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evolution. Social evolution, on the other hand, implies selection in a

social environment and therefore cannot be described with a neutral model. I propose a

model of pure frequency-dependent selection as a generic null model for social evolution,

and use the model to illustrate diverse effects of social selection. I derive a non-linear

form of frequency-dependent selection from a mechanistic model of mate choice and show

unintuitive consequences for evolutionary dynamics. I infer complex forms of frequency

dependent selection—including positive and negative frequency-dependent selection at different
frequencies—from data regarding the copying of baby names, the fashions of dog

breeds, and the use of rare languages, and discuss the implications for cultural diversity.
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I thank Erol Akçay, Tim Linksvayer, Arjun Raj and Paul Sniegowski for comments and on-

going feedback. I thank my coauthors Chris Ahern, Robin Clark, and David McCandlish,

and many teachers, mentors and colleagues such as Ricky Der, Charles Epstein, Ken Lange,

Davorka Gulisija, Jakub Otwinowski, Premal Shah, Yang Ding, Etienne Rajon, Andrew

Tillman, and Colin Twomey. I thank Lauris Olson, Deborah Bishov, and Penn Libraries

for help with US Census data. I acknowledge funding from the SAS Dissertation Comple-

tion Fellowship, and the support of the Plotkin lab, which has included funding from the

Burroughs Wellcome Fund, James S. McDonnell Foundation, the David and Lucile Packard

Foundation, Alfred P. Sloan Foundation, U.S. Department of the Interior, NIH, and the

U.S. Army Research Office (W911NF-12-1-0552).

iii



ABSTRACT

NULL MODELS FOR CULTURAL AND SOCIAL EVOLUTION

Mitchell G. Newberry

Joshua B. Plotkin

Analogies between biological and cultural evolution date back to Darwin, yet the analo-

gies have remained loose. Neutral evolution, known to be important in biology, has been

proposed as a null model for cultural change, but has not developed into tests for se-

lection on cultural features. Using inference in timeseries of alternative word forms and

grammatical constructions, I demonstrate a cultural analog of natural selection on a back-

ground of netural evolution. Social evolution, on the other hand, implies selection in a

social environment and therefore cannot be described with a neutral model. I propose a

model of pure frequency-dependent selection as a generic null model for social evolution,

and use the model to illustrate diverse effects of social selection. I derive a non-linear

form of frequency-dependent selection from a mechanistic model of mate choice and show

unintuitive consequences for evolutionary dynamics. I infer complex forms of frequency

dependent selection—including positive and negative frequency-dependent selection at dif-

ferent frequencies—from data regarding the copying of baby names, the fashions of dog

breeds, and the use of rare languages, and discuss the implications for cultural diversity.
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PREFACE

Perhaps I can save you time, dear reader, by providing context. This thesis is a presentation

of three papers deemed satisfactory to represent the contribution of my doctoral studies.

Two of these papers (here called Chapter 1 and Chapter 2) are already published (Newberry

et al., 2016, 2017). These are best apprehended as published in their respective venues but

are included here pro forma. The third chapter is a manuscript under preparation to be

submitted to some academic journal or another. If by the time you read this, that work is

already published, you will likely have an easier time reading it in that venue, or indeed on

bioRxiv or arxiv.org. What is uniquely expressed in this presentation is the motivation and

the intellectual thread that connects and underlies these works, including some of its loose

ends and sketches of its implications and my future work. In the interest of clarity, then, all

of the synthesis of the joint body of work is confined to the introduction and conclusion, and

the chapters are presented in chronological order of publication, edited only superficially

from their published or yet-to-be published form.

The thesis began as a study of how populations of people and organisms come to cohere

on certain features. That is, if the endless copying inherent to the evolutionary process

constantly produces variation, how do we nonetheless agree on anything, particularly in

cases where the content of the agreement seems inconsequential, such as whether to measure

in inches or centimeters, or whether to wait 33 or 34 years to flower. The scope of the thesis

since expanded to include the complementary case of a preference for disagreement and

anything in between, as well as a study of how to make sense of the analogy between

genetic and cultural variants in order to study these processes generally in biology as well

as in human culture.

Each of the papers presented consist substantially of my original writing and original re-

search. The exceptions are original research on which I have collaborated at such a deep

level as to know each line of code and the origin of each piece of input data, to have partici-
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pated and weighed in on each decision of any consequence, and to easily rearrange, replicate

and reconfigure at will. These are intensive collaborations with my advisor Joshua Plotkin

crafting every lilt and turn of word, paragraph, and structure of our paper in Nature, with

Chris Ahern on all the software machinery underlying the same, and with David McCan-

dlish on the introduction in the style of The American Naturalist of Chapter 1, which was

never submitted to Am Nat.

x



INTRODUCTION

The idea embodied here is simple: to explore a certain class of evolutionary models because

those are the easy ones. We often model evolution essentially as Lotka or Volterra modeled

growth of populations. Such a model represents a population or an ecosystem as population

counts of a number of different types that change over time, where the growth rate of

each type depends on its abundance and the abundance of other types. These models

are notoriously complex, from either a mathematical or a practical perspective. Chaotic

dynamics can result from including even a handful of types. Even though the Lotka-Volterra

model excels at representing the interactions of two types, say a predator and its prey,

generalizing them to an ecological food web of n types requires n2 parameters, which are

usually impossible to measure or infer in practice. Mathematically, we can sketch out

the full space of possible Lotka-Volterra models, which represent a wide swath of possible

ecosystems and evolutionary scenarios. What we see is that among all possibilities, only

vanishingly few of them could be comprehensible enough to be at all predictable or fit to

any real data. Mapping out these vanishing few, then, should be of central concern.

I study the models where the growth rate of each type depends only on its own abundance

and the total abundance, and each in the same way. This is a fairly straightforward re-

striction to specify, and it reduces the full space of possibilities to a smaller subspace. The

simple idea of the thesis, then, is that the restriction introduces a symmetry, which in turn

guarantees that the behavior of any such model is predictable and can be fit to real data.

The restriction allows us to elaborate models of populations not just in a deterministic or

large-population limit as Lotka and Volterra did, but in full stochastic generality—making

account of the randomness inherent to population change. Furthermore, the ecological and

evolutionary scenarios that this subspace of models represent are interesting, because the

subspace captures competition between demographically-equivalent types, which includes

the neutral model of molecular evolution and the neutral theory of biodiversity as well as

models of frequency-dependent selection. This thesis explores the models themselves and

1



their applications to evolutionary scenarios, about which much more could be said.

Neutrality is a kind of demographic equivalence that has been studied in evolution and

ecology. Neutral models in evolutionary theory—where alternative traits have no conse-

quence for an organism’s fitness—were developed in the early to mid 20th century (Wright,

1929; Kimura, 1983) and demonstrated a non-adaptive dimension to evolutionary change.

More recently, a neutral theory of ecology (Hubbell, 2001) has been put forth to explain

biodiversity patterns. Neutral models are useful as null models, to explore first whether the

idiosyncrasies of particular types or traits are relevant at all to evolutionary or ecological

dynamics. If an observed evolutionary change seems plausible under a neutral model, then

there might be no need to resort to a more complex explanation involving natural selection

or other processes favoring the growth of one or another type. Likewise if the abundance of

different species in an assemblage of species is adequately explained by random colonization

and proliferation, then a detailed understanding of their relationships and ecological niches

may be unnecessary for predicting biodiversity patterns. These null expectations, then, have

been useful topics of study in their own right. This work extends neutral null models to

the domain of cultural transmission, and proposes a new null model of frequency-dependent

selection for social evolution.

Although cultural and social evolution might sound similar, I use these terms to refer to

different and nearly independent aspects of the evolutionary process. Cultural transmission

refers to the process of individuals aquiring traits from other individuals through expe-

rience such as by teaching, learning, immitating, or hearing and repeating, rather than

through genetic inheritance. Words (Creanza et al., 2015), bird songs, bird flight paths

(Sasaki and Biro, 2017) and tool use in primates (Tomasello et al., 1987) are examples of

identifiable behavioral traits that are transmitted culturally. Where these traits are trans-

mitted iteratively from one individual to another, the process parallels Darwinian genetic

evolution and can be called cultural evolution (Cavalli-Sforza and Feldman, 1981; Mesoudi,

2011). Social evolution on the other hand often refers to situations in which the fitness

2



of a trait is affected by the “social” interaction—interaction between individuals withing

the same population that depends on their respective traits. Example traits include alarm

calling behavior (Dunford, 1977), flowering time (Janzen, 1976) and the production of en-

zymes for extracellular metabolism in microbes (Greig and Travisano, 2004). A trait need

not be culturally-transmitted in order to be subject to selection from the social environ-

ment, as in microbes (Kerr et al., 2002), nor necessarily subject to social selection to be

culturally-transmitted, as in stone tool construction (Lycett, 2008, 2009). Cultural and

genetic transmission can entwine to create social selective pressures as well, such as in co-

evolution of dairy practice—a culturally-transmitted trait—and lactase enzyme expression,

which is inherited genetically (Itan et al., 2009). Likewise cultural transmission and social

selection go hand in hand: we often unwittingly conflate social and cultural evolution simply

because the vast majority of culturally-transmitted traits germaine to our everyday human

experience have meaning only in a social context, and are therefore under social selection

in one or another sense.

In Chapter 2, I extend the neutral model from population genetics to the context of

culturally-transmitted traits by using the neutral model as a null model to distinguish

“selective” forces from neutral change. The idea that cultural transmission should entail a

system of copying that bears some analogy to Darwinian evolution by natural selection is

at least as old as Darwin’s work (Darwin, 1888), and was popular at the time (Aronoff,

2017). In particular August Schleicher saw parallels between species and language evolu-

tion. Schleicher, a linguist, reconstructed the a family tree of Indo-European languages

(Schleicher, 1861), and is famous for Schleicher’s Fabel, the first plausible myth written in

a plausible phylogeny-based reconstruction of the extinct progenitor of all Indo-European

languages. A contemporary of Darwin’s, Schleicher observed lines of descent in language

that he saw as analogous to linneages of species. Schleicher explicitly described the analogy

under the provocative title Darwinism Tested by Language Science (Schleicher, 1869), which

was quickly translated from the German. A review of the translated work by a philologist

appears in the first volume of Nature. Müller (1870) writes in the review,

3



“A struggle for life is constantly going on among the words and grammatical

forms in each language. The better, the shorter, the easier forms are constantly

gaining the upper hand, and they owe their success to their own inherent virtue.”

which Darwin quotes in The Descent of Man (Darwin, 1888, p.91).

How far one can take the analogy between cultural and genetic transmission has been the

topic of contemporary research and debate (Lewens, 2015). Cavalli-Sforza and Feldman

(1981) produced a detailed mathematical framework for studying evolution by cultural

transmission, in particular to describe gene-culture coevolution as exemplefied in the re-

lationship between lactase persistence genes and dairy cultures, or genes and language

attributes (Creanza et al., 2015). Yet wide adoption of Darwinism as an explanation for

observed changes or patterns has been slow in the social sciences. A principle difficulty is in

determining what precisely the analogy is, particularly as regards the“genes”of culture. It is

clear that some information that determines traits such as behaviors, words or attributes of

technological artifacts, is recursively transmitted, but what constitutes the “cultural repli-

cator”, the embodiment of that information that would be analogous to DNA in genetic

transmission, is often unclear or context-specific. All the same, evolutionary thinking in bi-

ology predated the discovery of DNA, and so it is reasonable to expect that just as evolution

shed light on biology before the exact genetic mechanisms were understood, we can hope for

evolution to explain aspects of cultural change even when detailed mechanistic knowledge

of the encoding of cultural information or its mechanisms of transmission are unavailable.

The many types of cultural information and the many ways in which it can be transmitted

ramify questions about individuality and levels of selection which were vexing even in the

biological contexts that first prompted their study. Whether genes copy themselves using

the organism as a vehicle, whether individuals reproduce depending on the aggregate fitness

of their genes, or indeed whether groups of individuals produce individuals according to

some group fitness have long puzzled evolutionary biologists (West et al., 2007; Dawkins,

1976). Furthermore, situations arise in biology where the notion of individuality underlying

4



Darwinian fitness breaks down and causes paradoxes in evolutionary thinking (Buss, 2014).

For example the case of free-living amoebae coming together to form multicellular structures

at reproduction presents the mystery of how evolution could stably maintain the traits

required to become multicellular when most individual cells do not benefit from the added

reproductive capacity.

Culture forces reckoning with even more complex notions of individuality. For example, do

word forms themselves have a cultural fitness, or do they confer biological fitness to speakers,

or confer cultural “fitness” to speakers’ idiolects or languages? Mufwene (2001) ascribes to

languages the properties of viruses or parasites that infect hosts. For most purposes a host

either speaks a given language or does not, much the same way a human is infected with

a parasite or not, and the meaningful evolutionary dynamics of parasites have as much to

do with the process of transmission between hosts as with the survival and reproduction

of individual parasite cells or virus particles. The nuanced evolutionary dynamics of this

patch colonization might then be quite complicated.

A gambit helps to sidestep these questions in order to extend the neutral model to cultural

transmission. Much as a phenotypic gambit (Grafen, 1984) permits simple modeling of the

evolutionary outcomes of social strategies, the present gambit permits us to ignore questions

about the cultural replicator: we simply model observed traits as if they were the individuals

under study. For example, I take the occurrence of a word in a corpus (a collection of texts)

to represent the free-living cultural replicator itself. Even though the occurrence of a word

in the corpus may represent many physical printed words in many copies of a book on

many shelves, or memories in the brains of many readers, these other pools are taken as

irrelevant to they dynamics of cultural change in much the same way that the course of an

epidemic can be modeled without knowing the exact number of virus particles within each

infected person’s body or even whether the disease is viral or bacterial. A full justification

of this gambit would have to answer to all possible transmission mechanisms that might

relay cultural information in all possible contexts, and is therefore likely impossible. We
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instead rely on strong justifications along mathematical, empirical and practical lines.

The mathematical justification centers on the diffusion approximation, a theme that per-

vades this thesis. The idea is that when there are many individuals and many possible

interactions between individuals that are all or mostly uncoordinated, the frequencies of

traits can only change slightly within a short time interval. If we further assume that

the possible changes depend only on the current or very recent states of the population,

then nearly any process can be approximated by a stochastic process called the diffusion

process. The diffusion process requires specification of only how the mean and variance

of a change depend on the current state of the system. The fact that only the mean and

variance matter is related to the Central Limit Theorem by the assumption that there are

many individuals and interactions, and thus their aggregate effect is approximately nor-

mal. This normal approximation allows us to ignore many of the details of what the real

individuals and their interactions are, and classify these processes only according to their

aggregate effect. Indeed, models in population genetics differ in terms of how a popula-

tion and the mechanisms of survival and reproduction are represented, yet they share the

same diffusion limit: that is, they have approximately the same behavior when the relevant

populations and timescales are large (Crow et al., 1970; Kimura, 1964). For example, the

Moran process represents instantaneous birth and death whereas the Wright-Fisher process

represents birth and death over discrete generations, yet the behavior of trait frequencies in

both models is approximate to a shared diffusion limit, and the effective population size in

the diffusion limit allows interconversion of results between the models. Many complicated

models thus may be summarized in terms of how the instantaneous mean and variance of

trait frequency depend on the current trait frequencies, to good approximation. This fact

allows the study of the system-level behavior of transmission and evolution by studying

factors that affect this instantaneous mean and variance, to which the detailed mechanisms

are mathematically irrelevant.

An empirical and practical justification is that the aggregate behavior of many cultural
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variants seem superficially consistent with a diffusion process (Bentley et al., 2004; Hahn

and Bentley, 2003; Mesoudi and Lycett, 2009; Bentley, 2008; Mesoudi, 2011). Not all

stochastic processes need appear as a diffusion process (Der et al., 2012, 2011), yet at least

superficial consistency is often observed (Bentley et al., 2011). In practice, if a more nuanced

model is not necessary to achieve predictive or explanatory power over cultural change at

a population level, then there may be no need to resort to one. An ongoing challenge of

cultural evolution is then to determine whether reasoning in terms of the diffusion process

can make reliable predictions, either about the future behavior of a population or about

some properties of underlying mechanisms of transmission, even when the detailed nature

of the cultural replicators is not known.

The work in Chapter 2, then, furthers this empirical project by using the neutral model—a

diffusion process with zero mean change—as a null model to account for observed changes.

When the null model can be rejected, it points to either a diffusion process that has a

non-zero mean change, or potentially what is not a diffusion process at all. I rationalize the

observations of a non-zero mean change, where they occur, in terms of prior expectations for

biased transmission of language elements based on the cognition of speakers, and hence this

observation redounds to the credibility of the diffusion process as a good model of cultural

change. Furthermore, fitting diffusion models to the data allows the partitioning of a change

into a stochastic part (the variance), which I call stochastic drift, and a deterministic part

(the mean), which I generally call selection1. By comparing the strengths of drift and

selection across many observations of similar changes (e.g. the regularization of many

different past-tense verbs over time), I begin to tease apart what mechanisms contribute

to one or the other. Working in the other direction, it is possible to propose mechanisms

of learning and other cultural contagion (e.g. Ferdinand and Zuidema, 2009; Reali and

1I call this part “selection” for simplicity and mathematical analogy, despite that selection in the sense
Darwin used it (the deaths or failures of reproduction of unfit individuals by analogy with the culling
employed by plant and animal breeders) has no real interpretation in cultural information, and despite that
“selection” (in the sense used here) may represent the result of many different mechanisms that may have no
analogs in evolutionary biology or indeed mechanisms that have clear analogs that go under different names,
such as biased mutation.
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Griffiths, 2010; Ferdinand et al., 2013), and ask how they could or could not contribute to

population-scale selection and drift.

In Chapters 1 and 3, I extend the simple idea underlying the thesis to social evolution.

Social evolution studies the selection pressures imposed by the social environment, that is,

the aspects of an organism’s environment that is determined by interaction with conspecifics.

The fact that most interesting traits under social selection also themselves affect the social

environment greatly complicates their study. The population-genetic neutral model is of

little use here as a null model or otherwise, because the mere fact that selection pressures

from the social environment are operating presumes that the traits are not neutral. Much

as the Lotka-Volterra dynamics of n types might contain n2 different interaction strength

parameters, different strategies in a population-wide iterated prisoner’s dilemma (Axelrod

et al., 1987) or paper-rock-scissors (Kerr et al., 2002) have idiosyncratic interactions with

other strategies, creating a complex form of selection that depends on the frequencies of all

types, a potentially infinite set of parameters. Again, chaotic dynamics and unmeasurable

parameters plague the space of possible models of social evolution. If the neutral model is

too simple, and the general model too complex, where do we turn?

The restriction of demographic equivalence between types carves out an interesting space

of tractable models that allow social selective pressures, which I advance throughout the

thesis as a null model for social evolution. I intend the words “null model” in a broad sense.

These are a space of models which describe pervasive phenomena yet which can be well

understood and well fit to data. As “null models”, I advance that they merit study in their

own right in order to understand a base case from which more complex situations may

deviate: not because they will support a particular formal statistical hypothesis test in a

frequentist framework, but because their continued study should well produce a font of such

tests as well as better intuition about the basic behavior of selection in a social context.

For example, based on what I develop here, one could easily imagine a test for whether

any type has an idiosyncratic relationship to another type. This framing as an alternative
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hypothesis to the null model that all types are equivalent is a restatement of a fundamental

question in biodiversity theory. But we will also see that from this “null model” emerges a

basic conformity/anti-conformity axis which must be, to some degree, a property of many

socially evolving systems, and the null model provides an explicit basis for understanding

the extent to which frequency-dependent selection influences biodiversity.

I call the models which follow the restriction of demographic equivalence “exchangeable

models” following an old use of the word exchangeable from probability theory (Diaco-

nis and Freedman, 1980, due to de Finetti) subsequently applied in population genetics

(Cannings, 1974; Ewens, 2004). There is a connection between the exhangeable models,

frequency-dependent selection, and the demographic equivalence described above in the

context of ecology and evolution. The connection is a near-equivalence, the full details of

which would be tedious to work out. In broad outline, however, exchangeability forbids

fitness functions that depend on type identity and thus relationships between identified

types. If we restrict our attention to Wright-Fisher models that assign fitness to each type

by whatever means, then there are broadly two cases left over. One case is exactly the

frequency-dependent selection described in evolution textbooks (Futuyma, 2009), where fit-

ness depends on frequency, and linear dependence and equivalent dependence across all

types are implicitly assumed. The freqeuncy-dependent case of exchangeability is more re-

strictive than the frequency-dependence of some social evolution models of population-scale

versions of paper-rock-scissors or the prisonner’s dillema in which fitness may depend on

the frequencies of any type, but it is general enough to describe all cases of frequency-

dependence that occur in e.g. Futuyma (2009). The remaining case is exchangeable models

in which fitness depends not on type identity but may still depend on particular relationships

between types that do not depend on their identity. An example of such an exchangeable

process is one in which fitness depends on rank, for example assigning fitness w1 = 1 to

the most frequent type, and wn = 1 − ns to the nth most frequent type. Other examples

might include a model where the fitness of a type at count 2 is 1 + s if there is another

type with count greater than 500, and 1 − s otherwise. One can imagine ways to make
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such a process Turing-complete, or mix it with regimes of frequency-dependence to create

an ugly compendium of monsters, most of philosophical origin with no clear examples in

nature. These models are still exchangeable in the sense of probability theory, but suffer

a pathology that leads me to exclude them from consideration. A better connection would

be an exact equivalence between frequency-dependent models (suitably defined) and the

non-pathological exchangeable models.

The connection extends to the unified neutral theory of biodiversity, which describes a model

in which populations of a number of species undergo the same birth-death process. This is a

proposed neutral model for biodiversity ecology and has been recognized as an example for

how neutral models can be employed in eg cultural evolution (Bentley et al., 2004; Valverde

and Solé, 2015). Ignoring any migration between island and metapopulations, the expected

number of species φn in a (meta)population containing n individuals is, in terms of the

total number of species SM , the birth and death rates of individuals b and d and a rate of

creation of new species ν:

〈φn〉 =
SMP0ν

nb

(
b

d

)n
(1)

Here P0 is a normalizing constant on the probability Pn of observing a species with n

individuals, which is P0
∏n−1
i=0 bi/d(i+1) or equivalently (P0ν/dn)(b/d)n−1 . The probability

distribution is consistent with Fisher’s log-series: the number of species at abundance n is

Sn = αxn/n (where x = b/d). This is a kind of abundance spectrum: How many will be

present at a given volume n. This is called the ‘distribution of relative species abundance

(RSA)’. The connection allows us to import this result as a statement about the distribution

of type frequencies in the neutral model of evolution. Indeed, Volkov et al. (2003) cite the

Ewens sampling formula, developed in population genetics, as (Ewens, 1972; Karlin and

McGregor, 1972) in the context of biodiversity theory. The connection also runs in reverse:

results for exchangeable models will apply to an “exchangeable” generalization of neutral

biodiversity theory. I discuss RSA in the exchangeable model further in Section 0.2.

I have found great interest in the evolution of coordination on a common phenotype. This
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is a case of positive frequency-dependence, and it captures properties of standardization in

colloquial and technical senses. Standardization is a well-studied topic in economics (Katz

and Shapiro, 1985), sociology, linguistics and biology (Wagner et al., 2016). Examples range

as far as bamboo flowering period (Janzen, 1976), the genetic code (Knight et al., 2001),

and programming languages (Valverde and Solé, 2015). I discuss some below. Coordination

is most interesting when it depends on very little extrinsic selection—the ordinary type of

selection due to the physical environment or other organisms, which could adequately be

called ecological—and rather depends primarily on selection arising from interactions with

members of the same species, which I call social. Once a standard has emerged, rare traits

are selected against, which suggests that standards change infrequently. Standards thus

often become reliable features of the environment, and social pressure to maintain them may

persist beyond the individuals or even species that originated them. These reliable features

of the environment then easily play roles in niche construction, and other factors influencing

biodiversity (by partitioning populations) and evolvability—as in a manner evocative of

Waddington’s description of canalization in development (Waddington, 1942) or in fostering

modular design (Wagner et al., 2016).

The literature on standardization in economics, linguistics, and technology provides a rich

source of inspiration, results, and potential applications and interdisciplinary collaboration.

A precise understanding of the generalities of standardization would explain patterns across

a disparate collection of systems. Many concepts and definitions of standards exist that

emphasize different aspects. Technologically-focused definitions of standards emphasize the

role of standards as reliable features of the environment. Tassey (2000) of the National

Institute of Standards and Technology writes: “A standard can be defined generally as a

construct that results from reasoned, collective choice and enables agreement on solutions of

recurrent problems.” Wagner et al. (2016) defines a technological standard as “a set of spec-

ifications to which all elements of a product, process, or format conform.” Those concerned

with technological standards often distinguish between de facto and “promulgated” (Tassey,

2000) or “de jure” (Wagner et al., 2016) standards, according to whether standardization
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arose spontaneously—as through an evolutionary process of copying via immitation— or

through a concerted process of social consensus for which an evolutionary model would be

at pains to account. Wagner et al. (2016) conclude that certain properties of standards

are essential foundations for innovation: the use of few, specifiable components; compatible

interfaces; and the composability of different components into combinatorially-many poten-

tially useful objects. For these purposes, Wagner et al. (2016) consider standards to be any

omnipresent or near-omnipresent features of a technical system, regardless of their origins.

For example, they consider the regularization of the form and manufacturing processes of

stone tools in the Palaeolithic to be standardization regardless of contention as to whether

the conformity is due to some form of social pressure or convergence towards an optimum

design.

Chapter 1 investigates a very particular special case of standardization of some arbitrary

traits. There, I focus on investigating the behavior of positive frequency dependent selec-

tion in a case that cannot be quite described in terms of the classical positive frequency

dependence of underdominant traits. The project is to understand, in the details, how a

general model of frequency-dependent selection can approximate a real system when many

complex mechanisms such as diploidy, Mendelian inheritance, an mate choice are at play.

Most of the value of this case study, sadly, can only be appreciated in the context of this

thesis, and thus, on its own as it is published in Theoretical Population Biology, it amounts

to a rather boring paper. What give it life and purpose in the context of the larger body

of work are the realizations that many forms of frequency-dependence are possible outside

those that have been studied classically, that the exact form of frequency-dependence can

be deduced mathematically from a complicated set of mechanisms, and that alternative

forms of frequency-dependence do bear on the resulting dynamics of the system. Most im-

portantly, although this is not described in the paper, it demonstrates that a complicated

model nonetheless reduces, via the one-dimensional manifold that is described in the paper,

to a form of frequency-dependence.
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Chapter 3 infers that form of frequency-dependence from timeseries data documenting the

outcomes of competition between exchangeable types. This can provide a measure of stan-

dardization pressure, as we show by studying the case of human languages, or generally any

kind of exchangeable frequency-dependent selection. In contrast to Chapter 1, it need no

apology here, since I believe its merits will be evident outside the context of the thesis.

0.1. Cases of standardization

To study standardization, I collected case studies to use as thought experiments or sounding

boards for the theory I present. Each case can be used to suppose whether a particular

natural case of standardization fits the assumptions of the exchangeable model, to clarify

how to interpret a real situation in the model, or to explore the diversity of mechanisms of

frequency-dependent fitness.

The genetic code itself is a standard that is enforced by coevolution between sequences that

encode protein products and the ribosomal machinery that creates the protein. Acridine

mutagens can add or delete bases from the nucleotide sequence of bacteriophage T4. From

little more than the phenotypes of recombinations of these mutations, Crick et al. (1961)

determined that the genetic code consisted of non-overlapping triplets of nucleotides inter-

preted in order from a particular starting point. Today, the base of biophysical knowledge

about the mechanisms of translation, the ribosome, and the genetic code is immense, yet

the evolutionary origins of the ribosome and the genetic code remain mysterious.

A large literature deals with the evolution of the genetic code (Knight et al., 2001). The

dominat view is that the universal genetic code arose by a frozen accident (Crick, 1968): once

the genetic code is established, any alternative versions of the ribosome, tRNAs, aminoacyl-

tRNA synthetase, or release factors that would alter the genetic code would cause mistran-

scription of any proteins containing the reassigned codon. Such pleiotropy would almost

certainly cause deleterious effects. However, variant genetic codes do exist in some organ-

isms, particularly organellar genomes or in intracellular parasites. Many theories have been
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proposed to explain how alternative codes might arise against the initial deleterious effects

of alternative interpretations of the existing sequence data (Knight et al., 2001).

The genetic code could be construed, on long timescales, as a coordination between genes.

The optimal behavior at each codon is to generate the distribution of gene products that

optimizes their functionality. Each gene would prefer one interpretation of a codon over

another, to the degree that the alternative gene products differ in fitness. Where the

preferred mapping is monomorphic across genes, then the optimal behavior is to generate

the preferred target with high fidelity. When such a monomorphism is absent, as when

genes horizontally transfer from a different system (eg nuclear to plastid gene transfer )

or when tRNA mutations compensate for lethal non-synonymous substitutions (Murgola,

1985), the optimal behavior may be to stochastically generate alternative targets. This

situation is similar to the ambiguous intermediate hypothesis of Schultz and Yarus (1994,

1996). Assuming that the targets and the specificity of each codon are evolvable—and there

are several mutational mechanisms available between the tRNA anticodons that bind the

code, the tRNA structure, and the synthetase that loads the amino acid onto the tRNA—we

could assume that the ribosome, under high selection pressure for optimizing the aggregate

of its gene products, evolves quickly. The genes, evolving on a slower timescale, evolve to

coordinate their compliance with the current optimal codon behavior.

This coordination game results in standardization. Genes across the genome in the limit of

weak mutation form a population in the standards process. Each locus bears a standard, ie

its own idiosycratic preference for which amino acids it would like codons to represent. We

assume the translation machinery generates amino acids for a codon (potentially ambigu-

ously) so as to optimize the aggregate fitness of all loci sharing this codon. The translation

machinery is then likely to produce the highest-fitness amino-acid at those loci bearing

the dominant standard (amino-acid preference), and unlikely to produce the highest-fitness

possible amino acid for loci still hanging on to rare standards. Under weak mutation, new

mutations that bring loci into conformance with the dominant standard—nucleotide substi-
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tutions that convert a codon to one more likely to produce a more-preferred amino acid—are

more likely to fix than mutations to rare standards.

In this situation, the set of possible standards is finite, but nearly inexhaustible, and the ex-

act Markov process depends on the distribution of fitness effects of amino acid substitutions

and the mutational accessibility of different standards. Considering the exact (non-neutral)

standards process for some set of genes, where the fitness effects are known, ie through

simulation, might show that some structures that relate mutational accessibility to bio-

physical properties of amino acids will evolve in any genetic code. Relationships like these

have been demonstrated (Freeland and Hurst, 1998). The standards process, by contrast,

would provide a dynamic mechanism that explains the early evolution of the genetic code.

This in turn would tease apart which features of the genetic code, such as the statistical

overabundance of synonymous nucleotide substitutions, served an adaptive purpose (such as

efficiency at minimizing the effects of errors, as has been assumed) and which were the result

of dynamic constraint. Describing genetic code evolution with an exchangeable standards

process could also relate some average fitness effects of amino acid substitution to mistrans-

lation rates across the genome, a kind of mutation-selection balance against alternative

standards (considered equivalent).

The order of genes on chromosomes is also an important standard due to the mechanisms

involved in meiosis. Considerable work has gone into investigating the fixation rate of

underdominant mutations due to a long controversy (White, 1978; King, 1995; Grant, 1991;

Nevo et al., 2001; Walsh, 1982) about the involvement of chromosomal rearrangements in

speciation (Noor et al., 2001; Rieseberg, 2001; Navarro and Barton, 2003b,a). Chromosomal

rearrangements are classic underdominant mutations, as they often have no phenotypic

effect, but cause some degree of hybrid sterility, a fitness detriment to heterozygotes. Lande

(Lande, 1979) developed Kimura’s work (Kimura, 1962) into an analytical expression for

the fixation rate of a chromosomal rearrangement, which applies more generally to any
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symmetrically underdominant alleles in diploid populations:

u = e−Nes
√

s

Neπ
, (2)

where u is the probability of fixation from initial introduction, Ne is effective population

size, and s is the proportionate heterozygote disadvantage. The equation is valid when

Nes > 2. In the language of the standards model, symmetrically underdominant alleles

are equivalent to standards with linear frequency dependence. On the basis of this for-

mula and observations of rearrangements, Lande estimated local effective deme sizes in

the tens or hundreds of individuals in organisms such as Drosophila, an inspiration for the

work in Chapter 1. Although Drosophila escape this paradox in practice by suppressing

recombination within inversions (and thus mitigating the partial sterility phenotype), mam-

mals are subject to it. Human populations demonstrate a high selection pressure towared

standardization. Humans show very little inversion polymorphism, and vanishingly little

polymorphism for other chromosomal rearrangements. Known inversions are easy to detect

with primers targeted towards the inversion endpoints. However, the discovery of unknown

inversions requires reads across inversion breakpoints, necessitating good coverage of the

entire genome. Researchers have used indirect methods (Bansal et al., 2007) for detecting

inversion polymorphism in humans. There is some direct evidence that small inversion (up

to 1Mb) polymorphisms exist in human populations (Stefansson et al., 2005; Feuk et al.,

2005). This leaves a puzzle as to why many closely-related mammal species (such as ungu-

lates) differ widely in their genetic architecture.

Human Language is an important standard and a topic of Chapter 3. In an increasingly

globalized society, rare languages are going extinct. Abrams and Strogatz (2003) analyze the

usage frequency of disappearing languages, fitting the transition probability to a language

as a power-law of its frequency Pyx(x, s) = cxαs, Pxy(x, s) = c(1− x)α(1− s), they inferred

α = 1.21± 0.25 across 42 languages.

Words within languages are also the subject of population-scale coordination. Pagel et al.
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(2007) and Fontanari and Perlovsky (2004) discuss how a neutral infinite-alleles model can

result in power-law distributed word frequencies. Pagel alludes to evidence “that when more

than one word is used to express the same meaning, the relative frequencies of use of the

rare words is lower than expected from a neutral drift model of evolution (Fontanari and

Perlovsky, 2004), consistent with selection against innovations.”

Programming Languages are an analogous case in technological culture. Despite decades

of software development, the barriers to compatibility between software written in different

programming languages remain high. Thus, programming languages deliniate internally-

cohesive bodies of work or functionality. The more functionality the collected works in a

given language express, the more attractive that language is for new work. Valverde and Solé

(2015) model this system of “increasing returns” and draw an explicit comparision (via the

model) between programming language use and VHS versus Betamax, and a metaphorical

comparison with the neutral theory of biodiversity. There are several indices (eg. TIOBE,

PYPL, Transparent Language Popularity Index) that employ the number of results in search

engines or popularity of programming languages in internet speech. Some (eg RedMonk)

count github projects or stack overflow questions. These afford ready datasets to mea-

sure the standardization pressure of programming language use in the software engineering

community.

0.2. Properties of the exchangeable models

Part of what makes the exchangeable models worth investigating is that some aspects of their

behavior can be determined analytically. Many existing results from population genetics

also have bearing on the exchangeable models, particularly from diffusion theory. Some

results hinge on whether detailed balance holds in the exchangeable models, and a partial

investigation of this question is relegated to the Appendix.

Kimura (1962) adapted the Kolmogorov backward equation to the case of allele frequency

change under zygotic selection and random mating. In the general form of the Kolmogorov
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equation, the fixation probability as a function of initial frequency u(p) is (Kimura, 1962)

u(p) =

∫ p
0 G(x)dx∫ 1
0 G(x)dx

, G(x) = e
−

∫ 2Mδx(x)

Vδx(x)
dx

(3)

where Mδx(x) and Vδx(x) are the mean and variance of the change in allele frequency

per generation starting at allele frequency x. This is based on a continuum (diffusion)

approximation of large population size. These equations can be specialized to arbitrary

frequency-dependence of the marginal fitness of alleles by substitution of the appropriate

Mδx(x) and Vδx(x). For example, in genic selection, Mδx and Vδx take the simple forms

sx(1 − x) and 1
2N x(1 − x) respectively. In the exchangeable models, Mδx takes the form

s(x)x(1− x) where now s is viewed as a function of x.

Diffusion theory provides a way to study the equilibrium number of segregating sites (that

is, polymorphic sites, existing in more than one variant or allele). Ewens (2004) furnishes

an explanation of the long-term average frequency of an allele when two alleles can mutate

to each other at a single site, using the same parameterization of Equation 3 as Kimura

(1962). Watterson (1975) provides a more general result for the distribution of number of

alleles present in a sample under neutral dynamics of infinitely many alleles. For example,

the number of alleles present in the population in this model is

4Neµ

[
1 +

∫ 1

1/2N
x−1(1− x)4Neµ−1 dx

]
. (4)

Wright (1969) and Ewens et al. (1969) also derive equivalent expressions for this mean.

Frequency distributions of types have been of interest in population genetics. The Ewens

sampling formula associates a probability with every partition of a sample (Ewens, 2004)

from a neutral Wright-Fisher process at equilibrium, also called the multivariate Ewens

distribution (Johnson et al., 1997) at stationarity:

Pr(A1, ..., AN = a1, ..., aN ) =
N !θ

∑N
i ai∏N

i i
aiai!(θ + i− 1)

(5)
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Figure 1: Rank abundance distribution of the nth most abundant type in an infinite-alleles
Moran process with a population size of 100 and mutation to a new type a rate of once
per 99 births (ie θ ≈ 1), by simulation after 100,000,000 births. The mean frequency of the
most abundant type (X(1)) is 0.624 according to Watterson and Guess (1977) and 0.628 in
our data. Griffiths (1979) provide an analytical expression for the expected frequency of
the ith most frequent type, and enumerate the mean frequency of the three most abundant
types as ((X(1)), (X(2)), (X(3))) = (0.624, 0.210, 0.088). Our data yields (0.628 0.210 0.088).
Griffiths (1979) likewise enumerate the variance in frequency of the three most abundant
types as ((X(1)), (X(2)), (X(3))) = (0.037, 0.012, 0.005). In the above data, this is (0.037,
0.013, 0.005).

Ewens develops the sampling formula recursively using the probability of common ancestry

within a sample, under the assumption that the sample size n is much less than the popula-

tion size N (Ewens, 2004, p.114). Ewens expresses the formula as a probability distribution

on a vector Aj∈{1...n},
∑

j jAj = n, of the number of allelic types present j times in the

sample. Furthermore, Ewens quotes (due to Trajstman 1974), that the same formula for

the probability is exactly true for the full population in the Moran process (p. 118).

In the exchangeable models, the distribution of states in the Markov process does not

converge to an equilibrial value, as new types are constantly entering and leaving the pop-

ulation. Nonetheless, rank-abundance distributions do converge, since ranks are de-labled

configurations. Empirical distributions of the neutral frequency distributions can be seen
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Figure 2: Rank abundance distribution with a population size of 100 and mutation to a
new type a rate of 0.99*5 per 99 births ≈ 5 per haplotype per generation. Griffiths (1979)
enumerate the mean abudance of the three most abundant types as ((X(1)), (X(2)), (X(3)))
= (0.34, 0.14, 0.04). Our data yields (0.307 0.175 0.119)

in Figs. 1 and 2. In determining whether the most frequent allele in a neutral population

is also the oldest, Watterson and Guess (1977) determined the equilibrium frequency of the

most frequent allele in an infinite-allele diffusion model. Griffiths (1979) extended this result

to the expectation and variance of the frequency (at equilibrium) of the rth most frequent

allele. Griffiths also includes allele frequencies in symmetric overdominance. The joint prob-

abilities of delabeled configurations X(i) are given (albeit in a somewhat convoluted way)

in the Moran process by Eq. 5.

We would like the distribution of the ith most abundant type at equilibrium, and we have

the distribution of counts of all types. There is a 1-to-1 map between the vector A and

any other representation of the partitions of n, though the map itself may be unwieldy.

For example, we would like to order the abundance of alleles present in the population

x1, x2, ..., xn, such that x1 ≥ x2 ≥ ... ≥ xn. Transforming from the ordered abundance

representation to the A representation is straightforward: aj(x) =
∑n

i=1 δj,xi . This allows

us to write the probability of observing x as Pr(A = a(x)). The inverse map x(a) exists,
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but is difficult to write down algebraically. However, a recusive algorithm is:

x(a) = u(0, 1, a, 1, 0)

where 0i = 0, i ∈ {1, ..., N}, and

u(x, i, a,N, 0) = x,

u(x, i, a, j, c) =


u({x : xi = j}, i+ 1, a, j, c− 1) c > 0

u(x, i, a, j + 1, aN−j−1) c = 0

.

We know that Pr(X1 = x1) =
∑

x2+x3+...+xN=N−x1 Pr(X1, ..., XN = x1, ...xN ), where the

sum is over p(N − x1) terms (here, p(n) counts the partitions of the integer n). The

inner probability is given by Eq. 5 composed with the function a(x) which transforms

representations as described above. The existence of the mappings suggests that computing

the distribution of the ith most abundant type is possible. Naive approaches by summing

over the partitions are computationally intractable, but analytic reductions of Eq. 5 across

subsets of the summand may simplify the computation. This may be an avenue for further

progress.

It is interesting that in mutation-dominated regimes, the rank-abundance distribution fol-

lows a power law, as seen in Fig. 3. Bentley et al. (2004) measure power-law exponents

in the rank-abundance distributions of cultural types (names, pottery motifs, patent cita-

tions) to infer the relative mutation rates (Nµ), citing the Kimura neutral diffusion model.

This seems to rely on an empirical statement that the distribution of baby names follows

a power law coupled with the assumption that the distribution of baby names follows a

diffusion process (Hahn and Bentley, 2003). In our data, the same empirical result seems to

be true when θ � 1, which reproduces the results of Bentley et al. (2004, Fig 2.). However,

deviations have also been measured (O’Dwyer and Kandler, 2017). Mesoudi and Lycett

(2009) take the basic approach of Bentley et al. (2004) and extend the simulations allowing
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Figure 3: Data from Fig 2 log-transformed to show the approximate power-law distribution
of expected frequencies.

copying processes that prefer or reject frequent or rare types. This affects the power-law

distribution, which is not scale-free in general unless the allele dynamics are neutral with

respect to frequency. This is a strange kind of process in which not frequency but rank

matters to fitness—in the category of exchangeable but not strictly frequency-dependent

process that I have excluded from my consideration. Connecting these observed power laws

to the Ewens sampling formula (Eq. 5) is a goal of future research.

We have thusfar discussed models akin to the Wright-Fisher process, but other processes

have been studied. Consider a pure-birth process, in which a pool of individuals exists, and

each individual carries a trait. New individuals join the pool, and choose traints depending

on the frequency of traints within the pool. As a motivating example, consider books.

Books written in any of l languages are added to the library L(t) with t books. We sort

the library so that there are L(t)1 books in the most common language, L(t)2 in the second

most common language, etc. Clearly
∑l

i L(t)i = t. We add a book in an existing language i

with probability f(L(t)i/t)/Z, and a new language with probability u. We could ask many

reasonable questions. How does the long-term distribution of languages L(t)/t in the library

depend on a frequency-dependent growth rate? Does the frequency distribution of languages
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converge to a particular value or does it fluctuate endlessly as a diffusion process? What

is the distribution of end states? We could also ammend the pure-birth model to suppose

that books are also lost from the library at random (irrespective of their language), or also

allow the death rate of books to depend on their language. Would this affect the outcome?

Karlin and McGregor (1967) and Watterson (1974) study a continuous time process in

which new ‘mutant’ indivisuals appear at a rate ν (regardless of the current population

size), and birth and death of a type already present in the population both occur at a rate λ

per individual of that type. The population size in this model eventually increases without

bound due to the flux of new mutants. In this case, the distribution of Aj , the number of

types represented by j individuals is known at any given time, and moreover, the Aj are in-

dependent. Watterson (1974) shows that this model has the same stationary distribution as

a Moran model (described below) conditional on a certain population size. The equivalence

between these two models makes some calculations easier, as in one model the population

sizes are independent, see eg Griffiths (1979). Thus, the birth-death process bares a strong

resemblence to the Wright-Fisher process in frequency space. This correspondence rational-

izes somewhat a decision in Chapter 3 to model births of individuals within a given year as

a population of names, rather than the total living individuals: The cases share a diffusion

behavior in frequency space.

Spatial extensions are also possible. Likewise Valverde and Solé (2015) employ a lattice

model, in which a programmer can adopt a programming language from adjacent cells on

an L×L grid. Introducing space changes the variance structure of the change in frequencies,

and thus is cannot be accomodated by only tracking a frequency state space. This is why,

in investigating diffusion in frequency space, it is important to check empirically that the

variance structure of the data is that of the Wright-Fisher diffusion (where the diffusion

rate at frequecy x is proportional to x(1 − x)). This variance structure is evident in for

example Fig. 10 of Chapter 2.
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CHAPTER 1 : Positive Frequency-Dependent Fitness

Text from this chapter has been published in Theoretical Population Biology (Newberry

et al., 2016).

Underdominant mutations have fixed between divergent species, yet classical models suggest

that rare underdominant alleles are purged quickly except in small or subdivided popula-

tions. We predict that underdominant alleles that also influence mate choice, such as those

affecting coloration patterns visible to mates and predators alike, can fix more readily.

We analyze a mechanistic model of positive assortative mating in which individuals have

n chances to sample compatible mates. This one-parameter model naturally spans ran-

dom mating (n = 1) and complete assortment (n → ∞), yet it produces sexual selection

whose strength depends non-monotonically on n. This sexual selection interacts with vi-

ability selection to either inhibit or facilitate fixation. As mating opportunities increase,

underdominant alleles fix as frequently as neutral mutations, even though sexual selection

and underdominance independently each suppress rare alleles. This mechanism allows un-

derdominant alleles to fix in large populations and illustrates how life history can affect

evolutionary change.

1.1. Introduction

An allele is underdominant if it experiences reduced fitness as a heterozygote compared to

either homozygote. Underdominance reduces diversity and has been studied as a mechanism

for population differentiation and speciation (Wright, 1941; Lande, 1979). Underdominance

typically occurs when the two homologous gene copies at a diploid locus must act in concert

with one another. One classical example is a chromosomal alteration that disrupts meiosis

in heterozygotes (Lande, 1979). Although much research on the fate of underdominant

alleles has focused on chromosomal rearrangements, underdominant alleles arise and have

evolutionary consequences in many other contexts. Underdominance has been observed at

loci that regulate gene expression (Smith et al., 2011; Stewart et al., 2013), and engineered
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underdominant transgenes play an important role in strategies to control insect disease

vectors (Sinkins and Gould, 2006; Reeves et al., 2014). Underdominance has also been

observed at loci controlling quantitative traits, such as body size (Kenney-Hunt et al., 2006),

that are known to influence mate choice (Crespi, 1989). Likewise, heterozygote deficits in

hybrid zones have been observed at the loci encoding color patterning in Heliconius butterfly

species, where coloration has been implicated both in assortative mating (Jiggins et al., 1996;

Arias et al., 2008) and also in viability via the avoidance of predators (Mallet and Barton,

1989; Kapan, 2001; Langham and Benkman, 2004). Motivated by these examples, we focus

here on the fate of alleles that simultaneously influence mate choice and viability. We ask

whether assortative mating will facilitate or impede the fixation of an underdominant allele.

In general, the fixation of an underdominant allele is exceedingly rare, at least in theory.

A classical approximation due to Lande (1979) for the probability of fixation u of a novel

underdominant allele with heterozygote disadvantage s in a well-mixed population of size

N is:

u ≈
(

1

N

)
e−Nes

√
Nes

π
. (1.1)

This fixation probability decreases exponentially with the effective population size, Ne. Un-

der this analysis fixation through drift of a novel underdominant allele is possible only when

the effective population size is extremely small—on the order of tens or hundreds of indi-

viduals. Nonetheless, empirical observations provide strong evidence that underdominant

alleles have indeed fixed in populations.

Several possible resolutions to this paradox have been proposed. One common solution is

based on Wright’s shifting balance theory (Wright, 1931). According to Eq. 1.1, under-

dominant alleles may fix in extremely small populations, so that fixation across a species

as a whole might occur through successive fixation in small, mostly-isolated subpopulations

(Wright, 1941; Lande, 1979; Slatkin, 1981; Barton and Rouhani, 1991; Whitlock, 2003; Al-

trock et al., 2011). However, for this process to occur effectively it is typically necessary to

include extinction and recolonization of demes (Lande, 1979; Michalakis and Olivieri, 1993;
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Roze and Rousset, 2003). Other theoretically possible explanations (Hedrick, 1981) include

meiotic drive and partial selfing (Charlesworth, 1992). Other authors have investigated

linkage to locally adaptive alleles (Navarro and Barton, 2003a; Kirkpatrick and Barton,

2006).

Here we consider mate choice as a mechanism to explain the fixation of underdominant al-

leles at loci that influence both mate choice and viability. Phenotypes that serve as mating

cues are often also subject to surveillance by predators, where rarity is typically detrimental

to survivorship. In the context of coloration patterns in the Heliconia, for example, rare phe-

notypes often both experience increased predation and also determine assortment (Mallet

and Barton, 1989; Kapan, 2001; Langham and Benkman, 2004; Jiggins et al., 1996; Arias

et al., 2008). Likewise, in vertebrates ranging from cichlids (Sefc et al., 2014; Anderson

et al., 2015) to finches (Blount, 2004; Blount et al., 2003), carotenoid coloration phenotypes

are well known to influence mate choice and viability alike.

A broad literature has successfully addressed questions about diversity of mating systems

in nature (Andersson, 1994; Andersson and Simmons, 2006; Clutton-Brock and McAuliffe,

2009), their evolutionary maintenance and optimality (Lande, 1981; Lande and Schemske,

1985; Real, 1990; Goodwillie et al., 2005; Kokko et al., 2006; Jones and Ratterman, 2009;

Wiegmann et al., 2010), and their consequence for allele frequency change (e.g. inbreed-

ing depression (Charlesworth, 1992; Nagylaki, 1992; Whitlock, 2000)). While there are

many analytical studies on the effects of mating systems on allele dynamics, they tend to

provide either a deterministic treatment under a specific model of mate choice (Karlin,

1978; O’Donald, 1980; Kirkpatrick, 1982; Seger, 1985; Otto et al., 2008), or a full stochastic

treatment but only for mating systems that are essentially equivalent to a fixed population

structure (i.e. a constant inbreeding coefficient, F (Caballero and Hill, 1992; Damgaard,

2000; Roze and Rousset, 2003; Glémin, 2012)).

Rather than stipulate a fixed population structure or a constant probability of selfing, we

will provide a stochastic analysis of a mechanistic model of assortative mating. The model
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is defined in terms of the absolute number of individuals, n, that an organism can survey

before eventually choosing a mate. This one-parameter model of positive assortative mating

coincides with classical partial self-fertilization in two limiting cases. For n = 1 the model

corresponds to random mating, whereas as n→∞ it corresponds to complete assortment.

Although the fixation probability of a new mutation under partial selfing smoothly interpo-

lates between these two extreme cases (Charlesworth, 1992), we will show that the fixation

probability in our model has a non-monotonic dependence on the life-history parameter, n.

Increasing the number of mating opportunities beyond n = 1 initially inhibits the fixation of

underdominant alleles, but increasing n yet further eventually facilitates fixation, allowing

rates approaching that of neutral substitutions. These results are surprising because the

mate choice model induces a form of positive frequency-dependent sexual selection that, in

the absence of viability selection, always inhibits the fixation of rare alleles. We will explain

these results in terms of the geometry of a slow manifold that arises under preferential

mating, analogous to the Hardy-Weinberg equilibrium for random mating, and we discuss

implications for the evolution of underdominant alleles in nature.

1.2. A mechanistic model of mate choice

Models of mate choice, assortative mating, and sexual selection have been extensively stud-

ied and characterized (Gavrilets, 2004). In partial self-fertilization or mixed mating models,

individuals mate with themselves with a fixed probability and the mating system does not

alter allele frequencies (Haldane, 1924). In partial assortative or preferential mating mod-

els, parents prefer to mate with their own genotype, or with particular other genotypes,

and the mating system itself can alter allele frequencies by sexual selection. Such mod-

els are typically formulated (Karlin, 1978) by specifying, exogenously, the chance that one

genotype will mate with another genotype, which allows mating with rare types according

to preference regardless of the frequency of the rare type. This formulation implies that

individuals are able to census all other individuals in the entire population in the decision

to mate—which is unrealistic for many biological populations. Even some models that in-
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corporate a search cost (Otto et al., 2008) still have the property that the cost of finding

vanishingly rare types is fixed, regardless of their frequency.

Here we study a one-locus, two-allele model of hermaphroditic diploid individuals in which

parents prefer to mate with their own genotype. This models situations where each geno-

type has a distinct, visible phenotype subject to assortative mating, and viability selection

disfavors the heterozygous phenotype. Over the course of successive discrete generations we

track the frequencies of all three diploid genotypes, xi for i ∈ {aa, aA,AA}, in a population

of constant size N . A parent can mate with any individual from a pool of n prospective

mates, drawn uniformly with replacement from the population. If there is a mate of the

parent’s own genotype among these n prospective mates, then the parent chooses that mate;

otherwise, the parent chooses uniformly at random from the pool of n prospective mates.

The mating always produces one offspring. This model is equivalently described as parents

having n chances to find a compatible mate by sampling randomly from the population.

Parents sample mates from the population up to n times, mating immediately with any

individual of their own genotype, or ultimately accepting any genotype on their nth chance.

Because all parents choose among n potential partners, we call this the n-choice model.

Several similar models, proposed by O’Donald (1980) and Janetos (1980), have previously

been analyzed in a deterministic setting (O’Donald, 1980; Seger, 1985).

The n-choice model is a simple, mechanistic implementation of positive assortative mating

that accounts for the fact that in reality rare genotypes are less likely to find preferred

mates. Importantly, the model does not rely on an intrinsic capacity for selfing. In other

words, there is no fixed chance that an individual will reproduce with its own genotype

regardless of the frequency of that genotype. Rather, individuals census a limited number of

possible mates from the population with replacement. While this sampling scheme includes

a small probability that an individual will ‘encounter’ and mate with itself, we demonstrate

robustness of the results to this and other biological assumptions in the Discussion section.

The outcomes of mating are dependent on all genotype frequencies, and so we must tabulate
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the probability of each mating (Nagylaki, 1992). The n-choice model does not explicitly dis-

tinguish between sexes, as with hermaphroditic or monoecious populations. Nevertheless,

we may consider the mate-choosing parent in any pairing as the “female“ or macrogamete-

donor parent. According to the model, the probability that a female (i.e. mate-choosing)

parent with diploid genotype i finds a mate of her own genotype is (1 − (1 − xi)n). Oth-

erwise, the parent reproduces with a different genotype with probability proportional to

that genotype’s frequency in the population. The probability distribution of mating types

G conditional on the female’s genotype P is thus

Pr(G = j × i|P = i) =


1− (1− xi)n, i = j

xj(1− xi)n−1, i 6= j

, for i, j ∈ {aa, aA,AA}.

The genotypic distribution of offspring from a given mating pair is Mendelian. We can there-

fore compute the distribution of zygotic genotypes Z after mate choice and reproduction

by conditioning on the distribution of matings:

Pr(Z = k) =
∑
i

∑
j

Pr(Z = k|G = i× j) Pr(G = i× j|P = i)xi (1.2)

where Pr(Z = k|G = i× j) denote the standard Mendelian probabilities, and i, j, k range

over the three diploid genotypes aa, aA, and AA.

Following mate choice and production of a large zygotic pool we assume that viability selec-

tion modifies the frequencies of zygotic genotypes. The subsequent generation of reproduc-

tive adults is then drawn from the post-selection zygotic pool. Assuming the zygote pool

is very large relative to the population size, the genotype of each surviving sampled adult

in the next generation is drawn from the trinomial, fitness-weighted zygote distribution.
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Genotype i is drawn with probability

Pr(Z = i)wi∑
j Pr(Z = j)wj

(1.3)

We express the fitness scheme for underdominant alleles as waa = wAA = 1, and waA = 1−s.

1.3. Analysis

We explore the influence of mate choice on the fixation rate of alleles by analyzing the

n-choice assortative mating model in finite populations.

In a finite population of constant size N adults, the frequencies of the adult genotypes

of the next generation are drawn from the trinomial distribution with the probability of

genotype i given by Eq. 1.3. We denote the outcome of this trinomial draw, for each

genotype i ∈ {aa, aA,AA}, by x′i. In other words, the values x′i denote the frequencies of

the three genotypes in the next generation of adults, given the frequencies xi in the current

generation.

The expected frequency of genotype i among adults in the next generation is given simply by

the frequency of that genotype in the post-selection zygotes, that is by Eq. 1.3 above, which

we henceforth denote E(x′i). Under the multinomial sampling assumption the variance in

the frequency of genotype i among the adult individuals in the next generation is simply

E(x′i)(1− E(x′i))/N , and the covariance between different genotypes is −E(x′i) E(x′j)/N .

Genotype frequencies exist on the simplex xaa+xaA+xAA = 1, xi > 0. We can thus remove

one variable from the model by tracking genotype frequencies in a two-dimensional basis.

We will track the frequency of the a allele among adults, denoted p = xaa + (1/2)xaA, and

one-half the frequency of heterozygous adults, denoted h = xaA/2. One-half the frequency

of heterozygotes may be thought of as the frequency of the a allele present in heterozygotes,

and so it has the same units (allele copy frequency) as p. The coordinate h is preferable to

other measures of heterozygosity, such as the quantity xaA/(p(1− p)), because it does not
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depend on allele frequency p.

We can express the expected allele frequency E(p′) and the expected heterozygous allele

frequency E(h′) in the next generation in terms of the current frequencies p and h. To

do so, we first write the mean allele and heterozygote frequencies among zygotes prior to

selection as π and η in terms of p, q = 1− p and h by expanding Eq. 1.2:

π = h(1− (1− 2h)n) + 2h(1− 2h)n−1
(
p

2
− h+

1

4

)
(1.4a)

+
1

2
(q − h) (p− h)

(
(p+ h)n−1+ (q + h)n−1

)
+ 2h

(
3

4
(p− h) (q + h)n−1+

1

4
(q − h) (p+ h)n−1

)
+ (p− h) (1− (q + h)n)

η =
h

2
+
h

2

(
(p− h) (q + h)n−1 + (q − h) (p+ h)n−1

)
(1.4b)

+
1

2
(q − h) (p− h)

(
(p+ h)n−1 + (q + h)n−1

)

We then use Eq. 1.3 to obtain expressions for the frequencies of post-selection zygotes in

the (p, h) basis, which are the expected frequencies of adults in the next generation:

E(p′) =
π − sη
1− 2sη

, E(h′) =
(1− s)η
1− 2sη

. (1.5)

Finally, the variance in adult allele frequencies in the next generation can then be written

as
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Var(p′) =

(
1

N

)((
E(p′)− E(h′)

) (
E(q′) + E(h′)

)
(1.6)

+
1

2
E(h′)(1− 2 E(h′)) + 2 E(h′)

(
E(p′)− E(h′)

))
Var(h′) = E(h′)(1− 2 E(h′))/2N

Cov(p′, h′) = E(h′)(1− 2 E(p′))/2N.

Here we see that Cov(p′, h′) is positive only if E(p′) < 1/2. This expectation and variance

will be sufficient to develop a diffusion approximation to the model, along the lines of Kimura

(1964).

1.3.1. Behavior in two classical limits

When the sampled pool of prospective mates has only one individual, n = 1, or when the

pool becomes much larger than the population itself, n → ∞, the n-choice mating model

corresponds precisely to two classical population models: random mating and complete

inbreeding, respectively.

When only one prospective mate is allowed per parent, n = 1, the model reduces to the

classical model of an underdominant allele in a randomly mating population. Eqs. 1.4 sim-

plify to π = p and η = p(1 − p). Thus the genotype frequencies among zygotes are at

Hardy-Weinberg equilibrium, and viability selection proceeds as in ordinary underdomi-

nance with E(p′) = (p− sp(1− p))/(1− 2sp(1− p)). When s = 0, the dynamics are neutral

on 2N haplotypes. When there is selection against heterozygotes, s > 0, then the fixation

probability of a novel allele agrees with Lande’s classic expression, given by equation 1.1.

On the other hand, when the number of mating opportunities becomes very large, n→∞,

preferred genotypes are always available for mating, and the model is equivalent to complete

assortment. As we take n to infinity in Eq. 1.4, the frequency of heterozygotes among zygotes
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approaches η = h/2. That is, the frequency of heterozygotes is reduced by half at each

generation. The population thus rapidly approaches heterozygote frequency zero. Setting

h = 0 in Eq. 1.4 and taking n to infinity gives π = p. As selection acts only on heterozygotes,

E(p′) = p and the dynamics are neutral. The variance of p′ is E(p′)(1 − E(p′))/N . This

variance is the same as that for a population of N haplotypes, rather than the 2N actually

present in the population. Because of complete assortment, each diploid individual behaves

roughly as a single haplotype. In this limit of complete assortment, the dynamics of genotype

frequencies are always neutral, regardless of s, and the fixation probability of a novel allele

is always 1/2N .

When the number of mating opportunities is intermediate between these two extremes,

namely 1 < n <∞, the dynamics of the n-choice model are neither neutral nor the same as

the dynamics of classical underdominance. Importantly, these dynamics may change allele

frequencies dramatically due to a mix of sexual selection and underdominant selection. Ana-

lyzing these two-dimensional dynamics requires the development of an appropriate diffusion

approximation.

1.3.2. Diffusion approximation

We adopt the techniques used to analyze the fixation probability of an underdominant

allele under random mating to derive a more general expression for the n-choice mating

model. Under the diffusion limit of Kimura (1964), the probability density φ(p, h, τ) of

observing allele frequencies p and h evolves in time according to the standard Kolmogorov

forward equation (Gardiner, 2009), which depends on the instantaneous mean and variance-

covariance matrix of the changes in allele frequencies.

To derive a diffusion approximation we start with the Kolmogorov forward equation in two

dimensions (Gardiner 2009),

∂φ

∂t
=

1

2

(
∂2Vppφ

∂p2
+ 2

∂2Vphφ

∂p∂h
+
∂2Vhhφ

∂h2

)
−
(
∂Mpφ

∂p
+
∂Mhφ

∂h

)
. (1.7)
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Here, Mi and Vij represent the instantaneous mean and variance of allele frequency change.

Assuming only a fraction f of the population undergo mating according to Eq. 1.4, the

expected frequencies in the next generation, p′ and h′, are given by replacing π and η with

fπ + (1− f)p and fη + (1− f)h in Eq. 1.5:

E(p′) =
(fπ + (1− f)p)− s(fη + (1− f)h)

1− 2s(fη + (1− f)h)

E(h′) =
(1− s)(fη + (1− f)h)

1− 2s(fη + (1− f)h)

The mean change per generation is then Mp = E(p′) − p and Mh = E(h′) − h, which are

rational functions in p and h of height 2n. We take the limit N → ∞, while holding both

Nf = ζ and Ns = γ constant, so that f and s are small parameters. Thus only first-order

terms survive in the Taylor expansion of Mp and Mh around (f, s) = (0, 0) even when Ns

and Nf are large. We are left with

Mp = f(π − p) + sh

(
p− 1

2

)
, Mh = f(η − h)− sh(1− h). (1.8)

As f and s approach zero in this limit, so does the mean change in allele frequency, and

E(p′) → p and E(h′) → h. Thus the variance-covariance matrix of allele frequency change

approaches the multinomial variance-covariance matrix of sampling from the current allele

frequencies. Thus the Vij are given simply by Eq. 1.6: Vpp(p, h) = Var(p), Vhh(p, h) =

Var(h), and Vph(p, h) = Cov(p, h), where E(p) = p.

We rescale time in Eq. 1.7, taking τ = t/N :

∂φ

∂τ
=
N

2

(
∂2Vppφ

∂p2
+ 2

∂2Vphφ

∂p∂h
+
∂2Vhhφ

∂h2

)
−N

(
∂Mpφ

∂p
+
∂Mhφ

∂h

)
. (1.9)
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Writing Eq. 1.9 in terms of π, p, η and h and combining factors Nf = ζ and Ns = γ gives

Eq. 1.10.

We compute the integral in Eq. 1.13 and the manifold of equilibrium heterozygosity (Eq. 1.11)

numerically using Mathematica (Wolfram Research, Inc, Mathematica, Version 10.0.2.0

(2015), Champaign, IL, USA). We also wrote software in OCaml using the GNU Scientific

Library to estimate fixation probabilities of the discrete model by explicit Monte Carlo

simulation. The software is open source and available on GitHub (https://github.com/

mnewberry/nchoice).

We introduced the parameter f , describing the proportion of the population that undergoes

mate choice as opposed to clonal reproduction. Although this parameter was introduced for

technical reasons, in order to produce a well-defined diffusion limit, even in finite models

Nf has a natural, physical interpretation as the rate of mating: the average number of

matings per generation, or the relative strength in altering gene frequencies by the mating

system versus by genetic drift. One might naively assume that f is always unity in natural

populations, and yet many plants such as some grasses and aspen reproduce sexually on

a background of clonal reproduction. Genetic drift due to accidents of sampling can be

interpreted at many levels, including sampling induced by the outcomes of mating; or

stochastically induced by persistence to the next generation through longevity.

We find the instantaneous mean and variance of allele frequency changes, Mi and Vij , by

rescaling the discrete model by the population size, N . To arrive at a non-trivial diffusion

limit we adopt a slight variant of the model above, in which only a fraction f of the

population undergoes mate choice each generation, while the remainder of the population is

sampled according to strict clonal reproduction. We take the limit as N approaches infinity,

scaling f and s such that Nf = ζ and Ns = γ are held constant. The diffusion equation

becomes
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∂φ

∂τ
=
∂2

∂p2

(
(p− h)(q + h)+

h(1− 2h)

2
+ 2h(p− h)

)
φ

2
(1.10)

+
∂2

∂p∂h

h(1− 2p)

2
φ+

∂2

∂h2
h(1− 2h)

2

φ

2

− ζ
(
∂

∂p
(π − p)φ+

∂

∂h
(η − h)φ

)
− γ
(
∂

∂p
h

(
p− 1

2

)
φ− ∂

∂h
h(1− h)φ

)

In general, this diffusion in allele-frequency space is two-dimensional and well known to be

computationally formidable (Epstein and Mazzeo, 2013). In the next section we introduce

a one-dimensional approximation that makes the diffusion tractable.

1.3.3. Diffusion along the slow manifold

The dynamics in two-dimensional diffusions sometimes approach and remain in the vicinity

of a one-dimensional curve, until absorption into a boundary. This behavior can be inter-

preted as a separation of timescales (Parsons and Rogers, 2015): there is fast approach to a

lower-dimensional manifold, and then slow diffusion along the “slow manifold”. In the case

of random mating for a single-locus diploid model, for example, Kimura’s one-dimensional

diffusion works because genotype frequencies are assumed to be at Hardy-Weinberg equi-

librium at all times. The quasi-linkage equilibrium approximation in multilocus models

(Kimura, 1965) is another example. For monoecious random mating, approach to the man-

ifold of Hardy-Weinberg equilibrium takes only a single generation, which is instantaneous

in the diffusion timescale. In other mating systems, such as random mating with separate

sexes, equilibrium is reached after two generations of mating, or the slow manifold may be

approached geometrically. Some dynamics, such as clonal reproduction, do not approach

any lower-dimensional sub-manifold whatsoever, and so they exhibit truly two-dimensional

diffusions.

Principled approaches to determining the existence and form of the slow manifold are com-
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Figure 4: The dynamics of genotype frequencies in the n-choice model of assortative mating.
Each ternary plot corresponds to a different set of parameter values for the number of mating
opportunities, n, the per-generation rate of participation in the mating system, Nf , and
the strength of viability selection against heterozygotes, Ns. Arrows indicate the expected
change in genotype frequencies in one generation. On each plot, dots represent the genotype
frequencies after 30 generations of stochastic simulation in 500 replicate populations of
size N = 1, 000 each initialized at the center (13aa, 1

3aA, 1
3AA). The dynamics quickly

converge towards a one-dimensional submanifold within the frequency space. Dashed lines
show the analytically-derived position of this one-dimensional manifold, which corresponds
to the Hardy-Weinberg equilibrium in the case of random mating (n = 1). Increasing
the strength of selection, Ns, moves the manifold towards zero heterozygosity, while the
effect of participation in the mating system, Nf , on the shape of the manifold depends on
the number of mating opportunities, n. In most regimes depicted, information about the
initial height (heterozygosity) of the population is lost after 30 generations, as the genotype
frequencies have converged to the slow manifold.

plex (Parsons and Rogers, 2015). Nonetheless, the dynamics of the n-choice mating model

clearly exhibit timescale separation when viability selection or participation in the mating

system are strong (Ns � 10 or Nf � 10), which can be seen in Fig. 4. When Nf and

Ns are both weak, convergence to the manifold is slower than diffusion in genotype space

due to clonal reproduction. However, when Ns and Nf are zero, the diffusion equation

(1.10) correspond to classical clonal diffusion. In practice, we find the quality of the ap-

proximation good whenever Nf > Ns, at any value of n. We analyze the diffusion along

this slow manifold, as opposed to other techniques, because of its simplicity and analogy to

Hardy-Weinberg equilibrium.
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To determine the manifold of equilibrium genotypic frequencies in the n-choice model we

use the simple principle that frequencies at equilibrium should stay at equilibrium. Mathe-

matically, this implies the condition that the infinitesimal mean change in frequencies (p, h)

must always be tangent to the slow manifold. Thus, the slow manifold can be defined as a

parametric curve (p(l), h(l)) such that

dp(l)

dl
= Mp(p(l), h(l)),

dh(l)

dl
= Mh(p(l), h(l)). (1.11)

This differential equation has an infinite family of solutions. Fortunately there are addi-

tional criteria for equilibrium genotypic frequencies. Since rare alleles are always present as

heterozygotes, dp(l)/dh(l) must approach 1 as l approaches infinity. This criterion in terms

of long times is difficult to use in practice, and so we use the symmetry of the dynamics:

when p = 1/2 the slow manifold is horizontal, meaning E(h′) = h. We use this symme-

try criterion to initialize the parametric curve close to p = 1/2. This particular solution

to the differential equation above provides a function h̃(p), which defines the manifold of

equilibrium heterozygosity as a function of allele frequency.

If we assume that the two-dimensional dynamics in (p, h) are restricted to the slow manifold,

defined by the curve (p, h̃(p)), then we can treat the dynamics as a one-dimensional diffusion

along this manifold satisfying

∂φ

∂t
=

1

2

∂2

∂p2
(Vppφ)− ∂

∂p
(Mpφ), (1.12)

by substituting h̃(p) for h in Eq. 1.4. Although Mp and Vpp depend on h, we compute h and

η from p by substituting h̃(p) for h in Eq. 1.4, and we view Mp and Vpp as functions of p

only. Following Kimura (1964), the solution to a boundary value problem gives the fixation

probability u(p) of a mutant allele initiated at frequency p with solution
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u(p) =

∫ p

0
dxψ(x)

/∫ 1

0
dxψ(x) , ψ(p) = e−

∫ p
0 dx [2Mp(x)/Vpp(x)]. (1.13)

This integral can be computed numerically, giving a good approximation to the fixation

probability for arbitrary n.

1.4. Results

1.4.1. Sexual selection in the n-choice mating model

First we consider the fixation probability of an allele in the absence of viability selection.

In the limits of random mating and complete assortment, n = 1 and n → ∞ respectively,

the fixation probabilities are equal to the neutral fixation probability. For an intermediate

number of mating opportunities, n, however, the mating system itself induces strong sexual

selection against rare alleles (cf. Fig. 4), which depresses the fixation probability of novel

alleles much below the neutral probability (Fig. 5). And so the resulting fixation probability

has a complex, non-monotonic dependence on the number of mates that a parent can survey:

increasing n beyond one reduces the fixation probability below the neutral value 1/2N , but

increasing n yet further restores the fixation probability until it recovers to the neutral value

1/2N in the limit n→∞.

The strength of sexual selection against rare alleles depends on both the degree of partic-

ipation in the mating system, Nf , and the number of mating opportunities, n. At high

mating rates (Nf ≥ 100), fixation probabilities at intermediate values of n are so low as to

be impractical to compute through Monte-Carlo simulation, and they can be known only

through numerical integration of the expression derived from the diffusion approximation,

Eq. 1.13. In the regime where Monte-Carlo methods are feasible, the diffusion approxima-

tion along the slow manifold is in close correspondence with Monte Carlo simulations across

a broad range of values of Nf , despite many potential sources of error in the approximation
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Figure 5: Sexual selection induced by the n-choice model of assortative mating. The plot
shows the fixation probability of a new mutation (one initial heterozygote) in the absence of
viability selection, as a function of the number of mating opportunities, n, and for different
rates of participation in the mating system, Nf . Solid lines indicate fixation probabilities
computed by the diffusion approximation along the slow manifold. Bands and error bars
indicate the 95% confidence interval on the mean fixation rate observed in up to 100,000,000
simulated populations of size N = 1, 000. Overlapping error bars are dodged for clarity.
Error bars with no lower bound indicate no fixations observed in 100,000,000 simulations.
The fixation probability equals the neutral fixation probability for either n = 1 or n→∞.
Otherwise, participation in the mating system induces a complex form of sexual selection
against rare alleles, whose strength depends non-monotonically on n.

(see Fig. 5).

When the number of potential mates n is small but exceeds one, then rare alleles are under-

represented among zygotes relative to their parents, as described by Eq. 1.5. Mendelian

inheritance does not alter allele frequencies, and so it is the action of mate choice itself that

suppresses rare alleles: parents with common genotypes are likely to find their preferred

mates, but parents with rare genotypes are more likely to settle for a common mate. As n

increases, however, the likelihood of any parent having to settle for a non-preferred mate

becomes vanishingly small, and so the differences in mate availability between genotypes

become less pronounced. When there is no difference in mate availability even the rarest

of parental genotypes can find a mate with their own genotype, and complete assortment

ensues.

In summary, Fig. 5 reveals that a mechanistic model of mate choice with two classical

limits nonetheless produces a complex form of sexual selection whose strength depends

non-monotonically on number of mating opportunities, n.

40



1.4.2. Interaction between sexual selection and underdominant viability selection

What is the fate of novel alleles when we combine the intrinsic effects of n-choice mating

with viability selection against heterozygotes? Does positive assortative mating facilitate

or impede the fixation of an underdominant allele?

The combined effects of viability selection and sexual selection induced by n-choice mating

are shown in Fig. 6. Here we see that when the number of mating opportunities is small but

not one, then preferential mating impedes fixation of an underdominant allele, so that its

fixation probability is even lower than the classical prediction of Lande for random mating

(n = 1). For example, allowing just n = 2 opportunities to find a mate with the same

genotype reduces the fixation probability of the underdominant allele astronomically.

Nevertheless, as the number of mating opportunities increases further we find a surprising

result: viability selection against heterozygotes and n-choice assortative mating—two selec-

tive forces that each act against rare alleles—interact paradoxically to increase the fixation

probability of new mutant alleles. At sufficiently large, finite n, the fixation probability of a

new underdominant allele under n-choice mating exceeds even that under random mating.

For example, when selection is strong as Ns = 10, n-choice mating is beneficial to the rare

underdominant allele provided the number of mating opportunities is a substantial fraction

of the population, e.g. n = 0.2N . The stronger viability selection acts against heterozy-

gotes, the smaller n is required for mate choice to facilitate fixation, relative to random

mating.

This counterintuitive interaction between viability and sexual selection occurs because the

manifold of equilibrium heterozygosity is reduced to h̃(p) ≈ 0, for n large. Thus, there are

few or no heterozygotes in the population on which viability selection can act. When there

are many mating opportunities, a heterozygote parent is likely to find another heterozygote

to mate with, and through Mendelian segregation this mating results in half the frequency

of heterozygous progeny in each successive generation: roughly half of the minor alleles
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Figure 6: The effect of assortative mating on the fate of an underdominant allele, in the
n-choice model (left) compared to the classical model of assortative mating by partial self-
fertilization (right). The plot shows how the fixation probability of a new mutation present
in one initial heterozygote depends on the number of mating opportunities, in the case of n-
choice mating, or on the self-fertilization probability, in classical assortative mating. Vertical
bars indicate the 95% confidence interval on the mean fixation rate observed in 100,000,000
simulated populations of size N = Nf = 1, 000 under no viability selection (Ns = 0), weak
viability selection (Ns = 1), and strong viability selection (Ns = 10). Dashed horizontal
lines indicate the corresponding fixation probabilities of the underdominant allele under
random mating. Fixation probabilities under the two models of assortative mating are
equal either when n = 1 and the selfing probability is zero, or when n → ∞ and the
selfing probability equals one. Under classical assortative mating the fixation probability
interpolates smoothly between these two limits. However, the n-choice model has a complex
effect on fixation probabilities between these two limiting cases, and the probability may
be higher or lower than random mating depending on n. Thus n-choice assortative mating
can either impede or facilitate fixation of an underdominant allele.

present in heterozygotes are transferred to homozygotes at each mating. Thus with a

sufficient number of mating opportunities, the mating system effectively hides hybrids from

the eyes of underdominant selection.

1.5. Discussion

We have studied a mechanistic, one-parameter model of assortative mating that naturally

spans the two classical extremes of random mating and complete assortment. The n-choice

model fulfills the realistic condition that individuals can survey only a limited number of

prospective mates. This simple formulation of mate selection nonetheless induces a complex

form of sexual selection against rare alleles. In some regimes the induced selection is strong
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enough to virtually prevent the fixation of rare alleles. If the locus guiding mate choice

is also subject to underdominant viability selection then, provided the number of mating

opportunities is large, the n-choice mating system can mask the effects of viability selection,

greatly elevating the fixation rate of underdominant alleles in comparison to random mating.

The n-choice mating model provides a qualitatively different resolution to the puzzle of the

observed fixation of underdominant alleles between populations. In a well-mixed popula-

tion the fixation rate of an underdominant mutation decreases rapidly with population size.

Wright’s island model resolves this puzzle by exogenously subdividing the population into

demes, so that fixation depends on the size of the demes rather than the whole population.

For underdominant loci that also influence mate choice, the n-choice model can effectively

decouple the fixation rate from population size without imposing a fixed population struc-

ture. Although both classical models of structured populations or partial selfing and the

n-choice model facilitate fixation of underdominant alleles by suppressing heterozygosity,

the mechanism and consequences of mating structure differ. In structured populations or

partial selfing the inbreeding coefficient is exogenously fixed and it does not depend on allele

frequency, whereas in the n-choice model the mating structure depends on the frequency

of the rare allele so that, in particular, mating still occurs at random in monomorphic

populations.

The precipitous drop in fixation probability of a novel mutant between random mating

and n-choice mating, from n = 1 to n = 2 mating opportunities, is surprising. From the

gestating parent’s perspective, mate choice can only help rare alleles, as carriers of a rare

allele copy have a greater chance of finding their own genotype to mate with and thus a

lower chance of heterozygous offspring. However this gain of female function comes at a cost

to male function. Because common types nearly always find their mates, but rare genotypes

are more likely to settle for a common type, rare males are selected against. The relative

strengths of reduced male fitness, heterozygote viability selection, and increased female

fitness shift as the number of mating opportunities n increases, making preferred mates
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more easily accessible. Female fitness is enhanced through reduction of viability selection

against their offspring, and male fitness is less affected with higher values of n. The exact

crossover point where fixation becomes more likely under n-choice mating than random

mating depends on the strength of viability selection against heterozygotes, Ns, and the

rate of participation in the mating system, Nf . Fixation probabilities that depend non-

monotonically on a physical parameter are unusual, but they have also arisen, for different

reasons, in models of subdivided populations with extinction and recolonization (Michalakis

and Olivieri, 1993; Roze and Rousset, 2003).

The n-choice model can be seen as a (degenerate) case of the ‘best-of-n’ model introduced

to study the efficiency of mate choice mechanisms (Janetos, 1980). Best-of-n models have

been used in deterministic and stochastic settings to study the maintenance and efficiency

of sexual selection (Seger, 1985; Pomiankowski, 1987) and speciation (Higashi et al., 1999;

Arnegard and Kondrashov, 2004; Servedio and Bürger, 2014). Incorporating best-of-n mat-

ing into population-genetic models is known to produce different conclusions than under

fixed relative preference assortative mating (Seger, 1985; Kuijper et al., 2012) for the ef-

ficiency of speciation (Arnegard and Kondrashov, 2004; M’Gonigle and FitzJohn, 2010;

Servedio and Bürger, 2014). Despite these findings, most work on the fate of alleles in

finite populations neglects mechanisms of non-random mate choice. The methods we have

used to study the effects of n-choice mating in finite populations may be extended to other

frequency-dependent mechanisms of mate choice and to other forms of viability selection

and dominance on alleles.

We have described the n-choice model in the context of diploid parents, but minor variants

of the model show similar behavior. For example, an analogous model in which a diploid

parent censuses haploid microgametes, as occurs in flowering plants, has a different fixation

probability in the limit n → ∞ (see Fig. 7), but the same qualitative behavior remains:

n-choice mating still induces sexual selection against rare types that can interact with

underdominant viability selection to either impede or facilitate fixation of new mutants.
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Figure 7: The fixation probability of one initial heterozygote in a model where females
sample microgametes (sperm) attempting to raise homozygous offspring. This model is
analogous to the n-choice model we study, but males are replaced by haplotypes. Females
sample a limited number of gametes (n) and choose the first one that allows them to pro-
duce a homozygote, or, failing that, produce the heterozygote. The plot shows the fixation
probability at different levels of viability selection against heterozygotes (Ns), and different
rates of female participation in the mating system (Nf) on a background of clonal reproduc-
tion. Bands and error bars indicate the 95% confidence interval on the mean fixation rate
in simulations with up to 100,000,000 runs in populations of size N = 1, 000. For Ns = 10
and Nf = 0 (brown) the probabilities are below the range depicted. When females sample
only one gamete (n = 1), the fixation probability is still roughly approximated by Eq. 1.1.
At intermediate n, participation in the mating system induces strong fecundity selection
against rare alleles. At large n, the fixation probability does not approach the neutral rate,
because in order to form an initial mutant homozygote, an initial heterozygote must be
chosen to reproduce, and it must also chose a mutant sperm instead of the more abundant
wild-type. This depresses the fixation probability in the high-n limit relative to neutrality.
Nonetheless, at large n and Ns the mating system can facilitate underdominant fixation.

Alternatively, if we prohibit selfing in the diploid model, n-choice mating is still more

effective than random mating at fixing underdominant alleles at high n and Ns (Fig. 8). For

simplicity, we have dealt only with symmetric underdominance, that is waa = wAA. When

this assumption is relaxed and one homozygote is preferable to the other, underdominance

becomes a valley-crossing problem. Monte Carlo simulations exhibit qualitatively similar

results here as well, with intermediate values of n retarding fixation of new mutations

that are advantageous when homozygous but deleterious in heterozygotes, then facilitating

fixation at sufficiently high n.
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Figure 8: The effect of n-choice assortative mating on the fixation probability of an under-
dominant allele when self-mating is disallowed. The model and parameters are the same as
those used in Figure 6, except that zygotes are drawn from a modified version of Eq. 1.2
which accounts for prohibition on self-mating. Vertical bars indicate the 95% confidence
interval on the mean fixation rate observed in 100,000,000 replicate simulated populations of
size N = Nf = 1, 000 under no viability selection (Ns = 0, brown), weak viability selection
(Ns = 1, blue), and strong viability selection (Ns = 10, green). Dashed horizontal lines
indicate the corresponding fixation probabilities of the underdominant allele under random
mating. The asymptotic fixation probabilities at high n are depressed relative to neutrality
because an initial homozygote must first drift to copy number higher than 1 before its own
genotype is available for mating.

The complex sexual selection induced by the n-choice mating model and its counterintu-

itive interaction with underdominant viability selection remind us that relaxing population-

genetic assumptions can radically alter allele frequency dynamics in surprising ways. The

astounding diversity of life-histories across taxa provides ample motivation to rethink con-

clusions drawn from standard models of randomly-mating diploid populations.
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CHAPTER 2 : Drift and Selection in Culture

Text from this chapter has been published in Nature (Newberry et al., 2017).

Language and genes both evolve by transmission over generations with opportunity for

differential replication of forms (Cavalli-Sforza and Feldman, 1981). The understanding

that gene frequencies change at random by genetic drift, even without natural selection,

was a seminal advance in evolutionary biology (Crow et al., 1970). Likewise, stochastic drift

must also occur in language, due to randomness in how linguistic forms are copied between

speakers (Bentley et al., 2004; Reali and Griffiths, 2010). Here we quantify the strength

of selection relative to stochastic drift in language evolution. We use timeseries derived

from large corpora of annotated texts spanning the 12th to 21st centuries to analyze many

examples of three well-known grammatical changes in English: the regularization of past-

tense verbs (Pinker, 1991; Lieberman et al., 2007; Michel et al., 2011; Reali and Griffiths,

2009; Hooper, 1976), the introduction of periphrastic ‘do’ (Elleg̊ard, 1953), and variation in

verbal negation (Jespersen, 1917). We reject stochastic drift in favor of selection in some

cases but not others. In particular, we infer selection towards the irregular forms of some

past-tense verbs, likely driven by changing frequencies of rhyming patterns over time. We

show that stochastic drift is stronger for rare words, which explains why rare forms are more

prone to replacement than common ones (Hooper, 1976; Lieberman et al., 2007; Pagel et al.,

2007). This work provides a method to test selective theories of language change against a

null model and reveals an underappreciated role for stochasticity in language evolution.

There is a rich history of exchange between linguistics and evolutionary biology, with Au-

gust Schleicher among the earliest defenders of Darwinism (Schleicher, 1869; Darwin, 1888;

Haeckel, 1868). Linguists have uncovered striking regularities in language change by ex-

amining which new forms enter a language and which forms are lost (Schleicher, 1869;

Jespersen, 1917; Hooper, 1976; Bybee and Moder, 1983). Massive digital corpora (Michel

et al., 2011; Davies, 2012) now provide precise frequency timeseries as one form replaces
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another, which enable us to quantify evolutionary forces in language change using methods

drawn from population genetics.

Language change involves competition between alternative linguistic forms, such as“sneaked”

versus “snuck”, whether they differ by sound, morphology, or syntactic structure (Cavalli-

Sforza and Feldman, 1981; Lieberman et al., 2007; Pagel et al., 2007; Labov, 2001; Kroch,

1989; Christiansen et al., 2016). With every utterance, a speaker either invents a new form

or uses one copied from other speakers. Forces that bias a speaker to adopt one form over

another have been documented in rich detail (Croft, 2000). Examples include phonological

analogy (Hooper, 1976; Prasada and Pinker, 1993), over-emphasis (Jespersen, 1917; Dahl,

2001), and a host of other social and cognitive factors (Labov, 2010; Hawkins, 1990). Any

such bias in copying constitutes a form of selection in language evolution (Darwin, 1888).

Explanations for language change, when one linguistic form increases in frequency and even-

tually replaces an alternative form over the course of generations, uniformly invoke selective

mechanisms (Blythe and Croft, 2012; Kroch, 1989). However, the frequencies of alternative

variants can change dramatically even without any bias towards one form or another, due

to stochastic drift: randomness in the set of forms that each speaker happens to encounter

and reproduce (Fig. 9). To determine the importance of directional forces we must first

assess whether an observed language change is consistent with stochasticity in propagation

alone.

Drift is recognized as an important null hypothesis in population genetics (Wright, 1931)

and cultural evolution (Cavalli-Sforza and Feldman, 1981; Kandler and Shennan, 2013).

More recently, linguists have suggested the use of null models for language change. Several

models have been proposed (Bentley et al., 2004), including neutral evolution (Hahn and

Bentley, 2003; Blythe, 2012); and some changes, such as new dialect formation, have been

attributed to stochastic drift (Baxter et al., 2009). Yet methods to analyze drift versus

selection in the vast available linguistic data have not been developed.

Here we systematically quantify drift and selection within well-known grammatical changes
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Figure 9: A null model of language change. Stochastic drift, random fluctuations in the
frequencies of alternative forms, can accumulate to produce substantial change over time.
We use the neutral Wright-Fisher diffusion from population genetics (Crow et al., 1970),
which has also been derived as a model of language learning (Reali and Griffiths, 2010), as
a null model of frequency variation due to stochastic drift. Panel a illustrates an example
time-series of frequency variation produced by this null model. Although the complete
time-series evidently shows random fluctuations, linguistic time-series are typically binned
into time periods. When this time-series is binned (panel b), it produces a characteristic S-
shaped curve that is often accepted as evidence of a directional force favoring one linguistic
variant over others (Blythe and Croft, 2012; Kroch, 1989). This simple example illustrates
the need to test hypotheses against a null model to definitively infer the presence of selective
forces in language change (Blythe, 2012).

in English: the development of the morphological past tense in contemporary American

English (Pinker, 1991; Cuskley et al., 2014) (spilt→spilled); the rise of the periphrastic ‘do’

in Early Modern English (Elleg̊ard, 1953) (Mary ate not John’s pizza → Mary did not eat

John’s pizza); and Jespersen’s Cycle of sentential negation in Middle English (Jespersen,

1917) (Ic ne secge → I ne seye not → I say not). Our analyses are based on annotated

texts ranging from the Norman conquest of England to the 21st century. In each case,

we test whether observed linguistic changes are consistent with stochastic drift, or must

involve selective forces. We compare the frequencies of alternative linguistic variants over

time to predictions under the Wright-Fisher model of neutral stochastic drift. The Wright-

Fisher model was first introduced in population genetics (Crow et al., 1970), but it has

also been derived as a null model of linguistic change under Bayesian learning (Reali and

Griffiths, 2010), where the inverse of the population size parameter N governs the amount

of stochasticity in transmission, that is, the strength of drift (1/N).

We analyzed the evolution of past-tense verb conjugation by collecting verb tokens from

the Corpus of Historical American English (Davies, 2012), which comprises more than four
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Table 1: We analyzed 36 verbs with multiple past-tense forms appearing in the Corpus of
Historical American English (Davies, 2012). The table shows each lemma, its corresponding
regular and irregular forms, the number of times it occurs in the simple past tense in
the corpus, and the FIT p-value for rejecting the neutral null hypothesis. The last three
columns show the population size N and selection coefficient s of the regular form inferred
by maximum likelihood in the two-parameter model (letting N and s vary), and the inferred
population size N in the one-parameter model in which s is set to zero. A positive s indicates
selection for the regular form (regularization), whereas negative s indicates selection against
the regular form (irregularization) with strength given by the magnitude of s.

Lemma Regular Irregular Count FIT p-value Inferred N Inferred s Inferred Ns=0

light lighted lit 8,869 0.003 1,247 -0.024 770

wake waked woke 7,186 0.006 1,714 -0.024 4,005

sneak sneaked snuck 898 0.02 4,135 -0.039 29

weave weaved wove 907 0.02 1,052 0.013 126

dive dived dove 1,036 0.05 2,148 -0.018 710

smell smelled smelt 4,555 0.05 974 0.038 1,708

wed wedded wed 211 0.08 888 -0.026 154

quit quitted quit 2,734 0.10 346 -0.048 430

spell spelled spelt 962 0.10 1,556 0.025 2,055

shine shined shone 8,424 0.10 20,110 0.019 989

tell telled told 129,041 0.12 20,930 -0.050 314,100

leap leaped leapt 8,336 0.13 2,003 -0.019 346

build builded built 9,109 0.14 87 -0.063 8,602

plead pleaded pled 3,810 0.14 8,050 -0.006 3,756

learn learned learnt 18,851 0.16 2,467 0.027 6,918

heave heaved hove 2,392 0.20 2,371 0.008 3,663

dwell dwelled dwelt 1,621 0.20 16,170 0.033 63

wet wetted wet 770 0.24 5,707 -0.009 7,903

burn burned burnt 6,097 0.24 7,213 0.014 9,045

kneel kneeled knelt 5,185 0.30 7,299 -0.006 8,912

spoil spoiled spoilt 1,045 0.30 3,519 0.018 3,431

awake awaked awoke 4,926 0.32 1,676 -0.036 15,860

know knowed knew 171,518 0.34 9,397 -0.007 18,980

speed speeded sped 3,142 0.39 867 -0.002 1,077

lay laid lay 66,436 0.45 10,610 -0.002 11,070

spill spilled spilt 1,178 0.47 1,266 0.031 1,509

throw throwed threw 25,612 0.61 729 -0.011 2,001

strew strewed strew 727 0.66 1,539 0.000 1,537

hear heared heard 72,052 0.72 1,129 -0.033 28,530

knit knitted knit 675 0.76 173 -0.010 333

hang hanged hung 16,079 0.77 3,855 -0.012 12,450

dream dreamed dreamt 4,530 0.77 2,832 0.005 3,907

catch catched caught 25,529 0.78 22,520 -0.021 83,060

lean leaned leant 16,981 0.85 2,166 0.013 7,594

draw drawed drew 35,213 0.87 2,102 -0.026 19,620

grow growed grew 37,444 0.93 7,094 -0.013 21,340
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Figure 10: Verb regularization and irregularization. We analyzed 36 verbs with mul-
tiple past-tense forms appearing in the Corpus of Historical American English (Davies,
2012). Six of these verbs (a, colored lines) experience selection for either regularization or
irregularization, each with nominal p<0.05 by the Frequency Increment Test of selection
(FDR=30%). The regular form is favored in two of these cases, and the irregular form in
the remaining four cases. Ten more verbs (a, solid gray lines), of which four are regular-
izing, are significant at specificity 1 − α = 0.8, with a false discovery rate of 45%. The
distribution of nominal FIT p-values (b) is non-uniform (Kolmogorov-Smirnov p=0.002),
which confirms that some verbs experience selection. Changing use of rhyming patterns
may drive selection for irregular forms, such as quitted → quit (d), whose irregularization
coincides with increasing use of the irregular verbs hit, slit, and split (see also Fig. 11).
Among the remaining 20 verbs most consistent with neutrality (a, dashed gray lines), the
log inferred population size assuming s=0 correlates with log token count in the corpus (c,
Pearson r=0.66, p=0.002).

hundred million words from >100,000 texts between the years 1810 and 2009, tagged for

part of speech. Among all tokens assigned the simple past tense as the most likely part

of speech, we selected those lemmas with two past-tense variants each occurring at least

50 times in the corpus (SI Text). This produced 704,081 tokens that provide frequency

timeseries for the regular versus irregular forms of 36 polymorphic verbs (Fig. 10) which

range from very rare (“wed”, one in two million) to common (“know”, one in two thousand).

For each timeseries we computed a two-sided p-value for rejecting neutral stochastic drift

by the Frequency Increment Test (FIT, see SI Text). We also inferred the most likely

population size, N , and selection coefficient, s, favoring one linguistic variant over another

(SI Text, Table 1).

We conclude that selection is driving changes in past-tense conjugation among six of the
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polymorphic verbs, each with nominal p < 0.05. In four of these cases selection favors

the irregular variant (lighted→lit, waked→woke, sneaked→snuck, dived→dove), whereas

two cases exhibit regularization (wove→weaved, smelt→smelled). To account for multiple

hypothesis testing we computed the false-discovery rate among these six verbs: FDR=30%.

Furthermore, we note that the distribution of all FIT p-values is non-uniform (Kolmogorov-

Smirnov p=0.002, Fig. 10b), which confirms that selection is operating on some of the

polymorphic verbs.

Selection for regularization comes as no surprise. Prevailing linguistic theory predicts reg-

ularization (Hooper, 1976; Pinker, 1991), for reasons of economy or cognitive ease (Jakob-

son et al., 1995; Zipf, 1949; Pinker, 1991). Trends towards past-tense regularization have

been observed, especially for rare words over long timescales from Old to Modern English

(Hooper, 1976; Michel et al., 2011; Lieberman et al., 2007). We identify cases of incipient

regularization, such as wove→weaved, where the regular variant is in the minority at present

but predicted by our analysis to eventually replace the irregular form.

Selection for irregularization is more mysterious, although several cases have been noted

(Bybee and Moder, 1983; Michel et al., 2011; Cuskley et al., 2014). In Modern English,

we find that irregularization is as common as regularization (Fig. 10). One possible ex-

planation involves rhyming. Psychological studies have found speakers willing to copy or

invent irregular variants, such as spling/splung (Prasada and Pinker, 1993), that rhyme

with existing irregular verbs (Ullman, 1999). Our analysis of dive/dived versus dive/dove

reveals selection for dive/dove, which coincides with a marked increase of the irregular verb

drive/drove in the corpus, associated with the invention of cars in the 20th century. More

generally, the inferred selection coefficient (s) always favors the irregular variant of a poly-

morphic past-tense verb when similar-sounding irregular verbs are on the rise in the corpus

(11 out of 11 cases: light, dive, quit, tell, leap, build, kneel, know, throw, knit and grow;

see Table 1, Fig. 11). For example, selection for quitted→quit coincides with increased use

of the irregular verbs hit/hit and split/split (Fig. 10d). The frequency of “split” increased
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hanged → hung dreamt → dreamed catched → caught leant → leaned drawed → drew growed → grew

laid → lay spilt → spilled throwed → threw strew → strewed heared → heard knitted → knit

burnt → burned kneeled → knelt spoilt → spoiled awaked → awoke knowed → knew speeded → sped

builded → built pleaded → pled learnt → learned hove → heaved dwelt → dwelled wetted → wet

wedded → wed quitted → quit spelt → spelled shone → shined telled → told leaped → leapt

lighted → lit waked → woke sneaked → snuck wove → weaved dived → dove smelt → smelled
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Figure 11: Timeseries of changing rhyming patterns. Each panel shows the time-
series of a polymorphic verb (black lines), repeated from Fig. 10a, and the frequency of
similar-sounding monomorphic regular (orange) and irregular (blue) verbs in the Corpus
of Historical American English. The tokens included are all tenses of those lemmas with
a pronunciation known to the CMU Pronouncing Dictionary in both the lemma and the
simple past tense. The list of verbs incorporated in each timeseries is given in Table 3. For
17 polymorphic verbs we find no similar-sounding monomorphic irregular verbs (all-orange
panels). The title of each panel indicates the sign of the maximum-likelihood selection
coefficient, either regular→irregular or irregular→regular.
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nearly four-fold over the past century as split acquired an additional meaning (to leave

or depart). Thus a semantic change in one irregular verb (“split”) likely induced selection

for irregularization in another, semantically unrelated verb (“quit”) that shares the same

past-tense rhyming pattern.

Selection towards an irregular variant can also occur when similar-sounding irregular verbs

are on the decline, as in the case of wedded→wed (Fig. 11). Our inference of selection for

wedded→wed is particularly striking because it contradicts previous work predicting the

regularization of wed→wedded based on long-term trends (Lieberman et al., 2007).

Drift alone is sufficient, however, to explain the observed changes for the majority of verbs

we analyzed in Modern English (Table S1, FIT p values). These include verbs previously

described as undergoing regularization, such as spilt→spilled and burnt→burned (Michel

et al., 2011; Cuskley et al., 2014) (SI Text). Failure to reject neutrality in these cases does

not imply that selection is entirely absent. For example, there is likely some selection for

knitted→knit due to rhyming, as with quitted→quit (Fig. 11). Nonetheless, the inferred

strength of selection for “knit” is too weak relative to drift to affect its dynamics: |Ns|=1.67

for “knit” (FIT p=0.76) in contrast to |Ns|=30.51 for “lit” (FIT p=0.003) (Table S1). Even

with some amount of selection, dynamics are indistinguishable from neutrality when drift

is strong enough (Crow et al., 1970).

Among the verbs whose dynamics are dominated by drift, the strength of drift correlates

inversely with the verb’s overall frequency in the corpus (Fig. 10). This result implies that

common words should exhibit less variability over time than rare words—a phenomenon

that has indeed been observed in many empirical studies (Hooper, 1976; Lieberman et al.,

2007; Pagel et al., 2007) and previously attributed to stronger purifying selection against

novel variants of common words (Pagel et al., 2007). Our analysis provides an alternative

and complementary explanation for faster rates of replacement in rare words: rare words,

whether under selection to change or not, experience more stochasticity in transmission.

Furthermore, this explanation predicts that the replacement of one form by another in a
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Table 2: We analyzed the rise of do-support in Early Modern English in four grammatical
contexts using instances of potential do-support from the Penn Parsed Corpora of Historical
English. The table indicates each context, the corresponding number of tokens of potential
do-support in the corpus, the FIT p-value for rejecting the neutral null hypothesis, the
inferred population size N , and the inferred selection coefficient s in favor of do-support.

Context Count FIT p-value Inferred N Inferred s

negative interrogative 606 0.270 504 0.013

affirmative interrogative 4,665 0.178 3,545 0.006

negative declarative 14,227 0.005 2,477 0.014

negative imperative 1,231 0.003 23,150 0.014

rare word is more likely to occur by random chance, whereas such substitutions in common

words are more likely caused by selection.

Next we analyzed the rise of do-support in Early Modern English, as the auxiliary verb

‘do’ comes to express the tense of a sentence (Elleg̊ard, 1953). Over the course of centuries,

for example, “You said not.” becomes “You did not say.” and “Asked you a question?”

becomes “Did you ask a question?”. We collected instances of potential do-support from

the Penn Parsed Corpora of Historical English (SI Text). This dataset includes roughly

seven million syntactically parsed words from 1,220 texts of British English, offering a

much larger timeseries than previous work (Elleg̊ard, 1953). We extracted 20,729 instances

of potential do-support in the context of affirmative questions, negative questions, negative

declaratives, and negative imperatives.

We find that the rise of the periphrastic ‘do’ was more rapid in negative declarative and

imperative statements, where we reject drift (p=0.005 and p=0.003 respectively), than in

affirmative questions, where we fail to reject drift (p=0.18, Fig. 12). do-support also appears

to rise suddenly in negative questions, although the force of drift is strongest in this case

(Table 2), and indeed we fail to reject drift (p=0.27, Fig. 12). We might expect that selection

for an auxiliary verb will operate equally in all grammatical contexts (Kroch, 1989), and yet

the extensive parsed corpora available do not support this hypothesis. Our analysis suggests

an alternative scenario: the periphrastic ‘do’ first drifted by chance to high frequency in

questions, which then induced a directional bias towards ‘do’ in declarative and imperative
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Figure 12: The rise of the periphrastic ‘do’ in early Modern English. The frequency
of ‘do’ as an auxiliary verb first rose in the context of interrogative sentences (gray). How-
ever, we cannot reject drift for either affirmative interrogatives (FIT p=0.18) or negative
interrogatives (FIT p=0.27). Subsequently, do-support rose rapidly in negative declarative
and negative imperative sentences, where we detect selection (FIT p=0.005 and p=0.003,
respectively). Dotted lines plot the logistic curve with slope determined by the maximum-
likelihood selection coefficient inferred in each grammatical context (Table 2). These results
suggest do-support rose by chance through drift in interrogative statements, setting the
stage for directional evolution of do-support in other grammatical contexts.

statements, for reasons of grammatical consistency or cognitive ease.

Finally, we studied the evolution of syntactic verbal negation from the 12th to the 16th

centuries, based on 5,475 negative declaratives extracted from the Penn Parsed Corpus of

Middle English. We observe pre-verbal negation (e.g. “Ic ne secge”) giving way to embracing

bipartite negation (“I ne seye not”) and then finally to post-verbal negation (“I say not”), in

a pattern known as Jespersen’s Cycle (Jespersen, 1917). For both transitions that form this

cycle we definitively reject neutral drift (FIT p<0.05, Fig. 13). This provides statistical sup-

port for longstanding hypotheses that changes in verbal negation are driven by directional

forces, such as phonetic weakening (Jespersen, 1917), or a tendency for speakers to over-

use more emphatic forms of negation (Jespersen, 1917; Dahl, 2001) which then lose their

emphasis as they become dominant (Crawford and Sobel, 1982; Dahl, 2001). Although

directionality in Jespersen’s cycle was first recognized by comparing multiple languages

(Jespersen, 1917), we reach the same conclusion by analyzing changes in English alone.

Methods drawn from phylogenetics have enabled researchers to infer the relationships among

divergent languages (Ringe et al., 2002; Gray and Atkinson, 2003; Pagel, 2013, 2009; Pagel
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Figure 13: Evolution of verbal negation. In English and French, pre-verbal negation
(e.g. Old English “Ic ne secge”) gave way to embracing bipartite negation (Middle English
“I ne seye not”) and then to post-verbal negation (Early Modern English “I say not”), in a
pattern known as Jespersen’s Cycle. We plot the frequencies of these forms among 5,918
instances of negation from 56 texts in the Penn-Helsinki Parsed Corpus of Middle English
(a). We infer selection for bipartite and post-verbal negation in the background of pre-
verbal forms (FIT p=0.02, b, green lines) and selection for post-verbal negation in a mixed
population of pre-verbal and bipartite forms (FIT p=0.04, b, orange lines). Dotted lines
indicate logistic curves corresponding to maximum-likelihood selection coefficients.

et al., 2007). By contrast, the study of how a language changes over short timescales has not

taken full advantage of statistical inference. And yet, changes within a language must be the

origin of differentiation between languages (Lupyan and Dale, 2015). The combination of

massive digital corpora along with timeseries inference techniques from population genetics

now allows us to disentangle distinct forces that drive language evolution. How exactly

individual-level cognitive processes in a language learner (Pinker, 1991; Jespersen, 1917;

Kroch, 1989; Zipf, 1949; Jakobson et al., 1995) produce population-level phenomena such

as drift and selection (Tamariz et al., 2014) remains a topic for future research.

Source code to reproduce our results from published databases is available online at

http://github.com/mnewberry/ldrift.

2.1. Frequency Increment Test for selection.

To test for selection in an empirical timeseries, we apply a transformation that produces

homoscedastic frequency increments under the null hypothesis of stochastic drift. The mean

transformed frequency increment can then be compared to zero, its expectation under the

null, using Student’s t-test, which we call the Frequency Increment Test (FIT) (Feder et al.,
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2014). This procedure tests the composite null hypothesis of stochastic drift even when

the strength of drift is unknown (s=0, N arbitrary), against the alternative hypothesis

that the mean frequency increment differs from zero. The alternative hypothesis makes

no assumption about the form of selection, be it frequency-dependent, time-dependent, or

correlated with other variables or between forms. Directional change induced by repeated

innovation (biased mutation) or immigration also would cause the mean frequency increment

to differ from zero. Hence the FIT tests a null hypothesis of neutral drift against an

alternative hypothesis of some directional force influencing the course of evolution. This

test is valid for a large class of neutral null models: all those with the same diffusion limit

as the Wright-Fisher model (Ewens, 2004). Many models of language change also share

this diffusion limit (Reali and Griffiths, 2010; Baxter et al., 2006; Fontanari and Perlovsky,

2004), whether variation arises during first language acquisition or in usage over the lifetime

of an individual speaker, although spatial models (Nettle, 1999) do not.

The Wright-Fisher diffusion is a Markov process with independent increments that are nor-

mally distributed over infinitesimal increments in time. A Gaussian approximation to the

diffusion process is valid away from the boundary frequencies zero and one (Ewens, 2004).

Under the Gaussian approximation to the neutral diffusion, the probability P(xi+1, ti+1|xi, ti)

of observing an allele at frequency xi+1 at time ti+1 given frequency xi at time ti < ti+1

follows the normal distribution:

P(xi+1, ti+1|xi, ti) ∼ Normal(xi, 2xi(1− xi)(ti+1 − ti)/N). (2.1)

The Frequency Increment Test compares the distribution of observed frequency changes in

an empirical timeseries with this null distribution.

Assume we have a series of frequencies, x1, . . . , xn of one linguistic variant relative to an-

other, observed at n times ordered t1, . . . , tn. The FIT compares the frequency increments

between subsequent pairs of observations to the null distribution specified by the Gaussian

approximation to the neutral diffusion. To make this comparison, we first rescale each
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frequency increment xi+1 − xi. The rescaled increments Yi are given by

Yi =
xi+1 − xi√

2xi(1− xi)(ti+1 − ti)
, (2.2)

and thus the Yi are independent with Yi ∼ Normal(0, 1/N) under the null. Recall that,

under the composite null hypothesis of neutral drift the population size is unspecified,

so that 1/N must be treated as a nuisance parameter. The classical t-test solves this

problem with maximal power. To perform the FIT we simply calculate the t-statistic for

the rescaled frequency increments Y1, . . . , Yn−1. We reject neutrality for any size population

if the quantile of this absolute t-statistic exceeds 1−α/2 under the t distribution with n−2

degrees of freedom.

The test of selection described above controls the type I error rate but not the type II error

rate. Failure to reject drift even when selection is in fact present can occur either because

of insufficient sample size and power (although we can rule this out in several cases, see

below), or because the strength of selection (s) is small compared to that of drift (1/N) so

that drift dominates the dynamics. Drift also dominates selection when the frequencies are

near the boundary zero or one (Ewens, 2004). Finally, FIT tests for directional selection,

and it may produce an insignificant result when forms experience balancing selection for a

stable intermediate frequency.

2.2. Estimating population size and selection coefficients.

Given a series of frequencies x1, . . . , xn observed at times t1, . . . , tn we use maximum like-

lihood to estimate the population size, N , and the selection coefficient, s, favoring one

linguistic form over another. In the presence of selection, this computation involves ap-

proximating the diffusion by a deterministic path plus Gaussian noise (Pollett, 1990). The

deterministic expectation follows a logistic curve that depends upon the choice of s, whereas

the variance of the Gaussian noise depends on both s and N . We optimize the likelihood of

the data under this model, varying N and s, using tsinfer software by Feder et al. (2014)

59



(https://github.com/skryazhi/tsinfer), which identifies the most likely parameters by

the Nelder-Mead simplex optimization method, treating the sampled frequencies as true

frequencies (-F flag to tsinfer).

The most likely population size estimated by this procedure is known only up to a fixed,

constant factor, the generation time (Ewens, 2004). We chose this unit of time to be 1 year

for purposes of presentation.

Note that the maximum-likelihood estimate of s will almost always be non-zero. Confidence

intervals on s may exclude zero even when FIT fails to reject neutrality. However, confidence

intervals on s inferred from the likelihood surface by the likelihood-ratio statistic are known

to be biased (Feder et al., 2014). We therefore use the conservative FIT to test for selection

against the composite null hypothesis of neutrality.

2.3. Analysis of past-tense verbs.

We collected all tokens from the Corpus of Historical American English (Davies, 2012)

(COHA) tagged past-tense verb (vvd) as most likely part of speech, retaining those with two

past-tense variants each occurring at least 50 times in the corpus. We excluded verbs with

temporal variation caused by spelling conventions (e.g cancelled versus canceled), lemmas

with semantic ambiguities (e.g. bear versus bore, wind), and lemmas with multiple irregular

variants (e.g. begin, bid, drink, ring).

For each verb, we assigned time points and frequencies by binning its tokens into date ranges

of variable lengths to ensure roughly the same number of tokens per bin (quantile binning).

We set the number of bins equal to the logarithm of the number of tokens, rounded up,

and we assigned to each bin the midpoint of its date range as its time point. The observed

frequency of the regular form is taken as the proportion of the regular form in each bin, and

the time is the midpoint of the bin. We applied Laplace (add-one) smoothing to counts with

only one variant present in a bin, in order to remove apparent absorption events (Feder et al.,

2014). We tested for the presence of selection in each verb using the FIT (see Table 1). We
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tested for the presence of selection in at least some of the verbs with a Kolmogorov-Smirnov

test for uniformity of the empirical distribution of FIT p-values (see Table 1, Fig. 10b).

Results of the Frequency Increment Test for selection on these 36 verbs are not driven

by power or sample size. There is no significant difference in the mean number of tokens

among the 16 verbs with FIT p<0.2 compared to the remaining verbs (Mann-Whitney test,

p=0.29). Conversely, the failures to detect selection highlighted in the main text are not

due to small sample sizes: the number of tokens for spill (1,178) exceeds that of four verbs

with FIT p<0.2; and the number of tokens for burn (6,097) exceeds that of eight verbs with

FIT p<0.2 (see Table 1).

We also controlled for fluctuations in the total usage of each verb over time (Fig. 14). We

view the regular and irregular simple past-tense variants of a polymorphic verb as competing

forms, in the sense that only one or the other can be used in any past-tense utterance. The

total use of each verb in the past tense nonetheless fluctuates over time, as measured by its

frequency among all tokens in the corpus. In fact, the total use of each verb in any tense

also fluctuates over time (Fig. 14), and the fluctuations in total use are highly correlated

with fluctuation in past-tense use (r2=0.992). In other words, even though past-tense usage

may vary over time, its variation simply reflects variation in the overall usage of the verb.

We find no significant correlation between the strength of the trend in past-tense usage

(log-linear regression slope) with the inferred strength of selection, |s|, on the regular form

(r2=0.05, p=0.18). Fluctuations in the total use of a verb over time are thus analogous

to fluctuating population size, and our inferred N measures the effective population size

(Ewens, 2004).

2.4. Analysis of rhyming patterns.

To examine one possible source of selection towards irregularization we extracted verbs

that share the same rhyming pattern and tracked the token frequencies of regular and

irregular rhyming patterns in the corpus over time. For each of the 36 polymorphic verbs,
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hanged, hung dreamed, dreamt catched, caught leaned, leant drawed, drew growed, grew

laid, lay spilled, spilt throwed, threw strewed, strew heared, heard knitted, knit

burned, burnt kneeled, knelt spoiled, spoilt awaked, awoke knowed, knew speeded, sped

builded, built pleaded, pled learned, learnt heaved, hove dwelled, dwelt wetted, wet

wedded, wed quitted, quit spelled, spelt shined, shone telled, told leaped, leapt

lighted, lit waked, woke sneaked, snuck weaved, wove dived, dove smelled, smelt

1825 1875 1925 1975 1825 1875 1925 1975 1825 1875 1925 1975 1825 1875 1925 1975 1825 1875 1925 1975 1825 1875 1925 1975

10− 8

10− 6

10− 4

10− 8

10− 6

10− 4

10− 8

10− 6

10− 4

10− 8

10− 6

10− 4

10− 8

10− 6

10− 4

10− 8

10− 6

10− 4

Year

F
re

q
u
e
n
cy

 in
 C

O
H

A

Figure 14: Temporal trends in the usage of 36 verbs, in the simple past tense
and in all tenses. The figure shows the frequency of each verb in all tenses (red), in the
simple past tense (black), and in the regular (blue) and irregular (yellow) variants of the
simple past. For each verb, the trend in usage in the past tense (black) is virtually the same
as the trend in all tenses (red), with the notable exception of “strew”. As a result, we do
not expect that any trend in overall past-tense usage should correlate with differential use
of the regular versus irregular past-tense variant. Indeed, we find no significant correlation
between the strength of the trend in past-tense usage (log-linear regression slope) with the
inferred strength of selection, |s|, on the regular form (r2=0.05, p=0.18).
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Table 3: List of similar-sounding monomorphic verbs for each past-tense con-
jugation of polymorphic verbs. For each polymorphic verb we study, its regular and
irregular variants each define a present/past rhyme scheme. A monomorphic lemma is con-
sidered similar-sounding if it rhymes in both its lemma and its past tense with a given
rhyme scheme. A lemma is included in the table if 1) it has only one simple past-tense
form occurring over 50 times in the Corpus of Historical American English, 2) both the
past-tense form and the lemma itself are present in the CMU Pronouncing Dictionary, and
3) the lemma and past-tense forms fit either the regular or irregular rhyme scheme of one
of the polymorphic verbs.

Rhyme scheme Similar-sounding lemmas
Lemma Regular Irregular Regular Irregular

light light/lighted light/lit invite, excite, delight, cite bite

wake wake/waked wake/woke stake, rake, fake, brake, bake, ache break

sneak sneak/sneaked sneak/snuck wreak, tweak, streak, squeak, shriek, pique, peek, peak, leak,

freak, creak

weave weave/weaved weave/wove retrieve, relieve, receive, perceive, grieve, deceive, conceive,

believe, achieve

dive dive/dived dive/dove thrive, survive, revive, derive, deprive, contrive, arrive strive, drive

smell smell/smelled smell/smelt yell, swell, shell, repel, rebel, quell, propel, parallel, impel, fell,

expel, excel, dispel, compel

wed wed/wedded wed/wed thread, spearhead, shred, imbed, head, dread, behead spread, shed

quit quit/quitted quit/quit visit, submit, spirit, solicit, remit, pit, permit, outwit, outfit,

forfeit, elicit, deposit, credit, counterfeit, commit, benefit,

admit, acquit

split, slit, hit

spell smell/smelled smell/smelt yell, swell, shell, repel, rebel, quell, propel, parallel, impel, fell,

expel, excel, dispel, compel

shine shine/shined shine/shone undermine, underline, twine, sign, resign, refine, redesign,

redefine, recline, pine, outline, opine, mine, malign, line, incline,

headline, fine, entwine, dine, design, define, decline, consign,

confine, combine, assign, align

tell smell/smelled tell/told yell, swell, shell, repel, rebel, quell, propel, parallel, impel, fell,

expel, excel, dispel, compel

sell

leap leap/leaped leap/leapt seep, reap, peep, heap, beep weep, sweep,

sleep, keep, creep

build build/builded build/built gild rebuild

plead plead/pleaded plead/pled supersede, succeed, stampede, seed, secede, recede, proceed,

precede, need, intercede, impede, heed, exceed, concede, cede,

bead, accede

mislead, feed,

breed, bleed

learn learn/learned learn/learnt yearn, turn, sunburn, spurn, return, overturn, iron, govern, earn,

discern, concern, churn, adjourn

heave weave/weaved weave/wove retrieve, relieve, receive, perceive, grieve, deceive, conceive,

believe, achieve

dwell smell/smelled smell/smelt yell, swell, shell, repel, rebel, quell, propel, parallel, impel, fell,

expel, excel, dispel, compel

wet wet/wetted wet/wet whet, sweat, silhouette, regret, pet, net, jet, fret, abet upset, set, offset,

let, bet, beset

burn learn/learned learn/learnt yearn, turn, sunburn, spurn, return, overturn, iron, govern, earn,

discern, concern, churn, adjourn

kneel kneel/kneeled kneel/knelt wheel, unseal, steel, seal, reveal, repeal, reel, peel, heel, heal,

congeal, conceal, appeal

feel, deal

spoil spoil/spoiled spoil/spoilt toil, soil, roil, recoil, oil, foil, coil, broil, boil
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Table 3: (continued)

Rhyme scheme Similar-sounding lemmas
Lemma Regular Irregular Regular Irregular

awake wake/waked wake/woke stake, rake, fake, brake, bake, ache break

know know/knowed know/knew zero, winnow, wallow, veto, tow, torpedo, toe, swallow, stow,

sow, snow, slow, show, shadow, sew, row, radio, owe,

overshadow, overflow, narrow, mow, hollow, glow, furrow,

foreshadow, follow, flow, elbow, echo, crow, bow, borrow,

billow, bestow, bellow

overthrow, blow

speed plead/pleaded plead/pled supersede, succeed, stampede, seed, secede, recede, proceed,

precede, need, intercede, impede, heed, exceed, concede, cede,

bead, accede

mislead, feed,

breed, bleed

lay lay/laid lay/lay weigh, waylay, underpay, sway, survey, stray, stay, spray,

ricochet, replay, repay, relay, pray, portray, play, pay, parlay,

outweigh, obey, flay, display, disobey, dismay, delay, decay,

convey, buffet, betray, bay, array, allay

spill spill/spilled spill/spilt will, thrill, still, stencil, refill, mill, kill, grill, fulfil, fill, drill, distil

throw know/knowed know/knew zero, winnow, wallow, veto, tow, torpedo, toe, swallow, stow,

sow, snow, slow, show, shadow, sew, row, radio, owe,

overshadow, overflow, narrow, mow, hollow, glow, furrow,

foreshadow, follow, flow, elbow, echo, crow, bow, borrow,

billow, bestow, bellow

overthrow, blow

strew strew/strewed strew/strew woo, view, value, undervalue, tattoo, sue, subdue, stew, spew,

shoo, screw, review, rescue, renew, pursue, issue, interview,

glue, eschew, ensue, discontinue, debut, coo, continue,

construe, chew, brew, boo, argue, accrue

hear hear/heared hear/heard disappear overhear

knit knit/knitted quit/quit transmit, omit, fit, emit, budget split, slit, hit

hang hang/hanged hang/hung harangue, bang

dream dream/dreamed dream/dreamt team, stream, steam, seem, scream, scheme, redeem, gleam,

esteem, deem, cream, beam

catch catch/catched catch/caught snatch, scratch, patch, match, latch, hatch, detach, attach

lean lean/leaned lean/leant wean, screen, preen, intervene, glean, convene, clean, careen

draw draw/drawed draw/drew thaw, saw, paw, outlaw, gnaw, claw, awe withdraw

grow know/knowed know/knew zero, winnow, wallow, veto, tow, torpedo, toe, swallow, stow,

sow, snow, slow, show, shadow, sew, row, radio, owe,

overshadow, overflow, narrow, mow, hollow, glow, furrow,

foreshadow, follow, flow, elbow, echo, crow, bow, borrow,

billow, bestow, bellow

overthrow, blow

we extracted all monomorphic verbs that rhyme in both the lemma and the past tense with

either the regular (e.g. dive/dived) or irregular (e.g. dive/dove) form of conjugation. We

considered a verb to be monomorphic when only one past-tense form was present at least

50 times in COHA (e.g. thrive/thrived, or strive/strove). We used the CMU Pronouncing

Dictionary to match rhyming words, ignoring stress. For each polymorphic verb, the set of

monomorphic lemmas that rhyme with either its regular or irregular conjugation is listed
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in Table 3.

For each pair of rhyming patterns associated with the regular and irregular forms of a

polymorphic verb, we created an annual timeseries of the frequency of regular among regular

plus irregular monomorphic lemmas in COHA (Fig. 11). We classified the regular rhyming

pattern as decreasing in frequency if the slope of the timeseries (by linear regression) was

negative. This slope was negative for 11 of the polymorphic verbs (light, dive, quit, tell,

leap, build, kneel, know, throw, knit and grow) and positive for 8 polymorphic verbs (wake,

wed, plead, wet, awake, speed, hear and draw). The remaining 17 polymorphic verbs had

no similar-sounding irregular lemmas in the corpus, and so the slope was zero.

For all 11 polymorphic verbs whose regular rhyming pattern had decreasing frequency in

the corpus, the maximum-likelihood selection coefficient was negative (Table 1), favoring

the irregular form of the verb. Moreover, among all 36 polymorphic verbs, the slope of

the rhyming pattern over time is correlated with the inferred selection coefficient (Pearson

r=0.35, p=0.04).

Although we tracked the token frequency of lemmas that rhyme in both past and present

form following Prasada and Pinker (1993), other research has suggested rhyming past-tense

forms alone (Bybee and Moder, 1983), type frequency (Bybee, 1985), or a combination of

type and token frequency (Hay and Baayen, 2002) would more closely approximate underly-

ing psychological mechanisms of language learning and use. We did not use type frequency

in our analysis, as the number of types is too few to register change over time. We can,

however, relax our notion of similar rhyming patterns to include any verbs that rhyme in

the past tense. In this case, the slope of rhyming pattern frequency over time is not signif-

icantly correlated with the inferred selection coefficient (Pearson r=0.20, p=0.25). In this

larger set of past-tense verbs, it is possible to register some change in type frequencies, but

this does not improve the correlation with inferred selection coefficients (Pearson r=-0.02,

p=0.92).
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2.5. Analysis of do-support.

We analyzed syntactically parsed clauses from the Penn-Helsinki Parsed Corpus of Mid-

dle English (1100-1500), the York-Helsinki Parsed Corpus of Early English Correspondence

(1400-1700), the Penn-Helsinki Parsed Corpus of Early Modern English (1500-1700), and the

Penn Parsed Corpus of Modern British English (1710-1910), excluding works of philosophy,

translations of Boethius, sermons, biblical translations, and statutes as unrepresentative of

the language of their times. Our timeseries is larger, covers more of the rise of do-support,

and samples from substantially more authors per token than the data hand-collected by

Elleg̊ard (1953). We used the CorpusSearch 2 tool (version 2.003.04, Beth Randall, Ann

Taylor and Anthony Kroch, http://corpussearch.sourceforge.net/, 2005-2013) to label

all clauses for mood (interrogative, subordinate interrogative, subject wh-question, imper-

ative, or declarative), negation (affirmative or negative), and category of main verb (verb

with do, verb without do, or modal). We excluded clauses containing modal verbs, sub-

ordinate questions, and subject wh-questions, which do not permit do-support. As with

past-tense verbs, we used quantile binning with Laplace smoothing to assign tokens (repre-

senting instances where do-support was used, or could have been used but was not) to date

ranges, setting the number of bins equal to the logarithm of the number of tokens, rounded

up. The initial bins across contexts indicate points in time before tokens of do-support

are observed. The first tokens of do-support by context are observed later than Elleg̊ard

(negative declarative, 1440; negative question, 1526; affirmative question, 1526 in our data,

versus negative declarative, 1425-1475; negative question, 1400-1425; affirmative question,

1425-1475 according to Elleg̊ard). This difference is likely due to biased sampling of in-

novative or “interesting” authors by Elleg̊ard. We inferred the most likely population size

and selection coefficient using tsinfer, initializing the Nelder-Mead simplex optimization

routine at parameter values s = 0, N = 500 (flag -start:0.0,500.0).

The difference in FIT p-value between negative declaratives (n=14,227) and negative inter-

rogatives (n=606) cannot be attributed to sample size. Among 100 random subsets of 606
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tokens of do-support in negative declaratives drawn without replacement from the full set

of 14,227 tokens, reanalysis yielded a median FIT p-value of 0.02.

2.6. Analysis of verbal negation.

We labeled all negated clauses in the Penn Parsed Corpus of Middle English (1100-1500),

which contains 52 documents, excluding four documents that contained metered, stilted,

or anachronistic writing (cmorm, cmboeth, cmntest, and cmotest): one book of metrical

poetry (the Ormulum), Chaucer’s translation of Boethius’ Consolations of Philosophy, the

New Testament, and the Old Testament. We used CorpusSearch 2 to label sentences for

context of negation, clause type, and the presence and positions (preverbal or postverbal)

of ne, not, and never. We excluded non-finite clauses, imperatives, questions, constituent

negation, contractions, coordinated clauses and negative concord. We classified the resulting

5,475 instances of negative declaratives as pre-verbal, embracing bipartite, and post-verbal

sentential negation. We assigned time points by quantile binning with Laplace smoothing

as with past-tense verbs. To avoid affects of pseudoreplication within documents, we used

six bins so that each bin contains as many distinct documents as possible while reserving

adequate power for the FIT. We conducted two tests for selection. For the first transition,

we combined the frequencies of embracing and post-verbal negation to test for selection for

embracing or post-verbal negation in a background of pre-verbal negation. For the second

transition, we combined the frequencies of pre-verbal and embracing negation to test for

selection for post-verbal negation in a mixed background of pre-verbal and embracing forms.
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CHAPTER 3 : An Exchangeable Model of Social Evolution

The values of many socially-visible traits are arbitrary, such as words (Trudgill, 2004),

names (Hahn and Bentley, 2003), decorative styles (Neiman, 1995) or conventions (Wagner

et al., 2016), and are thought to evolve neutrally (Hahn and Bentley, 2003; Bentley et al.,

2004; Neiman, 1995). Yet neutral evolution (Kimura, 1983) cannot explain (Kandler and

Shennan, 2013), for example, why some social traits come and go in cycles of popularity

(Ghirlanda et al., 2013) while others become entrenched and markedly persistent (Wag-

ner et al., 2016). We explain these differences in terms frequency-dependent selection in

a model of exchangeable competing traits. We infer frequency-dependent fitness relation-

ships from timeseries of first names at birth, registrations with the American Kennel Club,

and language spoken most often at home. We find a consistent non-monotonic pattern

of frequency-dependent copying rate in first names in more than a century or births and

across the United States, France, Netherlands, UK, Canada, and Norway: Names awarded

at a rate between roughly 1 in 10,000 and 1 in 1,000 births tend to increase in usage

frequency, whereas more rare or more common names decline. Language use in Canada,

Mexico and Zambia show the opposite frequency-dependence: Speakers are more likely to

adopt a language if it is either common or extremely rare. Dog breed popularity shows strict

negative frequency-dependence, with rare breeds always becoming more popular consistent

with novelty bias in cycles of fashion. Language use in the United States also shows negative

frequency-dependence driven by rarity bias in immigration policy.

Clothing styles come and go, while writing systems outlast empires. Cultural phenemena

often involve many arbitrary choices drawn from practically equivalent alternatives. The

environment of competition between these alternatives may favor more common or rare

variants, even absent any intrinsic differences between them. The influence of commonness

or rarity on growth rate in evolution is called frequency-dependent fitness, and it occurs

in biological and social contexts. The form this influence takes characterizes the compet-

itive environment and the outcomes of competition. For example, network externalities

68



a
w ( t)

Frequency, p

F
itn

e
ss

, 
w

d 1

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

1 in 101 in 1001 in 1,0001 in 10
4

Frequency in top 1,000 names

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

Decade
1900-09
1940-49
1950-59
1980-89

Source
simulation
data

b United States

1 in 1001 in 1,0001 in 10
4

1 in 10
5

-15

-10

-5

0

5

Name frequency

G
ro

w
th

 r
a
te

 (
%

/y
e
a
r)

c

Scotland Norway Alberta

France Netherlands Ontario

10
−2

10
−3

10
−4

10
−5

10
−2

10
−3

10
−4

10
−5

10
−2

10
−3

10
−4

10
−5

-15

-10

-5

0

5

-15

-10

-5

0

5

Name frequency

G
ro

w
th

 r
a
te

 (
%

/y
e
a
r)

Figure 15: Frequency-dependent copying of first names. Fitness is frequency-
dependent (a) when the rate of copying a trait depends on the trait frequency. Traits with
fitness above the mean fitness, w̄, tend to increase (blue arrow), while those below tend to
decrease (red arrows), though drift perturbs frequencies in any direction. Equilibria, stable
( r) or unstable ( b), exist whenever the frequency-dependent fitness curve crosses the mean
fitness. Copying rate of first names depends on the frequency of names in the preceeding
year in the United States (b), and six other states (c). Panels b-c indicate our inference
(solid black, see Methods), bootstrap (conservative, Methods) 95% confidence intervals (dot-
ted lines), and model 95% confidence intervals (blue bands, Methods). Simulations of the
model under the inferred parameters reproduce observed frequency distributions of names
(d), which are not distinguishable from a neutral copying process (Hahn and Bentley, 2003)
due to the strength of drift.

created a monopolizing pressure against the minority videocasette format in the compe-

tition between VHS and Betamax (Katz and Shapiro, 1986), whereas balancing selection

on a single-locus gene in left- and right-mouthed cichlids (Hori, 1993) favors a 1:1 ratio of

the two forms. Frequency-dependence influences diversity, either suppressing rare variants

or elevating them to some equilibrium frequency, depending on whether higher abundance

leads to faster or slower per-capita growth (Volkov et al., 2005).

Here, we directly infer how the average growth rate (fitness) of a type depends on its

frequency (Fig. 15a) from timeseries of competition between types. We model a timeseries as

the outcome of a Wright-Fisher process where the fitness of competing traits w is determined

only by their frequency x and a trait-independent form of frequency-dependence, w(x), so

that the expected frequency of each type i in the next timestep is its current frequency xti
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reweighted according to fitness w(xti):

E(xt+1
i ) =

xiw(xi)∑
j∈types xjw(xj)

. (3.1)

We infer a piecewise-constant approximation to w(x) by quantizing frequency (binning) and

computing the maximum-likelihood fitness wk of types in each frequency bin k (see section

3.1). The inference bears an analogy to image reconstruction (Lange et al., 2000), in which

the wk represent pixel values of an image of w(x). As a consequence of the tradeoff between

the number of bins and the number of observations in each bin, more observations allow

more bins and progressively better approximations to the true w(x). Thus the piecewise

approximation is a non-parametric estimate of the true continuous function w(x).

First names are a classic model system to study the diffusion of cultural traits by random

copying (Bentley et al., 2004), as babies are typically given names that are copies of existing

names. The US Social Security Administration provides more than a century of high-quality

full-count data with minimal censorship. Name frequency distributions are consistent with

a neutral model (Hahn and Bentley, 2003) in which selection cannot favor any name, despite

that trends in naming have demonstrated psycholocial biases (Berger et al., 2012; Coulmont

et al., 2015). We expect that when choosing a name for a newborn child, a parent may wish

to avoid rare or invented names, which could provoke ridicule, but also avoid very common

forms, which might seem mundane. Biases of this sort would induce frequency-dependent

selection in name copying.

We infer the curve of frequency-dependence in an annual timeseries of first names of United

States Social Security Card recipients born in the United States since 1880, which censors

only names represented in less than 5 births in a given year (Fig. 15a). Most names are

extremely rare. While only 275 names ever reach the highest frequency bin (greater than 1

in 300), more than 100,000 names are found in less than 1 in 190,000 births in some year.

Among these rare names there are on average 0.84 copies per capita the next year. Yet the

commonest names do not fare well either, leaving on average 0.9883±0.0000 copies (95%
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CI). Meanwhile, the highest fitness names, which leave 1.019±0.002 copies per year, are any

names around 1 in 15,000 births. The inferred w(p) indicates that the per-capita growth

rate of a name depends on its frequency among last year’s births, and therefore parents in

the United States tend to award names that are neither too common nor too rare at the

time.

Furthermore, a similar pattern is visible in five other states that publish adequate records

of first names (Fig. 15b): France, the Netherlands, Ontario, Scotland, Norway, and Alberta,

in order of decreasing population size. Scotland, the Netherlands, and Alberta publish a

complete list of names with no censorship of rare names, allowing us to observe the fitness of

names of which there may be as little as one copy per year. In each case, the highest average

growth rates occur for names awarded between 1 in 990 and 1 in 30,000 names. The highest

growth rate is positive in all states except Alberta, due to the high rate of novel names

in Alberta. Alberta also experienced drammatic population growth and immigration: the

population has grown 19%/decade on average since 1981, of which 72% is due to immigration

(34% domestic and 38% international). High immigration implies that a higher growth rate

is required to achieve a replacement rate of copying in the face of novel incoming names,

and therefore even the highest growth rates of names in Alberta are not enough to replace

themselves.

Previous studies of rank-abundance distributions (Hahn and Bentley, 2003) did not reveal se-

lection among names. We replicated these results by simulating the model with the inferred

parameters (Methods) and found no significant difference between rank-abundance distri-

butions derived from the true data, simulations under the inferred parameters (Fig. 15d),

or simulations of the neutral model. This indicates that frequency-dependent growth, when

it is present, might not be evident in the rank-abundance distribution, and so the form

of frequency-dependence is not in general identifiable from rank-abundance data. We are

able to reject neutrality in name copying only by using much more information present in

timeseries.
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Figure 16: Frequency-dependence in American Kennel Club registrations. Popular
dog breeds are subject to fads. We infer the average frequency-dependence in the rate of
registration with the American Kennel Club among 153 dog breeds from 1926 to 2005. While
the rarest recognized breeds increase in registration frequency at 16%/year, a registration
among the commonest breeds inspires only 0.992 registrations of that breed in the next
year, on average.

Dog breed registrations have been studied to understand cycles of fasion (Ghirlanda et al.,

2013). In fashion and art markets, more common goods are often valued less, or new,

rare goods valued more O’Dwyer and Kandler (2017). Indeed, we infer negative frequency-

dependent growth rates of registrations by breed in an annual timeseries (1926-2005) of

registrations of the American Kennel Club (Fig. 16). In both first names and dog breeds,

the most popular types are selected against, and timeseries of popularity show clear, smooth

boom-bust cycles. Boom-bust cycles or a fitness benefit to novel types are impossible under

the exchangeable model. However, the form of frequency-dependence inferred under the ex-

changeable model also estimates the average fitness as a function of frequency at equilibrium.

Novelty bias creates effective negative frequency-dependence, and so the negative-frequency-

dependent w(p) we observe for dog breeds and common names is likely due to preferences for

novel types. Furthermore, whatever the detailed mechanisms, negative frequency-dependent

effects broadly encourage diversity while positive frequency-dependent effects suppresses it.

Positive frequency-dependence causes standardization (Wagner et al., 2016) or regulariza-
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tion (Pagel et al., 2007; Ferdinand et al., 2013). Language is the prototypical social standard:

most languages express most concepts just as well as any other, yet the utility of speaking

a particular language depends strongly on social context. Are people more likely to adopt

more common languages? If so, an increasingly interconnected global society would pose a

direct threat to all but the most common languages, as has been widely reported (Krauss,

1992; Mufwene, 2002; Abrams and Strogatz, 2003).

We directly examined the influence of commonness or rarity on language shift using the

framework of frequency-dependent selection. Language shift occurs for many reasons that

might relate to culture, economic access, politics, history, or identity (Mufwene, 2001).

Nonetheless, imposing a model of frequency-dependent selection isolates the average effect

of frequency on language-shift, which has often been of interest (Crowley, 1995; Abrams

and Strogatz, 2003).

Canada’s rich history of multilingualism and self-reported census data on language spoken

at home provide a testbed for answering the question. We inferred the frequency-dependent

fitness relationship using a four-point timeseries of 112 language categories for roughly

30 million speakers in each 5-year Census of Population since 2001 (2001-2016, Methods,

Fig. 17). Our measurement of frequency-dependent growth rate conflates growth in language

use due to language shift, immigration, and human demography into a single measure of

per-capita propensity to reproduce one’s language as a function of the language’s frequency

among speakers. Most languages (63%) changed frequency bin during the timeseries, and all

non-empty bins included at least six languages except for the highest-frequency bin, which

contained only English and French. Consistent with näıve expectation, average growth rate

increases with commonness from around -5.9%/year for languages represented by around

1 in 100,000 speakers to 0.1%/year for Canada’s most frequent languages, English and

French. Yet the highest growth rates are found among the rarest languages, spoken by

around one in one million—languages spoken by 10s to 100s of people. Among these rarest

languages, we find Celtic, which is globally endangered (Kandler et al., 2010), and languages
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Figure 17: Frequency-dependent bias in language shift. The rarest languages are
more likely to be adopted per capita than more frequent languages among all languages in
Canada (112 languages), indigenous languages of Mexico (57), and common languages in
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Grey boxes indicate sensitivity to resampling underlying data (middle 95 quantiles of boos-
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frequency range. The lowest frequency interval inferred from US data is not shown due to
problems with partial censorship in the source data.
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of the Dravidian family, rare in Canada but common in parts of India and Sri Lanka. The

preponderance, however, are indigenous (Gwich’in, Haida*, Iroquoian, Kutenai*, Mohawk,

Nootka/Nuučaanu l**, Thompson/Nlaka’pamuctsin*, Tlingit**, and Tsimshian**), of which

most are native to the Pacific coast. These cultures underwent brutal repression persisting

to the end of the 20th century that curtailed use of their languages by disrupting the

transmission of culture across generations (Truth and Reconciliation Commission of Canada,

2015). The majority of these languages are now considered severely (*) or critically (**)

endangered (Moseley, 2010). Previous models based on demography have reported and

predicted precipitous declines (Krauss, 2007). The contrary high growth rate in adoption

we observe could be attributable to confounding factors, to historical rebound, or to intrinsic

benefits to speakers of rare languages.

We replicated our analysis in three timeseries from Mexico, Zambia, and the United States,

to understand the generality of our finding and control for confounding factors. In Mexico,

the decennial census specifically measures the use of indigenous languages, as the govern-

ment must provide services in indigenous languages by Article 2 of its constitution and the

Ley General de Derechos Lingǘısticos de los Pueblos Ind́ıgenas (General Law of Linguistic

Rights of Indigenous Peoples) of 2003. The decennial census provides a three-step timeseries

(1990-2010) of 5-7 million speakers in roughly 100 language categories, some with as few

as 4 speakers. The growth rates we measure from this timeseries conflate only demograpy

and language-shift, thus providing a natural control for effects of immigration, as indige-

nous speakers can be assumed not to immigrate. Indeed, indigenous languages of Mexico

replicate the pattern seen in Canada of the highest growth rates in the rarest languages, so

we conclude that this pattern is not due to immigration.

In Zambia, detailed decenial census data is available on the use of 61 languages over approx-

imately 10 million speakers and 30 years (1990-2010). Zambia’s linguistic diversity likely

far exceeds what was recorded, as the languages of 50,000 speakers were not represented in

the 61 recorded languages, and the lowest recorded frequency was 320 speakers of Mbowe.
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Despite being a British colony before its independence in 1964, English, Zambia’s official lan-

guage, is spoken by a small minority (1.1-1.5%), reflecting how language adoption depends

on social and economic details despite broadly similar patterns of colonization (Mufwene,

2001). Our inference of frequency-dependence in Zambia (Methods) is consistent with both

the highest growth rates in the rarest languages, and the pattern of increasing growth rate

from intermediate to the most common languages. Furthermore, self report census data has

been criticized due to the incentives of respondents to exagerate or conceal rare language

use for political or historical reasons (Krauss, 2007). Yet, our inference of the same pattern

across three countries and two continents with very different histories, cultures, and social

and economic standing of minorities shows that biases in self report data is not influencing

our result.

In the United States, the American Communities Survey provides an annual timeseries

(2000-2015) of the useage rates of 89 common language categories as public-use microdata.

Our analysis (Methods) reveals a general pattern of negative frequency-dependent growth

rate across the range of frequencies present in the data. In particular, English, the only

representative of the highest frequency category, is below replacement fitness, declining at

a rate of -0.4%/year, consistent with US Census reports on increase in the use frequency of

languages other than English over recent decades driven in large part by immigration (Ort-

man and Shin, 2011). More generally, the growth rates of non-English speach communities

in the United States are controlled by immigration. Immigration in the United States is

strictly regulated with caps on numbers of immigrants from particular countries. These caps

limit the most common immigration flows, and thus inherently impose negative frequency-

dependence. We therefore conclude that our observation of negative frequency-dependence

is primarily to immigration, and thus cannot measure language shift.

A movement within linguistics now more than 25 years old (Krauss, 1992) has sought

to advertise (Nettle, 2000; Miyaoka et al., 2007) and even reverse (Fishman, 1991) the

decline of rare languages worldwide. Our findings run contrary to the percieved instability
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1938 Name Current Name 1938 Ct. Cur. Ct. Current Source

Canada

Haida Haida 2,500 10 2011 Census

Iroquois Mohawk 8,000 155 2011 Census

Tukudh Gwich’in 2,000 60 2011 Census

United States

Arapahoe Arapaho 2,000 1,065 2009-2013 ACS

Arikara Arikara 400 155 2009-2013 ACS

Cheyenne Cheyenne 3,000 1,920 2009-2013 ACS

Hidatsa Hidatsa 470 625 2009-2013 ACS

Hopi Hopi 4,000 6,075 2009-2013 ACS

Keres Keres 5,000 13,190 2009-2013 ACS

Seneca Seneca 3,000 1,015 2009-2013 ACS

Shawnee Shawnee 1,000 255 2009-2013 ACS

Winnebago Winnebago 1,000 1,720 2009-2013 ACS

Mexico

Zapotec Zapoteco 5,000 477,070 Census 2010

Northern Rhodesia

— — — — —

Table 4: Languages with less than 10,000 speakers prior to 1938 in Canada,
United States, Mexico, and Northern Rhodesia. 1938 values are all languages that
appear in The Book of a Thousand Tongues (North, 1938) in the geographic index for the
respective country with a number of speakers less than 10,000 indicated. All 15 languages
listed for Northern Rhodesia had no number of speakers indicated or a number greater
than 10,000. Current counts are based on questions about language spoken at home in
Canadan and US census data, or indigenous language spoken in Mexican census. Although
the 1938 name“Iroquois” could refer to any one of several languages, the translation listed is
Mohawk, and its translator, Joseph Onasakenrat (1845-1881), was a Mohawk-speaking Chief
who lived and attended seminary near Montreal, and so this is presumably the population
of “some 8,000 Indians, living in Canada, just north of Montreal” (North, 1938).

of rare languages. In comparison to the predictions of neutral models used in language

contact (Trudgill, 2004) and elsewhere (Lycett, 2008), the negative frequency-dependent

growth rate we find predicts longer persistence and lower probability of extinction for rare

languages. Furthermore, models that use age and geography of native speakers (Krauss,

2007) to avoid questions about the legitimacy of self report data have done so at the cost

of constitutively denying the possibility of language uptake by younger generations. We

therefore question whether rare languages are fragile at a baseline. Linguists have reported

that languages with less than 10,000 speakers are in danger of extinction the timescale of a

century (Dixon, 1991; Crowley, 1995). The Book of a Thousand Tongues (North, 1938), a

77



forebearer to the Ethnologue (Canonge and Pittman, 1958) index of world languages, lists

13 languages with fewer than 10,000 speakers prior to 1938 in Canada, the United States,

Mexico, and Northern Rhodesia. Of these, all still appear in current national censuses

(Table 4). Following smallpox epidemics of 1860, the population of Haida speakers was

reduced to around 450 (Van Den Brink, 1974), yet it is still spoken and taught to children

today (Cf. e.g. the Skidegate Haida Immersion Program, HlGaagilda Xaayda Kil Naay).

Furthermore, inappropriately treating rare languages or cultures as fragile of themselves

ignores potential acute threats such as genocide, extractive economic projects, occupation,

or religious or national indoctrination programs.

The high growth rate of rare languages is encouraging for rare language preservation, but

should not be taken as relief from concern. Languages with fewer speakers are still pre-

sumably nearer to extinction. Furthermore our model predicts these same languages to

be subject to much stronger stochastic drift than common languages, and so still suffer a

high danger of local extirpation or extinction. Language shift is a complex topic with many

determining factors unique to particular languages such speakers’ exposure to the global

economy (Mufwene, 2002), yet some component of language growth or decline is due to the

size of its pool of speakers.

Inferring frequency-dependent selection reveals something about the competitive environ-

ment of alternative equivalent traits. Although we have examined social traits here, genetic

and phenotypic timeseries in biology are becoming more available and likely to reveal the

ecological processes underlying evolutionary change.

Our model is exchangeable in the sense that no particular trait value is treated differently:

all experience the same frequency-dependent selection. Nonetheless, frequency-dependent

growth explains why one element, such as VHS, may remain highly popular even when

alternatives are intrinsically superior. The exchangeable model generalizes neutral models

by allowing selection without special treatment for any particular type. On the other hand,

the exchangeable model is a simple special case of frequency-dependent selection where each
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type is allowed to have unique behavior. The general case of frequency-dependent selection is

notoriously complex (Nahum et al., 2011; Nowak and Sigmund, 2004), but the exchangeable

model provides a tractable special case. Classic cases of frequency-dependent selection such

as sex ratio evolution (Karlin and Lessard, 1986) and handedness in scale-eating cichlids

(Hori, 1993) fit neatly within the exchangeable model.

3.1. Inferrence

We infer an effective frequency-dependent selection in a Wright-Fisher process. We assume

that the relative fitness of a type at frequency p is w(p). The Wright-Fisher process allows

us to write the transition probabilities in the infinite alleles process with exchangable alleles

of fitness w(p) explicitly, and thus simulate the process.

If we can describe the true w(p) using a few parameters, the method of maximum likelihood

allows us to infer the parameters if we can optimize the likelihood of a timeseries. The tran-

sition probabilities in the Wright-Fisher process are the multinomial sampling probabilities

from the current frequencies, weighted by the marginal fitness:

Xt+1|Xt ∼ Multinom(Nt, w(Xt) ·Xt). (3.2)

Thus, the probability of any sample path X0, ..., Xt is the string of conditional probabilities

Pr(Xt|Xt−1) ·Pr(Xt−1|Xt−2) · ... ·Pr(X1|X0). Each conditional probability follows the multi-

nomial distribution function, f(x, π). Viewed as a function of the observation x, f is the

distribution function, whereas as a function of the parameters π, f is the likelihood function.

Thus, given a realization of the standards process xt,
∏t
i=1 f(xt, w(xt−1,i, π)i·xt−1) gives the

likelihood of the parameters π. Knowing the form of w(x, π), such as w(x, α) = 1 + αx, we

can compute the likelihood of a given α. We use the GNU Scientific Library provides to com-

pute the log-probability (log-likelihood) of each multinomial sample given the expectations

derived from w(p).

Finding the optimal parameter set, in particular when w(p, θ) may have many parameters,
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may be challenging. When the log-likelihood is concave, better optimization algorithms are

available. The likelihood of a sample path is the product of the conditional likelihoods,

and therefore the sample path log-likelihood has the same concavity as each conditional

likelihood. The multinomal log-likelihood is

L = lnN !−
∑
i

lnx′i! +
∑
i

x′i lnπi(x, θ), (3.3)

where πi refers to probability a random birth is of type i. Writing this in terms of w, and

bundling terms that are not a function of the parameters into a constant c,

L = c+
∑
i

x′i ln
xiw(xi, θ)∑
j xjw(xj , θ)

= c+
∑
i

x′i lnxiw(xi, θ)−
∑
i

x′i ln

∑
j

xjw(xj , θ)


= c−N ln

∑
j

xjw(xj , θ)

+
∑
i

x′i lnxiw(xi, θ).

If w(x, θ) = 1 + θx, for example this would be

L = c+
∑
i

x′i ln
xi(1 + θxi)∑
j xj(1 + θxj)

. (3.4)

To find local maxima of the likelihood, we would like to take the derivative with respect to

θ.

d

dθ

−N ln

∑
j

xjw(xj , θ)

+
∑
i

x′i lnxiw(xi, θ)


=−N

∑
j xj

d
dθw(xj , θ)∑

j x
′
jw(xj , θ)

+
∑
i

x′i

d
dθw(xi, θ)

w(xi, θ)
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Figure 18: We let w(x) be a piecewise constant function with discontinuities at bi, and
selection coefficient si within each bin.

with extrema found at

∑
i

x′i

d
dθw(xi, θ)

w(xi, θ)
= N

∑
j xj

d
dθw(xj , θ)∑

j xjw(xj , θ)
.

We produce a non-parametric approximation to the function w(x) by dividing frequencies

x into bins. That is, consider the case when w is a piecewise-constant function of x, with

parameters θ = {si} for each piece. We then infer the most likely fitness of types within each

frequency interval under the model using methods from image reconstruction. This gives

a discrete frequency-dependent fitness function, which is a good approximation to the true

continuous function. Using finer intervals gives a better approximation until too little data

is available to get precise parameter estimates for each interval, analogous to the tradeoff

between spatial precision and noise in images.

The full model, is then a Wright-Fisher process on a population N(t) with mutation strength

Nµ and a piecewise-constant realtive fitness function w(x|sk) with D bins with boundaries

b1, ..., bD−1 ∈ (0, 1) and fitnesses sk, k ∈ [1, ..., D] where w(x) = esk when x ∈ (bk−1, bk]. For

notational simplicity we let bD = 1 and b0 = 0, so that (b0, bD] = (0, 1]. Frequency 0 is not

in the domain of w(x): types that were at frequency 0 in the last generation are considered

mutants introduced at mutation rate µ. The likelihood of an update to counts x′i of each
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type i and m new mutants from current counts xi is given by

L(xi|sk, µ,N) = lnN !− lnm!−
∑
i

lnx′i!

+m lnµ+ (N −m) ln(1− µ)

+
∑
i

xi ln
[
x′i
xi
N
w(xi)

]
− (N −m) ln

[∑
i

xi
N
w(xi)

]
(3.5)

Maxima of the likelihood are obtained by setting the derivatives with respect to all param-

eters equal to zero. This results in a system of equations. The equation for µ does not

involve any other parameters and thus µ can be estimated separately.

∂

∂µ
L =

m

µ
− N −m

1− µ
= 0, (3.6)

which implies m = Nµ̂: the best estimate of the mutation rate is the observed fraction of

mutants. Over the timeseries then, ∂
∂µ

∑T
t=1 Lt implies µ̂ =

∑T
t=1mt/

∑T
t=1Nt: the best

estimate of per-generation mutation rate is the observed fraction of mutants over the entire

timeseries. The condition for maximum-likelihood ŝk is the set of equations ∂
∂sk
L = 0 for

all k ∈ [1, ..., D]. This amounts to the system of simulaneous equations, one for each k,

∑
t∈[1,T−1]

i:x
(t)
i ∈(bk−1,bk]

x
(t+1)
i =

∑
t∈[1,T−1]

(Nt+1 −mt+1)


∑

j:x
(t)
j ∈(bk−1,bk]

eŝkx
(t)
j∑

j e
ŝk(xj/Nt)x

(t)
j


 . (3.7)

This statement has the interpretation of“observed equals expected”: the left hand side is the

observed counts emmanating from the kth bin and the right side is the expected count given

the population configuration at time t and number of mutations that occurred between t

and t + 1. That is, setting the expected data equal to the observed data maximizes the

likelihood.

The system of equations (3.7) is difficult to solve, numerically or otherwise, primarily be-

cause of the ŝk that appear in the exponent in the sum in the denominator on the right
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hand side, which typically makes the equation for each ŝk non-linearly dependent on all

others.

To solve the equation, we use an MM or “Minorize and Maximize” algorithmic strategy

(Lange et al., 2000). The overall strategy is to replace the likelihood L(s) with a family

of surrogate minorant functions g(s|sm) that have two properties: g(sm|sm) = L(sm), and

g(s|sm) ≤ L(s), for whatever s, sm are in the domain of L. The minorant is guaranteed to

be at most L everywhere and to match L and its derivative at some point sm. One can

reason that sm is either the optimum of L, in which case the derivative of g and L at sm is

zero, or else, providing g and L are smooth functions, the derivative of g is non-zero and the

optimum of g likes somewhere between sm and the optimum of L. If we chose a g that is

easy to optimize, we can monotonically approach the optimum of L by finding the optimum

s in g(s|sm), and then using that s as sm in the next iteration. Each iteration closes the

gap between sm and the true optimum of L.

To accomplish this, we must choose an appropriate minorant. Many minorants are possible,

such as a quadratic approximation, as discussed in Lange (2010), and I investigated a few

before finding the right one. Examining the likeihood function Eq. 3.5, we can notice that

the very last term,

−(N −m) ln

[∑
i

xi
N
w(xi)

]

involves a sum inside the log, which gives rise to the troublesome denominator. This function

in turn, since it is a negative log, is easily minorized using the term’s Taylor expansion:

ln

[∑
i

xi
N
w
(
xi|s(m)

)]
+

D∑
k=1

(
sk − s

(m)
k

) ∂

∂sk
ln

[∑
i

xi
N
w
(
xi|s(m)

)]
≥ ln

[∑
i

xi
N
w(xi|s)

]

The derivative with respect to sk (though not s
(m)
k ) on the left-hand is linear, whereas

the derivative with respect to sk of the right-hand side, as we have seen, is not. Setting

the derivatives of the minorant to zero yields a system of equations identical to Eq. 3.7

except that the ŝk in the denominator has been replaced by s
(m)
k . Now the kth equation
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is a function only of sk and the optimization is trivial. I use these optima as the new sm

and proceed until no progress is achieved between iterations, that is, the derivative of the

minorant at sm has reached approximately zero. At this point, the minorant and L are

both maximized.

Two facts are notable about the maximum-likelihood parameters. First, the mutation rate

is independent of the parameters sk. This is important since the mechanisms of mutation

are often unknown or ill-defined in cutural contexts. For example, in order for a name not

present in the previous year to appear in the US Social Security Administration database,

it must appear in 5 births in that year. Thus our measurement of mutation rate conflates

the probabilities of an initial mutation and a subsequent rise to count 5. This results in a

biased (unfairly low) estimate of mutation rate, but is irrelevant to the parameters sk as they

are independent. Second, the derivatives of likelihood do not depend on N except where

N normalizes counts to frequencies. Thus, the inferrence depends on the frequencies of

types, but not the total population size: The variance in frequency increments are ignored.

This indicates that estimates of sk and estimates of effective population size (by whatever

means) are also independent. Thus, changing timescales or population sizes (while suitably

transforming units) has no effect on the inferrence of sk in the diffusion limit assuming time

intervals are short. Alternatively stated: if each increment of the data were replaced by the

same increment followed by n generations of neutral Wright-Fisher evolution, the expected

value of the estimators of sk are unchanged.

3.2. Replacement fitness calculation

In Figure 17 and elsewhere, we compute the replacement fitness, w̄. The replacement fitness

is a kind of average fitness. It is the fitness, which, if a type with that (constant, frequency-

independent) fitness were born at the beginning of the timeseries, its expected frequency at

the end of the timeseries would be the same. The time-weighted population average fitness

for generations t ∈ {1, ..., T} and frequencies xi,t of types i ∈ {1, ..., kt} at generation t, all
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types having frequency-dependent fitness w(x) = es(x), is

s̄ =

(
1

T

) T∑
t=1

log

(
µ+

kt∑
i=1

xi,tw(xi,t)

)
.

3.3. Confidence intervals

We use two confidence intervals (CIs) in this study: a model-based CI and a data-based CI.

The model-based CI is an accurate theoretical prediction of the variance on the estimator

subject to the assumption that the data is generated by the model. The data-based CI

is a non-parametric bootstrap (Efron and Tibshirani, 1986) which generates an empirical

distribution of the estimator by resampling the underlying data. The data-based CI makes

no assumption that the data are generated from the true model, but does assume that a

resampling scheme is available that generates equally probable samples, such as multinomi-

ally resampling the observed dataset. Both of these assumptions may fail. Corroboration

between the two CIs, as we observe in baby names and dog breeds, supports the accuracy of

the model and the underlying assumptions. When the different CIs disagree, the data-based

CI is more conservative, as it accounts for failures of the model to describe the data.

For the large samples used to infer dog breeds and baby names, we use model-based con-

fidence intervals on parameter inferences computed using the observed information (Efron

and Hinkley, 1978), a measure of the curvature of the likelihood function at its maximum. In

the limit of may independent observations and an identifiable inference, the log-likelihood

surface is approximately parabolic near its maximum. The observed information is the

matrix of second partial derivatives (Hessian matrix), and in this limit, its inverse is the

variance-covariance matrix of the estimators ŝk. We compute 95% confidence intervals on

each paramter as 1.96σŝk by projecting the variance-covariance matrix onto each axis k.

We verifed the confidence intervals by simulation using a parametric bootstrap. By sim-

ulating equal sample sizes to our data using the model with the inferred parameters, we

find that the 95% confidence intervals derived from the observed information include the
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true parameters within statistical error of 95% of the time after 1000 trials for each of our

datasets.

We compute data-based CIs by resampling transitions within the timeseries. Bootstraps

that accomodate the dependence relationships that may be present in timeseries is an open-

ended topic (Politis, 2003), because generally there is no resampling scheme available that

logically guarantees that the resampled data is equiprobable under the true generating pro-

cess, in contrast to the boostrap argument for independent samples. Nonetheless, in our

case, the likelihood calculation sums over observations minus expectations of change from

one timestep to the next, and so it is these transitions that are assumed to be independent

between types and across time periods. Unaccountedfor dependence between observations

enters by either failures of the Markovian assumption in the true generating process, or

by effects of competition between types induced by finite population size. We attempt to

resample these in a way that preserves independence, but also roughly preserves popula-

tion size, in order to preserve the meanings of frequency. We resample a given timestep

by chosing at each timestep transitions xi → x′i from that timestep in the data uniformly

with replacement. We determine the number of transitions to include at each timestep by

iteratively including another transition sample with probability max(1, p − c/e − c) where

c is population size of thus-far-included transitions, p is the observed population size in

the original data, and e is the expected population size increase by including one more

transition sample. This guarantees that the expected resampled population size is equal

to the observed population size. This resampling scheme is equivalent to a multinomial

resampling of independent observations which accounts for robustness of the estimator to

sampling noise, but also preserves the frequency interpretation of the original count data.

The frequency of a given count is allowed to vary around its expectation in the bootstrap,

and thus the bootstrap also represents robustness of the estimator to the inclusion or omis-

sion of observations due to censorship in the data, since such omissions would cause the

frequencies in observed data to fluctuate. As in the true data, types of high frequency are

more likely to be observed. Our bootstrap thus represents robustness of the estimator to
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sampling noise as well as censorship bias against low-frequency types. We use data-based

CIs for the small samples available for language use. Model-based CIs are not accurate in

these cases due to non-asymptotic behavior, nor does the model fully account for the data.

The bootstrap CIs are conservative estimates of the true 95% CI.

3.4. Inferring Ne

Our primary concern thusfar has been estimating fitness as a function of frequency, which

determines the mean change (advection) in the diffusion equation. The diffusion term is

also of interest. In the diffusion limit of the Wright-Fisher process, the diffusion term is

(1/2)∂2/∂x2(x(1 − x)/N)φ(x, t), where N is the number of allele copies in the Wright-

Fisher process (Kimura, 1964), and φ(x, t) is the probability density at frequency x at

time t. The coefficient x(1 − x)/N describes that variance in gene frequency accrues at a

rate of one binomial sampling per generation, and has the units of a transport coefficient:

frequency2/time. The parameter N represents the Wright-Fisher effective population size,

and is equal to the census population size (or its geometric mean if it fluctuates) when

one round of random assortment (a single multinomial sample) occurs at each sampling

interval, g, i.e., one generation. For short time intervals, variance accrues linearly in time in

the diffusion equation, and so if sampling is conducted at a different interval g′, N ′ will be

rescaled proportionately such that g/g′ = N ′/N . Thus, at sampling interval g and census

population size N , if the inferred effective population size Ne differs from N , then there is

an effective generation time ge = gN/Ne which is the time for the diffusion to accrue the

same variance as one Wright-Fisher generation—one multinomial sample of the full census

population.

We infer Ne by rescaling frequency increments in order to produce homoscedastic updates

under the inferred model parameters. If ri are the residuals of the data, ri = xi− ei, where

xi are the data and ei are the expectations under the model, then the rescaled increments
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are

Yi =
ri√

2xi(1− xi)
. (3.8)

The rescaled increments Yi have variance 1/Ne per generation, so Ne = 1/S where S is the

sample variance of the Yi.

We estimate the effective population size Ne and a generation time for baby names in each

country in Table 5, where the generation time represents the characteristic timescale on

which complete mixing of names occurs.

Country Years Births/year Inferred Ne Ne,s=0 Gen. time N/Ne µ Censorship

United States 1880–2015 1,818,516 371,920 386,140 4.89 0.007 < 5 births/year

France 1900–2015 676,734 48,882 53,260 13.84 0.006 < 4 births/year or < 20 ever

Netherlands 1946–2014 220,590 90,764 137,814 2.43 0.067 None

Ontario 1917–2013 99,698 23,680 25,172 4.21 0.019 < 5 births/year

Scotland 1974–2015 60,921 23,506 33,770 2.59 0.053 None

Norway 1946–2015 58,196 19,073 19,486 3.05 0.011 < 4 births/year

Alberta 1980–2015 38,607 796 1,187 48.52 0.145 None

Ireland 1998–2015 43,164 3,756 3,707 11.49 0.012 < 3 births/year

Table 5: Census population size N (geometric mean number of births per year) and Wright-
Fisher effective population size Ne inferred from the model residuals after fitting over the
duration of each timeseries. The innovation rate µ is the per-capita per-generation rate that
a novel name reaches observable frequency. The minimum observable freqeuncy varies by
country due variable policy regarding censorship of small counts as identity protection, thus
µ is lower in countries with more censorship, due to the decreased probability of achieving
observable frequency before extinction. Inferred Ne,s=0 is the Ne inferred from the residuals
of the neutral Wright-Fisher process.

3.5. Known model misspecification biases

Inference of parameters by maximum likelihood is unbiased when observations originate

from the model assumed in the likelihood calculation. Real processes never conform per-

fectly to a probabilistic model, so model misspecification can nonetheless introduce bias.

One source of model misspecification is that we believe the true process (births or adop-

tion of languages) to be continuous in time, but data is only available in discrete time.

Hence, some temporal variation in the frequency trajectories goes unobserved, leading to

bias towards neutrality. In the discrete-time process, a type at one frequency s(p1) moves

to another frequency in the next timestep p2 with probability depending on s(p1). In the
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continuous time process, however, the frequency p(t) may visit many frequencies in the

neighborhood of p1 and experience different fitness s(p(t)). Temporal discretization re-

moves the record of p(t), and so we attribute all selection experienced in bringing a type

from frequency p1 to p2 to its fitness at p1, s(p1). This averages s between adjacent seg-

ments of the piecewise-constant frequency-dependent fitness, creating a bias that tends to

equalize fitnesses between adjacent parameters. As a result, fitness values may be more

extreme (further from 0) than what we report.

3.6. Binning

The bin boundaries bk in the parameterization are arbitrary. The size or number of bins

represents a tradeoff between resolution in frequency and resolution in growth rate.

We employ two binning schemes: log-evenly-spaced binning, and quantile binning. In quan-

tile binning, we chose a number of bins to represent a subjective optimum between frequency

and growth rate accuracy. We then assign bin boundaries so that equal numbers of tran-

sitions in the data fall within each bin, thus the bin boundaries are the quantiles of the

frequencies that occur in the data. In log-evenly-spaced binning, we chose a number of

bins, and the bin boundaries are chosen to evenly partition (in log space) the range of

frequencies present in the data.

3.7. Particulars

3.7.1. Language spoken at home

We use census data that is designed to reflect language spoken at home for four countries.

For Canada we use tables of “Detailed Language Spoken at Home” or “Detailed Language

Spoken Most Often at Home”from Census 2001, 2006, 2011, and 2016. Each census reported

a different set of language categories. We harmonized this four-point timeseries by rewriting,

merging, or excluding language categories that changed over the course of the timeseries.

When langauge category names changed cosmetically, we rewrote them to a single category,
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e.g. interpreting “Nootka (Nuu-chah-nulth)”, “Nuu-chah-nulth (Nootka)” and “Nootka” as

“Nootka” for all timepoints. We merged categories when one category present in a (typically

earlier) timestep included multiple categories present in other (typically later) timesteps,

and the languages involved are similar, e.g., we aggregated “Cree”, “Plains Cree”, “Swampy

Cree”, “Woods Cree”, “Northern East Cree”, “Southern East Cree”, “Moose Cree”, “Michif”,

“Oji-Cree”, “Cree, not indicated elsewhere”, and“Cree, not otherwise specified” into the 2001

language category “Cree” in each timestep. We excluded language categories which were

too general to indicate which language was spoken (e.g. “Creoles”, “Chinese, not otherwise

specified” or “Austro-Asiatic Languages, not indicated elsewhere”) or which were recorded

in only some census timepoints (e.g. “Burmese”). The full mapping between categories is

given in Table 6.

We inferred the frequency-dependent growth rate of languages in Mexico from a timeseries

of the indigenous languages (lengua ind́ıgena) from decennial national census 1990-2010 ac-

cessed through IPUMS International (Ruggles et al., 2003, Harmonized variable LANGMX

with Person weight). We merged subcategories of Zapoteco, Mixteco, Pame, Chinanteco,

and Pima because Census 2010 did not record such subcategories, and excluded languages

which were not recorded in each census. We assume that non-indigenous languages share

the same, constant average fitness. As there is certainly variation in frequency and fitness

in non-indigenous languages, our assumption is equivalent to assuming that non-indigenous

languages are at equilibrium with respect to their interaction with indigenous languages

(lengua ind́ıgena). We thus include one type “NIU (not in universe)” representing all non-

indigenous languages, whose average fitness is controlled by one parameter.

The timeseries from Zambia derives from decennial national census 1990-2010 accessed

through IPUMS International (Ruggles et al., 2003, Harmonized variable LANGZM1 (“Pri-

mary language”) with Person weight). We excluded “Mashasha” which was not recorded in

Census 1990 or 2000, and the non-language categories “Other”, “Other African language”,

“Language of the Americas other than English”, “Asian language”, “European language”,
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Table 6: Mappings between language categories for languages occurring in Canadian census
2001-2016 used for time series inference.

Source name Normalized name Source name Normalized name

Aboriginal languages, n.i.e. EXCLUDE Latvian Latvian (Lettish)

Aboriginal languages, n.o.s. EXCLUDE Latvian (Lettish) Latvian (Lettish)

African languages, n.i.e. EXCLUDE Lillooet Salish s.l.

Afrikaans EXCLUDE Lingala Bantu languages, n.i.e.

Afro-Asiatic languages, n.i.e. EXCLUDE Lithuanian Lithuanian

Akan (Twi) Twi Macedonian Macedonian

Albanian EXCLUDE Malagasy Malayo-Polynesian
languages, n.i.e.

Algonquian languages, n.i.e. Algonquin Malayalam Malayalam

Algonquin Algonquin Malay-Bahasa Malay-Bahasa

American Sign Language EXCLUDE Malay Malay-Bahasa

Amharic Amharic Malayo-Polynesian languages,
n.i.e.

Malayo-Polynesian
languages, n.i.e.

Arabic Arabic Malecite Malecite

Armenian Armenian Maltese Maltese

Asiatic languages, n.i.e. EXCLUDE Mandarin Mandarin

Assyrian Neo-Aramaic EXCLUDE Marathi Marathi

Athabaskan languages, n.i.e. Athapaskan s.l. Michif Cree

Athapaskan languages, n.i.e. Athapaskan s.l. Micmac Micmac

Atikamekw Attikamekw Mi’kmaq Micmac

Attikamekw Attikamekw Min Dong EXCLUDE

Austro-Asiatic languages, n.i.e. EXCLUDE Min Nan (Chaochow, Teochow,
Fukien, Taiwanese)

EXCLUDE

Austro-Asiatic languages, n.i.e EXCLUDE Mohawk Mohawk

Austronesian languages, n.i.e. EXCLUDE Mongolian EXCLUDE

Azerbaijani Turkic languages, n.i.e. Montagnais (Innu) Montagnais-Naskapi

Babine (Wetsuwet’en) Athapaskan s.l. Montagnais-Naskapi Montagnais-Naskapi

Bamanankan Niger-Congo languages,
n.i.e.

Moose Cree Cree

Bantu languages, n.i.e. Bantu languages, n.i.e. Naskapi Montagnais-Naskapi

Beaver Athapaskan s.l. Nepali EXCLUDE

Belarusan Byelorussian Niger-Congo languages, n.i.e. Niger-Congo languages,
n.i.e.

Belarusian (Byelorussian) Byelorussian Niger-Congo languages, n.i.e. Niger-Congo languages,
n.i.e.

Bengali Bengali Nilo-Saharan languages, n.i.e. EXCLUDE

Berber languages (Kabyle) EXCLUDE Nilo-Saharan languages, n.i.e. EXCLUDE

Berber languages, n.i.e. EXCLUDE Nisga’a Nishga

Bikol Malayo-Polynesian
languages, n.i.e.

Nishga Nishga

Bilen EXCLUDE Nootka Nootka

Bisayan languages Malayo-Polynesian
languages, n.i.e.

Nootka (Nuu-chah-nulth) Nootka

Blackfoot Blackfoot Northern East Cree Cree

Bosnian Slavic languages, n.i.e. Northern Tutchone Athapaskan s.l.

Bulgarian Bulgarian North Slave (Hare) Slavey

Burmese EXCLUDE North Slavey (Hare) Slavey

Burmese Tibeto-Burman Norwegian Norwegian

Byelorussian Byelorussian Nuu-chah-nulth (Nootka) Nootka

Cantonese Cantonese Ojibway Ojibway

Carrier Carrier Oji-Cree Oji-Cree

Catalan EXCLUDE Okanagan Salish s.l.

Cayuga Iroquoian Oneida Iroquoian

Cebuano Malayo-Polynesian
languages, n.i.e.

Oriya (Odia) Indo-Iranian languages,
n.i.e.

Celtic languages, n.i.e. Celtic Oromo EXCLUDE

Chaldean Neo-Aramaic EXCLUDE Other languages, n.i.e. EXCLUDE

Chaochow (Teochow) EXCLUDE Ottawa (Odawa) Algonquin

Chilcotin Chilcotin Pampangan (Kapampangan,
Pampango)

Malayo-Polynesian
languages, n.i.e.

Chinese languages, n.i.e. EXCLUDE Pampango Malayo-Polynesian
languages, n.i.e.

Chinese languages, n.o.s. EXCLUDE Pangasinan Malayo-Polynesian
languages, n.i.e.

Chinese, n.o.s. [2] EXCLUDE Panjabi (Punjabi) Punjabi

Chinese, n.o.s. [3] EXCLUDE Pashto Pashto
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Table 6: (continued)

Source name Normalized name Source name Normalized name

Chinese, n.o.s. EXCLUDE Persian (Farsi) Persian (Farsi)

Chipewyan Dene Plains Cree Cree

Comox Salish s.l. Polish Polish

Cree Cree Portuguese Portuguese

Cree, n.i.e. Cree Punjabi (Panjabi) Punjabi

Cree, n.o.s. Cree Punjabi Punjabi

Creole languages, n.i.e. EXCLUDE Quebec Sign Language EXCLUDE

Creole languages, n.i.e. EXCLUDE Romance languages, n.i.e. EXCLUDE

Creole, n.o.s. EXCLUDE Romanian Romanian

Creoles EXCLUDE Rundi (Kirundi) Bantu languages, n.i.e.

Croatian Croatian Russian Russian

Cushitic languages, n.i.e. EXCLUDE Rwanda (Kinyarwanda) Bantu languages, n.i.e.

Czech Czech Salish languages, n.i.e. Salish s.l.

Dakota Dakota/Sioux Sarcee Athapaskan s.l.

Dakota/Sioux Dakota/Sioux Sarsi (Sarcee) Athapaskan s.l.

Danish Danish Scottish Gaelic Gaelic languages

Dene Dene Sekani Athapaskan s.l.

Dinka EXCLUDE Semitic languages, n.i.e. Semitic languages, n.i.e.

Dogrib Dogrib Serbian Serbian

Dogrib (Tlicho) Dogrib Serbo-Croatian Serbo-Croatian

Dravidian languages, n.i.e. Dravidian Shanghainese EXCLUDE

Dutch Dutch Shona Bantu languages, n.i.e.

Edo Niger-Congo languages,
n.i.e.

Shuswap (Secwepemctsin) Shuswap

English English Shuswap Shuswap

Estonian Estonian Sign languages, n.i.e EXCLUDE

Ewe Niger-Congo languages,
n.i.e.

Sindhi Sindhi

Fijian Malayo-Polynesian
languages, n.i.e.

Sinhala (Sinhalese) Sinhalese

Finnish Finnish Sinhalese Sinhalese

Flemish Flemish Sino-Tibetan languages, n.i.e. Tibeto-Burman

French French Siouan languages
(Dakota/Sioux)

Dakota/Sioux

Frisian Frisian Siouan languages, n.i.e. Dakota/Sioux

Fukien EXCLUDE Slavey, n.o.s. Slavey

Fulah (Pular, Pulaar, Fulfulde) EXCLUDE Slavic languages, n.i.e. Slavic languages, n.i.e.

Gaelic languages Gaelic languages Slovak Slovak

Ganda Bantu languages, n.i.e. Slovene (Slovenian) Slovenian

Ga Niger-Congo languages,
n.i.e.

Slovenian Slovenian

Georgian EXCLUDE Somali Somali

German German Southern East Cree Cree

Germanic languages, n.i.e. EXCLUDE Southern Tutchone Athapaskan s.l.

Gitksan Gitksan South Slave Slavey

Gitxsan (Gitksan) Gitksan South Slavey Slavey

Greek Greek Spanish Spanish

Gujarati Gujarati Squamish Salish s.l.

Gwich’in Gwich’in Stoney Dakota/Sioux

Haida Haida Straits Salish s.l.

Haisla Wakashan s.l. Swahili Swahili

Haitian Creole EXCLUDE Swampy Cree Cree

Hakka Hakka Swedish Swedish

Halkomelem Salish s.l. Tagalog (Pilipino, Filipino) Tagalog (Pilipino)

Harari EXCLUDE Tagalog (Pilipino) Tagalog (Pilipino)

Hebrew Hebrew Tahltan Athapaskan s.l.

Heiltsuk Wakashan s.l. Tai-Kadai languages, n.i.e EXCLUDE

Hiligaynon Malayo-Polynesian
languages, n.i.e.

Taiwanese EXCLUDE

Hindi Hindi Tamil Tamil

Hmong-Mien languages EXCLUDE Telugu Telugu

Hungarian Hungarian Thai Thai

Icelandic Icelandic Thompson (Ntlakapamux) Thompson

Igbo Niger-Congo languages,
n.i.e.

Tibetan languages Tibeto-Burman

Ilocano Malayo-Polynesian
languages, n.i.e.

Tibetan Tibeto-Burman
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Table 6: (continued)

Source name Normalized name Source name Normalized name

Indo-Iranian languages, n.i.e. Indo-Iranian languages,
n.i.e.

Tibeto-Burman languages, n.i.e. Tibeto-Burman

Innu/Montagnais Montagnais-Naskapi Tigrigna Tigringa

Inuinnaqtun Inuit s.l. Tigringa Tigringa

Inuinnaqtun (Inuvialuktun) Inuit s.l. Tlicho (Dogrib) Dogrib

Inuit languages, n.i.e. Inuit s.l. Tlingit Tlingit

Inuktitut (Eskimo) Inuit s.l. Tsimshian Tsimshian

Inuktitut Inuit s.l. Turkic languages, n.i.e. Turkic languages, n.i.e.

Inuktitut, n.i.e. Inuit s.l. Turkish Turkish

Inuvialuktun Inuit s.l. Tutchone, n.o.s. Athapaskan s.l.

Iroquoian languages, n.i.e. Iroquoian Twi Twi

Iroquoian s.l. Iroquoian Twi Twi

Italian Italian type normalizedname

Italic (romance) languages, n.i.e. EXCLUDE Ukrainian Ukrainian

Japanese Japanese Uralic languages, n.i.e. EXCLUDE

Kabyle EXCLUDE Urdu Urdu

Kannada Kannada Uyghur Turkic languages, n.i.e.

Karenic languages Tibeto-Burman Uzbek Turkic languages, n.i.e.

Kashmiri Indo-Iranian languages,
n.i.e.

Vietnamese Vietnamese

Kaska (Nahani) Athapaskan s.l. Vlaams (Flemish) Flemish

Khmer (Cambodian) Khmer (Cambodian) Wakashan languages, n.i.e. Wakashan s.l.

Kinyarwanda (Rwanda) Bantu languages, n.i.e. Waray-Waray Malayo-Polynesian
languages, n.i.e.

Konkani Konkani Welsh Welsh

Korean Korean Wetsuweten Athapaskan s.l.

Kurdish Kurdish Wolof Niger-Congo languages,
n.i.e.

Kutchin-Gwich’in (Loucheux) Gwich’in Woods Cree Cree

Kutenai Kutenai Wu (Shanghainese) EXCLUDE

Kwakiutl (Kwak’wala) Wakashan s.l. Yiddish EXCLUDE

Lao Lao Yoruba Niger-Congo languages,
n.i.e.

Table 7: Mappings between language categories for languages occurring in United States
American Communities Survey 2000-2015 used for time series inferrence.

Source name Normalized name Source name Normalized name

.N/A (less than 5 years
old/speaks only English)

English .Pakistan N.E.C. EXCLUDE

.N/A (less than 5 years
old/speaks only English)

English .India n.e.c. EXCLUDE

.Navajo Navajo .India N.E.C. EXCLUDE

.Navaho Navajo .Pakistan n.e.c. EXCLUDE

.Miao-yao, Mien Mien .Chinese EXCLUDE

.Mien Mien .African EXCLUDE

.Miao, Hmong Hmong .Other Indo-European languages EXCLUDE

.Hmong Hmong .Other Asian languages EXCLUDE

.Hocano Ilocano .Other Pacific Island languages EXCLUDE

.Ilocano Ilocano .Other specified African languages EXCLUDE

.Sinlalese Sinhalese .Aleut-Eskimo languages EXCLUDE

.Sinhalese Sinhalese .South/Central American Indian languages EXCLUDE

.Lettish Latvian .Other Specified North American Indian languages EXCLUDE

.Afrikaans Afrikaans .Other languages EXCLUDE

.Afrikans Afrikaans .Uncodable EXCLUDE

.Latvian Latvian .Other Algonquian languages EXCLUDE

.Gujarati Gujarathi .Other Algonquin languages EXCLUDE

.Gujarathi Gujarathi .Other specified American Indian languages EXCLUDE

.Serbo-Croatian Serbocroatian .Other specified languages EXCLUDE

.Serbocroatian Serbocroatian .South/Central America Indian EXCLUDE

.American Indian EXCLUDE .Language not specified EXCLUDE
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and “Unknown”.

For the United States of America, we use public use microdata samples from the American

Communities Survey 1-year files from 2006 to 2015, available at http://www2.census.gov/

programs-surveys/acs/data/pums/. We use the variable LANP to designate language,

and we record the number of speakers as the sum of PWGTP (person weight) for each

distinct language. LANP codes the response to the question “What is this language?”

in the context “Does this person speak a language other than English at home?”. The

US census aggregates languages in the LANP variable so that they each achieve a high

minimum frequency or censors languages that do not achieve that frequency. We discarded

the minimum frequency bin in US data due to this explicit censorship bias. As with the

Canadian census, we harmonized languages according to the mapping in Table 7.
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CHAPTER 4 : Conclusion

We have seen that ideas from ecology and evolution can be powerful tools to understand

social and cultural dynamics, provided we are able to look at systems in the right way. This

investigation into cultural and social evolution has advanced science by providing a new

way of looking at cultural change, which has both predictive power and rationalizes existing

findings, and by advancing a general model of social evolution which has the capacity to

broadly categorize social systems and can be adapted to useful inference.

All around us, culture is evolving by highly complex mechanisms, yet, like the information

encoded in DNA, cultural information must be transmitted, and thereby exhibit some degree

of stochastic drift, just as in evolutionary biology. We may well find, as a science, that

only very few cultural traits support a reasonable analogy to biological alleles or biological

mutation, yet it is important to study those that do, so that we may recognize the similarities

and differences.

We see that exchangeable frequency-dependent selection covers a broad range of evolution-

ary phenomena, and allows us to categorize that broad range into a narrower range of pos-

sible behaviors. Chapter 1 presents a complicated evolutionary situation, involving sexual

selection that depends on diploid genotypes and the complexities of Mendelian segregation,

yet the situation nonetheless reduces to frequency-dependent selection because of a slow

manifold. Thus, there is some scale at which the particulars of the model disappear and the

behavior appears as a model of frequency-dependent selection. We observe a similar result

in Chapter 3 when investigating the frequency-dependence induced by novelty bias: This

resolves some of the debate about mechanisms of frequency-dependence (Brisson, 2018).

The pure frequency-dependent model provides a notion of effective frequency-dependence,

in much the same way that the population size in the Wright-Fisher process allows many

population structures amount to the same effective population size. Many mechanisms

may cause effective frequency-dependence, as observed by inference using the exchangeable

95



model. Many effects of frequency-dependence, by whatever mechanism, are broadly similar,

for example, encouragement or suppression of diversity.

By further research into the connections between mechanisms of drift, selection, or frequency-

dependent selection and their population-level consequences, we will understand more and

more of the change around us.
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APPENDIX

A.1. Detailed balance in the exchangeable model

Let Xt be the state of the population at time t, where (Xt)i ∈ {0, ..., N}, i ∈ {1, ..., S} is the

number of agents adopting standard i. The transition probability matrix of the embedded

Markov chain, (Xt+1 = (ω1, ω2, ..., ωn)|Xt = (υ1, υ2, ..., υn)), is zero unless ||Xt+1 −Xt||1 ∈

{0, 2} and (Xt+1 −Xt)· = 0. In other words, it is non-zero exactly when Xt+1 −Xt is the

sum of two vectors, ei and −ej where the es are the basis vectors e1 = (1, 0, 0, ...), e2 =

(0, 1, 0, ...), ..., eS = (..., 0, 1). At any starting point, the non-zero probabilities may be

indexed by i, j where Pij(xt) = (Xt+1 = xt − ei + ej |Xt = xt). This can be thought of as a

matrix

Pij(xt) =(i-type removed)(j-type added)

=
(xt)i
N

(
(1− µ)

w((xt)j)(xt)j∑S
k=1w((xt)k)(xt)k

+ µ
1

S

)

This looks like one step in a random walk on an S-dimensional simplex, where the one-step

probabilities change slightly depending on the location. We would like to to establish that

detailed balance holds, and observe the equilibrium distribution. First note that (Xt+1 =

i|Xt = j) = 0 iff (Xt+1 = j|Xt = i) = 0, and thus, detailed balance holds for all such

transitions. In light of this, the detailed balance condition can be rewritten:

Pij(x)π(x) = Pji(x− ei + ej)π(x− ei + ej),

where π(x) is the putative equilibrium probability of observing the population in a state x.

To establish this condition, it suffices to show that for any x, Pij(x)Pjk(x− ei + ej)Pki(x−

ei + ek) = Pik(x)Pkj(x− ei + ek)Pji(x− ei + ej). This comes from the Kolmogorov criterion

and the notion that larger loops fulfilling the Kolmogorov criterion may be built out of this
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set of small loops that fulfill the criterion. By simplification, the first loop’s product is:

xi
N

(
µc
w(xj)xj
Z(x)

+ µ
1

S

)
xj + 1

N

(
µc

w(xk)xk
Z(x− ei + ej)

+ µ
1

S

)
xk + 1

N

(
µc
w(xi − 1)(xi − 1)

Z(x− ei + ek)
+ µ

1

S

)
,

where the partition function Z(x) =
∑S

l=1w(xl)xl. The second loop’s product is:

xi
N

(
µc
w(xk)xk
Z(x)

+ µ
1

S

)
xk + 1

N

(
µc

w(xj)xj
Z(x− ei + ek)

+ µ
1

S

)
xj + 1

N

(
µc
w(xi − 1)(xi − 1)

Z(x− ei + ej)
+ µ

1

S

)
.

In general, the condition for detailed balance is, taking w(xi − 1)(xi − 1) to be fi, w(xj)xj ,

w(xk)xk to be fj , fk respectively, Z(x− ei + el) to be zl, µ/(µ
cS) = c,

(
fi
zk

+ c

)(
fj
zi

+ c

)(
fk
zj

+ c

)
=

(
fi
zj

+ c

)(
fj
zk

+ c

)(
fk
zi

+ c

)

Thus, the existence of detailed balance depends only on the choice of w. The condition is

fulfilled trivially when w is constant, for then zi = zj = zk. If w(x) is non-constant, then

the partition function Z(x) =
∑S

k=1w(xk)xk is variable independently of any w(xk).
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