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Molecular Dynamics Simulation Study Of Water-Soluble Cryptophane
Binding A Variety Guest Objects

Abstract
Given their signicance to chemical sensing and molecular recognition, host-guest interactions are of broad
interest in molecular science. Cryptophanes, which are a kind of spherical cage molecules, are one of the most
applicable host molecules. Herein computer simulation is used to address the binding of cryptophanes to
monatomic guest species in aqueous environments. Water soluble cryptophanes have high binding anity to
Xe-129, which is a powerful contrast agent for magnetic resonance imaging and can be used as an NMR-based
biosensor. Molecular details of Xe-cryptophane binding are hard to obtain from experiment, however.
Extensive molecular dynamics simulation are carried out to understand the underlying molecular features of
the Xe-cryptophane system. Free energy perturbation and adaptive biasing force methods are used to obtain
the energetic aspects of cryptophane-Xe interactions: binding anities of individual cryptophanes to Xe and
potentials of mean force for Xe to entry the cavity. Additionally, the structure adjustments cryptophane
undergoes as it accommodates Xe are investigated in depth. From the simulations, the hydrophobicity of
cryptophane interior and the kinetics of water enter the cavity are found to be correlated with the Xe binding
anity. These ndings shed light on the design of Xe-binding cryptophanes. A related cryptophane is considered
for the selective binding of alkali metal ions. The cryptophane has particularly high binding anities with the
large cesium cation.

The Cs-137 isotope is a common, problematic radioactive nuclear ssion byproduct. The

simulations provide insight on the relative anities of alkali cations and the roles of water

molecules that enter the cavity along with ions. The simulations reveal that the high bind-

ing anity of cryptophane to Cs+ may result from the comparatively low solvation energy of Cs+ and its
geometric t to the cryptophane cavity.
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ABSTRACT

MOLECULAR DYNAMICS SIMULATION STUDY OF WATER-SOLUBLE

CRYPTOPHANE BINDING A VARIETY GUEST OBJECTS

Wenhao Liu

Jeffery G. Saven

Given their significance to chemical sensing and molecular recognition, host-guest interac-

tions are of broad interest in molecular science. Cryptophanes, which are a kind of spherical

cage molecules, are one of the most applicable host molecules. Herein computer simulation

is used to address the binding of cryptophanes to monatomic guest species in aqueous en-

vironments. Water soluble cryptophanes have high binding affinity to Xe-129, which is a

powerful contrast agent for magnetic resonance imaging and can be used as an NMR-based

biosensor. Molecular details of Xe-cryptophane binding are hard to obtain from experi-

ment, however. Extensive molecular dynamics simulation are carried out to understand the

underlying molecular features of the Xe-cryptophane system. Free energy perturbation and

adaptive biasing force methods are used to obtain the energetic aspects of cryptophane-Xe

interactions: binding affinities of individual cryptophanes to Xe and potentials of mean force

for Xe to entry the cavity. Additionally, the structure adjustments cryptophane undergoes

as it accommodates Xe are investigated in depth. From the simulations, the hydrophobicity

of cryptophane interior and the kinetics of water enter the cavity are found to be corre-

lated with the Xe binding affinity. These findings shed light on the design of Xe-binding

cryptophanes. A related cryptophane is considered for the selective binding of alkali metal

ions. The cryptophane has particularly high binding affinities with the large cesium cation.

The Cs-137 isotope is a common, problematic radioactive nuclear fission byproduct. The

simulations provide insight on the relative affinities of alkali cations and the roles of water

molecules that enter the cavity along with ions. The simulations reveal that the high bind-

ing affinity of cryptophane to Cs+ may result from the comparatively low solvation energy

iv



of Cs+ and its geometric fit to the cryptophane cavity.
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CHAPTER 1 : Introduction

Since the discovery of the first host-guest systems, cyclic polyethers (crown ethers) that bind

with metal ions[1, 2], a wide variety of hosts and guests molecules have been discovered and

synthesized. Applications of such systems have included directed self assembly on surfaces

of nanomaterials[3–6], delivery of target drugs to biological environments of intereset[7–12]

and chemsensors to detect specialized guest molecules[13–16]. In host-guest interactions, the

host molecule is normally the more complicated molecule, while the guest molecule is usually

the simpler species. Among host molecules, cryptophanes, which are a kind of synthetic

spherical cage-like molecule, are of great application. They possess adjustable sidechains and

interior volumes to accommodate guest particles. Cryptophanes can bind methane[17, 18],

chlorofluorocarbons[18], halogenated alkane derivatives[19–21], rare gases[18, 22] and metal

ions[23–25].

Among these guests, Xe-129 is one of the most influential, due to its abilitye to be hyper-

polarized with regard to its spin states. Xe-129 can act as a powerful magnetic resonance

imaging agent and biosensor, since it has high polarizability and the chemical shift is sen-

sitive to the local molecular environment. The interaction of cryptophane and Xe are

necessarily noncovalent and dominated by van der Waals interactions. Cryptophanes can

be modified so as to be water soluble and able to bind with other molecules, while main-

taining high Xe binding affinity. Cryptophane derivatives are broadly used to carry the Xe

and localize it within bio-systems when used in imaging based on Xe magnetic reasonance

[26–32].

Although a variety of cryptophane molecules have been synthesized, and their binding affini-

ties to Xe and kinetics related with Xe have been measured through isothermal titration

experiments[33–36] and hyperpolzation experiment [33–37], molecular pictures are gener-

ally hard to obtain from experimentally. Given the experiment conditions are generally

atomsphere and room temperature, and cryptophanes have high binding affinity to Xe and
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of broadly use are water soluble. Molecular dynamics simulation of solution with crypto-

phane and Xe as solute is the ideal method to probe the detailed atomistic picture of this

host-guest interaction.

In addition to studying Xe as the guest for cryptophane molecules, alkali metal ions are also

of great interest. Experimentalists have discovered cryptophanes with binding affinities for

large alkali ions, especially for Cesium+[23–25]. Cs-137 is one of the main byproducts of

nuclear fission reactions, and the recent Fukushima Daiichi Nuclear Power Plant accident

on March 11, 2011 large amounts of ground water becoming contaminated with Cs-137,

affecting hundreds of thousands of people [38, 39]. Cryptophanes with high binding affinity

and selectively to cesium would be of great interest. Molecular dynamics simulation are

used herein to explore the molecular properties of cryptophanes that bind metal ions and

provide insight on features associated with high binding affinity to cesium.

In chapter 2, the theoretical background and implementation details of two simulation

methods are reviewed. One is free energy perturbation (FEP) method[40, 41], which is

used to estimate the free energy change of a process by dividing the whole process into

a series of sub-processes. The free energy change in each sub-process can be calculated

by averaging the exponential factor of a difference in Hamiltonians, and theses changes

can be iterated begining with an initial state. The other approach is the adaptive biasing

force (ABF) method[42–45], which applies an external force to cancel the net force along a

coordinate of interest. The system then diffuses along the coordinate and visits states that

are less probable due to their high intrinsic free energies. The ABF simulation trajetory

would provide us sufficient samples to study the binding and conformational fluctuations,

including induced fit, involved in host-guest interactions.[46–48]

In chapter 3, the detailed methodology and findings related to the Xe binding affinities of

a series of cryptophanes are described. A thermodynamic cycle which employs the double

annihilation method is implemented so as to estimate free energy changes associated with

cryptophane binding to Xe. Free energy changes associated with introducing Xe in bulk
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water and within the cryptophane interior are considered. In each case, the Xe atom

disappears during the course of the simulation and becomes decoupled from the system.

The binding affinity results come from simulation are compared with experiment. We

discovered that the reaction of cryptophane binding Xe can be understood as displacement of

water by Xe within crytophane interior. Additionally, the binding affinity between different

cryptophanes are found to be correlated with the water occupancy and the residence times

of water molecule inside cavity. The water occupancy and residence time can potentially

guide the design of high affinity Xe binding cryptophanes.

In chapter 4, the detailed methodology and findings related to the energetic and structural

adjustments along Xe entry and exit of the cryptophane are described. We investigated

the potentials of mean force of Xe exit from cryptophanes that process different sidechains.

The simulations reveal the energy barrier that the aqueous Xe-cryptophane system needs

to overcome for entry and free energies associated with translocation into the interior.

From the prospect of conformation change of cryptophanes, we investigated the changes of

the interior volume of cryptophane associated with Xe exit from the cavity. We examine

conformational properties associated with linking groups and how these are twisted as Xe

exits. Sidechains are found to flip so as to encapsulate Xe. The major conformational

adjustment for cryptophane to accommodate Xe is the flip of cryptophane’s hydrophobic

sidechains. The simulations shed light on designing cryptophanes that have larger ”door

keeper” group, which could yield higher Xe binding affinity.

In chapter 5, the detailed methodology and findings related to the relative binding affinities

of cryptophane to alkali metal ions and the molecular picture of this cryptophane binding

are described. Due to the nature that electrostatic interaction is dominate when compared

with van der Waals interaction, free energy perturbation is used to calculate the binding

affinity of ions. The electrostatic interaction of vanishing ions and appearing ions are

scaled separately, while the van der Waals interactions of both ions are scaled at the same

time. A scaled charge set which considers the static dielectric constant of water is used
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in the calculations associated with mutating one ion to another inside the cryptophane.

The calculated results are consistent with experimental measurements. The reason the

cryptophane has selective binding affinity to Cs+ is due to the low aqueous solvation free

energy of the cation and the complementary size of the cryptophane cavity. The roles of

water molecules and their distributions are investigated in this chapter as well.

In chapter 6, the detailed strategy and findings related to the design of better Xe binding

affinity cryptophanes are described. Making use of the knowledge obtained from previous

simulation studies, we propose two approaches to modifying the cryptophane structure. One

is to increase the hydrophobicity of the sidechains, and the other is to change (decrease)

the interior volume of the cavity. In this work, a widely studied cryptophane, TAAC, is

used as the template to test these strategies. In the strategy of increasing hydrophobicity

of sidechains, we increase the size of the alkyl sidechain groups and the length of the

triazole linker to an ionizable solubilizing group. Together with the potential of mean force

calculation of Xe entering cavity, the structural features of these cryptophanes are also

studied and compared. This work involves synthesis of the designed systems and their

experimental characterization, wherein we explore molecular features that modulate Xe

affinity.
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CHAPTER 2 : Methods

2.1. Molecular dynamics simulation

Molecular dynamics simulation (MD simulation) is a widely used numerical method to

model the atomistic movements and to obtain collective properties in molecular systems.

Classical MD simulation assume each particle in the simulation follows Newton’s equation,

mi ×
∂xi
∂t2

= −
∑
j

∂Ui,j
∂xi

(2.1)

where mi, xi and Ui,j are the mass, position and interaction potential energy involving

particle j and particle i. Initial positions for each atom normally come from crystal structure

or posited structure, and the potential each atom experience comes from a molecular force

field. The interactions in the force field are composed of bonded interactions and non-bonded

interactions. Bonded interaction in all the work presented in this thesis are composed of

harmonic potentials to describe two atoms in equilibrium bond length, harmonic potential to

describe the bond angle formed by three atoms, and cosine functions to specify the portion

of the potential energy associated with dihedral angles formed by four atoms. Improper

dihedral potentials are also used in the thesis, to constrain four atoms in a plane, such as the

four heavy atoms in carboxylate group and the four atoms in phenol groups (three adjacent

aromatic atoms and the oxygen atom). Non-bonded interactions are composed of two

parts, electrostatic interactions and van der Waals interactions. Electrostatic interactions

involve the coulomb interactions between partial charges assigned at each atom. The partial

charges in each are derived to fit the gas phase electrostatic potential. For the charges used

to calculate free energy change of mutating ions inside cryptophane, all partial charges are

scaled by a factor of
√
εelec to account for the polarizability of the atoms [49, 50]. Here, εelec

is the static dielectric constant of water. Van der Waals interactions are described by 6-12

Lennard-Jones interaction and the σ and ε are assigned based on the similar atom types

except the paramters of Xe come from viscosity data[51].
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In implementation of all simulations, 12Å was used as nonbonded cutoff distance, 10Å

was used as switching distance from where the switching function begin to work and 14Å

was used as pair list distance to indicate the maximium space to include the neighbour-

ing atoms. The nonbonded pair list was evaluated every 10 steps, and every step is 2fs.

Each system was divided into 2Å cubes. The SHAKE algorithm[52] was used to make all

bonds between hydrogen and heavy atoms rigid and thus making 2fs timestep simulation

correctly. Nonbonded interaction was evaluated every step and electrostatic interaction was

evaluated every 2 steps. Particle Mesh Ewald (PME)[53] method was used to evaluate the

full system periodic electrostatics with 1Å as grid space. All simulations and calculations

are implemented in NPT ensemble, pressure is 1atm and temperature is 300K. In order to

implement NPT ensemble simulation, Langevin dynamics method[54] was used to main-

tain the temperature with damping coefficient to be 1/ps and Langevin piston Nose-Hoover

method[55] to maintain the pressure with oscillation period equal to 100fs and decay time

equal to 50fs.

2.2. Free energy perturbation method

Helmholtz free energy (A) for an ensemble is related to the partition function (Q), displace-

ment (x) and momentum (px) as,

A = − 1

β
· lnQ = − 1

β
· ln

∫ ∫
exp[−β ·H(x, px)]dxdpx (2.2)

where β is the 1
RT and H(x,px) is the Hamiltonian of the system. And free energy change

between state 0 and state 1 will be,

∆A = − 1

β
ln(

Q1

Q0
) = − 1

β
ln

∫ ∫
exp[−β ·H1(x, px)]dxdpx∫ ∫
exp[−β ·H0(x, px)]dxdpx

(2.3)

And after we simplify the equation2.3, we have

∆A = − 1

β
ln

∫ ∫
exp[−β ·∆H(x, px)]exp[−β ·H0(x, px)]dxdpx∫ ∫

exp[−β ·H0(x, px)]dxdpx
(2.4)
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Since the probability of finding a sample defined by x and px is,

P0(x, px) =
exp[−β ·H0(x, px)]∫ ∫
exp[−β ·H0(x, px)]dxdpx

(2.5)

The free energy change from state 0 to state 1 can be represent as,

∆A = − 1

β
ln

∫ ∫
exp[−β ·∆H(x, px)] · P0(x, px) (2.6)

And we can also represent free energy change of two states using below formula which is

clearer in implementation of free energy perturbation.

∆A = − 1

β
ln〈exp[−β ·∆H(x, px)]〉0 (2.7)

Since the kinetic energy term is unchanged for all cases considered here as the system

changes state, in equation 2.7, the ∆H can be substitued by difference in potentials ∆U

directly. Therefore, the free energy change from one state to another state can be calculated

as: sampling at the initial state, plugging in the force field at the final state to calculate

the energy difference, and taking the log after averaging the exponential term involving

the energy difference using sampled configurations. However, the free energy change from

equation 2.7 is hard to converge if the two states are substantially different, thus small

perturbations are required. We divide the whole free energy change process into a series

of smaller processes, with comparatively modest changes in the potential energy. The

summation of these free energy differences will be the overall free energy change.

During an FEP process, the potential of the system in the intermediate states will be scaled

linearly, Hλ = (1-λ)H0 + λH1, where λ is used to represent the progress of the fep process,

and λ=0 stands for the initial state and λ=1 stands for the final state. Due to in the systems

investigated in this thesis are interaction of Xe and ions with the rest atoms in the system,

therefore only the non-bonded interactions are perturbed. In the work of estimating Xe

binding affinity of cryptophane, the initial state of Xe FEP process has Xe fully coupled
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Figure 2.1: Strategy of scaling of λ during free energy perturbation process

to the system and the final state is Xe is completely decoupled. In the work of estimating

relatively binding affinity of cryptophane to different ions, the initial state is one ion fully

coupled to the system, the final state is the previous ion fully decoupled from the system

and the new ion fully coupled to the system, and the intermediate states having two ions

exist in the system but they don’t interact with each other. In conditions of mutating ions,

a new ion is appearing in the system and it maybe collide with existing atoms (atoms in

the cryptophane and water molecules), leading to near singularities in simulation3.4. To

avoid this, shifted LJ potentials are used to model the vdW interactions. In adddition, the

electrostatic and vdW potentials are scaled differently as functions of λ so as to speed up

convergence. As in figure 2.2, for the vdW interaction of ions with environment, which are

Lennard-Jones potentials in implementation, the interaction of annihilated (”disappeared”)

ion with environment are scaled at the same rate as global λ; the interaction of introduced

(”appeared”) ion with environment are scaled up at the same speed as λ as well. For the

electrostatic interaction of ions with environment, the speed of scaling down the interaction

of annihilated ion with environment and scaling up the final ion with environment occur at

a rate twice that of the global λ increase. This leads that the electrostatic interaction of

disappearing ion becoming decoupled from system when λ = 0.5 and then the electrostatic
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interaction of appearing ion start to couple to the system and fully couple when λ reaches

1.0.

2.3. Adaptive biasing force

Adaptive biasing force (ABF)[42–45] simulation is a widely used method to investigate

host/guest interaction along one or multiple reaction coordinate.

A(r) = − 1

β
lng(r) (2.8)

In principle, the potential of mean force (PMF) with respect to specific coordinate can be

calculated from a distribution function (equ (2.8)) which can be collected from equilibrium

simulation. However, it is hard to obtain accurate PMF at high energy points since those

high energy configurations are rare and are unlikely to be visited during a simulation. The

resulting radial distribution function approaches 0 for such configurations and makes the

PMF meaningless at these points. In order to enhance sampling at high energy states

along a chosen reaction coordinate, an external force can be applied to bias the simulation.

Adaptive biasing force (ABF) simulations can sample efficiently at states we interested in

and thereby obtain the free energy profiles by integrating the forces applied to the system

along the coordinate. By collecting the forces at one specific general coordinate with the

free energy, we would obtain,

dA (ξ)

dξ
= 〈∂V (x)

∂ξ
− 1

β

∂ln|J |
∂ξ

〉ξ∗ = −〈Fξ〉ξ∗ (2.9)

where ξ is the general coordinate of interest, and |J| is the Jacobian determinant of trans-

forming Cartesian coordinates to generalized coordinates which includes ξ. Herein ξ is the

distance of two particles in the system, the forces applied to bias the simulation can also

be represent as,

Fξ =
1

2
(F2 − F1) · x1,2 +

2

βξ
(2.10)
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where F1 and F2 are the net forces on particle 1 and 2, x1,2 is the unit vector connect

particle 1 to particle 2.

In implementation, the whole range of ξ is divided into several windows and each small

window is a independent simulation. In each window, the range of ξ is composed of small

tiny bins and the biasing forces will be applied at each bin is assumed to the same. Prior to

applying the biasing force, a certain number of samples are required for an intial estimate

of the biasing force and avoiding ”wrong” biasing due to samples are not representative.

2.4. Water map analysis

Water map analysis is a technique to explore the distribution of water molecules as well

as the orientations of water molecules in a confined space[56]. Water map analysis is com-

posed of two steps, the first step is the position clustering, which would generate the most

populated positions that water is positioned inside the confined space among the obtained

simulation samples. The second step is orientation clustering, which would yield orienta-

tions for those water molecules that are associated with a given position cluster. Prior

to the position clustering, coordinates of all atoms in the simulation box are aligned. In

position clustering, we considered all water molecules within the cryptophane cavity and

count the number of all other water molecules that are closer than 1.0Å to each of them.

The coordinates of the oxygen in the water molecule that has highest number of water

molecules nearby is defined to be center of the first cluster. Following the same criteria,

we can identify the second and third clusters. The selection of the number of clusters is

guided by the average number of water molecules in each confined region, as determined

using an unbiased simulation. In orientation clustering, the orientation of water molecules

within 1.0Å of the cluster center are considered and compared. The rotation matrix of

rotating each water molecule to the reference water molecule are calculated and converted

to quanterion representation (q). In order to rotate water molecules to a specific water ori-

entation, we rotate the water molecules with two steps, first is to rotated the dipole vector

of water to the reference orientation, and the second is to rotate the hydrogen-hydrogen to
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the reference orientation. And the rotation matrix will be the multiplication of these two

matrices. The criteria of two water molecules have similar orientation is |qi·qj | > 0.9, and

we count the number of similar orientations each water molecule in cluster has, and the

water molecule has highest number is the most representative orientation.
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CHAPTER 3 : Xe Affinities of Water-Soluble Cryptophanes and the Role of

Confined Water

This chapter is adapted from the article: Lu Gao, Wenhao Liu, One-Sun Lee, Ivan J.

Dmochowski, and Jeffery G. Saven. ”Xe affinities of water-soluble cryptophanes and the role

of confined water.” Chemical Science 6, no. 12 (2015): 7238-7248.. As a equal contribution

author, Wenhao Liu’s major contributions to this work include: verification of simulation

results; error analysis in Xe binding affinity calculation; determination of distribution of

water molecules around cryptophanes; verification of the results with a different force field

and at different protonation states of cryptophane; and preparation of text and figures for

publication.

3.1. Abstract

Given their relevance to drug design and chemical sensing, host-guest interactions are of

broad interest in molecular science. Natural and synthetic host molecules provide vehicles

for understanding selective molecular recognition in aqueous solution. Here, cryptophane-

Xe host-guest systems are considered in aqueous media as a model molecular system that

also has important applications. 129Xe-cryptophane systems can be used in the creation

of biosensors and powerful contrast agents for magnetic resonance imaging applications.

Detailed molecular insight on the determinants of Xe affinity is difficult to obtain experi-

mentally. Thus, molecular simulation and free energy perturbation methods were applied

to estimate the affinities of Xe for six water-soluble cryptophanes. The calculated affinities

correlated well with the previously measured experimental values. The simulations provided

molecular insight on the differences in affinities and the roles of conformational fluctuations,

solvent, and counter ions on Xe binding to these host molecules. Displacement of confined

water from the host interior cavity is a key component of the binding equilibrium, and the

average number of water molecules within the host cavity is correlated with the free en-

ergy of Xe binding to the different cryptophanes. The findings highlight roles for molecular
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simulation and design in modulating the relative strengths of host-guest and host-solvent

interactions.

3.2. Introduction

Host-guest interactions are of broad interest in chemistry and offer many potential ap-

plications, including the development of drugs, sensors and agents for molecular delivery.

Synthetic host-guest systems also provide vehicles for probing the roles of host structure

and solvent on the affinities for particular guest species. A variety of noncovalent features

can play important roles in the binding of guest molecules, including complementarity of

shapes and volumes, van der Waals interactions, hydrogen bonding, hydrophobic contacts,

electrostatic interactions, and solvation of both the guest and host. Synthetic host molecules

provide a means to dissect some of these interactions, but a detailed molecular picture is

often difficult to achieve experimentally. Herein, molecular simulations are used to explore

the binding of a rare gas guest, Xe, to cryptophane host molecules in aqueous environments.

The findings provide a molecular perspective on the relative affinities of these versatile cryp-

tophane host molecules and highlight the roles of solvent in the formation of the Xe-bound

complex.

Cryptophanes are cage-like molecules with two cyclotriguaiacylene caps linked by three

variable-length alkyl chains to form nearly spherical cavities of tunable internal volume

(figure 3.1). The binding of small molecules to cryptophanes has been explored extensively

in organic solvents. These host molecules bind a variety of neutral and charged guest

molecules, including methane[17], halogenated alkane derivatives[19–21], alkyl-ammonium

ions[57], and rare gases[22]. Water-soluble cryptophane variants have been created[58–

60], which exhibit useful affinities for Xe and can be used in biosensors. The binding of

Xe in aqueous media is particularly relevant for applications in magnetic resonance based

detection and imaging (MRI), where the cryptophane can bind to this essentially inert

element. Functionalization of the cage exterior improves cryptophane solubility while also

enabling Xe targeting to biomolecules of interest and biosensing.[61]
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Figure 3.1: A) The structures of six water-soluble cryptophanes. B) Renderings of crypto-
phane molecules with Xe bound.

The 129Xe isotope can be hyperpolarized, the basis of its applications in biosensing[62]

and MRI[28? –30]. The resonance of the 129Xe spin- nucleus is sensitive to the local

chemical environment and presents a nearly 300 ppm range of chemical shifts when bound

to cryptophane in water.[31] Changes in the chemical shift of Xe have been used to monitor

binding to cryptophanes and to determine molecular affinities.[61]Delivering xenon to a

specific biological target, however, can be difficult due the fact that the atom is nonreactive

and its weak, non-specific affinity for proteins and other analytes.[63] Thus, cryptophanes

provide a means to bind, localize, and ”chemically functionalize ” Xe in a variety of solvent

environments.[62, 64, 65] Appropriately derivatized cryptophanes can be used to target Xe

in aqueous environments.[35, 66, 67]

In aqueous media, the Xe affinities for cryptophane derivatives at neutral pH have been

measured. These cage variants can be distinguished by the lengths of the bridging linkers

between the two cyclotriveratrylene capping moieties and the side chain groups that confer

solubility (Figure 1); m and n denote the number of carbon atoms in the three alkyl

linkers. While cryptophanes m2n2 and m3n3 maintain three-fold symmetry with uniform

ethyl and propyl linkers, m2n3 has one longer (propyl) linker that breaks the symmetry.

Three hexa-acid cryptophane derivatives have been reported with Xe association constants
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in the range of K a = 1000-6800 M-1 at rt.[58] Among these hexa-acid cages, the m2n2

variant (a derivative of cryptophane-A)[67] has the greatest affinity, K a = 0.68 × 104 M-1

(Figure 3.1). More recently, cryptophanes with only three ionizable side chains have been

studied. At pH = 7.5, tris-(triazole ethylamine) cryptophane (TTEC) is triply protonated

with K a = 4.2 × 104 M-1; at pH = 2.5, TTEC is singly protonated with K a = 3.4 × 104

M-1 (293 K).[36] These are the highest reported cryptophane-Xe affinities in aqueous media.

Other soluble derivatives include a triacetic acid cryptophane-A derivative (TAAC, K a =

3.3 × 104 M-1)[35] and tris-(triazole propionic acid) cryptophane-A derivative (TTPC, K a

= 1.7 × 104 M-1).[36] In addition, a Ru-coordinated cryptophane-111 derivative has a

Xe affinity comparable to that of TAAC, K a = 2.9 × 104 M-1.[68] A variety of distinct

experimental methods have been used to determine these Xe affinities. Shifts in NMR

spectral peaks have been used to estimate the affinities of the hexa-acid cryptophanes

(m2n2, m2n3, m3n3 ) and the cryptophane-111 derivative.[34] , [68] Fluorescence quenching

and isothermal titration calorimetry have been used to determine the affinities of TTEC,

TAAC, TTPC.[33] , [69] , [70] Interestingly, the central cavities of m2n2, TTEC, TTPC, and

TAAC are identical in chemical structure, but these molecules have appreciably different

Xe affinities. A molecularly detailed, quantitative framework for understanding the relative

affinities of this series of cryptophanes is desirable.

Herein, molecular simulations are used to estimate the association free energies involving Xe

and six water-soluble cryptophanes (Figure 3.1). The molecular properties of these systems

in an aqueous environment are also explored. Molecular simulations have been widely used

to estimate affinities of host-guest molecular systems,[71] , [72] and such simulations have

provided insight to the structural fluctuations and binding properties of cryptophanes.[73–

75] Herein, a free energy perturbation methodology was applied to calculate the binding

free energy of Xe to six different water-soluble cryptophane derivatives. The experimen-

tally determined binding constants correspond to a range of binding free energies spanning

only about 2 kcal/mol. Such subtle differences can be difficult to discern with free energy

calculations. Nonetheless, the calculated results correlate well with measured experimental
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values. The simulations also provide molecular insight into the relative binding affinities of

different cryptophanes. The distribution of water molecules and counter ions (Na+, Cl−)

within and near the cryptophane molecules is characterized. The average number of solvent

molecules within the interior cavity is found to be correlated with the free energy of Xe

binding.

3.3. Methods

3.3.1. Alchemical free energy perturbation.

An alchemical double decoupling method[40, 41] based upon free energy perturbation the-

ory was used to estimate the binding free energy between Xe and cryptophane, ∆Gbinding

, in the presence of explicit solvent (water) and counter ions. The binding free energy was

estimated by performing two simulations, one with the Xe atom in only water solvent (no

cryptophane) and the other with the Xe atom within the interior of the solvated crypto-

phane. For each simulation, the potential energy interactions that couple the Xe atom to

the remainder of the system gradually vanish; Xe is ”decoupled ” during the course of the

calculation. The thermodynamic cycle for estimating ∆Gbinding from the simulations is

illustrated in Figure3.2. From the thermodynamic cycle, we have :

∆Gbinding = ∆G1 −∆G2 + ∆Grestrain (3.1)

Here, ∆G1 and ∆G2 are free energy changes of the two decoupling processes in which

the Xe atom is converted into a noninteracting ”ideal gas ” particle. ∆G1 is the free

energy associated with removing a Xe atom from bulk solvent, as the Xe atom no longer

interacts with its local environment. ∆G2 is the free energy change associated with

removing the potential energy interactions the Xe atom has with its environment, while the

Xe nucleus is confined inside the host cryptophane; the Xe atom essentially vanishes from

the interior of the cage. ∆Grestrain is the change in free energy associated with restraining

the noninteracting Xe atom to the interior of the cryptophane.
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Figure 3.2: Thermodynamic cycle of double decoupling method. All simulations are per-
formed in an aqueous environment. The state ”0 ” indicates the complete decoupling of Xe
atom from its environment when potential energy terms involving the Xe atom vanish.
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An alchemical free energy perturbation method[76–80] implemented in NAMD2[81] is used

to calculate ∆G1 and ∆G2. The hybrid potential energy that comprises interactions

between the Xe atom with the other atoms in its environment is determined by a decoupling

parameter λ and is expressed as,

UXe−X(λ) = (1− λ) · UXe−X (3.2)

Here, U Xe-X contains all components of the systems potential energy dependent on the

coordinates of the Xe atom. As λ is increased from 0 to 1, the interaction between the

Xe atom and its environment vanishes: UXe−X (λ = 0) = UXe−X and UXe−X (λ = 1) = 0

. The coupling parameter is discretely incremented to ensure appropriate sampling. The

Helmholtz free energy change from one value λi to its neighboring value λi+1 can be

expressed as,

∆A(λi → λi+1) = −kBT ln〈e
−U(λi+1)−U(λi)

kBT 〉i (3.3)

The brackets represent an equilibrium ensemble configurational average with the Hamilto-

nian H (λi) . The Helmholtz free energy differences, ∆A1 and ∆A2, between state λ =0

and state λ =1 (Xe atom decoupled from its environment), are obtained using

∆An(0→ 1) =

N∑
i=1

∆An(λi → λi+1) (3.4)

Simulations are performed for N values of λ, such that λ1 = 0, λN +1 = 1, and λi ¡

λi+1. To obtain the estimate of the Gibbs free energy change for the isothermal-isobaric

(NPT) ensemble, the work contributed by the volume change between the initial and end

states is included.

∆Gn(0→ 1) = ∆An(0→ 1) + P · (Vλ=1 − Vλ=0) (3.5)
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Where, P is the pressure, 1 atm or 1.01325 bar, and Vλ=0 and Vλ=1 are the volumes of the

simulation cell at initial and end states, respectively. Typically, the PV term is negligible,

and ∆Gn (0→ 1) = ∆An (0→ 1) The free energy change associated with restraining the

noninteracting Xe within the host molecule[40] is calculated using

∆Grestrain = −RTln(c0Vrestarin) (3.6)

Here, c0 is the standard concentration c0 = 1 mol/L or c0 = 1 molecule/1660 Å3. Vrestrain is

the volume accessible to the Xe atom when restrained inside the host molecule. An external

isotropic potential u(r) is enforced on the Xe atom to confine it within the cryptophane

cavity,

U(r) =


0 r ≤ rrestrain

1
2k(r − rrestrain)2 r > rrestrain

(3.7)

Here, r is the distance between Xe atom and the center of the cryptophane (the center of

mass of the aromatic carbon atoms), rrestrain was chosen to be 2.8 Å, and k is set to be 100

kcal/mol. After pooling all sampled configurations from all six Xe-cryptophane systems,

this confining radius rrestrain was determined as the maximum value of r in which Xe was

present and fully coupled to its local environment ( λ= 0). Since Xe was not observed to

exit the cage in any of the simulations, the ”restraining force ” was essentially not applied.

The value of rrestrain does enter into the calculation of ∆Grestrain

3.3.2. MD simulations.

Force Field Parameters. Structures and atomic coordinates of the water-soluble crypto-

phanes were based on the X-ray crystal structure of cryptophane-A.[82] The van der Waals

(Lennard-Jones) parameters were taken from OPLS.[83] , [84] The van der Waals param-

eters for Xe atom were taken from measured viscosity data.[51] Initial structures of side

chains were built using Spartan, and the geometries were optimized with the MP2 method

and 6-31+G* basis set using Gaussian98.[85] Atomic charges of the backbone were adapted
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from previous work,[74] and the charges for the side chains were obtained by fitting the

electrostatic potential using the R.E.D. tools.[86] (See Figure S1 in Supporting Informa-

tion (SI).) The bonded parameters were taken from AMBER94.[87] For the missing bond,

angle and dihedral parameters, frequency calculations based on the optimized geometries

were carried out, and the resulting Hessian matrices transformed into internal coordinates.

Potential parameters appear in SI Table S1.

System Preparation. For the calculation of ∆G2, a Xe atom was placed inside the crypto-

phane cavity, and the complex was solvated in a modified TIP3P[88] water box with periodic

boundary conditions using the Solvate plugin implemented in VMD.[89] The initial periodic

box size for each system was 36 ×36 ×36 Å3 and contained about 1200 water molecules.

Ionic groups at the end of side-chains were modeled in their fully ionized forms: 3 sodium

ions were added to TAAC and TTPCs systems and 3 chloride ions were added to TTEC

system solvent box, resulting in a counter ion concentration of [NaCl] = 0.1 M in each case;

6 sodium ions were added to m2n2, m2n3, and m3n3 systems, yielding [NaCl] = 0.2 M.

The concentrations used in the simulations were targeted to be close to the experimental

concentration (0.040 M), while maintaining the overall charge neutrality of the simulated

system. Counter ions were added using the Autoionize[89] plug-in of VMD to render each

system neutral. A cutoff in the potential energy was set to be 12 Å for non-bonded interac-

tions. Conjugate gradient energy minimization was followed by a 10 ns equilibration with

the NPT ensemble. A Langevin dynamics method was used to maintain the temperature of

the system at 300 K with a coupling coefficient 1/ps, and pressure was maintained at 1 atm

using the Langevin piston Nose-Hoover method with a piston period of 100 fs, a damping

time constant of 50 fs, and piston temperature of 300 K. Full electrostatics was employed

using the particle mesh Ewald method with a 1 Å grid spacing. Covalent bonds involving

hydrogen atoms were held rigid using the SHAKE algorithm,[90] thus allowing a 2-fs time

step. For calculating ∆G1, a single Xe atom was simulated in water with no other solutes.

All the molecular dynamics simulations were performed using NAMD2.[81]
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3.3.3. Alchemical Free Energy Perturbation

(FEP). The values λ = 0 and λ = 1 represent states where Xe was present and absent,

respectively. Nine intermediate, equally spaced values (windows) of λ were selected with a

spacing of λi+1 - λi = 0.1. The free energy change with each increment of λ was less than

1 kcal/mol (1.6 kBT ), enhancing sampling and overlap between neighboring windows.[79]

The alchemical FEP calculation was performed for each window with an equal equilibration

time of 1 ns followed by varying sampling time. The correlation time of the quantity was 1

ns or less for each window. A block average statistical analysis[91] was used to determine

the length of the sampling time of each window. A blocks length was chosen to be the above

correlation time (1 ns). The number of blocks was increased until the standard deviation

of block averages was no longer dependent on the number of blocks and the calculated free

energy change obtained using n blocks was within 0.01 kcal/mol of that obtained using the

previous n-1 blocks. As λ increases, water molecules may enter the cryptophane interior.

The residence time of water molecules at the end point was on average 0.1 ns and is shown in

SI Table S2. Thus, the sampling time was selected to be much larger than this residence time

of water molecules. As λ increased, longer sampling times were used to obtain converged

results. The total sampling time ranged from about 3 ns for the first [0, 0.1] λ window to

about 10 ns for the last [0.9, 1] λ window. To avoid the ”end-point catastrophes ” near λ = 1

where overlapping particles lead to singularities in the Lennard-Jones potential, a modified

soft-core potential[92], [93] was used with a radius-shifting coefficient set at 5. For the ∆G2

pathway, to confine the Xe atom inside the host molecule, an isotropic harmonic potential

u(r) (Eq. 7) was exerted using the COLVAR module,[94] and the radial coordinate r of the

Xe atom was measured with respect to the center of mass of the aromatic carbon atoms of

the host cryptophane molecule.

The statistical uncertainties in the free energies of association (Table 1) were determined

using the standard deviation of the block averages for each increment in λ; the trajectory

of each such increment was divided into blocks of 1 ns of sampled configurations, and the
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Experimental Calculated
Ka

a ∆ Gbinding ∆Gbinding

(M×104) (kcal/mol) (kcal/mol)

TTEC 3.40±0.10 -6.07±0.02 -5.97±0.09
TAAC 3.33±0.28 -6.06±0.05 -5.89±0.10
TTEC 1.70±0.17 -5.67±0.06 -5.78±0.15
TTEC 0.68±0.23 -5.13±0.24 -4.89±0.06
TTEC 0.22±0.04 -4.48±0.12 -4.55±0.10
TTEC 0.10±0.04 -4.02±0.30 -4.10±0.18

Table 3.1: The calculated and experimental binding free energies of Xe and water-soluble
cryptophanes. a Previously reported values

variance of the free energy σ2 was estimated using the values of the free energies estimated

for each λ window: σ2 [∆G0→1] = σ2 [∆G0→0.1] + σ2 [∆G0.1→0.2] + + σ2 [∆G0.9→1]

3.4. Result

Binding free energy calculation results. Molecular dynamics simulations were used

to estimate the free energies of binding (Figure 3.2 and Eq. 1) for the six cryptophanes

presented in Table 1. To estimate ∆G1, a single decoupling calculation was performed

for a Xe atom solvated in water. To obtain the Gibbs free energy change for the NPT

ensemble, the work contributed by the volume change between the initial and end states

should be estimated. At constant pressure, the volume change of the periodic box for

each decoupling pathway is less than 100 Å3, resulting in a negligible contribution due

to pressure-volume work (P ∆V ¡ 1.510-3 kcal/mol). As a result, we take that ∆A1 =

∆G1 and ∆A2 = ∆G2. The calculated free energy of solvation of Xe is ∆G1 = -

0.40 ± 0.06 kcal/mol. This value is within 1 kcal/mol of the experimentally inferred value

for transfer of Xe from a dilute gas to water,[95, 96], ∆G1 = -1.34 kcal/mol, and the

discrepancy may arise from the simple models used here for solvent and for the Xe atom.

As ∆G1 is the same for each cryptophane system considered and the major emphasis of

this study is the relative affinities of the different cryptophanes, the experimentally inferred

value of ∆G1 was used in estimating ∆Gbinding . ∆Grestrain is associated with
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Figure 3.3: Experimental6, 20, 21, 24 and calculated free energies of Xe binding. The solid
line is a linear least squares fit. The dotted line corresponds to equality of the experimental
and calculated values of ∆G.
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the confinement of the ideal (noninteracting or decoupled) Xe atom to the interior of the

cryptophane, and for all the systems considered here ∆Grestrain = 1.72 kcal/mol (Eq.

6). To estimate ∆G2, free energy perturbation (decoupling) calculations were performed

for Xe associated with each of the six systems listed in Figure 1: TTEC, TAAC, TTPC,

m2n2, m2n3 and m3n3. Values of ∆Gbinding were found to be invariant upon slight

variation of rrestrain , e.g., for TAAC, ∆Gbinding(rrestrain = 2.8Å) = 6.27kcal/mol and

∆Gbinding(rrestrain = 2.0Å) = 6.26kcal/mol. The resulting calculated binding free energies

∆Gbinding were in excellent agreement with the experimentally inferred affinities, having a

correlation coefficient r = 0.98 (Table 1, Figure 3.3). Thus the simulations and free energy

perturbation approach applied here is useful for quantitatively reproducing the relative

ordering of the free energies of Xe binding to the cryptophane systems considered.

Host structural variation upon Xe binding. As shown in Table 2, the distance between

the centers of mass of the two cyclotriguaiacylenes increased with the length of the linker.

Due to the flexibility of dihedral angles of the propyl linkers in m2n3 and m3n3, these

interior distances as well as the sizes of the cages fluctuated more than in cryptophanes

with only ethyl linkers. Thus, for cryptophanes with propyl linkers, the distances were such

that the cage was substantially larger and less suited for Xe binding. While m3n3 and m2n3

had the largest interior cavities by these distance measures, the remaining cryptophanes had

similar, well-defined interior cavity dimensions. Thus, differences in xenon affinities could

not be resolved in terms of the cavity size and structural fluctuations alone.

Host-solvent interactionsEach cryptophane was observed to accommodate water molecules

within the interior cavity. When multiple waters were present within the cavity, these were

often observed to hydrogen bond to each other (Figure 3.4). The radial distribution func-

tions of water molecules as functions of the distance r from an oxygen atom and the center

of mass of the aromatic carbons of the cryptophane cage are shown in Figure 3.5. The radial

distribution function indicated low probability of water molecules over the range r = 3.0-6.5

Å. This was expected since the average distance of carbon atoms in the cyclotriguaiacylene
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Figure 3.4: Configurations with water molecules inside cryptophanes m3n3, m2n2 and
TAAC. In the lower row, each configuration is rotated 90.

units from the center of mass were in the range r = 4.5-5.5 Å; the steric interactions with

the cryptophane prevents water from being observed at these values of r. Thus, oxygen

atoms having r ¡ 4 Å corresponded to interior water molecules within the cavity. Each of

the cryptophanes was free of interior water with Xe present in the cage. Figure 5A indi-

cates no water within 6 Å to the center of the cage. However, when Xe is absent, water

molecules occupy the cavity as shown in Figure 5B. The peaks near r = 1 Å arise due to the

water molecules near the center of the cryptophane cavity. Representative interior water

configrations are shown in Figure 4. The position of the interior peak is slightly displaced

for m3n3 to r = 1.5 Å, which is not unexpected due to the larger interior cavity. A sec-

ond peak appears near r = 3 Å was also observed for the hexa-acid cryptophanes m2n2,

m2n3, and m3n3. This peak corresponds to the water molecules at the 3 pores (Figure 4),

where the hydrophilic side-chains and counter ions localize these water molecules. This sec-

ond peak was not observed for tri-functionalized cryptophanes TTEC, TAAC and TTPC,

presumably due in part to the substitution of three carboxylate groups with hydrophobic

methyl side chains. The hexa-acid cryptophanes possess greater water occupancies within
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Figure 3.5: Distribution of water molecules in cryptophane interior. The distance r is
measured between the cryptophane center of mass and a water oxygen nucleus. A) Radial
distribution function g(r) for water when Xe is present in the interior ( = 0). B) Radial
distribution function g(r) for water when Xe is absent from the interior ( = 1). C) Average
number of water molecules N(r) within a distance r from the cryptophane center of mass
in the absence of Xe. Curves are obtained from integrating the corresponding g(r).
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Figure 3.6: A) Water radial distribution function g(r) about Xe in water, where r is Xe-O
distance. B) Sampled configuration depicting first solvation shell (waters within 6Å) of Xe
in water.

the cavity than the tri-functionalized cryptophanes (Figure 5C). In contrast, the higher Xe

affinity cryptophanes are empty (lacking water) for a large fraction of the sampled con-

figurations (SI Figure S2). The average numbers of water molecules inside each cage are

0.50 for TTEC, 0.92 for TAAC, 1.01 for TTPC, 1.63 for m2n2, 2.23 for m2n3, and 2.73 for

m3n3, respectively. This trend is also the order of decreasing Xe binding affinity for these

cryptophanes.

The affinity of Xe for the cryptophanes is believed to result in part from release of the waters

that form an ordered water structure that surrounds the Xe atom in aqueous solution.[]6 Xe

in water was simulated to explore the water structure about the rare gas atom. The radial

distribution function of water molecules about Xe in water is shown in Figure 3.6A. Inte-

gration of this distribution function yields 15-20 water molecules within the first solvation

shell (r ¡ 5-6 Å from the Xe atom). Figure 3.6B depicts 20 water molecules surrounding Xe

as its first solvation shell within 6 Å. These estimates for the numbers of water molecules

released upon sequestration of the Xe in the cryptophane are consistent with those inferred

from isothermal titration data, which suggested that 20 water molecules were released upon
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Figure 3.7: Water map clustering for hexa-acid cryptophane m3n3. A) Side view and
B) top view differ by a rotation of 90. Five position-based water clusters are indicated
by wireframe spheres with radius of 1 and are colored in order of decreasing population:
orange, yellow, tan, green and purple. Within each cluster, coordinates of six representative
water molecules (red) are rendered.

binding.[97]

Water map analysis. To investigate further the ordering and orientation of water

molecules within the cryptophanes, a water map analysis was applied.[56]

In the absence of Xe, coordinates of all the water molecules within 4 Å of the center of the

cage were collected from sampled configurations. All such coordinates were pooled, aligned

and superimposed. The water molecule with the highest number of neighbors within 1 Å

(O-O distance) was selected and taken as the center of a generated cluster. Such a cluster

comprises water molecules from distinct sampled configurations in the molecular dynamics

trajectory. The resulting water cluster was then excluded before a second cycle of cluster

identification was performed. At most five water molecules were observed at the m3n3

interior (SI, Figure S2), and the five most populated clusters of water molecules inside

the cryptophane are shown in Figure 3.7. Within each position-based cluster, clusters of

orientations of the water molecules were obtained by using a similar algorithm, where the

criterion for association with a particular cluster was |q1q2| > 0.9 , where q is the quaternion
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Figure 3.8: Na+ counter ions (yellow) near the m3n3 cryptophane molecule in the absence
of Xe (λ = 1). A) Top view. B) Side view (90o rotation of configuration in A). C) Schematic
illustration of counter ion coordination by the side chains.

that rotates a water molecule to a fiducial reference water orientation. In addition to the

two water clusters near the center of the cryptophane, three other water clusters near the

pores surrounded by side-chains were identified. These three water clusters were stabilized

by hydrogen bonding to hydrophilic side-chains of hexa-acid cryptophanes and coordination

of Na+ ions (Figure 3.8). These cluster orientations showed that their oxygen atoms are

directed outwardly from the interior of the cage to coordinate Na+ counter ions (Figure

3.8).

The other hexa-acid cryptophanes, m2n3 and m2n2, have smaller interiors but also exhib-

ited water clusters near the pore regions. For the tri-functionalized cryptophanes, TAAC,

TTPC and TTEC, water molecule clusters appeared at the cavity center, other water clus-

ters at the three pore regions also existed but with lower populations (Figure S4, Supporting

Information); the hydrophobicity of the methyl side chains and the diminished presence of

counter ions (Figure 9b) likely reduced the likelihood of persistently structured water near

the pores of these cryptophanes.

Distribution of counter ions. The radial distributions of counter ions are shown in

Figure 9. When no Xe atom was present in the hexa-acid cryptophanes (m2n2, m2n3 and

m3n3 ), peaks in the counter ion (Na+) distribution appeared near r = 5.5 Å and r = 9

Å. For m2n2, m2n3 and m3n3, the peak near r = 9 Å corresponded to coordination of the
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Figure 3.9: The radial distribution g(r) of counter ions relative to the center of mass of the
cryptophane molecule. A) Xe atom is absent (λ = 1). B) Xe atom is present within the
cryptophane (λ = 0).
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Figure 3.10: Polar contours for distribution of counter ions. The left and right columns are
the polar distributions of counter ions when λ = 0 and λ = 1, respectively. The origin is set
at the center of mass of the 36 aromatic carbon atoms of the cryptophane; the x-y plane is
perpendicular to the vector connecting the two centers of mass of the top and bottom caps,
and the x axis is the projection of the vector connecting the origin and the average position
of two phenol oxygen atoms on the same linker. On the contour plot, the radial coordinate
r is the distance between the origin and a counter ion; θ is the angle between the x axis and
the projection of r on the x-y plane. Color scale bar is shown above for g(r, θ.
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Figure 3.11: Radial distribution functions of atoms associated with simulations of the cryp-
tophanes TTEC, TAAC, TTPC, and m2n2 in the absence of Xe. In each case, r is the
distance of the indicated atom type to the center of mass of the cryptophane. Blue (back-
bone): the aromatic carbon atoms of the cryptophane. Green (ionizable groups in the
side chains): for TTEC, the ammonium nitrogen atom N; for TAAC, TTPC and m2n2,
the central carbon of the carboxylate group. Red (counter ions): Cl- for TTEC and Na+
for TAAC, TTPC, and m2n2. Cyan (water): the oxygen atoms of water molecules. The
blue, green and red distribution functions have been rescaled by dividing by 100, 25 and 6,
respectively.
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Na+ counter ions with only the carboxylate oxygen atoms at the end of the side chains.

The peak at r = 5.5 Å corresponded to configurations where Na+ was coordinated by both

carboxylate and ether oxygen atoms of the side chains. The peak near r = 5.5 Å was not

observed for the tri-functionalized cryptophanes TTEC, TAAC and TTPC.

For the hexa-acid cryptophanes, the presence of the Xe atom within the host molecule

precluded localization of the ions at r = 5.5 Å due to van der Waals overlap, as is evidenced

by the corresponding reduction of the peak near r = 5.5 Å in the pair distribution (Figure

3.9). On the other hand, for the tri-acid cryptophanes (TAAC, TTPC), the distribution

of Na+ counter ions was less sensitive to the presence of Xe. This is presumably due to

the reduced negative charge and three fewer coordinating carboxylate atoms in the tri-acid

cryptophanes, which reduced the ”tight binding” of Na+ counter ions.

The polar distributions of counter ions relative to the axis of three-fold symmetry of the

TAAC and m2n2 cryptophanes are presented in Figure 3.10. The counter ions have much

less configurational freedom and have narrower distributions for the hexa-acid cryptophanes,

such as m2n2. These hosts have six carboxylate side chains, which results in well-defined

counter ion distributions about the cage. The peak located at r = 5.5 Å was lost upon

binding of Xe. In TAAC, the counter ions were more broadly distributed and had much

more configurational freedom about the cryptophane, as evidenced by the more diffuse

distributions for the tri-acid TAAC compared to the hexa-acid m2n2 cryptophane (Figure

3.10).

Distribution of solvent and counter ions. In the absence of Xe, the distributions

of water molecules and counter ions were correlated (Figure 3.11). The tri-functionalized

cryptophanes for the most part had the charged side chain functional groups distal from

the center of the cavity. For the hexa-acid cryptophane m2n2, the carboxylate side chains

had an additional peak near 6.25 Å which was associated with the presence of counter ions

at 5.5 Å. This 5.5 Å peak in the counter ion distribution was accompanied by a peak at

3 Å for oxygen atoms of water molecules (Figure 3.11D). These water molecules were near
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the pores of cryptophane and are in the first solvation shell for the sodium ion, having a

Na+ - O distance of 2.5 Å.[98] For the tri-functionalized cryptophanes TTEC, TAAC and

TTPC, the water peaks at r = 3 Å vanished, and counter ions did not appear closer than

r = 7 Å to the center of the cage. Compared to m2n2, TAAC does not anchor Na+. For

TAAC (Figure 11B), counter ions are much less probable at 5.5 Å compared with m2n2.

Because the charged groups of TTEC and TTPC (positive ammonium groups for TTEC

and negative carboxylate groups for TTPC) are at the end of their long side-chains, the

counter ions (Cl- for TTEC and Na+ for TTPC) are distributed further from the center of

the cage (r = 8 ∼16 Å).

Solvation of side chains of cryptophanes. As shown in Figure 3.12A, the long hy-

drophilic side chains of cryptophanes TTEC and TTPC both contain the triazole ring,

but with oppositely charged terminal groups, ammonium and carboxylate respectively. Al-

though the difference in their affinities is typically beyond the resolution of such free energy

calculations, guided by the simulations we speculate on the origin of the different observed

affinities. Due to the difference in side chains, the average number of interior water molecules

when Xe is absent differs for the two cryptophanes: the water occupancy is nearly 1 water

molecule for TTPC while an occupancy of only 0.5 water is observed for TTEC (Figure

??C). The triazole ring helps to introduce and stabilize the water molecules near the cage

pores. As shown in Figure 3.12B, a chain of four hydrogen-bonded water molecules is ren-

dered which extends from the interior of the cage through the pore to the triazole side

chain. The N(2) atom on the triazole ring is directed inwardly and hydrogen bonds with

the fourth water molecule with a H-N2 distance of 2.4 Å. However, this orientation of

triazole side chain along with a water molecules chain was less often observed for TTEC

than TTPC. The positively charged ammonium group of TTEC can coordinate with the

triazole N(2) atom, yielding a N-N distance of 3.4 Å, consistent with hydrogen bonding

(Figure 3.12B). In this particular configuration, the nitrogen atoms of the triazole ring were

oriented away from the entry channel. This configuration was not observed for TTPC. We

plotted the radial distribution of ammonium N and carboxylic C about the triazole N(2)
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Figure 3.12: Triazole side chains and solvation of TTEC and TTPC. A) Structures of the
triazole side chains of TTEC and TTPC. The triazole N atoms are marked blue, and their
different terminal groups are marked red. B) Two configurations of triazole side chains in
TTEC. C) Radial distribution function of triazole N1 atoms relative to the mass-weighted
cryptopane centers in TTEC (blue) and TTPC (black). D) Radial distribution functions
of ammonium N atoms (TTEC, blue) and carboxylate C atoms (TTPC, black) relative to
the triazole N2 atoms.
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for TTEC and TTPC, respectively (Figure 3.12D), and the additional peak at about 3.5

Å was observed for TTEC but not for TTPC. This additional peak of TTEC corresponds

to the coordination state between its ammonium N and the triazole N(2). Furthermore,

as shown in Figure 3.12C, the N(2) atom (and also other triazole N atoms) are closer to

the cage center for TTPC. These observations from the simulations and the distribution

functions are consistent with the following picture: 1) the triazole ring aids in stabilizing

the water molecule chain that traverses the pores of the cryptophane cage; 2) the particular

coordination state between the ammonium N and the triazole N(2) atom in TTEC leads

to configurations with outwardly directed N atoms, which are less preferable for stabilizing

chains of water molecules that enter the cryptophane pores; 3) the triazole side chain is

more extended in TTPC, and its triazole N atoms are available to hydrogen bond to water

molecules that form chains or that are poised to enter the cage.

3.5. Discussion

The simulation studies are insightful for understanding the xenon-binding properties of

water-soluble cryptophanes. In addition to estimating free energies, the simulations provide

a molecular perspective on cryptophane conformational fluctuations and local environment.

The distribution of water and counter ions are addressed directly to aid understanding

of their influence on Xe binding. The calculated affinities correlate well with the experi-

mentally determined values (Figure 3.3), despite the fact that Ka values of various soluble

cryptophanes for Xe only differ only by factors of 2-3 (Table 1).

Upon binding Xe to cryptophane, about 20 water molecules surrounding Xe (Figure 7B)

within its first solvation shell are restored to bulk-solvent local environments. In addition,

water molecules in the cryptophane cavity (Figure 4) are also displaced. The distributions

for the numbers of interior water molecules varied for different cryptophanes (SI, Figure S2).

The average numbers of water molecules inside the cage calculated from ∼20 ns equilibrium

trajectories were 0.50 for TTEC, 0.92 for TAAC, 1.01 for TTPC, 1.63 for m2n2, 2.23 for

m2n3, and 2.73 for m3n3, respectively. This trend was also the order of decreasing Xe
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Figure 3.13: Correlation between the average number of interior water molecules and exper-
imental free energies of Xe binding.6, 20, 21, 24 The red solid line is a linear least squares
fit. The radius cutoff for identifying interior waters was set at 4Å relative to the center of
mass of the 6 aromatic rings of cryptophane molecules.
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affinity for these cryptophanes (Figure 3.13). Larger cryptophanes have more waters

to displace upon Xe binding. The tri-functionalized cryptophanes are of the same size as

m2n2, but they contain fewer water molecules on average due to their hydrophobic side-

chains and lack of ability to anchor the counter ions in well-defined regions close to the

cavities. Previous molecular dynamics simulation studies suggest that the number of water

molecules in the cavity of m3n3 (a derivative of cryptophane-E) ranged from 0 to 5, with an

average number of 2.1,[74] which is consistent with the simulation results presented here.

Experimental studies of such interior water could be insightful. Bound water molecules

have not yet been observed using solution 1H NMR spectroscopy at room temperature.

Recently, the first X-ray structure of a cryptophane-water complex was obtained, and the

cage contained essentially one interior water molecule but with partial electron density

occupying seven distinct cryptophane locations.[99]

Water is commonly ignored or not treated explicitly when designing aqueous host-guest

systems. Water molecules in many binding sites must necessarily be displaced to accom-

modate the binding of a guest species.[72] The work required for such displacement is a

component of the free energy of binding, and this component is expected to increase (lower

binding affinity) with increasing numbers of water molecules to be displaced. For hydropho-

bic host cavities, this process is often accompanied by an entropy gain due to the release

of the ordered water molecules sequestered inside a confined host environment into the

bulk solvent. Accompanying this binding process is the formation of host-guest and water-

water energetic (enthalpic) interactions. Similarly, for Xe to bind to a cryptophane, any

water molecules in the cage must be displaced. For cryptophanes with ionic side-chains,

anchored counter ions and some of their coordinating water molecules that are interior to

the cryptophane must also be displaced upon binding. The results of this study highlight

the importance of counter ions, and other studies have found that Xe-cryptophane binding

is sensitive to the type of counter ion.[100] In addition to water within the cryptophane

interior, water that partially occludes the Xe binding site is also expected to decrease Xe

affinity; such partially ordered water can be part of the first solvation sphere of an anchored
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counter ion or hydrogen bonded to a polar or ionizable moieties associated with the crypto-

phane. Modifications to the cryptophane that position polar functional groups and counter

ion coordination sites further from the interior may reduce the number of ordered interior

water molecules, increasing Xe affinity.

The simulation results indicate that the lowest occupancy of water molecules is associ-

ated with TTEC and that higher occupancies are observed for the hexa-acid cryptophanes.

Among the molecules considered here, there is a linear correlation between free energy of

association and the average number of interior water molecules (Figure 3.13). Although

the calculations presented here use a simple model for water and do not include explicit

polarizability of host and guest, the notion of increasing affinity with decreasing interior

solvent occupation is in harmony with recent studies of cryptophane-E and its binding of

tetrachloroethane in a variety of halogenated organic solvents.[21]

The findings herein suggest that molecular simulations and free energy calculations could be

potentially useful in the design of cryptophane systems. For a set of cryptophane molecules

under consideration, free energy calculations could be performed to vet the set and identify

those having targeted affinities for Xe (and other guest molecules) prior to synthesis. The

data in Figure 3.13 suggests that the average number of water molecules within the interior

may be a strong indicator of Xe affinity, and the estimation of such water occupation of the

cryptophane interior is a much less costly calculation than the explicit calculation of free

energies of binding.

3.6. Conclusion

This study informs our understanding of the hierarchy of cryptophane binding affinities.

The hexa-acid cryptophanes, m2n2, m2n3, m3n3 have the same side chains but different

sizes due to different lengths of linkers, and affinity decreases with increasing cage size.

However, the cryptophanes TTEC, TAAC, TTPC and m2n2 have identical cage cores,

therefore their different affinities with Xe are a result of the differences in their side chains
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and the host-solvent, host-counter ion and solvent-counter ion interactions. Even though

the cryptophane interior is hydrophobic, it accommodates water molecules and small water

clusters. The binding with Xe thus requires interior water molecules to be displaced. The

simulation results show that the occupancy numbers of water molecules inside the crypto-

phane are correlated with the binding free energies (Figure 3.13). Furthermore, hexa-acid

cryptophanes can chelate counter ions with two side chains. This ”anchoring ” is not ob-

served in the cages with only three solubilizing moieties. The counter ions trapped by

side chains of hexa-acid cryptophanes are displaced in order for a Xe atom to bind within

the cryptophane molecule. Associated with these trapped counter ions are solvating water

molecules inside the cryptophane cage, including near the pores. This results in the higher

water occupancy observed for m2n2 (1.6), compared to those of TTEC (0.6), TAAC (0.9),

and TTPC (1.0). The results presented here exemplify how simulations can potentially be

used to understand and to guide the design cryptophane molecules to possess both high

aqueous solubility and high affinity for Xe.

40



CHAPTER 4 : Free Energy of Xe Entry into a Cryptophane Interior

4.1. Abstract

Xe bound inside a cryptophane system is one kind of novel complex molecule that can

work as biosensor. Among water-soluble cryptophanes, four cryptophanes with different

side chains are computationally investigated in this work. The potential of mean force is

calculated for the displacement of one Xe atom from cryptophane cage center using an

adaptive force biasing method. The applied forces and integrated free energy profiles are

calculated as functions of the distance Xe away from cryptophane center. All calculated

potentials of mean force have similar shapes but different free energy minima, which leads

to different Xe binding affinity. Additionally, the structures of the cryptophanes in process

of Xe exit are analyzed. It is found that side chains will have to change dihedral angles so

as to allow space for Xe to pass through. In addition, two linkers closest to Xe are also

disturbed and altered, which leads to slightly increase of cryptophane interior volume. The

energetic and conformational knowledge learned from this work will shed light on designing

Xe-cryptophane systems.

4.2. Introduction

Host-guest interactions involving relatively complicated host molecules and guests with rel-

atively simple structure are important in chemistry. Due to high affinities between host and

guest involving non-bonded interactions, guest particles can be captured to bind with host

molecules from solutions. During the encapsulation process, host molecules often need to

adjust their conformations to ease this reaction, e.g. induced fit.[46–48] Cryptophane-Xe

belongs to this type of interaction. To quantitatively understand the high binding affinity

of cryptophanes to bind Xe and analyze the conformational adjustments of the cryptophane

cavity to encapsulate Xe, adaptive biasing force (ABF)[42–45] simulation is implemented.

ABF is a widely used method for sampling and calculation to investigate host/guest inter-

actions and conformational changes along one or multiple reaction coordinate.
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Figure 4.1: Structure representations of four cryptophanes: TTEC, TTPC, TAAC and
m2n2.

Though the potential of mean force (PMF) with respect to specific coordinate can be calcu-

lated from radial distribution function (equ (4.1)) which can be collected from equilibrium

simulation.

A(r) = −RTlng(r) (4.1)

It is hard to obtain accurate PMF at high free-energy points, since those high energy

samples are less likely to be visited during a normal simulation. The radial distribution

function approaches 0 and makes estimation of PMF meaningless at these points. In order

to sample configurations adequately at high energy states, many techniques have been

created to efficiently solve this problem: one type is to manipulate the potential during the

simulation, like umbrella sampling[101–103] and another is to provide external force to the

system, like adaptive biasing force (ABF) method[42–45]. By applying the external force

to bias the simulation, we can sample efficiently at all states we are interested in. Herein

we will obtain the free energy profile of pulling Xe out of cavity. These simulations will not

only reveal the molecular details but also provide us means to manipulate this host-guest

binding reaction.

Cryptophane molecules are cage-like synthetic molecules with two cyclotriguaiacelene caps

linked by three variable length alkyl chains to form nearly spherical cavities and can have
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variable groups connected with its phenol oxygen as sidechain (Figure4.1). Due to its special

and variable chemical structure, many small molecules and atoms are reported that can

bind to its interior in organic solutions or water; examples include methane[104], Xe[17], and

ionic species[23–25]. Among host-guest systems, Xe129-cryptophane system is an important

applications[22, 26]. The 129Xe isotope can be hyperpolarized with regard to its spin states

and used as a magnetic resonance imaging (MRI) contrast agent. The resonance of this

nucleus is very sensitive to the environment and therefore shows a very broad range of

chemical shift when bound to different molecular environments. Therefore, the Xe system

is a good candidate for chemical sensor. But Xe alone is difficult to be incorporated into

molecualr systems since it is inert, hard to dissolve in water, and has weak interactions with

most molecules. Water soluble cryptophanes that have high Xe binding affinity provide a

means to deliver and localize Xe-129 to function as chemical sensor, especially in biological

systems[22, 26, 32].

Although experimental work has obtained a crystal structure of one Xe@cryptophane complex[105]

and previous computational simulation work have revealed that water can occupy crypto-

phane interior[106, 107] and will be replaced by Xe[107], an atomistic picture of the con-

formation change of cryptophane molecules when Xe is encapsulated from solution into the

cavity is still missing. This is quite interesting especially when we focus on four crypto-

phanes that have high binding affinities with Xe but have different sidechain structures

(figure4.1B): m2n2, TTPC, TAAC and TTEC. Experiments have measured Xe binding

affinities of those four cryptophanes[33, 34, 36, 69] which range from -5.13 kcal/mol to -6.07

kcal/mol. Herein, by taking use of adaptive biasing force simulation, we calculated free en-

ergy profile of Xe-cryptophane systems with respect of distance between center mass of Xe

and center mass of cavity, and translated potential of mean force to binding affinity which

showed to be close to experimental measurements. In addition to the energetic analysis, we

also implemented conformational analyses on all cryptophane systems so as to discover the

structural adjustment acquired as Xe enters the cryptophane cavities.
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4.3. Methods

4.3.1. Molecular models.

Four cryptophane molecules (Figure 1: m2n2, TAAC, TTPC and TTEC) are simulated in

this work. Structures of four molecules are generated by modifying the crystal structure

of m2n2 in molfacture module in VMD?? and optimized in NAMD??. In each simulated

systems, 3353 TIP3P?? water molecules are added which create 48Å ×48Å ×48Å water

boxes with concentration of solute is ∼0.02M and 6, 3, 3 sodium ions and 3 chloride ions

are added respectively to neutralize the charges. Parameters of bonded interactions used

in simulations come from AMBER9428 force field. Additional required boned parameters

come from Hessian matrices calculation based on optimized geometries from Gaussian9829.

For non-bonded interaction, van der Waals interactions are modeled by Lennard-Jones

potential and parameters of cryptophane molecules and Xe come from OPLS force field??

while electrostatic interactions are modeled by coloumbic interaction with partial charges in

cryptophane backbone come from developed charge set20 and the charges in sidechains come

from R.E.D. server?? where charges are fitted to reproduce quantum calculated electrostatic

potential around each atom and atoms at junction position are edited so as to construct

integer charge for overall molecule ultimately.

4.3.2. Molecular dynamics simulation.

NAMD[108] package is applied in this work to perform simulations. In prior to molecular

dynamics simulations, 50000 steps of conjugate gradient energy minimization are performed

to eliminate bad initial configurations after we solvate the cryptophane molecules. In this

work, step size in simulation is 2 femtosecond. Then 20ns length of NPT ensemble simula-

tions are done for each system where we use Langevin dynamics method [54] to maintain

the system temperature to be 300 K and pressure to be 1.0atm. The coupling coefficient

for temperature constrain is 1/ps and the period is 100.0 fs, decay constant is 50.0 fs and

corresponded temperature is 300.0K for Langevin piston using Nose-Hoover method[55].
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Electrostatic interactions are calculated through Particle Mesh Ewald (PME) method [53]

with 1.0Å grid spacing. Lennard-Jones interactions are computed with cutoff is 12.0Å.

SHAKE/RATTLE[52] algorithms are applied to constrain the covalent bonds linked with

hydrogen to save computation. The last frames of trajectories generated from NPT simula-

tions will be used for analysis and provide initial conformations to later ABF simulations.

dA (ξ)

dξ
=

〈
∂V (x)

∂ξ
− 1

β

∂ln|J |
∂ξ

〉
ξ∗

= −〈Fξ〉ξ∗ (4.2)

4.3.3. Adaptive biasing force simulation

.In this work, ABF method is used to calculate the free energy profile of the cryptophane-Xe

system with respect to the distance ( ξ) between center mass of cryptophane backbone and

center mass of Xe and generate trajectories that having ξ range from 0 to 15.0Å. In ABF

method, one accumulated biasing force along the direction of ξ is applied to the system so

as to cancel out net force along this direction thereby the system will do the diffusion and

having uniform distribution with respect to ξ. The formula of estimating biased force from

integration can be seen in equ(6.1), where A( ξ) is the free energy of the system at ξ, V(x)

is the potential energy in original Cartesian coordinates, β is the temperature factor, |J | is

the Jacobian determinant of transforming Cartesian coordinates to generalized coordinates

which includes ξ. The bracket represent the ensemble average that having ξ constrained

to ξ*. In implementation, the range of ξ we are interested in is divided into small bins and

the forces in each bin will be considered to be same, and in prior to apply the biasing force

a threshold number of samples in each bin are required to be reached due to force fluctuate

significantly initially otherwise will not representative for that ξ state and bias the system

to wrong sampling. For all four cryptophane systems, overall range of ξ (0.0 ∼15.0Å) are

divided into three windows (0.0 ∼5.0Å, 5.0 ∼10.0Å and 10.0 ∼15.0Å) and every one of

them represent one separate ABF simulation and having ξ constrained to corresponding ξ

distance range so as to assure ABF calculation converge sooner. The bin size is chosen to
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Figure 4.2: Representation of analyzed dihedrals.

be 0.05Å and the threshold in each bin is chosen to be 30000. In each ABF simulation run,

20 ∼40ns simulation have been done so as to assure the uniform sampling of ξ and thereby

provide the accuracy of calculated biasing force and PMF.

4.3.4. Structure analysis.

Using the trajectories having ξ range from 0.0Å to 15.0Å, we analyze and summarize the

changes of cryptophane structures when Xe is passing through by calculating the distri-

butions of dihedrals in cryptophane among simulation samples. For cryptophanes TAAC,

TTEC and TTPC, they are top-bot asymmetric with respect to the “top” and “bottom”

of the cryptophane, since they have two sets of different sidechains. In each case, five dihe-

drals in one linker are different (figure 4.2A) and are analyzed separately. Additionally, the

torsion of the methyl group and the first three torsions in each charged sidechain connected

to the aromatic rings are also analyzed. For every dihedral, three sets of samples are used to

calculate the corresponding distributions: equilibrium trajectory of cryptophane with no Xe

inside cage, equilibrium trajectory of cryptophane with Xe occupied inside cage, and ABF

trajectory with Xe at the energy barrier state. When Xe is at the energy barrier state, for

dihedrals in sidechains, we consider the dihedral in sidechain that is closest to the Xe. For

dihedrals in linkers, since Xe sits between two linkers, we only consider dihedrals in these

46



two linkers and differentiate them as ”left ” and ”right ”: when we view the cryptophane

from top bowl that has methyl groups as sidechains to the bottom bowl that have ionic

sidechain groups, the linker in the left side of Xe is defined to be ”left ” while the linker in

the right side of Xe is defined to be ”right ” (figure 4.2B).

4.4. Results and Discussion

4.4.1. Potential of Mean Force results.

The free energy profile (potential of mean force, PMF) of cryptophane and Xe systems

were calculated with respect to ξ, the distance between center mass of cryptophane and Xe

(figure 4.3). Its clear that PMFs of the four cryptophanes have similar shapes: there are

three significant states along the reaction coordinate ( ξ), a deep global minima with Xe

bounded at the center of cavity ( ξ ∼0.1Å), one energy maxima with Xe at the edge of cavity

( ξ ∼5.0Å) and a plateau with Xe is unbounded and isolated from cavity ( ξ ∼15.0Å). In

each case, the PMF is calculated with respect to the state that with Xe unbounded. From

table 1, it shows that the depths of the global minima ( ∆Wmin) which equal to the free

energy difference between the Xe bound and unbound states of all four cryptophanes are

TTEC (-11.47 kcal/mol) > TAAC (-11.45 kcal/mol) > TTPC (-11.25 kcal/mol) > m2n2 (-

10.47 kcal/mol), their ordering matches that of the experimental measured binding affinities.

The height of the energy barrier ( ∆Wmax) of all four cavities showed to between 2 and 3

kcal/mol. The m2n2 cryptophane, whose sidechains are all polar and hydrophilic, is the

lowest while the rest three cryptophanes have relatively higher energy barrier. Additionally,

there are also one small shoulder ( ξ ∼7.0Å) and one local minima ( ξ ∼8.3Å) outside

cavity along the reaction coordinate ( ξ). These suggest that Xe would still associate with

cryptophane though Xe exited the cavity. For these four cryptophanes, the heights of their

shoulders are different: m2n2 > TAAC > TTPC > TTEC, the more charged sidechain the

Xe more difficult to get closer to cavity interior. When we translated the PMF data to

Xe concentration, we find Xe would significantly accumulate at the local minima position

and the concentration of it is 2 ∼4 times as in bulk (figure 4.4). And the more complex
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Figure 4.3: Calculated free energy profile.

Figure 4.4: Concentration of Xe with respect to the reaction coordinate ξ
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Cryptophane ∆Gexp ∆Gcal ∆Wmin ∆Wmax

(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

TTECb -6.07±0.02 -6.57 -11.47 2.84
TAAC -6.06±0.05 -6.52 -11.45 2.98
TTPC -5.67±0.06 -6.37 -11.25 3.04
m2n2 -5.13±0.24 -5.69 -10.47 2.69

Table 4.1: The experimental and calculated binding affinities between Xe and cryptophanes,
calculated PMF minima (∆Wmin) and calculated PMF maxima (∆Wmax).

the sidechains, the higher accumulated concentration of Xe: TTEC > TTPC > m2n2 >

TAAC.

Kassociation = 4π

∫ rd

0
r2e−βU(r)dr (4.3)

K0 =
1

1660Å
3Kassociation (4.4)

∆Gbind = −RTlnK0 (4.5)

4.4.2. Binding affinity calculation.

The potential of mean force of Xe-cryptophane system can be used to estimate the equilib-

rium association constant by using equation 6.2. The standard state equilibrium constant

and binding affinity can be calculated then from equations and equation 6.4. From Ta-

ble 4.1, the binding affinities from calculation correlate well with experimental data, calcu-

lated values are all within 1 kcal/mol of the experimentally determined values. The trend

with regard to the order of the binding affinities matches that of the experiments, though

the calculations overestimate the affinities by 0.5 ∼0.7 kcal/mol (figure4.5). The deviation

of computationally determined results compared with experimental measurements arise in

part from the fact that parameters for Xe used in this work come from OPLS force field
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Figure 4.5: Experimental and calculated binding affinities.

which was derived from viscosity experiments directly. The solvation energy of Xe in water

with this parameter set is calculated to be 1.75 kcal/mol, while experimentally it is mea-

sured to be 1.34 kcal/mol[95, 109]. Additionally, the approximations in equation 6.2 also

contribute to the deviation: the equilibrium constant of cryptophane-Xe binding reaction

comes from the integral of the exponential of the potential of mean force with respect of

r, and at each value of r within the continous range of interest, we assume the space for

Xe to occupy is ideal and use the 4πr2dr in integral, however, there are some space Xe

are certainly unable to access. Furthermore, in derivition of euqation 6.2, the interaction of

single Xe with environment is neglected and therefore not appeared in formula of estimating

equilirbium constant of this reaction.

4.4.3. Trajectory analysis.

To reveal the molecular pictures of how cryptophane would change its structures when Xe

exit, the interior space, linker and sidechain conformations in samples from equilibrium and

ABF simulation are investigated.
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Figure 4.6: Top-bot distance of all four cryptophanes with Xe at different positions.

Top-bottom distance

Cryptophane molecules are approximately spherical, and they can be viewed as having top

and bottom cyclotriguaiacylene caps that are linked with alkyl chains. The distance d(top-

bot) which measures the distance between top benzene bowl and bottom bowl can be a

good indicator of the approximate dimension of the interior cavity. The d(top-bot) data

(figure 4.6) for all four cryptophanes showed similar trends: as ξ increases which correspond

to Xe exiting the cavity, the d(top-bot) increases ∼0.3Å to a maximum value and after ξ

reaches ∼5Å and continue increases till ∼8Å, d(top-bot) decreases ∼0.2Å. This trend can

be explained as that when Xe exits the cryptophane, the cage would have to open its portal

so as to spare space for Xe to pass through, where d(top-bot) increases. After Xe has

exited, the cage would close and relax back to its normal interior dimensions. For all four

cryptophanes, d(top-bot) is smallest when Xe bounded inside. This is due to the strong

non-bonded interaction between Xe and aromatic atoms in cryptophane which makes the

top and bottom bowl of cryptophane linked tightest. Since m2n2 has relatively lower Xe

binding affinity, its d(top-bot) is largest among four cryptophanes. The d(top-bot) of Xe

unbounded state also has small value but due to water molecules would enter the cavity

and fill the cavity, the d(top-bot) for Xe unbounded state is slightly larger than the Xe
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bounded state. Since there are several water molecules occupied inside m2n2 in average

while other three cryptophanes only have less than one water molecule occupied inside,

d(top-bot) of m2n2s unbounded state is also the largest among four cryptophanes. As

ξ continues to increase to values larger than 8.0Å, Xe leaves its local minima state and

water thereafter is more probable to enter the cavity and fill the cavity interior which is

reflected in the increases of d(top-bot). As ξ continues to increases, d(top-bot) fluctuates

with a much smaller magnitude.

Dihedral distribution analysis for linkers and sidechains

Previous top-bot distance calculation found that cryptophane would adjust its interior space

so as to allow Xe to pass through, since the top-bot distance is related with the linkers who

connect top and bottom aromatic bowls, we would assume the alkali linkers would be

more stretched and be affected in prospects of torsions. Furthermore, its also desirable to

investigate if the torsions of sidechain groups and how they are affected when Xe passes

through a nearby pore.

4.4.4. Dihedrals in linkers.

From the results of TAAC (figure 4.7), we can see the distribution of all dihedrals in linkers

are showed to be the same for conditions of both the Xe unbound state and Xe bound state.

This is due to the few water molecules can enter the cavity and form a cluster so as to fill

the cryptophane as Xe does. But in conditions of Xe present at the energy barrier state,

we can see the distributions in the two linkers closest to Xe changed dramatically. For Xe

bounded state and Xe unbounded state, all dihedrals except Ψ3, can adopt multiple values,

and the cryptophane linkers thereby have multipleconformations (figure 4.8A). The dihedral

Ψ3 has a trans conformation so as to avoid the repulsion between two phenol oxygens in

the same linker. When Xe occupy one of the pore position, due to its steric effect, both the

”left ” and ”right ” linkers are all stretched so as to spare sufficient space for Xe to occupy.

Since the ”right ” Ψ1 and ”left ” Ψ5 are most close to Xe, they all have to choose the 60 ◦
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Figure 4.7: Distributions of dihedrals in TAACs linkers from equilibrium simulation and
ABF simulation

Figure 4.8: Representative structures of TAAC with Xe bounded inside cavity.
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Figure 4.9: Representative structures of TAAC with Xe at the pore of cavity.

conformations. And because of the correlation of the and in the same linker, they all have

to choose close values, this leads ”left ” Ψ1 and ”right ” Ψ5 would adopt 60 ◦ conformations

as well. Similarly as steric effect and felt, the ”right ” Ψ2 and ”left ” Ψ4 would adopt the

trans conformations with peak at ∼170 ◦ while the ”left ” Ψ2 and ”right ” Ψ4 would adopt

the 60 ◦ conformations. As a consequence, we observed cryptophane linkers having their

linkers adopted uniform conformations (figure4.9A).

Dihedrals in sidechains.

From result of the TAAC simulation (figure 4.10), similar to the analysis of dihedrals in

linkers, we can see the distribution of dihedrals in sidechains is also the same for both

conditions of Xe unbound state and Xe bound state. For dihedrals in the sidechains when

Xe is present at pore position, however, the distribution of them changes dramatically as

well. For Xe bound and unbound states, the methyl group is more hydrophobic than the

acetic acid, therefore, it is much more preferable to adopt the orientation of pointing toward

the interior of the pore where is un-accessible to water than pointing to the exterior of the

pore where would immerse in the water (figure 7B), resulting in the major peak at -120

◦ in dihedral distribution plot of ϕ1 (figure 9). Since the pore space is limited and the

methyl occupied the pore, the first torsion connect the acetic group would have to adopt
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Figure 4.10: Distributions of dihedrals in TAACs sidechains from equilibrium simulation
and ABF simulation.

the conformation with acetic group point to the exterior of the pore which leads to the

major peak at 120 ◦ (figure 9). For Xe at the energy barrier state, due to Xe occupying

the pore positions, both the methyl and acetic acid groups all have to point to the exterior

of the pore to leave space to accommodate the Xe (figure 8B). Because of the presence of

Xe, most of conformations that have methyl and acetic group point to the exterior of the

pore (ϕ1 range from 60 ◦ to 180 ◦ and ϕ2 range from 60 ◦ to 160 ◦) are all possible for

cryptophane to adopt except the conformations with unstable 1-4 dihedral interaction. For

the distal dihedrals in the charged sidechain, since the torsion around ϕ3 mostly prefer the

trans conformations so as to avoid the repulsion between carboxyl and phenol, and this

trans conformation will not collide with Xe, therefore its distribution is not affected by the

presence of Xe (figure 9). For ϕ4, because of the presence of Xe, the two conformations

(-120 ◦ and 120 ◦) of it are no longer equivalent. In order to be further displaced from Xe,

the carboxyl oxygen would prefers to be directed away from the pore, leading to ϕ4 being

more populated at -120 ◦ than at 120 ◦.
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Figure 4.11: Distributions of dihedrals in TTPCs linkers from equilibrium simulation and
ABF simulation.
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Figure 4.12: Distributions of dihedrals in TTPCs sidechains from equilibrium simulation
and ABF simulation.

Dihedrals in linkers and sidechains of other three cryptophanes.

For TTPC and TTEC, who also have methyl group as one set of their sidechain with charged

group as the other set of sidechain, the distribution in their linkers have the same features

as TAAC (figure4.11 and figure4.13). In conditions of both Xe bounded and unbounded,

due to either Xe or water can occupy and fill the cavity, distributions of linker dihedral are

showed to be the same and all linker dihedral have multiple peaks except Ψ3 adopted trans

conformations. When Xe at the energy barrier state, due to the steric effect of Xes presence,

both the ”left ” and ”right ” linkers would be stretched so as to spare space for Xe to occupy

and therefore most samples at this state having their Ψ1, Ψ2, Ψ3, Ψ4 and Ψ5 populated

at specific value (uniform conformations). For the dihedrals in the sidechains, unlike in

the case of TAAC, one set of sidechain methyl group is much more hydrophobic than the

other, acetic acid, the other set of sidechain in TTPC and TTEC, triazole ethylamine and

triazole propionic acid are also hydrophobic. And this leads that both sets of sidechains in
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Figure 4.13: Distributions of dihedrals in TTECs linkers from equilibrium simulation and
ABF simulation.
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Figure 4.14: Distributions of dihedrals in TTECs sidechains from equilibrium simulation
and ABF simulation.

Figure 4.15: Distributions of dihedrals in m2n2s linkers from equilibrium simulation and
ABF simulation.
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Figure 4.16: Distributions of dihedrals in m2n2s sidechains from equilibrium simulation and
ABF simulation.

TTPC and TTPC all prefer to point to the interior of cavity pore, but because the space in

the cavity pore is limited, therefore, ϕ1 and ϕ2 are observed to point to pore interior (-120

◦) and exterior (120 ◦) with similar probability in both Xe bounded and Xe unbounded

states (figure4.12 and figure4.14). When Xe is at energy barrier state, both sidechains

would point to the pore exterior so as to accommodate Xe. In most of the configurations

at the energy barrier, ϕ1 and ϕ2 have adopted positive values (figure 4.12). For m2n2,

due to it is top and bottom symmetric, it only have 3 dihedrals in linker (Ψ1, Ψ2, and

Ψ3) and 3 dihedrals in sidechain (ϕ1, ϕ2, and ϕ3) which are the three dihedrals connect

acetic acid. And the symmetry also make the two linkers that are closest to Xe identical.

Since the m2n2 cavity interior is much less hydrophobic than the other three cryptophanes,

the dihedrals in linkers in Xe unbounded choose the conformations that having the interior

space already stretched and fulfilled, Ψ1 ' 60 ◦ and Ψ2 ' 60 ◦, which is very close to

the condition of Xe at energy barrier state (figure4.15). In condition of Xe bound inside,

the ϕ1 have siginificant probability to adopt the 120◦ conformation in addition to the 60◦
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one due to the cryptophane cavity become more hydrophobic and lead m2n2 close up its

interior space a little bit(figure 4.15). At the energy barrier state, linkers closest to Xe

adopt the structure allowing Xe to pass through. TTPC and TTEC have hydrophobic side

chains, whereas m2n2 has acetic acid groups, and even in the unbound state, these acid

groups would prefer to be directed toward solvent and away from the pore (ϕ1 ≈ 120 ◦) and

(figure4.16). Interestingly, when Xe is present inside the cage, m2n2 conformations where

the side chain is directed toward the interior are also observed (ϕ1 ≈ -120 ◦). When Xe

is at energy barrier state, as observed in cases of other cryptophanes, the sidechain would

have to point to the exterior (ϕ1 ≈ 120 ◦) so as to spare space for Xe to pass through.

4.5. Conclusions

Through extensive ABF simulations, free energy profiles of the processes of Xe entering

different cryptophane cavities are calculated. The potential of mean force is calculated as

a function of the distance ξ between the center of mass of the cryptophane and the Xe

nucleus, where ξ ranges from from 0.0 Å to 15.0 Å. From calculated free energy profile

(PMF curve), it is shown that all systems share similar PMF’s and that Xe will have to

overcome a free energy barrier ( ∼3kcal/mol high) upon entering the cage and residing in

a deep energy well (10.5-11.5 kcal/mol height). By making use of free energy profile with

respect to ξ, binding affinity of Xe are calculated, and the estimated affnities are close to

experimental measurements. Experimental binding affinities are positively correlated with

the depth of the energy well that TTEC ¿ TAAC ¿ TTPC ¿ m2n2. Additionally, heights

of energy barrier of three higher binding affinity cryptophane (TTEC, TTPC and TAAC),

which also possess more hydrophobic siechains showed to be higher than m2n2; m2n2 has

lowest binding affinity and less hydrophobic side chains. In addition to the free energy

calculations, the trajectories generated from the ABF simulations are used to analyze the

conformational changes of cryptophane as Xe exits the cavity interior and enters aqueous

solvent. Analysis of dihedrals in linkers and sidechains revealed that all cryptophanes

would adopt the similar conformations in which the linkers are twisted and stretched and
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sidechains are pointed to the exterior of the cavity. These structures provide space for Xe

to pass through. These structure adjustments, especially of the linkers of cryptophanes,

lead the cryptophane interior volume increase as Xe pass through the portal compared

with Xe bound inside and Xe isolated from cryptophane. Additionally, among the four

cryptophanes investigated in this work, the structure adjustment of sidechain is different

as Xe passes through the portal. For the cryptophane in which sidechains are both very

hydrophobic (TTEC and TTPC), these sidechains all have equal probability to point to

the interior of cavity portal so as to keep the cavity ”dry ”at the Xe bounded state and Xe

unbound state. When Xe needs to pass through the portal, the two sidechains closest to

Xe reorient and point to the exterior at the same time. For the cryptophane where one set

of sidechains is much more hydrophobic than the other set (TAAC), the more hydrophobic

sidechain (methyl) group that would point to the interior of portal when Xe is bounded

inside and Xe is isolated from is directed toward the exterior of the portal when Xe needs

to pass through portal. The other less hydrophobic sidechain (acetic acid) already points to

the exterior of the portal for most samples when Xe is bound or unbound, and this side chain

remains directed to the exterior when Xe passes through the portal. For the cryptophane

m2n2 with both sets of sidechains are less hydrophobic (acetic acid), in unbound state the

sidechains point to the exterior of the portal. When Xe is bound inside, the acetic acid

become less probable to point to the exterior and more probable to point to interior of the

portal. For m2n2 when Xe occupy the portal, the acetic acid would exclusively point to

the exterior of the portal. These findings provide a molecular picture along the process

of Xe exiting and entry cryptophanes from both energetics and conformational prospects.

Taking use of the findings in this work, we would be able to put forward ideas to modify

cryptophane structures to slow down or speed up the Xe exchange rate by substitute the

hydrophobic sidechain to a harder or easier to rotate group. These would also have effect on

the hydrophobicity of cryptophane interior which would probably result a higher or lower

binding affinity cryptophane.
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CHAPTER 5 : Molecular basis of Alkali cation affinity for water soluble

cryptophane

5.1. Abstract

Cryptophane-1 has been reported to have high binding affinities with cations experimen-

tally, especially with large size alkali metal ions (K+, Rb+ and Cs+). In this work, we

used molecular dynamics simulation to model ion-cryptophane systems and free energy

perturbation to calculate relative and absolute binding affinities of cryptophane-1 to three

cations, K+, Rb+ and Cs+. The calculated relative binding affinities among ions are in good

agreement with experimental measurements. As with other cryptophanes that allow water

molecules to occupy the interior cavity, simulations of cryptophane-1 also revealed small

numbers of interior water molecules. These water molecules form hydrogen-bonded clusters

within the cavity. We find the binding process invoving these large metal cations can be

considered as the metal ion substituting form some of water molecules inside cavity, and

the cryptophane complex has ion coordinated with water inside. The water coordinated ion

inside cryptophane has a similar water-ion coordination distance as that observed in bulk

water. The reason that cryptophane has the highest binding affinity to Cs+ is that Cs+

has the lowest desolvation energy and the binding of the ion liberates more water molecules

than that of K+ or Rb+.

5.2. Introduction

Host-guest interaction can be traced back to mid 1960s when the first crown ether molecule

dibenzo-18-crown-6 was synthesized accidentally by Charles Pedersen to bound potassium in

water[1]. Subsequently, a series of crown ether molecules were synthesized for encapsulating

multiple sizes of cations[110] . Though five decades have passed, host-guest interactions are

still being investigated, especially the interactions associated with encapsulating the metal

ions. [111–113]

Among the metal cations, cesium-137 is a problematic radioative one that is a common
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fission product during the nuclear reactions. It has a half life of about 30 years. Especially

in light of the recent Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011,

where release of Cs-137 affected the water of hundreds of thousands of people [38, 39]. Due

to its high solubility in water, it is diffcult to be remove by precipitation. Other methods

have been developed for removing cesium ions. Inorganic materials can adsorp cesium

and filter it, and these include potssium zinc hexacyanoferrate[114], polyacrylonitrilezeolite

nanocomposite[115], titanate nanofibers and nanotubes[116], prussian blue encapsulated

in alginate beads together with carbon nanotubes[117]. Organic adsorbents[118] or ion

exchange methods may be used to remove cesium in water[119]. Non-aqueous solvents

have been used instead of water to extract cesium from aqueous to hydrophobic solvent;

these approaches include using calix[4]arene-bix(tert-octylbenzo-crown-6) ionic liquid[120]

or using crown-like organic solvent[121]. With many of these systems, it is difficult to confer

selectivity for Cs and to obtain molecular insight on the strength and selectivity of binding.

Cryptophane molecules, which are cage-like synthetic molecules that have two clclotrigua-

iacelene caps linked by alkyli linkers, can also be used to bind or encapsulate the cesium

cations in water. Some cryptophane derivatives can be dissolved in organic solvent and then

capture cesium from water[122]. A recently synthesized cryptophane having no sidechains

(figure 5.1) was found to have an unusually high aqueous binding affinity with cesium cation

compared to other alkali cations[25, 123, 124]. Although in experimental studies, binding of

cesium by a cryptophane can be observed through NMR spectroscopy isothermal titration

calorimetry(ITC) experiments, a molecular picture of the encapsulation process involving

cryptophane and Cs+ is missing. Therefore, molecular dynamics simulation is used herein to

model one cryptophane(MM) system that has high binding affinity with the cesium cation.

We seek to shed light on the atomistic reasons why the cesium cation has a higher binding

affinity compared to the other alkali cations.
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Figure 5.1: Strucure representation of cryptophane-1

5.3. Methods

5.3.1. Molecular models.

Cryptophane-1 is investigated in this work and its initial coordinates come from the crystal

structure of m2n2[125] with all its sidechains removed using VMD[126]. Given that the

cryptophane is soluble in basic solution and experiments of binding to different cations

were done in pH ¿ 12 solutions, the molecule is simulated in an ionization state such that

all the hydroxyl groups on the phenol rings are deprotonated. The molecule was optimized

and simulated using NAMD[? ]. In each system simulated, 1150 TIP3P[? ] water molecules

are added for solvation, yielding a water box with dimension of 36Åx36Åx36Å. Sodium ions

are randomly added to netural the charges. Bond parameters for cryptophane come from

AMBER94[? ] force field. Non-bonded interactions composed of two parts, Lennard-

Jones potantial and electrostatic interactions. Lennard-Jones paramters for cryptophane

atoms come from OPLS force field[127, 128], while the parameters for ions come from

newly developed force field[129]. The partial charges for each atom in cryptophane are

generated in R. E. D. server[130] which fitted the charges in each atom so as to reproduce

the electrostatic potential at each atom.
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5.3.2. Molecular dynamics simulation.

All molecular dynamics simulations and below free energy perturbation calculations are

carried out in NAMD[108]. In all simulations and calculations, in order to evaluate non-

bonded interactions, 12Å was used as cutoff distance, 10Å was used as switching distance

from where the switching function begin to work and 14Å was used as pairlist distance to

indicate the maximium space to include the neighboring atoms. The nonbonded pairlist

was evaluated every 10 steps, and every step is 2 fs. Each system was divided into 2Å cubes.

The SHAKE algorithm[90] was used to make all bonds between hydrogen and heavy atoms

rigid and thus making 2 fs timestep simulation correctly. Nonbonded interaction was eval-

uated every step and electrostatic interaction was evaluated every 2 steps. Particle mesh

Ewald[53] method was used to evaluate the full system periodic electrostatics with 1Å as

grid space. All simulations and calculations are implemented in NPT ensemble, pressure is 1

atm and temperature is 300 K. In order to implement NPT ensemble simulation, Langevin

dynamics method was used to maintain the temperature with damping coefficient to be

1/ps and Langevin piston Nose-Hoover method[55] to maintain the pressure with oscilla-

tion period equal to 100 fs and decay time equal to 50 fs. Each system was minimized by

using conjugate gradient and line search algorithm[131] for 50,000 steps (100ps) and then

equilibrated for 10,000,000 steps (20ns). Configurations were sampled from the simulation

trajectories every 1000 steps (2ps) using for analysis.

5.3.3. Free energy perturbation method

The free energy difference between two states (state 0 and state 1) can be estimated using

equation 5.1.

∆A0→1 = −RTln
〈
exp{ 1

RT [H0(x, px)−H1(x, px)]}
〉
0

(5.1)

This equation states that the free energy change can be obtained by averaging Hamiltonian

change from state 0 to 1 for all the samples generated using state 0. However, this method

is only applicable in the case that state 0 and state 1 significantly overlap with each other
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in phase space and thereby can provide a easy-to-converge and accurate result. For cases

that two states significantly differ from each other or have high free energy difference,

perturbation to gradually transition from one state to another is a good solution to obtain

the accurate free energy estimates. The Hamiltonian in whole process from state 0 to state

1 is then represented as a hybrid of initial state (0) and final state (1), and the progress

of the perturbation can be indicated as λ which ranges from 0 (initial state) to 1 (final

state): Hλ = 1 − λ)H0 + λH1. During implementation, this can be done by scaling the

interaction of atoms involved in the two states and changing their interactions with other

all atoms whose properties do not change with λ. To assure convergence, λ is chosen to

increase gradually. Since the Gibbs free energy change (∆G) of a process in NPT has the

relationship with Helmholtz free energy change (∆G) as equation 5.2, and the simulation

box volume change along the simulation process is tiny (P∆V), this contribution can be

neglected and ∆G = ∆A.

∆G0→1 = ∆A0→1 + P (V1 − V0) (5.2)

In this work, the free energy changes of two processes are calculated: mutate one ion M1
+

to another ion M2
+ in water and mutate one ion to another inside cryptophane (??). These

can be incorporated in a thermodynamic cycle to estimate relative free energies of binding

(figure 5.2). During the mutation process that occurs within the cryptophane, to avoid

ions escaping the cavity. Ions are constrained to a spherical space inside cavity through

a harmonic potential, and the radius beyond which potential would take effect is equal

to the maxmium distance of the ion from center mass of cryptophane as observed in an

unconstratined equilibrium simulation. The free energy perturbation processes starts with

the ensemble (λ = 0) that having M1
+ fully coupled to all other atoms, then as λ increases,

the interaction of M1
+ and all other atoms is scaled down gradually with M2

+ appearing

and coupling to all other atoms. The interactions of M+
2 with all other atoms are scaled

up gradually, until λ = 1, at which point M2
+ is fully coupled to the system and M1

+ fully
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Figure 5.2: Free energy perturbation calculation strategy

Figure 5.3: Scaling of λ during free energy perturbation process
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decoupled. The “appearing” ion (M2
+) could overlap with existing atoms in the system

when it is introduced and cause unstable simulations and singularities in the potential [132].

A shifted Lennard-Jones potential feature[133] is used to avoid the M2
+ overlapping with

other atoms at intermediate values of λ. Additionally, in order to improve the convergence of

the calculation at each λ, the van der Waals (vdW) interactions and electrostatic interactions

for ions are scaled differently (figure 5.3). The whole process of mutating ions are divided

into 20 windows with λ increases by 0.05 at each step. For the vdW interactions of ions

with environment, which are Lennard-Jones potential in implementation, the interaction of

the annihilated or ”disappeared” ion (M1
+) with the environment are scaled down at the

same rate as λ; the interaction of ”appeared” ion (M2
+) with the environment are scaled

up at the same rate as λ as well. For the electrostatic interaction of ions with environment,

the speed of scaling down the interaction of disappeared ion (M1
+) with environment and

scaling up the appeared ion (M2
+) with environment occur with slopes twice that of lambda.

This electrostatic interaction of M1
+ is decoupled from environment when λ = 0.5. The

electrostatic interaction of the appearing M2
+ start to couple to the environment at λ =

0.5 and is fully coupled when λ = 1.0. This can be expressed as follows and is illustrated

in figure 5.3.

Velec(λ) +VvdW (λ) = (1−λ)V0,vdW +λV1,vdW +max(0, 1−2λ)V0,elec+max(0, 2λ−1)V1,elec

(5.3)

In the process of estimating free energy change of mutating ions inside cryptophane, in order

to consider the effects of polarizability in aqueous media, we scale charges of ions and each

atom in cryptophane with a factor of 1/
√
εel, where εel is the electronic dielectirc constant

of water. This modification is compatiable with the TIP3P water model has been found to

be effective in other aqueous simulations [49, 50]. By subtracting the free energy changes

in these two processes, we obatin the relative binding affinity difference of cryptophane to

two individual ions (equation 5.4).

∆∆Gbinding = ∆G1(binding) −∆G2(binding) = ∆∆Gsol −∆∆Gmut (5.4)
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5.4. Results and discussion

5.4.1. Relative binding affinity calculation results.

By using free energy perturbation method (FEP) and thermodynamic cycle, we obtained

relative binding affinities between Cs+ and K+, and between Cs+ and Rb+. Our results

confirm that cryptophane-1 has higher binding affinity to larger size ions, which follow the

ordering: Cs+ > Rb+ > K+. The results also match experimental measurements quanta-

tively (5.1). The calculated free energy change of mutating ions in water matches solvation

free energy difference of ions.[134] The solvation energy of smaller ions are larger in value

than larger size ions, this is due in part to small ions have lower polarizability. Regarding

the process of mutating ions inside cavity, it’s interesting that though cryptophane-1 has

much higher binding affinity with Cs+ than smaller ions, the free energy change ∆∆Gmut

of mutating K+ or Rb+ to Cs+ is positive which suggests that the smaller ions (K+ and

Rb+) within the occupied cryptophane are could be more stable than Cs+ occupied cryp-

tophane. For the smaller cations, water molecules can enter the cavity to coordinate each,

and more water molecules can fit into the cavity than for Cs+. Although Cs+ is not as

stable as other smaller ions to occupy the cryptophane interior relatively, the desolvation

energy, or the energy Cs+ need to acquire to escape from aqueous hydration is much lower

(5 10kcal/mol) than other smaller size ions. This results in Cs+ having the highest affinty

to be encapsulated by cryptophane-1.

Calculated Result Experimental Result
∆∆Gsol ∆∆Gmut ∆∆Gbinding ∆∆Gbinding

(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

K+→ Cs+ 10.8 ±0.3 3.1±0.2 7.7±0.4 7.7±0.6
Rb+→ Cs+ 5.2 ±0.3 1.2±0.2 4.0±0.4 3.9±0.7

Table 5.1: Binding energy result table
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Guest top-bot distance (Å)

Na+ 6.19±0.13
K+ 6.23±0.17
Rb+ 6.21±0.18
Cs+ 6.03±0.22

Table 5.2: Dimension of cryptophane-1 in conditions of different guest ions: the distance
between top aromatic cap and bottom aromatic cap.

Figure 5.4: Radial distribution of water molecules around center mass of cryptophane
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Figure 5.5: Representative structures of ion-water complex inside cryptophane cavity

5.4.2. Host-solvent interaction

To further explore the molecular aspects of cation binding, 20 ns equilibrium simulations

are implemented for cryptophane-1 with no cation present and with Na+, K+, Rb+ and

Cs+ occupied inside cavity. The radial pair distribution of water molecules (center of

oxygen in water is used to identify the water position, figure5.4A) around cryptophane-1

and average number of water molecules within sphere of radius r relateive to center of

cryptophane are calculated and analyzed so as to identify the position of water molecules

and their occupancies. For the vacant cryptophane, water molecules would enter the cavity

spontaneously as in other cryptophane solutions[106]. And they are populated at two

locations, one is at the center of cryptophane cavity and the other is 1.1 Å away from

cryptophane center (figure5.4A). On average, there are 2.7 water molecules inside cavity

(figure5.4B). The molecular picture is that there is one water molecule at the center and two

at the 1.1Å position and they bind each other to form a three molecule cluster via hydrogen

bonding, the center water molecule provide its oxygen to coordinate with hydrogens from

the two other water molecules (figure5.5). When Na+ occupies the interior, there are 2.7

water molecules (figure5.4B) at 1.6Å away from center(figure5.4A). The Na+ sits inside
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one cap and coordinate with the all three oxygens from each water molecules and form a

tetrahedral structure (figure5.5). This is due to Na+ having high amount of solvation energy

and requiring as many water molecules as possible to solvate. The cryptophane interior

provides a fitted space to accommodate three water molecules at the same time. K+ and

Rb+ also occupy the cryptophane interior, given the size of them are bigger than Na+, the

interior space of the cryptophane can no longer accommodate three water molecules. There

are two water molecules occupy the cryptophane interior for most of time and there are

1.8 water molecules in case of K+ and 1.5 water molecules inside cavity in case of Rb+ in

average. The ion-water complex has a structure where K+ or Rb+ are positioned close to

the cavity center. Each cation coordinates with two water molecules, and the hydrogens of

these two water molecules interact with phenol oxygen at the edge of cryptophane interior

(figure5.5). Since Rb+ is bigger than K+, the water molecules in the Rb+ system (1.5Å)

are positioned further away from center of cryptophane than in K+ system (1.3Å). For

the case of Cs+ occupying the cryptophane, there are only 0.7 water molecules (figure5.4B)

at 1.9Å away from cryptophane center (figure5.4A). The structure of the cryptophane-ion-

water complex has Cs+ situated at the center of the cavity with one water oriented and

use its oxygen to coordinate Cs+ with its two hydrogens stablized by the phenol oxygen of

cryptophane (figure5.5).

5.4.3. Guest-solvent interaction

Since water molecules are observed to enter the cavity to solvate ions in all conditions, the

distribution and average number of water molecules about the ion inside cryptophane are

calculated and analyzed. These are also examined for the single cation in bulk water for

comparison.

5.4.4. Ion-solvent interaction in crytophane environment

Water molecules can enter the cavity so as to coordinate with ions (figure5.6), and as

the size of alkali metal ions increases from Na+ to Cs+, the distances between ions and
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Peak of first solvation shell (Å) Coordination number in solvation shell
In cryptophane In water In cryptophane In water

Na+ 2.35 2.35 2.7 7.5
K+ 2.75 2.75 1.8 8.3
Rb+ 2.85 2.95 1.6 8.8
Cs+ 3.05 3.10 0.7 9.0

Table 5.3: Solvation results of ions in cryptophane cavity and in bulk water

Figure 5.6: Radial distribution of water molecules around ions in conidtion of cryptophane
encapsulate ion
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Figure 5.7: Radial distribution of water molecules around ions in bulk water

coordinating water molecules increase as well: 2.35Å, 2.75Å, 2.85Å and 3.05Å respectively

(table5.3). Since metal ion and coordinated water molecules are encapsulated inside cavity

and isolated from bulk water, and the g(r) of water molecules vanish to 0 at 4.0Å, 4.0Å

is used to define the radius of the first solvation shell of water molecules around ion. The

coordination number of water molecules in this solvation shell in each system decrease from

2.7 to 0.7 as ion’s radius increase from Na+ to Cs+ (table5.3), this is due to the interior

space available for water molecules to occupy decreases as bigger ion occupy more cavity

interior space.

5.4.5. Ion-solvent interaction in water environment

For a single ion in bulk water, the position of the water molecules to coordinate with ions also

shifts further from ion as the size of alkali metal ions increases (figure5.7). These positions

in all conditions equal the first coordination distances of cryptophane systems except for

large size ions, Rb+ and Cs+, whose position of water molecules are slightly closer to ion

within cryptophane. These positions also match previous simulation results[129]. Though

the equilibrium distance between ion and water inside cryptophane match the result in
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Figure 5.8: Solvation of Cs+ in bulk water

bulk water, the coordination number are significantly different(table5.3). In bulk water, as

many as 7 to 9 water molecules are disturbed and reoriented in presence of ions to solvate

ion (table5.3) while very few water molecules in presence of cryptophane. As size of ions

increase, though large ion Cs+ do not interact with water as strongly as smaller ion, due to

it has larger solvation shell, it has the highest coordination number. The vast difference of

coordination number in conditions of cryptophane and bulk water suggest cryptophane-1 is

a good host molecule which can replace these coordinating waters and release them to bulk.

The effect is most pronounced for Cs+, which has largest solvation coordination number

change of the cations considered.

5.4.6. Water map analysis

In order to investigate more detailed atomistic picture of water molecules and ions inside

the cryptophane cavity, a water map analysis are implemented in this work[56]. Water map

analysis is composed of two steps. The first step is the position clustering, which would

generate the most populated position that water or ion located inside cavity among sam-

pled configurations. The second step is the orientation clustering, which would generate
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Figure 5.9: Water map clustering for vacant cryptophane. Left panel is the horizontal view
and right panel is the perpendicular view. Red wire frame is the most populated cluster,
the blue one is the second most populated and the yellow one is the thrid most populated
frame. In each cluster, five water molecules with most populated orientation are displayed.

most likely orientations for those water molecules that appear nearby the position cluster

adopted. Prior to the position clustering, coordinates of all atoms in the simulation box

are aligned. In position clustering, we considered all water molecules that enter the cavity

and count the number of all other water molecules that are closer than 1.0Å to each of

them. And the coordinates of the oxygen in the water molecule that has highest number

of water molecules nearby is defined to be center of the first cluster. Following the same

criteria, we can identify the second and third clusters according to the average number of

water molecules in each system. In orientation clustering, the orientation of water molecules

within 1.0Å of the cluster center are considered and compared. The rotation matrix of ro-

tating each water molecule to the reference water molecule are calculated and converted

to quanterion representation (q). Then the criteria of two water molecules having similar

orientation is |qi·qj | > 0.9, and we count the number of similar orientations each water

molecule in cluster has, and the water molecule has highest number is the most represen-

tative orientation. For the vacant cryptophane, three clusters are generated and the most

populated cluster (red wireframe) are located near the center of cavity and near the pore of
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Figure 5.10: Water map clustering for cryptophane with Cs occupied inside

cryptophane(figure5.9). This cluster corresponds to the peak at 1.1Å in plot of g(r) of water

around (figure5.4A). The second (blue wireframe) and third (yellow wireframe) clusters are

symmetric in reference to center of cavity. These clusters are near the center of cryptophane

cavity, and they correspond to the peak at 0.0Å plot of g(r) of water around (figure5.4A).

Inside each cluster, all five most populated are showed to have highly uniform orientations,

and the water molecules at near the pore adopt the orientation that having two hydrogens

to coordinate with oxygen of the water molecules near the center of cavity. In condition of

ions occupied inside, most populated positions of ions occupied are generated and displayed

as well (figure5.10).

5.5. Conclusions

In this chapter, the molecular basis of cryptophane without hydrophobic sidechain group

binding alkali metal ions are explored. Through free energy perturbation method, we distin-

guished the binding affinities for three relatively large size ions, K+, Rb+ and Cs+, and the

cryptophane has the highest binding affinity for Cs+. The binding process of cryptophane-1

binding ions can be described as ion would subsitute part of the water culster inside cavity.
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There are water molecules inside cryptophane cavity to solvate ions in all systems (Na+,

K+, Rb+ and Cs+). It’s found that the smaller the ions, the more water molecules would

entry the cavity. The reason cryptophane-1 has the highest binding affinity on one hand is

the comparatively low solvation energy for Cs+, who has the largest radii and the highest

polarizability and would perturb the structure of water slightest compared to other smaller

ions. And on the other hand, the inteior volume of cryptophane-1 with Cs+ occupied in-

side cavity is smaller than all other cryptophane-ion complexes suggest the gemotric fit

cryptophane-1 to Cs+ is also the key of the strong binding interaction.
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CHAPTER 6 : Design high Xe binding affinity cryptophane

6.1. abstract

The host-guest interaction of Cryptophane-Xe molecular system has great application in

magnetic resonance imaging (MRI) given the guest Xe has relatively high natural abundance

of 26.4% and high polarization ability while cryptophane structures can be modified and

bind a variety biomolecules. The cryptophane-Xe complex can act as bio-sensor to image

the environment change based on the Xe chemical shift. Though several water-soluble

cryptophanes have been synthesized and have high binding affinity ranging from ∆G =

-4.10 to -5.97 kcal/mol, we hypothesised that we could obtain higher Xe binding affinity

cryptophanes by using simulation-based studies. In previous work, we proposed two aspects

to consider in designing higher affinity Xe binding cryptophanes. One is to increase the

hydrophobicity of the sidechains based on our understanding that the water occupancy

inside cryptophane cavity is correlated with binding affinity. The water occupancy should

be impacted by the sidechains and their hydrophobicity. The second consideration is to

reduce the interior volume of the cryptophane. From simulation studies of cryptophane

structural adjustments, the cryptophane may have increased affinity with smaller interior

volume. Previously considered cryptophanes with a linker of two methylenes are a starting

point for such reduction of volume while still accomodating Xe. In this work, we use ABF

method to estimate the Xe binding affinities of proposed cryptophanes and investigate their

water occupancy and orientations of sidechains.

6.2. Introduction

Proton-based magnetic resonance imaging (MRI) is a widely used technique for the detection

and diagnosis of various disease states. For applications involving MRI and biosensing,

issues involving sensitivity can be overcome by using heteronuclei such as 13C, 15N, 3H,

and 129Xe.[135] Of these, the 129Xe isotope is particularly attractive for applications in

biomolecular imaging, due its relatively high natural abundance of 26.4%, its solubility in
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many organic and aqueous solvents[136], and its large, polarizable electron cloud. This

latter feature imparts it great sensitivity to its molecular environment, resulting in a nearly

300 ppm 129Xe NMR chemical shift window.[137] Moreover, 129Xe can be hyperpolarized

(hp) via spin exchange optical pumping,[138] which allows for an increase in the 129Xe NMR

signal by more than 10000-fold.[139] These advantages of using 129Xe-based biosensors have

been readily exploited via the design of xenon hosts that generate a unique 129Xe NMR

chemical shift upon association with their target. The best-studied of these xenon hosts are

the small, cage-like molecules known as cryptophanes. There is currently a lack of knowledge

as to what makes a potent host agent and high affinity 129Xe binder. Recent simulation

studies have suggested that the presence of water molecules in the hydrophobic cavity of

the cryptophane is key in governing the free energy of association between cryptophane and

xenon. Specifically, it was seen that cryptophane variants with the lowest average number of

interior water molecules possessed the highest xenon binding affinities.[107] Thus, one could

consider synthesizing a biosensor with higher affinity for xenon by reducing the propensity

of water molecules to occupy the cage interior. One method by which this could be achieved

is placing the ionized solubilizing moieties farther away from the cryptophane cage, where

they would less readily attract water molecules to the cryptophane core. Previously, a tris-

(triazole propionic acid) cryptophane-A derivative was to found to have a xenon association

constant of 17 000 M-1 at 293K.[69] We explore modification of xenon affinity by using the

longer hexanoic acid or undecanoic acid solubilizing groups. We also consider variation of

aliphatic side chains not associated with solubilization.

6.3. Methods

6.3.1. Molecular models.

All cryptophanes considered are the derivitives of TAAC and TTPC[69]. For the derivi-

tives of TAAC, three of them are with methyl sidechain get substituted by ethyl, propyl and

isopropyl group (Figure 6.1). Two cryptophanes have smaller interior volumes (TAAC-221

and TAAC-111). Derivitives of TTPC with longer sidechains are also investigated (Figure

81



Figure 6.1: Renderings of TAAC and TAAC derivitives with methyl get substituted by
ethyl, propyl and isopropyl

Figure 6.2: Renderings of TTPC and TTPC with 10 more carbons longer in triazole propi-
onic acid sidechain
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6.2). Structures of these molecules are generated by modifying the structure of TAAC and

TTPC used in previous study[107]. The molfacture module in VMD is used to generate

the structures, which are then energetically optimized in NAMD. In each simulated sys-

tems, 3353 TIP3P[140] water molecules are added which create 48Å ×48Å ×48Å water

boxes with concentration of solute is ∼0.02M and 3 sodium ions are added to neutralize the

charges in each system. Parameters of bonded interaction used in simulations come from

the AMBER94[141] force field. Additional bonded parameters come from Hessian matrices

calculated based on optimized geometries from Gaussian. For non-bonded interaction, van

der Waals interactions are modeled by Lennard-Jones potentials and parameters of crypto-

phane molecules and Xe come from OPLS force field[127, 128] while electrostatic interactions

are modeled by coulombic interaction with partial charges in cryptophane backbone come

from developed charge set and the charges in sidechains come from R.E.D. server[130] where

charges are fitted to reproduce quantum calculated electrostatic potential around each atom

and atoms at junction position are edited so as to construct integer charge for the overall

molecule.

6.3.2. Molecular dynamics simulation.

The NAMD[108] package is applied in this work to perform simulations. As in prior molec-

ular dynamics simulations, 50,000 steps of conjugate gradient energy minimization are

performed to eliminate high-energy initial configurations after solvation the cryptophane

molecules. In this work, step size in the simulation is 2 femtosecond. The 20 ns trajectories

in the NPT ensemble simulations are performed for each system, where we use Langevin

dynamics method [54] to maintain the system temperature to be 300 K and pressure to

be 1.0 atm. The coupling coefficient for the temperature constraint is 1/ps and the period

is 100.0 fs, the decay constant is 50.0 fs, and the corresponding temperature is 300.0K for

Langevin piston using the Nose-Hoover method. Electrostatic interactions are calculated

through Particle Mesh Ewald (PME) method [53] with 1.0Å grid spacing. Lennard-Jones

interactions are computed with cutoff is 12.0Å. SHAKE/RATTLE[52] algorithms are ap-
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plied to constrain the covalent bonds linked with hydrogen. The last frames of trajectories

generated from NPT simulations will be used for analysis and provide initial conformations

to later ABF simulations.

dA (ξ)

dξ
=

〈
∂V (x)

∂ξ
− 1

β

∂ln|J |
∂ξ

〉
ξ∗

= −〈Fξ〉ξ∗ (6.1)

6.3.3. Adaptive biasing force simulation

In this work, ABF method is used to calculate the free energy profile of the cryptophane-Xe

system with respect to the distance ( ξ) between center mass of cryptophane backbone and

center mass of Xe and generate trajectories that having ξ range from 0 to 15.0Å. In ABF

method, one accumulated biasing force along the direction of ξ is applied to the system so

as to cancel out net force along this direction thereby the system will do the diffusion and

having uniform distribution with respect to ξ. The formula of estimating biased force from

integration can be seen in equ(6.1), where A( ξ) is the free energy of the system at ξ, V(x)

is the potential energy in original Cartesian coordinates, β is the temperature factor, |J | is

the Jacobian determinant of transforming Cartesian coordinates to generalized coordinates

which includes ξ. The bracket represent the ensemble average that having ξ constrained

to ξ*. In implementation, the range of ξ we are interested in is divided into small bins and

the forces in each bin will be considered to be same, and in prior to apply the biasing force

a threshold number of samples in each bin are required to be reached due to force fluctuate

significantly initially otherwise will not representative for that ξ state and bias the system

to wrong sampling. For all four cryptophane systems, overall range of ξ (0.0 ∼15.0Å) are

divided into three windows (0.0 ∼5.0Å, 5.0 ∼10.0Å and 10.0 ∼15.0Å) and every one of

them represent one separate ABF simulation and having ξ constrained to corresponding ξ

distance range so as to assure ABF calculation converge sooner. The bin size is chosen to

be 0.05Å and the threshold in each bin is chosen to be 30000. In each ABF simulation run,

20 ∼40ns simulation have been done so as to assure the uniform sampling of ξ and thereby
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provide the accuracy of calculated biasing force and PMF.

6.4. Results and discussions

6.4.1. Potential of Mean Force results.

TTAC deriviatives with sidechain get substituted. Free energy profile (potential of mean

force, PMF) of cryptophane and Xe systems were calculated with respect to ξ, the dis-

tance between center mass of cryptophane and Xe(figure 6.3). Although those modfied

cryptophanes have different sidechains, its clear that PMFs of the all derivatives have sim-

ilar shapes: there are three significant states along the reaction coordinate ( ξ), a deep

global minima with Xe bounded at the center of cavity ( ξ ∼0.1Å), one energy maxima

with Xe at the edge of cavity ( ξ ∼5.0Å) and a plateau with Xe is unbounded and isolated

from cavity ( ξ ∼15.0Å). In each case, the PMF is calculated with respect to the state

that with Xe unbound. From table 6.1, it shows that the depths of the global minima (

∆Wmin) which equal to the free energy difference between the Xe bound and unbound

states of all cryptophanes are TAAC-ethyl (-11.72 kcal/mol) > TAAC (-11.35 kcal/mol) >

TAAC-isopropyl (-11.00 kcal/mol) > TAAC-propyl (-10.92 kcal/mol). The height of the

energy barrier ( ∆Wmax) of these cavities are between 1.4 to 3 kcal/mol and the ordering is

Cryptophane ∆Gcal ∆Wmin ∆Wmax

(kcal/mol) (kcal/mol) (kcal/mol)

TAAC -6.44 -11.35 2.76
TAAC-ethyl -6.96 -11.72 1.41
TAAC-propyl -6.20 -10.92 1.84
TAAC-isopropyl -6.26 -11.00 1.87
TTUC -7.27 -12.19 2.09
TAAC-221 -7.15 -12.09 2.65
TAAC-111 -5.07 -10.48 12.31

Table 6.1: Calculated binding affinities of derivitives of cryptophane TAAC and TTPC to
Xe, calculated PMF minima (∆Wmin) and calculated PMF maxima (∆Wmax).
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Figure 6.3: Free energy profile of Xe along the coordinate of entering cavity center (ξ)

Figure 6.4: Dihedral distribution of the rotation of alkyl group for TAAC derivitives
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TAAC > TAAC-isopropyl > TAAC-propyl > TAAC-ethyl. This result is a little surprising

in that for all TAAC derivitives their sidechains are larger than TAAC and should have

steric effect to keep Xe entering the cavity and the height for Xe to enter should be higher.

Once the sidechain is larger than the methyl, the alky group can no longer always orient

to the interior of the cavity. This means ethyl, propyl and isopropyl already orient to the

exterior of the cryptophane cavity when Xe is not present to enter the cavity from the

dihedral distribution anaylsis of the rotation to rotate alky group (Figure 6.4). Therefore,

the structure adjustment for these derivatives from the prospect of sidechains are less than

those required with TAAC, which leads to the lower energy barriers to accomodate Xe with

these larger alkane sidechains. Additionally, there is also one small shoulder ( ξ ∼7.0Å)

and one local minima ( ξ ∼8.3Å) outside cavity along the reaction coordinate ( ξ). These

suggest that Xe would still associate transiently with cryptophane with Xe exterior to the

cavity.

TTPC with 11 carbon sidechain (TTUC) TTUC is also investigated and its PMF curve

is showed as well (6.3). Given our previous work [107] suggest that having sidechain with

charged group further away from cryptophane center could help to ”dry” the cryptophane

and increase the Xe binding affinity accordingly. Here a cryptophane with fatty acid in

its triozale sidechain is considered, which is 10 carbons longer than the original TTPC.

The PMF shows that this cryptophane also has the similar shape as other cryptophanes,

but with a relatively much deeper ∆Wmin and higher ∆Wmax. In addition, we can ob-

serve the exterior local minima (ξ ∼8.3Å) of this cryptophane is much broader than all

other cryptophanes, which suggest the Xe have relatively strong interaction with the large

sidechains.

TAAC with smaller interior volume. TAAC-221 and TAAC-111 are studied here to see if

smaller volume cryptophane can posses higher Xe binding affinity. The cryptophane with

each linker (TAAC-111) one methylene shorter than TAAC has significantly different shape

compared to TAAC6.5, its energy barrier is as high as 12.31 kcal/mol for translocation
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Figure 6.5: Potential of Mean Force of of TAAC derivitives with smaller volume

inside the cavity (ξ=3.7Å) which suggest Xe would extremely unlikely to enter the cavity.

The energy barrier for cryptophane to accomondate Xe involves not only sidechain re-

orientation but also a dramatic stretching of the linkers to open the portal to the cavity.

The cryptophane TAAC-221 which has only one one-methylene linker has a PMF with very

similar features as TAAC. TAAC-221 has deeper energy minima depth and similar energy

barrier compared with TAAC. These suggest that this slight smaller interior volume of

TAAC-221 could lead to enhanced affinity relative th TAAC.

Kassociation = 4π

∫ rd

0
r2e−βU(r)dr (6.2)

K0 =
1

1660Å
3Kassociation (6.3)

∆Gbind = −RTlnK0 (6.4)
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6.4.2. Binding affinity calculation.

The potential of mean force of Xe-cryptophane system can be used to estimate the equilib-

rium association constant by using equation6.2. The standard state equilibrium constant

and binding affinity can be calculated then from equations 6.3 and equation 6.4.

From Table 1, it is shown that the binding affinities are correlated with the energy minima

(∆ Wmin): the deeper the minima, the higher the binding affinity to Xe. From the table 6.1,

we can see the TAAC-oethyl and TAAC-221 are the two promising cavities that have higher

binding affinity than TAAC, whose binding affinities are 0.52 kcal/mol and 0.71 kcal/mol

higher. TTUC is also a promising cavity that has 0.83 kcal/mol higher Xe binding affinity.

The reason that the methyl in TAAC subsitituted by ethyl in TAAC-oethyl is favorable for

Xe binding is that the ethyl would impede water association with the cavity and keep the

cryptophane interior dry while also accommodating Xe. As the alkyl sidechain gets larger

the effect diminishes as the larger alkyl groups impinging on the guest Xe. TAAC-221 has

reduced volume cavity, leading to a slight increase in Xe affinity. TTUC has improved

affinity due to the fact that its charged acid (ionizable group) is much further away from

cavity center than TTPC.

6.5. Conclusions

Through extensive ABF simulations, free energy profiles of processes of Xe entering several

proposed cryptophane cavities are calculated for distances between Xe and the center of

mass of the cryptophane ( ξ) from 0.0 Å to 15.0 Å. From calculated free energy profiles

(PMF curves), it is shown that all systems share the same shape that Xe will have to

overcome one energy barrier to enter an energy well. For most cryptophanes, the energy

barrier is relatively small (2-4 kBT) while the energy well is deep (16-20 kBT). TAAC-111

has the smallest interior volume, and its structure changes dramatically to encapsulate Xe,

resulting in the largest energy barrier for Xe entry. By making use of free energy profile

with respect to ξ, binding affinity of Xe are calculated for proposed cryptophanes. We
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conclude that cryptophane with slightly smaller volume (one of the linker is one methylene

shorter), a slightly larger alkyl group to substitute methyl group (ethyl) and longer charged

sidechain would all enhance the Xe binding affinity relative to TAAC.
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