
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Efficient Methods For Large-Scale Empirical Risk
Minimization
Aryan Mokhtari
University of Pennsylvania, aryanm@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Electrical and Electronics Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2978
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Mokhtari, Aryan, "Efficient Methods For Large-Scale Empirical Risk Minimization" (2017). Publicly Accessible Penn Dissertations.
2978.
https://repository.upenn.edu/edissertations/2978

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2978&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=repository.upenn.edu%2Fedissertations%2F2978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2978?utm_source=repository.upenn.edu%2Fedissertations%2F2978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2978
mailto:repository@pobox.upenn.edu

Efficient Methods For Large-Scale Empirical Risk Minimization

Abstract
Empirical risk minimization (ERM) problems express optimal classifiers as solutions of optimization
problems in which the objective is the sum of a very large number of sample costs. An evident obstacle in
using traditional descent algorithms for solving this class of problems is their prohibitive computational
complexity when the number of component functions in the ERM problem is large. The main goal of this
thesis is to study different approaches to solve these large-scale ERM problems.

We begin by focusing on incremental and stochastic methods which split the training samples into smaller sets
across time to lower the computation burden of traditional descent algorithms. We develop and analyze
convergent stochastic variants of quasi-Newton methods which do not require computation of the objective
Hessian and approximate the curvature using only gradient information. We show that the curvature
approximation in stochastic quasi-Newton methods leads to faster convergence relative to first-order
stochastic methods when the problem is ill-conditioned. We culminate with the introduction of an
incremental method that exploits memory to achieve a superlinear convergence rate. This is the best known
convergence rate for an incremental method.

An alternative strategy for lowering the prohibitive cost of solving large-scale ERM problems is decentralized
optimization whereby samples are separated not across time but across multiple nodes of a network. In this
regime, the main contribution of this thesis is in incorporating second-order information of the aggregate risk
corresponding to samples of all nodes in the network in a way that can be implemented in a distributed
fashion. We also explore the separation of samples across both, time and space, to reduce the computational
and communication cost for solving large-scale ERM problems. We study this path by introducing a
decentralized stochastic method which incorporates the idea of stochastic averaging gradient leading to a low
computational complexity method with a fast linear convergence rate.

We then introduce a rethinking of ERM in which we consider not a partition of the training set as in the case
of stochastic and distributed optimization, but a nested collection of subsets that we grow geometrically. The
key insight is that the optimal argument associated with a training subset of a certain size is not that far from
the optimal argument associated with a larger training subset. Based on this insight, we present adaptive
sample size schemes which start with a small number of samples and solve the corresponding ERM problem
to its statistical accuracy. The sample size is then grown geometrically and use the solution of the previous
ERM as a warm start for the new ERM. Theoretical analyses show that the use of adaptive sample size
methods reduces the overall computational cost of achieving the statistical accuracy of the whole dataset for a
broad range of deterministic and stochastic first-order methods. We further show that if we couple the
adaptive sample size scheme with Newton's method, it is possible to consider subsequent doubling of the
training set and perform a single Newton iteration in between. This is possible because of the interplay
between the statistical accuracy and the quadratic convergence region of these problems and yields a method
that is guaranteed to solve an ERM problem by performing just two passes over the dataset.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2978

https://repository.upenn.edu/edissertations/2978?utm_source=repository.upenn.edu%2Fedissertations%2F2978&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate Group
Electrical & Systems Engineering

First Advisor
Alejandro Ribeiro

Keywords
Adaptive sample size algorithms, Decentralized methods, Empirical risk minimization, Optimization,
Stochastic methods

Subject Categories
Electrical and Electronics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2978

https://repository.upenn.edu/edissertations/2978?utm_source=repository.upenn.edu%2Fedissertations%2F2978&utm_medium=PDF&utm_campaign=PDFCoverPages

EFFICIENT METHODS FOR LARGE-SCALE EMPIRICAL RISK MINIMIZATION

Aryan Mokhtari

A DISSERTATION

in

Electrical and Systems Engineering

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2017

Supervisor of Dissertation

Alejandro Ribeiro, Rosenbluth Associate Professor of Electrical and Systems Engineering

Graduate Group Chairperson

Alejandro Ribeiro, Rosenbluth Associate Professor of Electrical and Systems Engineering

Dissertation Committee

Ali Jadbabaie, JR East Professor of Engineering, Massachusetts Institute of Technology
Asu Ozdaglar, Professor of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology
Gesualdo Scutari, Associate Professor of School of Industrial Engineering, Purdue

University

EFFICIENT METHODS FOR LARGE-SCALE EMPIRICAL RISK MINIMIZATION

COPYRIGHT

2017

Aryan Mokhtari

To my wife: Solmaz.

iii

Acknowledgments

The years that I spent at UPenn as a Ph.D. student were an enjoyable experience, mainly

because of my advisor, collaborators, and friends. I am extremely grateful to be able to

appreciate and acknowledge their crucial influence on writing this thesis.

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Ale-

jandro Ribeiro. This thesis without Alejandro’s comments, suggestions, and support would

not have been possible. I want to thank him for his significant impact in shaping my career

and more importantly my personality. It has been my great pleasure to have the privilege

of being his student. I believe that the ultimate goal of a teacher or advisor is to touch the

lives of her/his students, and Alejandro was successful in positively influencing my life at a

stage that I will always regard fondly.

I would like to thank my committee members Prof. Ali Jadbabaie, Prof. Asu Ozdaglar,

and Prof. Gesualdo Scutari for their insightful comments, valuable criticism, and constant

encouragement.

Indeed, writing this thesis would not have been possible without the joint effort of my

collaborators. I would like to thank Prof. Qing Ling, Prof. Thomas Hofmann, Dr. Wei

Shi, Dr. Aurelien Lucchi, Hadi Daneshmand, and Mark Eisen for their contributions to

various elements of this thesis. Also, I would like to thank Prof. Geert Leus, Prof. Ali

Jadbabaie, Prof. Gesualdo Scutari, Prof. Mert Gurbuzbalaban, Dr. Alec Koppel, Dr. Shahin

Shahrampour, Dr. Andrea Simonetto, Santiago Paternain, and Tianyi Chen for giving me

the opportunity to collaborate with them during my graduate study. Although none of the

technical content in this thesis emerged from these collaborations, their positive impact on

my research experience which led to writing this thesis is invaluable.

I would like to thank my friends both here and back home in Iran. I am especially

grateful to my lab-mates who made this arduous journey an enjoyable experience. Special

thanks to my parents, Shahnaz and Reza. Thank you is an insufficient phrase for your

consistent support, limitless sacrifices, and indescribable love. To my brother, Ali, who is

an extraordinary friend and role model for me. To my aunt, Fatemeh (Nasrin) Mohseni-

Mofidi, thanks for your constant encouragement and support. Last but not least, to the

love of my life Solmaz. Thank you, for always being my biggest cheerleader and more

iv

importantly for believing in me more than myself. This thesis would not have been written

without your unconditional love and support. Dedicating this thesis to you is the least I

could do to acknowledge your role in writing this thesis and appreciate your kindness and

love.

Aryan Mokhtari, Philadelphia, July 2017

v

ABSTRACT

EFFICIENT METHODS FOR LARGE-SCALE EMPIRICAL RISK MINIMIZATION

Aryan Mokhtari

Alejandro Ribeiro

Empirical risk minimization (ERM) problems express optimal classifiers as solutions of

optimization problems in which the objective is the sum of a very large number of sample

costs. An evident obstacle in using traditional descent algorithms for solving this class

of problems is their prohibitive computational complexity when the number of component

functions in the ERM problem is large. The main goal of this thesis is to study different

approaches to solve these large-scale ERM problems.

We begin by focusing on incremental and stochastic methods which split the training

samples into smaller sets across time to lower the computation burden of traditional de-

scent algorithms. We develop and analyze convergent stochastic variants of quasi-Newton

methods which do not require computation of the objective Hessian and approximate the

curvature using only gradient information. We show that the curvature approximation in

stochastic quasi-Newton methods leads to faster convergence relative to first-order stochas-

tic methods when the problem is ill-conditioned. We culminate with the introduction of an

incremental method that exploits memory to achieve a superlinear convergence rate. This

is the best known convergence rate for an incremental method.

An alternative strategy for lowering the prohibitive cost of solving large-scale ERM

problems is decentralized optimization whereby samples are separated not across time but

across multiple nodes of a network. In this regime, the main contribution of this thesis is

in incorporating second-order information of the aggregate risk corresponding to samples of

all nodes in the network in a way that can be implemented in a distributed fashion. We also

explore the separation of samples across both, time and space, to reduce the computational

and communication cost for solving large-scale ERM problems. We study this path by

introducing a decentralized stochastic method which incorporates the idea of stochastic

averaging gradient leading to a low computational complexity method with a fast linear

convergence rate.

We then introduce a rethinking of ERM in which we consider not a partition of the

training set as in the case of stochastic and distributed optimization, but a nested collec-

tion of subsets that we grow geometrically. The key insight is that the optimal argument

associated with a training subset of a certain size is not that far from the optimal argument

associated with a larger training subset. Based on this insight, we present adaptive sample

size schemes which start with a small number of samples and solve the corresponding ERM

vi

problem to its statistical accuracy. The sample size is then grown geometrically and use

the solution of the previous ERM as a warm start for the new ERM. Theoretical analyses

show that the use of adaptive sample size methods reduces the overall computational cost

of achieving the statistical accuracy of the whole dataset for a broad range of deterministic

and stochastic first-order methods. We further show that if we couple the adaptive sample

size scheme with Newton’s method, it is possible to consider subsequent doubling of the

training set and perform a single Newton iteration in between. This is possible because of

the interplay between the statistical accuracy and the quadratic convergence region of these

problems and yields a method that is guaranteed to solve an ERM problem by performing

just two passes over the dataset.

vii

Contents

Acknowledgments iv

Abstract vi

Contents viii

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Context and background . 2

1.1.1 Stochastic methods . 3

1.1.2 Decentralized methods . 5

1.1.3 Adaptive sample size algorithms . 8

1.2 Thesis outline and contributions . 9

I Stochastic (Incremental) Quasi-Newton Methods 18

2 Regularized stochastic BFGS algorithm 19

2.1 Context and background . 19

2.2 Algorithm definition . 22

2.2.1 Regularized BFGS . 23

2.2.2 RES: Regularized stochastic BFGS 28

2.3 Convergence analysis of RES . 30

2.3.1 Rate of convergence . 36

2.4 Numerical analysis . 38

2.4.1 Effect of problem’s condition number 39

2.4.2 Central processing unit runtime comparisons 41

2.4.3 Choice of stochastic gradient average 44

viii

2.4.4 Effect of problem’s dimension . 45

2.5 Support vector machines . 46

2.5.1 RES vs stochastic gradient descent for suport vector machines . . . 48

2.5.2 RES and stochastic BFGS . 50

3 Online limited memory BFGS method 52

3.1 Context and background . 52

3.2 Algorithm definition . 55

3.2.1 LBFGS: Limited memory BFGS . 57

3.2.2 Online (Stochastic) limited memory BFGS 58

3.3 Convergence analysis . 65

3.4 Support vector machines . 81

3.4.1 Convergence versus number of feature vectors processed 82

3.4.2 Convergence versus processing time 85

3.5 Search engine advertising . 88

3.5.1 Feature vectors . 88

3.5.2 Logistic regression of click-through rate 90

3.5.3 Numerical results . 92

4 Superlinearly convergent incremental quasi-Newton method 97

4.1 Context and background . 97

4.1.1 Related work . 100

4.1.2 Outline . 101

4.2 BFGS quasi-Newton method . 101

4.3 IQN: Incremental aggregated BFGS . 103

4.3.1 Efficient implementation of IQN . 106

4.4 Convergence analysis . 108

4.5 Numerical results . 124

4.5.1 Logistic regression . 125

II Decentralized Methods 127

5 Network Newton methods 128

5.1 Context and background . 128

5.2 Distributed gradient descent . 131

5.2.1 Penalty method interpretation . 132

5.3 Network Newton . 134

5.3.1 Distributed approximations of the Newton step 135

ix

5.4 Convergence analysis . 138

5.4.1 Analysis of network Newton as a Newton-like method 146

5.5 Implementation details . 153

5.6 Numerical analysis . 155

5.6.1 Comparison with existing methods 155

5.6.2 Effect of objective function condition number 157

5.6.3 Effect of network topology . 158

5.6.4 Tightness of the bounds . 160

5.6.5 Adaptive network Newton . 161

5.6.6 Logistic regression . 162

6 Second-order primal-dual method for distributed optimization 165

6.1 Context and background . 165

6.2 Proximal method of multipliers . 167

6.3 ESOM: Exact second-order method . 170

6.3.1 Decentralized implementation of ESOM 172

6.4 Convergence analysis . 176

6.4.1 Convergence of proximal method of multipliers 177

6.4.2 Convergence of ESOM . 182

6.4.3 Convergence rates comparison . 191

6.5 Numerical experiments . 192

6.5.1 Decentralized linear least squares . 192

6.5.2 Decentralized logistic regression . 194

7 Decentralized stochastic optimization via gradient averaging 197

7.1 Context and background . 197

7.2 Decentralized double stochastic averaging gradient 200

7.2.1 Limit points of DGD and EXTRA 205

7.2.2 Stochastic saddle point method interpretation of DSA 207

7.3 Convergence analysis . 208

7.3.1 Preliminaries . 209

7.3.2 Convergence . 213

7.3.3 Linear convergence constant . 225

7.4 Numerical experiments . 226

7.4.1 Comparison with decentralized methods 227

7.4.2 Effect of graph condition number κg 230

7.4.3 Effect of number of functions (samples) at each node q 232

7.4.4 Effect of number of nodes V . 234

x

7.4.5 Large-scale classification application 236

III Adaptive Sample Size Methods 238

8 First-order adaptive sample size methods 239

8.1 Context and background . 239

8.2 Problem formulation . 241

8.3 Adaptive sample size methods . 243

8.4 Complexity analysis . 245

8.4.1 Adaptive sample size accelerated gradient (Ada AGD) 247

8.4.2 Adaptive sample size SVRG (Ada SVRG) 250

8.5 Experiments . 252

8.6 Discussions . 255

9 Second-order adaptive sample size method 257

9.1 Context and background . 257

9.2 Ada Newton . 259

9.3 Convergence analysis . 263

9.4 Experiments . 269

9.5 Discussions . 273

10 Conclusions 276

A Appendix 281

A.1 Proof of Lemma 3 . 282

B Appendix 284

B.1 Proof of Theorem 7 . 285

C Appendix 290

C.1 Proof of Proposition 9 . 291

Bibliography 294

xi

List of Tables

2.1 Runtimes of RES, SGD, SAA, SAG, and S2GD for solving an SVM problem 49

3.1 Features for prediction of advertisements click-through rates 90

9.1 Summary of the datasets . 271

xii

List of Figures

2.1 Convergence paths of SGD and RES for a quadratic programming 39

2.2 Convergence of SGD and RES for well-conditioned problems 40

2.3 Convergence of SGD and RES for ill-conditioned problems 41

2.4 CPU runtimes of SGD and RES for well-conditioned problems 42

2.5 CPU runtimes of SGD and RES for ill-conditioned problems 42

2.6 Convergence of SGD and RES in terms of number of computed gradients for

a very large dimensional problem with small condition number 43

2.7 Convergence of SGD and RES in terms of runtime for a very large dimensional

problem with small condition number . 43

2.8 Effect of mini-batch size . 44

2.9 Histogram of the number of data points that SGD and RES needs to converge 45

2.10 Comparison of RES, SGD, the SGD accelerations SAA, SAG, and S2GD for

a problem of dimension p = 40 and training set with N = 103 feature vectors 49

2.11 Comparison of RES, SGD, the SGD accelerations SAA, SAG, and S2GD for

a problem of dimension p = 400 and training set with N = 104 feature vectors 50

2.12 Comparison of SGD, regularized stochastic BFGS (RES), and (non regular-

ized) stochastic BFGS . 51

3.1 Comparing convergence paths of SGD, SAG, oBFGS, RES, and oLBFGS . 83

3.2 Histograms of objective function value for a problem with dimension p = 102 84

3.3 Histograms of objective function value for a problem with dimension p = 103 85

3.4 Histograms of CPU runtime for a problem with dimension p = 102 86

3.5 Histograms of CPU runtime for a problem with dimension p = 103 87

3.6 Illustration of Negative log-likelihood value for oLBFGS and SGD 92

3.7 Performance of classifier after processing feature vectors with SGD and oLBFGS

for the cost in (3.107) . 94

3.8 Performance of classifier after processing feature vectors with SGD and oLBFGS

for the cost in (3.110) . 95

xiii

4.1 The scheme for updating variables, gradients, and Hessian approximation

matrices in IQN . 104

4.2 Convergence of IQN, SAG, SAGA, and IAG for a quadratic programming . 125

4.3 Convergence of IQN, SAG, SAGA, and IAG for a logistic regression problem 126

5.1 Comparison of DGD, Acc. DGD, DADMM, EXTRA, and NN-K in terms of

number of iterations . 156

5.2 Comparison of DGD, Acc. DGD, DADMM, EXTRA, and NN-K in terms of

rounds of communications . 156

5.3 Comparison of DGD, Acc. DGD, and NN-K in a well-conditioned problem 157

5.4 Comparison of DGD, Acc. DGD, and NN-K in an ill-conditioned problem . 158

5.5 Convergence of NN-2 vs num. of iterations in different network topologies . 159

5.6 Convergence of NN-2 vs num. of communications in different network topolo-

gies . 159

5.7 Comparing theoretical bounds of NN with its performance in practice . . . 160

5.8 Adaptive variants of DGD and NN with a small initial penalty factor 161

5.9 Adaptive variants of DGD and NN with a large initial penalty factor 162

5.10 Convergence of DGD and NN in a linearly separable logistic regression problem163

5.11 Convergence of DGD and NN in a non-linearly separable logistic regression

problem . 164

6.1 Convergence paths of EXTRA, ESOM-K, NN-K, and PMM in terms of

number of iterations . 193

6.2 Convergence paths of EXTRA, ESOM-K, NN-K, and PMM in terms of

rounds of communications . 194

6.3 Relative error of EXTRA, ESOM-K, and DQM versus number of iterations

for a logistic regression problem . 195

6.4 Relative error of EXTRA, ESOM-K, and DQM versus rounds of communi-

cations for a logistic regression problem . 195

7.1 Stochastic averaging gradient table at each node 201

7.2 Comparison of DSA, EXTRA, DGD, Stochastic EXTRA, and Decentralized

SAGA for a logistic regression problem . 228

7.3 Effect of graph condition number on the convergence of DSA 230

7.4 Effect of graph condition number on the relative performance EXTRA of DSA231

7.5 Effect of number of functions when the number of nodes is fixed 232

7.6 Effect of number of functions on the relative performance of DSA and EX-

TRA when the number of nodes is fixed . 233

xiv

7.7 Convergence paths of DSA for different number of nodes when the total

number of sample points is fixed . 234

7.8 Effect of number of nodes on the relative performance of DSA and EXTRA

when the total number of sample points is fixed 235

7.9 Comparison of DSA and EXTRA for the protein homology classification

problem . 236

8.1 Improvement in terms of suboptimality for the RCV1 dataset using adaptive

sample scheme with regularization of the order O(1/
√
n) 253

8.2 Improvement in terms of test error for the RCV1 dataset using adaptive

sample scheme with regularization of the order O(1/
√
n) 253

8.3 Improvement in terms of suboptimality for the MNIST dataset using adaptive

sample scheme with regularization of the order O(1/
√
n) 254

8.4 Improvement in terms of test error for the MNIST dataset using adaptive

sample scheme with regularization of the order O(1/
√
n) 254

8.5 Improvement in terms of suboptimality for the MNIST dataset using adaptive

sample scheme with regularization of the order O(1/n) 255

8.6 Improvement in terms of test error for the MNIST dataset using adaptive

sample scheme with regularization of the order O(1/n) 255

9.1 Comparison of SGD, SAGA, Newton, and Ada Newton for the protein ho-

mology dataset. 270

9.2 Comparison of the sub-optimality of SAGA, Newton, and Ada Newton in

terms of number of effective passes over dataset for four real datasets 272

9.3 Comparison of the sub-optimality of SAGA, Newton, and Ada Newton in

terms of run time for four real datasets . 273

9.4 Comparison of the test error of SAGA, Newton, and Ada Newton in terms

of number of effective passes over the dataset for four real datasets 274

xv

Chapter 1

Introduction

A large fraction of machine learning methods requires the solution of an empirical risk min-

imization problem (ERM) which is expressed as the minimization of a sum of individual

costs associated with individual elements of a training set. For example, support vector

machines intend to determine a hyperplane that separates samples with different labels by

minimizing the average hinge loss associated with a given training set. In logistic regression,

we aim to find a linear classifier that minimizes an average negative log likelihood proba-

bility computed based on a set of training samples. Dictionary learning aims at finding a

dictionary in which some training data admits a sparse representation by solving a finite

sum optimization problem. A feature common to modern versions of this class of problems

is the very large size of the respective training sets.

As the objective function in the ERM problem is convex, any descent method can be

utilized to solve this problem. However, an evident obstacle in using traditional descent

algorithms for solving this class of problems is their prohibitive computation complexity

which is proportional to the number of component functions in the ERM problem, i.e., the

number of available samples in the given dataset. The main goal of this thesis is to study

different approaches to solve large-scale ERM problems.

We first explore the idea of separating the training set into smaller subsets across time.

In this scheme at each iteration, only a subset of samples – chosen either randomly or

cyclically – is used to update the estimate for the minimizer of the empirical risk. When

training examples are processed sequentially over time, we are in the realm of stochastic

optimization methods. In this regime, the main contribution of this thesis is studying the

application of quasi-Newton methods to accelerate the state-of-the-art first order methods

by approximating the curvature information of the empirical risk.

The second direction considered in this thesis for training massive training sets is dis-

tributing samples to distinct nodes of a network, which we can interpret as separating

samples over space. In this regime, the main contribution of this thesis is in incorporating

1

the second-order information of the aggregate risk associated with samples of all nodes in

the network in a way that can be implemented in a distributed fashion, i.e., each node

only exchanges information with its neighboring nodes to update its estimate of the global

minimizer. Indeed, the idea of separating samples both across time and space can be exe-

cuted to enhance the required computational and communication cost for solving large-scale

empirical risk minimization problems. This path, which is also referred to as decentralized

stochastic optimization, is studied in this thesis.

The third and last path considered in this thesis is a rethinking of ERM in which we

consider not a partition of the training set as in the case of distributed and stochastic

optimization, but a nested collection of subsets that grows geometrically. The key insight is

that the optimal argument associated with a training subset of a certain size is not that far

from the optimal argument corresponding to a larger training subset since the samples are

drawn from a common (unknown) distribution. This means that solutions for an element

of the geometric sequence can be used as warm starts for the solution of the subsequent

element.

1.1 Context and background

To formally introduce the problem formulation used in this thesis, consider a decision vector

w ∈ Rp, a random variable Θ ∈ Rd with realizations θ and a convex loss function f(w,θ).

We aim to find the optimal argument that minimizes the optimization problem

w∗ := argmin
w∈Rp

F (w) = argmin
w∈Rp

EΘ[f(w,Θ)] = argmin
w∈Rp

∫
Θ
f(w,Θ)P (dθ), (1.1)

where F (w) := EΘ[f(w,Θ)] is defined as the expected loss, and P is the probability

distribution of the random variable Θ. The optimization problem in (1.1) cannot be solved

since the distribution P is unknown. However, we have access to a training set T =

{θ1, . . . ,θN} containing N independent samples θ1, . . . ,θN drawn from P , and, therefore,

we attempt to minimize the empirical loss associated with the training set T = {θ1, . . . ,θN},
which is equivalent to minimizing the problem

w†N := argmin
w∈Rp

1

N

N∑
i=1

f(w,θi), (1.2)

We refer to the loss (1/N)
∑N

i=1 f(w,θi) in (1.2) as the empirical loss associated to the

training set T . One may also interpret the ERM problem in (1.2), which typically appears

in machine leaning applications [14,15,26,108], as a finite sum minimization problem of N

smooth and convex functions. In particular, if we define the component function fi : Rp → R

2

for i = 1, . . . , N as fi(w) = f(w,θi) and the global objective function f as the average of

the component functions fi, the optimization problem in (1.2) can be written as

w∗ := argmin
w∈Rp

f(w) := argmin
w∈Rp

1

N

N∑
i=1

fi(w). (1.3)

Indeed, the problem formulation in (1.3), which is referred to as finite sum minimization,

is more general, and ERM in (1.2) is a special case of the optimization problem in (1.3).

This class of problems arises in many application domains such as control [22, 25, 56] and

wireless communications [96,97,103].

In the first two parts of the thesis, we introduce a set of algorithms that can be executed

to solve the more general setting in (1.3), and, of course, these approaches can be used to

solve the ERM problem in (1.2). In the third part of the thesis, however, we study a novel

approach for training large-scale ERM problems which is specifically designed for the setting

in (1.2), and the results in this part of the thesis cannot be generalized to the finite sum

minimization problem in (1.3).

In the following sections, we overview the state-of-the-art methods for solving large-scale

ERM problems and overview the algorithms that are presented in this thesis to achieve faster

convergence rates.

1.1.1 Stochastic methods

Classic deterministic optimization algorithms such as gradient descent, Newton’s method,

and quasi-Newton methods are built on the assumption that the gradient of the cost func-

tion is empirically computable. In the particular case of Newton’s method, evaluation of

the Hessian and its inverse should be feasible as well. However, the computational complex-

ity of the gradient and Hessian evaluations, which are required to implement conventional

descent methods, increase linearly by the size of the training set. Stochastic approximation

methods are constructed on the idea of replacing gradients by their stochastic gradient ap-

proximations, arise as a natural alternative to overcome the high computational complexity

of deterministic algorithms [15,49,82,104,107,130]. However, the slow convergence time of

SGD has limited its practical appeal and fostered the search for alternatives. In this regard,

it has to be noted that SGD is slow because of both, the use of gradients as descent direc-

tions which is problematic in functions with large condition numbers, and the replacement

of gradients by random estimates with potentially large variances. Alternatives to deal with

both of these problems have been aggressively developed over the last decade.

Alternatives to reduce randomness in SGD have been proposed to render the convergence

times of SGD closer to the convergence times of gradient descent. Some early methods make

use of memory to either smooth iterates [88] or stochastic gradients [101]. More recent

3

developments have focused on hybrid approaches that use both, gradients and stochastic

gradients, or update descent directions so that they become progressively closer to gradients

[47, 104, 129]. Inasmuch as they succeed in reducing randomness, these algorithms end up

exhibiting the asymptotic convergence rate of gradient descent which is faster than the

asymptotic convergence rate of SGD. Although they improve asymptotic convergence rates,

the latter methods are still often slow in practice. This is not unexpected. Reducing

randomness is of no use when the function F (w) has a challenging curvature profile. In these

ill conditioned functions SGD is limited by the slow convergence times of (deterministic)

gradient descent.

A parallel line of research has attempted to accelerate the convergence of SGD by cor-

recting its curvature estimate. The natural solution to deal with these ill-conditioned func-

tions is Newton’s method, which makes use of the Hessian of the objective. However,

stochastic estimates of Newton steps are not computationally cheap to compute. This

issue motivated the use of stochastic quasi-Newton methods. In deterministic settings,

quasi-Newton methods, which do not require computation of the objective Hessian and ap-

proximate the curvature using only gradient information, have been successful in achieving

a super-linear convergence rate which outperforms the linear convergence rate of gradi-

ent descent [24, 32, 87, 89]. This success has resulted in the development of the stochastic

quasi-Newton methods. An important observation here is that in trying to adapt to the

changing curvature of the objective, stochastic quasi-Newton methods may end up exacer-

bating the problem. Indeed, since Hessian estimates are stochastic, it is possible to end up

with almost singular Hessian estimates. The corresponding small eigenvalues then result

in a catastrophic amplification of the noise which nullifies progress made towards conver-

gence. This is not a minor problem. In oBFGS this possibility precludes convergence

analyses [12, 105] and may result in erratic numerical behavior; see, e.g., Figure 2.12. As a

matter of fact, the main motivation for the introduction of RES, presented in Chapter 2,

is to avoid this catastrophic noise amplification so as to retain smaller convergence times

while ensuring that optimal arguments are found almost surely [70]. However valuable,

the convergence guarantees of RES are tainted by an iteration cost of order O(p3) which

precludes its use in problems where p is very large. In deterministic settings this problem is

addressed by limited memory (L)BFGS [55] which can be easily generalized to develop the

oLBFGS algorithm [105]. Numerical tests of oLBFGS are promising but theoretical con-

vergence characterizations are still lacking. The main contribution of Chapter 3 is to show

that the sequence of iterates generated by oLBFGS converges with probability 1 to optimal

arguments across realizations of the random variables, while its computational complexity

is of order O(p) [72].

Notwithstanding these stochastic quasi-Newton methods are successful in expanding the

4

application of quasi-Newton methods to stochastic settings and enhance the convergence

time of SGD in ill-conditioned problems, the best-proven convergence rate for them is a

sublinear rate. This slow asymptotic performance is inherited from the stochastic approxi-

mation of gradient which does not vanish even near the optimal solution without randomness

reduction techniques.

Considering these two research trusts which handle the issues of randomness and curva-

ture estimation in the update of SGD, it seems natural to combine the idea of randomness

reduction and quasi-Newton methods to design a low computation cost method that recov-

ers the superlinear convergence rate of deterministic quasi-Newton methods. The stochastic

quasi-Newton methods in [58,78] attempt to achieve this goal by using the variance reduc-

tion technique proposed in [45]; however, they can not achieve better than a linear conver-

gence rate. In Chapter 4, the presented incremental quasi-Newton method (IQN) succeeds

to achieve a superlinear convergence rate by incorporating the averages of variables, gra-

dients, and Hessian approximations in conjunction with a corrected Taylor expansion for

approximating the individual component functions [60, 61]. The IQN method is the first

incremental quasi-Newton method to achieve a superlinear convergence rate.

1.1.2 Decentralized methods

Decentralized (Distributed) optimization algorithms are used to solve the problem of mini-

mizing a global cost function over a set of nodes in situations where the objective function

is defined as a sum of local functions. This class of algorithms can be used to solve the

problem in (1.3) if the objective functions at nodes are the risk associated with a subset of

samples. Specifically, consider a connected network of size V where each node v has access

to a local objective function fv : Rp → R. The local objective function fv(w) is defined as

the average risk of qv functions (samples) {fv,i(w)}qvi=1 that can be individually evaluated

at node v. Agents cooperate to solve the global optimization problem

w̃∗ := argmin
w

V∑
v=1

fv(w) = argmin
w

V∑
v=1

qv∑
i=1

fv,i(w). (1.4)

The formulation in (1.4) models a training set with a total of N =
∑V

v=1 qv training samples

that are distributed among the V agents for parallel processing conducive to the determi-

nation of the optimal classifier w̃∗ [6, 26,118].

In all distributed methods the first step is replicating the decision variable w at each

node. In other words, we consider the case that each node v has access to a local variable

wv and tries to achieve the minimum of its local objective functions fv(wv), while keeping

its variable equal to the variables wu of its neighbors u ∈ Nv. This alternative formulation

5

can be written as

{w∗v}Vv=1 := argmin
{wv}Vv=1

V∑
v=1

fv(wv),

s.t. wv = wu, for all v, u ∈ Nv. (1.5)

Since the network is connected, the constraints wv = wu for all v and u ∈ Nv imply that

(1.4) and (1.5) are equivalent and we have w∗v = w̃∗ for all v.

There are different algorithms to solve (1.5) in a distributed manner. The most popular

choice is decentralized gradient descent (DGD) [80,126] and accelerated distributed gradient

descent method [44, 90] which can be abstracted as combinations of local descent steps

followed by variable exchanges and averaging of information among neighbors. Although the

implementation of DGD is simple, its convergence could be arbitrary slow in ill-conditioned

problems since as in other first-order methods it operates on gradient information only.

This is not surprising because gradient descent methods in centralized settings where the

aggregate function gradient is available at a single server (node) have the same difficulties

in problems with skewed curvature.

This issue is addressed in centralized optimization by Newton’s method that uses sec-

ond order information to determine a descent direction adapted to the objective’s curvature.

However, second order methods are not practical in distributed settings since they require

access to global information. In Chapter 5, an approximate Newton’s method is presented

to solve the problem in (1.5) in a distributed manner. It is done by introducing Network

Newton (NN), a method that relies on distributed approximations of Newton steps for the

global cost function
∑V

v=1 fv(w) to accelerate the convergence of DGD. The presented NN

method approximates the Newton step of a penalized version of (1.5) by truncating the

Taylor series of the exact Newton step. Convergence analysis of the NN method guarantees

a global linear convergence method, while the rate of convergence is quadratic in a neighbor-

hood of the optimal argument. This convergence property makes NN the first distributed

algorithm that solves problem (1.5) faster than a linear rate when the functions are strongly

convex and smooth.

The NN method is successful in improving the convergence rate of DGD; however, both

of these methods solve a penalized version of (1.5) where the accuracy of the optimal solution

depends on the penalty factor; see Chapter 5. This issue can be resolved by solving problem

(1.5) in the dual domain. Dual domain methods build on the fact that the dual function

of (1.5) has a gradient with separable structure. The use of plain dual gradient descent

is possible but generally slow to converge [8, 95, 102]. In centralized optimization, better

convergence speeds are attained by the method of multipliers (MM) that adds a quadratic

augmentation term to the Lagrangian [7,40], or the proximal (P)MM that adds an additional

6

term to keep iterates close. In either case, the quadratic term that is added to construct the

augmented Lagrangian makes distributed computation of primal gradients impossible. This

issue is most often overcome with the use of decentralized (D) versions of the alternating

direction method of multipliers (ADMM) [19,103,112]. Besides the ADMM, other methods

that use different alternatives to approximate the gradients of the dual function have also

been proposed [28,43,79,100,115,117,122]. The convergence rates of these methods have not

been studied except for the DADMM and its variants that are known to converge linearly

to the optimal argument when the local functions are strongly convex and their gradients

are Lipschitz continuous [54, 77, 112]. An important observation here is that while all of

these methods try to approximate the MM or the PMM, the performance penalty entailed

by the approximation has not been studied.

In Chapter 6 an exact second order method (ESOM) is presented which uses quadratic

approximations of the augmented Lagrangians of the problem in (1.5) and leads to a set of

separable subproblems. As in the primal domain, computation of the dual function Hessian

requires global communication and is impractical. ESOM overcomes this issue by using the

Hessian inverse approximation technique introduced in the design of NN. The convergence

analysis of ESOM as an approximation of the PMM shows that it converges at the same

rate as PMM and the gap between the convergence guarantees of these methods decreases

as the iterates approach the optimal argument. This indicates that the convergence paths

of ESOM and PMM are very close, while PMM can not be implemented in a distributed

fashion and ESOM is a distributed algorithm.

Although in decentralized optimization training samples are divided among different

processors (nodes) to reduce the required computational capacity for each processor, there

still could be cases that the number of assigned samples to each processor is beyond its com-

putational capacity. To be more precise, all of the mentioned distributed algorithms require

the computationally costly evaluation of the local gradients ∇fv(w) =
∑qv

v=1∇fv,i(w). In

the case that the number of assigned samples N/V to each processor is still large, the com-

putation of local gradients might be beyond the computational capacity of each processor.

In this regime, which is not seldom in large-scale optimization, we can reduce the computa-

tion cost by the use of stochastic decentralized algorithms that substitute the local gradients

with their stochastic approximations. In other words, the stochastic decentralized methods

separate samples across both time and space by training a subset of available samples at

each processor.

The use of distributed stochastic methods reduces the computational cost per iteration

of deterministic distributed algorithms but results in sublinear convergences rates of order

O(1/t) even if the corresponding deterministic algorithm exhibits linear convergence [9,48,

92, 113]. This is a drawback that also exists in centralized stochastic optimization where

7

linear convergence rates in expectation are established by decreasing the variance of the

stochastic gradient approximation [31, 45, 47, 49, 104, 109]. In Chapter 7, the decentralized

double stochastic averaging gradient (DSA) method is presented which incorporates the idea

of stochastic gradient averaging in [31] to approximate local gradients by a low computation

cost gradient averaging [71,73]. This modification leads to a linear convergence rate for DSA

which is the first decentralized stochastic method that achieves linear convergence rate.

1.1.3 Adaptive sample size algorithms

Perhaps most of the methods designed for solving large-scale ERM problems can be applied

to solve finite sum minimization (FSM) problems, including the mentioned stochastic and

decentralized methods. However, by focusing on designing methods for solving the general

FSM problem we end up ignoring some fundamental properties of ERM which can be

leveraged to solve ERM problems more efficiently. ERM problems have two specific qualities

that come from the fact that ERM is a proxy for statistical loss minimization. The first

property is that since the empirical risk and the statistical loss have different minimizers,

there is no reason to solve ERM beyond the expected difference between the two objectives.

This so-called statistical accuracy VN is a constant of order O(1/Nα) where α is a constant

from the interval [0.5, 1] depending on the regularity of the loss function. The second

important property of ERM is that the component functions are drawn from a common

distribution. This implies that if we consider subsets of the training set, the respective

empirical risk functions are not that different from each other and, indeed, their differences

are related to the statistical accuracy of the subset.

The relationship of ERM to statistical loss minimization suggests that ERM problems

have more structure than FSM problems. This is not exploited by most existing methods

which, albeit used for ERM, are in fact designed for FSM. The goal of adaptive sample

size methods is to exploit the relationship between ERM and statistical loss minimization

to achieve lower overall computational complexity for a broad class of first-order methods

applied to ERM. The main idea of adaptive sample size methods is to start with a small

subset of samples and solve the problem to within its statistical accuracy. Then, increase

the size of training samples and use the current approximate optimal solution as a warm

start for the new training set.

The technique presented in Chapters 8 and 9 uses subsamples of the training set con-

taining n ≤ N component functions that we grow geometrically. In particular, we start

by a small number of samples and minimize the corresponding empirical risk added by a

regularization term of order Vn up to its statistical accuracy. Note that, based on the first

property of ERM, the added adaptive regularization term does not modify the required

accuracy while it makes the problem strongly convex and improves the problem condition

8

number. After solving the subproblem, we double the size of the training set and use the

solution of the problem with n samples as a warm start for the problem with 2n samples.

This is a reasonable initialization since based on the second property of ERM the functions

are drawn from a joint distribution, and, therefore, the optimal values of the ERM problems

with n and 2n functions are not that different from each other. The proposed approach

succeeds in exploiting the two properties of ERM problems to improve complexity bounds

of first-order methods and second-order methods.

1.2 Thesis outline and contributions

The first approach studied in this thesis in dealing with massive ERM problems is splitting

samples across time. In Part I of the thesis, we explore this direction by studying the use of

stochastic quasi-Newton methods for improving convergence rate of stochastic gradient de-

scent. In this part, the challenges in designing convergent stochastic quasi-Newton methods

have studied, as well as, the techniques to reduce the computational complexity of these

methods. Finally, we close this part of the thesis by explaining the difficulties in designing

a superlinearly convergent quasi-Newton method in the stochastic domain.

In Part II of the thesis, we explore the use of decentralized methods for solving large-

scale ERM problems which can be also interpreted as splitting samples across space. In this

part, we recap the state-of-the-art methods for solving distributed optimization problems

and presents methods that approximate Newton step, both in primal and dual domains, to

accelerate the convergence of first-order distributed methods. We further examine the idea

of separating samples both in space and time to reduce the computational burden required

at each node when we deal with massive datasets.

In Part III of the thesis, we introduce adaptive sample size methods for solving ERM

problems which is constructed on the idea of starting with a small subset of samples and

increasing the size of training set geometrically. We study the use of adaptive sample size

scheme for both first-order and second-order methods and show that it leads to reduction

in overall computational cost to achieve the statistical accuracy of the full dataset.

Chapter 2 opens the first part of the thesis on stochastic methods. In this chapter we

introduce RES [68, 70] a stochastic regularized version of the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) quasi-Newton method, to solve problems with the generic structure in (1.2).

The proposed regularization avoids the near-singularity problems of more straightforward

extensions and yields an algorithm with provable convergence guarantees when the functions

are strongly convex. The fundamental idea of BFGS is to continuously satisfy a secant

condition that captures information on the curvature of the function being minimized while

staying close to previous curvature estimates. To regularize deterministic BFGS we retain

the secant condition but modify the proximity condition so that eigenvalues of the Hessian

9

approximation matrix stay above a given threshold. This regularized version is leveraged

to introduce the regularized stochastic BFGS algorithm. Regularized stochastic BFGS

differs from standard BFGS in the use of a regularization to make a bound on the largest

eigenvalue of the Hessian inverse approximation matrix and in the use of stochastic gradients

in lieu of deterministic gradients for both, the determination of descent directions and the

approximation of the objective function’s curvature.

By proving lower and upper bounds on the approximate Hessians of the component func-

tions it can be guaranteed that the sequence of iterates wt genearaed by RES converges to

the optimal argument w∗ with probability 1 over realizations of the sample functions. This

result indicates that RES is a globally convergent stochastic quasi-Newton method. We

complement this result with a characterization of the convergence rate which is shown to be

at least of order O(1/t) in expectation. Advantages of RES relative to SGD are significant,

as we establish in numerical results for the minimization of a family of quadratic objec-

tive functions of varying dimensionality and condition number. As we vary the condition

number we observe that for well conditioned objectives RES and SGD exhibit comparable

performance, whereas for ill conditioned functions RES outperforms SGD by an order of

magnitude. As we vary problem dimension we observe that SGD becomes unworkable for

large dimensional problems. RES however, exhibits manageable degradation as the number

of iterations required for convergence doubles when the problem dimension increases by a

factor of ten. We also study the performance of RES on an important example of ERM

problems which are support vector machines (SVMs) [13,15,120]. We adapt RES for SVM

problems and show the improvement relative to SGD in convergence time and stability

through numerical analysis [69].

Chapter 3 studies the convergence properties and numerical behavior of the online

Limited memory BFGS method proposed in [105], which can be considered as a practical

variant of RES in Chapter 2. However valuable, the convergence guarantees of RES are

tainted by an iteration cost of order O(p3) which precludes its use in problems where p is very

large. In deterministic settings this problem is addressed by limited memory (L)BFGS [55]

which can be easily generalized to develop the oLBFGS algorithm [105]. The fundamental

idea in BFGS and oLBFGS is to continuously satisfy a secant condition while staying

close to previous curvature estimates. They differ in that BFGS uses all past gradients to

estimate curvature while oLBFGS uses a fixed moving window of past gradients. The use

of this window reduces memory and computational cost. The difference between LBGS and

oLBFGS is the use of stochastic gradients in lieu of their deterministic counterparts.

In this chapter we present the oLBFGS algorithm and show that it converges with

probability 1 to optimal arguments across realizations of the random variables [72]. This

is the same convergence guarantee provided for RES, while the computational coplexity of

10

oLBFGS per iteration is of order O(p). Convergence guarantees for oLBFGS do not require

such measures. To do so, we first show that under the assumption that the component

functions are strongly convex and Lipschitz continuous the trace and determinant of the

Hessian approximations computed by oLBFGS are upper and lower bounded, respectively.

These bounds are then used to limit the range of variation of the ratio between the Hessian

approximations’ largest and smallest eigenvalues. In turn, this condition number limit is

shown to be sufficient to prove convergence to the optimal argument w∗ with probability

1 over realizations of the sample functions. We complement this almost sure convergence

result with a characterization of the convergence rate which is shown to be at least sublinear

of order O(1/t) in expectation.

To show the advantage of using oLBFGS as an adaptive reconditioning strategy we de-

velop its application to the training of SVMs and perform a comparative numerical analysis

with synthetic data. The conclusions of this numerical analysis are that oLBFGS performs

as well as oBFGS and RES while outperforming SGD when convergence is measured with

respect to the number of feature vectors processed. In terms of computation time, oLBFGS

outperforms all three methods, SGD, and RES. The advantages of oLBFGS grow with the

dimension of the feature vector and can be made arbitrarily large. To further substantiate

numerical claims we use oLBFGS to train a logistic regressor to predict the click through

rate in a search engine advertising problem. The logistic regression uses a heterogeneous

feature vector with 174,026 binary entries that describe the user, the search, and the ad-

vertisement. Being a large scale problem with heterogeneous data, the condition number of

the logistic log likelihood objective is large and we expect to see significant advantages of

oLBFGS relative to SGD. This expectation is fulfilled. The oLBFGS algorithm trains the

regressor using less than 1% of the data required by SGD to obtain similar classification

accuracy.

Chapter 4 presents the incremental quasi-Newton (IQN) method which has the unique

properties of low computational complexity and superlinear convergence rate. Note that

the issue of proving convergence of stochastic quasi-Newton methods is tackled by RES

and oLBFGS in Chapters 2 and 3, respectively. Although these methods are successful in

expanding the application of quasi-Newton methods to stochastic settings, their convergence

rate is sublinear. This is not better than the convergence rate of SGD and, as is also the case

in SGD, is a consequence of the stochastic approximation noise which necessitates the use of

diminishing stepsizes. The stochastic quasi-Newton methods in [58,78] resolve this issue by

using the variance reduction technique proposed in [45]. The fundamental idea of the work

in [45] is to reduce the noise of the stochastic gradient approximation by computing the

exact gradient in an outer loop to use it in an inner loop for gradient approximation. The

methods in [58,78], which incorporate the variance reduction scheme presented in [45] into

11

the update of quasi-Newton methods, are successful in achieving a linear convergence rate.

Note that the use of variance reduction in stochastic quasi-Newton methods led to linear

convergence and did not recover a superlinear rate. Hence, a fundamental question remains

unanswered: Is it possible to design an incremental quasi-Newton method that recovers the

superlinear convergence rate of deterministic quasi-Newton algorithms? In Chapter 4, we

show that the answer to this open problem is positive by proposing an incremental quasi-

Newton method (IQN) with a local superlinear convergence rate [60, 61]. This is the first

quasi-Newton method to achieve superlinear convergence while having a per iteration cost

independent of the number of functions N – the cost per iteration is of order O(p2).

There are three major differences between the IQN method and state-of-the-art incre-

mental (stochastic) quasi-Newton methods that lead to the former’s superlinear convergence

rate. First, the proposed IQN method uses the aggregated information of variables, gra-

dients, and Hessian approximation matrices to reduce the noise of approximation for both

gradients and Hessian approximation matrices. This is different to the variance-reduced

stochastic quasi-Newton methods in [58, 78] that attempt to reduce only the noise of gra-

dient approximations. Second, in IQN the index of the updated function is chosen in a

cyclic fashion, rather than the random selection scheme used in the incremental methods

in [23,70,72,105]. The cyclic routine in IQN allows to bound the error at each iteration as

a function of the errors of the last N iterates, something that is not possible when using

a random scheme. To explain the third and most important difference we point out that

the form of quasi-Newton updates is the solution of a local second order Taylor approxi-

mation of the objective. It is possible to understand stochastic quasi-Newton methods as

an analogous approximation of individual sample functions. However, it turns out that

the state-of-the-art stochastic quasi-methods evaluate the linear and quadratic terms of

the Taylor’s expansion at different points yielding and inconsistent approximation (Remark

4.7). The IQN method utilizes a consistent Taylor series which yields a more involved up-

date which we nonetheless show can be implemented with the same computational cost.

These three properties together lead to an incremental quasi-Newton method with a local

superlinear convergence rate.

Chapter 5 launches the second part of the thesis on the use of decentralized (dis-

tributed) optimization methods for solving large-scale ERM problems on a network us-

ing multiple processors (nodes). There are different algorithms to solve (1.4) in a dis-

tributed manner. The most popular choices are decentralized gradient descent (DGD)

[44, 80, 111, 126], distributed implementations of the alternating direction method of mul-

tipliers [19, 27, 77, 103, 112], and decentralized dual averaging [33, 119]. Although there are

substantial differences between them, these methods can be generically abstracted as com-

binations of local descent steps followed by variable exchanges and averaging of information

12

among neighbors. A feature common to all of these algorithms is the slow convergence rate

in ill-conditioned problems since they operate on first order information only. This is not

surprising because gradient descent methods in centralized settings where the aggregate

function gradient is available at a single server have the same difficulties in problems with

skewed curvature.

The goal of Chapter 5 is to accelerate the convergence rate of DGD in solving (1.4) by

incorporating the second information of the objective objective function. In achieving this

goal, the first step is to reinterpret DGD as an algorithm that utilizes gradient descent to

solve a penalized version of (1.5) which is a distributed representation of the problem in

(1.4). This reinterpretation explains linear convergence of DGD to a neighborhood of the

optimal argument w∗. The volume of this neighborhood is given by the relative weight of

the penalty function and the original objective which is controlled by a penalty coefficient.

If DGD uses gradient descent to solve the penalized objective function, it seems natural

to use Newton’s method to achieves faster convergence. Alas, distributed computation of

Newton steps for the penalized problem requires global communication between all nodes in

the network and is therefore impractical (Section 5.3). To resolve this issue, the presented

Network Newton (NN) method approximates the Newton step of the penalized objective

function by truncating the Taylor series of the exact Newton step [66]. This approximation

results in a family of methods indexed by the number of terms of the Taylor expansion that

are kept in the approximation. The method that results from keeping K of these terms

is termed NN-K. A fundamental observation here is that the Hessian of the penalized

function has a sparsity structure that is the same sparsity pattern of the graph. Thus,

when computing terms in the Hessian inverse expansion, the first order term is as sparse as

the graph, the second term is as sparse as the two hop neighborhood, and, in general, the

k-th term is as sparse as the k-hop neighborhood of the graph. Thus, implementation of the

NN-K method requires aggregating information from K hops away. Increasing K makes

NN-K arbitrarily close to Newton’s method at the cost of increasing the communication

overhead of each iteration.

In the convergence analysis of NN, it is shown that a measure of the error between

the Hessian inverse approximation utilized by NN-K and the actual inverse Hessian decays

exponentially with the method index K. This exponential decrease hints that using a

small value of K should suffice in practice. Convergence analysis of NN shows that its

convergence rate is at least linear. It follows from this convergence analysis that larger

penalty coefficients result in faster convergence that comes at the cost of increasing the

distance between the optimal solutions of the original and penalized objectives. Further,

it is shown that for all iterations except the first few, a weighted gradient norm associated

with NN-K iterates follows a decreasing path akin to the path that would be followed by

13

Newton iterates. The only difference between these residual paths is that the NN-K path

contains a term that captures the error of the Hessian inverse approximation. Leveraging

this similarity, it is possible to show that the rate of convergence is quadratic in a specific

interval whose length depends on the order K of the selected network Newton method

(Theorem 8). Existence of this quadratic convergence phase explains why NN-K methods

converge faster than DGD. It is also worth remarking that the error in the Hessian inverse

approximation can be made arbitrarily small by increasing the method’s order K and, as a

consequence, the quadratic phase can be made arbitrarily large.

Chapter 6 continues development of distributed method for solving ERM problems

by extending the idea of using second-order information into primal-dual methods which

have exact convergence. This extension is necessary since the NN method in Chapter 5

solves a penalized version of (1.5) where the accuracy of the optimal solution depends on

the penalty factor. Among the methods that solve problem (1.5) in the dual domain the

method of multipliers (MM) that adds a quadratic augmentation term to the Lagrangian of

the problem [7, 40], or the proximal (P)MM that adds an additional term to keep iterates

close have the best performance. However, in either case, the quadratic term that is added

to construct the augmented Lagrangian makes distributed computation of primal gradi-

ents impossible. This chapter studies the exact second order method (ESOM) which uses

quadratic approximations of the augmented Lagrangians of (1.5) to approximate the PMM

which leads to a set of separable subproblems [74,76]. The ESOM algorithm is second-order

since it uses a quadratic approximation of the augmented Lagrangian in the primal update.

It is exact since, as the PMM, it solves the augmented Lagrangian and converges to the

exact solution of (1.5). And it is distributed since the update of ESOM can be implemented

locally and without the need for global communication.

ESOM can also be interpreted as a variation of PMM that substitutes the proximal aug-

mented Lagrangian with its quadratic approximation. Implementation of ESOM requires

computing the inverse of the Hessian of the proximal augmented Lagrangian. Since this

inversion cannot be computed using local and neighboring information, ESOM-K approx-

imates the Hessian inverse with the K-order truncation of the Taylor’s series expansion of

the Hessian inverse, as explained in the derivation of NN in Chapter 5. This expansion can

be carried out using an inner loop of local operations.

A remarkable property of all ESOM-K methods is that they can be shown to pay a

performance penalty relative to (centralized) PMM that vanishes with increasing iterations.

To be more specific, in this chapter we establish linear convergence of (centralized) PMM

and use its linear convergence factor as a benchmark for methods that can be implemented

in a distributed manner. We then prove linear convergence of ESOM and to show that

ESOM’s linear convergence factor approaches the corresponding PMM factor as the iterates

14

approach the optimal solution. This indicates that the convergence paths of (distributed)

ESOM-K and (centralized) PMM are very close.

Chapter 7 closes the second part of the thesis by presenting a novel stochastic dis-

tributed method for solving large-scale optimization problems. Decentralized optimization

method lead to reducing the computational complexity required by processors to train mas-

sive ERM problems through distributing samples over multiple processors and diving the

computational cost among them. However, the possibility of facing scenarios that operating

on assigned samples to each processor is beyond its computational capacity is not rare in

big-data problems. This is a valid claim since distributed optimization methods rely on the

computation of local gradients ∇fv(w) =
∑qv

i=1∇fv,i(w) at nodes. As in centralized case, a

natural solution would be splitting samples over time and using stochastic gradients in lieu

of local gradients. The use of stochastic decentralized methods reduces the computational

cost per iteration but results in sublinear convergences rates of order O(1/t) even if the

corresponding deterministic algorithm exhibits linear convergence. Our interest here is in

solving (1.4) with a method that is decentralized, stochastic, and has a linear convergence

rate.

In this chapter, we achieve this goal by presenting the decentralized double stochastic

averaging gradient (DSA) method [71, 73]. The method exploits a new interpretation of

EXTRA as a saddle point method and uses stochastic averaging gradients in lieu of gradi-

ents. DSA is decentralized because it is implementable in a network setting where nodes can

communicate only with their neighbors. It is double because iterations utilize the informa-

tion of two consecutive iterates. It is stochastic because the gradient of only one randomly

selected function is evaluated at each iteration and it is an averaging method because it

uses an average of stochastic gradients to approximate the local gradients. DSA is proven to

converge linearly to the optimal argument x̃∗ in expectation when the local instantaneous

functions fv,i are strongly convex, with Lipschitz continuous gradients. This is in contrast

to all other decentralized stochastic methods that converge at sublinear rates.

Chapter 8 launches the third part of the thesis which introduces the idea of adaptive

sample size methods for solving large-scale ERM problems. In particular, in this chapter

we explain that most (if not all) iterative stochastic and decentralized methods aim to

solve general finite sum minimization (FSM) problems by either sampling over time or

space. This approach leads to ignoring some critical properties of ERM as a particular

case of FSM. The first property is that since the empirical risk and the statistical loss

have different minimizers, there is no reason to solve ERM beyond the expected difference

between the two objectives. This so-called statistical accuracy takes the place of ε in the

complexity orders of the previous paragraph and is a constant of order O(1/Nα) where

α is a constant from the interval [0.5, 1] depending on the regularity of the loss function.

15

The second important property of ERM is that the component functions are drawn from

a common distribution. This implies that if we consider subsets of the training set, the

respective empirical risk functions are not that different from each other and, indeed, their

differences are related to the statistical accuracy of the subset.

The relationship of ERM to statistical loss minimization suggests that ERM problems

have more structure than FSM problems. This is not exploited by most existing methods

which, albeit used for ERM, are in fact designed for FSM. The goal of this part of the thesis

is to exploit the relationship between ERM and statistical loss minimization to achieve

lower overall computational complexity for a broad class of first-order methods applied to

ERM. The technique we propose uses subsamples of the training set containing n ≤ N

component functions that we grow geometrically. In particular, we start by a small number

of samples and minimize the corresponding empirical risk added by a regularization term of

order Vn up to its statistical accuracy. Note that, based on the first property of ERM, the

added adaptive regularization term does not modify the required accuracy while it makes

the problem strongly convex and improves the problem condition number. After solving

the subproblem, we double the size of the training set and use the solution of the problem

with n samples as a warm start for the problem with 2n samples. This is a reasonable

initialization since based on the second property of ERM the functions are drawn from

a joint distribution, and, therefore, the optimal values of the ERM problems with n and

2n functions are not that different from each other. The proposed approach succeeds in

exploiting the two properties of ERM problems to improve complexity bounds of first-order

methods. In particular, we show that to reach the statistical accuracy of the full training set

the adaptive sample size scheme reduces the overall computational complexity of a broad

range of first-order methods by a factor of log(Nα). For instance, the overall computational

complexity of adaptive sample size AGD to reach the statistical accuracy of the full training

set is of order O(N
√
κ) which is lower than O((N

√
κ) log(Nα)) complexity of AGD.

Chapter 9 extends the idea of adaptive sample size methods into second-order Newton’s

method [59]. In this chapter we attempt to circumvent the challenges in the implementation

of Newton’s method for ERM with the Ada Newton algorithm that combines the use of

Newton iterations with adaptive sample sizes. Say the total number of available samples

is N , consider subsets of n ≤ N samples, and suppose the statistical accuracy of the ERM

associated with n samples is Vn. In Ada Newton we add a quadratic regularization term of

order Vn to the empirical risk – so that the regularized risk also has statistical accuracy Vn

– and assume that for a certain initial sample size m0, the problem has been solved to its

statistical accuracy Vm0 . The sample size is then increased by a factor α > 1 to n = αm0.

We proceed to perform a single Newton iteration with unit stepsize and prove that the

result of this update solves this extended ERM problem to its statistical accuracy. This

16

permits a second increase of the sample size by a factor α and a second Newton iteration

that is likewise guaranteed to solve the problem to its statistical accuracy. Overall, this

permits minimizing the empirical risk in α/(α− 1) passes over the dataset and inverting

logαN Hessians. Our theoretical results provide a characterization of the values of α that

are admissible with respect to different problem parameters. In particular, we show that

asymptotically on the number of samples n and with proper parameter selection we can set

α = 2. In such case we can optimize to within statistical accuracy in about 2 passes over

the dataset and after inversion of about 3.32 log10N Hessians. Our numerical experiments

verify that α = 2 is a valid factor for increasing the size of the training set at each iteration

while performing a single Newton iteration for each value of the sample size.

Chapter 10 closes the thesis with concluding remarks.

17

Part I

Stochastic (Incremental)

Quasi-Newton Methods

18

Chapter 2

Regularized stochastic BFGS

algorithm

2.1 Context and background

Stochastic optimization algorithms are used to solve the problem of optimizing an objective

function over a set of feasible values in situations where the objective function is defined

as an expectation over a set of random functions. To be precise, consider an optimization

variable w ∈ Rp and a random variable θ ∈ Θ ⊆ Rd that determines the choice of a function

f(w,θ) : Rp×d → R. The stochastic optimization problems considered in this paper entail

determination of the argument w∗ that minimizes the expected value F (w) := Eθ[f(w,θ)],

w∗ := argmin
w

Eθ[f(w,θ)] := argmin
w

F (w). (2.1)

We refer to f(w,θ) as the random or instantaneous functions and to F (w) := Eθ[f(w,θ)]

as the average function. We assume that the instantaneous functions f(w,θ) are strongly

convex for all θ from where it follows that the average function F (w) is also strongly convex.

Problems having the form in (2.1) are common in machine learning [14, 15, 108] as well as

in optimal resource allocation in wireless systems [67,96,97].

Note that the the empirical risk minimization (ERM) problem in (1.2) can be considered

as a specific case of the problem formulation in (2.1). In order to clarify this connection

assume that the distribution of the random variable θ is uniform over the training set

{θi}Ni=1. Therefore, the optimization problem in (2.1) reduces to

w∗ := argmin
w

1

N

N∑
i=1

f(w,θi), (2.2)

19

which is equivalent to the ERM problem in (1.2). In this chapter we focus on the general

setting in (2.1), and, of course, the results hold for the ERM problem in (2.2).

Since the objective function of (2.1) is strongly convex, descent algorithms can be used

for its minimization. However, descent methods require exact determination of the objective

function’s gradient ∇wF (w) = Eθ[∇wf(w,θ)], which is intractable in general. Stochastic

gradient descent (SGD) methods overcome this issue by using unbiased gradient estimates

based on small data samples and are the workhorse methodology used to solve large-scale

stochastic optimization problems [15,49,82,104,107,130]. Practical appeal of SGD methods

remains limited, however, because they require a large number of iterations to converge.

Indeed, SGD inherits slow convergence from its use of gradients which is aggravated by

their replacement with stochastic estimates.

Alternatives to reduce randomness in SGD have been proposed to render the convergence

times of SGD closer to the convergence times of gradient descent. Some early methods make

use of memory to either smooth iterates [88] or stochastic gradients [101]. More recent

developments have focused on hybrid approaches that use both, gradients and stochastic

gradients, or update descent directions so that they become progressively closer to gradients

[47, 104, 129]. Inasmuch as they succeed in reducing randomness, these algorithms end up

exhibiting the asymptotic convergence rate of gradient descent which is faster than the

asymptotic convergence rate of SGD. Although they improve asymptotic convergence rates,

the latter methods are still often slow in practice. This is not unexpected. Reducing

randomness is of no use when the function F (w) has a challenging curvature profile. In these

ill conditioned functions SGD is limited by the slow convergence times of (deterministic)

gradient descent.

To overcome problems with the objective function’s curvature, one may think of de-

veloping stochastic versions of Newton’s method. However, computing unbiased estimates

of Newton steps is not easy except in problems with some specific structures [10, 128].

Recourse to quasi-Newton methods then arises as a natural alternative because they can

achieve superlinear convergence rates in deterministic settings while relying on gradients

to compute curvature estimates [24,32,87,89]. Considering the fact that unbiased gradient

estimates are computable at manageable cost, stochastic generalizations of quasi-Newton

methods are not difficult to devise [12,67,105]. Numerical tests of these methods on simple

quadratic objectives suggest that stochastic quasi-Newton methods retain the convergence

rate advantages of their deterministic counterparts [105]. The success of these preliminary

experiments notwithstanding, Hessian estimations based on random stochastic gradients

may result in near singular curvature estimates. The possibility of having singular curvature

estimates makes it impossible to provide convergence analyses for stochastic quasi-Newton

methods [12,105] and may result in erratic numerical behavior (see Section 2.5.2).

20

In this chapter we introduce a stochastic regularized version of the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) quasi-Newton method to solve problems with the generic struc-

ture in (2.1). The proposed regularization avoids the near-singularity problems of more

straightforward extensions and yields an algorithm with provable convergence guarantees

when the functions f(w,θ) are strongly convex. We begin the paper with a brief discussion

of SGD (Section 2.2) and deterministic BFGS (Section 2.2.1). The fundamental idea of

BFGS is to continuously satisfy a secant condition that captures information on the curva-

ture of the function being minimized while staying close to previous curvature estimates. To

regularize deterministic BFGS we retain the secant condition but modify the proximity con-

dition so that eigenvalues of the Hessian approximation matrix stay above a given threshold

(Section 2.2.1). This regularized version is leveraged to introduce the regularized stochastic

BFGS algorithm (Section 2.2.2). Regularized stochastic BFGS differs from standard BFGS

in the use of a regularization to make a bound on the largest eigenvalue of the Hessian

inverse approximation matrix and in the use of stochastic gradients in lieu of deterministic

gradients for both, the determination of descent directions and the approximation of the

objective function’s curvature. We abbreviate regularized stochastic BFGS as RES.

Convergence properties of RES are then analyzed (Section 2.3). We prove that lower and

upper bounds on the Hessians of the sample functions f(w,θ) are sufficient to guarantee con-

vergence of a subsequence to the optimal argument w∗ with probability 1 over realizations

of the sample functions (Theorem 1). We complement this result with a characterization of

the convergence rate which is shown to be at least of order O(1/t) in expectation (Theorem

2). This expected convergence rate is typical of stochastic optimization algorithms and, in

that sense, no better than SGD [82]. Advantages of RES relative to SGD are nevertheless

significant, as we establish in numerical results for the minimization of a family of quadratic

objective functions of varying dimensionality and condition number (Section 2.4). As we

vary the condition number we observe that for well conditioned objectives RES and SGD

exhibit comparable performance, whereas for ill conditioned functions RES outperforms

SGD by an order of magnitude (Section 2.4.1). As we vary problem dimension we observe

that SGD becomes unworkable for large dimensional problems. RES however, exhibits man-

ageable degradation as the number of iterations required for convergence doubles when the

problem dimension increases by a factor of ten (Section 2.4.4).

An important example of a class of problems having the form in (2.1) are support vector

machines (SVMs) that reduce binary classification to the determination of a hyperplane

that separates points in a given training set; see, e.g., [13, 15, 120]. We adapt RES for

SVM problems (Section 2.5) and show the improvement relative to SGD in convergence

time and stability through numerical analysis (Section 2.5.1). For this particular problem

of finding optimal SVM classifiers, several accelerations of SGD have been proposed. These

21

include the Stochastic Average Gradient (SAG) method [104], the Semi-Stochastic Gradient

Descent (S2GD) algorithm [47], and Stochastic Approximation by Averaging (SAA) [88].

The comparison of RES with these accelerated versions yields the expected conclusion. SAG

and S2GD accelerate the convergence of SGD but still underperform RES for problems that

are not well conditioned. As we commented above, RES solves a different problem than

the one targeted by SAG, S2GD, and SAA. The latter attempt to reduce the randomness

in SGD to make the convergence rate closer to that of gradient descent. RES attempts to

adapt to the curvature of the objective function. We also compare RES to standard (non-

regularized) stochastic BFGS. The regularization in RES is fundamental in guaranteeing

convergence as standard (non-regularized) stochastic BFGS is observed to routinely fail in

the computation of a separating hyperplane.

Notation Lowercase boldface v denotes a vector and uppercase boldface A a matrix.

We use ‖v‖ to denote the Euclidean norm of vector v and ‖A‖ to denote the Euclidean

norm of matrix A. The trace of A is written as tr(A) and the determinant as det(A). We

use I for the identity matrix of appropriate dimension. The notation A � B implies that

the matrix A−B is positive semidefinite. The operator Ex[·] stands in for expectation over

random variable x and E[·] for expectation with respect to the distribution of a stochastic

process.

2.2 Algorithm definition

Recall the definitions of the sample functions f(w,θ) and the average function F (w) :=

Eθ[f(w,θ)]. Since the function F (w) is strongly convex, we can find the optimal argument

w∗ in (2.1) with a gradient descent algorithm. Considering that strongly convex func-

tions are continuously differentiable and further assuming that the instantaneous functions

f(w,θ) have finite gradients it follows that the gradients of F (w) are given by

s(w) := ∇F (w) = Eθ[∇f(w,θ)]. (2.3)

When the number of functions f(w,θ) is large, as is the case in most problems of practical

interest, exact evaluation of the gradient s(w) is impractical. This motivates the use of

stochastic gradients in lieu of actual gradients. More precisely, consider a given set of L

realizations θ̃ = [θ1; ...;θL] and define the stochastic gradient of F (w) at w given samples

θ̃ as

ŝ(w, θ̃) :=
1

L

L∑
l=1

∇f(w,θl). (2.4)

22

Introducing now a time index t, an initial iterate w0, and a step size sequence εt, a stochastic

gradient descent algorithm is defined by the iteration

wt+1 = wt − εt ŝ(wt, θ̃t). (2.5)

To implement (2.5) we compute stochastic gradients ŝ(wt, θ̃t) using (2.4). In turn, this

requires determination of the gradients of the random functions f(w,θtl) for each θtl com-

ponent of θ̃t and their corresponding average. The computational cost is manageable for

small values of L.

The stochastic gradient ŝ(w, θ̃) in (2.4) is an unbiased estimate of the (average) gradient

s(w) in (2.3) in the sense that Eθ̃[ŝ(w, θ̃)] = s(w). Thus, the iteration in (2.5) is such that,

on average, iterates descend along a negative gradient direction, see, e.g., [82]. This intuitive

observation can be formalized into a proof of convergence when the step size sequence is

selected as nonsummable but square summable, i.e.,

∞∑
t=0

εt =∞, and
∞∑
t=0

ε2t <∞. (2.6)

A customary step size choice for which (2.6) holds is to make εt = ε0T0/(T0 + t), for given

parameters ε0 and T0 that control the initial step size and its speed of decrease, respec-

tively. Convergence notwithstanding, the number of iterations required to approximate w∗

is very large in problems that don’t have small condition numbers [49]. This motivates the

alternative methods we discuss in subsequent sections.

2.2.1 Regularized BFGS

To speed up convergence of (2.5) resort to second order methods is of little use because

evaluating Hessians of the objective function is computationally intensive. A better suited

methodology is the use of quasi-Newton methods whereby gradient descent directions are

premultiplied by a matrix B−1t ,

wt+1 = wt − εt B−1t s(wt). (2.7)

The idea is to select positive definite matrices Bt � 0 close to the Hessian of the objective

function H(wt) := ∇2F (wt). Various methods are known to select matrices Bt, includ-

ing those by Broyden e.g., [21]; Davidon, Fletcher, and Powell (DFP) [35]; and Broyden,

Fletcher, Goldfarb, and Shanno (BFGS) e.g., [24, 87, 89]. We work here with the matrices

Bt used in BFGS since they have been observed to work best in practice [24].

In BFGS – and all other quasi-Newton methods – the function’s curvature is approxi-

mated by a finite difference. Specifically, define the variable and gradient variations at time

23

t as

vt := wt+1 −wt, and rt := s(wt+1)− s(wt), (2.8)

respectively, and select the matrix Bt+1 to be used in the next time step so that it satisfies

the secant condition Bt+1vt = rt. The rationale for this selection is that the Hessian H(wt)

satisfies this condition for wt+1 tending to wt. Notice however that the secant condition

Bt+1vt = rt is not enough to completely specify Bt+1. To resolve this indeterminacy,

matrices Bt+1 in BFGS are also required to be as close as possible to Bt in terms of the

Gaussian differential entropy,

Bt+1 = argmin
Z

tr
[
B−1t Z

]
− log det

[
B−1t Z

]
− p,

s. t. Zvt = rt, Z � 0. (2.9)

The constraint Z � 0 in (2.9) restricts the feasible space to positive semidefinite matrices

whereas the constraint Zvt = rt requires Z to satisfy the secant condition. The objective

tr(B−1t Z)− log det(B−1t Z)− p represents the differential entropy between random variables

with zero-mean Gaussian distributions N (0,Bt) and N (0,Z) having covariance matrices Bt

and Z. The differential entropy is nonnegative and equal to zero if and only if Z = Bt. The

solution Bt+1 of the semidefinite program in (2.9) is therefore closest to Bt in the sense of

minimizing the Gaussian differential entropy among all positive semidefinite matrices that

satisfy the secant condition Zvt = rt.

Strongly convex functions are such that the inner product of the gradient and variable

variations is positive, i.e., vTt rt > 0. In that case the matrix Bt+1 in (2.9) is explicitly given

by the update – see, e.g., [87] and the proof of Lemma 1 –,

Bt+1 = Bt +
rtr

T
t

vTt rt
− Btvtv

T
t Bt

vTt Btvt
. (2.10)

In principle, the solution to (2.9) could be positive semidefinite but not positive definite,

i.e., we can have Bt+1 � 0 but Bt+1 6� 0. However, through direct operation in (2.10) it is

not difficult to conclude that Bt+1 stays positive definite if the matrix Bt is positive definite.

Thus, initializing the curvature estimate with a positive definite matrix B0 � 0 guarantees

Bt � 0 for all subsequent times t. Still, it is possible for the smallest eigenvalue of Bt to

become arbitrarily close to zero which means that the largest eigenvalue of B−1t can become

arbitrarily large. This has been proven not to be an issue in BFGS implementations but is

a significant challenge in the stochastic version proposed here.

To avoid this problem we introduce a regularization of (2.9) to enforce the eigenvalues

of Bt+1 to exceed a positive constant δ. Specifically, we redefine Bt+1 as the solution of

24

problem,

Bt+1 = argmin
Z

tr
[
B−1t (Z− δI)

]
− log det

[
B−1t (Z− δI)

]
− p,

s. t. Zvt = rt, Z � 0. (2.11)

The curvature approximation matrix Bt+1 defined in (2.11) still satisfies the secant condition

Bt+1vt = rt but has a different proximity requirement since instead of comparing Bt and Z

we compare Bt and Z−δI. While (2.11) does not ensure that all eigenvalues of Bt+1 exceed

δ we can show that this will be the case under two minimally restrictive assumptions. We do

so in the following proposition where we also give an explicit solution for (2.11) analogous

to the expression in (2.10) that solves the non regularized problem in (2.9).

Proposition 1 Consider the semidefinite program in (2.11) where the matrix Bt � 0 is

positive definite and define the corrected gradient variation

r̃t := rt − δvt, (2.12)

where δ > 0 is a constant. If the inner product r̃Tt vt = (rt−δvt)Tvt is positive, the solution

Bt+1 of (2.11) is such that all eigenvalues of Bt+1 are larger than δ,

Bt+1 � δI. (2.13)

Furthermore, Bt+1 is explicitly given by the expression

Bt+1 = Bt +
r̃tr̃

T
t

vTt r̃t
− Btvtv

T
t Bt

vTt Btvt
+ δI. (2.14)

Proof: We first show that (2.14) is true. Since the optimization problem in (2.11) is convex

in Z we can determine the optimal variable Bt+1 = Z∗ using Lagrangian duality. Introduce

then the multiplier variable µ associated with the secant constraint Zvt = rt in (2.11) and

define the Lagrangian

L(Z,µ) = tr(B−1t (Z− δI))− log det(B−1t (Z− δI))− p+ µT (Zvt − rt) . (2.15)

The dual function is defined as d(µ) := minZ�0 L(Z,µ) and the optimal dual variable is

µ∗ := argminµ d(µ). We define the primal Lagrangian minimizer associated with dual

variable µ as

Z(µ) := argmin
Z�0

L(Z,µ). (2.16)

Observe that combining the definitions in (2.16) and (2.15) we can write the dual function

25

d(µ) as

d(µ) = L(Z(µ),µ)

= tr(B−1t (Z(µ)− δI))− log det(B−1t (Z(µ)− δI))− p+ µT (Z(µ)vt − rt) . (2.17)

We will determine the optimal Hessian approximation Z∗ = Z(µ∗) as the Lagrangian min-

imizer associated with the optimal dual variable µ∗. To do so we first find the Lagrangian

minimizer (2.16) by nulling the gradient of L(Z,µ) with respect to Z in order to show that

Z(µ) must satisfy

B−1t − (Z(µ)− δI)−1 +
µvTt + vtµ

T

2
= 0. (2.18)

Multiplying the equality in (2.18) by Bt from the right and rearranging terms it follows

that the inverse of the argument of the log-determinant function in (2.17) can be written

as

(Z(µ)− δI)−1Bt = I +

(
µvTt + vtµ

T

2

)
Bt. (2.19)

If, instead, we multiply (2.18) by (Z(µ) − δI) from the right it follows after rearranging

terms that

B−1t (Z(µ)− δI) = I− µvTt + vtµ
T

2
(Z(µ)− δI). (2.20)

Further considering the trace of both sides of (2.20) and noting that tr(I) = n we can write

the trace in (2.17) as

tr(B−1t (Z(µ)− δI)) = p− tr
[µvTt + vtµ

T

2
(Z(µ)− δI)

]
. (2.21)

Observe now that since the trace of a product is invariant under cyclic permutations of its

arguments and the matrix Z is symmetric we have tr[µvTt (Z(µ) − δI)] = tr[vµTt (Z(µ) −
δI)] = tr[µT (Z(µ)− δI)vt]. Since the argument in the latter is a scalar the trace operation

is inconsequential from where it follows that we can rewrite (2.21) as

tr(B−1t (Z(µ)− δI)) = n− µT (Z(µ)− δI)vt. (2.22)

Observing that the log-determinant of a matrix is the opposite of the log-determinant of its

inverse we can substitute (2.19) for the argument of the log-determinant in (2.17). Further

substituting (2.22) for the trace in (2.17) and rearranging terms yields the explicit expression

for the dual function

d(µ) = log det

[
I +

(µvTt + vtµ
T

2

)
Bt

]
− µT (rt − δvt). (2.23)

26

In order to compute the optimal dual variable µ∗ we set the gradient of (2.23) to zero and

manipulate terms to obtain

µ∗ =
1

r̃Tt vt

(
vt

(
1 +

r̃Tt B−1t r̃t

r̃Tt vt

)
− 2B−1t r̃t

)
, (2.24)

where we have used the definition of the corrected gradient variation r̃t := rt − δvt. To

complete the derivation plug the expression for the optimal multiplier µ∗ in (2.24) into the

Lagrangian minimizer expression in (2.18) and regroup terms so as to write

(Z(µ∗)− δI)−1 =
vtv

T
t

r̃Tt vt
+

(
I− vtr̃

T
t

r̃Tt vt

)
B−1t

(
I− r̃tv

T
t

r̃Tt vt

)
. (2.25)

Applying the Sherman-Morrison formula to compute the inverse of the right hand side of

(2.25) leads to

Z(µ∗)− δI = Bt +
r̃tr̃

T
t

vTt r̃t
− Btvtv

T
t Bt

vTt Btvt
, (2.26)

which can be verified by direct multiplication. The result in (2.14) follows after solving

(2.26) for Z(µ∗) and noting that for the convex optimization problem in (2.11) we must

have Z(µ∗) = Z∗ = Bt+1 as we already argued.

To prove (2.13) we operate directly from (2.14). Consider first the term r̃tr̃
T
t /v

T
t r̃t and

observe that since the hypotheses include the condition vTt r̃t > 0, we must have

r̃tr̃
T
t

vTt r̃t
� 0. (2.27)

Consider now the term Bt −Btvtv
T
t Bt/v

T
t Btvt and factorize B

1/2
t from the left and right

side so as to write

Bt −
Btvtv

T
t Bt

vTt Btvt
= B

1/2
t

(
I− B

1/2
t vtv

T
t B

1/2
t

vTt Btvt

)
B

1/2
t (2.28)

Define the vector ut := B
1/2
t vt and write vTt Btvt = (B

1/2
t vt)

T (B
1/2
t vt) = uTt ut as well as

B
1/2
t vtv

T
t B

1/2
t = utu

T
t . Substituting these observation into (2.28) we can conclude that

Bt −
Btvtv

T
t Bt

vTt Btvt
= B

1/2
t

(
I− utu

T
t

uTt ut

)
B

1/2
t � 0, (2.29)

because the eigenvalues of the matrix utu
T
t /u

T
t ut belong to the interval [0, 1]. The only

term in (2.14) which has not been considered is δI. Since the rest add up to a positive

semidefinite matrix it then must be that (2.13) is true. �

27

Comparing (2.10) and (2.14) follows that the differences between BFGS and regularized

BFGS are the replacement of the gradient variation rt in (2.8) by the corrected variation

r̃t := rt− δvt and the addition of the regularization term δI. We use (2.14) in the construc-

tion of the stochastic BFGS in the following section.

2.2.2 RES: Regularized stochastic BFGS

As can be seen from (2.14) the regularized BFGS curvature estimate Bt+1 is obtained as

a function of previous estimates Bt, iterates wt and wt+1, and corresponding gradients

s(wt) and s(wt+1). We can then think of a method in which gradients s(wt) are replaced

by stochastic gradients ŝ(wt, θ̃t) in both, the curvature approximation update in (2.14)

and the descent iteration in (2.7). Specifically, start at time t with current iterate wt and

let B̂t stand for the Hessian approximation computed by stochastic BFGS in the previous

iteration. Obtain a batch of samples θ̃t = [θt1; ...;θtL], determine the value of the stochastic

gradient ŝ(wt, θ̃t) as per (2.4), and update the iterate wt as

wt+1 = wt − εt
(
B̂−1t + ΓI

)
ŝ(wt, θ̃t), (2.30)

where we added the identity bias term ΓI for a given positive constant Γ > 0. Relative to

SGD as defined by (2.5), RES as defined by (2.30) differs in the use of the matrix B̂−1t + ΓI

to account for the curvature of F (w). Relative to (regularized or non regularized) BFGS

as defined in (2.7) RES differs in the use of stochastic gradients ŝ(wt, θ̃t) instead of actual

gradients and in the use of the curvature approximation B̂−1t + ΓI in lieu of B−1t . Observe

that in (2.30) we add a bias ΓI to the curvature approximation B̂−1t . This is necessary to

ensure convergence by hedging against random variations in B̂−1t as we discuss in Section 2.3.

To update the Hessian approximation B̂t compute the stochastic gradient ŝ(wt+1, θ̃t)

associated with the same set of samples θ̃t used to compute the stochastic gradient ŝ(wt, θ̃t).

Define then the stochastic gradient variation at time t as

r̂t := ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t), (2.31)

and redefine r̃t so that it stands for the modified stochastic gradient variation

r̃t := r̂t − δvt, (2.32)

by using r̂t instead of rt. The Hessian approximation B̂t+1 for the next iteration is defined

as the matrix that satisfies the stochastic secant condition Zvt = r̂t and is closest to B̂t in

28

Algorithm 1 RES: Regularized Stochastic BFGS

Require: Variable w0. Hessian approximation B̂0 � δI.
1: for t = 0, 1, 2, . . . do
2: Acquire L independent samples θ̃t = [θt1, . . . ,θtL]

3: Compute ŝ(wt, θ̃t) [cf. (2.4)] ŝ(wt, θ̃t) =
1

L

L∑
l=1

∇wf(wt,θtl).

4: Descend along direction (B̂−1t + ΓI) ŝ(wt, θ̃t) [cf. (2.30)]

wt+1 = wt − εt (B̂−1t + ΓI) ŝ(wt, θ̃t).

5: Compute ŝ(wt+1, θ̃t) [cf. (2.4)] ŝ(wt+1, θ̃t) =
1

L

L∑
l=1

∇wf(wt+1,θtl).

6: Compute variable variation [cf. (2.8)] vt = wt+1 −wt.
7: Compute modified stochastic gradient variation [cf. (2.32)]

r̃t = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t)− δvt.

8: Update Hessian approximation matrix [cf. (2.33)]

B̂t+1 = B̂t +
r̃tr̃

T
t

vTt r̃t
− B̂tvtv

T
t B̂t

vTt B̂tvt
+ δI.

9: end for

the sense of (2.11). As per Proposition 1 we can compute B̂t+1 explicitly as

B̂t+1 = B̂t +
r̃tr̃

T
t

vTt r̃t
− B̂tvtv

T
t B̂t

vTt B̂tvt
+ δI. (2.33)

as long as (r̂t − δvt)Tvt = r̃Tvt > 0. Conditions to guarantee that r̃Tt vt > 0 are introduced

in Section 2.3.

The resulting RES algorithm is summarized in Algorithm 3. The two core steps in

each iteration are the descent in Step 4 and the update of the Hessian approximation B̂t

in Step 8. Step 2 comprises the observation of L samples that are required to compute

the stochastic gradients in Steps 3 and 5. The stochastic gradient ŝ(wt, θ̃t) in Step 3 is

used in the descent iteration in Step 4. The stochastic gradient of Step 3 along with the

stochastic gradient ŝ(wt+1, θ̃t) of Step 5 are used to compute the variations in steps 6 and 7

that permit carrying out the update of the Hessian approximation B̂t in Step 8. Iterations

are initialized at arbitrary variable w0 and positive definite matrix B̂0 with the smallest

eigenvalue larger than δ.

Remark 1 One may think that the natural substitution of the gradient variation rt =

s(wt+1) − s(wt) is the stochastic gradient variation ŝ(wt+1, θ̃t+1) − ŝ(wt, θ̃t) instead of

the variation r̂t = ŝ(wt+1, θ̃t) − ŝ(wt, θ̃t) in (2.31). This would have the advantage that

29

ŝ(wt+1, θ̃t+1) is the stochastic gradient used to descend in iteration t+1 whereas ŝ(wt+1, θ̃t)

is not and is just computed for the purposes of updating Bt. Therefore, using the variation

r̂t = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t) requires twice as many stochastic gradient evaluations as using

the variation ŝ(wt+1, θ̃t+1)− ŝ(wt, θ̃t). However, the use of the variation r̂t = ŝ(wt+1, θ̃t)−
ŝ(wt, θ̃t) is necessary to ensure that (r̂t− δvt)Tvt = r̃Tt vt > 0, which in turn is required for

(2.33) to be true. This cannot be guaranteed if we use the variation ŝ(wt+1, θ̃t+1)− ŝ(wtθ̃t)

– see Lemma 1 for details. The same observation holds true for the non-regularized version

of stochastic BFGS introduced in [105].

2.3 Convergence analysis of RES

For the subsequent analysis we define the instantaneous objective function associated with

samples θ̃ = [θ1, . . . ,θL] as

f̂(w, θ̃) :=
1

L

L∑
l=1

f(w,θl). (2.34)

The definition of the instantaneous objective function f̂(w, θ̃) in association with the fact

that F (w) := Eθ[f(w,θ)] implies

F (w) = Eθ[f̂(w, θ̃)]. (2.35)

Our goal here is to show that as time progresses the sequence of variable iterates wt ap-

proaches the optimal argument w∗. In proving this result we make the following assump-

tions.

Assumption 1 The instantaneous functions f̂(w, θ̃) are twice differentiable and the eigen-

values of the instantaneous Hessian Ĥ(w, θ̃) = ∇2
wf̂(w, θ̃) are bounded between constants

0 < m̃ and M̃ <∞ for all random variables θ̃,

m̃I � Ĥ(w, θ̃) � M̃I. (2.36)

Assumption 2 The second moment of the norm of the stochastic gradient is bounded for

all w. i.e., there exists a constant S2 such that for all variables w it holds

Eθ

[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2. (2.37)

Assumption 3 The regularization constant δ is smaller than the smallest Hessian eigen-

value m̃, i.e., δ < m̃.

30

As a consequence of Assumption 1 similar eigenvalue bounds hold for the (average)

function F (w). Indeed, it follows from the linearity of the expectation operator and the

expression in (2.35) that the Hessian is ∇2
wF (w) = H(w) = Eθ[Ĥ(w, θ̃)]. Combining this

observation with the bounds in (2.36) it follows that there are constants m ≥ m̃ and M ≤ M̃
such that

m̃I � mI � H(w) �MI � M̃I. (2.38)

The bounds in (2.38) are customary in convergence proofs of descent methods. For the

results here the stronger condition spelled in Assumption 1 is needed. The lower bound

implies strong convexity of instantaneous functions and the upper bound is equivalent to

them having Lipschitz Continuous gradients. The restriction imposed by Assumption 2 is

typical of stochastic descent algorithms, its intent being to limit the random variation of

stochastic gradients [82]. Assumption 3 is necessary to guarantee that the inner product

r̃Tt vt = (rt − δvt)Tvt > 0 [cf. Proposition 1] is positive as we show in the following lemma.

Lemma 1 Consider the modified stochastic gradient variation r̃t defined in (2.32) and the

variable variation vt defined in (2.8). Let Assumption 1 hold and recall the lower bound m̃

on the smallest eigenvalue of the instantaneous Hessians. Then, for all constants 0 < δ < m̃

it holds

r̃Tt vt = (r̂t − δvt)Tvt ≥ (m̃− δ)‖vt‖2 > 0. (2.39)

Proof: As per (2.36) in Assumption 1 the eigenvalues of the instantaneous Hessian Ĥ(w, θ̃)

are bounded below by m̃ > 0 which is equivalent to say that instantaneous objective func-

tions f̂(w, θ̃) associated with samples θ̃ are m-strongly convex with respect to w. Consid-

ering the strong monotonicity of gradients for the m-strongly convex functions f̂(w, θ̃t), we

can write [
∇f̂(wt+1, θ̃t)−∇f̂(wt, θ̃t)

]T
(wt+1 −wt)≥m̃‖wt+1 −wt‖2. (2.40)

Observing the definitions of stochastic gradients ŝ(w, θ̃) in (2.4) and instantaneous objective

functions f̂(w, θ̃) in (2.34) it follows that ∇f̂(w, θ̃) = ŝ(w, θ̃). Hence, we can rewrite (3.35)

as (
ŝ(wt+1, θ̃)− ŝ(wt, θ̃)

)T
(wt+1 −wt) ≥ m̃‖wt+1 −wt‖2. (2.41)

Using the definitions of stochastic gradient variation r̂t and variable variation vt in (2.31)

and (2.8) we further simplify (3.37) to

r̂Tt vt ≥ m̃‖vt‖2. (2.42)

31

Consider now the inner product r̃Tt vt = (r̂t−δvt)Tvt in (3.33) and use the bound in (2.42)

to write

r̃Tt vt = r̂Tt vt − δvTt vt ≥ (m̃− δ)‖vt‖2.

Since we are selecting δ < m̃ by hypothesis it follows that (3.33) is true for all times t. �

Initializing the curvature approximation matrix B̂0 � δI, which implies B̂−10 � 0, and

setting δ < m̃ it follows from Lemma 1 that the hypotheses of Proposition 1 are satisfied

for t = 0. Hence, the matrix B̂1 computed from (2.33) is the solution of the semidefinite

program in (2.11) and, more to the point, satisfies B̂1 � δI, which in turn implies B̂−11 � 0.

Proceeding recursively we can conclude that B̂t � δI � 0 for all times t ≥ 0. Equivalently,

this implies that all the eigenvalues of B̂−1t are between 0 and 1/δ and that, as a consequence,

the matrix B̂−1t + ΓI is such that

ΓI � B̂−1t + ΓI � (Γ + (1/δ)) I. (2.43)

Having matrices B̂−1t + ΓI that are strictly positive definite with eigenvalues uniformly

upper bounded by Γ + (1/δ) leads to the conclusion that if ŝ(wt, θ̃t) is a descent direction,

the same holds true of (B̂−1t + ΓI) ŝ(wt, θ̃t). The stochastic gradient ŝ(wt, θ̃t) is not a

descent direction in general, but we know that this is true for its conditional expectation

E[ŝ(wt, θ̃t)
∣∣wt] = ∇wF (wt). Therefore, we conclude that (B̂−1t +ΓI) ŝ(wt, θ̃t) is an average

descent direction because E[(B̂−1t + ΓI) ŝ(wt, θ̃t)
∣∣wt] = (B̂−1t + ΓI)∇wF (wt). Stochastic

optimization algorithms whose displacements wt+1 −wt are descent directions on average

are expected to approach optimal arguments in a sense that we specify formally in the

following lemma.

Lemma 2 Consider the RES algorithm as defined by (2.30)-(2.33). If assumptions 1, 2

and 3 hold true, the sequence of average function F (wt) satisfies

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εtΓ‖∇F (wt)‖2 +Kε2t (2.44)

where the constant K := MS2(1/δ + Γ)2/2.

Proof: As it follows from Assumption 1 the eigenvalues of the Hessian H(wt) = ∇2
wF (wt)

are bounded between 0 < m and M <∞ as stated in (2.38). Taking a Taylor’s expansion

of the dual function F (w) around w = wt and using the upper bound in the Hessian

eigenvalues we can write

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 −wt) +

M

2
‖wt+1 −wt‖2 (2.45)

32

From the definition of the RES update in (2.30) we can write the difference of two consec-

utive variables wt+1 −wt as −εt(B̂−1t + ΓI) ŝ(wt, θ̃t). Making this substitution in (2.45),

taking expectation with wt given in both sides of the resulting inequality, and observing

the fact that when wt is given the Hessian approximation B̂−1t is deterministic we can write

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T (B̂−1t + ΓI)E
[
ŝ(wt, θ̃t)

∣∣wt

]
+
ε2M

2
E
[∥∥∥(B̂−1t + ΓI)ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
. (2.46)

We proceed to bound the third term in the right hand side of (2.46). Start by observing

that the 2-norm of a product is not larger than the product of the 2-norms and that, as

noted above, with wt given the matrix B̂−1t is also given to write

E
[∥∥∥(B̂−1t + ΓI

)
ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤
∥∥∥B̂−1t + ΓI

∥∥∥2 E [∥∥∥ŝ(wt, θ̃t)
∥∥∥2 ∣∣wt

]
. (2.47)

Notice that, as stated in (2.43), Γ + 1/δ is an upper bound for the eigenvalues of B̂−1t + ΓI.

Further observe that the second moment of the norm of the stochastic gradient is bounded by

E
[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2, as stated in Assumption 2. These two upper bounds substituted

in (2.47) yield

E
[∥∥∥(B̂−1t + ΓI

)
ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤ S2(1/δ + Γ)2. (2.48)

Substituting the upper bound in (2.48) for the third term of (2.46) and further using the

fact that E
[
ŝ(wt, θ̃t)

∣∣wt

]
= ∇F (wt) in the second term leads to

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T
[
B̂−1t + ΓI

]
∇F (wt) +

ε2tMS2

2
(1/δ + Γ)2. (2.49)

We now find a lower bound for the second term in the right hand side of (2.49). Since

the Hessian approximation matrices B̂t are positive definite their inverses B̂−1t are positive

semidefinite. In turn, this implies that all the eigenvalues of B̂−1t + ΓI are not smaller than

Γ since ΓI increases all the eigenvalues of B̂−1t by Γ. This lower bound for the eigenvalues

of B̂−1t + ΓI implies that

∇F (wt)
T
(
B̂−1t + ΓI

)
∇F (wt) ≥ Γ‖∇F (wt)‖2. (2.50)

Substituting the lower bound in (2.50) for the corresponding summand in (2.49) and noting

the definition of K := MS2(1/δ+ Γ)2/2 in the statement of the lemma, the result in (2.45)

follows. �

33

Setting aside the term Kε2t for the sake of argument (2.44) defines a supermartingale

relationship for the sequence of average functions F (wt). This implies that the sequence

εtΓ ‖∇F (wt)‖2 is almost surely summable which, given that the step sizes εt are non-

summable as per (2.6), further implies that the limit infimum lim inft→∞ ‖∇F (wt)‖ of the

gradient norm ‖∇F (wt)‖ is almost surely null. This latter observation is equivalent to hav-

ing lim inft→∞ ‖wt −w∗‖2 = 0 with probability 1 over realizations of the random samples

{θ̃t}∞t=0. The term Kε2t is a relatively minor nuisance that can be taken care with a technical

argument that we present in the proof of the following theorem.

Theorem 1 Consider the RES algorithm as defined by (2.30)-(2.33). If assumptions 1,

2 and 3 hold true and the sequence of stepsizes satisfies (2.6), the limit of the squared

Euclidean distance to optimality ‖wt −w∗‖2 satisfies

lim
t→∞
‖wt −w∗‖2 = 0 a.s. (2.51)

over realizations of the random samples {θ̃t}∞t=0.

Proof : The proof uses the relationship in the statement (2.44) of Lemma 2 to build a

supermartingale sequence. For that purpose define the stochastic process γt with values

γt := F (wt)− F (w∗) +K
∞∑
u=t

ε2u. (2.52)

Note that γt is well defined because the
∑∞

u=t ε
2
u <

∑∞
u=0 ε

2
u < ∞ is summable. Further

define the sequence βt with values

βt := εt Γ ‖∇F (wt)‖2. (2.53)

Let now Ft be a sigma-algebra measuring γt, βt, and wt. The conditional expectation of

γt+1 given Ft can be written as

E
[
γt+1

∣∣Ft] = E
[
F (wt+1)− F (w∗)

∣∣Ft]+K
∞∑

u=t+1

ε2u, (2.54)

because the term K
∑∞

u=t ε
2
u is just a deterministic constant. Substituting (2.44) of Lemma

2 into (2.54) and using the definitions of γt in (2.52) and βt in (2.53) yields

E
[
γt+1

∣∣Ft] ≤ γt − βt (2.55)

Since the sequences γt and βt are nonnegative it follows from (2.55) that they satisfy the

conditions of the supermartingale convergence theorem – see e.g. theorem E7.4 [114] .

34

Therefore, we conclude that: (i) The sequence γt converges almost surely. (ii) The sum∑∞
t=0 βt < ∞ is almost surely finite. Using the explicit form of βt in (2.53) we have that∑∞
t=0 βt <∞ is equivalent to

∞∑
t=0

εtΓ‖∇F (wt)‖2 <∞, a.s. (2.56)

Since the sequence of stepsizes is nonsummable for (2.56) to be true we need to have a

vanishing subsequence embedded in ‖∇F (wt)‖2. By definition, this miles that the limit

infimum of the sequence ‖∇F (wt)‖2 is null,

lim inf
t→∞

‖∇F (wt)‖2 = 0, a.s. (2.57)

By using the strong convexity condition we can show that ‖∇F (wt)‖2 ≥ 2m(F (wt)−F (w∗))

and therefore,

lim inf
t→∞

F (wt)− F (w∗) = 0, a.s. (2.58)

Further, since the sequence γt converges almost surely implies that the limit limt→∞ F (wt)−
F (w∗) of the nonnegative objective function errors F (wt) − F (w∗) almost surely exists.

This observation in conjunction with the result in (2.58) implies that the whole sequence of

F (wt)− F (w∗) converges almost surely to zero,

lim
t→∞

F (wt)− F (w∗) = 0. a.s. (2.59)

To transform the suboptimality bound in (2.59) into a bound pertaining to the squared

distance to optimality ‖wt−w∗‖2 simply observe that the lower bound m on the eigenvalues

of H(wt) applied to a Taylor’s expansion around the optimal argument w∗ implies that

F (wt)− F (w∗) ≥ m

2
‖wt −w∗‖2. (2.60)

Since the limit of ‖F (wt)− F (w∗)‖ is null the result in (2.51) follows from considering the

bound in (2.60). �

Theorem 1 establishes convergence of the sequence of the RES algorithm summarized in

Algorithm 3. In the proof of the prerequisite Lemma 2 the lower bound in the eigenvalues

of B̂t enforced by the regularization in (2.33) plays a fundamental role. Roughly speaking,

the lower bound in the eigenvalues of B̂t results in an upper bound on the eigenvalues of

B̂−1t which limits the effect of random variations on the stochastic gradient ŝ(wt, θ̃t). If

this regularization is not implemented, i.e., if we keep δ = 0, we may observe catastrophic

amplification of random variations of the stochastic gradient. This effect is indeed observed

35

in the numerical experiments in Section 2.4. The addition of the identity matrix bias ΓI

in (2.30) is instrumental in the proof of Theorem 1 proper. This bias limits the effects of

randomness in the curvature estimate B̂t. If random variations in the curvature estimate

B̂t result in a matrix B̂−1t with small eigenvalues the term ΓI dominates and (2.30) reduces

to (regular) SGD. This ensures continued progress towards the optimal argument w∗.

2.3.1 Rate of convergence

We complement the convergence result in Theorem 1 with a characterization of the expected

convergence rate that we introduce in the following theorem.

Theorem 2 Consider the RES algorithm as defined by (2.30)-(2.33) and let the sequence

of step sizes be given by εt = ε0T0/(T0 + t) with the parameter ε0 sufficiently small and the

parameter T0 sufficiently large so as to satisfy the inequality

2 ε0T0Γ > 1 . (2.61)

If Assumptions 1-3 hold true the difference between the expected objective value E [F (wt)]

at time t and the optimal objective F (w∗) satisfies

E [F (wt)]− F (w∗) ≤ C0

T0 + t
, (2.62)

where the constant C0 satisfies

C0 = max

{
ε20 T

2
0K

2ε0T0Γ− 1
, T0 (F (w0)− F (w∗))

}
. (2.63)

Proof: Theorem 2 claims that the sequence of expected objective values E [F (wt)] ap-

proaches the optimal objective F (w∗) at a linear rate O(1/t). Before proceeding to the

proof of Theorem 2 we introduce a technical lemma that provides a sufficient condition for

a sequence ut to exhibit a linear convergence rate.

Lemma 3 Let c > 1, b > 0 and t0 > 0 be given constants and ut ≥ 0 be a nonnegative

sequence that satisfies the inequality

ut+1 ≤
(

1− c

t+ t0

)
ut +

b

(t+ t0)
2 , (2.64)

for all times t ≥ 0. The sequence ut is then bounded as

ut ≤
Q

t+ t0
, (2.65)

36

for all times t ≥ 0, where the constant Q is defined as

Q := max

[
b

c− 1
, t0u0

]
. (2.66)

The proof of Lemma 3 can be found in Appendix A.1. Lemma 3 shows that satisfying

(2.64) is sufficient for a sequence to have the linear rate of convergence specified in (2.65).

In the following proof of Theorem 2 we show that if the stepsize sequence parameters ε0

and T0 satisfy (2.61) the sequence E [F (wt)]− F (w∗) of expected optimality gaps satisfies

(2.64) with c = 2ε0T0Γ, b = ε20T
2
0K and t0 = T0. The result in (2.62) then follows as a

direct consequence of Lemma 3.

Consider the result in (2.44) of Lemma 2 and subtract the average function optimal

value F (w∗) from both sides of the inequality to conclude that the sequence of optimality

gaps in the RES algorithm satisfies

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤ F (wt)− F (w∗)− εtΓ‖∇F (wt)‖2 + ε2tK, (2.67)

where, we recall, K := MS2((1/δ) + Γ)2/2 by definition.

We proceed to find a lower bound for the gradient norm ‖∇F (wt)‖ in terms of the error

of the objective value F (wt) − F (w∗) – this is a standard derivation which we include

for completeness, see, e.g., [20]. As it follows from Assumption 1 the eigenvalues of the

Hessian H(wt) are bounded between 0 < m and M < ∞ as stated in (2.38). Taking a

Taylor’s expansion of the objective function F (y) around w and using the lower bound in

the Hessian eigenvalues we can write

F (y) ≥ F (w) +∇F (w)T (y −w) +
m

2
‖y −w‖2. (2.68)

For fixed w, the right hand side of (2.68) is a quadratic function of y whose minimum

argument we can find by setting its gradient to zero. Doing this yields the minimizing

argument ŷ = w − (1/m)∇F (w) implying that for all y we must have

F (y) ≥ F (w) +∇F (w)T (ŷ −w) +
m

2
‖ŷ −w‖2

= F (w)− 1

2m
‖∇F (w)‖2. (2.69)

The bound in (2.69) is true for all w and y. In particular, for y = w∗ and w = wt (2.69)

yields

F (w∗) ≥ F (wt)−
1

2m
‖∇F (wt)‖2. (2.70)

37

Rearrange terms in (2.70) to obtain a bound on the gradient norm squared ‖∇F (wt)‖2.
Further substitute the result in (2.67) and regroup terms to obtain the bound

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤ (1− 2mεtΓ)

(
F (wt)− F (w∗)

)
+ ε2tK. (2.71)

Take now expected values on both sides of (2.71). The resulting double expectation in the

left hand side simplifies to E
[
E
[
F (wt+1)

∣∣wt

]]
= E [F (wt+1)], which allow us to conclude

that (2.71) implies that

E [F (wt+1)]− F (w∗) ≤ (1− 2mεtΓ)
(
E [F (wt)]− F (w∗)

)
+ ε2tK. (2.72)

Further substituting εt=ε0T0/(T0 + t), which is the assumed form of the step size sequence

by hypothesis, we can rewrite (2.72) as

E [F (wt+1)]− F (w∗) ≤
(

1− 2 ε0T0Γ

(T0 + t)

)(
E [F (wt)]− F (w∗)

)
+

(
ε0T0
T0 + t

)2

K. (2.73)

Given that the product 2ε0T0Γ > 1 as per the hypothesis in (2.61) the sequence E [F (wt+1)]−
F (w∗) satisfies the hypotheses of Lemma 3 with c = 2ε0T0Γ, b = ε20T

2
0K and t0 = T0. It

then follows from (2.65) and (2.66) that (2.62) is true for the C0 constant defined in (2.63)

upon identifying ut with E [F (xt+1)] − F (x∗), C0 with Q, and substituting c = 2ε0T0Γ,

b = ε20T
2
0K and t0 = T0 for their explicit values. �

Theorem 2 shows that under specified assumptions, the expected error in terms of the

objective value after t RES iterations is at least of order O(1/t). An expected convergence

rate of order O(1/t) is typical of stochastic optimization algorithms and, in that sense, no

better than conventional SGD. While the convergence rate doesn’t change, improvements

in convergence time are marked as we illustrate with the numerical experiments of sections

2.4 and 2.5.1.

2.4 Numerical analysis

We compare convergence times of RES and SGD in problems with small and large condition

numbers. We use a stochastic quadratic objective function as a test case. In particular,

consider a positive definite diagonal matrix A ∈ S++
p , a vector b ∈ Rp, a random vector

θ ∈ Rp, and diagonal matrix diag(θ) defined by θ. The function F (w) in (2.1) is defined as

F (w) := Eθ [f(w, θ)] := Eθ
[

1

2
wT
(
A + Adiag(θ)

)
w + bTw

]
. (2.74)

In (2.74), the random vector θ is chosen uniformly at random from the p dimensional

38

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
−2

10
−1

Number of functions processed (Lt)

R
el
a
ti
v
e
d
is
ta
n
ce

to
o
p
ti
m
a
li
ty

(‖
w

t
−

w
∗
‖
/
‖
w

∗
‖
)

SGD

RES

Figure 2.1: Convergence of SGD and RES for the function in (2.74). Relative distance to optimality
‖wt −w∗‖/‖w∗‖ shown with respect to the number Lt of stochastic functions processed. For RES
the number of iterations required to achieve a certain accuracy is smaller than the corresponding
number for SGD. See text for parameters’ values.

box Θ = [−θ0, θ0]p for some given constant θ0 < 1. The linear term bTw is added so that the

instantaneous functions f(w, θ) have different minima which are (almost surely) different

from the minimum of the average function F (w). The quadratic term is chosen so that the

condition number of F (w) is the condition number of A. Indeed, just observe that since

Eθ[θ] = 0, the average function in (2.74) can be written as F (w) = (1/2)wTAw + bTw.

The parameter θ0 controls the variability of the instantaneous functions f(w, θ). For small

θ0 ≈ 0 instantaneous functions are close to each other and to the average function. For

large θ0 ≈ 1 instantaneous functions vary over a large range. We emphasize that the

restriction of F (w) to diagonal positive definite quadratic forms is not significant. What

is important is the ability to control the condition number of F (w) and the variability of

the instantaneous functions f(w, θ). Analogous results can be obtained if we pre and post

multiply the quadratic form with a random orthogonal matrix.

Further note that we can write the optimum argument as w∗ = A−1b for comparison

against iterates wt. This allows us to consider a given ρ and study the convergence metric

τ := Lmin
t

{
t :
‖wt −w∗‖
‖w∗‖

≤ ρ
}
, (2.75)

which represents the time needed to achieve a given relative distance to optimality ‖wt −
w∗‖/‖w∗‖ ≤ ρ as measured in terms of the number Lt of stochastic functions that are

processed to achieve such accuracy.

2.4.1 Effect of problem’s condition number

To study the effect of the problem’s condition number we generate instances of (2.74) by

choosing b uniformly at random from the box [0, 1]p and the matrix A as diagonal with

39

50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of functions processed until convergence (τ)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SGD

RES

Figure 2.2: Convergence of SGD and RES for well conditioned problems. Empirical distributions
of the number τ = Lt of stochastic functions that are processed to achieve relative precision ‖wt −
w∗‖/‖w∗‖ ≤ 10−2 are shown. Histogram is across J = 1, 000 realizations of functions as in (2.74)
with condition number 10ξ = 10. See text for parameters’ values.

elements aii uniformly drawn from the discrete set {1, 10−1, . . . , 10−ξ}. This choice of A

yields problems with condition number 10ξ.

Representative runs of RES and SGD for p = 50, θ0 = 0.5, and ξ = 3 are shown in Fig.

2.1. For the RES run the stochastic gradients ŝ(w, θ̃) in (2.4) are computed as an average

of L = 5 realizations, the regularization parameter in (2.11) is set to δ = 10−3, and the

minimum progress parameter in (2.30) to Γ = 10−4. For SGD we use L = 1 in (2.4). In

both cases the step size sequence is of the form εt = ε0T0/(T0 + t). Separate rough searches

are performed to find step size parameters ε0 and T0 for RES and SGD that minimize the

objective function after 104 iterations. For the runs in Fig. 2.1 the best parameters for

SGD are ε0 = 10−1 and T0 = 103, while for RES the best choices are ε0 = 2 × 10−2 and

T0 = 103. Since we are using different values of L for SGD and RES we plot the relative

distance to optimality ‖wt − w∗‖/‖w∗‖ against the number Lt of functions processed up

until iteration t.

As expected for a problem with large condition number – since we are using ξ = 3, the

condition number of F (w) is 103 – RES is much faster than SGD. After t = 104 the distance

to optimality for the SGD iterate is ‖wt −w∗‖/‖w∗‖ = 7.9× 10−3. Comparable accuracy

‖wt − w∗‖/‖w∗‖ = 7.9 × 10−3 for RES is achieved after t = 179 iterations. Since we are

using L = 5 for RES this corresponds to Lt = 895 random function evaluations. Conversely,

upon processing Lt = 104 random functions – which corresponds to t = 2× 103 iterations –

RES achieves accuracy ‖wt−w∗‖/‖w∗‖ = 2.7× 10−3. This relative performance difference

can be made arbitrarily large by modifying the condition number of A.

A more comprehensive analysis of the relative advantages of RES appears in Figs. 2.2

and 2.3. We keep the same parameters used to generate Fig. 2.1 except that we use ξ = 1

for Fig. 2.2 and ξ = 3 for Fig. 2.3. This yields a family of well-conditioned functions

40

10
3

10
4

0

0.05

0.1

0.15

0.2

0.25

Number of functions processed until convergence (τ)

E
m
p
ir
ic
a
l
D
is
tr
ib
u
ti
o
n

SGD
RES

Figure 2.3: Convergence of SGD and RES for ill conditioned problems. Empirical distributions of
the number τ = Lt of stochastic functions that are processed to achieve relative precision ‖wt −
w∗‖/‖w∗‖ ≤ 10−2 are shown. Histogram is across J = 1, 000 realizations of functions as in (2.74)
with condition number 10ξ = 103. See text for parameters’ values.

with condition number 10ξ = 10 and a family of ill-conditioned functions with condition

number 10ξ = 103. In Fig. 2.3 we use the same step size parameters of Fig. 2.1 because

the function’s parameters are the same. In Fig 2.2, where the condition number is smaller,

the best step size parameters for SGD are ε0 = 6 × 10−1 and T0 = 103, and for RES the

optimal choices are ε0 = 10−1 and T0 = 103. In both figures we consider ρ = 10−2 and

study the convergence times τ and τ ′ of RES and SGD, respectively [cf. (2.75)]. Resulting

empirical distributions of τ and τ ′ across J = 1, 000 instances of the functions F (w) in

(2.74) are reported in Figs. 2.2 and 2.3 for the well conditioned and ill conditioned families,

respectively. For the well conditioned family RES reduces the number of functions processed

from an average of τ̄ ′ = 401 in the case of SGD to an average of τ̄ = 139. This nondramatic

improvement becomes more significant for the ill conditioned family where the reduction is

from an average of τ̄ ′ = 1.1× 104 for SGD to an average of τ̄ = 7.8× 102 for RES.

2.4.2 Central processing unit runtime comparisons

Since the complexity of each RES iteration is larger than the corresponding complexity of

SGD we also compare the performances of SGD and RES in terms of the central processing

unit (CPU) runtime required to achieve relative accuracy ρ = 10−2. The empirical distribu-

tions of runtimes across J = 1, 000 realizations are reported in Figs. 2.4 and 2.5 for the well

conditioned and ill conditioned families, respectively. In the well conditioned family, RES

reduces runtime from an average of 4.4 × 10−2 seconds in the case of SGD to an average

of 3.2 × 10−2 seconds. A more significant improvement can be seen for the ill conditioned

family where the reduction is from an average of 5.7× 10−1 seconds for SGD to an average

of 1.5× 10−1 seconds for RES.

It is important to emphasize that the advantage of RES in terms of CPU runtime

41

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SGD
RES

Figure 2.4: CPU runtimes of SGD and RES for well conditioned problems. Empirical distributions
of CPU runtimes to achieve relative precision ‖wt − w∗‖/‖w∗‖ ≤ 10−2 are shown. Histogram is
across J = 1, 000 realizations of functions as in (2.74) with condition number 10ξ = 101.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.05

0.1

0.15

Runtime until convegrnece (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

RES

SGD

Figure 2.5: CPU runtimes of SGD and RES for ill conditioned problems. Empirical distributions of
CPU runtimes to achieve relative precision ‖wt−w∗‖/‖w∗‖ ≤ 10−2 are shown. Histogram is across
J = 1, 000 realizations of functions as in (2.74) with condition number 10ξ = 103.

depends on specific problem parameters. In particular, if the condition number of F (w) is

small, we expect that as we increase the variable dimension p the RES reduction on the

number of iterations is overcome by the added computational complexity of each iteration.

To illustrate this drawback we repeat the numerical experiments in Figs. 2.2 and 2.4

where the condition number is 10ξ = 10, but change the number of variables to p = 5×102.

Convergence times needed to achieve relative accuracy ‖wt−w∗‖/‖w∗‖ ≤ 10−2 as measured

by the number of stochastic functions processed and the CPU runtime are shown in Figs.

2.6 and 2.7, respectively. In both cases we show empirical distributions across J = 1, 000

realizations of the functions F (w). As evidenced by Fig. 2.6, RES is faster in terms of the

number of random functions required. But, as evidenced by Fig. 2.7, the opposite is true

when we consider CPU runtimes. Indeed, the average number of function evaluations are

τ̄ ′ = 322 for RES and τ̄ = 1.24 × 103 and SGD but the average runtimes are 1.6 seconds

42

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of functions processed until convergence (τ)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

RES
SGD

Figure 2.6: Convergence of SGD and RES for a very large dimensional problem with small condition
number. Empirical distributions of the number Lt of stochastic functions that are processed to
achieve relative precision ‖wt − w∗‖/‖w∗‖ ≤ 10−2 are shown. Histogram is across J = 1, 000
realizations of functions as in (2.74) with condition number 10ξ = 101.

10
−1

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SGD
RES

Figure 2.7: Convergence of SGD and RES for a very large dimensional problem with small condition
number. Empirical distributions of CPU runtimes to achieve relative precision ‖wt −w∗‖/‖w∗‖ ≤
10−2 are shown. Histogram is across J = 1, 000 realizations of functions as in (2.74) with condition
number 10ξ = 101.

for RES and 1.9× 10−1 seconds for SGD. It follows as a conclusion that SGD outperforms

RES for problems that are well conditioned and large dimensional. We summarize this

conclusion in the following remark.

Remark 2 In all of our numerical experiments RES reduces the number of stochastic

functions that have to be processed to achieve a target accuracy. The reduction is moderate

for well conditioned problems but becomes arbitrarily large as the condition number of

the objective function increases. However, the computational cost of each RES iteration

becomes progressively larger as the dimension of the variable increases. It follows that

RES is best suited to problems where the cost of computing stochastic gradients is large,

problems where the dimension is not too large, problems where the Hessian approximation

43

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of functions processed until convergence τ

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

Sample size L = 20
Sample size L = 10
Sample size L = 5
Sample size L = 2
Sample size L = 1

Figure 2.8: Convergence of RES for different sample sizes in the computation of stochastic gradients.
Empirical distributions of the number τ = Lt of processed stochastic functions to achieve relative
precision ‖wt − w∗‖/‖w∗‖ ≤ 10−2 are shown when we use L = 1, L = 2, L = 5, L = 10, and
L = 20 in the evaluation of the stochastic gradients ŝ(w, θ̃) in (2.4). The average convergence time
decreases as we go from small to moderate values of L and starts increasing as we go from moderate
to large values of L. The variance of convergence times decreases monotonically with increasing L.

matrices are sparse, or problems where the condition number makes SGD impracticable.

For problems where the cost of computing stochastic gradients is reasonable, have condition

numbers close to one, and whose Hessians lack any amenable structure, SGD and variants

of SGD are preferable; see also Section 2.5.1.

2.4.3 Choice of stochastic gradient average

The stochastic gradients ŝ(w, θ̃) in (2.4) are computed as an average of L sample gradients

∇f(w,θl). To study the effect of the choice of L on RES we consider problems as in (2.74)

with matrices A and vectors b generated as in Section 2.4.1. We consider problems with

p = 50, θ0 = 0.5, and ξ = 2; set the RES parameters to δ = 10−3 and Γ = 10−4; and the

step size sequence to εt = ε0T0/(T0 + t) with ε0 = 10−1 and T0 = 103. We then consider

different choices of L and for each specific value generate J = 1, 000 problem instances. For

each run we record the total number τL of sample functions that need to be processed to

achieve relative distance to optimality ‖wt −w∗‖/‖w∗‖ ≤ 10−2 [cf. (2.75)]. If τ > 104 we

report τ = 104 and interpret this outcome as a convergence failure. The resulting estimates

of the probability distributions of the times τL are reported in Fig. 2.8 for L = 1, L = 2,

L = 5, L = 10, and L = 20.

The trends in convergence times τ apparent in Fig. 2.8 are: (i) As we increase L the

variance of convergence times decreases. (ii) The average convergence time decreases as we

go from small to moderate values of L and starts increasing as we go from moderate to

large values of L. Indeed, the empirical standard deviations of convergence times decrease

monotonically from στ1 = 2.8 × 103 to στ2 = 2.6 × 102, στ5 = 31.7, στ10 = 28.8, and

44

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of functions processed until convergence (τ)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

Stochastic gradient descent

Regularized stochastic BFGS

(a) p = 5

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of functions processed until convergence (τ)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

Stochastic gradient descent

Regularized stochastic BFGS

(b) p = 10

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of functions processed until convergence (τ)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

Stochastic gradient descent

Regularized stochastic BFGS

(c) p = 20

10
2

10
3

10
4

10
5

10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of functions processed until convergence (τ)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

Stochastic gradient descent

Regularized stochastic BFGS

(d) p = 50

Figure 2.9: Histogram of the number of data points that SGD and RES needs to converge. Conver-
gence time for RES increases smoothly by increasing the dimension of problem, while convergence
time of SGD increases faster.

στ20 = 22.7, when L increases from L = 1 to L = 2, L = 5, L = 10, and L = 20. The

empirical mean decreases from τ̄1 = 3.5 × 103 to τ̄2 = 6.3 × 102 as we move from L = 1

to L = 2, stays at about the same value τ̄5 = 3.3 × 102 for L = 5 and then increases to

τ̄10 = 5.8× 102 and τ̄20 = 1.2× 103 for L = 10 and L = 20. This behavior is expected since

increasing L results in curvature estimates B̂t closer to the Hessian H(wt) thereby yielding

better convergence times. As we keep increasing L, there is no payoff in terms of better

curvature estimates and we just pay a penalty in terms of more function evaluations for an

equally good B̂t matrix. This can be corroborated by observing that the convergence times

τ5 are about half those of τ10 which in turn are about half those of τ20. This means that

the actual convergence times τ/L have similar distributions for L = 5, L = 10, and L = 20.

The empirical distributions in Fig. 2.8 show that moderate values of L suffice to provide

workable curvature approximations. This justifies the use L = 5 in sections 2.4.1 and 2.4.4

2.4.4 Effect of problem’s dimension

To evaluate performance for problems of different dimensions we consider functions of the

form in (2.74) with b uniformly chosen from the box [0, 1]p and diagonal matrix A as in

Section 2.4.1. However, we select the elements aii as uniformly drawn from the interval

[0, 1]. This results in problems with more moderate condition numbers and allows for a

45

comparative study of performance degradations of RES and SGD as the problem dimension

p grows.

The variability parameter for the random vector θ is set to θ0 = 0.5. The RES param-

eters are L = 5, δ = 10−3, and Γ = 10−4. For SGD we use L = 1. In both methods the

step size sequence is εt = ε0T0/(T0 + t) with ε0 = 10−1 and T0 = 103. For a problem of

dimension p we study convergence times τp and τ ′p of RES and SGD as defined in (2.75)

with ρ = 1. For each value of p considered we determine empirical distributions of τp and

τ ′p across J = 1, 000 problem instances. If τ > 5× 105 we report τ = 5× 105 and interpret

this outcome as a convergence failure. The resulting histograms are shown in Fig. 2.9 for

p = 5, p = 10, p = 20, and p = 50.

For problems of small dimension having p = 5 the average performances of RES and

SGD are comparable, with SGD performing slightly better. E.g., the medians of these times

are median(τ5) = 400 and median(τ ′5) = 265, respectively. A more significant difference is

that times τ5 of RES are more concentrated than times τ ′5 of SGD. The latter exhibits large

convergence times τ ′5 > 103 with probability 0.06 and fails to converge altogether in a few

rare instances – we have τ ′5 = 5× 105 in 1 out of 1,000 realizations. In the case of RES all

realizations of τ5 are in the interval 70 ≤ τ5 ≤ 1095.

As we increase p we see that RES retains the smaller spread advantage while eventually

exhibiting better average performance as well. Medians for p = 10 are still comparable at

median(τ10) = 575 and median(τ ′10) = 582, as well as for p = 20 at median(τ20) = 745 and

median(τ ′20) = 1427. For p = 50 the RES median is decidedly better since median(τ50) = 950

and median(τ ′50) = 7942.

For large dimensional problems having p = 50 SGD becomes unworkable. It fails to

achieve convergence in 5 × 105 iterations with probability 0.07 and exceeds 104 iterations

with probability 0.45. For RES we fail to achieve convergence in 5×105 iterations with prob-

ability 3×10−3 and achieve convergence in less than 104 iterations in all other cases. Further

observe that RES degrades smoothly as p increases. The median number of gradient evalua-

tions needed to achieve convergence increases by a factor of median(τ ′50)/median(τ ′5) = 29.9

as we increase p by a factor of 10. The spread in convergence times remains stable as p

grows.

2.5 Support vector machines

A particular case of (2.1) is the implementation of a support vector machine (SVM). Given

a training set with points whose class is known the goal of a SVM is to find a hyperplane

that best separates the training set. To be specific let S = {(xi, yi)}Ni=1 be a training set

containing N pairs of the form (xi, yi), where xi ∈ Rp is a feature vector and yi ∈ {−1, 1}
is the corresponding vector’s class. The goal is to find a hyperplane supported by a vector

46

w ∈ Rp which separates the training set so that wTxi > 0 for all points with yi = 1 and

wTxi < 0 for all points with yi = −1. This vector may not exist if the data is not perfectly

separable, or, if the data is separable there may be more than one separating vector. We

can deal with both situations with the introduction of a loss function l((x, y); w) defining

some measure of distance between the point xi and the hyperplane supported by w. We

then select the hyperplane supporting vector as

w∗ := argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

l((xi, yi); w), (2.76)

where we also added the regularization term λ‖w‖2/2 for some constant λ > 0. The vector

w∗ in (2.76) balances the minimization of the sum of distances to the separating hyperplane,

as measured by the loss function l((x, y); w), with the minimization of the L2 norm ‖w‖2 to

enforce desirable properties in w∗. Common selections for the loss function are the hinge loss

l((x, y); w) = max(0, 1−y(wTx)), the squared hinge loss l((x, y); w) = max(0, 1−y(wTx))2

and the log loss l((x, y); w) = log(1 + exp(−y(wTx))). See, e.g., [15, 120].

In order to model (2.76) as a stochastic optimization problem in the form of problem

(2.1), we define θi = (xi, yi) as a given training point and mθ(θ) as a uniform probability

distribution on the training set S = {(xi, yi)}Ni=1 = {θi}Ni=1. Upon defining the sample

functions

f(w,θ) = f(w, (x, y)) :=
λ

2
‖w‖2 + l((x, y); w), (2.77)

it follows that we can rewrite the objective function in (2.76) as

λ

2
‖w‖2 +

1

N

N∑
i=1

l((xi, yi); w) = Eθ[f(w,θ)] (2.78)

since each of the functions f(w,θ) is drawn with probability 1/N according to the definition

of mθ(θ). Substituting (2.78) into (2.76) yields a problem with the general form of (2.1)

with random functions f(w,θ) explicitly given by (2.77).

We can then use Algorithm (3) to attempt solution of (2.76). For that purpose we partic-

ularize Step 2 to the drawing of L feature vectors x̃t = [xt1; . . . ; xtL] and their corresponding

class values ỹt = [yt1; . . . ; ytL] to construct the vector of pairs θ̃t = [(xt1, yt1); . . . ; (xtL, ytL)].

These training points are selected uniformly at random from the training set S. We also

need to particularize steps 3 and 5 to evaluate the stochastic gradient of the instantaneous

function in (2.77). E.g., Step 3 takes the form

ŝ(wt, θ̃t) = ŝ(wt, (x̃t, ỹt)) = λwt +
1

L

L∑
i=1

∇w l((xti, yti); wt). (2.79)

47

The specific form of Step 5 is obtained by replacing wt+1 for wt in (2.79). We analyze the

behavior of Algorithm (2.1) in the implementation of a SVM in the following section.

2.5.1 RES vs stochastic gradient descent for suport vector machines

We test Algorithm 1 when using the squared hinge loss l((x, y); w) = max(0, 1− y(xTw))2

in (2.76). The training set S = {(xi, yi)}Ni=1 contains N feature vectors half of which belong

to the class yi = −1 with the other half belonging to the class yi = 1. For the class yi = −1

each of the p components of each of the feature vectors xi ∈ Rp is chosen uniformly at

random from the interval [−0.8, 0.2]. Likewise, each of the p components of each of the

feature vectors xi ∈ Rp is chosen uniformly at random from the interval [−0.2, 0.8] for the

class yi = 1. Observe that the overlap in the range of the feature vectors is such that the

classification accuracy expected from a clairvoyant classifier that knows the statistic model

of the data set is less than 100%.

In all of our numerical experiments the parameter λ in (2.76) is set to λ = 10−4. Recall

that since the Hessian eigenvalues of f(w,θ) := λ‖w‖2/2 + l((xi, yi); w) are, at least, equal

to λ this implies that the eigenvalue lower bound m̃ is such that m̃ ≥ λ = 10−4. We

therefore set the RES regularization parameter to δ = λ = 10−4. Further set the minimum

progress parameter in (2.4) to Γ = 10−4.

Accelerated versions of SGD can be used for the implementation of SVMs. We pro-

vide a comparison of RES with respect to regular SGD and three accelerated versions:

Stochastic Average Gradient (SAG) [104], Semi-Stochastic Gradient Descent (S2GD) [47],

and Stochastic Approximation by Averaging (SAA) [88]. The SAG algorithm incorporates

memory of previous stochastic gradients and uses an average of stochastic gradients as

descent direction. The S2GD algorithm is a hybrid method which runs through several

epochs. Each epoch is characterized by the computation of a single full gradient and a

random number of stochastic gradients, with the number of stochastic gradients selected

according to a geometric distribution. In SAA a time average of iterates is computed and

reported.

An illustration of the relative performances of SAA, SGD, SAG, S2GD and RES for

p = 40 and N = 103 is presented in Fig. 2.10. For RES, we set L = 5 and choose the

decreasing stepsize sequence εt = ε0T0/(T0 + t) with ε0 = 4 × 10−1 and T0 = 106. These

parameters yield best performance after processing 104 feature vectors. For SGD, SAA,

SAG, and S2GD we tune the various parameters and report results for the combination

that yields best performance after processing 105 feature vectors. In Fig. 2.10 the value of

the objective function F (wt) is represented with respect to the number of feature vectors

processed, which is given by the product Lt between the iteration index and the sample

size used to compute stochastic gradients. To achieve the objective function value F (wt) =

48

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−4

10
−3

10
−2

Number of processed feature vectors (Lt)

O
b
je
ct
iv
e
fu
n
ct
io
n
v
a
lu
e
(F

(w
t
))

SAA
SGD
S2GD
SAG
RES

Figure 2.10: Comparison of RES, SGD, the SGD accelerations SAA, SAG, and S2GD to find an
optimal linear classifier with respect to the cost in (2.76) for a problem of dimension p = 40 and
training set with N = 103 feature vectors. RES processes a much smaller number of feature vectors
to achieve comparable objective values. See text for parameters values.

Table 2.1: CPU runtimes of RES, SGD, the SGD accelerations SAA, SAG, and S2GD to find an
optimal linear classifier with respect to the cost in (2.76) for different problem dimension p and
cardinality of training set N . Times reported are to achieve objective values F (wt) = 10−4.

p N RES SGD SAG S2GD SAA

40 103 45 ms 520 ms 350 ms 280 ms > 690 ms

400 104 0.8 s > 1.5 s 1.3 s 1.2 s > 1.7 s

10−4, RES processes Lt = 3.3 × 103 training points which is a little more than 3 passes

over the complete data set. The required time for processing these number of feature

vectors is 45 milliseconds (ms). Reaching the same objective function value F (wt) = 10−4

requires processing Lt = 8.3 × 104 training points for SGD which is more than 83 passes

over the whole data set. It takes 520 ms for SGD to achieve this value for the objective

function. The number of processed training points to achieve the same objective function

value F (wt) = 10−4 for SAG and S2GD are Lt = 4.9×104 and Lt = 5.2×104, respectively.

In terms of CPU runtime SAG and S2GD requires 350 ms and 280 ms to achieve objective

function value 10−4. The performance of SAA is worse than the performance of regular

SGD.

To compare the performances of RES, SGD, SAA, SAG, and S2GD in a larger SVM

problem we set the size of the training set to N = 104 and the dimension of feature vectors

to p = 400. For RES we make ε0 = 1 × 10−1, T0 = 101 and L = 20. For SGD and its

accelerations we select the parameters that achieve optimal performance after processing

104 feature vectors. The results with respect to number of feature vectors processed are

shown in Fig. 2.11 and the CPU times are shown in Table 2.1. The advantage of RES

49

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Number of processed feature vectors (Lt)

O
b
je
ct
iv
e
fu
n
ct
io
n
v
a
lu
e
(F

(w
t
))

SAA
SGD
S2GD
SAG
RES

Figure 2.11: Comparison of Fig. 2.10 for problem dimension p = 400 and training set cardinality
N = 104. The reduction in the number of feature vectors processed is more pronounced than in Fig.
2.10, but less pronounced in terms of the CPU runtimes shown in Table 2.1. See text for parameters
values.

in terms of the number of feature vectors processed is more marked than in the previous

experiment. The advantage in terms of CPU processing times is smaller. For reference,

the RES achieves the objective value F (wt) = 10−4 after processing 2.1 × 103 feature

vectors in 0.8 seconds. Correspondingly, the numbers of feature vectors processed to attain

F (wt) = 10−4 are 7.6× 104 and 7.7× 104 for SAG and S2GD. The CPU runtimes are 1.3

and 1.2, respectively. SGD can not achieve objective function value F (wt) = 10−4 after

processing 105 feature vectors in 1.5 seconds. The performance of SAA is still worse than

the performance of regular SGD.

2.5.2 RES and stochastic BFGS

We also investigate the difference between regularized and non-regularized versions of stochas-

tic BFGS for feature vectors of dimension p = 40. Observe that non-regularized stochastic

BFGS corresponds to making δ = 0 and Γ = 0 in Algorithm 1. To illustrate the advantage

of the regularization induced by the proximity requirement in (2.11), as opposed to the non

regularized proximity requirement in (2.9), we keep a constant stepsize εt = 10−1. The

corresponding evolutions of the objective function values F (wt) with respect to the number

of feature vectors processed Lt are shown in Fig. 2.12 along with the values associated

with stochastic gradient descent. As we reach convergence the likelihood of having small

eigenvalues appearing in B̂t becomes significant. In regularized stochastic BFGS (RES) this

results in recurrent jumps away from the optimal classifier w∗. However, the regularization

term limits the size of the jumps and further permits the algorithm to consistently recover

a reasonable curvature estimate. In Fig. 2.12 we process 104 feature vectors and observe

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of training points processed (Lt)

O
b
je
c
ti
v
e
fu
n
c
ti
o
n
v
a
lu
e
(F

(w
t
))

Stochastic BFGS

Regularized stochastic BFGS

Stochastic gradient descent

Figure 2.12: Comparison of SGD, regularized stochastic BFGS (RES), and (non regularized) stochas-
tic BFGS. The regularization is fundamental to control the erratic behavior of stochastic BFGS; See
text for parameters values.

many occurrences of small eigenvalues. However, the algorithm always recovers and heads

back to a good approximation of w∗. In the absence of regularization small eigenvalues in

B̂t result in larger jumps away from w∗. This not only sets back the algorithm by a much

larger amount than in the regularized case but also results in a catastrophic deterioration

of the curvature approximation matrix B̂t. In Fig. 2.12 we observe recovery after the first

two occurrences of small eigenvalues but eventually there is a catastrophic deviation after

which non-regularized stochastic BFGS behaves not better than SGD.

51

Chapter 3

Online limited memory BFGS

method

3.1 Context and background

Many problems in Machine Learning can be reduced to the minimization of a stochastic ob-

jective defined as an expectation over a set of random functions [14,15,69,108]. Specifically,

consider an optimization variable w ∈ Rp and a random variable θ ∈ Θ ⊆ Rd that deter-

mines the choice of a function f(w,θ) : Rp×d → R. Stochastic optimization problems entail

determination of the argument w∗ that minimizes the expected value F (w) := Eθ[f(w,θ)],

w∗ := argmin
w

Eθ[f(w,θ)] := argmin
w

F (w). (3.1)

As we described in Chapter 2, the problem formulation in (3.1) is a general case for the

ERM problem in (1.2). To keep the results as general as possible, in this chapter, we focus

on the problem in (3.1), but, indeed, the results can be extended to the ERM problem.

In this chapter, we refer to f(w,θ) as the random or instantaneous functions and to

F (w) := Eθ[f(w,θ)] as the average function. A canonical class of problems having this form

are support vector machines (SVMs) that reduce binary classification to the determination

of a hyperplane that separates points in a given training set; see, e.g., [13, 15, 120]. In that

case θ denotes individual training samples, f(w,θ) the loss of choosing the hyperplane

defined by w, and F (w) := Eθ[f(w,θ)] the mean loss across all elements of the training

set. The optimal argument w∗ is the optimal linear classifier.

Numerical evaluation of objective function gradients ∇wF (w) = Eθ[∇wf(w,θ)] is in-

tractable when the cardinality of Θ is large, as is the case, e.g., when SVMs are trained

on large sets. This motivates the use of algorithms relying on stochastic gradients that

provide gradient estimates based on small data subsamples. For the purpose of this paper

52

stochastic optimization algorithms can be divided into three categories: Stochastic gradient

descent (SGD) and related first order methods, stochastic Newton methods, and stochastic

quasi-Newton methods.

SGD is the most popular method used to solve stochastic optimization problems [15,

49, 107, 130]. However, as we consider problems of ever larger dimension their slow con-

verge times have limited their practical appeal and fostered the search for alternatives. In

this regard, it has to be noted that SGD is slow because of both, the use of gradients as

descent directions and their replacement by random estimates. Several alternatives have

been proposed to deal with randomness in an effort to render the convergence times of SGD

closer to the faster convergence times of gradient descent [47, 49, 62, 101, 129]. These SGD

variants succeed in reducing randomness and end up exhibiting the asymptotic convergence

rate of gradient descent. Although they improve asymptotic convergence rates, the latter

methods are still often slow in practice. This is not unexpected. Reducing randomness is of

no use when the function F (w) has a challenging curvature profile. In these ill conditioned

functions SGD is limited by the already slow convergence times of deterministic gradient

descent. The golden standard to deal with ill conditioned functions in deterministic set-

ting is Newton’s method. However, unbiased stochastic estimates of Newton steps can’t

be computed in general. This fact limits the application of stochastic Newton methods to

problems with specific structure [10,128].

If SGD is slow to converge and stochastic Newton can’t be used in general, the remain-

ing alternative is to modify deterministic quasi-Newton methods that speed up convergence

times relative to gradient descent without using Hessian evaluations [24, 32, 87, 89]. This

has resulted in the development of the stochastic quasi-Newton methods known as on-

line (o)Broyden-Fletcher-Goldfarb-Shanno (BFGS) [12, 105], regularized stochastic BFGS

(RES) [70], and online limited memory (oL)BFGS [105] which occupy the middle ground

of broad applicability irrespective of problem structure and conditioning. All of these three

algorithms extend BFGS by using stochastic gradients as both, descent directions and con-

stituents of Hessian estimates. The oBFGS algorithm is a direct generalization of BFGS that

uses stochastic gradients in lieu of deterministic gradients. RES, presented in Chapter 2,

differs in that it further modifies BFGS to yield an algorithm that retains its convergence

advantages while improving theoretical convergence guarantees and numerical behavior.

The oLBFGS method uses a modification of BFGS to reduce the computational cost of

each iteration.

An important observation here is that in trying to adapt to the changing curvature of the

objective, stochastic quasi-Newton methods may end up exacerbating the problem. Indeed,

since Hessian estimates are stochastic, it is possible to end up with almost singular Hessian

estimates. The corresponding small eigenvalues then result in a catastrophic amplification

53

of the noise which nullifies progress made towards convergence. This is not a minor problem.

In oBFGS this possibility precludes convergence analyses [12,105] and may result in erratic

numerical behavior; see e.g., Figure 2.12. As a matter of fact, the main motivation for the

introduction of RES is to avoid this catastrophic noise amplification so as to retain smaller

convergence times while ensuring that optimal arguments are found with probability 1 [70].

However valuable, the convergence guarantees of RES and the convergence time advantages

of oBFGS and RES are tainted by an iteration cost of order O(p2) and O(p3), respectively,

which precludes their use in problems where p is very large. In deterministic settings this

problem is addressed by limited memory (L)BFGS [55] which can be easily generalized

to develop the oLBFGS algorithm [105]. Numerical tests of oLBGS are promising but

theoretical convergence characterizations are still lacking. The main contribution of this

paper is to show that oLBFGS converges with probability 1 to optimal arguments across

realizations of the random variables θ. This is the same convergence guarantee provided for

RES and is in marked contrast with oBFGS that fails to converge if not properly regularized.

Convergence guarantees for oLBFGS do not require such measures.

We begin this chapter with brief discussions of deterministic BFGS (Section 3.2 and

LBFGS (Section 3.2.1) and the introduction of oLBFGS (Section 3.2.2). The fundamental

idea in BFGS and oLBFGS is to continuously satisfy a secant condition while staying

close to previous curvature estimates. They differ in that BFGS uses all past gradients to

estimate curvature while oLBFGS uses a fixed moving window of past gradients. The use

of this window reduces memory and computational cost. The difference between LBGS and

oLBFGS is the use of stochastic gradients in lieu of their deterministic counterparts.

Convergence properties of oLBFGS are then analyzed (Section 3.3). Under the assump-

tion that the sample functions f(w,θ) are strongly convex and Lipschitz continuous we

show that the trace and determinant of the Hessian approximations computed by oLBFGS

are upper and lower bounded, respectively (Lemma 5). These bounds are then used to limit

the range of variation of the ratio between the Hessian approximations’ largest and smallest

eigenvalues (Lemma 6). In turn, this condition number limit is shown to be sufficient to

prove convergence to the optimal argument w∗ with probability 1 over realizations of the

sample functions (Theorem 3). This is an important result because it ensures that oLBFGS

doesn’t suffer from the numerical problems that hinder oBFGS. We complement this almost

sure convergence result with a characterization of the convergence rate which is shown to

be at least linear in expectation (Theorem 4). It is fair to emphasize that, different from

the deterministic case, the convergence rate of oLBFGS is not better than the convergence

rate of SGD. This is not a limitation of our analysis. The difference between stochastic

and regular gradients introduces a noise term that dominates convergence once we are close

to the optimum, which is where superlinear convergence rates manifest. In fact, the same

54

convergence rate would be observed if exact Hessians were available. The best that can

be proven of oLBFGS is that the convergence rate is not worse than that of SGD. Given

that theoretical guarantees only state that the curvature correction does not exacerbate the

problem’s condition it is perhaps fairer to describe oLBFGS as an adaptive reconditioning

strategy instead of a stochastic quasi-Newton method. The latter description refers to the

genesis of the algorithm. The former is a more accurate description of its actual behavior.

To show the advantage of using oLBFGS as an adaptive reconditioning strategy we

develop its application to the training of SVMs (Section 3.4) and perform a comparative

numerical analysis with synthetic data. The conclusions of this numerical analysis are that

oLBFGS performs as well as oBFGS and RES while outperforming SGD when convergence is

measured with respect to the number of feature vectors processed. In terms of computation

time, oLBFGS outperforms all three methods, SGD, oBFGS, and RES. The advantages of

oLBFGS grow with the dimension of the feature vector and can be made arbitrarily large

(Section 3.4.1). To further substantiate numerical claims we use oLBFGS to train a logistic

regressor to predict the click through rate in a search engine advertising problem (Section

3.5). The logistic regression uses a heterogeneous feature vector with 174,026 binary entries

that describe the user, the search, and the advertisement (Section 3.5.1). Being a large

scale problem with heterogeneous data, the condition number of the logistic log likelihood

objective is large and we expect to see significant advantages of oLBFGS relative to SGD.

This expectation is fulfilled. The oLBFGS algorithm trains the regressor using less than

1% of the data required by SGD to obtain similar classification accuracy (Section 3.5.3).

Notation Lowercase boldface v denotes a vector and uppercase boldface A a matrix.

We use ‖v‖ to denote the Euclidean norm of vector v and ‖A‖ to denote the Euclidean

norm of matrix A. The trace of A is written as tr(A) and the determinant as det(A). We

use I for the identity matrix of appropriate dimension. The notation A � B implies that

the matrix A−B is positive semidefinite. The operator Ex[·] stands in for expectation over

random variable x and E[·] for expectation with respect to the distribution of a stochastic

process.

3.2 Algorithm definition

Recall the definitions of the sample functions f(w,θ) and the average function F (w) :=

Eθ[f(w,θ)]. We assume the sample functions f(w,θ) are strongly convex for all θ. This

implies the objective function F (w) := Eθ[f(w,θ)], being an average of the strongly convex

sample functions, is also strongly convex. We define the gradient s(w) := ∇F (w) of the

55

average function F (w) and assume that it can be computed as

s(w) := ∇F (w) = Eθ[∇f(w,θ)]. (3.2)

Since the function F (w) is strongly convex, gradients s(w) are descent directions that can

be used to find the optimal argument w∗ in (3.1). Introduce then a time index t, a step size

εt, and a positive definite matrix B−1t � 0 to define a generic descent algorithm through

the iteration

wt+1 = wt − εt B−1t s(wt) = wt − εt dt. (3.3)

where we have also defined the descent step dt = B−1t s(wt). When B−1t = I is the identity

matrix, (3.3) reduces to gradient descent. When Bt = H(wt) := ∇2F (wt) is the Hessian of

the objective function, (3.3) defines Newton’s algorithm. In this paper we focus on quasi-

Newton methods whereby we attempt to select matrices Bt close to the Hessian H(wt).

Various methods are known to select matrices Bt, including those by Broyden e.g., [21];

Davidon, Fletcher, and Powell (DFP) e.g., [35]; and Broyden, Fletcher, Goldfarb, and

Shanno (BFGS) e.g., [24,89]. We work with the matrices Bt used in BFGS since they have

been observed to work best in practice (see [24]).

In BFGS, the function’s curvature Bt is approximated by a finite difference. Let vt

denote the variable variation at time t and rt the gradient variation at time t which are

respectively defined as

vt := wt+1 −wt, rt := s(wt+1)− s(wt). (3.4)

We select the matrix Bt+1 to be used in the next time step so that it satisfies the secant

condition Bt+1vt = rt. The rationale for this selection is that the Hessian H(wt) satisfies

this condition for wt+1 tending to wt. Notice however that the secant condition Bt+1vt = rt

is not enough to completely specify Bt+1. To resolve this indeterminacy, matrices Bt+1 in

BFGS are also required to be as close as possible to the previous Hessian approximation

Bt in terms of a weighted Frobenius norm (see [87]). These conditions can be resolved in

closed form leading to the explicit expression,

Bt+1 = Bt +
rtr

T
t

vTt rt
− Btvtv

T
t Bt

vTt Btvt
. (3.5)

While the expression in (3.5) permits updating the Hessian approximations Bt+1, imple-

mentation of the descent step in (3.3) requires its inversion. This can be avoided by using

the Sherman-Morrison formula in (3.5) to write

B−1t+1 = ZTt B−1t Zt + ρt vtv
T
t , (3.6)

56

where we defined the scalar ρt and the matrix Zt as

ρt :=
1

vTt rt
, Zt := I− ρtrtvTt . (3.7)

The updates in (3.5) and (3.6) require the inner product of the gradient and variable vari-

ations to be positive, i.e., vTt rt > 0. This is always true if the objective F (w) is strongly

convex and further implies that B−1t+1 stays positive definite if B−1t � 0, ([87]).

Each BFGS iteration has a cost of O(p2) arithmetic operations. This is less than the

O(p3) of each step in Newton’s method but more than the O(p) cost of each gradient descent

iteration. In general, the relative convergence rates are such that the total computational

cost of BFGS to achieve a target accuracy is smaller than the corresponding cost of gra-

dient descent. Still, alternatives to reduce the computational cost of each iteration are of

interest for large scale problems. Likewise, BFGS requires storage and propagation of the

O(p2) elements of B−1t , whereas gradient descent requires storage of O(p) gradient elements

only. This motivates alternatives that have smaller memory footprints. Both of these ob-

jectives are accomplished by the limited memory (L)BFGS algorithm that we describe in

the following section.

3.2.1 LBFGS: Limited memory BFGS

As it follows from (3.6), the updated Hessian inverse approximation B−1t depends on B−1t−1
and the curvature information pairs {vt−1, rt−1}. In turn, to compute B−1t−1, the estimate

B−1t−2 and the curvature pair {vt−2, rt−2} are used. Proceeding recursively, it follows that

B−1t is a function of the initial approximation B−10 and all previous t curvature information

pairs {vu, ru}t−1u=0. The idea in LBFGS is to restrict the use of past curvature information

to the last τ pairs {vu, ru}t−1u=t−τ . Since earlier iterates {vu, ru} with u < t − τ are likely

to carry little information about the curvature at the current iterate wt, this restriction is

expected to result in a minimal performance penalty.

For a precise definition, pick a positive definite matrix B−1t,0 as the initial Hessian inverse

approximation at step t. Proceed then to perform τ updates of the form in (3.6) using

the last τ curvature information pairs {vu, ru}t−1u=t−τ . Denoting as B−1t,u the curvature ap-

proximation after u updates are performed we have that the refined matrix approximation

B−1t,u+1 is given by [cf. (3.6)]

B−1t,u+1 = ZTt−τ+u B−1t,u Zt−τ+u + ρt−τ+u vt−τ+u vTt−τ+u, (3.8)

where u = 0, . . . , τ−1 and the constants ρt−τ+u and rank-one plus identity matrices Zt−τ+u

are as given in (3.7). The inverse Hessian approximation B−1t to be used in (3.3) is the one

yielded after completing the τ updates in (3.13), i.e., B−1t = B−1t,τ . Observe that when t < τ

57

there are not enough pairs {vu, ru} to perform τ updates. In such case we just redefine

τ = t and proceed to use the t = τ available pairs {vu, ru}t−1u=0 .

Implementation of the product B−1t s(wt) in (3.3) for matrices B−1t = B−1t,τ obtained from

the recursion in (3.13) does not need explicit computation of the matrix B−1t,τ . Although the

details are not straightforward, observe that each iteration in (3.13) is similar to a rank-

one update and that as such it is not unreasonable to expect that the product B−1t s(wt) =

B−1t,τ s(wt) can be computed using τ recursive inner products. Assuming that this is possible,

the implementation of the recursion in (3.13) doesn’t need computation and storage of

prior matrices B−1t−1. Rather, it suffices to keep the τ most recent curvature information

pairs {vu, ru}t−1u=t−τ , thus reducing storage requirements from O(p2) to O(τp). Furthermore,

each of these inner products can be computed at a cost of p operations yielding a total

computational cost of O(τp) per LBFGS iteration. Hence, LBFGS decreases both the

memory requirements and the computational cost of each iteration from the O(p2) required

by regular BFGS to O(τp). We present the details of this iteration in the context of the

online (stochastic) LBFGS that we introduce in the following section.

3.2.2 Online (Stochastic) limited memory BFGS

To implement (3.3) and (3.13) we need to compute gradients s(wt). This is impractical

when the number of functions f(w,θ) is large, as is the case in most stochastic problems of

practical interest and motivates the use of stochastic gradients in lieu of actual gradients.

Consider a given set of L realizations θ̃ = [θ1; ...;θL] and define the stochastic gradient of

F (w) at w given samples θ̃ as

ŝ(w, θ̃) :=
1

L

L∑
l=1

∇f(w,θl). (3.9)

In oLBFGS we use stochastic gradients ŝ(w, θ̃) for descent directions and curvature esti-

mators. In particular, the descent iteration in (3.3) is replaced by the descent iteration

wt+1 = wt − εt B̂−1t ŝ(wt, θ̃t) = wt − εtd̂t, (3.10)

where θ̃t = [θt1; ...;θtL] is the set of samples used at step t to compute the stochastic

gradient ŝ(wt, θ̃t) as per (3.9) and the matrix B̂−1t is a function of past stochastic gradients

ŝ(wu, θ̃u) with u ≤ t instead of a function of past gradients s(wu) as in (3.3). As we also

did in (3.3) we have defined the stochastic step d̂t := B̂−1t ŝ(wt, θ̃t) to simplify upcoming

discussions.

To properly specify B̂−1t we define the stochastic gradient variation r̂t at time t as

the difference between the stochastic gradients ŝ(wt+1, θ̃t) and ŝ(wt, θ̃t) associated with

58

subsequent iterates wt+1 and wt and the common set of samples θ̃t [cf. (3.4)],

r̂t := ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t). (3.11)

Observe that ŝ(wt, θ̃t) is the stochastic gradient used at time t in (3.10) but that ŝ(wt+1, θ̃t)

is computed solely for the purpose of determining the stochastic gradient variation. The

perhaps more natural definition ŝ(wt+1, θ̃t+1)− ŝ(wt, θ̃t) for the stochastic gradient varia-

tion, which relies on the stochastic gradient ŝ(wt+1, θ̃t+1) used at time t+ 1 in (3.10) is not

sufficient to guarantee convergence; see e.g., [70].

To define the oLBFGS algorithm we just need to provide stochastic versions of the

definitions in (3.7) and (3.13). The scalar constants and identity plus rank-one matrices in

(3.7) are redefined to the corresponding stochastic quantities

ρ̂t−τ+u =
1

vTt−τ+ur̂t−τ+u
and Ẑt−τ+u = I− ρ̂t−τ+ur̂t−τ+uvTt−τ+u, (3.12)

whereas the LBFGS matrix B−1t = B−1t,τ in (3.13) is replaced by the oLBFGS Hessian inverse

approximation B̂−1t = B̂−1t,τ which we define as the outcome of τ recursive applications of

the update,

B̂−1t,u+1 = ẐTt−τ+u B̂−1t,u Ẑt−τ+u + ρ̂t−τ+u vt−τ+u vTt−τ+u, (3.13)

where the initial matrix B̂−1t,0 is given and the time index is u = 0, . . . , τ − 1. The oLBFGS

algorithm is defined by the stochastic descent iteration in (3.10) with matrices B̂−1t =

B̂−1t,τ computed by τ recursive applications of (3.13). Except for the fact that they use

stochastic variables, (3.10) and (3.13) are identical to (3.3) and (3.13). Thus, as is the case

in (3.3), the Hessian inverse approximation B̂−1t in (3.13) is a function of the initial Hessian

inverse approximation B−1t,0 and the τ most recent curvature information pairs {vu, r̂u}t−1u=t−τ .

Likewise, when t < τ there are not enough pairs {vu, r̂u} to perform τ updates. In such

case we just redefine τ = t and proceed to use the t = τ available pairs {vu, r̂u}t−1u=0 . We

also point out that the update in (3.13) necessitates r̂Tuvu > 0 for all time indexes u. This

is true as long as the instantaneous functions f(w,θ) are strongly convex with respect to

w as we show in Lemma 4.

The equations in (3.10) and (3.13) are used conceptually but not in practical imple-

mentations. For the latter we exploit the structure of (3.13) to rearrange the terms in the

computation of the product B̂−1t ŝ(wt, θ̃t). To see how this is done consider the recursive

update for the Hessian inverse approximation B̂−1t in (3.13) and make u = τ − 1 to write

B̂−1t = B̂−1t,τ =
(
ẐTt−1

)
B̂−1t,τ−1

(
Ẑt−1

)
+ ρ̂t−1 vt−1 vTt−1. (3.14)

59

Equation (3.14) shows the relation between the Hessian inverse approximation B̂−1t and the

(τ − 1)st updated version of the initial Hessian inverse approximation B̂−1t,τ−1 at step t. Set

now u = τ − 2 in (3.13) to express B̂−1t,τ−1 in terms of B̂−1t,τ−2 and substitute the result in

(3.14) to rewrite B̂−1t as

B̂−1t =
(
ẐTt−1Ẑ

T
t−2

)
B̂−1t,τ−2

(
Ẑt−2Ẑt−1

)
+ ρ̂t−2

(
ẐTt−1

)
vt−2 vTt−2

(
Ẑt−1

)
+ ρ̂t−1 vt−1 vTt−1.

(3.15)

We can proceed recursively by substituting B̂−1t,τ−2 for its expression in terms of B̂−1t,τ−3 and

in the result substitute B̂−1t,τ−3 for its expression in terms of B̂−1t,τ−3 and so on. Observe that

a new summand is added in each of these substitutions from which it follows that repeating

this process τ times yields

B̂−1t =
(
ẐTt−1 . . . Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . . Ẑt−1

)
+ ρ̂t−τ

(
ẐTt−1 . . . Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1 . . . Ẑt−1

)
+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2

(
Ẑt−1

)
+ ρ̂t−1vt−1v

T
t−1. (3.16)

The important observation in (3.16) is that the matrix Ẑt−1 and its transpose ẐTt−1 are

the first and last product terms of all summands except the last, that the matrices Ẑt−2

and its transpose ẐTt−2 are second and penultimate in all terms but the last two, and so

on. Thus, when computing the oLBFGS step d̂t := B̂−1t ŝ(wt, θ̃t) the operations needed to

compute the product with the next to last summand of (3.16) can be reused to compute

the product with the second to last summand which in turn can be reused in determining

the product with the third to last summand and so on. This observation compounded with

the fact that multiplications with the identity plus rank one matrices Ẑt−1 requires O(p)

operations yields an algorithm that can compute the oLBFGS step d̂t := B̂−1t ŝ(wt, θ̃t) in

O(τp) operations.

We summarize the specifics of such computation in the following proposition where we

consider the computation of the product B̂−1t p with a given arbitrary vector p.

Proposition 2 Consider the oLBFGS Hessian inverse approximation B̂−1t = B̂−1t,τ obtained

after τ recursive applications of the update in (3.13) with the scalar sequence ρ̂t−τ+u and

identity plus rank-one matrix sequence Ẑt−τ+u as defined in (3.12) for given variable and

stochastic gradient variation pairs {vu, ru}t−1u=t−τ . For a given vector p = p0 define the

sequence of vectors pk through the recursion

pu+1 = pu − αur̂t−u−1 for u = 0, . . . , τ − 1, (3.17)

60

where we also define the constants αu := ρ̂t−u−1v
T
t−u−1pu. Further define the sequence of

vectors qk with initial value q0 = B̂−1t,0pτ and subsequent elements

qu+1 = qu + (ατ−u−1 − βu)vt−τ+u for u = 0, . . . , τ − 1, (3.18)

where we define constants βu := ρ̂t−τ+ur̂
T
t−τ+uqu. The product B̂−1t p equals qτ , i.e.,

B̂−1t p = qτ .

Proof : We begin by observing that the pu sequence in (3.17) is defined so that we can

write pu+1 = Ẑt−u−1pu with p0 = p. Indeed, use the explicit expression for Ẑt−u−1 in

(3.12) to write the product Ẑt−u−1pu as

Ẑt−u−1pu =
(
I− ρ̂t−u−1r̂t−u−1vTt−u−1

)
pu = pu − αur̂t−u−1 = pu+1, (3.19)

where the second equality follows from the definition αu := ρ̂t−u−1v
T
t−u−1pu and the third

equality from the definition of the pu sequence in (3.17).

Recall now the oLBFGS Hessian inverse approximation expression in (3.16). It follows

that for computing the product B̂−1t p we can multiply each of the τ + 1 summands in the

right hand side of (3.16) by p = p0. Implementing this procedure yields

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . .Ẑt−1

)
p0

+ · · ·+ ρ̂t−τ

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1. . .Ẑt−1

)
p0

+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2

(
Ẑt−1

)
p0 + ρ̂t−1vt−1v

T
t−1p0. (3.20)

The fundamental observation in (3.20) is that all summands except the last contain the

product Ẑt−1p0. This product cannot only be computed efficiently but, as shown in (3.19), is

given by p1 = Ẑt−1p0. A not so fundamental, yet still important observation, is that the last

term can be simplified to ρ̂t−1vt−1v
T
t−1p0 = α0vt−1 given the definition of α0 := ρ̂t−1v

T
t−1p0.

Implementing both of these substitutions in (3.20) yields

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ

)
B̂−1t,0

(
Ẑt−τ . . .Ẑt−2

)
p1

+ ρ̂t−τ

(
ẐTt−1. . .Ẑ

T
t−τ+1

)
vt−τv

T
t−τ

(
Ẑt−τ+1. . .Ẑt−2

)
p1

+ · · ·+ ρ̂t−2

(
ẐTt−1

)
vt−2v

T
t−2p1 + α0vt−1. (3.21)

The structure of (3.21) is analogous to the structure of (3.20). In all terms except the last

two we require determination of the product Ẑt−2p1, which, as per (3.19) can be computed

with 2n multiplications and is given by p2 = Ẑt−2p1. Likewise, in the second to last term

we can simplify the product ρ̂t−2vt−2v
T
t−2p1 = α1vt−2 using the definition α1 = ρ̂t−2v

T
t−2p1.

61

Implementing these substitutions in (3.21) yields an expression that is, again, analogous. In

all of the resulting summands except the last three we need to compute the product Ẑt−3p2,

which is given by p3 = Ẑt−3p2 and in the third to last term we can simplify the product

ρ̂t−3vt−3v
T
t−3p2 = α2vt−3. Repeating this process keeps yielding terms with analogous

structure and, after τ − 1 repetitions we simplify (3.21) to

B̂−1t p =
(
ẐTt−1. . .Ẑ

T
t−τ+1Ẑ

T
t−τ

)
B̂−1t,0pτ

+
(
ẐTt−1. . .Ẑ

T
t−τ+1

)
ατ−1vt−τ + . . .+ ẐTt−1α1vt−2 + α0vt−1. (3.22)

In the first summand in (3.22) we can substitute the definition of the first element of the

qu sequence q0 := B̂−1t,0pτ . More important, observe that the matrix ẐTt−1 is the first factor

in all but the last summand. Likewise, the matrix ẐTt−2 is the second factor in all but the

last two summands and, in general, the matrix ẐTt−u is the uth factor in all but the last u

summands. Pulling these common factors recursively through (3.22) it follows that B̂−1t pt

can be equivalently written as

B̂−1t p = ẐTt−1

[
α1vt−2 + ẐTt−2

[
. . .
[
ατ−2vt−τ+1 + ẐTt−τ+1

[
ατ−1vt−τ + ẐTt−τq0

]]
. . .

]]
+ α0vt−1 (3.23)

To conclude the proof we just need to note that the recursive definition of qu in (3.18) is a

computation of the nested elements of (3.23). To see this consider the innermost element

of (3.23) and use the definition of β0 := ρ̂t−τ r̂
T
t−τq0 to conclude that ατ−1vt−τ + ẐTt−τq0 is

given by

ατ−1vt−τ + ẐTt−τq0 = ατ−1vt−τ + q0 − ρ̂t−τvt−τ r̂Tt−τq0 = q0 + (ατ−1 − β0)vt−τ = q1

(3.24)

where in the last equality we use the definition of q1 [cf. (3.18). Substituting this simplifi-

cation into (3.23) eliminates the innermost nested term and leads to

B̂−1t p = α0vt−1 + ẐTt−1

[
α1vt−2 + ẐTt−2

[
. . .
[
ατ−2vt−τ+1 + ẐTt−τ+1q1

]
. . .

]]
. (3.25)

Mimicking the computations in (3.24) we can see that the innermost term in (3.25) is

ατ−2vt−τ+1 + ẐTt−τ+1q1 = q2 and obtain an analogous expression that we can substi-

tute for q3 and so on. Repeating this process τ − 2 times leads to the last term being

B̂−1t p = α0vt−1 + ẐTt−1qτ−1 which we can write as α0vt−1 + ẐTt−1qτ−1 = qτ by repeating

the operations in (3.24). This final observation yields B̂−1t p = qτ . �

62

Algorithm 2 Computation of oLBFGS step q = B̂−1t p when called with p = ŝ(wt, θ̃t).

1: function q = qτ = oLBFGS Step
(
B̂−1t,0 , p = p0, {vu, r̂u}t−1u=t−τ

)
2: for u = 0, 1, . . . , τ − 1 do [Loop to compute constants αu and sequence pu]
3: Compute and store scalar αu = ρ̂t−u−1v

T
t−u−1pu

4: Update sequence vector pu+1 = pu − αur̂t−u−1. [cf. (3.17)]
5: end for
6: Multiply pτ by initial matrix: q0 = B̂−1t,0pτ
7: for u = 0, 1, . . . , τ − 1 do [Loop to compute constants βu and sequence qu]
8: Compute scalar βu = ρ̂t−τ+ur̂

T
t−τ+uqu

9: Update sequence vector qu+1 = qu + (ατ−u−1 − βu)vt−τ+u [cf. (3.18)]
10: end for {return q = qτ}

The reorganization of computations described in Proposition 2 has been done for the

deterministic LBFGS method in, e.g., [87]. We have used the same technique here for

computing the descent direction of oLBFGS and have shown the result and derivations

for completeness. In any event, Proposition 2 asserts that it is possible to reduce the

computation of the product B̂−1t p between the oLBFGS Hessian approximation matrix and

arbitrary vector p to the computation of two vector sequences {pu}τ−1u=0 and {qu}τ−1u=0. The

product B̂−1t p = qτ is given by the last element of the latter sequence. Since determination

of each of the elements of each sequence requires O(p) operations and the total number of

elements in each sequence is τ the total operation cost to compute both sequences is of

order O(τp). In computing B̂−1t p we also need to add the cost of the product q0 = B̂−1t,0pτ

that links both sequences. To maintain overall computation cost of order O(τp) this matrix

has to have a sparse or low rank structure. A common choice in LBFGS, that we adopt for

oLBFGS, is to make B̂−1t,0 = γ̂tI. The scalar constant γ̂t is a function of the variable and

stochastic gradient variations vt−1 and r̂t−1, explicitly given by

γ̂t =
vTt−1r̂t−1

r̂Tt−1r̂t−1
=

vTt−1r̂t−1

‖r̂t−1‖2
. (3.26)

with the value at the first iteration being γ̂0 = 1. The scaling factor γ̂t attempts to estimate

one of the eigenvalues of the Hessian matrix at step t and has been observed to work well in

practice; see e.g., [55,87]. Further observe that the cost of computing γ̂t is of order O(p) and

that since B̂−1t,0 is diagonal cost of computing the product q0 = B̂−1t,0pτ is also of order O(p).

We adopt the initialization in (3.26) in our subsequent analysis and numerical experiments.

The computation of the product B̂−1t p using the result in Proposition 2 is summarized

in algorithmic form in the function in Algorithm 2. The function receives as arguments the

initial matrix B̂−1t,0 , the sequence of variable and stochastic gradient variations {vu, r̂u}t−1u=t−τ
and the vector p to produce the outcome q = qτ = B̂−1t p. When called with the stochastic

63

Algorithm 3 oLBFGS

Require: Initial value w0. Initial Hessian approximation parameter γ̂0 = 1.
1: for t = 0, 1, 2, . . . do
2: Acquire L independent samples θ̃t = [θt1, . . . ,θtL]

3: Compute stochastic gradient: ŝ(wt, θ̃t) =
1

L

L∑
l=1

∇wf(wt,θtl) [cf. (3.9)]

4: Initialize Hessian inverse estimate as B̂−1t,0 = γ̂tI with γ̂t =
vTt−1r̂t−1

r̂Tt−1r̂t−1
for t > 0 [cf. (3.26)]

5: Compute d̂t with Algorithm 2: d̂t = oLBFGS Step
(
B̂−1t,0 , ŝ(wt, θ̃t), {vu, r̂u}t−1u=t−τ

)
6: Descend along direction d̂t: wt+1 = wt − εtd̂t [cf. (3.10)]

7: Compute stochastic gradient: ŝ(wt+1, θ̃t) =
1

L

L∑
l=1

∇wf(wt+1,θtl) [cf. (3.9)]

8: Variations vt = wt+1 −wt [cf. (3.4)] r̂t = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t) [cf.(3.11)]
9: end for

gradient p = ŝ(wt, θ̃t), the function outputs the oLBFGS step d̂t := B̂−1t ŝ(wt, θ̃t) needed

to implement the oLBFGS descent step in (3.10). The core of Algorithm 2 is given by

the loop in steps 2-5 that computes the constants αu and sequence elements pu as well

as the loop in steps 7-10 that computes the constants βu and sequence elements qu. The

two loops are linked by the initialization of the second sequence with the outcome of the

first which is performed in Step 6. To implement the first loop we require τ inner products

in Step 4 and τ vector summations in Step 5 which yield a total of 2τp multiplications.

Likewise, the second loop requires τ inner products and τ vector summations in steps 9

and 10, respectively, which yields a total cost of also 2τp multiplications. Since the initial

Hessian inverse approximation matrix B̂−1t,0 is diagonal the cost of computation B̂−1t,0pτ in

Step 6 is p multiplications. Thus, Algorithm 2 requires a total of (4τ + 1)p multiplications

which affirms the complexity cost of order O(τp) for oLBFGS.

For reference, oLBFGS is also summarized in algorithmic form in Algorithm 3. As with

any stochastic descent algorithm the descent iteration is implemented in three steps: the

acquisition of L samples in Step 2, the computation of the stochastic gradient in Step 3,

and the implementation of the descent update on the variable wt in Step 6. Steps 4 and 5

are devoted to the computation of the oLBFGS descent direction d̂t. In Step 4 we initialize

the estimate B̂t,0 = γ̂tI as a scaled identity matrix using the expression for γ̂t in (3.26)

for t > 0. The value of γt = γ0 for t = 0 is left as an input for the algorithm. We use

γ̂0 = 1 in our numerical tests. In Step 5 we use Algorithm 2 for efficient computation

of the descent direction d̂t = B̂−1t ŝ(wt, θ̃t). Step 7 determines the value of the stochastic

gradient ŝ(wt+1, θ̃t) so that the variable variations vt and stochastic gradient variations r̂t

become available for the computation of the curvature approximation matrix B̂−1t . In Step

8 the variable variation vt and stochastic gradient variation r̂t are computed to be used

64

in the next iteration. We analyze convergence properties of this algorithm in Section 3.3,

study its application to SVMs in Section 3.4, and develop an application to search engine

advertisement in Section 3.5.

3.3 Convergence analysis

For the subsequent analysis it is convenient to define the instantaneous objective function

associated with samples θ̃ = [θ1, . . . ,θL] as

f̂(w, θ̃) :=
1

L

L∑
l=1

f(w,θl). (3.27)

The definition of the instantaneous objective function f̂(w, θ̃) in association with the fact

that F (w) := Eθ[f(w,θ)] implies that

F (w) = Eθ[f̂(w, θ̃)]. (3.28)

Our goal here is to show that as time progresses the sequence of variable iterates wt ap-

proaches the optimal argument w∗. In proving this result we make the following assump-

tions.

Assumption 4 The instantaneous functions f̂(w, θ̃) are twice differentiable and the eigen-

values of the instantaneous Hessian Ĥ(w, θ̃) = ∇2
wf̂(w, θ̃) are bounded between constants

0 < m̃ and M̃ <∞ for all random variables θ̃,

m̃I � Ĥ(w, θ̃) � M̃I. (3.29)

Assumption 5 The second moment of the norm of the stochastic gradient is bounded for

all w. i.e., there exists a constant S2 such that for all variables w it holds

Eθ

[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2. (3.30)

Assumption 6 The step size sequence is selected as nonsummable but square summable,

i.e.,
∞∑
t=0

εt =∞, and
∞∑
t=0

ε2t <∞. (3.31)

Assumptions 5 and 6 are customary in stochastic optimization. The restriction imposed

by Assumption 5 is intended to limit the random variation of stochastic gradients. If the

variance of their norm is unbounded it is possible to have rare events that derail progress

65

towards convergence. The condition in Assumption 6 balances descent towards optimal

arguments – which requires a slowly decreasing stepsize – with the eventual elimination of

random variations – which requires rapidly decreasing stepsizes. An effective step size choice

for which Assumption 6 holds is to make εt = ε0T0/(T0 + t), for given parameters ε0 and

T0 that control the initial step size and its speed of decrease, respectively. Assumption 4 is

stronger than usual and specific to oLBFGS. Observe that considering the linearity of the

expectation operator and the expression in (3.28) it follows that the Hessian of the average

function can be written as ∇2
wF (w) = H(w) = Eθ[Ĥ(w, θ̃)]. Combining this observation

with the bounds in (3.29) we conclude that there are constants m ≥ m̃ and M ≤ M̃ such

that

m̃I � mI � H(w) �MI � M̃I. (3.32)

The bounds in (3.32) are customary in convergence proofs of descent methods. For the

results here the stronger condition spelled in Assumption 4 is needed. This assumption

in necessary to guarantee that the inner product r̂Tt vt > 0 is positive as we show in the

following lemma.

Lemma 4 Consider the stochastic gradient variation r̂t defined in (3.11) and the variable

variation vt defined in (3.4). Let Assumption 4 hold so that we have lower and upper bounds

m̃ and M̃ on the eigenvalues of the instantaneous Hessians. Then, for all steps t the inner

product of variable and stochastic gradient variations r̂Tt vt is bounded below as

m̃‖vt‖2 ≤ r̂Tt vt . (3.33)

Furthermore, the ratio of stochastic gradient variation squared norm ‖r̂t‖2 = r̂Tt r̂t to inner

product of variable and stochastic gradient variations is bounded as

m̃ ≤ r̂Tt r̂t

r̂Tt vt
=
‖r̂t‖2

r̂Tt vt
≤ M̃. (3.34)

Proof: As per (3.29) in Assumption 1 the eigenvalues of the instantaneous Hessian Ĥ(w, θ̃)

are bounded by m̃ and M̃ . Thus, for any given vector z it holds

m̃‖z‖2 ≤ zT Ĥ(w, θ̃)z ≤ M̃‖z‖2. (3.35)

For given wt and wt+1 define the mean instantaneous Hessian Ĝt as the average Hessian

value along the segment [wt,wt+1]

Ĝt =

∫ 1

0
Ĥ
(
wt + τ(wt+1 −wt), θ̃t

)
dτ. (3.36)

66

Consider now the instantaneous gradient ŝ(wt+τ(wt+1−wt), θ̃t) evaluated at wt+τ(wt+1−
wt) and observe that its derivative with respect to τ is ∂ŝ

(
wt + τ(wt+1 − wt), θ̃t

)
/∂τ =

Ĥ(wt + τ(wt+1 − wt), θ̃t)(wt+1 − wt). Then according to the fundamental theorem of

calculus∫ 1

0
Ĥ
(
wt + τ(wt+1 −wt) , θ̃t

)
(wt+1 −wt) dτ = ŝ(wt+1, θ̃t)− ŝ(wt, θ̃t). (3.37)

Using the definitions of the mean instantaneous Hessian Ĝt in (3.36) as well as the definitions

of the stochastic gradient variations r̂t and variable variations vt in (3.11) and (3.4) we can

rewrite (3.37) as

Ĝtvt = r̂t. (3.38)

Invoking (3.35) for the integrand in (3.36), i.e., for Ĥ(w, θ̃) = Ĥ
(
wt + τ(wt+1 −wt), θ̃

)
, it

follows that for all vectors z the mean instantaneous Hessian Ĝt satisfies

m̃‖z‖2 ≤ zT Ĝtz ≤ M̃‖z‖2. (3.39)

The claim in (3.33) follows from (3.38) and (3.39). Indeed, consider the ratio of inner

products r̂Tt vt/v
T
t vt and use (3.38) and the first inequality in (3.39) to write

r̂Tt vt

vTt vt
=

vTt Ĝtvt

vTt vt
≥ m̃. (3.40)

It follows that (3.33) is true for all times t.

To prove (3.34) we operate (3.38) and (3.39). Considering the ratio of inner products

r̂Tt r̂t/r̂
T
t vt and observing that (3.38) states Ĝtvt = r̂t, we can write

r̂Tt r̂t

r̂Tt vt
=

vTt Ĝ2
tvt

vTt Ĝtvt
. (3.41)

Since the mean instantaneous Hessian Ĝt is positive definite according to (3.39), we can

define zt = Ĝ
1/2
t vt. Substituting this observation into (3.41) we can conclude

r̂Tt r̂t

r̂Tt vt
=

zTt Ĝtzt

zTt zt
. (3.42)

Observing (3.42) and the inequalities in (3.39), it follows that (3.34) is true. �

According to Lemma 4, strong convexity of instantaneous functions f̂(w, θ̃) guaranties

positiveness of the inner product vTt r̂t as long as the variable variation is not identically

null. In turn, this implies that the constant γ̂t in (3.26) is nonnegative and that, as a

67

consequence, the initial Hessian inverse approximation B̂−1t,0 is positive definite for all steps

t. The positive definiteness of B̂−1t,0 in association with the positiveness of the inner product

of variable and stochastic gradient variations vTt r̂t > 0 further guarantees that all the

matrices B̂−1t,u+1, including the matrix B̂−1t = B̂−1t,τ in particular, that follow the update rule

in (3.13) stay positive definite – see [70] for details. This proves that (3.10) is a proper

stochastic descent iteration because the stochastic gradient ŝ(wt, θ̃t) is moderated by a

positive definite matrix. However, this fact alone is not enough to guarantee convergence

because the minimum and maximum eigenvalues of B̂−1t could become arbitrarily small and

arbitrarily large, respectively. To prove convergence we show this is not possible by deriving

explicit lower and upper bounds on these eigenvalues.

The analysis is easier if we consider the matrix B̂t – as opposed to B̂−1t . Consider then

the update in (3.13), and use the Sherman-Morrison formula to rewrite as an update that

relates B̂t,u+1 to B̂t,u,

B̂t,u+1 = B̂t,u −
B̂t,uvt−τ+uv

T
t−τ+uB̂t,u

vTt−τ+uB̂t,uvt−τ+u
+

r̂t−τ+ur̂
T
t−τ+u

vTt−τ+ur̂t−τ+u
, (3.43)

for u = 0, . . . , τ −1 and B̂t,0 = 1/γ̂tI as per (3.26). As in (3.13), the Hessian approximation

at step t is B̂t = B̂t,τ . In the following lemma we use the update formula in (3.43) to find

bounds on the trace and determinant of the Hessian approximation B̂t.

Lemma 5 Consider the Hessian approximation B̂t = B̂t,τ defined by the recursion in (3.43)

with B̂t,0 = γ̂−1t I and γ̂t as given by (3.26). If Assumption 4 holds true, the trace tr(B̂t) of

the Hessian approximation B̂t is uniformly upper bounded for all times t ≥ 1,

tr
(
B̂t

)
≤ (p+ τ)M̃. (3.44)

Likewise, if Assumption 4 holds true, the determinant det(B̂t) of the Hessian approximation

B̂t is uniformly lower bounded for all times t

det
(
B̂t

)
≥ m̃p+τ

[(p+ τ)M̃]τ
. (3.45)

Proof : We begin with the trace upper bound in (3.44). Consider the recursive update

formula for the Hessian approximation B̂t as defined in (3.43). To simplify notation we

define s as a new index such that s = t− τ + u. Introduce this simplified notation in (3.43)

and compute the trace of both sides. Since traces are linear function of their arguments we

obtain

tr
(
B̂t,u+1

)
= tr

(
B̂t,u

)
− tr

(
B̂t,uvsv

T
s B̂t,u

vTs B̂t,uvs

)
+ tr

(
r̂sr̂

T
s

vTs r̂s

)
. (3.46)

68

Recall that the trace of a matrix product is independent of the order of the factors to

conclude that the second summand of (3.46) can be simplified to

tr
(
B̂t,uvsv

T
s B̂t,u

)
= tr

(
vTs B̂t,uB̂t,uvs

)
= vTs B̂t,uB̂t,uvs =

∥∥∥B̂t,uvs

∥∥∥2 , (3.47)

where the second equality follows because vTs B̂t,uB̂t,uvs is a scalar and the second equality

by observing that the term vTs B̂t,uB̂t,uvs is the inner product of the vector B̂t,uvs with

itself. Use the same procedure for the last summand of (3.46) so as to write tr(r̂sr̂
T
s) =

r̂Ts r̂s = ‖r̂s‖2. Substituting this latter observation as well as (3.47) into (3.46) we can

simplify the trace of B̂t,u+1 to

tr
(
B̂t,u+1

)
= tr

(
B̂t,u

)
− ‖B̂t,uvs‖2

vTs B̂t,uvs
+
‖r̂s‖2

r̂Ts vs
. (3.48)

The second term in the right hand side of (3.48) is negative because, as we have already

shown, the matrix B̂t,u is positive definite. The third term is the one for which we have

derived the bound that appears in (3.34) of Lemma 4. Using this two observations we can

conclude that the trace of B̂t,u+1 can be bounded as

tr
(
B̂t,u+1

)
≤ tr

(
B̂t,u

)
+ M̃. (3.49)

By considering (3.49) as a recursive expression for u = 0, . . . τ − 1, we can conclude that

tr
(
B̂t,u

)
≤ tr

(
B̂t,0

)
+ uM̃. (3.50)

To finalize the proof of (3.44) we need to find a bound for the initial trace tr(B̂t,0). To do

so we consider the definition B̂t,0 = I/γ̂t with γ̂t as given by (3.26). Using this definition of

B̂t,0 as a scaled identity it follows that we can write the trace of B̂t,0 as

tr
(
B̂t,0

)
= tr

(
I

γ̂t

)
=

p

γ̂t
. (3.51)

Substituting the definition of γ̂t into the rightmost side of (3.26) it follows that for all times

t ≥ 1,

tr
(
B̂t,0

)
= p

r̂Tt−1r̂t−1

vTt−1r̂t−1
= p

‖r̂t−1‖2

vTt−1r̂t−1
. (3.52)

The term ‖r̂t−1‖2/vTt−1r̂t−1 in (3.64) is of the same form of the rightmost term in (3.48).

We can then, as we did in going from (3.48) to (3.49) apply the bound that we provide in

69

(3.34) of Lemma 4 to conclude that for all times t ≥ 1

tr
(
B̂t,0

)
≤ pM̃. (3.53)

Substituting (3.53) into (3.50) and pulling common factors leads to the conclusion that for

all times t ≥ 1 and indices 0 ≤ u ≤ τ it holds

tr
(
B̂t,u

)
≤ (p+ u)M̃. (3.54)

The bound in (3.44) follows by making u = τ in (3.54) and recalling that, by definition,

B̂t = B̂t,τ . For time t = 0 we have γ̂t = γ̂0 = 1 and (3.64) reduces to tr(B̂t,0) = p

while (3.54) reduces to tr(B̂t,τ) ≤ (1 + τ)M̃ . Furthermore, for t < τ we make B̂t = B̂t,t

instead of B̂t = B̂t,τ . In this case the bound in (3.54) can be tightened to tr(B̂t,τ) ≤
(p+ t)M̃ . Given that we are interested in an asymptotic convergence analysis, these bounds

are inconsequential.

We consider now the determinant lower bound in (3.45). As we did in (3.46) begin by

considering the recursive update in (3.43) and define s as a new index such that s = t−τ+u

to simplify notation. Compute the determinant of both sides of (3.43), factorize B̂t,u on

the right hand side, and use the fact that the determinant of a product is the product of

the determinants to conclude that

det
(
B̂t,u+1

)
= det

(
B̂t,u

)
det

(
I− vs(B̂t,uvs)

T

vTs B̂t,uvs
+

B̂−1t,u r̂sr̂
T
s

r̂Ts vs

)
. (3.55)

To simplify the right hand side of (3.55) we should first know that for any vectors u1, u2, u3

and u4, we can write det(I+u1u
T
2 +u3u

T
4) = (1+uT1 u2)(1+uT3 u4)−(uT1 u4)(u

T
2 u3) – see, e.g.,

[51], Lemma 3.3). Setting u1 = vs, u2 = B̂t,uvs/v
T
s B̂t,uvs, u3 = B̂−1t,u r̂s and u4 = r̂s/r̂

T
s vs,

implies that det(I + u1u
T
2 + u3u

T
4) is equivalent to the last term in the right hand side of

(3.55). Applying these substitutions implies that (1 + uT1 u2) = 1− vTs B̂t,uvs/vsB̂t,uvs = 0

and uT1 u4 = −vTs r̂s/r̂
T
s vs = −1. Hence, the term det(I + u1u

T
2 + u3u

T
4) can be simplified

as uT2 u3. By this simplification we can write the right hand side of (3.55) as

det

[
I− vs(B̂t,uvs)

T

vTs B̂t,uvs
+

B̂−1t,u r̂sr̂
T
s

r̂Ts vs

]
=

(
B̂t,uvs

)T
vTs B̂t,uvs

B̂−1t,u r̂s. (3.56)

70

To further simplify (3.56) write (B̂t,uvs)
T = vTs B̂T

t,u and observer that since B̂t,u is sym-

metric we have B̂T
t,uB̂

−1
t,u = B̂t,uB̂

−1
t,u = I. Therefore,

det

[
I− vs(B̂t,uvs)

T

vTi B̂t,uvs
+

B̂−1t,u r̂sr̂
T
s

r̂Ts vs

]
=

r̂Ts vs

vTs B̂t,uvs
. (3.57)

Substitute the simplification in (3.57) for the corresponding factor in (3.55). Further mul-

tiply and divide the right hand side by the nonzero norm ‖vs‖ and regroup terms to obtain

det
(
B̂t,u+1

)
= det

(
B̂t,u

) r̂Ts vs
‖vs‖

‖vs‖
vTs B̂t,uvs

. (3.58)

To bound the third factor in (3.58) observe that the largest possible value for the normalized

quadratic form vTs B̂t,uvs/‖vs‖2 occurs when vs is an eigenvector of B̂t,u associated with

its largest eigenvalue. In such case the value attained is precisely the largest eigenvalue of

B̂t,u implying that we can write

vTs B̂t,uvs
‖vs‖

≤ λmax

(
B̂t,u

)
. (3.59)

But to bound the largest eigenvalue λmax(B̂t,u) we can just use the fact that the trace

of a matrix coincides with the sum of its eigenvalues. In particular, it must be that

λmax(B̂t,u) ≤ tr(B̂t,u) because all the eigenvalues of the positive definite matrix B̂t,u are

positive. Combining this observation with the trace bound in (3.54) leads to

vTs B̂t,uvs
‖vs‖

≤ tr
(
B̂t,u

)
≤ (p+ u)M̃. (3.60)

We can also bound the second factor in the right hand side of (3.58) if we reorder the

inequality in (3.33) of Lemma 4 to conclude that r̂Ts vs/‖vs‖ ≤ m̃. This bound, along with

the inverse of the inequality in (3.60) substituted in (3.58) leads to

det
(
B̂t,u+1

)
≥ m̃

pM̃ + uM̃
det
(
B̂t,u

)
. (3.61)

Apply (3.61) recursively between indexes u = 0 and u = τ − 1 and further observing that

u ≤ τ in all of the resulting factors it follows that

det
(
B̂t,τ

)
≥
[

m̃

(p+ τ)M̃

]τ
det
(
B̂t,0

)
. (3.62)

To finalize the derivation of (3.45) we just need to bound the determinant of the initial

curvature approximation matrix B̂t,0. To do so we consider, again, the definition B̂t,0 = I/γ̂t

71

with γ̂t as given by (3.26). Using this definition of B̂t,0 as a scaled identity it follows that

we can write the determinant of B̂t,0 as

det
(
B̂t,0

)
= det

(
I

γ̂t

)
=

1

γ̂pt
. (3.63)

Substituting the definition of γ̂t into the rightmost side of (3.63) it follows that for all times

t ≥ 1,

det
(
B̂t,0

)
=

(
r̂Tt−1r̂t−1

vTt−1r̂t−1

)p
=

(
‖r̂t−1‖2

vTt−1r̂t−1

)p
. (3.64)

The term ‖r̂t−1‖2/vTt−1r̂t−1 has lower and upper bounds that we provide in (3.34) of Lemma

4. Using the lower bound in (3.34) it follows that the initial determinant must be such that

det
(
B̂t,0

)
≥ m̃p. (3.65)

Substituting the upper bound in (3.65) for the determinant of the initial curvature approx-

imation matrix in (3.62) allows us to conclude that for all times t ≥ 1

det
(
B̂t,τ

)
≥ m̃p

[
m̃

(p+ τ)M̃

]τ
. (3.66)

The bound in (3.45) follows by making u = τ in (3.66) and recalling that, by definition,

B̂t = B̂t,τ . At time t = 0 the initialization constant is set to γ̂t = γ̂0 = 1 and (3.65)

reduces to det(B̂t,0) = 1 while (3.66) reduces to det(B̂t,τ) ≤ [m̃/(1 + τ)M̃]τ . For t < τ we

make B̂t = B̂t,t instead of B̂t = B̂t,τ . In this case the bound in (3.54) can be tightened to

det(B̂t,τ) ≤ m̃[m̃p/(1 + τ)M̃]τ . As in the case of the trace, given that we are interested in

an asymptotic convergence analysis, these bounds are inconsequential. �

Lemma 5 states that the trace and determinants of the Hessian approximation matrix

B̂t = B̂t,τ are bounded for all times t ≥ 1. For time t = 0 we can write a similar bound that

takes into account the fact that the constant γt that initializes the recursion in (3.43) is

γ0 = 1. Given that we are interested in an asymptotic convergence analysis, this bound in

inconsequential. The bounds on the trace and determinant of B̂t are respectivey equivalent

to bounds in the sum and product of its eigenvalues. Further considering that the matrix

B̂t is positive definite, as it follows from Lemma 4, these bounds can be further transformed

into bounds on the smalls and largest eigenvalue of B̂t. The resulting bounds are formally

stated in the following lemma.

Lemma 6 Consider the Hessian approximation B̂t = B̂t,τ defined by the recursion in (3.43)

with B̂t,0 = γ̂−1t I and γ̂t as given by (3.26). Define the strictly positive constant 0 < c :=

m̃p+τ/[(p+ τ)M̃]p+τ−1 and the finite constant C := (p+ τ)M̃ <∞. If Assumption 4 holds

72

true, the range of eigenvalues of B̂t is bounded by c and C for all time steps t ≥ 1, i.e.,

m̃p+τ

[(p+ τ)M̃]
p+τ−1 I =: cI � B̂t � CI := (p+ τ)M̃ I. (3.67)

Proof : We first prove the upper bound inequality in (3.67). Let us define λi as the ith

largest eigenvalue of matrix B̂t. Considering the result in Lemma 5 that tr(B̂t) ≤ (p+ τ)M̃

for all steps t ≥ 1, we obtain that the sum of eigenvalues of the Hessian approximation B̂t

satisfy
p∑
i=1

λi = tr
(
B̂t

)
≤ (p+ τ)M̃. (3.68)

Considering the upper bound for the sum of eigenvalues in (3.68) and recalling that all the

eigenvalues of the matrix B̂t are positive because B̂t is positive definite, we can conclude

that each of the eigenvalues of B̂t is less than the upper bound for their sum in (3.68). We

then have λi ≤ (p+ τ)M̃ for all i from where the right inequality in (3.67) follows.

To prove the lower bound inequality in (3.67) consider the second result of Lemma 5

which provides a lower bound for the determinant of the Hessian approximation matrix

B̂t. According to the fact that determinant of a matrix is the product of its eigenvalues,

it follows that the product of the eigenvalues of B̂t is bounded below by the lower bound

in (3.45), or, equivalently,
∏p
i=1 λi ≥ m̃p+τ/[(p+ τ)M̃]τ . Hence, for any given eigenvalue of

B̂t, say λj , we have

λj ≥
1∏p

k=1,k 6=j λk
× m̃p+τ[

(p+ τ)M̃
]τ . (3.69)

But in the first part of this proof we have already showed that (p+ τ)M̃ is a lower bound

for the eigenvalues of B̂t. We can then conclude that the product of the p − 1 eigenvalues∏p
k=1,k 6=j λk is bounded above by [(p+ τ)M̃]p−1, i.e.,

n∏
k=1,k 6=j

λk ≤
[
(p+ τ)M̃

]p−1
. (3.70)

Combining the inequalities in (3.69) and (3.70) we conclude that for any specific eigenvalue

of B̂t can be lower bounded as

λj ≥
1[

(p+ τ)M̃
]p−1 × m̃p+τ[

(p+ τ)M̃
]τ . (3.71)

Since inequality (3.71) is true for all the eigenvalues of B̂t, the left inequality (3.67) holds

true. �

73

The bounds in Lemma 6 imply that their respective inverses are bounds on the range of

the eigenvalues of the Hessian inverse approximation matrix B̂−1t . Specifically, the minimum

eigenvalue of the Hessian inverse approximation B̂−1t is larger than 1/C and the maximum

eigenvalue of B̂−1t does not exceed 1/c, or, equivalently,

1

C
I � B̂−1t � 1

c
I . (3.72)

We further emphasize that the bounds in (3.72), or (3.67) for that matter, limit the con-

ditioning of B̂−1t for all realizations of the random samples {θ̃t}∞t=0, irrespective of the

particular random draw. Having matrices B̂−1t that are strictly positive definite with eigen-

values uniformly upper bounded by 1/c leads to the conclusion that if ŝ(wt, θ̃t) is a descent

direction, the same holds true of B̂−1t ŝ(wt, θ̃t). The stochastic gradient ŝ(wt, θ̃t) is not a

descent direction in general, but we know that this is true for its conditional expectation

E[ŝ(wt, θ̃t)
∣∣wt] = ∇F (wt). Hence, we conclude that B̂−1t ŝ(wt, θ̃t) is an average descent

direction since E[B̂−1t ŝ(wt, θ̃t)
∣∣wt] = B̂−1t ∇F (wt). Stochastic optimization methods whose

displacements wt+1−wt are descent directions on average are expected to approach optimal

arguments. We show that this is true of oLBFGS in the following lemma.

Lemma 7 Consider the online Limited memory BFGS algorithm as defined by the descent

iteration in (3.10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the

update in (3.13) initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (3.26). If Assumptions 4 and

5 hold true, the sequence of average function values F (wt) satisfies

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)−

εt
C
‖∇F (wt)‖2 +

MS2ε2t
2c2

. (3.73)

Proof: The proof is standard in stochastic optimization and provided here for reference.

As it follows from Assumption 1 the eigenvalues of the Hessian H(wt) = Eθ̃[Ĥ(wt, θ̃t)] =

∇2
wF (wt) are bounded between 0 < m and M < ∞ as stated in (3.32). Taking a Taylor’s

expansion of the function F (w) around w = wt and using the upper bound in the Hessian

eigenvalues we can write

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 −wt) +

M

2
‖wt+1 −wt‖2. (3.74)

From the definition of the oLBFGS update in (3.3) we can write the difference of two

consecutive variables wt+1 − wt as −εtB̂−1t ŝ(wt, θ̃t). Making this substitution in (3.74),

taking expectation with wt given in both sides of the resulting inequality, and observing

74

the fact that when wt is given the Hessian approximation B̂−1t is deterministic we can write

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T B̂−1t E
[
ŝ(wt, θ̃t)

∣∣wt

]
+
ε2M

2
E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
. (3.75)

We proceed to bound the third term in the right hand side of (3.75). Start by observing

that the 2-norm of a product is not larger than the product of the 2-norms and that, as

noted above, with wt given the matrix B̂−1t is also given to write

E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤
∥∥∥B̂−1t ∥∥∥2 E

[∥∥∥ŝ(wt, θ̃t)
∥∥∥2∣∣wt

]
(3.76)

Notice that, as stated in (3.72), 1/c is an upper bound for the eigenvalues of B̂−1t . Further

observe that the second moment of the norm of the stochastic gradient is bounded by

E
[
‖ŝ(wt, θ̃t)‖2

∣∣wt

]
≤ S2, as stated in Assumption 2. These two upper bounds substituted

in (3.76) yield

E
[∥∥∥B̂−1t ŝ(wt, θ̃t)

∥∥∥2 ∣∣wt

]
≤ S2

c2
. (3.77)

Substituting the upper bound in (3.77) for the third term of (3.75) and further using the

fact that E
[
ŝ(wt, θ̃t)

∣∣wt

]
= ∇F (wt) in the second term leads to

E
[
F (wt+1)

∣∣wt

]
≤ F (wt)− εt∇F (wt)

T B̂−1t ∇F (wt) +
ε2tMS2

2c2
. (3.78)

We now find a lower bound for the second term in the right hand side of (3.78). As stated

in (3.72), 1/C is a lower bound for the eigenvalues of B̂−1t . This lower bound implies that

∇F (wt)
T B̂−1t ∇F (wt) ≥

1

C
‖∇F (wt)‖2 (3.79)

By substituting the lower bound in (3.79) for the corresponding summand in (3.78) the

result in (3.73) follows. �

Setting aside the term MS2ε2t /2c
2 for the sake of argument, (3.73) defines a super-

martingale relationship for the sequence of average functions F (wt). This implies that the

sequence εt‖∇F (wt)‖2/C is almost surely summable which, given that the step sizes εt are

nonsummable as per (3.31), further implies that the limit infimum lim inft→∞ ‖∇F (wt)‖
of the gradient norm ‖∇F (wt)‖ is almost surely null. This latter observation is equivalent

to having lim inft→∞ ‖wt − w∗‖2 = 0 with probability 1 over realizations of the random

samples {θ̃t}∞t=0. The term MS2ε2t /2c
2 is a relatively minor nuisance that can be taken

care of with a technical argument that we present in the proof of the following theorem.

75

Theorem 3 Consider the online Limited memory BFGS algorithm as defined by the descent

iteration in (3.10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the

update in (3.13) initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (3.26). If Assumptions 4-6

hold true the limit of the squared Euclidean distance to optimality ‖wt −w∗‖2 converges to

zero almost surely, i.e.,

Pr
[

lim
t→∞
‖wt −w∗‖2 = 0

]
= 1, (3.80)

where the probability is over realizations of the random samples {θ̃t}∞t=0.

Proof : The proof uses the relationship in the statement (3.73) of Lemma 7 to build a

supermartingale sequence. This is also a standard technique in stochastic optimization and

provided here for reference. Subtract the optimal objective function value F (w∗) from the

both sides of (3.73) to obtain

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤ F (wt)− F (w∗)− εt

C
‖∇F (wt)‖2 +

MS2ε2t
2c2

. (3.81)

To construct the supermartingale sequence define the stochastic process αt with values

αt := F (wt)− F (w∗) +
MS2

2c2

∞∑
u=t

ε2u. (3.82)

Observe that αt is well defined because the
∑∞

u=t ε
2
u <

∑∞
u=0 ε

2
u <∞ is summable. Further

define the sequence βt with values

βt :=
εt
C
‖∇F (wt)‖2. (3.83)

Let now Ft be a sigma-algebra measuring αt, βt, and wt. The conditional expectation of

αt+1 given Ft can be written as

E
[
αt+1

∣∣Ft] = E
[
F (wt+1)

∣∣Ft]− F (w∗) +
MS2

2c2

∞∑
u=t+1

ε2u, (3.84)

because the term (MS2/2c2)
∑∞

u=t+1 ε
2
u is just a deterministic constant. Substituting (3.73)

of Lemma 7 into (3.84) and using the definitions of αt in (3.82) and βt in (3.83) yields

E
[
αt+1

∣∣αt] ≤ αt − βt (3.85)

Since the sequences αt and βt are nonnegative it follows from (3.85) that they satisfy the

conditions of the supermartingale convergence theorem – see e.g. (Theorem E7.4 in [114])

. Therefore, we conclude that: (i) The sequence αt converges almost surely. (ii) The sum∑∞
t=0 βt < ∞ is almost surely finite. Using the explicit form of βt in (3.83) we have that

76

∑∞
t=0 βt <∞ is equivalent to

∞∑
t=0

εt
C
‖∇F (wt)‖2 <∞, a.s. (3.86)

Since the sequence of stepsizes is nonsummable, for (3.86) to be true we need to have a

vanishing subsequence embedded in ‖∇F (wt)‖2. By definition, this implies that the limit

infimum of the sequence ‖∇F (wt)‖2 is null almost surely,

lim inf
t→∞

‖∇F (wt)‖2 = 0, a.s. (3.87)

We transform the gradient bound in (3.87) into a bound pertaining to the objective function

value optimality F (wt)−F (w∗). To do so, simply observe that the strong convexity of the

average function F implies that for any points z and y

F (y) ≥ F (z) +∇F (z)T (y − z) +
m

2
‖y − z‖2. (3.88)

For fixed z, the right hand side of (3.88) is a quadratic function of y whose minimum

argument we can find by setting its gradient to zero. Doing this yields the minimizing

argument ŷ = z− (1/m)∇F (z) implying that for all y we must have

F (y) ≥ F (z) +∇F (z)T (ŷ − z) +
m

2
‖ŷ − z‖2

= F (z)− 1

2m
‖∇F (z)‖2. (3.89)

Observe that the bound in (3.89) holds true for all y and z. Setting values y = w∗ and

z = wt in (3.89) and rearranging the terms yields a lower bound for the squared gradient

norm ‖∇F (xt)‖2 as

‖∇F (wt)‖2 ≥ 2m(F (wt)− F (w∗)) (3.90)

Notice that according to the result in (3.87) a subsequence of ‖∇F (wt)‖2 converges to null

and lim inft→∞ ‖∇F (wt)‖2 = 0 almost surely. Observing the relationship in (3.90), we can

conclude that a subsequence of the objective value error F (wt)−F (w∗) sequence converges

to null which implies

lim inf
t→∞

F (wt)− F (w∗) = 0. a.s. (3.91)

Based on the martingale convergence theorem for the sequences αt and βt in relation (3.85),

the sequence αt almost surely converges to a limit. Consider the definition of αt in (3.82)

and observe that the sum
∑∞

u=t(γ
u)2 is deterministic and its limit is null. Therefore, the

limit limt→∞ F (wt) − F (w∗) of the nonnegative objective function errors F (wt) − F (w∗)

almost surely exists. This observation in association with the result in (3.92) implies that

77

the whole sequence of F (wt)− F (w∗) converges almost surely to zero,

lim
t→∞

F (wt)− F (w∗) = 0. a.s. (3.92)

The result in (3.92) holds because the sequence F (wt)− F (w∗) converges almost surely to

a limit, while a subsequence of this sequence converges to zero with probability 1 as stated

in (3.91). Combining these two observations, the limit that the whole sequence converges to

should be 0. To transform the objective function optimality bound in (3.92) into a bound

pertaining to the squared distance to optimality ‖wt −w∗‖2 simply observe that the lower

bound m on the eigenvalues of H(w∗) applied to a Taylor’s expansion around the optimal

argument wt implies that

F (wt) ≥ F (w∗) +∇F (w∗)T (wt −w∗) +
m

2
‖wt −w∗‖2 (3.93)

Notice that the optimal point gradient ∇F (x∗) is null. This observation and rearranging

the terms in (3.93) imply that

F (wt)− F (w∗) ≥ m

2
‖wt −w∗‖2. (3.94)

The upper bound in (3.94) for the squared norm ‖wt − w∗‖2 in association with the fact

that the sequence F (wt) − F (w∗) almost surely converges to null, leads to the conclusion

that the sequence ‖wt−w∗‖2 almost surely converges to null. Hence, the claim in (3.80) is

valid. �

Theorem 3 establishes convergence of a subsequence of the oLBFGS algorithm summa-

rized in Algorithm 3. The lower and upper bounds on the eigenvalues of B̂t derived in

Lemma 6 play a fundamental role in the proofs of the prerequisite Lemma 7 and Theorem

3 proper. Roughly speaking, the lower bound on the eigenvalues of B̂t results in an up-

per bound on the eigenvalues of B̂−1t which limits the effect of random variations on the

stochastic gradient ŝ(wt, θ̃t). If this bound does not exist – as is the case, e.g., of regular

stochastic BFGS – we may observe catastrophic amplification of random variations of the

stochastic gradient. The upper bound on the eigenvalues of B̂t, which results in a lower

bound on the eigenvalues of B̂−1t , guarantees that the random variations in the curvature

estimate B̂t do not yield matrices with arbitrarily small norm. If this bound does not hold,

it is possible to end up halting progress before convergence as the stochastic gradient is

nullified by multiplication with an arbitrarily small eigenvalue.

The result in Theorem 3 is strong because it holds almost surely over realizations of the

random samples {θ̃t}∞t=0 but not stronger than the same convergence guarantees that hold

for SGD. We complement the convergence result in Theorem 3 with a characterization of

78

the expected convergence rate that we introduce in the following theorem.

Theorem 4 Consider the online Limited memory BFGS algorithm as defined by the descent

iteration in (3.10) with matrices B̂−1t = B̂−1t,τ obtained after τ recursive applications of the

update in (3.13) initialized with B̂−1t,0 = γ̂tI and γ̂t as given by (3.26). Let Assumptions 4

and 5 hold, and further assume that the stepsize sequence is of the form εt = ε0/(t + T0)

with the parameters ε0 and T0 satisfying the inequality 2mε0T0/C > 1. Then, the difference

between the expected optimal objective E [F (wt)] and the optimal objective F (w∗) is bounded

as

E [F (wt)]− F (w∗) ≤ C0

T0 + t
, (3.95)

where the constant C0 is defined as

C0 := max

{
ε20 T

2
0CMS2

2c2(2mε0T0 − C)
, T0 (F (w0)− F (w∗))

}
. (3.96)

Proof: Consider the result in (3.73) of Lemma 7 and subtract the average function optimal

value F (w∗) from both sides of the inequality to conclude that the sequence of optimality

gaps in the RES algorithm satisfies

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤ F (wt)− F (w∗)− εt

C
‖∇F (wt)‖2 +

ε2tMS2

2c2
. (3.97)

We proceed to find a lower bound for the gradient norm ‖∇F (wt)‖ in terms of the error

of the objective value F (wt) − F (w∗) – this is a standard derivation which we include

for completeness, see, e.g., [20]. As it follows from Assumption 1 the eigenvalues of the

Hessian H(wt) are bounded between 0 < m and M < ∞ as stated in (3.32). Taking a

Taylor’s expansion of the objective function F (y) around w and using the lower bound in

the Hessian eigenvalues we can write

F (y) ≥ F (w) +∇F (w)T (y −w) +
m

2
‖y −w‖2. (3.98)

For fixed w, the right hand side of (3.98) is a quadratic function of y whose minimum

argument we can find by setting its gradient to zero. Doing this yields the minimizing

argument ŷ = w − (1/m)∇F (w) implying that for all y we must have

F (y) ≥ F (w) +∇F (w)T (ŷ −w) +
m

2
‖ŷ −w‖2

= F (w)− 1

2m
‖∇F (w)‖2. (3.99)

The bound in (3.99) is true for all w and y. In particular, for y = w∗ and w = wt (3.99)

79

yields

F (w∗) ≥ F (wt)−
1

2m
‖∇F (wt)‖2. (3.100)

Rearrange terms in (B.8) to obtain a bound on the gradient norm squared ‖∇F (wt)‖2.
Further substitute the result in (3.97) and regroup terms to obtain the bound

E
[
F (wt+1)

∣∣wt

]
− F (w∗) ≤

(
1− 2mεt

C

)(
F (wt)− F (w∗)

)
+
ε2tMS2

2c2
. (3.101)

Take now expected values on both sides of (3.101). The resulting double expectation in the

left hand side simplifies to E
[
E
[
F (wt+1)

∣∣wt

]]
= E [F (wt+1)], which allow us to conclude

that (3.101) implies that

E [F (wt+1)]− F (w∗) ≤
(

1− 2mεt
C

)(
E [F (wt)]− F (w∗)

)
+
ε2tMS2

2c2
. (3.102)

Furhter substituting εt=ε0T0/(T0 + t), which is the assumed form of the step size sequence

by hypothesis, we can rewrite (3.102) as

E [F (wt+1)]− F (w∗) ≤
(

1− 2mε0T0
(T0 + t)C

)(
E [F (wt)]− F (w∗)

)
+

(
ε0T0
T0 + t

)2MS2

2c2
.

(3.103)

Given that the product 2mε0T0/C > 1 as per the hypothesis, the sequence E [F (wt+1)] −
F (w∗) satisfies the hypotheses of Lemma 3 in Chapter 2 with the variables a = 2mε0T0/C,

b = ε20T
2
0MS2/2c2. It then follows from (2.65) and (2.66) that (3.95) is true for the C0

constant defined in (3.96) upon identifying ut with E [F (xt+1)] − F (x∗), C0 with Q, and

substituting c = 2mε0T0/C, b = ε20T
2
0MS2/2c2 and t0 = T0 for their explicit values. �

Theorem 4 shows that under specified assumptions the expected error in terms of the

objective value after t oLBFGS iterations is of order O(1/t). As is the case of Theorem 3,

this result is not better than the convergence rate of conventional SGD. As can be seen in the

proof of Theorem 4, the convergence rate is dominated by the noise term introduced by the

difference between stochastic and regular gradients. This noise term would be present even

if exact Hessians were available and in that sense the best that can be proven of oLBFGS

is that the convergence rate is not worse than that of SGD. Given that theorems 3 and 4

parallel the theoretical guarantees of SGD it is perhaps fairer to describe oLBFGS as an

adaptive reconditioning strategy instead of a stochastic quasi-Newton method. The latter

description refers to the genesis of the algorithm, but the former is more accurate description

of its behavior. Do notice that while the convergence rate doesn’t change, improvements

in convergence time are significant as we illustrate with the numerical experiments that we

80

present in the next two sections.

3.4 Support vector machines

Given a training set with points whose classes are known the goal of an SVM is to find

a hyperplane that best separates the training set. Let S = {(xi, yi)}Ni=1 be a training set

containing N pairs of the form (xi, yi), where xi ∈ Rp is a feature vector and yi ∈ {−1, 1}
is the corresponding class. The goal is to find a hyperplane supported by a vector w ∈ Rp

which separates the training set so that wTxi > 0 for all points with yi = 1 and wTxi < 0

for all points with yi = −1. A loss function l((x, y); w) defines a measure of distance

between the point xi and the hyperplane supported by w. We then select the hyperplane

supporting vector as

w∗ := argmin
w

λ

2
‖w‖2 +

1

N

N∑
i=1

l((xi, yi); w), (3.104)

where we have also added the regularization term λ‖w‖2/2 for some constant λ > 0. Com-

mon selections for the loss function are the hinge loss l((x, y); w) = max(0, 1 − y(wTx))

and the squared hinge loss l((x, y); w) = max(0, 1 − y(wTx))2. See, e.g., [15]. To model

(3.104) as a problem in the form of (3.1), define θi = (xi, yi) as a given training point and

the probability distribution of θ as uniform on the training set S = {(xi, yi)}Ni=1 = {θi}Ni=1.

It then suffices to define

f(w,θ) = f(w, (x, y)) :=
λ

2
‖w‖2 + l((x, y); w), (3.105)

as sample functions to see that the objective in (3.104) can be written as the average

F (w) = Eθ[f(w,θ)] as in (3.1). We can then use SGD, oBFGS, RES, and oLBFGS to

find the optimal classifier w∗. Recall that SGD utilizes stochastic gradients as descent

directions and can be formally defined by making B̂−1t = I in (3.10). The (deterministic)

BFGS algorithm utilizes recursions of the form in (3.3) with the Hessian approximation

matrix computed as in (3.5) with the gradient and variable variations as defined in (3.4).

The oBFGS algorithm utilizes stochastic gradients in lieu of stochastic gradients in both,

the descent iteration in (3.3) and the gradient variation computation in (3.4); see [105] for

details. RES differs in that it introduces a regularization of (3.3) to yield an algorithm that

retains its convergence advantages while improving theoretical convergence guarantees and

numerical behavior; see Chapter 2 for details. Finally, oLBFGS is defined be algorithms 2

and 3.

There are also several algorithms that accelerate SGD through the use of memory.

These algorithms reduce execution times because they reduce randomness, not because they

81

improve curvature, but are nonetheless alternatives to oLBFGS that work well for problems

with small condition number. We therefore add Stochastic Average Gradient (SAG) to the

comparison set as a representative of this class. SAG is a variant of SGD that uses an

average of stochastic gradients as a descent direction where only one of the elements of the

average is updated per iteration; see [104] for details. For these five algorithms – SGD,

oBFGS, RES, oLBFGS, and SAG – we compare achieved objective values with respect to

the number of feature vectors processed (Section 3.4.1) as well as with respect to processing

times (Section 3.4.2).

3.4.1 Convergence versus number of feature vectors processed

For numerical tests we use the squared hinge loss l((x, y); w) = max(0, 1 − y(xTw))2 in

(3.104). The training set S = {(xi, yi)}Ni=1 contains N = 104 feature vectors, half of which

belong to the class yi = −1 with the other half belonging to the class yi = 1. For the class

yi = −1 each of the p components of each of the feature vectors xi ∈ Rp is chosen uniformly

at random from the interval [−0.8, 0.2]. Likewise, each of the p components of each of

the feature vectors xi ∈ Rp is chosen uniformly at random from the interval [−0.2, 0.8] for

the class yi = 1. In all of our numerical experiments the parameter λ in (3.104) is set to

λ = 10−4. In order to study the advantages of oLBFGS we consider two different cases where

the dimensions of the feature vectors p are different. The size of memory for oLBFGS is set to

τ = 10 in all cases. For SGD and SAG the sample size in (3.9) is L = 1 and for RES, oBFGS

and oLBFGS is L = 5. In all tests, the number of feature vectors processed is represented by

the product Lt between the iteration index and the sample size used to compute stochastic

gradients. This is done because the sample sizes are different. For SGD, oBFGS, RES,

and oLBFGS we use a decreasing stepsize sequence of the form εt = ε0T0/(T0 + t), while

for the SAG algorithm the stepsize is a constant εt = ε. This is done because the first

four algorithms require diminishing stepsizes to converge to the optimal argument [81],

while SAG achieves exact convergence with properly chosen constant stepsize [104]. We

report results for ε0 = 2 × 10−2 and T0 = 102 for RES, oLBFGS and oBFGS, which are

the values that yield best average performance after processing 4 × 104 feature vectors.

Further improvements can be obtained by tuning stepsize parameters individually for each

individual algorithm and feature dimension p. Since these improvements are minor we report

common parameters for easier reproducibility. For SGD and SAG, whose performance is

more variable, we tune the various parameters individually for each dimension p and report

results for the combination that yields best average performance after processing 4 × 104

feature vectors.

Figure 3.1 illustrates sample convergence paths for SGD, SAG, oLBFGS, RES, and

oBFGS. The figures are shown for Lt = 4 ≤ 104, which is equivalent to 4 passes over the

82

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
−1.6

10
−1.5

10
−1.4

10
−1.3

10
−1.2

10
−1.1

Number of feature vectors processed Lt

O
b
je
ct
iv
e
fu

n
ct
io
n
v
a
lu
e
(F

(w
t
))

oBFGS
RES
oLBFGS
SGD
SAG

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

Number of feature vectors processed Lt

O
b
je
ct
iv
e
fu

n
ct
io
n
v
a
lu
e
(F

(w
t
))

SGD
SAG
oLBFGS
RES
oBFGS

(b)

Figure 3.1: Illustrations of objective function values F (wt) for SGD, SAG, oBFGS, RES, and
oLBFGS after processing Lt = 4 × 104 feature vectors for the cases p = 5 (left) and p = 102

(right). For the case that p = 5, SAG and SGD outperform oLBFGS, RES, and oBFGS since the
condition number is small. By increasing the dimension of feature vectors to p = 102, the condition
number of the problem increases and stochastic quasi-Newton methods reach a smaller objective
function relative to SGD and SAG after processing the same number of feature vectors.

dataset. Results for feature vector dimension p = 5 and p = 102 are shown in subfigures (a)

and (b), respectively. When the feature vector dimension p is small, the condition number

of the optimization argument is not large. In this case SGD and its accelerated version

SAG converge to the optimal argument faster than any of the stochastic quasi-Newton

methods as can be seen in Figure 3.1(a). E.g., at the end of the period shown when we

have processed Lt = 4× 104 the objective function values for SGD and SAG are 3.4× 10−2

and 2.5 × 10−2, while the values of objective function for oLBFGS, RES, and oBFGS are

(3.9± 0.1) × 10−2, 3.8× 10−2. For these well conditioned problems SAG is the method of

choice. The situation is reversed when the feature vector dimension is p = 102 as the quasi-

Newton methods oBFGS, RES, and oLBFGS do better than SGD and SAG. According to

Figure 3.1(b) the objective function values for oLBFGS, oBFGS, and RES are 1.9× 10−5,

1.3 × 10−5, and 1.5 × 10−5, respectively. The objective function values for SGD and SAG

after processing the same number of feature vectors Lt = 44 are 1.8× 10−3 and 5.4× 10−4,

respectively. For these ill conditioned problems the quasi-Newton methods are preferable.

To have a more comprehensive comparison of oLBFGS, RES, oBFGS, SGD, and SAG

we run these algorithms for J = 103 realizations to compare the empirical distributions of

objective function value for these five algorithms. Figures 3.2 and 3.3 show the empirical

distributions of the objective function value F (wt) attained after processing Lt = 4 ×
104 feature vectors using J = 103 realizations for the cases that p = 102 and p = 103,

respectively. According to Figure 3.2 the averages of objective value function for oLBFGS,

oBFGS and RES are 1.7×10−5, 1.4×10−5 and 1.9×10−5, respectively. These numbers show

that the performance of oLBFGS is very close to the performances of oBFGS and RES. This

83

1.5 2 2.5 3 3.5

x 10
−5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oLBFGS

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
−5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oBFGS

1.5 2 2.5 3 3.5

x 10
−5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

RES

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
−3

0

0.02

0.04

0.06

0.08

0.1

0.12

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SGD

4 4.5 5 5.5 6 6.5 7 7.5

x 10
−4

0

0.02

0.04

0.06

0.08

0.1

0.12

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SAG
Objective function value

Algorithm Minimum Average Maximum

oLBFGS 1.3×10−5 1.7×10−5 3.4×10−5

oBFGS 1.2×10−5 1.4×10−5 2.0×10−5

RES 1.5×10−5 1.9×10−5 3.3×10−5

SGD 1.2×10−3 1.6×10−3 1.9×10−3

SAG 4.4×10−4 5.7×10−4 7.1×10−4

Figure 3.2: Histograms of objective function value F (wt) after processing Lt = 4 × 104 feature
vectors for p = 102. The values of objective function for oLBFGS, oBFGS and RES are close to
each other and smaller than the objective function values for SAG and SGD.

similarity holds despite the fact that oLBFGS uses only the last τ = 10 stochastic gradients

to estimate curvature whereas oBFGS and RES utilize all past stochastic gradients to do

so. The advantage of oLBFGS is in the smaller computational cost of processing feature

vectors as we discuss in Section 3.4.2. The corresponding average objective values achieved

by SGD and SAG after processing Lt = 4×104 feature vectors are 1.6×10−3 and 5.7×10−4,

respectively. Both of these are at least an order of magnitude larger than the average

objective value achieved by oLBFGS – or RES and oBFGS for that matter.

Figure 3.3 repeats the study in Figure 3.2 for the case in which the feature vector

dimension is increased to p = 103. The performance of oLBGS is still about the same

as the performances of oBFGS and RES. The average objective function values achieved

after processing Lt = 4 × 104 feature vectors are 9.9 × 10−6, 9.8 × 10−6 and 9.5 × 10−6

for oLBFGS, oBFGS and RES, respectively. The relative performance with respect to

SGD and SAG, however, is now larger. The averages of objective function values for SAG

84

8.5 9 9.5 10 10.5 11 11.5

x 10
−6

0

0.02

0.04

0.06

0.04

0.1

0.12

0.14

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oLBFGS

8.5 9 9.5 10 10.5 11 11.5

x 10
−6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oBFGS

8 8.5 9 9.5 10 10.5 11 11.5

x 10
−6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

RES

0.04 0.042 0.044 0.046 0.048 0.05 0.052
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SGD

0.018 0.019 0.02 0.021 0.022 0.023 0.024 0.025
0

0.02

0.04

0.06

0.08

0.1

0.12

Objective function value (F (wt))

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SAG
Objective function value

Algorithm Minimum Average Maximum

oLBFGS 8.6×10−6 9.9×10−6 11.5×10−6

oBFGS 8.5×10−6 9.8×10−6 11.4×10−6

RES 7.9×10−6 9.5×10−6 11.3×10−6

SGD 4.1×10−2 4.5×10−2 5.1×10−2

SAG 1.9×10−2 2.1×10−2 2.4×10−2

Figure 3.3: Histograms of objective function value F (wt) after processing Lt = 4 × 104 feature
vectors for p = 103. The values of objective function for oBFGS, oLBFGS and RES are close to
each other and smaller than the objective function values for SAG and SGD.

and SGD in this case are 2.1 × 10−2 and 4.5 × 10−2, respectively. These values are more

than 3 orders of magnitude larger than the corresponding values achieved by oLBFGS.

This relative improvement can be further increased if we consider problems of even larger

dimension. Further observe that oBFGS and RES start to become impractical if we further

increase the feature vector dimension since the respective iterations have computational

costs of order O(p2) and O(p3). We analyze this in detail in the following section.

3.4.2 Convergence versus processing time

The analysis in Section 3.4.1 is relevant for online implementations in which the goal is to

make the best possible use of the information provided by each new acquired feature vector.

In implementations where computational cost is of dominant interest we have to account

for the fact that the respective iteration costs are of order O(p) for SGD and SAG, of order

85

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oLBFGS

0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

0.1

0.2

0.3

0.4

0.5

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oBFGS

0.2 0.25 0.3 0.35 0.4 0.45
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

RES

0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SGD

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54
0

0.05

0.1

0.15

0.2

0.25

0.3

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SAG Objective function value

Algorithm Minimum Average Maximum

oLBFGS 0.0574 0.0734 0.0897

oBFGS 0.1149 0.1485 0.2375

RES 0.2150 0.2609 0.4623

SGD 0.6057 0.6364 0.6639

SAG 0.4682 0.5017 0.5300

Figure 3.4: Histograms of required CPU runtime for achieving objective function value F (wt) = 10−4

when p = 102. The convergence time of oLBFGS is smaller than the required runtimes of oBFGS
and RES, while SAG and SGD are slower than all the three quasi-Newton methods.

O(τp) for oLBFGS, and of orders O(p2) and O(p3) for oBFGS and RES. As we increase the

problem dimension we expect the convergence time advantages of oBFGS and RES in terms

of number of feature vectors processed to be overwhelmed by the increased computational

cost of each iteration. For oLBFGS, on the contrary, we expect the convergence time

advantages in terms of number of feature vectors processed to persist in terms of processing

time. To demonstrate that this is the case we repeat the experiments in Section 3.4.1 but

record the processing time required to achieve a target objective value. The parameters

used here are the same parameters of Section 3.4.1.

In Figure 3.4 we consider p = 102 and record the processing time required to achieve the

objective function value F (wt) = 10−4. Histograms representing empirical distributions

of execution times measured in seconds (s) are shown for oLBFGS, oBFGS, RES, SGD,

and SAG. We also summarize the average minimum and maximum times observed for each

algorithm. The average run times for oBFGS and RES are 0.14 s and 0.26 s which are better

86

0.112 0.114 0.116 0.118 0.12 0.122 0.124
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oLBFGS

3.8 4 4.2 4.4 4.6 4.8 5
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

oBFGS

7.4 7.6 7.8 8 8.2 8.4 8.6 8.8
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

RES

2 2.02 2.04 2.06 2.08 2.1
0

0.04

0.08

0.12

0.16

0.2

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SGD

1.4 1.41 1.42 1.43 1.44 1.45 1.46 1.47
0

0.04

0.08

0.12

0.16

0.2

Runtime until convergence (seconds)

E
m
p
ir
ic
a
l
d
is
tr
ib
u
ti
o
n

SAG Objective function value

Algorithm Minimum Average Maximum

oLBFGS 0.1139 0.1153 0.1230

oBFGS 3.90 4.11 4.83

RES 7.44 7.73 8.61

SGD 2.01 2.03 2.10

SAG 1.40 1.42 1.46

Figure 3.5: Histograms of required CPU runtime for achieving objective function value F (wt) = 10−5

when p = 103. SAG and SGD have a faster convergence time in comparison to oBFGS and RES,
while oLBFGS is the fastest algorithm among all.

than the average run times of SGD and SAG that stand at 0.63 s and 0.50 s. The advantage,

however, is less marked than when measured with respect to the number of feature vector

processed. For oLBGS the advantage with respect to SGD and SAG is still close to one

order of magnitude since the average convergence time stands at 0.073 s. When measured

in computation time oLBGS is also better than RES and oBFGS, as expected.

Figure 3.5 presents the analogous histograms and summary statistics when the feature

vector dimension is p = 103 and the algorithm is run until achieving the objective value

F (wt) = 10−5. For this problem and metric the performances of RES and oBFGS are worse

than the corresponding performances of SGD and SAG. The respective average convergence

times are 7.7 s and 4.1 s for RES and oBFGS and 1.4 s and 2.0 s for SAG and SGD. The

oLBFGS algorithm, however, has an average convergence time of 0.11 s. This is still an

order of magnitude faster than the first order methods SAG and SGD – and has an even

larger advantage with respect to oBFGS and RES, by extension. The relative reduction of

87

execution times of oLBGS relative to all other 4 methods becomes more marked for problems

of larger dimension. We investigate these advantages on the search engine advertising

problem that we introduce in the following section.

3.5 Search engine advertising

We apply oLBFGS to the problem of predicting the click-through rate (CTR) of an ad-

vertisement displayed in response to a specific search engine query by a specific visitor.

In these problems we are given meta information about an advertisement, the words that

appear in the query, as well as some information about the visitor and are asked to predict

the likelihood that this particular ad is clicked by this particular user when performing this

particular query. The information specific to the ad includes descriptors of different char-

acteristics such as the words that appear in the title, the name of the advertiser, keywords

that identify the product, and the position on the page where the ad is to be displayed.

The information specific to the user is also heterogeneous and includes gender, age, and

propensity to click on ads. To train a classifier we are given information about past queries

along with the corresponding click success of the ads displayed in response to the query.

The ad metadata along with user data and search words define a feature vector that we use

to train a logistic regressor that predicts the CTR of future ads. Given the heterogeneity

of the components of the feature vector we expect a logistic cost function with skewed level

sets and consequent large benefits from the use of oLBFGS.

3.5.1 Feature vectors

For the CTR problem considered here we use the Tencent search engine data set [116]. This

data set contains the outcomes of 236 million (236 × 106) searches along with information

about the ad, the query, and the user. The information contained in each sample point is

the following:

• User profile: If known, age and gender of visitor performing query.

• Depth: Total number of advertisements displayed in the search results page.

• Position: Position of the advertisement in the search page.

• Impression: Number of times the ad was displayed to the user who issued the query.

• Query: The words that appear in the user’s query.

• Title: The words that appear in the title of ad.

• Keywords: Selected keywords that specify the type of product.

88

• Ad ID: Unique identifier assigned to each specific advertisement.

• Advertiser ID: Unique identifier assigned to each specific advertiser.

• Clicks: Number of times the user clicked on the ad.

From this information we create a set of feature vectors {xi}Ni=1, with corresponding

labels yi ∈ {−1, 1}. The label associated with feature vector xi is yi = 1 if the number of

clicks in the ad is more than 0. Otherwise the label is yi = −1. We use a binary encoding

for all the features in the vector xi. For the age of the user we use the six age intervals

(0, 12], (12, 18], (18, 24], (24, 30], (30, 40], and (40,∞) to construct six indicator entries in

xi that take the value 1 if the age of the user is known to be in the corresponding interval.

E.g., a 21 year old user has an age that falls in the third interval which implies that we

make [xi]3 = 1 and [xi]k = 0 for all other k between 1 and 6. If the age of the user is

unknown we make [xi]k = 0 for all k between 1 and 6. For the gender of the visitors we use

the next three components of xi to indicate male, female, or unknown gender. For a male

user we make [xi]7 = 1, for a female user [xi]8 = 1, and for visitors of unknown gender we

make [xi]9 = 1. The next three components of xi are used for the depth feature. If the the

number of advertisements displayed in the search page is 1 we make [xi]10 = 1, if 2 different

ads are shown we make [xi]11 = 1, and for depths of 3 or more we make [xi]12 = 1. To

indicate the position of the ad in the search page we also use three components of xi. We

use [xi]13 = 1, [xi]14 = 1, and [xi]15 = 1 to indicate that the ad is displayed in the first,

second, and third position, respectively. Likewise we use [xi]16, [xi]17 and [xi]18 to indicate

that the impression of the ad is 1, 2 or more than 3.

For the words that appear in the query we have in the order of 105 distinct words. To

reduce the number of elements necessary for this encoding we create 20,000 bags of words

through random hashing with each bag containing 5 or 6 distinct words. Each of these bags

is assigned an index k. For each of the words in the query we find the bag in which this

word appears. If the word appears in the kth bag we indicate this occurrence by setting

the k + 18th component of the feature vector to [xi]k+18 = 1. Observe that since we use

20,000 bags, components 19 through 20,018 of xi indicate the presence of specific words

in the query. Further note that we may have more than one xi component different from

zero because there may be many words in the query, but that the total number of nonzero

elements is much smaller than 20,000. On average, 3.0 of these elements of the feature

vector are nonzero. The same bags of words are used to encode the words that appear in

the title of the ad and the product keywords. We encode the words that appear in the title

of the ad by using the next 20, 000 components of vector xi, i.e. components 20, 019 through

40, 018. Components 40, 019 through 60, 018 are used to encode product keywords. As in

the case of the words in the search just a few of these components are nonzero. On average,

89

Table 3.1: Components of the feature vectors for prediction of advertisements click-through rates.
For each feature class we report the total number of components in the feature vector as well as the
maximum and average number of nonzero components.

Nonzero components

Feature type Total components Max. (observed/structure) Mean (observed)

Age 6 1 (structure) 1.0

Gender 3 1 (structure) 1.0

Impression 3 1 (structure) 1.0

Depth 3 1 (structure) 1.0

Position 3 1 (structure) 1.0

Query 20,000 125 (observed) 3.0

Title 20,000 29 (observed) 8.8

Keyword 20,000 16 (observed) 2.1

Advertiser ID 5,184 1 (structure) 1.0

Advertisement ID 108,824 1 (structure) 1.0

Total 174,026 148 (observed) 20.9

the number of non-zero components of feature vectors that describe the title features is

8.8. For product keywords the average is 2.1. Since the number of distinct advertisers

in the training set is 5, 184 we use feature components 60, 019 through 65202 to encode

this information. For the kth advertiser ID we set the k + 60, 018th component of the

feature vector to [xi]k+60,018 = 1. Since the number of distinct advertisements is 108, 824

we allocate the last 108, 824 components of the feature vector to encode the ad ID. Observe

that only one out of 5, 184 advertiser ID components and one of the 108, 824 advertisement

ID components are nonzero.

In total, the length of the feature vector is 174,026 where each of the components are

either 0 or 1. The vector is very sparse. We observe a maximum of 148 nonzero elements and

an average of 20.9 nonzero elements in the training set – see Table 3.1. This is important

because the cost of implementing inner products in the oLBFGS training of the logistic

regressor that we introduce in the following section is proportional to the number of nonzero

elements in xi.

3.5.2 Logistic regression of click-through rate

We use the training set to estimate the CTR with a logistic regression. For that purpose

let x ∈ Rp be a vector containing the features described in Section 3.5.1, w ∈ Rp a classifier

that we want to train, and y ∈ −1, 1 an indicator variable that takes the value y = 1 when

the ad presented to the user is clicked and y = −1 when the ad is not clicked by the user.

We hypothesize that the CTR, defined as the probability of observing y = 1, can be written

90

as the logistic function

CTR(x; w) := P
[
y = 1

∣∣x; w
]

=
1

1 + exp
(
− xTw

) . (3.106)

We read (3.106) as stating that for a feature vector x the CTR is determined by the inner

product xTw through the given logistic transformation.

Consider now the training set S = {(xi, yi)}Ni=1 which contains N realizations of features

xi and respective click outcomes yi and further define the sets S1 := {(xi, yi) ∈ S : yi = 1}
and S−1 := {(xi, yi) ∈ S : yi = −1} containing clicked and unclicked advertisements,

respectively. With the data given in S we define the optimal classifier w∗ as a maximum

likelihood estimate (MLE) of w given the model in (3.106) and the training set S. This

MLE can be found as the minimizer of the log-likelihood loss

w∗ := argmin
λ

2
‖w‖2 +

1

N

N∑
i=1

log
(

1 + exp
(
− yixTi w

))
= argmin

λ

2
‖w‖2 +

1

N

[∑
xi∈S1

log
(

1 + exp(−xTi w)
)

+
∑

xi∈S−1

log
(

1 + exp(xTi w)
)]

,

(3.107)

where we have added the regularization term λ‖w‖2/2 to disincentivize large values in the

weight vector w∗; see e.g., [86].

The practical use of (3.106) and (3.107) is as follows. We use the data collected in

the training set S to determine the vector w∗ in (3.107). When a user issues a query we

concatenate the user and query specific elements of the feature vector with the ad specific

elements of several candidate ads. We then proceed to display the advertisement with, say,

the largest CTR. We can interpret the set S as having been acquired offline or online. In the

former case we want to use a stochastic optimization algorithm because computing gradients

is infeasible – recall that we are considering training samples with a number of elements N

in the order of 106. The performance metric of interest in this case is the logistic cost as a

function of computational time. If elements of S are acquired online we update w whenever

a new vector becomes available so as to adapt to changes in preferences. In this case we

want to exploit the information in new samples as much as possible. The correct metric in

this case is the logistic cost as a function of the number of feature vectors processed. We

use the latter metric for the numerical experiments in the following section.

91

0 0.5 1 1.5 2 2.5 3

x 10
4

10
0

10
1

Number of processed feature vectors(Lt)

O
b
je
ct
iv
e
fu
n
ct
io
n
v
a
lu
e
F
(w

t
)

SGD

oLBFGS

Figure 3.6: Illustration of Negative log-likelihood value for oLBFGS and SGD after processing certain
amount of feature vectors. The accuracy of oLBFGS is better than SGD after processing a specific
number of feature vectors.

3.5.3 Numerical results

Out of the 236×106 in the Tencent dataset we select 106 sample points to use as the training

set S and 105 sample points to use as a test set T . To select elements of the training and

test set we divide the first 1.1×106 sample points of the complete dataset in 105 consecutive

blocks with 11 elements. The first 10 elements of the block are assigned to the training set

and the 11th element to the test set. To solve for the optimal classifier we implement SGD

and oLBFGS by selecting feature vectors xi at random from the training set S. In all of our

numerical experiments the regularization parameter in (3.107) is λ = 10−6. The stepsizes

for both algorithms are of the form εt = ε0T0/(T0 + t). We set ε0 = 10−2 and T0 = 104

for oLBFGS and ε0 = 10−1 and T0 = 106 for SGD. For SGD the sample size in (3.9) is

set to L = 20 whereas for oLBFGS it is set to L = 100. The values of parameters ε0, T0,

and L are chosen to yield best convergence times in a rough parameter optimization search.

Observe the relatively large values of L that are used to compute stochastic gradients. This

is necessary due to the extreme sparsity of the feature vectors xi that contain an average

of only 20.9 nonzero out 174,026 elements. Even when considering L = 100 vectors they

are close to orthogonal. The size of memory for oLBFGS is set to τ = 10. With L = 100

features with an average sparsity of 20.9 nonzero elements and memory τ = 10 the cost of

each LBGS iteration is in the order of 2.1× 104 operations.

Figure 3.6 illustrates the convergence path of SGD and oLBFGS on the advertising

training set. We depict the value of the log likelihood objective in (3.107) evaluated at

w = wt where wt is the classifier iterate determined by SGD or oLBFGS. The horizontal

axis is scaled by the number of feature vectors L that are used in the evaluation of stochastic

gradients. This results in a plot of log likelihood cost versus the number Lt of feature

92

vectors processed. To read iteration indexes from Figure 3.6 divide the horizontal axis

values by L = 100 for oLBGS and L = 20 for SGD. Consistent with the synthetic data

results in Section 3.4, the curvature correction of oLBFGS results in significant reductions

in convergence time. For way of illustration observe that after processing Lt = 3 × 104

feature vectors the objective value achieved by oLBFGS is F (wt) = 0.65, while for SGD it

still stands at F (wt) = 16 which is a meager reduction from the random initialization point

at which F (w0) = 30. In fact, oLBFGS converges to the minimum possible log likelihood

cost F (wt) = 0.65 after processing 1.7 × 104 feature vectors. This illustration hints that

oLBGS makes better use of the information available in feature vectors.

To corroborate that the advantage of oLBGS is not just an artifact of the structure of

the log likelihood cost in (3.107) we process 2× 104 feature vectors with SGD and oLBFGS

and evaluate the predictive accuracy of the respective classifiers on the test set. As measures

of predictive accuracy we adopt the frequency histogram of the predicted click through rate

CTR(x; w) for all clicked ads and the frequency histogram of the complementary predicted

click through rate 1−CTR(x; w) for all the ads that were not clicked. To do so we separate

the test set by defining the set T1 := {(xi, yi) ∈ T : yi = 1} of clicked ads and the set

T−1 := {(xi, yi) ∈ T : yi = −1} of ads in the test set that were not clicked. For a given

classifier w we compute the predicted probability CTR(xi; w) for each of the ads in the

clicked set T1. We then consider a given interval [a, b] and define the frequency histogram

of the predicted click through rate as the fraction of clicked ads for which the prediction

CTR(xi; w) falls in [a, b],

H1(w; a, b) :=
1

#(T1)
∑

(xi,yi)∈T1

I
{

CTR(xi; w) ∈ [a, b]
}
, (3.108)

where #(T1) denotes the cardinality of the set T1. Likewise, we consider the ads in the

set T−1 that were not clicked and compute the prediction 1 − CTR(xi; w) on the proba-

bility of the ad not being clicked. We then consider a given interval [a, b] and define the

frequency histogram H−1(w; a, b) as the fraction of unclicked ads for which the prediction

1− CTR(xi; w) falls in [a, b],

H−1(w; a, b) :=
1

#(T−1)
∑

(xi,yi)∈T−1

I
{

1− CTR(xi; w) ∈ [a, b]
}
. (3.109)

The histogram H1(w; a, b) in (3.108) allows us to study how large the predicted probability

CTR(xi; w) is for the clicked ads. Conversely, the histogram H−1(w; a, b) in (3.109) gives

an indication of how large the predicted probability 1 − CTR(xi; w) is for the unclicked

ads. An ideal classifier is one for which the frequency counts in H1(w; a, b) accumulate at

CTR(xi; w) = 1 and for whichH−1(w; a, b) accumulates observations at 1−CTR(xi; w) = 1.

93

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Predicted click through rate (CTR(x;w)) for clicked ads in the test set

(C
T
R
(x

;w
))

F
re
q
u
en

cy
fo
r
cl
ic
k
ed

a
d
s

SGD

oLBFGS

(a)

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Complementary predicted click through rate (1− CTR(x;w)) for unclicked ads in the test set

(1
−

C
T
R
(x

;w
))

F
re
q
u
en

cy
fo
r
u
n
cl
ic
k
ed

a
d
s

SGD

oLBFGS

(b)

Figure 3.7: Performance of classifier after processing 2×104 feature vectors with SGD and oLBFGS
for the cost in (3.107). Histograms for: (a) predicted click through rate CTR(x; w) for all clicked ads;
and (b) complementary predicted click through rate 1−CTR(x; w) for all unclicked ads. For an ideal
classifier that predicts a click probability CTR(x; w) = 1 for all clicked ads and a click probability
CTR(x; w) = 0 for all unclicked ads the frequency counts in H1(w; a, b) and H−1(w; a, b) would
accumulate in the [0.9, 1] bin. Neither SGD nor oLBFGS compute acceptable classifiers because the
number of clicked ads in the test set is very small and predicting CTR(x; w) = 0 for all ads is close
to the minimum of (3.107).

This corresponds to a classifier that predicts a click probability of 1 for all ads that were

clicked and a click probability of 0 for all ads that were not clicked.

Fig. 3.7(a) shows the histograms of predicted click through rate CTR(x; w) for all

clicked ads by oLBFGS and SGD classifiers after processing 2× 104 training sample points.

oLBFGS classifier for 88% of test points in T1 predicts CTR(x; w) in the interval [0, 0.1]

and the classifier computed by SGD estimates the click through rate CTR(x; w) in the

same interval for 37% of clicked ads in the test set. These numbers shows the inaccurate

click through rate predictions of both classifiers for the test points with label y = 1. Al-

though, SGD and oLBFGS classifiers have catastrophic performances in predicting click

through rate CTR(x; w) for the clicked ads in the test set, they perform well in estimating

complementary predicted click through rate 1 − CTR(x; w) for the test points with label

y = −1. This observation implied by Fig. 3.7(b) which shows the histograms of comple-

mentary predicted click through rate 1−CTR(x; w) for all not clicked ads by oLBFGS and

SGD classifiers after processing 2×104 training sample points. As it shows after processing

2 × 104 sample points of the training set the predicted probability 1 − CTR(x; w) by the

SGD classifier for 38.8% of the test points are in the interval [0.9, 1], while for the classifier

computed by oLBFGS 97.3% of predicted probability 1 − CTR(x; w) are in the interval

[0.9, 1] which is a significant performance.

The reason for the inaccurate predictions of both classifiers is that most elements in

the training set S are unclicked ads. Thus, the minimizer w∗ of the log likelihood cost in

(3.107) is close to a classifier that predicts CTR(x; w∗) ≈ 0 for most ads. Indeed, out of the

94

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1]
0

0.1

0.2

0.3

0.4

0.5

0.6

Predicted click through rate (CTR(x;w)) for clicked ads in the test set

(C
T
R
(x

;w
))

F
re
q
u
en

cy
fo
r
cl
ic
k
ed

a
d
s

SGD

oLBFGS

(a)

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1]
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Complementary predicted click through rate (1− CTR(x;w)) for unclicked ads in the test set

(1
−

C
T
R
(x

;w
))

F
re
q
u
en

cy
fo
r
u
n
cl
ic
k
ed

a
d
s

SGD

oLBFGS

(b)

Figure 3.8: Performance of classifier after processing 2×104 feature vectors with SGD and oLBFGS
for the cost in (3.110). Histograms for: (a) predicted click through rate CTR(x; w) for all clicked ads;
and (b) complementary predicted click through rate 1−CTR(x; w) for all unclicked ads. For an ideal
classifier that predicts a click probability CTR(x; w) = 1 for all clicked ads and a click probability
CTR(x; w) = 0 for all unclicked ads the frequency counts in H1(w; a, b) and H−1(w; a, b) would
accumulate in the [0.9, 1] bin. The classifier computed by oLBFGS is much more accurate than the
one computed by SGD.

106 elements in the training set, 94.8% of them have labels yi = −1 and only the remaining

5.2× 104 feature vectors correspond to clicked ads. To overcome this problem we replicate

observations with labels yi = 1 to balance the representation of both labels in the training

set. Equivalently, we introduce a constant γ and redefine the log likelihood objective in

(3.107) to give a larger weight to feature vectors that correspond to clicked ads,

w∗ = argmin
λ

2
‖w‖2 +

1

M

[
γ
∑

xi∈S1

log
(

1 + exp(−xTi w)
)

+
∑

xi∈S−1

log
(

1 + exp(xTi w)
)]
,

(3.110)

where we defined M := γ#(S1) + #(S−1) to account for the replication of clicked featured

vectors that is implicit in (3.110). To implement SGD and oLBFGS in the weighted log

function in (3.110) we need to bias the random choice of feature vector so that vectors in

S1 are γ times more likely to be selected than vectors in S2. Although our justification to

introduce γ is to balance the types of feature vectors, γ is just a tradeoff constant to increase

the percentage of correct predictions for clicked ads – which is close to zero in Figure 3.7 –

at the cost of reducing the accuracy of correct predictions of unclicked ads – which is close

to one in Figure 3.7.

We repeat the experiment of processing 2× 104 feature vectors that we sumamrized in

Figure 3.7 but now we use the objective cost in (3.110) instead of the cost in (3.107). We set

γ = 18.2 which makes replicated clicked ads as numerous as unclicked ads. The resulting

SGD and oLBFGS histograms of the predicted click through rates for all clicked ads and

complementary predicted click through rates for all unclicked ads are shown in Figure 3.8.

In particular, Figure 7.8(a) shows the histograms of predicted click through rate CTR(x; w)

95

for all clicked ads after processing 2× 104 training sample points. The modification of the

log likelihood cost increases the accuracy of the oLBFGS classifier which is now predicting a

click probability CTR(x; w) ∈ [0.9, 1] for 54.7% of the ads that were indeed clicked. There

is also improvement for the SGD classifier but the prediction is much less impressive. Only

15.5% of the clicked ads are associated with a click probability prediction in the interval

[0.9, 1]. This improvement is at the cost of reducing the complementary predicted click

through rate 1−CTR(x; w) for the ads that were indeed not clicked. However, the classifier

computed by oLBFGS after processing 2 × 104 feature vectors still predicts a probability

1 − CTR(x; w) ∈ [0.9, 1] for 46.3% of the unclicked ads. The corresponding frequency for

the SGD classifier is 10.8%.

Do note that the relatively high prediction accuracies in Figure 3.8 are a reflection of

sample bias to some extent. Since ads were chosen for display because they were deemed

likely to be clicked they are not a completely random test set. Still, the point to be made

here is that oLBFGS succeeds in finding an optimal classifier when SGD fails. It would

take the processing of about 106 feature vectors for SGD to achieve the same accuracy of

oLBFGs.

96

Chapter 4

Superlinearly convergent

incremental quasi-Newton method

4.1 Context and background

In this chapter, we focus on large scale optimization problems with objective functions

expressed as the sum of a set of components which arise often in application domains such as

machine learning [14,15,26,108], control [22,25,56], and wireless communications [96,97,103].

This class of problems is also called convex finite sum minimization. Formally, we consider a

variable w ∈ Rp and a function f which is defined as the average of N smooth and strongly

convex functions labelled fi : Rp → R for i = 1, . . . , N . We refer to individual functions fi

as sample functions and to the total number of functions N as the sample size. Our goal is

to find the optimal argument w∗ that solves the strongly convex program

w∗ := argmin
w∈Rp

f(w) := argmin
w∈Rp

1

N

N∑
i=1

fi(w). (4.1)

As mentioned in Chapter 1, the finite sum minimization (FSM) in (4.1) is a general formu-

lation which contains the empirical risk minimization (ERM) problem. To keep the results

as general as possible we state the results for the FSM problem but, indeed, the results in

this chapter also hold for ERM problems.

We restrict attention to cases where the component functions fi are strongly convex

and their gradients are Lipschitz continuous. We further focus in problems where N is

large enough so as to warrant application of stochastic or iterative methods. Our goal is to

propose an iterative quasi-Newton method to solve (4.1) which is shown to exhibit a local

superlinear convergence rate. This is achieved while performing local iterations with a cost

of order O(p2) independent of the number of samples N .

97

Setting temporarily aside the complications related to the number of component func-

tions, the minimization of f in (4.1) can be carried out using iterative descent algorithms.

A simple solution is to use gradient descent (GD) which iteratively descends along gradient

directions ∇f(w) = (1/N)
∑N

i=1∇fi(w). GD incurs a per iteration computational cost of

order O(Np) and is known to converge at a linear rate towards w∗ under the hypotheses

we have placed on f . Whether the linear convergence rate of GD is acceptable depends

on the desired accuracy and on the condition number of f which, when large, can make

the convergence constant close to one. As one or both of these properties often limit the

applicability of GD, classical alternatives to improve convergence rates have been devel-

oped. Newton’s method adapts to the curvature of the objective by computing Hessian

inverses and converges at a quadratic rate in a local neighborhood of the optimal argument

irrespective of the problem’s condition number. To achieve this quadratic convergence rate,

we must evaluate and invert Hessians resulting in a per iteration cost of order O(Np2 +p3).

Quasi-Newton methods build on the idea of approximating the Newton step using first-order

information of the objective function and exhibit local superlinear convergence [21, 32, 89].

An important feature of quasi-Newton methods is that they have a per iteration cost of

order O(Np+ p2), where the term O(Np) corresponds to the cost of gradient computation

and the cost O(p2) indicates the computational complexity of updating the approximate

Hessian inverse matrix.

The combination of a local superlinear convergence rate and the smaller computational

cost per iteration relative to Newton – a reduction by a factor of p operations per iteration –

make quasi-Newton methods an appealing choice. In the context of optimization problems

having the form in (4.1), quasi-Newton methods also have the advantage that curvature is

estimated using gradient evaluations. To see why this is meaningful we must recall that the

customary approach to avoid the O(Np) computational cost of GD iterations is to replace

gradients ∇f(w) by their stochastic approximations ∇fi(w), which can be evaluated with

a cost of order O(p). One can then think of using stochastic versions of these gradients

to develop stochastic quasi-Newton methods with per iterations cost of order O(p + p2).

This idea was demonstrated to be feasible in [105] which introduces a stochastic (online)

version of the BFGS quasi-Newton method as well as a stochastic version of its limited

memory variant. Although [105] provides numerical experiments illustrating significant

improvements in convergence times relative to stochastic (S) GD, theoretical guarantees

are not established.

The issue of proving convergence of stochastic quasi-Newton methods is tackled in Chap-

ters 2 and 3. In Chapter 2, we observed that stochastic BFGS may not be convergent because

the Hessian approximation matrices can become close to singular. A regularized stochastic

BFGS (RES) method was proposed by changing the proximity condition of BFGS to ensure

98

that the eigenvalues of the Hessian inverse approximation are uniformly bounded. Enforc-

ing this property yields a provably convergent algorithm. In Chapter 3, we showed that

the limited memory version of stochastic (online) BFGS proposed in [105] is almost surely

convergent and has a sublinear convergence rate in expectation. This is achieved without

using regularizations. An alternative provably convergent stochastic quasi-Newton method

is proposed in [23]. This method differs from those in [70,72,105] in that it collects (stochas-

tic) second order information to estimate the objective’s curvature. This is in contrast to

estimating curvature using the difference of two consecutive stochastic gradients.

Although the methods in [23, 70, 72, 105] are successful in expanding the application of

quasi-Newton methods to stochastic settings, their convergence rate is sublinear. This is not

better than the convergence rate of SGD and, as is also the case in SGD, is a consequence

of the stochastic approximation noise which necessitates the use of diminishing stepsizes.

The stochastic quasi-Newton methods in [58, 78] resolve this issue by using the variance

reduction technique proposed in [45]. The fundamental idea of the work in [45] is to reduce

the noise of the stochastic gradient approximation by computing the exact gradient in an

outer loop to use it in an inner loop for gradient approximation. The methods in [58, 78],

which incorporate the variance reduction scheme presented in [45] into the update of quasi-

Newton methods, are successful in achieving a linear convergence rate.

At this point, we must remark on an interesting mismatch. The convergence rate of

SGD is sublinear, and the convergence rate of deterministic GD is linear. The use of

variance reduction techniques in SGD recovers the linear convergence rate of GD, [45].

On the other hand, the convergence rate of stochastic quasi-Newton methods is sublinear,

and the convergence rate of deterministic quasi-Newton methods is superlinear. The use

of variance reduction in stochastic quasi-Newton methods achieves linear convergence but

does not recover a superlinear rate. Hence, a fundamental question remains unanswered:

Is it possible to design an incremental quasi-Newton method that recovers the superlinear

convergence rate of deterministic quasi-Newton algorithms? In this paper, we show that the

answer to this open problem is positive by proposing an incremental quasi-Newton method

(IQN) with a local superlinear convergence rate. This is the first quasi-Newton method to

achieve superlinear convergence while having a per iteration cost independent of the number

of functions N – the cost per iteration is of order O(p2).

There are three major differences between the IQN method and state-of-the-art incre-

mental (stochastic) quasi-Newton methods that lead to the former’s superlinear convergence

rate. First, the proposed IQN method uses the aggregated information of variables, gra-

dients, and Hessian approximation matrices to reduce the noise of approximation for both

gradients and Hessian approximation matrices. This is different to the variance-reduced

stochastic quasi-Newton methods in [58, 78] that attempt to reduce only the noise of gra-

99

dient approximations. Second, in IQN the index of the updated function is chosen in a

cyclic fashion, rather than the random selection scheme used in the incremental methods

in [23,70,72,105]. The cyclic routine in IQN allows to bound the error at each iteration as

a function of the errors of the last N iterates, something that is not possible when using

a random scheme. To explain the third and most important difference we point out that

the form of quasi-Newton updates is the solution of a local second order Taylor approxi-

mation of the objective. It is possible to understand stochastic quasi-Newton methods as

an analogous approximation of individual sample functions. However, it turns out that

the state-of-the-art stochastic quasi-methods evaluate the linear and quadratic terms of

the Taylor’s expansion at different points yielding and inconsistent approximation (Remark

4.7). The IQN method utilizes a consistent Taylor series which yields a more involved up-

date which we nonetheless show can be implemented with the same computational cost.

These three properties together lead to an incremental quasi-Newton method with a local

superlinear convergence rate.

4.1.1 Related work

Various methods have been studied in the literature to improve the performance of tradi-

tional full-batch optimization algorithms. The most famous method for reducing the com-

putational complexity of gradient descent (GD) is stochastic gradient descent (SGD), which

uses the gradient of a single randomly chosen function to approximate the full-gradient [15].

Incremental gradient descent method (IGD) is similar to SGD except the function is chosen

in a cyclic routine [11]. Both SGD and IGD suffer from slow sublinear convergence rate be-

cause of the noise of gradient approximation. The incremental aggregated methods, which

use memory to aggregate the gradients of all N functions, are successful in reducing the

noise of gradient approximation to achieve linear convergence rate [31,45,49,104]. The work

in [49] suggests a random selection of functions which leads to stochastic average gradient

method (SAG), while the works in [11,38,62] use a cyclic scheme.

Moving beyond first order information, there have been stochastic quasi-Newton meth-

ods to approximate Hessian information [37, 70, 72, 78, 105]. All of these stochastic quasi-

Newton methods reduce computational cost of quasi-Newton methods by updating only a

randomly chosen single or small subset of gradients at each iteration. However, they are

not able to recover the superlinear convergence rate of quasi-Newton methods [21, 32, 89].

The incremental Newton method (NIM) in [99] is the only incremental method shown to

have a superlinear convergence rate; however, the Hessian function is not always available

or computationally feasible. Moreover, the implementation of NIM requires computation of

the incremental aggregated Hessian inverse which has the computational complexity of the

order O(p3).

100

4.1.2 Outline

We start the paper by recapping the BFGS quasi-Newton method and the Dennis-Moré con-

dition which is sufficient and necessary to prove superlinear convergence rate of the BFGS

method (Section 4.2). Then, we present the proposed Incremental Quasi-Newton method

(IQN) as an incremental aggregated version of the traditional BFGS method (Section 4.3).

We first explain the difference between the Taylor’s expansion used in IQN and state-of-the-

art incremental (stochastic) quasi-Newton methods. Further, we explain the mechanism for

aggregation of the functions information and the scheme for updating the stored informa-

tion. Moreover, we present an efficient implementation of the proposed IQN method with

a computational complexity of the order O(p2) (Section 4.3.1). The convergence analysis

of the IQN method is then presented (Section 4.4). We use the classic analysis of quasi-

Newton methods to show that in a local neighborhood of the optimal solution the sequence

of variables converges to the optimal argument w∗ linearly after each pass over the set of

functions (Lemma 11). We use this result to show that for each component function fi

the Dennis-Moré condition holds (Proposition 3). However, this condition is not sufficient

to prove superlinear convergence of the sequence of errors ‖wt − w∗‖, since it does not

guarantee the Dennis-Moré condition for the global objective f . To overcome this issue we

introduce a novel convergence analysis approach which exploits the local linear convergence

of IQN to present a more general version of the Dennis-Moré condition for each component

function fi (Lemma 13). We exploit this result to establish local superlinear convergence

of the sequence of residuals with respect to the average sequence (Theorem 5). Further, we

show that there exists a superlinearly convergent sequence that is an upper bound for the

original sequence of errors ‖wt−w∗‖ (Theorem 6). Then, we present numerical simulation

results, comparing the performance of IQN to that of first-order incremental and stochastic

methods (Section 4.5). We test the performance on a set of large-scale regression problems

and observe strong numerical gain in total computation time relative to existing methods.

Notation Vectors are written as lowercase w ∈ Rp and matrices as uppercase A ∈ Rp×p.
We use ‖w‖ and ‖A‖ to denote the Euclidean norm of vector w and matrix A, respectively.

Given a positive definite matrix M, the weighted matrix norm ‖A‖M is defined as ‖A‖M :=

‖MAM‖F, where ‖.‖F is the Frobenius norm. Given a function f its gradient and Hessian

at point w are denoted as ∇f(w) and ∇2f(w), respectively.

4.2 BFGS quasi-Newton method

Consider the problem in (4.1) for relatively large N . In a conventional optimization setting,

this can be solved using a quasi-Newton method that iteratively updates a variable wt for

101

t = 0, 1, . . . based on the general recursive expression

wt+1 = wt − ηt(Bt)−1∇f(wt), (4.2)

where ηt is a scalar stepsize and Bt is a positive definite matrix that approximates the

exact Hessian of the objective function ∇2f(wt). The stepsize ηt is evaluated based on a

line search routine for the global convergence of quasi-Newton methods. Our focus in this

paper, however, is on the local convergence of quasi-Newton methods, which requires the

unit stepsize ηt = 1. Therefore, throughout the paper we assume that the variable wt is

close to the optimal solution w∗ – we will formalize the notion of being close to the optimal

solution – and the stepsize is ηt = 1.

The goal of quasi-Newton methods is to compute the Hessian approximation matrix

Bt and its inverse (Bt)
−1

by using only the first-order information, i.e., gradients, of the

objective. Their use is widespread due to the many applications in which the Hessian

information required in Newton’s method is either unavailable or computationally intensive.

There are various approaches to approximate the Hessian, but the common feature among

quasi-Newton methods is that the Hessian approximation must satisfy the secant condition.

To be more precise, consider st and yt as the variable and gradient variations, explicitly

defined as

st := wt+1 −wt, yt := ∇f(wt+1)−∇f(wt). (4.3)

Then, given the variable variation st and gradient variation yt, the Hessian approximation

matrix in all quasi-Newton methods must satisfy the secant condition

Bt+1st = yt. (4.4)

This condition is fundamental in quasi-Newton methods because the exact Hessian ∇2f(wt)

satisfies this equality when the iterates wt+1 and wt are close to each other. If we consider

the matrix Bt+1 as the unknown matrix, the system of equations in (4.4) does not have a

unique solution. Different quasi-Newton methods enforce different conditions on the matrix

Bt+1 to come up with a unique update. This extra condition is typically a proximity

condition that ensures that Bt+1 is close to the previous Hessian approximation matrix

Bt [21,32,89]. In particular, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method defines

the update of Hessian approximation matrix as

Bt+1 = Bt +
ytyt

T

ytT st
− Btstst

T
Bt

stTBtst
. (4.5)

102

The BFGS method is popular not only for its strong numerical performance relative to the

gradient descent method, but also because it is shown to exhibit a superlinear convergence

rate [21], thereby providing a theoretical guarantee of superior performance. In fact, it can

be shown that, the BFGS update satisfies the condition

lim
t→∞

‖(Bt −∇2f(w∗))st‖
‖st‖

= 0, (4.6)

known as the Dennis-Moré condition, which is both necessary and sufficient for superlinear

convergence [32]. This result solidifies quasi-Newton methods as a strong alternative to first

order methods when exact second-order information is unavailable. However, implementa-

tion of the BFGS method is not feasible when the number of functions N is large, due to

its high computational complexity on the order O(Np + p2). In the following section, we

propose a novel incremental BFGS method that has the computational complexity of O(p2)

per iteration and converges at a superlinear rate.

4.3 IQN: Incremental aggregated BFGS

We propose an incremental aggregated BFGS algorithm, which we call the Incremental

Quasi-Newton (IQN) method. The IQN method is incremental in that, at each iteration,

only the information associated with a single function fi is updated. The particular function

is chosen by cyclicly iterating through the N functions. The IQN method is aggregated in

that the aggregate of the most recently observed information of all functions f1, . . . , fn is

used to compute the updated variable wt+1.

In the proposed method, we consider zt1, . . . , z
t
n as the copies of the variable w at time

t associated with the functions f1, . . . , fn, respectively. Likewise, define ∇fi(zti) as the

gradient corresponding to the i-th function. Further, consider Bt
i as a positive definite

matrix which approximates the i-th component Hessian ∇2fi(w
t). We refer to zti, ∇fi(zti),

and Bt
i as the information corresponding to the i-th function fi at step t. Note that the

functions’ information is stored in a shared memory as shown in Fig. 4.1. To introduce

the IQN method, we first explain the mechanism for computing the updated variable wt+1

using the stored information {zti,∇fi(zti),Bt
i}Ni=1. Then, we elaborate on the scheme for

updating the information of the functions.

To derive the full variable update, consider the second order approximation of the ob-

jective function fi(w) centered around its current iterate zti,

fi(w) ≈ fi(zti) +∇fi(zti)T (w − zti) +
1

2
(w − zti)

T∇2fi(z
t
i)(w − zti). (4.7)

As in traditional quasi-Newton methods, we replace the i-th Hessian ∇2fi(z
t
i) by Bt

i. Using

103

zt1 ztit ztn

xt+1

zt+1
1 zt+1

it zt+1
n

Bt
1 Bt

it Bt
n

BFGS

Bt+1
1 Bt+1

it Bt+1
n

∇f t1 ∇f tit ∇f tn

∇fit(xt+1)

∇f t+1
1 ∇f t+1

it ∇f t+1
n

Figure 4.1: The updating scheme for variables, gradients, and Hessian approximation matrices of
function fit at step t. The red arrows indicate the terms used in the update of Bt+1

it
using the BFGS

update in (4.15). The black arrows show the updates of all variables and gradients. The terms zt+1
it

and ∇f t+1
it

are updated as wt+1 and ∇fit(wt+1), respectively. All others zt+1
j and ∇f t+1

j are set as

ztj and ∇f tj , respectively.

the approximation matrices in place of Hessians, the complete (aggregate) function f(w)

can be approximated with

f(w) ≈ 1

N

N∑
i=1

[
fi(z

t
i) +∇fi(zti)T (w − zti) +

1

2
(w − zti)

TBt
i(w − zti)

]
. (4.8)

Note that the right hand side of (4.8) is a quadratic approximation of the function f based

on the available information at step t. Hence, the updated iterate wt+1 can be defined as

the minimizer of the quadratic program in (4.8), explicitly given by

wt+1 =

(
1

N

N∑
i=1

Bt
i

)−1 [
1

N

N∑
i=1

Bt
iz
t
i −

1

N

N∑
i=1

∇fi(zti)

]
. (4.9)

First note that the update in (4.9) shows that the updated variable wt+1 is a function

of the stored information of all functions f1, . . . , fn. Furthermore, we use the aggregated

information of variables, gradients, and the quasi-Newton Hessian approximations to evalu-

ate the updated variable. This is done to vanish the noise in approximating both gradients

and Hessians as the sequence approaches the optimal argument.

Remark 3 Given the BFGS Hessian approximation matrices {Bt
i}Ni=1 and the gradients

{∇fi(zti)}Ni=1, one may consider an update more akin to traditional descent-based methods,

i.e.,

wt+1 = wt −

(
1

N

N∑
i=1

Bt
i

)−1
1

N

N∑
i=1

∇fi(zti). (4.10)

To evaluate the advantage of the proposed update for IQN in (4.9) relative to the update in

104

(4.10), we proceed to study the Taylor’s expansion that leads to the update in (4.10). It can

be shown that the update in (4.10) is the outcome of the following approximation

f(w) ≈ 1

N

N∑
i=1

[
fi(z

t
i) +∇fi(zti)T (w − zti) +

1

2
(w −wt)TBt

i(w −wt)

]
. (4.11)

Observe that the linear term in (4.11) is centered at zti, while the quadratic term is approxi-

mated near the iterate wt. This inconsistency in the Taylor’s expansion of each function fi

leads to an inaccurate second-order approximation, and subsequently a slower incremental

quasi-Newton method.

Thus far we have discussed the procedure to compute the updated variable wt+1 given

the local iterates, gradients, and Hessian approximations at time t. Now, it remains to

show how we update the local information of functions f1, . . . , fn using the variable wt+1.

In each iteration of the IQN method, we update the local information of only a single

function, chosen in a cyclic manner. Defining it to be the index of the function selected at

time t, we update the local variables zt+1
it

, ∇fit(zt+1
i), and Bt+1

i using the updated variable

wt+1 while all other local variables remain unchanged. In particular, the variables zi are

updated as

zt+1
it

= wt+1, zt+1
i = zti for all i 6= it. (4.12)

Observe in the update in (4.12) that the variable associated with the function fit is set to be

the updated variable wt+1 while the other iterates are simply kept as their previous value.

Likewise, we update the table of gradients accordingly with the gradient of fit evaluated

at the new variable wt+1. The rest of gradients stored in the memory will stay unchanged,

i.e.,

∇fit(zt+1
i) = ∇fit(wt+1), ∇fi(zt+1

i) = ∇fi(zti) for all i 6= it. (4.13)

To update the curvature information, it would be ideal to compute the Hessian matrix

∇2fit(w
t+1) and update the curvature information following the schemes for variables in

(4.12) and gradients in (4.13). However, our focus is on the applications that the computa-

tion of the Hessian is either impossible or computationally expensive. Hence, to the update

curvature approximation matrix Bt
it

corresponding to the function fit , we use the steps of

BFGS in (4.5). To do so, we define variable and gradient variations associated with each

individual function fi as

sti := zt+1
i − zti, yti := ∇fi(zt+1

i)−∇fi(zti), (4.14)

105

respectively. The Hessian approximation Bt
it

corresponding to the function fit can be

computed using the update of BFGS as

Bt+1
i = Bt

i +
ytiy

tT
i

ytTi sti
− Bt

is
t
is
tT
i Bt

i

stTi Bt
is
t
i

, for i = it. (4.15)

Again, the Hessian approximation matrices for all other functions remain unchanged, i.e.,

Bt+1
i = Bt

i for i 6= it. The system of updates in (4.12)-(4.15) explains the mechanism of

updating the information of the function fit at step t. Notice that to update the Hessian

approximation matrix for the it-th function there is no need to store the variations in (4.14),

since the old variables zti and ∇fi(zti) are available in memory and the updated versions

zt+1
i = wt+1 and ∇fi(zt+1

i) = ∇fi(wt+1) are evaluated at step t; see Fig. 4.1 for more

details.

Because of the cyclic update scheme, the set of iterates {zt1, zt2, . . . , ztn} is equal to the

set {wt,wt−1, . . . ,wt−n+1}, and, therefore, the set of variables used in the update of IQN

is the set of the last N iterates. The update of IQN in (4.9) incorporates the information of

all the functions f1, . . . , fn to compute the updated variable wt+1; however, it uses delayed

variables, gradients, and Hessian approximations rather than the the updated variable wt+1

for all functions as in classic quasi-Newton methods. The use of delay allows IQN to update

the information of a single function at each iteration, thus reducing the computational

complexity relative to classic quasi-Newton methods.

Although the update in (4.9) is helpful in understanding the rationale behind the IQN

method, it cannot be implemented at a low computation cost, since it requires computation

of the sums
∑N

i=1 Bt
i,
∑N

i=1 Bt
iz
t
i, and

∑N
i=1∇fi(zti) as well as computing the inversion

(
∑N

i=1 Bt
i)
−1. In the following section, we introduce an efficient implementation of the IQN

method that has the computational complexity of O(p2).

4.3.1 Efficient implementation of IQN

To see that the updating scheme in (4.9) requires evaluation of only a single gradient and

Hessian approximation matrix per iteration, consider writing the update as

wt+1 = (B̃t)−1
(
ut − gt

)
, (4.16)

where we define B̃t :=
∑N

i=1 Bt
i as the aggregate Hessian approximation, ut :=

∑N
i=1 Bt

iz
t
i as

the aggregate Hessian-variable product, and gt :=
∑N

i=1∇fi(zti) as the aggregate gradient.

Then, given that at step t only a single index it is updated, we can evaluate these variables

106

Algorithm 4 Incremental Quasi-Newton (IQN) method

Require: w0,{∇fi(w0)}Ni=1, {B0
i }Ni=1

1: Set z01 = · · · = z0n = w0

2: Set (B̃0)
−1

= (
∑N
i=1 B0

i)
−1, u0 =

∑N
i=1 B0

iw
0, g0 =

∑N
i=1∇fi(w0)

3: for t = 0, 1, 2, . . . do
4: Set it = (t mod n) + 1
5: Compute wt+1 = (B̃t)−1 (ut − gt) [cf. (4.16)]
6: Compute st+1

it
, yt+1

it
[cf. (4.14)], and Bt+1

it
[cf. (4.15)]

7: Update ut+1 [cf. (4.18)], gt+1 [cf. (4.19)], and (B̃t+1)−1 [cf. (4.21), (4.22)]
8: Update the functions’ information tables as in (4.12), (4.13), and (4.15)
9: end for

for step t+ 1 as

B̃t+1 = B̃t +
(
Bt+1
it
−Bt

it

)
, (4.17)

ut+1 = ut +
(
Bt+1
it

zt+1
it
−Bt

itz
t
it

)
, (4.18)

gt+1 = gt +
(
∇fit(zt+1

it
)−∇fit(ztit)

)
. (4.19)

Thus, only Bt+1
it

and ∇fit(zt+1
it

) are required to be computed at step t.

Although the updates in (4.17)-(4.19) have low computational complexity, the update

in (4.16) requires computing (B̃t)−1 which has a computational complexity of O(p3). This

inversion can be avoided by simplifying the update in (4.17) as

B̃t+1 = B̃t +
ytity

tT
it

ytTi sitt
−

Bt
it
stits

tT
it

Bt
it

stTit Bt
it
stit

. (4.20)

To derive the expression in (4.20) we have substituted the difference Bt+1
it
− Bt

it
by its

rank two expression in (4.15). Given the matrix (B̃t)−1, by applying the Sherman-Morrison

formula twice to the update in (4.20) we can compute (B̃t+1)−1 as

(B̃t+1)−1 = Ut +
Ut(Bt

it
stit)(B

t
it
stit)

TUt

stit
T
Bt
it
stit − (Bt

it
stit)

TUt(Bt
it
stit)

, (4.21)

where the matrix Ut is evaluated as

Ut = (B̃t)−1 −
(B̃t)−1ytity

tT
it

(B̃t)−1

ytTit stit + ytTit (B̃t)−1ytit
. (4.22)

The computational complexity of the updates in (4.21) and (4.22) is of the order O(p2)

rather than the O(p3) cost of computing the inverse directly. Therefore, the overall cost

of IQN is of the order O(p2) which is substantially lower than O(Np2) of deterministic

quasi-Newton methods.

107

The complete IQN algorithm is outlined in Algorithm 4. Beginning with initial variable

w0 and gradient and Hessian estimates ∇fi(w0) and B0
i for all i, each variable copy z0i is

set to w0 in Step 1 and initial values are set for u0, g0 and (B̃0)−1 in Step 2. For all t, in

Step 4 the index it of the next function to update is selected cyclically. The variable wt+1

is computed according to the update in (4.16) in Step 5. In Step 6, the variable st+1
it

and

gradient yt+1
it

variations are evaluated as in (4.14) to compute the BFGS matrix Bt+1
it

from

the update in (4.15). This information, as well as the updated variable and its gradient, are

used in Step 7 to update ut+1 and gt+1 as in (4.18) and (4.19), respectively. The inverse

matrix (B̃t+1)−1 is also computed by following the expressions in (4.21) and (4.22). Finally

in Step 8, we update the variable, gradient, and Hessian approximation tables based on the

policies in (4.12), (4.13), and (4.15), respectively.

4.4 Convergence analysis

In this section, we study the convergence rate of the proposed IQN method. We first

establish its local linear convergence rate, then demonstrate limit properties of the Hessian

approximations, and finally show that in a region local to the optimal point the sequence

of residuals converges at a superlinear rate. To prove these results we make two main

assumptions, both of which are standard in the analysis of quasi-Newton methods.

Assumption 7 There exist positive constants 0 < µ ≤ L such that, for all i and w, ŵ ∈ Rp,
we can write

µ‖w − ŵ‖2 ≤ (∇fi(w)−∇fi(ŵ))T (w − ŵ) ≤ L‖w − ŵ‖2. (4.23)

Assumption 8 There exists a positive constant 0 < L̃ such that, for all i and w, ŵ ∈ Rp,
we can write

‖∇2fi(w)−∇2fi(ŵ)‖ ≤ L̃‖w − ŵ‖. (4.24)

The lower bound in (4.23) implies that the functions fi are strongly convex with con-

stant µ, and the upper bound shows that the gradients ∇fi are Lipschitz continuous with

parameter L.

The condition in Assumption 8, states that the Hessians ∇2fi are Lipschitz continuous

with constant L̃. This assumption is commonly made in the analyses of Newton’s method

[84] and quasi-Newton algorithms [21, 32, 89]. According to Lemma 3.1 in [21], Lipschitz

continuity of the Hessians with constant L̃ implies that for i = 1, . . . , n and arbitrary vectors

w, w̃, ŵ ∈ Rp we can write

∥∥∇2fi(w̃)(w − ŵ)− (∇fi(w)−∇fi(ŵ))
∥∥ ≤ L̃‖w− ŵ‖max {‖w − w̃‖, ‖ŵ − w̃‖} . (4.25)

108

We use the inequality in (4.25) in the process of proving the convergence of IQN.

The goal of BFGS quasi-Newton methods is to approximate the objective function Hes-

sian using the first-order information. Likewise, in the incremental BFGS method, we aim

to show that the Hessian approximation matrices for all functions f1, . . . , fn are close to the

exact Hessian. In the following lemma, we study the difference between the i-th optimal

Hessian ∇2fi(w
∗) and its approximation Bt

i over time.

Lemma 8 Consider the proposed IQN method in (4.9). Further, let i be the index of the

updated function at step t, i.e., i = it. Define the residual sequence for function fi as

σti := max{‖zt+1
i − w∗‖, ‖zti − w∗‖} and set M = ∇2fi(w

∗)−1/2. If Assumptions 7 and 8

hold and the condition σti < m/(3L̃) is satisfied then

∥∥Bt+1
i −∇2fi(w

∗)
∥∥

M
≤
[
(1− αθti

2
)1/2 + α3σ

t
i

] ∥∥Bt
i −∇2fi(w

∗)
∥∥

M
+ α4σ

t
i , (4.26)

where α, α3, and α4 are some positive bounded constants and

θti =
‖M(Bt

i −∇2fi(w
∗))sti‖

‖Bt
i −∇2fi(w∗)‖M‖M−1sti‖

for Bt
i 6= ∇2fi(w

∗), θti = 0 for Bt
i = ∇2fi(w

∗).

(4.27)

Proof: To prove the claim in Lemma 8, we first prove the the following lemma which is

based on the result in [21, Lemma 5.2].

Lemma 9 Consider the proposed IQN method in (4.9). Let M be a nonsingular symmetric

matrix such that

‖Myti −M−1sti‖ ≤ β‖M−1sti‖, (4.28)

for some β ∈ [0, 1/3] and vectors sti and yti in Rp with sti 6= 0. Consider i as the index of

the updated function at step t, i.e., i = it, and let Bt
i be symmetric and computed according

to the update in (4.15). Then, there exist positive constants α, α1, and α2 such that, for

any symmetric A ∈ Rp×p we have,

‖Bt+n
i −A‖M ≤

[
(1− αθ2)1/2 + α1

‖Myti −M−1sti‖
‖M−1sti‖

]
‖Bt

i −A‖M + α2
‖yti −Asti‖
‖M−1sti‖

,

(4.29)

where α = (1− 2β)/(1− β2) ∈ [3/8, 1], α1 = 2.5(1− β)−1, α2 = 2(1 + 2
√
p)‖M‖F, and

θ =
‖M(Bt

i −A)sti‖
‖Bt

i −A‖M‖M−1sti‖
for Bt

i 6= A, θ = 0 for Bt
i = A. (4.30)

109

Note that the Hessian approximation Bt+n
i is equal to Bt+1

i if the function fi is updated

at step t. Considering this observation and the result of Lemma 5.2. in [21] the claim in

(4.29) follows.

The result in Lemma 9 provides an upper bound for the difference between the Hessian

approximation matrix Bt+n
i and any positive definite matrix A with respect to the difference

between the previous Hessian approximation Bt
i and the matrix A. The interesting choice

for the arbitrary matrix A is the Hessian of the i-th function at the optimal argument, i.e.,

A = ∇2fi(w
∗), which allows us to capture the difference between the sequence of Hessian

approximation matrices for function fi and the Hessian ∇2fi(w
∗) at the optimal argument.

We proceed to use the result in Lemma 9 for M = ∇2fi(w
∗)−1/2 and A = ∇2fi(w

∗) to

prove the claim in (4.26). To do so, we first need to show that the condition in (4.28) is

satisfied. Note that according to the condition in Assumptions 7 and 8 we can write

‖yti −∇2fi(w
∗)sti‖

‖∇2fi(w∗)1/2sti‖
≤
L̃‖sti‖max{‖zti −w∗‖, ‖zt+1

i −w∗‖}√
m‖sti‖

=
L̃√
m
σti . (4.31)

Hence, the left hand side of the condition in (4.28) for M = ∇2fi(w
∗)−1/2 is bounded above

by

‖Myti −M−1sti‖
‖M−1sti‖

≤ ‖∇
2fi(w

∗)−1/2‖‖yti −∇2fi(w
∗)sti‖

‖∇2fi(w∗)1/2sti‖
≤ L̃

m
σti . (4.32)

Thus, the condition in (4.28) is satisfied since L̃σti/m < 1/3. Replacing the upper bounds

in (4.31) and (4.32) into the expression in (4.29) implies the claim in (4.26) with

β =
L̃

m
σti , α =

1− 2β

1− β2
, α3 =

5L̃

2m(1− β)
, α4 =

2(1 + 2
√
p)L̃

√
m

‖∇2fi(w
∗)−

1
2 ‖F, (4.33)

and the proof is complete. �

The result in (4.26) establishes an upper bound for the weighted norm ‖Bt+1
i −∇2fi(w

∗)‖M
with respect to its previous value ‖Bt

i −∇2fi(w
∗)‖M and the sequence σti := max{‖zt+1

i −
w∗‖, ‖zti−w∗‖}, when the variables are in a neighborhood of the optimal solution such that

σti < m/(3L̃). Indeed, the result in (4.26) holds only for the index i = it and for the rest

of indices we have ‖Bt+1
i −∇2fi(w

∗)‖M = ‖Bt
i −∇2fi(w

∗)‖M simply by definition of the

cyclic update. Note that if the residual sequence σti associated with fi approaches zero, we

can simplify (4.26) as

‖Bt+1
i −∇2fi(w

∗)‖M . (1− αθti
2
)1/2‖Bt

i −∇2fi(w
∗)‖M. (4.34)

110

The equation in (4.34) implies that if θti is always strictly larger than zero, the sequence

‖Bt+1
i −∇2fi(w

∗)‖M approaches zero. If not, then the sequence θti converges to zero which

implies the Dennis-Moré condition from (4.6), i.e.

lim
t→∞

‖(Bt
i −∇2fi(w

∗))sti‖
‖sti‖

= 0. (4.35)

Therefore, under both conditions the result in (4.35) holds. This is true since the limit

limt→∞ ‖Bt+1
i −∇2fi(w

∗)‖M = 0 yields the result in (4.35).

Based on this intuition, we proceed to show that the sequence σti converges to zero for

all i = 1, . . . , n. To do so, we show that the sequence ‖zti−w∗‖ is linearly convergent for all

i = 1, . . . , n. To achieve this goal we first prove an upper bound for the error ‖wt+1 −w∗‖
of IQN in the following lemma.

Lemma 10 Consider the proposed IQN method in (4.9). If the conditions in Assumptions

7 and 8 hold, then the sequence of iterates generated by IQN satisfies

‖wt+1 −w∗‖ ≤ L̃Γt

n

N∑
i=1

∥∥zti −w∗
∥∥2 +

Γt

n

N∑
i=1

∥∥(Bt
i −∇2fi(w

∗)
) (

zti −w∗
)∥∥ , (4.36)

where Γt := ‖((1/n)
∑N

i=1 Bt
i)
−1‖.

Proof: Start by subtracting w∗ from both sides of (4.9) to obtain

wt+1 −w∗ =

(
1

N

N∑
i=1

Bt
i

)−1(
1

N

N∑
i=1

Bt
iz
t
i −

1

N

N∑
i=1

∇fi(zti)−
1

N

N∑
i=1

Bt
iw
∗

)
. (4.37)

As the gradient of f at the optimal point is the vector zero, i.e., (1/N)
∑N

i=1∇fi(w∗) = 0,

we can subtract (1/N)
∑N

i=1∇fi(w∗) from the right hand side of (4.37) and rearrange terms

to obtain

wt+1 −w∗ =

(
1

N

N∑
i=1

Bt
i

)−1(
1

N

N∑
i=1

Bt
i

(
zti −w∗

)
− 1

N

N∑
i=1

(
∇fi(zti)−∇fi(w∗)

))
. (4.38)

The expression in (4.38) relates the residual at time t + 1 to the previous N residuals

and the Hessian approximations Bt
i. To analyze this further, we can replace the Hessian

approximations Bt
i with the actual Hessians ∇2fi(w

∗) and the approximation difference

∇2fi(w
∗)−Bt

i. To do so, we add and subtract (1/n)
∑N

i=1∇2fi(w
∗)
(
zti −w∗

)
to the right

111

hand side of (4.38) and rearrange terms to obtain

wt+1 −w∗ =

(
1

N

N∑
i=1

Bt
i

)−1(
1

N

N∑
i=1

[
∇2fi(w

∗)
(
zti −w∗

)
−
(
∇fi(zti)−∇fi(w∗)

)])

+

(
1

N

N∑
i=1

Bt
i

)−1(
1

N

N∑
i=1

[
Bt
i −∇2fi(w

∗)
] (

zti −w∗
))

. (4.39)

We proceed to take the norms of both sides and use the triangle inequality to obtain an

upper bound on the norm of the residual ‖wt+1 −w∗‖,

‖wt+1 −w∗‖ ≤

∥∥∥∥∥∥
(

1

N

N∑
i=1

Bt
i

)−1∥∥∥∥∥∥ 1

N

N∑
i=1

∥∥∇2fi(w
∗)
(
zti −w∗

)
−
(
∇fi(zti)−∇fi(w∗)

)∥∥
+

∥∥∥∥∥∥
(

1

N

N∑
i=1

Bt
i

)−1∥∥∥∥∥∥ 1

N

N∑
i=1

∥∥[Bt
i −∇2fi(w

∗)
] (

zti −w∗
)∥∥ . (4.40)

To obtain the quadratic term in (4.36) from the first term in (4.40), we use the Lipschitz

continuity of the Hessians ∇2fi which leads to the inequality

‖∇2fi(w
∗)
(
zti −w∗

)
−
(
∇fi(zti)−∇fi(w∗)

)
‖ ≤ L̃

∥∥zti −w∗
∥∥2 . (4.41)

Replacing the expression ‖∇2fi(w
∗)
(
zti −w∗

)
−
(
∇fi(zti)−∇fi(w∗)

)
‖ in (4.40) by the

upper bound in (4.41), the claim in (4.36) follows. �

Lemma 10 shows that the residual ‖wt+1−w∗‖ is bounded above by a sum of quadratic

and linear terms of the last N residuals. This can eventually lead to a superlinear con-

vergence rate by establishing the linear term converges to zero at a fast rate, leaving us

with an upper bound of quadratic terms only. First, however, we establish a local linear

convergence rate in the proceeding theorem to show that the sequence σti converges to zero.

Lemma 11 Consider the proposed IQN method in (4.9). If Assumptions 7 and 8 hold, then,

for any r ∈ (0, 1) there are positive constants ε(r) and δ(r) such that if ‖w0 −w∗‖ < ε(r)

and ‖B0
i −∇2fi(w

∗)‖M < δ(r) for M = ∇2fi(w
∗)−1/2 and i = 1, 2, . . . , n, the sequence of

iterates generated by IQN satisfies

‖wt −w∗‖ ≤ r[
t−1
n

]+1‖w0 −w∗‖. (4.42)

Moreover, the sequences of norms {‖Bt
i‖} and {‖(Bt

i)
−1‖} are uniformly bounded.

Proof: In this proof we use some steps in the proof of [21, Theorem 3.2]. To start we use

the fact that in a finite-dimensional vector space there always exists a constant η > 0 such

112

that ‖A‖ ≤ η‖A‖M. Consider γ = 1/m is an upper bound for the norm ‖∇2f(w∗)−1‖.
Assume that ε(r) = ε and δ(r) = δ are chosen such that

(2α3δ + α4)
ε

1− r
≤ δ and γ(1 + r)[L̃ε+ 2ηδ] ≤ r. (4.43)

Based on the assumption that ‖B0
i − ∇2fi(w

∗)‖M ≤ δ we can derive the upper bound

‖B0
i −∇2fi(w

∗)‖ ≤ ηδ. This observation along with the inequality ‖∇2fi(w
∗)‖ ≤ L implies

that ‖B0
i ‖ ≤ ηδ+L. Therefore, we obtain ‖(1/n)

∑N
i=1 B0

i ‖ ≤ ηδ+L. The second inequality

in (4.43) implies that 2γ(1 + r)ηδ ≤ r. Based on this observation and the inequalities

‖B0
i −∇2fi(w

∗)‖ ≤ ηδ < 2ηδ and γ ≥ ‖∇2fi(w
∗)−1‖, we obtain from Banach Lemma that

‖(B0
i)
−1‖ ≤ (1 + r)γ. Following the same argument for the matrix ((1/n)

∑N
i=1 B0

i)
−1 with

the inequalities ‖(1/n)
∑N

i=1 B0
i − (1/n)

∑N
i=1∇2fi(w

∗)‖ ≤ (1/n)
∑N

i=1 ‖B0
i −∇2fi(w

∗)‖ ≤
ηδ and ‖∇2f(w∗)−1‖ ≤ γ we obtain that∥∥∥∥∥∥

(
1

N

N∑
i=1

B0
i

)−1∥∥∥∥∥∥ ≤ (1 + r)γ. (4.44)

This upper bound in conjunction with the result in (4.36) yields

‖w1 −w∗‖ ≤ (1 + r)γ

[
L̃

n

N∑
i=1

∥∥z0i −w∗
∥∥2 +

1

N

N∑
i=1

∥∥[B0
i −∇2fi(w

∗)
] (

z0i −w∗
)∥∥]

= (1 + r)γ

[
L̃
∥∥w0 −w∗

∥∥2+ 1

N

n∑
i=1

∥∥[B0
i −∇2fi(w

∗)
] (

w0 −w∗
)∥∥] . (4.45)

Considering the assumptions that ‖w0−w∗‖ ≤ ε and ‖B0
i −∇2fi(w

∗)‖ ≤ ηδ < 2ηδ we can

write

‖w1 −w∗‖ ≤ (1 + r)γ[L̃ε+ 2ηδ]‖w0 −w∗‖

≤ r‖w0 −w∗‖, (4.46)

where the second inequality follows from the second condition in (4.43). Without loss of

generality, assume that i0 = 1. Then, based on the result in (4.26) we obtain

∥∥B1
1 −∇2f1(w

∗)
∥∥

M
≤
[
(1− αθ01

2
)1/2 + α3σ

0
1

] ∥∥B0
1 −∇2f1(w

∗)
∥∥

M
+ α4σ

0
1

≤ (1 + α3ε)δ + α4ε

≤ δ + 2α3εδ + α4ε ≤ 2δ. (4.47)

113

We proceed to the next iteration which leads to the inequality

‖w2 −w∗‖ ≤ (1 + r)γ

[
L̃

n

N∑
i=1

∥∥zti −w∗
∥∥2 +

1

N

N∑
i=1

∥∥[Bt
i −∇2fi(w

∗)
] (

zti −w∗
)∥∥]

≤ (1 + r)γ
[
L̃ε+ 2ηδ

](n− 1

n
‖w0 −w∗‖+

1

N
‖w1 −w∗‖

)
≤ r

(
n− 1

n
‖w0 −w∗‖+

1

N
‖w1 −w∗‖

)
≤ r‖w0 −w∗‖. (4.48)

And since the updated index is i1 = 2 we obtain

∥∥B2
2 −∇2f2(w

∗)
∥∥

M
≤
[
(1− αθ02

2
)1/2 + α3σ

0
2

] ∥∥B0
2 −∇2f2(w

∗)
∥∥

M
+ α4σ

0
2

≤ (1 + α3ε)δ + α4ε

≤ δ + 2α3εδ + α4ε ≤ 2δ. (4.49)

With the same argument we can show that all
∥∥Bt

t −∇2ft(w
∗)
∥∥

M
≤ 2δ and ‖wt−w∗‖ ≤ ε,

for all iterates t = 1, . . . , n. Moreover, we have ‖wt −w∗‖ ≤ r‖w0 −w∗‖ for t = 1, . . . , n.

Now we use the results for iterates t = 1, . . . , n as the base of our induction argument.

To be more precise, let’s assume that for iterates t = jn + 1, jn + 2, . . . , jn + n we know

that the residuals are bounded above by ‖wt − w∗‖ ≤ rj+1‖w0 − w∗‖ and the Hessian

approximation matrices Bt
i satisfy the inequalities ‖Bt

i − ∇2fi(w
∗)‖ ≤ 2ηδ. Our goal is

to show that for iterates t = (j + 1)n + 1, (j + 1)n + 2, . . . , (j + 1)n + n the inequalities

‖wt −w∗‖ ≤ rj+2‖w0 −w∗‖ and ‖Bt
i −∇2fi(w

∗)‖ ≤ 2ηδ hold.

Based on the inequalities ‖Bt
i −∇2fi(w

∗)‖ ≤ 2ηδ and ‖∇2fi(w
∗)−1‖ ≤ γ we can show

that for all t = jn+ 1, jn+ 2, . . . , jn+ n we have∥∥∥∥∥∥
(

1

N

N∑
i=1

Bt
i

)−1∥∥∥∥∥∥ ≤ (1 + r)γ. (4.50)

Using (4.50) and the inequality in (4.26) for the iterate t = (j + 1)n+ 1, we obtain

‖w(j+1)n+1 −w∗‖ ≤ (1 + r)γ
L̃

n

N∑
i=1

∥∥∥z(j+1)n
i −w∗

∥∥∥2
+ (1 + r)γ

1

N

N∑
i=1

∥∥∥[B(j+1)n
i −∇2fi(w

∗)
] (

z
(j+1)n
i −w∗

)∥∥∥ . (4.51)

114

Since the variables are updated in a cyclic fashion the set of variables {z(j+1)n
i }i=ni=1 is equal to

the set {w(j+1)n−i}i=n−1i=0 . By considering this relation and replacing the norms ‖[B(j+1)n
i −

∇2fi(w
∗)](z

(j+1)n
i − w∗)‖ by their upper bounds 2ηδ‖z(j+1)n

i − w∗‖ we can simplify the

right hand side of (4.51) as

‖w(j+1)n+1 −w∗‖ ≤ (1 + r)γ

[
L̃

n

N∑
i=1

∥∥wjn+i −w∗
∥∥2 +

2ηδ

n

N∑
i=1

∥∥wjn+i −w∗
∥∥] . (4.52)

Since ‖wjn+i −w∗‖ ≤ ε for all j = 1, . . . , n, we obtain

‖w(j+1)n+1 −w∗‖ ≤ (1 + r)γ
[
L̃ε+ 2ηδ

](1

N

N∑
i=1

∥∥wjn+i −w∗
∥∥) . (4.53)

According to the second inequality in (4.43) and the assumption that for iterates t =

jn + 1, jn + 2, . . . , jn + n we know that ‖wt −w∗‖ ≤ rj+1‖w0 −w∗‖, we can replace the

right hand side of (4.53) by the following upper bound

‖w(j+1)n+1 −w∗‖ ≤ rj+2‖w0 −w∗‖. (4.54)

Now we show that the updated Hessian approximation B
(j+1)n+1
it

for t = (j+1)n+1 satisfies

the inequality ‖B(j+1)n+1
it

− ∇2fit(w
∗)‖M ≤ 2δ. According to the result in (4.26), we can

write ∥∥∥B(j+1)n+1
it

−∇2fit(w
∗)
∥∥∥

M
−
∥∥∥Bjn+1

it
−∇2fit(w

∗)
∥∥∥

M

≤ α3σ
jn+1
it

∥∥∥Bjn+1
it

−∇2fit(w
∗)
∥∥∥

M
+ α4σ

jn+1
it

. (4.55)

Now observe that σjn+1
it

= max{‖w(j+1)n+1 − w∗‖, ‖wjn+1 − w∗‖} is bounded above by

rj+1‖w0 − w∗‖. Applying this substitution into (4.55) and considering the conditions

‖Bjn+1
it

−∇2fit(w
∗)‖M ≤ 2δ and ‖w0 −w∗‖ ≤ ε lead to the inequality∥∥∥B(j+1)n+1

it
−∇2fit(w

∗)
∥∥∥

M
−
∥∥∥Bjn+1

it
−∇2fit(w

∗)
∥∥∥

M
≤ rj+1ε(2δα3 + α4). (4.56)

By writing the expression in (4.56) for previous iterations and using a recursive logic we

obtain that∥∥∥B(j+1)n+1
it

−∇2fit(w
∗)
∥∥∥

M
−
∥∥B0

it −∇
2fit(w

∗)
∥∥

M
≤ ε(2δα3 + α4)

1

1− r
. (4.57)

Based on the first inequality in (4.43), the right hand side of (4.57) is bounded above by

δ. Moreover, the norm ‖B0
it
−∇2fit(w

∗)‖M is also upper bounded by δ. These two bounds

115

imply that ∥∥∥B(j+1)n+1
it

−∇2fit(w
∗)
∥∥∥

M
≤ 2δ, (4.58)

and consequently ‖B(j+1)n+1
it

− ∇2fit(w
∗)‖ ≤ 2ηδ. By following the steps from (4.51) to

(4.58), we can show for all iterates t = (j+1)n+1, (j+1)n+2, . . . , (j+1)n+n the inequalities

‖wt − w∗‖ ≤ rj+2‖w0 − w∗‖ and ‖Bt
i − ∇2fi(w

∗)‖ ≤ 2ηδ hold. The induction proof is

complete and (4.42) holds. Moreover, the inequality ‖Bt
i −∇2fi(w

∗)‖ ≤ 2ηδ holds for all i

and steps t. Hence, the norms ‖Bt
i‖ and ‖(Bt

i)
−1‖, and consequently ‖(1/n)

∑N
i=1 Bt

i‖ and

‖((1/n)
∑N

i=1 Bt
i)
−1‖ are uniformly bounded. �

The result in Lemma 11 shows that the sequence of iterates generated by IQN has a

local linear convergence rate after each pass over all functions. Consequently, we obtain

that the i-th residual sequence σti is linearly convergent for all i. Note that Lemma 11 can

be considered as an extension of Theorem 3.2 in [21] for incremental settings. Following the

arguments in (4.34) and (4.35), we use the summability of the sequence σti along with the

result in Lemma 8 to prove Dennis-Moré condition for all functions fi.

Proposition 3 Consider the proposed IQN method in (4.9). Assume that the hypotheses

in Lemmata 8 and 11 are satisfied. Then, for all i = 1, . . . , n it holds,

lim
t→∞

‖(Bt
i −∇2fi(w

∗))sti‖
‖sti‖

= 0. (4.59)

Proof : According to the result in Lemma 11, we can show that the sequence of errors

σti = max{‖zt+1
i −w∗‖, ‖zti −w∗‖} is summable for all i. To do so, consider the sum of the

sequence σti which is upper bounded by

∞∑
t=0

σti =

∞∑
t=0

max{‖zt+1
i −w∗‖, ‖zti −w∗‖} ≤

∞∑
t=0

‖zt+1
i −w∗‖+

∞∑
t=0

‖zti −w∗‖ (4.60)

Note that the last time that the index i is chosen before time t should be in the set {t −
1, . . . , t− n}. This observation in association with the result in (4.42) implies that

∞∑
t=0

σti ≤ 2
∞∑
t=0

r[
t−n−1
n

]+1‖w0 −w∗‖ = 2
∞∑
t=0

r[
t−1
n

]‖w0 −w∗‖ (4.61)

Simplifying the sum in the right hand side of (4.61) yields

∞∑
t=0

σti ≤
2‖w0 −w∗‖

r
+ 2n‖w0 −w∗‖

∞∑
t=0

rt <∞. (4.62)

116

Thus, the sequence σti is summable for all i = 1, . . . , n. To complete the proof we use the

following result from Lemma 3.3 in [32].

Lemma 12 Let {φt} and {δt} be sequences of nonnegative numbers such that

φt+1 ≤ (1 + δt)φt + δt and

∞∑
k=1

δt <∞. (4.63)

Then, the sequence {φt} converges.

Considering the results in Lemmata 8 and 12, and the fact that σti is summable as

shown in(4.62), we obtain that the sequence
∥∥Bt

i −∇2fi(w
∗)
∥∥

M
for M := ∇2fi(w

∗)−1/2 is

convergent and the following limit exists

lim
k→∞

‖∇2fi(w
∗)−1/2 Bt

i ∇2fi(w
∗)−1/2 − I‖F = l (4.64)

where l is a nonnegative constant. Moreover, following the proof of Theorem 3.4 in [32] we

can show that

α(θti)
2‖Bt

i −∇2fi(w
∗)‖M ≤ ‖Bt

i −∇2fi(w
∗)‖M − ‖Bt+1

i −∇2fi(w
∗)‖M

+ σti(α3‖Bt
i −∇2fi(w

∗)‖M + α4), (4.65)

and, therefore, summing both sides implies,

∞∑
t=0

(θti)
2‖Bt

i −∇2fi(w
∗)‖M <∞ (4.66)

Replacing θti in (4.66) by its definition in (4.27) results in

∞∑
t=0

‖M(Bt
i −∇2fi(w

∗))sti‖2

‖Bt
i −∇2fi(w∗)‖M‖M−1sti‖2

<∞ (4.67)

Since the norm ‖Bt
i − ∇2fi(w

∗)‖M is upper bounded and the eigenvalues of the matrix

M = ∇2fi(w
∗)−1/2 are uniformly lower and upper bounded, we conclude from the result in

(4.67) that

lim
t→∞

‖(Bt
i −∇2fi(w

∗))sti‖2

‖sti‖2
= 0, (4.68)

which yields the claim in (4.59). �

117

The statement in Proposition 3 indicates that for each function fi the Dennis-Moré con-

dition holds. In the tradition quasi-Newton methods the Dennis-Moré condition is sufficient

to show that the method is superlinearly convergent. However, the same argument does not

hold for the proposed IQN method, since we can’t recover the Dennis-Moré condition for

the global objective function f from the result in Proposition 3. In other words, the result

in (4.59) does not imply the limit in (4.6) required in the superlinear convergence analysis

of quasi-Newton methods. Therefore, here we pursue a different approach and seek to prove

that the linear terms (Bt
i −∇2fi(w

∗))(zti −w∗) in (4.36) converge to zero at a superlinear

rate, i.e., for all i we can write limt→∞‖(Bt
i − ∇2fi(w

∗))(zti −w∗)‖/‖zti −w∗‖ = 0. If we

establish this result, it follows from the result in Lemma 10 that the sequence of residuals

‖wt −w∗‖ converges to zero superlinearly.

We continue the analysis of the proposed IQN method by establishing a generalized limit

property that follows from the Dennis-Moré criterion in (4.6). In the following lemma, we

leverage the local linear convergence of the iterates wt to show that that the vector zti−w∗

lies in the null space of Bt
i −∇2fi(w

∗) as t approaches infinity.

Lemma 13 Consider the proposed IQN method in (4.9). Assume that the hypotheses in

Lemmata 8 and 11 are satisfied. As t approaches infinity, the following holds for all i,

lim
t→∞

‖(Bt
i −∇2fi(w

∗))(zti −w∗)‖
‖zti −w∗‖

= 0. (4.69)

Proof: Consider the sets of variable variations S1 = {st+nτi }τ=Tτ=0 and S2 = {st+nτi }τ=∞τ=0 . It

is trivial to show that zti −w∗ is in the span of the set S2, since the sequences of variables

wt and zti converge to w∗ and we can write w∗ − zti =
∑∞

τ=0 st+nτi . We proceed to show

that the vector zti − w∗ is also in the span of the set S1 when T is sufficiently large. To

do so, we use a contradiction argument. Let’s assume that the vector zti −w∗ does not lie

in the span of the set S1, and, therefore, it can be decomposed as the sum of two non-zero

vectors given by

zti −w∗ = vt‖ + vt⊥, (4.70)

where vt‖ lies in the span of S1 and vt⊥ is orthogonal to the span of S1. Since we assume

that zti −w∗ does not lie in the span of S1, we obtain that zt+nTi −w∗ also does not lie in

this span, since zt+nTi −w∗ can be written as the sum zt+nTi −w∗ = zti −w∗+
∑T

τ=0 st+nτi .

These observations imply that we can also decompose the vector zt+nTi −w∗ as

zt+nTi −w∗ = vt+nT‖ + vt+nT⊥ , (4.71)

118

where vt+nT‖ lies in the span of S1 and vt+nT⊥ is orthogonal to the span of S1. Moreover, we

obtain that vt+nT⊥ is equal to vt⊥, i.e.,

vt+nT⊥ = vt⊥. (4.72)

This is true since zt+nTi −w∗ can be written as the sum of zti −w∗ and a group of vectors

that lie in the span of S1. We assume that the norm ‖vt+nT⊥ ‖ = ‖vt⊥‖ = ε where ε > 0 is a

strictly positive constant. According to the linear convergence of the sequence ‖wt −w∗‖
in Lemma 11 we know that

‖zt+nTi −w∗‖ ≤ r[
t+nT−1

n
]+1‖w0 −w∗‖ ≤ rT ‖w0 −w∗‖ (4.73)

If we pick large enough T such that rT ‖w0 −w∗‖ < ε, then we obtain ‖zt+nTi −w∗‖ < ε

which contradicts the assumption ‖vt⊥‖ = ε. Thus, we obtain that the vector zti − w∗ is

also in the span of set S1.
Since the vector zti −w∗ is in the span of S1, we can write the normalized vector (zti −

w∗)/‖zti−w∗‖ as a linear combination of the set of normalized vectors {st+nτi /‖st+nτi ‖}τ=Tτ=0 .

This property allows to write

lim
t→∞

‖(Bt
i −∇2fi(w

∗))(zti −w∗)‖
‖zti −w∗‖

= lim
t→∞

∥∥∥∥(Bt
i −∇2fi(w

∗))
(zti −w∗)

‖zti −w∗‖

∥∥∥∥
= lim

t→∞

∥∥∥∥∥(Bt
i −∇2fi(w

∗))
T∑
τ=0

aτ
st+nτi

‖st+nτi ‖

∥∥∥∥∥ , (4.74)

where aτ is coefficient of the vector st+nτi when we write (zti −w∗)/‖zti −w∗‖ as the linear

combination of the normalized vectors {st+nτi /‖st+nτi ‖}τ=Tτ=0 . Now since the index of the

difference Bt
i −∇2fi(w

∗) does not match with the descent directions sti + nτ . We add and

subtract the term Bt+nτ
i to the expression Bt

i − ∇2fi(w
∗) and use the triangle inequality

to write

lim
t→∞

‖(Bt
i −∇2fi(w

∗))(zti −w∗)‖
‖zti −w∗‖

≤ lim
t→∞

∥∥∥∥∥
T∑
τ=0

aτ
(Bt+nτ

i −∇2fi(w
∗))st+nτi

‖st+nτi ‖

∥∥∥∥∥+

∥∥∥∥∥
T∑
τ=0

aτ
(Bt

i −Bt+nτ
i)st+nτi

‖st+nτi ‖

∥∥∥∥∥ . (4.75)

119

We first simplify the first limit in the right hand side of (4.75). Using the Cauchy-Schwarz

inequality and the result in Proposition 3 we can write

lim
t→∞

∥∥∥∥∥
T∑
τ=0

aτ
(Bt+nτ

i −∇2fi(w
∗))st+nτi

‖st+nτi ‖

∥∥∥∥∥ ≤ lim
t→∞

T∑
τ=0

aτ

∥∥∥∥(Bt+nτ
i −∇2fi(w

∗))st+nτi

‖st+nτi ‖

∥∥∥∥
=

T∑
τ=0

aτ lim
t→∞

∥∥∥∥(Bt+nτ
i −∇2fi(w

∗))st+nτi

‖st+nτi ‖

∥∥∥∥ = 0.

(4.76)

Based on the results in (4.75) and (4.76), to prove the claim in (4.69) it remains to show

lim
t→∞

∥∥∥∥∥
T∑
τ=0

aτ
(Bt

i −Bt+nτ
i)st+nτi

‖st+nτi ‖

∥∥∥∥∥ = 0. (4.77)

To reach this goal, we first study the limit of the difference between two consecutive

update Hessian approximation matrices limt→∞ ‖Bt
i −Bt+n

i ‖. Note that if we set A = Bt
i

in (4.29), we obtain that

‖Bt+n
i −Bt

i‖M ≤ α2
‖yti −Bt

is
t
i‖

‖M−1sti‖
. (4.78)

where M = (∇2fi(w
∗))−1/2. By adding and subtracting the term ∇2fi(w

∗)sti and using the

result in (4.59), we can show that the difference ‖Bt+n
i −Bt

i‖M approaches zero asymptot-

ically. In particular,

lim
t→∞
‖Bt+n

i −Bt
i‖M ≤ α2 lim

t→∞

‖yti −Bt
is
t
i‖

‖M−1sti‖

≤ α2 lim
t→∞

‖yti −∇2fi(w
∗)sti‖

‖M−1sti‖
+ α2 lim

t→∞

‖(∇2fi(w
∗)−Bt

i)s
t
i‖

‖M−1sti‖
. (4.79)

Since ‖yti −∇2fi(w
∗)sti‖ is bounded above by L̃‖sti‖max{‖zti −w∗‖, ‖zt+1

i −w∗‖} and the

eigenvalues of the matrix M are uniformly bounded we obtain that the first limit in the

right hand side of (4.79) converges to zero. Further, the result in (4.59) shows that the

second limit in the right hand side of (4.79) also converges to zero. Therefore,

lim
t→∞
‖Bt+n

i −Bt
i‖M = 0. (4.80)

120

Following the same argument we can show that for any two consecutive Hessian approxi-

mation matrices the difference approaches zero asymptotically. Thus, we obtain

lim
t→∞

∥∥Bt
i −Bt+nτ

i

∥∥
M
≤ lim

t→∞

∥∥∥∥∥
τ−1∑
u=0

(
Bt+nu
i −B

t+n(u+1)
i

)∥∥∥∥∥
M

≤
τ−1∑
u=0

lim
t→∞

∥∥∥Bt+nu
i −B

t+n(u+1)
i

∥∥∥
M

= 0. (4.81)

Observing the result in (4.81) we can show that

lim
t→∞

∥∥∥∥∥
T∑
τ=0

aτ
(Bt

i −Bt+nτ
i)st+nτi

‖st+nτi ‖

∥∥∥∥∥ ≤
T∑
τ=0

aτ lim
t→∞

∥∥∥∥(Bt
i −Bt+nτ

i)st+nτi

‖st+nτi ‖

∥∥∥∥
≤

T∑
τ=0

aτ lim
t→∞

∥∥Bt
i −Bt+nτ

i

∥∥ = 0. (4.82)

Therefore, the result in (4.77) holds. The claim in (4.69) follows by combining the results

in (4.75), (4.76), and (4.77). �

The result in Lemma 13 can thus be used in conjunction with Lemma 10 to show that

the residual ‖wt+1−w∗‖ is bounded by a sum of quadratic terms of previous residuals and

a term that converges to zero superlinearly. This result leads us to the following result,

namely the local superlinear convergence of the sequence of residuals with respect to the

average sequence, stated in the following theorem.

Theorem 5 Consider the proposed IQN method in (4.9). Suppose that the conditions in

the hypotheses of Lemmata 8 and 11 are valid. Then, the sequence of residuals ‖wt −w∗‖
satisfies

lim
t→∞

‖wt −w∗‖
1
N (‖wt−1 −w∗‖+ · · ·+ ‖wt−n −w∗‖)

= 0. (4.83)

Proof: The result in Lemma 10 implies

‖wt+1 −w∗‖ ≤ L̃Γt

n

N∑
i=1

∥∥zti −w∗
∥∥2 +

Γt

n

N∑
i=1

∥∥(Bt
i −∇2fi(w

∗)
) (

zti −w∗
)∥∥ . (4.84)

Divide both sides of (4.84) by (1/N)
∑N

i=1

∥∥zti −w∗
∥∥ to obtain

‖wt+1 −w∗‖
1
N

∑N
i=1 ‖zti −w∗‖

≤ L̃Γt
N∑
i=1

∥∥zti −w∗
∥∥2∑N

i=1 ‖zti −w∗‖
+ Γt

N∑
i=1

∥∥(Bt
i −∇2fi(w

∗)
) (

zti −w∗
)∥∥∑N

i=1 ‖zti −w∗‖
(4.85)

121

Since the error ‖zti − w∗‖ is a lower bound for the sum of errors
∑N

i=1 ‖zti − w∗‖, we can

replace ‖zti −w∗‖ for
∑N

i=1 ‖zti −w∗‖ into (4.85) which implies

‖wt+1 −w∗‖
1
N

∑N
i=1 ‖zti −w∗‖

≤ L̃Γt
N∑
i=1

∥∥zti −w∗
∥∥2

‖zti −w∗‖
+ Γt

N∑
i=1

∥∥(Bt
i −∇2fi(w

∗)
) (

zti −w∗
)∥∥

‖zti −w∗‖

= L̃Γt
N∑
i=1

∥∥zti −w∗
∥∥+ Γt

N∑
i=1

∥∥(Bt
i −∇2fi(w

∗)
) (

zti −w∗
)∥∥

‖zti −w∗‖
. (4.86)

Since Γt is bounded above, computing the limit of both sides in (4.86) yields

lim
t→∞

‖wt+1 −w∗‖
1
N

∑N
i=1 ‖zti −w∗‖

= 0. (4.87)

The result in (4.87) in association with the simplification for the sum
∑N

i=1

∥∥zti −w∗
∥∥ =∑n−1

i=0

∥∥wt−i −w∗
∥∥ leads to the claim in (4.83). �

The result in (4.83) shows a mean-superlinear convergence rate for the sequence of it-

erates generated by IQN. To be more precise, it shows that the ratio that captures the

error at step t divided by the average of last N errors converges to zero. This is not equiv-

alent to the classic Q-superlinear convergence for full-batch quasi-Newton methods, i.e.,

limt→∞ ‖wt+1 −w∗‖/‖wt −w∗‖ = 0. Although Q-superlinear convergence of the residuals

‖wt − w∗‖ is not provable, we can show that there exists a subsequence of the sequence

‖wt − w∗‖ that converges to zero superlinearly. In addition, there exists a superlinearly

convergent sequence that is an upper bound for the original sequence of errors ‖wt −w∗‖.
We formalize these results in the following theorem.

Theorem 6 Consider the proposed IQN method in (4.9). Suppose that the conditions in

the hypotheses of Lemmata 8 and 11 are valid. Then, there exists a subsequence of ‖wt −
w∗‖ that converges to zero superlinearly. Moreover, there exists a sequence ζt such that

‖wt −w∗‖ ≤ ζt for all t ≥ 0, and the sequence ζt converges to zero at a superlinear rate,

i.e.,

lim
t→∞

ζt+1

ζt
= 0. (4.88)

Proof: Consider the definition of the sequence w̃t = argmaxu∈{tn,...,tn+n−1}{‖wu −w∗‖}
which is a subsequence of the sequence {wt}∞t=0. Our goal is to show this subsequence

converges superlinearly to w∗, i.e., limt→∞
‖w̃t+1−w∗‖
‖w̃t−w∗‖ = 0. To do so, first note that the

result in Theorem 5 implies that

lim
t→∞

‖wt −w∗‖
max{‖wt−1 −w∗‖, . . . , ‖wt−n −w∗‖}

= 0, (4.89)

122

which follows from the inequality max{‖wt−1 −w∗‖, . . . , ‖wt−n −w∗‖} ≥ (1/n)(‖wt−1 −
w∗‖+ · · ·+ ‖wt−n−w∗‖). Based on the limit in (4.89), there exists a large enough t0 such

that for all t ≥ t0 the following inequality holds,

‖wt −w∗‖ < max{‖wt−1 −w∗‖, . . . , ‖wt−n −w∗‖}. (4.90)

Combining the inequality in (4.90) with the inequalities ‖wt−i − w∗‖ ≤ max{‖wt−1 −
w∗‖, . . . , ‖wt−n −w∗‖} for i = 1, . . . , n− 1 yields

max{‖wt −w∗‖, . . . , ‖wt−n+1 −w∗‖} ≤ max{‖wt−1 −w∗‖, . . . , ‖wt−n −w∗‖}, (4.91)

and consequently we can generalize this result to obtain

max{‖wt−w∗‖, . . . , ‖wt−n+1−w∗‖} ≤ max{‖wt−τ−w∗‖, . . . , ‖wt−τ−n+1−w∗‖}, (4.92)

for any positive integer τ such that t− τ ≥ t0.
We use the result in (4.92) to build a superlinearly convergent subsequence of the resid-

uals sequence ‖wt−w∗‖. If we define wtn+u∗t as the iterate that has the largest error among

the iterates in the t+ 1-th pass, i.e.,

wtn+u∗t = argmax
u∈{tn,...,tn+n−1}

{‖wu −w∗‖}, (4.93)

then it follows that w̃t = wtn+u∗t , where u∗t ∈ {0, 1, . . . , n− 1}. Moreover, we obtain

‖w̃t+1 −w∗‖
‖w̃t −w∗‖

=
‖w(t+1)n+u∗t+1 −w∗‖

max{‖wtn −w∗‖, . . . , ‖wtn+n−1 −w∗‖}

≤ ‖wtn+n+u∗t+1 −w∗‖
max{‖wtn+u∗t+1−1 −w∗‖, . . . , ‖wtn+n+u∗t+1−1 −w∗‖}

. (4.94)

The equality follows from the definition of the iterate w̃t and the definition in (4.93),

and the inequality holds because of the result in (4.92). Considering the result in (4.89),

computing the limit of both sides leads to the conclusion that the sequence ‖w̃t − w∗‖
is superlinearly convergent. In other words, we obtain that the subsequence {‖wtn+u∗t −
w∗‖}t=∞t=0 superlinearly converges to zero.

Let’s define the sequence qt such that qkn = · · · = qkn+n−1 = ‖w̃k − w∗‖ for k =

0, 1, 2, . . . , which means that the value of the sequence qt is fixed for each pass and is equal

to the max error of the corresponding pass. Therefore, it is trivial to show that qt is always

larger than or equal to ‖wt − w∗‖, i.e., ‖wt − w∗‖ ≤ qt for all t ≥ 0. Now define the

123

sequence ζt such that ζt = qt for t = 0, . . . , n− 1, and for t ≥ n

ζkn+i = qkn−1
(
qkn+n−1

qkn−1

) i+1
n

, for i = 0, . . . , n− 1, k ≥ 1. (4.95)

According to this definition we can verify that ζt is an upper bound for the sequence qt and,

consequently, an upper bound for the sequence of errors ‖wt−w∗‖. Based on the definition

of the sequence ζt in (4.95), the ratio ζt+1/ζt is given by (qb
t+1
n cn+n−1/qb

t+1
n cn−1)1/n. This

simplification in association with the definitions of the sequences ‖wt−w∗‖ and ‖w̃t−w∗‖
implies that

lim
t→∞

ζt+1

ζt
= lim

t→∞

(
qb

t+1
n cn+n−1

qb
t+1
n cn−1

) 1
N

= lim
t→∞

(
‖w̃b

t+1
n c −w∗‖

‖w̃b
t+1
n c−1 −w∗‖

) 1
N

= 0, (4.96)

which leads to the claim in (4.88). �

The first result in Theorem 6 states that although the whole sequence ‖wt − w∗‖ is

not necessarily superlinearly convergent, there exists a subsequence of the sequence ‖wt −
w∗‖ that converges at a superlinear rate. The second claim in Theorem 6 establishes R-

superlinear convergence rate of the whole sequence ‖wt−w∗‖. In other words, it guarantees

that ‖wt −w∗‖ is upper bounded by a superlinearly convergent sequence.

4.5 Numerical results

We proceed by simulating the performance of IQN on a variety of machine learning problems

on both artificial and real datasets. We compare the performance of IQN against a collection

of well known first order stochastic and incremental algorithms—namely SAG, SAGA, and

IAG. To begin, we look at a simple quadratic program, also equivalent to the solution of

linear least squares estimation problem. Consider the objective function to be minimized,

w∗ = argmin
w∈Rp

f(w) := argmin
w∈Rp

1

N

N∑
i=1

1

2
wTAiw + bTi w. (4.97)

We generate Ai ∈ Rp×p as a random positive definite matrix and bi ∈ Rp as a random

vector for all i. In particular we set the matrices Ai := diag{ai} and generate random

vectors ai with the first p/2 elements chosen from [1, 10ξ/2] and last p/2 elements chosen

from [10−ξ/2, 1]. The parameter ξ is used to manually set the condition number for the

quadratic program in (4.97), ranging from ξ = 1 (i.e. small condition number 102) and

ξ = 2 (i.e. large condition number 104). The vectors bi are chosen uniformly and randomly

from the box [0, 103]p. The variable dimension is set to be p = 10 and number of functions

124

Number of E,ective Passes
0 10 20 30 40

N
or

m
al

iz
ed

E
rr

or

10-20

10-15

10-10

10-5

100

SAG
SAGA
IAG
IQN

Number of E,ective Passes
0 10 20 30 40

N
or

m
al

iz
ed

E
rr

or

10-20

10-15

10-10

10-5

100

SAG
SAGA
IAG
IQN

Figure 4.2: Convergence results of proposed IQN method in comparison to SAG, SAGA, and IAG.
In the left image, we present a sample convergence path of the normalized error on the quadratic
program with a small condition number. In the right image, we show the convergence path for the
quadratic program with a large condition number. In all cases, IQN provides significant improvement
over first order methods, with the difference increasing for larger condition number.

N = 1000. Given that we focus on local convergence, we use a constant step size of η = 1

for the proposed IQN method while choosing the largest step size allowable by the other

methods to converge.

In Figure 4.2 we present a simulation of the convergence path of the normalized error

‖wt −w∗‖/‖w0 −w∗‖ for the quadratic program. In the the left image, we show a sample

simulation path for all methods on the quadratic problem with a small condition number.

Step sizes of η = 5 × 10−5, η = 10−4 and η = 10−6 were used for SAG, SAGA, and IAG,

respectively. These step sizes are tuned to compare the best performance of these methods

with IQN. The proposed method reaches a error of 10−10 after 10 passes through the data.

Alternatively, SAGA achieves the same error of 10−5 after 30 passes, while SAG and IAG

do not reach 10−5 after 40 passes.

In the right image of Figure 4.2, we repeat the same simulation but with larger condition

number. In this case, SAG uses stepsize η = 2×10−4 while others remain the same. Observe

that while the performance of IQN does not degrade with larger condition number, the first

order methods all suffer large degradation. SAG, SAGA, and IAG reach after 40 passes a

normalized error of 6.5× 10−3, 5.5× 10−2, and 9.6× 10−1, respectively. It can be seen that

IQN significantly outperforms the first order method for both condition number sizes, with

the outperformance increasing for larger condition number. This is an expected result, as

first order methods often do not perform well for ill conditioned problems.

4.5.1 Logistic regression

We proceed to numerically evaluate the performance of IQN relative to existing methods

on the classification of handwritten digits in the MNIST database [50]. In particular, we

solve the binary logistic regression problem. A logistic regression takes as inputs N training

125

0 10 20 30 40 50 60
Number of E,ective Passes

10-8

10-6

10-4

10-2

100

N
or

m
of

G
ra

d
ie

nt

SAG
SAGA
IAG
IQN

Figure 4.3: Convergence results for a sample convergence path for the logistic regression problem
on classifying handwritten digits. IQN substantially outperforms the first order methods.

feature vectors ui ∈ Rp with associated labels vi ∈ {−1, 1} and outputs a linear classifier

w to predict the label of unknown feature vectors. For the digit classification problem,

each feature vector ui represents a vectorized image and label vi its label as one of two

digits. We evaluate for any training sample i the probability of a label vi = 1 given image

ui as P (v = 1|u) = 1/(1 + exp(−uTw)). The classifier w is chosen to be the vector which

maximizes the log likelihood across all N samples. Given N images ui with associated

labels vi, the optimization problem for logistic regression is written as

w∗ = argmin
w∈Rp

f(w) := argmin
w∈Rp

λ

2
‖w‖2 +

1

N

N∑
i=1

log[1 + exp(−viuTi w)], (4.98)

where the first term is a regularization term parametrized by λ ≥ 0.

For our simulations we select from the MNIST dataset N = 1000 images with dimension

p = 784 labelled as one of the digits “0” or “8’ and fix the regularization parameter as

λ = 1/N and stepsize η = 0.01 for all first order methods. In Figure 4.3 we present the

convergence path of IQN relative to existing methods in terms of the norm of the gradient.

As in the case of the quadratic program, the IQN performs all gradient-based methods. IQN

reaches a gradient magnitude of 4.8×10−8 after 60 passes through the data while the SAGA

reaches only a magnitude of 7.4 × 10−5 (all other methods perform even worse). Further

note that while the first order methods begin to level out after 60 passes, the IQN method

continues to descend. These results demonstrate the effectiveness of IQN on a practical

machine learning problem with real world data.

126

Part II

Decentralized Methods

127

Chapter 5

Network Newton methods

5.1 Context and background

Distributed optimization algorithms are used to solve the problem of minimizing a global

cost function over a set of nodes in situations where the objective function is defined as a

sum of local functions. To be more precise, consider a variable w ∈ Rp and a connected

network containing V agents each of which has access to a local function fv : Rp → R.

The agents cooperate in minimizing the aggregate cost function f : Rp → R taking values

f(w) :=
∑V

v=1 fv(w). I.e., agents cooperate in solving the problem

w∗ := argmin
w∈Rp

f(w) = argmin
w∈Rp

V∑
v=1

fv(w). (5.1)

Problems of this form arise often in, e.g., decentralized control systems [25, 56], wireless

systems [94,96], sensor networks [46,93,103], and large scale machine learning [6, 57,118].

As explained in Chapter 1, the empirical risk minimization (ERM) problem can be solved

using distributed optimization methods by splitting samples among nodes (processors) in

the network. This observation implies that ERM can be written in the form of the problem

formulation in (5.1) if we consider fv(w) as the loss associated to the samples of node v. In

the second part of the thesis, we focus on developing algorithms for solving the distributed

optimization problem in (5.1) which can be exploited to solve large-scale ERM problems.

There are different algorithms to solve (5.1) in a distributed manner. The most popular

choices are decentralized gradient descent (DGD) [44,80,111,126], distributed implementa-

tions of the alternating direction method of multipliers [19,27,77,103,112], and decentralized

dual averaging [33, 119]. Although there are substantial differences between them, these

methods can be generically abstracted as combinations of local descent steps followed by

variable exchanges and averaging of information among neighbors. A feature common to all

128

of these algorithms is the slow convergence rate in ill-conditioned problems since they oper-

ate on first order information only. This is not surprising because gradient descent methods

in centralized settings where the aggregate function gradient is available at a single server

have the same difficulties in problems with skewed curvature.

This issue is addressed in centralized optimization by Newton’s method that uses second

order information to determine a descent direction adapted to the objective’s curvature. In

general, second order methods are not available in distributed settings because distributed

approximations of Newton steps are difficult to devise. In the particular case of flow opti-

mization problems, these approximations are possible when operating in the dual domain

and have led to the development of the accelerated dual descent methods [123, 128]. As

would be expected, these methods result in large reductions of convergence times.

Our goal is to develop approximate Newton’s methods to solve (5.1) in distributed

settings where agents have access to their local functions only and exchange variables with

neighboring agents. We do so by introducing Network Newton (NN), a method that relies

on distributed approximations of Newton steps for the global cost function f to accelerate

convergence of DGD. We begin the chapter with an alternative formulation of (5.1) and a

brief discussion of DGD (Section 5.2). We then introduce a reinterpretation of DGD as an

algorithm that utilizes gradient descent to solve a penalized version of (5.1) in lieu of the

original optimization problem (Section 5.2.1). This reinterpretation explains convergence

of DGD to a neighborhood of w∗. The volume of this neighborhood is given by the relative

weight of the penalty function and the original objective which is controlled by a penalty

coefficient.

If gradient descent on the penalized function finds an approximate solution to the original

problem, the same solution can be found with a much smaller number of iterations by

using Newton’s method. Alas, distributed computation of Newton steps requires global

communication between all nodes in the network and is therefore impractical (Section 5.3).

To resolve this issue we approximate the Newton step of the penalized objective function by

truncating the Taylor series of the exact Newton step (Section 5.3.1). This approximation

results in a family of methods indexed by the number of terms of the Taylor expansion that

are kept in the approximation. The method that results from keeping K of these terms

is termed NN-K. A fundamental observation here is that the Hessian of the penalized

function has a sparsity structure that is the same sparsity pattern of the graph. Thus, when

computing terms in the Hessian inverse expansion, the first order term is as sparse as the

graph, the second term is as sparse as the two hop neighborhood, and, in general, the k-th

term is as sparse as the k-hop neighborhood of the graph. Thus, implementation of the NN-

K method requires aggregating information from K hops away. Increasing K makes NN-K

arbitrarily close to Newton’s method at the cost of increasing the communication overhead

129

of each iteration. We point out that the same Taylor series is used in the development of the

ADD algorithms, but this is done to solve a network utility maximization problem in the

dual domain [128]. The Taylor expansion is utilized here to solve a consensus optimization

problem in the primal domain.

Convergence of NN-K to the optimal argument of the penalized objective is established

(Section 5.4). We do so by establishing several auxiliary bounds on the eigenvalues of

the matrices involved in the definition of the method (Propositions 4-6 and Lemma 16).

We show that a measure of the error between the Hessian inverse approximation utilized

by NN-K and the actual inverse Hessian decays exponentially with the method index K.

This exponential decrease hints that using a small value of K should suffice in practice.

Convergence is formally claimed in Theorem 7 that shows the convergence rate is at least

linear. It follows from this convergence analysis that larger penalty coefficients result in

faster convergence that comes at the cost of increasing the distance between the optimal

solutions of the original and penalized objectives.

We also study the convergence rate of the NN method as an approximation of Newton’s

method (Section 5.4.1). We show that for all iterations except the first few, a weighted

gradient norm associated with NN-K iterates follows a decreasing path akin to the path

that would be followed by Newton iterates (Lemma 17). The only difference between these

residual paths is that the NN-K path contains a term that captures the error of the Hessian

inverse approximation. Leveraging this similarity, it is possible to show that the rate of

convergence is quadratic in a specific interval whose length depends on the order K of the

selected network Newton method (Theorem 8). Existence of this quadratic convergence

phase explains why NN-K methods converge faster than DGD – as we observe in experi-

ments. It is also worth remarking that the error in the Hessian inverse approximation can

be made arbitrarily small by increasing the method’s order K and, as a consequence, the

quadratic phase can be made arbitrarily large.

We wrap up the chapter with numerical analyses (Section 5.6). We first demonstrate the

advantages of NN-K relative to alternative primal and dual methods for the minimization

of a family of quadratic objective functions (Section 5.6.1). Then, we study the effect of

objective function condition number and show that the NN method outperforms first-order

alternatives significantly in ill-conditioned problems (Section 5.6.2). Further, we study the

effect of network topology on the performance of NN (Section 5.6.3). Moreover, we compare

the convergence rate of NN in theory and practice to show the tightness of the bounds in

this chapter (Section 5.6.4).

Notation. Vectors are written as w ∈ Rp and matrices as A ∈ Rp×p. The null space of

matrix A is denoted by null(A) and the span of a vector by span(w). We use ‖w‖ and

‖A‖ to denote the Euclidean norm of vector w and matrix A, respectively. The gradient of

130

a function f(w) is denoted as ∇f(w) and the Hessian matrix is denoted as ∇2f(w). The

v-th largest eigenvalue of matrix A is denoted by µv(A).

5.2 Distributed gradient descent

The network that connects the V agents is assumed connected, symmetric, and specified

by the neighborhoods Nv that contain the list of nodes that can communicate with v

for v = 1, . . . , V . In problem (5.1) agent v has access to the local cost fv(w) and agents

cooperate to minimize the global cost f(w). This specification is more naturally formulated

by an alternative representation of (5.1) in which node v selects a local decision vector

wv ∈ Rp. Nodes then try to achieve the minimum of their local objective functions fv(wv),

while keeping their variables equal to the variables wu of neighbors u ∈ Nv. This alternative

formulation can be written as

{w∗v}Vv=1 := argmin
{wv}Vi=1

V∑
v=1

fv(wv),

s.t. wv = wu, for all v, u ∈ Nv. (5.2)

Since the network is connected, the constraints wv = wu for all v and u ∈ Nv imply that

(5.1) and (5.2) are equivalent and we have w∗v = w∗ for all v. This must be the case because

for a connected network the constraints wv = wu for all v and u ∈ Nv collapse the feasible

space of (5.2) to a hyperplane in which all local variables are equal. When all variables are

equal, the objectives in (5.1) and (5.2) coincide and so do their optima.

DGD is an established distributed method to solve (5.2) which relies on the introduction

of nonnegative weights wvu ≥ 0 that are null if and only if u /∈ Nv ∪ {v} – the use of time

varying weights wvu is common in DGD implementations but not done here; see, e.g., [80].

Letting t ∈ N be a discrete time index and α a given stepsize, DGD is defined by the

recursion

wv,t+1 =
V∑
u=1

wvuwu,t − α∇fv(wv,t), v = 1, . . . , V. (5.3)

Since wvu = 0 when u 6= v and u /∈ Nv, it follows from (5.3) that each agent v updates its

variable wv by performing an average over the estimates wu,t of its neighbors u ∈ Nv and

its own estimate wv,t, and descending through the negative local gradient −∇fv(wv,t).

The weights in (5.3) cannot be arbitrary. To express conditions on the set of allowable

weights define the matrix W ∈ RV×V with entries wuv. We require the weights to be

symmetric, i.e., wvu = wuv for all v, u, and such that the weights of a given node sum up

to 1, i.e.,
∑V

u=1wvu = 1 for all v. If the weights sum up to 1 we must have W1 = 1 which

implies that I −W is rank deficient. It is also customary to require the rank of I −W to

131

be exactly equal to n − 1 so that the null space of I −W is null(I −W) = span(1). We

therefore have the following three restrictions on the matrix W,

WT = W, W1 = 1, null(I−W) = span(1). (5.4)

If the conditions in (5.4) are true, it is possible to show that (5.3) approaches the solution

of (5.1) in the sense that wv,t ≈ w∗ for all v and large t, [80]. The accepted interpretation

of why (5.3) converges is that nodes are gradient descending towards their local minima

because of the term −α∇fv(wv,t) but also perform an average of neighboring variables∑n
j=1wuvwu,t. This latter consensus operation drives the agents to agreement. In the

following section we show that (5.3) can be alternatively interpreted as a penalty method.

5.2.1 Penalty method interpretation

It is illuminating to define matrices and vectors so as to rewrite (5.3) as a single equation.

To do so define the vectors y := [w1; . . . ; wV] and h(y) := [∇f1(w1); . . . ;∇fV (wV)]. Vector

y ∈ RV p concatenates the local vectors wv, and the vector h(y) ∈ RV p concatenates the

gradients of the local functions fv taken with respect to the local variable wv. Notice that

h(y) is not the gradient of f(w) and that a vector y with h(y) = 0 does not necessarily solve

(5.1). To solve (5.1) we need to have wv = wu for all v and u with
∑V

v=1∇fv(wv) = 0. In

any event, to rewrite (5.3) we also define the matrix Z := W⊗I ∈ RV p×V p as the Kronecker

product of the weight matrix W ∈ RV×V and the identity matrix I ∈ Rp×p. It is then ready

to see that (5.3) is equivalent to

yt+1 = Zyt − αh(yt) = yt −
[
(I− Z)yt + αh(yt)

]
, (5.5)

where in the second equality we added and subtracted yt and regrouped terms. Inspection

of (5.5) reveals that the DGD update formula at step t is equivalent to a (regular) gradient

descent algorithm being used to solve the program

y∗ := argminF (y) := min
1

2
yT (I− Z)y + α

V∑
v=1

fv(wv). (5.6)

This interpretation has been previously used in [42, 44] to design a Nesterov type acceler-

ation of DGD. Indeed, given the definition of the function F (y) := (1/2)yT (I − Z) y +

α
∑V

v=1 fv(wv) it follows that the gradient ∇F (yt) is given by

gt := ∇F (yt) = (I− Z)yt + αh(yt). (5.7)

132

Using (5.7) we rewrite (5.5) as yt+1 = yt − gt and conclude that DGD descends along the

negative gradient of F (y) with unit stepsize. The expression in (5.3) is just a distributed

implementation of gradient descent that uses the gradient in (5.7). To confirm that this is

true, observe that the vth element of the gradient gt = [g1,t; . . . ; gV,t] is given by

gv,t = (1− wvv)wv,t −
∑
u∈Nv

wvuwu,t + α∇fv(wv,t). (5.8)

The gradient descent iteration yt+1 = yt − gt is then equivalent to (5.3) if we entrust

node v with the implementation of the descent wv,t+1 = wv,t − gv,t, where, we recall, wv,t

and wv,t+1 are the vth components of the vectors yt and yt+1. Observe that the local

gradient component gv,t can be computed using local information and the wu,t iterates of

its neighbors u ∈ Nv. This is as it should be, because the descent wv,t+1 = wv,t − gv,t is

equivalent to (5.3).

Is it a good idea to descend on F (y) to solve (5.1)? To some extent. Since we

know that the null space of I − W is null(I − W) = span(1) and that Z = W ⊗ I

we know that the null space of I − Z is the set of consensus vectors, i.e., null(I − Z) ={
y = [w1; . . . ; wV]

∣∣w1 = · · · = wV

}
. Thus, (I − Z)y = 0 holds if and only if w1 = · · · =

wV . Since the matrix I− Z is positive semidefinite and symmetric, the same is true of the

square root matrix (I− Z)1/2. Therefore, the optimization problem in (5.2) is equivalent

to the optimization problem

ỹ∗ := argmin
w

V∑
v=1

fv(wv), s.t. (I− Z)1/2y = 0. (5.9)

Indeed, for y = [w1; . . . ; wV] to be feasible in (5.9) we must have w1 = · · · = wV . This is the

same constraint imposed in (5.2) from where it follows that we must have ỹ∗ = [w∗1; . . . ; w∗V]

with w∗v = w∗ for all v. The unconstrained minimization in (5.6) is a penalty version of

(5.9). The penalty function associated with the constraint (I− Z)1/2y = 0 is the squared

norm (1/2)‖(I− Z)1/2y‖2 and the corresponding penalty coefficient is 1/α. Inasmuch as

the penalty coefficient 1/α is sufficiently large, the optimal arguments y∗ and ỹ∗ are not

too far apart.

The reinterpretation of (5.3) as a penalty method demonstrates that DGD is an algo-

rithm that finds the optimal solution of (5.6), not (5.9) or its equivalent original formulations

in (5.1) and (5.2). Using a fixed α the distance between y∗ and ỹ∗ is of order O(α), [126].

To solve (5.9) we need to introduce a rule to progressively decrease α. In the following

section we exploit the reinterpretation of (5.5) as a method to minimize (5.6) to propose

an approximate Newton algorithm that can be implemented in a distributed manner.

133

5.3 Network Newton

Instead of solving (5.6) with a gradient descent method as in DGD, we can solve (5.6)

using Newton’s method. To implement Newton’s method we need to compute the Hessian

Ht := ∇2F (yt) of F evaluated at yt so as to determine the Newton step dt := −H−1t gt.

Start by differentiating twice in (5.6) in order to write Ht as

Ht := ∇2F (yt) = I− Z + αGt, (5.10)

where Gt ∈ RV p×V p is a block diagonal matrix formed by blocks Gvv,t ∈ Rp×p defined as

Gvv,t = ∇2fv(wv,t). (5.11)

It follows from (5.10) and (5.11) that the Hessian Ht is block sparse with blocks Hvu,t ∈ Rp×p

having the sparsity pattern of Z, which is the sparsity pattern of the graph. The diagonal

blocks are of the form Hvv,t = (1−wvv)I +α∇2fv(wv,t) and the off diagonal blocks are not

null only when u ∈ Nv in which case Hvu,t = wuvI.

While the Hessian Ht is sparse, the inverse Ht is not. It is the latter that we need to

compute the Newton step dt := H−1t gt. To overcome this problem we split the diagonal

and off diagonal blocks of Ht and rely on a Taylor’s expansion of the inverse – This splitting

technique is inspired from the Taylor’s expansion used in [128]. To be precise, write Ht =

Dt −B where the matrix Dt is defined as

Dt := αGt + 2 (I− diag(Z)) := αGt + 2 (I− Zd), (5.12)

where in the second equality we defined Zd := diag(Z) for future reference. Since the

diagonal weights must be wvv < 1, the matrix I− Zd is positive definite. The same is true

of the block diagonal matrix Gt because the local functions are assumed strongly convex.

Therefore, the matrix Dt is block diagonal and positive definite. The vth diagonal block

Dvv,t ∈ Rp of Dt can be computed and stored by node v as Dvv,t = α∇2fv(wv,t)+2(1−wvv)I.

To have Ht = Dt−B we must define B := Dt−Ht. Considering the definitions of Ht and

Dt in (5.10) and (5.12), it follows that

B = I− 2Zd + Z. (5.13)

Note that B is time-invariant and depends on the weight matrix Z only. As in the case of

the Hessian Ht, the matrix B is block sparse with blocks Bvu ∈ Rp×p having the sparsity

pattern of Z, which is the sparsity pattern of the graph. Node v can compute the diagonal

blocks Bvv = (1 − wvv)I and the off diagonal blocks Bvu = wvuI using information about

134

its own and neighbors’ weights.

Proceed now to factor D
1/2
t from both sides of the splitting relationship to write Ht =

D
1/2
t (I−D

−1/2
t BD

−1/2
t)D

1/2
t . When we consider the Hessian inverse H−1, we can use the

Taylor series (I−X)−1 =
∑∞

j=0 Xj with X = D
−1/2
t BD

−1/2
t to write

H−1t = D
−1/2
t

∞∑
k=0

(
D
−1/2
t BD

−1/2
t

)k
D
−1/2
t . (5.14)

The sum in (5.14) converges if the absolute value of all the eigenvalues of the matrix

D−1/2BD−1/2 are strictly less than 1. For the time being we assume this to be the case

but we will prove that this is true in Section 5.4. When the series converge, we can use

truncations of this series to define approximations to the Newton step as we explain in the

following section.

Remark 4 The Hessian decomposition Ht = Dt − B with the matrices Dt and B in

(5.12) and (5.13), respectively, is not the only valid decomposition that we can use for

Network Newton. Any decomposition of the form Ht = Dt ± Bt is valid if Dt is positive

definite and the eigenvalues of the matrix D
−1/2
t BtD

−1/2
t are in the interval (−1, 1). An

example alternative decomposition is given by the matrices Dt = αGt and B = I − Z.

This decomposition has the advantage of separating the effects of the function in Dt and

the effects of the network in B. The decomposition in (5.12) and (5.13) exhibits faster

convergence of the series in (5.14) because the matrix Dt in (5.12) accumulates more weight

in the diagonal than the matrix Dt = αGt. The study of alternative decompositions is

beyond the scope of this chapter.

5.3.1 Distributed approximations of the Newton step

Network Newton (NN) is defined as a family of algorithms that rely on truncations of the

series in (5.14). The Kth member of this family, NN-K, considers the first K + 1 terms of

the series to define the approximate Hessian inverse

Ĥ
(K)−1

t := D
−1/2
t

K∑
k=0

(
D
−1/2
t BD

−1/2
t

)k
D
−1/2
t . (5.15)

NN-K uses the approximate Hessian Ĥ
(K)−1

t as a curvature correction matrix that is used in

lieu of the exact Hessian inverse H−1 to estimate the Newton step. I.e., instead of descending

along the Newton step dt := −H−1t gt we descend along the NN-K step d
(K)
t := −Ĥ

(K)−1

t gt

as an approximation of dt. Using the explicit expression for Ĥ
(K)−1

t in (5.15) we write the

135

NN-K step as

d
(K)
t = − D

−1/2
t

K∑
k=0

(
D
−1/2
t BD

−1/2
t

)k
D
−1/2
t gt, (5.16)

where, we recall, gt as the gradient of the function F (y) defined in (5.7). The NN-K update

can then be written as

yt+1 = yt + ε d
(K)
t , (5.17)

where ε is a properly selected stepsize – see Theorem 7 for specific conditions. The algorithm

defined by recursive application of (5.17) can be implemented in a distributed manner

because the truncated series in (5.15) has a local structure controlled by the parameter K.

To explain this statement better define the components d
(K)
v,t ∈ Rp of the NN-K step d

(K)
t =

[d
(K)
1,t ; . . . ; d

(K)
V,t]. A distributed implementation of (5.17) requires that node v computes d

(K)
v,t

so as to implement the local descent wv,t+1 = wv,t+εd
(K)
v,t . The key observation here is that

the step component d
(K)
v,t can indeed be computed through local operations. Specifically,

begin by noting that as per the definition of the NN-K descent direction in (5.16) the

sequence of NN descent directions satisfies

d
(k+1)
t = D−1t Bd

(k)
t −D−1t gt = D−1t

(
Bd

(k)
t − gt

)
. (5.18)

Since the matrix B has the sparsity pattern of the graph, this recursion can be decomposed

into local components

d
(k+1)
v,t = D−1vv,t

(∑
u∈Nv∪{v}

Bvud
(k)
u,t − gv,t

)
, (5.19)

The matrix Dvv,t = α∇2fv(wv,t) + 2(1 − wvv)I is stored and computed at node v. The

gradient component gv,t = (1−wvv)wv,t −
∑

u∈Nv wvuwu,t + α∇fv(wv,t) is also stored and

computed at v. Node v can also evaluate the values of the matrix blocks Bvv = (1− wvv)I
and Bvu = wvuI. Thus, if the NN-k step components d

(k)
u,t are available at neighbors u,

node v can determine the NN-(k + 1) step component d
(k+1)
v,t upon being communicated

that information.

The expression in (5.19) represents an iterative computation embedded inside the NN-

K recursion in (5.17). At time index t, we compute the local component of the NN-0

step d
(0)
v,t = −D−1vv,tgv,t. Upon exchanging this information with neighbors we use (5.19)

to determine the NN-1 step d
(1)
v,t . These can be exchanged to compuer d

(2)
v,t as in (5.19).

Repeating this procedure K times, nodes ends up having determined their NN-K step

component d
(K)
v,t .

The resulting NN-K method is summarized in Algorithm 5. The descent iteration in

(5.17) is implemented in Step 11. Implementation of this descent requires access to the

136

Algorithm 5 Network Newton-K method at node v

Require: Initial iterate wv,0. Weights wvu. Penalty coefficient α.
1: B matrix blocks: Bvv = (1− wvv)I and Bvu = wvuI
2: for t = 0, 1, 2, . . . do
3: D matrix block: Dvv,t = α∇2fv(wv,t) + 2(1− wvv)I
4: Exchange iterates wv,t with neighbors u ∈ Nv.
5: Gradient: gv,t = (1− wvv)wv,t −

∑
u∈Nv

wvuwu,t + α∇fv(wv,t)

6: Compute NN-0 descent direction d
(0)
v,t = −D−1vv,tgv,t

7: for k = 0, . . . ,K − 1 do

8: Exchange elements d
(k)
v,t of the NN-k step with neighbors

9: NN-(k + 1) step: d
(k+1)
v,t = D−1vv,t

[∑
u∈Nv,u=v

Bvud
(k)
u,t − gv,t

]
10: end for
11: Update local iterate: wv,t+1 = wv,t + ε d

(K)
v,t .

12: end for

NN-K descent direction d
(K)
v,t which is computed by the loop in steps 8-10. Step 6 initializes

the loop by computing the NN-0 step d
(0)
v,t = −D−1vv,tgv,t. The core of the loop is in Step 9

which corresponds to the recursion in (5.19). Step 8 stands for the variable exchange that

is required to implement Step 9. After K iterations through this loop, the NN-K descent

direction d
(K)
v,t is computed and can be used in Step 11. Both, Steps 6 and 9, require

access to the local gradient component gv,t. This is evaluated in Step 5 after receiving the

prerequisite information from neighbors in Step 4. Steps 1 and 3 compute the blocks Bii,t,

Bij,t, and Dvv,t required in steps 6 and 9.

Remark 5 By trying to approximate the Newton step, NN-K ends up reducing the number

of iterations required for convergence. Furthermore, the larger K is, the closer that the

NN-K step gets to the Newton step, and the faster NN-K converges. We will justify these

assertions both, analytically in Section 5.4, and numerically in Section 5.6. It is important

to observe, however, that reducing the number of iterations reduces the computational cost

but not necessarily the communication cost. In DGD, each node v shares its vector wv,t ∈ Rp

with each of its neighbors j ∈ Nv. In NN-K, node v exchanges not only the vector wv,t ∈ Rp

with its neighboring nodes, but it also communicates iteratively the local components of

the descent directions {d(k)
v,t }

K−1
k=0 ∈ Rp so as to compute the descent direction d

(K)
v,t . Hence,

at each iteration, node v sends |Nv| vectors of size p to its neighbors in DGD, while in

NN-K it sends (K + 1)|Nv| vectors of the same size. Unless the original problem is well

conditioned, NN-K also reduces total communication cost until convergence, even though

the cost of each individual iteration is larger. However, the use of large K is unwarranted

because the added benefit of better approximating the Newton step does not compensate

the increase in communication cost.

137

5.4 Convergence analysis

In this section we show that as time progresses the sequence of objective function values

F (yt) [cf. (5.6)] approaches the optimal objective function value F (y∗). In proving this

claim we make the following assumptions.

Assumption 9 There exist constants 0 ≤ δ ≤ ∆ < 1 that lower and upper bound the

diagonal weights for all v,

0 < δ ≤ wvv ≤ ∆ < 1, v = 1, . . . , V. (5.20)

Assumption 10 The local objective functions fv(w) are twice differentiable and the eigen-

values of the local Hessians are bounded with positive constants 0 < m ≤ M < ∞, i.e.

mI � ∇2fv(w) �MI. (5.21)

Assumption 11 The local objective function Hessians ∇2fv(w) are Lipschitz continuous

with respect to the Euclidian norm with parameter L. I.e., for all w, ŵ ∈ Rp, it holds

‖∇2fv(w)−∇2fv(ŵ)‖ ≤ L ‖w − ŵ‖. (5.22)

The lower bound in Assumption 9 is more a definition than a constraint. To be more

precise, the weights wuv are positive if and only if u ∈ Nv or u = v. This observation verifies

existence of a lower bound for the local weights wvv that is defined as δ > 0 in Assumption

9. The upper bound ∆ < 1 on the weights wvv is true for all connected networks as long

as neighbors u ∈ Nv are assigned nonzero weights wuv > 0. This is because the matrix W

is doubly stochastic [cf. (5.4)], which implies that wvv = 1 −
∑

u∈Nv wvu < 1 as long as

wvu > 0.

The lower bound m for the eigenvalues of local objective function Hessians ∇2fv(w) is

equivalent to the strong convexity of local objective functions fv(w) with parameter m. The

strong convexity assumption for the local objective functions fv(w) stated in Assumption

10 is customary in Newton-based methods, since the Hessian of objective function should

be invertible to establish Newton’s method [Chapter 9 of [20]]. The upper bound M for

the eigenvalues of local objective function Hessians ∇2fv(w) is similar to the condition that

gradients ∇fv(w) are Lipschitz continuous with parameter M for the case that functions

are twice differentiable.

The restriction imposed by Assumption 11 is customary in the analysis of second order

methods, see Section 9.5.3 of [20], which guarantees that the Hessians ∇2F (y) are also

Lipschitz continuous as we show in the following lemma.

138

Lemma 14 Consider the definition of objective function F (y) in (5.6). If Assumption 11

holds then the objective function Hessian H(y) =: ∇2F (y) is Lipschitz continuous with

parameter αL, i.e., for all y, ŷ ∈ RV p we have

‖H(y)−H(ŷ)‖ ≤ αL‖y − ŷ‖. (5.23)

Proof : Consider two vectors y := [w1; . . . ; wV] ∈ RV p and ŷ := [ŵ1; . . . ; ŵV] ∈ RV p.
Based on the Hessian expression in (5.10), we simplify the Euclidean norm ‖H(y)−H(ŷ)‖
as

‖H(y)−H(ŷ)‖ = α ‖G(y)−G(ŷ)‖

= α max
v=1,...,V

∥∥∇2fv(wv)−∇2fv(ŵv)
∥∥ . (5.24)

By using 11 and (5.24) we obtain that

‖H(y)−H(ŷ)‖ ≤ αLmax
v
‖wv − ŵv‖ ≤ αL ‖y − ŷ‖ . (5.25)

Therefore, the claim in (5.23) follows. �

Lemma 14 states that the penalty objective function introduced in (5.6) has the property

that the Hessians are Lipschitz continuous, while the Lipschitz constant is a function of the

penalty coefficient 1/α. Thus, if we increase the penalty coefficient 1/α, or, equivalently,

decrease α, the objective function F (y) approaches a quadratic form because the curvature

becomes constant.

To prove convergence properties of NN we need bounds for the eigenvalues of the block

diagonal matrix Dt, the block sparse matrix B, and the Hessian Ht. These eigenvalue

bounds are established in the following proposition using the conditions imposed by As-

sumptions 9 and 10.

Proposition 4 Consider the definitions of matrices Ht, Dt, and B in (5.10), (5.12), and

(5.13), respectively. If Assumptions 9 and 10 hold true, then the eigenvalues of matrices

Ht, Dt, and B are uniformly bounded as

αmI � Ht � (2(1− δ) + αM)I, (5.26)

(2(1−∆) + αm)I � Dt � (2(1− δ) + αM)I, (5.27)

0 � B � 2(1− δ)I. (5.28)

Proof: The Gershgorin circle theorem states that each eigenvalue of a matrix A lies within

at least one of the Gershgorin discs D(avv, Rvv) where the center avv is the vth diagonal

139

element of A and the radius Rvv :=
∑

u6=v |avu| is the sum of the absolute values of all

the non-diagonal elements of the vth row. Hence, Gershgorin discs can be considered as

intervals of width [avv − Rvv, avv + Rvv] for I −W, where avv = 1 − wvv and Rvv =∑
u6=v |wvu| =

∑
u6=v wvu. Therefore, all the eigenvalues of I−W are in at least one of the

intervals [1 − wvv −
∑

u6=v wvu, 1 − wvv +
∑

u6=v wvu]. Since
∑

uwvu = 1, it can be derived

that 1−wvv =
∑V

u6=v wvu. Thus, the Gershgorin intervals can be simplified as [0, 2(1−wvv)]
for v = 1, . . . , V . This observation in association with the fact that 2(1 − wvv) ≤ 2(1 − δ)
implies that the eigenvalues of I−W are in the interval [0, 2(1− δ)] and consequently the

eigenvalues of I− Z are bounded as

0 � I− Z � 2(1− δ)I. (5.29)

Since matrix Gt is block diagonal and the eigenvalues of each diagonal block Gvv,t =

∇2fv(wv,t) are bounded by constants 0 < m ≤M <∞ as mentioned in (5.21), we obtain

mI � Gt � MI. (5.30)

Considering the definition of the Hessian Ht := I− Z + αGt and the bounds in (5.29) and

(5.30), the first claim follows.

The definition of the matrix Dt in (5.12) yields

Dt = αGt + (In −Wd)⊗ Ip , (5.31)

where Wd is defined as Wd := diag(W). Note that matrix In−Wd is diagonal and the v-th

diagonal component is 1−wvv. Since the local weights satisfy δ ≤ wvv ≤ ∆, we obtain that

the eigenvalues of In −Wd are bounded below and above by 1−∆ and 1− δ, respectively.

Since the eigenvalues of (In −Wd) and (In −Wd)⊗ Ip are identical we obtain

(1−∆)Inp � (In −Wd)⊗ Ip � (1− δ)Inp (5.32)

Considering the relation in (5.31) and bounds in (5.30) and (5.32), the second claim follows.

Based on the definition of B in (5.13), we can write

B = (I− 2Wd + W)⊗ I. (5.33)

Note that in the v-th row of matrix I− 2Wd + W, the diagonal component is 1−wvv and

the uth component is wvu for all u 6= v. Using Gershgorin theorem and the same argument

that we established for the eigenvalues of I− Z, we can write

0 � I− 2Wd + W � 2(1− δ)I. (5.34)

140

Based on (5.34) and (5.33), the last claim follows. �

Proposition 4 states that Hessian matrix Ht and block diagonal matrix Dt are positive

definite, while matrix B is positive semidefinite.

As we noted in Section 5.3, for the expansion in (5.14) to be valid the eigenvalues of

the matrix D
−1/2
t BD

−1/2
t must be nonnegative and strictly smaller than 1. The following

proposition states that this is true for all times t.

Proposition 5 Consider the definitions of the matrices Dt in (5.12) and B in (5.13). If

Assumptions 9 and 10 hold true, the matrix D
−1/2
t BD

−1/2
t is positive semidefinite and its

eigenvalues are bounded above by a constant ρ < 1

0 � D
−1/2
t BD

−1/2
t � ρI, (5.35)

where ρ := 2(1− δ)/(2(1− δ) + αm).

Proof: According to the result of Proposition 1, Dt is positive definite and B is positive

semidefinite which immediately implies that D
−1/2
t BD

−1/2
t is positive semidefinite.

Recall the definition of Dt in (5.12) and define the matrix D̂ as a special case of matrix

Dt for α = 0. I.e., D̂ := 2(I − Zd). Notice that D̂ is diagonal, time invariant, and only

depends on the structure of the network. Since D̂ is diagonal and each diagonal component

1−wvv is strictly larger than 0, D̂ is positive definite and invertible. Hence, we can write

D
− 1

2
t BD

− 1
2

t = (D
− 1

2
t D̂

1
2)(D̂−

1
2 BD̂−

1
2)(D̂

1
2 D
− 1

2
t). (5.36)

We proceed to find an upper bound for the eigenvalues of the matrix D̂−1/2BD̂−1/2 in

(5.36). Observing the fact that matrices D̂−1/2BD̂−1/2 and BD̂−1 are similar, eigenvalues

of these matrices are identical. Hence, we proceed to characterize an upper bound for the

eigenvalues of matrix BD̂−1. Based on the definitions of B and D̂, the product BD̂−1 is

given by BD̂−1 = (I− 2Zd + Z) (2(I − Zd))
−1. Therefore, the blocks of the matrix BD̂−1

are given by

[BD̂−1]vv =
1

2
I and [BD̂−1]vu =

wvu
2(1− wuu)

I. (5.37)

Thus, each diagonal component of the matrix BD̂−1 is 1/2 and that the sum of non-diagonal

components of column v is

V p∑
u=1,u6=v

BD̂−1[uv] =
1

2

V p∑
u=1,u6=v

wuv
1− wvv

=
1

2
. (5.38)

141

Consider (5.38) and apply Gershgorin theorem to obtain

0 ≤ µv(BD̂−1) ≤ 1 v = 1, . . . , V, (5.39)

where µv(BD̂−1) indicates the v-th eigenvalue of the matrix BD̂−1. The bounds in (5.39)

and similarity of the matrices BD̂−1 and D̂−1/2BD̂−1/2 show that the eigenvalues of the

matrix D̂−1/2BD̂−1/2 are uniformly bounded in the interval

0 ≤ µv(D̂−1/2BD̂−1/2) ≤ 1. (5.40)

Based on (5.36), to characterize the bounds for the eigenvalues of D
−1/2
t BD

−1/2
t , the

bounds for the eigenvalues of the matrix D̂1/2D
−1/2
t should be studied as well. Notice that

according to the definitions of D̂ and Dt, the product D̂1/2D
−1/2
t is block diagonal and the

v-th diagonal block is

[
D̂1/2D

−1/2
t

]
vv

=

(
α∇2fv(wv,t)

2(1− wvv)
+ I

)−1/2
. (5.41)

Observe that according to Assumption 1, the eigenvalues of local Hessian matrices∇2fv(wv)

are bounded by m and M . Further notice that the diagonal elements of weight matrix wvv

are bounded by δ and ∆, i.e. δ ≤ wvv ≤ ∆. Considering these bounds we can show that

the eigenvalues of matrices (α/2(1−wvv))∇2fv(wv,t) + I are lower and upper bounded as[
αm

2(1− δ)
+ 1

]
I � α∇2fv(wv,t)

2(1− wvv)
+ I �

[
αM

2(1−∆)
+ 1

]
I. (5.42)

By considering the bounds in (5.42) and the expression in (5.41), the eigenvalues of the

matrix D̂1/2D
−1/2
t are bounded as

[
2(1−∆)

2(1−∆) + αM

] 1
2

≤ µv
(

D̂
1
2 D
− 1

2
t

)
≤
[

2(1− δ)
2(1− δ) + αm

] 1
2

, (5.43)

for v = 1, . . . , V . Observing the decomposition in (5.36), the norm of the matrix D
−1/2
t BD

−1/2
t

is upper bounded as

‖D−
1
2

t BD
− 1

2
t ‖ ≤ ‖D

− 1
2

t D̂1/2‖2 ‖D̂−
1
2 BD̂−

1
2 ‖. (5.44)

Considering the symmetry of matrices D̂1/2D
−1/2
t and D̂−1/2BD̂−1/2, and the upper bounds

for their eigenvalues in (5.40) and (5.43), respectively, we can substitute the norm of these

two matrices by the upper bounds of their eigenvalues and simplify the upper bound in

142

(5.44) to

‖D−1/2t BD
−1/2
t ‖ ≤ 2(1− δ)

2(1− δ) + αm
. (5.45)

Since D
−1/2
t BD

−1/2
t is positive semidefinite and symmetric, the result in (5.35) follows. �

The results in Proposition 4 would lead to the trivial upper bound 2(1−δ)/(αM+2(1−
∆)) for the eigenvalues of D

−1/2
t BD

−1/2
t . The upper bound in Proposition 5 is tighter and

follows from the structure of the matrix D
−1/2
t BD

−1/2
t .

The bounds for the eigenvalues of D
−1/2
t BD

−1/2
t in (5.35) guarantee convergence of

the Taylor series in (5.14). As mentioned in Section 5.3, NN-K truncates the first K

summands of the Hessian inverse Taylor series in (5.14) to approximate the Hessian inverse

of the objective function in optimization problem (5.6). To evaluate the performance of

NN-K we study the error of the Hessian inverse approximation by defining the error matrix

Et ∈ RV p×V p as

Et := I− Ĥ
(K)−1/2

t HtĤ
(K)−1/2

t . (5.46)

The error matrix Et measures closeness of the Hessian inverse approximation matrix Ĥ
(K)−1

t

and the exact Hessian inverse H−1t at time t. Based on the definition of the error matrix

Et, if the Hessian inverse approximation Ĥ
(K)−1

t approaches the exact Hessian inverse H−1t
the error matrix Et approaches the zero matrix 0. We therefore bound the error of the

Hessian inverse approximation by developing a bound for the eigenvalues of Et. This bound

is provided in the following proposition.

Proposition 6 Consider the NN-K method in (5.12)-(5.17) and the definition of error

matrix Et in (5.46). Further, recall the definition of the constant ρ := 2(1− δ)/(αm+ 2(1−
δ)) < 1 in Proposition 5. The error matrix Et is positive semidefinite and all its eigenvalues

are upper bounded by ρK+1,

0 � Et � ρK+1I. (5.47)

Proof: In this proof and the rest of the proofs we denote the Hessian approximation as

Ĥ−1t instead of Ĥ
(K)−1

t for simplification of equations. To prove lower and upper bounds

for the eigenvalues of the error matrix Et we first develop a simplification for the matrix

I−HtĤ
−1
t in the following lemma. For the proof of the following lemma Check Lemma 2

in [128].

Lemma 15 Consider the NN-K method as defined in (5.12)-(5.17). The matrix I−HtĤ
−1
t

can be simplified as

I−HtĤ
−1
t =

(
BD−1t

)K+1
. (5.48)

Recall the result in Proposition 5. Since the matrices D
−1/2
t BD

−1/2
t and BtD

−1
t are

similar (conjugate) the sets of eigenvalues of these two matrices are identical. Thus, the

143

eigenvalues of BD−1 are bounded as

0 ≤ µv(BD−1) ≤ ρ, (5.49)

for i = 1, 2, . . . , np. This result in association with (5.48) yields

0 ≤ µv(I−HtĤ
−1
t) ≤ ρK+1. (5.50)

Observe that the error matrix Et = I−Ĥ
−1/2
t HtĤ

−1/2
t is the conjugate of matrix I−HtĤ

−1
t .

Hence, the bounds for the eigenvalues of matrix I−HtĤ
−1
t also hold for the eigenvalues of

error matrix Et and the claim in (5.47) follows. �

Proposition 6 asserts that the error in the approximation of the Hessian inverse, thereby

on the approximation of the Newton step, is bounded by ρK+1. This result corroborates

the intuition that the larger K is, the closer that d
(K)
v,t approximates the Newton step. This

closer approximation comes at the cost of increasing the communication cost of each descent

iteration. The decrease of this error being proportional to ρK+1 hints that using a small

value of K should suffice in practice. Further to decrease ρ we can increase δ or increase α.

Increasing δ calls for assigning substantial weight to wvv. Increasing α comes at the cost of

moving the solution of (5.6) away from the solution of (5.9) and its equivalent (5.1).

Bounds on the eigenvalues of the objective function Hessian Ht are central to the con-

vergence analysis of Newton’s method [Chapter 9 of [20]]. Lower bounds for the Hessian

eigenvalues guarantee that the matrix is nonsingular. Upper bounds imply that the min-

imum eigenvalue of the Hessian inverse H−1 is strictly larger than zero, which, in turn,

implies a strict decrement in each Newton step. Analogous bounds for the eigenvalues of

the NN approximate Hessian inverses Ĥ
(K)−1

t are required. These bounds are studied in

the following lemma.

Lemma 16 Consider the NN-K method as defined in (5.12)-(5.17). If Assumptions 9 and

10 hold true, we have

λI � Ĥ
(K)−1

t � ΛI, (5.51)

where constants λ and Λ are defined as

λ :=
1

2(1− δ) + αM
and Λ:=

1− ρK+1

(1− ρ)(2(1−∆) + αm)
. (5.52)

Proof: Based on the Cauchy-Schwarz inequality, the product of the norms is larger than

norm of the products. This observation and the definition of Ĥ−1t in (5.15) lead to

‖Ĥ−1t ‖≤‖D
− 1

2
t ‖2‖ I + D

− 1
2

t BD
− 1

2
t +. . .+[D

− 1
2

t BD
− 1

2
t]K‖. (5.53)

144

As a result of Proposition 4 the eigenvalues of Dt are bounded below by 2(1−∆) + αm.

Thus, the maximum eigenvalue of its inverse D−1t is smaller than 1/(2(1−∆) + αm), and,

therefore, the norm of the matrix D
−1/2
t is bounded above as

‖D−1/2t ‖ ≤ [2(1−∆) + αm]−1/2 . (5.54)

Based on the result in Proposition 5, the eigenvalues of D
−1/2
t BD

−1/2
t are smaller than ρ.

Further, using the symmetry and positive definiteness of D
−1/2
t BD

−1/2
t we obtain

‖D−1/2t BD
−1/2
t ‖ ≤ ρ. (5.55)

Using the triangle inequality in (5.53) to claim that the norm of the sum is smaller than

the sum of the norms and substituting the bounds in (5.54) and (5.55) into the resulting

expression yield

‖Ĥ−1t ‖ ≤
1

2(1−∆) + αm

K∑
k=0

ρk. (5.56)

Since ρ < 1, the sum
∑K

k=0 ρ
k can be simplified to (1 − ρK+1)/(1 − ρ). Considering this

simplification for the sum in (5.56), the upper bound in (5.51) for the eigenvalues of the

approximate Hessian inverse Ĥ−1t follows.

In expression (5.15), all the summands except the first one, D−1t , are positive semidef-

inite. Hence, the approximate Hessian inverse Ĥ−1t is the sum of the matrix D−1t and K

positive semidefinite matrices and as a result we can conclude that

D−1t � Ĥ−1t . (5.57)

Proposition 4 shows that the eigenvalues of Dt are bounded above by 2(1− δ) +αM which

leads to the conclusion that there exists a lower bound for the eigenvalues of D−1t ,

(2(1− δ) + αM)−1 I � D−1t . (5.58)

The claim in (5.51) follows from the results in (5.57) and (5.58). �

According to the result in Lemma 16, the NN-K approximate Hessian inverses Ĥ
(K)−1

t

are strictly positive definite and have all of their eigenvalues bounded between the positive

and finite constants λ and Λ. This is true for all K and uniform across all iteration indexes

t. Considering these eigenvalue bounds and the fact that −gt is a descent direction, the

approximate Newton step −Ĥ
(K)−1

t gt enforces convergence of the iterate yt to the optimal

argument y∗ of the penalized objective function F (y) in (5.6). In the following theorem

we show that if the stepsize ε is properly chosen, the sequence of objective function values

145

F (yt) converges at least linearly to the optimal objective function value F (y∗).

Theorem 7 Consider the NN-K method as defined in (5.12)-(5.17) and the objective func-

tion F (y) as introduced in (5.6). Further, recall the definitions of the lower and upper

bounds λ and Λ, respectively, for the eigenvalues of the approximate Hessian inverse Ĥ
(K)−1

t

in (5.52). If the stepsize ε is chosen as

ε ≤ min

1 ,

[
3mλ

5
2

LΛ3(F (y0)− F (y∗))
1
2

] 1
2

 , (5.59)

and Assumptions 9-11 hold, the sequence F (yt) converges to the optimal argument F (y∗)

at least linearly as

F (yt)− F (y∗) ≤ (1− ζ)t(F (y0)− F (y∗)), (5.60)

where the constant 0 < ζ < 1 is explicitly given by

ζ := (2− ε)εαmλ− αε3LΛ3(F (y0)− F (y∗))
1
2

6λ
3
2

. (5.61)

Proof: See Appendix B.1. �

Theorem 7 shows that the objective function error sequence F (yt)−F (y∗) asymptoticly

converges to zero and that the rate of convergence is at least linear. Note that according

to the definition of the convergence parameter ζ in Theorem 7 and the definitions of λ and

Λ in (5.52), increasing α leads to faster convergence. This observation verifies existence of

a tradeoff between rate and accuracy of convergence. For large values of α the sequence

generated by network Newton converges faster to the optimal solution of (5.6). These faster

convergence comes at the cost of increasing the distance between the optimal solutions of

(5.6) and (5.1). Conversely, smaller α implies smaller gap between the optimal solutions of

(5.6) and (5.1), but the convergence rate of NN-K is slower. In the following section, we

illustrate the connection between network Newton and the centralized Newton’s method.

5.4.1 Analysis of network Newton as a Newton-like method

To connect the proposed NN method with the classic Newton’s method, we first study

the difference between these methods. In particular, the following lemma shows that the

convergence of the norm of the weighted gradient ‖D−1/2t−1 gt‖ in NN-K is akin to the con-

vergence of Newton’s method with constant stepsize. The difference is the appearance of

a term associated with the error of the Hessian inverse approximation as we formally state

next.

146

Lemma 17 Consider the NN-K method as defined in (5.12)-(5.17). If Assumptions 9-11

hold, the sequence of weighted gradients D
−1/2
t gt+1 satisfies

‖D−
1
2

t gt+1‖ ≤
(
1− ε+ ερK+1

) [
1 + Γ1(1− ζ)

(t−1)
4

]
‖D−

1
2

t−1gt‖+ ε2Γ2‖D−1/2t−1 gt‖2, (5.62)

where the constants Γ1 and Γ2 are defined as

Γ1 :=
(αεLΛ)

1
2 (F (y0)− F (y∗))

1
4

λ
3
4 (2(1−∆) + αm)

, Γ2 :=
αLΛ2

2λ(2(1−∆) + αm)
1
2

. (5.63)

Proof : To simplify notation we use Ĥ−1t to indicate the approximate Hessian inverse

Ĥ
(K)−1

t . Based on Lemma 1.2.3 in [84], the Lipschitz continuity of Hessians with constant

αL yields

‖gt+1 − gt + εHtĤ
−1
t gt‖ ≤

ε2αL

2
‖Ĥ−1t gt‖2, (5.64)

where we have used yt+1 − yt = −εĤ−1t gt. Based on the definition of matrix norm, we can

write

‖D−
1
2

t [gt+1 − gt + εHtĤ
−1
t gt]‖ ≤ ‖D

− 1
2

t ‖‖gt+1 − gt + εHtĤ
−1
t gt‖. (5.65)

Substituting ‖gt+1 − gt + εHtĤ
−1
t gt‖ in the right hand side of (5.65) by the upper bound

in (5.64) leads to

‖D−
1
2

t [gt+1 − gt + εHtĤ
−1
t gt]‖ ≤

ε2αL

2
‖D−

1
2

t ‖‖Ĥ
−1
t gt‖2. (5.66)

Based on the triangle inequality, for any vectors a and b, and a positive constant C, if the

relation ‖a− b‖ ≤ C holds, then ‖a‖ ≤ ‖b‖+ C. Thus, we can use the result in (5.66) to

write

‖D−
1
2

t gt+1‖ ≤ ‖D
− 1

2
t [gt − εHtĤ

−1
t gt]‖+

ε2αL

2
‖D−

1
2

t ‖‖Ĥ
−1
t gt‖2. (5.67)

Write D
−1/2
t gt as the sum (1− ε)(D−1/2t gt) + ε(D

−1/2
t gt) and use the triangle inequality to

obtain

‖D−
1
2

t gt+1‖ ≤ (1− ε)‖D−
1
2

t gt‖+ ε‖D−
1
2

t [I−HtĤ
−1
t]gt‖+

ε2αL

2
‖D−

1
2

t ‖‖Ĥ
−1
t gt‖2. (5.68)

Use the result in Lemma 15 to write

‖D−
1
2

t [I−HtĤ
−1
t]gt‖ = ‖[D−

1
2

t BD
− 1

2
t]K+1D

− 1
2

t gt‖. (5.69)

147

The result in Proposition 5 implies that ‖[D−1/2t BD
−1/2
t]K+1‖ ≤ ρK+1. Considering this

upper bound and the simplification in (5.69) we can write

‖D−1/2t [I−HtĤ
−1
t]gt‖ ≤ ρK+1‖D−1/2t gt‖. (5.70)

Substitute the upper bound in (5.70) into (5.68) and use the inequality ‖Ĥ−1t gt‖ ≤ ‖Ĥ−1t ‖‖gt‖
to write

‖D−1/2t gt+1‖ ≤ (1− ε+ ερK+1)‖D−1/2t gt‖+
αε2L

2
‖D−1/2t ‖‖Ĥ−1t ‖2‖gt‖2. (5.71)

Note that ‖D−1t −D−1t−1‖ is bounded above as

∥∥D−1t −D−1t−1
∥∥ ≤ ∥∥D−1t ∥∥ ‖Dt −Dt−1‖

∥∥D−1t−1∥∥ . (5.72)

The eigenvalues of Dt and Dt−1 are bounded below by αm+2(1−∆). Thus, the eigenvalues

of D−1t and D−1t−1 are bounded above by 1/(αm+ 2(1−∆)). Hence,

∥∥D−1t −D−1t−1
∥∥ ≤ (2(1−∆) + αm)−2 ‖Dt −Dt−1‖ . (5.73)

The difference Dt − Dt−1 can be simplified as α(Gt − Gt−1). Moreover, Ht − Ht−1 =

α(Gt −Gt−1). Thus, Dt −Dt−1 = Ht −Ht−1. This observation in conjunction with the

Lipschitz continuity of the Hessians with parameter αL implies that

‖Dt −Dt−1‖ ≤ αL‖yt − yt−1‖. (5.74)

Replace ‖Dt −Dt−1‖ in (5.73) by the bound in (5.74) to obtain

∥∥D−1t −D−1t−1
∥∥ ≤ αL

(2(1−∆) + αm)2
‖yt − yt−1‖ . (5.75)

Note that |gTt (D−1t −D−1t−1)gt| is bounded above by ‖D−1t −D−1t−1‖‖gt‖2. Considering the

upper bound for ‖D−1t −D−1t−1‖ in (5.75), the term |gTt (D−1t −D−1t−1)gt| is bounded above

by ∣∣gTt (D−1t −D−1t−1)gt
∣∣ ≤ αL ‖yt − yt−1‖‖gt‖2

(2(1−∆) + αm)2
. (5.76)

Using the result in (5.76), and simplifactions |gTt D−1t−1gt| = ‖D−1/2t−1 gt‖2 and |gTt D−1t gt| =

‖D−1/2t gt‖2, we can write

‖D−
1
2

t gt‖2 ≤ ‖D
− 1

2
t−1gt‖

2 +
αL ‖yt − yt−1‖‖gt‖2

(2(1−∆) + αm)2
. (5.77)

148

For any constants a, b, and c if a2 ≤ b2 + c2 holds, then |a| ≤ |b| + |c| holds. Using this

result and (5.77) we obtain

‖D−
1
2

t gt‖ ≤ ‖D
− 1

2
t−1gt‖+

(αL‖yt − yt−1‖)
1
2 ‖gt‖

2(1−∆) + αm
. (5.78)

Considering the update in (5.17) we can substitute yt−yt−1 by −εĤ−1t−1gt−1. Applying this

substitution into (5.78) yields

‖D−
1
2

t gt‖ ≤ ‖D
− 1

2
t−1gt‖+

[αεL‖Ĥ−1t−1gt−1‖]
1
2 ‖gt‖

2(1−∆) + αm
. (5.79)

If we substitute ‖D−1/2t gt‖ by the upper bound in (5.79) and substitute ‖Ĥ−1t−1gt−1‖ by the

upper bound ‖Ĥ−1t−1‖‖gt−1‖, the inequality in (5.71) can be written as

‖D−1/2t gt+1‖ ≤
(
1− ε+ ερK+1

)
‖D−1/2t−1 gt‖+

(
1− ε+ ερK+1

)
[αεL‖Ĥ−1t−1‖ ‖gt−1‖]1/2

2(1−∆) + αm
‖gt‖

+
αε2L

2
‖D−1/2t ‖‖Ĥ−1t ‖2 ‖gt‖

2 . (5.80)

Note that µmin(D
−1/2
t−1)‖gt‖ ≤ ‖D−1/2t−1 gt‖. Considering this inequality and the lower bound

(2(1− δ) + αM)−1/2 for the eigenvalues of D
−1/2
t−1 we can write

‖gt‖ ≤ (2(1− δ) + αM)1/2‖D−1/2t−1 gt‖. (5.81)

Substitute ‖gt‖ by the upper bound in (5.81), use the definition λ := 1/(2(1 − δ) + αM),

replace the norms the norms ‖Ĥ−1t ‖ and ‖Ĥ−1t−1‖ by their upper bound Λ, and use the fact

that ‖D−1/2t ‖ is bounded above by 1/(2(1−∆) + αm)1/2 to rewrite the right hand side of

(5.80) as

‖D−
1
2

t gt+1‖ ≤ (1− ε+ ερK+1)[1 + C1‖gt−1‖
1
2]‖D−

1
2

t−1gt‖

+
αε2LΛ2

2λ(2(1−∆) + αm)
1
2

‖D−
1
2

t−1gt‖
2, (5.82)

where C1 :=
[
αεLΛ/λ(2(1−∆) + αm)2

]1/2
.

Since the eigenvalues of the Hessian are upper bounded by 2(1−δ)+αM , for any vectors

ŷ and y in RV p we can write

F (y) ≤ F (ŷ) +∇F (ŷ)T (y − ŷ) +
2(1− δ) + αM

2
‖y − ŷ‖2. (5.83)

149

According to (5.52), we can substitute 1/(2(1− δ) +αM) by λ. Applying this substitution

into (5.83) and minimizing the both sides of (5.83) with respect to y yields

F (y∗) ≤ F (ŷ)− λ‖∇F (ŷ)‖2. (5.84)

Since (5.84) holds for any ŷ, we set ŷ := yt−1. By rearranging the terms and taking their

square roots, we obtain an upper bound for the gradient norm ‖∇F (yt−1)‖ = ‖gt−1‖ as

‖gt−1‖ ≤
[
λ−1[F (yt−1)− F (y∗)]

] 1
2 . (5.85)

The result in Theorem 7 implies that ‖gt−1‖1/2 is upper bounded by

‖gt−1‖
1
2 ≤

[
λ−1(1− ζ)t−1(F (y0)− F (y∗))

] 1
4 . (5.86)

Consider the definition of Γ2 in (5.63) and substitute the upper bound in (5.86) for ‖gt−1‖1/2

to update (5.82) as

‖D−
1
2

t gt+1‖ ≤
(
1− ε+ ερK+1

) [
1 + C2(1− ζ)

t−1
4

]
‖D−

1
2

t−1gt‖+ ε2Γ2‖D
− 1

2
t−1gt‖

2, (5.87)

where C2 := C1[(F (y0)− F (y∗))/λ]1/4. Based on the definitions of C2 and Γ1 we obtain

that C2 = Γ1. This observation in association with (5.87) leads to the claim in (5.62). �

As per Lemma 17 the weighted gradient norm ‖D−1/2t gt+1‖ is upper bounded by terms

that are linear and quadratic on the weighted norm ‖D−1/2t−1 gt‖ associated with the previous

iterate. This is akin to the gradient norm decrease of Newton’s method with constant

stepsize. Note that if the error of Hessian inverse approximation which is characterized by

ρK+1 becomes zero, by setting ε = 1 we can simplify (5.62) as ‖D−1/2t gt+1‖ ≤ Γ2‖D−1/2t−1 gt‖2.
This result shows quadratic convergence when Γ2‖D−1/2t−1 gt‖ < 1. However, the term ρK+1

is not zero in general. Although, the error of Hessian inverse approximation is not zero,

the result in (5.62) is very similar to the one for the classic Newton’s method. To make

this connection clearer, further note that for all except the first few iterations the term

Γ1(1− ζ)(t−1)/4 ≈ 0 is close to 0 and the relation in (5.62) can be simplified to

‖D−
1
2

t gt+1‖ . (1− ε+ ερK+1)‖D−
1
2

t−1gt‖+ ε2Γ2‖D
− 1

2
t−1gt‖

2. (5.88)

In (5.88), the coefficient in the linear term is reduced to (1− ε+ ερK+1) and the coefficient

in the quadratic term stays at ε2Γ2. If, for discussion purposes, we set ε = 1 as in Newton’s

quadratic phase, the upper bound in (5.88) is further reduced to

‖D−1/2t gt+1‖ . ρK+1‖D−1/2t−1 gt‖+ Γ2‖D−1/2t−1 gt‖2. (5.89)

150

The equation in (5.89) makes the connection between NN and Newton’s clear, because the

exact same result would hold for Newton’s method if we set ρ = 0. The NN method can

not have a quadratic convergence phase for the rest of the iterations – like the one for

Newton’s method – because of the term ρK+1‖D−1/2t−1 gt‖. However, since the constant ρ (cf.

Proposition 5) is smaller than 1 the term ρK+1 can be made arbitrarily small by increasing

the approximation orderK. Equivalently, this means that by selectingK to be large enough,

we can make the quadratic term in (5.89) dominant and observe a quadratic convergence

phase. The boundaries of this quadratic convergence phase are formally determined in the

following Theorem using the result in (5.62).

Theorem 8 Consider the NN-K method as defined in (5.12)-(5.17). Define the sequence

ηt := [(1−ε+ερK+1)(1+Γ1(1−ζ)(t−1)/4)] and the time t0 as the first time at which sequence

ηt is smaller than 1, i.e. t0 := argmint{t | ηt < 1}. If Assumptions 9-11 hold, then for all

t ≥ t0 when the sequence ‖D−1/2t−1 gt‖ satisfies

√
ηt(1−

√
ηt)

ε2Γ2
≤ ‖D−1/2t−1 gt‖ <

1−√ηt
ε2Γ2

, (5.90)

the sequence of scaled gradient norms is such that

‖D−1/2t gt+1‖ ≤
ε2Γ2

1−√ηt
‖D−1/2t−1 gt‖

2
. (5.91)

Proof: Based on the definition of ηt, we can rewrite (5.62) as

‖D−1/2t gt+1‖ ≤ ηt‖D−1/2t−1 gt‖+ ε2Γ2‖D−1/2t−1 gt‖2. (5.92)

We use this expression to prove the inequality in (5.91). To do so, rearrange terms in the

first inequality in (5.90) and write

√
ηt ≤

ε2Γ2

1−√ηt
‖D−1/2t−1 gt‖. (5.93)

Multiplying both sides of (5.93) by
√
ηt‖D−1/2t−1 gt‖ yields

ηt‖D−1/2t−1 gt‖ ≤
√
ηtε

2Γ2

1−√ηt
‖D−1/2t−1 gt‖2. (5.94)

151

Substituting ηt‖D−1/2t−1 gt‖ in (5.92) by its upper bound in (5.94) implies that

‖D−1/2t gt+1‖ ≤
√
ηtε

2Γ2

1−√ηt
‖D−1/2t−1 gt‖2 + ε2Γ2‖D−1/2t−1 gt‖2

=
ε2Γ2

1−√ηt
‖D−1/2t−1 gt‖2. (5.95)

To verify quadratic convergence, it is necessary to prove that the sequence ‖D−1/2i−1 gv‖ of

weighted gradient norms is decreasing. For this to be true we must have

ε2Γ2

1−√ηt

∥∥∥D−1/2t−1 gt

∥∥∥ < 1. (5.96)

But (5.96) is true because we are looking at a range of gradients that satisfy the second

inequality in (5.90). �

As per Theorem 7, yt converges to y∗ at a rate that is at least linear. Thus, the gradients

gt will be such that at some point in time they satisfy the rightmost inequality in (5.90).

At that point in time, progress towards y∗ proceeds at a quadratic rate as indicated by

(5.91). This quadratic rate of progress is maintained until the leftmost inequality in (5.90)

is satisfied, at which point the linear term in (5.62) dominates and the convergence rate

goes back to linear. Furthermore, making K sufficiently large it is possible to reduce ηt

arbitrarily and make the quadratic convergence region last longer. In practice, this calls for

making K large enough so that
√
ηt is close to the desired gradient norm accuracy.

Remark 6 Making ρK+1 small reduces the factor in front of the linear term in (5.89)

and makes the quadratic phase longer. This factor, as it follows from the definition in

Proposition 5, is ρK+1 = [2(1− δ)/(2(1− δ) + αm)]K+1. Thus, other than increasing K,

we can make ρ small by increasing the product αm. That implies making the inverse

penalty coefficient α large relative to the smallest Hessian eigenvalue of the local functions

fv [cf. (5.21)]. This is not possible if we want to keep the solution y∗ of (5.6) close to

the solution of ỹ∗ of (5.9). This calls for the use of adaptive rules to decrease the inverse

penalty coefficient α as we elaborate in Section 5.5. Further observe that ρ is independent

of the condition number M/m of the local objectives. Making ρ small is an algorithmic

choice which is controlled by the selection of α and K, and not a property of the function

being minimized.

Remark 7 For a quadratic function F , the Lipschitz constant for the Hessian is L = 0.

Then, the optimal choice of stepsize for NN-K is ε = 1 as a result of stepsize rule in (5.59).

Moreover, the constants for the linear and quadratic terms in (5.62) are Γ1 = Γ2 = 0 as

it follows from their definitions in (5.63). For quadratic functions we also have that the

152

Hessian of the objective function Ht = H and the block diagonal matrix Dt = D are

time-invariant. Thus, we can rewrite (5.62) as

‖D−1/2gt+1‖ ≤ ρK+1‖D−1/2gt‖. (5.97)

Note that Newton’s method converges in a single step in quadratic programming. This

property follows from (5.97) because Newton’s method is equivalent to NN-K as K → ∞.

The expression in (5.97) states that NN-K converges linearly with a constant decrease factor

of ρK+1 per iteration. This in contrast with first order methods like DGD that converge

with a linear rate that depends on the problem condition number.

5.5 Implementation details

As mentioned in Section 5.2, NN-K does not solve (5.1) or its equivalent (5.9), but the

penalty version in (5.6). The optimal solutions of the optimization problems in (5.9) and

(5.6) are different and the gap between them is of order O(α), [126]. This observation

implies that by setting a decreasing policy for α, or equivalently, an increasing policy for

the penalty coefficient 1/α, the solution of (5.9) approaches the minimizer of (5.6), i.e.

ỹ∗ → y∗ for α→ 0. There are various possible alternatives to reduce α. Given the penalty

method interpretation in Section 5.2 it is more natural to consider fixed penalty parameters

α that are decreased after detecting convergence to the optimum argument of the function

F (y) [cf. (5.6)]. This latter idea is summarized under the name of Adaptive Network

Newton-K (ANN-K) in Algorithm 7 where α is reduced by a given factor η < 1.

Specifically, ANN-K relies on Algorithm 6, which receives an initial iterate wv, a penalty

parameter α, and a given tolerance tol (Step 1) and runs the local NN-K iteration in (5.19)

for node v until the local gradient norm ‖gv‖ becomes smaller than tol (Step 13). The

descent iteration is implemented in Step 12. Implementation of this descent requires access

to the NN-K descent direction d
(K)
v,t which is computed by the loop in steps 7-11. Step 7

initializes the loop by computing the NN-0 step d
(0)
v,t = −D−1vv,tgv,t. The core of the loop

is in Step 10 which corresponds to the recursion in (5.19). Step 8 stands for the variable

exchange that is necessary to implement Step 7. After K iterations through this loop, the

NN-K descent direction d
(K)
v,t is computed and can be used in Step 12. Both, steps 7 and

10, require access to the local gradient component gv,t. This is evaluated in Step 6 after

receiving the prerequisite information from neighbors in Step 5. Steps 3 and 4 compute

the blocks Bii,t, Bij,t, and Dvv,t that are also necessary in steps 7 and 10. This process is

repeated until ‖gv‖ < tol (Step 13).

ANN-K calls Algorithm 6 in Step 2 of Algorithm 7. The factor α is subsequently reduced

by the factor η < 1 as indicated in Step 6 of Algorithm 7 that implements the replacement

153

Algorithm 6 Network Newton-K method at node v

1: function wv = NN-K(α,wv, tol)
2: repeat
3: B matrix blocks: Bvv = (1− wvv)I and Bvu = wuvI
4: D matrix block: Dvv = α∇2fv(wv) + 2(1− wvv)I
5: Exchange iterates wv with neighbors u ∈ Nv.
6: Gradient: gv = (1− wvv)wv −

∑
u∈Nv

wvuwu + α∇fv(wv).

7: Compute NN-0 descent direction d
(0)
v = −D−1vv gv

8: for k = 0, . . . ,K − 1 do

9: Exchange elements d
(k)
i of the NN-k step with neighbors

10: NN-(k + 1) step: d(k+1)
v = D−1vv

[∑
u∈Nv,u=v

Bvud
(k)
u − gv

]
.

11: end for
12: Update local iterate: wv = wv + ε d(K)

v .
13: until ‖gv‖ < tol

Algorithm 7 Adaptive Network Newton-K method at node v

Require: Iterate wv. Initial parameter α. Flags svu = 0. Factor η < 1.
1: for t = 0, 1, 2, . . . do
2: Call NN-K function: wv = NN-K(α,wv, tol)
3: Set svv = 1 and broadcast it to all nodes.
4: Set svu = 1 for all nodes u that sent the signal suu = 1.
5: if svu = 1 for all u = 1, . . . , V then
6: Update penalty parameter α = ηα.
7: Set svu = 0 for all u = 1, . . . , V .
8: end if

9: end for

α = ηα. The rest of Algorithm 7 is designed to handle the fact that a small local gradient

norm does not necessarily imply a small global gradient norm. To handle this possible

mismatch, flag variables svu are introduced at node v to signal the fact that node u has

reached a local gradient gu with norm ‖gu‖ ≤ tol. Whenever node v completes a run

of Algorithm 6 it broadcasts the signal svv to all other nodes (Step 3) and updates the

variables svu to svu = 1 for all the nodes that sent the signals suu = 1 while Algorithm 6

was executing (Step 4). If all the variables svu = 1 (Step 5) it must be that this is true for

all nodes and it is thus safe to modify α (Step 6). The flag variables are reset to svu = 0

and Algorithm 6 is called with the reduced α.

As is typical of penalty methods there are tradeoffs on the selection of the initial value of

α and the decrease factor η. Small values of the initial penalty parameter and α and factor

η results in sequence of approximate problems having solutions ỹ∗ that are closer to the

actual solution y∗. However, problems with small α may take a large number of iterations to

converge if initialized far from the optimum value because the constant ρ approaches 1 when

154

α is small – as we discussed in Remark 6. It is therefore better to initialize Algorithm 7

with values of α that are not too small and to decrease α by a factor η that is not too

aggressive. We discuss the details in the numerical examples of Section 5.6.5.

5.6 Numerical analysis

In this section, we study the performance of NN-K in the minimization of a distributed

quadratic objective. For each agent v we consider a positive definite diagonal matrix Av ∈
S++
p and a vector bv ∈ Rp to define the local objective function fv(w) := (1/2)wTAvw +

bTv w. Therefore, the global cost function f(w) is written as

f(w) :=

V∑
v=1

1

2
wTAvw + bTv w . (5.98)

The difficulty of solving (5.98) is given by the condition number of the matrices Av. To

tune condition numbers we generate diagonal matrices Av with random diagonal elements

avv. The first p/2 diagonal elements avv are drawn uniformly at random from the dis-

crete set {1, 10−1, . . . , 10−ξ} and the next p/2 are uniformly and randomly chosen from the

set {1, 101, . . . , 10ξ}. This choice of coefficients yields local matrices Av with eigenvalues

in the interval [10−ξ, 10ξ] and global matrices
∑V

v=1 Av with eigenvalues in the interval

[n10−ξ, n10ξ]. The linear terms bTv w are added so that the different local functions have

different minima. The vectors bv are chosen uniformly at random from the box [0, 1]p.

The graph is d-regular and generated by creating a cycle and then connecting each node

with d/2 nodes that are closest in each direction. The diagonal weights in W are set to

wvv = 1/2 + 1/2(d+ 1) and the off diagonal weights to wuv = 1/2(d+ 1) when u ∈ Nv. In

our comparison the relative error is defined as the ratio ‖wt −w∗‖2/‖w0 −w∗‖2.

5.6.1 Comparison with existing methods

In this section we compare the performance of the proposed NN method with primal meth-

ods such as DGD in [80] and the accelerated version of DGD (Acc. DGD) in [44]. For

the Acc. DGD method, we assume that the stepsize parameter and the momentum coef-

ficients are constant as in the case for the centralized accelerated gradient descent. This

makes the comparison between Acc. DGD, DGD, and NN fair, since our aim is to compare

their performances in solving the penalized objective function. Moreover, we consider the

convergence paths of the distributed ADMM (DADMM) in [112] and the exact first order

method EXTRA in [111]. Although EXTRA operates in the primal domain, it has been

shown that it can be interpreted as a saddle-point method [73]. Thus, we consider EXTRA

in the category of dual methods which has a linear convergence rate as DADMM.

155

0 100 200 300 400 500 600 700 800

Number of iterations

10
-4

10
-3

10
-2

10
-1

10
0

R
e
la
t
iv
e
e
r
r
o
r

DGD

Acc. DGD

ADMM

EXTRA

NN-0

NN-1

NN-2

Figure 5.1: Comparison of DGD, Acc. DGD, DADMM, EXTRA, NN-0, NN-1, and NN-2 in terms
of number of iterations.

0 100 200 300 400 500 600 700 800

Number of local information exchanges

10
-4

10
-3

10
-2

10
-1

10
0

R
el
a
ti
v
e
er
ro
r

DGD
Acc. DGD
ADMM
EXTRA
NN-0
NN-1
NN-2

Figure 5.2: Comparison of DGD, Acc. DGD, DADMM, EXTRA, NN-0, NN-1, and NN-2 in terms
of rounds of local information exchanges.

We compare these methods in solving (5.98) for the case that there are n = 100 nodes

in the network and the dimension of the vector w is p = 20. We assume that the graph

is 4-regular. Further, we set the condition number parameter to ξ = 2 and the penalty

parameter to α = 10−3. The momentum coefficient for the accelerated DGD is 0.9. Note

that among the values {0.1, 0.2, . . . , 0.9, 1}, the best performance belongs to the momentum

coefficient 0.9 which we use in the experiments.

As the condition number of the problem is relatively large, i.e., 4.3 × 103, the NN

method performs better than DGD and Acc. DGD in terms of the number of iterations

and total number of local information exchanges as they are illustrated in Fig. 5.1 and

Fig. 5.2, respectively. In the case that the condition number of the objective function is

not significantly large with respect to the dimension of the problem, the accelerated DGD

would be a better choice relative to NN.

156

0 50 100 150 200 250

Number of local information exchanges

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

R
el
a
ti
v
e
er
ro
r

DGD
Acc.DGD
NN-0
NN-1
NN-2

Figure 5.3: Relative error of DGD, Acc. DGD, NN-0, NN-1, and NN-2 vs number of local info.
exchanges for a well-conditioned problem.

The comparison with dual methods shows that in terms of iterations and rounds of

communications DADMM and different variants of NN perform relatively well and after

some point DADMM outperform NN and other primal methods because it converges to the

optimal argument of the original problem instead of the penalized function. On the other

hand, each step of DADMM requires solving a convex program which can be computation-

ally costly. We observe that EXTRA also has a linear convergence rate to the exact optimal

solution, and its accuracy becomes better than all primal methods. However, EXTRA is a

first-order method and its convergence at the beginning is relatively slower than NN. This

advantage of NN results from incorporation of the curvature information of the objective

function. These observations show that by incorporating the idea of NN and EXTRA we

should be able to come up with a second-order method that has a linear convergence rate

to the exact solution of (5.98) while it can perform well in ill-conditioned problems.

5.6.2 Effect of objective function condition number

We study the effect of condition number on the convergence rate of NN and show that NN

is less sensitive to the objective function condition number with respect to primal first-

order methods, e.g., DGD in [80] and accelerated DGD in [44]. To do so, we compare the

performances of the mentioned methods in solving the problem in (5.98) for small and large

condition numbers. The parameters are the same as the parameters in Fig. 5.1 except the

choice of the condition number parameter ξ.

We first consider the case that ξ = 1 which leads to condition number 1.24 × 101.

The convergence paths of DGD, accelerated DGD, NN-0, NN-1, and NN-2 in terms of the

number of local information exchanges are shown in Fig. 5.3. The performance of variations

of NN are not significantly better than DGD and accelerated DGD. In particular, DGD and

157

0 200 400 600 800 1000

Number of local information exchanges

10
-2

10
-1

10
0

R
el
a
ti
v
e
er
ro
r

DGD
Acc. DGD
NN-0
NN-1
NN-2

Figure 5.4: Relative error of DGD, Acc. DGD, NN-0, NN-1, and NN-2 vs number of local info.
exchanges for an ill-conditioned problem

Acc. DGD both outperform NN-1 and NN-2 in terms of the total communications until

convergence. Thus, accelerated DGD is the best option among the primal methods for

problems with small condition number.

To explore the performance of these methods for an ill-conditioned problem we set

the condition number parameter ξ = 3 which leads to the condition number 1.4 × 104

for the considered realization. Fig. 5.4 illustrate the convergence paths of the considered

primal methods in terms of the number of local information exchanges. As we observe, the

advantage of the network Newton methods is substantial in this setting and they outperform

DGD and accelerated DGD in terms of communication cost.

5.6.3 Effect of network topology

We proceed to compare the performance of NN in different network topologies. In particular,

we consider five different topologies which are random graphs with connectivity probabilities

pc = 0.25 and pc = 0.35, complete graph, cycle, and line. Note that in random graphs, we

generate the edges between nodes with probability pc. The complete graph is a graph that

all nodes are connected to each other directly. A cycle graph is a connected graph that each

node has degree 2. A line graph is a cycle graph that is missing an edge. The parameters

are the same as the parameters in Fig. 5.1 except the network graph and the way that

we generate the weight matrix W. We generate the weight matrix W using the formula

W = I−L/τ where L is the Laplacian matrix of the graph and τ/2 is the largest eigenvalue

of the Laplacian L. We compare the performance of NN-2 for all these networks in terms of

the number of iterations and the total number of communications between nodes. Notice

that in this section we use total communications between node instead of the number of

local information exchanges (rounds of local communications) since the degrees of nodes in

158

0 500 1000 1500 2000

Number of iterations

10
-6

10
-4

10
-2

10
0

R
el
a
ti
v
e
er
ro
r

NN-2 pc = 0.25
NN-2 pc = 0.35
NN-2 complete graph
NN-2 cycle
NN-2 line

Figure 5.5: Relative error of NN-2 vs num. of iterations for random graphs with pc = {0.25, 0.35},
complete graph, cycle graph, and line graph.

0 1 2 3 4 5 6

Total communications between nodes ×10
5

10
-4

10
-2

10
0

R
el
a
ti
v
e
er
ro
r

NN-2 pc = 0.25
NN-2 pc = 0.35
NN-2 complete graph
NN-2 cycle
NN-2 line

Figure 5.6: Relative error of NN-2 vs num. of communications for random graphs with pc =
{0.25, 0.35}, complete graph, cycle graph, and line graph.

the different networks are not equal.

The convergence paths of NN-2 for the considered topologies in terms of the number of

iterations and the total number of communications are demonstrated in Fig. 5.5 and Fig

5.6, respectively. The first important observation is the accuracy of convergence. According

to the results in [126], if we define β < 1 as the second largest magnitude of the eigenvalues

of W, then the accuracy of convergence is proportional to 1/(1−β). Thus, the graphs with

smaller β converge to a smaller neighborhood of the optimal argument. In particular, the

parameter β for the complete graph which has the most accurate convergence is β = 0.5,

while for the line graph that has the least accurate convergence path β = 0.99.

The second important observation is the rate of convergence for NN-2 in these network

topologies. It follows from the result in Theorem 7 that for a quadratic objective function

the constant of linear convergence becomes 1 − αmλ. Therefore, for larger values of λ we

159

0 50 100 150 200

Number of iterations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

W
ei
g
h
te
d
g
ra
d
ie
n
t
n
o
rm

‖D
−
1
/
2

t−
1
g
t‖

NN-0 T.B.
NN-1 T.B.
NN-2 T.B.
NN-0
NN-1
NN-2

Figure 5.7: Comparison of the theoretical bound (T.B.) in (5.97) with the empirical result for a
quadratic programming.

expect faster convergence. Note that λ is large when δ = miniwvv is large and close to

1. These observations imply that for the graphs that δ is larger we expect faster linear

convergence. The convergence paths in Fig 5.5 reinforce this claim. Note that δ for the

considered graphs are δpc=0.25 = 0.5898, δpc=0.35 = 0.5585, δcom = 0.51, δcycle = 0.75,

δline = 0.7498. These numbers justify the similarity of the convergence paths of line and

cycle graphs and the slow convergence rate of the complete graph.

5.6.4 Tightness of the bounds

In this section, we study the tightness of the theoretical bounds in the chapter. To do

so, we compare the empirical convergence rates of NN-0, NN-1, and NN-2 with the the-

oretical result in Lemma 17. As we discussed in Remark 3, for a quadratic objective

function the sequence of weighted gradients of NN-K satisfies the inequality ‖D−1/2gt+1‖ ≤
ρK+1‖D−1/2gt‖. We refer to this rate as T.B. which stands for theoretical bound. Fig-

ure 5.7 illustrates the theoretical bounds and empirical convergence paths of NN-0, NN-1,

and NN-2 for the quadratic problem in (5.98). As we observe, the convergence rates of

all methods are faster than their theoretical bounds at the beginning, but after almost 10

iterations their convergence rate becomes similar to the theoretical bound in (5.97). To

be clearer, the slopes of the actual convergence paths and their corresponding theoretical

bounds become equal after almost 10 iterations. This observation shows that the bound in

(5.97) is reasonably tight and the sequence of weighted gradients for NN-K diminishes with

factor ρK+1.

160

0 2000 4000 6000 8000 10000

Number of iterations

10
-6

10
-4

10
-2

10
0

R
e
la
t
iv
e
e
r
r
o
r

DGD

NN-0

NN-1

NN-2

Figure 5.8: Convergence of adaptive DGD, ANN-0, ANN-1, and ANN-2 for α0 = 10−2. Network
Newton methods require less iterations than DGD.

5.6.5 Adaptive network Newton

Given that DGD and network Newton are penalty methods it is of interest to consider their

behavior when the inverse penalty coefficient α is decreased recursively. The adaptation of

α for NN-K is discussed in Section 5.5 where it is termed adaptive (A)NN-K. The same

adaptation strategy is considered here for DGD. The parameter α is kept constant until

the local gradient components gv,t become smaller than a given tolerance tol, i.e., until

‖gv,t‖ ≤ tol for all v. When this tolerance is achieved, the parameter α is scaled by a factor

η < 1, i.e., α is decreased from its current value to ηα. This requires the use of a signaling

method like the one summarized in Algorithm 7 for ANN-K.

We consider the objective in (5.98) and nodes connected by a d-regular cycle. We use

the same parameters used to generate Fig. 5.1. The adaptive gradient tolerance is set to

tol = 10−3 and the scaling parameter to η = 0.1. We consider two different scenarios where

the initial penalty parameters are α = α0 = 10−1 and α = α0 = 10−2. The respective

error trajectories et with respect to the number of iterations are shown in figures 5.8 –

where α0 = 10−2 – and 5.9 – where α0 = 10−1. In each figure we show et for adaptive

DGD, ANN-0, ANN-1, and ANN-2. Both figures show that the ANN methods outperform

adaptive DGD and that larger K reduces the number of iterations that it takes ANN-K to

achieve a target error.

Note that for different ANN methods and adaptive DGD we need an extra cost of

updating the parameters svu which is not very expensive. This is true since the this process

requires a binary communication that happens every time that nodes update the parameter

α. As we observe in the plots, nodes update α only 3 or 4 times and the extra communication

cost is not substantial. We have not included this extra cost in the figures, but adding this

extra cost doesn’t change the conclusion that ANN outperforms adaptive DGD.

161

0 2000 4000 6000 8000 10000

Number of iterations

10
-4

10
-2

10
0

R
e
la
t
iv
e
e
r
r
o
r

DGD

NN-0

NN-1

NN-2

Figure 5.9: Convergence of Adaptive DGD, ANN-0, ANN-1, and ANN-2 for α0 = 10−1. ANN
methods require less iterations and convergence of all algorithms are faster relative to the case that
α0 = 10−2.

More interesting conclusions follow from a comparison across figures 5.8 and 5.9. We

can see that it is better to start with the (larger) value α = 10−1 even if the method initially

converges to a point farther from the actual optimum. This happens because increasing α

decreases ρ in (5.35).

5.6.6 Logistic regression

We consider the application of NN for solving a logistic regression problem. In this problem

we are given q training samples that we distribute across V distinct servers. Denote qv

as the number of samples assigned to server v. Each of the training samples at node v

contains a feature vector xvi ∈ Rp and a class yvi ∈ {−1, 1}. The goal is to predict the

probability P (y = 1 | x) of having label y = 1 when given a feature vector x whose class

is unknown. The logistic regression model assumes that this probability can be computed

as P (y = 1 | x) = 1/(1 + exp(−xTw)) for a linear classifier w that is computed based

on the training samples. It follows from this model that the regularized maximum log

likelihood estimate of the classifier w given the training samples (zvi, yvi) for i = 1, . . . , qv

and v = 1, . . . , V is given by

w∗ = argmin
w

f(w) (5.99)

:= argmin
w

ζ

2
‖w‖2 +

V∑
v=1

qv∑
i=1

log
[
1 + exp(−yvixTviw)

]
,

where we defined the function f(w) for future reference. The regularization term (ζ/2)‖w‖2

is added to reduce overfitting to the training set. The optimization problem in (5.99) can

162

0 50 100 150 200 250 300 350 400 450 500
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of iterations t

P
en

al
ty

ob
je
ct
iv
e
fu
n
ct
io
n
F
(y

t)

DGD
NN-0
NN-1
NN-2

Figure 5.10: Convergence of DGD, NN-0, NN-1, and NN-2. network Newton methods for a linearly
separable logistic regression.

be written in the form of the optimization problem in (5.1). To do so simply define the

local objective functions fv as

fv(w) =
ζ

2n
‖w‖2 +

qv∑
i=1

log
[
1 + exp(−yvixTviw)

]
, (5.100)

and observe that given this definition we can write the objective in (5.99) as f(w) =∑V
v=1 fv(w). We can then solve (5.99) in a distributed manner using DGD and NN-K

methods.

We use a synthetic dataset where each component of the feature vector xvi with label

yvi = 1 is generated from a normal distribution with mean µ and standard deviation σ+,

while sample points with label yvi = −1 are generated with mean −µ and standard deviation

σ−. The network is a d-regular cycle with d = 4 and has n = 100 nodes. The diagonal

weights in the matrix W are set to wvv = 1/2 + 1/2(d+ 1) and the off diagonal weights to

wvu = 1/2(d+ 1) when u ∈ Nv. We set the feature vector dimension to p = 10, the number

of training samples per node at qv = 50, and the regularization parameter to ζ = 10−4.

We consider first a scenario in which the dataset is linearly separable. To generate

a linearly separable dataset the mean is set to µ = 3 and the standard deviations to

σ+ = σ− = 1. Fig. 5.10 illustrates the convergence path of the objective function F (y) [cf.

(5.6)] when the penalty parameter is α = 10−2 and the network Newton step size is ε = 1

– line search methods for distributed optimization methods exist [127], but we found them

unnecessary in the numerical experiments presented here. The reduction in the number of

iterations required to achieve convergence is a little more marked than in the considered

quadratic example. The objective function values F (yt) for NN-0, NN-1, and NN-2 after

163

0 50 100 150 200 250 300 350 400 450 500

10
−2

10
−1

10
0

10
1

Number of iterations t

P
en

al
ty

ob
je
ct
iv
e
fu
n
ct
io
n
F
(y

t)

DGD

NN-0

NN-1

NN-2

Figure 5.11: Convergence of DGD, NN-0, NN-1, and NN-2. network Newton methods for a non-
linearly separable logistic regression.

t = 500 iterations are below 1.6×10−4, while for DGD the objective function value after the

same number of iterations have passed is F (yt) = 2.6×10−3. Conversely, achieving accuracy

F (yt) = 2.6×10−3 for NN-0, NN-1, and NN-2 requires 68, 33, and 19 iterations, respectively,

while DGD requires 500 iterations. Observe that for this example NN-2 performs better

than NN-1 and NN-0 not only in the number of iterations but also in the number of variable

exchanges required to achieve a target accuracy. To clarify this advantage, note that each

iteration of NN-K requires a total of K+ 1 local information exchanges. Hence, NN-0, NN-

1, NN-2, and DGD reach the objective function value F (yt) = 2.6× 10−3 after 68× 1 = 68,

33 × 2 = 66, 19 × 3 = 57, and 500 × 1 = 500 local information exchanges, respectively. It

follows that NN-2 performs better than NN-1, NN-0, and DGD in terms of the number of

variable exchanges required to achieve a target accuracy.

We also consider a case that the dataset is not linearly separable. To generate this

dataset we set the mean to µ = 2 and the standard deviations to σ+ = σ− = 2. The penalty

parameter is α = 10−2 and the step size is ε = 1. The resulting objective trajectories F (yt)

of DGD, NN-0, NN-1, and NN-2 are shown in Fig. 5.11. The advantages of the NN methods

relative to DGD are less pronounced but still significant.

164

Chapter 6

Second-order primal-dual method

for distributed optimization

6.1 Context and background

In this chapter, we continue studying the idea of solving ERM problems using distributed

methods by splitting samples across multiple processors which create a network. As we

mentioned in Chapter 5, by assigning qv samples to each node v and defining fv as the loss

function associated to the samples of node v, the empirical risk minimization problem for

a training set of N =
∑V

v=1 qv samples boils down to the problem

w̃∗ := argmin
w̃∈Rp

V∑
v=1

fv(w̃), (6.1)

where w̃ ∈ Rp is the optimization variable. Our interest in studying the decentralized prob-

lem in (6.1) comes from the idea of solving ERM problem by splitting samples across space;

however, this class of problems arises in many application domains such as decentralized

control [22, 25, 56], wireless communication [96, 97], and sensor networks [46, 93, 103]. As

in Chapter 5, the results in this chapter hold for the general problem formulation in (6.1)

irrespective to the domain of application.

Decentralized methods for solving (6.1) can be divided into two classes: primal do-

main methods and dual domain methods. Decentralized gradient descent (DGD) is a well-

established primal method that implements gradient descent on a penalized version of (6.1)

whose gradient can be separated into per-node components. Network Newton (NN), pre-

sented in Chapter 5, is a more recent alternative that accelerates the convergence of DGD

by incorporating second order information of the penalized objective [64, 65]. Both, DGD

and NN, solve problem (6.1) in the primal domain, i.e., solve a penalized version of the

165

original problem, and converge to a neighborhood of the optimal argument w̃∗ when us-

ing a constant stepsize and converge sublinearly to the exact optimal argument if using a

diminishing stepsize.

Dual domain methods build on the fact that the dual function of (6.1) has a gradient

with separable structure. The use of plain dual gradient descent is possible but generally

slow to converge [8, 95, 102]. In centralized optimization, better convergence speeds are

attained by the method of multipliers (MM) that adds a quadratic augmentation term

to the Lagrangian [7, 40], or the proximal (P)MM that adds an additional term to keep

iterates close. In either case, the quadratic term that is added to construct the augmented

Lagrangian makes distributed computation of primal gradients impossible. This issue is

most often overcome with the use of decentralized (D) versions of the alternating direction

method of multipliers (ADMM) [19, 103, 112]. Besides the ADMM, other methods that

use different alternatives to approximate the gradients of the dual function have also been

proposed [28, 43, 79, 100, 115, 117, 122]. The convergence rates of these methods have not

been studied except for the DADMM and its variants that are known to converge linearly

to the optimal argument when the local functions are strongly convex and their gradients

are Lipschitz continuous [54, 77, 112]. An important observation here is that while all of

these methods try to approximate the MM or the PMM, the performance penalty entailed

by the approximation has not been studied.

This chapter studies the exact second order method (ESOM) which uses quadratic

approximations of the augmented Lagrangians of (6.1) and leads to a set of separable

subproblems. Similar to other second order methods, implementation of ESOM requires

computation of Hessian inverses. Distributed implementation of this operation is infeasible

because while the Hessian of the proximal augmented Lagrangian is neighbor sparse, its

inverse is not. ESOM resolves this issue by using the Hessian inverse approximation tech-

nique introduced in [64, 65, 128]. This technique consists of truncating the Taylor’s series

of the Hessian inverse to order K to obtain the family of methods ESOM-K. Implemen-

tation of this expansion in terms of local operations is possible. A remarkable property of

all ESOM-K methods is that they can be shown to pay a performance penalty relative to

(centralized) PMM that vanishes with increasing iterations.

We begin the chapter by reformulating (6.1) in a form more suitable for decentralized

implementation (Proposition 7) and proceed to describe the PMM (Section 6.2). ESOM is a

variation of PMM that substitutes the proximal augmented Lagrangian with its quadratic

approximation (Section 6.3). Implementation of ESOM requires computing the inverse

of the Hessian of the proximal augmented Lagrangian. Since this inversion cannot be

computed using local and neighboring information, ESOM-K approximates the Hessian

inverse with the K-order truncation of the Taylor’s series expansion of the Hessian inverse.

166

This expansion can be carried out using an inner loop of local operations. This and other

details required for decentralized implementation of ESOM-K are discussed in Section 6.3.1

along with a discussion of how ESOM can be interpreted as a saddle point generalization

of the Network Newton methods proposed in [63] (Remark 2) or a second order version of

the EXTRA method in [111] (Remark 3).

Convergence analyses of PMM and ESOM are then presented (Section 6.4). Linear

convergence of PMM is established (Section 6.4.1) and linear convergence factors explicitly

derived to use as benchmarks (Theorem 9). In the ESOM analysis (Section 6.4.2) we provide

an upper bound for the error of the proximal augmented Lagrangian approximation (Lemma

20). We leverage this result to prove linear convergence of ESOM (Theorem 10) and to show

that ESOM’s linear convergence factor approaches the corresponding PMM factor as time

grows (Section 6.4.3). This indicates that the convergence paths of (distributed) ESOM-K

and (centralized) PMM are very close. We also study the dependency of the convergence

constant with the algorithm’s order K.

ESOM tradeoffs and comparisons with other decentralized methods for solving con-

sensus optimization problems are illustrated in numerical experiments (Section 6.5) for a

decentralized least squares problem (Section 6.5.1) and a decentralized logistic regression

classification problem (Section 6.5.2). Numerical results in both settings verify that larger

K leads to faster convergence in terms of number of iterations. However, we observe that all

versions of ESOM-K exhibit similar convergence rates in terms of the number of communi-

cation exchanges. This implies that ESOM-0 is preferable with respect to the latter metric

and that larger K is justified when computational cost is of interest. Faster convergence

relative to EXTRA, Network Newton, and DQM is observed.

Notation. Vectors are written as w ∈ Rp and matrices as A ∈ Rp×p. Given n vectors wv,

the vector w = [w1; . . . ; wV] represents a stacking of the elements of each individual wv.

We use ‖w‖ and ‖A‖ to denote the Euclidean norm of vector w and matrix A, respectively.

The norm of vector w with respect to positive definite matrix A is ‖w‖A := (wTAw)1/2.

Given a function f its gradient w is denoted as ∇f(w) and its Hessian as ∇2f(w).

6.2 Proximal method of multipliers

Let wv ∈ Rp be a copy of the decision variable w kept at node v and define Nv as the neigh-

borhood of node v. Assuming the network is bidirectionally connected, the optimization

167

problem in (6.1) is equivalent to the program

{w∗v}Vv=1 := argmin
{wv}Vv=1

V∑
v=1

fv(wv),

s.t. wv = wu, for all v, u ∈ Nv. (6.2)

Indeed, the constraint in (6.2) enforces the consensus condition w1 = · · · = wV for any

feasible point of (6.2). With this condition satisfied, the objective in (6.2) is equal to the

objective function in (6.1) from where it follows that the optimal local variables w∗v are all

equal to the optimal argument w̃∗ of (6.1), i.e., w∗1 = · · · = w∗V = w̃∗.

To derive ESOM define w := [w1; . . . ; wV] ∈ RV p as the concatenation of the local

decision variables wv and the aggregate function f : RV p → R as f(w) = f(w1, . . . ,wV) :=∑V
v=1 fv(wv) as the sum of all the local functions fv(wv). Introduce the matrix W ∈ RV×V

with elements wvu ≥ 0 representing a weight that node v assigns to variables of node u.

The weight wvu = 0 if and only if u /∈ Nv∪{v}. The matrix W is further required to satisfy

WT = W, W1 = 1, null(I−W) = span(1). (6.3)

The first condition implies that the weights are symmetric, i.e., wvu = wuv. The second

condition ensures that the weights of a given node sum up to 1, i.e.,
∑n

u=1wvu = 1 for all v.

Since W1 = 1 we have that I−W is rank deficient. The last condition null(I−W) = span(1)

makes the rank of I−W exactly equal to V − 1 [18].

The matrix W can be used to reformulate (6.2) as we show in the following proposition.

Proposition 7 Define the matrix Z := W ⊗ Ip ∈ RV p × RV p as the Kronecker product of

the weight matrix W and the identity matrix Ip, and consider the definitions of the global

vector w := [w1; . . . ; wV] and aggregate function f(w) :=
∑V

v=1 fv(wv) . The optimization

problem in (6.2) is equivalent to

w∗ = argmin
w∈RV p

f(w) s.t. (I− Z)1/2w = 0. (6.4)

I.e., w∗ = [w∗1; . . . ; w∗V] with {w∗v}Vv=1 the solution of (6.2).

Proof: We just show that the constraint ((IV −W) ⊗ Ip)w = (IV p − Z)w = 0 is also a

consensus constraint. To do so begin by noticing that since I−W is positive semidefinite,

I−Z = (I−W)⊗Ip is also positive semidefinite. Therefore, the null space of the square root

matrix (I−Z)1/2 is equal to the null space of I−Z and we conclude that satisfying the condi-

tion (I−Z)1/2w is equivalent to the consensus condition w1 = · · · = wV . This observation

in conjunction with the definition of the aggregate function f(w) =
∑V

v=1 fv(wv) shows

168

that the programs in (6.4) and (6.3) are equivalent. In particular, the optimal solution of

(6.4) is w∗ = [w∗1; . . . ; w∗V] with {w∗v}Vv=1 the solution of (6.2). �

The formulation in (6.4) is used to define the proximal method of multipliers (PMM)

that we consider in this chapter. To do so introduce dual variables s ∈ RV p to define the

augmented Lagrangian L(w, s) of (6.4) as

L(w, s) = f(w) + sT (I− Z)1/2w +
α

2
wT (I− Z)w , (6.5)

where α is a positive constant. Given the properties of the matrix Z, the augmentation

term (α/2)wT (I−Z)w is null when the variable w is a feasible solution of (6.4). Otherwise,

the inner product is positive and behaves as a penalty for the violation of the consensus

constraint.

Introduce a time index t ∈ N and define wt and st as primal and dual iterates at step t.

The primal variable wt+1 is updated by minimizing the sum of the augmented Lagrangian

in (6.5) and the proximal term (ε/2)‖w −wt‖2. We then have that

wt+1 = argmin
w∈RV p

{
L(w, st) +

ε

2
‖w −wt‖2

}
, (6.6)

where the proximal coefficient ε > 0 is a strictly positive constant. The dual variable st is

updated by ascending through the gradient of the augmented Lagrangian with respect to

the dual variable ∇sL(wt+1, st) with stepsize α

st+1 = st + α(I− Z)1/2wt+1. (6.7)

The updates in (6.6) and (6.7) for PMM can be considered as a generalization of the method

of multipliers (MM), because setting the proximal coefficient ε = 0 recovers the updates

of MM. The proximal term (ε/2)‖w − wt‖2 is added to keep the updated variable wt+1

close to the previous iterate wt. This does not affect convergence guarantees but improves

computational stability.

The primal update in (6.6) may be computationally costly – because it requires solving

a convex program – and cannot be implemented in a decentralized manner – because the

augmentation term (1/2α)wT (I−Z)w in (6.5) is not separable. In the following section, we

propose an approximation of PMM that makes the minimization in (6.6) computationally

economic and separable over nodes of the network. This leads to the set of decentralized

updates that define the ESOM algorithm.

169

6.3 ESOM: Exact second-order method

To reduce the computational complexity of (6.6) and obtain a separable update we introduce

a second order approximation of the augmented Lagrangian in (6.5). Consider then the

second order Taylor’s expansion L(w, st) ≈ L(wt, st) +∇wL(wt, st)
T (w−wt) + (1/2)(w−

wt)
T∇2

wL(wt, st)(w−wt) of the augmented Lagrangian with respect to w centered around

(wt, st). Using this approximation in lieu of L(w, st) in (6.6) leads to the primal update

wt+1 = argmin
w∈RV p

{
L(wt, st) +∇wL(wt, st)

T (w −wt) (6.8)

+
1

2
(w −wt)

T
(
∇2

wL(wt, st) + εI
)

(w −wt)
}
.

The minimization in the right hand side of (6.8) is of a positive definite quadratic form.

Thus, upon defining the Hessian matrix Ht ∈ Rnp×np as

Ht := ∇2f(wt) + α(I− Z) + εI, (6.9)

and considering the explicit form of the augmented Lagrangian gradient ∇wL(wt, st) [cf.

(6.5)] it follows that the variable wt+1 in (6.8) is given by

wt+1 = wt −H−1t

[
∇f(wt) + (I− Z)1/2st + α(I− Z)wt

]
. (6.10)

A fundamental observation here is that the matrix Ht, which is the Hessian of the objective

function in (6.8), is block neighbor sparse. By block neighbor sparse we mean that the

(v, u)th block is non-zero if and only if u ∈ Nv or u = i. To confirm this claim, observe that

∇2f(wt) ∈ Rnp×np is a block diagonal matrix where its vth diagonal block is the Hessian

of the vth local function, ∇2fv(wv,t) ∈ Rp×p. Additionally, matrix εIV p is a diagonal

matrix which implies that the term ∇2f(wt) + εIV p is a block diagonal matrix with blocks

∇2fv(wv,t) + εIp. Further, it follows from the definition of the matrix Z that the matrix

I − Z is neighbor sparse. Therefore, the Hessian Ht is also neighbor sparse. Although

the Hessian Ht is neighbor sparse, its inverse H−1t is not. This observation leads to the

conclusion that the update in (6.10) is not implementable in a decentralized manner, i.e.,

nodes cannot implement (6.10) by exchanging information only with their neighbors.

To resolve this issue, we use a Hessian inverse approximation that is built on truncating

the Taylor’s series of the Hessian inverse H−1t as in [64,128]. To do so, we try to decompose

the Hessian as Ht = Dt −B where Dt is a block diagonal positive definite matrix and B is

a neighbor sparse positive semidefinite matrix. In particular, define Dt as

Dt := ∇2f(wt) + εI + 2α(I− Zd), (6.11)

170

where Zd := diag(Z). Observing the definitions of the matrices Ht and Dt and considering

the relation B = Dt −Ht we conclude that B is given by

B := α (I− 2Zd + Z) . (6.12)

Notice that using the decomposition Ht = Dt−B and by factoring D
1/2
t , the Hessian inverse

can be written as H−1t = D
−1/2
t (I−D

−1/2
t BD

−1/2
t)−1D

−1/2
t . Observe that the inverse matrix

(I−D
−1/2
t BD

−1/2
t)−1 can be substituted by its Taylor’s series

∑∞
u=0(D

−1/2
t BD

−1/2
t)u. Note

that this is true if the eigenvalues of the matrix D
−1/2
t BD

−1/2
t are smaller than 1. In the

following sections, we prove that this condition is satisfied. However, computation of the

series requires global communication which is not affordable in decentralized settings. Thus,

we approximate the Hessian inverse H−1t by truncating the first K + 1 terms of its Taylor’s

series which leads to the Hessian inverse approximation H̃−1t (K),

H̃−1t (K) := D
−1/2
t

K∑
u=0

(
D
−1/2
t BD

−1/2
t

)u
D
−1/2
t . (6.13)

Notice that the approximate Hessian inverse H̃−1t (K) is K-hop block neighbor sparse, i.e.,

the (v, u)th block is nonzero if and only if there is at least one path between nodes v and

u with length K or smaller.

We introduce the Exact Second-Order Method (ESOM) as a second order method for

solving decentralized optimization problems which substitutes the Hessian inverse in update

(6.10) by its K block neighbor sparse approximation Ĥ−1k (K) defined in (6.13). Therefore,

the primal update of ESOM is

wt+1 = wt−H̃−1t (K)
[
∇f(wt) + (I− Z)1/2st + α(I−Z)wt

]
. (6.14)

The ESOM dual update is identical to the update in (6.7),

st+1 = st + α(I− Z)1/2wt+1. (6.15)

Notice that ESOM is different from PMM in approximating the augmented Lagrangian in

the primal update of PMM by a second order approximation. Further, ESOM approximates

the Hessian inverse of the augmented Lagrangian by truncating the Taylor’s series of the

Hessian inverse which is not necessarily neighbor sparse. In the following subsection we

study the implantation details of the updates in (6.14) and (6.15).

Remark 8 The Hessian decomposition Ht = Dt−B with the matrices Dt and B in (6.11)

and (6.12), respectively, is not the only valid decomposition. All decompositions of the

171

form Ht = Dt ± Bt are valid if Dt is positive definite and the eigenvalues of the matrix

D
−1/2
t BtD

−1/2
t are in the interval (−1, 1). The suggested framework guarantees that the

matrix B is positive semidefinite which is helpful in the analysis of the proposed ESOM

method. A more comprehensive study of alternative decompositions is studied in [3].

6.3.1 Decentralized implementation of ESOM

The updates in (6.14) and (6.15) show that ESOM is a second order approximation of PMM.

Although these updates are necessary for understanding the rationale behind ESOM, they

are not implementable in a decentralized fashion since the matrix (I−Z)1/2 is not neighbor

sparse. To resolve this issue, define the sequence of variables qt as qt := (I − Z)1/2st.

Considering the definition of qt, the primal update in (6.14) can be written as

wt+1 = wt − H̃−1t (K)
(
∇f(wt) + qt + α(I− Z)wt

)
. (6.16)

Multiplying the dual update in (6.15) by (I − Z)1/2 from the left hand side and using the

definition qt := (I− Z)1/2st yields

qt+1 = qt + α(I− Z)wt+1. (6.17)

Notice that the system of updates in (6.16) and (6.17) is equivalent to the updates in (6.14)

and (6.15), i.e., the sequences of variables wt generated by them are identical. Nodes can

implement the primal-dual updates in (6.16) and (6.17) in a decentralized manner, since

the squared root matrix (I− Z)1/2 is eliminated from the updates and nodes can compute

the products (I− Z)wt and (I− Z)wt+1 by exchanging information with their neighbors.

To characterize the local update of each node for implementing the updates in (6.16)

and (6.17), define

gt := ∇wL(wt, st) = ∇f(wt) + qt + α(I− Z)wt, (6.18)

as the gradient of the augmented Lagrangian in (6.5). Further, define the primal descent

direction dt(K) with K levels of approximation as

dt(K) := −H̃−1t (K) gt, (6.19)

which implies that the update in (6.16) can be written as wt+1 = wt + dt(K). According

to the definitions of the Hessian inverse approximation in (6.13), the explicit expression for

the descent direction dt(K) is given by dt(K) = D
−1/2
t

∑K
u=0

(
D
−1/2
t BD

−1/2
t

)u
D
−1/2
t gt.

Considering this definition, we can simplify the expression for the descent direction dt(k+1)

172

as

dt(k + 1) = −D
−1/2
t

k+1∑
u=1

(
D
−1/2
t BD

−1/2
t

)u
D
−1/2
t gt −D−1t gt, (6.20)

where we have separated the first term of the sum from the rest. Factorize D−1t B from the

summands in (6.20) to obtain

dt(k + 1) = −D−1t BD
−1/2
t

k∑
u=0

(
D
−1/2
t BD

−1/2
t

)u
D
−1/2
t gt −D−1t gt. (6.21)

Based on the definition of the descent direction dt(k), we obtain that the first term in the

right hand side of (6.21) can be simplified as D−1t Bdt(k). Therefore, the descent directions

dt(k) and dt(k + 1) satisfy the condition

dt(k + 1) = D−1t Bdt(k)−D−1t gt. (6.22)

Define dv,t(k) as the descent direction of node v at step t which is the vth element of the

global descent direction dt(k) = [d1,t(k); . . . ; dV,t(k)]. Therefore, the localized version of

the relation in (6.22) at node v is given by

dv,t(k + 1) = D−1vv,t
∑

u=v,u∈Nv

Bvudu,t(k)−D−1vv,tgv,t. (6.23)

The update in (6.23) shows that node v can compute its (k + 1)th descent direction

dv,t(k + 1) if it has access to the kth descent direction dv,t(k) of itself and its neighbors

du,t(k) for u ∈ Nv. Thus, if nodes initialize with the ESOM-0 descent direction dv,t(0) =

−D−1vv,tgv,t and exchange their descent directions with their neighbors for K rounds and

use the update in (6.23), they can compute their local ESOM-K descent direction dv,t(K).

Notice that the vth diagonal block Dt is given by Dvv,t := ∇2fv(wv,t) + (2α(1−wvv) + ε)I,

where wv,t is the primal variable of node v at step t. Thus, the block Dvv,t is locally

available at node v. Moreover, node v can evaluate the blocks Bvv = α(1 − wvv)I and

Bvu = αwvuI without extra communication. In addition, nodes can compute the gradient

gt by communicating with their neighbors. To confirm this claim observe that the vth

element of gt = [g1,t; . . . ; gV,t] associated with node v is given by

gv,t := ∇fv(wv,t) + qv,t + α(1− wvv)wv,t − α
∑
u∈Nv

wvuwu,t, (6.24)

where qv,t ∈ Rp is the vth element of qt = [q1,t; . . . ; qV,t] and wv,t the primal variable of

node v at step t and they are both available at node v. Hence, the update in (6.16) can be

173

Algorithm 8 ESOM-K method at node v

Require: Initial iterates wv,0 = wu,0 = 0 for u ∈ Nv and qv,0 = 0.
1: B blocks: Bvv = α(1− wvv)I and Bvu = αwvuI
2: for t = 0, 1, 2, . . . do
3: Update D block: Dvv,t = ∇2fv(wv,t) + (2α(1− wvv) + ε)I

4: Compute gradient gv,t=∇fv(wv,t)+qv,t + α(1− wvv)wv,t − α
∑
u∈Ni

wvuwu,t

5: Compute ESOM-0 descent direction dv,t(0) = −D−1vv,tgv,t
6: for k = 0, . . . ,K − 1 do
7: Exchange dv,t(k) with neighbors u ∈ Nv
8: Compute dv,t(k + 1)= D−1vv,t

[∑
u∈Nv,u=v

Bvudu,t(k)− gv,t

]
9: end for

10: Update primal iterate: wv,t+1 = wv,t + dv,t(K).
11: Exchange iterates wv,t+1 with neighbors u ∈ Ni.
12: Update dual iterate: qv,t+1 = qv,t + α(1− wvv)wv,t+1 − α

∑
u∈Nv

wvuwu,t+1.

13: end for

implemented in a decentralized manner. Likewise, nodes can implement the dual update in

(6.17) using the local update

qv,t+1 = qv,t + α(1− wvv)wv,t+1 − α
∑
u∈Nv

wvuwu,t+1, (6.25)

which requires access to the local primal variable wu,t+1 of the neighboring nodes u ∈ Nv.
The steps of ESOM-K are summarized in Algorithm 8. The core steps are Steps 5-9

which correspond to computing the ESOM-K primal descent direction dv,t(K). In Step 5,

Each node computes its initial descent direction dv,t(0) using the block Dvv,t and the local

gradient gv,t computed in Steps 3 and 4, respectively. Steps 7 and 8 correspond to the

recursion in (6.23). In step 7, nodes exchange their kth level descent direction dv,t(k) with

their neighboring nodes to compute the (k + 1)th descent direction dv,t(k + 1) in Step 8.

The outcome of this recursion is the Kth level descent direction dv,t(K) which is required

for the update of the primal variable wv,t in Step 10. Notice that the blocks of the neighbor

sparse matrix B, which are required for Step 8, are computed and stored in Step 1. After

updating the primal variables in Step 10, nodes exchange their updated variables wv,t+1

with their neighbors u ∈ Nv in Step 11. By having access to the decision variable of neigh-

boring nodes, nodes update their local dual variable qv,t in Step 12.

Remark 9 The proposed ESOM algorithm solves problem (6.4) in the dual domain by

defining the proximal augmented Lagrangian. It is also possible to solve problem (6.4)

in the primal domain by solving a penalty version of (6.4). In particular, by using the

174

quadratic penalty function (1/2)‖.‖2 for the constraint (I−Z)1/2w with penalty coefficient

α, we obtain the penalized version of (6.4)

ŵ∗ := argmin
w∈RV p

f(w) +
α

2
wT (I− Z)w, (6.26)

where ŵ∗ is the optimal argument of the penalized objective function. Notice that ŵ∗ is

not equal to the optimal argument w∗ and the distance ‖w∗−ŵ∗‖ depends on the choice of

α. The objective function in (6.26) can be minimized by descending through the gradient

descent direction which leads to the update of decentralized gradient descent (DGD) [80].

The convergence of DGD can be improved by using Newton’s method. Notice that the

Hessian of the objective function in (6.26) is given by

Ĥ := ∇2f(w) + α(I− Z). (6.27)

The Hessian Ĥ in (6.27) is identical to the Hessian H in (6.9) except for the term εI.

Therefore, the same technique for approximating the Hessian inverse Ĥ−1 can be used

to approximate the Newton direction of the penalized objective function in (6.26) which

leads to the update of the Network Newton (NN) methods [64, 65]. Thus, ESOM and NN

use an approximate decentralized variation of Newton’s method for solving two different

problems. In other words, ESOM uses the approximate Newton direction for minimizing

the augmented Lagrangian of (6.4), while NN solves a penalized version of (6.4) using this

approximation. This difference justifies the reason that the sequence of iterates generated

by ESOM converges to the optimal argument w∗ (Section 6.4), while NN converges to a

neighborhood of w∗.

Remark 10 ESOM approximates the augmented Lagrangian L(w, s) in (6.6) by its second

order approximation. If we substitute the augmented Lagrangian by its first order approxi-

mation we can recover the update of EXTRA proposed in [111]. To be more precise, we can

substitute L(w, st) in (6.6) by its first order approximation L(wt, st)+∇L(wt, st)
T (w−wt)

near the point (wt, st) to update the primal variable w. Considering this substitution, the

update of wt+1 is given by

wt+1 = argmin
w∈RV p

{
L(wt, st) +∇L(wt, st)

T (w −wt) +
ε

2
‖w −wt‖2

}
. (6.28)

Thus, considering the definition of the augmented Lagrangian in (6.5) the updated variable

wt+1 can be explicitly written as

wt+1 = wt −
1

ε

[
∇f(wt) + (I− Z)1/2st + α(I− Z)wt

]
. (6.29)

175

By subtracting the update at step t − 1 from the update at step t and using the dual

variables relation that st+1 = st + α(I− Z)1/2wt+1 we obtain the update

wt+1 =

(
2I− 2α

ε
(I− Z)

)
wt −

(
I− α

ε
(I− Z)

)
wt−1 −

1

ε
(∇f(wt)−∇f(wt−1)). (6.30)

The update in (6.30) shows a first-order approximation of the PMM. It is not hard to show

that for specific choices of α and ε, the update in (6.30) is equivalent to the update of EX-

TRA in [111]. Thus, we expect to observe faster convergence for ESOM relative to EXTRA

as it incorporates second-order information. This advantage is studied in Section 6.5.

6.4 Convergence analysis

In this section, we study convergence rates of PMM and ESOM. First, we show that the

sequence of iterates wt generated by PMM converges linearly to the optimal argument w∗.

Although, PMM cannot be implemented in a decentralized fashion, its convergence rate

can be used as a benchmark for evaluating the performance of ESOM. We then follow the

section by analyzing convergence properties ESOM. We show that ESOM exhibits a linear

convergence rate and compare its factor of linear convergence with the linear convergence

factor of PMM. In proving these results we consider the following assumptions.

Assumption 12 The local objective functions fv(w) are twice differentiable and the eigen-

values of the local objective functions Hessian ∇2f(w) are bounded by positive constants

0 < m ≤M <∞, i.e.

mI � ∇2fv(wv) � MI, (6.31)

for all wv ∈ Rp and v = 1, . . . , V .

The lower bound in (6.31) implies that the local objective functions fv are strongly

convex with constant m > 0. The upper bound for the eigenvalues of the Hessians ∇2fv

implies that the gradients of the local objective functions ∇fv are Lipschitz continuous with

constant M . Notice that the global objective function ∇2f(w) is a block diagonal matrix

where its vth diagonal block is ∇2fv(wv). Therefore, the bounds on the eigenvalues of

the local Hessians ∇2fv(wv) in (6.31) also hold for the global objective function Hessian

∇2f(w). I.e.,

mI � ∇2f(w) � MI, (6.32)

for all w ∈ RV p. Thus, the global objective function f is also strongly convex with constant

m and its gradients ∇f are Lipschitz continuous with constant M .

176

6.4.1 Convergence of proximal method of multipliers

Convergence rate of PMM can be considered as a benchmark for the convergence rate of

ESOM. To establish linear convergence of PMM, We first study the relationship between

the primal w and dual s iterates generated by PMM and the optimal arguments w∗ and s∗

in the following lemma.

Lemma 18 Consider the updates for the proximal method of multipliers in (6.6) and (6.7).

The sequences of primal and dual iterates generated by PMM satisfy

st+1 − st − α(I− Z)1/2(wt+1 −w∗) = 0, (6.33)

and

∇f(wt+1)−∇f(w∗) + (I− Z)1/2(st+1 − s∗) + ε(wt+1 −wt) = 0. (6.34)

Proof: Consider the updates of PMM in (6.6) and (6.7). According to (6.4), the optimal

argument w∗ satisfies the condition (I−Z)1/2w∗ = 0. This observation in conjunction with

the dual variable update in (6.7) yields the claim in (6.33).

To prove the claim in (6.34), note that the optimality condition of (6.6) implies that

∇wL(wt+1, st) + ε(wt+1 − wt) = 0. Based on the definition of the Lagrangian L(w, s) in

(6.5), the optimality condition for the primal update of PMM can be written as

∇f(wt+1) + (I− Z)1/2st + α(I− Z)wt+1 + ε(wt+1 −wt) = 0. (6.35)

Further, notice that one of the KKT conditions of the optimization problem in (6.4) is

∇f(w∗) + (I− Z)1/2s∗ = 0. (6.36)

Moreover, the optimal solution w∗ = [w̃∗; . . . ; w̃∗] of (6.4) lies in null{I − Z}. Therefore,

we obtain

α(I− Z)w∗ = 0. (6.37)

Subtracting the equalities in (6.36) and (6.37) from (6.35) yields

∇f(wt+1)−∇f(w∗) + (I− Z)1/2(st − s∗) + α(I− Z)(wt+1 −w∗) + ε(wt+1 −wt) = 0.

(6.38)

Regrouping the terms in (6.33) implies that st is equivalent to

st = st+1 − α(I− Z)1/2(wt+1 −w∗). (6.39)

177

Substituting st in (6.38) by the expression in the right hand side of (6.39) leads to the claim

in (6.34). �

Considering the preliminary results in (6.33) and (6.34), we can state convergence results

of PMM. To do so, we prove linear convergence of a Lyapunov function of the primal

‖wt −w∗‖2 and dual ‖st − s∗‖2 errors. To be more precise, we define the vector u ∈ R2np

and matrix G ∈ Rnp×np as

u =

 s

w

 , G =

 I 0

0 αεI

 . (6.40)

Notice that the sequence ut is the concatenation of the dual variable st and primal variable

wt. Likewise, we can define u∗ as the concatenation of the optimal arguments s∗ and w∗.

We proceed to prove that the sequence ‖ut−u∗‖2G converges linearly to null. Observe that

‖ut − u∗‖2G can be simplified as ‖st − s∗‖2 + αε‖wt −w∗‖2. This observation shows that

‖ut − u∗‖2G is a Lyapunov function of the primal ‖wt − w∗‖2 and dual ‖st − s∗‖2 errors.

Therefore, linear convergence of the sequence ‖ut − u∗‖2G implies linear convergence of the

sequence ‖wt − w∗‖2. In the following theorem, we show that the sequence ‖ut − u∗‖2G
converges to zero at a linear rate.

Theorem 9 Consider the proximal method of multipliers as introduced in (6.6) and (6.7).

Consider β > 1 as an arbitrary constant strictly larger than 1 and define λ̂min(I − Z) as

the smallest non-zero eigenvalue of the matrix I − Z. Further, recall the definitions of the

vector u and matrix G in (6.40). If Assumption 12 holds, then the sequence of Lyapunov

functions ‖ut − u∗‖2G generated by PMM satisfies

‖ut+1 − u∗‖2G ≤ 1

1 + δ
‖ut − u∗‖2G, (6.41)

where the constant δ is given by

δ = min

{
2αλ̂min(I−Z)

β(m+M)
,

2mM

ε(m+M)
,
(β−1)αλ̂min(I−Z)

βε

}
. (6.42)

Proof: According to Assumption 12, the global objective function f is strongly convex with

constant m and its gradients ∇f are Lipschitz continuous with constant M . Considering

these assumptions, we obtain that the inner product (wt+1 −w∗)T (∇f(wt+1) − ∇f(w∗))

178

is lower bounded by

mM

m+M
‖wt+1 −w∗‖2 +

1

m+M
‖∇f(wt+1)−∇f(w∗)‖2

≤ (wt+1 −w∗)T (∇f(wt+1)−∇f(w∗)). (6.43)

The result in (6.34) shows that the difference ∇f(wt+1) − ∇f(w∗) is equal to −(I −
Z)1/2(st+1 − s∗) − ε(wt+1 − wt). Apply this substitution into (6.43) and multiply both

sides of the resulted inequality by 2 to obtain

2mM

m+M
‖wt+1 −w∗‖2 +

2

m+M
‖∇f(wt+1)−∇f(w∗)‖2

≤ −2(wt+1 −w∗)T (I− Z)1/2(st+1 − s∗)− 2ε(wt+1 −w∗)T (wt+1 −wt). (6.44)

Based on the result in (6.33), we can substitute (wt+1−w∗)T (I−Z)1/2 by (1/α)(st+1−st)
T .

Thus, we can rewrite (6.44) as

2αmM

m+M
‖wt+1 −w∗‖2 +

2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2

≤ −2(st+1 − st)
T (st+1 − s∗)− 2αε(wt+1 −w∗)T (wt+1 −wt). (6.45)

Notice that for any vectors a, b, and c we can write 2(a − b)T (a − c) = ‖a − b‖2 + ‖a −
c‖2 − ‖b − c‖2. By setting a = st+1, b = st, and c = s∗ we obtain that the inner product

2(st+1 − st)
T (st+1 − s∗) in (6.45) can be written as ‖st+1 − st‖2 + ‖st+1 − s∗‖2 −‖st − s∗‖2.

Likewise, setting a = wt+1, b = wt, and c = w∗ implies that the inner product 2(wt+1 −
wt)

T (wt+1 −w∗) in (6.45) is equal to ‖wt+1 −wt‖2 + ‖wt+1 −w∗‖2 − ‖wt −w∗‖2. Hence,

(6.45) can be simplified as

2αmM

m+M
‖wt+1 −w∗‖2 +

2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2

≤ αε‖wt −w∗‖2 − αε‖wt+1 −wt‖2 − αε‖wt+1 −w∗‖2

+ ‖st − s∗‖2 − ‖st+1 − st‖2 − ‖st+1 − s∗‖2. (6.46)

Now using the definitions of the variable u and matrix G in (6.40) we can substitute

‖st− s∗‖2−‖st+1− s∗‖2 +αε‖wt−w∗‖2−αε‖wt+1−w∗‖2 by ‖ut−u∗‖2G−‖ut+1−u∗‖2G.

Moreover, the squared norm ‖st+1 − st‖2 is equivalent to ‖wt+1 −w∗‖2α2(I−Z) based on the

result in (6.33). By applying these substitutions we can rewrite (6.46) as

2αmM

m+M
‖wt+1 −w∗‖2 +

2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2

≤ ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G − αε‖wt+1 −wt‖2 − ‖wt+1 −w∗‖2α2(I−Z). (6.47)

179

Regrouping the terms in (6.47) leads to the following lower bound for the difference ‖ut −
u∗‖2G − ‖ut+1 − u∗‖2G,

‖ut − u∗‖2G − ‖ut+1 − u∗‖2G

≥ 2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2 + αε‖wt+1 −wt‖2 + ‖wt+1 −w∗‖22αmM

m+M
I+α2(I−Z)

.

(6.48)

Observe that the result in (6.48) provides a lower bound for the decrement ‖ut − u∗‖2G −
‖ut+1 − u∗‖2G. To prove the claim in (6.41), we need to show that for a positive constant δ

we have ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G ≥ δ‖ut+1 − u∗‖2G. Therefore, the inequality in (6.41)

is satisfied if we can show that the lower bound in (6.48) is greater than δ‖ut+1 − u∗‖2G or

equivalently

δ‖st+1 − s∗‖2 + δαε‖wt+1 −w∗‖2

≤ 2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2 + αε‖wt+1 −wt‖2 + ‖wt+1 −w∗‖22αmM

m+M
I+α2(I−Z)

.

(6.49)

To prove that the inequality in (6.49) holds for some δ > 0, we first find an upper bound

for the squared norm ‖st+1 − s∗‖2 in terms of the summands in the right hand side of

(6.49). To do so, consider the relation (6.34) along with the fact that st+1 and s∗ both

lie in the column space of (I − Z)1/2. Note that there always exists a unique s∗ that lies

in the column space of (I − Z)1/2 – check Lemma 1 in [54]. Since we know that both

st+1 and s∗ lie in the column space of (I − Z)1/2, there exists a vector r ∈ RV p such that

s∗ − st+1 = (I− Z)1/2r. This relation implies that ‖(I− Z)1/2(st+1 − s∗)‖2 can be written

as ‖(I − Z)r‖2 = rT (I − Z)2r. The eigenvalues of the matrix (I − Z)2 are the squared of

eigenvalues of the matrix (I−Z). Thus, we can write rT (I−Z)2r ≥ λ̂min(I− Z)rT (I−Z)r,

where λ̂min(I− Z) is the smallest non-zero eigenvalue of the matrix I − Z. Observing this

inequality and the definition s∗ − st+1 = (I− Z)1/2r we can write∥∥∥(I− Z)1/2(st+1 − s∗)
∥∥∥2 ≥ λ̂min(I− Z)‖st+1 − s∗‖2. (6.50)

Moreover, from the inequality in (6.34) we obtain that
∥∥(I− Z)1/2(st+1 − s∗)

∥∥2 is bounded

above by

‖(I− Z)1/2st+1 − s∗‖2 ≤ βε2

(β − 1)
‖wt+1 −wt‖2 + β‖∇f(wt+1)−∇f(w∗)‖2, (6.51)

180

where β > 1 is a tunable free parameter. Replacing the norm ‖(I − Z)1/2st+1 − s∗‖2 in

(6.51) by its lower bound in (6.50) follows that ‖st+1 − s∗‖2 is bounded above by

‖st+1 − s∗‖2 ≤ βε2

(β − 1)λ̂min(I− Z)
‖wt+1 −wt‖2 +

β

λ̂min(I− Z)
‖∇f(wt+1)−∇f(w∗)‖2.

(6.52)

Considering the result in (6.52) to satisfy the inequality in (6.49), which is a sufficient

condition for the claim in (6.41), it remains to show that

2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2 + αε‖wt+1 −wt‖2 + ‖wt+1 −w∗‖22αmM

m+M
I+α2(I−Z)

≥ δε2β/(β − 1)

λ̂min(I− Z)
‖wt+1 −wt‖2 + δεα‖wt+1 −w∗‖2 +

δβ

λ̂min(I− Z)
‖∇f(wt+1)−∇f(w∗)‖2.

(6.53)

To enable (6.53) and consequently enabling (6.49), we only need to verify that there exists

δ > 0 such that

2αmM

m+M
I + α2(I− Z) < δαεI,

2α

m+M
≥ δβ

λ̂min(I− Z)
, αε ≥ δβε2

(β − 1)λ̂min(I− Z)
.

(6.54)

The conditions in (6.54) are satisfied if the constant δ is chosen as in (6.42). Therefore, for

δ in (6.42) the claim in (6.49) holds, which implies the claim in (6.41). �

The result in Theorem 9 shows linear convergence of the sequence ‖ut−u∗‖2G generated

by PMM where the factor of linear convergence is 1/(1 + δ). Observe that larger δ implies

smaller linear convergence factor 1/(1+δ) and faster convergence. Notice that all the terms

in the minimization in (6.42) are positive and therefore the constant δ is strictly larger than

0. In addition, the result in Theorem 9 holds for any feasible set of parameters β > 1,

ε > 0, and α > 0; however, maximizing the parameter δ requires properly choosing the set

of parameters β, ε, and α.

Observe that when the first positive eigenvalue λ̂min(I−Z) of the matrix I−Z , which

is the second smallest eigenvalue of I−Z, is small the constant δ becomes close to zero and

convergence becomes slow. Notice that small λ̂min(I−Z) shows that the graph is not highly

connected. This observation matches the intuition that when the graph has less edges the

speed of convergence is slower. Additionally, the upper bounds in (6.42) show that when

the condition number M/m of the global objective function f is large, δ becomes small and

the linear convergence becomes slow.

181

Although PMM enjoys a fast linear convergence rate, each iteration of PMM requires

infinite rounds of communications which make it infeasible. In the following section, we

study convergence properties of ESOM as a second order approximation of PMM that is

implementable in decentralized settings.

6.4.2 Convergence of ESOM

We proceed to show that the sequence of iterates wt generated by ESOM converges linearly

to the optimal argument w∗ = [w̃∗; . . . ; w̃∗]. To do so, we first prove linear convergence

of the Lyapunov function ‖ut − u∗‖2G as defined in (6.40). Moreover, we show that by

increasing the Hessian inverse approximation accuracy, ESOM factor of linear convergence

can be arbitrary close to the linear convergence factor of PMM in Theorem 9.

Notice that ESOM is built on a second order approximation of the proximal augmented

Lagrangian used in the update of PMM. To guarantee that the second order approximation

suggested in ESOM is feasible, the local objective functions fv are required to be twice

differentiable as assumed in Assumption 12. The twice differentiability of the local ob-

jective functions fv implies that the aggregate function f , which is the sum of a set of

twice differentiable functions, is also twice differentiable. This observation shows that the

global objective function ∇2f(w) is definable. Considering this observation, we prove some

preliminary results for the iterates generated by ESOM in the following lemma.

Lemma 19 Consider the updates of ESOM in (6.14) and (6.15). Recall the definitions

of the augmented Lagrangian Hessian Ht in (6.9) and the approximate Hessian inverse

H̃−1t (K) in (6.13). If Assumption 12 holds, then the primal and dual iterates generated by

ESOM satisfy

st+1 − st − α(I− Z)1/2(wt+1 −w∗) = 0. (6.55)

Moreover, we can show that

∇f(wt+1)−∇f(w∗) + (I− Z)1/2(st+1 − s∗) + ε(wt+1 −wt) + et = 0, (6.56)

where the error vector et is defined as

et := ∇f(wt) +∇2f(wt)(wt+1 −wt)−∇f(wt+1) +
(
H̃t(K)−Ht

)
(wt+1 −wt). (6.57)

Proof: Consider the primal update of ESOM in (6.14). By regrouping the terms we obtain

∇f(wt) + (I− Z)1/2st + α(I− Z)wt + H̃t(wt+1 −wt) = 0, (6.58)

182

where H̃t is the inverse of the Hessian inverse approximation H̃−1t (K). Recall the definition

of the exact Hessian Ht in (6.9). Adding and subtracting the term Ht(wt+1 −wt) to the

expression in (6.58) yields

∇f(wt) +∇2f(wt)(wt+1 −wt) + (I− Z)1/2st (6.59)

+ α(I− Z̃)wt+1 + ε(wt+1 −wt) + (H̃t −Ht)(wt+1 −wt) = 0.

Now using the definition of the error vector et in (6.57) we can rewrite (6.59) as

∇f(wt+1) + (I− Z)1/2st + α(I− Z̃)wt+1 + ε(wt+1 −wt) + et = 0. (6.60)

Notice that the result in (6.60) is identical to the expression for PMM in (6.35) except for

the error term et. To prove the claim in (6.56) from (6.60), it remains to follow the steps

in (6.36)-(6.39). �

The results in Theorem 19 show the relationships between the primal w and dual s

iterates generated by ESOM and the optimal arguments w∗ and s∗. The first result in

(6.55) is identical to the convergence property of PMM in (6.33), while the second result in

(6.56) differs from (6.34) in having the extra summand et. The vector et can be interpreted

as the error of second order approximation for ESOM at step t. To be more precise, the

optimality condition of the primal update of PMM is given by∇f(wt+1)+(I−Z)1/2st+α(I−
Z)wt+1 + ε(wt+1−wt) = 0 as shown in (6.34). Notice that the second order approximation

of this condition is equivalent to∇f(wt)+∇2f(wt)(wt+1−wt)+(I−Z)1/2st+α(I−Z)wt+1+

ε(wt+1 −wt) = 0. However, the exact Hessian inverse H−1t = (∇2f(wt) + εI +α(I− Z̃))−1

cannot be computed in a distributed manner to solve the optimality condition. Thus, it is

approximated by the approximate Hessian inverse matrix H̃−1t (K) as introduced in (6.13).

This shows that the approximate optimality condition in ESOM is ∇f(wt) + (I−Z)1/2st +

α(I− Z̃)wt + H̃t(wt+1 −wt) = 0. Hence, the difference between the optimality conditions

of PMM and ESOM is et = ∇f(wt)−∇f(wt+1) +α(I− Z̃)(wt−wt+1) + H̃t(wt+1−wt)−
ε(wt+1 − wt). By adding and subtracting the term Ht(wt+1 − wt), the definition of the

error vector et in (6.57) follows.

The observation that the vector et characterizes the error of second order approximation

in ESOM, motivates analyzing an upper bound for the error vector norm ‖et‖. To prove

that the norm ‖et‖ is bounded above we assume the following condition is satisfied.

Assumption 13 The global objective function Hessian ∇2f(w) is Lipschitz continuous

with constant L, i.e.,

‖∇2f(w)−∇2f(w̃)‖ ≤ L‖w − w̃‖. (6.61)

The conditions imposed by Assumption 13 are customary in the analysis of second-order

183

methods; see, e.g., [77]. In the following lemma, we use the assumption in (6.61) to prove

an upper bound for the error norm ‖et‖ in terms of ‖wt+1 −wt‖.

Lemma 20 Consider ESOM as introduced in (6.8)-(6.15) and recall the definition of the

error vector et in (6.57). Further, define c > 0 as a lower bound for the local weights wvv.

If Assumptions 12 and 13 hold, then the error vector norm ‖et‖ is bounded above by

‖et‖ ≤ Γt‖wt+1 −wt‖, (6.62)

where Γt is defined as

Γt :=min

{
2M,

L

2
‖wt+1 −wt‖

}
+ (M + ε+ 2α(1−c)) ρK+1, (6.63)

and ρ := 2α(1− c)/(2α(1− c) +m+ ε).

Proof : To prove the result in (6.62), we first use the result in Proposition 2 of [77]. It

shows that when the eigenvalues of the Hessian ∇2f(w) are bounded above by M and the

Hessian is Lipschitz continuous with constant L we can write

‖∇f(wt) +∇2f(wt)(wt+1 −wt)−∇f(wt+1)‖ ≤ ‖wt+1 −wt‖min

{
2M,

L

2
‖wt+1 −wt‖

}
.

(6.64)

Considering the result in (6.64), it remains to find an upper bound for the second term of

the error vector et which is (H̃t(K)−Ht)(wt+1 −wt). To do so, we develop first an upper

bound for the norm ‖H̃t(K) −Ht‖. Notice that by factoring the term H̃t(K)1/2 from left

and right, and using the Cauchy-Schwarz inequality we obtain that∥∥∥H̃t(K)−Ht

∥∥∥ ≤ ∥∥∥H̃t(K)
1
2

∥∥∥2∥∥∥∥I− H̃
− 1

2
t (K)HtH̃

− 1
2

t (K)

∥∥∥∥ . (6.65)

Note that the eigenvalues of the matrices I −HtH̃
−1
t (K) and I − H̃

−1/2
t (K)HtH̃

−1/2
t (K)

are the same since these two matrices are similar. In linear algebra, two matrices A and

Ã are called similar if Ã = P−1AP for an invertible matrix P. Thus, we proceed to find

bounds for the eigenvalues of I −HtH̃
−1
t (K), to bound the norm in (6.65). According to

Lemma 3 in [64], we can simplify I−HtH̃
−1
t (K) as

I−HtH̃
−1
t (K) = (BD−1t)K+1. (6.66)

Note that the matrices B and Dt in this chapter are different from the ones in [64], but the

analyses of them are very similar. Following the proof of Proposition 2 in [64], we define

184

D̂ := 2α(I − Zd). Notice that the matrix D̂ is bock diagonal where its vth diagonal block

is 2α(1− wvv)Ip. Thus, D̂ is positive definite and invertible. Instead of studying an upper

bound for the eigenvalues of BD−1t , we try to find an upper bound for the eigenvalues of

its similar matrix D
−1/2
t BD

−1/2
t which is symmetric. We are allowed to write the product

D
−1/2
t BD

−1/2
t as

D
− 1

2
t BD

− 1
2

t =

(
D
− 1

2
t D̂

1
2

)(
D̂−

1
2 BD̂−1/2

)(
D̂

1
2 D
− 1

2
t

)
. (6.67)

The next step is to find an upper bound for the eigenvalues of BD̂−1 in (6.67). Based on

the definitions of matrices B and D̂, the product BD̂−1 is given by

BD̂−1 = (I− 2Zd + Z) (2(I− Zd))
−1. (6.68)

According to the result in Proposition 2 of [64], the eigenvalues of the matrix (I − 2Zd +

Z)(2(I − Zd))
−1 are uniformly bounded by 0 and 1. Thus, we obtain that the eigenvalues

of D̂−1/2BD̂−1/2 are bounded by 0 and 1 and we can write

‖D̂−
1
2 BD̂−

1
2 ‖ ≤ 1. (6.69)

According to the definitions of the matrices D̂ and Dt, the product D̂1/2D
−1/2
t is block

diagonal and the vth diagonal block is given by

[
D̂D−1t

]
vv

=

(
∇2fv(wv,t) + εI

2α(1− wvv)
+ I

)−1
. (6.70)

Based on Assumption 12, the eigenvalues of the local Hessians ∇2fv(wv) are bounded by

m and M . Further, notice that the diagonal elements wvv of the weight matrix W are

bounded below by c. Considering these bounds, we can show that the eigenvalues of the

matrices (1/2α(1− wvv))(∇2fv(wv,t) + εI) + I for all v = 1, . . . , V are bounded below by[
m+ ε

2α(1− c)
+ 1

]
I � ∇

2fv(wv,t) + εI

2α(1− wvv)
+ I. (6.71)

By considering the bounds in (6.71), the eigenvalues of each block of the matrix D̂D−1t ,

introduced in (6.70), are bounded above as(
∇2fv(wv,t) + εI

2α(1− wvv)
+ I

)−1
�
[

m+ ε

2α(1− c)
+ 1

]−1
I. (6.72)

The upper bound in (6.72) for the eigenvalues of each diagonal block of the matrix D̂D−1t

185

implies that the matrix norm ‖D̂D−1t ‖ is bounded above by

‖D̂D−1t ‖ ≤ ρ :=
2α(1− c)

2α(1− c) +m+ ε
. (6.73)

Considering the upper bounds in (6.69) and (6.73) and the relation in (6.67) we obtain that

‖D−
1
2

t BD
− 1

2
t ‖ ≤ ρ. (6.74)

Thus, the eigenvalues of the positive definite symmetric matrix D
−1/2
t BD

−1/2
t are bounded

by ρ. Hence, the eigenvalues of its similar matrix BD−1t are bounded by ρ. This bound

along with the result in (6.66) shows that the eigenvalues of the matrix I − HtH̃
−1
t (K)

are uniformly bounded by 0 and ρK+1. Therefore, the eigenvalues of its similar sym-

metric matrix I − H̃
−1/2
t (K)HtH̃

−1/2
t (K) are between 0 and ρK which implies that ‖I −

H̃
−1/2
t (K)HtH̃

−1/2
t (K)‖ ≤ ρK+1. This result in conjunction with the inequality in (6.65)

yields ∥∥∥H̃t(K)−Ht

∥∥∥ ≤ ρK+1
∥∥∥H̃t(K)

1
2

∥∥∥2 . (6.75)

To bound the norm ‖H̃t(K)‖, we first find a lower bound for the eigenvalues of the

approximate Hessian inverse H̃−1t (K). Notice that according to the definition of the ap-

proximate Hessian inverse in (6.13), we can write

H̃−1t (K) := D−1t + D−1t

K∑
u=1

(D
−1/2
t BD

−1/2
t)u D

−1/2
t . (6.76)

Notice that according to the result in Proposition 1 of [64], the matrix (I− 2Zd + Z) is

positive semidefinite which implies that B = α (I− 2Zd + Z) is also positive semidefinite.

Thus, all the K summands in (6.76) are positive semidefinite and as a result we obtain that

D−1t � H̃−1t (K). (6.77)

The eigenvalues of I − Zd are bounded above by 1 − c, since all the local weights wvv

are larger than c. This observation in conjunction with the strong convexity of the global

objective function f implies that the eigenvalues of Dt = ∇2f(wt) + εI + 2α(I − Zd) are

bounded above by M + ε+ 2α(1− c). Therefore, the eigenvalues of D−1t are bounded below

as
1

M + ε+ 2α(1− c)
I � D−1t . (6.78)

The results in (6.77) and (6.78) imply that the eigenvalues of the approximate Hessian

inverse H̃−1t (K) are greater than 1/(M + ε+ 2α(1− c)). Therefore, the eigenvalues of the

186

positive definite matrix H̃t(K) are smaller than M + ε+ 2α(1− c) and we can write∥∥∥H̃t(K)
∥∥∥ ≤M + ε+ 2α(1− c). (6.79)

Considering the inequalities in (6.75) and (6.79) and using the Cauchy-Schwarz inequality

we can show that the norm ‖(H̃t(K)−Ht)(wt+1 −wt)‖ is bounded above by∥∥∥(H̃t(K)−Ht)(wt+1 −wt)
∥∥∥ ≤ (M + ε+ 2α(1− c)) ρK+1‖wt+1 −wt‖. (6.80)

Observing the inequalities in (6.64) and (6.80) and using the triangle inequality the claim

in (6.62) follows. �

First, note that the lower bound c > 0 on the local weights wvv is implied from the fact

that all the local weights are positive. In particular, we can define the lower bound c as

c := minv wvv. The result in (6.62) shows that the error of second order approximation in

ESOM vanishes as the sequence of iterates wt approaches the optimal argument w∗. We

will show in Theorem 10 that ‖wt −w∗‖ converges to zero which implies that the limit of

the sequence ‖wt+1 −wt‖ is zero.

To understand the definition of Γt in (6.63), we have to decompose the error vector et

in (6.57) into two parts. The first part is ∇f(wt) +∇2f(wt)(wt+1−wt)−∇f(wt+1) which

comes from the fact that ESOM minimizes a second order approximation of the proximal

augmented Lagrangian instead of the exact proximal augmented Lagrangian. This term

can be bounded by min{2M, (L/2)‖wt+1 −wt‖}‖wt+1 −wt‖ as shown in Lemma 20. The

second part of the error vector et is (H̃t(K) − Ht)(wt+1 − wt) which shows the error

of Hessian inverse approximation. Notice that computation of the exact Hessian inverse

H−1t is not possible and ESOM approximates the exact Hessian by the approximation

H̃−1t (K). According to the results in [64], the difference ‖H̃t(K)−Ht‖ can upper bounded

by (M + ε + 2(1− c)/α)ρK+1 which justifies the second term of the expression for Γt in

(6.63). In the following theorem, we use the result in Lemma 20 to show that the sequence

of Lyapunov functions ‖ut − u∗‖2G generated by ESOM converges to zero linearly.

Theorem 10 Consider ESOM as introduced in (6.8)-(6.15). Consider β > 1 and φ > 1 as

arbitrary constants that are strictly larger than 1, and ζ as a positive constant that is chosen

from the interval ζ ∈ ((m + M)/2mM, ε/Γ2
t). Further, recall the definitions of the vector

u and matrix G in (6.40) and consider λ̂min(I− Z) as the smallest non-zero eigenvalue of

the matrix I−Z. If Assumptions 12 and 13 hold, then the sequence of Lyapunov functions

‖ut − u∗‖2G generated by ESOM satisfies

‖ut+1 − u∗‖2G ≤ 1

1 + δ′t
‖ut − u∗‖2G. (6.81)

187

where the sequence δ′t is given by

δ′t = min

{
2αλ̂min(I− Z)

φβ(m+M)
,

[
2mM

ε(m+M)
− 1

ζε

]
, (6.82)

(β − 1)αλ̂min(I− Z)

βε

[
1− ζΓ2

t

ε

][
1 +

φΓ2
t (β − 1)

(φ− 1)ε2

]−1}
.

Proof: Notice that in proving the claim in (6.81) we use some of the steps in the proof of

Theorem 9 to avoid rewriting similar equations. First, note that according to the result in

(6.56), the difference ∇f(wt+1)−∇f(w∗) for the ESOM method can be written as

∇f(wt+1)−∇f(w∗) = −(I− Z)1/2(st+1 − s∗)− ε(wt+1 −wt)− et. (6.83)

Now recall the the inequality in (6.43) and substitute the gradients difference ∇f(wt+1)−
∇f(w∗) in the inner product (wt+1 −w∗)T (∇f(wt+1)−∇f(w∗)) by the expression in the

right hand side of (6.83). Applying this substitution and multiplying both sides of the

implied inequality by 2α follows

2αmM

m+M
‖wt+1 −w∗‖2 +

2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2

≤ −2αε(wt+1 −w∗)T (wt+1 −wt)− 2α(wt+1 −w∗)Tet

− 2α(wt+1 −w∗)T (I− Z)1/2(st+1 − s∗). (6.84)

By following the steps in (6.44)-(6.48), the result in (6.84) leads to a lower bound for

‖ut − u∗‖2G − ‖ut+1 − u∗‖2G as

‖ut − u∗‖2G − ‖ut+1 − u∗‖2G ≥
2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2 + αε‖wt+1 −wt‖2

+ ‖wt+1 −w∗‖22αmM
m+M

I+α2(I−Z)
+ 2α(wt+1 −w∗)Tet. (6.85)

Note that the inner product 2(wt+1 −w∗)Tet is bounded below by −(1/ζ)‖wt+1 −w∗‖2 −
ζ‖et‖2 for any positive constant ζ > 0. Thus, the lower bound in (6.85) can be updated as

‖ut − u∗‖2G − ‖ut+1 − u∗‖2G ≥ ‖wt+1 −w∗‖2
(2αmM
m+M

−α
ζ
)I+α2(I−Z)

+ αε‖wt+1 −wt‖2

+
2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2 − αζ‖et‖2. (6.86)

To establish (6.81), we need to show that the difference ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G is

bounded below by δ′t‖ut+1 − u∗‖2G. To do so, we show that the lower bound for ‖ut −

188

u∗‖2G − ‖ut+1 − u∗‖2G in (6.86) is larger than δ′t‖ut+1 − u∗‖2G, i.e.,

δ′t‖st+1 − s∗‖2 + δ′tαε‖wt+1 −w∗‖2 ≤ ‖wt+1 −w∗‖2
(2αmM
m+M

−α
ζ
)I+α2(I−Z)

+ αε‖wt+1 −wt‖2

+
2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2 − αζ‖et‖2.

(6.87)

We proceed to find an upper bound for the squared norm ‖st+1 − s∗‖2 in terms of the

summands in the right hand side of (6.87). Consider the relation (6.60) as well as the fact

that st+1 and s∗ both lie in the column space of (I− Z)1/2. It follows that ‖st+1 − s∗‖2 is

bounded above by

‖st+1 − s∗‖2 ≤ βε2

(β − 1)λ̂
‖wt+1 −wt‖2 +

βφ

(φ− 1)λ̂
‖et‖2 +

φβ

λ̂
‖∇f(wt+1)−∇f(w∗)‖2,

(6.88)

where we have used λ̂ instead of λ̂min(I−Z) to simplify notation. By substituting the upper

bound in (6.88) for the squared norm ‖st+1− s∗‖2 in (6.87) we obtain a sufficient condition

for the result in (6.87) which is given by

δ′tαε‖wt+1 −w∗‖2 +
δ′βε2

(β − 1)λ̂
‖wt+1 −wt‖2 +

δ′tφβ

λ̂
‖∇f(wt+1)−∇f(w∗)‖2 +

δ′tβφα
2‖et‖2

(φ− 1)λ̂

≤ ‖wt+1 −w∗‖2
(2αmM
m+M

−α
ζ
)I+α2(I−Z)

+ αε‖wt+1 −wt‖2

+
2α

m+M
‖∇f(wt+1)−∇f(w∗)‖2 − αζ‖et‖2. (6.89)

Substitute the squared norm ‖et‖2 terms in (6.89) by the upper bound in (6.62). It follows

from this substitution and regrouping the terms that

0 ≤ ‖wt+1 −w∗‖2
(2αmM
m+M

−α
ζ
−δ′tαε)I+α2(I−Z)

+

(
2α

m+M
− δ′tφβ

λ̂

)
‖∇f(wt+1)−∇f(w∗)‖2

+

[
αε− δ′tβε

2

(β − 1)λ̂
− δ′tβφΓ2

(φ− 1)λ̂
− αζΓ2

]
‖wt+1 −wt‖2. (6.90)

Notice that if the inequality in (6.90) is satisfied, then the result in (6.89) holds which implies

the result in (6.87) and the linear convergence claim in (6.81). To satisfy the inequality in

(6.90) we need to make sure that the coefficients of the terms ‖wt+1−wt‖2, ‖wt+1−w∗‖2,
and ‖∇f(wt+1) − ∇f(w∗)‖2 are non-negative. Therefore, the inequality in (6.90) holds if

189

δ′t satisfies

2αmM

m+M
− α

ζ
− δ′tαε ≥ 0,

2α

m+M
≥ δ′tφβ

λ̂
, αε ≥ δ′tβε

2

(β − 1)λ̂
+

δ′tβφΓ2

(φ− 1)λ̂
+ αζΓ2. (6.91)

The conditions in (6.91) are satisfied if δ′t is chosen as in (6.82). Thus, δ′t in (6.82) satisfies

the conditions in (6.91) and the claim in (6.81) holds. �

The result in Theorem 10 shows linear convergence of the sequence ‖ut−u∗‖2G generated

by ESOM where the factor of linear convergence is 1/(1 + δ′). Notice that the positive

constant ζ is chosen from the interval ((m+M)/2mM, ε/Γ2
t). This interval is non-empty if

and only if the proximal parameter ε satisfies the condition ε > Γ2
t (m+M)/2mM . However,

Γt also depends on ε which makes it unclear if there always exists a choice of ε that satisfies

the inequality ε > Γ2
t (m+M)/2mM . In the following proposition, we prove that the interval

((m+M)/2mM, ε/Γ2
t) is non-empty for a proper choice of ε.

Proposition 8 Consider ESOM as introduced in (6.8)-(6.15). Recall the definition of Γt

in (6.63). If the constant ε is chosen such that

ε >
m+M

2mM

(
2M + 2α(1− c)M

m

)2

, (6.92)

then the inequality ε > Γ2
t (m+M)/2mM holds and the set ((m+M)/2mM, ε/Γ2

t) is non-

empty.

Proof: Note that the condition ε > Γ2
t (m+M)/2mM is equivalent to

Γt <

√
2εmM√
m+M

. (6.93)

According to the definition of Γt, the expression ρ := 2α(1− c)/(2α(1− c) +m+ ε), and

the fact that 2M ≥ min
{

2M, L2 ‖wt+1 −wt‖
}

, we can write

Γt ≤ 2M + (M + ε+ 2α(1− c))
(

2α(1− c)
2α(1− c) +m+ ε

)K+1

. (6.94)

The results in (6.93) and (6.94) show that the inequality ε > Γ2
t (m+M)/2mM holds if the

following inequality holds,

2M + (M + ε+ 2α(1− c))
(

2α(1− c)
2α(1− c) +m+ ε

)K+1

<

√
2εmM√
m+M

. (6.95)

Thus, if the condition in (6.95) holds then we have ε > Γ2
t (m + M)/2mM . Note that

190

(2α(1− c)/(2α(1− c) +m+ ε))K+1 ≤ 2α(1− c)/(2α(1− c) +m+ ε) for any K ≥ 0. Thus,

if the following inequality is satisfied the inequality in (6.95) is also valid,

2M + (M + ε+ 2α(1− c))
[

2α(1− c)
2α(1− c) +m+ ε

]
<

√
2εmM√
m+M

. (6.96)

Considering that m < M and 2α(1 − c) + ε > 0, we obtain that that (M + ε + 2α(1 −
c))/(m + ε + 2α(1 − c)) ≤ M/m. Replacing (M + ε + 2α(1 − c))/(m + ε + 2α(1 − c)) in

(6.96) by the upper bound M/m implies that

2M + 2α(1− c)M
m

<

√
2εmM√
m+M

. (6.97)

Note that if the condition in (6.97) holds then the condition in (6.96) is satisfied. The result

in (6.97) shows that if ε satisfies

ε >
m+M

2mM

(
2M + 2α(1− c)M

m

)2

, (6.98)

then the inequality in (6.97) and consequently the inequalities in (6.96) and (6.95) hold true

which follows that the condition ε > Γ2
t (m+M)/2mM is satisfied. �

It follows from the result in Theorem 10 that the sequence of primal variables wt con-

verges to the optimal argument w∗ defined in (6.4).

Corollary 1 Under the assumptions in Theorem 10, the sequence of squared errors ‖wt −
w∗‖2 generated by ESOM converges to zero at a linear rate, i.e.,

‖wt −w∗‖2 ≤
(

1

1 + mint{δ′t}

)t ‖u0 − u∗‖2G
αε

. (6.99)

Proof: According to the definition of the sequence ut and matrix G, we can write ‖ut −
u∗‖2G = αε‖wt − w∗‖2 + ‖st − s∗‖2 which implies that ‖wt − w∗‖2 ≤ (1/αε)‖ut − u∗‖2G.

Considering this result and linear convergence of the sequence ‖ut − u∗‖2G in (6.81), the

claim in (6.99) follows. �

6.4.3 Convergence rates comparison

The expression for δ′t in (6.82) verifies the intuition that the convergence rate of ESOM is

slower than PMM. This is true, since the upper bounds for δ in PMM are larger than their

equivalent upper bounds for δ′t in ESOM. We obtain that δ′t is smaller than δ which implies

that the linear convergence factor 1/(1 + δ) of PMM is smaller than 1/(1 + δ′t) for ESOM.

191

Therefore, for all steps t, the linear convergence of PMM is faster than ESOM. Although,

linear convergence factor of ESOM 1/(1 + δ′t) is larger than 1/(1 + δ) for PMM, as time

passes the gap between these two constants becomes smaller. In particular, after a number

of iterations (L/2)‖wt+1 −wt‖ becomes smaller than 2M , and Γt can be simplified as

Γt ≤
L

2
‖wt+1 −wt‖+ (2α(1− c) +M + ε) ρK+1. (6.100)

The term (L/2)‖wt+1−wt‖ eventually approaches zero, while the second term (2(1− c)/α+

M+ε)ρK+1 is constant. Although, the second term is not approaching zero, by proper choice

of ρ and K, this term can become arbitrary close to zero. Notice that when Γt approaches

zero, if we set ζ = 1/Γt the upper bounds in (6.82) for δ′t approach the upper bounds for δ

of PMM in (6.42).

Therefore, as time passes Γt becomes smaller, and the factor of linear convergence for

ESOM 1/(1 + δ′t) becomes closer to the linear convergence factor of PMM 1/(1 + δ).

6.5 Numerical experiments

In this section, we compare the performances of ESOM, EXTRA, Decentralized Quadrati-

cally approximated ADMM (DQM), and Network Newton (NN). First, we consider a linear

least squares problem and then we use the mentioned methods to solve a logistic regression

problem.

6.5.1 Decentralized linear least squares

Consider a decentralized linear least squares problem where each agent v ∈ {1, · · · , V } holds

its private measurement equation, yv = Mvw̃ + νv, where yv ∈ Rmv and Mv ∈ Rmv×p are

measured data, w̃ ∈ Rp is the unknown variable, and νv ∈ Rmv is some unknown noise.

The decentralized linear least squares estimates w̃ by solving the optimization problem

w̃∗ = argmin
w̃

V∑
v=1

‖Mvw̃ − yv‖22. (6.101)

The network in this experiment is randomly generated with connectivity ratio r = 3/V ,

where r is defined as the number of edges divided by the number of all possible ones,

V (V − 1)/2. We set V = 20, p = 5, and mv = 5 for all v = 1, . . . , V . The vectors yv and

matrices Mv as well as the noise vectors ν(i), for all i are generated following the standard

normal distribution. We precondition the aggregated data matrices Mv so that the condition

number of the problem is 10. The decision variables wv are initialized as wv,0 = 0 for all

nodes v = 1, . . . , V and the initial distance to the optimal is ‖wv,0 − w̃∗‖ = 100.

192

0 100 200 300 400 500 600 700 800 900

Number of iterations t

10
-8

10
-6

10
-4

10
-2

10
0

R
e
la
t
iv
e
e
r
r
o
r

NN-0

NN-1

NN-2

EXTRA

ESOM-0

ESOM-1

ESOM-2

PMM

Figure 6.1: Relative error ‖wt −w∗‖/‖w0 −w∗‖ of EXTRA, ESOM-K, NN-K, and PMM versus
number of iterations for the least squares problem. Using a larger K for ESOM-K leads to faster
convergence and makes the convergence path closer to the one for PMM.

We use Metropolis constant edge weight matrix as the mixing matrix W in all experi-

ments. We run PMM, EXTRA, and ESOM-K with fixed hand-optimized stepsizes α. The

best choices of α for ESOM-0, ESOM-1, and ESOM-2 are α = 0.03, α = 0.04, and α = 0.05,

respectively. The stepsize α = 0.1 leads to the best performance for EXTRA which is con-

sidered in the numerical experiments. Notice that for variations of NN-K, there is no

optimal choice of stepsize – smaller stepsize leads to more accurate but slow convergence,

while large stepsize accelerates the convergence but to a less accurate neighborhood of the

optimal solution. Therefore, for NN-0, NN-1, and NN-2 we set α = 0.001, α = 0.008, and

α = 0.02, respectively. Although the PMM algorithm is not implementable in a decentral-

ized fashion, we use its convergence path – which is generated in a centralized manner – as

our benchmark. The choice of stepsize for PMM is α = 2.

Fig. 6.1 illustrates the relative error ‖wt −w∗‖/‖w0 −w∗‖ versus the number of it-

erations. Notice that the vector wt is the concatenation of the local vectors wv,t and the

optimal vector w∗ is defined as w∗ = [w̃∗; . . . ; w̃∗] ∈ RV p. Observe that all the variations

of NN-K fail to converge to the optimal argument and they converge linearly to a neigh-

borhood of the optimal solution w∗. Among the decentralized algorithms with exact linear

convergence rate, EXTRA has the worst performance and all the variations of ESOM-K

outperform EXTRA. Recall that the problem condition number is 10 in our experiment

and the difference between EXTRA and ESOM-K is more significant for problems with

larger condition numbers. Further, choosing a larger value of K for ESOM-K leads to

faster convergence and as we increase K the convergence path of ESOM-K approaches the

convergence path of PMM.

EXTRA requires one round of communications per iteration, while NN-K and ESOM-

193

0 100 200 300 400 500 600 700 800 900

Rounds of communications

10
-8

10
-6

10
-4

10
-2

10
0

R
e
la
t
iv
e
e
r
r
o
r

NN-0

NN-1

NN-2

EXTRA

ESOM-2

ESOM-1

ESOM-0

Figure 6.2: Relative error ‖wt −w∗‖/‖w0 −w∗‖ of EXTRA, ESOM-K, NN-K, and PMM versus
rounds of communications with neighboring nodes for the least squares problem. ESOM-0 is the
most efficient algorithm in terms of communication cost among all the methods.

K require K + 1 rounds of local communications per iteration. Thus, convergence paths

of these methods in terms of rounds of communications might be different from the ones

in Fig. 6.1. The convergence paths of NN, ESOM, EXTRA in terms of rounds of local

communications are shown in Fig. 6.2. In this plot we ignore PMM, since it requires infinite

rounds of communications per iteration. The main difference between Figs. 6.1 and 6.2 is

in the performances of ESOM-0, ESOM-1, and ESOM-2. All of the variations of ESOM

outperform EXTRA in terms of rounds of communications, while the best performance

belongs to ESOM-0. This observation shows that increasing the approximation level K

does not necessary improve the performance of ESOM-K in terms of communication cost.

6.5.2 Decentralized logistic regression

We consider the application of ESOM for solving a logistic regression problem in a form

w̃∗ := argmin
w̃∈Rp

λ

2
‖w̃‖2 +

V∑
v=1

qv∑
i=1

ln
(
1 + exp

(
−(xTviw̃)yvi

))
, (6.102)

where every agent v has access to qv training samples (xvi, yvi) ∈ Rp × {−1,+1}, i =

1, · · · , qv, including explanatory/feature variables xvi and binary outputs/outcomes yvi.

The regularization term (λ/2)‖w̃‖2 is added to avoid overfitting where λ > 0. Hence, in

the decentralized setting the local objective function fv of node v is given by

fv(w̃) =
λ

2V
‖w̃‖2 +

qv∑
i=1

ln
(
1 + exp

(
−(xTviw̃)yvi

))
. (6.103)

194

0 500 1000 1500 2000

Number of iterations t

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
la
t
iv
e
e
r
r
o
r

EXTRA

DQM

ESOM-0

ESOM-1

ESOM-2

Figure 6.3: Relative error ‖wt −w∗‖/‖w0 −w∗‖ of EXTRA, ESOM-K, and DQM versus number
of iterations for the logistic regression problem. EXTRA is significantly slower than the ESOM
methods. The proposed methods (ESOM-K) outperform DQM.

0 500 1000 1500 2000

Rounds of communications

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
la
t
iv
e
e
r
r
o
r

EXTRA

DQM

ESOM-0

ESOM-1

ESOM-2

Figure 6.4: Relative error ‖wt −w∗‖/‖w0 −w∗‖ of EXTRA, ESOM-K, and DQM versus rounds
of communications for the logistic regression problem. ESOM-0 has the best performance in terms
of rounds of communications and it outperforms DQM.

The settings are as follows. The connected network is randomly generated with V = 20

agents and connectivity ratio r = 3/V . Each agent holds 3 samples, i.e., qv = 3, for all v.

The dimension of sample vectors xvi is p = 3. The samples are randomly generated, and the

optimal logistic classifier w̃∗ is pre-computed through centralized adaptive gradient method.

We use Metropolis constant edge weight matrix as the mixing matrix W in ESOM-K. The

stepsize α for ESOM-0, ESOM-1, ESOM-2, EXTRA, and DQM are hand-optimized and

the best of each is used for the comparison.

Fig. 6.3 and Fig 6.4 showcase the convergence paths of ESOM-0, ESOM-1, ESOM-2,

EXTRA, and DQM versus number of iterations and rounds of communications, respectively.

The results match the observations for the least squares problem in Fig. 6.1 and Fig. 6.2.

Different versions of ESOM-K converge faster than EXTRA both in terms of communication

195

cost and number of iterations. Moreover, ESOM-2 converges faster than ESOM-1 and

ESOM-0 in terms of number of iterations, while ESOM-0 has the best performance in terms

of communication cost for achieving a target accuracy. Comparing the convergence paths

of ESOM-0, ESOM-1, and ESOM-2 with DQM shows that number of iterations required

for the convergence of DQM is larger than the required iterations for ESOM-0, ESOM-1,

and ESOM-2. In terms of communication cost, DQM has a better performance relative to

ESOM-1 and ESOM-2, while ESOM-0 is the most efficient algorithm.

196

Chapter 7

Decentralized stochastic

optimization via gradient averaging

7.1 Context and background

In Chapters 5 and 6, we studied methods for solving ERM problems via decentralized opti-

mization, and, in particular, focused on the use of Network Newton and ESOM algorithms.

These two methods alongside with the other decentralized optimization methods mentioned

in previous chapters build on the fact that local gradients are computationally affordable

for nodes in the network. In this chapter, we concentrate on the cases that the number of

assigned samples to each node is very large and computation of local gradients is beyond

the computational capacity of nodes.

To explain this scenario, consider a training set of size N where the samples are dis-

tributed among nodes a connected network of size V . Further, consider a variable w ∈ Rp

and a local objective function fv : Rp → R associated to node v. The local objective func-

tion fv(w) is defined as the average of qv local instantaneous functions fv,i(w) that can be

individually evaluated at node v. Agents cooperate to solve the global optimization problem

w̃∗ := argmin
w

V∑
v=1

fv(w) = argmin
w

V∑
v=1

1

qv

qv∑
i=1

fv,i(w). (7.1)

The formulation in (7.1) models a training set with a total of N =
∑V

v=1 qv training samples

that are distributed among the V agents for parallel processing conducive to the determi-

nation of the optimal classifier w̃∗ [6,26,118]. Although we make no formal assumption, in

cases of practical importance the total number of training samples
∑V

v=1 qv is very large,

and, therefore, the number of elements qv available at a specific node is large. Our interest

here is in solving (7.1) with a method that has the following three properties:

197

• Decentralized; nodes operate on their local functions and communicate with neighbors

only.

• Stochastic; nodes determine a descent direction by evaluating only one out of the qv

functions fv,i at each iteration.

• Linear convergence rate; the expected distance to the optimum is scaled by a subunit

factor at each iteration.

Decentralized optimization is relatively mature and various methods are known with

complementary advantages. These methods include decentralized gradient descent (DGD)

[44, 80, 126], network Newton [64, 65], decentralized dual averaging [33, 119], the exact first

order algorithm (EXTRA) [111], as well as the alternating direction method of multipliers

(ADMM) [19, 41, 103, 112] and its linearized variants [53, 54, 75]. The ADMM, its variants,

and EXTRA converge linearly to the optimal argument but DGD, network Newton, and

decentralized dual averaging have sublinear convergence rates. Of particular importance to

this chapter, is the fact that DGD has (inexact) linear convergence to a neighborhood of the

optimal argument when it uses constant stepsizes. It can achieve exact convergence by using

diminishing stepsizes, but the convergence rate degrades to sublinear. This lack of linear

convergence is solved by EXTRA through the use of iterations that rely on information of

two consecutive steps [111].

All of the algorithms mentioned above require the computationally costly evaluation of

the local gradients ∇fv(w) = (1/qv)
∑qv

i=1∇fv,i(w). This cost can be avoided by stochas-

tic decentralized algorithms that reduce computational cost of iterations by substituting

all local gradients with their stochastic approximations. This reduces the computational

cost per iteration but results in sublinear convergences rates of order O(1/t) even if the

corresponding deterministic algorithm exhibits linear convergence. This is a drawback that

also exists in centralized stochastic optimization where linear convergence rates in expec-

tation are established by decreasing the variance of the stochastic gradient approxima-

tion [31,45,47,49,104,109]. In this chapter we build on the ideas of the stochastic averaging

gradient (SAG) algorithm [104] and its unbiased version SAGA [31]. Both of these algo-

rithms use the idea of stochastic incremental averaging gradients. At each iteration only one

of the stochastic gradients is updated and the average of all of the most recent stochastic

gradients is used for estimating the gradient.

In this chapter we aim to present the decentralized double stochastic averaging gradient

(DSA) method, a novel decentralized stochastic algorithm for solving (7.1). The method

exploits a new interpretation of EXTRA as a saddle point method and uses stochastic

averaging gradients in lieu of gradients. DSA is decentralized because it is implementable

in a network setting where nodes can communicate only with their neighbors. It is double

198

because iterations utilize the information of two consecutive iterates. It is stochastic because

the gradient of only one randomly selected function is evaluated at each iteration and it

is an averaging method because it uses an average of stochastic gradients to approximate

the local gradients. DSA is proven to converge linearly to the optimal argument w̃∗ in

expectation when the local instantaneous functions fv,i are strongly convex, with Lipschitz

continuous gradients. This is in contrast to all other decentralized stochastic methods to

solve (7.1) that converge at sublinear rates.

We begin the chapter with a discussion of DGD, EXTRA and stochastic averaging gradi-

ent. With these definitions in place we define the DSA algorithm by replacing the gradients

used in EXTRA by stochastic averaging gradients (Section 7.2). We follow with a digression

on the limit points of DGD and EXTRA iterations to explain the reason why DGD does not

achieve exact convergence but EXTRA is expected to do so (Section 7.2.1). A reinterpreta-

tion of EXTRA as a saddle point method that solves for the critical points of the augmented

Lagrangian of a constrained optimization problem equivalent to (7.1) is then introduced.

It follows from this reinterpretation that DSA is a stochastic saddle point method (Section

7.2.2). The fact that DSA is a stochastic saddle point method is the critical enabler of the

subsequent convergence analysis (Section 7.3). In particular, it is possible to guarantee that

strong convexity and gradient Lipschitz continuity of the local instantaneous functions fv,i

imply that a Lyapunov function associated with the sequence of iterates generated by DSA

converges linearly to its optimal value in expectation (Theorem 11). Linear convergence in

expectation of the local iterates to the optimal argument w̃∗ of (7.1) follows as a trivial

consequence (Corollary 2). We complement this result by showing convergence of all the

local variables to the optimal argument w̃∗ with probability 1 (Theorem 12).

The advantages of DSA relative to a group of stochastic and deterministic alternatives

in solving a logistic regression problem are then studied in numerical experiments (Section

7.4). These results demonstrate that DSA is the only decentralized stochastic algorithm

that reaches the optimal solution with a linear convergence rate. We further show that DSA

outperforms deterministic algorithms when the metric is the number of times that elements

of the training set are evaluated. The behavior of DSA for different network topologies is

also evaluated.

Notation Lowercase boldface v denotes a vector and uppercase boldface A a matrix.

For column vectors w1, . . . ,wV we use the notation w = [w1; . . . ; wV] to represent the

stack column vector w. We use ‖v‖ to denote the Euclidean norm of vector v and ‖A‖
to denote the Euclidean norm of matrix A. For a vector v and a positive definite matrix

A, the A-weighted norm is defined as ‖v‖A :=
√

vTAv. The null space of matrix A is

denoted by null(A) and the span of a vector by span(w). The operator Ew[·] stands for

expectation over random variable w and E[·] for expectation with respect to the distribution

199

of a stochastic process.

7.2 Decentralized double stochastic averaging gradient

Consider a connected network that contains V nodes such that each node v can only com-

municate with peers in its neighborhood Nv. Define wv ∈ Rp as a local copy of the variable

w that is kept at node v. In decentralized optimization, agents try to minimize their local

functions fv(wv) while ensuring that their local variables wv coincide with the variables

wu of all neighbors u ∈ Nv – which, given that the network is connected, ensures that the

variables wv of all nodes are the same and renders the problem equivalent to (7.1). DGD

is a well known method for decentralized optimization that relies on the introduction of

nonnegative weights wvu ≥ 0 that are not null if and only if u = v or if u ∈ Nv. Letting

t ∈ N be a discrete time index and α a given stepsize, DGD is defined by the recursion

wt+1
v =

V∑
u=1

wvuw
t
u − α∇fv(wt

v), v = 1, . . . , V. (7.2)

Since wvu = 0 when u 6= v and u /∈ Nv, it follows from (7.2) that node v updates wv

by performing an average over the variables wt
u of its neighbors u ∈ Nv and its own wt

v,

followed by descent through the negative local gradient −∇fv(wt
v). If a constant stepsize is

used, DGD iterates wt
v approach a neighborhood of the optimal argument w̃∗ of (7.1) but

don’t converge exactly. To achieve exact convergence diminishing stepsizes are used but the

resulting convergence rate is sublinear [80].

EXTRA is a method that resolves either of these issues by mixing two consecutive DGD

iterations with different weight matrices and opposite signs. To be precise, introduce a

second set of weights w̃vu with the same properties as the weights wvu and define EXTRA

through the recursion

wt+1
v = wt

v +
N∑
m=1

wvuw
t
u −

N∑
m=1

w̃vuw
t−1
u − α

[
∇fv(wt

v)−∇fv(wt−1
v)

]
, v = 1, . . . , V.

(7.3)

Observe that (7.3) is well defined for t > 0. For t = 0 we utilize the regular DGD iteration

in (7.2). In the nomenclature of this chapter we say that EXTRA performs a decentralized

double gradient descent step because it operates in a decentralized manner while utilizing a

difference of two gradients as descent direction. Minor modification as it is, the use of this

gradient difference in lieu of simple gradients, endows EXTRA with exact linear convergence

to the optimal argument w̃∗ under mild assumptions [111].

If we recall the definitions of the local functions fv(wv) and the instantaneous local

200

∇fn,1(ytn,1) ∇fn,2(ytn,2) ∇fn,itn(y
t
n,itn

) ∇fn,qn(ytn,qn)

∇fn,itn(x
t
n)

∇fn,1(yt+1
n,1) ∇fn,2(yt+1

n,2) ∇fn,itn(y
t+1
n,itn

) ∇fn,qn(yt+1
n,qn)

Figure 7.1: Stochastic averaging gradient table at node v. At each iteration t a random local
instantaneous gradient ∇fv,itv (ytv,itv

) is updated by ∇fv,itv (wt
v). The rest of the local instantaneous

gradients remain unchanged, i.e., ∇fv,i(yt+1
v,i) = ∇fv,i(ytv,i) for i 6= itv. This list is used to compute

the stochastic averaging gradient in (7.7).

functions fv,i(wv) available at node v, the implementation of EXTRA requires that each

node v computes the full gradient of its local objective function fv at wt
v as

∇fv(wt
v) =

1

qv

qv∑
i=1

∇fv,i(wt
v). (7.4)

This is computationally expensive when the number of instantaneous functions qv is large.

To resolve this issue, local stochastic gradients can be substituted for the local objective

functions gradients in (7.3). These stochastic gradients approximate the gradient ∇fv(wv)

of node v by randomly choosing one of the instantaneous functions gradients ∇fv,i(wv). If

we let itv ∈ {1, . . . qv} denote a function index that we choose at time t at node v uniformly

at random and independently of the history of the process, then the stochastic gradient is

defined as

ŝn(wt
v) := ∇fv,itv(w

t
v). (7.5)

We can then write a stochastic version of EXTRA by replacing ∇fv(wt
v) by ŝn(wt

v) and

∇fv(wt−1
v) by ŝn(wt−1

v). Such an algorithm would have a small computational cost per

iteration. On the negative side, it either has a linear convergence to a neighborhood of

the optimal solution w∗ with constant stepsize α, or it would converge sublinearly to the

optimal argument when the stepisize diminishes as time passes. Here however, we want to

design an algorithm with low computational complexity that converges linearly to the exact

solution w∗.

To reduce this noise we propose the use of stochastic averaging gradients instead ([31]).

The idea is to maintain a list of gradients of all instantaneous functions in which one

randomly chosen element is replaced at each iteration and to use an average of the elements

of this list for gradient approximation; see Figure 7.1. Formally, define the variable yv,i ∈ Rp

to represent the iterate value the last time that the instantaneous gradient of function fv,i

was evaluated. If we let itv ∈ {1, . . . , qv} denote the function index chosen at time t at node

201

Algorithm 9 DSA algorithm at node v

Require: Vectors w0
v. Gradient table initialized with gradients ∇fv,i(y0

v,i) where y0
v,i = w0

v.
1: for t = 0, 1, 2, . . . do
2: Exchange variable wt

v with neighboring nodes u ∈ Nn.
3: Choose itv uniformly at random from the set {1, . . . , qn}.

4: Compute and store ĝtv [cf. (7.7)] ĝtv = ∇fv,itv (wt
v)−∇fv,itv (ytv,itv) +

1

qv

qv∑
i=1

∇fv,i(ytv,i)

5: Set yt+1
n,itv

= wt
v and store ∇fv,itv (yt+1

v,itv
) = ∇fv,itv (wt

v) in itv gradient table position.

6: if t = 0 then

7: Update variable wt
v [cf. (7.9)]: wt+1

v =

V∑
u=1

wvuw
t
v − αĝtv

8: else

9: Update variable wt
v [cf. (7.8)]: wt+1

v = wt
v +

V∑
u=1

wvuw
t
v −

V∑
u=1

w̃nmwt−1
v − α

[
ĝtv − ĝt−1v

]
10: end if
11: end for

v, as we did in (7.5), the variables yv,i are updated recursively as

yt+1
v,i = wt

v, if i = itv, yt+1
v,i = ytv,i, if i 6= itv. (7.6)

With these definitions in hand we can define the stochastic averaging gradient at node v as

ĝtv := ∇fv,itv(w
t
v)−∇fv,itv(y

t
v,itv

) +
1

qv

qv∑
i=1

∇fv,i(ytv,i). (7.7)

Observe that to implement (7.7) the gradients ∇fv,i(ytv,i) are stored in the local gradient

table shown in Figure 7.1.

The DSA algorithm is a variation of EXTRA that substitutes the local gradients∇fv(wt
v)

in (7.3) for the local stochastic average gradients ĝtv in (7.7),

wt+1
v = wt

v +
N∑
m=1

wvuw
t
u −

N∑
m=1

w̃vuw
t−1
u − α

[
ĝtv − ĝt−1v

]
. (7.8)

The DSA initial update is given by applying the same substitution for the update of DGD

in (7.2) as

w1
v =

N∑
m=1

wvuw
0
u − α ĝ0

v. (7.9)

DSA is summarized in Algorithm 9 for t ≥ 0. The DSA update in (7.8) is implemented

in Step 9. This step requires access to the local iterates wt
m of neighboring nodes u ∈ Nv

which are collected in Step 2. Furthermore, implementation of the DSA update also requires

202

access to the stochastic averaging gradients ĝt−1n and ĝtv. The latter is computed in Step

4 and the former is computed and stored at the same step in the previous iteration. The

computation of the stochastic averaging gradients requires the selection of the index itv.

This index is chosen uniformly at random in Step 3. Determination of stochastic averaging

gradients also necessitates access and maintenance of the gradients table in Figure 7.1. The

itv element of this table is updated in Step 5 by replacing ∇fv,itv(y
t
v,itv

) with ∇fv,itv(w
t
v),

while the other vectors remain unchanged. To implement the first DSA iteration at time

t = 0 we have to perform the update in (7.9) instead of the update in (7.8) as in Step

7. Further observe that the auxiliary variables y0
v,i are initialized to the initial iterate w0

v.

This implies that the initial values of the stored gradients are ∇fv,i(y0
v,i) = ∇fv,i(w0

v).

We point out that the weights wvu and w̃vu can’t be arbitrary. If we define weight

matrices W and W̃ with elements wvu and w̃vu, respectively, they have to satisfy conditions

that we state as an assumption for future reference.

Assumption 14 The weight matrices W and W̃ must satisfy the following properties

(a) Both are symmetric, W = WT and W̃ = W̃T .

(b) The null space of I− W̃ includes the span of 1, i.e., null(I− W̃) ⊇ span(1), the null

space of I −W is the span of 1, i.e., null(I −W) = span(1), and the null space of the

difference W̃ −W is the span of 1, i.e., null(W̃ −W) = span(1).

(c) They satisfy the spectral ordering W � W̃ � (I + W)/2 and the matrix W̃ is positive

definite 0 ≺ W̃.

Requiring the matrix W to be symmetric and with specific null space properties is

necessary to let all agents converge to the same optimal variable. Analogous properties are

necessary in DGD and are not difficult to satisfy. The condition on spectral ordering is

specific to EXTRA but is not difficult to satisfy either. E.g., if we have a matrix W that

satisfies all the conditions in Assumption 14, the weight matrix W̃ = (I + W)/2 makes

Assumption 14 valid.

We also point that, as written in (7.7), computation of local stochastic averaging gradi-

ents ĝtv is costly because it requires evaluation of the sum
∑qv

i=1∇fv,i(ytv,i) at each iteration.

To be more precise, if we implement the update in (7.7) naively, at each iteration we should

compute the sum
∑qv

i=1∇fv,i(ytv,i) which has a computational cost of the order O(qv). This

cost can be avoided by updating the sum at each iteration with the recursive formula

qv∑
i=1

∇fv,i(ytv,i) =

qv∑
i=1

∇fv,i(yt−1v,i) +∇fv,it−1
v

(wt−1
v)−∇fv,it−1

v
(yt−1
v,it−1
v

). (7.10)

Using the update in (7.10), we can update the sum
∑qv

i=1∇fv,i(ytv,i) required for (7.7) in

203

a computationally efficient manner. Important properties and interpretations of EXTRA

and DSA are presented in the following sections after pertinent remarks.

Remark 11 The local stochastic averaging gradients in (7.7) are unbiased estimates of

the local gradients ∇fv(wt
v). Indeed, if we let Ft measure the history of the system up

until time t we have that the sum in (7.7) is deterministic given this sigma-algebra. This

observation implies that the conditional expectation E
[
(1/qv)

∑qv
i=1∇fv,i(ytv,i) | F t

]
can be

simplified as (1/qv)
∑qv

i=1∇fv,i(ytv,i). Thus, the conditional expectation of the stochastic

averaging gradient is,

E
[
ĝtv
∣∣F t] = E

[
∇fv,itv(w

t
v)
∣∣F t]− E

[
∇fv,itv(y

t
v,itv

)
∣∣F t]+

1

qv

qv∑
i=1

∇fv,i(ytv,i). (7.11)

With the index itv chosen equiprobably from the set {1, . . . , qv}, the expectation of the

second term in (7.11) is the same as the sum in the last term – each of the indexes

is chosen with probability 1/qv. In other words, we can write E
[
∇fv,itv(y

t
v,itv

)
∣∣F t] =

(1/qv)
∑qv

i=1∇fv,i(ytv,i). Therefore, these two terms cancel out each other and, since the ex-

pectation of the first term in (7.11) is simply E
[
∇fv,itv(w

t
v)
∣∣F t] = (1/qv)

∑qv
i=1∇fv,i(wt

v) =

∇fv(wt
v), we can simplify (7.11) to

E
[
ĝtv
∣∣F t] = ∇fv(wt

v). (7.12)

The expression in (7.12) means, by definition, that ĝtv is an unbiased estimate of ∇fv(wt
v)

when the history F t is given.

Remark 12 The local stochastic averaging gradient ĝtv at node v contains three terms. The

first two terms ∇fv,itv(w
t
v) and ∇fv,itv(y

t
v,itv

) are the new and old gradients of the chosen

objective function fv,itv at node v, respectively. The last term (1/qv)
∑qv

i=1∇fv,i(ytv,i) is the

average of the average of all the instantaneous gradients available at node v. This update

can be considered as a localized version of the stochastic averaging gradient update in the

SAGA algorithm [31]. Notice that instead of the difference∇fv,itv(w
t
v)−∇fv,itv(y

t
v,itv

) in (7.7)

we could use the difference (∇fv,itv(w
t
v) −∇fv,itv(y

t
v,itv

))/qv which would lead to stochastic

averaging gradient suggested in the SAG algorithm [104]. As studied in [31], both of these

approximations lead to a variance reduction method. The one suggested by SAGA is an

unbiased estimator of the exact gradient (1/qv)
∑qv

i=1∇fv,i(wt
v), while the one suggested

by SAG is a biased estimator of the gradient with smaller variance. Since the analysis of

the unbiased estimator suggested by SAGA is simpler, we use its idea to define the local

stochastic averaging gradient ĝtv in (7.7).

204

7.2.1 Limit points of DGD and EXTRA

The derivation of EXTRA hinges on the observation that the optimal argument of (7.1)

is not a fixed point of the DGD iteration in (7.2) but is a fixed point of the iteration in

(7.3). To explain this point define w := [w1; . . . ; wV] ∈ RV p as a vector that concatenates

the local iterates wv and the aggregate function f : RV p → R as the one that takes

values f(w) = f(w1, . . . ,wV) :=
∑V

v=1 fv(wv). Decentralized optimization entails the

minimization of f(w) subject to the constraint that all local variables are equal,

w∗ := argmin f (w) = f(w1, . . . ,wV) =
V∑
v=1

fv(wv),

s. t. wv = wu, for all v, u. (7.13)

The problems in (7.1) and (7.13) are equivalent in the sense that the vector w∗ ∈ RV p is

a solution of (7.13) if it satisfies w∗v = w̃∗ for all v, or, equivalently, if we can write w∗ =

[w̃∗; . . . ; w̃∗]. Regardless of interpretation, the Karush, Kuhn, Tucker (KKT) conditions of

(7.13) dictate that that optimal argument w∗ must sastisfy

w∗ ⊂ span(1V ⊗ Ip), (1V ⊗ Ip)
T∇f(w∗) = 0. (7.14)

The first condition in (7.14) requires that all the local variables w∗v be equal, while the

second condition requires the sum of local gradients to vanish at the optimal point. This

latter condition is not the same as ∇f(w) = 0. If we observe that the gradient ∇f(wt)

of the aggregate function can be written as ∇f(w) = [∇f1(w1); . . . ;∇fV (wV)] ∈ RV p, the

condition ∇f(w) = 0 implies that all the local gradients are null, i.e., that ∇fv(wv) = 0

for all v. This is stronger than having their sum being null as required by (7.14).

Define now the extended weight matrices as the Kronecker products Z := W ⊗ I ∈
RV p×V p and Z̃ := W̃ ⊗ I ∈ RV p×V p. Note that the required conditions for the weight

matrices W and W̃ in Assumption 14 enforce some conditions on the extended weight

matrices Z and Z̃. Based on Assumption 14(a), the matrices Z and Z̃ are also symmetric,

i.e., Z = ZT and Z̃ = Z̃T . Conditions in Assumption 14(b) imply that null{Z̃ − Z} =

span{1⊗ I}, null{I−Z} = span{1⊗ I}, and null{I− Z̃} ⊇ span{1⊗ I}. Lastly, the spectral

properties of matrices W and W̃ in Assumption 14(c) yield that matrix Z̃ is positive definite

and the expression Z � Z̃ � (I + Z)/2 holds.

According to the definition of the extended weight matrix Z, the DGD iteration in (7.2)

is equivalent to

wt+1 = Zwt − α∇f(wt), (7.15)

where, according to (7.13), the gradient ∇f(wt) of the aggregate function can be written

205

as ∇f(wt) = [∇f1(wt
1); . . . ;∇fV (wt

V)] ∈ RV p. Likewise, the EXTRA iteration in (7.3) can

be written as

wt+1 = (I + Z)wt − Z̃wt−1 − α
[
∇f(wt)−∇f(wt−1)

]
. (7.16)

The fundamental difference between DGD and EXTRA is that a fixed point of (7.15) does

not necessarily satisfy (7.14), whereas the fixed points of (7.16) are guaranteed to do so.

Indeed, taking limits in (7.15) we see that the fixed points w∞ of DGD must satisfy

(I− Z)w∞ + α∇f(w∞) = 0, (7.17)

which is incompatible with (7.14) except in peculiar circumstances – such as, e.g., when all

local functions have the same minimum. The limit points of EXTRA, however, satisfy the

relationship

w∞ −w∞ = (Z− Z̃)w∞ − α[∇f(w∞)−∇f(w∞)]. (7.18)

Canceling out the variables on the left hand side and the gradients in the right hand side it

follows that (Z− Z̃)w∞ = 0. Since the null space of of Z− Z̃ is null(Z− Z̃) = 1V ⊗ Ip by

assumption, we must have w∞ ⊂ span(1V ⊗ Ip). This is the first condition in (7.14). For

the second condition in (7.14) sum the updates in (7.16) recursively and use the telescopic

nature of the sum to write

wt+1 = Z̃wt − α∇f(wt)−
t∑

s=0

(Z̃− Z)ws. (7.19)

Substituting the limit point in (7.19) and reordering terms, we see that w∞ must satisfy

α∇f(w∞) = (I− Z̃)w∞ −
∞∑
s=0

(Z̃− Z)ws. (7.20)

In (7.20) we have that (I−Z̃)w∞ = 0 because the null space of (I−Z̃) is null(Z−Z̃) = 1V ⊗Ip

by assumption and w∞ ⊂ span(1V ⊗Ip) as already shown. Implementing this simplification

and considering the multiplication of the resulting equality by (1V ⊗ Ip)
T we obtain

(1V ⊗ Ip)
Tα∇f(w∞) = −

∞∑
s=0

(1V ⊗ Ip)
T (Z− Z̃)ws. (7.21)

In (7.21), the terms (1V ⊗Ip)
T (Z−Z̃) = 0 because the matrices Z and Z̃ are symmetric and

(1V ⊗Ip) is in the null space of the difference Z−Z̃. This implies that (1V ⊗Ip)
Tα∇f(w∞) =

0, which is the second condition in (7.14). Therefore, given the assumption that the sequence

206

of EXTRA iterates wt has a limit point w∞ it follows that this limit point satisfies both

conditions in (7.14) and for this reason exact convergence with constant stepsize is achievable

for EXTRA.

7.2.2 Stochastic saddle point method interpretation of DSA

The convergence proofs of DSA build on a reinterpretation of EXTRA as a saddle point

method. To introduce this primal-dual interpretation consider the update in (7.19) and

define the sequence of vectors vt =
∑t

s=0(Z̃− Z)1/2ws. The vector vt represents the accu-

mulation of variable dissimilarities in different nodes over time. Considering this definition

of vt we can rewrite (7.19) as

wt+1 = wt − α
[
∇f(wt) +

1

α
(I−Z̃)wt +

1

α
(Z̃−Z)1/2vt

]
. (7.22)

Furthermore, based on the definition of the sequence vt =
∑t

s=0(Z̃−Z)1/2ws we can write

the recursive expression

vt+1 = vt + α

[
1

α
(Z̃− Z)1/2wt+1

]
. (7.23)

Consider w as a primal variable and v as a dual variable. Then, the updates in (7.22) and

(7.23) are equivalent to the updates of a saddle point method with stepsize α that solves

for the critical points of the augmented Lagrangian

L(w,v) = f(w) +
1

α
vT (Z̃− Z)1/2w +

1

2α
wT (I− Z̃)w. (7.24)

In the Lagrangian in (7.24) the factor (1/α)vT (Z̃−Z)1/2w stems from the linear constraint

(Z̃−Z)1/2w = 0 and the quadratic term (1/2α)wT (I− Z̃)w is the augmented term added

to the Lagrangian. Therefore, the optimization problem whose augmented Lagrangian is

the one given in (7.24) is

w∗ = argmin
w

f(w) s.t.
1

α
(Z̃− Z)1/2w = 0. (7.25)

Observing that the null space of (Z̃−Z)1/2 is null((Z̃−Z)1/2) = null(Z̃− Z) = span{1V⊗Ip},
the constraint in (7.25) is equivalent to the consensus constraint wv = wm for all n,m that

appears in (7.13). This means that (7.25) is equivalent to (7.13), which, as already argued,

is equivalent to the original problem in (7.1). Hence, EXTRA is a saddle point method that

solves (7.25) which, because of their equivalence, is tantamount to solving (7.1). Considering

that saddle point methods converge linearly, it follows that the same is true of EXTRA.

207

That EXTRA is a saddle point method provides a simple explanation of its convergence

properties. For the purposes of this chapter, however, the important fact is that if EXTRA

is a saddle point method, DSA is a stochastic saddle point method. To write DSA in this

form define ĝt := [ĝt1; . . . ; ĝ
t
V] ∈ RV p as the vector that concatenates all the local stochastic

averaging gradients at step t. Then, the DSA update in (7.8) can be written as

wt+1 = (I + Z)wt − Z̃wt−1 − α
[
ĝt − ĝt−1

]
. (7.26)

Comparing (7.16) and (7.26) we see that they differ in the latter using stochastic averaging

gradients ĝt in lieu of the full gradients ∇f(wt). Therefore, DSA is a stochastic saddle

point method in which the primal variables are updated as

wt+1 = wt − αĝt − (I− Z̃)wt − (Z̃− Z)1/2vt, (7.27)

and the dual variables vt are updated as

vt+1 = vt + (Z̃− Z)1/2wt+1. (7.28)

Notice that the initial primal variable w0 is an arbitrary vector in RV p, while according

to the definition vt =
∑t

s=0(Z̃ − Z)1/2ws. We then need to set the initial multiplier to

v0 = (Z̃−Z)1/2w0. This is not a problem in practice because (7.27) and (7.28) are not used

for implementation. In our converge analysis we utilize the (equivalent) stochastic saddle

point expressions for DSA shown in (7.27) and (7.28). The expression in (7.8) is used for

implementation because it avoids exchanging dual variables – as well as the initialization

problem. The convergence analysis is presented in the following section.

7.3 Convergence analysis

Our goal here is to show that as time progresses the sequence of iterates wt approaches the

optimal argument w∗. To do so, in addition to the conditions on the weight matrices W

and W̃ in Assumption 14, we assume the instantaneous local functions fv,i have specific

properties that we state next.

Assumption 15 The instantaneous local functions fv,i(wv) are differentiable and strongly

convex with parameter µ.

Assumption 16 The gradient of instantaneous local functions ∇fv,i are Lipschitz con-

tinuous with parameter L, i.e., for all v ∈ {1, . . . , V } and i ∈ {1, . . . , qv} we can write

‖∇fv,i(a)−∇fv,i(b)‖ ≤ L ‖a− b‖ a,b ∈ Rp. (7.29)

208

The condition imposed by Assumption 15 implies that the local functions fv(wv) and

the global cost function f(w) =
∑V

v=1 fv(wv) are also strongly convex with parameter µ.

Likewise, Lipschitz continuity of the local instantaneous gradients considered in Assumption

16 enforces Lipschitz continuity of the local functions gradient ∇fv(wv) and the aggregate

function gradient ∇f(w) – see, e.g., Lemma 1 in [64].

7.3.1 Preliminaries

In this section we study some basic properties of the sequences of primal and dual variables

generated by the DSA algorithm. In the following lemma, we study the relation of the

iterates wt and vt with the optimal primal w∗ and dual v∗ arguments.

Lemma 21 Consider the DSA algorithm as defined in (7.6)-(7.9) and recall the updates

of the primal wt and dual vt variables in (7.27) and (7.28), respectively. Further, define

the positive semidefinite matrix U := (Z̃ − Z)1/2. If Assumption 14 holds true, then the

sequence of primal wt and dual vt variables satisfy

α
[
ĝt −∇f(w∗)

]
= (I + Z− 2Z̃)(w∗ −wt+1) + Z̃(wt −wt+1)−U(vt+1 − v∗). (7.30)

Proof : Considering the update rule for the dual variable in (7.28) and the definition

U = (Z̃ − Z)1/2, we can substitute Uvt in (7.27) by Uvt+1 − U2wt+1. Applying this

substitution into the DSA primal update in (7.27) yields

αĝt = −(I + Z− Z̃)wt+1 + Z̃wt −Uvt+1. (7.31)

By adding and subtracting Z̃wt+1 to the right hand side of (7.31) and considering the fact

that (I + Z− 2Z̃)w∗ = 0 we obtain

αĝt = (I + Z− 2Z̃)(w∗ −wt+1) + Z̃(wt −wt+1)−Uvt+1. (7.32)

One of the KKT conditions of problem (7.25) implies that the optimal variables w∗ and v∗

satisfy α∇f(w∗) + Uv∗ = 0 or equivalently −α∇f(w∗) = Uv∗. Adding this equality to

both sides of (7.32) follows the claim in (7.30). �

In the subsequent analyses of convergence of DSA, we need an upper bound for the

expected value of squared difference between the stochastic averaging gradient ĝt and the

optimal argument gradient ∇f(w∗) given the observations until step t which is denoted by

E
[
‖ĝt −∇f(w∗)‖2 | F t

]
. To establish this upper bound first we define the sequence pt ∈ R

209

as

pt :=

V∑
v=1

[
1

qv

qv∑
i=1

(
fv,i(y

t
v,i)− fv,i(w̃∗)−∇fv,i(w̃∗)T (ytv,i − w̃∗)

)]
. (7.33)

Notice that based on the strong convexity of the local instantaneous functions fv,i, each

term fv,i(y
t
v,i) − fv,i(w̃∗) − ∇fv,i(w̃∗)T (ytv,i − w̃∗) is positive and as a result the sequence

pt defined in (7.33) is always positive. In the following lemma, we use the result in Lemma

21 to guarantee an upper bound for the expectation E
[
‖ĝt −∇f(w∗)‖2 | F t

]
in terms of pt

and the optimality gap f(wt)− f(w∗)−∇f(w∗)T (wt −w∗).

Lemma 22 Consider the DSA algorithm in (7.6)-(7.9) and the definition of the sequence pt

in (7.33). If Assumptions 14-16 hold true, then the squared norm of the difference between

the stochastic averaging gradient ĝt and the optimal gradient ∇f(w∗) in expectation is

bounded above by

E
[∥∥ĝt −∇f(w∗)

∥∥2 |F t] ≤ 4Lpt + 2 (2L− µ)
(
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

)
.

(7.34)

Proof: According to the definition of ĝt which is the concatenation of the local stochastic

averaging gradients ĝtv and the fact that the expected value of sum is equal to the sum of

expected values, we can write the expected value E
[∥∥ĝt −∇f(w∗)

∥∥2 | F t] as

E
[∥∥ĝt −∇f(w∗)

∥∥2 | F t] =
V∑
v=1

E
[∥∥ĝtv −∇fv(w̃∗)∥∥2 | F t] . (7.35)

We proceed by finding upper bounds for the summands of (7.35). Observe that using the

standard variance decomposition for any random variable vector a we can write E
[
‖a‖2

]
=

‖E [a] ‖2 +E
[
‖a− E [a] ‖2

]
. Notice that the same relation holds true when the expectations

are computed with respect to a specific field F . By setting a = ĝtv−∇fv(w̃∗) and considering

that E
[
a | F t

]
= ∇fv(wt

v)−∇fv(w̃∗), the variance decomposition implies

E
[∥∥ĝtv −∇fv(w̃∗)∥∥2 | F t] =

∥∥∇fv(wt
v)−∇fv(w̃∗)

∥∥2
+ E

[∥∥ĝtv −∇fv(w̃∗)−∇fv(wt
v) +∇fv(w̃∗)

∥∥2 | F t] .
(7.36)

The next step is to find an upper bound for the last term in (7.36). Adding and subtracting

∇fv,itv(w̃
∗) and using the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 for the choice of variables

a = ∇fv,itv(w
t
v)−∇fv,itv(w̃

∗)−∇fv(wt
v) +∇fv(w̃∗) and b = −(∇fv,itv(y

t
v,itv

)−∇fv,itv(w̃
∗)−

210

(1/qv)
∑qv

i=1∇fv,i(ytv,i) +∇fv(w̃∗)) lead to

E
[∥∥ĝtv −∇fv(w̃∗)−∇fv(wt

v) +∇fv(w̃∗)
∥∥2 | F t]

≤ 2E
[∥∥∇fv,itv(wt

v)−∇fv,itv(w̃
∗)−∇fv(wt

v)+∇fv(w̃∗)
∥∥2 |F t]

+2E
[∥∥∥∇fv,itv(ytv,itv)−∇fv,itv(w̃∗)− 1

qv

qv∑
i=1

∇fv,i(ytv,i)+∇fv(w̃∗)
∥∥∥2 |F t]. (7.37)

In this step we use the standard variance decomposition twice to simplify the two expec-

tations in the right hand side of (7.37). Based on the standard variance decomposition

E
[
‖a− E [a] ‖2

]
= E

[
‖a‖2

]
− ‖E [a] ‖2 we obtain E

[
‖a− E [a] ‖2

]
≤ E

[
‖a‖2

]
. There-

fore, by setting y = ∇fv,itv(y
t
v,itv

) − ∇fv,itv(w̃
∗) and observing that the expected value

E
[
∇fv,itv(y

t
v,itv

)−∇fv,itv(w̃
∗) | F t

]
is equal to (1/qv)

∑qv
i=1∇fv,i(ytv,i)−∇fv(w̃∗) we obtain

that

E
[∥∥∥∇fv,itv(ytv,itv)−∇fv,itv(w̃∗)− 1

qv

qv∑
i=1

∇fv,i(ytv,i)+∇fv(w̃∗)
∥∥∥2 | F t]

≤ E
[∥∥∥∇fv,itv(ytv,itv)−∇fv,itv(w̃∗)∥∥∥2 | F t

]
. (7.38)

Moreover, by choosing a = ∇fv,itv(w
t
v) − ∇fv,itv(w̃

∗) and noticing the relation for the ex-

pected value which is E
[
∇fv,itv(w

t
v)−∇fv,itv(w̃

∗) | F t
]

= ∇fv(wt
v)−∇fv(w̃∗), the equality

E
[
‖a− E [a] ‖2

]
= E

[
‖a‖2

]
− ‖E [a] ‖2 yields

E
[∥∥∇fv,itv(wt

v)−∇fv,itv(w̃
∗)−∇fv(wt

v) +∇fv(w̃∗)
∥∥2 | F t]

= E
[∥∥∇fv,itv(wt

v)−∇fv,itv(w̃
∗)
∥∥2 | F t]− ∥∥∇fv(wt

v)−∇fv(w̃∗)
∥∥2 . (7.39)

By substituting the upper bound in (7.38) and the simplification in (7.39) into (7.37), and

considering the expression in (7.36) we obtain that

E
[∥∥ĝt −∇f(w∗)

∥∥2 | F t] ≤ 2
V∑
v=1

E
[∥∥∥∇fv,itv(ytv,itv)−∇fv,itv(w̃∗)∥∥∥2 | F t

]

−
V∑
v=1

∥∥∇fv(wt
v)−∇fv(w̃∗)

∥∥2 + 2
V∑
v=1

E
[∥∥∇fv,itv(wt

v)−∇fv,itv(w̃
∗)
∥∥2 | F t] . (7.40)

We proceed by finding an upper bound for the first sum in the right hand side of (7.40).

Notice that if the gradients of the function g are Lipschitz continuous with parameter L,

then for any two vectors a1 and a2 we can write g(a1) ≥ g(a2) + ∇g(a2)
T (a1 − a2) +

(1/2L)‖∇g(a1) − ∇g(a2)‖2. According to the Lipschitz continuity of the instantaneous

211

local functions gradient ∇fv,i(wv), we can write the inequality for g = fv,i, a1 = ytv,i and

a2 = w̃∗ which is equivalent to

1

2L

∥∥∇fv,i(ytv,i)−∇fv,i(w̃∗)∥∥2 ≤ fv,i(ytv,i)− fv,i(w̃∗)−∇fv,i(w̃∗)T (ytv,i − w̃∗). (7.41)

Summing up both sides of (7.41) for all i = 1, . . . , qv and dividing both sides of the implied

inequality by qv yield

1

qv

qv∑
i=1

∥∥∇fv,i(ytv,i)−∇fv,i(w̃∗)∥∥2
≤ 2L

[
1

qv

qv∑
i=1

fv,i(y
t
v,i)− fv,i(w̃∗)−∇fv,i(w̃∗)T (ytv,i−w̃∗)

]
. (7.42)

Since the random functions fv,itv has a uniform distribution over the set {fv,1, . . . , fv,qv},

we can substitute the left hand side of (7.42) by E
[∥∥∥∇fv,itv(ytv,itv)−∇fv,itv(w̃∗)∥∥∥2 | F t

]
.

Apply this substitution and sum up both sides of (7.42) for v = 1, . . . , V . According to the

definition of sequence pt in (7.33), if we sum up the right hand side of (7.42) over v it can

be simplified as 2Lpt. Applying these simplifications we obtain

V∑
v=1

E
[∥∥∇fv,itv(ytv)−∇fv,itv(w̃∗)∥∥2 | F t] ≤ 2Lpt. (7.43)

Replacing the upper bound in (7.43) into (7.40) and simplifying
∑V

v=1

∥∥∇fv(wt
v)−∇fv(w̃∗)

∥∥2
to
∥∥∇f(wt)−∇f(w∗)

∥∥2 yield

E
[∥∥ĝt −∇f(w∗)

∥∥2 | F t] ≤ 2
V∑
v=1

E
[∥∥∇fv,itv(wt

v)−∇fv,itv(w̃
∗)
∥∥2 | F t]

−
∥∥∇f(wt)−∇f(w∗)

∥∥2 + 4Lpt. (7.44)

To show that the sum in the right hand side of (7.44) is bounded above we use the Lipschitz

continuity of the instantaneous functions gradients ∇fv,i. Using the same argument from

(7.41) to (7.43) we can write

V∑
v=1

E
[∥∥∇fv,itv(wt

v)−∇fv,itv(w̃
∗)
∥∥2 | F t] (7.45)

≤ 2L
V∑
v=1

1

qv

[qv∑
i=1

fv,i(w
t
v)− fv,i(w̃∗)−∇fv,i(w̃∗)T (wt

v − w̃∗)

]
.

212

Considering the definition of the local objective functions fv(wv) = (1/qv)
∑qv

i=1 fv,i(wv)

and the aggregate function f(w) :=
∑V

v=1 fv(wv), the right hand side of (7.45) can be

simplified as

V∑
v=1

E
[∥∥∇fv,itv(wt

v)−∇fv,itv(w̃
∗)
∥∥2 | F t] ≤ 2L

(
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

)
.

(7.46)

Replacing the sum in (7.44) by the upper bound in (7.46) implies

E
[∥∥ĝt −∇f(w∗)

∥∥2 | F t] ≤ 4Lpt −
∥∥∇f(wt)−∇f(w∗)

∥∥2
+ 4L

(
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

)
. (7.47)

Considering the strong convexity of the global objective function f with constant µ we can

write

∥∥∇f(wt)−∇f(w∗)
∥∥2 ≥ 2µ

(
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

)
. (7.48)

Therefore, we can substitute ‖∇f(wt) −∇f(w∗)‖2 in (7.46) by the lower bound in (7.48)

and the claim in (7.34) follows. �

Observe that as the sequence of iterates wt approaches the optimal argument w∗, all the

local auxiliary variables ytv,i converge to w̃∗ which follows convergence of pt to null. This

observation in association with the result in (7.34) implies that the expected value of the

difference between the stochastic averaging gradient ĝt and the optimal gradient ∇f(w∗)

vanishes as the sequence of iterates wt approaches the optimal argument w∗.

7.3.2 Convergence

In this section we establish linear convergence of the sequence of iterates wt generated by

DSA to the optimal argument w∗. To do so, define 0 < γ and Γ < ∞ as the smallest and

largest eigenvalues of the positive definite matrix Z̃, respectively. Likewise, define γ′ as the

smallest non-zero eigenvalue of the matrix Z̃ − Z and Γ′ as the largest eigenvalue of the

matrix Z̃− Z. Further, define the vectors ut,u∗ ∈ R2V p and matrix G ∈ R2V p×2V p as

u∗ :=

w∗

v∗

 , ut :=

wt

vt

 , G =

Z̃ 0

0 I

 . (7.49)

Observe that the vector u∗ ∈ R2V p concatenates the optimal primal and dual variables and

the vector ut ∈ R2V p contains primal and dual iterates at step t. Further, G ∈ R2V p×2V p is a

213

block diagonal positive definite matrix that we introduce since instead of tracking the value

of `2 norm ‖ut−u∗‖22 we study the convergence properties of G weighted norm ‖ut−u∗‖2G.

Notice that the weighted norm ‖ut−u∗‖2G is equivalent to (ut−u∗)TG(ut−u∗). Our goal

is to show that the sequence ‖ut−u∗‖2G converges linearly to null. To do this we show linear

convergence of a Lyapunov function of the sequence ‖ut − u∗‖2G. The Lyapunov function

is defined as ‖ut − u∗‖2G + cpt where c > 0 is a positive constant.

To prove linear convergence of the sequence ‖ut−u∗‖2G+cpt we first show an upper bound

for the expected error E
[
‖ut+1 − u∗‖2G | F t

]
in terms of ‖ut − u∗‖2G and some parameters

that capture optimality gap.

Lemma 23 Consider the DSA algorithm as defined in (7.6)-(7.9). Further recall the defi-

nitions of pt in (7.33) and ut, u∗, and G in (7.49). If Assumptions 14-16 hold true, then

for any positive constant η > 0 we can write

E
[
‖ut+1 − u∗‖2G | F t

]
≤ ‖ut − u∗‖2G − 2E

[
‖wt+1 −w∗‖2

I+Z−2Z̃ | F
t
]

+
α4L

η
pt

− E
[
‖wt+1 −wt‖2

Z̃−2αηI | F
t
]
− E

[
‖vt+1 − vt‖2 | F t

]
−
(

4αµ

L
− 2α(2L− µ)

η

)(
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

)
.

(7.50)

Proof: According to the Lipschitz continuity of the aggregate function gradients ∇f(w),

we can write (1/L)‖∇f(wt)−∇f(w∗)‖2 ≤ (wt−w∗)T (∇f(wt)−∇f(w∗)). By adding and

subtracting wt+1 to the term wt −w∗ and multiplying both sides of the inequality by 2α

we obtain

2α

L

∥∥∇f(wt)−∇f(w∗)
∥∥2 ≤ 2α(wt+1 −w∗)T (∇f(wt)−∇f(w∗))

+ 2α(wt −wt+1)T (∇f(wt)−∇f(w∗)). (7.51)

Expanding the difference ∇f(wt) − ∇f(w∗) as ĝt − ∇f(w∗) + ∇f(wt) − ĝt for the first

inner product in the right hand side of (7.51) implies

2α

L

∥∥∇f(wt)−∇f(w∗)
∥∥2 ≤ 2α(wt −wt+1)T (∇f(wt)−∇f(w∗))

+ 2α(wt+1 −w∗)T (ĝt −∇f(w∗)) + 2α(wt+1 −w∗)T (∇f(wt)− ĝt). (7.52)

We proceed to simplify the inner product 2α(wt+1 −w∗)T (ĝt −∇f(w∗)) in the right hand

side of (7.52) by substituting α(ĝt−∇f(w∗)) with its equivalent as introduced in (7.30). By

applying this substitution the inner product 2α(wt+1−w∗)T (ĝt−∇f(w∗)) can be simplified

214

as

2α(wt+1 −w∗)T (ĝt −∇f(w∗)) = −2‖wt+1 −w∗‖2
I+Z−2Z̃ + 2(wt+1 −w∗)T Z̃(wt −wt+1)

− 2(wt+1 −w∗)TU(vt+1 − v∗). (7.53)

Based on the KKT condition of problem (7.25), the optimal primal variable satisfies (Z̃ −
Z)1/2w∗ = 0 which by considering the definition of the matrix U = (Z̃ − Z)1/2 we obtain

that Uw∗ = 0. This observation in conjunction with the update rule of the dual variable vt

in (7.28) implies that we can substitute U(wt+1−w∗) by vt+1−vt. Making this substitution

into the last summand of the right hand side of (7.53) and considering the symmetry of the

matrix U yield

2α(wt+1 −w∗)T (ĝt −∇f(w∗)) = −2‖wt+1 −w∗‖2
I+Z−2Z̃ + 2(wt+1 −w∗)T Z̃(wt −wt+1)

− 2(vt+1 − vt)T (vt+1 − v∗). (7.54)

According to the definition of the vector u and matrix G in (7.49), the last two summands

of (7.54) can be simplified as 2(ut+1−ut)TG(u∗−ut+1). Moreover, observe that the inner

product 2(ut+1 − ut)TG(u∗ − ut+1) can be simplified as ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G −
‖ut+1 − ut‖2G. Applying this simplification into (7.54) implies

2α(wt+1 −w∗)T (ĝt −∇f(w∗)) = −2‖wt+1 −w∗‖2
I+Z−2Z̃ + ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G

− ‖ut+1 − ut‖2G. (7.55)

The next step is to find an upper bound for the inner product 2α(wt −wt+1)T (∇f(wt)−
∇f(w∗)). Note that for any two vectors a and b, and any positive scalar η the inequality

2aTb ≤ η‖a‖2+η−1‖b‖2 holds. Thus, by setting a = wt−wt+1 and b = ∇f(wt)−∇f(w∗)

we obtain that

2α(wt −wt+1)T (∇f(wt)−∇f(w∗)) ≤ α

η
‖∇f(wt)−∇f(w∗)‖2 + αη‖wt −wt+1‖2.

(7.56)

Now we substitute the terms in the right hand side of (7.52) by their simplifications or upper

bounds. Replacing the inner product 2α(wt+1−w∗)T (ĝt−∇f(w∗)) by the simplification in

(7.55), substituting expression 2α(wt −wt+1)T (∇f(wt)−∇f(w∗)) by the upper bound in

(7.56), and substituting inner product 2α(wt+1 −w∗)T (∇f(wt)− ĝt) by the sum 2α(wt −

215

w∗)T (∇f(wt)− ĝt) + 2α(wt+1 −wt)T (∇f(wt)− ĝt) imply

2α

L

∥∥∇f(wt)−∇f(w∗)
∥∥2 ≤ −2‖wt+1 −w∗‖2

I+Z−2Z̃ + ‖ut − u∗‖2G − ‖ut+1 − u∗‖2G

− ‖ut+1 − ut‖2G + αη‖wt −wt+1‖2 +
α

η
‖∇f(wt)−∇f(w∗)‖2

+ 2α(wt −w∗)T (∇f(wt)− ĝt) + 2α(wt+1 −wt)T (∇f(wt)− ĝt).

(7.57)

Considering that wt − w∗ is deterministic given observations until step t and observing

the relation E
[
ĝt | F t

]
= ∇f(wt), we obtain that E

[
(wt −w∗)T (∇f(wt)− ĝt) | F t

]
= 0.

Therefore, by computing the expected value of both sides of (7.57) given the observations

until step t and regrouping the terms we obtain

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ α

[
2

L
− 1

η

] ∥∥∇f(wt)−∇f(w∗)
∥∥2+E

[
‖ut+1 − ut‖2G | F t

]
+ 2E

[
‖wt+1 −w∗‖2

I+Z−2Z̃ | F
t
]
− αηE

[
‖wt −wt+1‖2 | F t

]
− E

[
2α(wt+1 −wt)T (∇f(wt)− ĝt) | F t

]
. (7.58)

By applying inequality 2aTb ≤ η‖a‖2 + η−1‖b‖2 for the vectors a = wt+1 − wt and b =

∇f(wt) − ĝt, we obtain that the inner product 2(wt+1 − wt)T (∇f(wt) − ĝt) is bounded

above by η‖wt+1 −wt‖2 + (1/η)‖∇f(wt) − ĝt‖2. Replacing 2(wt+1 −wt)T (∇f(wt) − ĝt)

in (7.58) by its upper bound η‖wt+1 −wt‖2 + (1/η)‖∇f(wt)− ĝt‖2 yields

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ α

[
2

L
− 1

η

] ∥∥∇f(wt)−∇f(w∗)
∥∥2+E

[
‖ut+1 − ut‖2G | F t

]
+ 2E

[
‖wt+1 −w∗‖2

I+Z−2Z̃ | F
t
]
− 2αηE

[
‖wt −wt+1‖2 | F t

]
− α

η
E
[
‖∇f(wt)− ĝt‖2 | F t

]
. (7.59)

Observe that the squared norm ‖ut+1−ut‖2G can be expanded as ‖wt+1−wt‖2
Z̃

+‖vt+1−vt‖2.
Using this simplification for ‖ut+1 − ut‖2G and regrouping the terms in (7.59) lead to

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ α

[
2

L
− 1

η

] ∥∥∇f(wt)−∇f(w∗)
∥∥2 + E

[
‖wt+1 −wt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖wt+1−w∗‖2

I+Z−2Z̃ |F
t
]
−α
η
E
[
‖∇f(wt)− ĝt‖2 |F t

]
. (7.60)

216

We proceed by simplifying the expectation E
[
‖∇f(wt)− ĝt‖2 |F t

]
in (7.60). Note that by

adding and subtracting the term ∇f(w∗), we can rewrite the term E
[
‖∇f(wt)− ĝt‖2 |F t

]
as E

[
‖∇f(wt)−∇f(w∗) +∇f(w∗)− ĝt‖2 | F t

]
and by expanding the squared norm and

simplifying the terms we obtain

E
[∥∥∇f(wt)− ĝt

∥∥2 | F t] = E
[∥∥ĝt −∇f(w∗)

∥∥2 | F t]− E
[∥∥∇f(wt)−∇f(w∗)

∥∥2 | F t] .
(7.61)

Substituting the simplification in (7.61) into (7.60) yields

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ 2α

L

∥∥∇f(wt)−∇f(w∗)
∥∥2 + E

[
‖wt+1 −wt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖wt+1 −w∗‖2

I+Z−2Z̃ |F
t
]
−α
η
E
[
‖ĝt −∇f(w∗)‖2 | F t

]
. (7.62)

Considering the strong convexity of the global objective function f with constant µ we can

write
∥∥∇f(wt)−∇f(w∗)

∥∥2 ≥ 2µ
(
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

)
. Substituting the

squared norm
∥∥∇f(wt)−∇f(w∗)

∥∥2 by this lower bound in (7.62) follows

‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
≥ 4αµ

L

(
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

)
+ E

[
‖wt+1 −wt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖wt+1−w∗‖2

I+Z−2Z̃ |F
t
]
−α
η
E
[
‖ĝt −∇f(w∗)‖2 | F t

]
.

(7.63)

Substituting the upper bound for the expectation E
[
‖ĝt −∇f(w∗)‖2 | F t

]
in (7.34) into

(7.63) and regrouping the terms show the validity of the claim in (7.50). �

Lemma 23 shows an upper bound for the squared norm ‖ut+1 −u∗‖2G which is the first

part of the Lyapunov function ‖ut−u∗‖2G +cpt at step t+1. Likewise, we provide an upper

bound for the second term of the Lyapunov function at time t+ 1 which is pt+1 in terms of

pt and some parameters that capture optimality gap. This bound is studied in the following

lemma.

Lemma 24 Consider the DSA algorithm as defined in (7.6)-(7.9) and the definition of pt

in (7.33). Further, define qmin and qmax as the smallest and largest values for the number

of instantaneous functions at a node, respectively. If Assumptions 14-16 hold true, then for

217

all t > 0 the sequence pt satisfies

E
[
pt+1 | F t

]
≤
[
1− 1

qmax

]
pt +

1

qmin

[
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

]
. (7.64)

Proof: Given the information until time t, each auxiliary vector yt+1
v,i is a random variable

that takes values ytv,i and wt
v with associated probabilities 1− 1/qv and 1/qv, respectively.

This observation holds since with probability 1/qv node v may choose index i to update at

time t+ 1 and with probability 1− (1/qv) choose other indices. Therefore, we can write

E

[
1

qv

qv∑
i=1

(
∇fv,i(w̃∗)T (yt+1

v,i − w̃∗)
)
| F t

]
=

[
1− 1

qv

]
1

qv

qv∑
i=1

∇fv,i(w̃∗)T(ytv,i−w̃∗)

+
1

qv
∇fv(w̃∗)T (wt

v − w̃∗). (7.65)

Likewise, the distribution of random function fv,i(y
t+1
v,i) given observation until time t has

two possibilities fv,i(y
t
v,i) and fv,i(w

t
v) with associated probabilities 1− 1/qv and 1/qv, re-

spectively. Hence, we can write E
[
fv,i(y

t+1
v,i) | F t

]
= (1−1/qv)fv,i(y

t
v,i)+(1/qv)fv,i(w

t
v). By

summing this relation for all i ∈ 1, . . . , qv and divining both sides of the resulted expression

by qv we obtain

E

[
1

qv

qv∑
i=1

fv,i(y
t+1
v,i) | F t

]
=

[
1− 1

qv

]
1

qv

qv∑
i=1

fv,i(y
t
v,i) +

1

qv
fv(w

t
v). (7.66)

To simplicity equations let us define the sequence ptn as

ptn :=
1

qv

qv∑
i=1

fv,i(y
t
v,i)− fv(w̃∗)−

1

qv

qv∑
i=1

∇fv,i(w̃∗)T (ytv,i − w̃∗). (7.67)

Subtracting (7.65) from (7.66) and adding −fv(w̃∗) to the both sides of equality in associ-

ation with the definition of the sequence ptn in (7.67) yield

E
[
pt+1
n | F t

]
=

[
1− 1

qv

]
ptn +

1

qv

[
fv(w

t
v)− fv(w̃∗)−∇fv(w̃∗)T (wt

v − w̃∗)
]
. (7.68)

We proceed to find and upper bound for the terms in the right hand side of (7.68). First note

that according to the strong convexity of the local instantaneous functions fv,i and local

functions fv both terms in the right hand side of (7.68) are non-negative. Observing that the

number of instantaneous functions at each node qv satisfies the condition qmin ≤ qv ≤ qmax,

we obtain

1− 1

qv
≤ 1− 1

qmax
,

1

qv
≤ 1

qmin
. (7.69)

218

Substituting the upper bounds in (7.69) into (7.68), summing both sides of the implied

inequality over v ∈ {1, . . . , V }, and considering the definitions of the optimal argument

w∗ = [w̃∗; . . . ; w̃∗] and the aggregate function f(w) =
∑V

v=1 fv(wv) lead to

V∑
v=1

E
[
pt+1
n | F t

]
≤
[
1− 1

qmax

] V∑
v=1

ptn +
1

qmin

[
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

]
.

(7.70)

Now observe that according to the definitions of the sequences pt and ptn in (7.33) and

(7.67), respectively, pt is the sum of ptn for all v, i.e. pt =
∑V

v=1 p
t
n. Hence, we can rewrite

(7.70) as

E
[
pt+1 | F t

]
≤
[
1− 1

qmax

]
pt +

1

qmin

[
f(wt)− f(w∗)−∇f(w∗)T (wt−w∗)

]
. (7.71)

Therefore, the claim in (7.64) is valid. �

Lemma 24 provides an upper bound for pt+1 in terms of its previous value pt and the

optimality error f(wt)− f(w∗)−∇f(w∗)T (wt −w∗). Combining the results in Lemmata

23 and 24 we can show that in expectation the Lyapunov function ‖ut+1−u∗‖2G + c pt+1 at

step t+ 1 is strictly smaller than its previous value ‖ut − u∗‖2G + c pt at step t, but before

showing this result we prove the following intermediate lemma to establish an upper bound

for the squared error norm ‖vt − v∗‖2.

Lemma 25 Consider the DSA algorithm as defined in (7.6)-(7.9). Further, recall γ′ as

the smallest non-zero eigenvalue and Γ′ as the largest eigenvalue of the matrix Z̃ − Z. If

Assumptions 14-16 hold, then the squared norm of the difference ‖vt − v∗‖2 is bounded

above as

‖vt − v∗‖2 ≤ 8

γ′
E
[∥∥wt+1−w∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+
8

γ′
E
[∥∥wt−wt+1

∥∥2
Z̃2 |F t

]
+

16α2L

γ′
pt

+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
+

8α2 (2L− µ)

γ′
[
f(wt)−f(w∗)−∇f(w∗)T(wt−w∗)

]
. (7.72)

Proof: Consider the inequality ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2 for the case that a = U(vt+1−v∗),

b = U(vt − vt+1) which can be written as

‖U(vt − v∗)‖2 ≤ 2‖U(vt+1 − v∗)‖2 + 2‖U(vt − vt+1)‖2. (7.73)

We proceed by finding an upper bound for 2‖U(vt+1 − v∗)‖2. Based on the result of

Lemma 21 in (7.30), the term U(vt+1 − v∗) is equal to the sum of vectors a + b where

a = (I + Z− 2Z̃)(wt+1 −w∗)− Z̃(wt −wt+1) and b = −αĝt −∇f(w∗). Therefore, using

219

the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 we can write

∥∥U(vt+1 − v∗)
∥∥2 ≤ 2

∥∥∥(I + Z− 2Z̃)(wt+1 −w∗)− Z̃(wt−wt+1)
∥∥∥2 + 2α2

∥∥ĝt −∇f(w∗)
∥∥2.

(7.74)

By using the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 one more time for vectors a = (I +

Z − 2Z̃)(wt+1 − w∗) and b = −Z̃(wt − wt+1), we obtain an upper bound for the term

‖(I + Z − 2Z̃)(wt+1 − w∗) − Z̃(wt − wt+1)‖2. Substituting this upper bound into (7.74)

yields

∥∥U(vt+1 − v∗)
∥∥2 ≤ 4

∥∥wt+1 −w∗
∥∥2
(I+Z−2Z̃)2

+ 4
∥∥wt −wt+1

∥∥2
Z̃2 + 2α2

∥∥ĝt −∇f(w∗)
∥∥2 .

(7.75)

Inequality (7.75) shows an upper bound for 2‖U(vt+1−v∗)‖2 in (7.73). Moreover, we know

that the second term ‖U(vt − vt+1)‖2 is also bounded above by Γ′‖vt − vt+1‖2 where Γ′ is

the largest eigenvalue of matrix Z̃− Z = U2. Substituting these upper bounds into (7.73)

and computing the expected value of both sides given the information until step t yield

‖U(vt − v∗)‖2 ≤ 8E
[∥∥wt+1 −w∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+ 8E
[∥∥wt −wt+1

∥∥2
Z̃2 | F t

]
+ 4α2E

[∥∥ĝt −∇f(w∗)
∥∥2 | F t]+ 2Γ′E

[
‖vt − vt+1‖2 | F t

]
. (7.76)

Note the vectors vt and v∗ lie in the column space of the matrix U. Thus, we obtain that

‖U(vt − v∗)‖2 ≥ γ′‖vt − v∗‖2. Substituting this lower bound for ‖U(vt − v∗)‖2 in (7.76)

and deviding both sides of the imposed inequality by γ′ yield

‖vt − v∗‖2 ≤ 8

γ′
E
[∥∥wt+1 −w∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+
8

γ′
E
[∥∥wt −wt+1

∥∥2
Z̃2 | F t

]
+

4α2

γ′
E
[∥∥ĝt −∇f(w∗)

∥∥2 | F t]+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
. (7.77)

By substituting the expectation E
[
‖ĝt −∇f(w∗)‖2 | F t

]
in the right hand side of (7.77)

with its upper bound in (7.34), the claim in (7.72) follows. �

Using the result in Lemma 25 we show that the sequence ‖ut − u∗‖2G + c pt converges

linearly to zero.

Theorem 11 Consider the DSA algorithm as defined in (7.6)-(7.9). Further recall the

definition of the sequence pt in (7.33). Define η as an arbitrary positive constant chosen

from the interval

η ∈
(
L2qmax

µqmin
+
L2

µ
− L

2
, ∞

)
. (7.78)

220

If Assumptions 14-16 hold true and the stepsize α is chosen from the interval α ∈ (0, γ/2η),

then for arbitrary c chosen from the interval

c ∈
(

4αLqmax

η
,

4αµqmin

L
− 2αqmin(2L− µ)

η

)
, (7.79)

there exits a positive constant 0 < δ < 1 such that

E
[
‖ut+1 − u∗‖2G + c pt+1 | F t

]
≤ (1− δ)

(
‖ut − u∗‖2G + c pt

)
. (7.80)

Proof: Proving the linear convergence claim in (7.80) is equivalent to showing that

δ‖ut − u∗‖2G + δc pt ≤ ‖ut − u∗‖2G − E
[
‖ut+1 − u∗‖2G | F t

]
+ c (pt − E

[
pt+1 | F t

]
).

(7.81)

Substituting the terms E
[
‖ut+1 − u∗‖2G | F t

]
and E

[
pt+1 | F t

]
by their upper bounds as

introduced in Lemma 23 and Lemma 24, respectively, yields a sufficient condition for the

claim in (7.81) as

δ‖ut − u∗‖2G + δc pt ≤ E
[
‖wt+1 −wt‖2

Z̃−2αηI | F
t
]

+ E
[
‖vt+1 − vt‖2 | F t

]
+ 2E

[
‖wt+1 −w∗‖2

I+Z−2Z̃ | F
t
]

+

(
c

qmax
− 4αL

η

)
pt

+

[
4αµ

L
− 2α(2L− µ)

η
− c

qmin

] [
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

]
. (7.82)

We emphasize that if the inequality in (7.82) holds, then the inequalities in (7.81) and

(7.80) are valid. Note that the weighted norm ‖ut − u∗‖2G in the left hand side of (7.82)

can be simplified as ‖wt − w∗‖2
Z̃

+ ‖vt − v∗‖2. Considering the definition of Γ as the

maximum eigenvalue of the matrix Z̃, we can conclude that ‖wt −w∗‖2
Z̃

is bounded above

by Γ‖wt −w∗‖2. Considering this relation and observing the upper bound for ‖vt − v∗‖2

in (7.72), we obtain that ‖ut − u∗‖2G = ‖wt −w∗‖2
Z̃

+ ‖vt − v∗‖2 is bounded above by

‖ut − u∗‖2G ≤ 8

γ′
E
[∥∥wt+1 −w∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+
8

γ′
E
[∥∥wt−wt+1

∥∥2
Z̃2 |F t

]
+

16α2L

γ′
pt

+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
+ Γ‖wt −w∗‖2

+
8α2 (2L− µ)

γ′
[
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

]
. (7.83)

Further, the strong convexity of the global objective function f implies that the squared

norm ‖wt−w∗‖2 is upper bound by (2/µ)(f(wt)−f(w∗)−∇f(w∗)T (wt−w∗)). Replacing

221

the the squared norm ‖wt −w∗‖2 in (7.83) by its upper bound leads to

‖ut − u∗‖2G ≤
8

γ′
E
[∥∥wt+1 −w∗

∥∥2
(I+Z−2Z̃)2

| F t
]

+
8

γ′
E
[∥∥wt −wt+1

∥∥2
Z̃2 | F t

]
+

16α2L

γ′
pt

+
2Γ′

γ′
E
[
‖vt − vt+1‖2 | F t

]
+

(
8α2 (2L− µ)

γ′
+

2Γ

µ

)[
f(wt)− f(w∗)−∇f(w∗)T (wt −w∗)

]
. (7.84)

Replacing ‖ut−u∗‖2G in (7.82) by the upper bound in (7.84) and regrouping the terms lead

to

0 ≤ E
[
‖wt+1 −wt‖2

Z̃−α(η+η)I− 8δ
γ′ Z̃

2 | F t
]

+ E
[
‖wt+1 −w∗‖2

(I+Z−2Z̃)1/2
[
2I− 8δ

γ′ (I+Z−2Z̃)
]
(I+Z−2Z̃)1/2

|F t
]

+ E
[
‖vt+1−vt‖2

(1−2δΓ′
γ′)I
|F t
]

+

[
c

qmax
− 4αL

η
−δc− 16δα2L

γ′

]
pt

+

[
4αµ

L
− 2α(2L−µ)

η
− c

qmin
− 8δα2 (2L−µ)

γ′
− 2δΓ

µ

]
(f(wt)−f(w∗)−∇f(w∗)T(wt−w∗)).

(7.85)

Notice that if the inequality in (7.85) holds true, then the relation in (7.82) is valid and as

we mentioned before the claim in (7.81) holds. To verify the sum in the right hand side

of (7.85) is always positive and the inequality is valid, we enforce each summands in the

right hand side of (7.85) to be non-negative. Therefore, the following conditions should be

satisfied

γ − α(η + η)− 8δ

γ′
Γ2 ≥ 0, 2− 8δ

γ′
λmax(I + Z− 2Z̃) ≥ 0, 1− 2δΓ′

γ′
≥ 0,

c

qmax
− 4αL

η
− δc− 16δα2L

γ′
≥ 0,

4αµ

L
− 2α(2L− µ)

η
− c

qmin
− 8δα2 (2L− µ)

γ′
− 2δΓ

µ
≥ 0.

(7.86)

Recall that γ is the smallest eigenvalue of the positive definite matrix Z. All the inequalities

in (7.86) are satisfied, if δ is chosen as

δ = min

{
(γ − 2αη)γ′

8Γ2
,

γ′

4λmax(I + Z− 2Z̃)
,
γ′

2Γ′
,
γ′(cη − 4αLqmax)

ηqmax(cγ′ + 16α2L)
,

[
4αµ

L
− 2α(2L− µ)

η
− c

qmin

] [
8α2 (2L− µ)

γ′
+

2Γ

µ

]−1}
. (7.87)

222

where η, c and α are selected from the intervals

η ∈
(
L2qmax

µqmin
+
L2

µ
− L

2
, ∞

)
, α ∈

(
0 ,

γ

2η

)
,

c ∈
(

4αLqmax

η
,

4αµqmin

L
− 2αqmin(2L− µ)

η

)
. (7.88)

Notice that considering the conditions for the variables η, α and c in (7.88), the constant

δ in (7.87) is strictly positive δ > 0. Moreover, according to the definition in (7.87) the

constant δ is smaller than γ′/2Γ′ which leads to the conclusion that δ ≤ 1/2 < 1. Therefore,

we obtain that 0 < δ < 1 and the claim in (7.80) is valid. �

We point out that the linear convergence constant δ in (7.87) is a function of the strong

convexity parameter µ, the Lipschitz continuity constant L, lower and upper bounds on the

eigenvalues of the matrices Z̃, Z̃ − Z, and I + Z − 2Z̃, the smallest qmin and largest qmax

values for the number of instantaneous functions available at a node, and the stepsize α.

Insight on the dependence of δ with problem parameters is offered in Section 7.3.3.

The inequality in (7.80) shows that the expected value of the sequence ‖ut−u∗‖2G + cpt

at time t+1 given the observation until step t is strictly smaller than the previous iterate at

step t. Note that, it is not hard to verify that if the positive constant η is chosen from the

interval in (7.78), the interval in (7.79) is non-empty. Computing the expected value with

respect to the initial sigma field E
[
. | F0

]
= E [.] implies that in expectation the sequence

‖ut − u∗‖2G + c pt converges linearly to null, i.e.,

E
[
‖ut − u∗‖2G + c pt

]
≤ (1− δ)t

(
‖u0 − u∗‖2G + c p0

)
. (7.89)

We use the result in (7.89) to establish linear convergence of the sequence of squared norm

error ‖wt −w∗‖2 in expectation.

Corollary 2 Consider the DSA algorithm as defined in (7.6)-(7.9) and recall γ is the min-

imum eigenvalue of the positive definite matrix Z̃. Suppose the conditions of Theorem 11

hold, then there exits a positive constant 0 < δ < 1 such that

E
[
‖wt −w∗‖2

]
≤ (1− δ)t

(
‖u0 − u∗‖2G + c p0

)
.

γ
(7.90)

Proof: First note that according to the definitions of u and G in (7.49) and the definition

of pt in (7.33) , we can write ‖wt − w∗‖2
Z̃
≤ ‖ut − u∗‖2G + c pt. Further, note that the

weighted norm ‖wt−w∗‖2
Z̃

is lower bounded by γ‖wt−w∗‖2, since γ is a lower bound for the

eigenvalues of Z̃. Combine these two observations to obtain γ‖wt−w∗‖2 ≤ ‖ut−u∗‖2G+cpt.

This inequality in conjunction with the expression in (7.89) follows the claim in (7.90). �

223

Corollary 2 states that the sequence E
[
‖wt −w∗‖2

]
linearly converges to null. Note that

the sequence E
[
‖wt −w∗‖2

]
is not necessarily monotonically decreasing as the sequence

E
[
‖ut − u∗‖2G + c pt

]
is. The result in (7.90) shows linear convergence of the sequence of

variables generated by DSA in expectation. In the following Theorem we show that the

local variables wt
v generated by DSA almost surely converge to the optimal argument of

(7.1).

Theorem 12 Consider the DSA algorithm as defined in (7.6)-(7.9) and suppose the condi-

tions of Theorem 11 hold. Then, the sequences of the local variables wt
v for all v = 1, . . . , V

converge almost surely to the optimal argument w̃∗, i.e.,

lim
t→∞

wt
v = w̃∗ a.s. for all v = 1, . . . , V. (7.91)

Proof: The proof uses the relationship in the statement (7.80) of Theorem 11 to build a

supermartingale sequence. To do this define the stochastic processes ζt and βt as

ζt := ‖ut − u∗‖2G + c pt, βt := δ
(
‖ut − u∗‖2G + c pt

)
. (7.92)

Note that the stochastic processes ζt and βt are alway non-negative. Let now Ft be a

sigma-algebra measuring ζt, βt, and ut. Considering the definitions of ζt and βt and the

relation in (7.80) we can write

E
[
ζt+1 | F t

]
≤ ζt − βt. (7.93)

Since the sequences αt and βt are nonnegative it follows from (7.93) that they satisfy the

conditions of the supermartingale convergence theorem – see e.g., Theorem E7.4 [114].

Therefore, we obtain that: (i) The sequence ζt converges almost surely. (ii) The sum∑∞
t=0 β

t <∞ is almost surely finite. The definition of βt in (7.92) implies that

∞∑
t=0

δ
(
‖ut − u∗‖2G + c pt

)
<∞, a.s. (7.94)

Since ‖wt −w∗‖2
Z̃
≤ ‖ut −u∗‖2G + c pt and the eigenvalues of Z̃ are lower bounded by γ we

can write γ‖wt − w∗‖2 ≤ ‖ut − u∗‖2G + c pt. This inequality in association with the fact

that the sum in (7.94) is finite leads to

∞∑
t=0

δ γ ‖wt −w∗‖2 <∞, a.s. (7.95)

Observing the fact that δ and γ are positive constants, we can conclude from (7.95) that

224

the sequence ‖wt −w∗‖2 is almost surely summable and it converges with probability 1 to

zero. �

Theorem 12 provides almost sure convergence of wt to the optimal solution w∗.

7.3.3 Linear convergence constant

The constant δ that controls the speed of convergence can be simplified by selecting specific

values for η, α, and c. This uncovers connections to the properties of the local objective

functions and the network topology. To make this clearer recall the definitions of γ and Γ

as the smallest and largest eigenvalues of the positive definite matrix Z̃, respectively, and γ′

and Γ′ as the smallest and largest positive eigenvalues of the positive semi-definite matrix

Z̃ − Z, respectively. Further, recall that the local objective functions are strongly convex

with constant µ and their gradients are Lipschitz continuous with constant L. Then, define

the condition numbers of the objective function and the graph as

κf =
L

µ
, κg =

max{Γ,Γ′}
min{γ, γ′}

, (7.96)

respectively. The condition number of the function is a measure of how difficult it is to

minimize the local functions using gradient descent directions. The condition number of

the graph is a measure of how slow the graph is in propagating a diffusion process. Both

are known to control the speed of convergence of distributed optimization methods. The

following corollary illustrates that these condition numbers also determine the convergence

speed of DSA.

Corollary 3 Consider the DSA algorithm as defined in (7.6)-(7.9) and suppose the condi-

tions of Theorem 11 hold. Choose the weight matrices W and W̃ as W̃ = (I+W)/2, assign

the same number of instantaneous local functions fv,i to each node, i.e., qmin = qmax = q,

and set the constants η, α and c as

η =
2L2

µ
, α =

γµ

8L2
, c =

qγµ2

4L3

(
1 +

µ

4L

)
. (7.97)

The linear convergence constant 0 < δ < 1 in (7.80) reduces to

δ = min

[
1

16κ2g
,

1

q[1 + 4κf (1 + γ/γ′)]
,

1

4(γ/γ′)κf + 32κgκ4f

]
. (7.98)

Proof: The given values for η, α, and c satisfy the conditions in Theorem 11. Substitute

then these values into the expression for δ in (7.87). Simplify terms and utilize the condi-

tion number definitions in (7.96). The second term in the minimization in (7.87) becomes

225

redundant because it is dominated by the first. �

Observe that while the choices of η, α, and c in (7.97) satisfy all the required conditions

of Theorem 11, they are not necessarily optimal for maximizing the linear convergence

constant δ. Nevertheless, the expression in (7.98) shows that the convergence speed of DSA

decreases with increases in the graph condition number κg, the local functions condition

number κf , and the number of functions assigned to each node q. For a cleaner expression

observe that both, γ and γ′ are the minimum eigenvalues of the weight matrix W and the

weight matrix difference W̃−W. They can therefore be chosen to be of similar order. For

reference, say that we choose γ = γ′ so that the ratio γ/γ′ = 1. In that case, the constant

δ in (7.98) reduces to

δ = min

[
1

16κ2g
,

1

q(1 + 8κf)
,

1

4(κf + 8κ4fκg)

]
. (7.99)

The three terms in (7.99) establish separate regimes, problems where the graph condition

number is large, problems where the number of functions at each node is large, and problems

where the condition number of the local functions are large. In the first regime the first

term in (7.99) dominates and establishes a dependence in terms of the square of the graph’s

condition number. In the second regime the middle term dominates and results in an inverse

dependence with the number of functions available at each node. In the third regime, the

third term dominates. The dependence in this case is inversely proportional to κ4f .

7.4 Numerical experiments

We numerically study the performance of DSA in solving a logistic regression problem.

In this problem we are given N =
∑V

v=1 qv training samples that we distribute across V

distinct nodes. Denote qv as the number of samples that are assigned to node v. We assume

that the samples are distributed equally over the nodes, i.e., qv = qmax = qmin = q = N/V

for v = 1, . . . , V . The training points at node v are denoted by xv,i ∈ Rp for i = 1, . . . , qv

with associated labels yv,i ∈ {−1, 1}. The goal is to predict the probability P (y = 1 | x)

of having label y = 1 for sample point x. The logistic regression model assumes that this

probability can be computed as P (y = 1 | x) = 1/(1 + exp(−xTw)) given a linear classifier

w that is computed based on the training samples. It follows from this model that the

regularized maximum log likelihood estimate of the classifier w given the training samples

(xv,i, yv,i) for i = 1, . . . , qv and v = 1, . . . , N is the solution of the optimization problem

w̃∗ := argmin
w∈Rp

λ

2
‖w‖2 +

V∑
v=1

qv∑
i=1

log
(

1 + exp(−yv,ixTv,iw)
)
, (7.100)

226

where the regularization term (λ/2)‖w‖2 is added to reduce overfitting to the training set.

The optimization problem in (7.100) can be written in the form of (7.1) by defining the

local objective functions fv as

fv(w) =
λ

2V
‖w‖2 +

qv∑
i=1

log
(

1 + exp(−yv,ixTv,iw)
)
. (7.101)

Observe that the local functions fv in (7.101) can be written as the average of a set of

instantaneous functions fv,i defined as

fv,i(w) =
λ

2V
‖w‖2 + qv log

(
1 + exp

(
−yv,ixTv,iw

))
, (7.102)

for all i = 1, . . . , qv. Considering the definitions of the instantaneous local functions fv,i in

(7.102) and the local functions fv in (7.101), problem (7.100) can be solved using the DSA

algorithm.

In our experiments in Sections 7.4.1-7.4.4, we use a synthetic dataset where the compo-

nents of the feature vectors xn,i with label yv,i = 1 are generated from a normal distribution

with mean µ and standard deviation σ+, while sample points with label yv,i = −1 are gener-

ated from a normal distribution with mean −µ and standard deviation σ−. In Section 7.4.5,

we consider a large-scale real dataset for training the classifier.

We consider a network of size V where the edges between nodes are generated randomly

with probability pc. The weight matrix W is generated using the Laplacian matrix L of

network as

W = I− L/τ, (7.103)

where τ should satisfy τ > (1/2)λmax(L). In our experiments we set this parameter as

τ = (2/3)λmax(L). We capture the error of each algorithm by the sum of squared differences

of the local iterates wt
v from the optimal solution w̃∗ as

et = ‖wt −w∗‖2 =
V∑
v=1

‖wt
v − w̃∗‖2. (7.104)

We use a centralized algorithm for computing the optimal argument w̃∗ in all of our exper-

iments.

7.4.1 Comparison with decentralized methods

We provide a comparison of DSA with respect to DGD, EXTRA, stochastic EXTRA, and

decentralized SAGA. The stochastic EXTRA (sto-EXTRA) is defined by using the stochas-

tic gradient in (7.5) instead of using full gradient as in EXTRA or stochastic averaging

227

0 200 400 600 800 1000

Number of itrations t

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
r
r
o
r
‖
w

t
−
w

∗
‖2

sto-EXTRA α = 10−3

sto-EXTRA α = 10−2

D-SAGA α = 10−2

DGD α = 10−2

D-SAGA α = 10−3

DGD α = 10−3

DSA α = 5× 10−3

EXTRA α = 5× 10−2

(a)

0 500 1000 1500 2000 2500 3000

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
or

‖w
t
−
w

∗
‖2

DGD α = 10−3

sto-EXTRA α = 10−2

DGD α = 10−2

D-SAGA α = 10−2

sto-EXTRA α = 10−3

D-SAGA α = 10−3

EXTRA α = 5× 10−2

DSA α = 5× 10−3

(b)

Figure 7.2: Convergence paths of DSA, EXTRA, DGD, Stochastic EXTRA, and Decentralized
SAGA for a logistic regression problem with N = 500 samples and V = 20 nodes. Distance to
optimality et = ‖wt −w∗‖2 is shown with respect to number of iterations t and number of gradient
evaluations in Fig 7.2(a) and Fig. 7.2(b), respectively. DSA and EXTRA converge linearly to the
optimal argument w∗, while DGD, Stochastic EXTRA, and Decentralized SAGA with constant
step sizes converge to a neighborhood of the optimal solution. Smaller choice of stepsize for DGD,
Stochastic EXTRA, and Decentralized SAGA leads to a more accurate convergence, while the speed
of convergence becomes slower. DSA outperforms EXTRA in terms of number of gradient evaluations
to achieve a target accuracy.

gradient as in DSA. The decentralized SAGA (D-SAGA) is a stochastic version of the

DGD algorithm that uses stochastic averaging gradient instead of exact gradient which is

the naive approach for developing a decentralized version of the SAGA algorithm. In our

experiments, the weight matrix W̃ in EXTRA, stochastic EXTRA, and DSA is chosen as

W̃ = (I+W)/2. We use the total number of sample points N = 500, feature vectors dimen-

sion p = 2, regularization parameter λ = 10−4, probability of existence of an edge pc = 0.35.

To make the dataset not linearly separable we set the mean as µ = 2 and the standard de-

viations to σ+ = σ− = 2. Moreover, the maximum eigenvalue of the Laplacian matrix is

λmax(L) = 8.017 which implies that the choice of τ in (7.103) is τ = (2/3)λmax(L) = 5.345.

We set the total number of nodes as V = 20 which implies that each node has access to

q = N/V = 25 sample points.

Fig. 7.2 illustrates the convergence paths of DSA, EXTRA, DGD, Stochastic EXTRA,

and Decentralized SAGA with constant stepsizes for N = 20 nodes. For EXTRA and DSA

different stepsizes are chosen and the best performance for EXTRA and DSA are achieved

by α = 5 × 10−2 and α = 5 × 10−3, respectively. It is worth mentioning that the choice

of stepsize α for DSA in practice is larger than the theoretical result in Theorem 6 and

Corollary 9 which suggest stepsize of the order O(µ/L2). As shown in Fig. 7.2, DSA is the

only stochastic algorithm that converges linearly. Decentralized SAGA after a few iterations

achieves the performance of DGD and they both cannot converge to the optimal argument.

By choosing a smaller stepsize as α = 10−3, they reach a more accurate convergence relative

228

to the case that the stepsize is α = 10−2; however, the speed of convergence is slower for

the smaller stepsize. Stochastic EXTRA also suffers from inexact convergence, but for a

different reason. DGD and decentralized SAGA have inexact convergence since they solve a

penalty version of the original problem, while stochastic EXTRA can not reach the optimal

solution since the noise of stochastic gradient is not vanishing. DSA resolves both issues

by combining the idea of stochastic averaging from SAGA to control the noise of stochastic

gradient estimation and the double descent idea of EXTRA to solve the correct optimization

problem.

Fig. 7.2(a) illustrates convergence paths of the considered methods in terms of number

of iterations t. Notice that the number of iterations t indicates the number of local iterations

processed at each node. Convergence rate of EXTRA is faster than DSA in terms of number

of iterations or equivalently number of communications as shown in Fig. 7.2(a); however,

the complexity of each iteration for EXTRA is higher than DSA. Therefore, it is reasonable

to compare the performances of these algorithms in terms of number of processed feature

vectors or equivalently number of gradient evaluations. For instance, DSA requires t = 380

iterations or equivalently 380 gradient evaluations to achieve the error et = 10−8, while

to achieve the same accuracy EXTRA requires t = 69 iterations which is equivalent to

t× qv = 69× 25 = 1725 processed feature vectors or gradient evaluations.

To illustrate this difference better, we compare the convergence paths of DSA, EXTRA,

DGD, Stochastic EXTRA, and Decentralized SAGA in terms of number of gradient eval-

uations in Fig. 7.2(b). Note that the total number of gradient evaluations at each node

for the stochastic methods such as DSA, sto-EXTRA, and D-SAGA is equal to the the

number of iterations t, while for EXTRA and DGD – which are deterministic methods

– the number of gradient evaluations is equal to the product t × q. This is true since

each node in the stochastic methods only evaluates 1 gradient per iteration, while in the

deterministic methods each node requires q gradient evaluations per iteration. The conver-

gence paths in Fig. 7.2(b) showcase the advantage of DSA relative to EXTRA in requiring

less processed feature vectors (or equivalently gradient evaluations) for achieving a specific

accuracy. It is important to mention that the initial gradient evaluations for the DSA

method is not considered in Fig. 7.2(b) since the initial decision variable is w0 = 0 in

all experiments and evaluation of the initial gradients ∇fv,i(w0) = −(1/2)qyv,ixv,i is not

computationally expensive relative to the general gradient computation which is given by

∇fv,i(w) = (λw/V)− (qyv,ixv,i)/(1 + exp(yv,iw
Txv,i)). However, if we consider this initial

processing the plot for DSA in Fig. 7.2(b) will be shifted by q = 25 gradient evaluations

which doesn’t change the conclusion that DSA outperforms EXTRA in terms of gradient

evaluations

229

0 500 1000 1500 2000

Number of iterations t

10
-5

10
0

E
rr
o
r
‖
w

t
−

w
∗
‖
2

Line
Cycle
Random graph pc = 0.25
Random graph pc = 0.35
Complete graph

Figure 7.3: Convergence of DSA for different network topologies when the total number of samples
is N = 500 and the size of network is V = 50. Distance to optimality et = ‖wt − w∗‖2 is shown
with respect to number of iterations t. As the graph condition number κg becomes larger the linear
convergence of DSA becomes slower. The best performance belongs to the complete graph which
has the smallest condition number and the slowest convergence path belongs to the line graph which
has the largest graph condition number.

7.4.2 Effect of graph condition number κg

In this section we study the effect of the graph condition number κg as defined in (7.96)

on the performance of DSA. We keep the parameters in Fig. 7.2 except for the network

size V which we set as V = 50. Thus, each node has access to q = 500/50 = 10 sample

points. The convergence paths of the DSA algorithm for random networks with pc = 0.25

and pc = 0.35, complete graph, cycle, and line are shown in Fig. 7.3. Notice that the graph

condition number of the line graph, cycle graph, random graph with pc = 0.25, random

graph with pc = 0.35, and complete graph are κg = 1.01× 103, κg = 2.53× 102, κg = 17.05,

κg = 4.87, and κg = 4, respectively. For each network topology, we have hand-optimized

the stepsize α and the best choice of stepsize for the complete graph, random graph with

pc = 0.35, random graph with pc = 0.25, cycle, and line are α = 2× 10−2, α = 1.5× 10−2,

α = 10−2, α = 5× 10−3, and α = 3× 10−3, respectively.

As we expect for the topologies that the graph has more edges and the graph condition

number κg is smaller we observe a faster linear convergence for DSA. The best performance

belongs to the complete graph which requires t = 247 iterations to achieve the relative error

et = 10−8. In the random graphs with connectivity probabilities pc = 0.35 and pc = 0.25,

DSA achieves the relative error et = 10−8 after t = 310 and t = 504 iterations, respectively.

For the cycle and line graphs the numbers of required iterations for reaching the relative

error et = 10−8 are t = 1133 and t = 1819, respectively. These observations match the

theoretical result in (7.99) that DSA converges faster when the graph condition number κg

230

0 200 400 600 800 1000

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
or

‖w
t
−
w

∗
‖
2

EXTRA for complete graph
DSA for complete graph

(a) complete graph

0 200 400 600 800 1000 1200

Number of gradient evaluations

10
-10

10
-5

10
0

E
rr
or

‖
w

t
−
w

∗
‖2

EXTRA for random graph with pc = 0.35
DSA for random graph with pc = 0.35

(b) random graph pc = 0.35

0 500 1000 1500 2000

Number of gradient evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
or

‖
w

t
−
w

∗
‖2

EXTRA for random graph with pc = 0.25
DSA for random graph with pc = 0.25

(c) random graph pc = 0.25

0 2000 4000 6000 8000 10000 12000 14000 16000

Number of gradient evaluations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

E
rr
o
r
‖w

t
−
w

∗
‖2

EXTRA for line
DSA for line

(d) line

Figure 7.4: Convergence paths of DSA and EXTRA for different network topologies when the
total number of samples is N = 500 and the size of network is V = 50. Distance to optimality
et = ‖wt − w∗‖2 is shown with respect to number of gradient evaluations. DSA converges faster
relative to EXTRA in all of the considered networks. The difference between the convergence paths
of DSA and EXTRA is more substantial when the graph has a large condition number κg. The
stepsize α for DSA and EXTRA in all the considered cases is hand-optimized and the results for the
best choice of α are reported.

is smaller.

We also compare the performances of DSA and EXTRA over different topologies to

verify the claim that DSA is more efficient than EXTRA in terms of number of gradient

evaluations over different network topologies. The parameters are as in Fig. 7.3 and the

stepsize α for EXTRA in different topologies are optimized separately. In particular, the

best stepsize for the complete graph, random graph with pc = 0.35, random graph with

pc = 0.25, and line are α = 6 × 10−2, α = 5 × 10−2, α = 3 × 10−2, and α = 5 × 10−2,

respectively. Fig. 7.4 shows the convergence paths of DSA and EXTRA versus number of

gradient evaluations for four different network topologies. We observe that in the considered

graphs, DSA achieves a target accuracy ‖wt−w∗‖2 faster than EXTRA. In other words, to

achieve a specific accuracy ‖wt−w∗‖2 DSA requires less number of local gradient evaluations

relative to EXTRA. In addition, the gap between the performance of DSA and EXTRA is

more substantial when the graph condition number κg is larger. In particular, in the case

231

0 1000 2000 3000 4000 5000

Number of iterations t

10
-10

10
-5

10
0

e
r
r
o
r
‖
w

t
−

w
∗
‖
2

N = 100, q = 5

N = 500, q = 25

N = 1000, q = 50

N = 5000, q = 250

Figure 7.5: Comparison of convergence paths of DSA for different number of samples N when the
network size is V = 20 and the graph is randomly generated with the connectivity ratio pc = 0.35.
Convergence time for DSA increases by increasing the total number of sample points N which is
equivalent to increasing the number of samples at each node q = N/V .

that we have a complete graph, which has a small graph condition number, the difference

between the convergence paths of DSA and EXTRA is less significant comparing to the line

graph which has a large graph condition number.

7.4.3 Effect of number of functions (samples) at each node q

To evaluate performance for different number of functions (sample points) available at each

node which is indicated by q, we use the same setting as in Fig. 7.2; however, we consider

scenarios with different number of samples N which leads to different number of samples

at each node q. To be more precise, we fix the total number of nodes in the network as

V = 20 and we consider the cases that the total number of samples are N = 100, N = 500,

N = 1000, and N = 5000 where the corresponding number of samples at each node are

q = 5, q = 25, q = 50, and q = 250, respectively. Similar to the experiment in Fig. 7.2, the

graph is generated randomly with connectivity ratio pc = 0.35.

For each of these scenarios the DSA stepsize α is hand-optimized and the best choice

is used for comparison with others. The results are reported for α = 10−4, α = 10−3,

α = 5 × 10−3, and α = 10−1 when the total number of samples are N = 5000, N = 1000,

N = 500, N = 100, respectively. The resulting convergence paths are shown in Fig. 7.5.

The convergence paths in Fig. 7.5 show that as we increase the total number of samples

N and consequently the number of assigned samples to each node q, we observe that DSA

converges slower to the optimal argument. This conclusion is expected from the theoretical

result in (7.99) which shows that the linear convergence rate of DSA becomes slower by

increasing q. In particular, to achieve the target accuracy of ‖wt − w∗‖2 = 10−8 DSA

232

0 200 400 600 800 1000

Number of gradient evaluations

10
-10

10
-5

10
0

er
ro
r
‖
w

t
−

w
∗
‖
2

DSA
EXTRA

(a) N = 100, q = 5

0 500 1000 1500 2000 2500

Number of gradient evaluations

10
-10

10
-5

10
0

er
ro
r
‖
w

t
−

w
∗
‖
2

DSA
EXTRA

(b) N = 500, q = 25

0 1000 2000 3000 4000 5000

Number of gradient evaluations

10
-10

10
-5

10
0

er
ro
r
‖
w

t
−

w
∗
‖
2

DSA
EXTRA

(c) N = 1000, q = 50

0 1 2 3 4 5 6

Number of gradient evaluations ×10
4

10
-10

10
-5

10
0

er
ro
r
‖
w

t
−

w
∗
‖
2

DSA
EXTRA

(d) N = 5000, q = 250

Figure 7.6: Convergence paths of DSA and EXTRA for the cases that (N = 100, q = 5), (N =
500, q = 25), (N = 1000, q = 50), and (N = 5000, q = 250) are presented. Distance to optimality
et = ‖wt − w∗‖2 is shown with respect to number of gradient evaluations. The total number of
nodes in the network is fixed and equal to V = 20 and the graph is randomly generated with the
connectivity ratio pc = 0.35. DSA converges faster relative to EXTRA and they both converge
slower when the total number of samples N increases.

requires t = 260, t = 380, t = 1960, and t = 4218 iterations (or equivalently gradient

evaluations) for the cases that q = 5, q = 25, q = 50, q = 250, respectively.

To have a more comprehensive comparison of DSA and EXTRA, we also compare their

performances under the four different settings considered in Fig. 7.5. The convergence

paths of these methods in terms of number of gradient evaluations for (N = 100, q = 5),

(N = 500, q = 25), (N = 1000, q = 50), and (N = 5000, q = 250) are presented in Fig 7.6.

The optimal stepsizes for EXTRA in the considered settings are α = 4×10−1, α = 5×10−2,

α = 3× 10−2, and α = ×10−2, respectively. An interesting observation is the effect of q on

the convergence rate of EXTRA. We observe that EXTRA converges slower as the number

of samples at each node q increases which is identical to the observation for DSA in Fig. 7.5.

Moreover, for all of the settings considered in Fig. 7.6, DSA outperforms EXTRA in terms of

number of required gradient evaluations until convergence. Moreover, by increasing the total

number of samples N and subsequently the number of assigned samples to each node q the

233

0 500 1000 1500

Number of iterations t

10
-15

10
-10

10
-5

10
0

N
o
r
m
a
li
z
e
d
e
r
r
o
r

‖
w

t
−
w

∗
‖
2

‖
w

0
−
w

∗
‖
2

DSA for V = 250

DSA for V = 125

DSA for V = 100

DSA for V = 50

DSA for V = 10

Figure 7.7: Normalized error ‖wt − w∗‖2/‖w0 − w∗‖2 of DSA versus number of iterations t for
networks with different number of nodes V when the total number of samples is fixed N = 500. The
graphs are randomly generated with the connectivity ratio pc = 0.35. Picking a very small or large
value for V which leads to a very large or small value for q, respectively, is not preferable. The best
performance belongs to the case that V = 125 and q = 4.

advantage of DSA with respect to EXTRA in terms of computational complexity becomes

more significant. This observation justifies the use of DSA for large-scale optimization

problems as we consider in Section 7.4.5.

7.4.4 Effect of number of nodes V

In some settings, we can choose the number of nodes (processors) V for training the dataset.

In this section, we study the effect of network size V on the convergence path of DSA when

a fixed number of samples N is given to train the classifier w. Notice that when N is fixed,

by changing the number of nodes V , the number of assigned samples to each node q = N/V

changes proportionally. Then, we may want to pick the number of nodes V or equivalently

the number of assigned samples to each node q which leads to the best performance of DSA

for training N samples. Hence, we fix the total number of sample points as N = 500 and

assign the same amount of sample points q to each node. We consider 5 different settings

with V = 10, V = 50, V = 100, V = 125, and V = 250 which their corresponding number

of assigned samples to each node are q = 50, q = 10, q = 5, q = 4, and q = 2, respectively.

The DSA stepsize for each of the considered settings is hand-optimized. The stepsizes

α = 5 × 10−3, α = 2 × 10−2, α = 6 × 10−2, and α = 8 × 10−2 are considered for the cases

that the number of assigned samples to each node are q = 50, q = 10, q = 5, q = 4, and

q = 2, respectively.

Fig. 7.7 shows the convergence paths of DSA for networks with different number of

nodes. Notice that the normalized error ẽt = ‖wt − w∗‖2/‖w0 − w∗‖2 is reported, since

the dimension of the vector w is different for different choices of V . Comparison of the

234

0 500 1000 1500 2000 2500 3000 3500 4000

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
w

t
−
w

∗
‖
2

‖
w

0
−
w

∗
‖
2

EXTRA for V = 10
DSA for V = 10

(a) V = 10 and q = 50

0 100 200 300 400 500 600 700 800

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
w

t
−
w

∗
‖
2

‖
w

0
−
w

∗
‖
2

EXTRA for V = 50
DSA for V = 50

(b) V = 50 and q = 10

0 200 400 600 800 1000 1200

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
w

t
−
w

∗
‖
2

‖
w

0
−
w

∗
‖
2

EXTRA for V = 125
DSA for V = 125

(c) V = 125 and q = 4

0 200 400 600 800 1000

Number of gradient evaluations

10
-15

10
-10

10
-5

10
0

N
o
rm

a
li
ze
d
er
ro
r

‖
w

t
−
w

∗
‖
2

‖
w

0
−
w

∗
‖
2

EXTRA for V = 250
DSA for V = 250

(d) V = 250 and q = 2

Figure 7.8: Convergence paths of DSA and EXTRA for different number of nodes V when the
total number of sample points is fixed as N = 500. The graphs are randomly generated with the
connectivity ratio pc = 0.35. Normalized distance to optimality ẽt = ‖wt − w∗‖2/‖w0 − w∗‖2 is
shown with respect to number of gradient evaluations. DSA converges faster relative to EXTRA in
all of the considered settings.

convergence paths in Fig. 7.7 shows that the best performance belongs to the case that

N = 125 and each node has access to q = 4 sample points. The performance of DSA

becomes worse for the case that there are V = 5 nodes in the network and each node has

q = 100 sample points. This observation implies that the DSA algorithm is also preferable

to SAGA which corresponds to the case that V = 1. Moreover, we observe that when the

number of nodes is large as V = 250 and each node has access to q = 2 samples, DSA

doesn’t perform well. Thus, increasing the size of network V doesn’t always lead to a better

performance for DSA. The best performance is observed when a moderate subset of the

samples is assigned to each node.

We also study the convergence rates of DSA and EXTRA in terms of number of gradient

evaluations for networks with different number of nodes V . Fig. 7.8 demonstrates the

convergence paths of DSA and EXTRA for the cases that V = 10, V = 50, V = 125, and

V = 250. Similar to DSA, we report the best performance of EXTRA for each setting which

is achieved by the stepsizes α = 5 × 10−2, α = 8 × 10−2, α = 8 × 10−2, and α = 10−1 for

V = 10, V = 50, V = 125, and V = 250, respectively. Observe that in all settings DSA

235

0 2000 4000 6000 8000 10000 12000

Number of iterations t

10
0

10
1

10
2

10
3

A
ve
ra
g
e
ob

je
ct
iv
e
fu
n
ct
io
n
er
ro
r

DSA
EXTRA

(a)

0 2 4 6 8 10

Number of gradient evaluations ×10
4

10
0

10
1

10
2

10
3

A
ve
ra
ge

ob
je
ct
iv
e
fu
n
ct
io
n
er
ro
r

DSA
EXTRA

(b)

Figure 7.9: Convergence paths of DSA and EXTRA for the protein homology classification problem
with N = 1.45× 105 samples. The graph has N = 200 nodes and it is randomly generated with the
connectivity ratio pc = 0.35. The average objective function error is shown with respect to number
of iterations t and number of gradient evaluations, respectively.

is more efficient relative to EXTRA and it requires less number of gradient evaluations for

convergence.

7.4.5 Large-scale classification application

In this section we solve the logistic regression problem in (7.100) for the protein homology

dataset provided in KDD Cup 2004. The dataset contains N = 1.45 × 105 sample points

and each sample point has p = 74 features. We consider the case that the sample points

are distributed over V = 200 nodes which implies that each node has access to q = 725

samples. We set the connectivity ratio pc = 0.35 and hand optimize the stepsize α for DSA

and EXTRA separately. The best performance of DSA is observed for α = 2 × 10−7 and

the best choice of stepize for EXTRA is α = 6× 10−7. We capture the error in terms of the

average objective function error etavg of the network which is defined as

etavg :=
1

V

V∑
u=1

[
V∑
v=1

fv(w
t
u)−

V∑
v=1

fv(w
∗)

]
. (7.105)

Note that the difference
∑V

v=1 fv(w
t
u) −

∑V
v=1 fv(w

∗) shows the objective function error

associated with the decision variable of node u at time t. Thus, the expression in (7.105)

indicates the average objective function error of the network at step t.

The average objective function error for DSA and EXTRA in terms of number of iter-

ations t and number of gradient evaluations are presented in Fig. 7.9(a) and Fig. 7.9(b),

respectively. As we observe, the results in Fig. 7.9 for the large-scale classification problem

match the observations in Fig. 7.2 for the classification problem with a synthetic dataset.

236

In particular, both algorithms converge linearly, while EXTRA converges faster than DSA

in terms of number of iterations or equivalently in terms of communication cost. On the

other hand, DSA outperforms EXTRA in terms of computational complexity or number of

required gradients to reach a target accuracy. Moreover, notice that the difference between

the performances of DSA and EXTRA in terms of number of gradient evaluations is more

significant in Fig. 7.9(b) relative to the one in Fig. 7.2(b). Thus, by increasing the prob-

lem dimension we obtain more computational complexity benefit by using DSA instead of

EXTRA.

237

Part III

Adaptive Sample Size Methods

238

Chapter 8

First-order adaptive sample size

methods

In the first part of this thesis we presented stochastic quasi-Newton methods for solving

ERM problems. These algorithms, as in other stochastic methods, split samples across

time to reduce the computational complexity of deterministic methods and approximate

curvature of the objective function to accelerate convergence of first-order methods.

In the second part of the thesis we considered the use of decentralized methods for ERM.

In this class of algorithms, samples are divided among nodes (processors) of a network

and each node only operates on a subset of samples. Indeed, distributing sampling over

processors, i.e., splitting across space, is computationally more efficient than operating on

a single processor.

In this part of the thesis, we introduce a novel approach for solving large-scale ERM

problems via a nested collection of subsets that grows geometrically. In this approach,

which is called adaptive sample size, instead of distributing samples across time or space,

we operate on a subset of samples at each stage and geometrically increase the size of the

training set. The key insight is that the optimal argument associated with a training subset

of a certain size is not that far from the optimal argument associated with a larger training

subset, since the samples are drawn from a common (unknown) distribution. This means

that solutions for an element of the geometric sequence can be used as warm starts for the

solution of the subsequent element. We explain adaptive sample size methods in detail in

the following chapters.

8.1 Context and background

Finite sum minimization (FSM) problems involve objectives that are expressed as the sum

of a typically large number of component functions. Since evaluating descent directions

239

is costly, it is customary to utilize stochastic descent methods that access only one of the

functions at each iteration. When considering first order methods, a fitting measure of com-

plexity is the total number of gradient evaluations that are needed to achieve optimality of

order ε. The paradigmatic deterministic gradient descent (GD) method serves as a naive

complexity upper bound and has long been known to obtain an ε-suboptimal solution with

O(Nκ log(1/ε)) gradient evaluations for an FSM problem with N component functions and

condition number κ [84]. Accelerated gradient descent (AGD) [85] improves the compu-

tational complexity of GD to O(N
√
κ log(1/ε)), which is known to be the optimal bound

for deterministic first-order methods [84]. In terms of stochastic optimization, it has been

only recently that linearly convergent methods have been proposed. Stochastic averaging

gradient [31, 49], stochastic variance reduction [45], and dual coordinate descent [109, 110],

have all been shown to converge to ε-accuracy at a cost of O((N + κ) log(1/ε)) gradient

evaluations. The accelerating catalyst framework in [52] further reduces complexity to

O((N +
√
Nκ) log(κ) log(1/ε)) and the works in [1] and [30] to O((N +

√
Nκ) log(1/ε)).

The latter matches the upper bound on the complexity of stochastic methods [124].

Perhaps the main motivation for studying FSM is the solution of empirical risk minimiza-

tion (ERM) problems associated with a large training set. ERM problems are particular

cases of FSM, but they do have two specific qualities that come from the fact that ERM is

a proxy for statistical loss minimization. The first property is that since the empirical risk

and the statistical loss have different minimizers, there is no reason to solve ERM beyond

the expected difference between the two objectives. This so-called statistical accuracy takes

the place of ε in the complexity orders of the previous paragraph and is a constant of order

O(1/Nα) where α is a constant from the interval [0.5, 1] depending on the regularity of the

loss function; see Section ??. The second important property of ERM is that the component

functions are drawn from a common distribution. This implies that if we consider subsets

of the training set, the respective empirical risk functions are not that different from each

other and, indeed, their differences are related to the statistical accuracy of the subset.

The relationship of ERM to statistical loss minimization suggests that ERM problems

have more structure than FSM problems. This is not exploited by most existing methods

which, albeit used for ERM, are in fact designed for FSM. The goal of this paper is to

exploit the relationship between ERM and statistical loss minimization to achieve lower

overall computational complexity for a broad class of first-order methods applied to ERM.

The technique we propose uses subsamples of the training set containing n ≤ N component

functions that we grow geometrically. In particular, we start by a small number of samples

and minimize the corresponding empirical risk added by a regularization term of order Vn

up to its statistical accuracy. Note that, based on the first property of ERM, the added

adaptive regularization term does not modify the required accuracy while it makes the

240

problem strongly convex and improves the problem condition number. After solving the

subproblem, we double the size of the training set and use the solution of the problem

with n samples as a warm start for the problem with 2n samples. This is a reasonable

initialization since based on the second property of ERM the functions are drawn from

a joint distribution, and, therefore, the optimal values of the ERM problems with n and

2n functions are not that different from each other. The proposed approach succeeds in

exploiting the two properties of ERM problems to improve complexity bounds of first-order

methods. In particular, we show that to reach the statistical accuracy of the full training set

the adaptive sample size scheme reduces the overall computational complexity of a broad

range of first-order methods by a factor of log(Nα). For instance, the overall computational

complexity of adaptive sample size AGD to reach the statistical accuracy of the full training

set is of order O(N
√
κ) which is lower than O((N

√
κ) log(Nα)) complexity of AGD.

Related work. The adaptive sample size approach was used in [29] to improve the

performance of the SAGA method [31] for solving ERM problems. In the dynamic SAGA

(DynaSAGA) method in [29], the size of training set grows at each iteration by adding two

new samples, and the iterates are updated by a single step of SAGA. Although DynaSAGA

succeeds in improving the performance of SAGA for solving ERM problems, it does not

use an adaptive regularization term to tune the problem condition number. Moreover,

DynaSAGA only works for strongly convex functions, while in our proposed scheme the

functions are convex (not necessarily strongly convex).

8.2 Problem formulation

Consider a decision vector w ∈ Rp, a random variable Θ with realizations θ and a convex

loss function f(w;θ). We aim to find the optimal argument that minimizes the optimization

problem

w∗ := argmin
w

L(w) = argmin
w

EΘ[f(w,Θ)] = argmin
w

∫
Θ
f(w,Θ)P (dθ), (8.1)

where L(w) := EΘ[f(w,Θ)] is defined as the expected loss, and P is the probability distri-

bution of the random variable Θ. The optimization problem in (8.1) cannot be solved since

the distribution P is unknown. However, we have access to a training set T = {θ1, . . . ,θN}
containing N independent samples θ1, . . . ,θN drawn from P , and, therefore, we attempt

to minimize the empirical loss associated with the training set T = {θ1, . . . ,θN}, which is

equivalent to minimizing the problem

w†n := argmin
w

Ln(w) = argmin
w

1

n

n∑
i=1

f(w,θi), (8.2)

241

for n = N . Note that in (8.2) we defined Ln(w) := (1/n)
∑n

i=1 f(w,θi) as the empirical

loss.

There is a rich literature on bounds for the difference between the expected loss L and

the empirical loss Ln which is also referred to as estimation error [15,16]. We assume here

that there exists a constant Vn, which depends on the number of samples n, that upper

bounds the difference between the expected and empirical losses for all w ∈ Rp

E
[

sup
w∈Rp

|L(w)− Ln(w)|
]
≤ Vn, (8.3)

where the expectation is with respect to the choice of the training set. The celebrated work

of Vapnik in [121, Section 3.4] provides the upper bound Vn = O(
√

(1/n) log(1/n)) which

can be improved to Vn = O(
√

1/n) using the chaining technique (see, e.g., [17]). Bounds of

the order Vn = O(1/n) have been derived more recently under stronger regularity conditions

that are not uncommon in practice, [4, 16, 36]. In this paper, we report our results using

the general bound Vn = O(1/nα) where α can be any constant form the interval [0.5, 1].

The observation that the optimal values of the expected loss and empirical loss are within

a Vn distance of each other implies that there is no gain in improving the optimization error

of minimizing Ln beyond the constant Vn. In other words, if we find an approximate solution

wn such that the optimization error is bounded by Ln(wn)− Ln(w†n) ≤ Vn, then finding a

more accurate solution to reduce the optimization error is not beneficial since the overall

error, i.e., the sum of estimation and optimization errors, does not become smaller than

Vn. Throughout the paper we say that wn solves the ERM problem in (8.2) to within its

statistical accuracy if it satisfies Ln(wn)− Ln(w†n) ≤ Vn.

We can further leverage the estimation error to add a regularization term of the form

(cVn/2)‖w‖2 to the empirical loss to ensure that the problem is strongly convex. To do so, we

define the regularized empirical risk Rn(w) := Ln(w)+(cVn/2)‖w‖2 and the corresponding

optimal argument

w∗n := argmin
w

Rn(w) = argmin
w

Ln(w) +
cVn
2
‖w‖2, (8.4)

and attempt to minimize Rn with accuracy Vn. Since the regularization in (8.4) is of order

Vn and (8.3) holds, the difference between Rn(w∗n) and L(w∗) is also of order Vn – this is not

immediate as it seems; see [106]. Thus, the variable wn solves the ERM problem in (8.2) to

within its statistical accuracy if it satisfies Rn(wn)−Rn(w∗n) ≤ Vn. It follows that by solving

the problem in (8.4) for n = N we find w∗N that solves the expected risk minimization in

(??) up to the statistical accuracy VN of the full training set T . In the following section we

introduce a class of methods that solve problem (8.4) up to its statistical accuracy faster

than traditional deterministic and stochastic descent methods.

242

8.3 Adaptive sample size methods

The empirical risk minimization (ERM) problem in (8.4) can be solved using state-of-the-art

methods for minimizing strongly convex functions. However, these methods never exploit

the particular property of ERM that the functions are drawn from the same distribution.

In this section, we propose an adaptive sample size scheme which exploits this property of

ERM to improve the convergence guarantees for traditional optimization method to reach

the statistical accuracy of the full training set. In the proposed adaptive sample size scheme,

we start by a small number of samples and solve its corresponding ERM problem with a

specific accuracy. Then, we double the size of the training set and use the solution of the

previous ERM problem – with half samples – as a warm start for the new ERM problem.

This procedure keeps going until the training set becomes identical to the given training

set T which contains N samples.

Consider the training set Sm with m samples as a subset of the full training T , i.e.,

Sm ⊂ T . Assume that we have solved the ERM problem corresponding to the set Sm such

that the approximate solution wm satisfies the condition E[Rm(wm) − Rm(w∗m)] ≤ δm.

Now the next step in the proposed adaptive sample size scheme is to double the size of the

current training set Sm and solve the ERM problem corresponding to the set Sn which has

n = 2m samples and contains the previous set, i.e., Sm ⊂ Sn ⊂ T .

We use wm which is a proper approximate for the optimal solution of Rm as the initial

iterate for the optimization method that we use to minimize the risk Rn. This is a reasonable

choice if the optimal arguments of Rm and Rn are close to each other, which is the case since

samples are drawn from a fixed distribution P. Starting with wm, we can use first-order

descent methods to minimize the empirical risk Rn. Depending on the iterative method

that we use for solving each ERM problem we might need different number of iterations to

find an approximate solution wn which satisfies the condition E[Rn(wn) − Rn(w∗n)] ≤ δn.

To design a comprehensive routine we need to come up with a proper condition for the

required accuracy δn at each phase.

In the following proposition we derive an upper bound for the expected suboptimality

of the variable wm for the risk Rn based on the accuracy of wm for the previous risk Rm

associated with the training set Sm. This upper bound allows us to choose the accuracy δm

efficiently.

Proposition 9 Consider the sets Sm and Sn as subsets of the training set T such that

§m ⊂ Sn ⊂ T , where the number of samples in the sets Sm and Sn are m and n, respec-

tively. Further, define wm as an δm optimal solution of the risk Rm in expectation, i.e.,

E[Rm(wm)−R∗m] ≤ δm, and recall Vn as the statistical accuracy of the training set Sn.

Then the empirical risk error Rn(wm) − Rn(w∗n) of the variable wm corresponding to the

243

Algorithm 10 Adaptive Sample Size Mechanism

1: Input: Initial sample size n = m0 and argument wn = wm0 with ‖∇Rn(wn)‖ ≤
(
√

2c)Vn
2: while n ≤ N do
3: Update argument and index: wm = wn and m = n.
4: Increase sample size: n = min{2m,N}.
5: Set the initial variable: w̃ = wm.
6: while ‖∇Rn(w̃)‖ > (

√
2c)Vn do

7: Update the variable w̃: Compute w̃ = Update(w̃,∇Rn(w̃))
8: end while
9: Set wn = w̃.

10: end while

set §n in expectation is bounded above by

E[Rn(wm)−Rn(w∗n)] ≤ δm +
2(n−m)

n
(Vn−m + Vm) + 2 (Vm − Vn) +

c(Vm − Vn)

2
‖w∗‖2.

(8.5)

Proof: See Appendix C.1. �

The result in Proposition 9 characterizes the sub-optimality of the variable wm, which is

an δm sub-optimal solution for the risk Rm, with respect to the empirical risk Rn associated

with the set §n. If we assume that the statistical accuracy Vn is of the order O(1/nα) and

we double the size of the training set at each step, i.e., n = 2m, then the inequality in (9.29)

can be simplified to

E[Rn(wm)−Rn(w∗n)] ≤ δm +

[
2 +

(
1− 1

2α

)(
2 +

c

2
‖w∗‖2

)]
Vm. (8.6)

The expression in (8.6) formalizes the reason that there is no need to solve the sub-

problem Rm beyond its statistical accuracy Vm. In other words, even if δm is zero the

expected sub-optimality will be of the order O(Vm), i.e., E[Rn(wm) − Rn(w∗n)] = O(Vm).

Based on this observation, The required precision δm for solving the sub-problem Rm should

be of the order δm = O(Vm).

The steps of the proposed adaptive sample size scheme is summarized in Algorithm 10.

Note that since computation of the sub-optimality Rn(wn)−Rn(w∗n) requires access to the

minimizer w∗n, we replace the condition Rn(wn)−Rn(w∗n) ≤ Vn by a bound on the norm of

gradient ‖∇Rn(wn)‖2. The risk Rn is strongly convex, and we can bound the suboptimality

Rn(wn)−Rn(w∗n) as

Rn(wn)−Rn(w∗n) ≤ 1

2cVn
‖∇Rn(wn)‖2. (8.7)

244

Hence, at each stage, we stop updating the variable if the condition ‖∇Rn(wn)‖ ≤ (
√

2c)Vn

holds which implies Rn(wn)−Rn(w∗n) ≤ Vn. The intermediate variable w̃ can be updated in

Step 7 using any first-order method. We will discuss this procedure for accelerated gradient

descent (AGD) and stochastic variance reduced gradient (SVRG) methods in Sections 8.4.1

and 8.4.2, respectively.

8.4 Complexity analysis

In this section, we aim to characterize the number of required iterations sn at each stage to

solve the subproblems within their statistical accuracy. We derive this result for all linearly

convergent first-order deterministic and stochastic methods.

The inequality in (8.6) not only leads to an efficient policy for the required precision δm

at each step, but also provides an upper bound for the sub-optimality of the initial iterate,

i.e., wm, for minimizing the risk Rn. Using this upper bound, depending on the iterative

method of choice, we can characterize the number of required iterations sn to ensure that the

updated variable is within the statistical accuracy of the risk Rn. To formally characterize

the number of required iterations sn, we first assume the following conditions are satisfied.

Assumption 17 The loss functions f(w,θ) are convex with respect to w for all values of

θ. Moreover, their gradients ∇f(w,θ) are Lipschitz continuous with constant M

‖∇f(w,θ)−∇f(w′,θ)‖ ≤M‖w −w′‖, for all θ. (8.8)

The conditions in Assumption 17 imply that the average loss L(w) and the empirical

loss Ln(w) are convex and their gradients are Lipschitz continuous with constant M . Thus,

the empirical risk Rn(w) is strongly convex with constant cVn and its gradients ∇Rn(w)

are Lipschitz continuous with parameter M + cVn.

So far we have concluded that each subproblem should be solved up to its statistical

accuracy. This observation leads to an upper bound for the number of iterations needed at

each step to solve each subproblem. Indeed various descent methods can be executed for

solving the sub-problem. Here we intend to come up with a general result that contains all

descent methods that have a linear convergence rate when the objective function is strongly

convex and smooth. In the following theorem, we derive a lower bound for the number of

required iterations sn to ensure that the variable wn, which is the outcome of updating wm

by sn iterations of the method of interest, is within the statistical accuracy of the risk Rn

for any linearly convergent method.

Theorem 13 Consider the variable wm as a Vm-suboptimal solution of the risk Rm in

expectation, i.e., E[Rm(wm) − Rm(w∗m)] ≤ Vm, where Vm = O(1/mα). Consider the sets

245

Sm ⊂ Sn ⊂ T such that n = 2m, and suppose Assumption 17 holds. Further, define

0 ≤ ρn < 1 as the linear convergence factor of the descent method used for updating the

iterates. Then, the variable wn generated based on the adaptive sample size mechanism

satisfies E[Rn(wn)−Rn(w∗n)] ≤ Vn if the number of iterations sn at the n-th stage is larger

than

sn ≥ −
log
[
3× 2α + (2α − 1)

(
2 + c

2‖w
∗‖2
)]

log ρn
. (8.9)

Proof : According to the result in Proposition 13 and the condition that E[Rm(wm) −
Rm(w∗m)] ≤ Vm, we obtain that

E[Rn(wm)−Rn(w∗n)] ≤
[
3 +

(
1− 1

2α

)(
2 +

c

2
‖w∗‖2

)]
Vm. (8.10)

If we assume that the first-order descent method that we use to update the iterates has a

linear convergence rate, then there exists a constant 0 < ρn < 1 we obtain that after sn

iterations the error is bounded above by

Rn(wn)−Rn(w∗n) ≤ ρsnn (Rn(wm)−Rn(w∗n)). (8.11)

The result in (8.11) holds for deterministic methods. If we use a stochastic linearly conver-

gent method such as SVRG, then the result holds in expectation and we can write

E[Rn(wn)−Rn(w∗n)] ≤ ρsn(Rn(wm)−Rn(w∗n)), (8.12)

where the expectation is with respect to the index of randomly chosen functions.

It follows form computing the expected value of both sides in (8.11) with respect to

the choice of training sets and using the upper bound in (8.10) for the expected difference

E[Rn(wm)−Rn(w∗n)] that

E[Rn(wn)−Rn(w∗n)] ≤ ρsn
[
3 +

(
1− 1

2α

)(
2 +

c

2
‖w∗‖2

)]
Vm. (8.13)

Note that the inequality in (8.13) also holds for stochastic methods. The difference is in

stochastic methods the expectation is with respect to the choice of training sets and the

index of random functions, while for deterministic methods it is only with respect to the

choice of training sets.

To ensure that the suboptimality E[Rn(wn) − Rn(w∗n)] is smaller than Vn we need to

guarantee that the right hand side in (8.13) is not larger than Vn, which is equivalent to

the condition

ρsn
[
3 +

(
1− 1

2α

)(
2 +

c

2
‖w∗‖2

)]
≤ 1

2α
. (8.14)

246

By regrouping the terms in (8.14) we obtain that

sn ≥ −
log
[
3× 2α + (2α − 1)

(
2 + c

2‖w
∗‖2
)]

log(ρn)
, (8.15)

and the claim in (8.9) follows. �

The result in Theorem 13 characterizes the number of required iterations at each phase.

Depending on the linear convergence factor ρn and the parameter α for the order of sta-

tistical accuracy, the number of required iterations might be different. Note that the

parameter ρn might depend on the size of the training set directly or through the de-

pendency of the problem condition number on n. It is worth mentioning that the re-

sult in (8.9) shows a lower bound for the number of required iteration which means that

sn = b−(log
[
3× 2α + (2α − 1)

(
2 + (c/2)‖w∗‖2

)]
/log ρn)c + 1 is the exact number of it-

erations needed when minimizing Rn, where bac indicates the floor of a. To characterize

the overall computational complexity of the proposed adaptive sample size scheme, the

exact expression for the linear convergence constant ρn is required. In the following sec-

tion, we focus on two deterministic and stochastic methods and characterize their overall

computational complexity to reach the statistical accuracy of the full training set T .

8.4.1 Adaptive sample size accelerated gradient (Ada AGD)

The accelerated gradient descent (AGD) method, also called as Nesterov’s method, is a

long-established descent method which achieves the optimal convergence rate for first-order

deterministic methods. In this section, we aim to combine the update of AGD with the

adaptive sample size scheme in Section 8.3 to improve convergence guarantees of AGD

for solving ERM problems. This can be done by using AGD for updating the iterates in

step 7 of Algorithm 10. Given an iterate wm within the statistical accuracy of the set

Sm, the adaptive sample size accelerated gradient descent method (Ada AGD) requires sn

iterations of AGD to ensure that the resulted iterate wn lies in the statistical accuracy of

Sn. In particular, if we initialize the sequences w̃ and ỹ as w̃0 = ỹ0 = wm, the approximate

solution wn for the risk Rn is the outcome of the updates

w̃k+1 = ỹk − ηn∇Rn(ỹk), (8.16)

and

ỹk+1 = w̃k+1 + βn(w̃k+1 − w̃k) (8.17)

after sn iterations, i.e., wn = w̃sn . The parameters ηn and βn are indexed by n since they

depend on the number of samples. We use the convergence rate of AGD to characterize the

number of required iterations sn to guarantee that the outcome of the recursive updates in

247

(8.16) and (8.17) is within the statistical accuracy of Rn.

Theorem 14 Consider the variable wm as a Vm-optimal solution of the risk Rm in expecta-

tion, i.e., E[Rm(wm)−Rm(w∗m)] ≤ Vm, where Vm = γ/mα. Consider the sets Sm ⊂ Sn ⊂ T
such that n = 2m, and suppose Assumption 17 holds. Further, set the parameters ηn and

βn as

ηn =
1

cVn +M
and βn =

√
cVn +M −

√
cVn√

cVn +M +
√
cVn

. (8.18)

Then, the variable wn generated based on the update of Ada AGD in (8.16)-(8.17) satisfies

E[Rn(wn)−Rn(w∗n)] ≤ Vn if the number of iterations sn is larger than

sn ≥

√
nαM + cγ

cγ
log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)]
. (8.19)

Moreover, if we define m0 as the size of the first training set, to reach the statistical accuracy

VN of the full training set T the overall computational complexity of Ada GD is given by

N

[
1 + log2

(
N

m0

)
+

(√
2α√

2α − 1

)√
NαM

cγ

]
log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)]
.

(8.20)

Proof : Note that according to the convergence result for accelerated gradient descent

in [84], the sub-optimality of accelerated gradient descent method is linearly convergent

with the constant 1− 1/
√
κ where κ is the condition number of the objective function. In

particular, the suboptimality after sn iterations is bounded above by

Rn(wn)−Rn(w∗n) ≤

(
1−

√
1

κ

)sn (
Rn(wm)−Rn(w∗n) +

m

2
‖wm −w∗n‖2

)
, (8.21)

where m is the constant of strong convexity. Replacing m
2 ‖wm −w∗n‖2 by its upper bound

Rn(wm)−Rn(w∗n) leads to the expression

Rn(wn)−Rn(w∗n) ≤ 2

(
1−

√
1

κ

)sn
(Rn(wm)−Rn(w∗n)) , (8.22)

Hence, if we follow the steps of the proof of Theorem 2 we obtain that sn should be

larger than

sn ≥ −
log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)]
log(1− 1/

√
κ)

. (8.23)

248

According to the inequality − log(1− x) > x, we can replace − log(1− 1/
√
κ) by its lower

bound 1/
√
κ to obtain

sn ≥
√
κn log

[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)]
. (8.24)

Note if the condition in (8.24) holds, then the inequality in (8.23) follows. The condition

number of the risk Rn is given by κn = (M+cVn)/cVn. Further, as stated in the statement of

the theorem, Vn can be written as Vn = γ/nα where γ is a positive constant and α ∈ [0.5, 1].

Based on these expressions, we can rewrite (8.24) as

sn ≥

√
nαM + cγ

cγ
log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)]
, (8.25)

which follows the claim in (8.19). If we assume that we start with m0 samples such that

N/m0 = 2q where q is an integer then the total number of gradient computations to achieve

VN for the risk RN is given by

∑
n=m0,2m0,...,N

√
nαM + cγ

cγ
log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)]
≤ log

[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)] ∑
n=m0,2m0,...,N

1 +

√
nαM

cγ

= log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)] [
(q + 1) +

√
mα

0M

cγ

(√
2(q+1)α − 1√

2α − 1

)]

≤ log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)] [
(q + 1) +

√
m0

αM

cγ

(√
2(q+1)α

√
2α − 1

)]

= log
[
6× 2α + (2α − 1)

(
4 + c‖w∗‖2

)] [
(q + 1) +

√
NαM

cγ

(√
2α√

2α − 1

)]
. (8.26)

Replacing q by log2(N/m0) leads to the bound in (8.20). �

The result in Theorem 14 characterizes the number of required iterations sn to achieve

the statistical accuracy of Rn. Moreover, it shows that to reach the accuracy VN = O(1/Nα)

for the risk RN accosiated to the full training set T , the total computational complex-

ity of Ada AGD is of the order O
(
N (1+α/2)

)
. Indeed, this complexity is lower than the

overall computational complexity of AGD for reaching the same target which is given by

O
(
N
√
κN log(Nα)

)
= O

(
N (1+α/2) log(Nα)

)
. Note that this bound holds for AGD since the

condition number κN := (M+cVN)/(cVN) of the risk RN is of the order O(1/VN) = O(Nα).

249

8.4.2 Adaptive sample size SVRG (Ada SVRG)

For the adaptive sample size mechanism presented in Section 8.3, we can also use linearly

convergent stochastic methods such as stochastic variance reduced gradient (SVRG) in

[45] to update the iterates. The SVRG method succeeds in reducing the computational

complexity of deterministic first-order methods by computing a single gradient per iteration

and using a delayed version of the average gradient to update the iterates. Indeed, we

can exploit the idea of SVRG to develop low computational complexity adaptive sample

size methods to improve the performance of deterministic adaptive sample size algorithms.

Moreover, the adaptive sample size variant of SVRG (Ada SVRG) enhances the proven

bounds for SVRG to solve ERM problems.

We proceed to extend the idea of adaptive sample size scheme to the SVRG algorithm.

To do so, consider wm as an iterate within the statistical accuracy, E[Rm(wm)−Rm(w∗m)] ≤
Vm, for a set Sm which contains m samples. Consider sn and qn as the numbers of outer

and inner loops for the update of SVRG, respectively, when the size of the training set

is n. Further, consider w̃ and ŵ as the sequences of iterates for the outer and inner

loops of SVRG, respectively. In the adaptive sample size SVRG (Ada SVRG) method to

minimize the risk Rn, we set the approximate solution wm for the previous ERM problem

as the initial iterate for the outer loop, i.e., w̃0 = wm. Then, the outer loop update which

contains gradient computation is defined as

∇Rn(w̃k) =
1

n

n∑
i=1

∇f(w̃k,θi) + cVnw̃k for k = 0, . . . , sn − 1, (8.27)

and the inner loop for the k-th outer loop contains qn iterations of the following update

ŵt+1,k = ŵt,k − ηn (∇f(ŵt,k, zit) + cVnŵt,k −∇f(w̃k, zit)− cVnw̃k +∇Rn(w̃k)) , (8.28)

for t = 0, . . . , qn − 1, where the iterates for the inner loop at step k are initialized as

ŵ0,k = w̃k, and it is index of the function which is chosen unfirmly at random from the

set {1, . . . , n} at the inner iterate t. The outcome of each inner loop ŵqn,k is used as the

variable for the next outer loop, i.e., w̃k+1 = ŵqn,k. We define the outcome of sn outer

loops w̃sn as the approximate solution for the risk Rn, i.e., wn = w̃sn .

In the following theorem we derive a bound on the number of required outer loops sn

to ensure that the variable wn generated by the updates in (8.27) and (8.28) will be in

the statistical accuracy of Rn in expectation, i.e., E[Rn(wn)−Rn(w∗n)] ≤ Vn. To reach the

smallest possible lower bound for sn, we properly choose the number of inner loop iterations

qn and the learning rate ηn.

Theorem 15 Consider the variable wm as a Vm-optimal solution of the risk Rm, i.e., a

250

solution such that E[Rm(wm)− Rm(w∗m)] ≤ Vm, where Vm = O(1/mα). Consider the sets

Sm ⊂ Sn ⊂ T such that n = 2m, and suppose Assumption 17 holds. Further, set the

number of inner loop iterations as qn = n and the learning rate as ηn = 0.1/(M + cVn).

Then, the variable wn generated based on the update of Ada SVRG in (8.27)-(8.28) satisfies

E[Rn(wn)−Rn(w∗n)] ≤ Vn if the number of iterations sn is larger than

sn ≥ log2

[
3× 2α + (2α − 1)

(
2 +

c

2
‖w∗‖2

)]
. (8.29)

Moreover, to reach the statistical accuracy VN of the full training set T the overall compu-

tational complexity of Ada SVRG is given by

4N log2

[
3× 2α + (2α − 1)

(
2 +

c

2
‖w∗‖2

)]
. (8.30)

Proof: Let’s recall the convergence result of SVRG after s outer loop where each inner loop

contains r iterations. We can show that if wm is the variable corresponding to m samples

and n is the variable associated with n samples, then we have

En[Rn(wn)−Rn(w∗n)] ≤ ρs [Rn(wm)−Rn(w∗n)] , (8.31)

where the expectation is taken with respect to the indices chosen in the inner loops, and

the constant ρ is defined as

ρ :=
1

γη(1− 2L0η)r
+

2L0η

1− 2L0η
< 1 (8.32)

where γ is the constant of strong convexity, L0 is the constant for the Lipschitz continuity

of gradients, q is the number of inner loop iterations, and η is the stepsize. If we assume

that Vn = O(1/nα), then we obtain that γ = c/nα and L0 = M + c/nα. Further, if we set

the number of inner loop iteration as q = n and the stepsize as η = 0.1/L0, the expression

for ρ can be simplified as

ρ :=
Mnα + c

0.08nc
+

1

4
<

1

2
, (8.33)

where the inequality holds since the size of training set is such that (Mnα + c)/(nc) ≤ 0.02.

Considering the result in (8.15) and the upper bound for the linear factor ρ, to ensure that

that outocme of the Ada SVRG is within the statistical accuracy of the risk Rn the number

of outer loops sn should be larger than

sn ≥ log2

[
3× 2α + (2α − 1)

(
2 +

c

2
‖w∗‖2

)]
, (8.34)

251

and the result in (8.29) follows.

Since each outer loop requires one full gradient computation and n inner loop iterations

the total number of gradient computations (computational complexity) of Ada SVRG at

the stage of minimizing Rn is given by 2nsn. Therefore, if we assume that we start with

m0 samples such that N/m0 = 2q where q is an integer, then the total number of gradient

computations to achieve VN for the risk RN is given by∑
n=m0,2m0,...,N

2n log2

[
3× 2α + (2α − 1)

(
2 +

c

2
‖w∗‖2

)]
= 2m0

2q+1 − 1

2− 1
log2

[
3× 2α + (2α − 1)

(
2 +

c

2
‖w∗‖2

)]
≤ 4N log2

[
3× 2α + (2α − 1)

(
2 +

c

2
‖w∗‖2

)]
, (8.35)

which yields the claim in (8.30). �

The result in (8.29) shows that the minimum number of outer loop iterations for Ada

SVRG is equal to sn = blog2[3× 2α + (2α − 1)(2 + (c/2)‖w∗‖2)]c+ 1. This bound leads to

the result in (8.30) which shows that the overall computational complexity of Ada SVRG

to reach the statistical accuracy of the full training set T is of the order O(N). This bound

not only improves the bound O(N1+α/2) for Ada AGD, but also enhances the complexity

of SVRG for reaching the same target accuracy which is given by O((N + κ) log(Nα)) =

O(N log(Nα)).

8.5 Experiments

In this section, we compare the adaptive sample size versions of a group of first-order meth-

ods, including gradient descent (GD), accelerated gradient descent (AGD), and stochastic

variance reduced gradient (SVRG) with their standard (fixed sample size) versions. In this

section, we first compare the performance of these methods on the RCV1 dataset. We use

N = 10, 000 samples of the RCV1 dataset for the training set and the remaining 10, 242 as

the test set. The number of features in each sample is p = 47, 236. In our experiments, we

use logistic loss. The constant c should be within the order of gradients Lipschitz continuity

constant M , and, therefore, we set it as c = 1 since the samples are normalized and M = 1.

The size of the initial training set for adaptive methods is m0 = 400. In our experiments

we assume α = 0.5 and therefore the added regularization term is (1/
√
n)‖w‖2.

The plots in Figure 8.1 compare the suboptimality of GD, AGD, and SVRG with their

adaptive sample size versions. As our theoretical results suggested, we observe that the

adaptive sample size scheme reduces the overall computational complexity of all of the

considered linearly convergent first-order methods. If we compare the test errors of GD,

252

0 20 40 60 80 100

Number of effective passes

10
-2

10
-1

10
0

10
1

10
2

S
u
b
op

ti
m
al
it
y

GD
Ada GD

0 20 40 60 80 100

Number of effective passes

10
-2

10
-1

10
0

10
1

10
2

S
u
b
op

ti
m
al
it
y

AGD
Ada AGD

0 1 2 3 4 5 6

Number of effective passes

10
-3

10
-2

10
-1

10
0

10
1

10
2

S
u
b
op

ti
m
al
it
y

SVRG
Ada SVRG

Figure 8.1: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms
of suboptimality vs. number of effective passes for RCV1 dataset with regularization of the order
O(1/

√
n).

0 20 40 60 80 100

Number of effective passes

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

GD
Ada GD

0 20 40 60 80 100

Number of effective passes

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

AGD
Ada AGD

0 1 2 3 4 5 6

Number of effective passes

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

SVRG
Ada SVRG

Figure 8.2: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms of
test error vs. number of effective passes for RCV1 dataset with regularization of the order O(1/

√
n).

AGD, and SVRG with their adaptive sample size variants, we reach the same conclusion that

the adaptive sample size scheme reduces the overall computational complexity to reach the

statistical accuracy of the full training set. In particular, the left plot in Figure 8.2 shows

that Ada GD approaches the minimum test error of 8% after 55 effective passes, while

GD can not improve the test error even after 100 passes. Indeed, GD will reach lower

test error if we run it for more iterations. The central plot in Figure 8.2 showcases that

Ada AGD reaches 8% test error about 5 times faster than AGD. This is as predicted by

log(Nα) = log(100) = 4.6. The right plot in Figure 8.2 illustrates a similar improvement

for Ada SVRG.

Now we proceed to compare these method using the MNIST dataset containing images

of dimension p = 784. Since we are interested in a binary classification problem we only

use the samples corresponding to digits 0 and 8, and, therefore, the number of samples is

11, 774. We choose N = 6, 000 of these samples randomly and use them as the training set

and use the remaining 5, 774 samples as the test set. We use the logistic loss to evaluate the

performance of the classifier and normalize the samples to ensure that the constant for the

Lipschitz continuity of the gradients is M = 1. In our experiments we consider two different

scenarios. First we compare GD, AGD, and SVRG with their adaptive sample size versions

when the additive regularization term is of order 1/
√
n. Then, we redo the experiments for

253

0 50 100 150 200 250 300 350

Number of effective passes

10
-2

10
-1

10
0

10
1

S
u
b
op

ti
m
al
it
y

GD
Ada GD

0 10 20 30 40 50 60 70

Number of effective passes

10
-2

10
-1

10
0

10
1

S
u
b
op

ti
m
al
it
y

AGD
Ada AGD

0 2 4 6 8

Number of effective passes

10
-3

10
-2

10
-1

10
0

10
1

S
u
b
op

ti
m
al
it
y

SVRG
Ada SVRG

Figure 8.3: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms
of suboptimality vs. number of effective passes for MNIST dataset with regularization of the order
O(1/

√
n).

0 20 40 60 80 100

Number of effective passes

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

GD
Ada GD

0 10 20 30 40 50 60

Number of effective passes

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

AGD
Ada AGD

0 2 4 6 8 10

Number of effective passes

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

SVRG
Ada SVRG

Figure 8.4: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms
of test error vs. number of effective passes for MNIST dataset with regularization of the order
O(1/

√
n).

a regularization term of order 1/n.

The plots in Figure 8.3 compare the suboptimality of GD, AGD, and SVRG with Ada

GD, Ada AGD, and Ada SVRG when the regularization term in (1/
√
n)‖w‖2. Note that

in this case the statistical accuracy should be order of O(1/
√
n) and therefore we are

interested in the number of required iterations to achieve the suboptimality of order 10−2.

As we observe Ada GD reach this target accuracy almost 6 times faster than GD. The

improvement for Ada AGD and Ada SVRG is less significant, but they still reach the

suboptimality of 10−2 significantly faster than their standard (fixed sample size) methods.

Figure 8.4 illustrates the test error of GD, AGD, SVRG, Ada GD, Ada AGD, and Ada

SVRG versus the number of effective passes over the dataset when the added regularization

is of the order O(1/
√
n). Comparison of these methods in terms of test error also support

the gain in solving subproblems sequentially instead of minimizing the ERM corresponding

to the full training set directly. In particular, for all three methods, the adaptive sample size

version reaches the minimum test error of 2.5% faster than the fixed sample size version.

We also run the same experiments for the case that the regularization term is order 1/n.

Figure 8.5 shows the suboptimality of GD, AGD, and SVRG and their adaptive sample

size version for the MNIST dataset when Vn is assumed to be O(1/n). We expect from

254

0 100 200 300 400 500

Number of effective passes

10
-2

10
-1

10
0

10
1

S
u
b
op

ti
m
al
it
y

GD
Ada GD

0 100 200 300 400

Number of effective passes

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
u
b
op

ti
m
al
it
y

AGD
Ada AGD

0 50 100 150 200

Number of effective passes

10
-4

10
-3

10
-2

10
-1

10
0

10
1

S
u
b
op

ti
m
al
it
y

SVRG
Ada SVRG

Figure 8.5: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms
of suboptimality vs. number of effective passes for MNIST dataset with regularization of the order
O(1/n).

0 100 200 300 400 500

Number of effective passes

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

GD
Ada GD

0 100 200 300 400 500

Number of effective passes

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

AGD
Ada AGD

0 10 20 30 40 50

Number of effective passes

 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

T
es
t
er
ro
r

SVRG
Ada SVRG

Figure 8.6: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms
of test error vs. number of effective passes for the MNIST dataset with regularization of the order
O(1/n).

our theoretical achievements the advantage of using adaptive sample size scheme in this

setting should be more significant, since log(N) is twice the value of log(
√
N). Figure 8.5

fulfills this expectation by showing that Ada GD, Ada AGD, and Ada SVRG are almost

10 times faster than GD, AGD, and SVRG, respectively. Figure 8.6 demonstrates the test

error of these methods versus the number of effective passes for a regularization of order

O(1/n). In this case, this case all methods require more passes to achieve the minimum

test error comparing to the case that regularization is of order O(1/n). Interestingly, the

minimum accuracy in this case is equal to 1% which is lower than 2.5% for the previous

setting. Indeed, the difference between the number of required passes to reach the minimum

test error for adaptive sample size methods and their standard version is more significant

since the factor log(Nα) is larger.

8.6 Discussions

We presented an adaptive sample size scheme to improve the convergence guarantees for a

class of first-order methods which have linear convergence rates under strong convexity and

smoothness assumptions. The logic behind the proposed adaptive sample size scheme is to

255

replace the solution of a relatively hard problem – the ERM problem for the full training

set – by a sequence of relatively easier problems – ERM problems corresponding to a subset

of samples. Indeed, whenever m < n, solving the ERM problems in (9.1) for loss Rm is

simpler than the one for loss Rn because:

(i) The adaptive regularization term of order Vm makes the condition number of Rm

smaller than the condition number of Rn – which uses a regularizer of order Vn.

(ii) The approximate solution wm that we need to find for Rm is less accurate than the

approximate solution wn we need to find for Rn.

(iii) The computation cost of an iteration for Rm – e.g., the cost of evaluating a gradient

– is lower than the cost of an iteration for Rn.

Properties (i)-(iii) combined with the ability to grow the sample size geometrically, reduce

the overall computational complexity for reaching the statistical accuracy of the full training

set. We particularized our results to develop adaptive (Ada) versions of AGD and SVRG.

In both methods we found a computational complexity reduction of order O(log(1/VN)) =

O(log(Nα)) which was corroborated in numerical experiments. The idea and analysis of

adaptive first order methods apply generically to any other approach with linear convergence

rate (Theorem 13). The development of sample size adaptation for sublinear methods is

left for future research.

256

Chapter 9

Second-order adaptive sample size

method

In Chapter 8 we studied adaptive sample size first order methods and showed that the idea

of geometrically increasing the size of the training set leads to better convergence guarantees

for solving ERM problems.

The goal of this chapter is to extend the adaptive sample size idea into second-order

methods by introducing Ada Newton method. The main idea of Ada Newton is to increase

the size of the training set by a factor larger than one in a way that the minimization

variable for the current training set is in the local neighborhood of the optimal argument of

the next training set. This allows to exploit the quadratic convergence property of Newton’s

method and reach the statistical accuracy of each training set with only one iteration of

Newton’s method. We discuss the details in the following sections.

9.1 Context and background

A hallmark of empirical risk minimization (ERM) on large datasets is that evaluating de-

scent directions requires a complete pass over the dataset. Since this is undesirable due to

the large number of training samples, stochastic optimization algorithms with descent di-

rections estimated from a subset of samples are the method of choice. First order stochastic

optimization has a long history [88, 98] but the last decade has seen fundamental progress

in developing alternatives with faster convergence. A partial list of this consequential liter-

ature includes Nesterov acceleration [5, 85], stochastic averaging gradient [31, 49], variance

reduction [45,125], and dual coordinate methods [109,110].

When it comes to stochastic second order methods the first challenge is that while

evaluation of Hessians is as costly as evaluation of gradients, the stochastic estimation of

Hessians has proven more challenging. This difficulty is addressed by incremental computa-

257

tions in [39] and subsampling in [34] or circumvented altogether in stochastic quasi-Newton

methods [58, 70, 72, 78, 105]. Despite this incipient progress it is nonetheless fair to say

that the striking success in developing stochastic first order methods is not matched by

equal success in the development of stochastic second order methods. This is because even

if the problem of estimating a Hessian is solved there are still four challenges left in the

implementation of Newton-like methods in ERM:

(i) Global convergence of Newton’s method requires implementation of a line search sub-

routine and line searches in ERM require a complete pass over the dataset.

(ii) The quadratic convergence advantage of Newton’s method manifests close to the op-

timal solution but there is no point in solving ERM problems beyond their statistical

accuracy.

(iii) Newton’s method works for strongly convex functions but loss functions are not

strongly convex for many ERM problems of practical importance.

(iv) Newton’s method requires inversion of Hessians which is costly in large dimensional

ERM.

Because stochastic Newton-like methods can’t use line searches [cf. (i)], must work on

problems that may be not strongly convex [cf. (iii)], and never operate very close to the

optimal solution [cf (ii)], they never experience quadratic convergence. They do improve

convergence constants and, if efforts are taken to mitigate the cost of inverting Hessians [cf.

(iv)] as in [34,70,91,105] they result in faster convergence. But since they still converge at

linear rates they do not enjoy the foremost benefits of Newton’s method.

In this paper we attempt to circumvent (i)-(iv) with the Ada Newton algorithm that

combines the use of Newton iterations with adaptive sample sizes [29]. Say the total number

of available samples is N , consider subsets of n ≤ N samples, and suppose the statistical

accuracy of the ERM associated with n samples is Vn. In Ada Newton we add a quadratic

regularization term of order Vn to the empirical risk – so that the regularized risk also has

statistical accuracy Vn – and assume that for a certain initial sample size m0, the problem

has been solved to its statistical accuracy Vm0 . The sample size is then increased by a

factor α > 1 to n = αm0. We proceed to perform a single Newton iteration with unit

stepsize and prove that the result of this update solves this extended ERM problem to its

statistical accuracy (Section 9.2). This permits a second increase of the sample size by a

factor α and a second Newton iteration that is likewise guaranteed to solve the problem

to its statistical accuracy. Overall, this permits minimizing the empirical risk in α/(α− 1)

passes over the dataset and inverting logαN Hessians. Our theoretical results provide a

characterization of the values of α that are admissible with respect to different problem

258

parameters (Theorem 16). In particular, we show that asymptotically on the number of

samples n and with proper parameter selection we can set α = 2 (Proposition 10). In such

case we can optimize to within statistical accuracy in about 2 passes over the dataset and

after inversion of about 3.32 log10N Hessians. Our numerical experiments verify that α = 2

is a valid factor for increasing the size of the training set at each iteration while performing

a single Newton iteration for each value of the sample size.

9.2 Ada Newton

Recall the problem formulation for ERM in Section 8.2. As we discussed previously, solving

the optimization problem

w∗n := argmin
w

Rn(w) = argmin
w

Ln(w) +
cVn
2
‖w‖2. (9.1)

within the statistical accuracy Vn, i.e., Rn(wn)−Rn(w∗n) ≤ Vn, leads to an Vn suboptimal

solution for the original stochastic optimization problem in (8.1). Thus, we can say that

a variable wn satisfying Rn(wn) − Rn(w∗n) ≤ Vn solves the ERM problem to within its

statistical accuracy. Therefore, our aim is to solve the problem in (9.1) for n = N within

its statistical accuracy.

To solve (9.1) suppose the problem has been solved to within its statistical accuracy for

a set Sm ⊂ Sn with m = n/α samples where α > 1. Therefore, we have found a variable

wm for which Rm(wm)−Rm(w∗m) ≤ Vm. Our goal is to update wm using the Newton step

in a way that the updated variable wn estimates w∗n with accuracy Vn. To do so compute

the gradient of the risk Rn evaluated at wm

∇Rn(wm) =
1

n

n∑
k=1

∇f(wm, zk) + cVnwm, (9.2)

as well as the Hessian Hn of Rn evaluated at wm

Hn := ∇2Rn(wm) =
1

n

n∑
k=1

∇2f(wm, zk) + cVnI, (9.3)

and update wm with the Newton step of the regularized risk Rn to compute

wn = wm −H−1n ∇Rn(wm). (9.4)

Note that the stepsize of the Newton update in (9.4) is 1, which avoids line search algorithms

requiring extra computation. The main contribution of this paper is to derive a condition

259

that guarantees that wn solves Rn to within its statistical accuracy Vn. To do so, we first

assume the following conditions are satisfied.

Assumption 18 The loss functions f(w, z) are convex with respect to w for all values of

z. Moreover, their gradients ∇f(w, z) are Lipschitz continuous with constant M

‖∇f(w, z)−∇f(w′, z)‖ ≤M‖w −w′‖, for all z. (9.5)

Assumption 19 The loss functions f(w, z) are self-concordant with respect to w for all z.

Assumption 20 The difference between the gradients of the empirical loss Ln and the

statistical average loss L is bounded by V
1/2
n for all w with high probability,

sup
w
‖∇L(w)−∇Ln(w)‖ ≤ V 1/2

n , w.h.p. (9.6)

The conditions in Assumption 18 imply that the average loss L(w) and the empirical

loss Ln(w) are convex and their gradients are Lipschitz continuous with constant M . Thus,

the empirical risk Rn(w) is strongly convex with constant cVn and its gradients ∇Rn(w)

are Lipschitz continuous with parameter M + cVn. Likewise, the condition in Assumption

19 implies that the average loss L(w), the empirical loss Ln(w), and the empirical risk

Rn(w) are also self-concordant. The condition in Assumption 20 says that the gradients

of the empirical risk converge to their statistical average at a rate of order V
1/2
n . If the

constant Vn is of order not faster than O(1/n) the condition in Assumption 20 holds if the

gradients converge to their statistical average at a rate of order V
1/2
n = O(1/

√
n). This is a

conservative rate for the law of large numbers.

In the following theorem, given Assumptions 18-20, we state a condition that guarantees

the variable wn evaluated as in (9.4) solves Rn to within its statistical accuracy Vn.

Theorem 16 Consider the variable wm as a Vm-optimal solution of the risk Rm, i.e., a

solution such that Rm(wm) − Rm(w∗m) ≤ Vm. Let n = αm > m, consider the risk Rn

associated with sample set Sn ⊃ Sm, and suppose assumptions 18 - 20 hold. If the sample

size n is chosen such that(
2(M + cVm)Vm

cVn

)1/2

+
2(n−m)

nc1/2
+

(
(2 +

√
2)c1/2 + c‖w∗‖

)
(Vm − Vn)

(cVn)1/2
≤ 1

4
(9.7)

and

144

(
Vm +

2(n−m)

n
(Vn−m + Vm) + 2 (Vm − Vn) +

c(Vm − Vn)

2
‖w∗‖2

)2

≤ Vn (9.8)

260

Algorithm 11 Ada Newton

1: Parameters: Sample size increase constants α0 > 1 and 0 < β < 1.
2: Input: Initial sample size n = m0 and argument wn = wm0 with ‖∇Rn(wn)‖ <

(
√

2c)Vn
3: while [domain loop]n ≤ N
4: Update argument and index: wm = wn and m = n. Reset factor α = α0 .
5: repeat[sample size backtracking loop]
6: Increase sample size: n = min{αm,N}.
7: Compute gradient [cf. (9.2)]: ∇Rn(wm) = (1/n)

∑n
k=1∇f(wm, zk) + cVnwm

8: Compute Hessian [cf. (9.3)]: Hn = (1/n)
∑n

k=1∇2f(wm, zk) + cVnI
9: Newton Update [cf. (9.4)]: wn = wm −H−1n ∇Rn(wm)

10: Compute gradient [cf. (9.2)]: ∇Rn(wn) = (1/n)
∑n

k=1∇f(wn, zk) + cVnwn

11: Backtrack sample size increase α = βα.
12: until ‖∇Rn(wn)‖ < (

√
2c)Vn

13: end while

are satisfied, then the variable wn, which is the outcome of applying one Newton step on

the variable wm as in (9.4), has sub-optimality error Vn with high probability, i.e.,

Rn(wn)−Rn(w∗n) ≤ Vn, w.h.p. (9.9)

Proof: See Section 9.3. �

Theorem 16 states conditions under which we can iteratively increase the sample size

while applying single Newton iterations without line search and staying within the statistical

accuracy of the regularized empirical risk. The constants in (9.7) and (9.8) are not easy to

parse but we can understand them qualitatively if we focus on large m. This results in a

simpler condition that we state next.

Proposition 10 Consider a learning problem in which the statistical accuracy satisfies

Vm ≤ αVn for n = αm and limn→∞ Vn = 0. If the regularization constant c is chosen so

that (
2αM

c

)1/2

+
2(α− 1)

αc1/2
<

1

4
, (9.10)

then, there exists a sample size m̃ such that (9.7) and (9.8) are satisfied for all m > m̃ and

n = αm. In particular, if α = 2 we can satisfy (9.7) and (9.8) with c > 16(2
√
M + 1)2.

Proof: That the condition in (9.8) is satisfied for all m > m̃ follows simply because the left

hand side is of order V 2
m and the right hand side is of order Vn. To show that the condition

in (9.7) is satisfied for sufficiently large m observe that the third summand in (9.7) is of

order O((Vm − Vn)/V
1/2
n) and vanishes for large m. In the second summand of (9.7) we

make n = αm to obtain the second summand in (9.10) and in the first summand replace

261

the ratio Vm/Vn by its bound α to obtain the first summand of (9.10). To conclude the

proof just observe that the inequality in (9.10) is strict. �

The condition Vm ≤ αVn is satisfied if Vn = 1/n and is also satisfied if Vn = 1/
√
n

because
√
α < α. This means that for most ERM problems we can progress geometrically

over the sample size and arrive at a solution wN that solves the ERM problem RN to its

statistical accuracy VN as long as (9.10) is satisfied .

The result in Theorem 16 motivates definition of the Ada Newton algorithm that we

summarize in Algorithm 11. The core of the algorithm is in steps 6-9. Step 6 implements an

increase in the sample size by a factor α and steps 7-9 implement the Newton iteration in

(9.2)-(9.4). The required input to the algorithm is an initial sample size m0 and a variable

wm0 that is known to solve the ERM problem with accuracy Vm0 . Observe that this initial

iterate doesn’t have to be computed with Newton iterations. The initial problem to be

solved contains a moderate number of samples m0, a mild condition number because it is

regularized with constant cVm0 , and is to be solved to a moderate accuracy Vm0 – recall

that Vm0 is of order Vm0 = O(1/m0) or order Vm0 = O(1/
√
m0) depending on regularity as-

sumptions. Stochastic first order methods excel at solving problems with moderate number

of samples m0 and moderate condition to moderate accuracy.

We remark that the conditions in Theorem 16 and Proposition 10 are conceptual but

that the constants involved are unknown in practice. In particular, this means that the

allowed values of the factor α that controls the growth of the sample size are unknown a

priori. We solve this problem in Algorithm 11 by backtracking the increase in the sample

size until we guarantee that wn minimizes the empirical risk Rn(wn) to within its statistical

accuracy. This backtracking of the sample size is implemented in Step 11 and the optimality

condition of wn is checked in Step 12. The condition in Step 12 is on the gradient norm that,

because Rn is strongly convex, can be used to bound the suboptimality Rn(wn)−Rn(w∗n)

as

Rn(wn)−Rn(w∗n) ≤ 1

2cVn
‖∇Rn(wn)‖2. (9.11)

Observe that checking this condition requires an extra gradient computation undertaken

in Step 10. That computation can be reused in the computation of the gradient in Step

5 once we exit the backtracking loop. We emphasize that when the condition in (9.10)

is satisfied, there exists a sufficiently large m for which the conditions in Theorem 16 are

satisfied for n = αm. This means that the backtracking condition in Step 12 is satisfied

after one iteration and that, eventually, Ada Newton progresses by increasing the sample

size by a factor α. This means that Algorithm 11 can be thought of as having a damped

phase where the sample size increases by a factor smaller than ρ and a geometric phase

where the sample size grows by a factor ρ in all subsequent iterations. The computational

cost of this geometric phase is of not more than α/(α− 1) passes over the dataset and

262

requires inverting not more than logαN Hessians. If c > 16(2
√
M + 1)2, we make α = 2

for optimizing to within statistical accuracy in about 2 passes over the dataset and after

inversion of about 3.32 log10N Hessians.

9.3 Convergence analysis

In this section we study the proof of Theorem 16. To do so, first we prove Lemmata 26 and

27 which are intermediate results that we use in proving the mentioned propositions. We

start the analysis by providing an upper bound for the difference between the loss functions

Ln and Lm.

Lemma 26 Consider Ln and Lm as the empirical losses of the sets Sn and Sm, respectively,

where they are chosen such that Sm ⊂ Sn. If we define n and m as the number of samples in

the training sets Sn and Sm, respectively, then the absolute value of the difference between

the empirical losses is bounded above by

|Ln(w)− Lm(w)| ≤ n−m
n

(Vn−m + Vm) , w.h.p. (9.12)

for any w.

Proof: The proof is very similar to the proof of Lemma 30 in Appendix C.1 except a minor

difference that the result in (9.12) holds with high probability instead of in expectation as

in (C.5). This difference is the outcome of using the inequality supw |L(w)− Ln(w)| ≤ Vn

with high probability instead of the relation supw E [|L(w)− Ln(w)|] ≤ Vn. The proof is

omitted due to similarity of these analyses. �

The result in Lemma 26 shows that the upper bound for the difference between the loss

functions associated with the sets Sm and Sn where Sm ⊂ Sn is proportional to the difference

between the size of these two sets n−m. This result will help us later to understand how

much we can increase the size of the training set at each iteration. In other words, how

large the difference n−m could be, while we have the statistical accuracy.

In the following lemma, we characterize an upper bound for the norm of the optimal

argument w∗n of the empirical risk Rn(w) in terms of the norm of statistical average loss

L(w) optimal argument w∗.

Lemma 27 Consider Ln as the empirical loss of the set Sn and L as the statistical average

loss. Moreover, recall w∗ as the optimal argument of the statistical average loss L, i.e.,

w∗ = argminw L(w). If Assumption 18 holds, then the norm of the optimal argument w∗n

263

of the regularized empirical risk Rn(w) := Ln(w) + cVn‖w‖2 is bounded above by

‖w∗n‖2 ≤
4

c
+ ‖w∗‖2, w.h.p. (9.13)

Proof: The proof is very similar to the proof of Lemma 31 in Appendix C.1 except a minor

difference that the result in (9.13) holds with high probability instead of in expectation as

in (C.6). This difference is the outcome of using the inequality supw |L(w)− Ln(w)| ≤ Vn

with high probability instead of the relation supw E [|L(w)− Ln(w)|] ≤ Vn. The proof is

omitted due to similarity of these analyses. �

The main idea of the Ada Newton algorithm is introducing a policy for increasing the size

of training set from m to n in a way that the current variable wm is in the Newton quadratic

convergence phase for the next regularized empirical risk Rn. In the following proposition,

we characterize the required condition to guarantee staying in the local neighborhood of

Newton’s method.

Proposition 11 Consider the sets Sm and Sn as subsets of the training set T such that

Sm ⊂ Sn ⊂ T . We assume that the number of samples in the sets Sm and Sn are m

and n, respectively. Further, define wm as an Vm optimal solution of the risk Rm, i.e.,

Rm(wm)−Rm(w∗m) ≤ Vm. In addition, define λn(w) :=
(
∇Rn(w)T∇2Rn(w)−1∇Rn(w)

)1/2
as the Newton decrement of variable w associated with the risk Rn. If Assumption 18-20

hold, then Newton’s method at point wm is in the quadratic convergence phase for the ob-

jective function Rn, i.e., λn(wm) < 1/4, if we have

(
2(M + cVm)Vm

cVn

)1/2

+
(2(n−m)/n)V

1/2
n + (

√
2c+ 2

√
c+ c‖w∗‖)(Vm − Vn)

(cVn)1/2
≤ 1

4
w.h.p.

(9.14)

Proof: From the self-concordance analysis of Newton’s method we know that the variable

wm is in the neighborhood that Newton’s method has a quadratic convergence rate if

λn(wm) ≤ 1/4; see e.g., Chapter 9 of [20]. We proceed to come up with a condition for

the quadratic convergence phase which guarantees that λn(wm) < 1/4 and wm is in the

local neighborhood of the optimal argument of Rn. Recall that we have a wm which has

sub-optimality Vm for Rm. We then proceed to enlarge the sample size to n and start from

the observation that we can bound λn(wm) as

λn(wm) = ‖∇Rn(wm)‖H−1
n
≤ ‖∇Rm(wm)‖H−1

n
+ ‖∇Rn(wm)−∇Rm(wm)‖H−1

n
, (9.15)

where we have used the definition Hn = ∇2Rn(wm). Note that the weighted norm

‖a‖A for vector a and matrix A is equal to ‖a‖A = (aTAa)1/2. First, we bound the

264

norm ‖∇Rn(wm)‖H−1
n

in (9.15). Notice that the Hessian ∇2Rn(wm) can be written as

∇2Ln(wm) + cVnI. Thus, the eigenvalues of the Hessian Hn = ∇2Rn(wm) are bounded

below by cVn and consequently the eigenvalues of the Hessian inverse H−1n = ∇2Rn(wm)−1

are upper bounded by 1/(cVn). This bound implies that ‖H−1n ‖ ≤ 1/(cVn). Moreover, from

Theorem 2.1.5 of [83], we know that the Lipschitz continuity of the gradients ∇Rm(w) with

constant M + cVm implies that

‖∇Rm(wm)‖2 ≤ 2(M + cVm)(Rm(wm)−Rm(w∗m)) ≤ 2(M + cVm)Vm, (9.16)

where the last inequality holds comes from the condition that Rm(wm) − Rm(w∗m) ≤ Vm.

Considering the upper bound for ‖∇Rm(wm)‖2 in (9.16) and the inequality ‖∇2Rn(wm)−1‖ ≤
1/(cVn) we can write

‖∇Rm(wm)‖H−1
n

=
[
∇Rm(wm)TH−1n ∇Rm(wm)

]1/2
≤
(

2(M + cVm)Vm
cVn

)1/2

. (9.17)

Now we proceed to bound the second the term in (9.15). The definition of the risk

function the gradient can be written as ∇Rn(w) = ∇Ln(w) + (cVn)w. Thus, we can derive

an upper bound for the difference ‖∇Rn(wm)−∇Rm(wm)‖ as

‖∇Rn(wm)−∇Rm(wm)‖

≤ ‖∇Ln(wm)−∇Lm(wm)‖+ c(Vm − Vn)‖wm‖

≤ ‖∇Ln(wm)−∇Lm(wm)‖+ c(Vm − Vn)‖wm −w∗m‖+ c(Vm − Vn)‖w∗m‖, (9.18)

where in the second inequality we have used the triangle inequality and replaced ‖wm‖ by

its upper bound ‖wm −w∗m‖+ ‖w∗m‖. By following the steps in (C.2)-(9.12) we can show

that the difference ‖∇Ln(wm)−∇Lm(wm)‖ is bounded above by

‖∇Ln(w)−∇Lm(w)‖ ≤ n−m
n
‖∇Ln−m(w)−∇L(w)‖+

n−m
n
‖∇Lm(w)−∇L(w)‖

≤ 2(n−m)

n
V 1/2
n , (9.19)

where the second inequality uses the condition that ‖∇Lm(w)−∇L(w)‖ ≤ V
1/2
m as in

Assumption 3.

Note that the strong convexity of the risk Rm with parameter cVm yields

‖wm −w∗m‖2 ≤
2

cVm
(Rm(wm)−Rm(w∗m)) ≤ 2

c
. (9.20)

265

Thus, by considering the inequalities in (9.19) and (9.20) we can show that upper bound in

(9.18) can be replaced by

‖∇Rn(wm)−∇Rm(wm)‖ ≤ 2(n−m)

n
V 1/2
n + (

√
2c+ c‖w∗m‖)(Vm − Vn). (9.21)

Substituting the upper bounds in (9.17) and (9.21) for the first and second summands in

(9.15), respectively, follows the inequality

λn(wm) ≤
(

2(M + cVm)Vm
cVn

)1/2

+
(2(n−m)/n)V

1/2
n + (

√
2c+ c‖w∗m‖)(Vm − Vn)

(cVn)1/2
.

(9.22)

Note that the result in (9.13) shows that ‖w∗m‖2 ≤ (4/c) + ‖w∗‖2 with high probability.

This observation implies that ‖w∗m‖ is bounded above by (2/
√
c) + ‖w∗‖. Replacing the

norm ‖w∗m‖ in (9.22) by the upper bound (2/
√
c) + ‖w∗‖ yields

λn(wm) ≤
(

2(M + cVm)Vm
cVn

)1/2

+
(2(n−m)/n)V

1/2
n + (

√
2c+ 2

√
c+ c‖w∗‖)(Vm − Vn)

(cVn)1/2
.

(9.23)

As we mentioned previously, the variable wm is in the neighborhood that Newton’s method

has a quadratic convergence rate for the function Rn if the condition λn(wm) ≤ 1/4 holds.

Hence, if the right hand side of (9.23) is bounded above by 1/4 we can conclude that wm

is in the local neighborhood and the proof is complete. �

From the analysis of Newton’s method we know that if the Newton decrement λn(w) is

smaller than 1/4, the variable w is in the local neighborhood of Newton’s method; see e.g.,

Chapter 9 of [20]. From the result in Proposition 11, we obtain a sufficient condition to

guarantee that λn(wm) < 1/4 which implies that wm, which is a Vm optimal solution for the

regularized empirical loss Rm, i.e., Rm(wm)−Rm(w∗m) ≤ Vm, is in the local neighborhood

of the optimal argument of Rn that Newton’s method converges quadratically.

Unfortunately, the quadratic convergence of Newton’s method for self-concordant func-

tions is in terms of the Newton decrement λn(w) and it does not necessary guarantee

quadratic convergence in terms of objective function error. To be more precise, we can

show that λn(wn) ≤ γλn(wm)2; however, we can not conclude that the quadratic conver-

gence of Newton’s method implies Rn(wn) − Rn(w∗n) ≤ γ′(Rn(wm) − Rn(w∗n))2. In the

following proposition we try to characterize an upper bound for the error Rn(wn)−Rn(w∗n)

in terms of the squared error (Rn(wm)−Rn(w∗n))2 using the quadratic convergence property

of Newton decrement.

266

Proposition 12 Consider wm as a variable that is in the local neighborhood of the optimal

argument of the risk Rn where Newton’s method has a quadratic convergence rate, i.e.,

λn(wm) ≤ 1/4. Recall the definition of the variable wn in (9.4) as the updated variable

using Newton step. If Assumption 18 and 19 hold, then the difference Rn(wn)−Rn(w∗n) is

upper bounded by

Rn(wn)−Rn(w∗n) ≤ 144(Rn(wm)−Rn(w∗n))2. (9.24)

Proof: To prove the result in (9.24) first we need to find upper and lower bounds for the

difference Rn(w)−Rn(w∗n) in terms of the Newton decrement parameter λn(w). To do so,

we use the result in Theorem 4.1.11 of [83] which shows that

λn(w)− ln (1 + λn(w)) ≤ Rn(w)−Rn(w∗n) ≤ −λn(w)− ln (1− λn(w)) . (9.25)

Note that we assume that 0 < λn(w) < 1/4. Thus, we can use the Taylor’s expansion

of ln(1 + a) for a = λn(w) to show that λn(w) − ln (1 + λn(w)) is bounded below by

(1/2)λn(w)2 − (1/3)λn(w)3. Since 0 < λn(w) < 1/4 we can show that (1/6)λn(w)2 ≤
(1/2)λn(w)2 − (1/3)λn(w)3. Thus, the term λn(w) − ln (1 + λn(w)) is bounded below by

(1/6)λ2. Likewise, we use Taylor’s expansion of ln(1 − a) for a = λn(w) to show that

−λn(w)− ln (1− λn(w)) is bounded above by λn(w)2 for λn(w) < 1/4; see e.g., Chapter 9

of [20]. Considering these bounds and the inequalities in (9.25) we can write

1

6
λn(w)2 ≤ Rn(w)−Rn(w∗n) ≤ λn(w)2. (9.26)

Recall that the variable wm satisfies the condition λn(wm) ≤ 1/4. Thus, according to

the quadratic convergence rate of Newton’s method for self-concordant functions [20], we

know that the Newton decrement has a quadratic convergence and we can write

λn(wn) ≤ 2λn(wm)2. (9.27)

We use the result in (9.26) and (9.27) to show that the optimality error Rn(wn)−Rn(w∗n) has

an upper bound which is proportional to (Rn(wm)−Rn(w∗n))2. In particular, we can write

Rn(wn)−Rn(w∗n) ≤ λn(wn)2 based on the second inequality in (9.26). This observation in

conjunction with the result in (9.27) implies that

Rn(wn)−Rn(w∗n) ≤ 4λn(wm)4. (9.28)

The first inequality in (9.26) yields λn(wm)4 ≤ 36(Rn(wm) − Rn(w∗n))2. Thus, we can

substitute λn(wm)4 in (9.28) by 36(Rn(wm)−Rn(w∗n))2 to obtain the result in (9.24). �

267

The result in Proposition 12 provides an upper bound for the sub-optimality Rn(wn)−
Rn(w∗n) in terms of the sub-optimality of variable wm for the riskRn, i.e., Rn(wm)−Rn(w∗n).

Recall that we know that wm is in the statistical accuracy of Rm, i.e., Rm(wm)−Rm(w∗m) ≤
Vm, and we aim to show that the updated variable wn stays in the statistical accuracy of

Rn, i.e., Rn(wn) − Rn(w∗n) ≤ Vn. This can be done by showing that the upper bound for

Rn(wn) − Rn(w∗n) in (9.24) is smaller than Vn. We proceed to derive an upper bound for

the sub-optimality Rn(wm)−Rn(w∗n) in the following proposition.

Proposition 13 Consider the sets Sm and Sn as subsets of the training set T such that

Sm ⊂ Sn ⊂ T . We assume that the number of samples in the sets Sm and Sn are m

and n, respectively. Further, define wm as an Vm optimal solution of the risk Rm, i.e.,

Rm(wm)−R∗m ≤ Vm. If Assumption 18-20 hold, then the empirical risk error Rn(wm) −
Rn(w∗n) of the variable wm corresponding to the set Sn is bounded above by

Rn(wm)−Rn(w∗n) ≤ Vm+
2(n−m)

n
(Vn−m + Vm)+2 (Vm − Vn)+

c(Vm − Vn)

2
‖w∗‖2 w.h.p.

(9.29)

Proof: Note that the difference Rn(wm)−Rn(w∗n) can be written as

Rn(wm)−Rn(w∗n) = Rn(wm)−Rm(wm) +Rm(wm)−Rm(w∗m)

+Rm(w∗m)−Rm(w∗n) +Rm(w∗n)−Rn(w∗n). (9.30)

We proceed to bound the differences in (C.11). To do so, note that the difference Rn(wm)−
Rm(wm) can be simplified as

Rn(wm)−Rm(wm) = Ln(wm)− Lm(wm) +
c(Vn − Vm)

2
‖wm‖2

≤ Ln(w)− Lm(w), (9.31)

where the inequality follows from the fact that Vn < Vm and Vn − Vm is negative. It

follows from the result in Lemma 26 that the right hand side of (C.12) is bounded by

(n−m)/n (Vn−m + Vm). Therefore,

Rn(wm)−Rm(wm) ≤ n−m
n

(Vn−m + Vm) . (9.32)

According to the fact that wm as an Vm optimal solution for the sub-optimality Rm(wm)−
Rm(w∗m) we know that

Rm(wm)−Rm(w∗m) ≤ Vm. (9.33)

268

Based on the definition of w∗m which is the optimal solution of the risk Rm, the third

difference in (C.11) which is Rm(w∗m)−Rm(w∗n) is always negative. I.e.,

Rm(w∗m)−Rm(w∗n) ≤ 0. (9.34)

Moreover, we can use the triangle inequality to bound the difference Rm(w∗n)−Rn(w∗n) in

(C.11) as

Rm(w∗n)−Rn(w∗n) = Lm(w∗n)− Ln(w∗n) +
c(Vm − Vn)

2
‖w∗n‖2

≤ n−m
n

(Vn−m + Vm) +
c(Vm − Vn)

2
‖w∗n‖2. (9.35)

Replacing the differences in (C.11) by the upper bounds in (C.13)-(C.16) follows

Rn(wm)−Rn(w∗n) ≤ Vm +
2(n−m)

n
(Vn−m + Vm) +

c(Vm − Vn)

2
‖w∗n‖2 w.h.p. (9.36)

Substitute ‖w∗n‖2 in (C.17) by the upper bound in (9.13) to obtain the result in (9.29). �

The result in Proposition 13 characterizes the sub-optimality of the variable wm, which is

an Vm sub-optimal solution for the risk Rm, with respect to the empirical risk Rn associated

with the set Sn.

The results in Proposition 11, 12, and 13 lead to the result in Theorem 16. To be more

precise, from the result in Proposition 11 we obtain that the condition in (9.7) implies

that wm is in the local neighborhood of the optimal argument of Rn and λn(wm) ≤ 1/4.

Hence, the hypothesis of Proposition 12 is satisfied and we have Rn(wn) − Rn(w∗n) ≤
144(Rn(wm) − Rn(w∗n))2. This result paired with the result in Proposition 13 shows that

if the condition in (9.8) is satisfied we can conclude that Rn(wn) − Rn(w∗n) ≤ Vn which

completes the proof of Theorem 16.

9.4 Experiments

In this section, we study the performance of Ada Newton and compare it with state-of-the-

art in solving a large-scale classification problem. In the main paper we only use the protein

homology dataset provided on KDD cup 2004 website. Further numerical experiments on

various datasets can be found in Section 7.4 in the supplementary material. The protein

homology dataset contains N = 145751 samples and the dimension of each sample is p = 74.

We consider three algorithms to compare with the proposed Ada Newton method. One of

them is the classic Newton’s method with backtracking line search. The second algorithm

is Stochastic Gradient Descent (SGD) and the last one is the SAGA method introduced

269

0 5 10 15 20 25

Number of passes

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

SGD
SAGA
Newton
Ada Newton

0 10 20 30 40 50 60 70 80 90

Runtime (s)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(
w
)
−
R

∗ N

SGD

SAGA

Newton

Ada Newton

Figure 9.1: Comparison of SGD, SAGA, Newton, and Ada Newton in terms of number of effective
passes over dataset (left) and runtime (right) for the protein homology dataset.

in [31]. In our experiments, we use logistic loss and set the regularization parameters as

c = 200 and Vn = 1/n.

The stepsize of SGD in our experiments is 2 × 10−2. Note that picking larger stepsize

leads to faster but less accurate convergence and choosing smaller stepsize improves the

accuracy convergence with the price of slower convergence rate. The stepsize for SAGA

is hand-optimized and the best performance has been observed for α = 0.2 which is the

one that we use in the experiments. For Newton’s method, the backtracking line search

parameters are α = 0.4 and β = 0.5. In the implementation of Ada Newton we increase

the size of the training set by factor 2 at each iteration, i.e., α = 2 and we observe that the

condition ‖∇Rn(wn)‖ < (
√

2c)Vn is always satisfied and there is no need for reducing the

factor α. Moreover, the size of initial training set is m0 = 124. For the warmup step that

we need to get into to the quadratic neighborhood of Newton’s method we use the gradient

descent method. In particular, we run gradient descent with stepsize 10−3 for 100 iterations.

Note that since the number of samples is very small at the beginning, m0 = 124, and the

regularizer is very large, the condition number of problem is very small. Thus, gradient

descent is able to converge to a good neighborhood of the optimal solution in a reasonable

time. Notice that the computation of this warm up process is very low and is equal to 12400

gradient evaluations. This number of samples is less than 10% of the full training set. In

other words, the cost is less than 10% of one pass over the dataset. Although, this cost is

negligible, we consider it in comparison with SGD, SAGA, and Newton’s method. We would

like to mention that other algorithms such as Newton’s method and stochastic algorithms

can also be used for the warm up process; however, the gradient descent method sounds the

best option since the gradient evaluation is not costly and the problem is well-conditioned

for a small training set .

The left plot in Figure 9.1 illustrates the convergence path of SGD, SAGA, Newton, and

Ada Newton for the protein homology dataset. Note that the x axis is the total number of

samples used divided by the size of the training set N = 145751 which we call number of

270

Table 9.1: Summary of the datasets

Dataset Number of Samples Number of Features

A9A 32561 123

W8A 49749 300

COVTYPE.BINARY 581012 54

SUSY 5000000 18

passes over the dataset. As we observe, The best performance among the four algorithms

belongs to Ada Newton. In particular, Ada Newton is able to achieve the accuracy of

RN (w)−R∗N < 1/N by 2.4 passes over the dataset which is very close to theoretical result

in Theorem 1 that guarantees accuracy of order O(1/N) after α/(α − 1) = 2 passes over

the dataset. To achieve the same accuracy of 1/N Newton’s method requires 7.5 passes

over the dataset, while SAGA needs 10 passes. The SGD algorithm can not achieve the

statistical accuracy of order O(1/N) even after 25 passes over the dataset.

Although, Ada Newton and Newton outperform SAGA and SGD, their computational

complexity are different. We address this concern by comparing the algorithms in terms of

runtime. The right plot in Figure 9.1 demonstrates the convergence paths of the considered

methods in terms of runtime. As we observe, Newton’s method requires more time to

achieve the statistical accuracy of 1/N relative to SAGA. This observation justifies the

belief that Newton’s method is not practical for large-scale optimization problems, since by

enlarging p or making the initial solution worse the performance of Newton’s method will

be even worse than the ones in Figure 9.1. Ada Newton resolves this issue by starting from

small sample size which is computationally less costly. Ada Newton also requires Hessian

inverse evaluations, but the number of inversions is proportional to logαN . Moreover, the

performance of Ada Newton doesn’t depend on the initial point and the warm up process

is not costly as we described before. We observe that Ada Newton outperforms SAGA

significantly. In particular it achieves the statistical accuracy of 1/N in less than 25 seconds,

while SAGA achieves the same accuracy in 62 seconds. Note that since the variable wN

is in the quadratic neighborhood of Newton’s method for RN the convergence path of Ada

Newton becomes quadratic eventually when the size of the training set becomes equal to

the size of the full dataset. It follows that the advantage of Ada Newton with respect to

SAGA is more significant if we look for a sub-optimality less than Vn.

We further compare the performances of these methods for other real datasets such as

A9A, W8A, COVTYPE, and SUSY. These datasets have different size and dimensionality

as stated in Table 9.1. In these experiments, we use 90% of samples of the data points as

the training set and the remaining 10% as the test set. The stepsize for SAGA is set as 1/L

as suggested in [31].

271

0 1 2 3 4 5 6 7

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

0 1 2 3 4 5 6 7 8 9

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

(a) A9A (b) COVTYPE

0 1 2 3 4 5 6 7

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

0 2 4 6 8 10 12

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

(c) SUSY (d) W8A

Figure 9.2: Comparison of the sub-optimality of SAGA, Newton, and Ada Newton in terms of
number of effective passes over dataset for four datasets. The horizontal axis represents the number of
effective passes over the training set and the vertical axis shows the sub-optimality error RN (w)−R∗N
where N is the size of training set. The dotted horizontal line refers to statistical accuracy.

Figure 9.2 illustrates the sub-optimality RN (w)−R∗N of these methods versus the num-

ber of passes over the datasets. In order to connect convergence on the empirical and

expected risks, we plot the a horizontal dotted green line that shows the iteration at which

Ada Newton reached convergence on the test set. As we observe, Ada Newton achieves

statistical accuracy (the green line) after almost 2 passes over the training set for all the

considered datasets. This observation matches the expectation from the theoretical guar-

antees in this chapter that Ada Newton should achieve the statistical accuracy of the full

training set after almost two passes over the dataset.

Since the computational complexity of SAGA is lower than the ones for Newton’s method

and Ada Newton, we also compare these methods in terms of runtime. Figure 9.3 demon-

strates the sub-optimality of these methods versus their runtimes. This comparison justifies

that the Newton’s method is impractical for large scale ERM minimization, and Ada New-

ton significantly improves the performance of Newton’s method. Indeed, the gap between

Ada Newton and SAGA is less significant comparing to the plots in Figure 9.2, but still the

272

0 2 4 6 8 10 12 14 16 18

Run time

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(
w
)
−
R

∗ N

Ada Newton

Newton

SAGA

0 10 20 30 40 50 60 70 80

Run time

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(
w
)
−
R

∗ N

Ada Newton

Newton

SAGA

(a) A9A (b) COVTYPE

0 50 100 150 200 250

Run time

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(
w
)
−
R

∗ N

Ada Newton

Newton

SAGA

0 50 100 150 200 250 300 350

Run time

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(
w
)
−
R

∗ N

Ada Newton

Newton

SAGA

(c) SUSY (d) W8A

Figure 9.3: Comparison of the sub-optimality of SAGA, Newton, and Ada Newton in terms of run
time for four datasets. The horizontal axis represents runtime and the vertical axis shows the sub-
optimality error RN (w)−R∗N where N is the size of training set. The dotted horizontal line refers
to statistical accuracy.

advantage of Ada Newton relative to SAGA is clear.

We further present the expected error of classifiers trained by SAGA, Newton, and Ada

Newton on the test set of each of the considered datasets in Figure 9.4. The results showcase

that in all experiments Ada Newton achieves a target test error faster than Newton’s method

and SAGA.

9.5 Discussions

As explained in Section 9.3, Theorem 16 holds because condition (9.7) makes wm part

of the quadratic convergence region of Rn. From this fact, it follows that the Newton

iteration makes the suboptimality gap Rn(wn) − Rn(w∗n) the square of the suboptimality

gap Rn(wm)−Rn(w∗n). This yields condition (9.8) and is the fact that makes Newton steps

valuable in increasing the sample size. If we replace Newton iterations by any method with

linear convergence rate, the orders of both sides on condition (9.8) are the same. This would

make aggressive increase of the sample size unlikely.

273

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of passes

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

E
rr
or

Ada Newton
Newton
SAGA

0 0.5 1 1.5 2 2.5 3 3.5

Number of passes

0.58

0.6

0.62

0.64

0.66

0.68

0.7

E
rr
or

Ada Newton
Newton
SAGA

(a) A9A (b) COVTYPE

0 0.5 1 1.5 2 2.5 3 3.5

Number of passes

0.45

0.5

0.55

0.6

0.65

0.7

E
rr
or

Ada Newton
Newton
SAGA

0 0.5 1 1.5 2 2.5 3 3.5

Number of passes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr
or

Ada Newton
Newton
SAGA

(c) SUSY (d) W8A

Figure 9.4: Comparison of the test error of SAGA, Newton, and Ada Newton in terms of number
of effective passes over the dataset for four datasets. The horizontal axis represents the number of
effective passes over the training set and the vertical axis shows the error on the test set.

In Section 9.1 we pointed out four reasons that challenge the development of stochastic

Newton methods. It would not be entirely accurate to call Ada Newton a stochastic method

because it doesn’t rely on stochastic descent directions. It is, nonetheless, a method for ERM

that makes pithy use of the dataset. The challenges listed in Section ?? are overcome by

Ada Newton because:

(i) Ada Newton does not use line searches. Optimality improvement is guaranteed by

increasing the sample size.

(ii) The advantages of Newton’s method are exploited by increasing the sample size at a

rate that keeps the solution for sample size m in the quadratic convergence region of

the risk associated with sample size n = αm. This allows aggressive growth of the

sample size.

(iii) The ERM problem is not necessarily strongly convex. A regularization of order Vn is

added to construct the empirical risk Rn

274

(iv) Ada Newton inverts approximately logαN Hessians. To be more precise, the total

number of inversion could be larger than logαN because of the backtracking step.

However, the backtracking step is bypassed when the number of samples is sufficiently

large.

It is fair to point out that items (ii) and (iv) are true only to the extent that the damped

phase in Algorithm 11 is not significant. Our numerical experiments indicate that this is

true but the conclusion is not warranted by out theoretical bounds except when the dataset

is very large. This suggests the bounds are loose and that further research is warranted to

develop tighter bounds.

275

Chapter 10

Conclusions

In the first part of the thesis, which contains Chapters 2-4, we focused on the use of stochas-

tic methods, which operate on a subset of samples at each iteration, to solve-large scale

empirical risk minimization problems. In particular, we focused on the application of quasi-

Newton methods in stochastic settings for accelerating the convergence rate of state-of-the-

art first-order stochastic methods.

In Chapter 2, we studied the reasons that stochastic gradient descent methods are

slow in ill-condition problems. Further, in detail, we explained the challenges in designing

stochastic quasi-Newton methods and, in particular, the issue of Hessian approximation

matrices singularity. To overcome these challenges RES, a stochastic implementation of

a regularized version of the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method was

introduced to find corresponding optimal arguments. RES resolve the singularity issue by

modifying the proximity condition in the BFGS update for Hessian approximation matrices

such that the matrices always stay positive definite, while they satisfy secant condition which

is the fundamental property of quasi-Newton Hessian approximation matrices. Almost sure

convergence of the sequence generated by RES was established under the assumption that

sample functions have well behaved Hessians. A sublinear convergence rate in expectation

was further proven. Numerical results showed that RES affords important reductions in

terms of convergence time relative to stochastic gradient descent. These reductions are of

particular significance for problems with large condition numbers or large dimensionality

since RES exhibits remarkable stability in terms of the total number of iterations required

to achieve target accuracies. An application of RES to support vector machines was also

developed. In this particular case the advantages of RES manifest in improvements of

classification accuracies for training sets of fixed cardinality.

In Chapter 3, we turned our attention to a limited memory version of stochastic (online)

BFGS method to reduce the high computational complexity of RES which is the outcome

of inverting the Hessian approximation matrices at each iteration. In particular, an on-

276

line limited memory version of the (oL)BFGS algorithm was studied for solving strongly

convex optimization problems with stochastic objectives. Almost sure convergence was es-

tablished by bounding the traces and determinants of curvature estimation matrices under

the assumption that sample functions have well behaved Hessians. The convergence rate of

oLBFGS was further determined to be at least linear in expectation. This rate is custom-

ary of stochastic optimization algorithms which are limited by their ability to smooth out

the noise in stochastic gradient estimates. The application of oLBFGS to support vector

machines was also developed and numerical tests on synthetic data were provided. The nu-

merical results show that oLBFGS affords important reductions with respect to stochastic

gradient descent (SGD) in terms of the number of feature vectors that need to be processed

to achieve a target accuracy as well as in the associated execution time. Moreover, oLBFGS

also exhibits a significant execution time reduction when compared to other stochastic quasi-

Newton methods. These reductions increase with the problem dimension and can become

arbitrarily large. A detailed comparison between oLBFGS and SGD for training a logistic

regressor in a large scale search engine advertising problem was also presented. The numer-

ical tests show that oLBFGS trains the regressor using less than 1% of the data required

by SGD to obtain similar classification accuracy.

Chapter 4, completed the work in Chapters 2 and 3 by introducing an incremental

quasi-Newton BFGS method to solve a large scale optimization problem, in which an ag-

gregate cost function is minimized while computing only a single gradient and Hessian

approximation per iteration. The presented IQN method has three fundamental proper-

ties which makes it distinct from state-of-the-art incremental (stochastic) quasi-Newton

methods. First, IQN uses the aggregated information of variables, gradients, and Hessian

approximation matrices to reduce the noise of approximation for both gradients and Hes-

sian approximation matrices. Second, in IQN the index of the updated function is chosen

in a cyclic fashion, rather than the random selection scheme used in known incremental

methods. Third, IQN utilizes a consistent Taylor series which yields a more involved up-

date. These three properties together lead to an incremental quasi-Newton method with a

local superlinear convergence rate. In particular, the convergence analysis of IQN indicates

the local superlinear convergence of the sequence of residuals with respect to the average

sequence. Moreover, it was shown that there exists a superlinearly convergent sequence

that is an upper bound for the original sequence of errors, which implies superlinear con-

vergence of a subsequence of residuals generated by IQN iterates. Numerical experiments

on synthetic and real datasets verified superior performance of IQN relative to first-order

incremental methods.

The focus of the second part of the thesis, which includes Chapters 5-7, was on the idea

of distributing samples over multiple processors to reduce the computational burden at each

277

processor for solving big-data empirical risk minimization problems. We explored this ap-

proach, which we referred to as decentralized optimization, by presenting efficient methods

that solve this distributed optimization problem in a communication efficient manner.

In Chapter 5, we presented the network Newton method as an approximate Newton

method for solving consensus optimization problems. The algorithm builds on a reinterpre-

tation of distributed gradient descent as a penalty method and relies on an approximation

of the Newton step of the corresponding penalized objective function. To approximate the

Newton direction we truncate the Taylor series of the exact Newton step. This leads to a

family of methods defined by the number K of Taylor series terms kept in the approxima-

tion. When we keep K terms of the Taylor series, the method is called NN-K and can be

implemented through the aggregation of information in K-hop neighborhoods. We showed

that NN converges at least linearly to the solution of the penalized objective, and, conse-

quently, to a neighborhood of the optimal argument for the original optimization problem.

We completed the convergence analysis of NN-K by showing that the sequence of iterates

generated by NN-K converges at a quadratic rate in a specific interval. Numerical analyses

compared the performances of NN-K with different choices of K for minimizing quadratic

objectives. We observed that all NN-K methods work faster than distributed gradient de-

scent in terms of number of iterations and number of communications. We also analyzed

a tradeoff on the choice of a penalty parameter that controls both, the accuracy of the

optimal objective computed by network Newton methods and the rate of convergence. We

proposed an adaptive version of network Newton (ANN) that achieves exact convergence by

executing network Newton with an increasing sequence of penalty coefficients. Numerical

analyses of ANN show that it is best to initialize penalty coefficients at moderate values

and decrease them through moderate factors.

In Chapter 6, we proposed an Exact Second-Order Method (ESOM) that converges to

the optimal argument of the global objective function at a linear rate. We developed the up-

date of ESOM by substituting the primal update of Proximal Method of Multipliers (PMM)

with its second order approximation. Moreover, we approximated the Hessian inverse of

the proximal augmented Lagrangian by truncating its Taylor’s series. This approximation

leads to a class of algorithms ESOM-K where K+ 1 indicates the number of Taylor’s series

terms that are used for Hessian inverse approximation. Convergence analysis of ESOM-K

shows that the sequence of iterates converges to the optimal argument linearly irrespective

to the choice of K. We showed that the linear convergence factor of ESOM-K is a func-

tion of time and the choice of K. The linear convergence factor of ESOM approaches the

linear convergence factor of PMM as time passes. Moreover, larger choice of K makes the

factor of linear convergence for ESOM closer to the one for PMM. Numerical results verify

the theoretical linear convergence and the relation between the linear convergence factor

278

of ESOM-K and PMM. Further, we observed that larger choice of K for ESOM-K leads

to faster convergence in terms of number of iterations, while the most efficient version of

ESOM-K in terms of communication cost is ESOM-0.

In Chapter 7, the decentralized double stochastic averaging gradient (DSA) was pre-

sented as an algorithm for solving decentralized optimization problems where the local

functions can be written as an average of a set of local instantaneous functions. DSA

exploits stochastic averaging gradients in lieu of gradients and mixes information of two

consecutive iterates to determine the descent direction. By assuming strongly convex local

instantaneous functions with Lipschitz continuous gradients, the DSA algorithm converges

linearly to the optimal arguments in expectation. In addition, the sequence of local iterates

wt
v for each node in the network almost surely converges to the optimal argument w̃∗. A

comparison between the DSA algorithm and a group of stochastic and deterministic alter-

natives are provided for solving a logistic regression problem. The numerical results show

DSA is the only stochastic decentralized algorithm to reach linear convergence. DSA out-

performs decentralized stochastic alternatives in terms of number of required iteration for

convergence, and exhibits faster convergence relative to deterministic alternatives in terms

of number feature vectors processed until convergence. Effect of number of samples, number

of nodes in the network, condition of the objective function, and condition number of graph

on the convergence rate of DSA were also studied this chapter.

The third and last part of the thesis, which includes Chapters 8 and 9, is on solving

empirical risk minimization via an adaptive sample size scheme. The main idea of the

proposed adaptive sample size mechanism is to start with a small number of samples and

increase the size of the training set geometrically at each step. Since the functions are

driven from a common distribution the solution for the smaller empirical risk minimization

problems is a good estimate for the empirical risk minimization problem corresponding to

the enlarged training set.

In Chapter 8, we first explained the two fundamental properties of ERM. The first prop-

erty is that since the empirical risk and the statistical loss have different minimizers, there

is no reason to solve ERM beyond the expected difference between the two objectives. The

second important property of ERM is that the component functions are drawn from a com-

mon distribution. This implies that if we consider subsets of the training set, the respective

empirical risk functions are not that different from each other and, indeed, their differences

are related to the statistical accuracy of the subset. We presented adaptive sample size

scheme and highlighted how this approach exploits these two peculiar features of ERM and

leads to better convergence guarantees. In particular, we showed that to reach the statis-

tical accuracy of the full training set the adaptive sample size scheme reduces the overall

computational complexity of a broad range of first-order methods by a logarithmic factor

279

of the inverse of statistical accuracy. This improvement led to the best known convergence

complexity for solving ERM problems among first-order methods, which was achieved by

adaptive sample size SVRG algorithm.

In Chapter 9, we extended the idea of adaptive sample size methods to Newton’s method

which enjoys from a local quadratic convergence rate. In the presented adaptive sample size

Newton method (Ada Newton) the sample size is increased geometrically by a factor α > 1.

The main advantage of Ada Newton relative to adaptive sample size first-order methods is

that at each step it only requires a single Newton iteration with unit stepsize to solve the

extended ERM problem to its statistical accuracy. As we highlighted in the convergence

analysis of Ada Newton, this fascinating behavior happens by increasing the size of the

training in a way that the minimization variable for the current training set is in the local

neighborhood of the optimal argument of the next training set. This allows to exploit the

quadratic convergence property of Newton’s method and reach the statistical accuracy of

each training set with only one iteration of Newton’s method. We showed in this chapter

both theoretically that we can iteratively increase the sample size while applying single

Newton iterations without line search and staying within the statistical accuracy of the

regularized empirical risk. In particular, we can double the size of the training set in each

iteration when the number of samples is sufficiently large. Numerical experiments on various

datasets confirm the possibility of increasing the sample size by factor 2 at each iteration

which implies that Ada Newton achieves the statistical accuracy of the full training set with

about two passes over the dataset.

280

Appendix A

Appendix

281

A.1 Proof of Lemma 3

Proof: We prove (2.65) using induction. To prove the claim for t = 0 simply observe that

the definition of Q in (2.66) implies that

Q := max

[
b

c− 1
, t0u0

]
≥ t0u0, (A.1)

because the maximum of two numbers is at least equal to both of them. By rearranging

the terms in (A.1) we can conclude that

u0 ≤ Q/t0. (A.2)

Comparing (A.2) and (2.65) it follows that the latter inequality is true for t = 0.

Introduce now the induction hypothesis that (2.65) is true for t = s. To show that

this implies that (2.65) is also true for t = s + 1 substitute the induction hypothesis us ≤
Q/(s + t0) into the recursive relationship in (2.64). This substitution shows that us+1 is

bounded as

us+1 ≤
(

1− c

s+ t0

)
Q

s+ t0
+

b

(s+ t0)
2 . (A.3)

Observe now that according to the definition of Q in (2.66), we know that b/(c − 1) ≤ Q

because Q is the maximum of b/(c − 1) and t0u0. Reorder this bound to show that b ≤
Q(c− 1) and substitute into (A.3) to write

us+1 ≤
(

1− c

s+ t0

)
Q

s+ t0
+

(c− 1)Q

(s+ t0)
2 . (A.4)

Pulling out Q/(s+ t0)
2 as a common factor and simplifying and reordering terms it follows

that (A.4) is equivalent to

us+1 ≤
Q
[
s+ t0 − c+ (c− 1)

]
(s+ t0)

2 =
s+ t0 − 1

(s+ t0)
2 Q. (A.5)

To complete the induction step use the difference of squares formula for (s + t0)
2 − 1 to

conclude that

[
(s+ t0)− 1

][
(s+ t0) + 1

]
= (s+ t0)

2 − 1 ≤ (s+ t0)
2. (A.6)

Reordering terms in (A.6) it follows that
[
(s+ t0)− 1

]
/(s+ t0)

2 ≤ 1/
[
(s+ t0) + 1

]
, which

282

upon substitution into (A.5) leads to the conclusion that

us+1 ≤
Q

s+ t0 + 1
. (A.7)

Eq. (A.7) implies that the assumed validity of (2.65) for t = s implies the validity of (2.65)

for t = s+ 1. Combined with the validity of (2.65) for t = 0, which was already proved, it

follows that (2.65) is true for all times t ≥ 0. �

283

Appendix B

Appendix

284

B.1 Proof of Theorem 7

To prove global convergence of the Network Newton method we first introduce two technical

lemmas. In the first lemma, we develop an upper bound for the objective function value

F (y) using the first three terms of its Taylor expansion. In the second lemma, we construct

an upper bound for the error F (yt+1)− F (y∗) in terms of F (yt)− F (y∗).

Lemma 28 Consider the function F (y) defined in (5.6). If Assumptions 10 and 11 hold,

then for any y, ŷ ∈ Rnp

F (ŷ) ≤ F (y) +∇F (y)T (ŷ − y) +
1

2
(ŷ − y)T∇2F (y)(ŷ − y) +

αL

6
‖ŷ − y‖3. (B.1)

Proof: The claim follows from the Lipschitz continuity of the Hessian with constant αL

and Theorem 7.7 in [2] which characterizes the error of taylor’s expansion. �

In the following lemma, we use the result in Lemma 28 to establish an upper bound for

the error F (yt+1)− F (y∗).

Lemma 29 Consider the NN-K method as defined in (5.12)-(5.17). Further, recall the

definition of y∗ as the optimal argument of the objective function F (y). If Assumptions

9-11 hold, then

F (yt+1)− F (y∗) ≤
[
1−

(
2ε− ε2

)
αmλ

]
[F (yt)− F (y∗)] +

αLε3Λ3

6λ
3
2

[F (yt)− F (y∗)]
3
2 .

(B.2)

Proof: By setting ŷ := yt+1 and y := yt in (B.1) we obtain

F (yt+1) ≤ F (yt) + gTt (yt+1 − yt) +
1

2
(yt+1 − yt)

THt(yt+1 − yt) +
αL

6
‖yt+1 − yt‖3,

(B.3)

where gt := ∇F (yt) and Ht := ∇2F (yt). From the definition of the NN-K update in (5.17)

we can write the difference of two consecutive variables as yt+1 − yt = −εĤ−1t gt. Making

this substitution into (B.3) implies

F (yt+1) ≤ F (yt)− εgTt Ĥ−1t gt +
ε2

2
gTt Ĥ−1t HtĤ

−1
t gt +

αLε3

6
‖Ĥ−1t gt‖3. (B.4)

According to (5.46), we can substitute Ĥ
−1/2
t HtĤ

−1/2
t in (B.4) by I−Et which leads to

F (yt+1) ≤ F (yt)− εgTt Ĥ−1t gt +
ε2

2
gTt Ĥ

− 1
2

t (I−Et)Ĥ
− 1

2
t gt +

αLε3

6
‖Ĥ−1t gt‖3. (B.5)

285

Proposition 6 shows that Et is positive semidefinite, and, therefore, the quadratic form

gTt Ĥ
−1/2
t EtĤ

−1/2
t gt is nonnegative. Considering this lower bound we can simplify (B.5) to

F (yt+1) ≤ F (yt)−
(
2ε− ε2

)
2

gTt Ĥ−1t gt +
αLε3

6
‖Ĥ−1t gt‖3. (B.6)

Since ε < 1, we obtain that 2ε − ε2 is positive. Moreover, recall the result of Lemma 16

that all the eigenvalues of the Hessian inverse approximation Ĥ−1t are lower and upper

bounded by λ and Λ, respectively. These two observations imply that we can replace the

term gTt Ĥ−1t gt by its lower bound λ‖gt‖2. Moreover, existence of upper bound Λ for the

eigenvalues of Hessian inverse approximation Ĥ−1t implies that the term ‖Ĥ−1t gt‖3 is upper

bounded by Λ3‖gt‖3. Substituting these bounds for the second and third terms of (B.6)

and subtracting F (y∗) from both sides of inequality (B.6) leads to

F (yt+1)− F (y∗) ≤ F (yt)− F (y∗)−
(
2ε− ε2

)
λ

2
‖gt‖2 +

αLε3Λ3

6
‖gt‖3. (B.7)

Since F is strongly convex with constant αm we can write [see Eq. (9.9) in [20]],

F (y∗) ≥ F (yt)−
1

2αm
‖∇F (yt)‖2. (B.8)

Rearrange terms in (B.8) to obtain 2αm(F (yt)−F (y∗)) as a lower bound for ‖∇F (yt)‖2 =

‖gt‖2. Now substitute the lower bound 2αm(F (yt)− F (y∗)) for squared norm of gradient

‖gt‖2 in the second summand of (B.7) to obtain

F (yt+1)− F (y∗) ≤
[
1−

(
2ε− ε2

)
αmλ

]
(F (yt)− F (y∗)) +

αLε3Λ3

6
‖gt‖3. (B.9)

Since the eigenvalues of the Hessian are upper bounded by 2(1−δ)+αM , for any vectors

ŷ and y in Rnp we can write

F (y) ≤ F (ŷ) +∇F (ŷ)T (y − ŷ) +
2(1− δ) + αM

2
‖y − ŷ‖2. (B.10)

According to the definition of λ in (5.52), we can substitute 2(1− δ) + αM by 1/λ. Imple-

menting this substitution and minimizing both sides of the equality with respect to y yields

F (y∗) ≤ F (ŷ)− λ‖∇F (ŷ)‖2. (B.11)

Setting ŷ = yt, replacing ∇F (yt) by gt, and taking the square root of both sides of the

resulting inequality yields

‖gt‖ ≤
[
λ−1 [F (yt)− F (y∗)]

]1/2
. (B.12)

286

Replace the upper bound in (B.12) for the norm of the gradient ‖gt‖ in the last term of

(B.9) to obtain (B.2). �

Proof of Theorem 7: To simplify upcoming derivations define the sequence βt as

βt :=(2− ε)εαmλ− ε3αLΛ3 [F (yt)− F (y∗)]
1
2

6λ
3
2

. (B.13)

Recall the result of Lemma 29. Factorizing F (yt)−F (y∗) from the terms of the right hand

side of (B.2) in association with the definition of βt in (B.13) implies that we can simplify

(B.2) as

F (yt+1)− F (y∗) ≤ (1− βt)(F (yt)− F (y∗)). (B.14)

It remains to show that for all time steps t, the constants βt satisfy 0 < βt < 1. We first

show that βt < 1 for all t ≥ 0. Based on (B.13) we can write

βt ≤ (2− ε)εαmλ. (B.15)

Considering (ε−1)2 ≥ 0 we have ε(2−ε) ≤ 1. Further, by inequalities m < M and 1−δ > 0,

we obtain αm < αM + (1 − δ). Thus, αm/(αM + 2(1 − δ)) < 1 which is equivalent to

αmλ < 1. It follows from these inequalities that

(2− ε)εαmλ < 1. (B.16)

That βt < 1 follows by combining (B.15) with (B.16).

To prove that 0 < βt for all t ≥ 0 we prove that this is true for t = 0 and then prove

that the βt sequence is increasing. According to (5.59), we can write

ε ≤

[
3mλ

5
2

LΛ3(F (y0)− F (y∗))
1
2

] 1
2

, (B.17)

By computing the squares of both sides of (B.17), multiplying the right hand side of the

resulting inequality by 2 to make the inequality strict, and factorizing αmλ we obtain

ε2 <
6λ

3
2

αLΛ3[F (y0)− F (y∗)]
1
2

× αmλ. (B.18)

If we now divide both sides of the inequality in (B.18) by the first multiplicand in the right

hand side of (B.18) we obtain

ε2αLΛ3[F (y0)− F (y∗)]
1
2

6λ
3
2

< αmλ. (B.19)

287

Observe that based on the hypothesis in (5.59) the step size ε is smaller than 1 and it is

then trivially true that 2− ε ≥ 1. This observation shows that if we multiply the right hand

side of (B.19) by 2(1− ε/2) the inequality still holds,

ε2αLΛ3(F (y0)− F (y∗))
1
2

6λ
3
2

< αm(2− ε)λ. (B.20)

Multiply both sides of (B.20) by ε and rearrange terms to obtain

αmε(2− ε)λ− ε3αLΛ3[F (y0)− F (y∗)]
1
2

6λ
3
2

>0. (B.21)

Based on (B.13), the result in (B.21) yields β0 > 0. Observing that β0 is positive, to show

that for all t the sequence of βt is positive it is sufficient to prove that the sequence βt is

increasing. We use strong induction to prove βt < βt+1 for all t ≥ 0. By setting t = 0 in

(B.14) we obtain

F (y1)− F (y∗) ≤ (1− β0)(F (y0)− F (y∗)). (B.22)

Considering the result in (B.22) and the fact that 0 < β0 < 1, we obtain that the objective

function error at time t = 1 is strictly smaller than the error at time t = 0, i.e.

F (y1)− F (y∗) < F (y0)− F (y∗). (B.23)

According to (B.13), a smaller objective function error F (yt) − F (y∗) leads to a larger

coefficient βt. This observation combined with the result in (B.23) leads to

β0 < β1. (B.24)

To complete the strong induction argument assume now that β0 < β1 < · · · < βt−1 < βt

and proceed to prove that if this is true we must have βt < βt+1. Begin by observing that

since 0 < β0 the induction hypothesis implies that for all u ∈ {0, . . . , t} the constant βu

is also positive, i.e., 0 < βu. Further recall that for all t the sequence βt is also smaller

than 1 as already proved. Combining these two observations we have 0 < βu < 1 for all

u ∈ {0, . . . , t}. Consider now the inequality in (B.14) and utilize the fact that 0 < βu < 1

for all u ∈ {0, . . . , t} to conclude that

F (yu+1)− F (y∗) < F (yu)− F (y∗), (B.25)

for all u ∈ {0, . . . , t}. Setting u = t in (B.25) we conclude that F (yt+1)− F (y∗) < F (yt)−
F (y∗). By further repeating the argument leading from (B.24) to (B.23) we can conclude

288

that

βt < βt+1. (B.26)

The strong induction proof is complete and we can claim that

0 < β0 < β1 < · · · < βt < 1, (B.27)

for all times t. The results in (B.14) and (B.27) imply limt→∞ F (yt) − F (y∗) = 0. To

conclude that the rate is at least linear simply observe that if the sequence βt is increasing

as per (B.27), the sequence 1− βt is decreasing and satisfies

0 < 1− βt < 1− β0 < 1, (B.28)

for all time steps t. Applying the inequality in (B.14) recursively and considering the

inequality in (B.28) yields

F (yt)− F (y∗) ≤ (1− β0)t(F (y0)− F (y∗)). (B.29)

Considering ζ = β0, the claim in (5.60) follows.

289

Appendix C

Appendix

290

C.1 Proof of Proposition 9

The steps of the proof for Proposition 13 are adopted from the analysis in [59]. We start

the proof by providing an upper bound for the difference between the loss functions Ln and

Lm. The upper bound is studied in the following lemma which uses the condition in (??).

Lemma 30 Consider Ln and Lm as the empirical losses of the sets Sn and Sm, respectively,

where they are chosen such that Sm ⊂ Sn. If we define n and m as the number of samples in

the training sets Sn and Sm, respectively, then the expected absolute value of the difference

between the empirical losses is bounded above by

E [|Ln(w)− Lm(w)|] ≤ n−m
n

(Vn−m + Vm) , (C.1)

for any w.

Proof : First we characterize the difference between the difference of the loss functions

associated with the sets Sm and Sn. To do so, consider the difference

Ln(w)− Lm(w) =
1

n

∑
i∈Sn

fi(w)− 1

m

∑
i∈Sm

fi(w). (C.2)

Notice that the set Sm is a subset of the set Sn and we can write Sn = Sm ∪ §n−m. Thus,

we can rewrite the right hand side of (C.2) as

Ln(w)− Lm(w) =
1

n

∑
i∈Sm

fi(w) +
∑

i∈§n−m

fi(w)

− 1

m

∑
i∈Sm

fi(w)

=
1

n

∑
i∈§n−m

fi(w)− n−m
mn

∑
i∈Sm

fi(w). (C.3)

Factoring (n−m)/n from the terms in the right hand side of (C.3) follows

Ln(w)− Lm(w) =
n−m
n

 1

n−m
∑

i∈§n−m

fi(w)− 1

m

∑
i∈Sm

fi(w)

 . (C.4)

Now add and subtract the statistical loss L(w) and compute the expected value to obtain

E[|Ln(w)− Lm(w)|] =
n−m
n

E

∣∣∣∣∣∣ 1

n−m
∑

i∈§n−m

fi(w)− L(w) + L(w)− 1

m

∑
i∈Sm

fi(w)

∣∣∣∣∣∣

≤ n−m
n

(Vn−m + Vm) , (C.5)

291

where the last inequality follows by using the triangle inequality and the upper bound in

(??). �

The result in Lemma 30 shows that the upper bound for the difference between the

loss functions associated with the sets Sm and Sn where Sm ⊂ Sn is proportional to the

difference between the size of these two sets n−m.

In the following lemma, we characterize an upper bound for the norm of the optimal

argument w∗n of the empirical risk Rn(w) in terms of the norm of statistical average loss

L(w) optimal argument w∗.

Lemma 31 Consider Ln as the empirical loss of the set Sn and L as the statistical average

loss. Moreover, recall w∗ as the optimal argument of the statistical average loss L, i.e.,

w∗ = argminw L(w). If Assumption 18 holds, then the norm of the optimal argument w∗n

of the regularized empirical risk Rn(w) := Ln(w) + cVn‖w‖2 is bounded above by

E[‖w∗n‖2] ≤
4

c
+ ‖w∗‖2 (C.6)

Proof : The optimality condition of w∗n for the the regularized empirical risk Rn(w) =

Ln(w) + (cVn)/2‖w‖2 implies that

Ln(w∗n) +
cVn
2
‖w∗n‖2 ≤ Ln(w∗) +

cVn
2
‖w∗‖2. (C.7)

By regrouping the terms and computing the expectation we can show that E[‖w∗n‖2] is

bonded above by

E[‖w∗n‖2] ≤
2

cVn
E[(Ln(w∗)− Ln(w∗n))] + ‖w∗‖2. (C.8)

We proceed to bound the difference Ln(w∗)−Ln(w∗n). By adding and subtracting the terms

L(w∗) and L(w∗n) we obtain that

Ln(w∗)− Ln(w∗n) =
[
Ln(w∗)− L(w∗)

]
+
[
L(w∗)− L(w∗n)

]
+
[
L(w∗n)− Ln(w∗n)

]
. (C.9)

Notice that the second bracket in (C.9) is non-positive since L(w∗) ≤ L(w∗n). Therefore,

it is bounded by 0. According to (??), the first and third brackets in (C.9) are bounded

above by Vn in expectation. Replacing these upper bounds by the brackets in (C.9) yields

E[Ln(w∗)− Ln(w∗n)] ≤ 2Vn. (C.10)

Substituting the upper bound in (C.10) into (C.8) implies the claim in (C.6). �

292

Note that the difference Rn(wm)−Rn(w∗n) can be written as

Rn(wm)−Rn(w∗n) = Rn(wm)−Rm(wm) +Rm(wm)−Rm(w∗m)

+Rm(w∗m)−Rm(w∗n) +Rm(w∗n)−Rn(w∗n). (C.11)

We proceed to bound the differences in (C.11). To do so, note that the difference Rn(wm)−
Rm(wm) can be simplified as

Rn(wm)−Rm(wm) = Ln(wm)− Lm(wm) +
c(Vn − Vm)

2
‖wm‖2

≤ Ln(w)− Lm(w), (C.12)

where the inequality follows from the fact that Vn < Vm and Vn − Vm is negative. It

follows from the result in Lemma 30 that the right hand side of (C.12) is bounded by

(n−m)/n (Vn−m + Vm). Therefore,

E [|Rn(wm)−Rm(wm)|] ≤ n−m
n

(Vn−m + Vm) . (C.13)

Since wm is an δm sub-optimal solution for Rm we know that

E[Rm(wm)−Rm(w∗m)] ≤ δm. (C.14)

Based on the definition of w∗m which is the optimal solution of the risk Rm, the third

difference in (C.11) which is Rm(w∗m)−Rm(w∗n) is always negative. I.e.,

Rm(w∗m)−Rm(w∗n) ≤ 0. (C.15)

Moreover, we can use the triangle inequality to bound the difference Rm(w∗n)−Rn(w∗n) in

(C.11) as

E[Rm(w∗n)−Rn(w∗n)] = E[Lm(w∗n)− Ln(w∗n)] +
c(Vm − Vn)

2
E[‖w∗n‖2]

≤ n−m
n

(Vn−m + Vm) +
c(Vm − Vn)

2
E[‖w∗n‖2]. (C.16)

Replacing the differences in (C.11) by the upper bounds in (C.13)-(C.16) leads to

E[Rn(wm)−Rn(w∗n)] ≤ δm +
2(n−m)

n
(Vn−m + Vm) +

c(Vm − Vn)

2
E[‖w∗n‖2] (C.17)

Substitute E[‖w∗n‖2] in (C.17) by the upper bound in (C.6) to obtain the result in (9.29).

293

Bibliography

[1] Z. Allen Zhu, “Katyusha: the first direct acceleration of stochastic gradient methods,”
in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, 2017, pp. 1200–1205.

[2] T. M. Apostol, Calculus, volume I. John Wiley & Sons, 2007, vol. 1.

[3] D. Bajovic, D. Jakovetic, N. Krejic, and N. K. Jerinkic, “Newton-like method with
diagonal correction for distributed optimization,” SIAM Journal on Optimization,
vol. 27, no. 2, pp. 1171–1203, 2017.

[4] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, “Convexity, classification, and
risk bounds,” Journal of the American Statistical Association, vol. 101, no. 473, pp.
138–156, 2006.

[5] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.

[6] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up machine learning: Parallel
and distributed approaches. Cambridge University Press, 2011.

[7] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

[8] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical
methods. Prentice-Hall, Inc., 1989.

[9] A. Bijral, A. D. Sarwate, and N. Srebro, “Data dependent convergence for consensus
stochastic optimization,” IEEE Transactions on Automatic Control, 2017.

[10] J. R. Birge, X. Chen, L. Qi, and Z. Wei, “A stochastic newton method for stochastic
quadratic programs with resource,” Technical report, University of Michigan, Ann
Arbor, MI 1995.

[11] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental gradient method
with a constant step size,” SIAM Journal on Optimization, vol. 18, no. 1, pp. 29–51,
2007.

[12] A. Bordes, L. Bottou, and P. Gallinari, “SGD-QN: Careful quasi-Newton stochastic
gradient descent,” The Journal of Machine Learning Research, vol. 10, pp. 1737–1754,
2009.

294

[13] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning
theory. ACM, 1992, pp. 144–152.

[14] L. Bottou and Y. L. Cun, “On-line learning for very large datasets,” in Applied
Stochastic Models in Business and Industry, vol. 21. pp. 137-151, 2005.

[15] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Pro-
ceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[16] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in Advances in
Neural Information Processing Systems 20, Vancouver, British Columbia, Canada,
December 3-6, 2007, 2007, pp. 161–168.

[17] O. Bousquet, “Concentration inequalities and empirical processes theory applied to
the analysis of learning algorithms,” PhD thesis, Ecole Polytechnique, 2002.

[18] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a graph,” SIAM
review, vol. 46, no. 4, pp. 667–689, 2004.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Founda-
tions and Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cam-
bridge University Press, 2004.

[21] C. G. Broyden, J. E. D. Jr., Wang, and J. J. More, “On the local and superlinear
convergence of quasi-Newton methods,” IMA J. Appl. Math, vol. 12, no. 3, pp. 223–
245, June 1973.

[22] F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic networks: a math-
ematical approach to motion coordination algorithms. Princeton University Press,
2009.

[23] R. H. Byrd, S. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-Newton method
for large-scale optimization,” SIAM Journal on Optimization, vol. 26, no. 2, pp. 1008–
1031, 2016.

[24] R. H. Byrd, J. Nocedal, and Y.-X. Yuan, “Global convergence of a class of quasi-
Newton methods on convex problems,” SIAM Journal on Numerical Analysis, vol. 24,
no. 5, pp. 1171–1190, 1987.

[25] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of
distributed multi-agent coordination,” IEEE Transactions on Industrial Informatics,
vol. 9, pp. 427–438, 2013.

[26] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data: Scalable,
randomized, and parallel algorithms for big data analytics,” IEEE Signal Processing
Magazine, vol. 31, no. 5, pp. 32–43, 2014.

295

[27] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via in-
exact consensus admm,” Signal Processing, IEEE Transactions on, vol. 63, no. 2, pp.
482–497, 2015.

[28] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos, “An augmented Lagrangian
method for distributed optimization,” Mathematical Programming, vol. 152, no. 1-2,
pp. 405–434, 08 2015.

[29] H. Daneshmand, A. Lucchi, and T. Hofmann, “Starting small - learning with adap-
tive sample sizes,” in Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, 2016, pp. 1463–1471.

[30] A. Defazio, “A simple practical accelerated method for finite sums,” in Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, 2016, pp. 676–684.

[31] A. Defazio, F. R. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives,” in Advances
in Neural Information Processing Systems 27, Montreal, Quebec, Canada, 2014, pp.
1646–1654.

[32] J. E. Dennis and J. J. Moré, “A characterization of superlinear convergence and its
application to quasi-newton methods,” Mathematics of computation, vol. 28, no. 126,
pp. 549–560, 1974.

[33] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed
optimization: convergence analysis and network scaling,” Automatic control, IEEE
Transactions on, vol. 57, no. 3, pp. 592–606, 2012.

[34] M. A. Erdogdu and A. Montanari, “Convergence rates of sub-sampled Newton meth-
ods,” in Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 2015,
pp. 3052–3060.

[35] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[36] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, “Competing with the empirical
risk minimizer in a single pass,” in Proceedings of The 28th Conference on Learning
Theory, COLT 2015, Paris, France, July 3-6, 2015, 2015, pp. 728–763.

[37] R. M. Gower, D. Goldfarb, and P. Richtárik, “Stochastic block BFGS: squeezing
more curvature out of data,” in Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, 2016, pp. 1869–1878.

[38] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo, “On the convergence rate of in-
cremental aggregated gradient algorithms,” SIAM Journal on Optimization, vol. 27,
no. 2, pp. 1035–1048, 2017.

[39] ——, “A globally convergent incremental Newton method,” Mathematical Program-
ming, vol. 151, no. 1, pp. 283–313, 2015.

296

[40] M. R. Hestenes, “Multiplier and gradient methods,” Journal of optimization theory
and applications, vol. 4, no. 5, pp. 303–320, 1969.

[41] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence rate of
a distributed alternating direction method of multipliers,” IEEE Transactions on
Automatic Control, vol. 61, no. 4, pp. 892–904, 2016.

[42] D. Jakovetic, J. M. Moura, and J. Xavier, “Distributed nesterov-like gradient algo-
rithms,” in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on.
IEEE, 2012, pp. 5459–5464.

[43] D. Jakovetic, J. Xavier, and J. M. Moura, “Cooperative convex optimization in net-
worked systems: Augmented Lagrangian algorithms with directed gossip communica-
tion,” IEEE Transactions on Signal Processing, vol. 59, no. 8, pp. 3889–3902, 2011.

[44] ——, “Fast distributed gradient methods,” IEEE Transactions on Automatic Control,
vol. 59, no. 5, pp. 1131–1146, 2014.

[45] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive
variance reduction,” in Advances in Neural Information Processing Systems 26, Lake
Tahoe, Nevada, United States, 2013, pp. 315–323.

[46] U. A. Khan, S. Kar, and J. M. Moura, “Diland: An algorithm for distributed sensor
localization with noisy distance measurements,” IEEE Transactions on Signal Pro-
cessing, vol. 58, no. 3, pp. 1940–1947, 2010.

[47] J. Konecnỳ and P. Richtárik, “Semi-stochastic gradient descent methods,” arXiv
preprint arXiv:1312.1666, vol. 2, no. 2.1, p. 3, 2013.

[48] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for decentralized
and stochastic optimization,” arXiv preprint arXiv:1701.03961, 2017.

[49] N. Le Roux, M. W. Schmidt, and F. R. Bach, “A stochastic gradient method with
an exponential convergence rate for finite training sets,” in Advances in Neural In-
formation Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States., 2012, pp. 2672–2680.

[50] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten digit database,” AT&T
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[51] D.-H. Li and M. Fukushima, “A modified BFGS method and its global convergence in
nonconvex minimization,” Journal of Computational and Applied Mathematics, vol.
129, no. 1, pp. 15–35, 2001.

[52] H. Lin, J. Mairal, and Z. Harchaoui, “A universal catalyst for first-order optimiza-
tion,” in Advances in Neural Information Processing Systems, 2015, pp. 3366–3374.

[53] Q. Ling and A. Ribeiro, “Decentralized linearized alternating direction method of
multipliers,” Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Interna-
tional Conference on, pp. 5447–5451, 2014.

297

[54] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized linearized alternating
direction method of multipliers,” IEEE Transactions on Signal Processing, vol. 63,
no. 15, pp. 4051–4064, 2015.

[55] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale
optimization,” Mathematical programming, vol. 45, no. 1, pp. 503–528, 1989.

[56] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks:
Formulation and performance analysis,” IEEE Transactions on Signal Processing,
vol. 56, no. 7, pp. 3122–3136, July 2008.

[57] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: a framework for machine learning and data mining in the
cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[58] A. Lucchi, B. McWilliams, and T. Hofmann, “A variance reduced stochastic Newton
method,” arXiv preprint arXiv:1503.08316, 2015.

[59] A. Mokhtari, H. Daneshmand, A. Lucchi, T. Hofmann, and A. Ribeiro, “Adaptive
Newton method for empirical risk minimization to statistical accuracy,” in Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, 2016, pp. 4062–
4070.

[60] A. Mokhtari, M. Eisen, and A. Ribeiro, “An incremental quasi-Newton method with
a local superlinear convergence rate,” in Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. IEEE, 2017, pp. 4039–4043.

[61] ——, “IQN: An incremental quasi-Newton method with local superlinear convergence
rate,” arXiv preprint arXiv:1702.00709, 2017.

[62] A. Mokhtari, M. Gürbüzbalaban, and A. Ribeiro, “Surpassing gradient descent prov-
ably: A cyclic incremental method with linear convergence rate,” arXiv preprint
arXiv:1611.00347, 2016.

[63] A. Mokhtari, Q. Ling, and A. Ribeiro, “An approximate Newton method for dis-
tributed optimization,” in Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, 2015, pp. 2959–2963.

[64] ——, “Network Newton-Part I: Algorithm and convergence,” arXiv preprint
arXiv:1504.06017, 2015.

[65] ——, “Network Newton-Part II: Convergence rate and implementation,” arXiv
preprint arXiv:1504.06020, 2015.

[66] ——, “Network newton distributed optimization methods,” IEEE Transactions on
Signal Processing, vol. 65, no. 1, pp. 146–161, 2017.

[67] A. Mokhtari and A. Ribeiro, “A dual stochastic DFP algorithm for optimal resource
allocation in wireless systems,” in Signal Processing Advances in Wireless Communi-
cations (SPAWC), 2013 IEEE 14th Workshop on. IEEE, 2013, pp. 21–25.

298

[68] ——, “Regularized stochastic BFGS algorithm,” in Global Conference on Signal and
Information Processing (GlobalSIP), 2013 IEEE. IEEE, 2013, pp. 1109–1112.

[69] ——, “A quasi-Newton method for large scale support vector machines,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014, pp. 8302–8306.

[70] ——, “RES: Regularized stochastic BFGS algorithm,” IEEE Transactions on Signal
Processing, vol. 62, no. 23, pp. 6089–6104, 2014.

[71] ——, “Decentralized double stochastic averaging gradient,” in Signals, Systems and
Computers, 2015 49th Asilomar Conference on. IEEE, 2015, pp. 406–410.

[72] ——, “Global convergence of online limited memory BFGS,” Journal of Machine
Learning Research, vol. 16, pp. 3151–3181, 2015.

[73] ——, “DSA: decentralized double stochastic averaging gradient algorithm,” Journal
of Machine Learning Research, vol. 17, no. 61, pp. 1–35, 2016.

[74] A. Mokhtari, W. Shi, and Q. Ling, “ESOM: Exact second-order method for consensus
optimization,” in Signals, Systems and Computers, 2016 50th Asilomar Conference
on. IEEE, 2016, pp. 783–787.

[75] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Decentralized quadratically approx-
imated alternating direction method of multipliers,” in Signal and Information Pro-
cessing (GlobalSIP), 2015 IEEE Global Conference on. IEEE, 2015, pp. 795–799.

[76] ——, “A decentralized second-order method with exact linear convergence rate for
consensus optimization,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 2, no. 4, pp. 507–522, 2016.

[77] ——, “DQM: Decentralized quadratically approximated alternating direction method
of multipliers,” IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5158–
5173, 2016.

[78] P. Moritz, R. Nishihara, and M. I. Jordan, “A linearly-convergent stochastic L-BFGS
algorithm,” in Proceedings of the 19th International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, 2016, pp. 249–
258.

[79] J. M. Mulvey and A. Ruszczyn, “A diagonal quadratic approximation method for
large scale linear programs,” Operations Research Letters, vol. 12, no. 4, pp. 205–215,
1992.

[80] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[81] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approxima-
tion approach to stochastic programming,” SIAM Journal on Optimization, vol. 19,
no. 4, pp. 1574–1609, 2009.

299

[82] A. Nemirovski, A. Juditsky, and A. Shapiro, “Robust stochastic approximation ap-
proach to stochastic programming,” SIAM Journal on optimization, vol. 19, no. 4,
pp. 1574–1609, 2009.

[83] Y. Nesterov, “Introductory lectures on convex programming volume i: Basic course,”
1998.

[84] ——, Introductory lectures on convex optimization: A basic course. Springer Science
& Business Media, 2013, vol. 87.

[85] Y. Nesterov et al., “Gradient methods for minimizing composite objective function,”
UCL, Tech. Rep., 2007.

[86] A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and rotational invariance,” in
Proceedings of the Twenty-first International Conference on Machine Learning, ser.
ICML ’04. New York, NY, USA: ACM, 2004, pp. 78–.

[87] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. New York, NY:
Springer-Verlag, 1999.

[88] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by av-
eraging,” SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838–855,
1992.

[89] M. J. Powell, “Some global convergence properties of a variable metric algorithm for
minimization without exact line searches,” Nonlinear programming, vol. 9, no. 1, pp.
53–72, 1976.

[90] G. Qu and N. Li, “Accelerated distributed nesterov gradient descent,” arXiv preprint
arXiv:1705.07176, 2017.

[91] Z. Qu, P. Richtárik, M. Takác, and O. Fercoq, “SDNA: stochastic dual Newton ascent
for empirical risk minimization,” in Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
2016, pp. 1823–1832.

[92] M. Rabbat, “Multi-agent mirror descent for decentralized stochastic optimization,”
in Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015
IEEE 6th International Workshop on. IEEE, 2015, pp. 517–520.

[93] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Proceed-
ings of the 3rd international symposium on Information processing in sensor networks.
ACM, 2004, pp. 20–27.

[94] M. G. Rabbat and R. D. Nowak, “Decentralized source localization and tracking
[wireless sensor networks],” in Acoustics, Speech, and Signal Processing, 2004. Pro-
ceedings.(ICASSP’04). IEEE International Conference on, vol. 3. IEEE, 2004, pp.
iii–921.

300

[95] M. G. Rabbat, R. D. Nowak, J. Bucklew et al., “Generalized consensus computation
in networked systems with erasure links,” in Signal Processing Advances in Wireless
Communications, 2005 IEEE 6th Workshop on. IEEE, 2005, pp. 1088–1092.

[96] A. Ribeiro, “Ergodic stochastic optimization algorithms for wireless communication
and networking,” IEEE Transactions on Signal Processing, vol. 58, no. 12, pp. 6369–
6386, 2010.

[97] ——, “Optimal resource allocation in wireless communication and networking,”
EURASIP Journal on Wireless Communications and Networking, vol. 2012, no. 1,
pp. 1–19, 2012.

[98] H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of
Mathematical Statistics, pp. 400–407, 1951.

[99] A. Rodomanov and D. Kropotov, “A superlinearly-convergent proximal newton-type
method for the optimization of finite sums,” in Proceedings of The 33rd International
Conference on Machine Learning, 2016, pp. 2597–2605.

[100] A. Ruszczyński, “On convergence of an augmented Lagrangian decomposition method
for sparse convex optimization,” Mathematics of Operations Research, vol. 20, no. 3,
pp. 634–656, 1995.

[101] A. Ruszczynski and W. Syski, “Stochastic approximation method with gradient aver-
aging for unconstrained problems,” IEEE Transactions on Automatic Control, vol. 28,
no. 12, pp. 1097–1105, 1983.

[102] A. P. Ruszczyński, Nonlinear optimization. Princeton university press, 2006, vol. 13.

[103] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc WSNs with noisy
links–Part I: Distributed estimation of deterministic signals,” IEEE Transactions on
Signal Processing, vol. 56, no. 1, pp. 350–364, 2008.

[104] M. W. Schmidt, N. Le Roux, and F. R. Bach, “Minimizing finite sums with the
stochastic average gradient,” Math. Program., vol. 162, no. 1-2, pp. 83–112, 2017.

[105] N. N. Schraudolph, J. Yu, and S. Günter, “A stochastic quasi-Newton method for on-
line convex optimization,” in Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics, AISTATS 2007, San Juan, Puerto Rico, March
21-24, 2007, 2007, pp. 436–443.

[106] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, “Learnability, stability
and uniform convergence,” The Journal of Machine Learning Research, vol. 11, pp.
2635–2670, 2010.

[107] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal estimated
sub-gradient solver for SVM,” Math. Program., vol. 127, no. 1, pp. 3–30, 2011.

[108] S. Shalev-Shwartz and N. Srebro, “SVM optimization: inverse dependence on training
set size,” in Machine Learning, Proceedings of the Twenty-Fifth International Con-
ference (ICML 2008), Helsinki, Finland, June 5-9, 2008, 2008, pp. 928–935.

301

[109] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent methods for
regularized loss,” The Journal of Machine Learning Research, vol. 14, pp. 567–599,
2013.

[110] ——, “Accelerated proximal stochastic dual coordinate ascent for regularized loss
minimization,” Mathematical Programming, vol. 155, no. 1-2, pp. 105–145, 2016.

[111] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: an exact first-order algorithm for
decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2,
pp. 944–966, 2015.

[112] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the
ADMM in decentralized consensus optimization.” IEEE Trans. Signal Processing,
vol. 62, no. 7, pp. 1750–1761, 2014.

[113] B. Sirb and X. Ye, “Consensus optimization with delayed and stochastic gradients on
decentralized networks,” in Big Data (Big Data), 2016 IEEE International Conference
on. IEEE, 2016, pp. 76–85.

[114] V. Solo and X. Kong, Adaptive Signal Processing Algorithms: Stability and Perfor-
mance. Englewood Cliffs: NJ: Prentice-Hall, 1995.

[115] G. Stephanopoulos and A. W. Westerberg, “The use of hestenes’ method of multipliers
to resolve dual gaps in engineering system optimization,” Journal of Optimization
Theory and Applications, vol. 15, no. 3, pp. 285–309, 1975.

[116] G. Sun, “Kdd cup track 2 soso.com ads prediction challenge, 2012,” Accessed August
1, 2012.

[117] R. Tappenden, P. Richtárik, and B. Büke, “Separable approximations and decompo-
sition methods for the augmented Lagrangian,” Optimization Methods and Software,
no. ahead-of-print, pp. 1–26, 2014.

[118] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed optimiza-
tion: Practical issues and applications in large-scale machine learning,” in Commu-
nication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference
on. IEEE, 2012, pp. 1543–1550.

[119] ——, “Push-sum distributed dual averaging for convex optimization,” in Decision and
Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012, pp. 5453–5458.

[120] V. Vapnik, The nature of statistical learning theory, 2nd ed. springer, 1999.

[121] ——, The nature of statistical learning theory. Springer Science & Business Media,
2013.

[122] N. Watanabe, Y. Nishimura, and M. Matsubara, “Decomposition in large system
optimization using the method of multipliers,” Journal of Optimization Theory and
Applications, vol. 25, no. 2, pp. 181–193, 1978.

302

[123] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method for net-
work utility maximization–I: Algorithm,” IEEE Transactions on Automatic Control,
vol. 58, no. 9, pp. 2162–2175, 2013.

[124] B. E. Woodworth and N. Srebro, “Tight complexity bounds for optimizing composite
objectives,” in Advances in Neural Information Processing Systems, 2016, pp. 3639–
3647.

[125] L. Xiao and T. Zhang, “A proximal stochastic gradient method with progressive
variance reduction,” SIAM Journal on Optimization, vol. 24, no. 4, pp. 2057–2075,
2014.

[126] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient de-
scent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[127] M. Zargham, A. Ribeiro, and A. Jadbabaie, “A distributed line search for network
optimization,” in American Control Conference (ACC), 2012. IEEE, 2012, pp. 472–
477.

[128] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated dual descent
for network flow optimization,” IEEE Transactions on Automatic Control, vol. 59,
no. 4, pp. 905–920, 2014.

[129] L. Zhang, M. Mahdavi, and R. Jin, “Linear convergence with condition number
independent access of full gradients,” in Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States., 2013, pp. 980–988.

[130] T. Zhang, “Solving large scale linear prediction problems using stochastic gradient de-
scent algorithms,” in Machine Learning, Proceedings of the Twenty-first International
Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, 2004.

303

	University of Pennsylvania
	ScholarlyCommons
	2017

	Efficient Methods For Large-Scale Empirical Risk Minimization
	Aryan Mokhtari
	Recommended Citation

	Efficient Methods For Large-Scale Empirical Risk Minimization
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Acknowledgments
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Context and background
	Stochastic methods
	Decentralized methods
	Adaptive sample size algorithms

	Thesis outline and contributions

	I Stochastic (Incremental) Quasi-Newton Methods
	Regularized stochastic BFGS algorithm
	Context and background
	Algorithm definition
	Regularized BFGS
	RES: Regularized stochastic BFGS

	Convergence analysis of RES
	Rate of convergence

	Numerical analysis
	Effect of problem's condition number
	Central processing unit runtime comparisons
	Choice of stochastic gradient average
	Effect of problem's dimension

	Support vector machines
	RES vs stochastic gradient descent for suport vector machines
	RES and stochastic BFGS

	Online limited memory BFGS method
	Context and background
	Algorithm definition
	LBFGS: Limited memory BFGS
	Online (Stochastic) limited memory BFGS

	Convergence analysis
	Support vector machines
	Convergence versus number of feature vectors processed
	Convergence versus processing time

	Search engine advertising
	Feature vectors
	Logistic regression of click-through rate
	Numerical results

	Superlinearly convergent incremental quasi-Newton method
	Context and background
	Related work
	Outline

	BFGS quasi-Newton method
	IQN: Incremental aggregated BFGS
	Efficient implementation of IQN

	Convergence analysis
	Numerical results
	Logistic regression

	II Decentralized Methods
	Network Newton methods
	Context and background
	Distributed gradient descent
	Penalty method interpretation

	Network Newton
	Distributed approximations of the Newton step

	Convergence analysis
	Analysis of network Newton as a Newton-like method

	Implementation details
	Numerical analysis
	Comparison with existing methods
	Effect of objective function condition number
	Effect of network topology
	Tightness of the bounds
	Adaptive network Newton
	Logistic regression

	Second-order primal-dual method for distributed optimization
	Context and background
	Proximal method of multipliers
	ESOM: Exact second-order method
	Decentralized implementation of ESOM

	Convergence analysis
	Convergence of proximal method of multipliers
	Convergence of ESOM
	Convergence rates comparison

	Numerical experiments
	Decentralized linear least squares
	Decentralized logistic regression

	Decentralized stochastic optimization via gradient averaging
	Context and background
	Decentralized double stochastic averaging gradient
	Limit points of DGD and EXTRA
	Stochastic saddle point method interpretation of DSA

	Convergence analysis
	Preliminaries
	Convergence
	Linear convergence constant

	Numerical experiments
	Comparison with decentralized methods
	Effect of graph condition number g
	Effect of number of functions (samples) at each node q
	Effect of number of nodes V
	Large-scale classification application

	III Adaptive Sample Size Methods
	First-order adaptive sample size methods
	Context and background
	Problem formulation
	Adaptive sample size methods
	Complexity analysis
	Adaptive sample size accelerated gradient (Ada AGD)
	Adaptive sample size SVRG (Ada SVRG)

	Experiments
	Discussions

	Second-order adaptive sample size method
	Context and background
	Ada Newton
	Convergence analysis
	Experiments
	Discussions

	Conclusions
	Appendix
	Proof of Lemma 3

	Appendix
	Proof of Theorem 7

	Appendix
	Proof of Proposition 9

	Bibliography

