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Investigating Molecular Mechanisms Underlying Mild Phenotype In
Friedreich Ataxia Patients With G130v Missense Mutation

Abstract
Friedreich’s Ataxia (FRDA) is an incurable neurodegenerative disease caused by mutations in the frataxin
(FXN) gene, resulting in decreased expression of the mitochondrial protein FXN. 2-3% of FRDA patients
carry a GAA expansion on one FXN allele, and a missense mutation on the other. The mechanism behind the
disease‐causing features remains elusive. The phenotype associated with patients carrying point mutations
cannot be predicted with certainty; these patients can have a mild or severe clinical outcome, creating a
unique platform to understand clinical heterogeneity. FXN is important for proper mitochondrial function,
and is involved in Fe-S cluster biogenesis, metabolism, and ATP production. Defining how missense
mutations influence FXN’s processing and role in energy production and cellular metabolism will help
identify pathways that are affected during disease progression, begin to explain the varying phenotypes, and
establish a biochemical genotype-phenotype correlation. Of all disease-associated mutations, patients
carrying the G130V missense mutation are of most interest because they have less than 5 % of control mature
FXN levels but evolve to a milder phenotype with slower disease progression and significantly lower
occurrence of cardiomyopathy, scoliosis, and diabetes. In this thesis, I identified impaired protein processing
from FXN42-210 to FXN81-210 as the mechanism by which FXN missense mutations result in lower mature
FXN81-210 levels in mutation-selective ways by overexpression studies and subcellular fractionation. This
was also true for a novel FXN W168R missense mutation associated with severely low FXN levels and
phenotype. Multiple features of mitochondrial dysfunction associated with severe phenotype in typical
FRDA, and compared them to G130V patients were also assessed in order to understand the molecular
mechanisms underlying the milder phenotype. Fibroblasts from G130V patients have increased
mitochondrial ferritin immunoreactivity by immunocytochemistry, increased mitochondrial aconitase
activity measured by enzymatic conversion of citrate to isocitrate, and increased Krebs cycle metabolic activity
measured by LC-MS isotopologue tracer studies, compared to typical FRDA fibroblasts. Overall, fibroblasts
from G130V patients appear to have improved mitochondrial function compared to typical FRDA patients,
thus providing a rationale linking G130V functional capacity with milder phenotype.
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ABSTRACT 
 

INVESTIGATING MOLECULAR MECHANISMS UNDERLYING MILD PHENOTYPE IN 
FRIEDREICH ATAXIA PATIENTS WITH G130V MISSENSE MUTATION  

 

Elisia M. Clark  

 

David R. Lynch MD, PhD 

 

 Friedreich’s Ataxia (FRDA) is an incurable neurodegenerative disease caused by 

mutations in the frataxin (FXN) gene, resulting in decreased expression of the 

mitochondrial protein FXN. 2-3% of FRDA patients carry a GAA expansion on one FXN 

allele, and a missense mutation on the other. The mechanism behind the 

disease-causing features remains elusive. The phenotype associated with patients 

carrying point mutations cannot be predicted with certainty; these patients can have a 

mild or severe clinical outcome, creating a unique platform to understand clinical 

heterogeneity. FXN is important for proper mitochondrial function, and is involved in Fe-

S cluster biogenesis, metabolism, and ATP production. Defining how missense 

mutations influence FXN’s processing and role in energy production and cellular 

metabolism will help identify pathways that are affected during disease progression, 

begin to explain the varying phenotypes, and establish a biochemical genotype-

phenotype correlation. Of all disease-associated mutations, patients carrying the G130V 

missense mutation are of most interest because they have less than 5 % of control 

mature FXN levels but evolve to a milder phenotype with slower disease progression 

and significantly lower occurrence of cardiomyopathy, scoliosis, and diabetes.  In this 
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thesis, I identified impaired protein processing from FXN42-210 to FXN81-210 as the 

mechanism by which FXN missense mutations result in lower mature FXN81-210 levels in 

mutation-selective ways by overexpression studies and subcellular fractionation. This 

was also true for a novel FXN W168R missense mutation associated with severely low 

FXN levels and phenotype. Multiple features of mitochondrial dysfunction associated 

with severe phenotype in typical FRDA, and compared them to G130V patients were 

also assessed in order to understand the molecular mechanisms underlying the milder 

phenotype.  Fibroblasts from G130V patients have increased mitochondrial ferritin 

immunoreactivity by immunocytochemistry, increased mitochondrial aconitase activity 

measured by enzymatic conversion of citrate to isocitrate, and increased Krebs cycle 

metabolic activity measured by LC-MS isotopologue tracer studies, compared to typical 

FRDA fibroblasts. Overall, fibroblasts from G130V patients appear to have improved 

mitochondrial function compared to typical FRDA patients, thus providing a rationale 

linking G130V functional capacity with milder phenotype.  
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Chapter 1: Introduction to Friedreich ataxia  
	

1.1 Friedreich ataxia Pathogenesis  

  Friedreich’s Ataxia (FRDA) is an autosomal recessive, neurodegenerative 

disorder that affects 1 in every 50,000 people in the United States. FRDA was first 

described in 1863 as a disease that is primarily early onset, associated with progressive 

limb and gait ataxia, absent tendon reflexes in the legs, axonal sensory neuropathy, 

dysarthria, muscle weakness, scoliosis, spasticity in the lower limbs, and loss of position 

and vibration sense.9,47 Neurodegeneration occurs in the dorsal root ganglia (DRG), with 

loss of large sensory neurons, as well as degeneration of posterior columns, and atrophy 

of the corticospinal tracts and spinocerebellar tracts of the spinal cord and the dentate 

nucleus in the cerebellum. There is also loss of pancreatic islet cells and hypertrophic 

cardiomyopathy, which is the most common cause of death among FRDA patients.  

 FRDA is characterized by decreased expression of the frataxin (FXN) protein, 

from the FXN gene on chromosome 9. This is caused by Guanine-Adenine-Adenine 

(GAA) trinucleotide repeats within intron 1 of the FXN gene.22,41,44,114 In typical FRDA 

patients the length of the allele with the shorter GAA expansion inversely correlates with 

FXN levels, age of onset, and rate of disease progression; longer alleles result in earlier 

onset and a faster progression.41,44,86 Expanded GAA repeats may form unusual triplex 

structures, disrupting RNA polymerase and preventing transcription elongation.8 

Epigenetic mechanisms of decreased FXN levels have been observed as regions 

flanking GAA repeat expansion exhibit marks of condensed heterochromatin. There is 

also increased methylation of specific CpG sites, reduction of histone H3 and H4 



	2	

acetylation levels and increased histone H3 lysine 9 (H3K9) trimethylation in FRDA 

lymphoblasts, peripheral blood, brain and heart tissues.3,24,55,57  

1.2 Frataxin Function  

 Typical FRDA patients carry less than 10% of control FXN levels, which correlate 

with disease severity.41 FXN is a highly conserved mitochondria protein that is important 

for proper mitochondria function, but the mechanism by which decreased expression 

leads to disease pathology is unknown. The FXN gene is composed of seven exons 

(exons 1–4, 5a, 5b and 6), with exons 4 and 5a being the most conserved. The crystal 

structure of FXN, containing amino acid residues 81-210, forms a large, twisted, six-

stranded β-antiparallel sheet, flanked by N- and C-terminal α helices (α1and α2). The 

negatively charged residues on the helical plane are proposed to be involved in iron 

binding,1 while the uncharged residues on the surface beta sheet are likely to be 

responsible for protein–protein interactions. 

 Frataxin is translated by cytoplasmic ribosomes,106 and translocated to the 

mitochondria by an N-terminal mitochondria localization sequence. Upon entry into the 

mitochondria,68  FXN undergoes two-step proteolytic cleavage by mitochondria 

processing peptidase (MPP) to generate the mature protein consisting of amino acids 

81-210.13,25  

 Many studies have implicated FXN as a key player in iron metabolism, iron 

storage and iron-sulfur cluster biogenesis.23,30,38,60,68,71,80,94,95,110,123, A conserved primary 

Fe2+ binding site, with a dissociation constant within the micromolar range (3–55 µM), 

involves residues of the acidic ridge localized within the first alpha helix.32,81,87,123 In 

addition to Fe binding, FXN interacts with mitochondrial aconitase, ferrochelatase and 

proteins of the mitochondrial Fe-S cluster machinery.6,15,50,124 Fe is essential for 
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metabolic processes including oxygen transport, electron transport, DNA synthesis, 

redox/non-redox reactions and other cell functions.42,75 In the central nervous system 

(CNS) and brain, where energy requirements are high, ATP is in high demand for 

synaptic transmission and distant axoplasmic transport, all of which involve iron-sulfur 

enzymes of oxidative metabolism.31 Fe-S containing proteins play a crucial role in 

cellular respiration and ATP production, therefore decreased activity has significant 

effects on mitochondria function.15,30 FXN’s role in iron sulfur cluster biogenesis makes it 

essential for enzymatic activity of Fe-S containing aconitase and respiratory chain 

complexes. Consequently, decreased FXN results in decreased aconitase activity, both 

in cell culture models and in vivo,59,65,91,117,119 and in heart tissues and biopsies of FRDA 

patients.65,70,85,97,102  

1.3 FXN Deficit Leads to Mitochondria Dysfunction 

 Overexpression of FXN shows it to be an active participant in pathways of 

mitochondrial energy conversion and oxidative phosphorylation (OXPHOS), as well as a 

regulator of the Krebs Cycle.101 Dysregulation of cell and mitochondrial iron metabolism 

is a common pathogenic mechanism among neurological diseases; therefore, an 

emphasis on the role of mitochondria in FRDA pathogenesis has been increasingly 

explored.99 

 Energy production through oxidative OXPHOS is the primary function of 

mitochondria for maintaining optimum cellular activity. The electron transport chain, 

consisting of a series of complexes, transfers electrons from donors to acceptors in 

order to generate a proton gradient used to produce adenosine triphosphate (ATP) by 

OXPHOS. It has been suggested that there is a direct interaction between FXN and 

complex II subunits, suggesting a role for FXN in the electron transport chain.52,118 



	4	

Therefore, FXN deficiency could lead to decreased energy production and mitochondrial 

respiration. Decreased Complex I, II and III activity has been observed in 

endomyocardial biopsies of FRDA patients,102 and FRDA mouse models demonstrate 

impairment of mitochondrial biogenesis and OXPHOS dysfunction in respiratory chain 

complexes I, II and IV.33,76  

 OXPHOS is the primary source of reactive oxygen species (ROS), O2
- and H2O2. 

Although produced throughout the cell, 90% comes from mitochondrial 

respiration.4,46,58,120 These toxic products of respiration adjust the physiological redox 

balance leading to oxidative stress.  O2
- in excess can inactivate Fe-S containing 

enzymes leading to the release of iron and increased redox-active iron pool. The exact 

mechanism by which decreased FXN leads to oxidative stress in unknown. It is 

proposed that iron, which is mobilized by O2
− and H2O2, can participate in the Fenton 

reaction:  

Fe(II) + H2O2 → Fe(III) + HO�+ HO- 

to produce a toxic hydroxyl radical (HO�). The hypothesis that frataxin deficiency leads to 

enhanced Fenton reaction as a contributor of FRDA pathogenesis is supported by 

increased ROS and mitochondrial iron deposits in FRDA tissues.2,12,16,27,43,61,63,70,88,107,108, 

111,112,118 Under physiological conditions, superoxide dismutases (SODs) are the first line 

of defense against ROS, converting O2
- into H2O2,17 as well as scavenging enzymes and 

small antioxidant molecules; however, this response was found to be compromised in 

FRDA patient fibroblasts.78,93  

 Furthermore, energy production and respiratory chain complexes are also 

important for mitochondria network dynamics.  Human fibroblasts carrying genetic 

changes in the subunits of the respiratory chain complexes show a fragmented 
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mitochondrial network.66,67 Few data on the mitochondrial network structure in frataxin- 

deficient cells are available, and the mitochondrial response to different stresses will 

depend on the cell type physiology, cell adaptation capacity and biological 

microenvironment.53 

1.4 Clinical Trials and Therapeutic Strategies  

 At present there is no cure or effective treatment for FRDA. Frataxin function 

remains to be elucidated; current strategies aim to increase FXN expression or target 

downstream pathways affected secondary to FXN deficiency.  High-throughput 

screening with different cellular models is also being used to search for new drugs.18 

1.4.1 Antioxidants and oxidative phosphorylation 

 FXN deficiency causes cells to be highly sensitive to damage caused by 

oxidative stress, suggesting antioxidants could be a therapeutic approach for FRDA. 

Idebenone is a short-chain CoQ10 analogue that acts as an antioxidant by protecting 

membrane lipids from peroxidation and stimulating OXPHOS and ATP production by 

carrying electrons from complexes I and II to complex III in the electron transport chain.84 

Idebenone was first identified as a candidate for treatment of FRDA105 based on its 

ability to protect the respiratory complex II from iron inactivation and decreased 

lipoperoxidation. Studies have suggested it improves neurologic functions.39 

Furthermore, treatment of three FRDA patients resulted in reduction of myocardial 

hypertrophy.105 Idebenone, even at high doses, appears safe and well-tolerated, 

however results were not replicated in more systematic trials and it appears to have no 

effect on disease progression and the neurologic status in patients as compared to 

placebo.  
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 Treatment of patients with Idebenone or a combination of coenzyme Q10 (CoQ10) 

with vitamin E to improve mitochondrial function and to reduce oxidative stress has been 

explored. Vitamin E is a natural antioxidant that is lipid-soluble and highly abundant in 

nuclear and mitochondrial membranes. CoQ10 is an electron carrier in the respiratory 

chain and is involved in the reduction of oxidized vitamin E. When FRDA patients were 

treated with this combination there was improvement in cardiac and skeletal muscle 

bioenergetics, however there was no observed benefit on cardiomyopathy.56 

 Other CoQ10 analogues have been developed such as MitoQ, which specifically 

targets mitochondria and has been shown to protect patient fibroblasts from endogenous 

oxidative stress effectively.62 However, MitoQ does not exchange electrons in the 

respiratory chain, and cannot be regenerated to stimulate OXPHOS, creating a limitation 

to this treatment in clinical trials.   

1.4.2 Iron chelating strategy 

 The pathogenesis of FRDA seems to involve an imbalance in the intracellular 

accumulation of iron, with mitochondrial accumulation and relative cytosolic depletion. 

One therapeutic approach for this is iron chelation, which is the current treatment of 

systemic iron overload diseases. Limitations to iron chelators as a therapeutic include 

membrane permeability and specific redistribution of iron from mitochondria without 

compromising overall cellular availability.98 For example, Desferoxamine chelates iron in 

the extracellular compartment and cytosol, promoting cellular iron depletion, but has 

poor membrane penetration and cannot be given orally. Studies also found that it 

reduces Fe(II) toxicity on mitochondrial complex II, but also decreases aconitase 

activities and down-regulates frataxin.10,74,105 Consequently it cannot be used to treat 

FRDA.  
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 Alternatively, Deferiprone is an iron chelator that localizes to the mitochondria98, 

rapidly distributes in the CNS, crossing membranes, and can penetrate mitochondria to 

remove excess iron. Deferiprone has a low affinity for iron and less tendency to cause 

overall iron depletion.115 It restores mitochondrial redox potential, reduces ROS, 

prevents apoptosis and increases aconitase activity, without affecting frataxin levels;51,64 

it is well tolerated and can be administered orally. However, worsening of tremor 

occurred at higher doses and the risk of agranulocytosis remains a threat of deferiprone 

treatment.  

1.4.3 Histone deacetylase inhibitors 

 Histone deacetylases (HDACs) inhibitors (HDACi) have been proposed to 

counteract the chromatin-condensing effect of the GAA repeat expansions and to restore 

frataxin expression in FRDA. HDACi revert silent heterochromatin to an active chromatin 

conformation with both positive and negative effects on gene expression.40,100 Such 

molecules aim to restore the transcriptional deficit at the FXN gene in patients; however, 

changes in gene transcription could further exacerbate the existing FRDA pathology.  

1.5 Frataxin missense mutations 

 2-3% of FRDA patients carry a GAA expansion on one FXN allele, and a 

missense mutation on the other. Many disease-associated missense mutations in the 

C-terminus end of FXN have been identified, yet few have been characterized in vivo or 

in situ. Some are proposed to disrupt mRNA expression (various splice site mutations 

such as c.165 + 1 G>A and c.384 −2 A>G),34,109 translation initiation (c.1A>T, c.2T>C, 

c.2delT, c.3 g>T, c.3G>A), or protein folding (L106S).7,25,38,48 These should produce little 

to no functional protein, and their associated phenotype should be severe in conjunction 
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with a long GAA repeat on the other FXN allele. In contrast, R165C, W155R, G130V, 

and I154F mutations are suspected to produce stable protein. However, R165C and 

W155R lead to biochemical deficiencies in vitro.14,116 The mechanism behind the 

disease-causing features of G130V and I154F is less clear, having been suggested to 

reflect abnormal maturation or dysfunctional FXN in different models.48 

 The phenotype associated with these patients cannot be predicted with such 

certainty; these patients can have a mild or severe clinical outcome45 creating a unique 

platform to understand clinical heterogeneity. Lower processing efficiency or functional 

alterations caused by the modification of amino acids are proposed contributors to 

pathogenicity of missense mutations.25 Impaired protein maturation correlates with 

impaired protein stability;25 however, presently there is no consensus regarding the 

impact of the selected mutant variants upon protein maturation. Therefore, it is important 

to investigate if these mutant FXN alleles can be properly processed to the mature form 

in order to assess their presence in mitochondria and ascertain if it correlates with 

phenotype. 

 Defining how missense mutations influence FXN’s processing and role in energy 

production and cellular metabolism will help identify pathways that are affected during 

disease progression and begin to explain the varying phenotypes and establish a 

genotype-phenotype correlation.  

1.6 G130V missense mutation 

 Of all disease-associated mutations, patients carrying the G130V missense 

mutation are of most interest because they have less than 5 % of control mature FXN 

levels but evolve to a milder phenotype than patients with 2 GAA repeats. In a large 
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cohort of FRDA subjects, those with the G130V mutation have significantly lower 

occurrence of cardiomyopathy, scoliosis, and diabetes, and they surpass other point 

mutation carrying subjects on composite performance measures. They demonstrate 

greater neurological function and decreased disease severity at a similar disease 

duration.7,19,34,36,37,45,49,82,83,90,125 Additionally, primary patient fibroblasts from G130V 

patients grow at rates similar to controls and faster than typical FRDA patients. In 

chapter 2 I identify the mechanism by which FXN missense mutations result in lower 

mature FXN81-210 levels, and in chapter 3 I present a novel FXN missense mutation and 

the possible mechanism underlying its association with severe FRDA phenotype. Finally 

in chapter 4, I assess the multiple features of mitochondrial dysfunction associated with 

severe phenotype in typical FRDA, and compare them to G130V patients in order to 

understand the molecular mechanisms underlying the milder phenotype. 
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Chapter 2: Selected Missense Mutations Impair FXN Processing  
 

2.1 Abstract 

 In typical FRDA, the shortest GAA expanded allele correlates with FXN levels 

and disease severity, including age of onset and progression rate. The phenotype of 

patients who carry a GAA expansion on one allele and a missense mutation on the other 

allele cannot be predicted with certainty; these patients can have a mild or severe 

clinical outcome,8 Many missense mutations in the C-terminus of FXN have been 

identified in FRDA; however, few have been characterized, and the mechanism by which 

missense mutations lead to disease pathology is not entirely known. With the absence of 

GAA repeats on the second allele, the mechanism by which FXN missense mutation 

result in lower mature FXN81-210 levels must first be understood. I154F, W155R and 

R165C have been characterized as dysfunctional mutations,14,116 by in vitro assays. 

G130V, W168R, and G137V are located predominantly on the surface of FXN and their 

effects on FXN function have not been described. 

 In this chapter, the effects of FRDA-associated missense mutations on FXN 

import into the mitochondria by immunocytochemistry and subcellular fractionation, FXN 

processing from precursor to mature form by western blot, and FXN interaction with 

MPP by co-immunoprecipitation were investigated. These studies have identified that 

the effects of disease-associated mutations on FXN processing lead to abnormal FRDA 

phenotype in mutation selective ways. 
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2.2 Introduction 

 FXN is important for proper mitochondrial function, but the mechanism by which 

decreased expression leads to disease pathology is not entirely known.52 FRDA is most 

commonly caused by an expansion of a GAA trinucleotide repeat in the first intron of 

the FXN gene on both alleles. 2-3% of FRDA patients carry GAA repeats on one allele 

accompanied by a point mutation on the other FXN allele. In typical FRDA, the length of 

the shortest GAA expansion correlates with disease severity; longer GAA expansions 

result in earlier onset and a faster progression.41,44,86 The phenotype of patients who 

carry a GAA expansion on one allele and a missense mutation on the other allele cannot 

be predicted with certainty; these patients can have a mild or severe clinical outcome,45 

creating a unique platform to understand clinical and genetic heterogeneity. 

 Upon entry into the mitochondria, precursor FXN1–210 is processed by 

mitochondria processing peptidase (MPP) into intermediate FXN42–210, followed by 

mature FXN81–210. Many missense mutations in the C-terminus of FXN have been 

identified in FRDA, yet few have been characterized in vivo or in situ. Some are 

proposed to disrupt mRNA expression (various splice site mutations such as 

c.165 + 1 G>A and c.384 −2 A>G),34,109 translation initiation (c.1A>T, c.2T>C, c.2delT, 

c.3 g>T, c.3G>A), or protein folding (L106S).7,25,38,48 These should produce little to no 

functional protein, and their associated phenotype should be severe in conjunction with a 

long GAA repeat on the other FXN allele. In contrast, R165C, W155R, G130V, and 

I154F mutations are suspected to produce stable protein. However, R165C and W155R 

lead to biochemical deficiencies in vitro.14,116 The mechanism behind the 
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disease-causing features of G130V and I154F is less clear, having been suggested to 

reflect abnormal maturation or dysfunctional FXN in different models.48 

  Patients that carry missense mutations, despite milder disease severity in many 

cases, generally have lower FXN protein levels compared to patients with GAA repeat 

expansions on both alleles72, suggesting that the clinical outcome cannot be explained 

by decreased FXN expression alone. DNA transcription is not affected by point 

mutations as evidenced by mRNA levels in people carrying a G130V mutation that are 

comparable to controls.7 Our hypothesis is that the disease-causing effect of missense 

point mutations are posttranslational, thus possibly affecting protein processing. 

 In this chapter I assess the effects of FRDA-associated missense mutations: 

R165C, W155R, I154F, G130V, G137V, and L106S on FXN import into the 

mitochondria, processing from precursor to mature form, and interaction with MPP. 

Selected disease-related FXN missense mutations impair FXN localization, and selected 

mutations lead to higher levels of partially processed FXN as well as enhanced 

interactions with mitochondria processing peptidase. I also assess if impaired processing 

could be overcome by increasing FXN precursor levels.  Finally, I examined a large 

natural history study to investigate whether patients carrying missense point mutations 

displayed distinct clinical abnormalities that could be related to the altered processing 

observed in vitro. I believe the incompletely processed FXN42–210 in patients carrying a 

G130V or I154F mutation carries some residual activity, possibly contributing to the 

milder phenotype. 
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2.3 Materials and Methods  

2.3.1 Site-directed mutagenesis 

 Each FXN mutant was created using the pcDNA3.1 plasmid with wild-type 

human FXN containing a C-terminus hemagglutinin (HA) tag (Addgene Plasmid #31895) 

and the Agilent QuikChange XL Site-Directed Mutagenesis Kit. 

2.3.2 Transfection and immunostaining 

 Human embryonic kidney (HEK 293) cells were grown on coverslips and 

transfected via Lipofectamine 2000 reagent with 4 µg of DNA (2 µg FXN and 2 µg 

mito-GFP). Twenty-four hours after transfection, cells were fixed with 4% 

paraformaldehyde followed by treatment with blocking buffer containing 5% normal goat 

serum, 3% Triton X-100, and 1% BSA. Primary antibody to the HA epitope was added at 

a 1:100 dilution overnight. Alexa Fluor 568 secondary antibody was added at a dilution 

of 1:100 and cells were imaged by confocal microscopy. 

2.3.3 Subcellular fractionation and western blot 

 Following transfection of FXN-mutant constructs, HEK 293 cells were lysed with 

buffer containing: 150 mmol/L sodium chloride, 1 mmol/L EDTA, 100 mmol/L Tris-HCl, 

1% Triton X-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulfate, and protease 

inhibitor cocktail (Millipore #539134) 1:1000 at pH 7.4 for 1 h and centrifuged at 150g to 

collect whole cell lysates. Whole cell lysates were centrifuged at 100g followed by 

150g to separate the soluble mitochondria fraction from the cytosolic fraction, and 

100g to collect insoluble mitochondria pellet from soluble mitochondria fraction using a 
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Thermo Scientific Mitochondria Isolation Kit for Mammalian Cells (#89874). The protein 

concentration of each fraction was determined using a BCA protein assay, and 4 µg of 

each fraction was loaded on a 12% NuPage gel for electrophoresis, followed by transfer 

to nitrocellulose membranes. Membranes were blocked with 3% milk for 1 h and 

incubated with primary HA antibody overnight at 4°C. Membranes were then incubated 

with secondary HRP-conjugated antibody for 2 h and immunoreactive bands were 

visualized using luminol-enhanced chemiluminescence (ECL) HPR substrate. 

2.3.4 Coimmunoprecipitation and western blot 

Twenty-four hours after transfection, cells were lysed with buffer containing: 150 mmol/L 

sodium chloride, 1 mmol/L EDTA, 100 mmol/L Tris-HCl, 1% Triton X-100, 1% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate, and protease inhibitor cocktail (Millipore 

#539134) 1:1000 at pH 7.4 for 1 h. For coimmunoprecipitation, 2 µg of MPP primary 

antibody was added to 800 µg of total lysate and rocked for 2 h at 4°C. The lysate and 

antibody solution was then added to washed Protein G Agarose beads overnight, 

rocking back and forth at 4°C. The following day the beads, lysate, and antibody solution 

were centrifuged at 14,000g and washed five times with IP lysis buffer containing: 

150 mmol/L sodium chloride, 1 mmol/L EDTA, 100 mmol/L Tris-HCl, 1% Triton X-100, 

and 0.5% sodium deoxycholate at pH 7.4. Sample buffer (2X) was added to the beads 

and heated to 100°C for 5 min. The immunoprecipitated proteins were loaded on a 12% 

NuPage gel. Normal IgG primary antibody was used as a control as well as anti-FXN 

primary antibody, followed by Trueblot secondary HRP-conjugated antibody (Rockland  
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#18-8841-31) to detect immunoreactive bands. 

2.3.5 MG132 Treatment 

 Transfected cells were treated with 10 µmol/L of MG132, cell-permeable 

proteasome inhibitor, for 5 h. Following cell lysis, equal amounts of total cell lysate were 

loaded on a 12% NuPage gel. 

2.3.6 Fibroblast FXN levels by Western Blot 

 Primary fibroblasts from healthy controls and FRDA patients with point mutations 

were lysed in buffer (0.25 mol/L NaCl, 5 mmol/L EDTA, 50 mmol/L HEPES [pH 7.5], 

0.1% NP-40, 0.5 mmol/L DTT) supplemented with 0.1% protease inhibitor cocktail 

(Sigma Aldrich) and kept on ice for 20 min. The lysates were centrifuged at 20,000g for 

10 min at 4°C. The clarified supernatants were transferred to fresh tubes and protein 

concentrations were determined by Bradford assay. A quantity of 75 µg of whole cell 

lysate were separated by SDS-PAGE and transferred to a PVDF membrane. 

Immunoblotting was performed with antibodies against FXN (Santa Cruz Biotechnology) 

and GAPDH (Millipore), and the signals were detected by HRP-mediated 

chemiluminescence. Densitometry was performed using Image J software (NIH), and the 

calculated signal ratio of FXN42–210 to FXN81–210 in each group is plotted. The bars 

represent the average signal for each group: CTRL= 5 fibroblast lines (n = 13), G130V 

=3 lines (n = 17), and Typical = 7 lines (n = 8). The asterisk indicates significant 

differences as determined by Student's t-test (P < 0.05). 
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2.3.7 Quantification and statistical analysis 

 Image J Software was used to quantify FXN levels on western blots and is 

represented as mean ± SEM. Two-tailed Student's t-test was used to compare mutants 

to WT. Significance was set at P < 0.05. Image J software was also used to calculate 

Pearson's correlation coefficient for quantification of colocalization in 

immunofluorescence images. 

2.3.8 Clinical measures 

 Clinical measure results were derived from a long-standing natural history study 

from 12 American and Australian sites.92 In this study, data is collected annually on 

clinical features of > 900 individuals with FRDA. Data from the baseline cross sectional 

visits were used in this study including overall medical history and scores on the 

Friedreich Ataxia Rating Scale (FARS) (a quantified neurological exam); Ataxia Staging 

scale (a disability score); the Timed 25-Foot Walk (T25FW), scored as the reciprocal (a 

simple performance test of walking); 9-Hole Peg Test (9HPT), scored as the reciprocal 

(a simple test of hand function); Contrast Letter Acuity test, the sum of the number of 

letters read on each of three Sloan charts (a quantitative test of vision); and an Activities 

of Daily Living (ADL) scale. All these measures capture progressive neurological 

dysfunction in FRDA. The performance measures were also transformed into Z-scores 

to create composite scores as reported previously. The Z2 composite is the sum of the 

Z-scores from T25FW and 9HPT. The Z3 composite is the sum of Z-scores from T25FW, 

9HPT, and overall vision tests. 
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2.4 Results  

2.4.1 Selected FRDA-associated missense mutations decrease FXN81–210 levels, but do 

not impair FXN association with mitochondria 

 To determine the effects of FRDA-associated missense mutations on FXN import 

into the mitochondria, FXN variants containing a C-terminal HA tag were cotransfected 

with mito-GFP in HEK 293 cells. Levels of the FXN81–210 form of I154F and G130V are 

lower as determined by western blot compared to WT, while no detectable exogenous 

FXN81–210 was detected following transfection of G137V and L106S constructs (Fig. 2.1). 

Confocal microscopy imaging was used to determine localization of the exogenous FXN 

proteins. R165C and W155R co-localize with mito-GFP and have FXN immunoreactivity 

comparable to WT (Fig. 2.2A). I154F, G130V, and G137V colocalize with mito-GFP but 

have lower FXN immunoreactivity compared to FXNWT (Fig. 22.2B). Finally, transfection 

of L106S leads to no FXN immunoreactivity (Fig. 2.2C). All expressed mutant proteins 

colocalize with mito-GFP with a Pearson's correlation coefficient greater than 0.98. While 

R165C and W155R have increased immunoreactivity compared to I154F, G130V, and 

G137V, the I154F, G130V, and G137V proteins retain their mitochondrial localization. 

2.4.2 Selected FRDA-associated missense mutations impair processing from FXN42-

210 to FXN81–210 

 To investigate further the decrease in FXN81–210 levels of particular FXN-mutant 

proteins, subcellular fractionation and separation of the soluble mitochondrial fraction 

and the insoluble mitochondrial pellet was performed. Consistent with 

immunocytochemistry results, transfection of R165C or W155R leads to FXN81–210 levels 
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comparable to levels of FXNWT, while transfection of I54F or G130V produces lower 

levels of FXN81–210 (Fig. 2.3A and 2.3B). While I154F or G130V lead to low FXN81–

210 levels, expression of these mutant proteins leads to an increased level of FXN42–

210 (Fig. 2.3A and C), suggesting these FXN variants are not processed readily from 

FXN42–210 to the FXN81–210 form. Furthermore, these variants also have increased ratios 

of insoluble to soluble FXN42–210 (Fig. 2.3E-G), suggesting these proteins remain 

associated with the insoluble inner mitochondrial membrane rather than being released 

into the soluble portion of the mitochondrion. 

2.4.3 Missense mutations FXNI154F and FXNG130V enhance the association of FXN42–

210 with MPP 

 To examine the mechanism by which I154F and G130V impair FXN processing, 

FXN-mutant proteins were co-immunoprecipitated to study the strength of the interaction 

between FXN and MPP. The FXN42–210 forms of I154F and G130V are more readily co-

immunoprecipitated by anti-MPP than the FXN42–210 form of WT, R165C, and W155R 

proteins (Fig. 2.4), suggesting stronger attachment between these variants and MPP. 

2.4.4 Increasing FXNG130V and FXNI154F FXN1–210 levels does not increase FXN81–

210 levels 

 Traditional therapies for FRDA include several strategies designed to increase 

FXN levels. To model this approach, transfected cells were treated with 10 µmol/L 

MG132, a proteasome inhibitor, to increase FXN1–210 levels in an effort to overcome 

impaired FXN processing. While G130V and I154F FXN1–210 levels increased, as did 

FXN42–210 levels, MG132 treatment did not increase FXN81–210 levels (Fig. 2.5).  
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This suggests that amelioration of these missense mutations cannot be achieved with 

simple overexpression of precursor FXN, and that there is a true impediment to 

processing of these mutants to the FXN81–210 form. 

2.4.5 Impaired FXN processing from FXN42–210 to FXN81–210occurs in fibroblasts from 

FRDA patients with FXNG130V 

 To analyze the significance of these findings in patient-derived cells and examine 

the processing of native FXN, western blots were performed on whole cell extracts 

prepared from control (CTRL) and FRDA G130V primary patient fibroblasts. 

Endogenous FXN42–210 and FXN81–210 FXN levels were detected and expressed as a ratio 

of FXN42–210/FXN81–210 (Fig. 2.6A). The ratio of FXN42–210 to FXN81–210 is increased in 

FRDA G130V patient fibroblasts compared to controls (P < 0.05). Patient fibroblasts 

were also immunostained with antibodies to FXN and mitofusin. FRDA G130V patient 

fibroblasts contain large globular structures (Fig. 2.6B) consistent with the increased 

insoluble FXN42–210 form detected by western blot and overexpression studies. 

2.4.6 FRDA patients with FXNG130V have milder disease features and slower disease 

progression compared to other heterozygous FRDA patients 

 We then sought to establish whether patients carrying missense point mutations 

displayed distinct clinical abnormalities that could be related to the altered processing 

observed in vitro. Heterozygous (HTZ subjects) FRDA patients, with a missense 

mutation on one FXN allele and GAA expansion on the other, and typical homozygous 

(HMZ subjects) FRDA patients, with GAA expansions on both FXN alleles, have different 

clinical profiles when examined in a large natural history study (Table 2.1). In addition, 

patients carrying G130V mutations have significantly lower occurrence of 
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cardiomyopathy, scoliosis, and diabetes, the most severe components of the disease, 

compared to other HTZ subjects (Table 2.2). Furthermore, clinical measures at baseline 

exam including ataxia stage, activities of daily living (ADL) scores, 9HPT-1, T25FW-1, 

Vision, 9HPT, Z2, and Z3 were significantly worse in other HTZ subjects, even though 

the groups were of similar disease duration, suggesting a less severe phenotype in 

G130V patients (Table 2.2). Patients with an I154F mutation fell between the phenotypic 

severity of G130V and other point mutations analyzed. 
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2.5 Discussion  

 In this chapter, FRDA-causing mutations G130V and I154F decrease FXN81–

210 levels, but do not impair FXN localization to mitochondria. G130V and I154F appear 

to impair FXN processing from FXN42–210 to FXN81–210, as well as enhance binding of 

FXN42–210 to MPP. This impaired processing is also observed in primary fibroblasts from 

FRDA patients with a G130V mutation. Increasing G130V and I154F precursor levels 

does not lead to an increase in FXN81–210 levels, but does increase levels of FXN42–210. 

These are all consistent with a defect in peptide processing of these forms being a 

pathogenic mechanism in patients carrying these mutations. In addition, these two 

forms, especially G130V, are associated with milder features of FRDA than other point 

mutations or expanded GAA repeats, suggesting that these mild phenotypes may reflect 

the underlying FXN biochemistry. 

 In heterologous systems, disease-associated mutations in FXN are abnormal in 

several mutation selective ways. The inability to detect L106S and G137V by 

immunostaining and western blot supports modeling studies suggesting that mutations 

residing within the protein core decrease protein stability.48 In vitro functional studies 

have also characterized R165C and W155R as dysfunctional mutations, causing 

decreased binding of FXN to Fe-S cluster assembly complex.14,116 Moreover, R165C and 

W155R had levels of FXN81–210 that were comparable to WT, and there was no evidence 

for impaired processing of these two mutant forms from FXN42–210 to FXN81–210. Further 

functional studies in vivo may provide a correlation between the extent of dysfunction in 

these two FXN-mutant proteins and severity of disease outcome. 



	22	

 Abnormalities in FXN processing have been explored mostly in yeast and 

bacteria expression systems.25,26,54,69 Here, we show an increased level of the FXN42–

210 form in disease-associated missense mutations associated with milder phenotypes, 

not only in overexpression studies using mammalian systems, but also in primary 

fibroblasts from FRDA patients. FRDA patients who carry G130V express lower FXN81–

210 levels than typical FRDA patients in fibroblasts, cheek swabs, and blood,72 yet have a 

milder clinical phenotype (Tables 2.1 and 2.2). In a large cohort of FRDA subjects, even 

though those with the G130V mutation have similar disease duration, they have 

significantly better FARS and ADL scores than individuals with other point mutations. 

FRDA G130V patients also have significantly lower occurrence of cardiomyopathy, 

scoliosis, and diabetes, and they surpass other point mutation carrying subjects on 

composite performance measures. As suggested in single cases previously, this 

demonstrates that FRDA patients with G130V demonstrate greater neurological function 

and decreased disease severity at a similar length of disease duration. 

7,19,34,36,37,45,49,82,83,90,125 Patients with I154F mutations have clinical severities intermediate 

between other patients with point mutations and G130V patients, matching the data from 

cellular models of the molecular consequences of these mutants. 

 One explanation for the milder phenotype in patients carrying a G130V or I154F 

mutation is that the incompletely processed FXN42–210 carries some residual activity. In 

these mutants, this form is located in the mitochondria, and others suggest that FXN42–

210 can perform Fe-S cluster synthesis as well as participate in cysteine desulfurase 

activity as efficiently as FXN81–210.73,117 Thus, the higher levels of FXN42–210 associated 

with G130V could lead to the mild phenotype of patients with G130V if this intermediate 

form is functional. Alternatively, it is possible that a small but clinically significant amount 
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of the FXN42–210 form is slowly converted to the mature form, leading to the milder 

phenotype in patients carrying G130V mutations compared with other mutations that 

yield absolutely no mature FXN. Further experiments examining the functional abilities of 

the FXN42–210 form of endogenous G130V may help clarify these possibilities. Overall, 

the present study, in agreement with modeling studies and those in lower animal 

expression systems, identifies multiple mechanisms in mammalian heterologous 

systems by which FXN point mutations can lead to FRDA. 
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Figure 2.1 FXN levels of disease-associated missense mutations. A. Western blot of 
whole cell lysates collected from HEK 293 cells transfected with FXNWT, FXNR165C, 
FXNW155R, FXNI154F, FXNG130V, FXNG137V, and FXNL106S. An anti-FXN antibody 
was used to detect both exogenous FXN81–210 (15 kD) and endogenous FXN81–210 
(14 kD) levels after transfection. B. Quantification of exogenous FXN levels was 
normalized to FXNWT and endogenous FXN. Endogenous FXN serves as a loading 
control. (***) = P < 0.0005. 
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Figure 2.2 Selected FRDA-associated missense mutations do not impair FXN 
association with mitochondria. Confocal microscopy images of HEK 293 cells 
cotransfected with mutant FXN constructs and mito-GFP, fixed, and stained using a 
primary anti-HA antibody to detect exogenous FXN only and secondary antibody Alexa 
Fluor 568 (FXN). DAPI was also used as a nuclear stain. A. FXNWT, FXNR165C, and 
FXNW155R. B. FXN154F, FXNG130V, and FXNG137V. C. FXNL106S. Pearson’s 
correlation scatter plots of red and green signal intensities for each mutant were 
generated using Image J Software. 

A 

B 

C 
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Figure 2.3 Selected FRDA-associated missense mutations impair processing from 
FXN42–210 to FXN81–210. Following transfection of mutant constructs in HEK 293 
cells, whole cell lysates were centrifuged to perform subcellular fractionation of soluble 
mitochondria fraction and insoluble mitochondrial pellet. A. FXN levels were detected by 
western blot using an anti-FXN antibody. Anti-SDHA antibody was used to detect SDHA 
as a mitochondria marker and loading control. The soluble mitochondria fraction 
includes: exogenous FXN42–210 (19 kD), exogenous FXN81–210 (15 kD), endogenous 
FXN81–210 (14 kD), and SDHA (70 kD). The insoluble mitochondria pellet includes: 
exogenous FXN42–210 (19 kD) and SDHA (70 kD). B. Percent FXN81–210 of total 
FXN. C. Percent FXN42–210 of total FXN. D. Total FXN. E. Percent soluble FXN42–
210. F. Percent insoluble FXN42–210. G. Total FXN42–210. (*) = P < 0.05 and (***) = P 
< 0.005 
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Figure 2.4. Missense mutations FXNI154F and FXNG130V enhance the association of 
FXN42–210 with MPP. Whole cell lysates from transfected HEK 293 cells were 
immunoprecipitated with anti-MPP antibody and immunoblotted with primary anti-FXN 
antibody. The same whole cell lysates were used as inputs for quantification analysis. 
Western blot was used to detect FXN pulled down by anti- MPP. The Co-IP 19 kD blot 
represents immunoprecipitated FXN42-210. The lysate 19 kD blot represents total 
FXN42-210 in whole cell lysate. The graph represents fold change of FXN mutant 
interaction with MPP compared to FXNWT. 
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Figure 2.5 Increasing FXNG130V and FXNI154F FXN1–210 levels does not increase 
FXN81–210 levels. Following transfection of HEK 293 cells with mutant FXN constructs, 
cells were treated with 10 lmol/L MG132 proteasome inhibitor for 5 h followed by cell 
lysis. Exogenous FXN1–210 (23 kD), FXN42–210 (19 kD), and FXN81–210 (15 kD) 
levels, before and after treatment, were detected by western blot using a primary anti-HA 
antibody. 
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Figure 2.6. Impaired FXN processing from FXN42–210 to FXN81–210 occurs in 
fibroblasts from FRDA patients with FXNG130V. FXN levels were quantified by western 
blot using whole cell extracts from control (CTRL), FRDA, and G130V patient fibroblasts. 
CTRL= 5 fibroblast lines (n = 13), G130V =3 lines (n = 17), and Typical = 7 lines (n = 8). 
A. FXN42–210 (18 kD), and FXN81–210 (13 kD) levels from control (CTRL), G130V, 
and typical FRDA were detected from whole cell extracts by western blot using an anti-
FXN antibody. Detection of GAPDH serves as a loading control. FXN levels are 
quantified and expressed as a ratio of FXN42–210 to FXN81–210. (*) = P < 0.05. B. 
Confocal microscopy images of patient fibroblasts (CTRL, FRDA, and G130V) that were 
fixed and stained using primary anti-FXN (red) and primary anti-mitofusin antibodies 
(green). Secondary antibodies included Alexa Fluor 568 (FXN) and Alexa Fluor 488 
(mitofusin). DAPI was also used as a nuclear stain. 

Control 	FRDA G130V 
	 	

A	 B	 
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*p<0.05  

Table 2.1 Clinical measures comparing FRDA homozygous and heterozygous patients. 
Patients who were heterozygous (HTZ) for the GAA repeat (those carrying point 
mutations or deletions) had similar disease durations to those who were homozygous 
(HMZ), but, aside from age of onset and presence of diabetes, were less severely 
affected than homozygous patients. This was particularly true for measures containing 
upper extremity function such as the nine-hole peg test and the Z2 score.*P < 0.05 

 HMZ HTZ 

N 741 (96%) 32 (4%) 

Age of Onset 13.8 10.7* 

BL age 26.5 24 

Recent age 30 27.3 

Duration 16.2 16.6 

Sex (%female) 49.40% 43.80% 

Non-ambulatory 50.20% 46.90% 

Cardiomyopathy 57.80% 34.6%* 

Scoliosis 82.40% 73.10% 

Diabetes 5.50% 26.9%* 

FARS 69.4 61.7 

Stage 4 3.9 

ADL 16.3 13.4 

9HPT-1 (high = less severe) 0.014 0.025* 

T25FW-1 (high = less 
severe) 0.055 0.062 

Vision 105.3 100.6 

Z2 (high = less severe) -0.09 0.48* 

Z3 (high = less severe) -0.08 0.26 
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 G130V I154F Other HTZ 

N 9 3 18 

Age of Onset (years) 10.8 11 11.5 

BL age (years) 21.4 22.6 11.5 

Recent age (years) 23.4 25 23.5 

Duration (years) 12.4 14 15.9 

Sex (%female) 44 67 44 

Cardiomyopathy (%) 12.5 0 50 

Scoliosis (%) 50 100 78.6 

Diabetes (%) 12.5 6.7 35.7 

FARS 40.6 54.3 72.4 

Stage 2.4 3.5 4.5 

ADL 5.8 8 17.5 

9HPT-1 (high = less 
severe) 

0.044 0.029 0.015 

T25FW-1 (high = 
less severe) 

0.139 0.117 0.026 

Vision 127.8 125.5 85.3 

Z2 (high= less 
severe) 

2.03 0.99 -0.21 

Z3 (high = less 
severe) 

1.55 0.79 -0.38 

 

Table 2.2 FRDA patients with FXNG130V have milder disease features and slower 
disease progression compared to other heterozygous FRDA patients. Clinical data were 
collected from a large natural history study of FRDA, including data on medical history, 
genetic status, disability and activity of daily living (ADL) status, a quantitative 
neurological exam (designated the Friedreich ataxia rating scale [FARS]), performance 
measures, and two performance measure composites. When we fractionated the 
heterozygous patients into patients those carrying G130V versus I154F versus others, 
the G130V patients were markedly less affected. I154F patients had levels of 
dysfunction between G130V and other heterozygous patients. 
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Chapter 3: Identification of a Novel Missense Mutation- FXNW168R 
 

3.1 Abstract  

 Friedreich’s Ataxia, a slowly progressive ataxia characterized by decreased 

expression of the frataxin (FXN) protein, is caused by GAA trinucleotide repeats within 

intron 1 of the FXN gene in 98% of patients.  Two percent of patients with FRDA carry 

one expanded GAA repeat in conjunction with a point mutation. In general, patients with 

point mutations carry even lower FXN levels than typical FRDA patients. The 

mechanism by which disease-associated missense mutations lead to disease pathology 

is unclear, but occurs in mutation-selective ways by affecting protein folding, processing, 

or function. 

 In this chapter the novel disease-causing W168R missense mutation is 

introduced and its effects on FXN import into the mitochondria by immunocytochemistry 

and subcellular fractionation, FXN processing from precursor to mature form by western 

blot, and FXN interaction with MPP co-immunoprecipitation were investigated. These 

studies have identified that W168R impairs FXN processing as a contributor to severely 

low FXN levels, and a severe phenotype.  
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3.2 Introduction  

 Typical FRDA is characterized by decreased expression of the frataxin (FXN) 

protein, from the FXN gene on chromosome 9, caused by the presence of expanded 

GAA trinucleotide repeats within intron 1 on both alleles. FXN is crucial for proper 

mitochondrial function and iron-sulfur cluster biogenesis, but the mechanism by which 

decreased protein expression leads to disease pathology is not fully known. 2% of 

patients carry expanded GAA repeats on one allele, and a point mutation on the other 

allele. These patients generally have lower FXN levels compared to typical FRDA 

patients29,72. As intronic and frame shift point mutations lead to absence of functional 

frataxin7,25,34,38,48,109, the phenotype in such patients is usually severe. In contrast patients 

with missense mutations can have a mild or severe clinical outcome depending on the 

exact mutation and the length of the GAA repeat on the opposite allele34,45,48,83,109. In 

vitro studies allow one to distinguish between those affecting frataxin processing and 

those altering overall levels (due to folding, RNA splicing or other severely pathogenic 

processes). In vitro studies show that the specific location of missense mutations within 

the protein structure has effects on protein folding (L106S)7,25,38,48 and decreased 

participation in Fe-S cluster biogenesis (R165C, W155R)14,116.  

 A patient who carries a novel W168R missense mutation and 1133 expanded 

GAA repeats on the opposite allele is presented in this chapter. The patient has 

extremely low levels of mature FXN81-210 and an especially severe phenotype. The non-

conservative W168R mutation is an amino acid switch from an aromatic, non-polar 

tryptophan to a basic, electrically charged arginine at amino acid position 168 on Beta-

sheet 5 of the human FXN crystal structure. Based on the amino acid position 168, it is 
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anticipated that W168R destabilizes FXN and alters levels by misfolding. Our hypothesis 

is that the W168R mutation impairs FXN processing, thus leading to very low FXN 

levels. The effects of W168R on FXN import into the mitochondria, subcellular 

localization, and interactions with mitochondria processing peptidase (MPP) were first 

assessed. W168R is expressed predominantly as the intermediate FXN42-210 form, with 

little to no expression of the mature FXN81-210 form consistent with patient samples, and 

its localization to the mitochondria is not impaired. Increasing mature FXN levels with 

W168R by modeling traditional therapies was also assessed, and indeed it did not. We 

believe patients with W168R will require alternative approaches to repair FXN 

processing from intermediate to mature form in order to increase FXN levels. 

Furthermore, in addition to impairing FXN processing, we expect the W168R mutation 

has another feature that alters FXN function, leading to a more severe phenotype. 
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3.3 Materials and Methods 

3.3.1 Transfection and Immunostaining  

 W168R was created using Addgene XL Site-Directed Mutagenesis Kit and 

primers to pcDNA3.1-hFrataxin-HA (Plasmid #31895). Human Embryonic Kidney (HEK) 

cells were co-transfected with 4ug of FXN and mitoGFP cDNA via Lipofectamine 2000 

reagent. 24 hours after transfection, cells were fixed with 4% Paraformaldehyde followed 

by treatment with blocking buffer containing 5% normal goat serum, 3% Triton X-100, 

and 1% BSA. Primary antibody to the HA epitope was added at a 1:1000 dilution 

overnight. Alexa Floura 568 secondary antibody was added at a dilution of 1:1000 and 

cells were imaged by confocal microscopy.  

3.3.2 Transfection, Subcellular Fractionation, and Western Blot 

 Following transfection of FXN mutants, HEK cells were centrifuged at 150 x g to 

collect whole cell lysates. The soluble mitochondria fraction and insoluble mitochondria 

pellet were collected using Thermo Scientific Mitochondria Isolation Kit for Mammalian 

Cells (#89874). Protein concentration of each fraction was determined using BCA 

Protein Assay and each fraction was loaded on a 12% NuPage Gel for electrophoresis, 

followed by transfer to nitrocellulose membranes. Membranes were blocked with 3% 

Milk for 1 hour and incubated with primary HA-antibody overnight at 4 °C. Membranes 

were then incubated with secondary HRP-conjugated antibody for 1 hour and 

immunoreactive bands were visualized using luminol-enhanced chemiluminescence 

(ECL) HRP substrate.  
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3.3.3 MG132 Treatment  

 HEK cells were transfected with FXNWT and W168R mutants via Lipofectamine 

2000 reagent. 24 hours after transfection cells were treated with 10mM MG132 for 5 

hours followed by cell lysis. Equal amounts of total lysate were loaded on a 12% 

NuPage gel. 

3.3.4 Quantification and Statistical Analysis  

 Image J Software was used to quantify FXN levels on western blots and is 

represented as mean ± S.E.M. Two-tailed student’s t-test was used to compare W168R 

to WT. Significance was set at P<0.05. Image J software was also used to calculate 

Pearson’s correlation coefficient for quantification of co-localization in 

immunofluorescence images.  



	37	

 

3.4 Results 

3.4.1 Case History  

 A six-year old boy evaluated for ataxia, was historically smaller in size and slower 

to progress developmentally than his fraternal twin brother. His height and weight were 

consistently below the 1% percentile since birth. Hypotonia, decreased stamina, 

clumsiness, and balance difficulties were noted around age two. When symptoms failed 

to improve by age three, orthotics was prescribed, and physical therapy was initiated.  At 

age four, he was diagnosed with mild concentric left ventricular hypertrophy, diastolic 

dysfunction as well as a scoliosis of 14 degrees. Initial testing included standard blood 

work, a brain MRI, and ophthalmologic evaluation. Genetic testing performed to rule out 

mitochondrial diseases ultimately rendered a diagnosis of Friedreich ataxia with GAA 

repeats of 19 and 1133 and a novel W168R missense mutation. The subject’s father 

carried this mutation and his mother carried an expanded GAA repeat.  

3.4.2 W168R impairs FXN processing from intermediate to mature form,  but does not 

impair FXN association with mitochondria.   

 Based on western blotting of equal protein lysates, W168R is expressed 

predominantly as the FXN42-210 form with nearly no detectable FXN81-210 immunoreactivity 

compared to WT (Figure 3.1). To determine the effects of the W168R missense mutation 

on FXN import into the mitochondria, the W168R variant containing a C-terminal HA tag 

was co-transfected with mitoGFP in Human Embryonic Kidney (HEK 293) cells. 

Confocal microscopy images with an antibody to the HA epitope, to detect exogenous 

FXN only, show W168R co-localization with mitoGFP, but with lower levels of FXN 
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immunoreactivity compared to WT (Figure 3.2). This data suggests that although W168R 

decreases mature FXN levels, the immunoreactivity that remains is still associated with 

mitochondria. To further examine the effects of W168R on FXN processing, co-

immunoprecipitation of W168R and MPP shows enhanced interactions with the FXN42-210 

form compared to WT (Figure 3.3). This is further demonstrated through subcellular 

fractionation in which the FXN42-210 form of W168R is present in both soluble and 

insoluble mitochondria fractions (Figure 3.4). This suggests that W168R impairs FXN 

processing from the FXN42-210 to FXN81-210 form , and is retained with MPP at the inner 

mitochondria membrane.  

3.4.3 Increasing FXNW168R precursor levels does not lead to an increase in mature FXN 

levels.  

 Traditional therapies for FRDA involve increasing FXN levels. To model this, 

transfected cells were treated with 10mM MG132 protease inhibitor to increase 

precursor FXN levels in an effort to overcome the impaired FXN processing by W168R.  

W168R precursor levels increased, as did FXN42-210 levels, but not FXN81-210 levels 

(Figure 3.5). This suggests that increasing mature FXN levels for W168R will require 

alternative approaches to repair FXN processing from intermediate to mature form. 
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3.5 Discussion  

 In this chapter a novel W168R FXN mutation is presented in a patients with a 

single long GAA repeat on the other allele, and very low mature FXN81-210 levels with 

early onset and significant disease progression. W168R is expressed predominantly as 

the intermediate FXN42-210 form, with little to no expression of the mature FXN81-210 form, 

but its localization to the mitochondria is not impaired. The G130V mutation, associated 

with milder phenotype, is also expressed predominantly as the intermediate FXN42-210 

form, with very low mature FXN81-210 form. However, the G130V mutation may provide 

intermediate FXN functional capacity to compensate for lower mature levels. 

Alternatively, low levels of G130V mature FXN levels may be sufficient to ameliorate the 

phenotype, while W168R, one alpha helix turn away from the dysfunctional R165C 

mutation, is in a unique position to impair both processing and potentially FXN 

functionality, leading to a severely deficient form of abnormal frataxin and severe 

phenotype. This suggests that the extremely low levels of mature frataxin produced from 

W168R are no different than that from G130V, and that phenotypic differences related to 

such mutations are most likely to reflect other abnormalities in the different mutants.  

 Additionally, we investigated if traditional therapies for increasing FXN levels 

would be relevant to patients with W168R. Increasing precursor levels does not lead to 

an increase in mature FXN81-210 levels. One explanation is that W168R slows down the 

FXN processing rate in such that increased precursor FXN levels never get processed to 

the mature form, possibly by blocking or inhibiting the second MPP cleavage site. In 

summary, this data suggests that patients with W168R will require alternative 

approaches to repair FXN processing from intermediate to mature form in order to 
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increase FXN levels and treat the disorder in a disease-modifying manner. Furthermore, 

functional studies will be required to ascertain the mechanism by which W168R affects 

FXN function and leads to severe phenotype.   
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Figure 3.1 W168R decrease FXN81–210 levels. Western blot of whole cell lysates collected 
from HEK 293 cells transfected with FXNWT and FXNW168R. An anti-HA antibody was 
used to detect exogenous FXN81–210 (15 kD) FXN81–210 levels after transfection.  
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Figure 3.2 W168R does not impair FXN association with mitochondria. Confocal 
microscopy images of HEK 293 cells cotransfected with mutant FXN constructs and 
mito-GFP, fixed, and stained using a primary anti-HA antibody to detect exogenous FXN 
only and secondary antibody Alexa Fluor 568 (FXN). DAPI was also used as a nuclear 
stain.  
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Figure 3.3 W168R enhances the association of FXN42–210 with MPP. Whole cell lysates 
from transfected HEK 293 cells were immunoprecipitated with anti-MPP antibody and 
immunoblotted with primary anti-HA antibody. Western blot was used to detect FXN 
pulled down by anti- MPP. The Co-IP 19 kD blot represents immunoprecipitated FXN42-
210.  
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Figure 3.4 W168R impairs processing from FXN42–210 to FXN81–210. Following transfection 
of mutant constructs in HEK 293 cells, whole cell lysates were centrifuged to perform 
subcellular fractionation of soluble mitochondria fraction and insoluble mitochondrial 
pellet. FXN levels were detected by western blot using an anti-HA antibody.  
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Figure 3.5 Increasing W168R FXN1–210 levels does not increase FXN81–210 levels. 
Following transfection of HEK 293 cells with mutant FXN constructs, cells were treated 
with 10 lmol/L MG132 proteasome inhibitor for 5 h followed by cell lysis. Exogenous 
FXN1–210 (23 kD), FXN42–210 (19 kD), and FXN81–210 (15 kD) levels, before and 
after treatment, were detected by western blot using a primary anti-HA antibody. 
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Chapter 4: G130V Alleviates Mitochondria Dysfunction  
 

4.1 Abstract 

 GAA trinucleotide repeats within intron 1 of the Frataxin (FXN) gene cause 

decreased levels of protein and the slowly progressive, early onset Friedreich ataxia. In 

typical FRDA, disease progression and age of onset correlates with the length of the 

shortest GAA expansion. 2-3% of FRDA patients carry a GAA expansion on one FXN 

allele, and a missense mutation on the other, and their FXN levels are generally lower 

than typical FRDA patients. This would suggest that such patients have a very severe 

phenotype; however, these patients can have a mild or severe clinical severity. FRDA 

patients with the G130V mutation have significantly lower occurrence of cardiomyopathy, 

scoliosis, and diabetes, and they surpass other point mutation-carrying subjects on 

composite performance measures accounting for disease duration.  

 The mechanism by which G130V results in a milder FRDA phenotype is 

unknown. In this chapter multiple features of mitochondrial function associated with 

severe typical FRDA phenotype including enzymatic activity, energy metabolism, fusion 

and ultrastructure were investigated, and compared to that of patients with milder 

phenotype, carrying the G130V FXN missense mutation. Overall, primary fibroblasts 

from G130V patients appear to have improved mitochondrial function compared to 

typical FRDA patients, thus providing a rationale linking G130V functional capacity with 

milder phenotype. 
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4.2 Introduction  

 Usually presenting in the first two decades of life, Friedreich ataxia (FRDA) 

causes slowly progressive ataxia, with dysarthria, spasticity in the lower limbs, scoliosis, 

absence of lower limb reflexes, and loss of position and vibration sense.9,22,79  At present, 

there is no cure or effective treatment. FRDA is a recessive neurodegenerative disease, 

caused by decreased levels of the mitochondrial protein frataxin (FXN) resulting from 

trinucleotide repeat expansions within intron 1 of the FXN gene. In typical FRDA, the 

length of the shortest GAA expansion correlates with disease severity; longer GAA 

expansions result in earlier onset and a faster progression.41,44,86 2-3% of FRDA patients 

carry a GAA expansion on one FXN allele, and a missense mutation on the other, and 

their FXN levels are generally lower than typical FRDA patients. The low FXN levels 

suggest patients should have very severe phenotype. However, the phenotype cannot 

be predicted based on FXN levels alone; as these patients can have a mild or severe 

clinical course45 creating a unique platform to understand clinical and genetic 

heterogeneity. 

 In a large cohort of FRDA subjects, those with the G130V mutation have 

significantly lower levels of cardiomyopathy, scoliosis, and diabetes, and they perform 

better on composite performance measures than other point mutation-carrying subjects 

accounting for disease duration. Thus, they retain greater neurological function and 

decreased disease severity at a similar length of disease duration.7,19,34,36,37,45,49,82,83,90,125  

G130V does not impair FXN localization to mitochondria, but decreases mature FXN81–

210 levels, and is mostly present as the FXN42-210 intermediate form. Our hypothesis is 
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that the G130V FXN42-210 intermediate form has sufficient functional capacity to carry out 

the role of mature FXN81-210 for mitochondria function.  

 Many studies have implicated a role for FXN in iron metabolism, storage and 

iron-sulfur (Fe-S) cluster biogenesis 23,30,38,60,68,71,80,94,95,110,123 A conserved primary Fe2+ 

binding site, with a dissociation constant within the micromolar range (3–55 µM), 

involves residues of the acidic ridge localized within the first alpha helix 32,81,87,123. In 

addition to Fe binding, FXN has been reported to interact with mitochondrial aconitase, 

ferrochelatase and proteins of the mitochondrial Fe-S cluster machinery. 6,15,50,124 Fe is 

essential for metabolic processes including oxygen transport, electron transport, DNA 

synthesis, redox/non-redox reactions and other cell functions.42,75 In the central nervous 

system (CNS) and brain, where energy requirements are high, ATP is in high demand 

for synaptic transmission and distant axoplasmic transport, all of which involve Fe-S 

enzymes of oxidative metabolism.31  

 Fe-S containing proteins play a crucial role in cellular respiration and ATP 

production; therefore decreased activity has significant effects on mitochondria 

function.15,30 FXN’s role in Fe-S cluster biogenesis makes it almost essential for 

enzymatic activity of Fe-S containing aconitase and respiratory chain complexes.  

Aconitase, unlike other Fe-S containing proteins, requires Fe-S clusters for activation 

and conversion of citrate to isocitrate for Krebs cycle metabolism. Consequently, 

decreased FXN results in decreased aconitase activity, both in cell culture models and in 

vivo, and in heart tissues and biopsies of FRDA patients.65,70,85,97,102,119 Activities of Fe-S 

containing proteins of the electron transport chain are also decreased in endomyocardial 

biopsies of FRDA patients (Complexes I, II, and III),102 Primary FRDA patient fibroblasts 

(Complexes I and II),77 and FRDA mouse models (Complexes I, II, and IV).33,76  
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 Mitochondrial iron accumulation is a hallmark of Fe-S deficiency. Friedreich 

ataxia patients demonstrate iron deposits in cardiomyocytes, 65,70,85 iron metabolism 

dysregulation in heart autopsies,70,102 mitochondrial iron overload85 and deficiency of Fe-

S containing enzymes in the CNS.65 Although its role in disease pathophysiology is 

uncertain, increased iron within mitochondria could lead to oxidative stress and 

associated damage of dorsal root ganglion and spinal sensory neurons.11,23 

 Ferritin, a cytosolic protein, binds and stores intracellular iron to prevent the 

formation of reactive oxygen species (ROS). Ferritin expression is induced by excess 

iron and has been found at increased levels in some neurodegenerative diseases.21,35 

Mitochondria require iron for heme and Fe-S cluster synthesis, but also generate large 

amounts of hydrogen peroxide as by-products of respiratory activity.103 Mitochondrial 

ferritin (FtMt) is a nuclear-encoded iron-sequestering protein that specifically localizes in 

mitochondria. FtMt expression can reduce ROS levels, increase ATP levels and the 

activity of mitochondrial Fe-S enzymes, positively effect cell viability, reduce cytosolic 

and mitochondrial labile iron pools, rescue respiratory deficiency, reduce mitochondrial 

iron accumulation, increase resistance to oxidants and protect cells from mitochondrial 

DNA damage. 20,21,89 In FRDA patient fibroblasts, FtMt expression prevented the 

formation of ROS and partially rescued the impaired activity of mitochondrial Fe-S 

enzymes, caused by frataxin deficiency, suggesting FtMt involvement in controlling ROS 

formation through mitochondrial iron regulation. Histological analysis of FRDA patient 

samples suggested the role of FtMt in the formation of iron-rich structures,85 and 

increased mitoferritin-2 mRNA has been observed in FRDA MCK mice.59  

 In this chapter, I investigate multiple features of mitochondrial dysfunction 

associated with severe, FRDA phenotype including: FtMt levels, mitochondrial aconitase 
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activity, Krebs cycle metabolic activity, and mitochondrial ultrastructure. Using primary 

FRDA fibroblasts, we compared typical FRDA patients with G130V patients to 

understand molecular mechanisms that may underlie milder phenotype in G130V 

patients. 
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4.3 Materials and Methods 

4.3.1 Immunostaining 

 Primary fibroblasts from Control, Typical FRDA, and FRDA patients with G130V 

mutation were fixed with 4% paraformaldehyde followed by treatment with blocking 

buffer containing 5% normal goat serum, 3% Triton X-100, and 1% BSA. Primary 

antibody to the mitochondrial ferritin epitope was added at a 1:100 dilution overnight. 

Alexa Fluor 488 secondary antibody was added at a dilution of 1:100 and cells were 

imaged by confocal microscopy. 

4.3.2 Transfection for Live Imaging  

 Primary fibroblasts from Control, Typical FRDA, and FRDA patients with G130V 

mutation were grown on coverslips and co-transfected via Lipofectamine 2000 reagent 

with mito-DsRed2 and mito-PAGFP, 1ug each. Twenty four hours after transfection, 

DsRed2 immunofluorescence was used to select single mitochondria regions of interest, 

and UV 405 nm laser was used to activate mito-PAGFP for live imaging by confocal 

microscopy with 5 seconds activation and 2 min time frame.  

4.3.3 Aconitase Activity  

 Mitochondria were isolated from primary Control, typical FRDA, and G130V 

patient fibroblasts. Aconitase activity was measured using the Aconitase Activity Assay 

Kit (Sigma MAK051) and activity in typical FRDA and G130V fibroblasts was normalized 

to control.  
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4.3.4 Electron Microscopy 

 Control, typical FRDA, and G130V primary fibroblasts were washed with 1X PBS, 

scraped from 10cm plates and gently centrifuged at 23 x g. The resulting pellet was fixed 

with Paraformaldehyde/ Glutaraldehyde solution. Cells were embedded and sectioned in 

1 micron sections and images were collected at 75,000x.  

4.3.5 Isotope Labeling 

 Primary fibroblasts from Control, Typical FRDA, and FRDA patients with G130V 

mutation were treated with 5mM [13C6]-Glucose for 3 hours. Cells were collected and 

gently centrifuged at 23 x g. The resulting pellet was suspended in 10% TCA, and 

prepared for LC-MS using solid phase extraction cleanup.  
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4.4. Results  

4.4.1 Decreased Mitochondrial Ferritin, Associated with Iron Overload in Typical FRDA, 

is Absent in G130V Patient Fibroblasts  

 I first investigated mitochondrial ferritin (FtMt) levels, observed by 

Immunohistochemistry, to compare patients with G130V with typical FRDA patients and 

examine differences that may underlie phenotype severity. Decreased FtMt 

immunoreactivity, compared to control, was present in typical FRDA patient fibroblasts, 

as expected, but little to no change, compared to controls, was found in FRDA G130V 

patient fibroblasts (Figure 4.1).  This suggests the G130V mutation has the ability to 

handle iron in a way that decreases or prevents mitochondria iron overload, thereby 

contributing to milder phenotype.  

4.4.2 Increased Mitochondrial Aconitase Activity in G130V FRDA Patient Fibroblasts 

Compared to Typical FRDA     

 I next compared mitochondrial aconitase activity in fibroblasts from control, 

typical FRDA patients, and FRDA patients with G130V. Mitochondrial aconitase activity 

is significantly decreased in FRDA fibroblasts and significantly increased in FRDA 

patients with G130V, compared to typical FRDA patients, and not significantly different 

compared to controls (Figure 4.2). As FXNG130V is present predominantly as the FXN42-210 

intermediate form, this supports functional capacity of FXN42-210 with G130V mutation to 

participate in Fe-s cluster biogenesis in order to facilitate aconitase activity, compared to 

typical FRDA patients.  
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4.4.3 Increased TCA Metabolic Activity in G130V FRDA Patient Fibroblasts Compared to 

Typical FRDA  

 Friedrich ataxia patients have dysregulated glucose metabolism leading to 

increased palmitate-derived acyl-CoA thioesters.5,121 To further examine and compare 

downstream mechanisms of mitochondria metabolism in control, typical FRDA, and 

G130V patient fibroblasts, I utilized LC-MS-based isotopologue analysis to measure 

incorporation of 13C-labeled carbon from Glucose to Succinyl Co A as a measure of 

metabolic flux. Consistent with aconitase activity, Krebs cycle metabolic flux is 

significantly decreased in FRDA fibroblasts compared to controls, while G130V 

fibroblasts had increased activity compared to typical FRDA but decreased activity 

compared to controls (Figure 4.3). This suggests that the hypothesized functional 

capacity of G130V FXN42-210 to participate in Fe-S cluster biogenesis has downstream 

effects on both aconitase and Krebs cycle activity as possible contributors to overall 

improved mitochondria function and milder phenotypes, compared to typical FRDA.  

4.4.4 G130V Patients Have Retained Mitochondrial Structure Compared to Typical 

FRDA Patients 

 I further investigated if mitochondria dysfunction at the molecular level was 

consistent with changes in mitochondrial ultrastructure by utilizing electron microscopy to 

visualize mitochondrial ultrastructure in order to compare control, typical FRDA, and 

G130V patient fibroblasts. Disrupted cristae formation and a lack of double membrane 

structures was observed in typical FRDA patient fibroblasts, but maintained in G130V 

patient fibroblasts (Figure 4.4A). A difference in glycogen content was also observed. 

Glycogen levels in typical FRDA patient fibroblasts were significantly decreased 

compared to both control and G130V, while glycogen content in G130V fibroblasts was 
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significantly increased compared to both control and typical FRDA fibroblasts (Figure 

4.4B). This is consistent with evidence of dysregulated glucose metabolism present in 

typical FRDA patients, and supports the improved Krebs cycle metabolic flux in G130V 

fibroblast compared to typical FRDA fibroblasts.  

4.4.5 Mitochondrial Fusion is Disrupted in Typical FRDA Patient Fibroblasts, but 

Preserved in G130V 

 Mitochondrial fusion and fission are necessary events for maintaining 

mitochondria under metabolic or environmental stress. I examined these events in both 

a fixed-steady state and under dynamic real-time conditions. FRDA patient fibroblasts, 

both typical and G130V, exhibit a pattern of mitochondrial fragmentation while control 

fibroblasts maintain linear networks of mitochondria in a fixed-steady state (Figure 4.5). 

However, while mitochondrial fragmentation is present in both typical and G130V patient 

fibroblasts, real-time mitochondria fusion is impaired in typical FRDA patient fibroblasts, 

but maintained in G130V patient fibroblasts (Figure 4.6). This suggests a possible role 

for FXN G130V at the mitochondrial membrane to facilitate fusion and mitochondrial 

maintenance as a contributor to milder phenotype.  
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4.5 Discussion  

 In this chapter mitochondrial functions associated with severe phenotype in 

typical FRDA were compared to that of patients with milder phenotype, carrying the 

G130V FXN missense mutation. Primary fibroblasts from G130V patients have 

increased FtMt immunoreactivity, mitochondrial aconitase activity and Krebs cycle 

metabolic activity compared to typical FRDA primary fibroblasts. They also have retained 

mitochondrial ultrastructure and preserved mitochondrial fusion, both of which were 

disrupted in typical FRDA fibroblasts. Decreased FXN81-210 levels primarily cause 

disease, but levels of this form of frataxin alone are not enough to predict disease 

severity in heterozygous patients with point mutations, as patients with FXNG130V have 

less FNX81-210 levels than typical FRDA patients. Wild Type FXN42-210 has functional 

capacity in participating in Fe-S cluster biogenesis in vitro, and the present study 

suggests that this FXN G130V form has sufficient functional capacity to retain FtMt 

immunoreactivity and mitochondrial aconitase activity, glucose metabolic flux through 

the Krebs cycle, mitochondrial ultrastructure, and preserve mitochondrial fusion, all of 

which was decreased or impaired in typical FRDA patient fibroblasts.  

 There is greater systemic iron deficiency in typical FRDA patients121, compared 

to G130V patients, as measured by serum ferritin levels. FXN deficiency leads to Fe-S 

cluster biogenesis deficiency, further leading to mitochondrial iron overload. It has been 

suggested that the decreased levels of FXN and increased iron within mitochondria lead 

to oxidative stress and associated damage of dorsal root ganglion and spinal sensory 

neurons.23 The protective effects of FtMt, when overexpressed in FXN-deficient cells, 

included decreased mitochondrial iron overload, preserved mitochondrial DNA integrity, 

and increased resistance on stress.20 The observed decrease in FtMt immunoreactivity 
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in typical FRDA fibroblasts is indicative of mitochondrial iron overload, however 

immunoreactivity in G130V patients fibroblasts was comparable to control suggesting 

the G130V mutation provides FXN the ability to handle iron in a way that decreases or 

prevents mitochondrial iron overload.  

 FXN plays a role in Fe-S cluster biogenesis, and aconitase is an Fe-S requiring 

enzyme that participates in Krebs cycle isomerization of isocitrate to citrate. 

Consequently, FXN deficiency leads to decreased activity of Fe-S containing enzymes. 

Decreased aconitase activity has been demonstrated in FRDA patient samples but has 

not been demonstrated in patients with G130V, or other missense mutations. The wild 

type FXN42-210 intermediate form participates in Fe-S cluster biogenesis. The decreased 

level of mitochondrial dysfunction in G130V primary fibroblasts indirectly confirms the 

functionality of FXN42-210, and provides a functional rationale linking the G130V mutation 

to a milder phenotype. G130V appears to offer additional functional capacity in the 

FXN42-210 form that is otherwise not present to typical FRDA patients. The increased 

aconitase activity, glucose metabolic flux through Krebs cycle, and mitochondrial fusion 

all support functional capacity of FXN42-210 with G130V mutation to participate in Fe-s 

cluster biogenesis and functional capacity at the mitochondrial membrane, leading to 

healthier mitochondria and improved cell vitality, further contributing to milder phenotype 

in these patients.  
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Figure 4.1 Decreased mitochondrial ferritin in as absent in G130V patient fibroblasts. 
Mitochondrial ferritin levels in primary human fibroblasts from control (CTRL), FRDA, 
and G130V patients. A. Confocal microscopy images of patient fibroblasts (CTRL, 
FRDA, and G130V) that were fixed and stained using primary anti-mitochondrial ferriting 
antibody and secondary Alexa Fluor 488 antibody. DAPI was also used as a nuclear 
stain. B. Quantification of mitochondrial ferritin immunoreactivity average intensity.  (**) = 
P < 0.05.  
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Figure 4.2 Increased Mitochondria Aconitase Activity in G130V FRDA patient fibroblasts. 
Quantification of mitochondrial aconitase activity (millimunits/mL) from control, FRDA, 
and G130V fibroblasts, normalized to control.  (***) = P < 0.0005. 
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Figure 4.3 Increased TCA metabolic activity in G130V FRDA patient fibroblasts. 
Quantification of percent labeled [13C2}-Succinyl Co A following treatment of control, 
typical FRDA, and G130V fibroblasts with [13C6]-Glucose for 3 hours, normalized to 
control.  (***) = P < 0.0005. 
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Figure 4.4 G130V patients have retained mitochondria structure and increased 
glycogen. A. Electron microscopy images of control, typical FRDA, and G130V 
fibroblasts at 75,000x. B. Quantification glycogen content normalized to control. (***) = P 
< 0.0005. 
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Figure 4.5 Mitochondria fragmentation in FRDA patient fibroblasts. Confocal microscopy 
images of patient fibroblasts (CTRL, FRDA, and G130V) transfected with mito-GFP and 
fixed. DAPI was also used as a nuclear stain.  
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Figure 4.6 Mitochondria fusion is preserved in G130V patient fibroblasts. Time-lapse 
images of Control, typical FRDA, and G130V fibroblasts co-transfected with mito-
DsRed2 and mito-PAGFP, activated for 5 seconds and imaged for 2 minutes.  
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Supplemental Figure 4.1 Confocal microscopy images of control, typical FRDA, and 
G230V fibroblasts cotransfected with WT FXN and mitoGFP, fixed, and stained using a 
primary anti-HA antibody to detect exogenous FXN only and secondary antibody Alexa 
Fluor 568. DAPI was also used as a nuclear stain.  
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Chapter 5: Conclusions and Future Directions  
 

5.1 Conclusions  

 In this thesis, I sought to understand the mechanism by which disease-

associated missense mutation lead to mutation-selective phenotypes in FRDA by 

investigating the effects of FRDA-associated missense mutations on FXN import into the 

mitochondria and FXN processing, examining multiple features of mitochondria function 

associated with severe typical FRDA phenotype and compared it to that of patients with 

milder phenotype carrying the G130V FXN missense mutation.  

 The effects of FRDA-associated missense mutations on FXN import into the 

mitochondria were first investigated by co-transfection of FXN variants containing a 

C-terminal HA tag and mito-GFP in HEK 293 cells. With the exception of L106S, a 

protein folding mutation that produces no protein, all variants: R165C, W155R, I154F, 

G130V, and G137V co-localized with mito-GFP with a Pearson's correlation coefficient 

greater than 0.98 and retained their mitochondria localization. FRDA patients carrying a 

missense mutation generally have lower mature FXN81-210 levels than typical FRDA 

patients. This is consistent with the decreased immunoreactivity in I154F, G130V, and 

G137V by immunocytochemistry and western blot. To further investigate the decreased 

FXN81–210 levels of particular FXN-mutant proteins, subcellular fractionation and 

separation of the soluble and insoluble mitochondrial pellet was performed. R165C or 

W155R resulted in FXN81–210 levels comparable to WT, while transfection of I154F or 

G130V produced lower levels of FXN81–210 and increased levels of FXN42–210, suggesting 

these FXN variants are not processed readily from FXN42–210 to the FXN81–210 form. 
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Increased ratios of insoluble to soluble FXN42–210 were observed, suggesting these 

proteins remain associated with the insoluble inner mitochondrial membrane rather than 

being released into the soluble portion of the mitochondrion. To examine the mechanism 

by which I154F and G130V impair FXN processing, co-immunoprecipitation was 

performed to study the strength of the interaction between FXN and MPP. FXN42–

210 forms of I154F and G130V are more readily co-immunoprecipitated by anti-MPP than 

the FXN42–210 form of WT, R165C, and W155R proteins, suggesting stronger attachment 

between these variants and MPP. I next modeled the approach of traditional therapies to 

increase FXN levels using the proteasome inhibitor MG132. While I154F and G130V 

FXN1–210 and FXN42–210 levels increased, MG132 treatment did not increase FXN81–

210 levels suggesting that increasing FXN81–210 cannot be achieved with simple 

overexpression of precursor FXN. Conclusively, the significance of these findings was 

analyzed in patient-derived cells including Controls, Typical FRDA, and G130V patients, 

and the processing of native FXN was examined by western blot. Indeed, the ratio of 

FXN42–210 to FXN81–210 was increased in primary FRDA G130V patient fibroblasts, and 

large globular structures, consistent with the increased insoluble FXN42–210 form detected 

by western blot and overexpression studies, was observed. We then sought to establish 

whether patients carrying missense point mutations displayed distinct clinical 

abnormalities that could be related to the altered processing observed in vitro. Patients 

carrying G130V mutations have significantly lower occurrence of cardiomyopathy, 

scoliosis, and diabetes, the most severe components of the disease, compared to 

patients with other mutations, and patients with an I154F mutation fell between the 

phenotypic severity of G130V and other point mutations. We hypothesize that the 

incompletely processed FXN42–210 carries some residual activity. This form is located in 

the mitochondria, and others suggest that FXN42–210 can perform Fe-S cluster synthesis 
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as well as participate in cysteine desulfurase activity as efficiently as FXN81–210. Thus, 

the higher levels of FXN42–210 associated with G130V and I154F could lead to the milder 

phenotype if this intermediate form is functional. 

 In addition to these disease-associated mutations, a patient who carries a novel 

W168R missense mutation, and 1133 expanded GAA repeats on the opposite allele, 

with extremely low levels of mature FXN81-210 levels and an especially severe phenotype 

was presented. Based on the amino acid position 168, it is unlikely to alter FXN levels by 

misfolding. In order to understand the mechanism by which W168R contributes to 

severe phenotype, FXN import into the mitochondria, FXN processing, as well as FXN 

interaction with MPP was investigated. W168R is expressed predominantly as the 

intermediate FXN42-210 form, with little to no expression of the mature FXN81-210 form 

consistent with patient samples, its localization to the mitochondria is not impaired, and 

modeling traditional therapies to increase FXN1-210 levels does not increase mature FXN 

levels. The G130V mutation, associated with milder phenotype, is also expressed 

predominantly as the intermediate FXN42-210 form, with very low mature FXN81-210 form. 

However, we believe the phenotypic differences likely to reflect mutation-specific 

functional differences leading to mutation-specific phenotypes.  

 The mechanism by which G130V results in a milder FRDA phenotype is 

unknown, thus I investigated multiple features of mitochondria function associated with 

severe, typical FRDA phenotype including enzymatic activity, energy metabolism, fusion 

and ultrastructure, and compared it to that of patients with milder phenotype, carrying the 

G130V FXN missense mutation. Mitochondrial ferritin levels were first examined by 

Immunohistochemistry. As expected, decreased mitochondria ferritin immunoreactivity 

was present in typical FRDA patient fibroblasts, but little to no change, compared to 
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controls, was found in G130V patient fibroblasts, suggesting the functional capacity of 

G130V to handle iron in a way that decreases or prevents mitochondria iron overload. 

Next, mitochondrial aconitase activity was compared with significantly decreased activity 

in typical FRDA fibroblasts, and significantly increased activity in G130V fibroblasts 

compared to typical FRDA patients and no significant difference compared to controls. 

Downstream mechanisms of mitochondria metabolism were then examined by LC-MS-

based isotopologue analysis to measure incorporation of 13C-labeled carbon from 

Glucose to Succinyl Co A as a measure of metabolic flux. Consistent with aconitase 

activity, Krebs cycle metabolic flux was significantly decreased in FRDA fibroblasts and 

significantly increased in G130V patients compared to typical FRDA patients and no 

significant difference compared to controls. This supports the hypothesized functional 

capacity of G130V FXN42-210 to participate in Fe-S cluster biogenesis and suggest 

G130V has downstream effects on both aconitase and Krebs cycle activity as possible 

contributors to overall improved mitochondria function and milder phenotypes, compared 

to typical FRDA.  Subsequently, I investigated if the disrupted molecular mechanisms 

were consistent with disrupted mitochondria structure by utilizing electron microscopy 

and real-time imaging. Disrupted cristae formation and a lack of double membrane 

structures was observed in typical FRDA patient fibroblasts, but maintained in G130V 

patient fibroblasts. Decreased glycogen content was also observed in typical FRDA 

fibroblasts consistent with evidence of dysregulated glucose metabolism in FRDA 

patients. Mitochondrial fusion was examined under fixed-steady state and dynamic real-

time conditions. FXN deficiency leads to mitochondria fragmentation in typical FRDA and 

G130V fibroblasts, while control fibroblasts maintained linear networks of mitochondria in 

a fixed-steady state. However, real-time mitochondria fusion is impaired in typical FRDA 

patient fibroblasts, but maintained in G130V patient fibroblasts, suggesting a possible 
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role for G130V at the mitochondria membrane to facilitate fusion and mitochondria 

maintenance as a contributor to milder phenotype. Taken together, fibroblasts from 

G130V patients overall appear to have improved mitochondria function compared to 

typical FRDA patients, thus providing a rationale linking G130V functional capacity with 

milder phenotype.  
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5.2 Future directions  

 In this thesis I have identified mechanisms that underlie mutation-selective 

phenotypes in FRDA patients with missense mutations. G130V, I154F, and W168R, 

impair processing from intermediate FXN42–210 to mature FXN81–210 form, and increased 

levels of the G130V FXN42–210 is associated with milder phenotypes, not only in 

overexpression studies using mammalian systems, but also in primary fibroblasts from 

FRDA patients. While others suggest that WT FXN42–210 can perform Fe-S cluster 

synthesis as well as participate in cysteine desulfurase activity as efficiently as WT, this 

is true also for the FXN42–210 form of W155R, a characterized dysfunctional mutation. The 

W155R mutation does not impair processing and is predominantly expressed as mature 

FXN81–210, therefore the severe phenotype could be associated with the dysfunctional 

FXN81–210 in addition to GAA expansion on the other FXN allele. We believe the 

incompletely processed FXN42–210 of G130V carries some residual activity, thus higher 

levels of FXN42–210 associated could lead to the mild phenotype of patients if this 

intermediate form is functional. Further experiments examining the functional capacity of 

the endogenous FXN42–210 form missense mutation may help clarify these possibilities. 

First, in vitro studies using site-directed mutagenesis of FXN42-210 constructs can be used 

to establish if G130V and W168R can perform Fe-S cluster synthesis as well as 

participate in cysteine desulfurase activity. If there were functional differences that 

correlated with disease-associated phenotypes it would provide a functional mechanism 

by which these mutations lead to the mutation-selective phenotypes.  

 I also showed that traditional therapies to increase precursor FXN1-210 levels 

would not increase mature FXN81-210 levels. Patients with missense mutations carry the 

mutation on one FXN allele and GAA expansion on the other. If this approach increased 
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FXN81-210 levels of the GAA expanded FXN allele only by 20% and it was sufficient to 

delay disease progression, then it would still be beneficial if the patient does not carry a 

missense mutation characterized as dysfunctional. Furthermore, increasing G130V 

FXN1-210 resulted in increased FXN42-210. If the G130V intermediate FXN42-210 form were 

functional, it would also be an additional beneficial to the patients.  

 Patients with the G130V mutation have significantly lower occurrence of 

cardiomyopathy, scoliosis, and diabetes, and they surpass other point mutation-carrying 

subjects on composite performance measures accounting for disease duration. Finally, 

multiple features of mitochondria dysfunction associated with severe FRDA phenotype 

including: mitochondria ferritin levels, mitochondria aconitase activity, Krebs cycle 

metabolic activity, and mitochondria ultrastructure using primary FRDA fibroblasts were 

investigated. By comparing typical FRDA patients with G130V patients I sought to 

assess molecular mechanisms that may underlie milder phenotype in G130V patients. 

 Many studies have implicated a role for FXN in iron metabolism, storage and 

iron-sulfur cluster biogenesis. Mitochondrial iron accumulation is a hallmark of Fe-S 

deficiency. Although its role is disease pathophysiology is uncertain, increased iron 

within mitochondria could have downstream effects leading to oxidative stress and 

associated damage of dorsal root ganglion and spinal sensory neurons. Mitochondria 

ferritin expression can reduce reactive oxygen species (ROS) levels, increase ATP 

levels and the activity of mitochondrial Fe-S enzymes, positively effect cell viability, 

reduce cytosolic and mitochondrial labile iron pools, rescue respiratory deficiency, 

reduce mitochondrial iron accumulation, increase resistance to oxidants and protect cells 

from mitochondrial DNA damage. Decreased mitochondrial ferritin was observed, which 

is associated with iron overload in typical FRDA fibroblasts. G130V patient fibroblasts 



	72	

maintained mitochondrial ferritin levels comparable to controls, suggesting that G130V 

mutation has the ability to handle iron in a way that decreases or prevents mitochondria 

iron overload. To examine this further, a colorimetric assay could be used to measure 

iron levels from whole cell lysates and isolated mitochondria from patient fibroblasts. An 

acidic buffer could be used to release iron in order to bind a chromagen resulting in a 

colorimetric (593 nm) product, proportional to the iron present. A number of compounds 

currently in the FRDA research pipeline are designed to decrease iron toxicity. This 

approach could also be used to compare the effectiveness of these drugs in typical 

FRDA and G130V patients, further supporting the hypothesized functional capacity of 

G130V FXN42-210 to participate in Fe-S cluster synthesis and explain the overall improved 

mitochondria function as a result of increased FXN function.  

 FXN has also been implicated in energy metabolism and ATP production. The 

increased mitochondria aconitase enzymatic activity and Kreb cycle metabolic activity in 

G130V fibroblasts further supports the hypothesized functional capacity of FXN42-210 with 

G130V mutation to participate in Fe-S cluster biogenesis and lead to downstream effects 

on metabolism and milder phenotype compared to typical FRDA. The impaired 

mitochondria fusion under normal conditions in typical FRDA fibroblasts suggests FXN 

deficiency leads to downstream effects functions both within the mitochondria and at the 

membrane. Mitochondria number and electron chain complex activity is decreased as a 

result of FXN deficiency in typical FRDA. FXN overexpression reverses mitochondria 

fragmentation in both typical FRDA and G130V fibroblasts at steady state conditions 

(Supplemental Figure 4.1). The question remains if increasing FXN levels will also 

improve mitochondria enzymatic and metabolic activity, or if FRDA-associated FXN 

deficiency over time leads to irreversible dysfunction. In order to assess if FXN has a 

direct role in reversing fragmentation associated with FRDA pathology, fibroblasts could 
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be treated with mitochondria fission inhibitor, such DRP1 inhibitor Mdivi-1, to see if the 

reversed fragmentation is consistent. Following fragmentation reversal mitochondria 

aconitase activity and [13C]-isotopologue analysis for Krebs cycle metabolic activity 

could be measured to assess any improvement compared to typical FRDA baseline as 

well as control and G130V. If there were no improvement that would suggest that other 

therapies with mitochondria targets, such as PGC1 alpha up-regulators for mitochondria 

biogenesis or Nrf2 activators, might be required. FXN deficiency is also associated with 

decreased glucose incorporation and increased palmitate-derived acyl-CoA thioesters 

formation in FRDA platelets compared with controls. Fibroblasts are limited as a model 

system for studying metabolism, whereas platelets are metabolically active and analyte-

rich, and used for biomarker studies to monitor new therapeutic approaches for the 

treatment of FRDA. It would be interesting to assess these functional differences Krebs 

cycle, lipid and fatty acid metabolism pathways in platelets from control, typical FRDA, 

and G130V patients to assess correlation between metabolism and phenotype.  
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