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Singlet Oxygen Dosimetry For Pleural Photodynamic Therapy

Abstract
Photodynamic therapy (PDT) is a promising treatment modality that involves visible light and a
photosensitizer to form reactive cytotoxic species, such as singlet oxygen in the case of type II PDT.
Dosimetry of PDT has shown to be challenging due to the complex interactions between the key components
of PDT: light, photosensitizer, and oxygen. Existing methods of quantifying dose involve monitoring one or
two of these quantities. In conventional clinical settings, PDT is prescribed by the light fluence rate (mW/
cm^2) and total light fluence ( J/cm^2). However, many additional factors influence the effective ``dose'' that
is being delivered. Variations in photosensitizer uptake in tumors, tissue oxygenation, and light penetration in
tissues of varying tissue optical properties affect the photodynamic efficiency. Using explicit dosimetry,
reacted singlet oxygen is calculated based on the measured light fluence, photosensitizer concentration, and
oxygen concentration. A macroscopic singlet oxygen model is used for explicit dosimetry, which involves
various photochemical parameters.

Relevant photochemical parameters for in vivo explicit dosimetry for a type II photosensitizer
benzoporphyrin monoacid ring-A (BPD) were determined using a mouse model, and further validated using
a study evaluating long term treatment outcome. Phantom studies were also performed to model the
generation of singlet oxygen and compare it with direct measurements using singlet oxygen luminescence
dosimetry (SOLD). Fluorescence spectroscopy methods were used to measure the drug concentration.
Tissue optical properties were determined by measuring the light fluence and using the diffusion
approximation for a point source at a fixed distance. Oxygenation was measured by using a phosphorescence-
based probe to measure oxygen partial pressure. These in vivo and in-phantom models provide controlled
environments where extensive explicit measurements can be performed to validate the model and recognize
which aspects of explicit dosimetry are more critical to correctly correlate treatment outcome and the
calculated dosimetric quantity.

The light component of PDT dosimetry was investigated further in a clinical setting. Patients undergoing
surgery for malignant pleural mesothelioma are treated with intraoperative PDT. The current treatment
protocol for a clinical trial at the University of Pennsylvania involves monitoring light fluence at 8 discrete
locations within the pleural cavity. Quantifying and planning treatment can be greatly improved by
monitoring the light fluence throughout the entire treatment area in real-time.

This work aims to provide details for singlet oxygen explicit dosimetry (SOED) to quantify the reacted singlet
oxygen species during PDT in in vivo and in-phantom models. Furthermore, the light fluence modeling and
calculation aspect of PDT dosimetry was developed and improved for an ongoing pleural PDT study at the
University of Pennsylvania.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2969

https://repository.upenn.edu/edissertations/2969?utm_source=repository.upenn.edu%2Fedissertations%2F2969&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate Group
Physics & Astronomy

First Advisor
Timothy C. Zhu

Keywords
photodynamic therapy

Subject Categories
Biophysics | Physics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2969

https://repository.upenn.edu/edissertations/2969?utm_source=repository.upenn.edu%2Fedissertations%2F2969&utm_medium=PDF&utm_campaign=PDFCoverPages


SINGLET OXYGEN DOSIMETRY FOR PLEURAL PHOTODYNAMIC

THERAPY

Michele M. Kim

A DISSERTATION

in

Physics and Astronomy

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2017

Supervisor of Dissertation:

Timothy C. Zhu, Ph.D.
Professor of Radiation Oncology
Adjunct Associate Professor of Physics

Graduate Group Chairperson:

Joshua R. Klein, Ph.D.
Professor of Physics and Astronomy

Dissertation Committee:
Jarod C. Finlay, Ph.D., Assistant Professor of Radiation Oncology
Arjun Yodh, Ph.D., James M. Skinner Professor of Science, Department of

Physics and Astronomy
A. T. Charlie Johnson, Ph.D., Professor, Department of Physics and Astronomy
Masao Sako, Ph.D., Associate Professor, Department of Physics and Astronomy



SINGLET OXYGEN DOSIMETRY FOR PLEURAL PHOTODYNAMIC

THERAPY

COPYRIGHT

2017

Michele M. Kim

This work is licensed under the Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 License

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/3.0/us/



Acknowledgements

Thank you to the many people who have been there for me as mentors, colleagues,

friends, and family throughout my doctoral education. All of your support made the

process that much easier and more interesting.

First, I must thank my advisor, Dr. Timothy Zhu, for providing me with the

opportunity to explore avenues of research that allow me to expand my skills as a

scientist. With his mentorship, I was always pushing myself, and it has positively

affected my work ethic as well as my interest in interdisciplinary fields.

I would also like to thank Dr. Jarod Finlay for his continuous advice and help-

ful discussions throughout the years. His words and actions have always given me

perspective on how to approach challenges in both science and life.

I would not be here today without the help of my various colleagues and collab-

orators at the University of Pennsylvania. Thank you to my committee members

for their time and valuable advice. Rozhin Penjweini, Yi Hong Ong, Baochang Liu,

Arash Darafsheh, Xing Liang, Haixia Qiu, and Anna Sharikova were post doctoral re-

searchers in our group throughout the years. They lead by example on how to develop

as an experimentalist and as a scientific writer. Conversations with them have helped

me tremendously day to day. I must also thank my many mentors and colleagues

in the department of Radiation Oncology, Dr. Theresa Busch, Dr. Keith Cengel,

Dr. Charles Simone, Dr. Andreea Dimofte, Carmen Rodriguez, Dr. Richard Davis,

iii



Dr. Shannon Gallagher-Colombo, Joann Miller, Min Yuan, and Shirron Carter for

sharing all of their skills and knowledge with me. Thank you to Bill Pennie and Mike

Carman from the Research Instrumentation Shop for taking my ideas and making

them a reality.

My graduate student career would not be the same without my fellow classmates:

Anthony Chieco, William Parkin, Nathan Lourie, Sara Stanchfield, Zach Addison,

Eric Wong, Carl Naylor, Steve Gilhool, Rob Fletcher, Wei-Shao Wei, Tom Dodson,

and Sang Hoon Chong. Our time spent together in class, doing homework, and

outside of campus have been invaluable. Thanks for all of the friendship and laughs

over the past five years.

Thank you to all of the friends I have made in Philadelphia. Without them, I

would not have enjoyed some of the more challenging times. Some of them include

Amy, Florette, Joey, Team Purple, and the Philadelphia Gryphons Rugby Team.

Thank you to Anthony, in particular, for being the most supportive partner over

the years. Your encouragement and positivity made every day so much better, and I

look forward to making more memories.

My family has been a constant source of support for me, and I would not be able

to pursue my goals without their encouragement. Thank you to all of my extended

family as well for being so understanding and encouraging of my endeavors. Thank

you to my mom and dad for always letting me put my goals first. Living far apart

has not always been easy, but being able to call at all times of the day made it easier.

All of your sacrifices and hard work was an example to me, and I am so grateful.

iv



ABSTRACT

SINGLET OXYGEN DOSIMETRY FOR PLEURAL PHOTODYNAMIC

THERAPY

Michele M. Kim

Dr. Timothy C. Zhu

Photodynamic therapy (PDT) is a promising treatment modality that involves

visible light and a photosensitizer to form reactive cytotoxic species, such as singlet

oxygen in the case of type II PDT. Dosimetry of PDT has shown to be challenging

due to the complex interactions between the key components of PDT: light, photo-

sensitizer, and oxygen. Existing methods of quantifying dose involve monitoring one

or two of these quantities. In conventional clinical settings, PDT is prescribed by

the light fluence rate (mW/cm2) and total light fluence (J/cm2). However, many

additional factors influence the effective “dose” that is being delivered. Variations

in photosensitizer uptake in tumors, tissue oxygenation, and light penetration in tis-

sues of varying tissue optical properties affect the photodynamic efficiency. Using

explicit dosimetry, reacted singlet oxygen is calculated based on the measured light

fluence, photosensitizer concentration, and oxygen concentration. A macroscopic sin-

glet oxygen model is used for explicit dosimetry, which involves various photochemical

parameters.

Relevant photochemical parameters for in vivo explicit dosimetry for a type II pho-

tosensitizer benzoporphyrin monoacid ring-A (BPD) were determined using a mouse

model, and further validated using a study evaluating long term treatment outcome.

Phantom studies were also performed to model the generation of singlet oxygen and

compare it with direct measurements using singlet oxygen luminescence dosimetry

(SOLD). Fluorescence spectroscopy methods were used to measure the drug concen-

tration. Tissue optical properties were determined by measuring the light fluence and
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using the diffusion approximation for a point source at a fixed distance. Oxygenation

was measured by using a phosphorescence-based probe to measure oxygen partial

pressure. These in vivo and in-phantom models provide controlled environments

where extensive explicit measurements can be performed to validate the model and

recognize which aspects of explicit dosimetry are more critical to correctly correlate

treatment outcome and the calculated dosimetric quantity.

The light component of PDT dosimetry was investigated further in a clinical set-

ting. Patients undergoing surgery for malignant pleural mesothelioma are treated

with intraoperative PDT. The current treatment protocol for a clinical trial at the

University of Pennsylvania involves monitoring light fluence at 8 discrete locations

within the pleural cavity. Quantifying and planning treatment can be greatly im-

proved by monitoring the light fluence throughout the entire treatment area in real-

time.

This work aims to provide details for singlet oxygen explicit dosimetry (SOED)

to quantify the reacted singlet oxygen species during PDT in in vivo and in-phantom

models. Furthermore, the light fluence modeling and calculation aspect of PDT

dosimetry was developed and improved for an ongoing pleural PDT study at the

University of Pennsylvania.
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Chapter 1

Introduction

Photodynamic therapy (PDT) is a treatment modality that uses a photosensitizing

drug, light, and oxygen to cause local cell damage [1]. The FDA has approved PDT for

use with esophageal cancers [2], non-small cell lung cancer [3,4], actinic keratosis [5],

and age-related macular degeneration [6, 7]. There are also numerous off-label uses

and pre-clinical, as well as clinical trials using PDT to treat other cancers including

skin cancers [8], bladder cancers [9], prostate cancers [10], head and neck cancers [11],

and malignant mesothelioma [12,13]. Unlike chemotherapy, PDT is a highly localized

treatment method that can spare healthy cells. Furthermore, conventional radiation

therapy uses ionizing radiation that causes DNA damage. PDT uses non-ionizing

light and since most PDT photosensitizers do not accumulate in cell nuclei, PDT has

a low potential of causing DNA damage, mutations, and carcinogenesis [3, 14].
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Figure 1.1: Schematic diagram of the light-
sensitizer-tissue interactions

Figure 1.1 shows a schematic of the PDT process. The photosensitizer is admin-

istered either intravenously, orally, or topically. After the proper drug-light interval

(DLI), which depends on the sensitizer, light is delivered to the treatment area. De-

spite the clear advantages of PDT, much work needs to be done in optimizing treat-

ment doses, PDT delivery methods, and PDT dosimetry. While PDT is the standard

care of treatment for certain skin lesions and esophageal cancers in certain areas of the

world, improvements in PDT dosimetry are necessary before it is used as a standard

in conjunction with existing treatment modalities.

1.1 PDT Dosimetry

Four different dosimetric methodologies can be used for PDT dosimetry: implicit

dosimetry, biophysical/biological tissue response monitoring, explicit dosimetry, and

direct dosimetry [15]. Two or more of the treatment parameters can be incorpo-

Chapter 1 Michele M. Kim 2



rated into a single metric. Such a metric is PDT dose, the product of light fluence

(J/cm2) and the sensitizer concentration. Other metrics include implicit dosimetry

with photosensitizer photobleaching through monitoring the photosensitizer fluores-

cence. Photobleaching during PDT is the irreversible destruction of ground state

sensitizer. This has the advantage of being relatively simple and practical to imple-

ment. Fluorescence spectroscopic measurements of photoproducts associated with

photobleaching have also been used as a metric; however, this is not applicable to all

photosensitizers. Biophysical and biological tissue response monitoring can also be

used as a dosimetric method. This includes monitoring vascular shut down, treatment

induced necrosis, and blood flow monitoring by laser Doppler or diffuse correlation

spectroscopy. It is not yet clear whether any of these specific techniques could be

used to predict the biological response and hence, outcome.

In conventional clinical settings, PDT is prescribed by the light fluence (mW/cm2)

rate and total light fluence (or “light dose,” J/cm2). However, there are many ad-

ditional factors which may influence the effective “dose” actually delivered to any

particular lesion [16]. Variation in photosensitizer uptake in tumors is present both

in humans and in mice [17]. Different tissues show a large range of wavelength de-

pendent optical absorption and scattering coefficients of different tissues, which will

affect the light penetration and distribution of light in the target volume [18, 19].

Variability in tissue oxygenation will affect the photodynamic efficiency [20]. Photo-

sensitizers with higher extinction coefficients can significantly increase the absorption

to affect the light penetration and cause “self shielding” [21]. Furthermore, faster tis-

sue oxygen depletion with high fluence rate treatment leads to reduced photodynamic

effect [22–25].

Explicit dosimetry involves the measurement of the main components involved in

the photodynamic reaction (light, drug, and oxygen) and incorporation of these mea-
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surements into a dose model. Sections 3 and 4 will discuss explicit and direct methods

(singlet oxygen luminescence dosimetry) in detail, as well as a plan to implement both

dosimetry methods concurrently in vivo.

Development of photosensitzers that are appropriate for PDT is ongoing, with

optical absorption designed to be in the “therapeutic window” (650-850 nm) where

the absorption spectrum of hemoglobin permits deeper penetration. Furthermore,

treatment light in this region penetrates deeper into the tissue since optical absorption

is lower than in other parts of the spectrum [1]. For this work, the photosensitizers

considered were benzoporphyrin derivative monoacid ring A (BPD), porfimer sodium

(Photofrin), and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). These

have already been used in a clinical setting. Another photosensitizer, Rose Bengal

(4,5,6,7-tetrachloro-2’,4’,5’,7’-tetraiodofluorescein) was also investigated in phantoms

(liquid solution models to simulate in vivo settings) for certain studies.

1.2 Malignant Pleural Mesothelioma (MPM) and

PDT

At the University of Pennsylvania, PDT is used as an adjuvant surgically-based treat-

ment modality for patients with malignant pleural mesothelioma. The source of ma-

lignant mesothelioma is in the cells lining the pleura and peritoneal cavities, and

while naturally occurring mesothelioma is rare, risk is increased with exposure to

asbestos [12]. The incidence of mesothelioma in the United States is estimated to be

2500-3000 cases per year, and the most commonly affected patients have a median

age of onset of 60 years. Regardless of treatment, median survival is reported to be

6-15 months [12]. Part of the difficulty in treatment of mesothelioma comes from

eradicating all of the cancerous cells from the pleural cavity during surgical resec-
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tion. In surgical debulking of the cancerous tissue, cells are left behind in the cavity

leading to further disease propagation [26]. Several treatment modalities are being

investigated that combine surgery with follow-up treatments to kill these remaining

cells including chemotherapy, radiation therapy, and PDT [12].

PDT is a promising treatment modality for patients with mesothelioma as it

presents only minor toxicities to affect the original treatment course [26]. For this

treatment, the patient is administered with the photosensitizer systematically at the

appropriate time before surgery and light application. During surgery, the pleural

cavity is opened, and light can be delivered using a modified endotracheal (ET) tube

that contains the fiber optic light source and is filled with scattering media. Currently

at the Hospital of the University of Pennsylvania, the pleural PDT treatment protocol

monitors light fluence (measured in J/cm2) with eight isotropic detectors sutured at

different locations in the pleural cavity of a patient, without consideration of the

unique qualities of the patient’s thoracic cavity. This protocol monitors light at

discrete locations, but does not provide information of fluence for the cavity as a

whole. It has been shown that the light fluence on the entire pleural surface can be

determined for assessing the light fluence uniformity using an infrared (IR) navigation

system to track the treatment light [27]. The clinical protocol is approved by the IRB

of the University of Pennsylvania.

1.3 Three-dimensional Light Dosimetry

A commercial IR navigation system (Polaris Spectra, NDI, Waterloo, Canada) was

introduced to monitor the light source during treatment and to provide real-time

treatment guidance. The camera has a pair of stereo cameras that measures the

light reflection from a modulated laser source (λ = 850 nm). This device tracks 9

Chapter 1 Michele M. Kim 5



reflectors that are in a fixed geometry and attached to the light delivery ET tube.

The 9 reflectors make up 3 faces with 3 reflectors each and are used to determine the

3D Cartesian coordinates and orientation of the light source with 2 mm accuracy.

Figure 1.2: PDT of the pleural cavity. (a) The physician delivers
the light via a modified endotracheal tube filled with scattering me-
dia. The light source is being tracked by an IR camera mounted
above the patient (upper right corner). (b) The treatment area is
an irregularly-shaped cavity.

1.4 Project Aims and Outline of Thesis

This work aims to provide in vivo singlet oxygen-based dosimetry for patients un-

dergoing PDT in the pleural cavity. This involves monitoring the delivered light in

real-time during treatment, quantifying the sensitizer concentration throughout the

cavity, and determining the reacted singlet oxygen.

Chapter 2 describes the theory behind explicit dosimetry and its requirements.

A review of existing photochemical parameters necessary for explicit dosimetry was

done to investigate which parameters are already present and studied for in in vitro

models, such as cell spheroid models, and which need further study. Chapter 3 ad-
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dresses the experimental techniques, instrumentation, and algorithms used to perform

in vivo studies in mouse models and phantom studies. Using these methods, chapter

4 investigates the explicit dosimetry model in liquid phantoms. In addition, explicit

dosimetry is compared with singlet oxygen luminescence dosimetry (SOLD) meth-

ods. Chapter 5 discusses the parameters determined in in vivo environments for the

photosensitizer BPD using a mouse model. Chapter 6 expands on verification of

the model as well as the parameters by looking at tumor re-growth rates of treated

mice. Chapter 7 discusses a translational application, looking deeper into the light

dosimetry aspect of clinical PDT dosimetry. Data collected from the Photofrin phase

II/III randomized clinical trial is presented in chapter 7. By providing a way to deter-

mine the dose being delivered to areas lacking isotropic detectors to directly measure

the light fluence, the physician can adjust the treatment to ensure that treatment

is uniform. Finally, chapter 8 concludes this work by summarizing the findings and

discussing future applications and expansions of the work presented.
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Chapter 2

General Theory of Reactive

Oxygen Species (ROS) Explicit

Dosimetry

Photosensitizer photochemical parameters are crucial data in accurate dosimetry for

PDT based on photochemical modeling. Progress has been made in the last few

decades in determining the photochemical properties of commonly used photosensi-

tizers, mostly in solution or in vitro. Recent developments allow for the estimation

of some of these photochemical parameters in vivo. Furthermore, photochemical pa-

rameters that are independent of environmental factors or are universal for different

photosensitizers are examined. Most photosensitizers discussed in this chapter are of

the type II (singlet oxygen) photooxidation category, although type I photosensitiz-

ers that involve other reactive oxygen species (ROS) will be discussed as well. The

compilation of these parameters will be essential for ROS modeling of PDT.
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2.1 Type I and II oxidation reactions

2.1.1 Photochemical reactions

The PDT kinetics process was described using rate equations in the literature for

microscopic and macroscopic models [22, 28–30]. Figure 2.1 shows the energy dia-

gram for the process. The PDT process is started by the absorption of light by the

photosensitizer in the ground state, S0. It is excited into the singlet state, S1. The

S1 state can spontaneously decay to the ground state with the emission of a photon

or heat [30].

Figure 2.1: Jablonski diagram for the photoactivation of photosensitizer in the
presence of oxygen and biomolecules. The photosensitizer in its ground state
(S0) absorps a photon and is excited to its first singlet state (S1). It converts
to its excited triplet state (T1) via intersystem crossing (ISC). From T1, energy
is transferred to ground state molecular oxygen (3O2), creating reactive singlet
oxygen (1O2) for a typical type II reaction. In type I reactions, the triplet photo-
sensitizer will transfer an electron to 3O2 which will react with molecular targets
to produce radical species, or alternatively, interact directly with the acceptor
[A], without oxygen mediation.
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[S0]
k0

k3
[S1] (2.1)

This is a reversible process. The monomolecular absorption rate, k0 (s−1), is pro-

portional to the light fluence, φ, and the extinction coefficient, ε. The monomolecular

decay rate, k3(s−1) is the rate from S1 to S0. The decay rate due to fluorescence (ra-

diative) is k3R (s−1) and the internal conversion (non-radiative) decay rate is k3NR

(s−1), so that k3 = k3NR + k3R [31]. The photosensitizer in its ground state can

interact with singlet oxygen and ROS to form a photoproduct [SO2]. This can be

described by the decay rate constant, k1 = k11 + k12 (µM−1s−1).

[S0] + [1O2]
k12

[SO2] (type II) (2.2a)

[S0] + [O ·–
2 ]

k11
[SO2] (type I) (2.2b)

Similarly, the bimolecular decay rate, k2 (µM−1s−1), describes the rate of inter-

actions by collisions between the triplet state photosensitizer [T1] and ground state

oxygen [3O2]. A fraction (S∆) of the interactions yields singlet oxygen (2.3), while

another fraction (SI) yields the superoxide anion (O –·
2 ) as in (2.4).

[T1] + [3O2]
S∆k2

[S0] + [1O2] (type II) (2.3)

[T1] + [3O2]
SIk2

[S +·
0 ] + [O –·

2 ] (type I) (2.4)

[T1] + [3O2]
SNLk2

[S0] + [3O2] (2.5)
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The last equation shows the fraction (SNL = 1−S∆SI) of the interactions between

the triplet state photosensitizer and ground state oxygen to produce non-luminescent

decay of [T1] and do not yield singlet oxygen and/or superoxide anion. Physical

quenching can also occur where singlet oxygen is converted back to triplet oxygen

(1O2
3O2).

Triplet decay rate and intersystem crossing of the photosensitizer are described

by the monomolecular reaction rates k4 and k5 (s−1), respectively. The triplet decay

rate includes both the radiative (k4R) and non-radiative (k4NR) decay rate constants.

[T1]
k4

[S0] (2.6)

[S1]
k5

[T1] (2.7)

The phosphorescence (or luminescence) of singlet oxygen is described by the

monomolecular decay rate k6 (s−1).

[1O2]
k6

[3O2] (2.8)

This reaction produces the signature luminescence at 1270 nm. However, there are

also non-luminescent reactions of 1O2, such as solvent quenching or physical quenching

of 1O2, mentioned above [32].

The oxidation of biomolecular acceptors, [A], is described by the decay rate k7 =

k71 + k72 (µM−1s−1).

[1O2] + [A]
k72

[AO2] (type II) (2.9a)
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and

[O –·
2 ] + [A]

k71
[AO2] (type I) (2.9b)

Triplet state photosensitizer can also react with the biological substrate [A] with

the bimolecular rate constant, k8 (µM−1s−1). For typical type II reactions, however,

this term is considered to be small since singlet oxygen is much more reactive than

triplet state photosensitizer.

[T1] + [A]
k8

[T1A] (2.10)

In in vivo settings, the concentration of biomolecular acceptors is very large,

resulting in a dominant k7[A] term. However, there can be singlet oxygen quenchers

([Q]) that convert 1O2 back to ground state 3O2. This can be described by the

bimolecular reaction rate constant k9 (µM−1s−1).

[1O2] + [Q]
k9

[3O2] + [Q] (2.11)

Table 2.1 summarizes the definition of all rate constants used here along with their

conventional names.
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Table 2.1: Definition of photochemical reaction rate con-
stants

Symbol∗ Definition

k0, ka (s−1)
Photon absorption rate of photosensitizer as a
function of photosensitizer concentration (in µM),
k0 = εφ/hν, for φ =100 mW/cm2.

k1, kos (µM−1s−1)
Bimolecular decay rate for 1O2 (k12) and ROS (k11)
reactions with ground-state photosensitizer

k2, kot (µM−1s−1)
Bimolecular rate of triplet photosensitizer quench-
ing by 3O2

SIk2 Reactions involving triplet state and
electron transfer to 3O2 (type I)
S∆k2 Reactions involving triplet state and en-
ergy transfer to 3O2 (type II)

k3, kf (s−1)
Fluorescence decay rate of first excited singlet
state photosensitizer to ground state photosensi-
tizer including internal conversion (non-radiative,
k3NR) and fluorescent (radiative, k3R) terms

k4, kp (s−1)
Phosphorescence decay of the photosensitizer
triplet state to ground state photosensitizer, in-
cluding radiative (k4R) and non-radiative (k4NR)
components

k5, kisc (s−1)
Intersystem crossing (ISC) decay rate from first
excited photosensitizer to triplet state photosensi-
tizer

k6, kd (s−1) Phosphorescence (or luminescence) decay rate of
1O2 to 3O2

k7, koa (µM−1s−1)
Bimolecular decay rate of reaction of type II 1O2

(k72) and type I ROS (k71) with biological sub-
strate [A]

k8, kta (µM−1s−1)
Bimolecular decay rate constant for reaction of
triplet photosensitizer with substrate [A]

k9, koq (µM−1s−1)
Bimolecular decay rate constant for the quenching
reaction of 1O2 by a quencher [Q]

∗ The first symbol is used in this thesis. The second symbol is also
commonly found in the literature
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2.1.2 Kinetics of type I reactions

Type I photooxidation reactions are described by the bimolecular reaction rate SIk2

(µM−1s−1) with the fraction of triplet interactions that lead to type I reactions, de-

scribed in Eq. (2.4). In a type I reaction, the photosensitizer can undergo electron

transfer with oxygen to generate a superoxide anion (O –·
2 ). Superoxide anion, its

protonated form HO ·
2, and other radicals such as hydroxyl radicals (HO·) cause cell

damage to different degrees. Notice that even though all ROSs are generated by the

superoxide anion (O –·
2 ) for type I photosensitizer, there are many additional path-

ways to generate ROS that are not all included in Fig. 2.2, details of which can be

found elsewhere [33]. For simplicity, we have combined these interactions as a direct

interaction with superoxide anion (2.9b). Other reactions involve the reaction of the

triplet state [T1] with the molecular substrate directly, described by the reaction rate

k8 (µM−1s−1) and Eq. (2.10).

Figure 2.2: Secondary (photochemical) reactions for type I photosensitizers to
generate the resulting reactive oxygen species (HO·, H2O2, O –·

2 ). Other redox
active metals are also pertinent for generation of ROS and should be included as
part of secondary reactions in “. . . ” . ROS will in turn oxidate acceptors in cells
to cause cellular damage [33,34].
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2.1.3 Kinetics of type II reactions

Diatomic Oxgen Energy States

The electronic behavior of molecular oxygen results from the arrangement of two

electrons in the outer πg shell (it has a total of 16 electrons since Z = 8 for each O

atom) [35, 36]. Molecular oxygen has an electron configuration in which orbitals are

designated as even parity (g = gerade) or odd parity (u = ungerade) [34]:

(1σg)
2(2σu)

2(2σg)
2(2σu)

2(3σg)
2(1πu)

4(1πg)
2

where the πg orbital (formally an open shell) has three possible electron spin arrange-

ments giving rise to three energetically different species: Ground state molecular

oxygen (3Σ−g ), and two singlet states(1Σ+
g and 1∆g). Because 1∆g oxygen lifetimes

are in the microsecond range, they can undergo bimolecular reactions whereas the

1Σ+
g oxygen lifetime is short (due to its fast interconversion to 1∆g oxygen) and is

therefore chemically unreactive [37].

Photosensitization routes to 1∆g and 1Σ+
g are of interest; however, the longer

lifetime of the former relates to its reactivity. Chemical reactivity has been generated

for 1∆g oxygen with biomolecules. Consequently, the bimolecular reaction rates have

been investigated for the disappearance of and oxidation by 1∆g oxygen (labeled as

1O2 in this thesis).

The reactions of singlet oxygen with substrates can be defined by the rate con-

stants (k72, k6). k72 (also commonly referred to as koa in the literature) is the the

chemical reaction rate constant of 1O2 which accounts for the rate of formation of

oxygenated products and gives the rate of disappearance of 1O2 induced by the sub-

strate, [A]. This is related to how readily the product is consumed and can depend

on the reaction environment. k6 (also commonly referred to as kd in the literature) is

the rate constant for the natural decay of 1O2 back to 3O2 (also called solvent quench-
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ing). For example, amines efficiently deactivate 1O2 back to 3O2 by charge-transfer

quenching, and carotenoids efficiently deactivate 1O2 back to 3O2 by energy-transfer

quenching [38–41].

2.1.4 Explicit model of type I and II photodynamic interac-

tions

For both type I and II primary photochemical reactions, a set of coupled differential

equations can be used to describe the PDT process [30, 34,42–46]

d[S0]

dt
= −k0[S0]− k12[1O2]([S0] + δ)− k11[O –·

2 ]([S0] + δ) + k2[T1][3O2] + k3[S1] + k4[T1]

(2.12)

d[S1]

dt
= −(k3 + k5)[S1] + k0[S0] (2.13)

d[T1]

dt
= −k2[T1][3O2]− k4[T1] + k5[S1]− k8[T1][A] (2.14)

d[3O2]

dt
= −S∆k2[T1][3O2]− SIk2[T1][3O2] + k6[1O2] + k9[Q][1O2] + Γ (2.15)

d[1O2]

dt
= −k12[1O2]([S0]+δ)+S∆k2[T1][3O2]−k6[1O2]−k72[A][1O2]−k9[Q][1O2] (2.16)

d[O –·
2 ]

dt
= −k11[O –·

2 ]([S0] + δ) + SIk2[T1][3O2]− k71[A][O –·
2 ] (2.17)

d[A]

dt
= −k72[A][1O2]− k71[A][O –·

2 ]− k8[T1][A] (2.18)

These equations are based on the kinetic equations of the photochemical reac-

tions using their rate constants, k0, ..., k9 (see their definitions in table 2.1). Here,

[S0], [S1], and [T1] are the ground, first excited singlet, and triplet photosensitizer

concentrations respectively. [3O2] and [1O2] are the ground triplet and excited state

oxygen concentrations. [O−·2 ] is the concentration of superoxide anion and represents
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the amounts of ROS in a type I mechanism. Γ and [A] are the oxygen supply rate and

the concentration of (1O2 and ROS) acceptors excluding the photosensitizer molecule.

[Q] is the concentration of 1O2 quenchers present that will quench 1O2 and convert

it back to 3O2. Depending on the methods used to determine the oxygen supply

rate in (2.15), the model is divided into microscopic and macroscopic models. In the

microscopic model, oxygen diffusion into capillaries, from capillaries into tissue, and

diffusion within tissue are used to calculate the Γ term [43]. More details can be

found in Ref. [47]. Based on the kinetic equations of the photochemical reactions, the

oxygen supply term in a macroscopic theory can be expressed as [28,30,44]:

Γ = g

(
1− [3O2]

[3O2]0

)
, (2.19)

where g is the macroscopic maximum oxygen supply rate and [3O2]0 is the initial

tissue oxygen concentration. This term ensures that the oxygen level does not exceed

the initial value. In the macroscopic model, the Γ term is assumed to be uniformly

distributed everywhere without consideration of oxygen diffusion through the vascu-

lature. The functional form of Eq. (2.19) was validated using forward calculations

with standard vascular parameters [48]. Since the spatial scale of light transport is

much larger than the spatial scale of oxygen diffusion (∼1 mm versus ∼65 µm), the

light fluence rate was also set to be a constant within the vasculature model [48,49].

Due to the short lifetime and diffusion distance of 1O2 in biological media, the

term for photobleaching kinetics for ground state photosensitizer undergoing 1O2-

mediated bleaching has the low concentration correction constant, δ [50, 51]. 1O2

is generated at the site of the parent photosensitizer molecule. Due to the short

diffusion distance (10-100 nm [51, 52]), it has a higher probability of reacting with

the parent photosensitizer molecule than with adjacent photosensitizer molecules.
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For low photosensitizer concentrations, the rate of photobleaching depends only on

the rate of 1O2 generation because the volume through which each 1O2 can diffuse

before reacting will contain exactly one photosensitizer molecule, independent of the

total photosensitizer concentration. In other words, δ is the concentration of [S0]

where intermolecular distance is equal to the 1O2 diffusion distance [53].The value of

this critical low photosensitizer concentration is estimated to be between 3 and 3000

µM [54]. δ can be expressed as

δ =
1

d3NA

. (2.20)

Here, d is the diffusion distance of 1O2 in the environment of interest, which can be

related to the singlet oxygen lifetime, τ∆, by d = (6Dτ∆)1/2, where D is the diffusion

coefficient for 1O2 and NA is Avogadro’s number [53].

If one only cares about the dynamic processes of PDT in the time scale of a few

seconds to hours, then the time derivative on the right hand sides of equations (2.13),

(2.14), (2.16), and (2.17) can be set to zero because these processes are known to be

very fast (∼µs or less) and converge to equilibrium states. Solving for this equilibrium

state, the equations become

[S1] =
1

k3 + k5

ε

hν
φ[S0], (2.21)

[T1] =
k5

k3 + k5

1

k2

1

[3O2] + β

ε

hν
φ[S0], (2.22)

[1O2] =
1

k12([S0] + δ) + k6 + k72[A] + k9[Q]
ξII

[3O2]

[3O2] + β
φ[S0], (2.23)

[O−·2 ] =
1

k11([S0] + δ) + k71[A]
ξI

[3O2]

[3O2] + β
φ[S0], (2.24)
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d[S0]

dt
= − (ξIIσII + ξIσI)

[3O2]

[3O2] + β
([S0] + δ)φ[S0]− η 1

[3O2] + β
φ[S0], (2.25)

d[3O2]

dt
= [− (ξII + ξI) + ξIIτ∆(k6 + k9[Q])]

[3O2]

[3O2] + β
φ[S0] + Γ, (2.26)

d[A]

dt
= −(k72ξIIτ∆ + k71ξIτS)[A]

[3O2]

[3O2] + β
φ[S0]− η 1

[3O2] + β
φ[S0]. (2.27)

All of the parameters (ξ, ξI , ξII , σ, σI , σII , τf , τ∆, τS) have been defined in table 2.2.

σ = (σIIξII + σIξI)/ξ where ξ = ξI + ξII . For the in vivo scenario, it is assumed that

the concentration of biological acceptors is large, so k72[A]τ∆ ≈ 1 and k71[A]τS ≈ 1.

Furthermore, σII([S0] + δ)� 1, and it is assumed that k9[Q]� k7[A]. The simplified

model to describe the in vivo environment is described in section 3.5. For the in-

phantom scenario, while there are no biomolecular singlet oxygen acceptors, Intralipid

that was added can react with singlet oxygen to form oxygenated products, so the

k7[A] term was calculated by using a reduced singlet oxygen lifetime in phantoms.

Without the addition of a quencher, the k9[Q] term can be set to 0. When type II

reactions dominate, it can be assumed that ξ ≈ ξII .

Utilizing equation (2.27), the amount of biological acceptor that has reacted with

a reactive oxygen species ([ROS]rx) can be defined by the following

d[ROS]rx
dt

= −fξ [3O2]

[3O2] + β
φ[S0]− η 1

[3O2] + β
φ[S0], (2.28)

where f is the fraction of ROS interacting with [A]. Here, the first term relates
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to the fraction of acceptors that reacted due to ROS-mediated reactions, and the

second term relates to the fraction that reacts under hypoxic conditions or any other

non-oxygen-mediated reactions, such as triplet interactions. In cases where type II

reactions dominate (S∆ � SI and η = 0), the reacted singlet oxygen ([1O2]rx) can be

described by

d[1O2]rx
dt

= −fξ [3O2]

[3O2] + β
φ[S0], (2.29)

The required photochemical parameters can be reduced from 12 (δ, g, k0, . . . , k9)

to 6 (δ, β, ξ, σ, η, g), with some of the latter expressed as ratios of the former, if

one is not interested in modeling [S1], [T1], [1O2], and [O−·2 ]. The definitions for the

photochemical parameters, ξ, β, η, δ, σ, and g, are shown in table 2.2, along with

their relationships to the reaction rate constants.

The specific oxygen consumption rate, ξ, is the PDT oxygen consumption rate per

light fluence rate and photosensitizer concentration under the condition that there is

an infinite 3O2 supply. σ, the specific photobleaching ratio, is the probability ratio of

a ROS (including 1O2 molecule) to react with ground state photosensitizer compared

to the ROS (including 1O2 molecule) reacting with a cellular target, [A]. Notice

that ξ and σ consider interactions of both type I and type II nature. β represents

the ratio of the monomolecular decay rate of the triplet state photosensitizer to the

bimolecular rate of the triplet photosensitizer quenching by 3O2 [44] and is called the

oxygen quenching threshold concentration, meaning the oxygen concentration where

the quantum efficiency of singlet oxygen generation is reduced by half [27]. η is

the hypoxic consumption rate that describes interactions between the triplet state

photosensitizer and the cellular target. It is considered to be “hypoxic” as there is

no oxygen involved in the reaction.

Table 2.2 also provides the definitions of several other important photochemi-
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cal parameters for a specific photosensitizer. Fluorescence quantum yield (Φf ) of

a compound is defined as the fraction of molecules that emit a photon after direct

excitation [55]. The triplet quantum yield (Φt) describes the crossover efficiency for

photosensitizer to go from the singlet state to the triplet state via intersystem cross-

ing [56]. Similarly, the singlet oxygen quantum yield (Φ∆) is given as the efficiency

to produce singlet oxygen from the triplet state of a photosensitizer [32]. We have

introduced a quantity of superoxide anion quantum yield (ΦROS) as the efficiency of

producing superoxide anion from the triplet state of a photosensitizer. In addition

to the quantum yields, the fluorescence lifetime (τf ), triplet lifetime (τt), and singlet

oxygen lifetime (τ∆) represent mean lifetime of each state (i.e. of the fluorescence

state, the triplet state, and of singlet oxygen) [57]. ε is the extinction coefficient (cm−1

µM−1) defined as the absorption coefficient of the photosensitizer per concentration.
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Table 2.2: Definition of some key parameters used in PDT modeling [34]

Symbol Definition

β (µM) Oxygen quenching threshold concentration k4+k8[A]
k2

δ (µM) Low concentration correction

η (cm2 mW−1 s−1 µM) Hypoxic reaction consumption rate Φt
ε
hν

k8[A]
k2

ξ (cm2 mW−1 s−1)
Specific oxygen consumption rate

ξ = ξII + ξI = S∆Φt
ε
hν

+ SIΦt
ε
hν

σ (µM−1)
Specific photobleaching ratio σ = (ξIIσII+ξIσI)/ξ

where σII = k12τ∆ and σI = k11τS
g (µM s−1) Macroscopic maximum oxygen supply rate

ε (cm−1 µM−1) Photosensitizer extinction coefficient
τf (s) Fluorescence lifetime 1

k3+k5

τ∆ (s) Singlet oxygen lifetime 1
k12([S0]+δ)+k6+k72[A]+k9[Q]

τS (s)
Superoxide anion lifetime 1

k11([S0]+δ)+k71[A]

τt (s) Triplet state lifetime 1
k4+k2[3O2]+k8[A]

[A] (µM)
Singlet oxygen receptors, considered a constant

during PDT because it is too large to be
changed during PDT.

S∆
Fraction of triplet state photosensitizer-3O2 reac-

tions to produce 1O2

SI
Fraction of triplet state photosensitizer reactions

involved in type I reactions

SNL
Fraction of triplet state photosensitizer reactions

that are non-luminescent S∆ + SI + SNL = 1
Φ∆ Singlet oxygen quantum yield S∆

k5
k3+k5

ΦROS
Reactive oxygen species/superoxide anion quan-

tum yield SI
k5

k3+k5

Φf

Fluorescence quantum yield k5
k3+k5

k3R
k3

, where k3R is
fluorescence radiative decay rate between SI
and S0

Φt Triplet quantum yield k5
k3+k5
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2.1.5 Relationship between rate parameters and the photo-

chemical parameters

The rate constants for each of the reactions described previously can be determined

by knowing some of the basic photochemical parameters mentioned before including

the singlet oxygen lifetime (τ∆), the fluorescence lifetime (τf ), the triplet lifetime

(τt), and the triplet quantum yield (Φt), all of which are measurable quantities with

existing technologies.

The photon absorption rate of the photosensitizer is given by knowing the ex-

tinction coefficient (ε) of the photosensitizer, the fluence rate (φ = 100 mW cm−1),

Plank’s constant (h), and the frequency of light used for treatment (ν)

k0 =
ε

hν
(2.30)

The reaction rates involving 1O2 (k12, k6, k72) can be determined by measuring

the singlet oxygen lifetime using SOLD. The relationship between τ∆ and the rate

constants is the following

τ−1
∆ = k12([S0] + δ) + k6 + k72[A] + k9[Q] (2.31)

By varying the concentration of [S0] in water in the absence of any singlet oxygen

acceptors, ([A] = 0), the plot of τ−1
∆ versus [S0] will yield a slope which will be k12

with a low concentration correction (δ) [53, 58]. Furthermore the extrapolation to

[S0] = 0 will yield the value of k6, provided that the values of δ and k12 are known.

Adding known concentrations of acceptors will allow for extrapolation of the value

k72. The value of δ can be found by investigating photobleaching kinetics and the

steady-state singlet oxygen concentration approximation [54].
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Similarly, the reactive oxygen species lifetime can be written as

τ−1
S = k11([S0] + δ) + k71[A] (2.32)

Triplet quantum yield (Φt) and fluorescence decay time (τf ) can be used to cal-

culate k3 and k5 with the following equations [31]

τf =
1

k3 + k5

(2.33)

k3 =
1− Φt

τf
(2.34)

k5 =
Φt

1− Φt

k3 =
Φt

τf
(2.35)

Rate reactions involving the triplet state photosensitizer (k2, k4, k8) are related to

the triplet state lifetime by

τ−1
t = k4 + k2[3O2] + k8[A] (2.36)

Triplet state lifetime can also be measured by SOLD. Measurement of the ground state

oxygen in a phantom will enable extrapolation of k2 and k4 in a linear fit of τ−1
t versus

[3O2] with the slope gives k2 and extrapoliation to [3O2] = 0 gives k4 + k8[A]. The

oxygen quenching threshold concentration β (= (k4 + k8[A])/k2) in the macroscopic

model can be calculated with the ratio of the two. k8 can be determined as the slope

between τ−1
t and [A]. All other photophysical parameters (ξ, σ, η) can be determined

using the rate constants and expressions in table 2.2.

The quantum yield for generation of singlet oxygen (Φ∆) and reactive oxygen

species or superoxide anion (ΦROS) are important quantities in determining the con-

centrations of the cytotoxic oxygen species. Both are related to the photosensitizer
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triplet quantum yield by

Φ∆ = S∆Φt (2.37)

ΦROS = SIΦt (2.38)

Using SOLD techniques, values of Φ∆, Φt, and ΦROS can be measured so that S∆

and SI can be calculated.

2.2 Experimental methods to determine the rate

parameters

The advent of spectroscopic techniques to measure rate constants of photosensitiza-

tion and oxygenation has opened the way to the determination of their photochemical

and photophysical parameters. This section describes a sampling of methods to deter-

mine experimental rate parameters and other key photochemical factors. The scope

of this review is focused mainly on photochemical parameters in vivo. At present, this

is only achievable through indirect methods (section 2.2.4) — namely, extrapolation

of the parameters in table 2.2 by applying the macroscopic model directly in in vivo

systems or in phantoms. The potential for direct methods to be applied to in vivo

systems will be pointed out whenever possible.
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2.2.1 Direct methods

Absorption spectroscopy

Absorption spectroscopy refers to a technique that measures the absorption of ra-

diation by a sample. By using a spectrophotometer and a white light source, the

extinction coefficient (ε; units cm−1 µM−1) of a photosensitizer can be determined by

the Beer-Lambert law [59,60]

A = − ln
I

I0

= εlc (2.39)

where I is the output light intensity, I0 is the input light intensity, l is the path length

of the measured sample, and c is the concentration of the sample (in µM). Typically,

absorbance, A, is defined for l = 1 cm. Notice the definition of extinction coefficient

is loge based rather than log10 based. The latter is often the case in chemistry

literature and causes ε to be decreased by a factor of 2.30 (ln 10). Figure 2.3 and 2.4

shows an example of the wavelength dependence of ε, also called absorption spectra

for photosensitizers BPD and Photofrin from both the literature and experimentally

measured methods. Using equation (2.30), the value of k0 can easily be determined

from the measured ε and knowing the measured wavelength, λ, of the light (hν =

hcλ−1).

Transient absorption spectroscopy

Transient absorption spectroscopy is an extension of absorption spectroscopy. Also

called pump-probe spectroscopy, the absorbance of a sample is measured as a function

of time after excitation by a flash of light, usually a pulsed laser, mainly to determine

the triplet lifetime of the sensitizer, τt [61]. This technique can be used to measure the

singlet oxygen quantum yield (Φ∆) for a photosensitizer utilizing another chemical

Chapter 2 Michele M. Kim 26



with known singlet oxygen quantum yields [62,63].

2.2.2 Fluorescence spectroscopy

Photosensitizer fluorescence can be used to determine the concentration ([S0]) of pho-

tosensitizer present both in vivo and in vitro [64, 65]. However, fluorescence signal

in vivo is affected by the tissue optical properties of scattering and absorption. The

reduction of fluorescence signal due to absorption can be accounted for by incorpo-

rating an empirical correction factor based on tissue optical properties [10]. Many

commonly used photosensitizers produce unique fluorescence spectra when excited at

a certain wavelength. Figure 2.3 and 2.4 shows an example of two photosensitizers

(BPD and Photofrin) and their fluorescence spectra from both the literature and the

basis spectra used for in vitro measurements. Fluorescence basis spectra were ob-

tained by excitation of samples with photosensitizer in water by 405 nm laser light.

Such emission spectra, corrected for instrument response and tissue optical prop-

erties, can be analyzed as a linear combination of fluorescence basis spectra using

a singular value decomposition (SVD) fitting algorithm [42]. Fluorescence spectra

from phantoms with known photosensitizer concentrations can be used to determine

the correction factor for fluorescence due to tissue optical properties as well as the

absolute value of [S0] in an in vivo environment [10].
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Figure 2.3: Our own experimentally measured fluorescence and ab-
sorption spectra (solid black and grey lines) of BPD in water, and
fluorescence and absorption spectra (dashed red and light red lines)
of BPD in PBS solution from [66–68]. Measured fluorescence was of
BPD in water excited by 405 nm laser light, and measured absorp-
tion was of BPD in water excited by a white light source.
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Figure 2.4: Our own experimentally measured fluorescence and ab-
sorption spectra (solid black and grey lines) of Photofrin in Intralipid
solution, and fluorescence and absorption spectra (dashed red and
light red lines) of Photofrin in PBS solution from [68]. The litera-
ture absorption curve for Photofrin above 480 nm has been multi-
plied by 10× for clarity. Measured fluorescence was of Photofrin in
water excited by 405 nm laser light, and measured absorption was
of Photofrin in water excited by a white light source. Solvent differ-
ences account for variations in fluorescence and absorption intensity
between measured and literature spectra.

Fluorescence lifetime spectroscopy and imaging (FLI)

Time-resolved fluorescence decay measurements can be used to study details about

the structure and dynamics of macromolecules. These measurements are commonly

performed with microsecond to picosecond laser sources with high-speed photodetec-

tors [69].

The fluorescence lifetime, τf , of photosensitizer can be determined from time-gated

spectra along with single photon counting, using a picosecond to microsecond pulsed

diode laser for fluorescence excitation. Specific wavelength ranges can be selected to

plot the fluorescence exponential decay curve (e−(k3+k5)t) to yield the decay constant

(k3 + k5), which can be used to calculate τt = 1/(k3 + k5) [70].
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2.2.3 Phosphorescence spectroscopy

Phosphorescence is similar to fluorescence in that absorbed energy by a substance is

released in the form of light. However, phosphorescence occurs on a longer time scale

than fluorescence. Besides the decays from monomol 1O2 to 3O2 +hν at 1270 nm (22

kcal mol−1), dimol singlet oxygen molecules (2 1O2) can also decay to 2 moles 1O2 to

3O2 + hν at 634 nm (44 kcal mol−1) and 701 nm [71–75]. The latter (634 nm and/or

701 nm) is readily observed in the gas phase but is often not detected in solution due

to other optical signals at these wavelengths. The detection of 1O2 luminescence at

1270 nm is potentially difficult in vivo because of the short lifetime of 1O2.

Singlet oxygen luminescence (SOL) detection (or laser flash photolysis)

SOLD (or laser flash photolysis) is a standard technique for identification of short-

lived, excited states of photosensitizers and characterization of their reactions [76–78].

It is a popular and precise technique used to directly measure k6 and k72, where the

photosensitizer solution of the substrate is saturated with O2 and irradiated with

a laser at a specific absorption wavelength. The resulting phosphorescence of 1O2

at 1270 nm as a function of time is measured with a time-correlated detector [79].

With the time-correlated singlet photon counting (TCSPC) module, phosphorescence

decay characteristics can be measured with a time resolution of ≤ 100 ps and a

spatial resolution in the subcellular region. With a high pulse repetition rate (40

MHz), the total acquisition time is short (less than 1 s) for each fluorescence decay

curve [70]. Production of 1O2 by laser excitation occurs in less than 2 µs, its decay

is approximated by a first order exponential decay model (derived from Eq. (2.31)).

A Stern-Volmer plot of concentration of substrate [A] versus 1/τ∆ (where τ∆ is the

experimentally measured singlet oxygen lifetime), gives a straight line with the slope

equal to k72 and the y-intercept is equal to k6
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The rate constants for oxidized product formation, k7, are obtained by competition

technique reported by Higgins et al. [80] where the substrate solution containing

photosensitizer and an alkene for comparative trapping to deduce the contribution

from physical quenching, k9, can be obtained by difference using equation (2.31),

which can also be written as k6+k7[A]+k9[Q] [81,82]. Unlike unsaturated compounds

such as alkenes, amines and polyenes are effective singlet oxygen physical quenchers

and protect against photooxygenation [83].

Singlet oxygen quantum yields (Φ∆) can be determined from the phosphorescence

intensity at 1270 nm from singlet oxygen. Intensity can be recorded as a function of

excitation laser energy and of the concentration of the photosensitizer. The slope of

this linear plot is proportional to Φ∆ and is compared to the slope of the same plot

for a reference photosensitizer with a known value of Φ∆ [84].

Measurements of this near-infrared (NIR) luminescence of singlet oxygen in bio-

logical environments is difficult due to the short 1O2 lifetime (which can be less than

the triplet state photosensitizer lifetime) and its low quantum yield for phosphores-

cence. However, this can be achieved using a NIR-sensitive photomultiplier tube.

Time-resolved analysis shows that 1O2 lifetime is reduced in vivo (τ∆ = 0.03 − 0.18

µs) compared to lifetime in vitro (τ∆ = 3.0 ± 0.3 µs). This may be due to the

protein binding to 1O2 in cellular environments [52]. The detector must be suffi-

ciently fast (with a rise time of ∼3 ns) for phosphorescence single-photon counting,

and it must have a broad, flat spectral response that enables spectral resolution

of the 1O2 signal [15]. Examples of detectors used for this purpose include photo-

multiplier tubes, superconducting nanowire single-photon detectors (SNSPDs) and

semiconductor-based single-photon avalanche diodes (SPADs) [85].

The shorter lifetime has been attributed to the rapid quenching of 1O2 by biomolecules

combined with a lack of adequately sensitive detectors at NIR wavelengths, since the
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luminescence emission is proportional to the lifetime. When exchanging the H2O

solvent for D2O, the lifetime of singlet oxygen increases by 20-fold. The τ∆ in D2O

is 69 µs at 20◦C and in H2O 3.5 µs at 20◦C [32,86,87].

The triplet state lifetime is highly dependent on the molecular oxygen concen-

tration according to a Stern-Volmer relationship described by Eq. (2.36). k4 can be

written as the sum of k4R and k4NR, which are the radiative and non-radiative photo-

sensitizer triplet state decay rate constants. The changes in triplet state lifetime (τt)

can be used to determine changes in [3O2], given k2 and k4 are known. In biological

systems, τt � τ∆ so that the exponential decay of the singlet oxygen luminescence

curves are govered by τt [15, 88,89].

Most singlet oxygen luminescence dosimetry (SOLD) studies have been done on

microspheres of cells. Detection of SOL from a murine tumor using Photofrin and

ATX-S10NAa(II) has been reported [90]. The full luminescence spectrum can be

measured by placing a monochromator in front of the detector.

The great impact of SOLD techniques comes with reports that show detection of

1O2 in complex biological systems directly. The integrated detected 1O2 luminescence

counts is proportional to the total amount of 1O2 created in the target during PDT

and thus is predictive of PDT response [15]. Ultimately it is the cumulative 1O2 dose

that determines the biological effect. Furthermore, changes in the effective PDT dose

due to oxygen depletion or due to photosensitizer photobleaching can be evaluated

with time-resolved SOLD measurements.

2.2.4 Indirect methods

Singlet oxygen explicit dosimetry (SOED) methods have been developed to calculate

the reacted singlet oxygen, [1O2]rx, in vivo and in vitro for type II photosensitizers.

The main cytotoxic agent in type II PDT has been attributed to 1O2 [91]. PDT
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efficacy can be correlated to the calculated [1O2]rx, thus making SOED an effective

method of dosimetry for in vivo studies as well as in clinical settings. The methodol-

ogy for SOED for type II photosensitizer can be expanded for reactive oxygen species

involving type I photosensitizers, even though it has not been used in existing stud-

ies. However, the parameters obtained should include photodynamic action from

both type I and type II even though singlet oxygen is predominant for the type II

photosensitizers studied. These methods are discussed in more detail in following

chapters.

2.2.5 Other methods

In addition to the experimental methods mentioned in this section, there are other

techniques that can be used to investigate the presence of the reactive oxygen species.

These methods have been mostly used in vitro; however, some may be applicable in

in vivo systems as well. These methods involve fluorescent markers and analytical

methods.

Several methods are developed to detect the presence of singlet oxygen and/or

HO·. Singlet oxygen can be detected from dioxetanes from [2 + 2] cycloadditions,

endoperoxides from [2 + 4] cycloadditions, and allylic hydroperoxides from ‘ene’ reac-

tions [92,93]. Simple alkenes often take up 1 equivalent of 1O2. Tandem 1O2 reactions

can take place in polyunsaturated compounds, and there are also instances where

bisperoxides rearrange to spiro compounds. Peroxides can also be generated through

type I reactions that do not involve singlet oxygen. For example, there are electron

transfer photooxidation reactions with 9-mesityl-10-methylacridinium ion [94, 95]. It

may be noted that ene-derived hydroperoxides and cycloaddition-derived endoperox-

ides have a toxicity of their own that is separate of singlet oxygen’s toxicity [96,97].

Aromatic compounds such as 9,10-disubstituted anthracenes can trap 1O2 and
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be detected by UV-vis spectroscopy [98–100]. Another trapping reaction is 9,10-

anthracene-9,10-endoperoxide dipropionate dianion that arises from a [2 + 4] cy-

cloaddition of 1O2 with 9,10-anthracene dipropionate dianion at pH = 10 in water

dtected by UV-vis spectroscopy.

Analytical methods such as low-temperature NMR spectroscopy can be used to

detect unstable peroxide compounds in reaction mixtures. For example, dioxetane

13C NMR signals are fairly characteristic [101]. Electron-rich olefins such as alkoxy-

substituted alkenes react with singlet oxygen and form dioxetanes. Decomposition of

dioxetanes is often accompanied by chemiluminescence due to a fragmented excited

carbonyl compound [102,103].

Singlet oxygen sensor green (SOSG) is a 1O2-specific fluorescent probe reagent that

has been used to quantitatively measure 1O2 that has been produced by determining

the reaction rate of SOSG with 1O2. SOSG is a fluorescein-anthracene dye that

fluoresces after its initial reaction with 1O2. The endoperoxide product from a [2 +

4] cycloaddition of 1O2 closes off the FRET quenching channel of precursor SOSG

[98, 104]. SOSG reacts with 1O2 to produce SOSG endoperosides, which emits a

strong fluorescence signal at 531 nm. Φ∆ has also been determined using SOSG for

a porphyrin-based photosensitizer, hematoporphyrin monomethyl ether [105].

Fluorescence probes can also be used to detect highly reactive singlet oxygen

species such as hydroxyl radical (HO·) and reactive intermediates of peroxidase.

2-[6-(4?-hydroxy)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (HPF) and 2-[6-(4?-

amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) are two examples of such

fluorescent probes [106]. Both probes are reported to be cell-permeable, relatively

insensitive to superoxide anion, nitric oxide, 1O2, and alkyl peroxides [107, 108].

APF is ∼5 times more fluorescent during HO· than HPF [107]. Other fluorescent

probes of hydroxyl radical include coumarin- and rhodamine nitroxide-based com-
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pounds [109–111].

The methods mentioned in this section can be useful tools to determine in vivo

and in vitro photochemical parameters as well as characteristics of reactive species

relevant for a specific photosensitizer.

2.3 A review of existing values of photochemical

parameters

Photosensitizers are typically delivered systemically or topically for PDT. The sys-

temic administration involves either oral administration or intravenous injection so

that the drug will circulate through the whole body system, and preferentially there

will be more drug localized in the target site than in others. An ideal photosensi-

tizer should have low or no toxicities and a fast clearance process. Some systemi-

cally delivered photosensitizer are benzoporphyrin derivative (BPD), Photofrin, and

2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH), which were also used for

pre-clinical studies in this work. In contrast with the systemic administration, ALA

a pro-drug that reacts with heme to generate the photosensitizer protoporphyrin IX

(PpIX), can also be applied topically to perform more localized delivery, which is

commonly used for skin treatment.

There are several photosensitizers that have been approved for standard clinical

use by the US Food and Drug Administration (FDA) or the European Medicines

Agency (EMA) [112, 113]. ALA (a pro-drug that produces PpIX) was approved

for the treatment of actinic keratoses in 1999 by the FDA under the trade name

Levulan [114] and in 2009 and 2011 by the EMA under the trade name Alacare

and Ameluz, respectively. Similar photosensitizer derivatives were developed to also

produce PpIX: methyl-ALA was approved by the FDA in 2004 for the treatment of
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non-hyperkeratotic actinic keratoses, and hexyl-ALA was approved in Europe in 2006

for the diagnosis of bladder cancer under the trade name Hexvix [115]. In 2000 the

FDA approved use of BPD in the treatment of age-related macular degeneration [116].

mTHPC was approved by the EMA for the treatment of head and neck squamous cell

carcinomas. Photofrin was approved by the FDA for multiple treatment sites. It was

approved for treatment of microinvasive endobronchial non-small cell lung cancer in

1998 and high-grade dysplasia in Barrett’s esophagus in 2003.

The photochemical parameters, β, δ, ξ, σ, and g, can be determined using indirect

methods that will be described in detail for BPD in chapter 5. Other studies for HPPH

and Photofrin have been performed as well [44,117]. The fundamental photophysical

parameters are fairly well-established for most photosensitizers (e.g. ε, τf , τt) and

they can be used to determine some parameters, such as ξ. However, indirect methods

in vivo can only be used to determine the ratios of rate constants (ki’s, where i =

1− 8), thus additional measurements are necessary to determine individual reaction

rate constants.

The photochemical parameters were determined mostly for in vitro systems; how-

ever, it is reasonable to expect that they will largely remain the same in in vitro

systems (such as ε, k0 k3, and k5). Some parameters (k6, and k72) are photosensitizer

independent since they are properties of either 1O2 or other reactive oxygen species

and they should behave the same. Assumptions can be made that they are the same

for all type II photosensitizers.

For BPD, the extinction coefficient (ε) was found to be 0.0783 cm−1 µM−1 using

absorption spectroscopy [66, 118]. The value of k0 was found at a fluence rate of 100

mW cm−2 using equation (2.30) and ε. k21 was found by using the approximation

k12 ≈ σII · k71[A], where σII is the specific photobleaching ratio determined in vivo

using SOED described in section 5. k2 was found to be 3 × 103 µM−1 s−1 using the
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observed triplet lifetime (τt) in the presence and abscence of 3O2 (equation (2.36))

[66]. Using this value and the measured value for β in vivo, k4 can be found to be

k4 = β×k2 = (11.9µM)×(3×103µM−1 s−1) = 3.6×104 s−1. The values for k3 and k5

were found by using the fluorescence lifetime (εf ) and the triplet quantum yield (Φt)

and equations (2.33)-(2.35). The value of τf was taken from literature using a time-

correlated single photon counting method [66]. The value of Φt was obtained from

literature using laser-induced opto-acustic calorimetry (LIOAC) [66]. The resulting

values were k3 = (1 − Φt)/τf = (1 − 0.79)/(5.2 × 10−9 s) = 4.04 × 107 s−1 and k5 =

Φt/τf = 0.79/(5.2×10−9 s) = 1.52×107 s−1. The singlet oxygen lifetime (τ∆) in water

with no acceptors to react with 1O2 can be used with equation (2.31) to obtain the

value of k6, which is only a property of singlet oxygen and should be photosensitizer

independent. Therefore, for all type II photosensitizers, k6 = τ−1
∆ = (3µs)−1 =

3.3×105 s−1 [27]. The value of k72[A] in vivo is only a property of singlet oxygen and

is thus assumed to be the same for all type II photosensitizers. By using the value

of τ∆ in tissue (0.1 µs) and the known value for k6, k72 = τ−1
∆ − k6 = (0.1µs)−1 =

(3.3× 105 s−1) = 1× 107 s−1 [53]. Since BPD is a type II photosensitizer, there is no

significant contribution of type I reactions between [T1] and [A] so k8[A] and η were

assumed to be 0. The values of ξ, σ, and g were found in vivo using the SOED method

described in more detail in chapter 5 [119–121]. The low concentration correction, δ,

was assumed to be the same for BPD as that of Photofrin. Further experiments are

needed to confirm this value for BPD. The fraction of 1O2 producing reactions between

[T1] and 3O2 was determined using the definition of ξ: S∆ = ξ/Φt/ε × (hν) = (51 ×

10−3 cm2mW−1s−1)/(0.79)/(0.0312µM−1cm−1) × (6.022 × 1014 cm3µM−1) × (2.72 ×

10−16 mW s) = 0.144.

For Photofrin, the extinction coefficient (ε) was found to be 0.0035 cm−1 µM−1

using absorption spectroscopy [118, 122]. The value of k0 was found at a fluence
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rate of 100 mW cm−2 using equation (2.30) and ε. k21 was found by using the

approximation k12 ≈ σII · k71[A], where σII is the specific photobleaching ratio de-

termined in vivo using SOED [44]. k2 was found to be 1.4 × 103 µM−1 s−1 us-

ing the observed triplet lifetime (τt) in the presence and abscence of 3O2 (equation

(2.36)) [31]. Using this value and the measured value for β in vivo, k4 can be found

to be k4 = β× k2 = (11.9µM)× (1.4× 103µM−1 s−1) = 1.67× 104 s−1. The values for

k3 and k5 were found by using the fluorescence lifetime (εf ) and the triplet quantum

yield (Φt) and equations (2.33)-(2.35). The value of τf was taken from literature

using a time-correlated single photon counting method [123]. The value of Φt was

obtained from literature [22, 124]. The resulting values were k3 = 2.9 × 107 s−1 [31]

and k5 = Φtk3/(1 − Φt) = (0.63) × (2.9 × 107 s−1)/(1 − 0.63) = 4.94 × 107 s−1.

Values of k6 and k7 were found for Photofrin in the same method described above

for BPD. Since Photofrin is a type II photosensitizer, there is no significant con-

tribution of type I reactions between [T1] and [A] so k8[A] and η were assumed to

be 0. The values of ξ, σ, and g were found in vivo using the SOED methods de-

scribed in more detail in chapter 5 [34, 44]. The low concentration correction, δ,

was found from the literature to be 33 µM [53]. The fraction of 1O2 producing

reactions between [T1] and 3O2 was determined using the definition of ξ: S∆ =

(3.7 × 10−3 cm2mW−1s−1)/(0.63)/(0.0035 µM−1cm−1) × (6.022 × 1014 cm3µM−1) ×

(3.16× 10−16 mW s) = 0.319.
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Table 2.3: Selected photosensitizers and their in vivo photophysical parameters

Parameter Photofrin BPD

ε 0.0035 0.0783
(cm−1µM−1) @630 nm [122] @690 nm [27,66]
k0 (s−1)

1.84a 45.13a

@100 mWcm−2

k1 7.6× 102b[125]
1.7× 102 b

(µM−1s−1) (150-550) [119,121]
k2 1.4× 103 [31] 3× 103 [66]

(µM−1s−1)
k3 (s−1) 2.9× 107 [31] 4.04× 107c[66]
k4 (s−1) 1.67× 104d 3.6× 104d

k5 (s−1) 4.94× 107e 1.52× 107e

k6 (s−1) 3.3× 105f 3.3× 105f

k7[A] (s−1)
1× 107h 1× 107h

(3× 106 (3× 106

−3× 107) −3× 107)
k8[A] (s−1) (0)h (0)h

β (µM) 11.9 [125] (11.9)i

δ (µM)
33 [53] 33i

(33-150) (33-260) [45]
ξ 3.7× 10−3 [27, 124,125] (55± 15)× 10−3

(cm2mW−1s−1) (2.9− 3.7)× 10−3 [119,120,126]

σ (µM−1) 7.6× 10−5 [125]
(1.8± 0.3)× 10−5

((1− 5)× 10−5) [119,120,126]
η (cm2mW−1

(0)h (0)h

s−1µM)
g

0.76 [44] 1.7± 0.4 [119,120,126]
(µM−1 s−1)

S∆ 0.319j 0.144j

Φt
0.63

0.79 [66]
(0.63-0.80) [22,27,124]

Φ∆
0.20k 0.11k

(0.12-0.56) [124,127] (0.11-0.84) [128,129]
Φf 0.16 [129] 0.05 [66]

τf (s) (5.5± 1.2)× 10−9 [123] 5.2× 10−9 [66]

a Calculated based on the value of ε and φ = 100 mW cm−2:
k0 = εφ/(hν). Photofrin: k0 = (0.0035 µM−1cm−1)/(6.022 ×
1014 cm2µM−1)×(100 mW cm−2)/(3.16×10−16 mW s) = 1.84 s−1.
BPD: k0 = (0.0783 µM−1cm−1)/(6.022 × 1014 cm2µM−1) ×
(100 mW cm−2)/(2.88× 10−16 mW s) = 45.13 s−1.

b Calculated based on the value of σ and k7: k1 = σ×k7[A]. Photofrin:
k1 = (7.6× 10−5 µM−1)× (1× 107 s−1) = 7.6× 102 µM−1s−1.

c Calculated based on the value of Φt and τf : k3 = (1−Φt)/τf . BPD:
k3 = (1− 0.79)/(5.2× 10−9) = 4.04× 107 s−1

d Calculated based on the value of β and k2: k4 = β × k2. Photofrin:
k4 = (11.9 µM) × (1.4 × 103 µM−1s−1) = 1.67 × 104 s−1. BPD:
k4 = (11.9 µM)× (3× 103 µM−1s−1) = 3.6× 104 s−1.
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e Calculated based on the value of k3 and Φt: k5 = Φtk3/(1 − Φt).
Photofrin: k5 = (0.63)× (2.9× 107 s−1)/(1− 0.63) = 4.94× 107 s−1.
BPD: k5 = (0.79)× (4.04× 107 s−1)/(1− 0.79) = 1.52× 107 s−1.

f τ∆ = 3 µs in water and 0.16 µs in tissue [53]. k6 = τ−1
∆ − k7[A] =

(3 µs)−1 = 3.3× 105 s−1.
g k7[A] = τ−1

∆ − k6 = (0.1µs)−1 − (3.3× 105 s−1) = 1× 107 s−1, taken
from Zhu et al. [47]. The value of [A] is unknown but can be es-
timated from the value of k7 = 235 µM−1s−1 for a well-known sin-
glet oxygen quencher, NaN3 [130]: [A] = 107 s−1/235 µM−1s−1 =
42 mM. The magnitude of [A] is reasonable considering the singlet
oxygen threshold dose can be up to 12 mM [27], without causing
any effect on singlet oxygen lifetime. k7 = k71 + k72. k7 is assumed
to be k7 = k72 for type II photosensitizers and k7 = k71 for type I
photosensitizers.

h Assuming no hypoxic interactions.
i Assumed to be similar to the values for Photofrin.
j In vivo values calculated based on the values of ξ, Φt,

and ε: S∆ = ξ/Φtε × (hν). Photofrin: S∆ =
(3.7 × 10−3 cm2mW−1s−1)/(0.63)/(0.0035 µM−1cm−1) × (6.022 ×
1014 cm3µM−1) × (3.16 × 10−16 mW s) = 0.319. BPD: S∆ =
(51 × 10−3 cm2mW−1s−1)/(0.79)/(0.0312 µM−1cm−1) × (6.022 ×
1014 cm3µM−1)× (2.72× 10−16 mW s) = 0.144.

k In vivo values calculated based on the values of S∆ and Φt: Φ∆ =
S∆ × Φt. Photofrin: Φ∆ = (0.319) × (0.63) = 0.20. BPD: Φ∆ =
(0.144)× (0.79) = 0.11.

Photochemical parameters in phantoms were also investigated using in phantom ex-

periments (described further in chapter 4). The two photosensitizers utilized for these

studies were Photofrin (for its clinical relevance) and Rose Bengal (for its availabil-

ity and higher quantum yield to produce singlet oxygen). The parameters used for

calculations in phantom studies are summarized in table 2.4.
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Table 2.4: Selected photosensitizers and their in-phantom photophysical parameters

Parameter Photofrin Rose Bengal

ε 0.0035 @ 632 nma 0.095 @ 549 nma

(cm−1µM−1) 0.0089 @ 523 nma 0.059 @ 523 nma

k0 (s−1)
1.84b 25.69b

@100 mWcm−2

k1 (µM−1s−1) 6.6× 102c 50 [131]
k2 (µM−1s−1) 1.4× 103 [31] 1.6× 103 [132]
k3 (s−1) 2.9× 107 [31] 1.89× 107 [133]
k4 (s−1) 1.67× 104d 1.90× 104d

k5 (s−1) 4.9× 107e 5.7× 108e

k6 (s−1) 2.2× 105f 2.7× 105f

k7[A] (s−1) 1.9× 106g 1.7× 106g

k8[A] (s−1) (0)h (0)h

k9[Q] (s−1) 1.17× 106f 1.15× 105f

β (µM) 11.9 [125] 11.9 [124]i

δ (µM) 26± 5j 25± 9j

ξ (cm2mW−1s−1) (10.0± 2.6)× 10−3 @ 632 nmk (169± 38)× 10−3 @ 523 nmk

σ (µM−1) (6.8± 5)× 10−5l (9.4± 1.2)× 10−6l

η (cm2mW−1) (0)h (0)h

τ∆ (s) 0.5× 10−6m 0.5× 10−6m

τf (s) (5.5± 1.2)× 10−9 [123] 1.18× 10−10 [134]
τt (s) (0.43± 0.03)× 10−6m (2.1± 0.2)× 10−6m

Φ∆ 0.56 [124,127] 0.76 [135]
Φt 0.63 [22,27] 0.75 [129,136]

a Measured from absorption spectroscopy
b Calculated based on the value of ε and φ = 100 mW cm−2:
k0 = εφ/(hν). Photofrin: k0 = (0.0035 µM−1cm−1)/(6.022 ×
1014 cm2µM−1) × (100 mW cm−2)/(3.16 × 10−16 mW s) = 1.84 s−1.
Rose Bengal: k0 = (0.059 µM−1cm−1)/(6.022 × 1014 cm2µM−1) ×
(100 mW cm−2)/(3.8× 10−16 mW s) = 25.69 s−1.

c Calculated based on the value of σ and k7: k1 = σ × k7[A]. Photofrin:
k1 = (6.6× 10−5 µM−1)× (1× 107 s−1) = 6.6× 102 µM−1s−1.

d Calculated based on the value of β and k2: k4 = β × k2. Photofrin:
k4 = (11.9 µM)× (1.4× 103 µM−1s−1) = 1.67× 104 s−1. Rose Bengal:
k4 = (11.9 µM)× (1.6× 103 µM−1s−1) = 1.90× 104 s−1.

e Calculated based on the value of k3 and Φt: k5 = Φt/(1− Φt) · k3.
Photofrin: k5 = (0.63)/(1 − 0.63) × (2.9 × 107 s−1) = 4.94 × 107 s−1.
Rose Bengal: k5 = (0.75)/(1−0.75)×(1.89×108 s−1) = 5.67×108 s−1.

f Determined from measurements described in chapter 4 and figure 4.5,
for Photofrin phantoms with Intralipid and Rose Bengal in water. For
k9[Q], [Q] assumed to be 5 mM of NaN3 as per the experiment settings,
resulting in k9 = 234 µM−1s−1 for Photofrin and 23 µM−1s−1 for Rose
Bengal.

g Calculated for phantom studies with Intralipid using τ−1
∆ = k1([S0] +

δ)+k6 +k7[A] for [S0] = 50 µM and the values of k1, k6, and δ provided
in the table.
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h Assuming no hypoxic or type I interactions. Fig. 4.2 and 4.3 show
contributions from η do not model the measured data and require ξ to
be larger than possible.

i Assumed to be similar to the value for Photofrin and mTHPC [124].
j Obtained from fitting shown in figure 4.6c (for Photofrin) and 4.7c (for

Rose Bengal) using equation (4.3). δ = b/m where b is the intercept
and m is the slope of the linear fit .

k Values were determined from fit to in-phantom experiments de-
scribed in section 4.1.1 and shown in figure 4.6 and 4.7. Ini-
tial guesses were calculated from ξ = Φ∆ε/hν. Photofrin: ξ =
(0.56)(0.0035 cm−1µM−1)/(3.2×10−16 mWs)/(6.022×1014 cm−3µM−1

= 10.3×10−3 cm2 mW−1s−1 @ 632 nm. Rose Bengal: ξ = (0.76)(0.059
cm−1µM−1)/(3.8×10−16 mWs)/(6.022×1014 cm−3µM−1 = 195×10−3

cm2 mW−1s−1 @ 523 nm.
l Obtained from fitting shown in figure 4.6c (for Photofrin) and 4.7c (for

Rose Bengal) using equation (4.3). σ = m/ξ where m is the slope of
the linear fit.

m Assumed values to simulate short singlet oxygen lifetime with Intralipid
(at 0.2%) acting as a singlet oxygen acceptor (see Fig. 4.1). Measured
values from SOLD experiment when [A] = 0 and [Q] = 0 (i.e. without
Intralipid or NaN3) were found to be 9.4±0.2 µs for Photofrin and
3.8±0.3 µs for Rose Bengal (see Fig. 4.5).

2.4 Conclusions

This chapter reviews the photochemical parameters for the photosensitizers BPD,

Photofrin, and Rose Bengal. These parameters are needed for explicit dosimetry and

modeling the kinetic processes during PDT. Parameters for several other commonly

used photosensitizers are summarized in a review elsewhere [34]. Many fundamental

rate constant values are unavailable for many photosensitizers, and experimental ef-

forts to determine these parameters are required in order to perform explicit dosimetry

of reactive oxygen species.
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Chapter 3

Explicit Dosimetry Techniques

Much of the pre-clinical studies to investigate singlet oxygen explicit dosimetry were

performed using methods summarized in this chapter. The key components of explicit

dosimetry involved measurement of the light fluence, photosensitizer concentration,

and oxygen concentration.

3.1 Light Transport and Optical Properties

The amount of light that reaches the targeted tissue accounts for the treatment effi-

cacy in PDT. Light transport in biological matter is characterized by the absorption

and scattering of photons. These qualities are characterized by the optical proper-

ties of that tissue, namely, the absorption coefficient (µa) and the reduced scattering

coefficient (µ′s).

3.1.1 Measurement of light fluence

Light fluence was measured in various geometries depending on the treatment geom-

etry not only to determine the fluence delivered, but also for measurement of optical
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properties using a point source placed interstitially. Isotropic detectors (IP85 probe,

Medlight SA, Ecublens, Switzerland) were used to monitor fluence measured by an

in-house made dosimetry system, shown in Fig. 3.1.

Figure 3.1: In-house made dosimetry system. Fiber
optic probes are connected via SMA connector to
channels on the dosimetry system to measure light
fluence rate and cumulative fluence.

3.1.2 Diffusion theory for spherical geometry

For accurate dosimetry during pleural PDT, it is important to understand the effects

of light scattering in a cavity surrounded by tissue. The total fluence at the boundary

is larger than the non-scattered irradiance from a point source due to multiple light

scattering [9]. The diffusion theory can be used to derive an equation to calculate

the photon flux for tissue with a spherical cavity and an isotropic point source in the

center [137]. In an integrating sphere, the light does not penetrate deeply into the wall

and is back scattered close to the point where the light initially hit the wall, which

leads to the condition that the effective optical penetration depth is small compared
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to the dimension of the model. So 1/µeff � r, where r is the radius of the cavity, and

at the boundary, the total fluence can be written as [137]

φt(r)

S
≈ 1

4πr2

[
µeff
µa
− 2

]
. (3.1)

where S is the source power. The primary component of the light fluence (or the non-

scattered component) is calculated by φp(r)

S
= 1

4πr2
. When the refractive indices of the

tissue and non-scattering and non-absorbing material in the cavity do not match, the

fluence rate in the tissue is the same as with matched indices. The fluence rate in the

cavity does, however, depend on the difference in refractive index. On the boundary,

the total fluence can be calculated using Eq. (3.1). The scattered component of

fluence in the tissue is then written as

φs(r)

S
≈ 1

4πr2

[
µeff
µa
− 3

]
. (3.2)

The scattered fluence rate in the cavity is the same in the inward and outward direc-

tions. The scattered fluence rate in the cavity is [137]

φs(r)

S
≈ 1

4πr2
(1− r21)

(
µeff
µa
− 3

)
(3.3)

where the reflection factor, r21 is calculated from

r21 =2

∫ θ2=θc

θ2=0

[
1 + A2

(
exp(b2

√
cos θ2 − cos θc)− 1

)]
cos θ2

× sin θ2dθ2 +

∫ θ2=π/2

θ2=θc

cos θ2 sin θ2dθ2. (3.4)

Here, θc is the critical angle, and θ2 is the angle between the incident ray in the medium

(tissue) with the normal to the surface. Using an air-water interface with nair = 1
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and nwater = 1.33, r21 = 0.4476. The term 1 + A2

(
exp(b2

√
cos θ2 − cos θc)− 1

)
is

equal to Rfresnel.

Using the diffusion theory, the scattered light fluence per power can be calculated

in two ways for arbitrary geometries. In particular, experiments were conducted in

ellipsoid shapes

φs
S

=
4

SA

Rd

1−Rd

(3.5)

φs
S

=
(µeff/µa − 3) (1− r21)

SA
(3.6)

Here, SA is the surface area of the cavity volume. Rd is the diffuse reflectance and is

calculated using the following formula [138,139]:

Rd =
a′

2

(
1 + e−

4/3A
√

3(1−a′)
)
e−
√

3(1−a′) (3.7)

where the transport albedo is given by a′ = µ′s/(µa + µ′s) and A is the internal reflection

parameter. This is a function of the ratio of the index of refraction of the two

media: nrel = ntissue/nnon−scattering and A = (1 + rd)/(1− rd, where rd = −1.44n−2
rel +

0.710n−1
rel + 0.668 + 0.0636nrel [140]. For an air-tissue interface, a good approximation

is A = 3.25 [139]. Experiments were conducted in phantoms to validate the scattered

light components, and results are shown in chapter 7.

3.1.3 Measurement of tissue optical properties

Optical properties of the tumor tissue was measured by using a two-catheter method

(shown in figure 3.2) described in detail elsewhere [141, 142]. Treatment wavelength

light was delivered through an isotropic 2 mm point source. The point source was

inserted into one of two parallel cathethers with a 3 mm separation. An isotropic
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detector was placed in the other catheter. This detector was connected to a light

dosimetry system and the position of the detector was controlled by a computer-

controlled step motor system to obtain a scanned profile of the light fluence from the

point source along the catheter. Using the diffusion approximation, the light fluence

rate per source power at a distance r from a point source can be expressed as

φ

S
=

µ2
eff

4πrµa
e−µeff r =

3µ′s
4πr

e−µeff r (3.8)

where S is the source power of the point source in mW, φ(r) is the fluence rate in

mW/cm2 at a distance r, and µeff =
√

3µaµ′s. The point source was moved along

the catheter inside the tumor at 1 mm steps to obtain multiple fluence profiles inside

the tumor. The optical properties were determined by fitting the measured data to

the equation using a Matlab-based program.
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Figure 3.2: (a) Treatment set-up of interstitial PDT in a mouse RIF
tumor. (b) Schematic of parallel catheters in a tumor. One catheter
is inserted in the center of the tumor to contain the cylindrically
diffusing fiber to deliver the treatment light or the point source to
measure the optical properties, and a second catheter is inserted 3
mm away to contain the isotropic detector for light fluence profile
measurements for the optical properties or the side-firing fiber to
obtain fluorescence spectra. (c) Sample tumor section stained with
H & E to determine necrosis radius.
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3.2 Tumor Model

Radioactively induced fibrosarcoma (RIF) cells were cultured and 30 µl were injected

at 1 × 107 cells/ml in the right shoulders of 6-8 week old female C3H mice (NCI -

Frederick, Frederick, MD, USA). All animals were under the care of the University

of Pennsylvania Laboratory Animal Resources. All studies were approved by the

University of Pennsylvania Institutional Animal Care and Use committee. Tumors

were treated when they were ∼8-10 mm in diameter. The fur of the tumor region was

clipped prior to cell inoculation. After the appearance of a visible tumor (∼3 mm in

diameter), the treatment area was depilated with a topical hair remover, Nair (Church

& Dwight Co., Inc., Ewing, NJ, USA). Mice were provided with a chlorophyll-free

(alfalfa-free) rodent diet (Harlan Laboratories Inc., Indianapolis, IN, USA) starting at

least 10 days prior to treatment to eliminate the fluorescence signal from chlorophyll

breakdown products, which have a similar emission range to the BPD fluorescence

spectra (details are described in Appendix A).

3.3 Measurement of Photosensitizer Concentration

Photosensitizer concentration was determined using the characteristic fluorescence

spectra for each photosensitizer. Changes in photosensitizer concentration can be

observed by measuring the fluorescence spectra before, after, and during PDT. For

different studies, different techniques were used to obtain the fluorescence spectra.

Methods included interstitial fluorescence excited by 405 nm, surface fluorescence ob-

tained via a contact probe excited by 405 nm, and surface fluorescence obtained with

excitation by the treatment light. Obtained spectra were then analyzed by a fitting

algorithm described by Finlay et al. [42]. The spectra were fit as a linear combination

of fluorescence basis spectra using a single value decomposition (SVD) algorithm in
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Matlab. The components for a representative spectra with BPD is shown in figure

3.3. Basis spectra included those for the photosensitizer and the autofluorescence

(background) of the mouse. The algorithm employed also includes a 61-term Fourier

series to account for fluorescence of unknown origin. Spectra were corrected for CCD

integration time and background was also subtracted before analysis. SVD analy-

sis reduces the measured spectrum to a set of amplitudes of the components. To

account for variations in lamp intensity, the photosensitizer amplitude was divided

by the background amplitude from the same spectrum, to result in a normalized

BPD amplitude. Due differences in solvent between in-phantom and in vivo cases as

well as differences in absorption and scattering at both the excitation and emission

wavelengths of BPD, the measured BPD amplitude was multiplied by an empirically

determined correction factor described in the following sections.
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Figure 3.3: BPD fluorescence spectra analyzed using SVD. The raw
data (circles) are fit (solid line) using a linear combination of basis
spectra of BPD (dot-dashed line) and autofluorescence (dashed line)
components. Spectra was obtained from interstitial fluorescence ex-
cited by 405 nm light.

3.3.1 Interstitial photosensitizer measurements

Interstitial fluorescence measurements were made by inserting a side-cut fiber into

one of the two catheters that were inserted into the tumor. The side-cut fiberwas

connected to a 405 nm laser (Power Technology Inc., Little Rock, AR, USA), a

dichroic beam splitter, and a multichannel CCD spectrograph (InSpectrum, Prince-

ton Instruments, Trenton, NJ, USA). Collected spectra were analyzed using single

value decomposition (SVD) fitting [42]. Spectra were measured both before and after

treatment to investigate the effects of and relationship between photobleaching and

outcome. The in vivo photosensitizer concentration was obtained by comparing the

in vivo BPD fluorescence with that of phantoms with known BPD concentrations.
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An empirical correction factor was obtained from phantom experiments with known

constant BPD concentrations and varying absorption and scattering coefficients (µa

and µ′s). A set of experiments in tissue-simulating phantoms containing Intralipid

(Fresenius Kabi, Uppsala, Sweden) as a scatterer and Parker Quink (Parker Pen

Company, New Haven, East Sussex, England) as an absorber were designed. µa and

µ′s were varied for a fixed BPD concentration (0.25 mg/kg), and fluorescence spec-

tra were analyzed with SVD [42] to determine the spectral component magnitudes

for BPD and the autofluorescence from the 690 nm excitation laser light. The data

was then used to determine the empirical optical property correction factor for the

fluorescence method used to determine the PS concentration (Fig. 2 (a) ). A more

accurate method would involve knowledge of the optical properties at the excitation

wavelength (405 nm) as well as the emission wavelength (690 nm) [10], the former

is beyond the current fluorescence spectroscopy range. The effects of absorption and

scattering on measured fluorescence in semi-infinite media can be modeled using a

forward-adjoint fluorescence scheme proposed by Crilly et al.. [143]. This models

the forward propagation of excitation light from the source and the time reversed

propagation of positional importance from the detector. The positional importance

is defined as the probability that a photon emitted at a point is eventually caught by

a detector. The measured signal is proportional to the volume integral of the product

of the excitation fluence rate and the positional importance. An analytical solution

to this model has been derived by Finlay and Foster for the case of an isotropic point

source and an isotropic detector in an infinite homogeneous medium for the diffu-

sion approximation [10, 144]. To account for the actual measurement situation, it is

assumed that the light beam exiting or entering the probe is a pencil beam.

An empirical correction factor was introduced to account for differences in optical

properties between the phantom studies and in vivo measurements that depends on
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measured optical properties at 690 nm. Ideally, the measured optical properties could

be used as inputs for the full theoretical expression, however, the calculation would

require accurate knowledge of the optical properties at the excitation wavelength as

well as te emission wavelength, which is beyond the measurement system capabilities.

A multiplicative empirical correction factor of the following form can be determined,

which is an approximate inverse of the solution to the analytical solution described

by Finlay and Foster [144]. This is for the case of high albedo and unchanging optical

properties at the excitation wavelength.

CF = a
eb·µeff

µ′s
(3.9)

The raw SV D amplitude obtained from the in vivo fluorescence spectra was corrected

by multiplying it with CF to get corrected SV D (SV Dcorr). The values of a and b

were optimized so that SV Dcorr for phantoms with the same concentration of BPD

were matched (Fig. 3.4 (a)). Upon optimization using fminsearch in Matlab, it

was found that a = 1.2 cm−1 and b = 0.5016 cm. A separate tissue-simulating

phantom with fixed optical properties (µa = 0.7 cm−1 and µ′s = 10.1 cm−1) and

varying concentrations of BPD (µM) were used to determine a calibration curve for

SV Dcorr (Fig. 5.2 (b)). The correction factor for motexafin lutetium fluorescence

emission with optical properties measured using 732 nm from Finlay et al. had

values of a = 3.1 cm−1 and b = 0.97 cm [10]. The value of a is dependent on the

measurement set-up and the intensity of the incident excitation light. For the same

geometry, the value of b should not vary greatly depending on the photosensitizer and

wavelength used for optical property measurements. From these measurements, the

range of values of b is from 0.50 to 0.97 cm.
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Figure 3.4: Optical property correc-
tion of fluorescence signal for in-
terstitial measurements. (a) Flu-
orescence single value decomposi-
tion (SV D) amplitude for BPD in
tissue-simulating phantom experi-
ments with different optical prop-
erties but constant BPD concentra-
tion.An empirical correction factor
(CF ) of the form described in Eq.
(3.9) was obtained so that the cor-
rected SV Dcorr amplitudes were the
same. (b) A calibration curve of
BPD concentration (in µM) versus
SV Dcorr. (c) Interstitially measured
in vivo BPD concentration versus
ex vivo measured BPD concentra-
tion. Each data point represents
the average of three in vivo and ex
vivo measurements performed in the
same RIF tumor. The solid line rep-
resents the best linear fit (y = 0.99x)
to the data with R2 = 0.99. The
dashed line represents y = x.
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3.3.2 Surface photosensitizer measurements

Fluorescence measurements were made by a custom-made multi-fiber spectroscopic

contact probe (Fig. 6.1 (b)) described elsewhere [145]. The probe is placed in physical

contact with the tumor tissue both pre- and post-PDT to obtain fluorescence spectra

of BPD. The probe is comprised of two source optical fibers and a series of detection

fibers spaced between 0,14 and 0.88 cm away from the first source fiber. The source

fibers are connected to (i) a white light source to collect diffuse reflectance (Avalight;

Avantes, Broomfield, CO, USA) and (ii) a 405 nm laser source (Power Technologies,

Inc., Little Rock, AK, USA) for fluorescence excitation. The detection fibers were con-

nected to a multi-channel CCD spectroscopy system (InSpectrum; Roper Scientific,

Trenton, NJ). Fluorescence spectra were collected both before and after treatment

and analyzed using single value decomposition (SV D) fitting to obtain fluorescence

intensity due to BPD. An empirical optical property correction factor (CF ) that is

different than that of the interstitial geometry used in section 3.3.1 was determined.

CF was defined as the ratio of SV D between fluorescence with tissue optical proper-

ties of interest (µa, µ
′
s) and the corresponding fluorescence SVD for a reference system

with optical properties of µa = 0.69 cm−1 and µ′s = 11 cm−1, with BPD as the pho-

tosensitizer and optical properties measured at 690 nm. A multiplicative CF of the

following form was used to multiply raw SV D to obtain corrected SV D (SV Dcorr):

CF =
C1(1 + C2µ

′
s)

µ′s
· exp [(b1 + b2µ

′
s)µeff ] (3.10)

The input optical properties are those measured at 690 nm. This formulation for the

correction factor is an expansion of the expression in equation (3.9). Raw SV D was

multiplied by CF to get SV Dcorr. The values were optimized so that SV Dcorr for

phantoms with the same concentration of BPD were matched (Fig. 3.5 (a)). Upon
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optimization, it was found that C1 = 0.41 ± 0.16 cm−1, C2 = 0.142 ± 0.013 cm,

b1 = 0.85 ± 0.16 cm, and b2 = −0.032 ± 0.014 cm2. A separate tissue-simulating

phantom with constant scattering and absorption and varying amounts of BPD were

used as a calibration curve to correlate SV Dcorr to actual concentration in µM (Fig.

3.5 (b)). The line of best fit (shown as a solid line in Fig. 3.5 (b)) is [BPD] =

(0.0301±0.0009)×SV Dcorr is used to convert SV Dcorr to [BPD] in units of µM. The

values for CF for Photofrin studies were found to be C1 = 3.881 cm−1, C2 = 0.00265

cm, b1 = 0.5043 cm, and b2 = −0.01622 cm2 [146]. Using a Monte Carlo simulation

for a tissue-air interface, the resulting values were C1 = 2.4258 cm−1, C2 = −0.0033

cm, b1 = 0.4879 cm, and b2 = −0.01559 cm2. The values of C1 and C2 are dependent

on the measurement set-up and the intensity of the excitation light. The values for

b1 and b2 provide the range for the fit parameters for CF .

Fluorescence spectra were also obtained via surface illumination of tumors with the

treatment light at 690 nm. A bare fiber was placed next to the collimated beam source

facing the tumor. Between the fiber and the spectrometer, a long-pass filter (FF01-

715/LP-25, Semrock Inc., Rochester, NY, USA) was used eliminate the treatment

light. An example of spectra obtained using this method is shown in Fig. 3.6.

Intensity from the fluorescence signal obtained using this method was used to do

continuous monitoring of photosensitizer concentration during treatment for a set of

mice described in chapter 6. Initial photosensitizer concentration was measured using

contact probe methods described earlier.
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Figure 3.5: Optical property correction of
fluorescence signal for surface fluorescence
measurements. Fluorescence optical prop-
erty correction phantoms and verification
with in vivo and ex vivo comparison. (a)
Fluorescence SV D amplitude for phantom
experiments with varying optical proper-
ties and the same BPD concentration (0.25
mg/kg). The best-fit (shown as dashed
lines) is of the form a/CF , where CF
is given by Eq. (3.10) and a = 7.645.
(Note, CF = 1 is normalized for mean op-
tical properties of µa = 0.69 cm−1, µ′s =
11 cm−1) (b) BPD concentration (in µM)
versus the corrected SV D (SV Dcorr). The
line of best fit [BPD] = (0.0301±0.0009)×
SV Dcorr with R2 = 0.9986 is used to con-
vert SV Dcorr to [BPD]. (c) The measured
in vivo photosensitizer concentration using
the multi-fiber contact probe obtained flu-
orescence spectra versus ex vivo measured
BPD concentration. The line of best fit is
of the form y = 0.9821x with R2 = 0.9772.
The dashed line represents the line for
y = x.
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Figure 3.6: BPD fluorescence spectra collected with exci-
tation by the treatment light (690 nm). A long-pass filter
(cutoff at 715 nm) was used to eliminate the treatment light
signal.

3.3.3 Verification of in vivo BPD concentration

In order to verify the in vivo photosensitizer concentration measured using fluores-

cence spectroscopy, ex vivo experiments were performed on another set of tumors on

mice injected with BPD. Measurements of BPD levels in tissue were done based on

published ex vivo procedures [147–149]. After the correct incubation time (3 hours

for BPD), tumor tissue samples were excised and immediately frozen for later use.

At the time of measurement, samples were thawed to room temperature, weighed,

minced, and placed in a vial with the appropriate amount of tissue solubilizer, Solv-

able (Packard, Meriden, CT, USA). The samples were then heated at 50 ◦C in the

dark for 4 hours. After the solution was cooled, an equal volume of water was added,

and with thorough mixing, the solution was transferred to a cuvette to be measured.

The fluorescence of the solubilized samples was measured using a spectrofluorometer
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(FluoroMax-3, Jobin Yvon, Inc., Edison, NJ, USA) with an excitation wavelength of

435 nm. The concentration of BPD was calculated based on the increase in fluores-

cence signal resulting from the addition of a known amount of BPD to each sample

after its initial reading. The ex vivo measurements were compared to in vivo measure-

ments using the method described in section 3.3.1 and 3.3.2 for the same tumors (Fig.

3.2 (c) and 3.4 (c)). The good agreement between the two confirmed the accuracy of

the interstitial method used in vivo both pre- and post-PDT.

3.4 Treatment Delivery

Mice were administered with photosensitizer via the tail vein prior to treatment with

the appropriate drug-light interval (DLI) for the photosensitizer being used. For the

treatment, mice were anesthetized by inhalation of isoflurane in medical air (VetEquip

anesthesia machine, VetEquip, Livermore, CA, USA). For some studies, treatment

light was delivered interstitially with a fiber optic through a catheter inserted into

the tumor (see Fig. 3.2). Mice treated with this method of light delivery were

sacrificed one day following treatment, and the tumors were resected for pathology

and sectioning, as described in chapter 5. For those mice whose tumors needed to

be monitored over time (chapter 6), the catheters were not a viable option to deliver

light, as they would create damage to the surface of the skin, leaving the mouse prone

to infections and other tumor injury. These mice were treated with a broad beam of

light on the surface of the tumor to minimize non-PDT-related damage.
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3.5 Macroscopic Singlet Oxygen Model in vivo

The typical type II PDT process can be described by a set of kinetic equations,

described in detail in chapter 2. For the in vivo modeling scenario, an assumption is

made that the number of singlet oxygen acceptors present in the tissue is very large,

resulting in a large k72[A] term (k72[A] � k6 + k12([S0] + δ) + k9[Q]) and assuming

η = 0. Then, the relevant equations are simplified as the following:

d[S0]

dt
= − [3O2]

[3O2] + β
ξσ([S0] + δ)φ[S0], (3.11)

d[3O2]

dt
= − [3O2]

[3O2] + β
ξφ[S0]([S0] + δ) + g

(
1− [3O2]

[3O2](t = 0)

)
, (3.12)

d[1O2]rx
dt

=
[3O2]

[3O2] + β
ξφ[S0], (3.13)

where the photosensitizer-specific parameters were determined for BPD in chapter

5 and validated in chapter 6. If the parameters are 10% over- or underestimated,

calculated [1O2]rx will deviate up to 12%. An increased σ estimates a smaller [1O2]rx,

while an increased g or ξ estimates larger [1O2]rx.

The accumulated [1O2]rx that is used to kill cellular targets can be expressed as

[1O2]rx = −f
∫ t

0

d[A]

dt
dt = fk7

∫ t

0

[A][1O2]dt = fξ

∫ t

0

[3O2]

[3O2] + β
φ[S0]dt (3.14)

where f is the fraction of 1O2 interacting with [A] that effectively leads to tumor cell

death. For the pre-clinical studies done in this work, f has been set as 1.

For in vivo modeling, calculations were performed in Matlab with input values of

treatment conditions (fluence and fluence rate), the measured initial photosensitizer
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concentration, and depending on the study, the initial ground state oxygen concen-

tration. Results of these calculations are shown in detail in chapters 5 and 6 using a

mouse model.
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Chapter 4

Determination of In-Phantom

Photochemical Parameters

Most clinically relevant photosensitizers undergo type II processes in which the triplet

state transfers energy to ground-state oxygen to produce singlet oxygen [150], which is

the main photocytotoxic agent leading to cell death and therapeutic response [91,151].

Use of singlet oxygen concentration was investigated in this study. Direct measure-

ment of 1O2 by its near-infrared luminescence emission is technically challenging

in vivo due to the weakness of the signal and the short lifetime (∼30-180 ns) of

1O2 [50, 51]. Hence, a macroscopic singlet oxygen explicit dosimetry model has been

developed and studied in vivo and described in sections 3, 5, and 6. SOED was

compared in solutions to direct singlet oxygen luminescence dosimetry (SOLD). The

relevant photophysical parameters for the macroscopic model were verified by per-

forming explicit dosimetry of oxygen concentration and photosensitizer concentration

in phantoms. In performing a direct comparison between SOED- and SOLD-measured

1O2, the use of SOED in scenarios where direct luminescence detection is difficult is

validated. Furthermore, an analysis was performed to show that SOLD measured
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using a 523 nm pulsed laser (currently required by the availability of lasers with

suitable pulse length, repetition frequency, and energy) is well-correlated to singlet

oxygen generated by Photofrin by a CW 630 nm laser during PDT, by correcting for

the tissue optical properties at the two wavelengths.

4.1 Materials and Methods

4.1.1 SOED model in phantoms

From the kinetic equations summarized in section 2.1.4, the interactions of [3O2] and

[S0] in the phantom scenario where there is no added singlet oxygen quencher can be

described by the following equations

d[S0]

dt
= − (ξσ)

[3O2]

[3O2] + β
([S0] + δ)φ[S0]− η 1

[3O2] + β
φ[S0], (4.1)

d[3O2]

dt
= [−ξ + ξIIτ∆k6]

[3O2]

[3O2] + β
φ[S0] (4.2)

The definitions of the parameters are listed in table 2.2. ξ, σ, and δ were varied to

fit the measured ground state oxygen data. From the equation set and the measured

data, it is difficult to distinguish between type I and type II interactions, so only values

of ξ and σ were considered. The values of the parameters used for the calculation are

summarized in table 2.4 and described in section 4.2.2. For the in-phantom scenario

using Intralipid, the k72[A] term was calculated based on an assumed value of τ∆ using

τ−1
∆ = k1([S0]+δ)+k6 +k72[A]. Without the addition of a quencher, the k9[Q] term is

set to 0. Here, the definition of σ is (σIξI +σIIξII)/ξ. Measured ground state oxygen

concentration and photosensitizer concentration were fit assuming no contributions
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from hypoxic interactions between the triplet state photosensitizer and the reactive

species acceptor, [A] in the solid lines in Fig. 4.2 and 4.3, for Photofrin and Rose

Bengal. The results show good agreement between measured data and calculated

values. The dashed line shows the best fit to the photosensitizer data including the η

term in Eq. (4.1). A dominant η term was used to fit the data, and then values of σ

and ξ were fit accordingly. Resulting values of ξ exceeded the acceptable calculated

range using the equation ξ = Φ∆
ε/hν (where Φ∆ ≤ 1). Furthermore, in phantoms,

τ∆k6 � 1, so it is difficult to differentiate between type I and type II reactions.

Thus, for the photosensitizers investigated in-phantoms, hypoxic interactions should

be considered negligible since it cannot be made to fit the measured data.

τ∆ was taken to be 0.5 µs in studies with Intralipid, as the lipid emulsion acts as

an acceptor for reactions with singlet oxygen [152]. It is seen that the singlet oxygen

lifetime is reduced from the typical in-phantom value (3 µs) with the addition of

Intralipid, as seen in Fig. 4.1 [85]. Singlet oxygen luminescence counts were not seen

for phantoms with Intralipid concentrations of 0.2% in that study. For modeling of

the in-phantom studies presented in section 4.2.2, this reduction of τ∆ was considered

with a lifetime value that was undetectable from previous studies.
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Figure 4.1: Singlet oxygen luminescence photon counts for
Rose Bengal (51 µM) phantoms with various amounts of In-
tralipid. With increasing amounts of Intralipid, the photon
counts obtained decreases, indicating a shorter singlet oxy-
gen lifetime (τ∆). Data with Intralipid 0% is fit with Eq.
(4.10).
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Figure 4.2: Measured (a) oxygen and (b) photosensitizer concentration data
is plotted with model calculations that include hypoxic interactions (η term
in Eq. 4.1). The symbols represent measured data at various concentrations
of Photofrin, and the lines show the calculated oxygen and photosensitizer
concentrations over a time of illumination. The solid lines shows the best
fit, and the dashed line shows the best fit for photosensitizer that includes
hypoxic interactions.
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Figure 4.3: Measured (a) oxygen and (b) photosensitizer concentration data
is plotted with model calculations that include hypoxic interactions (η term in
Eq. 4.1). The symbols represent measured data at various concentrations of
Rose Bengal, and the lines show the calculated oxygen and photosensitizer
concentrations over a time of illumination. The solid lines shows the best
fit, and the dashed line shows the best fit for photosensitizer that includes
hypoxic interactions.
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Assuming type II interactions, equation (4.1) can be rewritten as the following:

− d[S0]

dt

/(
φ[S0]

[3O2]

[3O2] + β

)
= ξσ([S0] + δ) (4.3)

The left-hand side of equation (4.3) versus [S0](t) gives the values of δ and σ. The

photobleaching rate (−d[S0]/dt) was determined at each time point with values of φ,

[3O2], [S0], and β for the calculation of the left-hand side of equation (4.3). A linear

fit to the data yields a value for the intercept and slope, and the intercept divided

by the slope gives the value of δ and the slope divided by ξ gives the value of σ.

Calculations were performed using Matlab 2014b (MathWorks, Natick, MA, USA).

Oxygen and photosensitizer measurements were performed and compared (Figs.

4.6 and 4.7) with model calculated values using the coupled differential equations

above in phantoms with a small amount of Intralipid (0.02% concentration).

To compare explicit dosimetry with direct dosimetry, instantaneous and cumu-

lative singlet oxygen concentration was calculated. Equation (2.23) can be written

as

[1O2] = ξτ∆
[3O2]

[3O2] + β
φ[S0]. (4.4)

The cumulative reacted singlet oxygen counts can be calculated from the integral of

Eq. (2.29)

[1O2]rx =

∫
ξ

[3O2]

[3O2] + β
φ[S0]dt. (4.5)

Comparisons where performed in phantom solutions with only the photosensitizer

and a solvent (MeOH or H2O), and the relevant parameters are summarized in table

2.4.
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Macroscopic model with oxygen quenching

In the biological scenario, 3O2 that is used to produce 2O2 is consumed and replen-

ished by blood flow (described by the g term). In experiments with a singlet oxygen

quencher, such as sodium azide (NaN3), singlet oxygen is not consumed rapidly and

returns to the lower energy state of ground state oxygen. Equation (2.12) and (2.16)

can be modified as follows:

d[S0]

dt
= −k0[S0]− k12[1O2]([S0] + δ)− k11[O –·

2 ]([S0] + δ) + k2[T1][3O2] + k3[S1] + k4[T1]

(4.6)

d[3O2]

dt
= −S∆k2[T1][3O2]− SIk2[T1][3O2] + k6[1O2] + k9[Q][1O2] + Γ (4.7)

where k9 is the bimolecular rate of reaction of 1O2 with a quencher, [Q], and Γ is

the oxygen supply rate which describes diffusion of oxygen in vivo. In the phantom

scenario, [A] = 0 and Γ = 0. These can be simplified as before, solving for the

equilibrium state, to become

d[S0]

dt
= − (ξIIσII + ξIσI)

[3O2]

[3O2] + β
([S0] + δ)φ[S0]− η 1

[3O2] + β
φ[S0], (4.8)

d[3O2]

dt
= [− (ξII + ξI) + ξIIτ∆(k6 + k9[Q])]

[3O2]

[3O2] + β
φ[S0] (4.9)

Values of each photochemical parameter used is summarized in table 2.4. Some

parameters were taken as the reported literature value, such as k1. The value for

ξ was calculated for the in-phantom scenario and is described in table 2.4. Using

methods described later in section 4.2.1 and Fig. 4.5, the values for k6 and k9[Q] were

determined using singlet oxygen luminescence and lifetime measurements. Phantoms

with various concentrations of Photofrin and Rose Bengal with added amounts of
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NaN3 were made and illuminated with a broad beam. Oxygen changes were monitored

over time, and the measured values were compared (Fig. 4.5) to the modeled values

using eqs. (4.8) and (4.9) for both Photofrin and Rose Bengal.

4.1.2 SOLD instrumentation

Singlet oxygen luminescence dosimetry (SOLD) was performed using a compact, fiber

optic near-infrared probe-based system [85,153]. The probe was coupled to a compact

InCaAs/InP single photon avalanche diode (SPAD) detector (Micro Photon Devices,

Bolzano, Italy). Samples were illuminated with a 523 nm wavelength pulsed laser

(QL-523-200-S, CrystaLaser, Reno, NV, USA) coupled into the delivery fiber via

a collimation package. The laser emits 10 ns duration pulses at a repetition rate

of 18.2 kHz with an average power of 200 mW. Patterned time gating was used to

limit the unwanted dark counts and eliminate the strong photosensitizer luminescence

background. The luminescence signal from singlet oxygen at 1270 nm was confirmed

through spectral filtering and lifetime fitting for Photofrin.

Figure 4.4 shows a photograph and schematic of the experimental setup. The

pulsed laser was coupled into the delivery fiber. The laser also outputs an electri-

cal signal that is sent to a programmable pulse pattern generator (PPG) (Agilent

81110A, Keysight Technologies, Inc., Santa Rosa, CA, USA). Each pulse generates

outputs on two separate channels, each with pulse shape designed to match the in-

tended input. The first output is a single pulse sent to the start channel of the time-

correlated single-photon counting (TCSPC) module (HydraHarp, PicoQuant GmbH,

Berlin, Germany), while the second is a pattern of pulses sent to the SPAD control

module. The SPAD is turned on for a preassigned time, only when the control mod-

ule receives a pulse from the PPG. The electrical signal from the laser to the PPG

triggers the release of two signals: one acts as the start signal for the photon counting
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module and the other triggers the SPAD gating.

Figure 4.4: Singlet oxygen luminescence dosimetry (SOLD) instru-
mentation set-up (a) on an optical bench; and (b) schematic diagram
of the experimental arrangement. PPG - pulse pattern generator;
SPAD - single photon avalanche diode; TCSPC - time-correlated
single-photon counting

The TCSPC module generates a timing histogram of photon counts versus time.

The background was removed by subtracting the histogram taken through a 1210 nm

filter from that through the 1270 nm filter. Equation (4.10) describes the [1O2] signal

as a function of time following a short illumination pulse.

[1O2](t) = NσA[S0]Φ∆
τ∆

τt − τ∆

(
e−

t/τt − e−t/τ∆
)

(4.10)
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The cumulative SOLD singlet oxygen count can be calculated as the integral of equa-

tion (4.10) per τR [154].

∫ ∞
0

1

τR
[1O2](t)dt =

NσA[S0]Φ∆τ∆

τR
(4.11)

where N is the number of photons in the illumination pulse, σA is the photosensitizer

absorption cross-section (σA = (ε/NA) × 109), NA is Avogadro’s constant (6.022 ×

1023), ε is the extinction coefficient, and τR is the 1O2 phosphorescence lifetime (k−1
6 ).

A fit of the background-subtracted histograms was performed to equation (4.10) (with

a y-axis offset as a free parameter to account for any change in the background level)

using Origin software with a Levenberg-Marquardt algorithm to iterate the parameter

values (see Fig. 4.1) [130].

4.1.3 Measurements in tissue-simulating phantoms

Explicit dosimetry of phantom studies was performed using tissue-simulating liquid

phantoms. Intralipid (Fresenius Kabi, Uppsala, Sweden) was added to solutions as

a scatterer. A broad beam was produced by a fiber with a microlens attachment

(Pioneer Optics Company, Bloomfield, CT, USA) onto cuvette phantoms. Oxygen

measurements were made with a bare-fiber OxyLite probe (Oxford Optronix, Oxford,

United Kingdom) on the side closest to beam entry in the middle of the beam field. In

the in vitro set-up, there is very little oxygen diffusion to the point of measurement.

Therefore, oxygen measurements were performed with interruption of the excitation

laser at 1-30 second intervals. Illumination light was briefly turned off during these

measurements, and multiple values were recorded for a single phantom. Oxygen

partial pressure was measured in mmHg and converted to µM by using a factor of α

= 1.3 [48,117].
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4.2 Results

4.2.1 SOED photophysical parameters

Photophysical parameter values for Photofrin were determined for in vitro macro-

scopic modeling from the literature as well as measurements to be used in the calcu-

lation of [1O2]rx. The values of the parameters are summarized in table 2.4.

Singlet oxygen lifetime was determined using the SOLD instrumentation for the

Photofrin and Rose Bengal phantoms and summarized in table 4.1. Lifetimes were

also determined for phantoms with varying concentrations of NaN3. Figure 4.5 shows

the plot of τ−1
∆ versus concentration of NaN3 with their best linear fits for (a) Photofrin

(83 µM) and (b) Rose Bengal (50 µM). As NaN3 is a singlet oxygen quencher, the

line of best fit describes k9[Q] + k6 rather than k7[A].

Table 4.1: Measured singlet oxygen and photosensitizer
triplet state lifetimes (in µs) from fits to Eq. (4.10) for
Photofrin in methanol and Rose Bengal in water [85]

Photofrin Rose Bengal
in methanol in water

Triplet state lifetime, τt (µs) 0.43±0.03 2.1±0.2
Singlet oxygen lifetime, τ∆ (µs) 9.4±0.2 3.8±0.3
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Figure 4.5: Singlet oxygen lifetime (τ∆) changes due to quench-
ing with various concentration of sodium azide (NaN3) for (a)
Photofrin (83 µM) in MeOH and (b) Rose Bengal (50 µM) in
water. τ−1

∆ = k12([S0] + δ) + k6 + k9[Q]. Symbols represent
measured data and the solid line is the best linear fit
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From this study, it was found that the value of k9[Q] for a NaN3 concentration of 5

mM is 1.17 × 106 s−1 for Photofrin and 1.15 × 105 s−1 for Rose Bengal. This value

is dependent on the concentration and efficiency of the singlet oxygen quencher that

is being investigated. For the purposes of in vivo modeling, it is assumed that any

singlet oxygen produced is biologically consumed in the process of cell destruction,

so there is no quenching effect. The value of k12([S0] + δ) + k6 was found to be

1.1× 105 s−1 for Photofrin and 2.7× 105 s−1 for Rose Bengal. Using the values of k12

and δ provided in table 2.4 along with the concentration of photosensitizer used (83

µM and 50 µM for Photofrin and Rose Bengal, respectively), the value of k6 can be

calculated by using k6 = intercept− k12([S0] + δ). For Photofrin, k6 = 3.8× 104 s−1

in methanol and for Rose Bengal, k6 = 2.7 × 105 s−1 in water. Using Photofrin in

Intralipid phantoms (see Fig. 4.1), the value of τ∆ was found to be 3.4 µs, resulting

in a calculated value of k6 = 2.2× 105 s−1.

4.2.2 SOED in phantom

Photofrin phantoms with Intralipid as optical scatterer and absorption due to both the

photosensitizer and water (or Intralipid) were used to measure the time dependence

of [3O2] and photosensitizer concentration, [S0], under CW 630 nm laser excitation.

[3O2](t) was measured using an oxygen phosphorescence probe and the photophysical

parameters summarized in table 2.4.

Figure 4.6a and b show the measured [3O2] and [S0] at just below the surface

(d = 0) versus time in an Intralipid phantom (with µ′s = 0.2 cm−1) for three different

initial Photofrin concentrations (27, 50, 167 mM). The symbols are measured values

and the lines are SOED-calculated results. Figure 4.6c shows the photosensitizer pho-

tobleaching rate per PDT dose, −d[S0]
dt

1
[S0]φ[3O2]/([3O2]+β)

versus [S0]. The symbols are

calculated values using equation (4.3), and the line is the best linear fit. Figure 4.6d
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shows the expected SOED-calculated cumulative reacted singlet oxygen concentra-

tion, [1O2]rx, during illumination. The same is shown for Rose Bengal concentrations

of 16, 50, and 100 µM in Fig. 4.7.

In Fig. 4.6c and 4.7c, the linear fit to the data plotting −d[S0]
dt

1
[S0]φ[3O2]/([3O2]+β)

versus [S0] is shown as a red dashed line. The values found for the slope (m) and

intercept (b) can be used to calculate values of δ and σ. If the linear fit is given as

y = mx + b, then δ = b/m and σ = m/ξ. The value of ξ used for these phantom

studies is calculated using known values of extinction coefficient, Planck’s constant,

wavelength of interest, and the singlet oxygen quantum yield from literature. This is

described further in chapter 3 and, in particular, table 2.4. For Photofrin, the linear fit

shown in Fig. 4.6c has a slope of (6.9±0.5)×10−6 and an intercept of (1.8±0.3)×10−5,

resulting in calculated values of δ = 26±5 µM and σ = (6.6±5)×10−5 µM−1. For the

case of Rose Bengal, the linear fit shown in Fig. 4.7c has a slope of (1.6± 0.2)× 10−6

and an intercept of (3.9± 1.4)× 10−5, resulting in calculated values of δ = 25± 9 µM

and σ = (8.1± 1.2)× 10−6 µM−1.
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Figure 4.6: Comparison of measured and singlet oxygen explicit dosimetry
(SOED)-calculated values of (a) [3O2](t) and (b) [S0](t) at d = 0 for three initial
photosensitizer concentrations, [S0]0 = 27, 50, 167 µM. Measurements of ground-
state oxygen were made at 5-30 s intervals while photosensitizer spectra were
obtained every 10 s. The average initial [3O2]0 value was 160.4 µM. (c) The left-
hand side of equation (4.3) versus the Photofrin concentration, with the line of
best fit. (d) Calculated volume-averaged [1O2]rx over time. Eqs. (4.1) and (4.2)
were used for this set of data.
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Figure 4.7: Comparison of measured and singlet oxygen explicit dosimetry
(SOED)-calculated values of (a) [3O2](t) and (b) [S0](t) at d = 0 for three initial
photosensitizer concentrations, [S0]0 = 16, 50, 100 µM. Measurements of ground-
state oxygen were made at 5-30 s intervals while photosensitizer spectra were
obtained every 10 s. The average initial [3O2]0 value was 164.2 µM. (c) The left-
hand side of equation (4.3) versus the Rose Bengal concentration, with the line of
best fit. (d) Calculated volume-averaged [1O2]rx over time. Eqs. (4.1) and (4.2)
were used for this set of data.

In phantoms with NaN3, changes in [3O2] were measured using the Oxylite phos-

phorescence based oxygen probe. Figure 4.8 shows a plot of measured [
3
O

2
]/[3O

2
]0 in

symbols for different concentrations of Photofrin and Rose Bengal. Solid lines show

the calculated changes in ground state oxygen using the modified equations to ac-

count for singlet oxygen quenching (eqs. (4.8) and (4.9)). A broad beam was used

to illuminate a cuvette with a fluence rate of 820 mW/cm2 at the surface. It is seen

that changes in oxygen are not as dramatic as those shown in Fig. 4.6 and 4.7 since
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the NaN3 quenching of singlet oxygen produced ground state oxygen.

Figure 4.8: Ground state oxygen relative to the initial
oxygen ([3O2]0) was measured (symbols)for phantoms
with NaN3 and photosensitizers (a) Photofrin (83, 333,
and 500 µM) and (b) Rose Bengal (16, 50, and 100
µM). Calculations are shown in solid lines. Eqs. (4.6)
and (4.7) were used for this set of data.
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4.2.3 SOED/SOLD comparison in solution

The singlet oxygen generated in Photofrin-containing solutions and Rose Bengal-

containing solutions was calculated using SOED and the results were compared to

SOLD-determined luminescence counts of 1O2. The latter was correlated with the

amount of 1O2 produced instantaneously and cumulatively. Instantaneous [1O2] ac-

counts for the singlet oxygen generated for each pulse of laser excitation, while cumula-

tive [1O2]rx is the integral of all singlet oxygen produced during the entire illumination

time over the entire illumination volume. The agreement between the two methods

(SOED and SOLD) is shown in figure 4.9: (a) shows SOLD counts per accumulation

time (in seconds, t = 300 s before and after PDT) and (b) shows cumulative SOLD

counts over the entire treatment time of 900 s. Photofrin was dissolved in MeOH

solution and Rose Bengal was dissolved in water [130].

Figure 4.9: (a) Comparison of SOLD-obtained 1O2 counts (equation (4.10))
per accumulation time (in seconds) at 523 nm and SOED-calculated instanta-
neous [1O2] (equation (4.4)) for Photofrin concentrations in MeOH of 17, 50,
and 83 µM, and light fluence φ0 = 30 mW/cm2. The initial oxygen concentra-
tion was measured as 175 ± 6 µM. (b) Comparison of SOLD cumulative 1O2

counts (equation (4.11)) and reacted singlet oxygen concentration ([1O2]rx)
calculated with SOED (equation (4.5)) for Photofrin concentration of 17, 50,
and 83 µM. PDT was performed with 523 nm light at φ0 = 30 mW/cm2 for
900 s.
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Figure 4.10: (a) Comparison of SOLD-obtained 1O2 counts (equation (4.10))
per accumulation time (in seconds) at 523 nm and SOED-calculated instan-
taneous [1O2] (equation (4.4)) for Rose Bengal concentrations in water of
9.8, 19.7, 29.5, 39.3, and 49.1 µM, and light fluence φ0 = 30 mW/cm2. The
initial oxygen concentration was measured as 178 ± 3 µM. (b) Comparison
of SOLD cumulative 1O2 counts (equation (4.11)) and reacted singlet oxygen
concentration ([1O2]rx) calculated with SOED (equation (4.5)) for Rose Ben-
gal concentrations of 9.8, 19.7, 29.5, 39.3, and 49.1 µM. PDT was performed
with 523 nm light at φ0 = 30 mW/cm2 for 900 s.

4.3 Discussion

4.3.1 SOED and SOLD intercomparison

The SOED calculated [1O2] value in solution in Figure 4.8a corresponds to the vol-

umetric averaged instantaneous singlet oxygen concentration over a volume of 1 cm

depth and 1 cm2 area. SOED-calculated [1O2]rx in Figure 4.9b corresponded to the

volumetric average reacted singlet oxygen concentration of the same 1 cm3 volume.

In these solutions, the light fluence was calculated by introducing only the attenua-

tion that is due to the photosensitizer absorption, since no scatterer was added and

solutions were of pure Photofrin: φ = φ0 · e−µa×d, where φ0 is the light fluence rate

(mW/cm2) measured directly on the back of the front wall of the solution facing

the laser. Absorption coefficients (µa) were 0.15, 0.45, and 0.74 cm−1 for Photofrin
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concentrations of 17, 50, and 83 µM, respectively, at 523 nm.

In order to experimentally determine the photophysical parameters of the spon-

taneous phosphorescence rate of 1O2 to 3O2 (k6) and the bimolecular reaction rate of

1O2 with the substrate (k7) in Photofrin phantoms, photosensitizer triplet-state and

singlet oxygen lifetime measurements were obtained using the SOLD system. Vary-

ing amounts of the singlet oxygen quencher, sodium azide (NaN3), were added to the

PhotofrinMeOH solutions. The resulting fits to obtain k6 and k7 are shown in Figure

4.5. For Photofrin with NaN3, k6 was found to be 1.14× 105s−1 (the intercept of the

line of best fit in Figure 4.5) and k7 was found to be 235 µM−1s−1 (the slope of the

line of best fit in Figure 4.5). k7 is pH-dependent, but is in the range of the reported

value of 300400 µM−1s−1 for the quenching rate constant in water [155]. These values

were used to calculate τ∆ for the in vitro condition (without NaN3) and the in vivo

condition (taken from the literature for biological tissue [125]). Assuming that k7

for NaN3 is greater than or equal to that of in vivo conditions (assuming biological

tissue is less efficient than NaN3 in quenching 1O2), it can be estimated that in vivo

acceptor concentration [A] ≥ 107 (s−1)/235 mM−1s−1 = 42 mM. This value is much

higher than [A] = 0.83 mM in the literature [28], but we feel that it is more reason-

able since the singlet oxygen lifetime in vivo, τ∆, does not change for reacted singlet

oxygen concentrations [1O2]rx as high as 12 mM [27], indicating there are still plenty

of acceptors in vivo at this level.

The light fluence rate distribution in a semi-infinite medium as a function of

distance (d) was calculated by a Monte Carlo (MC) simulation [156] of a circular

parallel beam (diameter 0.8 cm, Figure 4.9a) and broad beam (diameter 16 cm,

Figure 4.11b) for absorption coefficient (µa) of 0.09, 0.18, and 0.58 cm−1, and reduced

scattering coefficient (µ′s) of 0.2 cm−1. The resulting φ/φ0 is shown in Figure 4.11

along with an exponential fit based on µa. For the tissue-simulating phantoms with
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Photofrin shown in Figure 4.6, φ0 is the measured local fluence rate at the front inner

surface of the phantom facing the laser and d is the depth from surface. At 630 nm,

µa = 0.09, 0.18, and 0.58 cm−1 for Photofrin concentrations of 27, 50, and 167 mM,

respectively. It is clear that the function e−µa·d, while working well for the broad

beam, does not work very well for the 0.8 cm diameter beam at the deepest depths

investigated. As a result, MC-generated light fluence rate φ/φ0 was used directly for

the SOED calculations in phantom.

Figure 4.11: Monte Carlo (MC) simulation of fluence rate distribution by a
circular beam of radius (a) 0.4 cm and (b) 8 cm incident on a semi-infinite
liquid surface as a function of depth (d) for µa = 0.09, 0.18, and 0.58 cm−1

and µ′s = 0.2 cm−1. Fits of exponential forms are shown along with the MC
data. The exponential form of e−µa·d fits the simulation well up to a depth of
0.4 cm, while overestimating φ/φ0 at larger depths. Broad-beam simulations
agree with the simple exponential form up to a depth of 1.3 cm.

SOED calculations of singlet oxygen concentration are highly dependent on the

photophysical parameters used as input (table 2.4). In turn, these parameters depend

on the photosensitizer used, as well as the treatment environment. The necessary pa-

rameters for Photofrin-mediated PDT for in vitro studies were validated with explicit

measurements of the [3O2] and [S0]. In particular, the consumption rate of [S0] per
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PDT dose was used to determine a more accurate value of σ (slope/ξ) and δ (in-

tercept/slope) for the experimental setup used (Fig. 4.6 and 4.7 and Eq. (4.3)).

This was used to determine δ and σ using a method from reference [45] that is also

described in section 4.1.1. Photosensitizer concentration was measured over time

to determine the photobleaching rate (−d[S0]/dt) and [S0]. Along with the measured

[3O2], the photosensitizer photobleaching rate per PDT dose can be calculated and

plotted as in Fig. 4.6c. The slope and intercept were used to determine the values

δ = 26 ± 5µM and σ = (6.8 ± 5) × 10−5µM−1. The value of β was set to be 11.9

µM for this set of experiments [125]. Figure 4.6a and b show the SOED calculations

using equations (4.1) and (4.2), which agree with [S0](t) and [3O2](t) measurements

at the surface (d = 0 cm) of the Intralipid phantom. Figures 4.6d and 4.7d show the

magnitude of SOED-calculated [1O2]rx for Photofrin and Rose Bengal to be in the

sub mM range.

It can be concluded from the intercomparison of SOED and SOLD in Photofrin

solutions (figure 4.9b) that the cumulative SOLD [1O2] counts, [SOLD], and SOED-

calculated [1O2]rx values track each other very well (R2 = 0.98) for Photofrin, with a

conversion factor of the following form:

[1O2]rx(mM) =
(
2.16× 10−5

)
× [SOLD]− 11.8 (4.12)

The ratio of slopes between the two panels ((a) and (b)) in Fig. 4.9 is 9.6× 10−6

s, which is consistent with the value of τ∆ obtained (9.4 × 10−6 s). The reason

for the intercept is not known, and a linear fit without the intercept reduces the

correlation (R2 = 0.86). The good correlation of SOED-calculated [1O2] and [SOLD]

demonstrates that SOED can be utilized in scenarios where direct phosphorescence

measurement of 1O2 is difficult.
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4.3.2 Feasibility of using SOLD at 523 nm for predicting

[1O2]rx at 630 nm

Currently, the only available pulsed laser suitable for the SOLD application is at

523 nm (CrystaLaser, QL-523-200-S, CrystaLaser, Reno, NV, USA). As a result,

the effective tissue-sampling depth for [1O2] is not the same as that of the 630 nm

treatment light used clinically with Photofrin. Figure 4.12 shows the measured values

of µa and µ′s at various sites measured in vivo in patients, including the anterior chest

wall, apex of the heart (apex), posterior chest wall, diaphragm (diaph), serratus (ser),

anterior sulcus, posterior sulcus, pericardium (peri), and normal tissue (norm). This

data is from patients undergoing an institutional review board (IRB)-approved clinical

trial at the University of Pennsylvania. Details of which are included in chapter 7

Figure 4.12: Tissue (a) µa and (b) µ′s at 523 nm (hollow symbols) and 630
nm (filled symbols) measured in vivo in patients pleural cavities undergo-
ing radical pleurectomy and PDT for the treatment of malignant pleural
mesothelioma

Using an analytical fit [157] to MC simulations [158–161], the longitudinal dis-

tribution of φ in tissue with different optical properties was calculated. Figure 4.13

shows the ratio of φ and in-air fluence rate (φair) versus tumor depth for (a) 523 nm

and (b) 630 nm. The grey area shows the region of φ/φair with the upper and lower
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bounds of the tissue optical properties obtained in vivo as dark blue and light blue,

respectively. The dashed black lines show the calculated light fluence distribution

using the mean optical properties of µa = 5.52 cm−1 and µ′s = 17.61 cm−1 for 523

nm and µa = 0.58 cm−1 and µ′s = 15.61 cm−1 for 630 nm. As expected, the optical

penetration is much deeper with 630 nm than with 523 nm in vivo.

Figure 4.13: The ratio of φ and in-air fluence (φair) versus tumor depth for
(a) 523 nm and (b) 630 nm optically broad laser beams on an air-tissue
interface using an analytical formula that fits MC simulations using optical
properties obtained in vivo from patients undergoing treatment for MPM

The φ distributions were then used to calculate the reacted singlet oxygen con-

centration for the two wavelengths to study whether SOLD signals measured at 523

nm can be used to monitor [1O2]rx at 630 nm. PDT is currently performed at 630 nm

for patients undergoing Photofrin-mediated PDT in conjunction with radical pleurec-

tomy. Correlation between the calculated [1O2]rx for 630 nm and 523 nm is shown

in figure 4.14. µa ranges from 0.66 to 23.1 cm−1 at 523 nm and 0.17 to 1.35 cm−1

at 630 nm, while µ′s ranges from 2.80 to 73.7 cm−1 at 523 nm and 2.55 to 30.5 cm−1

at 630 nm (figure 4.12). To investigate the effects of different φ on the resulting
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calculated [1O2]rx, the SOED calculations were repeated for φ = 5, 25, 50, 75, and

150 mW/cm2. Different colors of the symbols represent different φ. The black solid

lines are the lines of best fits in figure 4.14. At 523 nm, the range of [1O2]rx changed

from 0-0.1, 0-0.63, and 0-5.6 mM for photosensitizer concentrations of 0.21, 2.1, and

21 µM, respectively, while the range of [1O2]rx at 630 nm changed from 0-0.24, 0-2.5,

and 0-20 mM, respectively, for the same photosensitizer concentrations.

The resulting correspondence for a range of photosensitizer concentrations (c) of

0.21, 2.1, and 21 µM (based on the average Photofin concentration obtained from

patient data) and light fluences of 10-120 J/cm2 [162] can be expressed as

[1O2]rx(630 nm) = a(c)[1O2]rx(523 nm) + b(c, φ) (4.13)

where

a(c) = 0.05814c+ 1.922 (4.14)

and

b(c, φ) = (0.000618c− 0.000033)φ (4.15)

where c is the photosensitizer concentration (in µM) and φ is the light fluence (in

J/cm2). We thus conclude that the SOLD measurements performed at 523 nm can

be used to monitor the [1O2]rx at 630 nm if a conversion formula (such as that of Eq.

(4.13) - (4.15)) is used to convert the measured SOLD signal.

When SOLD signal from patients are used to determine the generation of singlet

oxygen, it is important to develop a tissue optical properties correction factor to

account for the absorption and scattering of luminescence by tissue, similar to the

optical properties correction factor needed for using fluorescence to determine the

photosensitizer concentration (described in section 3). This is beyond the scope of

Chapter 4 Michele M. Kim 87



this study.

Figure 4.14: (a) [1O2]rx calculated at 630 nm and 523 nm for different to-
tal fluences (φ = 10, 60, 120 J/cm2 for mean Photofrin concentrations (c)
of (from left to right) 0.21, 2.1, and 21 µM. Absorption and scattering co-
efficients were obtained at the two wavelengths from figure 4.11. SOED
calculations of [1O2]rx were averaged over a 1 cm depth and 1 cm3 volume
using the photophysical parameters for the in vivo conditions (listed in table
??); (b) Slope and intercept of the correlation of [1O2]rx at 630 nm and 523
nm as a function of fluence and photosensitizer concentration

4.4 Conclusions

Studies using Photofrin and Rose Bengal were performed to investigate explicit singlet

oxygen modeling in phantoms as well as the required in-phantom parameters. Use

of singlet oxygen luminescence detection enabled measurements changes in τ∆ with

the addition of NaN3. These results were able to be used to determine k6 and k9[Q].

Literature values were used for k1 and Φ∆ in the calculation of ξ. Absorption studies
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were used to determine the value of ε. Photosensitizer fluorescence was used to

measure relative changes in [S0] after the addition of a known amount to a phantom.

Light fluence was modeled as a broad beam with known fluence rate at the surface.

Direct singlet oxygen luminescence dosimetry (SOLD) measurements were com-

pared with singlet oxygen explicit dosimetry (SOED) calculations for phantoms using

Photofrin. Oxygen and photosensitizer concentration measurements were compared

with SOED predictions to validate the SOED model and to obtain the needed pho-

tophysical parameters (table 2.4, δ = 26 ± 5µM and σ = (6.8 ± 5) × 10−5µM−1).

Using lifetime measurements obtained with the SOLD system, photophysical param-

eters of k6 (2.2×104 s−1) and k9 (235µM−1s−1) were found for in vitro solutions with

NaN3. A linear relationship between SOLD singlet oxygen photon counts at 1270

nm and SOED-calculated reacted singlet oxygen (equation (4.12)) was established

for Photofrin for 523 nm light excitation. Based on our SOED calculations, a formula

(equations (4.13)-(4.15)) for converting cumulative SOLD signal measured at 523

nm to the corresponding [1O2]rx at 630 nm was established using optical properties

measured at the two wavelengths as a part of an ongoing clinical protocol.

These results indicate that, with suitable correction for the tissue optical proper-

ties at the two wavelengths, there is excellent correlation between the direct (SOLD)

and indirect (SOED) estimates of singlet oxygen generated during PDT. Since, at

the present time, the SOED approach is technically simpler and the instrumentation

is significantly less expensive, this validation supports the use of SOED in clinical

dosimetry. It should be noted, however, that the SOLD technique is intrinsically

more robust in that no simplifying assumptions are made as in SOED. Hence, care

must be taken in applying SOED to ensure that the treatment parameters lie within

the range of validity of these assumptions. Furthermore, the validation of SOED

must be carried out for each photosensitizer and set of clinical conditions. In the
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future, developments such as a recent report of fiber optic-coupled SOLD techniques

based on novel superconducting nanowire single-photon detector technologies of direct

SOLD [153], may accelerate movement towards clinical utilization of SOLD alongside

SOED. For type I PDT where a reactive oxygen species (e.g. oxygen radicals) other

than singlet oxygen is the main cytotoxic agent, it is still possible to model the pho-

tophysical process using SOED, as described in section 2 and a recent review [34].

However, it still remains a challenge to find the value of the photophysical parameters

needed to describe the type I interactions for those photosensitizers.
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Chapter 5

Determination of in vivo

Photochemical Parameters

The macroscopic singlet oxygen model can be used for singlet oxygen explicit dosime-

try (SOED) as long as the relevant photochemical parameters are known. Determi-

nation of the in vivo photochemical parameters is critical for the use of SOED for

the photosensitizer of interest. A study was performed to optimize the values of the

photochemical parameters (ξ, σ, δ, β, and g) for in vivo benzoporphyrin monoacid

ring A (BPD)-mediated PDT with a 3 hour drug-light interval (DLI). Furthermore,

the singlet oxygen threshold dose ([1O2]rx,th) was determined to induce necrosis in a

radioactively induced fibroscarcoma (RIF) tumor in a murine model.

5.1 Theory and Methods

5.1.1 Macroscopic model for in vivo studies

The macroscopic singlet oxygen model was described previously in chapter 2 and in

section 3.5. To summarize, the photochemical reactions to describe the production
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and consumption of photosensitizer, oxygen, and singlet oxygen can be described by

the following equations:

d[S0]

dt
= − [3O2]

[3O2] + β
ξσ([S0] + δ)φ[S0], (5.1)

d[3O2]

dt
= − [3O2]

[3O2] + β
ξφ[S0]([S0] + δ) + g

(
1− [3O2]

[3O2](t = 0)

)
, (5.2)

d[1O2]rx
dt

=
[3O2]

[3O2] + β
ξφ[S0], (5.3)

The parameters of ξ, σ, g, and threshold concentration of reacted singlet oxygen to

induce necrosis were determined in this study. The parameters β and δ were taken

from the literature that involved in vitro cell studies [53,125].

5.1.2 Treatment delivery

Mice were treated with linear source strength (LS), power released per length, of

12-150 mW/cm and total energy released per length of 24-135 J/cm. A 1 cm long

cylindrical diffusing fiber (CDF) light source was connected to an 8W, 690 nm diode

laser (B & W Tek Inc., Newark, DE, USA) via a SMA connector. Two catheters

were inserted parallel with a 3 mm separation into the mouse tumor (Fig. 3.2 (a)).

One catheter included the treatment light and was central to the tumor, and the

second catheter held the isotropic detector or a side-cut fiber for optical properties or

fluorescence measurements. Treatment conditions are summarized with the measured

data in table 5.1.
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5.1.3 RIF tumor necrosis measurement and analysis

The tumors were excised 24 hours after PDT and stored in formalin until time for

embedding and sectioning. Tumors were sectioned at 200 µm slices perpendicular

to the treatment linear source orientation and placed onto slides to be stained with

hematoxylin and eosin (H & E) to see the necrotic area. Slides were then scanned

digitally with a ScanScope microscope (Leica Microsystems Inc., Buffalo Grove, IL,

USA), and necrotic radii were obtained. Controls were included for each group of

animals studied, with the average necrotic radius among these controls (r0) being

1.6 mm. This was calculated by determining the necrotic area (Ac) on the digitally

scanned slide and using the formula Ac = πr2. The PDT-induced necrosis for each

treated mouse was determined by rn = rt− r0, where rt is the measured raw necrosis

for treated mice. For all necrosis radii, a shrinkage factor (SF ) was included due

to the tumor shrinkage induced by preservation in formalin. This was determined

by measuring the tumor dimensions prior to formalin fixation and after at least 24

hours of fixation time. The standard error for each necrosis radius was determined

by propagating the uncertainty from each source of error. The standard deviation

of each individual mouse tumor necrosis radius as well as the uncertainty in radius

measurement due to the ellipsoidal shape of certain tumor sections was included

in this calculation. For ellipsoidal tumors, the radius was measured from the light

delivery source (central catheter) insertion point to the edge of the necrotic area at

various angles to determine the uncertainty due to this shape [120].
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Table 5.1: BPD-mediated Necrosis Study Treatment Conditions, Optical Properties,
Necrosis Radii

Treatment Conditions Optical Properites Necrosis Analysis

Group
LS a

(mW/cm)
Time
(s)

Energy b

(J/cm)
BPD Conc.

(µM)
µa

(cm−1)
µ′s

(cm−1)

Necrosis
Radius,
rt (mm)

Control
Radius,
r0 (mm)

PDT-Induced
Necrosis (mm)

(a) Experiment Group 1; each treatment group contains 3 mice
1 12 2000 24 0.90±0.14 0.8±0.1 8.0±0.5 2.8±0.7 1.6 1.2±0.7
2 12 3000 36 0.71±0.03 0.7±0.1 9.4±1.1 3.0±0.7 1.3 1.7±0.7
3 20 1600 32 0.49±0.07 0.7±0.1 8.0±0.5 1.9±0.7 1 0.9±0.7
4 30 1020 30.6 0.98±0.02 0.9±0.1 7.9±1 3.4±0.7 1.3 2.1±0.7
5 75 660 49.5 0.59±0.13 0.8±0.1 10.3±0.7 2.6±0.4 1.7 0.9±0.4
6 75 1800 135 0.47±0.10 0.6±0.1 12.5±1 3.2±0.2 1 2.2±0.2
7 150 420 63 0.99±0.03 0.8±0.1 9.9±0.6 2.9±0.6 1.3 1.6±0.6

(b) Experiment Group 2 from 2013 [119]; individual ungrouped mice were used
8 12 4000 48 0.43 0.7 6.5 2.5 1.3 1.2
9 12 6000 72 0.17 0.7 11.2 3.1 2.3 0.8
10 20 3000 60 0.17 0.7 13.5 2.4 2.3 0.1
11 20 4000 80 0.32 0.7 15.2 3 1.3 1.7
12 30 1980 59.4 0.42 0.6 10.8 2 0.8 1.2
13 30 4500 135 0.35 0.5 14.3 1.4 0.8 0.6
14 75 300 22.5 0.25 0.7 12.2 2.6 2.3 0.4
15 150 180 27 0.17 0.5 9.8 2.8 2.3 0.5
16 150 660 99 0.17 0.8 9.4 2 2.3 0

a Linear source strength
b Total energy delivered per unit length

5.1.4 Macroscopic singlet oxygen model to fit necrosis

The equations for the macroscopic singlet oxygen model first described in chapter 2

and specified for in vivo environments in Eq. (5.1)-(5.3) were used in the calculation

of reacted singlet oxygen to fit the necrotic radius and to determine the in vivo

photochemical parameters. For a given value of φ, spatially resolved light fluence

rate profiles can be constructed using the diffusion equation

µaφ∇ ·
(

1

3µ′s
∇φ
)

= S (5.4)

where φ is the light fluence rate, S is the source term, and µa and µ′s are the abosorp-

tion and scattering coefficients, respectively. For a given value of φ, spatially resolved

light fluence rate profiles can be constructed using equation (5.4), which were then
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used in the calculation of the PDT kinetic equations. For this study, a 1 cm CDF

was used as the treatment source. From the simulation results, it can be seen in Fig.

5.3 that the light fluence rate distribution within a 5 mm radial distance with respect

to the center of the linear source does not show significant differences for the case of

experimentally varying optical properties.

In order to fit the necrotic radius, a fitting quantity called “apparent singlet oxygen

threshold concentration” ([1O2]rx,sd) was introduced. An initial estimate for each

photochemical parameter (g, ξ, and σ) as well as the singlet oxygen threshold dose

([1O2]rx,sh) is used to calculate [1O2]rx for each treatment group described in table

5.1. The differential evolution algorithm adjusts the photochemical parameters of g,

ξ, and σ to match the calculated [1O2]rx at the necrosis radius to match the assigned

[1O2]rx,sd. Values of σ and β were kept constant according to values obtained from

the literature throughout the fitting process to avoid convergence issues from having

too many free-floating parameters [44,54,125]. Furthermore, the calculated [1O2]rx is

less sensitive to these quantities than other model parameters [44]. The initial tissue

oxygen concentration was set as 40 µM [48]. After calculating the time series solution

for [1O2]rx, the value at the radius of necrosis was determined and compared to the

[1O2]rx,sd by minimizing the standard deviation according to the following objective

function:

f =

√√√√∑N
i

∣∣∣1− [1O2]rx(ri)
[1O2]rx,sd

∣∣∣2
(N(N − 1)

(5.5)

Here, N is the total number of groups or individual mice, and ri is the measured radius

of necrosis for group/mouse number i. Multi-variable optimization using the func-

tional minimization function fminsearch.m from Matlab (Mathworks, Natick, MA)

was implemented.

Error margins for the fitted parameters were determined by propagating the sys-
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Figure 5.1: (a) Fluence rate
(in mW/cm2) per linear source
strength (LS, in mW/cm) in
RIF tumors tissue for various
optical properties measured in
mice. Calculations were made
with a linear source model. (b)
The fluence rate relative to the
mean fluence rate for all mea-
sured optical properties. The
maximum deviation at 3 mm
away from the light source is
around 20% for the first 7 treat-
ment groups with 3 mice each,
indicating that variations in op-
tical properties account for less
than 20% of the experimental
error with consistent measure-
ments.
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tematic and random error from the experiment through the fitting process. To deter-

mine the variation in the resulting parameters that were fit, over 500 combinations of

initial input parameters were chosen to start the fitting. The initial estimated param-

eters ranged from σ = (0.5− 10)× 10−5µM−1, ξ = (10− 100)× 10−3 cm2mW−1s−1,

g = 0.5−2.0µMs−1, and [1O2]rx,sd = 0.5−2.0mM . In each iteration, only one param-

eter was changed within the range presented while the others were set to standard

initial estimates (σ = 5×10−5µM−1, ξ = 85×10−3 cm2mW−1s−1, g = 0.7µMs−1, and

[1O2]rx,sd = 0.7mM). Each round of optimization minimized the objective function

equation (5.5) and output parameters were collected and analyzed for their maxi-

mum deviations. Final values determined from the best optimization of the objective

function are presented along with their minimum and maximum ranges in table 5.2.

Using the macroscopic model, [1O2]rx and PDT dose were calculated and compared

to PDT-induced necrosis. [1O2]rx and PDT dose at 3 mm from the CDF was used as

a dose metric, where 3 mm was chosen since it happened to be the distance used in

the measurements between the two catheters. [1O2]rx and PDT dose at the necrosis

radius were also calculated as second dose metrics. These values are summarized in

table 5.3.

Necrosis radii, along with their standard uncertainties are presented in table 5.1.

The error includes the sum of squares of variations in radius measured between mice

treated with the same condition as well as the systematic error of necrosis. Some

of the tumor sections obtained exhibited an ellipsoidal shape due to the treatment

and sectioning. The variation in necrosis due to the ellipsoidal shape was taken into

account as systematic error. Standard deviation of each calculated value of fluence,

PDT dose, and [1O2]rx are also presented in table 5.3. For the most part, 3 mice were

used in each treatment group.

All fitting and simulation were performed using Matlab R2014b on an iMac OSX
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version 10.10.5 (processor 2.9 GHz Intel Core i5, 16 GB memory). The calculation

times were in seconds for the rate equations and in minutes for the spatially coupled

differential equations.

5.2 Results

The photochemical parameters found for explicit dosimetry modeling in vivo for BPD-

mediated PDT are summarized in table 5.2. Initial fitting was performed with the

estimate for these parameters in ranges found for other in vitro and in vivo studies

of other photosensitizers. These parameters were further validated using an outcome

modeling study described in chapter 6.

The concentration of BPD in tumors was acquired interstitially. The method

was verified with an ex vivo method described in section 3.3.3. The results of the

comparison are shown in figure 3.4. Each data point represents the average value of

three separate measurements made in the same tumor using both interstitial and ex

vivo methods. The best linear fit obtained when comparing the two was y = 0.98x

with R2 = 0.98 (black solid line). The dashed line represents a line with a slope of 1,

which would be the case if both measurements were in perfect agreement. However,

the results from the comparison show that the fluorescence correction for interstitial

measurements is fairly accurate.
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Table 5.2: In vivo photochemical parameters obtained for BPD [120]

Photochemical Parameter Initial Value a Fit Value b

ε (cm−1 µM−1) 0.0783
δ (µM) 33 [53]
β (µM) 11.9 [125]
σ (µM−1) (0.5− 10)× 10−5 (1.8± 3)× 10−5

ξ (cm2mW−1s−1) (10− 100)× 10−3 (55± 40)× 10−3

g (µM s−1) 0.5-2.0 1.7± 0.7
[1O2]rx,sh (mM) 0.5-2.0 0.67± 0.13
[3O2]0 (µM) 40 c[48]
a The initial guess of parameters were assigned randomly within

the presented ranges
b The obtained values by the macroscopic model with their overall

error. Each value is presented as the mean ± standard deviation
c The initial ground state oxygen concentration was kept constant

for all mice using a value from Ref. [48]

The distribution of φ in tumor tissue was calculated using the diffusion equation

and the linear light source characteristics. Measured optical properties in tumors were

used as input parameters to see the effect of varying µa and µ′s on the light fluence

distribution. Figure 5.1 shows the drop of φ/LS along the tumor depth. With varying

measured µa and µ′s, the deviation of φ/LS inside tumors at depths up to 3 mm was

within the deviation of the measured µa and µ′s (indicated by the grey region). The

mean measured optical properties were µa = 0.7± 0.1 cm−1 and µ′s = 11± 2.4 cm−1.
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Figure 5.2: (a) [1O2]rx profile versus
radius for mice calculated using the sin-
glet oxygen explicit dosimetry model
and the photochemical parameters in
table 5.2. Data points 1-7 were ob-
tained by averaging a group of 3 mice
with the same treatment conditions
while data points 8-16 were individ-
ual mice. The bold dashed black line
indicates [1O2]rx,sh determined by this
study (0.67 mM), and the grey region
indicates the range. (b) The PDT-
induced necrosis radius that is calcu-
lated by the model versus the measured
PDT-induced necrosis radius. The
dashed line indicates a perfect cor-
respondence between calculated and
measured data (y = x). The solid line
is a linear fit to the data, y = 1.085x
with R2 = 0.8384. (c) PDT-induced
necrosis radius versus PDT dose calcu-
lated at the necrosis radius. The solid
line shows a linear fit to the data us-
ing functional form y = 0.1708x with
R2 = 0.127. The grey area shows the
upper ad lower bounds of the fit with a
95% confidence interval
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Figure 5.3: PDT-induced necrosis ver-
sus (a) PDT dose at 3 mm, (b) pho-
tobleaching ratio, and (c) [1O2]rx at
3 mm. PDT dose was calculated
for those groups of mice where there
was a PDT-effect due to treatment.
Photobleaching ratio was calculated
by 1 − [SV D]post/[SV D]pre for those
groups of mice where pre- and post-
PDT BPD fluorescence components
were measured. [1O2]rx was calculated
for all treated groups of mice. The solid
lines show the best fits to the data us-
ing functional forms (a) y = 0.1802x
with R2 = 0.147, (b) y = 2.28x with
R2 = 0.436, and (c) y = 8.43/(1 +
exp(−(x−0.92)/0.16)) with R2 = 0.96.
The grey area shows the upper and
lower bounds of the fits with a 95% con-
fidence interval.
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Figure 5.2 shows PDT-induced necrosis radius versus the [1O2]rx at the necrosis

radius. The legend indicates each treatment condition. Figure 5.2 (b) shows the

model predicted PDT-induced necrosis versus the measured PDT-induced necrosis.

The good correlation is an indicator of the accuracy of the optimization fit. Table 5.2

summarizes the photochemical parameters obtained from the fitting routine as well

as their initial values for the model. The best fit estimated values (along with their

standard deviation) of σ = (1.8±3)×10−5µM−1, ξ = (55±40)×10−3cm2mW−1s−1,

g = 1.7±0.7µMs−1, and [1O2]rx,sh = 0.67±0.13mM . The values for β and δ were held

constant at 33 µM and 11.9 µM, respectively. The grey region in Fig. 5.2 (a) shows

the range for the singlet oxygen threshold concentration, [1O2]rx,sh. The PDT dose

was calculated at the necrosis radius and compared with the PDT-induced necrosis

radius in Fig. 5.2 (c). The grey region indicates the upper and lower bounds of the

fit with a 95% confidence interval. The best fit to the data was y = 0.1708x with

R2 = 0.127, indicating that PDT dose at the necrosis radius is not well-correlated

with the necrotic outcome.

Figure 5.3 (a) shows the PDT dose at 2 mm versus PDT-induced necrosis radius.

The solid line represents the best fit to the data using a functional form of y = 1802x

with a goodness of fit of R2 = 0.147. Figure 5.3 (b) shows the photobleaching

ratio versus PDT-induced necrosis radius. Photobleaching ratio was calculated as

1 − ([SV D]post/[SV D]pre), where [SV D]pre and [SV D]post are the measured BPD

fluorescence components pre- and post-PDT. While there is a positive correlation

with PDT-induced necrosis as indicated by the linear fit of y = 2.28x, it is not a good

fit of the data since the goodness of fit R2 = 0.436. Fig. 5.3 (c) shows the [1O2]rx at

a depth of 3 mm versus PDT-induced necrosis. The solid line is the best fit to the

data y = 8.43/(1 + exp(−(x− 0.92)/0.16)) with a goodness of fit of R2 = 0.96. The

grey regions indicate the upper and lower bounds of the fit with a 95% confidence
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interval.

5.3 Discussion

PDT promises to be an effective treatment modality for diseases. However, clinical

application of PDT has been hindered due to the complicated dosimetry [44, 163].

BPD-mediated PDT has been shown to correlate well with calculated 1O2 as shown

in this study. A DLI of 3 hours was used for this study. By this time, the drug has

systemically extravasated into the tumor interstitial and cellular components [164].

With a shorter DLI, vascular-targeted PDT can be achieved [121,164].

Currently, the common approach in clinical PDT dosimetry is based on the pho-

tosensitizer concentration that is administered to the patient and the amount of light

delivered to the treatment site. This method does not account for many of the com-

plexities that arise with PDT. If the treatment site is hypoxic, or becomes hypoxic

through the course of the treatment, the expected 1O2 produced will be higher than

what is produced and treatment will be less effective [163, 165]. As seen in the data

from table 5.3, the photosensitizer uptake is very heterogeneous even though the ad-

ministered dose is the same. The variation in photosensitizer concentration in the

treatment tissue from site to site within the same individual (intra-tumor variation)

and from individual to individual (inter-tumor variation) results in varied PDT treat-

ment response [44, 163, 166]. Optical properties of the treatment tissue affect the

penetration of light into the target area and are tissue-type dependent [18]. Further-

more, optical properties can be affected by the tissue and blood oxygenation, which

is a key component in PDT [18,22,28]. All of these factors are dynamically changing

during PDT, making accurate clinical dosimetry a challenge.

Singlet oxygen explicit dosimetry is of particular interest as it involves measure-
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ment of the key components involved in PDT and modeling 1O2, the major cytotoxic

agent in type II PDT. Pre-clinical studies were performed using a murine model to

determine the range of relevant photochemical parameters needed for BPD-mediated

PDT explicit dosimetry. A range of source strengths and exposure times were per-

formed on mice with RIF tumors to generate varying amounts of 1O2 and induce

necrosis. [1O2]rx were calculated using the macroscopic model using the information

obtained from pre-PDT measurements regarding the tumor tissue optical properties

(µa and µ′s) and the photosensitizer concentration. The distribution of φ was also

calculated using the diffusion approximation for a linear source. Photosensitizer con-

centration was measured with interstitial fluorescence spectra, and the method was

validated by comparing the in vivo and ex vivo measurements on separate mice.

Measured optical properties were used to calculate φ distribution in the tumor

tissue using the light source characteristics and the diffusion equation. The first

7 treatment groups included 3 mice per treatment condition. The deviation in φ at

depths up to 3 mm varied 20% indicating that variations in optical properties account

for less than 20% of the experimental error with consistent, long-term measurements

with the same experimental set-up (Fig. 5.1 (b)). Some of the measurements in indi-

vidual mice made in an earlier experiment with a different batch of mice (experiment

group 2 in table 5.1 and 5.3 (b)) shows larger deviations of φ (up to 40%), which

contain additional measurement uncertainties.

Figure 5.2 shows the most important results of this study. The threshold dose

model only works to an extent if the threshold concentration for [1O2]rx is allowed a

range as shown by the grey shaded area in Fig. 5.2 (a). Those that do not achieve the

threshold singlet oxygen dose (indicated by the dashed black line and its uncertainty

as indicated by the grey area) do not exhibit any PDT-induced necrosis (data points

9, 10, 14, 15, and 16). The other points that achieve the threshold dose delineate
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the upper and lower bounds of uncertainty for [1O2]rx,sh. By plotting the measured

PDT-induced necrosis radius against the model-predicted values (the values from

each [1O2]rx profile curve that intersect the [1O2]rx,sh dashed line) in Fig. 5.2 (b), the

goodness of the macroscopic model in predicting the necrosis radius can be evaluated.

A good correlation indicates a good fit. The dashed line indicates a perfect correlation

and the fit to the data yields y = 1.085x with R2 = 0.838. The grey region indicates

the 95% confidence interval of the fit. Figure 5.2 (d) shows that unlike [1O2]rx,

PDT dose at the necrosis depth is a very poor predictor for the necrosis radius, with

R2 = 0.127.

The calculated [1O2]rx was fit to the in vivo BPD-mediated necrosis radius so

that the photochemical parameters g, ξ, and σ could be determined along with the

[1O2]rx,sh. The uncertainty for the resulting photochemical parameters (g, ξ, σ) was

quite large based on the fitting algorithm and incorporating experimental uncertain-

ties.

The parameters obtained for BPD (ξ = 55 × 10−3 cm2mW−1s−1, σ = 1.8 ×

10−5µM−1, and g = 1.7µM s−1) were compared to those obtained for HPPH (ξ =

70 × 10−3 cm2mW−1s−1, σ = 1 × 10−5µM−1 [117], and g = 1.5µM s−1), Photofrin

(ξ = (2.1 − 3.7) × 10−3 cm2mW−1s−1 and σ = 7.6 × 10−5µM−1) [44], mTHPC

(ξ = 30 × 10−3 cm2mW−1s−1 and σ = 3.0 × 10−5µM−1) [124], and ALA-PpIX

(ξ = 3.7 × 10−3 cm2mW−1s−1 and σ = 9.0 × 10−5µM−1) [167]. The value of ξ

for BPD was found to be larger than that of other photosensitizers except HPPH,

which corresponds to the proportionality of ξ with the absorption coefficient and

the larger absorption coefficient of BPD. The fit value of σ was found to be smaller

than those of other photosensitizers, but in the same range as that of HPPH. The

[1O2]rx,sh was found to be 0.67± 0.13 mM, which is similar to the reported value for

that of Photofrin ([1O2]rx,sh = 0.7 ± 0.3 mM) [44]. The values are presented with
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their standard deviations.

Figure 5.3 compares three dosimetric quantities PDT dose, photobleaching ratio,

and [1O2]rx versus PDT-induced necrosis. The grey area shows the upper and lower

bounds of the fits with the 95% confidence level. It is clear that [1O2] is the best

dosimetric indicator compared to PDT dose and photobleaching ratio, as defined by

1− [SV D]post/[SV D]pre, the [SV D]pre and [SV D]post were determined from the BPD

fluorescence components before and after PDT. THe solid lines in the figure represent

the best fit to the data. Their goodness of fit R2 = 0.96, 0.436, and 0.147 for [1O2]rx,

photobleaching ratio, and PDT dose, respectively. The reason PDT dose is not a good

indicator may be due to ignoring the oxygen consumption during PDT. The reason

that photobleaching ratio is not a very good indicator may be associated to the fact

that [S0] concentration in vivo (0.2 - 1 µM) is much lower than the value of δ = 33µM

used for BPD. [1O2]rx was calculated using the macroscopic model and incorporating

information regarding the spatial distribution of φ based on measured tissue optical

properties and the photosensitizer concentration in tissue. For this study, the initial

ground state oxygen concentration ([3O2]0) was fixed to 40 µM. However, this could

be further improved by performing direct [3O2] measurements directly for each mouse.

For the practical application of SOED in clinical PDT, it is not generally necessary

to determine the tissue optical properties in order to calculate [1O2]rx. [1O2]rx can be

calculated directly using the measured φ and photosensitizer concentration. The other

unknowns for a specific photosensitizer are the photochemical parameters, which can

be found in the literature for most commonly used photosensitizers [34].
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5.4 Conclusion

An explicit dosimetry model for BPD-mediated PDT was investigated on mice bearing

RIF tumors. Since direct measurement of 1O2 concentration is difficult in vivo, SOED

can be useful as a measure of PDT dosimetry The photochemical parameters needed

for the macroscopic modeling of 1O2 were found. The threshold dose of singlet oxygen

to induce necrosis in the tumor was determined by correlating the calculated [1O2]rx

and the tumor necrosis induced by PDT. Correlation of PDT-induced necrosis with

photobleaching ratio, PDT dose, and [1O2]rx was compared. It showed that [1O2]rx

serves as a better dosimetric quantity than photobleaching ratio or PDT dose in

predicting the treatment outcome. This study is important in understanding the

effect of 1O2-based dosimetry for BPD-mediated PDT as well as determining the

range of photochemical parameters required for SOED. A further study was necessary

to investigate the correlation between SOED calculated [1O2]rx to a more meaningful

PDT treatment efficacy, such as local tumor control rather than necrosis. This is

described in the following chapter 6. However, this was the first study of its kind to

find relevant in vivo photochemical parameters for BPD-mediated PDT.
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Chapter 6

In vivo Outcome Study

Utilizing the macroscopic model, the effectiveness of reacted singlet oxygen concentra-

tion ([1O2]rx) as a dosimetric quantity to predict outcome for BPD-mediated PDT. In

addition, a few other dose metrics were evaluated in this study, including total light

fluence, photobleaching ratio, and PDT dose, in their ability to predict PDT out-

come. For each PDT treatment group, explicit measurements of BPD concentration

in tumor and tissue optical properties were performed pre- and post-treatment. Mice

bearing radiation-induced fibrosarcoma (RIF) tumors were treated with BPD-PDT

and a range of in-air fluences (30 to 350 J/cm2) and in-air fluence rates (50 to 150

mW/cm2). For a subset of mice, real-time in vivo measurements of BPD concentra-

tion and tissue oxygenation level ([3O2]) throughout PDT were taken to optimize the

photosensitizer-specific PDT photochemical parameters (ξ, σ, and g), reduce their un-

certainty from the necrosis study described in chapter 5, and calculate [1O2]rx. These

photochemical parameters were used to calculate [1O2]rx for each PDT treatment

group. Other dose metrics, such as photobleaching ratio and PDT dose, were deter-

mined either directly using explicit measurements pre- and post-PDT or calculated

using the time dependence of BPD concentration based on the macroscopic model and
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the definition of PDT dose. This study is the first, to our knowledge, to investigate

the threshold value of [1O2]rx and the relationship between various dose metrics and

cure index (CI) at 14 days in an in vivo mouse model for BPD-mediated PDT. The

results of this study with additional real-time measurements of BPD concentration

and [3O2] provide reduced uncertainties for the photochemical parameters determined

for BPD-mediated PDT, as well as a validation that our macroscopic model can ac-

curately predict the oxygen consumption for BPD-mediated PDT, making it feasible

to determine [1O2]rx without oxygen measurements.

6.1 Materials and Methods

6.1.1 Photodynamic therapy treatment

An optical fiber with a microlens attachment was coupled with a 690 nm diode laser

with a maximum output power of 8 W (B&WTek Inc., Newark, Delaware, USA) to

produce a collimated beam with a diameter of 1 cm on the surface of the tumor,

as shown in Fig. 6.1 (a). The surface illumination of the tumor is non-invasive,

compared to the interstitial treatment of chapter 5, which is necessary to monitor

the tumor volume after treatment for 2 weeks. Mice were treated with in-air fluence

rates (φair) of 50 to 150 mW/cm2 and total in-air fluences from 30 to 350 J/cm2 at

690 nm to induce different PDT outcomes and assess the reciprocity between BPD

concentration and light fluence. The “in-air fluence rate” is defined as the calculated

irradiance determined by laser power divided by the treatment area. The “in-air

fluence” was calculated by multiplying the “in-air fluence rate” by the treatment time.

All mice were injected with 1 mg/kg BPD via tail vein injection at 3 hours prior to

light illumination. RIF tumor-bearing mice with (i) no BPD and no light excitation

and mice with (ii) no BPD but the highest light fluence (φair = 150 mW/cm2 and
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2333 second exposure) were used as controls (n = 5).

Figure 6.1: Experimental set-up with the (a) collimate beam treat-
ment of RIF tumors on mouse shoulder and (b) the multi-fiber con-
tact spectroscopy probe
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6.1.2 Tissue oxygen concentration and photosensitizer con-

centration measurements

Real-time in vivo BPD concentration and tissue oxygen concentration over the course

of treatment (80 mW/cm2, 2000 s exposure time) was also determined for a subset

of four mice using characteristic fluorescence spectra obtain at 30 to 300 s time inter-

vals with excitation by the treatment light. SVD fitting was used to determine the

BPD concentration. Measured data are shown in Fig. 6.2 (a) with symbols. The in

vivo tissue oxygen partial pressure, pO2 was measured during PDT treatment using

a phosphorescence-based bare fiber-type 3O2 probe (OxyLite Pro with NX-BF/O/E,

Oxford Optronix, Oxford, United Kingdom). Measurements are presented for each 30

s interval during treatment. 3O2 concentration ([3O2]) was calculated by multiplying

the measured pO2 with 3O2 solubility in tissue, which is 1.295 µM/mmHg [48]. Mea-

sured [3O2] was used to refine the photochemical parameters determined in chapter 5.

for the singlet oxygen explicit dosimetry model used to calculate [1O2]rx, and obtained

values are summarized in table 7.1. Individually measured [3O2](t) for each mouse

were fit with the model-calculated values. Measured data are shown as symbols and

calculated fits are shown with lines in Fig. 6.2 (b).
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Figure 6.2: Real-time in vivo measurements of (a) BPD concentration
([BPD]) at the tumor surface and (b) [3O2] concentration at a 3 mm
depth measured for four mice over the course of PDT light delivery (80
mW/cm2, 160 J/cm2). The open symbols represent measured data and
the solid curves represent the model-calculated [BPD] and [3O2] using
eqs. (3.11) and (3.12) and the photochemical parameters listed in table
6.2. The black ’x’ symbols and dashed black line represents the mean
data and fit to data, respectively. The PDT parameters used to model
the mean data are summarized in table 7.1
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6.1.3 Tumor regrowth rate analysis

Tumor volumes were tracked daily after PDT. Width (a) and length (b) were measured

with slide calipers, and tumor volumes (V ) were calculated using V = π × a2 × b/6

[168]. Tumor volumes were tracked for 15 days and the tumor regrowth factor (k)

was calculated by an exponential fit to the data with the form f(d) = ekd to the

measured volume over days (d). CI was calculated for each treatment group by

CI = 1− k

kctr
(6.1)

where k is the tumor regrowth factor for each group and kctr is the regrowth factor

for the control group, which has no injection of BPD or illumination of light.

Figure 6.3: Tumor volumes over days after PDT
treatment. Solid lines are the exponential fit to
the data with a functional form of ekd, where d is
days after PDT treatment. The resulting tumor
regrowth rates, k, and uncertainty, δk, are listed in
table 6.3
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6.1.4 Monte Carlo simulation of φ distribution in tumors

The diffusion theory is not valid for the simulation of φ in tissue when the lateral

dimension of the beam geometry becomes comparable to the mean-free-path of the

photons or when the region of interest is near the air-tissue interface [157,169]. Based

on a previous study by Ong et al. [157], an empirical six-parameter fitting equation

was used to fit the Monte Carlo (MC) calculated light fluence rate data for a 1 cm

diameter field with µa = 0.52 to 0.80 cm−1 and µ′s = 7.9 to 14.1 cm−1. The equation

is of the following form:

φ/φair = INV ×
(
1− b× e−λ1d

) (
C2e

−λ2d + C3e
−λ3d

)
, (6.2)

where the parameters λ1, λ2, λ3, b, C2, and C3 are functions of µa and µ′s and described

elsewhere [157]. For µa = 0.5 cm−1 and µ′s = 10 cm−1, λ1 = 17.1, λ2 = 4.88, λ3 = 0,

b = 0.3579, C2 = 5.207, and C3 = 0. INV = [SSD/(SSD + d)]2, where the source-

to-surface distance SSD = 9.34 cm based on the measurement of light fluence rate

in water for the same collimated beam as a function of depth and fit to the inverse-

square law formula. The inverse-square law factor was added to the MC simulation

results, which is suitable for parallel beams to account for the divergence of the

collimated beam from the microlens. The mean tissue optical properties were found

to be µ̄a = 0.69 ± 0.12 cm−1 and µ̄′s = 11 ± 3 cm−1 for RIF tumors at 690 nm, and

the maximum error for using the mean optical properties is ±15%, as seen in chapter

5.
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6.2 Results

6.2.1 Parameter verification

BPD-mediated PDT with different in-air fluences, different φair, and different ex-

posure times was performed in mouse models bearing RIF tumors. Tissue optical

properties, photosensitizer concentration, and tissue oxygenation were measured to

calculate photobleaching percentage, PDT dose, and [1O2]rx. Table 6.3 summarizes

all of the treatment conditions, as well as the measured and calculated quantities

using the photochemical parameters summarized in table 7.1.

Table 6.1: Photochemical parameters for BPD based on those determined in chapter
5. The standard deviation for each parameter is reduced [126]

Photochemical
Parameter Definition Value
ε (cm−1 µM−1) Photosensitizer extinction coefficient 0.0783
δ (µM) Low-concentration correction 33
β (µM) Oxygen quenching threshold concen-

tration
11.9

σ (µM−1) Specific photobleaching ratio (1.8± 0.3)× 10−5

ξ (cm2mW−1s−1) Specific oxygen consumption rate (55± 15)× 10−3

g (µM s−1) Macroscopic maximum oxygen supply
rate

1.7± 0.4

[1O2]rx,sh (mM) Singlet oxygen threshold dose for tu-
mor regrowth

0.99± 0.12

[3O2]0 (µM) Initial oxygen concentration 40

Four mice, summarized in table 6.2, were used to monitor the photosensitizer

concentration and [3O2] throughout the treatment using φair = 80 mW/cm2 and

total fluence of 160 J/cm2. The measured results (open symbols) were compared to

calculated values (solid lines) in Fig. 6.2 to validate the photochemical parameters

used in the calculation of [1O2]rx. R
2 values are provided to evaluate their fits. The

photochemical parameters found from individual fits of [3O2](t) are summarized in
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table 6.2. The mean data was fit using the photochemical parameters summarized in

table 7.1.

Table 6.2: PDT parameters obtain for four mice treated with an in-air fluence of
160 J/cm2 and in-air fluence rate of φair = 80 mW/cm2 using individual fitting to
[3O2](t) and [S0](t) simultaneously (Fig. 6.2). The other photochemical parameters
(δ = 33µM and β11.9µM)are kept the same as in table 7.1

Mouse [BPD]0 (µM) ξ (cm2 mW−1 s−1) σ (µM−1) g (µM s−1) [1O2]rx
a(mM) [1O2]rx

b(mM)
1 0.76± 0.10 (60± 8)× 10−3 (1.8± 0.3)× 10−3 1.6± 0.4 1.23± 0.24 1.21± 0.40
2 0.87± 0.19 (60± 10)× 10−3 (1.5± 0.4)× 10−3 1.5± 0.4 1.64± 0.31 1.37± 0.17
3 0.58± 0.16 (50± 10)× 10−3 (1.5± 0.4)× 10−3 1.3± 0.3 1.05± 0.33 0.93± 0.13
4 0.80± 0.19 (50± 7)× 10−3 (1.5± 0.3)× 10−3 1.7± 0.4 1.44± 0.28 1.26± 0.21

a Calculated [1O2]rx using individually fit PDT photochemical parameters and [3O2]0 = 50µM
b Calculated [1O2]rx using the mean PDT photochemical parameters from table 7.1

6.2.2 Explicit dosimetry and treatment outcome evaluation

Measured tumor volume over 14 days after treatment for each treatment group is

shown in Fig. 6.3. Compared to control mice, all treatment conditions had significant

control of the tumor regrowth after PDT. CI was calculated for each treatment

group using Eq. (6.1). PDT using 150 J/cm2 with 75 mW/cm2 was a more effective

treatment than with 100 mW/cm2. Each tumor volume was normalized to the mean

initial volume, so that they are equal on day 0 (treatment date) before fitting for the

tumor regrowth rate.

BPD concentration was measured both before and after PDT treatment. Mea-

sured [BPD] was compared to model-calculated values for all the treatment condi-

tions and is shown in Fig. 6.4 (a). The symbols represent the measured values, and

the solid lines are model-calculated photosensitizer concentration during treatment.

Figure 6.4 (b) shows the spatial distribution of reacted singlet oxygen in the RIF tu-

mor model. The symbols indicate [1O2]rx at a 3 mm tumor depth for each treatment

condition. The depth of 3 mm was chosen as it encompasses the initial tumor size

of all treatment tumors. Previous publications also calculated [1O2]rx at 3 mm, and
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results of this study can be compared to those directly.

Several dose metrics were evaluated for predicting the treatment outcome. Figure

6.5 shows the correlation of CI (tumor control) versus in-air fluence, photobleaching

ratio (%), PDT dose at 3 mm depth, and [1O2]rx at 3 mm depth. The mean of k and

kctr for all mice in each treatment group (number of mice per group is shown in table

6.3) was used to determine CI using Eq. (6.1). Photobleaching was determined by the

ratio of BPD SV Dcorr measured immediately following treatment ([SV Dcorr]post) to

the BPD concentration measured prior to treatment ([SV Dcorr]pre) and calculating

1 − ([SV Dcorr]post/[SV Dcorr]pre). PDT dose is defined by the time integral of the

product of the φ at a 3 mm tumor depth and the local BPD concentration. Figures 6.5

(a)-(d) show the correlation of CI to fluence, photobleaching percentage, PDT dose,

and mean [1O2]rx along with their line of best-fit. The lines of best-fit (shown with

solid lines) are CI = (3.309 × 10−3)x, CI = (1.118 × 10−3e0.06731x, CI = 1.052/(1 +

1014.4e−0.08172x), and CI = 1.08/(1 + 3490e−8.301x) with R2 = 0.6260, 0.6274, 0.9360,

and 0.9850 for fluence, photobleaching percentage, PDT dose, and [1O2]rx at 3 mm,

respectively [126].
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Figure 6.4: (a) The temporal changes of BPD concentration versus fluence at 3 mm
depth for the treatment conditions. The lines represent the calculated changes of
photosensitizer concentration during treatment. The symbols show the measured
BPD concentration pre- and post-PDT. Initial drug concentrations for the calcu-
lation were matched to measured values. (b) The spatial distribution of reacted
singlet oxygen ([1O2]rx) in the RIF tumors calculated for different treatment con-
ditions. [1O2]rx at 3 mm tumor depth is shown by the symbols. R2 values for each
calculation are shown in the legend.
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Figure 6.5: CI plotted against (a) fluence at a 3 mm tumor depth, (b)
measured photosensitizer photobleaching (%), (c) calculated PDT
dose at 3 mm depth, and (d) mean reacted singlet oxygen at 3 mm
depth ([1O2]rx) calculated using the parameters summarized in table
7.1. The solid lines show the best-fit to the data with functional
forms CI = (3.309 × 10−3)x, CI = (1.118 × 10−3e0.06731x, CI =
1.052/(1 + 1014.4e−0.08172x), and CI = 1.08/(1 + 3490e−8.301x) with
R2 = 0.6260, 0.6274, 0.9360, and 0.9850 for (a), (b), (c), and (d),
respectively. The grey region indicates the upper and lower bounds
of the fit with 95% confidence level.

6.2.3 Long term local tumor control

Local tumor control for a more long-term treatment endpoint was investigated for a

group of mice. Treatment was delivered with the same collimated beam and admin-

istration of BPD as before. Explicit dosimetry was used to calculate reacted singlet
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oxygen ([1O2]rx). The dose metrics of light fluence, photobleaching ratio, and PDT

dose were compared to reacted singlet oxygen to evaluate their effectiveness in cor-

relating with long term tumor control. Kaplan-Meier survival analyses were done for

long-term local tumor control rate (LCR) for an endpoint of tumor volume ≤ 100

mm3. Tumors were monitored for up to 90 days. The treated mice are summarized

in table 6.4.

Table 6.4: Summary of treated mice for long term tumor control. De-
livered fluence rate (φair), treatment time, initial BPD concentration
([BPD]0), photobleaching ratio (Pb.), PDT dose, and calculated reacted
singlet oxygen ([1O2]rx) are summarized with the tumor response to the
treatment at the end of the 90 day monitoring period.

Mouse φair Time [BPD]0 Pb. PDT Dose [1O2]rx Survival
No. (mW/cm2) (s) (µM) (%) (µM J/cm2) (mM) (90 Days)

1 75 4000 0.43 65.7 54.8 0.72 Regrowth
2 75 4000 0.57 89.7 73.4 0.95 Regrowth
3 75 4000 0.64 82.5 80.4 1.07 Regrowth
4 75 4000 0.58 92.0 75.2 0.97 Regrowth
5 75 4000 0.54 89.9 69.8 0.91 Regrowth
6 75 4000 0.52 90.9 66.4 0.86 Regrowth
7 75 4000 0.42 60.3 53.7 0.70 Regrowth
8 75 4000 0.30 84.9 37.6 0.50 Regrowth
9 75 4000 0.47 88.1 59.8 0.78 Regrowth
10 75 4000 0.60 91.3 77.4 1.00 Regrowth
11 75 4000 0.49 88.4 62.6 0.82 Regrowth
12 75 4000 0.38 83.3 48.4 0.64 Regrowth
13 75 4000 0.31 93.4 39.7 0.52 Regrowth
14 75 4000 0.48 93.1 61.5 0.80 Regrowth
15 75 4000 0.56 89.8 72.2 0.94 Regrowth
16 75 4000 0.25 46.1 32.2 0.43 Regrowth
17 75 4000 0.25 78.3 31.0 0.41 Regrowth
18 75 4000 0.34 56.9 43.3 0.57 Regrowth
19 75 4000 0.31 78.4 39.0 0.51 Regrowth
20 75 4000 0.76 92.7 98.8 1.26 No Tumor
21 75 3600 0.73 92.6 89.0 1.21 No Tumor
22 75 5400 0.69 91.9 93.5 1.15 No Tumor
23 75 3600 0.75 91.8 92.1 1.24 No Tumor
24 75 3600 0.46 84.5 54.9 0.76 Regrowth
25 75 3600 0.44 82.6 52.6 0.73 Regrowth
26 75 3600 0.30 56.9 36.2 0.48 Regrowth
27 75 3600 0.69 91.7 84.5 1.15 No Tumor
28 75 3600 0.67 90.4 81.1 1.10 No Tumor
29 75 3600 0.72 90.8 87.9 1.19 No Tumor
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30 75 3600 0.64 89.0 78.5 1.10 No Tumor

Comparing dose metrics, it is seen that singlet oxygen does the best of predicting

LCR. Furthermore, the [1O2]rx dose required to have LCR for 90 days with BPD-

mediated PDT is 1.1 mM [170]. Figure 6.6 shows the survival curves that compares

the dose metrics. A correlation of the delivered light fluence, BPD photobleaching

ratio, and PDT dose with LCR showed that less than 25% of the tumors exhibit a

complete response at 90 days to the treatment with a light fluence greater than 270

J/cm2. Photobleaching ratio and PDT dose were also not sufficient in correlating

with tumors that responded with a complete response. However calculated [1O2]rx >

1.1 mM was able to predict long term complete tumor control.

Figure 6.6: Survival curves based on (a) in-air delivered light fluence, (b)
BPD photobleaching ratio, (c) PDT dose, and (d) calculated [1O2]rx. Tu-
mor volumes less than 100 mm3 and control at 90 days were considered as
treatment end points.
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6.3 Discussion

As shown in Fig. 6.2, the photochemical parameters σ, ξ, and g were validated by

measuring [BPD] changes and [3O2] during the PDT treatment for individual mice

and applying the parameters to the explicit dosimetry model. Based on a previous

study, the parameters of σ, ξ, and g werefound to be (1.8 ± 0.3) × 10−5 µM−1,

(55 ± 15) × 10−3 cm2mW−1s−1, and 1.7 ± 0.4 µM−1, respectively. The standard

deviation of each parameters is reduced based on the fitting of [S0] and [3O2] as

shown in Fig. 6.2, which is a more robust data set for deriving the photochemical

parameters. Each individually measured [3O2] in Fig. 6.2 was fitted to validate

the photochemical parameters as shown in table 6.2. RMSE between measured and

calculated values of [3O2] was used as a measure of good fit.

To asses the effect of photochemical parameters, the values of calculated reacted

singlet oxygen concentration using the individually obtained photochemical param-

eters for each mouse (from table 6.2) were compared to [1O2]rx calculated using the

phtochemical parameters from the necrosis-based study in chapter 5 and table 7.1.

For the same mouse, [1O2]rx calculated using the two sets of photochemical parameters

agree with each other within a maximum uncertainty of 20% and a standard deviation

of 8%. The good agreement between measurement and caluclation of photosensitizer

concentration and oxygen concentration provided a validation of the photochemical

parameters determined previously and allowed for reduction in the uncertainty of each

parameter. For BPD, the comparisons between the measured and calculated [3O2]

for a subset of four mice show that the macroscopic model can accurately predict

[3O2] for the mice studied with R2 values ranging from 0.70 to 0.90. The agreement

between measured and calculated [3O2] makes it unnecessary to measure the oxy-

gen concentration directly during PDT. One complication of the comparison between
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measurement and calculation for in vivo oxygen concentration is the uncertainty of

the depth at which oxygen concentration was measured, which lies at around 3 mm.

To illustrate this effect, spatial and temporal variations of [3O2] are shown for various

φair (20, 50, 75, and 150 mW/cm2) in Fig. 6.7. The temporal changes of [3O2] at

1, 3, and 5 mm with [BPD] = 0.57 µM (the mean value of BPD concentration for

all mice studied) are shown in Fig. 6.7 (a)-(c). Figure 6.7 (d)-(f) show the temporal

changed of [3O2] at 1, 3, and 5 mm with [BPD] = 0.87 µM. Initial [3O2] of 40 µM

and the photochemical parameters in table 7.1 were used for the calculations. As

the depth increases from 1 to 5 mm, the minimum value of [3O2] increases, while

the rate of [3O2] recovery due to photobleaching (for 50 to 2000 s) deceases. Higher

initial [BPD] will cause a larger drop of [3O2], depending on the light fluence rate.

Lower light fluence rates will have less [3O2] consumption during PDT. The optimized

depth for the best agreement between model and measurement is found to be 3 mm,

corresponding to the placement of the oxygen probe during PDT.
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Figure 6.7: Temporal dependence of [3O2](t) calculated for various φair (20, 50,
75, and 150 mW/cm2) at depths of 1, 3, and 5 mm in the tumor for two ini-
tial BPD concentrations, (a)-(c) [BPD] = 0.57 µM and (d)-(f) [BPD] = 0.87
µM. Photochemical parameters in table 7.1 are used for [3O2] are used for the
calculations.

Compared to control mice, all treated mice with total fluence larger than 30 J/cm2

had significant control of the tumor regrowth after PDT (see Fig. 6.3). However,

mice with tumors of about the same size, administered with the same BPD dose,

and treated with identical fluence exhibited different survival and tumor control as

φair was changed. In the group of mice treated to 150 J/cm2, CI increased as the
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source strength was lowered from 100 to 75 mW/cm2. This is in agreement with prior

reports of increased therapeutic response with a reduced φair by expanding the radius

of 1O2 formation around a tumor capillary in a multicell tumor spheroid model [23].

Figure 6.4 (a) compares the measured pre- and post-PDT BPD concentration

versus calculated [BPD] during treatment for each treatment condition using the

photochemical parameters summarized in table 7.1. The good agreement (for mean

[S0], R2 = 0.88) between measured [BPD] pre- and post-PDT further validates the

photochemical parameters used for the modeling. Figure 6.4 (b) shows the spatial

distribution of [1O2]rx for each treatment condition. The value of [1O2]rx at 3 mm is

shown with symbols. While the comparison of CI versus [1O2]rx was done using these

values at 3 mm, the value of [1O2]rx is almost a constant for depths between 1 and 4

mm for most of the PDT treatment groups, indicating that the correlation between

[1O2]rx and CI in Fig. 6.5 (d) should be equally valid for any depth between 1 and

4 mm.

Fluence, photosensitizer photobleaching ratio, PDT dose, and [1O2]rx at 3 mm

were compared as dosimetric quantities to estimate the outcome of BPD-mediated

PDT for RIF tumors on a mouse model. The outcome was evaluated by the calcu-

lation of CI. No tumor regrowth up to 15 days after the treatment resulted in a CI

of 1. The goodness of fit and the corresponding upper and lower bounds of the fits

(grey area) to each of the dosimetric quantities are shown in Fig. 6.5. As seen in

Fig. 6.5 (a), while fluence correlates linearly with the PDT outcome, it exhibits large

uncertainties as defined by the large bounds of the grey area, as well as by the low

value of R2 = 0.67. As evident by the lower value of R2 = 0.63 and a relatively large

bound of grey area in Fig. 6.5 (b), the BPD photobleaching ratio is not a better dosi-

metric quantity for predicting the PDT outcome as compared to fluence. The BPD

concentration (∼0.2 to 0.8 µM) as used clinically is much lower than the value of δ
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(=33 µM), and this may be a reason for the poor correlation of the photobleaching

ratio and CI. In photobleaching-based implicit dosimetry, a much more sophisticated

model than simple bleaching fraction is used, and the result of this study does not

mean that other methodologies of photobleaching-based implicit dosimetry will not

be applicable for PDT dosimetry. As shown in Fig. 6.5 (c), PDT dose allows for re-

duced subject variation and improved predictive efficacy as compared to fluence and

photobleaching. PDT dose showed a better correlation with CI with a higher value

of R2 = 0.97 and a narrower band of grey area as it accounts for both light fluence

and tissue [BPD] levels. However, PDT dose over-estimates [1O2]rx in the presence

of hypoxia as it does not account for the oxygen dependence of 1O2 quantum yield.

The goodness of fit R2 = 0.99 and the narrowest grey area in Fig. 6.5 (d) shows that

the mean [1O2]rx correlates best with CI. [1O2]rx accounts for the key quantities of

light fluence, photosensitizer concentration, and tissue oxygen level.

Based on the findings of this study, PDT dose and [1O2]rx exhibit threshold dose

behavior as they can be fit by a sigmoid function of the form S(x) = 1/[1+e−(x−x0)/w0 ],

where x0 = 58 µM J/cm2 with uncertainty w0 = 12 µM J/cm2 and x0 = 0.98 mM with

uncertainty w0 = 0.12 mM for PDT dose and [1O2]rx, respectively. For PDT dose,

x0 can be converted to the absorbed dose by BPD by multiplying by the extinction

coefficient (ε = 0.0783µM−1cm−1), resulting in 4.5 J/cm3, which corresponds to (16±

4) × 1018 photons/cm3 (by dividing by the energy per photon hc/λ = 2.88 × 10−19

J for λ = 690 nm). The PDT dose threshold for BPD is in agreement with those

reported for 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (19 × 1018

photons/cm3) [171]. The mean [1O2]rx threshold concentration of x0 = 0.98 ± 0.12

mM is similar to that which is published for HPPH (1.00 mM) [171]. The definition of

the threshold dose for both PDT dose and [1O2]rx is the value for when CI = 0.5 [126].
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6.4 Conclusion

The response of mouse RIF tumors to PDT depends on the tissue oxygenation, photo-

sensitizer uptake, total energy delivered, and the φ at which the treatment is delivered.

An accurate dosimetry quantity for the evaluation of the treatment outcome should

account for all of these parameters. This study evaluated the efficacy and outcomes

of different PDT treatments and how fluence, BPD photobleaching, PDT dose, and

[1O2]rx compare as dosimetric quantities. The correlation between CI and [1O2]rx

suggests that [1O2]rx at 3 mm is the best quantity to redict the treatment outcome

for a clinically relevant tumor regrowth endpoint. PDT dose is the second most effec-

tive dosimetry quantity when compared to fluence or photosensitizer photobleaching,

but is worse than [1O2]rx as it does not account for the consumption of [3O2] for

different φ. For BPD in RIF tumors, the measurements show consistent temoral de-

pendence of in vivo oxygen concentration during PDT that can be well modeled by

the macroscopic model, implying that it is not necessary to make [3O2] measurements

during PDT to obtain [1O2]rx as well as by using model-calculated values. This study

validated the model and photochemical parameters for BPD-mediated PDT for an

endpoint that is clinically relevant.
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Chapter 7

IR Navigation System

Pleural photodynamic therapy (PDT) is performed intraoperatively for the treatment

of microscopic disease in patients with malignant pleural mesothelioma. Accurate de-

livery of light fluence is critical to PDT efficiency. As a standard of care, light fluence

is delivered to the prescribed fluence using 8 isotropic detectors in pre-determined

discrete locations inside the pleural cavity that is filled with a dilute Intralipid solu-

tion. An optical infrared (IR) navigation system was used during light delivery to

monitor the position of the light source within the treatment cavity. The light source

is tracked using a modified and improved treatment delivery wand with reflective

passive markers that are seen by the infrared camera-based navigation system. This

information was used to calculate the light fluence, incorporating a constant scattered

light fluence and using a dual correction method. Calculation methods were exten-

sively compared for 8 detector locations and 6 patient case studies. The light fluence

uniformity was also quantified by representing the unraveled three-dimensional ge-

ometry on a two-dimensional plane. Calculated light fluence at the end of treatment

delivery was compared to measured values from isotropic detectors. Using a constant

scattered dose for all detector locations along with a dual correction method, the
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agreement between calculated and measured values for each detector was less than

15%. Primary light fluence alone does not fully account for the light delivered in-

side the cavity. This is useful in determining the light fluence delivered to areas of

the pleural cavity between detector locations, and can prove to improve treatment

delivery with implementation in real-time in the surgical setting.

7.1 Pleural Photodynamic Therapy

PDT typically uses light in the near infrared region, which will penetrate only several

millimeters into tissue. For that reason, PDT is utilized for the treatment of regions

that are easily accessible, such as the skin or oral cavities. In the treatment of pleu-

ral malignant mesothelioma, treatment involves radical pleurectomy. This surgical

opening of the pleural cavity allows for intraoperative delivery of the treatment light.

Radical pleurectomy and surgical debulking of the macroscopic tumor leaves behind

microscopic tumor cells that can develop into larger tumors. PDT is used to treat

the microscopic disease after the debulking. It has been seen that with the addition

of PDT, patients see prolonged survival despite recurrence [13].

As a part of a Phase II/III clinical trial at the Hospital of the University of Penn-

sylvania, patients were enrolled in a randomized trial to under surgical resection or

surgical resection with interoperative PDT. Photofrin was used as the photosensitiz-

ing agent and was intravenously administered to the patient 24 hours prior to surgery

at a concentration of 2 mg per kg of body weight. 630 nm wavelength laser light

was delivered by a Laser Scope dye and KTP-YAG laser system (630 XP, Laser-

scope, Inc., San Jose, CA, USA). PDT was delivered to a prescribed 60 J/cm2, which

was measured by 8 isotropic detectors (Medlight SA, Ecublens, Switzerland) placed in

pre-determined locations within the pleural cavity: apex, posterior chest wall (PCW),

Chapter 7 Michele M. Kim 131



anterior chest wall (ACW), posterior sulcus (PS), anterior sulcus (AS), posterior me-

diastinum (PM), pericardium (Peri), diaphragm (Diaph). The current standard of

treatment involves treatment to the prescribed light fluence at each of the isotropic

detectors.

7.2 Optical Infrared (IR) Navigation System

A commercial IR navigation system (Polaris, NDI, Waterloo, Canada) was used for

tracking the light delivery during pleural PDT [172–175]. The camera consists of a

pair of cameras that measure the light reflection from a modulated laser source (with

a wavelength of 850 nm). The stero-cameras typically track 3-4 passive reflective

markers with known geometry in real-time at a rate of 20-60 Hz). The reflective

markers track the position of a point at the end of a rigid wand. The wand used to

track treatment, however, was modified to have 3 faces with 3 passive markers so that

position data could be collected at more angles around the wand. The position of

the point is given by the 3D Cartesian coordinates (x, y, and z) and the orientation

(Q0, Q1, Q2, Q3). With the IR navigation system, position of the light source being

used to deliver laser light inside the pleural cavity is continuously tracked, and raw

position data is used to determine the cavity contour. The accuracy of the system is

∼0.5 mm in 3D, and the maximum detection volume for the extended system ∼205

× 186 × 147 cm3, which is optical for use during treatment of the pleural cavity for

the patient population studied. The IR camera is positioned above the patient from

the ceiling prior to treatment.
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7.2.1 Modified treatment delivery wand

During pleural PDT, light is delivered through a bare fiber connected to the laser

source that is enclosed in a modified endotracheal (ET) tube (Fig. 7.1). Previous

versions of the treatment light delivery system included a rigid metal rod that clipped

onto the ET tube. The passive reflective markers were calibrated so that the position

information obtained by the camera was that of the tip of the metal rod. There

would be a shift between the location that the camera tracks and the location of

the fiber tip inside the balloon. The shift would have to be determined and applied

throughout the set of data obtained. An updated treatment delivery wand was created

so that the passive reflective spheres would track the location of the fiber tip directly

with an expected shift in x, y, and z of 0 mm each. Prior to sterilization, the

wand was calibrated so that the markers tracked the position of the fiber tip. The

calibrated wand was equipped with an ET tube to be filled with Intralipid to facilitate

light scattering. The calibration consistency was evaluated by determining the shift

between the calibrated point to the fiber point after treatment and is summarized in

table 7.1.
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Figure 7.1: (a) Modified treatment delivery wand. Magnification shows the
tip of the treatment wand, which is the tip of the bare fiber used to deliver
laser light. The wand is calibrated so that the passive markers (9) are tracking
the tip of the light source, eliminating the need for a separate calibration
calculation to determine the light source position. (b) Image of the IR camera
in use during pleural PDT. The camera is positioned above the patient body.

Table 7.1: Light source point shift from calibration point

Case No. Shift x (mm) Shift y (mm) Shift z (mm) Average

008 0.88±0.72 0.98±0.12 -0.52±0.42 0.45±0.84
012 1.27±0.11 -0.17±0.04 -0.46±0.26 0.21±0.93
014 0.70±0.42 0.80±0.78 -0.62±0.45 0.29±0.79
016 -0.28±0.13 -0.92±0.19 -0.53±0.35 -0.58±0.32
017 1.20±0.43 0.51±0.24 -0.75±0.23 0.32±0.99
018 1.64±0.17 0.46±0.27 -0.48±0.35 0.54±1.06
020 -0.68±0.19 0.44±0.20 -0.89±0.24 -0.37±0.72

Average 0.68±0.85 0.30±0.65 -0.61±0.16

Prior to the development of the modified treatment delivery wand, there was

a fixed shift between the calibrated tip of the metal rod that was attached to the

reflective spheres and the tip of the fiber optic laser source inside the inflated balloon

of the ET tube. The shift in x, y, and z needed to be determined for each assembly of

the wand. The unassembled wand required sterilization prior to use in the operating

room. The shift was determined by using a device that held one isotropic detector.
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The location of that isotropic detector was determined using a different tracking

wand. The treatment delivery wand was then used to determine the fluence at 8

different positions. Using the information of light fluence, distance, and calculated

values of fluence (using Eq. (7.1)), the shift between the actual light source position

and the treatment wand tip was determined. In the surgical setting, this would be

time consuming and occasionally, the ET tube would have to be replaced mid-surgery.

In this instance, the shift may not be determined, or would have to be determined in

the laboratory setting after surgery is complete.

An updated light source positioning tool was developed, which used 8 detectors

in fixed locations inside an acrylic ring device (Fig. 7.2). Detectors were placed both

near and far from the central opening on two layers. The location of the ring was

determined with a separate wand, and the treatment wand would be placed inside the

ring for one measurement (compared to 8). While this was an improvement to the

first generation light source locator, the new modified treatment wand with calibration

directly to the light source fiber eliminates the need for an extra measurement prior

to surgery and reduces uncertainty in shift determination.
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Figure 7.2: Light source position rela-
tive to the calibrated metal tracking wand
tip was determined using a tool with 8
isotropic detectors. Light fluence at 8
known positions was optimized to find the
shift in x, y, and z.

With the acrylic ring device, it was critical to determine the location of the 8 isotropic

detectors inside the ring relative to the reference to the ring body. Each isotropic

detector needed to be calibrated prior to use and connected to the dosimetry system

in the operating room setting. The modified wand saved much-valuable time in

the operating room and requires less pre-surgery set-up. Furthermore, the wand

was lighter and less cumbersome without the metal rod, creating a better treatment

delivery experience for the physician delivering the light while maintaining the rigid

geometry required for accurate positioning.

7.2.2 Pleural cavity geometry reconstruction

The pleural geometry was determined using position data obtained inside the pleural

cavity. A more detained description of the algorithm to reconstruct the cavity contour

can be found elsewhere [172]. Briefly, the Cartesian coordinates of the contour were

converted to spherical coordinates. For each defined grid, the boundary was found by
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selecting data points from the largest radial distance. These points were interpolated

to find surface information. At the time of surgery, a standard coordinate was deter-

mined by recording a position with a wand parallel to the patient and the reflective

sphere end of the wand towards the head of the patient. The obtained pleural cavity

contour was oriented to have the apex location at the top aligned with the z-axis.

Figure 7.3 shows the geometry reconstructed from treatment data with the locations

of the 8 isotropic detectors. Using the standard coordinate, all treated geometries

can be oriented the same way for intercomparison.

Figure 7.3: (a) Schematic of detector locations (8) used for each pleural PDT
patient. (b) Detector positions inside a patient cavity contour determined
from raw data.

Chapter 7 Michele M. Kim 137



7.2.3 Light fluence calculations

Using the position data obtained throughout the treatment using the optical IR navi-

gation tracking system, the position of the light source is known as well as the surface

of the pleural cavity geometry that is being treated. The light fluence to each point on

the cavity is a sum of the primary (direct) component and the scattered component

of the light [172]. The primary component of the light fluence rate (φprimary) can be

calculated by

φprimary =
S

4πr2
(7.1)

where S is the source power and r is the distance from the point light source to

the point of interest on the pleural cavity surface. To improve agreement between

the measured light fluence from the isotropic detectors and the calculated values,

a constant scattered light contribution was considered in the calculation. During

treatment, the pleural cavity is filled with a dilute solution of Intralipid (0.1% lipid

content) to facilitate scattering. To account for the general scattering in the pleural

cavity, the light fluence rate (φscatter) can be calculated by

φscatter =
S

4πr2
+ b (7.2)

where b is the constant scattered light fluence rate that is added for every calculation

point. Total light fluence is calculated as the time integral of the light fluence rate

(φ), which is a function of r and time, t. The agreement between measured and

calculated light fluence, a dual correction method was applied to the light fluence

rate. The method involves a time-dependent multiplication correction factor (CF (t))

that is applied to the entire calculated light fluence rate. A value of CF is applied to

match the measured light fluence rate every 30 seconds, and another CF is applied
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every 150 seconds to match the total cumulative light fluence at the detector location

with the largest sum fluence over the past 30 seconds. A correction is applied only if

the difference is more than 5%. This second correction ensures that the total fluence

is in agreement. The time intervals for the correction factor was chosen from trial

and error. With the addition of the scattered light fluence, the light fluence rate can

be calculated by

φ(r, t) =

(
S

4πr(t)2
+ b

)
· CF (t) (7.3)

The value of CF is determined for one of the eight detectors that has the largest sum

fluence at the time interval of interest and is applied to the entire volume, as well as

the locations of the other detectors.

For an integrating-sphere-like cavity, such as the pleural cavity, the scattered light

fluence rate inside the sphere can be calculated according to [138]

b =
4S

As
· Rd

1−Rd

(7.4)

where As is the surface area of the cavity, and Rd is the diffuse reflectance of the

scattering wall surface. This is assuming that the area is a sphere and the infinite

number of reflections is uniform. Setting equations (7.2) and (7.4) equal to each other,

Rd/(1 − Rd) was calculated for each patient case and summarized in table 7.9 The

relationship between Rd and tissue optical properties can be found in Ong et al. [157].

7.2.4 Anisotropy modeling

The treatment light is delivered through a polished bare-tip optical fiber that is inside

of a modified endotracheal (ET) tube filled with Intralipid. The ET tube balloon is

filled with scattering fluid but still exhibits anisotropy around the perimeter. This

anisotropy was measured, modeled, and applied in the calculation for light fluence at
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detector locations.

Figure 7.4: (a) Balloon illuminated with low light to illustrate
the anisotropy (b) Set-up to measure angular anisotropy with an
isotropic detector (c) Angle definition for the anisotropy function

Using an isotropic detector, the anisotropy of the light being emitted from the

balloon was measured on an angular platform (shown in Fig. 7.4b). Assuming az-

imuthal symmetry about the wand, the measurements taken at 5◦ intervals were fit

to a polynomial of order 2 (Eq. (7.5)). As seen in Fig. 7.4a, the least attenuated light
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results from the capped end of the balloon (defined as θ = 180◦), which is oriented

closest to the polished face of the bare fiber. The anisotropy function was fit to the

following form

A(θ) = p1θ
2 + p2θ + p3 (7.5)

where θ is described as the angle from the axis of the wand, as shown in figure 7.4c.

The fit model is shown in figure 7.5 with two sets of measured data. The parameters

for the model were found to be p1 = 2.764× 10−5, p2 = 0.01027, and p3 = 0.03685.

Figure 7.5: Treatment wand balloon anisotropy. Relative light flu-
ence measurements (circles) were obtained every 5◦. Assuming az-
imuthal symmetry, an anisotropy function (solid red line) was fitted
according to equation (7.5). The solid black line represents the func-
tion A(θ) without the anisotropic model (constant)

To verify the model, a treatment was done on a chest phantom of known geometry.

Four isotropic detectors were placed in the chest cavity and treated to 10 J/cm2.

The measured fluence values were compared with the calculations using the position
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from the navigation tracking system. Since there was no scattering media inside the

treatment cavity, only the primary component of light was considered for calculations

(Eq. (7.1)). The anisotropy function was applied by multiplying it with the calculated

primary light component.

The navigation system provides the treatment delivery point source location in

Cartesian coordinates along with rotation quaternions (Q1, Q2, Q3, Q4) [172]. The

raw coordinates (R = (x, y, z)) obtained are relative to the camera (camera coordi-

nates) and can be converted to the wand coordinate system, described in Fig. 7.4c

(R′ = (x′, y′, z′)). The coordinate transformation is performed by

R′ = M−1R (7.6)

where the rotation matrix, M , is given by

M =


Q1Q1 +Q2Q2 2(Q2Q3 −Q1Q4) 2(Q2Q4 +Q1Q3)−Q3Q3 −Q4Q4

2(Q2Q3 +Q1Q4)
Q1Q1 −Q2Q2 2(Q3Q4 −Q1Q2)

+Q3Q3 −Q4Q4

2(Q2Q4 −Q1Q3) 2(Q3Q4 +Q1Q1)
Q1Q1 −Q2Q2

−Q3Q3 +Q4Q4

 (7.7)

From the wand coordinates, the angle of the balloon that is closest to the treatment

surface can be found by the following

θ = arctan

(√
x′2 + y′2

z′

)
(7.8)

The angle is then used in the anisotropy function A(θ), and applied to the light fluence

calculations.

In a phantom with no scatterer, only primary light component was calculated and

compared with and without application of A(θ). Four detectors in a chest phantom
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compared and the results are shown in Fig. 7.6. With the balloon anisotropy function,

the fluence data is better matched; however, the larger variation after a long treatment

time is not taken into account. Any attenuation of the light from the wand itself was

not considered for this study.

Figure 7.6: Measured fluence (red lines) compared to calculated fluence using
primary light calculations only (blue lines) versus those incorporating balloon
anisotropy (green lines). Four detectors were placed inside a open chest
phantom and treated.

A large factor affecting the modeling of the balloon anisotropy is variations in the

ET tube balloons. Each balloon has its own unique shape and anisotropy. Further

studies would have to be done with numerous different treatment wands and better

angular resolution as well as measurements from various distances from the balloon

center. However, this initial study shows one improvement in light fluence calculations
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using the IR navigation system.

7.2.5 Light fluence dosimetry in lung shaped cavities

Scattered fluence dosimetry was investigated in phantoms to simulate the clinical

treatment environment. Lung shaped cavities with different dimensions surrounded

by turbid media with varying optical properties were used to simulate the intracav-

ity lung geometry. Equations (3.5) and (3.6) were used to calculate scattered light.

Distances from the point source to each detector position were measured and ver-

ified from a CT scan of the phantom. In-air fluence measurements with the same

geometry were used to determine the primary component (φprimary) of the light and

subtracted from the total measurement (φtotal). The measured scattered light compo-

nent (φscattered) is determined by subtracting the primary from the total light fluence:

φscattered = φtotal − φprimary. This was then compared to the calculated values. The

surface area (SA) was determined using (i) the volumetric average of the phantom

and the (ii) the CT-determined surface area. Optical phantoms were prepared by

using Intralipid and ink as scattered and absorbing media, respectively. The optical

properties of the surrounding media were measured using a two-catheter method de-

scribed in section 3.1.3. Measurements were made with two point source locations –

centered in the phantom and 1.5 cm lowered.
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Figure 7.7: (a) Schematic of pleural cavity simulating phantom.
Isotropic detectors were placed around the phantom at different
positions relative to the isotropic point source. (b) Photograph of
the experimental set up. The phantom was submerged in a tissue-
simulating optical phantom. The optical properties of the surround-
ing phantom were measured using the two-cathether system, shown
on the right.

The measured and calculated scattered dose in the pleural cavity simulating phan-

tom agreed best using the CT surface area (ii) and equation (3.5). The measured

values are summarized for the centered and off-center point source positions in table

7.2 as φscattered/s, where s is the source power. Data is shown with a fixed µ′s = 6.7

cm−1 in the surrounding media and varying µa for each of the 3 detector locations.

Calculated values are shown in table 7.3. The percent error between mean measured

scattered dose and each calculated value is summarized in parenthesis.

Table 7.2: φscattered/s in phantoms with µ′s = 6.7 cm−1

``````````````̀Detector
µa (cm−1) 0.088 0.34 0.83

(Rd = 0.567) (Rd = 0.355) (Rd = 0.220)

Centered Point Source

0◦ Location 0.0465 0.0177 0.0090
45◦ Location 0.0420 0.0190 0.0085
90◦ Location 0.0456 0.0218 0.0104

Off-Center Point Source (1.5 cm down)
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0◦ Location 0.0416 0.0176 0.0094
45◦ Location 0.0428 0.0164 0.0110
90◦ Location 0.0410 0.0244 0.0088

Mean ± Std.
0.0433 0.0195 0.0095
± 0.0023 ± 0.0030 ± 0.0010

Table 7.3: Calculated φscattered/s with µ′s = 6.7 cm−1 (% error between cal-
culated and measured mean)

hhhhhhhhhhhhhhhhCalculation Method

µa (cm−1) 0.088 0.34 0.83
(Rd = 0.567) (Rd = 0.355) (Rd = 0.220)

Eq. (3.5) with SA(i)
0.0414 0.0174 0.0089

(-4.37%) (-10.79%) (-6.27%)

Eq. (3.5) with SA(ii)
0.0465 0.0195 0.0100

(7.45%) (0.24%) (5.32%)

Eq. (3.6) with SA(i)
0.0533 0.0213 0.0097

(23.15%) (9.40%) (1.88%)

Eq. (3.6) with SA(ii)
0.0599 0.0240 0.0109

(38.37%) (22.92%) (14.47%)

MC Simulation
0.0366 0.0206 0.0117

(-15.50%) (5.81%) (23.16%)

The measurements in an ellipsoid phantom agreed best to the calculated values

of φscattered/s using Eq. (3.5) and the actual surface area obtained from the CT scan

of the phantom (ii) with percent errors less than 10%. MC simulated results are

comparable to Eq. (3.6) using the CT-based surface area. Equation (3.5) is derived

from diffuse reflectance in an integrating sphere.

7.3 Extrapolation of Detector Locations

For each pleural PDT treatment, the physician must provide the location of the 8

isotropic detectors that are sutured into the pleural cavity by pointing a separate
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calibrated wand tip to each detector and recording the position coordinates. While

this is an accurate method of determining the detector locations instantly in the

clinical setting, sometimes it is not possible to obtain them due to time constraints

in the operating room or missed field of view from the camera to the wand. In

some scenarios, the detector locations were given, but the coordinate system for the

treatment data was changed due to removal or blockage of the global reference to the

patient bed. A post-processing procedure was developed and applied to extrapolate

the locations of the detectors to compare with the measured detector positions. With

the development of this method, the data acquisition process in the operating room

can be streamlined.

During the course of treatment, it is rare that multiple detectors are being illumi-

nated by the treatment light since the cavity is fairly large (average volume of ∼6.5L).

For each of the measured cumulative fluence data for each detector, time points where

there are “features” were determined. These are described as areas where the treat-

ment wand is close to a detector and is illuminating that area specifically. Those

regions are characterized by their fast increase in cumulative fluence or high fluence

rates and are illustrated for patient case 020 at the apex detector in Fig. 7.8.
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Figure 7.8: Measured cumulative fluence is shown for pa-
tient case 020 at the apex detector with regions highlighted
in red that display “features.” These features were used to
determine the time stamps that are indicative of the treat-
ment wand location being near that particular detector.

Using the features for each detector, the times at which the treatment wand was

near the detector were found. Times when the treatment light was illuminating the

detector were times that show increases in fluence. The locations of the treatment

wand for those times were plotted, and the center of mass was used as the extrap-

olated detector location. These are shown as an ‘×’ symbol next to the measured

detector locations in solid circles in Fig. 7.9. A summary of the shifts between the

extrapolated and measured detector locations for each patient case is in table 7.4.

For case number 016, there is no reported shift between the extrapolated detector lo-

cation and the measured detector location because there is no data for the measured

detector location. In the operating room, if it is proving to be difficult to locate a

detector using the IR navigation system, it is possible that the physician will skip

that step to minimize the patient’s time on the operating table. However, using these
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methods, it is possible to extrapolate the location of the detector and calculate the

fluence to be compared to the detector-measured fluence.
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Figure 7.9: Treatment wand locations for times when the detectors were
being illuminated are plotted in 3D for each detector for patient case 020.
The center of mass was used as the extrapolated detector location, shown as
an ’x,’ and the measured detector location is shown as a solid circle.
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Table 7.4: Shifts between measured and extrapolated detector locations
summarized for each patient. Shifts are described in units of cm.

Detector ∆x (cm) ∆y (cm) ∆z (cm) d (cm)

Case 012

Diaph -2.87 2.20 -2.77 4.56
PS -0.91 1.98 -2.11 3.03
AS 2.10 1.90 -3.19 4.26
PM 0.92 1.12 -1.84 2.34

PCW 1.98 2.09 -1.40 3.20
ACW 2.17 -1.93 -0.98 3.07
Peri -2.86 -2.47 2.18 4.36
Apex 0.97 0.06 3.69 3.82

Average 0.19±2.13 0.62±1.88 -0.80±2.44 3.58±0.79

Case 014

Diaph 1.97 -1.28 -4.62 5.18
PS 1.54 2.11 -3.19 4.12
AS 1.77 1.65 3.21 4.02
PM 1.10 0.99 1.28 1.95

PCW -1.07 2.89 -2.32 3.86
ACW -0.98 -0.67 -1.97 2.30
Peri -2.50 -2.01 -1.69 3.62
Apex -1.11 -1.48 3.88 4.30

Average 0.090±1.70 0.28±1.86 -0.68±3.09 3.67±1.06

Case 016

Diaph 3.86 -1.18 -4.17 5.81
PS 1.39 2.11 3.27 4.13
AS 1.86 2.11 -3.19 4.26
PM -1.58 1.09 -4.10 4.53

PCW -1.57 2.17 -1.01 2.87
ACW 0.98 -0.99 3.86 4.10
Peri – – – –
Apex – – – –

Average 0.82±2.11 0.89±1.58 -0.89±3.64 4.28±0.94

Case 017

Diaph 1.39 -4.20 -1.87 4.80
PS 1.29 1.40 -3.20 3.72
AS 1.13 1.18 -1.78 2.42
PM 2.11 -1.73 -1.98 3.37
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PCW 1.09 -0.98 2.09 2.56
ACW 1.33 2.32 -1.20 2.93
Peri 1.72 1.38 -1.78 2.84
Apex 0.91 1.11 2.43 2.83

Average 1.37±0.38 0.06±2.19 -0.91±2.04 3.18±0.78

Case 018

Diaph 0.99 -1.19 -2.11 2.61
PS 1.19 -0.92 -1.30 1.98
AS -1.11 4.18 -4.76 6.43
PM 0.91 1.18 -1.41 2.06

PCW -1.88 1.30 -0.92 2.46
ACW 2.76 -3.20 1.92 4.64
Peri -2.40 1.20 -1.29 2.97
Apex 1.08 -4.53 2.42 5.24

Average 0.19±1.78 -0.24±2.79 -0.40±2.44 3.55±1.67

Case 020

Diaph 0.01 -0.27 -1.17 1.20
PS 0.37 0.07 -2.21 2.20
AS 0.90 -0.93 -1.52 1.99
PM 0.01 1.28 -0.92 1.57

PCW -0.32 0.90 -0.74 1.20
ACW 0.05 -0.28 -0.43 0.52
Peri -1.02 -1.50 -0.29 1.84
Apex 0.09 -0.52 1.75 1.82

Average 0.010±0.55 -0.16±0.91 -0.40±1.31 1.54±0.55

For patient case 020, the detector locations were able to be determined to an accu-

racy of under 2 cm, however, this is not always possible for each case. Depending on

the geometry of the pleural cavity of the patient and the location of the infrared cam-

era on the day of surgery, some of the detectors may be illuminated without providing

any information of the treatment wand location. For those cases, the position data

of the wand cannot be used to determine the wand location. The accuracy of this

method can be greatly increased with more efficient data collection of the treatment

wand location.

For earlier cases (case numbers 012-017), the data obtained from extrapolated
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isotropic detector locations is not as accurate as those of later cases (case numbers

018-020). Camera placement is critical prior to surgery and a well-placed camera

will be able to collect more treatment light position information during treatment.

This process was improved over time with experience and knowledge about patient

placement.

The cumulative fluence at the end of treatment was calculated using the extrap-

olated detector positions compared to the measured fluence from the isotropic de-

tectors. Table 7.5 shows that by using the primary component in addition to the

scattering component of light (Eq. (7.2)), the measured and calculated fluence agree

to within 21%. With the addition of the dual correction factor (Eq. (7.3)), the

agreement is improved to be within 15%.

Table 7.5: Percent error from measured light fluence at the end of treatment with
calculated light fluence using the (a) primary and scattering component (Eq. (7.2))
and (b) primary and scattering component with CF (Eq. (7.3)) using extrapolated
detector positions

(a) Primary and Scattering Component
Case No. Diaph PS AS PM PCW ACW Peri Apex Avg.

012 21.0% 12.7% 11.7% 9.6% 9.7% 9.1% 16.7% 16.3%
13.3%
± 4.3%

014 17.0% 10.0% 8.3% 6.7% 11.4% 7.1% 8.2% 13.0%
10.2%
± 3.5%

016 16.6% 7.7% 8.1% 8.2% 6.3% 10.2% 18.6 16.9
11.6%
± 4.9%

017 15.1% 8.1% 8.9% 12.9% 7.8% 10.6% 12.9% 14.5%
11.4%
± 2.9%

018 10.7% 8.8% 15.6% 6.9% 9.8% 9.5% 8.7% 10.6%
10.1%
± 2.5%

020 8.6% 6.5% 6.4% 7.2% 9.0% 1.7% 6.6% 9.6%
7.0%
± 2.4%

Avg.
14.8% 9.0% 9.8% 8.6% 9.0% 8.0% 12.0% 13.5%
±4.5% ±2.2% ±3.3% ±2.4% ±1.8% ±3.3% ±4.9% ±3.0%

(b) Primary and Scattering Component with Dual Correction (CF )
Case No. Diaph PS AS PM PCW ACW Peri Apex Avg.

012 13.8% 9.1% 8.2% 7.3% 7.3% 8.6% 13.7% 12.9%
10.5%
± 3.5%
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014 10.4% 9.7% 8.3% 6.6% 10.5% 8.2% 7.4% 11.6%
9.1%
± 1.7%

016 13.0% 4.7% 5.4% 6.1% 6.3% 9.9% 12.9 14.0
9.0%
± 3.8%

017 10.6% 5.7% 2.7% 11.0% 6.4% 9.6% 10.0% 13.4%
8.7%
± 3.5%

018 6.1% 8.2% 7.8% 3.8% 4.3% 10.9% 10.6% 7.3%
7.4%
± 2.6%

020 6.0% 3.3% 3.3% 0.7% 6.2% 3.0% 0.1% 3.0%
4.5%
± 5.0%

Avg.
10.5% 6.8% 6.0% 5.9% 6.7% 8.4% 9.1% 10.4%
±4.1% ±2.6% ±2.5% ±3.5% ±2.1% ±2.8% ±4.9% ±4.3%

It can be seen from both table 7.4 and 7.5 that certain detector locations are

more accurately extrapolated than others. The general trend is that detectors in the

extremities of the pleural cavity including the diaphragm, anterior sulcus, and apex,

show larger errors between measured and extrapolated locations. More specifically,

the detector located at the diaphragm shows a larger negative shift in the z direction,

indicating that the extrapolated detector location is above the measured detector

location. During treatment, it is more likely that the treatment balloon does not

fully reach the detector area while it is being illuminated, resulting in a collection of

position points above the actual detector and an extrapolated position with a large z

shift. Similarly, the apex detector located at the top of the pleural cavity has a larger

positive shift in the z direction, consistent with the treatment wand being below the

actual detector location during light delivery.

Table 7.6: Shifts between measured and extrapolated detector locations
averaged across patient cases for each site. Shifts are described in units
of cm.

Detector ∆x̄ (cm) ∆ȳ (cm) ∆z̄ (cm) d̄ (cm)

Diaph 0.89±2.24 -0.99±2.06 -2.79±1.36 4.03±1.75
PS 0.81±0.94 1.13±1.27 -1.46±2.42 3.20±0.95
AS 1.11±1.18 1.68±1.65 -1.87±2.75 3.90±1.58
PM 0.58±1.25 0.65±1.17 -1.49±1.74 2.64±1.11
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PCW -0.30±1.54 1.39±1.36 -0.71±1.49 2.69±0.89
ACW 1.05±1.37 -0.79±1.85 0.20±2.23 2.93±1.45
Peri -1.41±1.89 -0.68±1.83 -0.57±1.65 3.13±0.94
Apex 0.39±0.93 -1.07±2.14 2.83±0.91 3.60±1.32

Shifts in x, y, and z directions for each extrapolated detector location compared

to the measured detector location were averaged across the patient cases studied and

summarized in table 7.6. The shift in the extrapolated detector locations for the

diaphragm and apex positions show a systematic shift with standard deviations that

are smaller. These average shifts were applied to the extrapolated positions and light

fluence was calculated and compared in table 7.7. The extrapolated position for the

diaphragm detector was shifted in the z direction by -2.79 cm, and the extrapolated

position for the apex detector was shifted in the z direction by 2.83 cm. With these

new extrapolated positions, the calculated fluence at the end of treatment better

matched the measured fluence, as seen in table 7.7. With the adjusted extrapolated

diaphragm and apex detector locations, both calculation methods have improved

agreement with measured fluence. Using the primary and scattered components of

light, the fluence agrees to within 15% for both diaphragm and apex detectors. The

addition of the dual correction factor improves the agreement to within 13%. For

cases where there is no measured detector location, this method of extrapolating the

detector location from the treatment data can be used.

Table 7.7: Percent error from measured light fluence at the end of treat-
ment with calculated light fluence using the (a) primary and scattering
component (Eq. (7.2)) and (b) primary and scattering component with
CF (Eq. (7.3)) using extrapolated detector positions with average shift
for detectors

(a) Primary and Scatter-
ing Component

(b) Primary and Scatter-
ing with Dual Correction

Case No. Diaph Apex Diaph Apex
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012 10.6% 9.3% 4.1% 7.7%
014 14.8% 10.1% 8.1% 9.5%
016 13.9% 12.9% 11.7% 12.4%
017 7.6% 10.9% 7.1% 7.3%
018 8.9% 9.7% 5.9% 6.2%
020 3.7% 6.0% 4.7% 1.3%

Average 9.9%±4.1% 9.8%±2.3% 6.9%±2.8% 7.4%±3.7%

7.4 Clinical Photofrin Pleural PDT Results

The position of the light source being used to deliver light during pleural PDT was

tracked throughout the treatment and used to acquire the pleural cavity geometry

and calculate the light fluence distribution. Calculation methods were improved from

using just the primary (direct) light component to adding a constant scattered light

component. The calculation method was further improved by implementing a time-

dependent dual correction factor (CF ). Evaluation of the light fluence calculation

was done by comparing the calculated light fluence at the locations of the 8 isotropic

detectors with the measured light dose.

The improved light delivery wand was evaluated for consistency before and after

treatment. Calibration of the wand tip location is done prior to sterilization. The

design of the wand involves assembly of the reflective spheres immediately before

treatment. To ensure that the optical IR tracking system is tracking the fiber tip

after assembly, the shift between the calibrated point and the light source fiber tip

point was determined after treatment. The results are summarized in table ??. The

maximum shift was 1.64±0.17 mm, which is less than the 2 mm measurement uncer-

tainty from the device. This ensures that the modified treatment delivery wand is an

improvement from having to determine and apply a 3 mm shift from the laser source

position to the tracking device point position. This eliminates a potential uncertainty
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from implementation in the clinical setting, where the shift may not be able to be

determined at every case.

Using only the primary light component, the calculated light fluence is consistently

lower than the measured dose for all 8 detector locations, as seen in figure 7.10. For

the case shown in Fig. 7.10 (case 020), the maximum percent error from the measured

light dose at the end of treatment using Eq. (7.1) at each detector location is 67.5% at

the Apex location. For 6 patient case studies, the average deviation for all detectors

was 51.6% ± 5.6%. From the data, it is clear that φprimary is not fully accounting

for the light fluence that is delivered. The percent error from measurements using

φprimary is summarized for each detector location and each patient case in table 2 (a).

The mean values for each detector across all patient cases as well as the mean values

for each patient case across all detectors are shown with their standard deviations.
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Figure 7.10: Measured (red solid line) light fluence data over
the course of treatment along with calculated (blue ’x’) light
fluence using the primary component (Eq. (7.1)) plotted for
8 detector locations: (a) apex (b) anterior chest wall (ACW)
(c) posterior chest wall (PCW) (d) anterior sulcus (AS) (e)
posterior sulcus (PS) (f) posterior mediastinum (PM) (g)
pericardium (Peri) (h) diaphragm (diaph)
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Table 7.8: Percent error from measured light fluence at the end of treatment with
calculated light fluence using the (a) primary component (Eq. (7.1)), only the (b)
primary component with CF, the (c) primary and scattering component (Eq. (7.2)),
and the (d) primary and scattering component with CF (Eq. (7.3))

(a) Primary Component Only
Case No. Diaph PS AS PM PCW ACW Peri Apex Avg.

012 39.8% 56.4% 57.2% 58.5% 51.0% 56.6% 29.2% 45.8%
49.3%
± 10.4%

014 52.9% 46.9% 63.9% 42.4% 46.5% 67.6% 51.8% 50.0%
52.7%
± 8.7%

016 50.0% 47.4% 52.4% 58.3% 41.2% 56.5% – –
51.0%
± 6.3%

017 39.4% 49.3% 63.4% 44.5% 28.2% 39.6% 29.2% 45.7%
42.4%
± 11.3%

018 43.2% 52.8% 62.1% 52.1% 45.4% 63.0% 58.9% 61.4%
54.9%
± 7.7%

020 52.2% 63.6% 58.7% 59.0% 53.2% 58.0% 60.6% 67.5%
59.1%
± 5.0%

Avg.
46.2% 52.7% 59.6% 52.5% 44.2% 56.9% 45.9% 54.1%
±6.2% ±6.4% ±4.4% ±7.5% ±9.0% ±9.5% ±15.7% ±9.9%

(b) Primary and Scattering Component
Case No. Diaph PS AS PM PCW ACW Peri Apex Avg.

012 13.8% 7.4% 10.1% 10.2% 5.4% 8.3% 15.8% 1.3%
9.1%
± 4.6%

014 1.0% 6.3% 3.0% 3.7% 9.0% 3.2% 1.2% 15.1%
5.3%
± 4.8%

016 2.5% 1.7% 5.9% 4.2% 15.4% 13.9% – –
7.3%
± 5.9%

017 12.9% 8.7% 6.7% 14.9% 6.6% 14.7% 13.7% 13.1%
11.4%
± 3.5%

018 13.6% 5.7% 9.0% 4.2% 9.2% 9.4% 6.5% 8.9%
8.3%
± 2.9%

020 3.1% 8.3% 3.5% 2.5% 1.6% 2.4% 6.1% 13.1%
5.0%
± 3.7%

Avg.
7.8% 6.4% 6.4% 6.6% 7.9% 8.7% 8.7% 10.1%
±6.2% ±2.6% ±2.9% ±4.9% ±4.6% ±5.2% ±6.0% ±95.4%

(c) Primary Component with Dual Correction (CF )
Case No. Diaph PS AS PM PCW ACW Peri Apex Avg.

012 20.5% 21.6% 10.1% 26.3% 16.7% 13.3% 0.8% 1.3%
13.8%
± 9.3%

014 1.0% 6.3% 35.0% 3.7% 9.0% 32.1% 1.2% 15.1%
12.9%
± 13.5%

016 2.5% 18.1% 22.5% 4.2% 15.4% 19.3% – –
13.7%
± 8.3%

017 15.2% 8.3% 23.5% 17.6% 6.6% 13.5% 19.7% 15.0%
14.9%

Chapter 7 Michele M. Kim 159



± 5.6%

018 13.6% 3.8% 9.0% 18.6% 7.2% 18.6% 5.6% 0.4%
9.6%
± 6.7%

020 24.3% 8.9% 6.4% 24.3% 47.1% 6.9% 17.3% 4.4%
17.5%
± 14.4%

Avg.
12.9% 11.2% 17.8% 15.8% 17.0% 17.3% 8.9% 7.2%
±9.4% ±7.1% ±11.1% ±9.7% ±15.3% ±8.5% ±9.0% ±7.3%

(d) Primary and Scattering Component with Dual Correction (CF )
Case No. Diaph PS AS PM PCW ACW Peri Apex Avg.

012 8.6% 1.2% 4.3% 5.4% 5.1% 5.4% 10.2% 2.9%
5.4%
± 2.9%

014 4.5% 9.0% 7.5% 7.9% 3.5% 4.3% 5.5% 9.0%
6.4%
± 2.2%

016 1.9% 2.8% 5.3% 3.1% 9.8% 8.2% – –
5.2%
± 3.2%

017 8.9% 3.8% 1.7% 8.3% 4.3% 11.2% 9.8% 3.5%
6.5%
± 3.5%

018 4.0% 2.3% 8.1% 0.8% 3.4% 7.1% 11.2% 6.6%
5.4%
± 3.4%

020 6.2% 4.7% 1.0% 6.4% 12.4% 2.3% 1.6% 0.4%
4.7%
± 4.9%

Avg.
5.7% 4.0% 4.6% 5.3% 6.9% 6.4% 7.7% 4.5%
±2.8% ±2.8% ±2.9% ±2.9% ±4.8% ±3.1% ±4.0% ±3.4%

Agreement between the calculated light fluence and measured values are further

improved with the addition of a constant scattered light dose. Figure 7.11 shows the

data for case 020 with calculations using Eq. (7.2). It is seen that for all of the

detectors, a constant value for b (in this case, b = 7 mW/cm2) improved the percent

deviation. The maximum deviation for case 020 was seen at the Apex location at

13.1%. The average deviation for all detectors and case studies is 7.7% ± 2.4%, and

the data is summarized in table 7.8 (b).

With the use of the dual correction factor to the calculation with φprimary, the

agreement is improved slightly and summarized in table 7.8 (c). For case 020, the

maximum deviation is 47.1% from the PCS detector location. The average deviation

for all detectors and case studies for this calculation method is 13.7% ± 2.6%. While

this method of calculation improves the agreement, the CF is large.
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Implementation of the dual correction method to the calculation with both pri-

mary and scattered light components improved the agreement between measured and

calculated final light fluence the most. The comparison is shown in Fig. 7.12. The

maximum percent error for case 020 was reduced to 12.4% at the PCW location. The

average across all detectors and patient cases was 5.6% ± 0.7%. The deviations are

summarized in table 7.8 (d).
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Figure 7.11: Measured (red solid line) light fluence data
over the course of treatment along with calculated (blue
’x’) light fluence using the primary component with a fixed
constant scattering component (Eq. (7.2)) plotted for 8
detector locations: (a) apex (b) anterior chest wall (ACW)
(c) posterior chest wall (PCW) (d) anterior sulcus (AS) (e)
posterior sulcus (PS) (f) posterior mediastinum (PM) (g)
pericardium (Peri) (h) diaphragm (diaph)
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Figure 7.12: Measured (red solid line) light fluence data over
the course of treatment along with calculated (blue ’x’) light
fluence using the primary component with a fixed constant
scattering component and dual correction factor (Eq. (7.3))
plotted for 8 detector locations: (a) apex (b) anterior chest
wall (ACW) (c) posterior chest wall (PCW) (d) anterior sul-
cus (AS) (e) posterior sulcus (PS) (f) posterior mediastinum
(PM) (g) pericardium (Peri) (h) diaphragm (diaph)
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For most cases, larger deviations were seen in the diaphragm, posterior/anterior

sulcus, or the apex locations detectors. This may be improved with greater data

acquisition at those locations. Due to the cavity geometry and the IR camera location,

certain extreme angles or far locations from the center may have less efficient data

collection rates. Furthermore, any blockage of the optical path from the reflective

spheres to the IR camera will result in loss of position data, which will affect the

calculations as well.

Table 7.9: Summary of the pleural cavity surface area, vol-
ume, diffuse reflectance (Rd), and scattering component (b)
for each study. Rd was calculated using Eq. (7.4)

Case No.
Area Volume b S Rd

1−Rd
Rd(cm2) (cm3) (mW/cm2) (mW)

012 886 2742 7.5 6300 0.264 0.209
014 1710 8192 7.5 6500 0.493 0.330
016 1158 6095 7.5 6500 0.334 0.250
017 1447 7618 6.5 6500 0.362 0.266
018 1766 8103 7.5 6890 0.481 0.325
020 1262 6308 7.0 6500 0.340 0.254

Average
1372 6510 7.3 6531 0.379 0.272
±337 ±2050 ±0.4 ±193 ±0.090 ±0.047
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Figure 7.13: Fluence distribution map for a representative
patient (Case No. 020). The 3D geometry is unwrapped
and displayed on a 2D surface plot with the locations of the
isotropic detector locations indicated by × symbols

The uniformity of the treatment delivery was evaluated for all patients. The

3D pleural cavity geometry was unwrapped along the x- and y-axes so that the

apex detector location was located at the top of the 2D representation. Figure 7.13

shows the fluence distribution at the end of treatment for case 020 along with labeled

detector locations. The profile of light fluence along the z-axis for each horizontal

angle is plotted in Fig. 7.14. The mean is shown as a black solid line, the standard

deviation is indicated by the grey shaded area, and the dashed line represents the

prescribed light fluence of 60 J/cm2. Most of the cavity excluding the extremities

reached the prescribed dose. Large peaks are seen for certain horizontal angles. This

is due to the surgical opening and position data that is obtained for movement in and

out of the surgical cavity. This region is extrapolated from the data and indicated by

the dashed vertical lines in Fig. 7.14. In future studies, the surgical opening will be

delineated by the physician so that any position data outside of the treatment cavity
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can be properly eliminated.

Figure 7.14: Fluence distribution along the z-axis (depth) for each angular
location. The mean is shown in a solid black line, and the grey area indicates
the standard deviation. Uniformity is calculated as percent variation and
summarized for each patient in table 2, excluding the region corresponding
to the surgical opening, outlined by the dotted lines. (a)-(f) indicate case
numbers 012, 014, 016, 017, 018, and 020, respectively.

The uniformity is quantified as standard deviation from the mean in table 3 for
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each case. The standard deviation was calculated as the standard deviation of the

mean profile (black line) from the prescribed light fluence (60 J/cm2). The variation

of standard deviation is the standard deviation of the grey region. Across all patients,

the uniformity was on average 9.5% with a variation of the standard deviation 17.7%.

Table 7.10: Summary of uniformity across all horizontal
angles for profiles shown in Fig. 7.14

Case No.
Standard Deviation Variation of Std. Deviation

(% Difference) (% Difference)

012 3.6% 10.5%
014 6.3% 9.7%
016 14.3% 29.1%
017 9.2% 20.6%
018 13.5% 22.9%
020 9.8% 13.3%

Average 9.5% ± 4.1% 17.7% ± 7.8%

7.5 Conclusions

In this chapter, the light modeling aspect of explicit dosimetry was investigated in

depth for a clinical treatment setting. Initial measurements of scattering was per-

formed in ellipsoid shaped phantoms to model scattering in the pleural cavity, which

is an improvement from scattering measurements in spherical cavities.

As a standard of care for pleural PDT at the University of Pennsylvania, the light

fluence is monitored using 8 isotropic detectors at pre-determined discrete locations.

This method does not account for light dose delivered at locations between the de-

tectors and can result in “hot spots” of light fluence when treatment is delivered

to the detectors, rather than the entire cavity. A previously developed optical IR

navigation system to monitor the light source position during the treatment is im-
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proved in this study. Use of the treatment wand position data in conjunction with

measured dosimetry data was investigated to consider the possibility of not having to

have the physician point to each isotropic detector inside the pleural cavity. For cases

with effective position data collection, the detector location could be extrapolated to

within 2 cm of the measured location. While this is promising initial data, further

improvements will need to be made to increase the data collection efficiency during

treatment in the operating room.

The position of the 8 isotropic detectors may not always be measured in the op-

erating room setting. Therefore, a method to extract detector locations from the

treatment light wand position data during light illumination was developed and in-

vestigated for 6 patient cases. Comparison was done between measured and extracted

detector locations, as well as between calculated fluence at the extrapolated detector

location and the measured fluence. Fluence was found to be in agreement to within

15% using the extrapolated detector locations, showing promise for use in cases where

no detector locations were measured.

Calculation of the light fluence and comparison to measured values is analyzed

in depth for each detector for 6 patient cases. Light fluence calculated both the

primary component and scattered component of light agrees to within 15% of the

measured values. The uniformity of the treatment delivered is also quantified. Using

this technology and calculation method, uniform light dose delivery can be aided

visually with the fluence distribution map to avoid under-treatment of areas between

isotropic detectors.
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Chapter 8

Conclusions and Future Work

The project aims of this work was to fully investigate explicit dosimetry modeling

in vivo and in phantoms for photodynamic therapy. Prior to this work, explicit

dosimetry was developed only for in vivo in a limited model. This work incorpo-

rated measurements of light fluence, photosensitizer concentration, and ground state

oxygen concentration to determine reacted singlet oxygen concentration with various

treatment scenarios.

The required photochemical parameters for macroscopic singlet oxygen modeling

in vivo for BPD-mediated PDT was determined with this study and validated with

an outcome-evaluation mouse model, which was the first study of its kind. Measured

BPD concentration using fluorescence spectra both interstitially and on the surface

of the tumor were validated with an ex vivo method. The optical property-based

correction of the fluorescence signal was also investigated for the two measurement

geometries.

Explicit dosimetry of phantom studies was also investigated in detail, with mod-

ifications to the prior in vivo model to account for singlet oxygen quenching. These

studies further validate the use of explicit modeling and can provide insight into pre-
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viously unknown photochemical parameters, such as with the photosensitizer Rose

Bengal. Future work with new photosensitizers can be performed in phantoms to esti-

mate the photochemical parameters before moving on to the more resource-intensive

in vivo studies.

The explicit singlet oxygen dosimetry model was compared to the gold-standard

method of direct singlet oxygen measurements using singlet oxygen luminescence.

This further validated the model by showing that calculated values and measured

values in a phantom tracked each other. Further work will be needed to validate the

model and direct measurements in vivo and to accurately determine the absolute con-

centration of total reacted singlet oxygen produced while measuring the luminescence

counts. This validates the use of explicit dosimetry for the many scenarios where

direct measurements are not feasible.

Another important aspect of this work involved improvements to the navigation-

based light dosimetry used in the treatment of the pleural cavity in patients with

mesothelioma. Scattered light fluence for ellipsoid cavities for various optical proper-

ties were measured and compared to a new model. Improvements were made to the

light delivery wand as well as the calculation methods. Treatment wand location data

was also investigated to extrapolate the isotropic detector locations. With efficient

data collection, the extrapolated isotropic detector locations can be found within 2

cm of the measured locations. These isotropic detector locations are important in

comparing the calculated light fluence dose on the surface of the cavity with those

that are measured continuously in the pre-determined discrete locations. Future work

can improve the method to extrapolate the detector locations as well as improve the

efficiency of treatment wand position data collection. Currently, the infrared camera

placement is dependent on the user and can vary case to case.

Further developments for a fast, real-time light fluence dosimetry model for the
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patient treatment scenario remains to be completed. Once this is accomplished,

real-time singlet oxygen calculations can be performed in combination with real-time

spectroscopy. This knowledge can be used to implement a patient-specific PDT light

fluence that is focused on production of the reactive oxygen species to improve overall

PDT efficacy.
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Appendix A

Chlorophyll Products

The typical mouse diet in the laboratory setting has chlorophyll. It was found that

the emission peak for chlorophyll is in the same range as the emission peaks for

common photosensitizers, such as BPD and HPPH. A study was performed to deter-

mine the decay of this signal after a mouse is put on an alfalfa-free (chlorophyll-free)

diet (Harlan Laboratories Inc., Indianapolis, Indiana, USA), so that photosensitizer

fluorescence spectra can be collected accurately.

Fluorescence spectra are collected during treatment and used to measure the pho-

tosensitizer concentration for use in PDT explicit dosimetry. The characteristic emis-

sion peaks of the photosensitizer are fit using known basis spectra. These spectra

can be complicated by the presence of chlorophyll and its digestion products. The

emission peak for chlorophyll is in the same range as the emission peaks for common

photosensitizers, such as BPD and HPPH. Chlorophyll is present in most common

laboratory mouse diets [176]. By switching mice to an alfalfa-free diet (thus eliminat-

ing chlorophyll), the undesired peak can be eliminated, and characteristic peaks in

fluorescence can be attributed to the photosensitizer of interest. In this study, mice

were observed for 9 days following a dietary change to see the decay of the chlorophyll
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fluorescence over time. No photosensitizer was administered to these mice while be-

ing monitored. Figure A.1 shows representative fluorescence spectra for a mouse on

a standard diet analyzed with an HPPH basis. While there is no HPPH present in

this mouse, it is seen that the emission peak of chlorophyll is very similar to that of

HPPH. Using this method of fitting data, mice without any photosensitizer could mis-

takenly be fit with the photosensitizer basis and found to have a large concentration

of photosensitizer.

Figure A.1: Fluorescence spectra of a mouse on a standard diet
analyzed with an HPPH basis. The emission peak of chlorophyll is
very similar to the emission peak of HPPH and is fit as such, which
is incorrect.

A small, custom-made multi-fiber contact probe (Fig. A.2) similar to that dis-

cussed in chapter 2 was used to measure the fluorescence spectra on mouse tumors

as well as the footpad. This probe has smaller source-detector separations, making it

possible to detect fluorescence signal from both the shoulder region and the footpad.

Chapter A Michele M. Kim 173



Figure A.2: (a) Multi-fiber contact probe. 6 fibers are collected at
one end with two source fibers (white light and 405 nm light) and
4 detector fibers are at different source-detector separations. (b)
Schematic diagram of the fiber arrangement on the probe face.

The chlorophyll product signal observed on the first day varied among mice by as

much as a factor of 5. This is consistent with previous observations that this emission

is variable among animals and over time. In all mice observed in this study, the

chlorophyll product component was reduced to less than 3% of the autofluorescence by

the 4th day. The time course of the reduction in chlorophyll product emission is shown

in figure A.3. These results indicate that fluorescence spectroscopy measurements will

be free of chlorophyll product contamination after 4 days on a chlorophyll-free diet.

It is noted that this is on the short end of the time scale previously reported [177].
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Figure A.3: Chlorophyll signal normalized by autofluorescence ob-
served over 9 days for 25 different mice. The red line indicates 5%
of a typical HPPH signal.

The chlorophyll component of the fluorescence spectra had a peak ∼675 nm,

which has significant overlap with the spectra of commonly used photosensitizers.

This chlorophyll signal could be mistaken for photosensitizer, thus affecting the dose

calculations. The red line in Fig. A.3 indicates the point where typical HPPH sig-

nal is 5% of the maximum value. This indicates that chlorophyll signal may decay

quickly with the modified diet; however, the desired measurements (such as HPPH)

could still be affected by the presence of chlorophyll. To evaluate the effect of chloro-

phyll photoproduct contamination on a typical HPPH measurement, we looked at the

spectra of chlorophyll (mice without any other injected photosensitizer) and analyzed

them with the basis spectra of HPPH (a commonly used photosensitizer for PDT).

Since the emission peaks are very close to each other, chlorophyll spectra could be
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mistakenly analyzed as HPPH spectra, indicating a false presence of sensitizer in the

tumor.

For all of the in vivo studies performed in this work, mice were provided with the

alternative, chlorophyll-free diet for at least 5 days prior to photosensitizer adminis-

tration and fluorescence measurement. Standard laboratory diets were provided upon

the completion of PDT treatment if mice were being monitored over time.
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Appendix B

P3 Approximation in an Infinite

Medium

B.1 Light Transport and Optical Properties

The amount of light that reaches the targeted tissue accounts for the treatment effi-

cacy in PDT. Light transport in biological matter is characterized by the absorption

and scattering of photons. These qualities are characterized by the optical proper-

ties of that tissue, namely, the absorption coefficient (µa) and the reduced scattering

coefficient (µ′s).

B.1.1 Diffusion Approximation for Light Transport

Light propagation can be described by a series of equations and boundary conditions

called the diffusion theory of light transport. The radiative transport equation can be

solved using several different approximation. The diffusion approximation was used

as a solution to the radiative transport equation. The radiance, L(~r, ŝ), is defined as

the power per unit area per unit solid angle in direction ŝ at position ~r and can be
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described by the time-independent Boltzmann equation [178,179].

1

c

∂L (r, ŝ, t)

∂t
= −∇ ·L (r, ŝ, t) ŝ− µtL (r, ŝ, t) + µs

∫
4π

L (r, ŝ, t) f (ŝ, ŝ′) dΩ′ + S (r, ŝ, t)

(B.1)

S(~r, ŝ) represents the source term, and the f(ŝ, ŝ′) is the scattering phase function

which describes the probability that a photon incident in direction ŝ′ will be scattered

into direction ŝ. The right side of equation (B.1) describes the gradient in radiance

distribution (first term), the decrease of L(~r, ŝ) by absorption and photons that are

scattered away from direction ŝ (second term), and the increase of radiance by photons

scattered into ŝ (third term) and by the light source S(~r, ŝ) (the remaining terms).

The source term S(~r, ŝ) is represented in many ways depending on the light source

used. For planar geometries, the light can be a wide beam with collimated incidence

(often referred to as a pencil beam or a wide beam with diffuse incidence). If the

source is an isotropic point source, it can be described as S0δ(r), and the solution

to equation (B.1) is a Green’s function, and the solution for any other source can be

obtained by a convolution of the source and Green’s function.

The scattering phase function f(ŝ, ŝ′) is assumed to depend only on the deflection

angle, θ, between ŝ and ŝ′. f(ŝ, ŝ′) becomes a complicated function in biological

media owing to the high particle density and inhomogeneity of tissue. An accepted

approximation for f(ŝ, ŝ′) is the Henyey-Greenstein phase function [180,181].

fHG(cos θ) =

(
1

4π

)
1− g2

(1 + g2 − 2g cos θ)3/2
(B.2)

where g is the scattering anisotropy given by

g =

∫
4π

f(ŝ, ŝ′)dΩ. (B.3)
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This quantity, g, is equal to the average of the scattering cos θ. The scattering

anisotropy ranges from -1 to 1, corresponding to backward and forward scattering,

respectively. If g = 0, then there is no preference for forward or backward scattering.

In tissue, g is estimated to be in the range of 0.7-0.9 but is commonly taken to be

equal to 0.9 [181,182].

At the boundary of two different media (L1 and L2) with different indicies of

refraction, the boundary condition can be specified by following the reflection and

transmission attributed to Fresnel’s law [183]:

L1(ŝ)ŝ · n̂ = RFresnel(ŝ)L1(ŝ)ŝ · (−n̂) + TFresnel(ŝ)L2(ŝ)ŝ · n̂

L2(ŝ)ŝ · n̂ = RFresnel(ŝ)L2(ŝ)ŝ · (−n̂) + TFresnel(ŝ)L1(ŝ)ŝ · n̂′ (B.4)

where n̂ is the normal direction of the boundary, ŝ is the direction of the irradiance

under consideration, and RFresnel and TFresnel = 1− RFresnel are the reflectance and

transmission coefficients according to Fresnel’s Law [184].

Equation (B.1) can be solved analytically in idealized one-dimensional geome-

tries, but these are not applicable in calculating the light distribution in relevant

experimental situations [178]. The spherical harmonic approximation can be used to

simply the solution by expanding the radiance and source terms as a series of spheri-

cal harmonics and the scattering phase functions as a series of Legendre polynomials.

The most common approximations are the first-order (P1) and the third-order (P3)

approximations [181,182,185]

L (~r, ŝ) =
N∑
l=0

l∑
m=−1

√
2l + 1

4π
φlmYlm(ŝ) (B.5)
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S (~r, ŝ) =
N∑
l=0

l∑
m=−1

√
2l + 1

4π
σlmYlm(ŝ) (B.6)

f (ŝ, ŝ′) =
N∑
l=0

2l + 1

4π
glPl (ŝ · ŝ′) (B.7)

In general, Ylm(θ, φ) can be written as

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ)eimφ (B.8)

where the associated Legendre function, Plm(x), with positive or negative values of

m = −l, . . . , l is given by the following formula

Plm(x) =
(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l. (B.9)

The Legendre polynomials, Pl are given by Rodrigues’ formula, Pl(x) = 1
2ll!

dl

dxl
(x2−1)l.

By expanding the radiance, phase function, and source terms of the transport equation

(eq. (B.1)) in spherical harmonics and evaluating the integral over the solid angle

using the orthogonality relations for spherical harmonics,

∫
Ylm(θ, φ)Yl′,m′(θ, φ)dΩ = δ(l − l′)δ(m−m′) (B.10)

the transport equation can be rewritten as [186]

∑
l,m

[
1

c

∂φl,m
∂t

+ µ
(l)
t φl,m − ql,m

]
Yl,m(ŝ) +∇ · (φl,mYl,m(ŝ)ŝ) = 0 (B.11)

where µ
(l)
t = µs(1−gl)+µa/gl (note that µ

(0)
t = µa) is the coefficient for the lth moment

of the normalized phase function. For the Henyey-Greenstein phase function, gl = gl,
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where g is the average cosine of the scattering angle [181]. The PN approximation is

obtained by truncating the expansions in equations (B.5) - (B.7) at l = N , where N

is the order of approximation. The resulting set of coupled differential equations can

be solved to determine the corresponding moments of the radiance.

The P1 approximation, also known as the diffusion approximation, has been widely

used to model photon transport in tissue. With this approximation, only l = 0, 1 is

considered, and the radiance can be written as [182,183]

L(~r, ŝ, t) =
1

4π
φ(~r, t) +

3

4π
J(~r, t) · ŝ, (B.12)

where the fluence rate is given by φ(~r) =
∫

4π
L(~r, ŝ, t)dΩ and has units of mW/cm2,

and the photon flux (or current density) is given by J(~r, t) =
∫

4π
L(~r, ŝ, t)ŝdΩ and

has units of mW/cm2.

The source term can be written as [182,183]

S(~r, ŝ, t)
1

4π
S0(~r, t) +

3

4π
S1(~r, t) · ŝ, (B.13)

where S0(~r, t) and S1(~r, t) are the monopole (isotropic) and dipole moments of the

source, respectively. By inserting equations (B.12) and (B.13) into equation (B.1)

and integrating over ŝ, we can get [183]

1

c

∂

∂t
φ(~r, t) + µaφ(~r, t) +∇ · J(~r, t) = S0(~r, t). (B.14)

By inserting equations (B.12) and (B.13) into equation (B.1) and multiplying by

ŝ and then integrating over ŝ, we can get [183]

1

c

∂

∂t
J(~r, t) + (µ′s + µa)J(~r, t) +

1

3
∇ · φ(~r, t) = S1(~r, t). (B.15)
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By decoupling equations (B.14) and (B.15) for φ(~r, t), the P1 equation can be obtained

[183]

−D∇2φ(~r, t) + µaφ(~r, t) +
1

c
· ∂φ(~r, t)

∂t
+

3D

c

[
µa
∂φ(~r, t)

∂t
+

1

c

∂2φ(~r, t)

∂t2

]
= S0(~r, t) +

3D

c

∂S0

∂t
− 3D∇ · S1(~r, t), (B.16)

where the diffuse coefficient is D = 1
3(µa+µ′s)

, and the reduced scattering coefficient

is given by µ′s = (1 − g)µs. The standard photon diffusion equation for the P1

approximation is obtained when certain terms are dropped from equation (B.16).

The dipole moment term of the source can be dropped when assuming an isotropic

source. Collimated sources are treated as isotropic sources displaced one mean free

path into the scattering medium from the collimated source, thus supporting this

assumption. The last term on the left-hand side of the equation is dropped as well.

In the frequency domain, the time dependence of the source is taken as e−iωt. When

the intensity of the source is sinusoidally modulated, the photon fluence becomes

φ(~r)e−iωt. The time derivative can be replaced by −iω and the rest of the term can be

ignored when 3Dω/c2 � 1 [183]. This is equivalent to cµ′s/ω � 1, which means that

the scattering frequency (cµ′s) must be much larger than the modulation frequency

(ω). Given these assumptions, the photon diffusion equation can be rewritten as the

following

−D∇2φ(~r, t) + µaφ(~r, t) +
1

c

∂φ(~r, t)

∂t
= S0(~r, t). (B.17)

The even-order approximations do not significantly change the degree of anisotropy

in the radiance that is modeled, and inconsistencies arise at the boundaries with the

solutions [181, 186, 187]. Therefore, the odd-order approximations are widely used.

This approximation is good when the albedo, a = µs/(µs + µa), is close to 1, the
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phase function is not too anisotropic, and the source-detector separation is large

when compared to 1/(µs(a− g1)) [186].

In the tissue-non-scattering medium interface, the boundary condition consistent

with the P1 approximation is obtained by integrating equation (B.4) over all angles

Ω over 2π [186]

φ(~r)− 2ADn̂ · ∇φ = 0, (B.18)

where n̂ is the normal direction of the boundary, D is the diffusion coefficient, and

A is a dimensionless internal reflection coefficient that accounts for the reflectance

and transmission because of the mismatch of the indicies of refraction between the

two media (A = 1 for a matching interface and A = 2.95 for an air-tissue interface)

[181]. In the scattering-scattering medium boundary with mismatching indices of

refraction, the boundary condition consistent with P1 approximation can be expressed

as discontinuous fluence rate, φ1/φ2 = (n1/n2)2, and continuous flux, D1n̂ · ∇φ1 =

D2n̂ · ∇φ2 [188].

For a point source in an infinite homogeneous medium, the source term becomes

S0(~r) = S0δ(~r), where ~r is the position at which fluence rate is measured and the

position of the source is at 0, the origin. The steady-state solution of the fluence rate

becomes [181,189].

φ(~r) =
S0

4πDr
exp(µeffr), (B.19)

where r is the distance to the point source and µeff =
√

3µa · (µa + µ′s).

The P3 approximation is often necessary in regions of high tissue absorption of

proximity to the light source position. For the P3 approximation, moments greater

than l = 3 are ignored, so φl,m = 0 for l > 3 in equation (B.11). Equations (B.5) -

(B.7) simplify to for a point source in steady-state condition since only the m = 0

Chapter B Michele M. Kim 183



term needs to be considered because of spherical symmetry.

L(~r, ŝ) =
3∑
l=0

2l + 1

4π
φl(r)Pl(~r, ŝ) (B.20)

S(~r, ŝ) =
3∑
l=0

2l + 1

4π
ql(r)Pl(~r, ŝ) (B.21)

f(ŝ, ŝ′) =
3∑
l=0

2l + 1

4π
gl(r)Pl(ŝ, ŝ

′) (B.22)

Inserting these into equation (B.1) and ignoring the time-dependent term resulted in

(B.11) with m = 0 only. Multiplying the resulting equation by Pl and integrating

over all solid angles yields the following equation set for φl in an infinite homogeneous

medium [181,190,191].

1

2l + 1
·
{[

(l + 1)
∂φl+1

∂r
+ l

∂φl−1

∂r

]
+

1

r
[(l + 1)(l + 2)φl+1(r)− l(l − 1)φl−1(r)]

}
+ µ

(l)
t φl(r) = ql (B.23)

Here, l = 0, 1, 2, 3, and the orthogonality properties of the Legendre polynomials

were used:
∫
Pl(x)Pl′(x)dx = 2

2l+1
δ(l − l′). This equation set yields 4 coupled dif-

ferential equations (φ−1 = φ0 = 0). The right hand side of equation (B.23) has the

moments of the source distribution. We can assume that the source is an isotropic

point source such that ql = 0 for l > 0, if we are a few scattering lengths from

the source. For an infinite medium, the solution of equation (B.23) for φ0, the light

fluence rate, has been solved by Hull and foster for an isotropic point source at the
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origin q0 = δ(r) as [181]

φ0(r) =

[
−C−(ν−)2

2π

]
exp(−ν−r)

(−ν−r)
+

[
−C+(ν+)2

2π

]
exp(−ν+r)

(−ν+r)
, (B.23)

where

C− =
ν−3(3µaµ

(1)
t − ν+2)

6µ2
aµ

(1)
t (ν−2 − ν+2)

C+ =
ν−3(3µaµ

(1)
t − ν−2)

6µ2
aµ

(1)
t (ν+2 − ν−2)

ν± =

(
β ±

√
β2 − γ

18

)1/2

β = 27µaµ
(1)
t + 28µaµ

(3)
t + 35µ

(2)
t µ

(3)
t

γ = 3780µaµ
(1)
t µ

(2)
t µ

(3)
t

Unlike the analytical solution for the P1 approximation, the analytical solution for

the P3 approximation includes two exponential terms: one rapidly decaying term with

an attenuation coefficient ν− and another slower decaying term with an attenuation

coefficient ν+ that is corresponding to the solution for the P1 approximation. Under

the condition that β � γ and µ
(l)
t � µ1

t , l = 2, 3, one has µ+ = µeff and C+ =

µeff/2µa so that the second term takes the same form as equation (B.1.1), as the

first term disappears since ν− = 0 under this condition. For this reason, the second

term in equation (B.1.1) is also called the asymptotic solution of P3 approximation

according to Hull and Foster [181].
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