,θk n−i,ψj|k

(n−i,θk + αψ)(αθ + n− 1)
×

ni∏
v=1

fy(yi,v;xi,θ
∗
k)×

p∏
l=1

fx,l(xi,l;ψ
∗
j|k).

An individual is assigned to a new ψ-cluster within the kth existing θ-cluster with probability propor-

tional to:
n−i,θk αψ/m

(n−i,θk + αψ)(αθ + n− 1)
×

ni∏
v=1

fy(yi,v;xi,θ
∗
k)×

p∏
l=1

fx,l(xi,l;ψ
∗
0).

An individual is assigned a new θ-cluster and a new ψ-cluster with probability proportional to:

αθ/m

αθ + n− 1
×

ni∏
v=1

fy(yi,v;xi,θ
∗
0)×

p∏
l=1

fx,l(xi,l;ψ
∗
0).

These probabilities are then normalized to sum to 1.

The notation ψ∗0 and θ∗0 refers to parameters from a cluster that currently has no members (also

called auxiliary parameters, see (Neal, 2000)). They are generated randomly from the prior base

distributions P0ψ|θ and P0θ for ψ and θ. The notation fx,l(·;ψ) corresponds to the normal density

in equation (4.2) or the binomial density in equation (4.3) for continuous and binary, respectively,

and fy(·;xi,θ) corresponds to the normal density from equation (4.1) evaluated with parameters

θ. Once we calculate these probabilities, we draw cluster membership using a random multinomial

distribution. This is done separately for each individual in the cohort.

Once cluster memberships for all individuals have been updated, the within cluster parameters θ∗

36



and ψ∗ are updated. To update the regression parameters θ∗k for the kth cluster, we consider only

individuals with si,y = k. First, we update the regression variance σ2∗
k using a conjugate draw from

an inverse gamma distribution and then update regression parameters β∗k for covariates x from a

draw with a multivariate normal distribution. Next, update the variance for the spline effects σ2∗
b,k

from a random draw from an inverse gamma distribution. Lastly, we update the coefficients η∗k

for the spline effects from a draw from a multivariate normal distribution. In essence, within each

cluster we are fitting separate Bayesian mixed effects models and updating parameters accordingly

(Zeger and Karim, 1991). Full posterior distributions for updating θ∗ are in Appendix B.2.

Next, we update covariate parameters ψ∗. To update ψ∗j|k, we take subjects with si = (k, j).

If the lth covariate is binary, then the distribution of xl is assumed Bernoulli and the parameter

ψl is updated from a Beta distribution with parameters an =
∑
s=(k,j) xi,l + ax and bn = nj|k −∑

s=(k,j) xi,l + bx. If the lth covariate is continuous then the distribution of xl is normal and the

parameters ψl = (σ2
l , µl) are updated from conjugate inverse-χ2 and normal distributions, available

in Appendix B.2.

It remains to update the random intercepts ui, the variance σ2
u, αψ, and αθ. The new random

intercepts ui are calculated after taking the residuals from the current fit given covariates xi and

the rest of the current parameter values. The variance σ2
u is updated through a random draw from

an inverse gamma distribution with shape au + n and rate bu + uᵀu
2 . Finally, we update αψ and αθ.

αθ is updated by generating a random value from a mixture of two gamma posteriors as in Escobar

and West, (1995). αψ is updated through a Metropolis-Hastings step. The updates for these α

parameters are equivalent to those in Roy et al., (2017) who also employ an EDP mixture model.

Consult Appendix B.2 for expanded details of the MCMC algorithm.

Predictions

Predicting values for subjects who have observed data (that is, data at time points other than the

time point of interest) is straightforward. At every iteration where we seek to make a prediction,

each subject is assigned a cluster si,y with corresponding θi. From this, we can predict from a

single draw from a normal distribution given x∗i ,βi, zi,ηi, ui, σ
2
i with mean x∗i βi + ziηi + ui and

variance σ2.

For subjects missing outcome data, we must make predictions from their covariates xi. These sub-
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jects may be part of the kth existing cluster with parameters θ∗k or may be in an entirely new cluster.

If they are part of the kth existing θ-cluster, we use the current values from the corresponding pa-

rameters for that cluster (i.e., θ∗k) and draw the prediction from a normally distribution with mean

x∗i β
∗
k + ziη

∗
k and variance σ2∗

k . If a subject is part of a new cluster that currently has no members,

we generate θi using the base distribution P0θ.

The probability that a subject is in the kth existing θ-cluster is proportional to:

nθk
αθ + n

×

 αψ
αψ + nθk

fx,0(xi) +
∑
j

(
nψj|k

αψ + nθk

p∏
l=1

fx,l(xi,l;ψ
∗
j|k)

) ,
where the summation iterates through all nested ψ-clusters for the kth θ-cluster.

The probability that a subject is in a new θ-cluster is proportional to:

αθ
αθ + n

× fx,0(xi),

where fx,0(xi) =
∏p
l=1

∫
ψ
fx,l(xi,l)dP0ψ|θ, the density integrated over the base measure evaluated

at the observed data (Wade et al., 2014). This computation for binary and continuous covariates

using our distributional and prior assumptions is shown in Appendix B.5. Since we used conjugate

priors, this integration can be done analytically. When non-conjugate priors are used, Monte Carlo

integration is an option.

Simulations

We used simulation to assess the predictive performance of our longitudinal model with splines

and an EDP prior. For each simulated subject, we predicted the outcome at a specific time and

compared it to the true value. Let yi,t be the ith subject’s true value at time t and let ŷi,t be the

prediction of yi,t from a given model. We computed the mean absolute prediction error L1 and the

mean squared prediction error L2 over all simulated subjects.
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`1 =
1

n

n∑
i=1

|ŷi,t − yi,t|

`2 =
1

n

n∑
i=1

(ŷi,t − yi,t)2

We simulated sample sizes of n = 1000 and n = 5000. Each individual was randomly assigned

a minimum of 1 and a maximum of 5 repeated measurements corresponding to time points within

the interval t ∈ [0, 1] generated randomly from an independent uniform distribution. As before,

let θ denote the regression parameters and ψ denote the covariate parameters. The true cluster

structure had three θ-clusters. Within each θ-cluster, there were 3, 2, and 3 nested ψ-clusters. Thus,

the total number of unique clusters was 8 while the total number of unique θ-clusters was 3. The

structure of the clustering along with probabilities of being in each cluster are given in Figure 3.2.

Each subject was assigned 20 simulated covariates from distributions whose parameters differed

between ψ-clusters. Full data-generating details are available in Appendix B.1 and code is available

upon request (code for the EDP and DP models are at https://www.github.com/zeldow/EDPlong and

https://www.github.com/zeldow/DPlong).

Predictions were made for each subject at t = 0.75 and the true value yi,t was calculated based on

the mean for the θ-cluster to which the individual belongs (mean function shown in Appendix B.1)

and the random intercept. We generated 100 datasets and take the mean of `1 and `2 over all

simulations, and then calculate

¯̀
1 =

1

100

100∑
j=1

`1j

¯̀
2 =

1

100

100∑
j=1

`2j ,

where `1j and `2j are `1 and `2 calculated on the jth simulated dataset.

To assess the performance of our mixed model with an EDP prior, we compared it to two competitor

models: a Bayesian mixed model with a DP prior and a linear mixed model (implemented by the
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Table 3.1: Simulation results for n = 1000 showing mean L1 and L2 errors over 100 datasets for
predictions at t = 0.75.

EDP DP ME
¯̀
1

¯̀
2

¯̀
1

¯̀
2

¯̀
1

¯̀
2

σ2 = 1; σ2
u = 0.15 0.66 0.87 0.89 1.43 1.11 1.85

σ2 = 1; σ2
u = 0.5 0.82 1.19 1.07 1.93 1.11 1.87

σ2 = 4; σ2
u = 0.15 0.89 1.46 1.08 2.00 1.23 2.32

σ2 = 4; σ2
u = 0.5 1.05 1.90 1.17 2.28 1.24 2.37

σ2 indicates the simulated regression variance and σ2
u indicates the simulated random intercept

variance. EDP indicates the longitudinal model with an enriched Dirichlet process prior. DP indi-
cates the longitudinal model with a Dirichlet process prior. ME indicates a mixed effects model fit
using the lmer package in R. Fit with penalized thin plate splines with 20 knots.

Table 3.2: Simulation results for n = 5000 showing mean L1 and L2 errors over 100 datasets for
predictions at t = 0.75.

EDP DP ME
¯̀
1

¯̀
2

¯̀
1

¯̀
2

¯̀
1

¯̀
2

σ2 = 1; σ2
u = 0.15 0.60 0.73 0.91 1.49 1.10 1.82

σ2 = 1; σ2
u = 0.5 0.77 1.06 1.10 2.03 1.11 1.86

σ2 = 4; σ2
u = 0.15 0.71 0.99 1.04 1.90 1.21 2.27

σ2 = 4; σ2
u = 0.5 0.85 1.27 1.15 2.25 1.23 2.34

σ2 indicates the simulated regression variance and σ2
u indicates the simulated random intercept

variance. EDP indicates the longitudinal model with an enriched Dirichlet process prior. DP indi-
cates the longitudinal model with a Dirichlet process prior. ME indicates a mixed effects model fit
using the lmer package in R. Fit with penalized thin plate splines with 20 knots.

lme4 package (Bates et al., 2014) in R (R Core Team, 2017)). For each sample size, we varied the

regression variance σ2 and the random intercept variance σ2
u resulting in four simulation scenarios:

(1) low variability in σ2 and low variability in σ2
u; (2) low variability in σ2 and high variability in σ2

u;

(3) high variability in σ2 and low variability in σ2
u; and (4) high variability in σ2 and high variability in

σ2
u. All models were fit using thin plate splines for the time effect. In Appendix B.3, we show results

using cubic B-splines as well with 2 knots at 1
3 and 2

3 .

The results of the simulation study for n = 1000 are shown in Table 3.1. For all scenarios the EDP

model outperformed the DP model and the mixed model in terms of mean L1 and L2 prediction

error. The mean L1 error for the EDP model ranged from 0.66 to 1.05. For the DP model, it ranged

from 0.89 to 1.17, and for the standard mixed model it ranged from 1.11 to 1.24. The mean L2 errors

range from 0.87 to 1.90, 1.43 to 2.28, and 1.85 to 2.37 among the models for the four simulation

scenarios, respectively. Given that the data were generated in clusters, it is unsurprising that the

40



Figure 3.2: Figure of structure of clusters for simulations.

Probabilities for being in a ψ-cluster are conditional on being in the appropriate θ-cluster. θ refers
to the regression parameters and ψ refers to the covariate parameters.

two methods implementing clustering provide better predictions than the standard mixed effects

model. However, we see that the EDP model yielded more precise prediction than the DP model

based on L1 and L2 prediction error.

The results in Table 3.2 display the results for the simulations with n = 5000. Again, the EDP

model outperforms the DP model which outperforms the mixed model. For the most part, there

are no large differences in the relative performance of methods at the two sample sizes. Using

cubic B-splines (see Appendix B.3) in lieu of thin plate splines also did not have considerable effect

on prediction error. Overall the results for thin-plate splines were slightly improved over those of

B-splines, but more research needs to be done and more scenarios examined.

Table 3.3: Simulation results for n = 1000 showing mean L1 and L2 errors over 100 datasets for
predictions at t = 0.75 when the standard mixed effects model is correctly specified.

EDP DP ME
¯̀
1

¯̀
2

¯̀
1

¯̀
2

¯̀
1

¯̀
2

σ2 = 1; σ2
u = 0.15 0.31 0.16 0.31 0.16 0.28 0.12

σ2 = 1; σ2
u = 0.5 0.56 0.50 0.56 0.50 0.38 0.23

σ2 = 4; σ2
u = 0.15 0.34 0.18 0.34 0.18 0.35 0.20

σ2 = 4; σ2
u = 0.5 0.58 0.52 0.58 0.52 0.52 0.42

σ2 indicates the simulated regression variance and σ2
u indicates the simulated random intercept

variance. EDP indicates the longitudinal model with an enriched Dirichlet process prior. DP indi-
cates the longitudinal model with a Dirichlet process prior. ME indicates a mixed effects model fit
using the lmer package in R. Fit with cubic B-splines with 2 knots.
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Lastly, we performed simulations where all subjects were part of the same cluster so that the linear

mixed model was correctly specified and was expected to work best. The results for n = 1000 are

included in Table 3.3. Over 100 simulated datasets, the correctly specified standard mixed model

outperformed both the EDP and DP models in almost all scenarios. Results from EDP and DP

models showed no difference up to two decimal places. This interesting finding was due to the

fact that the EDP model did not split θ-clusters in subclusters, rendering the difference between

the DP and EDP models irrelevant. Overall, we found that the EDP and DP models concentrated

around one large θ-cluster with scattered observations in other θ-clusters. With n = 1000, the L1

error for the mixed model ranged from 0.28 to 0.52, while for the DP and EDP models, it ranged

from 0.31 to 0.58. The largest difference in favor of the standard mixed model occurred with low

regression variance σ2 = 1 and high random intercept variance σ2
u = 0.5 (L1 error: 0.38 versus

0.56; L2 error: 0.23 versus 0.50). Other scenarios showed either no difference or only a modest

improvement for the standard mixed model. One possible explanation for this discrepancy is that

there is an identifiability problem in the models with DP or EDP priors in which the algorithm has

difficulty determining if σ2
u is smaller and there are many clusters or if σ2

u is large and there are

few clusters. Thus, in this scenario the EDP and DP models split the sample into more clusters

than was necessary and prediction suffered accordingly. On the other hand, the reverse scenario

with high regression variance and low random intercept variance showed no difference between

the three models, indicating that the nonparametric prior performed fine in more likely situations.

Data Analysis

Sentinel is an intiative of the US Food and Drug Administration with 19 data partners (Sentinel).

Under Sentinel, a distributed database has been established that collects EHR and administrative

health plan data to assess safety in approved medical products, particularly drugs and vaccines. As

part of a workgroup effort to understand and use laboratory results data in the Sentinel Distributed

Database (SDD) (Analytic Methods for Using Laboratory Test Results In Active Database Surveil-

lance), Flory et al., (2017) used the MSDD to calculate incidence rates of diabetes among new

initiators of second generation antipsychotics (SGAs), which are known to increase the risk of Type

II diabetes mellitis (T2DM) (De Hert et al., 2012; Newcomer, 2005). T2DM is often diagnosed based

on elevated levels of hemoglobin A1c (HbA1c), serum glucose, or capillary glucose (Association,

2014). In Flory et al., (2017) incidence rates for T2DM were computed from two outcomes: (O1)
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diagnosis codes and dispensement of antidiabetic medication and (O2) diagnosis codes, dispense-

ment of antidiabetic medication as well as an elevated diabetes labs. Lab values were considered

elevated if fasting glucose ≥ 126 mg/dl, random glucose ≥ 200 mg/dl, or HbA1c ≥ 6.5v%. Including

diabetes labs increased the number of T2DM cases, but missingness was differential among the

sites analyzed, affecting some sites more than others. In this paper, we extend some of the results

of Flory et al., (2017) using predictions from our longitudinal EDP model.

We restricted our analysis to site one of Flory et al., (2017), which corresponds to a small integrated

delivery system. As in that publication, our cohort was restricted to participants at least 21 years

of age who had at least 183 days of health plan enrollment prior to initiating a SGA (aripiprazole,

olanzapine, quetiapine, and risperidone). We included those who had first dispensement of a SGA

between 1 January 2008 and 31 October 2012. Any individuals with evidence of diabetes prior

to initiation of the SGA, including diagnosis of diabetes, receipt of an antidiabetic medication, or

an elevated diabetes lab, were excluded. Follow-up began at first dispensement of a SGA and

continued until discontinuation of insurance, death, occurrence of the outcome, or end of 365 days,

whichever came first. The outcome was incident diabetes within 365 days of study, equal to that

of outcome O1 above. We also define a new outcome O3, which consists of O1 and predicted

elevated lab values.

The motivation for using our EDP longitudinal model for this problem is as follows. Our interest

lies in calculating the incidence of diabetes within one year of initiating a SGA, supplementing the

outcome with information from recorded lab values. The previous analysis was limited by restricting

to lab values within one year of follow-up. However, lab values after one year can be informative

as well, particularly those drawn soon after study end. Over 30% of the subjects from site one

did not have any lab values recorded between 1 and 365 days of SGA initiation. Subjects with lab

values recorded had differential amounts of data recorded within that study window, ranging from

1 to 4 records for HbA1c, 1 to 5 of fasting glucose, and 1 to 115 of random glucose. Lastly, the

approach in Flory et al., (2017) treats any instance of a lab value exceeding the threshold as part

of the outcome even if only one measurement among many exceeded the threshold. Because of

this, uncertainty stemming from measurement error was inadequately accounted for. Our model

incorporates such uncertainty through the regression variance component σ2 as well as the fact

that cluster membership sy changes throughout the algorithm.
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We fit EDP longitudinal models for each of three lab values (HbA1c, fasting glucose, and random

glucose) separately. Models were fit with the entire history of the subject’s lab values until initiation

of an anti-diabetic medication. Our dataset had a total of n = 3, 764 study participants. Among

these, 680 subjects contributed 1,003 observations for HbA1c. For fasting glucose, 2,032 subjects

contributed 4,110 observations. For random glucose, 3,013 subjects contributed 21,614 observa-

tions. We used 200,000 iterations with 40,000 burn in period. Throughout the 160,000 post burn

in iterations, predictions were drawn at 800 evenly spaced iterations. Each subject had predictions

made at day 365, unless their study censoring time was prior to that, at which point we made pre-

dictions at that censoring time. All predicted values were appended to the original dataset resulting

in 800 imputed datasets. Each imputed dataset consists of the original data, including diabetes

diagnoses and dispensement of antidiabetics, along with three predicted values for HbA1c, random

glucose, and fasting glucose. The outcome O3 was calculated for each imputed dataset. From

this, we then calculate the incidence of diabetes and use multiple imputation methods to combine

estimates across imputations (Rubin, 2004). Overall, the HbA1c model took 4.7 hours of runtime,

the fasting glucose model 22.4 hours, and the random glucose model 63.2 hours.

In total, 89 participants were diagnosed with diabetes through diagnosis codes or dispensement of

anti-diabetic medication. The total number of outcomes O3 ranged from 146 to 394 outcomes with

a median of 200 throughout the 800 imputations. This resulted in an incidence of 0.059 events per

person-year (95% confidence interval: 0.043–0.080). This result is similar to the incidence found

in Flory et al., (2017) for site one among those with recorded lab values, except the confidence

interval is wider, reflecting greater uncertainty in classification using lab values.

Clustering

We also examined clustering resulting from our model. There is a multitude of reasons one may be

interested in clustering in the present example. First, it can show heterogeniety (or lack thereof) of

outcome features among groups of individuals. The cluster itself may be able to predict outcomes.

For example, if we know that a certain individual is in a cluster with rising HbA1c values over time,

we know that their likelihood of a diabetes diagnosis is increased compared to a group with flat

trajectories over time. Further, once we have identified the clustering structure, we can examine

the distributions of covariates within cluster and determine covariates that may be affecting the

differences among groups.
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Recall that we refer to clusters based on regression parameters as θ-clusters and the nested clus-

ters based on covariates as ψ-clusters. For illustrative purposes, we focus strictly on functional

clustering using θ-clusters. Other applications may have interest in summarizing ψ-clusters as well.

Given that within the MCMC algorithm, not only cluster membership but the number of clusters

can change, we condense the results into a single point estimate for the posterior cluster structure.

For the HbA1c and fasting glucose models, the posterior number of clusters concentrated around

two. For random glucose, the posterior number of clusters concentrated around three. All models

were initialized to have two θ-clusters. When we initialized the number of θ-clusters to 10, results

eventually converged to similar answers for each of the outcomes. However, computation time was

considerably longer when initialized with a large number of θ-clusters.

Figure 3.3: Clustering results for HbA1c model.

The model settled on two θ-clusters which are shown in the figure. The larger cluster has 650
subjects and the smaller cluster has 30 subjects.
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Figure 3.4: Clustering results for fasting glucose model.

The model settled on two θ-clusters. The larger cluster has 1997 subjects and the smaller cluster
has 35 subjects.

For both the model with HbA1c as the outcome and the model with fasting glucose as the outcome,

our algorithm settled on two distinct clusters as seen in Figure 3.3 and Figure 3.4, respectively. For

HbA1c, the first cluster contained 650 observations consisting of trajectories that mostly stay within

the values 5% and 8%. The remaining 30 observations in the second cluster consisted of highly

variable trajectories that had spikes in their values. In the fasting glucose model, the first cluster

had 1997 members and consisted of tight trajectories below the threshold of 126 mg/dL, while the

second cluster housed the remaining 35 subjects mostly of subjects whose trajectory at some point

contains a spike or is somehow indicative of higher variability.

The model with random glucose as the outcome settled on three clusters which can be seen in

46



Figure 3.5: Clustering results for random glucose model.

The model settled on three θ-clusters with 2563, 419, and 31 subjects.

Figure 3.5. The largest cluster had 2563 subjects who had relatively flat trajectories with small

within-subject variability. The second largest cluster contained 419 subjects who had trajectories

with slightly more variability than the first cluster. The third cluster contains 31 subjects with large

spikes and characterized by larger variability than the other clusters.

Discussion

In this paper, we presented a joint model for a continuous longitudinal outcome and the baseline

covariates. The model is partitioned into the product of a linear mixed model for the outcome given

the covariates and the marginal distributions for the covariates. The use of the EDP prior in a

longitudinal model is an extension of the model developed by Wade, Mongelluzzo, and Petrone,
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(2011), which itself is an extension of the DP prior. Through the nested clustering of the EDP prior,

where subjects are clustered separately for their regression trajectories and similarity in the covari-

ate space, our model allows for improved prediction over the same model with the usual DP prior.

This improvement was demonstrated in simulation scenarios in which the EDP longitudinal model

outperformed both a standard mixed model and a longitudinal model with a DP prior when the data

generating distribution contained a nested clustering structure. When the simulation scenario was

simplified so that there was no underlying cluster structure and the linear mixed model was correctly

specified, using the nonparametric EDP prior did not excessively diminish predictive performance.

Our model also serves as a functional clustering algorithm, the first to use an EDP prior. In our

model setup, the EDP prior is particularly useful because it allows the functional to cluster solely on

functional features rather than non-functional components (i.e., closeness in the covariate space).

One limitation of the present model is that it can only incorporate baseline covariates. In many

longitudinal settings, covariates may be updated throughout the study. One possibility to incorpo-

rate this into our model would be to use the dynamic DP, which allows for distributions to evolve

in discrete time (Rodriguez and Ter Horst, 2008). From the current state of the literature, DPs

which evolve throughout time are less thoroughly developed and more difficult to implement. The

extension of our model to handle time-varying covariates is a topic for future research.

Throughout the paper we made several modeling choices that could be changed or generalized.

For example, the value for αψ could depend on θ so that the mass parameter is written as αψ(θ).

This would allow the number of subclusters to differ depending on the value of θ. Further, we made

the assumption that the values of ψ and θ were independent through the fact that P0 = P0θ ×P0ψ|θ.

This assumption simplifies calculations but can be relaxed if needed. These two changes were

discussed in Wade, Mongelluzzo, and Petrone, (2011). Lastly, we focused on continuous outcomes,

but our methods can be extended to more general settings such as binary or count outcomes or

different link functions with various additional computational challenges (non-conjugacy for one).

Bayesian computations for generalized linear mixed models are provided in Zhao et al., (2006) and

references therein.

We demonstrated our model with data from the Sentinel Distributed Database, where we used pre-

dicted lab measurements to augment incidence rates of diabetes among subjects initiating certain

anti-psychotics. Our incidence rates were similar to those found in a previous paper on the same
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study population (Flory et al., 2017), but our estimates gave wider confidence intervals, reflecting

greater uncertainty about the incorporation of labs as part of the diabetes diagnosis. Our model

is well-suited for other applications as well, such as with data arising from studies using wearable

devices or studies of symptoms of chronic conditions with interest in detecting patterns among

patients.
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CHAPTER 4

PARAMETRIC G-FORMULA FOR A LONGITUDINALLY RECORDED OUTCOME USING

AN ENRICHED DIRICHLET PROCESS PRIOR

Introduction

Randomized trials are the ideal experiment to address questions of efficacy for a treatment or in-

tervention (Hernán and Robins, 2018). Due to a variety of reasons ranging from ethical considera-

tions to time or financial constraints, we often must resort to analyzing data from a non-randomized

source instead (Black, 1996). In such cases, we can try to emulate a randomized experiment using

observational data (Hernán and Robins, 2016). One source of non-randomized data is electronic

health records (EHR), an increasingly used system designed to store medical data with the idea of

centralizing individual medical records (Schoen et al., 2012). EHR, often made available for data

analysis, pose unique challenges beyond the lack of a randomized intervention. In contrast to ran-

domized trials and planned observational studies, data are not always recorded at ideal times, and

certain individuals may have ample data while others have little to none.

In using EHR to emulate a randomized trial, one must define the point of entry in the trial and the

time frame across which the outcome is assessed (Hernán and Robins, 2016). We can often find

appropriate markers representing study entry such as the first use of a medication, initial entry

into the EHR system, or the diagnosis of a condition. Specifying the follow-up period can be a

more difficult task since there is no guarantee that outcomes are recorded at the desired times.

In the previous chapter, we addressed this problem from a prediction standpoint and proposed a

joint model for a continuous outcome and baseline covariates using an enriched Dirichlet process

(EDP) prior (Wade, Mongelluzzo, and Petrone, 2011). The joint model can be decomposed into

the product of a linear mixed model for the outcome and marginals for the covariates. In this paper,

we extend our model to use with the parametric g-formula (Robins, 1986). We demonstrate this in

simulation and using EHR in which the outcome may not be measured at the time point of interest.

There have been several recent papers proposing Bayesian methods for causal inference, which

has typically been in the domain of classical semiparametrics (Hill, 2011; Roy, Lum, and Daniels,
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2016; Roy et al., 2017). Bayesian methodology requires full specification of the likelihood, which

can be restrictive in the sense that a large portion of the likelihood, called the nuisance component,

is not of scientific interest but is still subject to model mispecification (Gelman et al., 2014). On

the other hand, classical semiparametrics allow for the nuisance component to be left unspecified.

While a Bayesian approach can never avoid specification of the full likelihood, we can use Bayesian

nonparametrics to relax modeling assumptions by introducing an infinite dimensional parameter

with an appropriate prior. Typically, this is done with a Dirichlet process mixture (DPM), the most

popular Bayesian nonparametric model (Ferguson, 1983). In this paper, the EDP prior that we use

is an extension of the common DP prior, allowing for improved prediction when there are many

covariates (Wade et al., 2014).

The chapter is organized as follows. In section 2, we describe our model and define causal effects

along with identifying assumptions. In section 3, we detail the algorithm for the parametric g-formula

within our joint model. In section 4, we use simulation to assess small sample properties. In section

5, we complete a data analysis using new initiators of second generation antipsychotics to assess

their causal effect on risk of diabetes. In the last section, we discuss the results and suggest future

research directions.

Model

Dirichlet Process

The Dirichlet process (DP) is the most popular Bayesian nonparametric prior (Ferguson, 1973;

Müller et al., 2015). A DP P ∼ DP (αP0) is parameterized by a positive-valued mass parameter

α and a centering distribution P0 defined on a sample space S. Each draw from P is itself a

probability measure, centered around P0, meaning the DP is suited to be a prior on the space of

distributions. When {B,Bc} is a partition of S, we have thatE(P (B)) = P0(B) and that var(P (B)) =

P0(B)(1 − P0(B))/(1 + α) (Müller et al., 2015). From the variance relation, it is clear that the

parameter α controls the variability of P around P0, where high values of α imply smaller variability

and less deviation from P0. Two additional properties of DPs are that P has the same support S

as P0, and that draws from P are almost surely discrete, even if P0 is continuous. An example of

draws from a DP is displayed in Figure 1.1.
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In density estimation problems, the probability model can be placed directly on the unknown density

using a DP, but the DP is more frequently used as a mixing distribution for the parameters of a

parametric kernel. These mixture models are called DP mixtures (DPMs) (Ferguson, 1983). An

important example of a DPM can be found in Hannah, Blei, and Powell, (2011) in which they fit a

generalized linear model (GLM) with a DP as the mixing distribution for subject-specific regression

coefficients βi. The discreteness of the DP implies that for two subjects i 6= j, there is a positive

probability that βi = βj . Thus, the DP induces clustering among subjects through shared values of

β. If, in addition, we consider the covariates random with a DP on their parameters, the clustering

occurs jointly on β and these covariate parameters.

Wade, Mongelluzzo, and Petrone, (2011) showed that when the dimension of the covariates is

large, clustering can form based more on similarity in the covariate space rather than β. This

impacts predictive performance as more clusters form than needed to adequately describe the

heterogeniety of the regression parameters β. To address this problem, the enriched DP (EDP)

was proposed which allows for clusters based on the covariate parameters to be nested within

clusters for β. It was shown that predictive performance improved when an EDP prior was used in

lieu of a DP prior in applications with many covariates (Wade et al., 2014). In the previous chapter,

the idea of using an EDP prior was extended within a mixed model framework to handle longitudinal

data.

Regression

For subject i = 1, . . . , n, let ni be the total number of observations that the ith subject contributes

with N =
∑n
i=1 ni. Let the outcome yij correspond to the jth measurement for the ith subject

recorded at time tij . The vector yi corresponds to all outcomes for the ith subject and the vector y

designates the N×1 vector of all subjects combined. Let ti and t denote the corresponding vectors

of time. The treatment, denoted ai, is administered at baseline, and we let xi be the p × 1 vector

of covariates measured at baseline. To facilitate nonlinear effects across time, we define the matrix

z to be a spline basis matrix for time where each individual has submatrix zi. Capital letters Y , A,

and X refer to the random variables.

In the previous chapter, we showed how to estimate the joint distribution of (Y,A,X) by decom-

posing the model into the product of the outcome Y given time, A, and X alongside the marginal
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distributions of X and A. For the outcome process, we used a linear mixed model where the effects

of x and a on y are parameterized by β and the time (spline) effect of z on y is parameterized by

η. Together let θ = (β,η, σ2) be the regression parameters, where σ2 is the regression variance

parameter. To complete this model, the marginal distributions for the covariates X and treatment

A are assumed to have a Bernoulli distribution if binary and a normal distribution if continuous.

These distributions are parameterized by the vector ψ = (ψ1, . . . ,ψp). As such, if the kth covari-

ate is binary, then ψk is the univariate probability parameter. If it is continuous, then ψk is the

two-dimensional parameter with a mean and variance. If we place a DP prior on θ, and ψ so that

(θ,ψ) ∼ P , where P ∼ DP (α, P0) for some P0, our model implies that subjects will cluster on

similar values of θ and ψ. As mentioned in the previous section, if the dimension of ψ is large,

clusters can form based largely on ψ and predictive performance can suffer. To address this issue,

we use the enriched DP (EDP) prior.

When using an EDP prior, we instead write P ∼ EDP (αθ, αψ, P0) indicating Pθ ∼ DP (αθ, P0θ)

and Pψ|θ ∼ DP (αψ, P0ψ|θ) where P0 = P0θ × P0ψ|θ. As with the DP prior before, the EDP prior is

also discrete and induces clustering on θ and ψ. However, this formulation yields nested clustering

where clusters for ψ are nested within clusters for θ. The additional mass parameters, αθ and αψ,

control the number of clusters for θ and ψ, respectively.

The full model for the observed data with an EDP prior is

yi|xi, ti,βi,ηi, ui, σ
2
i ∼ N(x∗i βi + ziηi + ui, σ

2
i I), (4.1)

ui ∼ N(0, σ2
u);

xij |ψi ∼ N(µij , σ
2
µ,ij) (for continuous covariates); (4.2)

xij |ψi ∼ Bernoulli(pij) (for binary covariates); (4.3)

(θi,ψi)|P ∼ P ;

P ∼ EDP(αθ, αψ, P0);

σ2
u, αθ, αψ ∼ Inv-Ga(au, bu)×Ga(aθ, bθ)×Ga(aψ, bψ);
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where θi = (βi, σ
2
β,i,ηi, σ

2
η,i, σ

2
i ) are the regression parameters. The centering distributions are

P0θ ∼ Inv-Ga(aβ , bβ)︸ ︷︷ ︸
σ2
β

× N(β0, σ
2
β,iI))︸ ︷︷ ︸

β

× Inv-Ga(aη, bη)︸ ︷︷ ︸
σ2
η

× N(0, σ2
η,iI)︸ ︷︷ ︸

η

× Inv-Ga(ay, by)︸ ︷︷ ︸
σ2

;

and

P0ψ|θ ∼ Beta(ax, bx);

P0ψ|θ ∼ scaled Inv-χ2(ν0, τ
2
0 )× N(µ0, τ

2/c),

for binary and continuous covariates, respectively. We use the notation x∗i to indicate the vector xi

with time tij possibly added, as would be the case if splines were omitted.

We call clusters based on θ and ψ θ-clusters and ψ-clusters, respectively. The nested clustering of

the EDP prior means that it is possible that θi = θj but ψi 6= ψj for some i 6= j. This is typically

not possible with a DP prior unless the centering measure P0ψ|θ is discrete. Let θ∗ = (θ∗1 , . . . ,θ
∗
k)

denote all k unique values of θ and θ∗j denote the parameter values for the jth unique cluster. If

all subjects share the same θ, then θ∗ is a vector of length 1. On the other hand, if θi 6= θj for all

i 6= j, then θ∗ will be a vector of length n. We introduce a latent cluster membership parameter

si = (si,y, si,x) in which si,y refers to the corresponding θ-cluster to which the ith subject belongs.

If si,y = k, then θi = θ∗k.

Causal Effects

Let Y at denote the counterfactual outcome for Y at time t had, possibly contrary to fact, A = a been

the treatment administered. For binary treatment A, some common causal contrasts are given

below:

• Average treatment effect: E(Y 1
t − Y 0

t )

• Causal risk ratio: E(Y 1
t )/E(Y 0

t )

• Conditional treatment effect: E(Y 1
t − Y 0

t |V = v)

• Treatment effect on the treated: E(Y 1
t − Y 0

t |A = 1).

In this paper, we focus on the average treatment effect and the conditional treatment effect for
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continuous outcomes. To estimate these effects, we use the parametric g-formula, which involves

modeling the observed data and then using that model to simulate outcomes under hypothetical

treatments (Naimi, Cole, and Kennedy, 2017).

To identify the unobservable quantity E(Y at ), we make the following assumptions:

1. Consistency: Yt = Y at if A = a. This assumption asserts that the counterfactual outcome is

equal to the observed outcome if A = a.

2. Exchangeability: Y at ⊥ A|X. This assumption asserts that given confounders X, the treat-

ment A can be thought of as randomly assigned.

3. Positivity: P (A = a|X = x) > 0 whenever P (X = x) > 0. This assumption asserts that there

is a nonzero probability of treatment for every possible combination of covariates X.

Using these assumptions, we link the observed data (Yt, A,X) to the counterfactual data through

the g-formula, whose derivation is given in Naimi, Cole, and Kennedy, (2017), for example. We

show how to use the g-formula in practice using our EDP model in the following section.

Computations

Full computations for the joint EDP longitudinal model are in the previous chapter and Appendix B.

Corresponding code is available at https://www.github.com/zeldow/EDPlong. Our Gibbs sampler

is based on algorithm 8 in Neal, (2000) and the algorithm in Wade et al., (2014). Briefly, the

algorithm alternates between updating cluster membership and updating the parameter values.

In this section, we describe computations for the parametric g-formula to estimate causal effects

after the joint EDP model has been estimated and we have posterior distributions for all model

parameters. The calculations for the g-formula are not required for fitting the joint EDP model so

the g-formula may either be done in parallel or in a post-processing step using saved parameter

values. Let nθk be the number of subjects in the kth unique θ-cluster and let nψj|k denote the number

of subjects in the jth unique ψ-cluster nested within the kth unique θ-cluster. Let `θ denote the

number of unique θ-clusters and let `ψ|k be the number of unique ψ-clusters nested within the kth

θ-cluster.

For the g-formula, we simulate a dataset of subjects with the same covariate distribution as the tar-
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get population. In this simulated population, we modify the treatment (and possibly other modifiable

covariates) to represent a treatment strategy (e.g., everyone in the population is treated). Using the

simulated/modified data, we then calculate the expected outcome given the covariates and treat-

ment. Once we have this for everyone in the simulated population, we average the outcome over

the the empirical distribution of the covariates.

Below are steps to estimate E(Y at ) after having modeled the joint distribution for the observed data

with the longitudinal EDP model. To calculate a risk difference for a binary treatment, perform

the following steps separately at A = 1 and A = 0 and take the difference between the results.

An advantage of using Bayesian methods for these calculations are the ease of getting posterior

intervals as well as the ability to compute different quantities using the same posterior distribution.

The data are simulated as follows:

For m = 1, . . . ,M ,

1. Draw smy from a multinomial distribution with probabilities(
nθ1

n+αθ
, . . . ,

nθ`θ
n+αθ

, αθ
n+αθ

)
.

2. If smy = k ≤ `θ, draw smx from a multinomial distribution given smy = k, with probabilities(
nψ
1|k

nθk+αψ
, . . . ,

nψ`ψ|k
nθk+αψ

,
αψ

nθk+αψ

)
.

3. Draw Xm from p(x|ψ∗j|k) whenever smy = k ≤ `θ and smx = j ≤ `ψ|k. Otherwise, subject m

is part of a new cluster in which case we draw ψ0 from the base distribution P0ψ|θ, and then

draw Xm from p(x|ψ0).

4. Modify treatment Am = a.

5. Calculate the probabilities for each smy = k for k = 1, . . . , `θ given Xm and Am. In addition,

calculate the probability that a subject is in a new θ-cluster. Draw smy from a multinomial

distribution with probability for sy = k ≤ `θ:

Pr(smy = k|Am = a,Xm) =
nθk

αθ + n
×

 αψ
αψ + nθk

fx,0(xi) +
∑
j

(
nψj|k

αψ + nθk

p∏
l=1

fx,l(xi,l;ψ
∗
j|k)

) ,
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and probability:

Pr(smy = `θ + 1|Am = a,Xm) =
αθ

αθ + n
× fx,0(xi)

for sy = `θ + 1.

6. Using the probabilities from the previous step, compute the weighted average of

E(Y m|Am, Xm, smy ). That is,

γm(a) = E {Y |Am = a,Xm}

=
1

`θ + 1

`θ+1∑
k=1

E
{
Y |Am = a,Xm, smy = k

}
· Pr

[
smy = k|Am = a,Xm

]
,

where if smy = k for 1 ≤ k ≤ `θ, we evaluate the expectation using parameters θ∗k.

Once we compute the expected outcome under treatment A = a for all m, average over all values

M :

E(Y at ) =
1

M

M∑
i=1

γi(a).

In step 3, the notation fx,l(xi,l;ψ∗j|k) refers to the lth covariate evaluated at the parameters for the

jth ψ-cluster nested within the kth θ-cluster. The notation fx,0(xi) in step 5 refers to∏p
l=1

∫
ψ
fx,l(xi,l)dP0ψ|θ, the density of the covariates integrated over the base measure. This calcu-

lation for continuous and binary covariates with the distribution chosen in this EDP model appears

in the Appendix B.

Simulations

We use simulation to measure the effectiveness and small sample properties of g-estimation with

our joint model using an EDP prior. The quantity we are interested in for all simulations is the causal

risk ratio ω = ω1 − ω0 = E(Y 1
t∗ − Y 0

t∗) for a time point of interest t∗. We use n = 1000 total subjects

who are randomly assigned between 1 and 5 repeated measurements with time points generated

randomly between 0 and 1. For all scenarios, the causal effect is assessed at t∗ = 0.67.
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Scenario 1: Simple functional forms, few covariates, two clusters

xi
iid∼ N(0, 1);

vi
iid∼ Bernoulli(0.75);

ai
iid∼ Bernoulli(0.50);

ui
iid∼ N(0, σ2

u);

yi
ind∼ N(ξiµ1 + (1− ξi)µ2, σ

2),

where ξi ∼ Bernoulli(pi) with pi = 0.7 if ai = 1 and pi = 0.2 if ai = 0. Also, µ1 = 1t>0.75 · (t− 0.75) +

0.25vi and µ2 = 2 · 1t≤0.5 · t+ 1t>0.5 − 0.25vi.

In this scenario, the true value for ω is 0.3125. The mean estimated causal effect over 100 datasets

was ω̂ = 0.3145. Coverage for the 95% credible interval was 0.98 and the empirical mean square

error was 0.0002. The true values for ω1 and ω0 were 0.625 and 0.3125, respectively, with estimates

ω̂1 = 0.626 and ω̂0 = 0.312. Coverages for ω1 and ω0 were 94% and 99%.

Scenario 2: Simple functional forms, many covariates, two clusters

xi,1 − xi,15
iid∼ Bernoulli(0.50);

xi,16 − xi,20
iid∼ Bernoulli(0.75);

xi,21 − xi,30
iid∼ N(0, 1);

vi
iid∼ Bernoulli(0.75);

ai
ind∼ Bernoulli(pai);

ui
iid∼ N(0, σ2

u);

yi
ind∼ N(ξiµ1 + (1− ξi)µ2, σ

2),

where pai = expit (−0.2 + 0.25xi,1 + 0.5xi,13 − 0.75xi,16 + 0.2xi,20 − 0.2xi,21). Also, the latent pa-

rameter ξi ∼ Bernoulli(pi) with pi = 0.7 if ai = 1 and pi = 0.2 if ai = 0. The mean functions are

µ1 = 1t>0.75 · (t− 0.75) + 0.25vi and µ2 = 2 · 1t≤0.5 · t+ 1t>0.5 − 0.25vi.
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In this scenario, the true value for ω is 0.3125, with ω1 = 0.625 and ω0 = 0.3125. Our point estimates

are ω̂ = 0.26, ω̂1 = 0.59, and ω̂0 = 0.33, with 95% credible interval coverages of 47%, 73%, and 79%,

respectively.

Scenario 3: Complex functional forms, many correlated covariates, two clusters

xi
iid∼ MVN(0,Σ);

ai
ind∼ Bernoulli(pai);

ui
iid∼ N(0, σ2

u);

yi
ind∼ N(ξiµ1 + (1− ξi)µ2, σ

2)

where Σ is a 30 × 30 AR(1) with ρ = 0.5 and the diagonal containing ones. The probability of

receiving treatment is

pai = expit (−0.2 + 0.25xi,1 + 0.5xi,13 − 0.75xi,16 + 0.2xi,20xi,21). Here, ξi ∼ Bernoulli(pi) with pi =

expit
(
ai +

sin(xi,1)
4 − 4xi,21

)
. The mean functions for each cluster are µ1 = 1t>0.75 · (t − 0.75) +

0.5ai + xi,15 − sin(xi,16/2) and µ2 = 2 · 1t≤0.5 · t+ 1t>0.5 − 0.2ai + exp(xi,15)− sin(xi,21/2).

The parameter ρ does not alter the mean the causal effect but may affect estimation in terms of

bias or efficiency. Here, the true value for ω = 0.036. When ρ = 0, the mean causal effect over 100

datasets was 0.065. Coverage for the 95% credible interval was 0.92 with empirical mean square

error (MSE) at 0.0022. When ρ = 0.5, the estimated causal effect over 100 datasets was ω̂ = 0.064.

Coverage for the 95% credible interval was 0.90 with empirical mean square error (MSE) at 0.0023.

The true values for the ω1 and ω0 were 0.879 and 0.844. The estimates for these values were 0.899

and 0.836.

Scenario 4: Simple functional forms, many covariates, one cluster

xi
iid∼ MVN(0,Σ);

ai
ind∼ Bernoulli(pai);

ui
iid∼ N(0, σ2

u);

yi
ind∼ N(µ1, σ

2)
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where Σ is a 30 × 30 AR(1) with ρ = 0.5 and the diagonal containing ones. The probability of re-

ceiving treatment is

pai = expit (−0.2 + 0.25xi,1 + 0.5xi,13 − 0.75xi,16 + 0.2xi,20xi,21). The mean function is µ1 = 1t>0.75·

(t− 0.75) + 0.5ai + xi,15 − sin(xi,16/2).

Here, the true values are ω = 0.5, ω1 = 0.5, and ω0 = 0.0. The posterior means for each of the

three parameters were ω̂ = 0.497, ω̂1 = 0.498, and ω̂0 = 0.001. The 95% coverage of the credible

intervals were 95%, 97%, and 92%, respectively.

Data Analysis

To demonstrate implementation of the g-formula, we use data from the Sentinel Distributed Database

(SDD) (Sentinel), which we used to esimate incidence rates of diabetes in the previous chapter. In

short, the SDD is a collection of health records initiated by the US Food and Drug Administration

with the aim of assessing safety in approved drugs and devices. Our analysis was restricted to

adults who initiate a second generation antipsychotic (SGA), which are known to increase the risk

of diabetes (De Hert et al., 2012; Newcomer, 2005). As part of its collection procedure, the SDD

records laboratory tests (labs) over time. In this analysis, we look at fasting glucose labs for which

elevated values (≥ 126 mg/dL) indicate diabetes. Our goal is to determine how much aripiprazole

increases fasting glucose one year after initiation compared to other SGAs (olanzapine, quetiapine,

and risperidone). That is, if we let Y denote fasting glucose, measure time t in years, and set A = 1

to denote use of aripiprazole, we are interested in the quantity:

ω = E(Y 1
t=1 − Y 0

t=1).

As this was not a planned study, there is no guarantee that fasting glucose is recorded at t = 1.

In fact, there were only 2032 subjects contributing 4110 observations over a five year period. After

20,000 iterations with 10,000 burnin, the estimate for ω was −1.27 with a 95% credible interval

of (−6.80, 5.25). As the interval contains 0, there is no evidence of a causal effect of aripiprazole

versus other SGAs on fasting glucose after one year. The trace plot for this effect is shown in

Figure 4.1.
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Figure 4.1: Trace plot for causal effect on fasting glucose

The x-axis shows only post burn-in iterations.

Discussion

In this chapter, we provided an algorithm for the parametric g-formula in applications with a longitu-

dinal outcome and baseline covariates. This builds on the work from the previous chapter in which

we fit a joint model with an EDP prior. Using the joint model, we simulate a hypothetical dataset

from the marginal distribution of the covariates. We modify treatment (and possibly other modifiable
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covariates) to correspond to the causal estimand we seek to estimate. The mean counterfactuals

are computed by averaging the expected outcomes for each individual, taking into account the

probability of each individual being in each cluster.

In our simulations with many covariates, there was some bias in estimating the risk difference.

The bias in the risk difference stemmed from some bias in the individual effects of Y 1
t∗ and Y 0

t∗ .

In general, the bias in these effects were in the opposite direction, indicating that the crux of the

problem might be in the assignment of cluster probabilities in Step 5 of our algorithm.

Our model contains some limitations which we suggest directions for future work. Primarily, we

would like to extend our joint model to handle time-varying treatment and covariates. Once our joint

model is equipped for this, a natural extension of this algorithm for the g-formula is to handle more

complicated scenarios such as those arising in dynamic treatment regimes (Taubman et al., 2009;

Westreich et al., 2012). To incorporate time-varying covariates in our framework, we can introduce

a dynamic distribution which can update over time. In a planned study with fixed observation points,

the covariate distribution can be updated at fixed times (Rodriguez and Ter Horst, 2008). For EHR

with covariates updated at irregular intervals, additional methods may be needed.

A final direction for future work combines functional clustering and causal inference. Causal infer-

ence on continuous treatment effects have been developed (Kennedy et al., 2017), yielding con-

tinuous effect curves, but there are no instances in the literature in which functional clustering is

the target of inference in causal settings. In the previous chapter, we showed how our joint EDP

longitudinal model also serves as a functional clustering algorithm. An interesting extension of this

work would be to apply this functional clustering algorithm to hypothetical treatments in a causal

inference setting.
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CHAPTER 5

CONCLUSION

Summary

In this thesis, we developed novel Bayesian nonparametric methods for common statistical proce-

dures, including generalized linear models and linear mixed models. While all Bayesian procedures

require full specification of the observed data likelihood, Bayesian nonparametrics relax modeling

assumptions by introducing either an infinite dimensional parameter, or parameters whose dimen-

sion increases as the sample size grows. These methods have gained popularity in recent years

in conjunction with increased computational power, making the nonparametric procedures more

attractive for their robustness to modeling assumptions while being computationally feasible.

One of the first statistical models discussed in an introductory statistics course is linear regression

(and generalized linear models). In Chapter 2, we inserted Bayesian Additive Regression Trees

(BART) (Chipman, George, and McCulloch, 2010) into a generalized linear model framework where

a large subset of covariates are modeled nonparametrically and a small subset are allowed to

have standard parametric form. In practice, researchers will often fit a large linear regression

model where only a few covariates are of scientific interest–such as a treatment effect and its

effect modifiers–but there are a number of additional variables that are necessary to control for

confounding. In a linear model, these effects are likely to be misspecified and may yield inefficient

estimates of the effects that are of interest. In response to this, we propose semi-BART, which

allows for these confounders to be modeled with BART, while the covariates of interest still have

parametric form. We showed in simulation that when the covariates have a complex relationship

with the outcome, using our semi-BART model results in increased efficiency for the parameter

estimates of the effects of interest.

In the same chapter, we show that under the typical causal assumptions of consistency, exchange-

ability, and positivity, this model can be interpretted as a structural mean model (SMM), the first such

Bayesian implementation. This is particularly useful when the outcome is binary as g-estimation

(the usual estimation procedure for the parameters of a SMM with a continuous outcome) is not

possible. In fact, our model fits within the framework laid out by Vansteelandt and Goetghebeur,
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2003. We demonstrated our Bayesian SMM on subjects with HIV and Hepatitis C (HCV) coinfection

who initiatied highly active antiretroviral treatment (HAART). Some nucleoside reverse transcriptase

inhibitors (NRTIs), a class of antiretrovirals used in many HAART regimens, are known to be to be

mitochondrial toxic (mtNRTI). These mtNRTIs, which include didanosine, stavudine, zidovudine,

and zalcitabine, may exacerabate liver injury. Further, it may be that this effect is worsened when-

ever Fibrosis-4 (FIB-4), a marker of liver injury, is high. Our goal was to determine if a HAART

regimen containing a mtNRTI increased the risk of death compared to a HAART regimen with a

NRTI that was not a mtNRTI. In addition, we quantified to what extent FIB-4 modified this effect.

To this end, we fit three models: one with a treatment effect and no effect modifier, one with effect

modification by continuous FIB-4, and one with effect modification with a dichotomized version of

FIB-4. In the first model with no effect modifiers, the effect estimate for mtNRTI was positive, indi-

cating increased harm from mtNRTIs, but the 95% credible interval contained zero. In the last two

models with effect modification of FIB-4, we found that high values of FIB-4 increased the risk of

death from a regimen with a mtNRTI.

In Chapter 3, we developed a novel model for the joint distribution of a longitudinal continuous out-

come and baseline covariates. This model decomposes into the product of marginal distributions

for the covariates and a linear mixed model for the outcome given the covariates. The parame-

ters governing the covariates and the regression parameters were given an enriched DP (EDP)

prior (Wade, Mongelluzzo, and Petrone, 2011), which is the first time the prior has been used in

an analysis of repeated measurements. Like the DP prior, the EDP induces a partitioning on the

parameters so that subjects with similar regression patterns and similar covariate parameters are

part of the same cluster. With a DP prior, the clustering occurs jointly on the regression and co-

variates. In contrast an EDP prior allows for this clustering to occur separately. In fact, clusters for

the covariate parameters are nested within the clusters for the regression parameters. Because

of this, the EDP is prefered for preditive models when the covariate space is large and clustering

from the DP is dominated by the covariates rather than the regression(Wade et al., 2014). Thus,

using a DP leads to many small clusters which degrades predictive performance as demonstrated

by a simulation study. When data were generated from a complex scenario with nested clustering,

the EDP mixture model outperformed both the DP mixture and the standard linear mixed model.

Even when the simulated data arose from one cluster, meaning the linear mixed model was cor-

rectly specified, using an EDP model did not do substantially worse than the linear mixed model
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in most situations. This indicates that opting for more flexibility using nonparametric priors did not

hurt prediction compared to the correct model.

This methodolodgy was motivated by a study of electronic health records (EHR) in which we sought

to calculate incidence rates of Type 2 Diabetes among subjects within a year of initiating a second

generation antipsychotic (SGA), which is known to increase the risk of Type 2 Diabetes (De Hert et

al., 2012; Newcomer, 2005). Unlike in planned observational studies which have scheduled study

visits, there is no guarantee that data are available in EHR or, even if data are available, that the

data are recorded at the desired times. A previous analysis looked at the differences in incidence

rates between an outcome O1 which was defined by solely diagnosis codes and antidiabetic med-

ication dispensements versus an outcome O2 defined by diagnosis codes, antidiabetic medication

dispensements, and observed elevated lab values with one year of initiating an SGA (Flory et al.,

2017). For the outcome O2, Flory et al., 2017 classified a subject as having diabetes through lab

values if any one of the three lab values were elevated before 365 days of SGA initiation. We

identified a few potential issues with this system of classifying outcomes. First, of all the lab values

recorded, only about 30% were recorded within the first year, so 70% of the data is ignored. Sec-

ond, outcome identification does not account for any uncertainty. That is, a subject with 100 lab

values within one year with only one elevated lab would count as diabetic. Lastly, many subjects

did not have any lab data recorded within one year and so were not eligible to contribute to the

outcome O2 from lab data. To account for all this uncertainty, we used our EDP mixture to predict

each of the three labs at one year for each subject, as if data were recorded in a planned study.

Using these predictions, we calculated the incidence rate of diabetes supplemented with elevated

predicted labs. Using predicted labs, we found similar incidence rates with wider confidence inter-

vals than was reported in Flory et al., 2017, reflecting that our method captured greater uncertainty

in outcome classification.

In Chapter 4, we extended the model developed in Chapter 3 to causal inference settings using

the parametric g-formula (Robins, 1986). For the parametric g-formula, we simulate a hypothetical

dataset from the marginal distributions of the covariates. We then modify treatment to represent a

treatment strategy, such as everyone is treated or everyone is not treated. Using the joint model, we

calculate the conditional mean of the outcome among the hypothetical dataset and average these

values to obtain the marginal distribution of the expected potential outcome. Doing this separately,
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for example, for a hypothetical dataset where everyone is treated and another where everyone is

untreated yields the causal risk difference after subtracting the two results. This technique was

demonstrated in simulation and in a data analysis using the same data as in Chapter 3. For this

method, we sought to quantify the causal risk difference in fasting glucose value for subjects initi-

ating aripiprazole versus another SGA. After one year, we found no evidence of a causal effect by

type of SGA on fasting glucose.

Future Directions

Structural Nested Mean Models

The generalization of SMMs to time-varying treatments is called a structural nested mean model

(SNMM). SNMMs were originally developed by Robins, 1986 to adjust for time-varying confounding

for a time-varying treatment. Extending our semi-BART model for use as a SNMM would require

developing a BART model suitable for correlated observations found in longitudinal data. A handful

of researchers have done this in applied settings (Low-Kam et al., 2015; Tan, Flannagan, and Elliott,

2016; Zhang, Shih, Müller, et al., 2007), but would be an interesting topic of future research to tie

in with causal models such as the SNMM.

Time-varying Treatment

One of the difficulties of using Bayesian nonparametric priors is incorporating time-varying treat-

ments and confounders. The challenge is defining a nonparametric prior that can evolve over time

as the distributions of a covariate may be different at baseline than its distribution at later time points.

There has been at least one attempt at defining such a prior called the dynamic DP (Rodriguez and

Ter Horst, 2008). However, the dynamic DP is designed to update at fixed time intervals so it is not

clear how to apply such a prior to EHR data, whose data are collected sporadically. Finding such

a prior to use with sporadically collected EHR data would make the EDP mixture model in Chapter

3 stronger, and our subsequent analysis of incidence rates of diabetes could account for possible

changes in SGA use over time.
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Functional Clustering

The EDP mixture model developed in Chapter 3 also serves as a functional clustering algorithm in

which one does not have to specify the number of clusters present in the data beforehand. While

this is a distinct advantage over parametric mixture models, it makes summarizing clusters more

difficult as both the number of clusters and cluster membership change. An interesting direction for

future research would be identifying the best way to summarize this clustering. In this paper, we

used an ad hoc method proposed by Medvedovic and Sivaganesan, 2002 that worked well in our

application, but whether there are better ways of summarizing clusters is an open problem.

An additional direction for future research is to use the functional clustering within a causal inference

framework. To my knowledge, there is no literature in causal inference where the outcome is a

cluster or the probability of being in a cluster. For example, in Chapter 4 we examined whether or

not fasting glucose levels differed by type of SGA at a specific time point (one year post initiation of

a SGA). Using functional clustering, it may be possible to examine if the entire trajectory of fasting

glucose up to one year differs by SGA type.
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APPENDIX A

CHAPTER 2 SUPPLEMENTARY MATERIALS

Simulation Setup

x1
iid∼ Bern(0.25)

x2
iid∼ Bern(0.50)

x3
iid∼ Bern(0.50)

x4
iid∼ Bern(0.75)

x5
iid∼ Bern(0.75)

x6
...

x25

 ind∼ MVN(µ,Σ),
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where

µ =



2

2

2

2

2

1.5

1.5

1.5

1.5

1.5

1

1

1

1

1

0

0

0

0

0


and

Σ =



Σ1 0 0 0

0 Σ2 0 0

0 0 Σ3 0

0 0 0 Σ4


,
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where Σ is the 20× 20 covariance matrix with

Σ1 =



1 0.2 0.2 0.2 0.2

0.2 1 0.2 0.2 0.2

0.2 0.2 1 0.2 0.2

0.2 0.2 0.2 1 0.2

0.2 0.2 0.2 0.2 1


,

Σ2 =



1 0.15 0.15 0.15 0.15

0.15 1 0.15 0.15 0.15

0.15 0.15 1 0.15 0.15

0.15 0.15 0.15 1 0.15

0.15 0.15 0.15 0.15 1


,

Σ3 =



1 0.1 0.1 0.1 0.1

0.1 1 0.1 0.1 0.1

0.1 0.1 1 0.1 0.1

0.1 0.1 0.1 1 0.1

0.1 0.1 0.1 0.1 1


,

Σ4 =



1 0.05 0.05 0.05 0.05

0.05 1 0.05 0.05 0.05

0.05 0.05 1 0.05 0.05

0.05 0.05 0.05 1 0.05

0.05 0.05 0.05 0.05 1


,

,

and 0 the 5× 5 matrix with zeroes.
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Additional Simulation Results
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Table A.4: Efficiency of Semi-BART for a continuous outcome (standard deviation = 0.01) with effect
modification.

Semi-BART Linear Regression g-estimation

Function n Bias Cov. MSE Bias Cov. MSE Bias Cov. MSE

Linear

250 ψ1 -0.00 0.94 0.023 0.00 0.96 0.001 -0.00 0.96 0.005
ψ2 -0.00 0.91 0.006 0.00 0.95 0.000 0.00 0.95 0.001

1000 ψ1 -0.00 0.94 0.000 -0.00 0.96 0.000 -0.00 0.98 0.001
ψ2 0.00 0.94 0.000 0.00 0.96 0.000 0.00 0.97 0.000

5000 ψ1 0.00 0.93 0.000 0.00 0.94 0.000 0.00 0.96 0.000
ψ2 -0.00 0.94 0.000 -0.00 0.94 0.000 -0.00 0.95 0.000

Non-linear

250 ψ1 0.01 0.98 0.284 -0.02 0.94 1.499 -0.00 0.93 1.939
ψ2 -0.00 0.96 0.070 0.02 0.95 0.305 0.01 0.93 0.419

1000 ψ1 0.00 0.98 0.002 0.02 0.95 0.326 0.03 0.96 0.368
ψ2 -0.00 0.98 0.000 -0.00 0.96 0.070 -0.01 0.96 0.081

5000 ψ1 -0.00 0.96 0.000 -0.00 0.95 0.060 -0.01 0.97 0.067
ψ2 -0.00 0.96 0.000 0.01 0.96 0.013 0.01 0.97 0.015

Table A.5: Efficiency of Semi-BART for a continuous outcome (standard deviation = 2) with no effect
modification.

Semi-BART Linear Regression g-estimation

Function n Bias Cov. MSE Bias Cov. MSE Bias Cov. MSE

Linear

250 ψ1 -0.07 0.96 0.537 -0.03 0.95 0.488 -0.02 0.95 0.507
ψ2 0.03 0.96 0.106 0.01 0.95 0.097 0.01 0.95 0.103

1000 ψ1 -0.03 0.97 0.106 -0.01 0.96 0.102 -0.02 0.95 0.105
ψ2 0.01 0.97 0.022 0.01 0.96 0.020 0.01 0.96 0.021

5000 ψ1 -0.01 0.96 0.022 -0.01 0.96 0.021 -0.01 0.96 0.021
ψ2 0.00 0.96 0.005 0.00 0.95 0.004 0.00 0.95 0.004

Non-linear

250 ψ1 -0.04 0.96 1.046 0.01 0.95 1.991 0.03 0.95 2.213
ψ2 0.01 0.95 0.216 -0.01 0.94 0.435 -0.01 0.95 0.511

1000 ψ1 0.01 0.97 0.128 -0.01 0.96 0.414 0.00 0.96 0.457
ψ2 -0.00 0.97 0.025 0.01 0.93 0.093 -0.00 0.94 0.107

5000 ψ1 0.00 0.95 0.023 -0.00 0.95 0.083 0.01 0.96 0.087
ψ2 -0.00 0.95 0.005 0.00 0.94 0.018 0.00 0.95 0.020

Table A.6: Efficiency of Semi-BART for a continuous outcome (standard deviation = 3) with no effect
modification.

Semi-BART Linear Regression g-estimation

Function n Bias Cov. MSE Bias Cov. MSE Bias Cov. MSE

Linear

250 ψ1 -0.05 0.96 1.176 -0.00 0.95 1.117 0.01 0.93 1.254
ψ2 0.03 0.96 0.228 0.01 0.96 0.220 0.00 0.95 0.252

1000 ψ1 0.03 0.94 0.277 0.04 0.94 0.263 0.05 0.94 0.270
ψ2 -0.01 0.95 0.053 -0.02 0.95 0.050 -0.02 0.95 0.052

5000 ψ1 0.00 0.95 0.049 0.00 0.94 0.049 -0.00 0.94 0.049
ψ2 -0.00 0.96 0.010 -0.00 0.95 0.010 0.00 0.95 0.010

Non-linear

250 ψ1 -0.08 0.97 1.603 0.04 0.97 2.311 0.11 0.94 2.802
ψ2 0.04 0.96 0.335 0.00 0.96 0.500 -0.03 0.94 0.621

1000 ψ1 0.02 0.95 0.279 -0.03 0.96 0.540 -0.00 0.96 0.576
ψ2 -0.00 0.97 0.056 0.02 0.95 0.118 0.00 0.96 0.125

5000 ψ1 -0.00 0.95 0.051 0.00 0.95 0.109 0.01 0.95 0.119
ψ2 0.00 0.94 0.010 0.00 0.95 0.022 -0.00 0.95 0.025
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Trace Plots

Figure A.1: Trace plot for analysis without effect modification.
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Figure A.2: Trace plots for analysis with effect modification for continuous FIB-4 (centered around
3.25).

0 5000 10000 15000 20000

0
.0

0
.2

0
.4

trace plot for mtNRTI coefficient

Iteration

V
a
lu

e

0 5000 10000 15000 20000

0
.0

0
0
.1

0

trace plot for effect modification coefficient (continuous)

Iteration

V
a
lu

e

77



Figure A.3: Trace plots for analysis with effect modification for binary FIB-4 (cutpoint = 3.25).
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APPENDIX B

CHAPTER 3 SUPPLEMENTARY MATERIALS

Simulation Setup

See Figure 3.2 for details on clustering structure. Each subject i has a random number of time

points observed drawn from a discrete uniform distribution on [1, . . . , 5], call this ni. We now ran-

domly draw ni time points from a uniform distribution on [0, 1] and order them as ti1 < · · · < tini .

For each subject we draw a random intercept from a N(0, σ2
u) distribution. The outcome is gen-

erated from independent normal distribution (given ui) with variance σ2 and the mean µ depend-

ing on which θ-cluster the subject was randomly assigned to. For θ1, the outcome has mean

µ = 2 + 7t− 2x1− 0.5 + 2 cos(x4) + ui. For θ2, µ = 7− 20(t− 0.4)2 + 1.1x2− 0.8x3 + 0.5x24 + ui. For

θ3, µ = 6− 8(t− 0.75)2− 3x1− x4 + x5 + ui. For all the above t represents the randomly generated

time points for each subject.

There were 20 covariates x were generated as:

ψ1|1 :

x1 ∼ Bern(0.5)

x2 ∼ Bern(0.75)

x3 ∼ Bern(0.2)

x4 ∼ N(0, 1)

x5 ∼ N(
√

2,
√

2)

x6 − x20 ∼ N(0, 1)

ψ2|1 :

x1 ∼ Bern(0.3)

x2 ∼ Bern(0.5)

x3 ∼ Bern(0.5)

x4 ∼ N(0.5, 0.5)

x5 ∼ N(1, 2)

x6 − x20 ∼ N(−0.5, 1)

ψ3|1 :

x1 ∼ Bern(0.5)

x2 ∼ Bern(0.5)

x3 ∼ Bern(0.8)

x4 ∼ N(0.5, 2)

x5 ∼ N(0, 1)

x6 − x20 ∼ N(0.5, 1)
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ψ1|2 :

x1 ∼ Bern(0.75)

x2 ∼ Bern(0.5)

x3 ∼ Bern(0.35)

x4 ∼ N(2, 1)

x5 ∼ N(0, 1)

x6 − x20 ∼ N(−0.5, 1)

ψ2|2 :

x1 ∼ Bern(0.5)

x2 ∼ Bern(0.5)

x3 ∼ Bern(0.5)

x4 ∼ N(1, 2)

x5 ∼ N(−1, 1)

x6 − x20 ∼ N(0.5, 1)

ψ1|3 :

x1 ∼ Bern(0.75)

x2 ∼ Bern(0.1)

x3 ∼ Bern(0.3)

x4 ∼ N(0.5, 1.5)

x5 ∼ N(0, 1)

x6 − x20 ∼ N(0.5, 1)

ψ2|3 :

x1 ∼ Bern(0.5)

x2 ∼ Bern(0.3)

x3 ∼ Bern(0.5)

x4 ∼ N(−0.5, 1)

x5 ∼ N(0, 0.5)

x6 − x20 ∼ N(−0.5, 1)

ψ3|3 :

x1 ∼ Bern(0.5)

x2 ∼ Bern(0.7)

x3 ∼ Bern(0.5)

x4 ∼ N(0, 2)

x5 ∼ N(−1, 2)

x6 − x20 ∼ N(0, 1)

Computations

The R/C++ code is available at https://github.com/zeldow/EDPlong. We give some further details

on updating some of the parameters in our model below.

MCMC program:

Step 0: Let n be the total number of subjects and N denote the total number of observations.

Initialize all parameter values including s, the partitioning variable.

Step 1: Update si for i = 1, . . . , n.
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Let nθ be the number of unique θ-clusters in sy,i.

Step 2: Iterate through k = 1, . . . , nθ.

Restrict to subjects with si,y = k. Let nk be the number of subjects in the cluster and Nk be the

total number of observations in this cluster. Below yi, y, X, xi, Z, and zi will refer to subjects within

the given cluster.

Step 2a: Update σ2
k and β∗k :

First, calculate residuals: y∗i = yi − ziηi − ui. We specify priors P (σ2) ∼ Inv-Ga(aβ , bβ) and

P (β) ∼ N(β0,Σ). Define Σn = XᵀX + Σ and βn = Σ−1n (Σβ0 + Xᵀy∗). The posteriors (within

clusters) are given by P (σ2|rest) ∼ Inv-Ga(aβ+Nk
2 , bβ+ 1

2 (y∗ᵀy∗+βᵀ
0Σβ0−βᵀ

nΣnβn) and P (β|rest) ∼

N(βn, σ
2
kΣn).

Step 2b: Update σ2
b,k and η∗k

Now, calculate residuals: y∗i = yi − xiβi − ui. Given prior distributions P (σ2
b ) ∼ Inv-Ga(aβ , bβ) and

P (η) ∼ N(0, σ2
b I), define Σb,n = ZᵀZ/σ2

k + I/σ2
b,k and µn =

[
σ2
b,n

]−1
Zᵀy∗/σ2

k. The posteriors are

given by P (σ2
b |rest) ∼ Inv-Ga(aβ +N/2, bβ + 1

2η
ᵀη) and P (η|rest) ∼ N(µn, [Σb,n]−1).

Step 2c: Iterate through k = 1, . . . , nψ,k, where nψ,k is the number of ψ-clusters nested within the

kth θ-cluster. Now, we update covariate parameters ψ, further restricting to subjects with si,2 = k:

For binary covariates, the prior is P (p) ∼ Beta(ax, bx) and the posterior is given by P (p|rest) ∼

Beta(
∑
s=(j,k) xi,l + ax, nj|k −

∑
s=(j,k) xi,l + bx)..

For continuous covariates, prior: P (µ, σ) ∼ scaled Inv-χ2(ν0, τ
2
0 ) × N(µ0, τ

2/c) with posteriors

P (σ2|rest) ∼ scaled Inv-χ2(ν0 + nψ,k, ν0τ0 + nj|k ∗ var(x) + c0nj|k/(c0 + nj|k) ∗ (x̄ − µ0)2) and

P (µ|rest) ∼ N(µn, σ
2
n), where σ2

n = 1
c0/τ+nj|k/τ

and µn = σ2
n(µ0 ∗ c0/τ + x̄nj|k/τ).

This marks the end of the within-cluster updates.

Step 3: Update random intercept ui:
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Iterate through i = 1, . . . , n. Calculate residuals y∗i = yi − xiβi − ziηi. Draw ui from N(µu, σ
2
new)

where σ2
new =

σ2
uσ

2
i

niσ2
u+σ

2
i

and µu = σ2
u

∑ni
j=1 yij/(niσ

2
u + σ2

i ).

Step 4: Update random intercept variance σ2
u:

Given prior P (σ2
u) ∼ Inv-Ga(au, bu) the posterior is P (σ2

u|rest) ∼ Inv-Ga(au + n
2 , bu + 1

2u
ᵀu).

Step 5: Update αθ (from Escobar and West (1995)):

Let αθ be the current value. Draw γ ∼ Beta(αθ, n). Define π = nθ/(n(1−log(γ)))
1+nθ/(1−log(γ)) . Draw p ∼ Bern(π).

Update αθ from Gamma(aα +nθ, bα− log(γ)) with probability p and from Gamma(aα +nθ − 1, bα−

log(γ)) with probability 1− p.

Step 6: Update αψ:

Update αψ with Metropolis-Hastings step. Our proposal distribution is Gamma(a0, b0). Draw αprop

from proposal distribution. Define

p1 = dGamma(αψ; aα, bα)αnθψ

nθ∏
j=1

[(αψ + nj)Beta(αψ + 1, nj)] .

Let

p2 = dGamma(αprop; aα, bα)αnθprop

nθ∏
j=1

[(αprop + nj)Beta(αprop + 1, nj)] .

Note dGamma(x; a, b) denotes the density of function of a Gamma distribution with parameters a

and b evaluated at x. Beta(u, v) denotes the Beta function evaluated at u and v. Set αψ = αprop

with probability p = p2
p1

. Otherwise, use previous αψ.

Return to Step 1 and repeat until convergence and posteriors are well approximated.

82



Additional Simulation Results

Table B.1: Simulation results for n = 1000 showing mean l1 and l2 errors over 100 datasets for
predictions at t = 0.75 using cubic B-splines.

EDP DP ME
¯̀
1

¯̀
2

¯̀
1

¯̀
2

¯̀
1

¯̀
2

σ2 = 1; σ2
u = 0.15 0.66 0.87 0.91 1.46 1.10 1.83

σ2 = 1; σ2
u = 0.5 0.84 1.25 1.09 1.96 1.11 1.85

σ2 = 4; σ2
u = 0.15 0.91 1.52 1.09 2.03 1.22 2.28

σ2 = 4; σ2
u = 0.5 1.06 1.92 1.18 2.33 1.23 2.33

σ2 indicates the simulated regression variance and σ2
u indicates the simulated random intercept

variance. EDP indicates the longitudinal model with an enriched Dirichlet process prior. DP indi-
cates the longitudinal model with a Dirichlet process prior. ME indicates a mixed effects model fit
using the lmer package in R. Fit with cubic B-splines with 2 knots.

Table B.2: Simulation results for n = 5000 showing mean l1 and l2 errors over 100 datasets for
predictions at t = 0.75 using cubic B-splines.

EDP DP ME
¯̀
1

¯̀
2

¯̀
1

¯̀
2

¯̀
1

¯̀
2

σ2 = 1; σ2
u = 0.15 0.62 0.76 0.92 1.49 1.10 1.81

σ2 = 1; σ2
u = 0.5 0.77 1.07 1.10 2.02 1.11 1.85

σ2 = 4; σ2
u = 0.15 0.72 1.03 1.04 1.90 1.21 2.26

σ2 = 4; σ2
u = 0.5 0.85 1.28 1.15 2.26 1.23 2.33

σ2 indicates the simulated regression variance and σ2
u indicates the simulated random intercept

variance. EDP indicates the longitudinal model with an enriched Dirichlet process prior. DP indi-
cates the longitudinal model with a Dirichlet process prior. ME indicates a mixed effects model fit
using the lmer package in R. Fit with cubic B-splines with 2 knots.

Table B.3: Simulation results for n = 5000 showing mean l1 and l2 errors over 100 datasets for
predictions at t = 0.75 when the standard mixed effects model is correctly specified.

EDP DP ME
¯̀
1

¯̀
2

¯̀
1

¯̀
2

¯̀
1

¯̀
2

σ2 = 1; σ2
u = 0.15 0.31 0.15 0.31 0.15 0.26 0.11

σ2 = 1; σ2
u = 0.5 0.56 0.50 0.56 0.50 0.37 0.22

σ2 = 4; σ2
u = 0.15 0.32 0.16 0.32 0.16 0.31 0.15

σ2 = 4; σ2
u = 0.5 0.57 0.50 0.57 0.50 0.49 0.38

σ2 indicates the simulated regression variance and σ2
u indicates the simulated random intercept

variance. EDP indicates the longitudinal model with an enriched Dirichlet process prior. DP indi-
cates the longitudinal model with a Dirichlet process prior. ME indicates a mixed effects model fit
using the lmer package in R. Fit with cubic B-splines with 2 knots.
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R Code for Choosing Number of Clusters

## function for calculating n x n matrix of how many times

## subjects in same cluster

adjmatrix <- function(s) {

n <- nrow(s[[1]])

mat <- matrix(0, n, n)

nelem <- length(s)

for(i in 1:nelem){

temp.mat <- as.integer(outer( s[[i]][ ,1], s[[i]][ ,1], FUN = "==" ) )

mat <- mat + temp.mat

}

return(mat)

}

## a1c.res$s is a list of cluster memberships

## for successive MCMC iterations

## each element is a n x 2 matrix

## the first column is the theta-cluster membership

## the second column is the psi-cluster subcluster membership

a1c.adj <- adjmatrix(a1c.res$s)

a1c.dist <- dist(a1c.adj, method = "maximum")

hi <- hclust(a1c.dist, method = "ward.D2")

clust.a1c <-cutree(hi, k = 2)
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Additional Computations

Discrete covariates:

∫
px(1− p)1−x p

α−1(1− p)β−1

Be(α, β)
dp =

1

Be(α, β)

∫
pα+x−1(1− p)β−xdp

=
Be(α+ x, β − x+ 1)

Be(α, β)

Continuous covariates:

Prior: Normal-inverse-χ-squared:

p(µ, σ2) =

√
c0√

2π
√
τ0

exp

(
−(µ− µ0)2

2τ0/c0

)
(τ0ν0/2)ν0/2

Γ(ν0/2)

exp
(−ν0τ0

2σ2

)
(σ2)1+ν0/2

=

√
c0√

2π
√
τ0

(τ0ν0/2)ν0/2

Γ(ν0/2)
exp

(
−(µ− µ0)2

2τ0/c0

)
exp

(−ν0τ0
2σ2

)
(σ2)1+ν0/2

∝ exp

(
−(µ− µ0)2

2τ0/c0

)
exp

(−ν0τ0
2σ2

)
(σ2)1+ν0/2

Data:

p(x|µ, σ2) =
1

√
2π
√
σ2

exp

(
−(x− µ)2

2σ2

)

Posterior:

p(µ, σ2|x) ∝ σ−3(σ2)−(νn/2) exp

(
− 1

2σ2
[νnσ

2
n + cn(µn − µ)2]

)
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h(x) =

∫ ∫
p(µ, σ2|x)dµ dσ2

=
1√
2π

√
c0√

2π
√
τ0

(τ0ν0/2)ν0/2

Γ(ν0/2)

√
2π
√
τn√

cn

Γ(νn/2)

(τnνn/2)νn/2

=
1√
2π

c0
cn

τn
τ0

(τ0ν0/2)ν0/2

(τnνn/2)νn/2
Γ(νn/2)

Γ(ν0/2)

where

cn = c0 + 1

νn = ν0 + 1

τn =
1

νn

(
ν0τ0 +

c0
cn

(µ0 − x)
2

)
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