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Machine Learning Methods To Identify Hidden Phenotypes In The
Electronic Health Record

Abstract
The widespread adoption of Electronic Health Records (EHRs) means an unprecedented amount of patient
treatment and outcome data is available to researchers. Research is a tertiary priority in the EHR, where the
priorities are patient care and billing. Because of this, the data is not standardized or formatted in a manner
easily adapted to machine learning approaches. Data may be missing for a large variety of reasons ranging from
individual input styles to differences in clinical decision making, for example, which lab tests to issue. Few
patients are annotated at a research quality, limiting sample size and presenting a moving gold standard.
Patient progression over time is key to understanding many diseases but many machine learning algorithms
require a snapshot, at a single time point, to create a usable vector form. In this dissertation, we develop new
machine learning methods and computational workflows to extract hidden phenotypes from the Electronic
Health Record (EHR). In Part 1, we use a semi-supervised deep learning approach to compensate for the low
number of research quality labels present in the EHR. In Part 2, we examine and provide recommendations
for characterizing and managing the large amount of missing data inherent to EHR data. In Part 3, we present
an adversarial approach to generate synthetic data that closely resembles the original data while protecting
subject privacy. We also introduce a workflow to enable reproducible research even when data cannot be
shared. In Part 4, we introduce a novel strategy to first extract sequential data from the EHR and then
demonstrate the ability to model these sequences with deep learning.
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ABSTRACT 

MACHINE LEARNING METHODS TO IDENTIFY HIDDEN PHENOTYPES IN 

THE ELECTRONIC HEALTH RECORD 

Brett Kreigh Beaulieu-Jones 

Jason H. Moore  

Casey S. Greene 

 

The widespread adoption of Electronic Health Records (EHRs) means an 

unprecedented amount of patient treatment and outcome data is available to researchers. 

Research is a tertiary priority in the EHR, where the priorities are patient care and billing. 

Because of this, the data is not standardized or formatted in a manner easily adapted to 

machine learning approaches. Data may be missing for a large variety of reasons ranging 

from individual input styles to differences in clinical decision making, for example, 

which lab tests to issue. Few patients are annotated at a research quality, limiting sample 

size and presenting a moving gold standard. Patient progression over time is key to 

understanding many diseases but many machine learning algorithms require a snapshot, 

at a single time point, to create a usable vector form. In this dissertation, we develop new 

machine learning methods and computational workflows to extract hidden phenotypes 

from the Electronic Health Record (EHR). In Part 1, we use a semi-supervised deep 

learning approach to compensate for the low number of research quality labels present in 

the EHR. In Part 2, we examine and provide recommendations for characterizing and 

managing the large amount of missing data inherent to EHR data. In Part 3, we present an 

adversarial approach to generate synthetic data that closely resembles the original data 

while protecting subject privacy. We also introduce a workflow to enable reproducible 
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research even when data cannot be shared. In Part 4, we introduce a novel strategy to first 

extract sequential data from the EHR and then demonstrate the ability to model these 

sequences with deep learning.   
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Chapter 1.   An introduction to extracting phenotypes using machine learning in 

the Electronic Health Record. 

 

Portions of this chapter were adapted from: Beaulieu-Jones, Brett K. “Machine 

Learning for Structured Clinical Data.” To appear in Advances in Biomedical Informatics 

(Book Editors: Dawn Holmes and Lakhmi Jain), Springer. Preprint: 

https://arxiv.org/abs/1707.06997 

 

   Motivation for using machine learning on the structured Electronic 

Health Record 

Precision medicine has the potential to substantially change the way patients are 

treated in many facets of health care. Precision medicine is the idea of delivering 

personalized treatment and prevention strategies by considering the holistic patient, 

including their genetics, environment, and lifestyle. Machine learning using structured 

clinical data will likely play a large role in the success or failure of precision medicine. 

Specifically, machine learning using structure data can help in finding associations 

between a patient’s genotype and phenotype, identifying similar patients and evaluating 

and predicting the efficacy of different clinical treatment strategies on a personalized 

level. 

The amount of data collected in the clinic has rapidly expanded, the first EHRs are 

now more than 20 years old and the United States federal government mandated 

meaningful use of EHRs by 2014. According to the American Hospital Association, by 
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2015, 96% of acute care hospitals had implemented a certified EHR. Correspondingly, 

several top research institutions across the country have established departments or 

institutes in biomedical informatics using the EHR as a major data source in the past 5 

years. 

Smartphones, wearable devices and in-clinic diagnostic tools offer the ability to 

stream accurate measurements in real time. AliveCor received FDA approval in 2012 for 

its iPhone-based heart monitor using machine learning to detect Atrial Fibrillation in 

seconds. Billions of dollars in venture capital are currently being invested in companies, 

such as Grail, Foundation Medicine, and Guardant health, promising less invasive 

biopsies, or liquid biopsies, using machine learning to classify patients from circulating 

tumor cells in the bloodstream. Preventative wellness clinics, such as Forward, are 

emerging to characterize and track what it means to be healthy.  

These are only a few examples of the many opportunities centered on patient data. 

Data for both evidence-based clinical decision making and computational research is 

becoming increasingly available and we must now develop new methods to preprocess 

and analyze this data at a matching rate. 

   Common Uses of Machine Learning for Structured Clinical Data 

Each time a patient interacts with a health system, actions, notes, and measurements 

are recorded in the EHR. This wealth of data has made the EHR the primary source of 

structure clinical data. Three promising research applications of EHR data are: 

1.) Patient clustering and disease stratification. 

2.) Electronic phenotyping for genetic studies. 

3.) Advising clinical treatment strategies. 
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These tasks can be performed using machine learning, but each task requires careful 

preprocessing of data and appropriate phrasing of the problem to utilize traditional 

machine learning methods. The nature of EHR data places emphasis on unsupervised 

clustering and semi-supervised classification. In this section, we discuss these common 

tasks and show examples where researchers have utilized machine learning effectively to 

guide discovery. There exist many great resources for understanding machine learning 

approaches as applied to general problems (1). We concentrate on how to position 

relevant clinical questions and the challenges specific to the EHR that need to be solved 

in order to apply these powerful techniques.  

1.2.1.   Patient Clustering and Disease Stratification 

As we learn more about the mechanisms and etiology of a disease, our diagnoses can 

become more precise, leading to the creation of disease subtypes. Historically, cancers 

were diagnosed based on their occurrence location and their reaction to different 

treatments. As the mechanisms of cancer are better understood, they are further 

categorized by their physiological nature. The progression of subtypes in lung cancer 

illustrates the increases in resolution over time for a previously poorly defined disease 

(2). Beginning with a single diagnosis based on occurrence in the lung, it was later 

differentiated as small cell lung cancer and non-small cell lung cancer (3, 4). Non-small 

cell lung cancer was then broken up into squamous cell carcinoma, adenocarcinoma, and 

large cell carcinoma. Today these subtypes continue to be broken up based on the genetic 

locations and pathways of associated risk variants.  

What happens when physiological differences cannot easily be used to subtype 

disease? This is true with several metabolic disorders, for example, metabolic syndrome 
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has been redefined numerous times. It is associated with a wide range of comorbidities 

and presents in a clinically heterogeneous manner. These comorbidities, including 

coronary heart disease, diabetes, and stroke, represent an oversized risk to public health 

and increasingly unwieldy burden on the health care system. Despite this, metabolic 

syndrome’s predictive value for cardiovascular events, disease prediction and progression 

is disputed and may not outperform the individual components that define it (5). While 

the concept of identifying patients at high risk of developing diseases such as heart 

disease and diabetes for early intervention is an important one, metabolic syndrome in its 

current form fails to do this effectively.  

Li et al. demonstrated the ability to identify disease subtypes of patients with a 

metabolic disorder, type 2 diabetes (6). To do this they performed a topological analysis 

of 11,210 patients with type 2 diabetes at Mount Sinai Medical Center in New York. This 

topological analysis constructed a network of patients by connecting those most similar to 

each other. Using this they found three unique subtypes. Subtype 1 demonstrated the 

traditional observations of type 2 diabetes, hyperglycemia, obesity, and eye and kidney 

diseases. Subtype 2’s main comorbidity was cancer, and subtype 3’s unique 

comorbidities were neurological diseases. These subtypes are likely enriched for 

etiological differences; the disease likely operates differently in someone who develops 

cancer than someone who develops kidney disease. By developing a machine learning 

classifier to identify which subtype a patient is in as early as possible, clinicians may be 

able personalize treatment to reduce the odds of developing these more serious 

comorbidities. 
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Multiple sclerosis illustrates an area machine learning for disease stratification could 

be particularly useful. Multiple sclerosis was traditionally subtyped into Relapsing-

Remitting MS and Progressive MS. In 2014, it was recommended that these subtypes be 

further divided into six total subtypes (7). Unfortunately, the current strategies for 

determining subtype and thus treatment strategy require looking at the progression of the 

disease. This is essentially a retrospective diagnosis and means personalized treatment 

plans cannot be started until progression has been observed. Could unsupervised 

clustering be used to identify subtypes earlier on?  

1.2.2.   Electronic phenotypes for Genetic Associations 

Genetic associations examine whether a genetic variant is associated with a specific 

trait. This specific trait, a phenotype, can be a moving target when dealing with the 

complexity of human disease. The trait is often a human defined disease. Those with the 

disease are labeled the case and those without the disease are considered controls. Early 

genetic associations using the electronic health record were performed with raw 

International Classification of Diseases (ICD) codes. ICD codes are recorded by 

physicians when diagnosing a patient with a condition, and are used to ensure proper 

billing and insurance reimbursement. ICD codes are published and updated by the World 

Health Organization and are primarily used for clinical billing purposes. Despite ICD-10 

being initially published in 1994, ICD-9 codes are still commonly used in both clinical 

and research settings.  

While ICD codes provide a clear, discrete endpoint for genetic associations, the use 

of billing codes can introduce unintentional biases to analyses. An ICD code may be 

added to an EHR in order to issue and receive insurance reimbursement for a test to 
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screen for the disease the ICD code represents. In this case, not only is the timing of 

diagnosis difficult to determine, but solely looking at the ICD codes for a patient is likely 

to introduce false positives. In addition, certain ICD codes are more easily reimbursed 

than others. When a clinician determines that a patient requires a treatment or test to 

increase their odds of a successful outcome, the clinician is incentivized to choose the 

ICD code most likely to allow them to effectively treat their patient.  

Phenotype algorithms can be developed using the structured EHR to leverage both 

ICD codes and the rest of the of a patient’s record. The eMERGE project is a national 

network which has deployed phenotype algorithms for over 40 diseases, over 500,000 

EHRs and 55,000 patients with genetic data. Many of the phenotype algorithms are 

simple rules-based systems, for example: Type 2 Diabetes (Figure 1.1). 
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Figure 1.1: Phenotype Algorithms for Type 2 Diabetes Mellitus.  

A.) Case selection from the EHR. B.) Control Selection from the EHR. Adapted from: (8). 

 

An approach to study phenotype-genotype associations from the EHR are Phenome-

wide association studies or PheWAS (8). PheWAS use EHRs to define a phenome that 

can be linked back to individual genetic variants. The approach can discover gene-disease 

associations while identifying pleiotropic effects of individual SNPs. PheWAS generally 

uses the ICD9 codes to construct a phenotype. While primarily used for billing, these 

codes provide a set of discrete variables that can represent many phenotypes for a patient 

at the same time, providing greater resolution. Besides the repurposing of billing codes, a 
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major challenge of PheWAS is in understanding the functional mechanisms at work 

behind GWAS SNP matches. Stratification by the 4,841 different codes creates wide 

data, presenting statistical challenges in achieving adequate power. This challenge of 

achieving adequate power will be exacerbated by the transition to ICD10, with less 

historical data built up and the potential for over 16,000 codes. Continuing to increase 

open data access will allow researchers to utilize a more accurate phenotypic 

representation while lessening the burden of statistical challenges. Coding systems, 

unlike patient notes or genomic data should be easier to anonymize, aggregate, and 

distribute. 

ICD billing codes can be biased, as evidenced by phenotype algorithms having 

multiple steps to catch errors for both case and control status, using billing codes alone 

may cause misclassification of phenotypes. The misclassification of phenotypes 

substantially reduces the power to detect linkage in case-control studies. With 1% 

phenotypic misclassification up to 10% of the power is lost, and with 5% phenotypic 

misclassification, the power is reduced by approximately two-thirds (9–11). 

Misclassification can occur for a variety of reasons including misdiagnosis/clinical error, 

clerical error, or lack of scientific knowledge about the disease in question. 

Labbe et al. showed increased linkage by clustering lifetime symptoms in 

schizophrenia and bipolar disease to form more homogenous phenotypes. Separating 

cases by the symptoms of psychiatric diseases compensates for the inability to subtype 

these diseases by physical properties (12). This is important due to the deficit of 

physiological understanding for these diseases. Labbe et al. also included familial 

information to understand the heritability of these diseases. When looking at subtypes 
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that show a strong familial aggregation they observed higher linkage scores. By looking 

at ancestral histories for subtypes, the expected heritability could be better estimated 

resulting in a reduction of “missing heritability.”  

Phenotypic subtyping was also used successfully in the analysis of genetic variants 

responsible for the severe development regression and stereotypical hand movements of 

Rett syndrome. Causal mutations were found in the FOXG1 and MECP2 genes and 

deletions at the 22q11.2 locus (13).  

Each of these examples point towards the promise of using machine learning to 

cluster patients based on their EHRs to identify disease subtypes or more homogenous 

groups of patients for use in association studies. 

1.2.3.   Clinical Recommendations 

The availability of data and advances in biomedical informatics have helped to make 

medicine increasingly evidence based and in some cases entirely data driven. Clinicians 

and researchers now have the ability to leverage millions of data points when designing 

and determining treatment best practices. The New England Journal of Medicine recently 

held the SPRINT data analysis to “use the data underlying a recent article to identify a 

novel clinical finding that advances medical science.”  The original clinical trial sought to 

see whether intensive management of systolic blood pressure (<120 mm Hg) was more 

effective than standard management (<140 mm Hg). The original trial was stopped early 

due to the success of the intensive management strategy in reducing cardiovascular 

events. The data from the trial was released as a challenge where teams used machine 

learning approaches (primarily rules based) to provide personalized recommendations. 



 

 10 

More personalized treatment strategies are a popular use of machine learning in the 

EHR. This can be driven by genomics (pharmacogenomics), or simply by sub setting 

patients based of attributes (race, BMI, etc.). Wiley et al. demonstrate the importance of 

training an algorithm on a population similar to the application population (14). In their 

case it was necessary to extract the percent African ancestry from the genome instead of 

self reported race in order to improve the model fit. 

Due to the inherent risk of adjusting clinical treatment strategies, many of the early 

applications of machine learning in health systems have been seen in academic research 

(retrospective analysis, drug development, pharmacogenomics) and for things like 

resource usage. For example, how likely is a patient coming into the ER to need an ICU 

bed? Increasingly machine learning methods are likely to be applied to clinical decisions 

including providing prognosis information for shared decision making strategies. Deep 

learning, in particular, is becoming an increasingly tool for drug discovery and 

development (15).  

  Challenges to Using Machine Learning on Structured Clinical Data 

1.3.1.   Limited research labeled “gold-standards” 

 
Large institutions and health care systems can have EHRs containing millions of 

patients and billions of measurements. Despite the size of these data, electronic 

phenotyping requires a gold standard to validate accuracy. This gold standard often 

requires time consuming, manual clinician review and is thus expensive.  

In addition, the selection of cases and controls can unintentionally create biases in 

downstream algorithms and analyses. It is often easiest to select the most severe cases 
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and the healthiest controls. In these circumstances researchers can have the greatest 

confidence they are accurately selecting a true case or control. Unfortunately, this creates 

a biased training set where it is difficult to differentiate between less severe cases and less 

healthy controls. Figure 1.2 shows an illustration of a simulated dataset where the first 

two principal components happen to represent the degree of the case phenotype. If the 

most severe cases are selected, a classifier trained to distinguish between cases and 

controls is unlikely to generalize well. If less severe cases are chosen, there may be issues 

with mislabeled cases.  

 

Figure 1.2: Example of case vs. control selection.  

Simulated disease severity plot where the 2 principal components stratify patients according to 
severity. 

Healthy
Sick
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An example of another bias can be seen in the Type 2 Diabetes Mellitus algorithm, 

controls must have at least 1 glucose measurement (Figure 1.1 B). For a young patient, 

this means that a clinician must have had reason to suspect that the patient’s glucose 

could be abnormal and thus could bias controls to patients who “look” like they are at a 

high risk for developing Type 2 Diabetes.  

Because patients move between health systems, a patient may not be diagnosed in 

the system they are treated in and may only have a partial history. Some methods for 

controlling for incomplete histories can result in smaller sample sizes. It is common to 

include only patients who have a visit in the system prior to the diagnosis of the 

phenotype of interest. While this can help to determine the diagnosis date for a disease, it 

excludes anyone who was diagnosed on their first visit to a particular health system. 

1.3.2.   Missing Data 

The average patient is unlikely to have measurements for the clear majority of fields 

in the EHR. It does not make sense logistically or economically to administer every test 

to a seemingly healthy patient. There are three primary types of missing data:  

1.)  Missing Completely at Random (MCAR) – when data is missing in a 
completely unrelated way to the values of both the observed and the 
unobserved data. 
 

2.)  Missing at Random (MAR) – when the data is missing based on the observed 
data, when other fields in the EHR indicate whether the value will be present 
or absent. 

 
3.)  Missing Not at Random (MNAR) – when the data is missing based on the 

values of the unobserved data. 
 

Figure 1.3 shows the ability to use a random forest to predict whether a lab value will 

be present or absent based on other lab values. Unsurprisingly data that is MCAR cannot 
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be predicted (Figure 1.3 A), and data that is either MAR or MNAR (Figure 1.3 B, 1.3 C) 

can be predicted with an accuracy significantly greater than random. In practice, most 

missing data in the EHR tends to be of the MAR variety. Clinicians must decide which 

measurements are relevant and fiscally responsible, irrelevant tests are wasteful and it 

does not make sense to subject patients to unnecessary discomfort. The clinician is 

making these decisions based on the observations they make, so when data is missing it is 

related to the observed data.  

 
Figure 1.3: Predicting the presence of data under different missing data mechanisms. 

A.) Data that is missing completely at random cannot be predicted. B & C.)  Data that is missing 
at random and missing not at random can be predicted at better than random accuracy (to appear 
(16)). 

 

 
MCAR data is less likely to present issues to downstream analyses than data that is 

either MAR or MNAR, but if not handled correctly all three types of missing data can 
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introduce unintentional biases to all sorts of downstream analyses including machine 

learning. Machine learning algorithms often expect a complete matrix as input and are 

not designed to handle null values. This often leads to researchers performing one of 

three options:  

1.)  Perform feature selection of relevant features and use only complete cases, or 
patients that have values for all features.  

 
2.)  Modify the algorithm to accept null inputs (often by ignoring them) or 

 
3.) Perform imputation to predict what the value for a feature would be.  

 
 

Each of these options have several pros and cons and can have unintended effects on 

machine learning. When performing complete case analysis after feature selection, the 

features included can lead to including either more severe cases or cases that were harder 

to diagnose. Imagine a disease that is diagnosed by a laboratory measurement where 

values over 10 conclusively indicate you have the disease but values between 8 and 10 

require an additional test. If the additional test is included in the features selected, the 

complete cases are now only the patients that were harder to diagnose. When modifying 

an algorithm to accept null inputs, the researcher needs to be careful that the algorithm 

does not disproportionately learn to depend on patients that have all of the measurements 

or only the most complete measurements. If the algorithm relies on patients with all of 

the measurements, many of the same issues that arise in complete case analysis repeat. If 

the algorithm learns to ignore rare measurements it can miss signal. For example, in an 

analysis of different treatment options, say 40 of 10,000 patients suffered a fairly rare but 

severe adverse event. Without careful monitoring the algorithm may not place enough 

importance on this feature despite the fact this outcome is disproportionately important. 



 

 15 

 

Figure 1.4: Comparison between spike-in accuracy and variation between imputation runs. 

Imputation can be effective in the EHR because many missing values can be inferred 

by omission and just knowing whether a value was present or absent can be useful. If a 

patient has never had a chest x-ray, it is unlikely that their physician suspects a broken rib 

cage. This information can be provided to downstream machine learning algorithms by 

performing imputation. It is, however, very important to carefully analyze the results of 

imputation. Oftentimes much can be learned simply by looking at which methods are the 

most accurate. Direct accuracy can be measured by spiking in missing values to replace 

known values, imputing these spiked-in values and measuring their difference from the 

real values. Despite this direct accuracy should only be used as a benchmark, and it is 

important to analyze the effect of imputation on the downstream analyses you are 

performing (Figure 1.4).  

For example, mean imputation may perform strongly in an analysis using spiked-in 

missingness but remove all variance from the imputed values for a feature (Figure 1.4 C). 

Other evaluation criteria, such as, comparing the variance between imputed values of 

different imputation runs and the difference between imputed values and real values. 

Ideally these values would be highly correlated in order to maintain the variance 
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structure. Popular imputation methods for EHRs include K-Nearest Neighbors, Singular 

Value Decomposition and Multiple Imputation by Chained Equations. 

All three of these strategies for handling missing data may introduce bias when 

performing EHR-based analyses. It is important to consider potential effects and ideally 

to utilize multiple strategies and examine the differences. 

1.3.3.   Privacy, Reproducibility, and Data Sharing 

Patient privacy needs to be a focus of any secondary use of EHRs. Because a patients 

EHR is ‘de-identified’ does not mean that it is anonymous. Latanya Sweeney 

demonstrated this emphatically when the Massachusetts Group Insurance Commission 

released de-identified data on state employees (17). These records included each hospital 

visit and Sweeney re-identified several patients including the former Governor of 

Massachusetts. Sweeney did this from his birth date, zip code and sex alone, and to prove 

a point mailed the Governor a copy of his personal records. The task of re-identification 

has been shown possible in several other cases where data holders attempted to share 

their data, including the Netflix challenge. Narayana and Shmatikov were able to de-

anonymize users in the Netflix challenge by linking their viewing histories with popular 

movie review sites. For users who had rated more than 6 movies, they were able to do 

this with greater than 90% accuracy (18). This, in part, led to Netflix canceling the 

second iteration of its popular recommendation contest following a privacy lawsuit. 

Caution needs to be taken even when the actual data is not released. Deep learning 

models can have many millions of parameters, allowing adversaries to perform 

membership inference attacks in order to determine whether a user was a member of the 

study or not. Shokri et al. (19) demonstrate greater than 90% precision even with 30,000 
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examples in the training set. They do this by examining the trained parameters of a deep 

neural network trained on the CIFAR-100 dataset. Even without the model, enterprising 

adversaries performed membership inference attacks with only black-box access to the 

target model through an API. Shokri et al. again demonstrated this on various purchase 

history datasets made available through Amazon and Google APIs.  

One approach to adding privacy protection is called “Differential Privacy” (20). 

Differential Privacy is a robust, meaningful and mathematical rigorous definition of 

privacy which operates under the knowledge that data cannot be fully anonymized and 

remain useful. If you remove all of the signal in a dataset to anonymize, machine learning 

methods are fruitless. If you keep any signal at all, there is a chance an adversary will 

able to discover information about the members of the dataset. The goal of differential 

privacy is to find a balance between an acceptable risk, the privacy budget, and 

usefulness of the data. It attempts to minimize the likelihood an adversary can perform a 

membership inference attack to determine if a subject is in a dataset. It works by adding a 

plausible deniability of any outcome by inserting random noise into the information made 

available. If balanced, meaningful answers can be interrogated from the data while 

greatly reducing the risk that any member of a study is harmed by de-identification. A 

classic example and simple way to think about differential privacy is to imagine a study 

where participants are told to answer a question. Before answering the question they flip 

a coin, if the coin lands heads, they give the real answer, the truth. If the coin lands tails, 

they answer randomly by flipping an additional coin and responding yes if it lands heads 

and no if it lands tails.  
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Simmons et al. used a variant of differential privacy to enable privacy preserving 

genome wide association studies even when there is significant population stratification. 

Genomic data has a high dimensionality and relatively low signal to noise ratio making 

de-identification or other attempts at masking individual records impractical. They 

demonstrate the ability to allow users to query summary statistics while minimizing 

privacy risks. This is a particularly interesting application because while genome 

sequencing prices have rapidly decreased, the combined costs of recruitment and 

sequencing are a major barrier to this type of research. This method allows for increased 

sharing of valuable, difficult to obtain datasets. Differential privacy is a rapidly growing 

area, we suggest “The Algorithmic Foundations of Differential Privacy” (21) as a starting 

point if interested in implementing differential privacy. 

Privacy challenges can make sharing data prohibitively difficult. This in turn 

presents challenges in reproducing work from other researchers. Even if source code is 

shared, researchers attempting to reproduce original research generally can only compare 

final results. This means that even if a protocol of a paper is well written and described, if 

it has 100 steps, a researcher attempting to reproduce cannot be sure where their results 

diverged. Because of this challenge we strongly advocate publishing intermediate results. 

This can help narrow down divergences to a few steps, was it the data? The 

preprocessing? The actual analysis? The plotting into charts? One way to release 

intermediate results without adding a large amount of additional work is to use 

continuous integration to run the analysis and export the log file (22).  
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1.3.4.   Longitudinal Data 

A key attribute and potential strength of EHRs is the ability to track the way a patient 

progresses over time. Early moving caregivers such as Geisinger Health System 

implemented initial EHRs over twenty years ago but fully utilizing this longitudinal 

presents challenges to researchers.  

Longitudinal EHR data are often irregular time series. Measurements are recorded at 

irregular times, can be mixed type (continuous, ordinal, categorical), require feature 

extraction (images, free text). It is common for researchers to take a single time point (i.e. 

current time, set time after diagnosis etc.) and use this as the single end point or label for 

machine learning analyses. This can be problematic when patients have arrived at that 

point through very different routes. For example, if using a systolic blood pressure as an 

end point, one patient may be on an intensive blood pressure management protocol while 

another with the same blood pressure may have never taken medication. In the SPRINT 

clinical trial there were patients on as many as seven medications to manage blood 

pressure (23), if unmedicated these patients would almost definitely have significantly 

higher measurements. One method researchers use to remediate this issue is to derive 

statistics to represent the time series, such as taking the median value. This can be 

insufficient when the way clinicians choose to observe and treat patients based on data 

either not recorded in the electronic health record, in the unstructured data or in fields not 

selected for inclusion can also bias the labels. For example, if patient A has a single 

normal white blood cell count, and patient B has had a monthly count every month for 

the past 5 years. A clinician could have been checking to see if patient A showed an 

increased white blood cell count after a surgery suspecting a possible infection. In 
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contrast, the repeated measurements for patient B indicate the clinician may have a 

reason to believe patient B is immunocompromised or may become 

immunocompromised due to a virus or adverse reaction to a medication and is using the 

white blood cell count to monitor this. Despite the patients having relatively equal white 

blood cell counts, using this single value as a label is clearly inadequate to represent the 

complete state of the patient. For this specific case deriving a panel of statistics including 

features such as the count and variance of the measurement could help to better represent 

the current state of a patient. Recent work takes this further to calculate disease and 

patient trajectories by generating networks of the way a patient or disease progresses over 

time. Jensen et al. demonstrated this using 6.2 million patients from Danish National 

Patient Registry to cluster patients based on time dependent disease diagnoses (24). 

These disease diagnoses were extracted from patterns of ICD-9 codes on patient’s EHRs. 

This method creates a visualization of patient trajectories and allows for analyses of co-

morbidities observed in health systems in order to identify important patterns that 

indicate the potential for more severe outcomes. Further work in this field could move 

beyond billing codes to allow for increased resolution of patient trajectories. 
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Chapter 2.   Semi-Supervised Learning of the Electronic Health Record with 

limited “gold-standard” labels. 

 

This chapter was originally published as: Beaulieu-Jones, Brett K., Casey S. Greene, and 

the Pooled Resource Open-Access ALS Clinical Trials Consortium. "Semi-supervised 

learning of the electronic health record for phenotype stratification." Journal of 

biomedical informatics 64 (2016): 168-178. doi: 10.1016/j.jbi.2016.10.007 
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  Abstract 

Patient interactions with health care providers result in entries to electronic health 

records (EHRs). EHRs were built for clinical and billing purposes but contain many data 

points about an individual. Mining these records provides opportunities to extract 

electronic phenotypes, which can be paired with genetic data to identify genes underlying 

common human diseases. This task remains challenging: high quality phenotyping is 

costly and requires physician review; many fields in the records are sparsely filled; and 

our definitions of diseases are continuing to improve over time. Here we develop and 
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evaluate a semi-supervised learning method for EHR phenotype extraction using 

denoising autoencoders for phenotype stratification. By combining denoising 

autoencoders with random forests we find classification improvements across multiple 

simulation models and improved survival prediction in ALS clinical trial data. This is 

particularly evident in cases where only a small number of patients have high quality 

phenotypes, a common scenario in EHR-based research. Denoising autoencoders perform 

dimensionality reduction enabling visualization and clustering for the discovery of new 

subtypes of disease. This method represents a promising approach to clarify disease 

subtypes and improve genotype-phenotype association studies that leverage EHRs. 

  Introduction 

Biomedical research often considers diseases as fixed phenotypes, but many have 

evolving definitions and are difficult to classify. The electronic health record (EHR) is a 

popular source for electronic phenotyping to augment traditional genetic association 

studies, but there is a relative scarcity of research quality annotated patients (25). 

Electronic phenotyping relies on either codes designed for billing or time intensive 

manual clinician review. This is an ideal environment for semi-supervised algorithms, 

performing unsupervised learning on many patients followed by supervised learning on a 

smaller, annotated, subset. Denoising autoencoders (DAs) are a powerful tool to perform 

unsupervised learning (26). DAs are a type of artificial neural network trained to 

reconstruct an original input from an intentionally corrupted input. Through this training 

they learn higher-level representations modeling the structure of the underlying data. We 

sought to determine whether applying DAs to the EHR could reduce the number of 
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annotated patients required, construct non-billing code based phenotypes and elucidate 

disease subtypes for fine-tuned genetic association. 

The United States federal government mandated meaningful use of EHRs by 2014 to 

improve patient care quality, secure and communicate patient information, and clarify 

patient billing (27, 28). Despite not being designed specifically for research, EHRs have 

already proven an effective source of phenotypes in genetic association studies (29, 30). 

Initially, phenotypes were hand designed based on manual clinician review of patient 

records. These studies were limited by the time and cost inherent in manual review (31, 

32), but DAs can make use of unlabeled data. After unsupervised pre-training, the trained 

DA’s hidden layer can be used as input to a traditional classifier to create a semi-

supervised learner. This allows the DA to learn from all samples, even those without 

labels, and requires only a small subset to be annotated. Today, phenome-wide 

association studies (PheWAS) are the most prevalent example of EHR phenotyping, 

proving particularly effective at identifying pleiotropic genetic variants (33). PheWASs 

often use algorithms based on the International Classification of Disease (ICD) codes to 

construct a phenotype. This coding system was designed for billing, not to capture 

research phenotypes. DA constructed features are combinations of many components of 

clinical data and may provide a more holistic view of a patient than billing codes alone. 

Through extensive study, disease diagnoses can become more precise over time (2–

4, 34, 35). Cancers, for example, were historically typed by occurrence location and the 

efficacy of different treatments. As the mechanisms of cancer are better understood, they 

are further categorized by their physiological nature. The progression of subtypes in lung 

cancer illustrates this increased understanding over time (34). Beginning with a single 
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diagnosis based on occurrence in the lung, lung cancer has been divided into dozens of 

subtypes over several decades based on histological analysis, and genetic markers (2–4, 

35). The unsupervised nature of DAs means that even if the definitions of a disease 

change, they would not need to be retrained. The ability to identify more homogenous 

phenotypes showed increased genotype to phenotype linkage in schizophrenia, bipolar 

disease (12), and Rett Syndrome (13, 36–38). Furthermore, type 2 diabetes subtypes have 

been discovered using topological analysis of EHR patient similarity (6). The 

dimensionality reduction possible with a DA makes clustering and visualization more 

feasible. Subtyping exposes disease heterogeneity and may contribute to additional 

physiological understanding. 

Previous work in semi-supervised learning of the EHR relies on closed source 

commercial software (6), and natural language processing of free text fields to match 

clinical diagnosis (39, 40). We are not aware of any previous work performing semi-

supervised classification and clustering from quantitative structured patient data. 

  Methods 

We developed an approach, entitled “Denoising Autoencoders for Phenotype 

Stratification (DAPS),” that constructs phenotypes through unsupervised learning. This 

generalized phenotype construction can be used to classify whether patients have a 

particular disease or to search for disease subtypes in patient populations. To evaluate 

DAPS, we created a simulation framework with multiple hidden factors influencing 

potentially overlapping observed variables. We evaluated the reduced DA models against 

feature-complete representations with popular supervised learning algorithms. These 

evaluations covered both complete datasets, as well as the more realistic cases of 



 

 25 

incompletely labeled and missing data. We developed a technique that uses the reduced 

feature-space of the DA to visualize potential subtypes. Finally, we evaluate DAs ability 

to predict ALS patient survival in both classification and clustering tasks. Each of these is 

fully described below and full parameters included in sweeps are available in the 

supplementary materials.   

Source code to reproduce each analysis is included in our repository 

(https://github.com/greenelab/DAPS) (41) and is provided under a permissive open 

source license (3-clause BSD). A docker build is included with the repository to provide 

a common environment to easily reproduce results without installing dependencies (42). 

In addition, Shippable, a continuous integration platform, is used to reanalyze results in a 

clean environment and generate figures after each commit (43). 

2.3.1.   Unsupervised Training with Denoising Autoencoders 

DAs were initially introduced as a component in constructing the deep networks 

used in deep learning (44). Deep learning algorithms have become the dominant 

performers in many domains including image recognition, speech recognition and natural 

language processing (45–50). Recently they have also been used to solve biological 

problems including tumor classification, predicting chromatin structure and protein 

binding (26, 51, 52). DAs showed strong performance early in the deep learning 

revolution but have been surpassed in most domains by convolutional neural networks or 

recurrent neural networks (44). While these complex deep networks have surpassed the 

performance of DAs in these areas, they rely on strictly structured relationships such as 

the relative positions of pixels within an image (47, 53). This structure is unlikely to exist 

in the EHR. In addition, complex deep networks are notoriously hard to interpret. DAs 
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are easily generalizable, benefit from both linear and nonlinear correlation structure in the 

data, and contain accessible, interpretable, internal nodes (26). Oftentimes the hidden 

layer is a “bottle-neck”, a much smaller size than the input layer, in order to force the 

autoencoder to learn the most important patterns in the data (53).  

We used the Theano library (54, 55) to construct a DA consisting of three layers, an 

input layer x, a single hidden layer y, and a reconstructed layer z (44) (Figure 2.1A). 

Noise was added to the input layer through a stochastic corruption process, which masks 

20% of the input values, selected at random, to zero.  

The hidden layer y was calculated by multiplying the input layer by a weight vector 

W, adding a bias vector b and computing the sigmoid (Formula 1). The reconstructed 

layer z was similarly computed using tied weights, the transpose of W and b (Formula 2). 

The cost function is the cross-entropy of the reconstruction, a measure of distance 

between the reconstructed layer and the input layer (Formula 3).  

𝑦 = 𝑠 𝑊𝑥 + 𝑏      (Formula 1) 

𝑧 = 𝑠 𝑊)𝑦 + 𝑏)      (Formula 2) 

𝑐𝑜𝑠𝑡 = 	
  − [𝑥0 log 𝑧0 	
  4
056 + (1 − 𝑥0) log 1 − 𝑧0 ]	
       (Formula 3) 

Stochastic gradient descent was performed for 1000 training epochs, at a learning 

rate of 0.1. Hidden layers of two, four, eight and sixteen hidden nodes were included in 

the parameter sweep with a 20% input corruption level. Vincent et al. (44) provide a 

through explanation of training for DAs without missing data. 

In the event of missing data, the cost calculation was modified to exclude missing 

data from contributing to the reconstruction cost. A missingness vector m was created for 

each input vector, with a value of 1 where the data is present and 0 when the data is 
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missing. Both the input sample x and reconstruction z were multiplied by m and the cross-

entropy error was divided by the sum of the m, the number of non-missing features to get 

the average cost per feature present (Formula 4). This allowed the DA to learn the 

structure of the data from present features rather than imputation. 

𝑐𝑜𝑠𝑡 = 	
  − [𝑥0 log 𝑧0 	
  4
056 𝑚0 + (1 − 𝑥0) log 1 − 𝑧0 𝑚0]	
  /	
  𝑐𝑜𝑢𝑛𝑡(𝑚)	
       

(Formula 4) 

 

 

Figure 2.1: Diagram of Denoising Autoencoder and Simulation Procedure. 

A.) Network diagram of DAs used for unsupervised pre-training. Input data is intentionally 
corrupted and then weights and biases are learned to minimize reconstruction cost when mapping 
the data to a hidden layer and back to a reconstructed layer. B.) Supervised classification occurs 
using the pre-trained DA hidden nodes as input to a traditional classifier. C.) Simulation model 
with example cases and controls under each rule set. 
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2.3.2.   Supervised Denoising Autoencoder Classifier 

To convert the DA to a supervised classifier, we first trained the DA in an 

unsupervised fashion (pre-training) (Fig 2.1 A). We then applied a variety of traditional 

machine learning classifiers including, decision trees, random forests, logistic regression, 

nearest neighbors and support vector machines to the pre-trained unsupervised hidden 

layer values, y, of the DA (Figure 2.1 B). Random forests applied to DA hidden nodes 

(DA+RF) were shown for all comparisons. Predictive performance was measured by 

comparing the AUROC using stratified 10-fold cross validation. The Scikit-learn library 

was used for the traditional classifiers (56). The Support Vector Machine uses a radial 

basis function kernel, with a penalty parameter of 1. The nearest neighbors classifier uses 

a k-value of 5 and the random forest uses 10 estimators. These parameters achieved 

optimal performance in a preliminary parameter sweep. 

2.3.3.   Simulation Framework 

We designed four simulation models to evaluate algorithmic performance. These 

simulations were not designed to perfectly recapitulate EHR data. Instead they are 

designed to capture a variety of complexity in order to identify algorithmic strengths and 

weaknesses with known underlying models. 

To simulate patients, first clinical observations were generated by first drawing 

random samples from a normal distribution. Next hidden input effects were generated in 

accordance with one of four simulation models. When turned on these hidden input 

effects shift 1 to N observed clinical variables with replacement (Figure 2.1 C). Shifted 

clinical features were chosen at random, but consistent for all patients. Case-control 

status was determined by rules applied to the hidden input effects, where 1 represents the 
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effect being on and 0 represents the effect being off. Next, a confounding systematic bias 

was added to a random subset (33%) of the patients as a source of additional noise to 

simulate the variance accompanying data created by physicians, labs, hospitals or other 

spurious effects. 

There are four models defining hidden input effect rules to determine case-control 

status: 

1.   All together/all relevant. Individuals have the same value (0 or 1) for all 

hidden input effects. Controls have all hidden effects set to 0. Cases have all 

hidden effects set to 1.  A model capturing any hidden input will be able to 

predict case/control status in this scenario. This is a test of whether each 

method can recognize any of the hidden effects. 

2.   All independent /single effect relevant. Individuals have 0 to N (specified per 

simulation) hidden input effects chosen at random. One arbitrary effect (the last 

one) is used to determine case-control status. In controls, this is 0. In cases, this 

is 1. A model capturing the relevant hidden input will be able to predict 

case/control status in this scenario. This is a test of whether each method can 

recognize the important hidden effect when there are multiple shifted 

distributions. 

3.   All independent/percentage based. Individuals have 0 to N (specified per 

simulation) of hidden input effects chosen at random set to 1. The percentage of 

hidden input effects on represents the probability of the patient being a case. A 

model capturing more hidden effects will be able to more accurately predict 

case/control in this scenario. This is a test of whether each method can perform 

effectively without a hard-rule based model, and could represent a disease with 

incomplete penetrance. 

4.   All independent/complex rule based. Individuals have 0 to N (specified per 

simulation) of hidden inputs chosen at random set to 1. The sum of hidden 

effects determines case-control status (cases are even, controls are odd). A 

model must capture all hidden effects to successfully predict case/control in 
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this scenario. This is a test to identify the complexity limitations of each of the 

methods. 

 

 Simulation model 3 could reflect a disease with incomplete penetrance. The 

probabilistic manner of this simulation means that the optimum binary classifier will have 

an expected accuracy limited by the role of stochasticity in the model. The amount of 

stochasticity is a function of the number of hidden effects. In this model, case control 

odds were equal to the percentage of hidden input effects on. If there are 4 hidden input 

effects and 2 are on, the patient has a 50% chance of being a case and a 50% chance of 

being a control. A binary classifier can perfectly model this simulation and still have 

error due to the probabilistic nature. The maximum expected accuracy was calculated 

from a binomial distribution multiplied by the minority percentage as the best a binary 

classifier could do is choose the more likely class. For example, in the case of 4 hidden 

effects the maximum expected accuracy is 68.75%.  

An example of a hypothetical condition a hidden input effect could represent is the 

familial hypercholesterolemia genotype. For a patient with the familial 

hypercholesterolemia genotype, the simulated clinical observations could represent 

increases in levels of total and low-density lipoprotein cholesterol, the deposition of 

cholesterol in extravascular tissues, corneal arcus and elevated triglyceride levels (57). 

Some factors such as elevated triglyceride levels are not solely the result of the genetic 

predisposition and are related to environmental factors. Hypothetically additional hidden 

input effects on the same observed variable would represent these other factors. Because 

our goal is to evaluate methods for their ability to broadly capture these types of patterns, 
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we generate randomized relationships between hidden and observed variables. This 

avoids overfitting our evaluation to specific phenotypes. 

2.3.4.   Supervised Classification Comparison 

If successfully trained, the hidden layer of a DA, y, captures the first n factors of 

variation in the data, where n is the number of nodes in the hidden layer. To test whether 

the DA constructed useful features by learning the main factors of variation in the data 

we used the trained hidden layer as an input to a shallow classifier.  

To do this, we first completed unsupervised pre-training of the DA with all of the 

simulated samples. The hidden layer values, y, were calculated for all samples using the 

trained DA without any corruption and fed in as the features to a random forest to form a 

supervised classifier.  

Classification performance between DAs plus random forests (DA+RF) were 

compared against decision trees, random forests, nearest neighbors and support vector 

machines in a parameter sweep under each model (Table 2.1). Additional model 

parameters included in sweeps are included in the supplementary materials. All 

traditional classifiers were implemented with Scikit-learn (56). Classification 

performance was compared using the AUROC with 10-fold cross validation across 10 

independent replicates for each set of parameters. 

PARAMETER VALUES 

 OBSERVED VARIABLES 50, 100, 200, 400 

EFFECT MAGNITUDE (X VARIANCE) 1, 2, 4 

HIDDEN INPUT EFFECTS 1, 2, 4, 8, 16 

EFFECTED OBSERVED VARIABLES PER 

HIDDEN INPUT EFFECT 

5, 10 

UNLABELED PATIENTS 10,000 
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LABELED PATIENTS 100, 200, 500, 1,000, 

2,000 SYSTEMATIC BIAS 0.1 applied to 0.33 of 

patients DA HIDDEN NODES 1, 2, 4, 8 
 

Table 2.1 : Simulation Model 1 Parameter Sweep Specifications. 

 

2.3.5.   Semi-Supervised Classification Comparison 

The supervised classification comparison was repeated but with additional patients 

simulated and utilized during the unsupervised pre-training of the DA. The additional 

patients were simulated at the same 50% case, 50% control ratio but their labels were 

discarded after simulation. These additional patients were mixed with the original labeled 

patients and included in the unsupervised pre-training of the DA. The unlabeled samples 

were then discarded and the DA+RF was then provided the same, labeled, patient groups 

as the traditional classifiers. The labeled patient samples were run through the trained DA 

in the same manner as the unsupervised pre-training but without any corruption added to 

the data. The DA+RF and traditional classifiers were evaluated in a parameter sweep 

under each model using 10-fold cross validation.   

2.3.6.   Missing Data Comparison 

The semi-supervised classification comparison was repeated five times with, 0%, 

10%, 20%, 30% and 40% of the data missing. Missing data was added at random per 

sample, depending on the specified percentage missing. 

Throughout these trials, the cost calculation was modified to exclude missing data 

from the cost and allow the DA to learn without imputing values (Formula 4). The 

traditional classifiers were trained using mean imputation for missing data. Mean 
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imputation is particularly well suited for the simulation models because the observations 

were drawn from normal distributions, potentially giving an advantage to the non-DA 

algorithms that would not be available in many real datasets. 

As in the semi-supervised classification comparison trial, the DA+RF and traditional 

classifiers were evaluated under each model using 10-fold cross validation. 

2.3.7.   Clustering and Visualization 

To interpret and visualize results, patient populations were clustered using principal 

components analysis (PCA) and t-Stochastic Neighbor Embedding (t-SNE) of the trained 

DA’s hidden nodes (58, 59). PCA and t-SNE were implemented with the Sci-kit learn 

library (56).  

Ten thousand patients (5,000 cases, 5,000 controls) with four hidden effects were 

simulated under model 1. PCA followed by t-SNE was performed initially on the raw 

input for comparison and then on the hidden nodes of the DA after every 10 training 

epochs. 

To test the ability to identify subtypes, we simulated 15,000 patients, 5,000 cases 

under model 1, 5,000 cases under model 2, and 5,000 controls. Input observations were 

compared to two, three and four-node DAs using PCA followed by t-SNE. 

2.3.8.   ALS Survival Analysis 

Data used in the ALS Survival portion of this article were obtained from the Pooled 

Resource Open-Access ALS Clinical Trials (PRO-ACT) Database. In 2011, Prize4Life, 

in collaboration with the Northeast ALS Consortium, and with funding from the ALS 

Therapy Alliance, formed the Pooled Resource Open-Access ALS Clinical Trials (PRO-

ACT) Consortium. The data available in the PRO-ACT Database has been volunteered 
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by PRO-ACT Consortium members. The PRO-ACT dataset includes 23 clinical trials 

covering 10,723 patients. We limit our survival analysis to the 3,398 patients with known 

death information, but perform unsupervised pre-training of the DA with all 10,723 

patients. 

Patient data includes quantitative features consisting of demographic information, 

diagnosis history, family history, treatment history, vital sign readings, concomitant 

medications and laboratory tests.  Categorical variables were converted to one-hot 

encoding. Repeated or temporal measurements were encoded as the mean, minimum, 

maximum, count, standard deviation and slope across each repeat. Measurement scales 

were standardized and input features were normalized to be between 0 and 1. No 

imputation was performed on the input to the DA; K-nearest neighbors imputation 

(K=15) was performed for the raw comparison. This preprocessing resulted in an input 

layer of 6,812 numerical features per patient. 

Patient survival was predicted as the number of days from disease onset. Random 

Forest Regression using Scikit-learn with 1,000 estimators was performed on the raw 

data and the hidden layer of a 250 node DA trained for 1,000 epochs. Performance was 

evaluated using 10-fold cross validation. Cluster analysis using t-SNE was compared 

between PCA (2, 4, 8, and 16 components) on the raw input with the hidden layer of the 

DA. 

   Results 

2.4.1.   Case-Control DA Training Visualization 

We trained a DA and visualized the training process using PCA and t-SNE. These 

visualization techniques offer intuition and the ability to examine the sub-clusters. Given 
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5,000 cases and 5,000 controls under simulation model 1, PCA and t-SNE alone did not 

yield defined clusters (Figure 2.2 A). Figures 2.2 B-F show the separation of cases from 

controls as the DA is trained. One thousand epochs of training via stochastic gradient 

descent were found to be sufficient for the convergence of reconstruction cost and 

stabilization of visualizations within simulated data (Figure 2.2 E and F, Supplemental 

Figure 1).  

 
Figure 2.2: Visualization of DA training over time. 

Case vs. Control clustering via principal components analysis and t-distributed stochastic 
neighbor embedding throughout the training of the DA. Controls are shown in yellow, cases are 
shown in red.  A.) Raw input B.) 0 training epochs C.) 10 training epochs D.) 100 training epochs 
E.) 1,000 training epochs F.) 10,000 training epochs. 

2.4.2.   Fully Supervised Comparison 

To examine the ability of DAs to learn the structure of the data we compare the 

predictive ability of classification algorithms applied to the DA constructed through 
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unsupervised training. Random forests demonstrated a strong balance of performance and 

stability, and were used for all comparisons. We then compare the DA plus a random 

forest classifier (DA+RF) to the top performing classifiers on raw input data (Table 2.2).  

 

PATIENTS DA+RF RANDOM 
FOREST  

SUPPORT 
VECTOR 
MACHINE 

DECISION 
TREE 

NEAREST 
NEIGHBORS 

100 0.618 0.653 0.504 0.599 0.635 
200 0.637 0.610 0.449 0.589 0.608 
500 0.677 0.690 0.663 0.617 0.642 
1000 0.774 0.717 0.776 0.634 0.651 
2000 0.755 0.736 0.862 0.643 0.658 
MEAN 0.692 0.681 0.651 0.616 0.639 

 

Table 2.2: Mean Receiver Operating Curve Area Under Curve by method under simulation model 
1. (10 Replicate, 10-fold cross validation) 

 

Key trends emerged under each model; with few patients SVMs had AUCs 

indistinguishable from those expected from a random classifier. As one would expect, 

SVMs were top performers at when the number of patients was high. Random forest 

classification performance scaled steadily with patient count. The DA+RF performed 

similarly to the random forest, showing that a 2-node DA is able to capture at least one of 

the input hidden effects. Capturing any signal is sufficient to accurately classify 

simulation model 1. 

2.4.3.   Semi-Supervised Comparison 

The full potential of the DA+RF is reflected in semi-supervised parameter sweep 

comparison for simulation model 1 (Figure 2.3 A). Each set of parameters was evaluated 

with 10 replicates and 10-fold cross validation for each replicate. With sufficient 

unlabeled examples, the DA method’s performance is high, even with very few labeled 
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examples. Because of the extreme feature reduction, the traditional classifier on top of the 

DA is able to reach its learning capacity with very few labeled patients (Figure 2.3 A).  

 
Figure 2.3: Classification AUC in relation to the number of labeled patients under simulation 

model 1. 

(RF – Random Forest, NN – Nearest Neighbors, DA – 2-node DA + Random Forest, SVM – 
Support Vector Machine). Unsupervised pre-training of the 2-node DA was performed with 
10,000 patients. Notch indicates 95% confidence interval for the median. Whiskers extend 1.5 
times past the low and high quartiles. Points outside this range are denoted as dots and represent 
outliers. Gray dashed line indicates random choice expected performance (0.5). 

 

Efficient learning from labeled examples is critical in practical use cases because 

there are often few well-annotated cases due to the expense of clinician manual review. 

The 2-node DA plus random forest also showed strong performance in relation to an 

SVM when there were many observed clinical variables (Supp. Fig 3) and when there 

were many hidden effects. The SVM again showed the highest performance at very high 

numbers (1000 or more) of labeled patients. The advantages of semi-supervised learning 

diminish as the number of labeled patients gets closer to the number of total patients. In 
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addition, at high patient counts, a DA with more than 2 hidden nodes is required to 

capture the structure of the data with higher resolution. 

 
Figure 2.4: Classification accuracy comparisons for models 2-4. 

Notch indicates 95% confidence interval for the median. Whiskers extend 1.5 times past the low 
and high quartiles. Gray dashed line indicates random choice expected performance (50%). A) 
Classification Accuracy of model 2 (1, 2, 4 and 8 effects). B) Classification AUC normalized to 
simulation model 2 expected max predictive accuracy (1, 2, 4 and 8 effects). C) Classification 
AUC of model 4 (1, 2, 4 and 8 effects). D.) Classification AUC of model 4 (parameter sweep 
results for 1, 2, 4 and 8 effects using only the parameter sets with 2,000 labeled patients). 
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These patterns repeat across the other simulation models, with more complex models 

requiring more hidden nodes to adequately model the structure of the data. In simulation 

model 2 (Figure 2.4 A), both 4 and 8 node DAs outperform the 2-node DA. Under Model 

3, the 4-node DA is the strongest performing, with median performance 5% better than 

the next best traditional classifier. The 4-node DA’s median 95% confidence interval was 

above any of the compared methods. Model 4 (Figure 2.4 C-D) was the most difficult to 

classify as the classifier had to capture all of the hidden effects to be accurate. In several 

cases, no classifier did better than the expected performance of a random classifier. In 

fact, the SVM’s average AUC over the entire sweep was statistically indistinguishable 

from random performance. As expected, the 2-node performs worse than the 4 and 8-

node DAs on model 4. The 2-node DA lacks sufficient dimensionality to capture more 

than 4 hidden input effects.  

Clinical records often have empty fields, so algorithms must be robust to missing 

data. We evaluated the DA’s robustness in this situation. The DA is robust to missing 

data maintaining near-max classification performance across the missingness proportions 

tested (Supp. Fig 4). For these simulation models, the mean imputation used for non-DA 

approaches is an ideal strategy. DAs and SVMs show consistent performance even as the 

percent of data missing increases, suggesting that the DA is at least as robust as the ideal 

imputation method. 

 

2.4.4.   Simulated Subtype Clustering Visualization 

We evaluated the DAPS’ ability to cluster patients for subtype identification. To 

perform this analysis, we simulated 5,000 cases from each of two different models (1 and 

2) to represent a disease with two subtypes. An additional 5,000 controls were simulated. 
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We then visualized the DA constructed from this set of patients using PCA followed by t-

SNE. In the input data, the subtypes are relatively overlapping (Figure 2.5 A). A DA with 

two nodes was also unable to separate this number of subtypes (Figure 2.5 B). 

Visualizations constructed from DAs with three (Figure 2.5 C) or four (Figure 2.5 D) 

nodes were able to effectively separate both subtypes of cases from each other and from 

controls. 

 

Figure 2.5: Case vs. Control clustering of 2 disease states and 1 healthy state. 

Clustering via principal components analysis and t-distributed stochastic neighbor embedding 
after training the DA for controls and cases generated from a combination of models 1 and 2. 
Controls are shown in yellow, subtype 1 (model 1) is shown in red, subtype 2 (model 2) is shown 

A.#PCA##
Only#

B.#2#
Hidden##
Nodes#

C.#3#Hidden##
Nodes#

D.#4#Hidden##
Nodes#
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in blue. A). Raw input. B.) 1,000 training epochs with 2 hidden nodes. C.) 1,000 training epochs 
with 3 hidden nodes. D.) 1,000 training epochs with 4 hidden nodes. 

 

2.4.5.   ALS Survival Analysis 

We evaluated the DAPS’ ability to quantitatively predict ALS patient survival 

(Figure 6) with ten-fold cross validation. Both models used a random forest regressor to 

predict survival to compare predictions between the raw imputed data and the hidden 

layer of a 250 node DA. 

 
Figure 2.6: Prediction comparison of ALS survival between DA constructed and raw features. 

A.) Ten-fold cross validation survival prediction quantification. Mean absolute error in days. 
Notch indicates 95% confidence interval for the median. Whiskers extend 1.5 times past the low 
and high quartiles. Points outside this range are denoted as dots and represent outliers.  

 

 In order to visualize the basis for improved prediction, we performed t-SNE 

clustering to compare PCA with the hidden layer of the DA (Figure 7 A-B, Supp. Fig. 7). 

The visualization constructed from the hidden layer of the DA shows space defined by 

A. 
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the DA separated several clear clusters with low patient survival as well as a more 

heterogeneous cluster with longer survival. PCA applied to the raw input produced some 

patterns but did not produce any clear clustering by survival. 

 

Figure 2.7: ALS Survival Visualization (Raw vs. Constructed Features). 

A.) PCA (2 components) followed by t-SNE. B.) t-SNE of the DA (250 nodes) hidden layer. All 
cluster coloring was determined by rank of days survived. Light colors indicate longer survival. 

 

  Summary and Future Directions. 

We presented a semi-supervised learning approach using DAs to model patients in 

the EHR. The benefits of the method presented in this work are; 1) It is relatively 

inexpensive to perform analysis on large amounts of unlabeled EHR data; 2) It is 

expensive to have data labeled at a research quality by a clinician; 3) The DA+RF has 

strong performance when there are many unlabeled samples and few labeled samples. 

Competitive supervised classification accuracy with a large degree of feature 

reduction indicates the DA successfully learned the structure of the high-dimensional 

A. B. 
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EHR data. DAs are particularly well suited to the EHR because their unsupervised nature 

allows the formation of a semi-supervised classifier and the ability to utilize large un-

annotated patient populations to improve classification accuracy.  The dimensionality 

reduction of DAs allows clustering of the reduced feature set for the visualization and 

determination of subtypes. These clusters may reveal disease subtypes, fine-tuned targets 

for genotype-phenotype association. The DA models are easily de-constructible because 

they use a simple model for the traditional classifier with transparent node compositions 

that can be traced back to inputs. In addition, our method proposes a straightforward 

modification to the DA to enable it to process missing data without imputation.  

PheWASs are a powerful tool to leverage the vast clinical data contained in the 

electronic health record but currently suffer from the reliance on billing codes or manual 

clinician annotation. Denny et al. (25) call out the need for increased accuracy in 

phenotype definition in the original PheWAS publication, particularly for rare 

phenotypes or phenotypes that do not directly correspond with a billing code. In addition, 

several studies have found increased genetic linkage via subtyping (9, 12, 13, 36–38). Li 

et al. (6) presented a powerful example of EHR subtyping of patients with type 2 diabetes 

using a similar methodology, but they utilized Ayasdi, a commercial, closed source 

topology data analysis software tool. Our method is built on free, open source libraries 

that will continue to be improved and our software is accessible for the research 

community. 

DA nodes and clusters of nodes provide composite variables that may better 

approximate and represent the condition of the subject. These additional phenotype 

targets may provide more homogeneous targets for genotype associations. Beyond 
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genotype to phenotype association, these visualizations may also help clinicians to 

understand the level of heterogeneity for a specific disease and to make treatment 

associations among sub-clusters of patients. While further work is required to analyze the 

makeup and meaning of the ALS survival clusters recognized by DAPS, they suggest a 

helpful starting point for investigation. 

Our work provides an important contribution but additional analysis and challenges 

remain. The transition from simulated data and relatively homogenous clinical trial data 

to diverse multi-disease real world clinical data will likely require additional steps. In 

addition, in our simulations we assume a preprocessing step has already been performed 

to handle the compound structure present in the EHR. This step is necessary to transform 

categorical, free text, images and temporal data to suitable input for the DA. The PRO-

ACT ALS clinical trial data does not currently include any free text or images. Raw EHR 

data will not be as complete or clean as either clinical trial or simulated data. Despite 

these challenges, autoencoders have been shown to effectively denoise data (60, 61), and 

may also be well suited to noisy EHR-derived data. 

Future work will focus on developing tools to examine and interpret constructed 

phenotypes (hidden nodes) and clusters. In addition, we will develop a framework for 

evaluating the significance of constructed clusters for genotype to phenotype association. 

We anticipate high weights indicate important contributors to node construction revealing 

relevant combinations of input features. Finally, we will construct a scheme for 

determining optimal hyper parameter (i.e. hidden node count) selection. 
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  Motivation and Introduction 

Missing data present a challenge to researchers in many fields and this challenge is 

growing as datasets increase in size and scope.  This is especially problematic for 

electronic health records (EHRs), where missing values frequently outnumber observed 

values, and the absence of an observation can be caused by a variety of mechanisms that 

may or may not be informative. EHRs were designed to record and improve patient care 

and streamline billing, and not as resources for research(28) thus there are significant 

challenges using these data to gain a better understanding of human health.  As EHR data 

become an increasingly utilized as a source of phenotypic information for biomedical 

research(62) it is crucial to develop strategies for coping with missing data.   

Clinical laboratory assays are a particularly rich data source within the EHR, but 

they also tend to have large amounts missing data.  These data may be missing for many 

different reasons.  Some tests are used for routine screening but screening may be biased.  

Other tests are only conducted if they are clinically relevant to very specific ailments.  

Patients may also receive care at multiple healthcare systems, resulting in information 

gaps at each institution.  Age, sex, socioeconomic status, access to care, and medical 

conditions can all impact how comprehensive the data is for a given patient.  

Aside from the uncertainty associated with a variable that is not observed, many 

analytical methods, such as regression or principal components analysis are designed to 

operate on a complete dataset.  The easiest way to implement these procedures is to 

remove variables with missing values or remove individuals with missing values.  

Eliminating variables is justifiable in many situations, especially if a given variable has a 
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large proportion of missing values, but doing so may restrict the scope and power of a 

study.  Removing individuals with missing data is another option known as complete case 

analysis.  This is generally not recommended unless the fraction of individuals that will 

be removed is small enough to be considered trivial, or there is good reason to believe 

that the absence of a value is due to random chance.  If there are any differences between 

individuals with and without observations, complete case analysis will be biased.  For 

example, if only patients with severe symptoms receive a certain test, removing patients 

with missing values is equivalent to removing the healthy patients.   

An alternative is to fill the missing fields with estimates.  This process, called 

imputation, requires a model that generally makes assumptions about why only some 

values are observed.  These missingness mechanisms fall somewhere in a spectrum 

between three scenarios (Figure 3.1).  When data is missing in a manner completely 

unrelated to both the observed and unobserved values, it is considered to be missing 

completely at random (MCAR) (63, 64).  When data are MCAR, the observed data 

represent a random, unbiased sample of the population, but this is rarely encountered in 

practice.  Conversely, data missing not at random (MNAR) refers to a situation where the 

probability of observing a data point depends on the value of that data point (65).  In this 

case, the mechanism responsible for the missing data is biased and should not be 

considered ignorable (66).  For example, rheumatoid factor is an antibody detectable in 

blood, and the concentration of this antibody is correlated with the presence and severity 

of rheumatoid arthritis.  This test is typically performed only on patients with some 

indication of rheumatoid arthritis.  Thus, patients with high rheumatoid factor levels are 

more likely to have rheumatoid factor measures. 
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A more complicated scenario can arise when multiple variables are available.  If the 

probability of observing a data point does not depend on the value of that data point, after 

conditioning on one or more additional variables, then that data is said to be missing at 

random (MAR) (65).    For example, a variable, X, may be MNAR if considered in 

isolation.  However, if we observe another variable, Y, that explains some of the variation 

in X such that after controlling for the effect of Y, the probability of observing X is no 

longer related to its value, X is said to be MAR.  In this way, Y can transform X from 

MNAR to MAR.   There is no way to prove that X is randomly sampled after 

conditioning on covariates unless we measure some of the unobserved values, but strong 

correlations, ability to explain missingness, and domain knowledge may provide evidence 

of that the data are MAR. 

Imputation methods assume specific mechanisms of missingness and assumption 

violations can lead to bias in the results of downstream analyses that can be difficult to 

predict (67, 68).  Variances of imputed values are often underestimated causing 

artificially low p-values (69).  Additionally, for data MNAR, the observed values have a 

different distribution than the missing values.  To cope with this, a model can be 

specified to represent the missing data mechanism, but these models can be difficult to 

evaluate and may have a large impact on results.  Great caution should be taken when 

handling missing data, particularly data that are MNAR.  Most imputation methods 

assume that data are MAR or MCAR, but it is worth reiterating that these are all idealized 

states and real data invariably fall somewhere in between (Figure 3.1). 
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Figure 3.1: Mechanisms of missing data. 

Two general paradigms are commonly used to describe missing data.  Missing data are considered 
ignorable if the probability of observing a variable has no relation to the value of the observed 
variable, and are considered non-ignorable otherwise.  The second paradigm divides missingness 
into three categories: missing completely at random (MCAR: the probability of observing a 
variable is not dependent on its value or other observed values), missing at random (MAR: the 
probability of observing a variable is not dependent on its own value after conditioning on other 
observed variables), and missing not at random (MNAR: the probability of observing a variable 
is dependent on its value, even after conditioning on other observed variables).  The X-axis 
indicates the extent to which a given value being observed depends upon other the values of other 
observed variables.  The Y-axis indicates the extent to which a given value being observed 
depends upon its own value.  

 

  Characterizing and Managing Missing Structured Data in Electronic 

Health Records. 

3.2.1.   Abstract 

Missing data is a challenge for all studies; however, this is especially true for 

electronic health record (EHR) based analyses. Failure to appropriately consider missing 

data can lead to biased results. Here, we provide detailed procedures for when and how to 
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conduct imputation of EHR data. We demonstrate how the mechanism of missingness 

can be assessed, evaluate the performance of a variety of imputation methods, and 

describe some of the most frequent problems that can be encountered. We analyzed 

clinical lab measures from 602,366 patients in the Geisinger Health System EHR. Using 

these data, we constructed a representative set of complete cases and assessed the 

performance of 12 different imputation methods for missing data that was simulated 

based on 4 mechanisms of missingness. Our results show that several methods including 

variations of Multivariate Imputation by Chained Equations (MICE) and softImpute 

consistently imputed missing values with low error; however, only a subset of the MICE 

methods were suitable for multiple imputation. The analyses described provide an outline 

of considerations for dealing with missing EHR data, steps that researchers can perform 

to characterize missingness within their own data, and an evaluation of methods that can 

be applied to impute clinical data. While the performance of methods may vary between 

datasets, the process we describe can be generalized to the majority of structured data 

types that exist in EHRs and all of our methods and code are publicly available. 

3.2.2.   Materials and Methods 

3.2.2.1.   Source Code 

Source code to reproduce the analyses in this work are provided in our repository 

(https://github.com/EpistasisLab/imputation) under a permissive open source license.  In 

addition, Continuous Analysis(70) was used to generate Docker images matching the 

environment of the original analysis, and to create intermediate results and logs. These 

artifacts are freely available (https://hub.docker.com/r/brettbj/ehr-imputation/ and archive 

version 10.6084/m9.figshare.5165653). 



 

 52 

3.2.2.2.   EHR data processing 

All clinical laboratory assays were mapped to LOINC (Logical Observation 

Identifiers Names and Codes).  We restricted our analysis only to outpatient lab results to 

minimize the effects of extreme results from inpatient and emergency department data.  

We used all laboratory results between August 8th, 1996 and March 3rd, 2016.  We 

excluded any codes for which less than 0.5% of patients had a result.  The resulting 

dataset consisted of 669,212 individuals and 143 laboratory assays.   	
  	
  	
  	
  

We next removed any lab results that occurred prior to patient’s 18th birthday or 

after their 90th.  In cases where a date of death was present, we also removed any lab 

results that occurred within one year of death as we found that the frequency of 

observations often spiked during this period and the values for certain labs were altered 

for patients near death.  For each patient’s clinical lab measures, a median date of 

observation was then calculated based on all of their remaining lab results. We defined a 

temporal window of observation by removing any lab results that were recorded more 

than 5 years from the median date. We then calculated the median result of the remaining 

labs for each patient.  Finally, we calculated the mean BMI of each patient, and dropped 

any patients whose sex was unknown.  As each variable had a different scale and many 

deviated from normality, we applied Box-Cox and Z-transformations to all variables.  

The final dataset used for all downstream analyses contained 602,366 patients and 146 

variables (age, sex, BMI, and 143 laboratory measures). 

3.2.2.3.   Variable selection 

We first ranked the labs by total missingness.  At each rank we calculated the percent 

of complete cases for the set including all lower ranked labs.  We also built a random 
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forest classifier to predict the missingness of each variable.  Based on these results, in 

conjunction with domain knowledge, we selected 28 variables that provided a reasonable 

trade-off between quantity and completeness and were deemed to be largely MAR.      

3.2.2.4.   Predicting the presence of data 

For each clinical lab, we used the default scikit-learn (71) random forest classifier, to 

predict whether a specific value would be present or absent.  Each lab measure was 

converted to a binary label vector based on whether the measure was recorded or not.  

The values of all other labs, excluding co-members of a panel, were used as the training 

matrix input to the random forest.  This process was repeated for each lab test using 10-

fold cross validation. Prediction accuracy was assessed by the area under the receiver 

operator characteristic (AUC ROC), and the results for each variable relate to the degree 

of MNAR, MAR, or MCAR present.   

3.2.2.5.   Sampling of complete cases 

To generate a set of complete cases that resembled the whole population, we 

randomly sampled 100,000 patients without replacement.  We then matched each of these 

individuals to the most similar patient who had a value for each of the 28 most common 

labs by matching sex and finding the minimal Euclidean distance of age and BMI.   

3.2.2.6.   Simulation of missing data 

Within the sampled complete cases, we selected the data for removal by four 

mechanisms: 

Simulation 1: Missing Completely at Random (MCAR) 
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We replaced values with NAN at random. This procedure was repeated 10 times 

each for 10%, 20%, 30%, 40%, and 50% missingness yielding 50 simulated 

datasets. 

Simulation 2: Missing at Random (MAR)  

We selected two columns (A and B).  When column A had a value in the highest 

quartile of values for this lab, we replaced 50% of the values selected at random 

from column B with NAN.  The procedure was repeated for each quartile and 

each lab combination yielding 3024 simulated datasets. 

Simulation 3: Missing not at Random (MNAR)  

We selected a column and a quartile.  When the column’s value was in the 

quartile we replaced it with NAN 50% of the time.  This procedure was repeated 

for each of the 4 quartiles of each of the 28 labs generating a total 112 total 

simulations of missingness. 

Simulation 4: Missingness based on real data observations   

From our sampled complete cases dataset, we took each patient and matched them 

to the nearest neighbor, excluding self matches, in the entire set of observed data 

based on their sex, age, and BMI.  We then replaced any lab value with NAN if it 

was absent for the matched patient in the original data. 

3.2.2.7.   Imputation of Missing Data 

Using our simulated datasets (Simulations 1 - 4) we compared 18 common 

imputation methods (representative 12 methods are shown in primary figures) from the 

fancyimpute (72) and the Multivariate Imputation by Chained Equations (MICE) (73) 
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packages.  A full list of imputation methods and the parameters used for each are in 

Supplementary Table 1. 

3.2.3.   Results 

Our first step was to select a subset of the 143 lab measures for which imputation 

would be a reasonable approach.  We began by ranking the clinical lab measures in 

descending order by the number of patients who had an observed value for that lab.  At 

each rank, we plotted the percent of individuals missing a value for that lab as well as the 

percent of complete cases when that given lab was joined with all of the labs of lower 

rank.  These plots showed that the best tradeoff between quantity of data and 

completeness would fall between 20 and 30 variables (Figure 3.2 A).    
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Figure 3.2: Summary of missing data for 143 clinical lab measures in the Geisinger Health 
System EHR. 

A.) After ranking the clinical laboratory measures by the number of total results, the percent of 
patients missing a result for each lab was plotted (red points).  At each rank, the percent of 
complete cases for all labs of equal or lower rank were also plotted (blue points).  Only variables 
with a rank of 75 or less are shown. The vertical bar indicates the 28 labs that were selected for 
further analysis.  B.) The full distribution of patient median ages is shown in blue and the fraction 
of individuals in each age group that had a complete set of observations for labs 1-28 are shown 
in red.  C.) Within the 28 labs that were selected for imputation analyses, the mean number of 
missing labs is depicted as a function of age.  D.) Within the 28 labs that were selected for 
imputation, the mean number of missing labs is depicted as a function of BMI.  E.) Accuracy of 
a random forest predicting the presence or absence of all 143 laboratory tests.  F.) Accuracy of a 
random forest predicting the presence or absence of the top 28 laboratory tests.  
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Table 3.1: LOINC codes and descriptions of the most frequently ordered clinical laboratory 
measurements.  The assays are ranked from the most common to the least. 

 

As age, sex, and BMI have a considerable impact on what clinical lab measures are 

collected, we evaluated the relationship between missingness and these covariates (Figure 

3.2 B-D).  We also used a random forest approach to predicted the presence or absence of 

each measure based on the values of the other observed measures.  MCAR data is not 

predictable, resulting in ROC AUC near 0.5.  Only 38 of the 143 labs had ROC AUCs 

less than 0.55 (Figure 3.2 E).  Very high ROC AUC are most consistent with data that are 

MAR.  For the top 30 candidate labs based on the number of complete cases, the mean 

ROC AUC was 0.82.  This suggested that the observed data could explain much of the 

mechanism responsible for the missing data within this set.  We ultimately decided not to 
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include the 29th ranked lab, specific gravity of urine (2965-2), since it had a ROC AUC of 

only 0.69 and is typically used for screening only within urology or nephrology 

departments (R. Levy MD, personal communication).  We did include the lipid measures 

(the 25th-28th ranked labs) since they had ROC AUC values near 0.82 and they are 

recommended for screening of all patients depending on age, sex, and BMI(74).  Our data 

confirm that age, sex, and BMI are all predictive of the presence of lipid measures 

(Supplementary Figure 1 A-B).         	
  

To assess the accuracy of imputation methods, we required known values to compare 

with imputed values.  Thus, we generated a set of complete cases from the 28 variables 

we selected based on our characterization of data missingness.  Since the set of complete 

cases differed from the broader population (Figure 3.2 B-D), we used sampling and K-

nearest neighbors matching to generate a sample of the complete cases that resembled the 

entire population.  We then simulated missing data within this set based on 4 

mechanisms: MCAR, MAR, MNAR, and realistic patterns based on the original data. 

We evaluated our ability to predict the presence of each value in the simulated 

datasets so that we could compare patterns with the real data.  These simulations 

confirmed that our MCAR simulation had low ROC AUC (Figure 3.3 A).  The MAR data 

(Figure 3.3 B) and MNAR data (Figure 3.3 C) were often well predicted, particularly for 

the MAR data, and when data were missing from the tails of distributions.  The AUCs 

rarely exceeded 0.75 in the MNAR simulations while values above 0.75 were common in 

the MAR simulations.  This provided additional support to our decision to include the top 

28 lab measures, since they all have AUCs between 0.9 and 0.75, which was outside the 

range of nearly all MNAR simulations (Figure 3.2 F and Figure 3.3 C).  
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Figure 3.3: Ability to predict variable presence for each of the three types of missing data. 

A.)  MCAR simulation B.) MAR simulation C.) MNAR simulation. 

 

We chose to test the accuracy of several methods from two popular and freely 

available libraries: the Multivariate Imputation by Chained Equations (MICE) package 

for R and the fancyimpute library for python.  We first applied each of these methods 

across simulations 1-3.  For each combination, the overall root mean squared errors are 

depicted in Figure 3.4.  A breakdown of all the methods and parameters are shown in 

Supplementary Table 1 with results in Supplementary Figures 3-21. 
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Figure 3.4: Imputation accuracy measured by RMSE across simulations 1-3. 

Imputation accuracy measured by RMSE across simulations 1-3. A.) Missing Completely at 
Random (MCAR) B.) Missing at Random (MAR) C.) Missing Not at Random (MNAR) 

 

We next measured imputation accuracy based on the patterns of missingness that 

were observed in the real data (Figure 3.5).  The main difference compared to simulations 

1-3 was lower error for some of the deterministic methods (Mean, Median, and KNN).  It 

is worth mentioning that the error was highly dependent upon the variable that was being 

imputed.  Specifically for the fancyimpute MICE PMM method, multicollinearity within 

some of the variables caused convergence failures that led to extremely large errors 

(Figure 3.5, method 8).  These factors were relatively easy to address in the R package 

MICE-PMM method by adjusting the predictor matrix (73).   
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Figure 3.5: Imputation error (RMSE) for a subset of 10,000 patients from simulation 4. 

Twelve imputation methods were tested (X-axis) and colors indicate how the error varied 
between different lab measures (LOINC codes).  The black line shows the theoretical error from 
random sampling. 

 

In addition to evaluating the accuracy of imputation, it is also important to estimate 

the uncertainty associated imputation.  One approach to address this is multiple 

imputation, where each data point is imputed multiple times using a nondeterministic 

method.  This allows for the calculation of a confidence interval for any downstream 

result of interest.  To determine if each method properly captured the true uncertainty of 

the data, we compared the error between an imputed dataset and the observed data with 

the error between two sets of imputed values for each method (Figure 3.6).  If these errors 

are equal, then multiple imputation is likely producing good estimates of uncertainty.  If, 

however, the error between two imputed datasets is less than that between each imputed 

dataset and the known values, then the imputation method is likely underestimating the 

variance. 
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Figure 3.6: Assessment of multiple imputation for each method. 
Using simulation 4, we imputed missing values multiple times with each method.  The RMSEs 
between each imputed dataset and the observed values are shown on the X-axis and the RMSEs 
between two sets of imputed data are shown on the Y-axis.  The axis scales vary between panels 
to better show the range of variation.  Each lab test (LOINC) is indicated by the color of the 
points.  The diagonal line represents unity.  Panels are ordered by each method’s mean deviation 
(MD) with unity, indicated in the top left corner of each panel.   

 

Our results (Figure 3.6) demonstrate that many of the imputation methods are not 

suitable for multiple imputation.  Three of the methods that had the lowest error in the 

idealized MCAR, MAR, and MNAR simulations (soft impute, MICE col (FI), MICE 

norm.pred (R)) were found to have minimal variation between imputations.  This was 

also true of KNN, SVD, mean, and median imputation.  Only three methods (random 

sampling, MICE norm (R), and MICE pmm (R)) seemed to have similar error between 

the multiple imputations and the observed data and thus appear to be unbiased.  The latter 

two had very similar performance and are the best candidates for multiple imputation.  

Two methods had intermediate performance.  The MICE RF (R) was similar to several 

other MICE methods in terms of error relative to the observed data but it produced 



 

 63 

slightly less variation between each imputed dataset.  This seemed to affect some 

variables more than other but there was no obvious pattern.  The MICE pmm (FI) was not 

deterministic but it did seem to achieve low error at the expense of increased bias.  In this 

case, the variables that could be imputed with the lowest error also seemed to have the 

most bias.  Since this method claims to be a reimplementation of the MICE pmm (R) 

method, this may be due to multicolinearity among the variables that could not easily be 

accounted for as there was no simple way to alter the predictor matrix.                   

3.2.1.   Discussion 

It is not possible, or even desirable, to choose “the best” imputation method.  There 

are many considerations that may not be generalizable between different sets of data; 

however, we can draw some general conclusions about how different methods compare 

in terms of error, bias, complexity, and difficulty of implementation.  Based on our 

results, there seem to be three broad categories of methods.  

The first category are the simple, deterministic, methods.  These include mean or 

median imputation and K-nearest neighbors.  The idea behind these methods is that the 

central tendency of a distribution will be good guess for any unobserved data point.  

Imputing mean or median values is very easy to implement this but may lead to severe 

bias and large errors if the unobserved data are more likely to come from the tails of the 

observed distribution (Figure 3.5 A-C, methods 2-5).  It will also cause the variance of 

the distribution to be underestimated if more than a small fraction of the data are missing.  

Since these methods are deterministic, they are also not suitable for multiple imputation 

since no estimate of the uncertainty in the results of any downstream analyses can be 

made (Figure 3.6, bottom row).  
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KNN is similar to mean imputation but based on the idea that there may be groups of 

individuals that are similar to each other.  The value of a missing data point can be 

estimated by identifying other individuals who have that measure and appear similar to 

the unmeasured individual based on values of variables observed in both.  A group of 

similar individuals are thus identified and their values are averaged to provide an estimate 

of the missing value.  This generally provides lower error than taking the mean of all 

individuals, but the choice of K can be difficult to specify.  Our simulations suggest that 

the optimal value can range from less than 1% of the population to more than 50% the 

population depending on the mechanism of missingness.   

KNN is a popular choice for imputation and has been shown to perform very well in 

some types of data (75, 76) but it was not particularly well suited for our data, regardless 

of the choice of K.  This may due to issues of data dimensionality (77) or it may be that 

human beings do not fall into well separated groups based on their clinical lab results.  

This method is also not currently suitable for large datasets.  The first step is to build a 

distance matrix for all pairs of individuals that is stored in RAM, and the size of the 

distance matrix scales with n2.    

There are also many different methods for calculating distance and the optimal 

choice may vary widely from one type of data to another.  The method that we 

implemented uses the mean squared linear distance across all pairs of shared 

observations.  While this is probably the best choice when the number of shared features 

varies between individuals, it assumes that all variables are equal in their ability to 

capture similarities between individuals regardless of what variable is being imputed.  

This is certainly not a realistic assumption for our dataset which further points to the fact 
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that imputation is not plug and play and analysis must be done before handling missing 

data.                         

The second broad category of algorithms could be called the sophisticated, 

deterministic methods.  These include SVD, soft impute, and MICE col/norm.predict.  

They tend to rely on either multivariate regression and/or projection of the data into a 

space of lower dimension.  SVD performed poorly compared to its counterparts and 

sometimes produced errors greater than simple random sampling (Figure 3.5, method 5).  

The reasons for this are not clear, but we cannot currently recommend this method.  Soft 

impute and MICE col/norm.predict were among the lowest error methods in all of our 

simulations (Figure 3.5, methods 6-7).  The main limitation of these methods are that 

they cannot be used for multiple imputation (Figure 3.6, middle row).   

The third broad category of algorithms were the stochastic methods which included 

random sampling and most of the remaining methods in the MICE library.  The random 

sampling method almost always produced the highest error (Figure 3.4-3.5, method 1) 

but it has the advantage of being easy to implement and it requires no parameter 

selection.  The MICE methods based on predictive mean matching, random forests, and 

bayesian linear regression tended to perform similarly in terms of error in most of our 

simulations (Figure 3.4-3.5, methods 10-12).  

Imputation methods that involve some type of stochastic sampling allow for a 

fundamentally different type of analysis called multiple imputation.  In this paradigm, 

multiple imputed datasets (a minimum of 3 and often 10-20 depending of the percentage 

of missing data)(78–80) are generated and each is analyzed in the same way.  At the end 

of all downstream analyses, the results are then compared.  Typically, the ultimate result 
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of interest is supported by a p-value, a regression coefficient, an odds ratio, etc.  In the 

case of a multiply imputed dataset, the researcher will have several test statistics that can 

be used to estimate a confidence interval for the result. 

Multiple imputation has been gaining traction over the years and the MICE (multiple 

imputation by chained equations) package has become one of the most popular choices 

for implementing this procedure.  This package is very powerful and very well 

documented(73) but like all methods for imputation, caution must be exercised.  There 

also seems to be some confusion surrounding the concept of MICE.  It is not a single 

algorithm but rather a framework for applying a variety of algorithms.  Each missing 

value for a variable of interest is imputed by considering the other variables that were 

observed for that individual, the observed values of the variable of interest in other 

individuals, and/or the relationships between the variables.  This procedure is applied for 

each missing value in one variable, and then to each subsequent variable.  This entire 

process is then repeated for a number of iterations such that the values imputed in the first 

iteration can update the estimates for the second iteration.  The result is a chain of 

imputed datasets and this entire process is typically performed in parallel so that multiple 

chains are generated.              

In MICE, there are a number of choices that must be made and care should taken to 

evaluate the results.  The first obvious choice is the method (i.e. equation).  Many 

methods are available in the base package, additional methods can be added from other 

packages [https://cran.r-project.org/web/packages/miceadds/index.html], and users can 

even define their own.  These methods could be extended in theory to include any of the 

previously described algorithms and the base package already includes random sampling 
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and mean imputation.  We thoroughly evaluated three methods in the context of our 

dataset: predictive mean matching (pmm), bayesian linear regression (norm), and random 

forest (rf).   

PMM is the default choice and popular since it can be used on a mixture of numeric 

and categorical variables.  We found PMM to have a good trade-off between error and 

bias, but for our dataset it was critical to remove several variables from the predictor 

matrix due to strong correlations and multicolinearity.  Bayesian regression performed 

similarly but was less sensitive to these issues.  If a dataset contains only numeric values, 

bayesian regression may be a safer option.  Random forest tended to produce results that 

were slightly biased for a subset of the variables without an appreciable reduction in 

error.  Aside from random sampling, none of the other methods we evaluated were 

suitable for multiple imputation (Figure 3.6).    

While the minimization of error in the imputed data is the primary goal, a singular 

focus on this objective is likely to lead to bias.  For each missing value, it is also 

important to estimate the uncertainty associated with it.  This can be achieved by multiple 

imputation using an algorithm that incorporates stochastic processes.  Multiple 

imputation has become the field standard because it provide confidence intervals for the 

results of downstream analyses.  One should not naively assume that any stochastic 

process is free of bias.  It is important to check that multiple imputation is providing 

variability that corresponds to the actual uncertainty of the imputed values using a set of 

simulated data. 
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  Missing Data imputation in the Electronic Health Record Using 

Deeply Learned Autoencoders.  

3.3.1.   Abstract 

Electronic health records (EHRs) have become a vital source of patient outcome data 

but the widespread prevalence of missing data presents a major challenge. Different 

causes of missing data in the EHR data may introduce unintentional bias. Here, we 

compare the effectiveness of popular multiple imputation strategies with a deeply learned 

autoencoder using the Pooled Resource Open-Access ALS Clinical Trials Database 

(PRO-ACT). PRO-ACT is particularly interesting because it includes data across 23 

different clinical trials. To evaluate performance, we examined imputation accuracy for 

known values simulated to be either missing completely at random or missing not at 

random. We also compared ALS disease progression prediction across different 

imputation models. Autoencoders showed strong performance for imputation accuracy 

and contributed to the strongest disease progression predictor. Finally, we show that 

despite clinical heterogeneity, ALS disease progression appears homogenous with time 

from onset being the most important predictor.  

 

3.3.2.   ALS and the Pooled Resource Open-access Clinical Trials 

We evaluate each of the imputation methods on the ALS Pooled Resource Open-

access Clinical Trials (PRO-ACT). Pooled clinical trial datasets present an ideal option 

for evaluating EHR imputation strategies because they include patients from differing 

environments with potential systematic biases. In addition, clinical trials represent the 
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gold standard for data collection making it possible to spike-in missing data while 

maintaining enough signal to evaluate imputation techniques.  

Prize4Life and the Neurological Clinical Research Institute (NCRI) at Massachusetts 

General Hospital created the Pooled Resource Open-Access ALS Clincial Trials (PRO-

ACT) platform with funding from the ALS Therapy Alliance in and in partnership with 

the Northeast ALS Consortium. The PRO-ACT project was designed to empower 

translational ALS research and includes data from 23 clinical trials and 10,723 patients. 

In this work, we use the subset of 1,824 patients included in the Prize4Life 

challenges(81). 

ALS is a progressive neurodegenerative disorder affecting both the upper and lower 

motor neurons causing muscle weakness, paralysis and leading to death(81). ALS 

patients typically survive only 3 to 5 years from disease onset and show large degrees of 

clinical heterogeneity(82–85).  

A common measure used to monitor an ALS patient’s condition is the ALS 

functional rating scale (ALSFRS)(86, 87). The ALSFRS consists of 10 tests scored from 

0-4 assessing patients’ self-sufficiency in categories including: feeding, grooming, 

ambulation and communication. The change over time, or slope, is commonly used as a 

statistic to represent ALS progression. 

 

3.3.3.   Methods 

We compare and evaluate a variety of methods to impute missing data in the EHR. 

We spiked-in missing data to the PRO-ACT dataset, and evaluated each approach’s 

performance imputing known data. We also evaluated prediction accuracy using each of 
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the imputation methods on the ALSFRS. Each of these is described in detail below and 

all analysis was run using freely available open source library packages, DAPS(88), 

FancyImpute(72), Keras(89) and Scikit-learn(56). 

3.3.3.1.   Data preparation and standardization 

The PRO-ACT dataset includes patient demographic data, family history, 

concomitant medications, vital sign measurements, laboratory results, and patient history 

(disease onset etc.). PRO-ACT performed an initial data cleaning and quality assurance 

process. This process included extracting quantitative variables, merging laboratory tests 

with different names across trials, removable of indecipherable records and converting 

units. After processing the PRO-ACT dataset includes only quantitative values 

(continuous, binary, ordinal and categorical).  

Our analysis encoded categorical variables using Sci-kit learn’s OneHotEncoder(56). 

Temporal or repeated measurements were encoded as the mean, minimum, maximum, 

count, standard deviation and slope across all measurements, creating 572 features for 

each samples. Additional measurements were standardized across scales (i.e. inches to 

cm). Non-numeric values in numeric measurements were coerced to numeric values. 

Where coercion failed they were replaced by NaN. Input features were normalized and 

scaled to be between 0 and 1, with missing features remaining as NaN.  

3.3.4.   Imputation Strategies and Evaluations 

Autoencoders are a variation of artificial neural networks that learn a distributed 

representation of their input(45). They learn parameters to transform the data to a hidden 

layer and then reconstruct the original input. By using a hidden layer smaller than the 

number of input features, or “bottle-neck” layer the autoencoder is forced to learn the 
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most important patterns in the data(53). To prevent overreliance on specific features two 

techniques are commonly used. In a denoising autoencoder, noise is added to corrupt a 

portion of the inputs(44, 53). Alternatively, a technique called dropout in which random 

units and connections are removed from the network forcing it to learn 

generalizations(90). Autoencoders were shown to generate useful higher representations 

in both simulated and real EHR data. Because autoencoders learn by reconstructing the 

original input from a corrupted version, imputation is a natural extension(88, 91).  

3.3.4.1.   Imputing missing data with Autoencoders 

We constructed an autoencoder with a modified binary cross entropy cost between 

the reconstructed layer z and the input data x to better handle missing data as in Beaulieu-

Jones and Greene (2016) (Formula 1)(88). The modified function takes into account 

missing data, with m representing a “missingness” vector; m has a value of 1 where the 

data is present and 0 when the data is missing. By multiplying by m and dividing by the 

count of present features (sum of m) the result represents the average cost per present 

feature. The weights and biases of the autoencoder are trained only on present features 

and imputation does not need to be performed prior to training the autoencoder.  

 

𝑐𝑜𝑠𝑡 = 	
  − [𝑥0 log 𝑧0 	
  4
056 𝑚0 + (1 − 𝑥0) log 1 − 𝑧0 𝑚0]	
  /	
  𝑐𝑜𝑢𝑛𝑡(𝑚)	
       (Formula 1) 

 

With the exception of the modified cost function autoencoders were trained as 

described by Vincent et al. with a 100 training epoch patience(44). If a new minimum 

cost was not reached in 100 epochs, training was stopped. The autoencoder with dropout 

was implemented using the FancyImpute(72) and Keras(89) libraries with a Theano(54, 

55) backend. 
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 We performed a parameter sweep to determine the hyperparameters for the 

autoencoder. In the sweep we included autoencoders of one to three hidden layers and 

each combination of 2, 4, 10, 100, 200, 500 and 1000 (over-complete representation) 

hidden nodes per layer. Autoencoders with two hidden layers made up of 500 nodes each 

are shown for all comparisons (Figure 3.7). Dropout levels of 5, 10, 20, 30, 40 and 50% 

were evaluated with 20% being shown for all comparisons. 

 

 

Figure 3.7 : Schematic structure of the autoencoder used for evaluations. 

Autoencoder includes two hidden layers and 20% dropout between each layer. 

 

Binary cross entropy was used for training because it tends to be a better evaluator of 

quality when training neural networks(44, 53, 92, 93). We use a root mean squared error 

for comparison to other methods to prevent a bias in favor of autoencoders, as most other 

methods are not trained with cross entropy. 
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3.3.4.2.   Comparative imputation strategies 

We used the FancyImpute(72) libraries implementations for each of the other 

imputation strategies:  

1.)   IterativeSVD, matrix completion by low rank singular value decomposition 

based on SVDImpute(76).  

2.)  K-nearest neighbors imputation (KNNimpute), matrix completion by choosing 

the mean values of the K closest samples for features where both samples are 

present. 

3.)  SoftImpute(94), matrix completion by iterative replacement of missing values 

with values from a soft-thresholded singular value decomposition. 

4.)  Column mean filling.  

5.)  Column median filling 

  
The standard implementations of the remaining algorithms in the FancyImpute 

library, MICE, Matrix Factorization and Nuclear Norm Minimization are known to be 

slow on large matrices and were impractically slow on this dataset(95–99).  

We performed a parameter sweep for SVDimpute analyzing ranks of 5, 10, 20, 40 

and 80. Ranks of 40 showed the strongest performance with this dataset and are shown 

for all comparisons. The parameter sweep for KNNimpute included 1, 3, 5, 7, 15 and 30 

neighbors, k of 7 showed the strongest performance of the parameter sweep and is used 

for all comparisons.  

3.3.4.3.   Missing Completely at Random Imputation Evaluation 

To evaluate imputation accuracy in a missing completely at random environment we 

performed trials replacing 10, 20, 30, 40 and 50% of known features at random with 
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NaN. We performed each imputation strategy on the data with spiked-in missingness and 

evaluated the root mean squared error between the imputed estimates and the original 

data. We performed five trials for each amount of spiked-in data (Figure 3.8). 

Performance was evaluated using the root mean squared error between the known value 

before spiking in missingness and the imputed value. 

3.3.4.4.   Missing Not at Random Imputation Evaluation 

To perform a basic imputation simulation where data was missing not at random, 

varying percentages (10, 20, 30, 40, and 50%) of features were chosen at random. Half of 

the highest or lowest (randomly selected) quartile of values was replaced by NaN at 

random. Each imputation strategy was evaluated on five independent spike-in trails. 

Performance was evaluated using the root mean squared error between the imputed 

values and original values. This type of imputation could occur when the highest or 

lowest values represent the normal range and the clinician is able to determine a patient is 

normal through other factors. Alternatively, the extreme values could represent a clear 

result where an additional is not needed to determine the result. Performance was 

evaluated using the root mean squared error between the known value before spiking in 

missingness and the predicted value. 

3.3.4.5.   Progression Prediction Evaluation 

To predict disease progression as represented by the ALSFRS score slope, we first 

imputed the missing data using column mean averaging, column median averaging, 

SVDImpute, SoftImpute, KNNimpute, and an autoencoder with dropout. For prediction 

purposes, we excluded all ALSFRS score and Forced Vital Capacity-related features. 
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We then used the scikit-learn implementation of a random forest regressor(56) to 

predict the ALSFRS score slope. The random forest regressor was chosen because four of 

the top six teams in the DREAM-Phil Bowen ALS Prediction Prize4Life challenge used 

variants of random forest regressors(81). We also compare a random forest regressor 

modified to predict progression from the raw data without imputation(100). Ten-fold 

cross validation was performed and the root mean squared error between the predicted 

slope and actual slope was calculated. We then extracted the top 10 most important 

features used in the trained model for analysis (Figure 3.8). 

 

Figure 3.8: Imputation Evaluation Outline. 

A.) Imputation Evaluation. PRO-ACT patient data of 10,723 subjects has known data masked 
with spiked in missing data. Imputation strategies are performed in parallel and the RMSE is 
calculated between the masked input data and each strategies imputations. B.) Progression 
Prediction. PRO-ACT patients are imputed using each strategy. Ten-fold cross validation of a 
random forest regressor is performed on imputed patients.  

 

3.3.5.   Results 

Most patients were missing approximately half of the features we extracted from the 

EHR (Figure 3.9 A). The pooled aspect of the PRO-ACT data is particularly evident in 
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the distribution of missing features as different clinical trials collected different amounts 

of data. Features tended to be observed in either less than 25% or in greater than 75% of 

patients (Figure 3.9 B). Lab tests, in particular, demonstrated high variability of 

missingness among patients, with many present in small numbers of patients. It is 

impossible to determine the level of each type of missing data that exists, but it is clear 

that at least some of data missing is due to clinical factors (trial group etc.). The most 

complete features are demographics and family history information, information likely 

collected before entry into any of the clinical trials. 

 

Figure 3.9: Histogram distribution and rug plot showing the number of patients each feature is 
present in. 

A.) The number of features each patient has. Ticks at the bottom indicate one patient with the count of 
features, bins indicate the number of patients in a range. B.) The number of patients having a recorded value 
for each feature. Ticks at the bottom indicate the number of patients a feature is present in, bins indicate the 
number of features in a range.  

 

3.3.6.   Missing completely at random spike-in results 

Mean, Median and Singular Value Decomposition imputation perform poorly when 

data is missing completely at random. However, they do not appear to degrade as the 

spike-in ratio increase (Figure 3.10). This is not surprising for mean and median 

imputation because missing data is chosen completely at random and is unlikely to have a 

A.# B.#
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large effect on statistical averages. The autoencoder had the highest imputation 

performance despite increasing as the spike-in ratio increased.  

 

 

Figure 3.10: Effect of the amount of spiked-in missing data on imputation. 

Error bars indicate 5-fold cross validation score ranges. 

 

3.3.7.   Not missing at random spike-in results 

The trends seen in the missing completely at random experiment largely repeat when 

the data is missing not at random. The autoencoder approach shows strong performance 

but is closely followed by the KNN, Softimpute and SVD approaches (Figure 3.11). 

KNN works by finding the k-nearest neighbors for shared values and taking the mean for 

the missing feature. Autoencoders work by learning the optimal network for 

reconstruction. Similar input values will have similar hidden node values. This similarity 

could explain the relatively even performance between the two methods. In addition to 

recognizing similar samples, autoencoders have been shown to perform well when there 
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is dependency or correlation between variables(60); this is the scenario when data is 

missing not at random. When spike-in ratios increase to high levels the methods begin to 

converge to the performance of mean and median imputation. This is likely because too 

much of the signal is lost as missing data to learn the correlation structure. 

 

 

Figure 3.11: Effect of non-random spiked-in missing data on imputation (measured in RMSE). 

Autoencoder w/Dropout (2 layer 500 nodes each), SVD – SVDImpute with rank of 40, KNN - 
KNNimpute with 7 neighbors, Mean – Column Mean Averaging, Median – column median 
averaging, SI – SoftImpute. 

 

3.3.8.   ALS disease progression 

Imputation strategy has a modest but statistically significant impact on the root mean 

squared error of ALS disease progression prediction, but the autoencoder approach is the 

strongest performing (Figure 3.12). Despite showing poor performance in the imputation 

accuracy exercises Singular Value Decomposition does approximately as well as k-

nearest neighbors and SoftImpute in this experiment. A random forest regressor applied 

to the raw data is the worst performing, but is not significantly worse than any of the 
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methods other than the Autoencoder. In terms of ALS disease progression, imputation 

does not appear to have a large effect on prediction, but can be vital to allow the use of 

other algorithms (prediction, clustering etc.) without modification. 

 

Figure 3.12: ALS Functional Rating Scale prediction accuracy. 

Prediction accuracy shown for an autoencoder, k-nearest neighbors, mean averaging, median 
averaging, the raw input including missing values, soft impute and singular value decomposition. 
The box indicates inner quartiles with the line representing the median; the whiskers indicate 
outer quartiles excluding outliers. 

 

3.3.9.   ALS progression predictive indicators 

Nine out of the top ten most important features in the autoencoder-imputed random 

forest regressor were among the top fifteen identified in the DREAM Prediction 

challenge (Figure 3.13 A). The amount of time using Riluzole was not among the top 

fifteen previously identified. Riluzole is the only FDA approved medication for ALS 
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treatment but it is believed to have a limited effect on survival(101–103). The finding that 

Riluzole is protective of ALS slope indicates some level of efficacy. 

Of the top ten most important features, five are missing in more than 50% of patients 

in the data set. This is a possible explanation for the improvement shown by 

Autoencoders, SVDimpute and KNNimpute over mean imputation. 

 By far the most important feature for prediction is the time from onset and several 

of the most important features are highly correlated with time from onset. ALSFRS 

slopes resemble a normal distribution (Figure 3.13 B). When including the entire PRO-

ACT dataset, the Kolmogorov-Smirnov test score is 0.05 for patients with negative 

slopes. This indicates the progression of the disease is similar to a truncated normal 

distribution. We exclude positive slopes because ALS patients do not typically get better, 

and signs of doing so are likely the result of measurement error. Despite presenting in 

clinically heterogeneous manners, ALS progression as defined by the ALSFRS appears to 

be largely homogenous. Patients fall within a relatively normal distribution and have 

increasingly negative slopes the longer they ALS. 

 

Figure 3.13: Prediction feature importance. 

A.) Importance levels of the top 10 features to the random forest regressor with autoencoder 
imputed data. B.) Histogram distribution of patient ALSFRS slope levels. 
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3.3.10.  Discussion and Conclusions 

In this study, we compared the performance of an autoencoder approach with 

popular imputation techniques in ALS EHR data. A multi-layer autoencoder with dropout 

showed robust imputation performance across a variety of spiked-in missing data 

experiments designed to be both completely at random and not at random. Furthermore, 

we found that imputation accuracy may not strictly correlate with predictive performance 

but the most accurate imputer provided the most accurate predictor. The importance of 

imputation is demonstrated by five of the top ten most important features for prediction 

being missing in more than 50% of patients.  

Increased deterioration of imputation performance for KNNimpute and SVDimpute 

with increased missing data is at odds with previous research of imputation in 

microarrays(76). Possible explanations include either reaching a threshold of missing 

data where the burden is too high for these methods to accurately impute or that a 

confounding systematic bias is introduced from the different clinical trials. 

This work is a promising first step in utilizing deep learning techniques for missing 

data imputation in the EHR but challenges remain. Autoencoders are computationally 

intensive, but less so than imputation techniques like MICE, Matrix Factorization and 

Nuclear Norm Minimization. With GPU resources, autoencoders train in similar amounts 

of time to both KNN and SVD methods for these clinical trials. As data increases, 

autoencoder training time increases linearly in line with the number of samples. Methods 

like KNN require computing a distance matrix, which increases in exponential time. In 

addition, further examination is necessary to determine whether the strong performance 

shown by autoencoders is a result of the structure of this pooled clinical trial dataset. The 
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subset of 1,800 patients is relatively small and methods may differ in performance 

increases with more patients.  

 This work offers promising results but has several limitations especially because 

it specifically analyzes pre-processed pooled clinical trial data. Clinical trials have more 

complete and cleaner data than raw EHR. Follow up work should be performed with 

other diseases and in the general patient population. These methods have also only been 

evaluated for quantitative values; in raw EHR data there will be an additional extraction 

step for raw text and qualitative observations that was not necessary due to PRO-ACT’s 

preprocessing. 

Additional future work will be concentrated on developing tools to better understand 

and interpret the structure of the trained autoencoder networks. We anticipate being able 

to recognize patterns in the trained weights to see correlation between input features. 

Understanding correlation will empower new clustering and visualization opportunities. 

Spike-in evaluations can provide a supervised context to otherwise unsupervised learning 

problems; further analysis should be performed on the higher-level learned features in the 

hidden layers of the autoencoders. We suspect these features may be useful in patient 

outcome classification and regression problems. 
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Chapter 4.   Enabling data sharing and reproducible research with private data. 

 

This chapter includes adaptations from: 

Beaulieu-Jones, Brett K., and Casey S. Greene. "Reproducibility of computational 
workflows is automated using continuous analysis." Nature Biotechnology 35.4 (2017): 
342-346. doi: 10.1038/nbt.3780 
 
B.K.B.-J. and C.S.G. conceived the study and designed the solution. B.K.B.-J. 
implemented continuous analysis. B.K.B.-J. and C.S.G. wrote, revised and approved the 
manuscript. 
 
Supplemental Materials and Online Methods are available at: 
https://doi.org/10.1038/nbt.3780#supplementary-information 
 
And 
 
Beaulieu-Jones, B. K., Wu, Z. S., Williams, C., & Greene, C. S. (2017). Privacy-
preserving generative deep neural networks support clinical data sharing. In review 
(2017). Preprint doi: 10.1101/159756. 
 
B.K.B.-J. and C.S.G. conceived the study. B.K.B.-J. And C.W. performed initial 
analyses. B.K.B.-J. and Z.S.W. designed and validated the privacy approach. B.K.B.-J., 
C.S.G. and Z.S.W. wrote the manuscript and all authors revised and approved the final 
manuscript. 
 
Supplemental Figures are available at: https://doi.org/10.1101/159756 
 
 
 

  Motivation 

Advancement in science depends on the ability to trust previous work as correct and 

accurate. The ability to reproduce the work in question is one factor in building this trust. 

When Nature conducted a survey, the vast majority of researchers answered that there ‘is 

a reproducibility crisis’ (104). For many experiments, providing a written description of a 

protocol is insufficient. Computational experiments can be exceedingly complicated and 

software changes over time. Written protocols often fail to explicitly state the version of 
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the software used. Even when the version is provided, it may no longer be available. 

These issues of computational reproducibility are greatly exacerbated when working with 

sensitive data that cannot be shared. Electronic health records are an example of this 

“private data”. The rightful necessity to protect patient privacy prohibits sharing any 

identifiable data. This presents several challenges. It is difficult to determine whether a 

failure to reproduce a previous work is due to a difference in protocol or data. If the error 

is in replicating the protocol, readers have no way of knowing which step they diverged 

from the original work. We present technical solutions to both issues, 1.) a method that 

allows readers to perform analyses in the exact computing environment as the original 

authors and to view logs with intermediate results from the original experiment, and 2.) a 

method to generate data that closely resembles unshareable private data while preserving 

the privacy of study participants. 

  Reproducibility of computational workflows is automated using 

continuous analysis. 

4.2.1.   Abstract 

Replication, validation and extension of experiments are crucial for scientific 

progress. Computational experiments are scriptable and should be easy to reproduce. 

However, computational analyses are designed and run in a specific computing 

environment, which may be difficult or impossible to match using written instructions. 

We report the development of continuous analysis, a workflow that enables reproducible 

computational analyses. Continuous analysis combines Docker, a container technology 

akin to virtual machines, with continuous integration, a software development technique, 
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to automatically rerun a computational analysis whenever updates or improvements are 

made to source code or data. This enables researchers to reproduce results without 

contacting the study authors. Continuous analysis allows reviewers, editors or readers to 

verify reproducibility without manually downloading and rerunning code and can provide 

an audit trail for analyses of data that cannot be shared. 

4.2.2.   Introduction 

Leading scientific journals have highlighted a need for improved reproducibility 

in order to increase confidence in results and reduce the number of retractions(105–109). 

In a recent survey, 90% of researchers acknowledged that there ‘is a reproducibility 

crisis’(104). Computational reproducibility is the ability to exactly reproduce results 

given the same data, as opposed to replication, which requires a new independent 

experiment. Computational protocols used for research should be readily reproducible 

because all of the steps are scripted into a machine-readable format. However, results can 

often only be reproduced with help from the original authors, and reproducing results 

requires a substantial time investment. Garijo et al.(110) estimated that it would take 280 

hours for a non-expert to reproduce the computational construction of a drug-target 

network for Mycobacterium tuberculosis(111). Written descriptions of computational 

approaches can be difficult to understand and may lack sufficient details, including data 

preprocessing, model parameter selection and software versions, which are crucial for 

reproducibility. Indeed, Ioannidis et al.(112) indicated that the outputs of 56% of 

microarray gene expression experiments could not be reproduced and another 33% could 

only be reproduced with discrepancies. Additionally, Hothorn and Leisch found that 

more than 80% of manuscripts did not report software versions(113). 
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It has been proposed that open science could aid reproducibility(107, 114). In 

open science the data and source code are shared. Intermediate results and project 

planning are sometimes also shared(115). Sharing data and source code are necessary, but 

not sufficient, to make research reproducible. Even when code and data are shared, it 

remains difficult to reproduce results due to variability in computing environments, 

operating systems, and the versions of software used during the original analysis. It is 

common to use one or more software libraries during a project. Using these libraries 

creates a dependency to a particular version of the library; research code often only works 

with old versions of these libraries(116). Developers of newer versions may have 

renamed functions, resulting in broken code, or changed the way a function works to 

yield a slightly different result without returning an error. For example, Python 2 would 

perform integer division by default, so 5/2 would return 2. Python 3 performs floating-

point division by default, so the same 5/2 command now returns 2.5. In addition, old or 

broken dependencies can mean that it is not possible for readers or reviewers to recreate 

the computational environment used by the authors of a study. In this case it becomes 

impossible to validate or extend results.   

We first illustrate, using a practical example, the problem of reproducibility of 

computational studies. Then we describe the development and validation of a method 

named continuous analysis that can address this problem. 

4.2.3.   Results 

One example illustrating how data-sharing does not automatically make science 

reproducible can be found in routine analyses of differential gene expression.  

Differential expression analyses are performed first by quantifying RNA levels in two or 
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more conditions and then identifying the transcripts with expression levels that are altered 

by the experiment. When a DNA microarray is used to measure transcript expression 

levels, positions on the array correspond to oligonucleotides of certain sequences, termed 

probes. A certain set of probes is used to estimate the expression level of each gene or 

transcript. As our understanding of the genome changes, the optimal mapping of probes 

to genes or transcripts can change as well. 

 

  
Figure 4.1: Custom CDF version reporting in recent and popular publications. 

A.) The 100 most recent publications and the B.) 100 most cited papers citing Dai et al.(117) that 
use Custom CDF. Each circle represents one manuscript; color coding indicates the Custom CDF 
version used. 

 

Dai et al.(117) publish and maintain a popular source of probe set description files 

that are routinely updated (BrainArray Custom CDF).  Analyses that fail to report the 

probe set version, or that were performed with probe set definitions that are now missing,  
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can never be reproduced. We set out to ascertain the extent of this problem through a 

literature search. We analyzed the one hundred most recently published papers citing Dai 

et al. that were accessible at our institution (Supplementary Data 1). We identified these 

manuscripts using Web of Science on November 14, 2016. We recorded the number of 

papers that cited a version of Custom CDF, including which version was cited. These 

articles adhered to expectations of citing methods appropriately because they cited the 

source of their probe set definitions. Of these 100 papers, 49 (49%) specified which 

version was used (Figure 4.1 A). These manuscripts reported the use of versions 6, 10, 

12, 14, 15, 16, 17, 18, and 19 of the BrainArray Custom CDF. As of November 14, 2016 

versions 6 and 12 were no longer available for download on the BrainArray web site. To 

determine the extent to which a lack of version reporting of the probe set affects high 

impact papers, we analyzed at the one hundred most cited papers that cite Dai et al. 

(Supplementary Data 2). We determined the one hundred most cited papers using Web of 

Science on November 14, 2016. Of these 100 papers, 36 (36%) specified which version 

of the Custom CDF was used (Figure 4.1 B). These manuscripts used versions 4, 6, 7, 8, 

10, 11, 12, 13, 14 and 17. Versions 4, 6, 7, 11 and 12 were not available for download as 

of November 14, 2016. 

In order to evaluate how different BrainArray Custom CDF versions affect the 

outcomes of standard analyses, we downloaded a recently published gene expression 

dataset (GEO accession number GSE47664). The reported experiment with this dataset 

measured gene expression in normal HeLa cells and HeLa cells with TIA1 and TIAR 

knocked down(118). We ran the same source code using the same dataset altering only 

the version of the BrainArray Custom CDF library (versions 18, 19 and 20). Each version 



 

 90 

identified a different number of significantly altered genes (Figure 4.2 A).  There were 15 

genes identified as significant in version 19 that were not identified in version 18, and 10 

genes identified as significant in version 18 that were not identified version 19. There 

were 18 genes identified as significant in version 20 that were not found in version 18 

and 14 genes identified as significant in version 18 that were not identified in version 20. 

These results indicate that study outcomes are not reproducible without an accurate 

version number. 

 

Figure 4.2: Comparison of traditional vs. container based approaches. 

Research computing versus container-based approaches for differential gene expression analysis 
of HeLa cells. Numbers of significantly differentially expressed genes identified using different 
versions of software packages. (a) and a container-based approach with a defined computing 
environment (b). n = 3 biological replicates per group (wild-type or double-knockdown HeLa 
cells) 
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4.2.3.1.   Using Docker containers improves reproducibility 

To improve reproducibility, researchers can maintain dependencies using the free 

open-source software tool Docker(116),(42). Docker can be used to create an “image” 

that allows users to download and run a container, which is a minimalist virtual machine 

with a predefined computing environment. Docker images can be several gigabytes in 

size, but once downloaded can be started in a matter of seconds and have minimal 

overhead(116). This technology has been widely adopted and is now supported by many 

popular cloud providers including Amazon, Google and Microsoft.  

Docker wraps software into a container that includes everything the software 

needs to run (operating system, system tools, installed software libraries etc.). This allows 

the software to run the exact same way in any environment. Boettiger introduced Docker 

containers as a path to reproducible research by eliminating dependency management, 

remediating issues caused by imprecise documentation, limiting the effects of code rot 

(dependencies to specific software library versions) and eliminating barriers to software 

reuse(116). In addition, Docker images can be tagged to coincide with software releases 

and paper revisions. This means that even as software is updated, the exact computing 

environment of a specific older version can be available through the tag of the container’s 

revision history.   

 In order to assess whether using Docker containers could improve reproducibility 

of the same experiment we also carried out an analysis of differential gene expression 

using Docker containers on mismatched machines(119). This process allows versions to 
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be matched, and produces the same number and set of differentially expressed genes 

(Figure 4.2 B).  

Docker is a useful starting point for reproducible workflows. While it helps to 

match the computing environment, users must manually rebuild the environment, rerun 

the analysis pipeline, and update the container after each relevant change. In addition, it 

does not produce logs of exactly what was run. It also does not automatically track results 

alongside the specific versions of the code and data that generated them. In summary, 

Docker can provide manual reproducibility when it is used appropriately. 

4.2.3.2.   Continuous Analysis 

Our goal when developing continuous analysis was to produce an automatic and 

verifiable end-to-end run for computational analyses with minimal start-up costs. The 

status quo process requires researchers to perform an analysis and then diligently describe 

each step and communicate exact versions of software library dependencies used, which 

can be hundreds or thousands of packages for modern operating systems. To sidestep 

requiring readers and reviewers to download and install multiple software packages and 

datasets, continuous analysis preserves the exact computing environment used for the 

original analysis. A Docker container is built at the time of original analysis and thus 

includes the exact versions used by the original authors without the risk of packages later 

becoming inaccessible. The continuous aspect refers to an analysis being rerun, the 

results saved in version control, and the container being automatically updated after any 

relevant changes to the software script or data.  

Continuous analysis is an extension of continuous integration(120). Continuous 

integration is widely used in software development. In this workflow, whenever 
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developers update code in a source control repository, an automated build process is 

triggered. This automated build process first runs any existing test scripts in an attempt to 

catch bugs introduced into software. If there are no tests or the software passes the tests, 

the software is automatically sent to remote servers so that users worldwide can access it. 

Our continuous analysis workflows (Figure 4.3) use continuous integration 

services to run computational analyses, update figures, and publish changes to online 

repositories whenever changes are made to the source code used in an experiment. We 

provide continuous analysis workflows for popular continuous integration systems that 

can be used with multiple types of computing environments including local computing 

and cloud computing. 

 

 
Figure 4.3: Setting up continuous analysis. 

Continuous analysis can be set up in three steps. First, the researcher creates a Docker container 
with the required software (1). The researcher then configures a continuous integration service to 
use this Docker image (2) then pushes code that includes a script capable of running the analyses 
from start to finish (3). The continuous integration provider runs the latest version of code in the 
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specified Docker environment without manual intervention. This generates a Docker container 
with intermediate results that allows anyone to rerun analysis in the same environment, produces 
updated figures and stores logs describing what occurred. Example configurations are available 
in Online Methods and at https://github.com/greenelab/continuous_analysis. 

 

 
In the continuous analysis workflows that we developed, a continuous integration 

service is used to monitor the source code repository. Whenever a change is made to a 

user-specified branch of the repository, the service re-runs the scientific analysis. 

Workflows are defined in files written in YAML that specify the configuration 

parameters and commands that should be run. The YAML language is widely used by 

continuous integration services to specify a human-readable set of instructions. The 

continuous analysis YAML files that we have developed for multiple services to enable 

users to employ local computing, cloud-based computing, or commercial service 

providers. 

Each workflow begins by specifying a base Docker image to replicate the 

researcher’s computing environment. The YAML files that we developed provide a place 

for researchers to choose a base Docker image. Using Docker allows other researchers to 

re-run code in a computing environment that matches what the original authors used, 

even if they do not duplicate the original authors’ continuous integration configuration. 

Next, the continuous analysis workflow YAML files specify one or more shell 

commands required to perform the analysis. Researchers can replace the commands in 

our examples with their own analytical code. Executing these steps generates the relevant 

figures from the analysis. Our YAML implementation of continuous analysis then 

updates the remote source code repository by adding figures and results generated during 

the run. Finally, a Docker container with the final computing environment is 
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automatically updated. This continuous analysis process allows changes to be 

automatically tracked as a project proceeds and pairs each result with the source code, 

data, and Docker container used to generate it. 

 
Figure 4.4: Reproducible workflows with continuous analysis. 

A.,B.) Phylogenetic tree building with four mRNA samples (MouseTw1, HumanTw1, 
MouseTw2 and FlyTw) and an additional gene (HumanTw2). C.,D.) RNA-seq differential 
expression experiment principal component (PC) analysis before C.) and after D.) addition of a 
sample (mT8). 

 

Using continuous integration in this fashion automatically generates a log of 

exactly what code was run that is synchronized to the code, data, and computing 

environment (Supplemental Figure 1). Version control systems allow for images to be 

easily compared, which provides continuous analysis users with the ability to observe 
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results before and after changes (Figure 4.4). Interactive development tools, such as 

Jupyter(121, 122), RMarkdown(123, 124) and Sweave(125) can be incorporated to 

present the code and analysis in a logical graphical manner. For example, we recently 

used Jupyter with continuous analysis in our own publication(88) and corresponding 

repository(41). Reviewers can follow what was done in an audit fashion without having 

to install and run software while having confidence that analyses are reproducible.  

 When an author is ready to publish their work, they should archive their 

repository, which contains the automatically generated results alongside the analytical 

source code and scripted commands for data retrieval. With our continuous analysis 

workflows, the authors can use the `docker save` command to export the latest static 

container, which should also be archived. There are an increasing number of services that 

allow digital artifacts to be archived and distributed, including Figshare or Zenodo. 

Journals may also allow authors to upload these files as supplementary elements. If the 

archiving service used by the authors provides a digital object identifier, future users can 

easily cite the computing environment and source code.  For example, our continuous 

analysis environment(126) and results(127) are available in this fashion with results and 

our source code is provided as Supplementary Source Code 1.  

This system imposes minimal cost in terms of time and money on the researcher. 

Continuous analysis is set up once per project, and will then run automatically for the life 

of the project. We provide example YAML workflows for commonly used services. 

Researchers can replace the steps in our example analyses with their own commands to 

enable automatic reproducibility for their own projects. 
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4.2.3.3.   Setting up continuous analysis 

To set up continuous analysis, a researcher needs to do three things. First they 

must create a Dockerfile, which specifies the software required for their analysis . 

Second, they need to connect a continuous integration service to their version control 

system and add a continuous analysis command script to run their analysis. Finally, they 

need to save their changes to the version control system. Many researchers already 

perform the first and third tasks in the course of standard procedures for computational 

research.  

The continuous integration system (Figure 4.3) will automatically rerun the 

specified analysis with each change, precisely matching the source code and results. It 

can also be set to listen and run only when changes are marked in a specific way, e.g. by 

committing to a specific ‘staging’ branch. For the first project, continuous analysis can be 

set up in less than a day. For subsequent projects, the continuous analysis protocol can be 

amended in less than an hour.  

We have set up continuous analysis using the free and open source Drone 

software on a PC and connected it to the GitHub version control service (detailed 

instructions are available in Online Methods). This method is free to users. Our GitHub 

repository and Supplementary Source Code include continuous analysis YAML scripts 

for local, cloud-based, and full-service paid configurations(127). However, it is important 

to note that while full service providers can be set up in minutes, they may impose 

computational resource limits or monthly fees. Private installations require configuration 

but can scale to a local cluster or cloud service to match the computational complexity of 
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all types of research. With free, open-source continuous integration software(128), 

computing resources are the only associated costs. 

We suggest a development workflow where continuous analysis runs only on a 

selected branch (Supplemental Figure 2). Our example setup configures a “staging” 

branch for this purpose. Researchers can push to this branch whenever they would like to 

generate results files and figures. If the updates to this branch succeed, the changes – 

along with the results of analyses – are then automatically carried over to the master or 

production branch and released.  

4.2.3.4.   Reproducible workflows  

Following initial setup, continuous analysis can be adopted into existing 

workflows that use source control systems. We used continuous analysis in our work 

using neural networks to stratify patients based on their electronic health records(41).  In 

addition, we provide two example analyses using continuous analysis: a phylogenetic tree 

building and RNA-seq differential expression analysis. 

The phylogenetic tree-building example (detailed in Online Methods) aligned 4 

mRNA sequences (MouseTw1, HumanTw1, MouseTw2 and FlyTw) using MAFFT(129) 

and built a phylogenetic tree with these alignments using PHYLIP(130) (Figure 4.4 A). 

After adding an additional sample (HumanTw2), continuous analysis rebuilt the tree 

(Figure 4.4 B).  

The RNA-seq example (detailed in Online Methods) demonstrated differential 

expression analysis between three different organoid models of pancreatic cancer in mice 

based on Boi et al.(131) (GEO accession number GSE63348) while reusing source code 

from Balli(132).  This analysis used kallisto(133), limma(134, 135), and sleuth(136) to 
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quantify the transcript counts, performed principal components analysis and ran a 

differential expression analysis. The analysis was initially performed with 7 samples 

(Figure 4.4 C). An 8th sample was added to show how continuous analysis tracked results 

(Figure 4.4 D). This example also demonstrated the ability of continuous analysis to scale 

to the analysis of large datasets – this GEO accession includes 150GB of data 

(approximately 480 million reads).  

4.2.4.   Discussion 

Continuous analysis provides a verifiable end-to-end run of scientific software in 

a fully specified environment, thereby enabling true reproduction of computational 

analyses.  Because continuous analysis runs automatically, it can be set up at the start of 

any project to provide an audit trail that allows reviewers, editors and readers to assess 

reproducibility without a large time commitment.  If readers or reviewers need to re-run 

the code on their own (e.g. to change a parameter and evaluate the impact on results), 

they can easily do so with a Docker container containing the final computing 

environment and results that has been automatically kept up to date. Version control 

systems enable automatic notification of code updates and new runs to those who “star” 

or “watch” a repository on services such as Github, Gitlab, and Bitbucket. Wide adoption 

of continuous analysis could conceivably be linked with the peer review and publication 

process allowing interested parties to be notified of updates. 

Continuous analysis can also be applied to closed data that cannot be released e.g. 

patient data. Without continuous analysis, reproducing or replicating computational 

analyses based on closed data is dependent on the original authors completely describing 

each step, which often becomes relegated to supplementary information. Readers and 
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reviewers must then diligently follow complex written instructions without any 

confirmation they are on the right track. The pairing of automatically updated containers, 

source code, and results with the audit log provides readers with confidence that results 

would be replicable if the data were available. This allows independent researchers to 

attempt to replicate findings in their own non-public datasets without worrying that a 

failure to replicate could be caused by source code or environment differences. 

       Continuous analysis currently has limitations. It may be impractical to use 

continuous analysis at every commit for generic preprocessing steps involving very large 

data or analyses requiring particularly high computational costs. In particular, steps that 

take days to run or incur substantial costs in computational resources (e.g. genotype 

imputation) may be too expensive for existing providers(137). We demonstrate 

continuous analysis on a user-defined “staging” branch. This enables researchers to 

control costs by choosing when to trigger analyses that are automatically reproducible. 

We strongly recommend the use of continuous analysis whenever a single machine can 

be used. For workflows that require cluster computing, employing continuous analysis is 

technically feasible but requires significant systems administration expertise because the 

cluster must be provisioned automatically. For work involving cluster computing, 

researchers may elect to employ continuous analysis for steps that do not require a 

cluster. In this case, researchers should carefully report which steps in their workflows 

the process covers. It is conceivable that continuous analysis systems could be 

specifically designed for scientific workflows to facilitate reproducible cluster-based 

analyses with the same ease as single-machine analyses. 
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For small datasets and less intensive computational workflows it is easiest to use a 

full service continuous integration service. These services have the shortest setup times – 

often only requiring a user to enable the service and add a single file to their source code. 

With private data or for analyses that include large datasets or require significant 

computing, cloud-based or locally hosted continuous integration server can be employed. 

Reproducibility could have wide-reaching benefits for the advancement of 

science. For authors, reproducible work is credible. Stodden et al.(138) highlight the 

importance of capturing and sharing data, software, and the computational environments. 

Continuous analysis addresses reproducibility in this narrow sense by automatically 

capturing the computational reagents needed to generate the same results from the same 

inputs. It does not solve reproducibility in the broader sense: how robust results are to 

parameter settings, starting conditions and partitions in the data. By automating narrow-

sense reproducibility, continuous analysis lays the groundwork needed to address 

questions related to the reproducibility and robustness of findings in the broad sense. 
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  Privacy-preserving generative deep neural networks support clinical 

data sharing 

4.3.1.   Abstract 

Though it is widely recognized that data sharing enables faster scientific progress, 

the sensible need to protect participant privacy hampers this practice in medicine. We 

train deep neural networks that generate synthetic subjects closely resembling study 

participants. Using the SPRINT trial as an example, we show that machine-learning 

models built from simulated participants generalize to the original dataset. We 

incorporate differential privacy, which offers strong guarantees on the likelihood that a 

subject could be identified as a member of the trial. Investigators who have compiled a 

dataset can use our method to provide a freely accessible public version that enables other 

scientists to perform discovery-oriented analyses. Generated data can be released 

alongside analytical code to enable fully reproducible workflows, even when privacy is a 

concern. By addressing data sharing challenges, deep neural networks can facilitate the 

rigorous and reproducible investigation of clinical datasets. 

4.3.2.   Introduction  

Sharing individual-level data from clinical studies remains challenging. The status 

quo often requires scientists to establish a formal collaboration and execute extensive 

data usage agreements before sharing data. These requirements slow or even prevent data 

sharing between researchers in all but the closest collaborations. 
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Recent initiatives have begun to address cultural challenges around data sharing. The 

New England Journal of Medicine recently held the Systolic Blood Pressure Trial 

(SPRINT) Data Analysis Challenge to examine possible benefits of clinical trial data 

sharing (139, 140). The SPRINT clinical trial examined the efficacy of intensive 

management of systolic blood pressure (<120 mmHg) compared with standard 

management (<140 mmHg). Intensive management resulted in fewer cardiovascular 

events and the trial was stopped early. Reanalysis of the challenge data led to the 

development of personalized treatment scores (141) and decision support systems (142), 

in addition to a more specific analysis of blood pressure management in participants with 

chronic kidney disease (143). Such efforts have begun to address cultural norms. Even 

for this effort which focused on data sharing, investigators were required to execute data 

use agreements that included clauses to maintain security and prohibit re-identification or 

sharing. 

We sought to remove technical barriers that hamper data sharing. Computer 

scientists have tackled problems considered to be particularly challenging using deep 

neural networks (144). This class of machine learning methods is now becoming more 

widely used in biology and medicine (145). In this work, we trained two deep neural 

networks against each other to generate realistic simulated participant blood pressure 

trajectories from the SPRINT trial dataset. One neural network, called the generator, is 

trained to generate a participant from a set of random numbers. The other neural network, 

called a discriminator, is trained to classify data as real or generated. As the networks are 

trained, the generator learns to build samples that fool the discriminator. Networks 

trained in this way are called Generative Adversarial Networks (GANs) (146) and can 
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also be used for labeled samples (147). A pair of recent preprints have reported 

participant generation via neural networks (148, 149). However, it is not enough to 

simply build new examples. Numerous linkage and membership inference attacks have 

demonstrated the ability to re-identify participants or reveal participation in a study on 

both biomedical datasets (18, 150–155) and from machine learning models (19, 156, 

157). 

To provide a formal privacy guarantee, we build GANs under the constraint of 

differential privacy (16). Informally, differential privacy requires that no subject in the 

study has a significant influence on the information released by the algorithm (see 

Materials and Methods for a formal definition). Despite being a stringent notion, 

differential privacy allows us to generate new plausible individuals while revealing 

almost nothing about any single study participant. This is especially important in the 

biomedical domain where, for example, Homer et al. showed the ability to identify 

whether an individual was a part of a study even with complex genomic mixtures (158). 

Simmons and Berger later developed a method to enable differential privacy for genome-

wide association studies (159). Recently, methods have been developed to train deep 

neural networks under differential privacy with formal assurances about privacy risks 

(160, 161). In the context of a GAN, the discriminator is the only component that 

accesses the real, private, data. By training the discriminator under differential privacy, 

we can produce a differentially private GAN framework. 

We evaluated whether or not this approach could generate biomedical data that could 

be shared for reanalysis while reducing participant privacy risks. We evaluated usefulness 

by: (1) comparing variable distributions between the real and simulated data, (2) 



 

 105 

comparing the correlation structure between variables in the real and simulated data, (3) 

comparing machine learning predictors constructed on real vs. simulated data. We find 

that the model learns realistic distributions and that models constructed from the 

simulated data successfully classify participants in a held-out portion of the underlying 

real dataset. 

4.3.3.   Results 

We used an Auxiliary Classifier Generative Adversarial Network (AC-GAN) (147) 

to simulate participants based on the population of the SPRINT clinical trial.  We 

included all participants with measurements for the first twelve time periods (n=6,502); 

dividing them into a training set (n=6,000) and a test set (n=502). We trained two AC-

GANs using the training set: a traditional, standard, AC-GAN (labeled non-private) and 

an AC-GAN trained under differentially privacy (labeled private). We used both to 

simulate data that we compared to the real data. We visualized participant blood pressure 

trajectories, analyzed variable correlation structure and evaluated transfer learning 

performance for a machine learning classification task. 

 

4.3.3.1.   Auxiliary Classifier GAN for SPRINT Clinical Trial Data. 

An AC-GAN (Fig. 4.5 A) is made up of two neural networks competing with each 

other. We found convolutional layers effectively modeled the sequential measurements 

and used deep convolutional neural networks for both the generator and discriminator 

(Fig. 4.5 B-C). We trained the Generator (G) to take in a specified treatment arm 

(standard/intensive) and random noise and generate new participants that can fool the 

Discriminator (D). We trained the discriminator to differentiate real and simulated data 
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from a dataset containing both groups. We repeated this process until the generator 

created synthetic participants that were difficult to discriminate from real ones.  

We trained under differential privacy by limiting the effect any single subject has on 

the training process and by adding random noise based on the maximum effect of a single 

subject. From the technical perspective, we limited the effect of participants by clipping 

the norm of the gradient and added proportionate Gaussian noise. This combination 

offered plausible deniability, training could have been guided by a different subject 

within or outside the real training data. The maximum effect of an outlier is limited and 

bounded. Comparing the loss functions of the private and non-private training process 

demonstrates the effects of these constraints. Under normal training the losses of the 

generator and discriminator converged to an equilibrium before eventually increasing 

steadily (Fig. 4.5 D). Under differentially private training the losses converged to and 

remained in a noisy equilibrium (Fig. 4.5 F). At the beginning of training the neural 

networks changed rapidly. As training continued and the model achieved a better fit these 

steps, the gradient, decreased. When the gradient became very small, the noise 

outweighed the signal and limited further training. 
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Figure 4.5: AC-GAN architecture and training. 

A.) Structure of an AC-GAN. B.) The generator model takes a class label and random noise as 
input and outputs a 3x12 vector for each participant (SBP, DBP and medication counts at each 
time point). C.) The discriminator model takes both real and simulated samples as input and 
learns to predict the source and a class label (i.e. normal or intensive treatment group). D.) 
Training loss for a non-private AC-GAN. E.) Training loss for a private AC-GAN. 

 

4.3.3.2.   Evaluation of Simulated Participants 

After training the AC-GAN we compared the simulated synthetic participants to the 

real participants (Figure 4.6). Figure 4.6 shows the median systolic blood pressures for: 

(1) real participants, (2) simulated participants via a non-private AC-GAN and (3) 

simulated participants via the differentially private AC-GAN. The non-private 
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participants generated at the end of training appear similar to the real participants. The 

private participants have wider variability because of the noise added during training 

(Fig. 4.6 A). As the models achieve better fit, the gradient shrinks, causing the gradient to 

noise ratio to decrease. This can occasionally lead to the private generator and 

discriminator falling out of sync (Supp. Fig. 1) or more commonly the private model 

generating less realistic samples. To best choose when to stop training, we developed an 

approach that incorporates any machine learning analysis chosen to resemble expected 

use cases. Here we tested each epoch’s data by training an additional classifier that must 

distinguish whether a generated participant was a part of the normal or intensive 

treatment groups. We applied two common machine learning classification algorithms 

and selected the top epochs in a differentially private manner (Fig. 4.6 B and 4.6 C).  

However, selecting only a single epoch does not account for the AC-GAN training 

process. Because the discriminator and generator compete from epoch to epoch, their 

results can cycle around the underlying distribution. The non-private models consistently 

improved throughout training (Supp. Fig. 2A, Supp. Fig. 3A), but this could be due to the 

generator eventually learning characteristics specific to individual participants. We 

observed that epoch selection was important for the generation of realistic populations 

from models that incorporated differential privacy (Supp. Fig. 2B, Supp. Fig. 3B). To 

address this, we simulated 1,000 participants from each of the top five epochs by both the 

logistic regression and random forest evaluation and combined them to form a multi-

epoch training set. This process maintained differential privacy and resulted in a 

generated population that, throughout the trial, was consistent with the real population 

(Fig. 4.6 D).  
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Figure 4.6: Median Systolic Blood Pressure Trajectories from initial visit to 27 months. 

A.) Simulated samples (private and non-private) generated from the final (500th) epoch of 
training. B.) Simulated samples generated from the epoch with the best performing logistic 
regression classifier. C.) Simulated samples from the epoch with the best performing random 
forest classifier. D.) Simulated samples from the top five random forest classifier epochs and top 
five logistic regression classifier epochs. 

 

The Pearson correlation structure of the real data (Fig. 4.7 A) was closely reflected 

by the correlation structure of the non-private generated data (Fig. 4.7 B). Of note was 

initial positive correlation between the number of medications a participant was taking 

Simulation	Results

C. D.

A. B.
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and the early systolic blood pressures, but this correlation decreased as time goes on. The 

private generated data generally reflects these trends, but has an increased level of noise 

(Fig. 4.7 C). The noisy training process of the private discriminator places an upper 

bound on its ability to fit the distribution of data. Increased sample sizes would help to 

clarify this distribution and because larger sample sizes cause less privacy loss, less noise 

would need to be added to achieve an acceptable privacy budget. 

 

Figure 4.7: Correlation structure between variables in the data. 

Pairwise Pearson correlation between columns for the A.) Original, real data, B.) Non-private, 
AC-GAN simulated data C.) Differentially private, AC-GAN simulated data. 

 

Feasibility of Simulated Participants for Transfer Learning Task 

Visualizations of patient distributions and variable correlations showed that synthetic 

participants appeared similar to real participants. We sought to determine whether or not 

synthetic participants could be used for subsequent data mining. We trained machine 

learning classifiers using four methods (logistic regression, random forests, support 
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vector machines, and nearest neighbors) to distinguish treatment groups on three different 

sources of data: real participants, synthetic participants generated by the non-private 

model, and synthetic participants generated by the private model. We compared 

performance of these classifiers on a holdout test set of 502 real participants (Fig. 4.8 A-

D). This analysis revealed two main trends: classifiers trained on the set constructed from 

combined top epochs exhibited more stable performance on the test data in line with 

observations from the population distributions, and classifiers trained on data from the 

non-private model slightly outperformed those trained on data from the private model. A 

drop in performance was expected because adding noise to maintain privacy reduces 

signal. If desired, training a non-private model could provide an upper bound for 

expected performance. 
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Figure 4.8: Performance and Variable importance in a transfer learning task. 

A.) Performance on transfer learning task by source of training data for each machine learning 
model. B.) Random forest variable importance scores by training data.  C.) Logistic Regression 
variable coefficients by training data. D.) Support Vector Machine variable coefficients by 
training data. 
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We also sought to determine the extent to which the classifiers were using similar 

predictive features. We evaluated the random forest feature importance scores (Fig. 4.8 

E) as well as the logistic regression and support vector machine feature coefficients (Fig. 

4.8 G, F). All showed similar trends of useful features between real and generated data, 

and a spearman correlation test was performed between the importance scores (random 

forest) and coefficients (SVM and logistic regression) of the models trained on real data 

and each synthetic set revealed significant associations in all cases (Table 4.1). Though 

all three classification methods achieved similar accuracy, the random forest classifier 

found the medication features to be important while these features had near zero 

coefficients in the SVM and logistic regression classifiers. 

 

 Random Forest Support Vector 
Machine 

Logistic 
Regression 

 Correlation P-Value Correlation P-Value Correlation P-Value 
Real - Non-
Private 

0.6761 5.998e-
06 

0.7266 5.2284e-07 0.6687 8.2723e-
06 

Real - Private 0.6787 5.357e-
06 

0.7462 1.7493e-07 0.5425 0.00062 

 

Table 4.1: Spearman Correlation between variable importance scores (Random Forests) and 
model coefficients (Support Vector Machine and Logistic Regression). 

 

4.3.3.3.   Privacy Analysis 

The formal definition of differential privacy has two parameters. The key parameter 

ε measures the “privacy loss” incurred by the computation. The second parameter δ 

bounds the probability that the privacy loss exceeds ε. The values of (ε, δ) accumulate as 

the algorithm repeatedly accesses the private data. In our experiment, our private AC-

GAN algorithm is able to generate useful synthetic data with ε = 2 and δ < 10^{-5} 

(Figure 4.9). The upper bound of the epoch selection task, (see Materials Methods) used 
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(0.05, 0) per each model included for a total of (0.5, 0) differential privacy. This 

established a modest, single digit epsilon privacy budget of (2.5, 10-5). 

 

 

Figure 4.9: Privacy Parameter values during training. 

The value of delta as a function of epoch for different epsilon values. An ε value of 2 allows for 
500 epochs of training and δ < 10-5. 

 

4.3.4.   Discussion 

Deep generative adversarial networks and differential privacy offer a technical 

solution to the challenge of sharing biomedical data to facilitate exploratory analyses. 

Our approach, which uses deep neural networks for data simulation, can generate 

synthetic data to be distributed and used for secondary analysis. We perform training with 

a differential privacy framework that limits the study subjects’ privacy risk. We apply 

this approach to data from the SPRINT clinical trial due to its recent use for a data 

reanalysis challenge 

We introduce an approach that samples from multiple epochs to improve 

performance while maintaining privacy. However, several challenges remain. Deep 

learning models have many training parameters and require substantial sample sizes, 



 

 115 

which can hamper this method’s use for small clinical trials or targeted studies. Another 

fruitful area of use may be large electronic health records systems, where the ability to 

share synthetic data may aid methods development and the initial discovery of predictive 

models. Similarly, financial institutions or other organizations that use outside contractors 

or consultants to develop risk models might choose to share generated data instead of 

actual client data. In very large datasets, there is evidence that differential privacy may 

even prevent overfitting to reduce the error of subsequent predictions (162). 

Though our approach provides a general framing, the precise neural network 

architecture may need to be tuned for specific use cases. Data with multiple types 

presents a challenge. EHRs contain binary, categorical, ordinal and continuous data. 

Neural networks require these types to be encoded and normalized, a process that can 

reduce signal and increase the dimensionality of data. New neural network have been 

designed to deal more effectively with discrete data (163, 164). Researchers will need to 

incorporate these techniques and develop new methods for mixed types if their use case 

requires it. The practice of generating data under differential privacy with deep neural 

networks offers a technical solution for those who wish to share data to the challenge of 

patient privacy. This technical work complements ongoing efforts to change the data 

sharing culture of clinical research. 

4.3.5.   Materials and Methods 

We developed an approach to train auxiliary classifier generative adversarial 

networks (AC-GANs) in a differentially private manner to enable privacy preserving data 

sharing. Generative adversarial networks offer the ability to simulate realistic-looking 

data that closely matches the distribution of the source data.  
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AC-GANs add the ability to generate labeled samples. By training AC-GANs under 

the differential privacy framework we generated realistic samples that can be used for 

initial analysis while guaranteeing a specified level of participant privacy.  

The source code for all analyses is available under a permissive open source license 

in our repository (https://github.com/greenelab/SPRINT_gan). In addition, continuous 

analysis (22) was used to re-run all analyses, to generate docker images matching the 

environment of the original analysis, and to track intermediate results and logs. These 

artifacts are freely available (https://hub.docker.com/r/brettbj/sprint-gan/  and archival 

version: https://doi.org/10.6084/m9.figshare.5165731.v1). 

4.3.5.1.   SPRINT Clinical Trial Data 

The SPRINT was a randomized, single blind treatment trial where participants were 

randomized into two groups, an intensive treatment group with a systolic blood-pressure 

target of less than 120 mmHg and a standard treatment group with a systolic blood-

pressure target of less than 140 mm Hg. The trial included a total of 9,361 participants. 

We included 6,502 participants from the trial by filtering for all participants that had 

blood pressure measurements for each of the first 12 measurements (RZ, 1M, 2M, 3M, 

6M, 9M, 12M, 15M, 18M, 21M, 24M, 27M). We included measurements for systolic 

blood pressure, diastolic blood pressure and the count of medications prescribed to each 

participant. This provided an input vector of shape (3, 12).  

4.3.5.2.   Auxiliary Classifier Generative Adversarial Network 

We implemented the AC-GAN as described in Odena et al. (147) using Keras (89). 

Results shown use a latent vector of dimension 100, a learning rate of 0.0002, and a batch 

size of 100. To handle edge cases and mimic the sensitivity of the real data 
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measurements, we take the floor of zero or the simulated value and convert all values to 

integers. 

4.3.5.3.   Transfer Learning Task 

Each of the 6,502 in the SPRINT dataset is labeled by their treatment group. We 

evaluate machine learning methods (logistic regression, support vector machines, and 

random forests from the scikit-learn (56) package) by their ability to predict which group 

a participant belongs to. This was done by splitting the 6,502 into a training set of 6,000 

participants (labeled real) and a test set of 502 participants. A vanilla AC-GAN was 

trained using the 6,000 participant training set providing a simulated training set (labeled 

non-private). A differentially private AC-GAN was trained using the 6,000 training set 

providing a differentially private training simulated training set (labeled private). Each 

classifier was then trained on the real, non-private and private training sets and evaluated 

on the same, real test set of participants. This allows for a comparison of classification 

performance between models trained on the real data, synthetic data and private synthetic 

data. We evaluated both accuracy as well as the correlation between important features 

(random forest) and model coefficients (logistic regression and support vector machine). 

4.3.5.4.   Differential Privacy 

Differential privacy is a stability property for algorithms, specifically for randomized 

algorithms (165). Informally, it requires that the change of any single data point in the 

data set has little influence on the output distribution by the algorithm. To formally define 

differential privacy, let us consider X as the set of all possible data records in our domain. 

A dataset is a collection of n data records from X. A pair of datasets D and D’ are 

neighboring if they differ by at most one data record. In the following, we will write R to 
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denote the output range of the algorithm, which in our case correspond to the set of 

generative models. 

 

Definition 1 [Differential Privacy (166)]: Let ε, δ > 0. An algorithm A: Xn → R satisfies 
(ε, δ)-differential privacy if for any pair of neighboring datasets D, D’, and any event S 
⊆ R, the following holds 

Pr[A(D) ∈ S ] ≤ Pr[A(D’) ∈ S ] exp(ε) + δ,  

where the probability is taken over the randomness of the algorithm. 

 

A crucial property of differential privacy is its resilience to post-processing --- any 

data independent post-processing procedure on the output by a private algorithm remains 

private. More formally: 

Lemma [Resilience to Post-Processing]: Let algorithm A: Xn → R be an (ε, δ)-
differentially private algorithm. Let A’ : R → R’ be a “post-processing” procedure. Then 
their composition of running A over the dataset D, and then running A’ over the output 
A(D) also satisfies (ε, δ)-differential privacy. 

 

4.3.5.5.   Training AC-GANs in a Differentially Private Manner 

During the training of AC-GAN, the only part that requires direct access to the 

private (real) data is the training of the discriminator. To achieve differential privacy, we 

only need to “privatize” the training of the discriminators. The differential privacy 

guarantee of the entire AC-GAN directly follows because the output generative models 

are simply post-processing from the discriminator. 

To train the discriminator under differential privacy we add noise to the stochastic 

gradient descent process as outlined in Abadi et al. (160). First, we provide an upper 

bound onto the norm of the gradient at any individual step. This is done by clipping the 
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ℓ2-norm of the gradient. Next, we perturb each coordinate of the gradient by adding noise 

drawn from a Gaussian distribution with a variance proportional to the gradient clipping. 

The more noise we added (relative to the clipped norm of the gradient) the better privacy 

guarantee. To achieve a modest privacy budget, we found we could clip the ℓ2-norm of 

the gradient at 0.0001 and add noise from a normal distribution with a σ2 of 1 (Ɲ(µ, 1 * 

(0.00012))). This is substantially higher than previously shown, likely due to either the 

dynamic nature of GAN training where the target is inexact and changes over time or 

averaging over many mini-batches. We used the moments accountant described in Abadi 

et al. (160) to compute the privacy parameters (ε, δ).  

4.3.5.6.   Differentially Private Model Selection 

We found that sampling from multiple different epochs throughout training provided 

a more diverse training set. This provided summary statistics closer to the real data and 

higher accuracy in the transfer learning task. During the GAN training, we saved all the 

generative models across all epochs. We then generated a batch of synthetic data from 

each generative model, and used a machine learning algorithm (logistic regression or 

random forest) to train a prediction model based on each synthetic batch of data. We then 

tested each prediction model on the real dataset and calculate the resulting accuracy. To 

select epochs that generate training data for the most accurate models under differential 

privacy, we used the standard “Report Noisy Min” subroutine: first add independent 

Laplace noise to the accuracy of each model (drawn from Lab(1/(n*ε)) to achieve (ε, 0) 

differential privacy where n is the size of the private dataset we perform prediction on 

and output the model with the best noisy accuracy.   
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In practice, we choose the top five models in the transfer learning task using both 

logistic regression classification and random forest classification (for a total of 10 

models). We performed this task under (0.5, 0)-differential privacy. In each of the ten 

rounds of selection epsilon was set to 0.05. This achieves a good balance of accuracy 

while maintaining a reasonable privacy budget. 
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Chapter 5.   Taking advantage of the longitudinal nature of Electronic Health 

Record data. 
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   Abstract 

Electronic Health Records (EHRs) contain a wealth of patient data useful to 

biomedical researchers. At present, both the extraction of data and methods for analyses 

are frequently designed to work with a single snapshot of a patient’s record. Health care 

providers often perform and record actions in small batches over time. By extracting 

these care events, a sequence can be formed providing a trajectory for a patient’s 

interactions with the health care system. These care events also offer a basic heuristic for 

the level of attention a patient receives from health care providers. We show that is 

possible to learn meaningful embeddings from these care events using two deep learning 

techniques, unsupervised autoencoders and long short-term memory networks. We 
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compare these methods to traditional machine learning methods which require a point in 

time snapshot to be extracted from an EHR. 

  Introduction 

After the U.S. government mandated meaningful use of electronic health records 

(EHRs) by 2014, they have been widely adopted with 96% of health care providers 

implementing an EHR (167). Patient interactions with the health care system are recorded 

in the EHR. Many research analyses treat the EHR as a static document by taking a 

snapshot of a patient`s EHR and using this for downstream analyses. This fails to account 

for the way a patient changes over time, their trajectory. 

 Jensen et al. (24) proposed the idea of temporal disease trajectories to model 

expected progression for a patient over time. This study uses billing codes as disease 

labels, which may introduce biases inherent to the billing process. Patients may be 

assigned a billing code before being diagnosed for a disease in order to receive a 

diagnostic test. Billing codes place also binary rules on the presence of disease. Perhaps 

most importantly for this work billing codes are frequently assigned after a visit and are 

thus not helpful for tracking patient trajectories over the course of an inpatient admission 

or rapid series of visits. 

Interactions between patients and the health care system tend to occur in bursts, 

related to a specific visit or a series of visits. We label these periods of activity as care 

events and group these actions together. These care events represent changes over time 

and can capture longitudinal changes of a patient`s state. 

Denny et al. (168) first showed the ability to use autoencoders to model clinical 

measures in an unsupervised manner. More recently, several groups have used 
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autoencoders to learn high level features useful for classification (91, 169) and 

imputation (170). Tan et al. also showed the ability to extract meaningful features from 

gene expression data using autoencoders (26). We use autoencoders to represent patient 

care events in a low dimensional vector space that is useful for visualization. Positions in 

this vector space represent the patient`s condition at a point in time. By connecting these 

positions, or care events, in order, it is possible to see how a patient`s condition changes 

over time and how they move through the health system. It is also possible to cluster 

patients in this low dimensional space and examine when patient outcomes diverge, one 

group having high survival and the other having high mortality. 

This care event representation also provides a natural sequence of events. Recurrent 

neural networks have shown an impressive ability to model sequences to solve problems 

in many domains including object recognition in computer vision (171), image (172) and 

text generation (173). Long short-term memory networks (LSTMs) (174) are a type of 

recurrent neural network that have recently been applied to clinical data to learn low 

dimension representations of medical concepts (175) and to make classifications using 

time series of specific clinical measures (176, 177). 

Trajectories have been used to model multistage dynamic decision processes (DMP) 

in discrete optimization problems (178). In Algebraic Logical Meta-Model (ALMM) the 

state of the system in a certain time depends on the previous state, undertaken decision 

and transition function. This concept allows to easily describe the state of the patient at a 

particular time, with specific actions taken (e.g. application of medication) to manage the 

response to previous events within the progression of a disease. 
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In this work, we first demonstrate that deep learning approaches can (1) learn patient 

embeddings useful for both interpretable expert analysis via visualization and (2) do this 

we use the Medical Information Mart for Intensive Care III (MIMIC) database and apply 

both unsupervised deep autoencoders and LSTMs. 

 

   Methods 

5.3.1.   Source Code and Analysis Availability 

Source code to reproduce the analyses in this work are provided in our repository 

(https://github.com/EpistasisLab/MIMIC_trajectories) under a permissive open source 

license.  In addition, Continuous Analysis (22) was used to generate docker images 

matching the environment of the original analysis.  

   Care Event Extraction 

5.4.1.   Medical Information Mart for Intensive Care III (MIMIC) Critical Care 

Database 

MIMIC (179) is a publicly available database composed of 46,297 critical care de-

identified electronic health records for patients at Beth Israel Deaconess Medical Center. 

It includes all charted data (demographics, vital signs, medications, procedures, 

diagnoses, patient outputs, laboratory tests, physician notes, and treatment details) for 

patients from 2001 to 2012. 

5.4.2.   Extracting Care Events from MIMIC 

We divided the MIMIC database into 4 groups: 
 

1.   Static data that does not change over the course of an admission (i.e. demographic data). 
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2.   Actions performed by health care providers that have a specific time associated with 
them (i.e. laboratory events). 

3.   Actions performed by health care providers that only have a date associated with them 
(i.e. oral medications). 

4.   Streaming data measured on a per-minute basis (i.e. heart rate). 
 

Table 5.1: Categories and examples of Care Event Actions. 

 
To define care events, we included all actions initiated, or charted, by health care 

providers that have a specific time associated with them (Table 5.1). These actions were 

placed in sequential order and grouped together until there was a gap greater than the 

margin time (Figure 5.1). Because this is critical care data, the timeline between events is 

much smaller than typical EHR data. We found a 59 minute margin time yielded care 

events that had a good balance of inclusiveness while not including extended time 

periods. This yielded 1,566,026 total care events and an average of 26.80 care events per 

admission. In non-critical care datasets, we expect a margin time of several days may 

better capture the concept of a care event. 

 

 

Category (MIMIC Database Table) Example 
DATETIMEEVENT Changing equipment or standard repeated treatments (i.e. dialysis). 
ICUSTAYS Transfer to or from the Intensive Care Unit. 
INPUTEVENTS_CV & 
INPUTEVENTS_MV 

Any fluids given to the patient (i.e. an IV solution, CV and MV stand for 
the two systems used to track these events Philips Carevue and iMDSoft 
Metavision). 

LABEVENTS All lab measurements for a patient (i.e. Creatinine level). 
PROCEDUREEVENTS All procedures performed on a patient (i.e. Extubation). 
SERVICES Changes in which service a patient is under (i.e. Cardiac Surgery) 
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Figure 5.1: Example of care event extraction. 

Example of care event extraction. Green circles indicate actions taken by health care providers. 
Lines and numbers below indicate care events. 

 

5.4.3.   Stratification of Patient Attention based on type of Insurance Provider  

Care events can provide a useful heuristic to the level of interaction between the 

health care provider and a patient. To evaluate attention, we compared the time spent in 

the hospital per admission with the number of care events per admission and the average 

number of care events per day. We then performed Welch’s t-test between patients with 

private insurance and each of the other types of insurance (Medicare, Medicaid, 

Government, Self-Payment) to see if there were significant differences between patients 

with differing insurance types. 

   Unsupervised learning to learn embeddings of extracted Care Events 

5.5.1.   Applying Autoencoders to Extracted Care Events to cluster in a low 

dimensional space. 

We used the Keras library (89) to construct autoencoders with 7 hidden layers in 

(1196, 512, 256, 128, 64, 128, 256, and 512 nodes per layer). We used dropout to mask 

20% of the connections between the input layer and the first hidden layer. The model was 

trained using binary cross entropy loss with Adam (180). The middle, hidden layer (64 
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nodes) was used as an output for visualization using t-Stochastic Neighbor Embedding 

(58). The resulting visualizations were labeled for enrichment of 1-year patient survival. 

5.5.2.   Predicting Survival Using Care Events 

We evaluated how effectively different machine learning methods could predict 

patient survival throughout the course of the critical care visit, a 6-month period and a 1-

year period (as measured from the original admission date). For this analysis, we 

performed 5-fold cross validation providing a training set of 46,751 admissions and a test 

set of 11,687 admissions chosen via stratified cross validation (56). Survival was 

predicted using a standard feed forward or multi-layer perceptron deep neural network 

(89), a random forest, logistic regression and support vector machine (56) after various 

numbers (N) of care events: 1, 3, 5, 10, 20, 30 and 50. Area under the curve of the 

receiver operating characteristic was used for evaluation and comparison between 

methods. 

5.5.3.   Traditional machine learning methods to predict survival from an EHR 

Snapshot. 

To build a snapshot vector useable for traditional machine learning methods. We 

took the mean of each value from a set of care events, up to the Nth care event.  If the 

patient had less than N care events, we took the mean for all of their care events. This 

aggregate vector was provided as input to each of the machine learning classifiers.  
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5.5.4.   Long Short Term Memory Networks (LSTMs) to predict survival with Care 

Events Sequences. 

To build the sequence vector from a set of care events we first truncated sequences 

longer than N. Sequences shorter than N were post-padded with zeros. The model was 

comprised of 3 types of layers, an initial embedding layer, three LSTM layers (with 100, 

50 and 50 nodes respectively) and a fully connected (Dense) output layer. We trained the 

model using rmsprop (181) with a binary cross entropy loss function.  

   Results 

The MIMIC dataset includes 58,438 admissions from 46,297 unique patients. This was 

extracted to form 1,566,026 care events (Table 5.2). Medicare patients were double the age 

of other patients on average. Patients using private or government insurance and Medicaid 

had relatively equal mortalities during the initial admission and the next 6 months. Patients 

using Medicare had significantly higher mortality in the 6 months after admission as their 

time under critical care and self-payment patients had high mortality during the admission 

but lower admission after leaving critical care.  

  



 

 129 

 

5.6.1.   Treatment and Outcome Comparison 

 Total Male Female Private Medicare Medicaid Government Self 

Patients 46,297 26,121 20,399 19,663 21,002 4,570 1,614 600 
Admissions 58,438 32,950 26,026 22,250 28,103 5,713 1,767 605 
Admissions 
per Patient 

1.26 1.26 1.28 1.13 1.34 1.25 1.09 1.01 

Average Age 
at Admission 

56.01 54.95 57.34 37.82 75.95 37.91 35.15 39.11 

Care Events 1,566,026 867,941 698,085 637,968 693,254 179,182 46,722 8,900 
Care Events 
per 
Admission 

26.80 26.34 26.82 28.67 24.67 31.36 26.44 14.71 

Visit 
Survival 

90.84% 90.38% 89.56% 95.24% 86.40% 94.60% 95.87% 85.2% 

6-Month 
Survival 

79.81% 79.63% 78.39% 89.84% 69.47% 87.61% 91.62% 83.31% 

12-Month 
Survival 

76.28% 76.19% 74.82% 87.90% 64.33% 84.75% 90.32% 82.81% 

 
Table 5.2: Summary statistics for MIMIC Critical Care database. 

 
We examined the length of stay per admission by insurance type (Figure 5.2 A) and 

found that patients using Medicare had the longest stays but that all groups differed 

significantly via a Welch’s t-test from patients using private insurance. It is not surprising 

that patients using self-payment had the shortest stays and the least number of care events 

per stay (Figure 5.2 A-C). Interestingly, patients with private insurance had significantly 

lower care events per day than the most similar other groups, government-based 

insurance and Medicaid (Figure 5.2 C). 
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Figure 5.2: Association testing between different insurance types. 

A.) Length of admission. B.) Number of care events in an admission. C.) Number of care events 
per day of each admission. Labels at the top indicate p-values via Welch’s t-test to private group. 

 

5.6.2.   Unsupervised modeling of patient Care Events 

To test whether unsupervised autoencoders could learn meaningful embeddings from 

individual care events, we plotted the innermost hidden layer using t-Stochastic Neighbor 

Embedding (t-SNE) and overlaid 1-year survival labels (Figure 5.3). This process yielded 

several clusters with high enrichment for either mortality or survival indicating the ability 

to learn meaningful embeddings. t-SNE does not maintain global similarity structure and 

as such this process is useful for visualizing single care events but not for understanding 

patient trajectories. In order to examine patient trajectories, it is necessary to look at the 

value of the innermost hidden layer before t-SNE was applied or to use a method 

designed to model sequential data. Recurrent neural networks, and specifically LSTMs 

are well suited at this task.  
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Figure 5.3: Unsupervised Care Events Embedding Visualization. 

Performed by applying t-SNE to the innermost layer of autoencoder (1000 care events shown to 
prevent overplotting). 

 

5.6.3.   Supervised prediction of patient survival 

Next, we preformed the supervised classification task of predicting whether a patient 

survived one full year from the date of their admission. We measured classification 

accuracy with differing numbers of care events to evaluate whether the care event based 

approach had advantages over traditional single point in time measurements (Figure 5.4). 

Of the methods predicting based on a snapshot, the random forest was by far the most 

effective. Despite this, it did not increase in performance as more information about an 

admission was added. This indicates that much of it’s predictive power comes from the 

initial presentation. Both, linear methods and a traditional feed-forward neural network 

barely outperformed random chance. This may have been due to the high dimensionality 
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of the dataset. The care event-based LSTM increases in performance as more care events 

are provided. This is particularly evident when more than the median number of care events 

(26.8) are provided as input to the LSTM. Including more than 50 care events yielded 

weaker results for the LSTM. This is likely because most patients have fewer than 50 care 

events so most of the signal is captured in the first 50 care events. Going beyond 50 leads 

to a high level of padding to signal. 

 

Figure 5.4: Predicting Survival with Care Event Approach. 

Comparison of machine learning methods and the number of care events provided for 1-year 
survival prediction (AUROC). 

 

   Discussion and Conclusions 

By limiting the usage of summary statistics to small time periods, we offer a granular 

method for modeling longitudinal clinical data. The care event extraction method 
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provides a simple data driven approach to extracting temporal data for use in time series 

analyses. It allows summary statistics to be computed over short time windows as 

opposed to an entire patient history or arbitrary timestamps. Care events also offer a 

heuristic to allow comparison of the level of attention different patients receive from 

health care providers. We demonstrated the ability to learn embeddings enriched for 

different endpoints using unsupervised deep learning and were able to more accurately 

predict patient survival using supervised long short-term memory networks.  

Though our approach showed strong performance for several tasks in this dataset, 

this method currently has limitations in terms of generalization. Long-short term memory 

networks, like many deep learning approaches, require many patients to outperform other 

methods. This can present a challenge when studying a single phenotype instead of a 

wide variety of critical care patients. The greatest benefits are likely to be seen when 

patients have many care events, making this approach particularly well suited for chronic 

diseases like type 2 diabetes and Crohn’s disease or for diseases that are hard to subtype 

such as multiple sclerosis. An additional challenge is if a patient with a disease like type 

2 diabetes suffers an unrelated acute injury (i.e. broken rib in a vehicle accident) this 

acute injury may introduce too much noise to capture the type 2 diabetes trajectory. In 

future work, we hope to introduce filtering techniques to exclude or deemphasize 

unrelated diagnoses. 

We also plan to increase the dimensionality of the encoders and applying additional 

techniques of visual clustering (182). This includes using Shared-Nearest Neighbors 

(SNN) clustering to find groups of patients with similar stage of the disease in noisy data 
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and Mukres algorithm to map groups of patients resembling a state of the disease to 

clusters found in the data. 

Another challenge we would like to take is including streaming data in the 

simulation. Some measurements, e.g. heart rate or blood pressure, are performed every 

minute for each patient. The information about sudden changes of patient’s condition is 

especially relevant for intensive-care patients. While our method aggregates patient data 

over shorter time periods than are commonly used, we plan to adapt our model by adding 

more detailed relevant information extracted from streaming sources. 
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Chapter 6.   Summary and Future Directions 

The ability to more precisely define diseases, extract phenotypes and advise data 

driven treatment strategies are just a few of the wide array of the possibilities enabled by 

the wealth of data contained in EHRs. We aim to provide machine learning methods to 

address the barriers slowing or preventing progress at these tasks. Semi-supervised 

learning can be used to compensate for the lack of research quality labels available in 

EHRs. Smart imputation strategies can infer missing values while minimizing impact on 

downstream analyses. Continuous analysis can synchronize code to figures and enable 

reproducible research even when working with private data. Adversarial training of deep 

neural networks can be used to generate synthetic patient populations while preserving 

privacy and discretization of care combined with recurrent neural networks can model 

patient trajectories over time. This work takes steps towards solving these barriers which 

we hope enables new possibilities and raises several new questions around the usage of 

machine learning for both academic research and predictive analytics in patient care. 

Despite our progress, there are significant limitations to our approaches and further work 

will need to be done to completely solve these challenges. This section identifies these 

limitations and challenges as well as speculates at promising opportunities using machine 

learning in the EHR over the next several years. 

Machine learning in the EHR requires pre-processing and imputation (Chapter 2 & 

Chapter 3), but best practices in these field currently require an ad hoc implementation 

followed by analyses to measure how robust results are to differences in pre-processing 

and imputation. We demonstrated the ability to create a synthetic patient population using 

GANs (Chapter 4) in a well-controlled structured clinical trial. Generalizing this task 
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presents several difficult challenges. GANs currently are not effective at generating 

mixed data types (continuous, ordinal, categorical, etc.). In addition, they require large 

sample sizes to effectively model a distribution. Training GANs under differential 

privacy has not yet been shown possible for high dimensional data that is common in 

biomedical data (i.e. genotypes). Overcoming these challenges will require significant 

technical adjustments and potentially a reformulation of the problem. Challenges in 

generalizing the longitudinal analysis (Chapter 5) largely based on two things, 1.) 

variable times between care events that become more significant outside of the critical 

care environment, and 2.) the potential of a recurrent neural network to learn from 

padding, that is to learn form the number of care events rather than the contents of those 

events. These issues were reduced in the critical care setting because there was a lower 

variance in the time between care events than there would be in a traditional setting and 

there was not a correlation between the number of care events and survival.  

Traditionally, genetic association studies relied on binary outcomes as target 

phenotypes for the association. Quantitative trait loci studies provide the ability to 

measure correlation between DNA variation and a phenotype. Quantitative traits occur on 

a continuum and are driven by multiple genes in conjunction with the environment. By 

using clustering and other machine learning techniques, researchers can represent disease 

as quantitative rather than binary values. This has several advantages. Patients with a 

common disease that present with different symptoms, different levels of effect or 

different paths of progression can be clustered into homogenous subgroups with similar 

patients. These clusters are likely enriched etiologically, meaning the reasons the disease 

is causing each cluster are different. Within each cluster or across the entire spectrum of 
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diseases, a phenotype can be constructed to better represent how severe of a case a patient 

has. Diseases where using a binary case control status has been effective are likely 

etiological homogenous, or so disruptive to a particular system that the severity is 

irrelevant. These represent the low hanging fruit, but many diseases present in 

heterogeneous manners (Cancers, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, 

Alzheimers etc.). Fine-tuned quantitative phenotyping could have the ability to resolve 

homogenous subgroups, greatly increasing statistical power and creating a better target 

for association. 

Deep Learning has already led to state of the art results in a variety of fields 

including image processing, speech recognition, and gameplay. Many of the early “wins” 

using deep learning and more generally machine learning in the EHR involve 

applications of algorithms proven successful in other domains. This has been particularly 

true in unstructured EHR data such as images (cancer tumor detection etc.) and natural 

language processing for free text. This is sufficient when EHR learning tasks resemble 

tasks that are already popular among general machine learning researchers. Within 

biomedical informatics, this is the low hanging fruit. Long term advances will require 

specialized solutions designed specifically for the unique challenges presented by EHR-

based research. Algorithmic development is only one part of the equation. The proper 

phrasing of problems and preprocessing of data will likely have as much if not more 

importance than algorithmic development. 

Three of the pioneers of deep learning, Yann Lecun, Yoshua Bengio and Geoffrey 

Hinton wrote, “Unsupervised learning had a catalytic effect in reviving interest in deep 

learning, but has since been overshadowed by the successes of purely supervised 
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learning… we expect unsupervised learning to become far more important in the longer 

term” (183). The challenge of collecting labeled data for supervised learning in the EHR 

may be an ideal environment for a reemergence of unsupervised and semi-supervised 

learning approaches. Early examples show that deep autoencoders are adept at this task 

(91, 169).  

For some clinical decisions, a black box algorithm with high accuracy is sufficient to 

improve medical care. An algorithm that can more accurately identify a tumor in imaging 

than a human has obvious benefits. For other problems, a black box is insufficient, it is 

unlikely to help researchers understand the physiology or etiology of a disease. In this 

setting, outside of a clinical decision, a less accurate but interpretable algorithm may be 

preferred. In addition, clinicians are likely to be skeptical and slower to adopt algorithms 

whose decisions cannot be rationally explained. 

Furthermore, in April 2016, the European Union passed a data protection law 

entitled the “General Data Protection Regulation (GDPR) which will begin in 2018. The 

GDPR provides stricter conditions for sensitive data collection and storage, including, for 

example genetic and biometric data. It also sets regulation on privacy policies and further 

formalizes the “right to be forgotten.” Of particular interest to the machine learning 

community is the language prohibiting decisions “based solely on automated processing 

and which produces adverse legal effects concerning, or significantly affects, him or her” 

and provides the right “to obtain an explanation of the decision reached after such 

assessment or to challenge the decision.” It remains to be seen how this would be applied 

and if it will have any effect on the usage of artificial intelligence in the clinic but it 

demonstrates the fact that people want to understand how and why a decision affecting 
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their wellbeing is made. Work to create high performing algorithms that provide 

interpretable, explainable decisions is increasingly important as clinicians begin to rely 

on the aid of artificial intelligence. 
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