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The Neural Mechanisms Underlying Invariant Object Search In V4 And
Inferotemporal Cortex

Abstract
Finding a specific visual target, such as your car keys, requires the brain to combine visual information about
objects in the currently viewed scene with working memory information about your target to determine
whether your target is in view. This combination of context-specific signals with visual information is thought
to happen via feedback of target information from higher brain areas to the ventral visual pathway. However,
exactly where and how these signals are combined remains unknown. To investigate, we recorded neural
responses in V4 and inferotemporal cortex (IT) while monkeys performed an invariant object search task,
where targets could appear across variation in their size, position and background context. We applied two
complementary approaches to this data to investigate the neural mechanisms underlying target search. The
first approach (Chapter 2) is from a computational perspective: where and how are visual and target signals
combined when searching for a target? Specifically, we found that while task-relevant modulations in V4 were
large, they were larger in IT, suggesting that top-down context-specific modulations are integrated into the
ventral visual pathway at multiple stages. In Chapter 3, we focused on the neural responses recorded from IT
from the perspective of neural coding: we sought to understand how signal and noise combine to determine
task performance. We found that while signals that report the solution for object search were much smaller
than signals that act as noise for the task (nuisance modulations) in IT cortex, nuisance modulations had a
small effect on task performance. This counterintuitive finding was due to large trial variability constrained by
short, behaviorally relevant spike counting windows. Together, this body of work provides insight into where
and how the brain combines context-specific signals with visual information during invariant object search.
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ABSTRACT 
 

THE NEURAL MECHANISMS UNDERLYING INVARIANT OBJECT SEARCH IN V4 
AND INFEROTEMPORAL CORTEX 

 

Noam Roth 

Nicole Rust 

 

Finding a specific visual target, such as your car keys, requires the brain to combine 

visual information about objects in the currently viewed scene with working memory 

information about your target to determine whether your target is in view. This 

combination of context-specific signals with visual information is thought to happen via 

feedback of target information from higher brain areas to the ventral visual pathway. 

However, exactly where and how these signals are combined remains unknown.  To 

investigate, we recorded neural responses in V4 and inferotemporal cortex (IT) while 

monkeys performed an invariant object search task, where targets could appear across 

variation in their size, position and background context. We applied two complementary 

approaches to this data to investigate the neural mechanisms underlying target search. 

The first approach (Chapter 2) is from a computational perspective: where and how are 

visual and target signals combined when searching for a target? Specifically, we found 

that while task-relevant modulations in V4 were large, they were larger in IT, suggesting 

that top-down context-specific modulations are integrated into the ventral visual pathway 

at multiple stages. In Chapter 3, we focused on the neural responses recorded from IT 

from the perspective of neural coding: we sought to understand how signal and noise 

combine to determine task performance. We found that while signals that report the 

solution for object search were much smaller than signals that act as noise for the task 
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(nuisance modulations) in IT cortex, nuisance modulations had a small effect on task 

performance. This counterintuitive finding was due to large trial variability constrained by 

short, behaviorally relevant spike counting windows. Together, this body of work 

provides insight into where and how the brain combines context-specific signals with 

visual information during invariant object search. 
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CHAPTER 1 
	  

Introduction 

 

	  

The problem of visual target search 
 

Many everyday tasks require the brain to flexibly map incoming sensory 

information onto different behavioral responses based on context. One example is the 

task of finding a particular object, which requires the brain to solve two non-trivial 

computations. First, it requires the brain to form a representation of the object in view 

(i.e. visual signals). Next, it must compare this visual representation with a 

representation of the sought target (i.e. working memory signals). This comparison is 

thought to happen within the ventral visual pathway, where neurons not only underlie 

visual representations, but can also be strongly modulated by top-down, context-specific 

signals. However, exactly where and how this comparison happens is unclear. The aim 

of this dissertation was to investigate how these signals combine to support object 

search.  We begin by taking a computational approach: where and how do these signals 

combine to compute a signal necessary to solve the task? Next, we focus on the same 

data from the perspective of neural coding: how do signal and noise combine to 

determine task performance? In this chapter, we review what is known about how visual 

signals in the ventral visual pathway are modulated by top-down, context-specific 

signals. We then discuss the role that signal and noise might play in determining neural 

task performance.    
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The largely feed-forward, sensory component of visual processing  
 

A number of lines of evidence implicate the ventral visual pathway (Figure 1, 

cyan) in processing information about the identity of visual features and objects. This 

pathway consists of a series of hierarchically arranged cortical visual areas in the 

occipital and temporal lobe, including primary visual cortex (V1), secondary visual cortex 

(V2), area V4, and inferotemporal cortex (IT) (DiCarlo & Cox, 2007; Felleman & Van 

Essen, 1991; Ungerleider & Mishkin, 1982). The areas along this pathway are thought to 

underlie the encoding of visual information that gets progressively refined along each 

stage, and ultimately underlies representations of objects. This notion is supported by 

several lines of evidence. First, while lesions in monkey V1 cause blindness specific to 

the damaged portion of the visual field (reviewed by Stoerig & Cowey, 1997), lesions in 

V2 and V4 produce deficits in the ability to detect conjunctions of simple features 

(Merigan, Nealey, & Maunsell, 1993; Schiller, 1995) and lesions to IT produce specific 

deficits in the ability to distinguish among complex objects (Yaginuma Niihara, & Iwai, 

1982; Holmes & Gross, 1984; although see Huxlin, Saunders, Marchionini, Pham, & 

Merigan, 2000).  

Mirroring evidence from these lesion studies, responses of single neurons along 

this pathway reflect increases in selectivity for complex shapes and increases in 

invariance across small changes in position, size, and clutter (Hung, Kreiman, Poggio, & 

DiCarlo, 2005; Ito, Tamura, Fujita, & Tanaka, 1995; Kobatake & Tanaka, 1994). In 

addition, receptive fields become incrementally larger as visual information is pooled 

across wider portions of the visual field (Kobatake & Tanaka, 1994). For example, while 
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IT receptive fields are large (typically 5 degrees or larger in width) and extend into all 

four quadrants of the visual field, its main input area, V4 is organized quite differently. V4 

receptive fields are smaller, retinotopically organized, and constrained to one visual field 

(Desimone & Schein, 1987; Gattass, Sousa, & Gross, 1988).  

In parallel to these incremental complexities within single neuron responses, the 

population responses at each successive stage carry a progressively refined encoding of 

visual information (Rust & DiCarlo, 2010) which culminates in a robust representation of 

currently viewed objects in IT (Hung et al., 2005).  

 

Top-down signals relay the representation of sought targets 

	  

Solving visual search requires the subject to actively hold the sought target in 

working memory while scanning the currently-viewed scene. Although the exact neural 

structures and mechanisms underlying working memory are still the subject of active 

debate (Curtis and Lee 2010, Barak and Tsodyks 2014), the brain areas most often 

implicated are found within the prefrontal cortex (Figure 1, red) (Barak, Tsodyks et al. 

2010). A key line of evidence for the role of PFC in maintaining working memory is the 

experimental finding that neurons in PFC exhibit sustained responses that are selective 

for different targets even after the disappearance of the target, a phenomenon known as 

persistent activity (Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster & Alexander, 

1971; Goldman-Rakic, 1996; Kubota & Niki, 1971; Miller, Erickson, & Desimone, 1996; 

Romo, Brody, Hernandez, & Lemus, 1999). The neural mechanism generally proposed 

to underlie persistent activity consists of multiple groups of neurons characterized by 

recurrent excitation and mutual inhibition (Machens, Romo, & Brody, 2005). After the 
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initial activation of the group associated with the active target, recurrent excitatory 

synapses act to maintain the sustained activity, while inhibitory connections prevent 

other groups from becoming active as well. Despite the general prevalence of the theory 

of persistent activity through recurrent connections, it is worth noting the existence of 

alternative hypotheses postulating the involvement of short-term synaptic plasticity in the 

maintentance of working memory (Mongillo, Barak, & Tsodyks, 2008; Sugase-Miyamoto, 

Liu, Wiener, Optican, & Richmond, 2008).  

Where in the brain do target-specific signals combine with visual information? 

Numerous sources of evidence suggest that working memory information is fed back 

directly into the same areas in the ventral visual pathway that are involved in visual 

processing, and in particular V4 and IT. First, these areas receive strong inputs from 

PFC (Markov et al., 2014). The functional role of these projections was directly 

demonstrated using monkeys who underwent a resection of posterior corpus callosum 

and anterior commissure. This procedure left intact only the anterior corpus callosum, 

which connects the prefrontal cortices (Tomita, Ohbayashi, Nakahara, Hasegawa, & 

Miyashita, 1999). In these animals, neurons in IT and PRH responded to ipsilateral 

visual cues, which can only be explained by top-down signals from PFC, since visual 

information could only cross the hemispheres through the anterior corpus callosum. In 

sum, there is evidence supporting the idea that working memory signals reflecting the 

identity of the target are fed back to the ventral visual pathway. However, where exactly 

these signals combine to support invariant object search, as well as the format of the 

combined signals within the ventral visual pathway, is still unclear. 
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Figure 1-1. Proposed pathways involved in visual and top-down working memory 

modulations during invariant object search. Visual information is first encoded in the 

retina, where it reaches primary visual cortex (V1) through the lateral geniculate nucleus 

of the thalamus. Information about the identity of viewed objects is then extracted along 

the ventral visual pathway, composed by V2, V4, and IT (‘Vision’, cyan). Working 

memory information about the identity of the target is thought to be maintained in 

prefrontal cortex (red). Multiple sources of evidence suggest a top-down projection of 

this signal to mid to late stages of the ventral visual pathway (e.g. V4 and/or IT) during 

visual target search.  
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Attentional modulations in the ventral visual stream 

	  

The proposal that context-specific signals are fed back from PFC in order for the 

combination of contextual and visual signals to happen within visual cortical areas 

themselves (Figure 1) is further supported by a large body of work describing top-down 

modulations of visual signals within the ventral visual pathway. Below, we review 

evidence from single unit neurophysiology studies describing top down modulations in 

the context of different types of attentional tasks.  

Spatial attention: 

 The most well documented top-down modulations of visual signals have been 

studied within the context of spatial attention. Allocating attention to a particular spatial 

location improves the perception of a stimulus at the attended location. This improved 

perception has been associated with changes in the way that neurons respond to that 

stimulus. Specifically, in experiments with a single stimulus presented in a neuron’s 

receptive field, attention to that stimulus is usually associated with responses that are 

faster (Sundberg, Mitchell, Gawne, & Reynolds, 2012), stronger (Maunsell & Cook, 

2002; McAdams & Maunsell, 1999) and less variable (Cohen & Maunsell, 2009; Mitchell, 

Sundberg, & Reynolds, 2007) compared with responses when attention is directed 

elsewhere. Pairwise correlations in the fluctuations of responses are also typically 

reduced with the allocation of attention (Cohen & Maunsell, 2009; Herrero, Gieselmann, 

Sanayei, & Thiele, 2013; Mitchell, Sundberg, & Reynolds, 2009; Zenon & Krauzlis, 

2012). 

Notably, the magnitude of attentional modulation by spatial cueing differs 

between visual areas. Specifically, attentional modulation seems to be weakest in the 
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earliest stages of visual cortex, and strongest in later areas (Maunsell & Cook, 2002). 

However, this increase has not been studied extensively or systematically. A few studies 

(Luck, Chelazzi, Hillyard, & Desimone, 1997; McAdams & Maunsell, 1999; Moran & 

Desimone, 1985; though see Motter, 1993) compared modulations in early to mid stages 

of the ventral visual pathway, and found that firing rate responses in area V4 

systematically increased to attended as compared to unattended stimuli (with increases 

ranging on the order of 25-60% across studies), while responses of cells in V1 reflected 

no significant or consistent effects of attention. Moran and Desimone (1985) also found 

increases in firing rates with attention in IT cortex (which were slightly smaller in 

magnitude to those in V4, possibly due to large variation in the visually-evoked 

responses in IT to the same stimuli as presented in V1 and V4). 

Evidence from these spatial attention studies supports two lines of thought. First, 

the responses of neurons within the ventral visual pathway can be modulated by top-

down contextual signals. Second, comparative studies between early and mid-stage 

areas imply that V4 might be an important locus of attentional modulation. Alternatively, 

attentional modulation might continue to gradually increase along the ventral visual 

pathway. To further examine this, direct comparisons must be made between V4 and 

downstream areas.  

The allocation of spatial attention is only one component of visual search. In 

particular, attention to particular visual features is important for finding sought targets. 

Thus, next we review evidence for the involvement of V4 and IT in feature based-

attention and visual search.  
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Feature-based attention and visual search in V4: 

Most single unit studies of feature-based attention (attention allocated not to a particular 

location, but rather to a particular feature) in the ventral visual pathway have focused on 

V4. One of the first demonstrations of feature-based attentional modulations within V4 

neurons was reported by Haenny, Maunsell, and Schiller (1988). Monkeys were shown a 

sample visual grating which was followed by a series of test visual gratings. They were 

trained to report when the orientation of the test grating in view matched the previously 

cued sample grating. The authors found that neural responses in V4 were not only 

modulated by the orientation of the grating in view (visual modulation) but also by 

whether the visual stimulus matched the target orientation. Importantly, this modulation 

by the target orientation is also observed if the animal is cued via a tactile stimulus (by 

feeling the orientation of a grooved plate which has been hidden from view) (Haenny et 

al., 1988; Maunsell, Sclar, Nealey, & DePriest, 1991). This was the first study to suggest 

that feature based attention is mediated by centers that are capable of generating an 

intermodal representation of orientation.  

 Motter (1994) trained monkeys to do a task in which they viewed arrays of mixed 

stimuli and had to attend to a subset of stimuli with a color or luminance that matched a 

cue stimulus. Most neurons in V4 showed increased responses to the same stimuli when 

that stimulus matched the cue. However, in these studies, it is possible that the 

modulation of neural activity depended on a mechanism that targeted spatial locations 

that were first identified as behaviorally relevant based on color or luminance, and then 

the effectiveness of the attended stimulus was enhanced relative to the representation of 

the distractor by spatial attention mechanisms alone. Bichot, Rossi, and Desimone 

(2005) avoided this issue by training a realistic visual search task where monkeys were 



	   9	  

allowed to freely move their eyes. In this study, responses in area V4 were recorded 

during the brief periods between saccades, when a known stimulus lay in the receptive 

field of the neuron being recorded. Critically, the authors analyzed responses when the 

target stimulus fell in the receptive field of the recorded neuron but was not yet detected 

by the animal, who made an eye movement elsewhere. They found enhancements in 

firing rates (median increase of 30%) when the stimulus in the receptive field matched 

the cued stimulus. Together, these studies show that the firing rates of V4 neurons can 

be modulated by target context in feature-based attention. 

 McAdams and Maunsell (2000) studied the effects of shifting attention between 

different feature dimensions (rather than specific values of a given feature). In particular, 

they recorded responses from V4 neurons with a stimulus of their preferred orientation in 

their receptive field. In one condition, the animal was required to attend to the orientation 

of another stimulus in a distant location. In a second condition the animal was required 

to attend to the color of an unoriented stimulus in a distant location. They found that 

shifting attention between orientations and colors affected the responses of most V4 

neurons.  This result demonstrates that neural representations of stimuli in parts of the 

visual field with no relevance to the task can be modulated by attention. This is 

consistent with the idea that feature based attention changes activity throughout the 

visual field representation in a way that would be useful for visual search.  

 

Visual search within the late stages of the ventral visual pathway: 

In IT and perirhinal cortex (PRH; a downstream area that receives most of its 

inputs from IT)), visual search has often been studied via delayed-match-to-sample 

(DMS) tasks, as briefly presented above (Haenny et al., 1988; Maunsell et al., 1991). 
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This task, first studied by Mishkin, Prockop, and Rosvold (1962), is designed to model 

the sequential search that commonly occurs when subjects look for an object. Subjects 

are first cued with a sample image of the sought target. The target then disappears and, 

after a temporal delay, subjects are required to respond to images that match the target 

(ignoring intermediately presented distractor images).  

As seen in V4, strong task-relevant modulations during DMS have been reported 

in IT and PRH (Eskandar, Richmond, & Optican, 1992; Leuschow, Miller, & Desimone, 

1994; Miller & Desimone, 1994; Pagan, Urban, Wohl, & Rust, 2013). In these areas, 

however, two subpopulations with opposite responses were described: one with 

enhanced responses and the other with suppressed responses to target matches as 

compared to distractor stimuli (Miller & Desimone, 1994). The authors hypothesized that 

the match-suppressed responses might have arisen as the result of passive, stimulus 

repetition of the target match following the cue, while the match enhanced neurons alone 

carry behaviorally relevant information (differentiating between target matches and 

distractors).  

 

Comparisons between areas within the ventral visual pathway 
	  

How do the magnitude of these target search signals differ between V4 and IT? 

Only one systematic comparison exists between these two areas within the context of a 

target search task. Chelazzi and colleagues (Chelazzi, Duncan, Miller, & Desimone, 

1998; Chelazzi, Miller, Duncan, & Desimone, 2001) trained monkeys to perform a visual 

search task, where monkeys were first cued to their target stimulus, which would 

subsequently appear at one of two possible locations within the receptive field of the 
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neuron. The receptive field would always contain two stimuli: one that generated a 

relatively strong response and one that generated a relatively weak response. When the 

preferred stimulus matched the cue (compared to when the non-preferred stimulus 

matched the cue), the authors found that firing rate responses increased by similar 

magnitudes (V4: 63%; IT: 70%). Additionally, a comparison between IT and its projection 

area (PRH) reported that these areas also have matched amounts of total target match 

information. These lines of evidence suggest that V4 might act as a locus of combination 

of visual signals and top down context specific signals, and downstream areas (IT, PRH) 

simply inherit and reformat this combined task-relevant information.  

However, the delayed match to sample tasks described above cued subjects to 

search for targets that always appeared at the same positions, sizes, and background 

context. In real world object search tasks, one doesn’t know the context in which a target 

match might appear. Leuschow et al. (1994) trained monkeys to find objects that could 

appear at different sizes and locations, and found that neurons in IT showed similar 

modulations when target matches appeared at different sizes and locations. The authors 

did not compare these signals across areas in the ventral visual pathway, and thus could 

not determine whether IT inherits these task-relevant signals from V4.  

In particular, how might V4 act as a locus for integrating visual and task-

dependent signals for an invariant object search task? Flexibly finding different sought 

objects requires differential responses to the same visual inputs based on task context 

(as relayed by top-down contextual signals). Given that V4 receptive fields are small and 

retinotopically organized and consequently, that V4 lacks an explicit representation of 

object identity, how could the brain determine which subsets of neurons to target with 

these top-down contextual signals (Maunsell & Treue, 2006)? Whether these signals are 
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a) combined in V4 and inherited by later areas, or b) integrated gradually along the 

ventral visual pathway during invariant object search remains unknown. 

In sum, despite the substantial impact of these early studies on our 

understanding of the neural mechanisms underlying target search, many questions still 

remain open. First, where do top-down target signals integrate into the ventral visual 

pathway? Does the IT population inherit its combined signals from V4, or do the 

amounts of these signals increase gradually along the pathway? Second, these areas 

are known to encode an explicit representation of currently viewed objects: how is this 

visual representation modulated by cognitive signals? Specifically, in what format do 

these modulations appear? We address these first two questions in Chapter 2.  

 

How signal and noise might contribute object search performance 
 

While Chapter 2 focuses on the locus and mechanism of combination of visual 

and context-specific signals, Chapter 3 considers these questions from a neural coding 

perspective. Specifically, how do signal and noise contribute to task performance and 

how might this inform how the brain multiplexes signals during invariant object search? 

Performance on a particular task is determined not only by the amount of task-

relevant signal reflected by neurons (e.g. information about whether a target match or 

distractor is in view), but also by the presence of noise, which can arise from multiple 

sources. Internal noise, or “trial variability” manifests as trial-by-trial variations in neural 

responses under seemingly identical conditions. External factors can also translate into 

noise, particularly when a task requires extracting a particular type of information from 

our environment amid changes in other task-irrelevant, nuisance parameters (Kim, 
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Pitkow, Angelaki, & DeAngelis, 2016). Stated differently, for any given task, neurons in a 

brain area may be modulated by multiple experimental variables, but when viewed from 

the perspective of task performance, one type of modulation reflects the task-relevant 

signal, whereas other types of modulation act as noise. 

 

Mixed selectivity in the ventral visual pathway: 

The existence of cognitive modulations within the same areas known for solving 

strictly visual tasks (e.g. object recognition), also known as mixed selectivity, poses a 

potential challenge for the brain. When viewed from the perspective of task performance, 

one type of modulation reflects the task-relevant signal, whereas other types of 

modulations (e.g. modulations by visual information) act as noise. Specifically – a 

population of neurons whose responses are modulated by whether an object is a target 

match or a distractor is expected to perform worse at a simply visual discrimination task, 

and vice versa.  

Outside of the realm of attentional modulations, growing evidence suggests that 

different types of signals are in fact mixed, both at the locus at which task-relevant 

solutions are computed as well as downstream (Freedman & Assad, 2009; Kobak et al., 

2016; Mante, Sussillo, Shenoy, & Newsome, 2013; Meister, Hennig, & Huk, 2013; 

Raposo, Kaufman, & Churchland, 2014; Rigotti et al., 2013; Rishel, Huang, & Freedman, 

2013; Zoccolan, Kouh, Poggio, & DiCarlo, 2007). A number of explanations have been 

proposed to account for mixed selectivity. Some studies have documented situations in 

which signal mixing is an inevitable consequence of the computations required for 

certain tasks, such as identifying objects invariant to the view in which they appear 

(Zoccolan et al., 2007).  Others have suggested that mixed selectivity may be an 
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essential component of the substrate required to maintain a representation that can 

rapidly and flexibly switch with changing task demands (Raposo et al., 2014; Rigotti et 

al., 2013).  Still others have maintained that broad tuning across different types of 

parameters is important for learning new associations (Rigotti et al., 2013).  Thus it may 

be the case that one or all of these benefits outweigh the performance costs associated 

with mixed selectivity.  Alternatively, it may be that mixed selectivity is not as detrimental 

to task performance as it otherwise appears.  As described in more detail in Chapter 3, 

our results support the latter assertion. 

 

Overview 
	  

In Chapter 2, we sought to compare the responses of neurons in V4 and IT, to 

determine whether V4 acts as a singular locus of combination for context-specific and 

visual signals, or rather that these signals are injected at multiple stages of the ventral 

visual pathway. In this study, we provide evidence that during invariant object search, 

while context-specific modulations exist in both V4 and IT, they are larger in IT. 

Furthermore, we show that at the level of single units, these signals are formatted 

differently in V4 and IT. These results reveal that top-down, context-specific signals are 

integrated into the ventral visual pathway at multiple stages during invariant object 

search.  

In Chapter 3, we focus on the responses in IT cortex during the invariant object 

search task. Specifically, we use the data from IT as a case study to answer a neural 

coding question. The task performance of neurons whose responses are modulated both 

by task-relevant signal (e.g. responses that differentiate between target matches and 
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distractors) and also task-irrelevant factors that act as noise (nuisance variability; e.g. 

visual information about the object currently in view) should be limited by these nuisance 

modulations. Our results reveal that surprisingly, while nuisance modulation was large in 

IT cortex, its impact on task performance, both within single units and at the level of the 

population, was modest. This result could be explained by the existence of large trial 

variability constrained by short, behaviorally relevant spike counting window. In sum, our 

results reveal that when the brain operates in a fast processing, low spike count regime, 

nuisance modulations are largely inconsequential for task performance.  

Finally, in Chapter 4 we discuss how our results relate to the existing literature, 

and speculate about possible future directions for this research.  
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CHAPTER 2 
	  

The multi-stage integration of visual and target signals during object search 

 
	  

ABSTRACT 
	  

 Many everyday tasks require our brains to flexibly map incoming sensory 

information onto different behavioral responses based on context. One example is the 

act of searching for a specific object, which requires us to compare the items in view with 

a remembered representation of a sought target to determine whether a target match is 

present. During visual search, top-down modulations reflecting target identity are known 

to combine with feed-forward visual representations at mid-to-higher stages of the 

ventral visual or form processing pathway (e.g. V4 and inferotemporal cortex, IT). 

However, it remains unclear whether these top-down signals are inserted at a single 

locus (e.g. V4) or whether they are inserted at multiple stages (e.g. both V4 and IT). To 

investigate, we systematically compared neural responses in V4 and IT recorded as two 

monkeys performed a task that required them to identify when a target object appeared 

across variation in the objects’ positions, sizes and background contexts. We found that 

while average context-specific modulation was considerable in V4 (35% the size of 

visual modulation), it was even larger in IT (72%), and consequently, total information 

about the target match solution was larger in the IT as compared to the V4 population. 

Additionally, in V4, modulations reflected changes in the identity of the sought target (i.e. 

working memory signals), whereas in IT they were a heterogeneous mixture of working 

memory signals and signals reflecting the task solution (i.e. whether an object is a target 

match or a distractor). Together, these results suggest that during object search, top-
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down, task-relevant signals are combined with feed-forward visual information at multiple 

stages along the ventral visual pathway.  



	   18	  

INTRODUCTION 
 

Finding a specific sought object, such as our car keys, requires our brain to 

execute at least two types of non-trivial computations. First, we must determine the 

identities of the objects in view, across variation in details including their position, size, 

and background context. Additionally, we must perform a comparison of the visual 

representation of what we are looking at with a remembered representation of what we 

are looking for to determine whether our target is in view.  Considerable evidence 

suggests that computations in the primate ventral visual pathway, including visual brain 

areas V1, V2, V4 and IT, support the process of invariant object recognition (reviewed by 

DiCarlo, Zoccolan, & Rust, 2012; Ungerleider & Mishkin, 1982). Evidence also suggests 

that signals reflecting the combination of visual and target information (e.g. differential 

responses to the same images presented as target matches versus as non-target 

distractors) are reflected in V4 (Bichot et al., 2005; Chelazzi et al., 2001; Haenny et al., 

1988; Kosai, El-Shamayleh, Fyall, & Pasupathy, 2014; Maunsell et al., 1991), IT (E.N. 

Eskandar et al., 1992; Gibson & Maunsell, 1997; Leuschow et al., 1994; Liu & 

Richmond, 2000; Meunier, Bachevalier, Mishkin, & Murray, 1993; Pagan et al., 2013), 

and perirhinal cortex (Miller & Desimone, 1994; Pagan et al., 2013).  However, exactly 

where and how the comparison of visual and target identity is performed is not well 

understood.  

Here we present two idealized proposals for how top-down target modulation 

might be integrated within the ventral visual pathway during visual target search. In the 

first proposal (Fig 1a), these signals emerge gradually and increase in strength along the 

visual hierarchy, as a result of multiple stages in which top-down target modulation is 

combined with feed-forward visual information. In a second proposal (Fig 1b), a single 
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brain area (e.g. V4) serves as the locus of the combination of visual and target 

information, and higher brain areas receive information about target identity by way of 

inheriting this information from earlier stages. While the gradient proposal (Fig 1a) is 

broadly-assumed to be true, published evidence is more supportive of V4 as a single 

locus (Fig 1b) for receiving top-down signals during visual target search.  For example, 

under the most comparable conditions published to date, average target modulations in 

V4 and IT were reported to be large and similar in magnitude (63% versus 70% of the 

visually-evoked response; Chelazzi et al. (1998); Chelazzi et al. (2001).)  Other 

measures of target modulation magnitudes in V4 (Bichot et al., 2005; Haenny et al., 

1988; Maunsell et al., 1991) and IT (Chelazzi, Miller, Duncan, & Desimone, 1993; Miller 

& Desimone, 1994) report comparable values. Additionally, a comparison between two 

higher stages of the pathway (IT and its projection area, perirhinal cortex) reported that 

differences between these two brain areas were reflected as differences in the format of 

target match information format, as opposed to overall amounts, consistent with a feed-

forward process (Pagan et al., 2013). In contrast, reports of modulation magnitudes in 

brain areas that lie earlier in the pathway (e.g. V1 and V2) are consistently smaller than 

those reported for V4 (Luck et al., 1997; McAdams & Maunsell, 1999; Moran & 

Desimone, 1985). Together, these results suggest that V4 may indeed act as a locus in 

the ventral visual pathway for receiving top-down, context-specific signals.  
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Figure 2-1. Where is target information combined with visual information along the 

ventral visual pathway?  Discriminating between classes of models of where the target 

match signal is computed a) Schematic showing target information being fed back to V4 

and combined there. In this model, this combined information (target match signal) is 

inherited by IT cortex. b) Schematic showing target information being fed back to 

multiple stages of the ventral visual pathway (V4, IT cortex). In this model, the target 

match signal is larger in IT than in V4.  

 

While compelling, one mystery associated with accounts that V4 might act as a 

singular locus for integrating visual and task-dependent signals relates to the question of 

how the brain might achieve this. Flexibly finding different sought objects requires 

differential responses to the same visual inputs based on task context (as relayed by 

top-down contextual signals). Given that V4 receptive fields are small and retinotopically 

organized and consequently, that V4 lacks an explicit representation of object identity, 

how could the brain determine which subsets of neurons to target with these top-down 

contextual signals (Maunsell & Treue, 2006)? Notably, only one study has examined the 
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real-world problem of visual object search in the context of an object that can appear 

under different identity-preserving transformations (Leuschow et al., 1994) and only in 

IT.  Moreover, no study has systematically compared signals in V4 and IT during object 

search in the same region of the visual field, using the same images, in the same 

monkeys, performing the same task. This is thus what we set out to do. 

 

RESULTS 
 

The invariant delayed-match-to-sample task (IDMS) 

	  

To compare the amount and format of target match information between V4 and 

IT, we trained two monkeys to perform an “invariant delayed-match-to-sample” (IDMS) 

task that required them to report when target objects appeared across variation in the 

objects’ positions, sizes and background contexts. In this task, the target object was held 

fixed for short blocks of trials (~3 minutes on average) and each block began with a cue 

trial indicating the target for that block (Fig 2a, “Cue trial”). Subsequent test trials always 

began with the presentation of a distractor and on most trials this was followed by 0-5 

additional distractors (for a total of 1-6 distractor images) and then an image containing 

the target match (Fig 2a, “Test trial”). The monkeys’ task required them to fixate during 

the presentation of distractors and make a saccade to a response dot on the screen 

following target match onset to receive a reward. To minimize the predictability of the 

match appearing as a trial progressed, on a small subset of the trials the match did not 

appear and the monkey was rewarded for maintaining fixation. Our experimental design 

differs from other classic DMS tasks (Chelazzi et al., 1993; Eskandar, Optican, & 



	   22	  

Richmond, 1992; Leuschow et al., 1994; Miller & Desimone, 1994; Pagan et al., 2013) in 

that it does not incorporate a cue at the beginning of each test trial, to better mimic real-

world object search conditions in which target matches are not repeats of the same 

image presented shortly before.   

Our experiment included a fixed set of 20 images, broken down into 4 objects 

presented at each of 5 transformations (Fig 2b). Our goal in selecting these specific 

images was to make the task of classifying object identity challenging for the IT 

population and these specific transformations were built on findings from our previous 

work (Rust & DiCarlo, 2010). In any given block (e.g. a squirrel target block), a subset of 

5 of the images would be considered target matches and the remaining 15 would be 

distractors (Fig 2b). Our full experimental design amounted to 20 images (4 objects 

presented at 5 identity-preserving transformations), all viewed in the context of each of 

the 4 objects as a target, resulting in 80 experimental conditions (Fig 2c).  In this design, 

“target matches” fall along the diagonals of each looking at / looking for matrix slice 

(where “slice” refers to a fixed transformation; Fig 2c, gray). For each condition, we 

collected at least 10 repeats on correct trials. Monkeys generally performed well on this 

task (Fig 2d). Their mean reaction times (computed as the time their eyes left the fixation 

window relative to the target match stimulus onset) were 364 ms and 324 ms (Fig 2e).  
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Figure 2-2. The invariant delayed-match-to-sample task.  a) Monkeys performed an 

invariant delayed-match-to-sample task. Each block (~3 minutes in duration) began with 

a cue trial indicating the target object for that block. On subsequent trials, monkeys 

initiated a trial by fixating on a small dot. After a 250 ms delay, a random number (1-7) of 

distractors were presented, and on most trials, this was followed by the target match. 

Monkeys were required to maintain fixation throughout the distractors and make a 
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saccade to a response dot within a window 75 - 600 ms following the onset of the target 

match to receive a reward. In cases where the target match was presented for 400 ms 

and the monkey had still not broken fixation, a distractor stimulus was immediately 

presented. b) The experiment included 4 objects presented at each of 5 identity-

preserving transformations (“up”, “left”, “right”, “big”, “small”), for 20 images in total.  In 

any given block, 5 of the images were presented as target matches and 15 were 

distractors.  c) The complete experimental design included looking “at” each of 4 objects, 

each presented at 5 identity-preserving transformations (for 20 images in total), viewed 

in the context of looking “for” each object as a target.  In this design, target matches 

(highlighted in gray) fall along the diagonal of each “looking at” / “looking for” 

transformation slice. d) Percent correct for each monkey, calculated based on both 

misses and false alarms (but disregarding fixation breaks). Percent correct is plotted as 

a function of the number of distractors shown. e) Histograms of reaction times during 

correct trials (ms after stimulus onset) during the IDMS task for each monkey, with 

means indicated by arrows and labeled. 

 

To systematically compare the responses of V4 and IT during this task, we 

applied a population-based approach in which we fixed the images and their placement 

in the visual field across all the units that we studied, and we sampled from 

representative units whose receptive fields overlapped the stimuli we presented. 

Specifically, we presented images at the center of gaze, with a diameter of 5 degrees. 

Neurons in IT typically have receptive fields that extend beyond 5 degrees and extend 

into all four quadrants (Fig 3a top; Op De Beeck and Vogels, 2000). In contrast, V4 

receptive fields are smaller, retinotopically organized, and confined to the contralateral 
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hemifield (Fig 3a bottom; Desimone and Schein, 1987, Gattass et al. 1988). To compare 

these two brain areas, we applied extensions of approaches developed in our earlier 

work (Rust & DiCarlo, 2010) in which we compared the responses of a set of randomly 

sampled IT units with a population of V4 units whose receptive fields tiled the image (Fig 

3b). This required sampling V4 units with receptive fields in both upper and lower visual 

fields, which we achieved through recording at different positions within and around the 

inferior occipital sulcus.  This also required measuring units with receptive fields on both 

sides of the vertical meridian, which we approximated by isolating our recordings to one 

hemisphere but reflecting the images along the vertical axis in approximately half the 

sessions (see Methods). 

 

Figure 2-3. Experimental design: V4 - IT comparisons a) Images were displayed at the 

center of gaze and were 5 degrees in diameter (red circle indicates location and size of 

images.) Expected receptive field locations and sizes for neurons in V4 (top; Desimone 

and Schein, 1987; Gattass et al., 1988), and IT (bottom; Op De Beeck and Vogels, 

2000). b) We targeted V4 neurons such that their receptive fields tiled the image. The 

receptive field locations of V4 neurons recorded for each session. If a session included 
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more than one receptive field location, all are included. Dots illustrate the center of each 

receptive field (gray, Monkey 1; white, Monkey 2).  

 

Because V4 receptive fields in the region of the field we recorded are small, one 

potential issue of concern is the replicability of retinal image placement across trials.  We 

quantified the stability of monkeys’ eye positions across repeated trials as the percent of 

eye positions that were within windows corresponding to V4 receptive field sizes at the 

range of eccentricities we recorded (Gattass et al., 1988). We found that 89% of eye 

positions were reliably within windows corresponding to the average RF sizes at the 

fovea (0.56 degrees), and 98% of eye positions were within windows corresponding to 

RF sizes at an eccentricity of 2.5 degrees (1.4 degrees). To achieve this in Monkey 2, 

fixational control was improved by aligning the images closer to the center of gaze at 

stimulus onset (see Methods). These approaches were effective in producing similar 

distributions of trial-by-trial variability between V4 and IT, as measured by the mean and 

standard deviation of Fano factor across units (mean +/- std, V4 = 1.41+/-0.3; IT = 1.35 

+/- 0.33). 

As two monkeys performed this task, we recorded neural activity from small 

populations using 24-channel probes that were acutely lowered into V4 or IT before each 

session. In all of our analyses, we counted spikes in a 170 ms window (V4: 40-210 ms; 

IT: 80-250 ms following stimulus onset), which always preceded the monkeys’ reaction 

times and thus corresponded to periods of fixation. The data reported here were 

extracted from trials with correct responses.  To create comparable populations in V4 

and IT, we first screened for units based on their stability, isolation, and task modulation. 

By design, we recorded more units in V4 than IT, and to compare them, we randomly 
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subsampled neurons in V4 (see Methods). Most of our analyses are applied to 

pseudopopulations that are matched in size (n = 193 units in each area; Monkey 1, n = 

98 and Monkey 2 n = 95). 

 

Equating the recorded V4 and IT populations for total visual information 

There are important factors to consider when making a systematic comparison 

between V4 and IT. For example, should V4 and IT be compared one-to-one with equal 

numbers of units? How does one know if the samples from two brain areas accurately 

reflect differences between them? As an illustrative example, imagine a scenario in 

which the V4 neurons sampled all had small, overlapping receptive fields confined to the 

same small region of the visual field whereas IT neurons, by virtual of their large 

receptive fields, had access to much more of the visual field.  From this data we might 

erroneously conclude that total target match information is higher in IT than V4 by way of 

sampling, whereas in reality the two brain areas might actually contain matched amounts 

of target match information.   

In addition to overall differences in receptive field size, we considered several 

factors when systematically comparing V4 and IT. First, we note that all the visual 

information in IT is thought to arrive there after first traveling through V4 and total visual 

information in IT thus cannot exceed information in V4. As such, one reasonable 

benchmark for assessing whether two recorded populations are comparable is by an 

assessment of whether the two populations have matched amounts of total information 

about visual identity. Second, it is also the case that the format of visual information is 

known to differ between V4 and IT insofar as information about object identity (across 

changes in object position, size and background context) is more accessible to a linear 
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read-out whereas in V4 that information is more nonlinear. One way to circumvent this 

issue is to make comparisons of the amounts of visual information at each 

transformation separately. Finally, under this line of thinking, the question about how 

many units to include in the V4 as compared to the IT population is somewhat of an 

empirical one, as the right answer is determined by the number of units required to 

equate total visual information in the two populations; in our previous work, we found 

that the two populations could be equated with approximately equal numbers of units 

(Rust & DiCarlo, 2010). 

To assess the degree to which total visual information in our recorded V4 and IT 

populations was matched, we quantified the ability of each population to discriminate 

between the 4 images computed separately for each of the 5 transformations (Fig 4a, 

right; see Methods). For 3 out of the 5 transformations, visual information was well-

matched between V4 and IT in each monkey when equal numbers of units were 

considered, both when averaged across all the transformations (Fig 4d) as well as when 

each transformation was considered individually (Fig 4e).  For 2 of the transformations 

(“left” and “right”), the V4 population had significantly lower performance than V4 for the 

other 3 transformations (“big”, “small”, “up”), and V4 performance on the visual 

identification task was considerably lower than IT (not shown). This is consistent with the 

absence of more peripheral receptive fields (Fig 3b) in our data.  We thus focused 

further analysis on the 3 of 5 transformations in which we were confident total visual 

information was equated in our samples of V4 and IT. 
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Target match information is lower in V4 than IT 
 

To compare V4 and IT, we asked each population to solve the task that the 

monkey had to solve: a two-way classification between the same images presented as 

target matches (Fig 4c, gray) versus as distractors (Figure 4c, black). To compare total 

amounts of target match information in V4 and IT, we measured cross-validated 

performance of a maximum likelihood classifier to perform this 2-way classification at 

each transformation separately and then averaged over transformations (see Methods).  

We found that the cross-validated population performance was higher than chance in 

V4, but was even higher in IT (Fig 4e; pooled data: p<0.005), and this result was 

confirmed in each monkey individually (Figure 4f filled points, monkey 1 p<0.005; 

monkey 2, p=0.007) These results suggest that IT target match information is not 

exclusively inherited from V4, and they are consistent with descriptions in which top-

down, task-relevant signals are integrated in IT (as well as V4; Fig 1a). 

The maximum likelihood classifier is designed to measure total target match 

information regardless of its format (e.g. linear or nonlinear). To determine how much of 

this total information was formatted in a manner accessible to a linear population read-

out, we also computed the performance of a linear classifier (Fig 4d; a Fisher Linear 

Discriminant, see Methods). Like total information, this measure of linearly separable 

information was higher in IT than V4 (Fig 4f white dots, monkey 1, p<0.005; monkey 2, 

p<0.005). In summary, both when assessed by the performance of a maximum 

likelihood or linear classifier, IT performance at differentiating between target matches 

versus distractors was larger than that in V4.  
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Figure 2-4. A comparison of target match information in V4 and IT a) Visual 

discrimination in V4 and IT was matched. Shown is performance as a function of the 

number of neurons for the V4 and IT populations assessed by a linear readout of object 

identity. The performances are averaged across a subset of the images used in the 

experiment (3 of the 5 transformations which elicited high discriminability in V4). This 

performance is shown for pseudopopulation across both monkeys, n = 193 units, left, 

and for each monkey individually, right. Error bars (standard error) reflect the variability 

that can be attributed to the specific subset of trials chosen for training and testing, and, 

for subsets of neurons smaller than the full population, the specific subset of neurons 

chosen. b) Visual discrimination in V4 and IT, shown for each transformation individually 

at the total number of units (n = 193). c) The target search task can be envisioned as a 

two-way classification of the same images presented as target matches versus as 

distractors. Shown are cartoon depictions where each point depicts a hypothetical 

population response for a population of two neurons on a single trial, and clusters of 

points depict the dispersion of responses across repeated trials for the same condition. 

Included are responses to the same images presented as target matches and as 

distractors. The dotted line depicts a hypothetical decision boundary. d) Same as in (c), 

but dotted line depicts a hypothetical linear decision boundary. In this schematic, the 

target matches versus distractors are linearly separable. e) Target match information is 

higher in IT than in V4. Total amount of target match information, as assessed by the 

performance of an ideal observer trained to classify between whether an object was a 

match or a distractor, invariant of the object’s identity and transformation. Total 

information was higher in IT than V4 (p <0.005) in a pseudopopulation across both 

monkeys, n = 193 units. Error bars (standard error) reflect the variability that can be 

attributed to the specific subset of trials chosen for training and testing, and, for subsets 
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of neurons smaller than the full population, the specific subset of neurons chosen. 

Dashed line indicates chance performance. f) Total target match information was higher 

in IT than V4 in each monkey individually (filled points). Total target match information 

could be mostly accounted for by linearly separable target match information in both V4 

(compare gray open points and gray filled points) and IT (compare black open points 

and black filled points) in each monkey individually.  

 

Single units in V4 and IT differ in both their amount and format of context-specific 

modulations 

Because the approach presented thus-far is from the perspective of population 

coding and from the somewhat abstract perspective of total information, we were 

interested in also arriving at more intuitive, single-unit descriptions of the types of firing 

rate modulations that give rise to differences between V4 and IT. To do so, we return to 

the experimental design of the IDMS task (Fig 5a). We first consider the responses of a 

neuron to different conditions within one slice of this matrix (corresponding to one 

transformation; Fig 5a), where each slice corresponds to viewing each of four objects 

(‘Looking AT’) in the context of each of four target objects (‘Looking FOR’). Different 

types of task modulation produce distinct structure in these response matrices: visual 

modulation translates to vertical structure (Fig 5a, ‘visual’), target identity modulation 

translates to horizontal structure (Fig 5a, ‘target identity’) and nonlinear combinations of 

these visual and target identity signals translate to diagonal structure (Fig 5a, ‘target 

match’ or equivalently, differential responses to the same images presented as target 

matches versus as distractors.  We note that target match modulation corresponds to a 

nonlinear combination of visual and target identity, and can be instantiated as units that 
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report whether one particular object is a target match or a distractor (Fig 5a, ‘selective 

target match detector’) or units that report whether an object is a target match, invariant 

to the identity of the object in view (Fig 5a, ‘four-object target match detector’). 

To quantify the amounts of different types of task-relevant modulations, we 

applied a bias-corrected procedure that quantifies different types of modulation in terms 

of the number of standard deviations around each unit’s grand mean spike count (Pagan 

& Rust, 2014b). Modulation types were grouped into intuitive sets as described above 

(e.g. visual, target, and target match modulation) as well as “residual” modulations 

attributed to nonlinear interactions between the visual stimulus and target that were not 

captured by target match modulation (e.g. specific distractor conditions). Figures 5b,e 

illustrate these modulations when computed as a function of time relative to stimulus 

onset and averaged across units. In line with our population results, we found that 

across units in V4 and IT, visual modulation (compare Fig 5b and e, red) was of 

comparable size. Furthermore, target match modulation (compare Fig 5a and e, dashed 

gray) was large in IT but small in V4. In both V4 and IT, we found a signal reflecting 

information about the target identity (Fig 5b and e, solid gray). This signal appears 

before stimulus onset, suggesting that it reflects persistent working memory information 

about the target identity on each trial. Note that because the IDMS task cued monkeys to 

the identity of the target at the beginning of each block, we expect target identity 

information to be present before the onset of each presented stimulus. Lastly, we found 

that in both V4 and IT, residual modulation was small (Fig 5b and e, dotted gray.) 

To more directly compare these measures with our population results,  we 

quantified the modulation amounts in the spike count window used for population 

analysis (Fig 5b,e, gray rectangle). To gain insight into the total amount of context-
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specific modulation of visual signals, we also plot total cognitive modulation, comprised 

of all non-visual modulation types. We found that total cognitive modulation was smaller 

in V4 than in IT in each monkey (Fig5 c-d, f-g, dark gray; 0.26x versus 0.71x the visual 

modulation in Monkey 1, p<0.001; 0.53x versus 0.78x the visual modulation in Monkey 

2, p=0.013). We next parsed total cognitive modulation into different types (Fig5 c-d, f-g, 

light gray). In V4, the cognitive modulation was comprised of mostly target identity 

modulation and low target match modulation (target identity modulation was 0.29x the 

visual modulation versus target match modulation was 0.07x the visual modulation in 

Monkey 1; target identity modulation was 0.57x the visual modulation versus target 

match modulation was 0.22x the visual modulation in Monkey 2). In contrast, in IT, 

cognitive modulation was comprised of similar amounts of target identity modulation as 

in V4, but this target identity modulation was roughly matched to large target match 

modulation (target identity modulation was 0.55x the visual modulation and target match 

modulation was 0.44x the visual modulation in Monkey 1; target identity modulation was 

0.43x the visual modulation and target match modulation was 0.57x the visual 

modulation in Monkey 2.).  In sum, while both V4 and IT units reflect cognitive 

modulations, they were larger in IT. In V4, cognitive modulations were comprised of pure 

target identity signals, while in IT they were mixtures of target identity and target match 

modulations.  

How do these single unit modulations relate to the population-based measures 

presented in Figure 4?  Figure 4 displays measures of total information for this task, 

which requires both visual and cognitive signals.  Because visual signals are larger than 

cognitive signals (Fig 5b-g), cognitive modulations act as the informational bottleneck for 

the ability of these populations to contribute to total task-relevant information.  Thus we 

can think of average total cognitive modulations as a proxy for the population total 
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information. In contrast, population linear classifier performance is constrained by the 

amount of explicit information differentiating between target matches and distractors. In 

fact, there is an analytical mapping between the single unit target match modulations 

and the population linear classifier performance (Pagan & Rust, 2014b; discussed in 

more detail in Chapter 3). Stated differently, a population with large amounts of target 

match modulations (Fig 5a, diagonal structure) will contain linearly separable 

information, whereas a population with all of its cognitive information formatted as target 

identity modulations (Fig 5a, horizontal structure) will reflect all of its information in a 

nonlinearly separable format.  To illustrate this link between single unit quantifications 

and our population results, we replotted the modulation breakdown shown in Fig 5c-d, 

5f-g to compare with the population based measures. We found that indeed, for each 

monkey and each brain area, these modulation amounts align with the differences we 

find at the level of the population (compare Fig 4f and 5h). 

On average across monkeys, we found that while V4 contains cognitive 

modulations (on average of size 35% of its visual signal), IT contains more (on average 

of size 72% of its visual signal). While V4 and IT have similar amounts of modulation by 

target identity (i.e. horizontal structure in the response matrix, see Fig 5a modulation 

subtypes, center; V4: 39% versus IT: 52% of the visual signal), the discrepancy in total 

cognitive modulation between V4 and IT comes from a difference in target match 

information (i.e. diagonal structure in the response matrix see Fig 5a modulation 

subtypes, right). V4 contains much less target match information (12% of its visual 

signal), while IT contains large target match information (48% of its visual signal). 
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To summarize these results, we found that at the single unit level, V4 and IT 

differ in their total amounts of cognitive modulation. While V4 contains some cognitive 

modulation, IT contains more. Furthermore, the cognitive modulations that V4 contains 

are reflected purely as target identity, or working memory signals, while in IT cognitive 

modulations were comprised of both target identity modulations and target match 

signals. Therefore, while IT might inherit some of its information from the large V4 target 

identity modulations, there remain large cognitive modulations in IT that are not present 

in V4. These results thus suggest that top-down cognitive information is integrated into 

the ventral visual pathway at multiple stages.  
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Figure 2-5. Average single unit modulations in V4 and IT cortex. Modulations were 

computed for each type of experimental parameter, in units of the standard deviations 
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around each unit’s grand mean spike count (see Results). a) The IDMS experimental 

design (see Figure 2c) shown for one particular transformation (left) and 3 different 

possible response modulation types (right). Shown are visual modulations, which 

differentiate between different objects in view (vertical structure), target identity 

modulations, which differentiate between different target objects (horizontal structure), 

and target match modulations, which differentiate between whether an object (single 

object target detector) or all objects (four object target detector) appear as a target 

match versus a distractor (diagonal structure). b) Average modulation magnitudes 

across units in V4 (n=193) shown as a function of time (ms after stimulus onset). Each 

unit’s firing rate responses are parsed into visual modulation (red) target identity 

modulation (gray solid), target match modulation (gray dashed), and residual modulation 

(gray dotted). Spike counting window used for analyses is indicated by the gray 

rectangle. c) Modulations in (a), for Monkey 1 only, as computed during the spike 

counting window. d) Same as in (b), for Monkey 2 only. e-g) Same as in (b-d), for the IT 

population. h) Average summed modulation magnitudes across units in V4 (gray) and IT 

(black) for individual monkeys, replotted from “cognitive” and “target match” modulations 

in (c-d, f-g). “Total cognitive” is defined as the combination of “target match”, “target 

identity” and “residual” modulation (for each unit, this was computed as the square root 

of the sum of the squares of target identity, target match and residual modulation, and 

then averaged across units as for all modulation types), and corresponds to the total 

information for the target search task (Figure 4b, left); Target match corresponds to the 

linearly separable information for the target search task (Figure 4b, right). 
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Cognitive modulations in V4 are consistent with previous studies 
 

The existence of large cognitive modulation in V4 reflected as a persistent 

working memory that exists before image onset was surprising in light of other types of 

attentional modulations (e.g. spatial attention) that are reported to be largely reflected in 

V4 as multiplicative modulations on top of the image-evoked response (e.g. McAdams & 

Maunsell, 1999). We thus applied the same measures reported in a number of the most 

comparable reports. Maunsell et al. (1991) performed an experiment where monkeys 

were cued to their target orientation via a tactile stimulus (by feeling the orientation of a 

grooved plate, and were then shown a series of visual gratings. They were required to 

report when a visual grating matching the sample orientation appeared. To quantify the 

amount of modulation by the identity of the target, the authors computed a target 

preference index as the difference in mean firing rate to the preferred target compared to 

the least preferred target, divided by their sum. They reported this index for all units in 

their recorded population that were significantly modulated by the identity of the target 

via a 2-way ANOVA. We applied the same screen and computed the target preference 

index for our data, and found a median index value of 0.37 (Fig 6a), compared to a 0.31 

in their study. Notably, this large median value in V4 can be explained by the fact that 

this index purely measures modulation by target identity. That is, a high value can be 

explained by units whose response matrices have purely horizontal structure (Fig 5a, 

‘target identity’), and does not require target match information (Fig 5a, ‘target match’). 

Haenny et al. (1988) performed the same experiment as described above, and 

computed a different modulation index which quantifies the differences in firing rates to 

target matches compared to distractors. Specifically, this index was computed as the 

difference in mean firing rate to target matches (averaged across preferred and least 
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preferred image) compared to the mean firing rate to distractors (averaged across 

preferred and least preferred image), divided by their sum. In our data, the absolute 

modulation preference index was 0.16 (Fig 6b) compared to a 0.26 in their study. , and 

in both our and their data, there exist mixtures of units that increased their firing rates to 

matches and those that decreased their firing rates to matches (though this index was 

shifted towards enhanced units in both our data, p = 0.009, and their data). Notably, this 

index could be explained by units whose responses reflect linear combinations of visual 

modulation and target identity modulation (i.e. Fig 5a ‘visual’, ‘target identity’). That is, a 

high value of this index does not necessarily imply that a unit’s responses reflect 

nonlinear combinations of these inputs (i.e. Fig 5a, ‘target match’). While these two 

studies did not record in IT, for comparison, we also computed these values for our IT 

data (Figure 6d-e). In both V4 and IT, we found mixes of target match enhanced and 

suppressed units (Fig 6 b,e), but both populations showed mostly target matched 

enhanced units as assessed by a significant rightward shift from zero in the match 

enhancement index (V4 p = 0.009, IT p < 10-5 ).  Importantly, for both measures, the 

distributions of indices were shifted rightward in IT compared to those in V4, showing 

increased firing rate modulations in IT compared to V4 (the target preference index was 

greater in IT than V4, p = 0.024; the match enhancement index was greater in IT than 

V4, p < 10-5).  

We next compared modulations in our V4 and IT data to those found by Chelazzi 

et al. (1998); Chelazzi et al. (2001). This series of studies trained monkeys to perform a 

visual search task, where monkeys were first cued to their target stimulus, which would 

subsequently appear at one of two possible locations within the receptive field of the 

neuron. The receptive field would always contain two stimuli: one that generated a 

relatively strong response and one that generated a relatively weak response. The 
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authors computed a target effect index as the difference between the mean firing rate to 

each unit’s preferred image as a target and the mean firing rate to the unit’s least 

preferred image as a target, divided by their sum. In our data, the average target effect 

index was 0.31 in V4 and 0.42 in IT (p < 10-5; Fig 6c, f; compared to 0.24 in V4 and 0.26 

in IT in their study). Notably, positive values of this index can be instantiated by both 

target identity and target match signals, thus explaining the large index found in V4, and 

an even larger value in our IT data.  

 

Figure 2-6. Single neuron match enhancement and target signals in V4 and IT. a) 

Target effect index as calculated in Maunsell et al. (1991). An index of the target effect 

was computed for each of the 193 units recorded in V4 that passed a 2-way ANOVA 

screen for target modulation, p<0.05. This index was (P-N)/(P+N), where P was the 
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average rate of firing during trials of any condition where the preferred target was the 

target; N was the average firing rate during trials of any condition where the least-

preferred target was the target. Mean enhancement to the preferred target (0.37) is 

indicated by the arrow. b) Modulation index as calculated by Haenny et al. (1988). An 

index of match enhancement was computed for each of the 193 units recorded in V4. 

This index was (M-D)/(M+D) where M was the average rate of firing across trials where 

the preferred object was both in view and the target and trials where the non-preferred 

object was both in view and the target; D was the same for non match conditions of 

preferred and non-preferred objects. Average deviations from zero (absolute value of 

modulation) was 0.16, and the mean of the distribution was significantly shifted rightward 

from zero, p=0.009). The mean of the distribution is indicated by the arrow. c) Firing rate 

index as calculated by Chelazzi et al. (1998). The firing rate index was calculated as 

(FRp-FRn)/(FRp+FRn), where FRp represented the mean firing rate when the preferred 

image was in view and was the target object; FRn was the mean firing rate when the 

least preferred image was in view and was the target object. The mean of this 

distribution (0.31) is indicated by the arrow; this distribution was significantly shifted 

rightward from zero, p<10-5. d) Same as in (a), for the population of IT units that passed 

a 2-way ANOVA screen for target modulation, p<0.05 (n=193). Mean enhancement to 

the preferred target (0.45) is indicated by the arrow. e) Same as in (b), for IT.  Average 

deviations from zero (absolute value of modulation) was 0.24, and the mean of the 

distribution was significantly shifted rightward from zero, p<10-5). f) Same as in (c), for 

IT. The mean of this distribution (0.42) is indicated by the arrow; this distribution was 

significantly shifted rightward from zero, p<10-5. 
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In sum, the magnitudes of context-specific modulation we measured in V4 are 

largely consistent with previous reports.  We also find that the same measures, applied 

to IT, are consistently larger. Our finding of larger magnitude context signals in IT is thus 

unlikely to follow from a discrepancy between our V4 data and that of previous studies.  

Rather, our data suggest that top-down, context-specific signals are combined with feed-

forward visual information at multiple stages along the ventral visual pathway during the 

IDMS task.  

 

DISCUSSION 
 

Finding sought objects requires the brain to compare visual information about the 

objects in view with information about the currently sought target to compute a signal 

that reports when a target match has been found. In this study, we sought to differentiate 

between two scenarios of how this target match signal might be computed: one in which 

top-down, context-specific signals are introduced at multiple stages of the ventral visual 

pathway, and another in which V4 is the single locus for that combination. We found 

multiple lines of evidence supporting the hypothesis that context-specific signals are 

introduced at multiple stages of the ventral visual pathway.  First, we found that the V4 

population contains less total (and linearly separable) information for this task than the IT 

population does, suggesting that IT does not inherit all of its information from V4. 

Second, we found that V4 single units reflect information about target identity but not 

information that explicitly differentiates between target matches and distractors, while IT 

units reflect both of these types of information. Lastly, we found that while our measures 

of V4 single unit context modulation are largely consistent with previous reports, the 
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same measures applied to IT reveal significantly more context modulation. Together, 

these results suggest that top-down context-specific signals are inserted at multiple 

stages along the ventral visual pathway. 

Our study was motivated in large part by previous results that compared 

responses between V4 and IT during visual target search task and reported roughly 

matched amounts of task-relevant modulation (Chelazzi et al., 1998; Chelazzi et al., 

2001). However, we found the opposite result.  Differences between our results and 

theirs cannot be attributed to differences in the measures applied to the data (Fig 6), but 

other differences may account for them. Their experimental design included two images 

within each receptive field, one of which matched the cue stimulus, and the monkey was 

required to make a saccade to the target match stimulus location. Thus their target effect 

can be explained, at least in part, by modulations of spatial attention, as can be viewed 

within the context of the biased competition model. Furthermore, because all target 

images matched the cue images, stimulus repetition as described by an earlier report 

from the same lab (Miller & Desimone, 1994) could have played a role in the modulation 

of their neurons (under the assumption that this type of adaptation can transfer across 

different spatial locations). Lastly, the differences could arise from the fact that their 

study required matching the same images whereas the IDMS task required matching an 

object that could appear under different identity preserving transformations.  Because 

object invariance is stronger in IT as compared to V4, (Rust & DiCarlo, 2010), it could be 

the case that invariant object search more strongly recruits IT cortex.  

The results of our study support a scenario in which IT contains more task-

relevant signal than V4 does during invariant object search. One of the central reasons 

this scenario is attractive is that when a task requires finding an object that can vary in 
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its background context, the combination of object and target information would facilitated 

by an underlying visual representation in which information about object identity can be 

easily accessed, and that this type of representation gradually emerges across the 

ventral visual pathway. Stated differently, flexibly finding different objects requires 

differential responses to the same visual stimuli based on context. However, V4 

receptive fields are small and retinotopically organized and consequently, that V4 lacks 

an explicit representation of object identity  Therefore, it might be impossible for the 

brain to determine which subsets of neurons to target with top-down contextual signals. 

In contrast, it might be easier for the brain to integrate top-down cognitive information to 

late stages in the ventral visual pathway (e.g. IT) where visual representations are 

tolerant to identity-preserving transformations. Notably, one earlier study also explored 

the responses of IT neurons in the context of a DMS task in which, like ours, the objects 

could appear at different identity-preserving transformations (Leuschow et al., 1994), but 

this study did not compare signals to those in V4. Our study provides the first systematic 

comparison between these two areas within the context of a task that incorporates the 

real-world challenge of searching for objects can appear at different positions, sizes and 

background contexts.  

We designed our experiment such that a cue wasn’t presented immediately 

before the presentation of the sequence of distractors and the target match. This 

experimental design was motivated by Miller and Desimone (1994), who found some 

neurons that were enhanced and others that were suppressed by target matches 

compared to distractors. In this study, the authors suggested that the match suppressed 

responses might have arisen as the result of passive, stimulus repetition of the target 

match following the cue, while the match enhanced neurons alone carry behaviorally-

relevant target match information. In our study, in both V4 and IT, we found that the 
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majority of modulations found were firing rate enhancements. One previous study in V4 

(Kosai et al., 2014) found equal amounts of enhancement and suppression.  In IT, 

previous studies have consistently found both increases and decreases, in many cases 

finding on average suppression. In these previous studies, target match signals have 

been investigated via a classic version of the delayed-match-to-sample (DMS) paradigm 

where each trial begins with a visual cue indicating the identity of the target object, and 

this cue is often the same image as the target match. Our results reveal that when target 

matches do not follow the presentation of the same visual image at a short time before 

(as is the case for natural object search), match suppression is weaker than match 

enhancement (Fig 6), in line with the model that match enhanced neurons carry 

behaviorally-relevant information, while match suppressed neurons reflect adaptation to 

repeated stimuli. Two other studies in V4 (Bichot et al., 2005; Haenny et al., 1988) did 

not use classic DMS tasks, and they, like our study, found mostly enhancements. 

In our study, we found that equal sized populations of units were matched for 

visual discriminability, consistent with previous results (Rust & DiCarlo, 2010) (DiCarlo et 

al., 2012). Notably, this need not be the case: it could have been the case that we found 

we needed to record from larger numbers of neuron in one area to make fair 

comparisons (e.g. convergence or divergence ratios different than 1). Furthermore, our 

results describe that both when you limit a classifier to the format of the information (e.g. 

linear classifier) and when you include the possibility of information being separable but 

nonlinearly formatted (e.g. maximum likelihood classifier), IT contained more information 

than V4. However, because there was still some small amount of task-relevant 

information in V4, one could imagine a readout rule that could give strong weights to a 

small subpopulation V4 neurons with the most information, and via a different 

convergence rule (e.g. 3x times more V4 neurons than IT neurons), match the amount of 
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task-relevant information in IT. Such connections could be wired via a reinforcement 

learning algorithm (such as Law and Gold (2009)) during the natural experience of 

searching for target objects. Our results cannot rule this possibility out.  

Similarly, it could have been the case that the total information in V4 (which was 

largely formatted in a nonlinearly separable way, as seen by larger total than linear 

information and corresponding to the single unit target identity modulations) was 

computed upon (untangled) by IT and thus matched the amount of linearly separable 

information in IT. This was not the case, i.e., the amount of linearly separable 

information in IT was significantly larger than the amount of total information in V4. It is 

however likely that what information V4 does have is inherited by IT, and IT simply 

receives more information from a top down source.  
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METHODS 
 

Experiments were performed on two adult male rhesus macaque monkeys (Macaca 

mulatta) with implanted head posts and recording chambers.  All procedures were 

performed in accordance with the guidelines of the University of Pennsylvania 

Institutional Animal Care and Use Committee.  

 

The invariant delayed-match-to-sample (IDMS) task 
 

All behavioral training and testing was performed using standard operant 

conditioning (juice reward), head stabilization, and high-accuracy, infrared video eye 

tracking. Stimuli were presented on an LCD monitor with an 85 Hz refresh rate using 

customized software (http://mworks-project.org). 

As an overview, the monkeys’ task required an eye movement response to a 

specific location when a target object appeared within a sequence of distractor images 

(Fig 2a).  Objects were presented across variation in the objects’ position, size and 

background context (Fig 2b).  Monkeys viewed a fixed set of 20 images across switches 

in the identity of 4 target objects, each presented at 5 identity-preserving transformations 

(Fig 2c). We ran the task in short blocks (~3 min) with a fixed target before another 

target was pseudorandomly selected. Our design included two types of trials: cue trials 

and test trials (Fig 2a). Only test trials were analyzed for this report. 
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Trials were initiated by the monkey fixating on a red dot (0.15°) in the center of a 

gray screen, within a square window of ±1.5°, followed by a 250 ms delay before a 

stimulus appeared. Cue trials, which indicated the current target object, were presented 

at the beginning of each block and after three subsequent trials with incorrect responses. 

To minimize confusion, cue trials were designed to be distinct from test trials and began 

with the presentation of an image of each object that was distinct from the images used 

on test trials (a large version of the object presented at the center of gaze on a gray 

background; Fig 2a). Test trials, which are the focus of this report, always began with a 

distractor image, and neural responses to this image were discarded to minimize non-

stationarities such as stimulus onset effects. Unless otherwise noted (see below), all 

images were presented at the center of gaze, in a circular aperture that blended into a 

gray background (Fig 2b).  Distractors were drawn randomly from a pool of 15 possible 

images within each block without replacement until each distractor was presented once 

on a correct trial, and the images were then re-randomized. On most trials, a random 

number of 1-6 distractors were presented, followed by a target match (Fig 2a).  On a 

small fraction of trials, 7 distractors were shown, and the monkey was rewarded for 

fixating through all distractors. Each stimulus was presented for 400 ms (or until the 

monkeys’ eyes left the fixation window) and was immediately followed by the 

presentation of the next stimulus.  Following the onset of a target match image, monkeys 

were rewarded for making a saccade to a response target within a window of 75 – 600 

ms to receive a juice reward.  In monkey 1 this target was positioned 10 degrees below 

fixation; in monkey 2 it was 10 degrees above fixation.  If 400 ms following target onset 

had elapsed and the monkey had not moved its eyes, a distractor stimulus was 

immediately presented.  If the monkey continued fixating beyond the required reaction 

time, the trial was considered a “miss”. False alarms were differentiated from fixation 
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breaks via a comparison of the monkeys’ eye movements with the characteristic pattern 

of eye movements on correct trials: false alarms were characterized by the eyes leaving 

the fixation window via its top (monkey 1) or bottom (monkey 2) outside the allowable 

correct response period and traveling more than 0.5 degrees whereas fixation breaks 

were characterized by the eyes leaving the fixation window in any other way. Within 

each block, 4 repeated presentations of the 20 images were collected, and a new target 

object was then pseudorandomly selected.  Following the presentation of all 4 objects as 

targets, the targets were re-randomized.  At least 10 repeats of each condition were 

collected.  Overall, monkeys performed this task with high accuracy. Disregarding 

fixation breaks (monkey 1: 8% of trials, monkey 2: 11% of trials), percent correct on the 

remaining trials was as follows: monkey 1: 87% correct, 3% false alarms, and 10% 

misses; monkey 2: 96% correct, 1% false alarms, and 3% misses. 

V4 receptive fields in region of the visual field in which we presented stimuli are 

small, on average they have radii of .56 degrees at the fovea, extending to radii of 1.4 at 

an eccentricity of 2.5 degrees (which was the largest eccentricity of interest for our 

study, as our stimuli were 5 degrees in width; Desimone & Schein, 1987; Gattass et al., 

1988).  It was thus important to ensure that monkeys had fixational control such that the 

same region of an image fell on each V4 receptive field across repeated presentations.  

In one monkey, fixational control was good (on average 85 and 97% of presentations 

occurred within a radius of 0.56 and 1.4 degrees respectively).  In a second monkey, 

adequate fixational control could not be achieved naively. We thus applied a procedure 

in which we shifted each image at stimulus 25% toward the center of gaze (e.g. if the 

eyes were displaced 0.5 degrees to the left, the image was repositioned such that the 

center of the image fell 0.125 degrees to the left and 0.375 degrees from fixation). Image 

position then remained fixed until the onset of the next stimulus. This deviation was 
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measured relative to the mean position across the 10 trials per stimulus condition, and 

we found that in Monkey 2 this deviation was thus relatively small: on average, 95, and 

99% of presentations occurred within windows with a radius of 0.56 and 1.4 degrees, 

respectively.  

For both monkeys, a V4 recording chamber was implanted on the left 

hemisphere, and an IT recording chamber was implanted on the right hemisphere.  

While IT receptive fields span the vertical meridian, thus allowing us to access the visual 

representation of both sides with a single chamber, V4 receptive fields are confined to 

the contralateral hemifield.  To simulate V4 coverage of the ipsilateral visual field, on 

roughly half of the V4 recording sessions, (n = 7/15 sessions in Monkey 1, n = 11/20 

sessions in Monkey 2), we presented the images reflected across the vertical axis. We 

then treated all V4 neurons recorded during these sessions as if they were in the left 

hemisphere (and thus, whose receptive fields were in the right visual field.). In both 

monkeys, IT chamber implantation and recording preceded V4. Behavioral performance 

was similar across the sessions (V4 percent correct overall  = 96.5%; IT percent correct 

overall = 91.4%).   

 

Neural recording 
 

The activity of neurons in each V4 and IT was recorded via a single recording 

chamber in each monkey, for a total of four recording chambers across our experiments. 

Chamber placement for the IT chambers was guided by anatomical magnetic resonance 

images in both monkeys, and in one monkey, Brainsight neuronavigation 

(https://www.rogue-research.com/); both V4 chambers were guided by Brainsight 
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neuronavigation. . The region of IT recorded was located on the ventral surface of the 

brain, over an area that spanned 4 mm lateral to the anterior middle temporal sulcus and 

15-19 mm anterior to the ear canals.  

Both V4 chambers were centered 1 mm posterior to the ear canals and 29 mm 

lateral to the midline, positioned at a 30 degree angle. V4 recording sites were confirmed 

by a combination of receptive field location and position in the chamber, corresponding 

to results reported previously (Gattass et al., 1988). Specifically, we recorded from units 

within and around the inferior occipital sulcus, between the lunate sulcus and superior 

temporal sulcus. V4 units in lower visual field were confirmed as having receptive field 

centers that traversed from the vertical to horizontal meridian across posterior to anterior 

recording. Units with receptive fields at the fovea and near the upper visual field were 

found lateral to those in the lower visual field, and were confirmed by having receptive 

field centers that traversed from the horizontal meridian to the vertical meridian across 

median to lateral recordings at increasing depths. Aside from their receptive field 

locations, units in the upper visual field did not have any obvious, distinguishable 

properties from those in the lower visual field.  

Neural activity was largely recorded with 24-channel U probes (Plexon, Inc) with 

linearly arranged recording sites spaced with 100 mm intervals, with a handful of units 

recorded with single electrodes (Alpha Omega, glass-coated tungsten). Continuous, 

wideband neural signals were amplified, digitized at 40 kHz and stored using the 

OmniPlex Data Acquisition System (Plexon). Spike sorting was done manually offline 

(Plexon Offline Sorter).  At least one candidate unit was identified on each recording 

channel, and 2-3 units were occasionally identified on the same channel.  Spike sorting 

was performed blind to any experimental conditions to avoid bias. A multi-channel 



	   53	  

recording session was included in the analysis if the animal performed the task until the 

completion of at least 10 correct trials per stimulus condition, there was no external 

noise source confounding the detection of spike waveforms, and the session included a 

threshold number of task-modulated units (>4 on 24 channels). The sample size 

(number of units recorded) was chosen to approximately match our previous work 

(Pagan & Rust, 2014a; Pagan et al., 2013).  

For all the analyses presented in this chapter, we measured neural responses by 

counting spikes in a window that began, in V4, 40 ms after stimulus onset, and in IT, 80 

ms after stimulus onset. We then counted spikes in a 170 ms window in both areas, 

such that the spike counting windows were of equal length across the two compared 

areas and always preceded the monkeys’ reaction times  On 1.9% of all correct target 

match presentations, the monkeys had reaction times faster than 250 ms, and those 

instances were excluded from analysis such that spikes were only counted during 

periods of fixation.  

In IT, we recorded neural responses across 20 experimental sessions (Monkey 

1: 10 sessions, and Monkey 2: 10 sessions). In V4, we recorded neural responses 

across 35 experimental sessions (Monkey 1: 15 sessions, and Monkey 2: 20 sessions). 

When combining the units recorded across sessions into a larger pseudopopulation, we 

began by screening for units that met three criteria. First, units had to be modulated by 

our task, as quantified by a one-way ANOVA applied to our neural responses (80 

conditions * 10 repeats) with p < 0.01. Second, we applied a loose criterion on recording 

stability, as quantified by calculating the variance-to-mean ratio (Fano factor) for each 

unit (computed by fitting the relationship between the mean and variance of spike count 

across the 80 conditions), and eliminating units with a Fano factor > 2.5.  Finally, we 
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applied a loose criterion on unit recording isolation, quantified by calculating the signal-

to-noise ratio (SNR) of the waveform (as the difference between the maximum and 

minimum points of the average waveform, divided by twice the standard deviation across 

the differences between each waveform and the mean waveform), and excluding 

(multi)units with an SNR < 2. In IT, this yielded a pseudopopulation of 193 units (of 563 

possible units), including 98 units from monkey 1 and 95 units from monkey 2.  

In V4, this yielded a pseudopopulation of 598 units (of 970 possible units), 

including 345 units from monkey 1 and 253 units from monkey 2. We found that for 

these population sizes of V4 units, V4 visual discriminability exceeded that of IT. We 

thus randomly subselected units from each monkey to match visual discriminability. We 

found that for matched numbers of units, V4 and IT had matched visual discriminability 

both across the transformations used (Figure 4a) and for each transformation 

individually (Figure 4b). Our results were qualitatively unchanged for different 

subselections of V4 units given matched numbers of units between V4 and IT. 

Therefore, for the analyses shown, our final population size in V4 was thus 98 units from 

monkey 1 and 95 units from monkey 2, yielding a total pseudopopulation in V4 of 193 

units.  

Because we were unable to obtain receptive field coverage of the entire visual 

field, we observed that for 2 of the transformations (namely, “Left” and “Right”, Figure 

2b), we did not get equal visual discriminability in V4 both compared to IT and compared 

to the visual discriminability for the other 3 transformations in V4. Therefore we restricted 

our analysis to the subset of transformations with matched discriminability: “Big”, “Up” 

and “Small”.  

On half of the V4 sessions (Monkey 1: 7 out of 15 sessions, monkey 2: 11 out of 



	   55	  

21 sessions), we presented identical images that were reflected around their vertical 

axis. For these sessions, we make the assumption that V4 response properties are 

equivalent across hemispheres, and for all subsequent analyses, we treat these neurons 

as if their receptive field centers are in the exact location on the other visual field.  

 

V4 receptive field mapping 
	  

To measure the location and extent of V4 receptive fields, bars were presented, 

each for 500 ms, one per trial, centered on a 5 x 5 invisible grid. Bar orientation, length, 

and width as well as the grid center and extent were adjusted for each recording session 

based on preliminary hand mapping. On each trial, the monkey was required to maintain 

fixation on a small response dot (0.125°) to receive a reward. The responses to at least 

five repeats were collected at each position for each recording session. Only those units 

that produced clear visually evoked responses at a minimum of one position were 

considered for receptive field position analysis. The center of the receptive field was 

estimated by the maximum of the response across the 5x5 grid of oriented bar stimuli 

and confirmed by visual inspection. 

 

Population target match performance 
 

To determine both the performance of the neural populations at classifying target 

matches versus distractors we applied two types of decoders: a Fisher Linear 

Discriminant (a linear decoder) and Maximum Likelihood decoder (a nonlinear decoder) 

using approaches that are described previously in detail (Pagan et al., 2013) and are 

summarized here. 



	   56	  

All decoders were cross-validated with the same resampling procedure. On each 

iteration of the resampling, we randomly shuffled the trials for each condition and for 

each unit, and (for numbers of units less than the full population size) randomly selected 

units. On each iteration, 9 trials from each condition were used for training the decoder 

and 1 trial from each condition was used for cross-validated measurement of 

performance. In separate data (see Chapter 3 Methods), we determined a value for 

regularization of the classifiers, and this optimal value was used for these studies.   

Classifier analyses were done per transformation, for three transformations 

(“Big”, “Up” and “Small”). For each transformation, there were thus 16 conditions (4 

objects the monkey could be looking at under 4 different target contexts). 

To ensure that decoder performance was not biased by unequal numbers of target 

matches and distractors, on each iteration of the resampling we included 4 target match 

conditions and 4 (of 12 possible) distractor conditions.  Each set of 4 distractors was 

selected to span all possible combinations of mismatched object and target identities 

(e.g. objects 1, 2, 3, 4 paired with targets 4, 3, 2, 1), of which there are 9 possible sets. 

To compute proportion correct a mean performance value was computed on each 

resampling iteration by averaging binary performance outcomes across the 9 possible 

sets of target matches and distractors, each which contained 16 test trials, and across 

the three transformations used. Mean and standard error of performance was computed 

as the mean and standard deviation of performance across 2000 resampling iterations.  
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Fisher Linear Discriminant: 

 

The general form of a linear decoding axis is:  

(1)    𝑓 𝒙 =   𝒘!𝒙 + 𝑏,  

where w is an N-dimensional vector (where N is the number of units) containing the 

linear weights applied to each unit, and b is a scalar value. We fit these parameters 

using a Fisher Linear Discriminant (FLD), where the vector of linear weights was 

calculated as: 

(2) 𝒘 = Σ!𝟏(𝜇! − 𝜇!) 

and b was calculated as: 

 (3) 𝑏 = 𝒘   ∙ !
!
(𝜇! + 𝜇!) = !

!
𝜇!!Σ!𝟏𝜇! −   

!
!
𝜇!!Σ!𝟏𝜇! 

Here 𝜇!  𝑎𝑛𝑑  𝜇! are the means of the two classes (target matches and distractors, 

respectively) and the mean covariance matrix is calculated as: 

 (4) Σ = !!!!!
!

 

where Σ! and Σ! are the regularized covariance matrices of the two classes. These 

covariance matrices were computed using a regularized estimate equal to a linear 

combination of the sample covariance and the identity matrix 𝐼 (Pagan & Rust, 2014a): 

(5) Σ! =   𝛾  Σ! + (1 − 𝛾) ∙ 𝐼 
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We determined 𝛾 by exploring a range of values from 0.01 to 0.99, and we 

selected the value that maximized average performance across all iterations, measured 

with the cross-validation “regularization” trials set aside for this purpose (see above). We 

then computed performance for that value of  𝛾 with separately measured “test” trials, to 

ensure a fully cross-validated measure. Because this calculation of the FLD parameters 

incorporates the off-diagonal terms of the covariance matrix, FLD weights are optimized 

for both the information conveyed by individual units as well as their pairwise 

interactions.    

We computed two measures of performance: proportion correct (Fig 3b-c), and 

population d’ (Fig 6a).  Each calculation began by computing the dot product of the test 

data and the linear weights w, adjusted by b (Eq. 1).  Proportion correct was computed 

as the fraction of test trials that were correctly assigned as target matches and 

distractors, according to their true labels.  Population d’ was computed for the 

distributions of these values across the 4 different objects presented as target matches 

versus as distractors:  

 (6)   𝑑! = !!"#$!!  !!"#$%&'$(%
!!""#$%

,  

where 𝜇!"#$!  and 𝜇!"#$%&'$(% correspond to the mean across the set of matches and 

distractors, 𝜎!""#$% =   
!!"#$!
! !!!"#$%&'$(%

!

!
, and 𝜎!"#$!  and  𝜎!"#$%&'$(% correspond to the 

standard deviation across the set of matches and distractors, respectively. 
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Maximum likelihood decoder: 

As a measure of total target match information (combined linear and nonlinear), 

we implemented a maximum likelihood decoder (Fig 3a-b). We began by using the set of 

training trials to compute the average response ruc of each unit u to each of the 20 

conditions c. We then computed the likelihood that a test response k was generated 

from a particular condition as a Poisson-distributed variable: 

 (7) 𝑙𝑖𝑘!,!(𝑘) =
(!!")!∙!!!!"

!!
 

The likelihood that a population response vector was generated in response to 

each condition was then computed as the product of the likelihoods of the individual 

units. Next, we computed the likelihood that each test vector arose from the category 

target match as compared to the category distractor as the product of the likelihoods 

across the conditions within each category.  We assigned the population response to the 

category with the maximum likelihood, and we computed performance as the fraction of 

trials in which the classification was correct based on the true labels of the test data.  

 

Population performance (visual discriminability) 
 

 To determine how well a population of neurons could classify object identity, we 

applied a fisher linear discriminant, as described above, in the following way.  

We used a standard “one-versus-rest” training and testing classification scheme (Rust 

and Dicarlo 2010; Hung et al., 2005; Li et al., 2009). Specifically, one linear classifier 

was determined for each image ; To determine the population “decision” about which 
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image was presented, a response vector x, corresponding to the population response of 

one image, was then applied to each of the classifiers, and the classifier with the largest 

output [the classifier with the largest, positive f(x)] was taken as the choice of the 

population.  

To compute performance as population d’ (Fig 4c-d), d’ was computed on each 

resampling iteration for the 4 target match conditions and 4distractor conditions, 

separately for each set of 9 match/distractor combinations, and then averaged across 

the 9 sets. When computing d’ as a function of the number of units (Fig4c), this value 

was also averaged across the three transformations used. Mean and standard error of 

population d’ was computed as the mean and standard deviation of d’ across 2000 

resampling iterations. Standard error thus reflected the variability due to the specific 

trials assigned to training and testing and, for populations smaller than the full size, the 

specific units chosen.   

 

Quantifying single-unit modulations 
 

To compare the degree to which the firing rates of individual units were 

modulated by target search, we compared firing rate modulations, computed as three 

different indices as in previous studies (Chelazzi et al., 1998; Haenny et al., 1988; 

Maunsell et al., 1991). Each of these indices was computed for each unit in V4 and IT. 

First, we calculated the target effect index as calculated in Maunsell et al. (1991). To 

compare to their results, this index was computed only for neurons which were 

significantly modulated by the identity of the target (via a 2-way ANOVA, p<.05). For 

units that passed this screen, an index was computed as (P-N)/(P+N), where P was the 
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average rate of firing during trials of any condition where the preferred target was the 

target; N was the average firing rate during trials of any condition where the least 

preferred target was the target. Next, we calculated the modulation index as calculated 

by Haenny et al. (1988). This index was computed as (M-D)/(M+D) where M was the 

average rate of firing across trials where the preferred object was both in view and the 

target and trials where the non-preferred object was both in view and the target; D was 

the same for non match conditions of preferred and non-preferred objects. To compute 

average deviations from zero, we took the average across the absolute value of each 

unit’s modulation index. Lastly, we calculated a target effect index as calculated by 

Chelazzi et al. (1998). This index was computed as (FRp-FRn)/(FRp+FRn), where FRp 

represented the mean firing rate when the preferred image was in view and was the 

target object; FRn was the mean firing rate when the least preferred image was in view 

and was the target object.  

To quantify the degree to which individual units were modulated by different 

types of task parameters, we applied a bias-corrected, ANOVA-like procedure described 

in detail by (Pagan & Rust, 2014b) and summarized here.  As an overview, this 

procedure considers the total variance in the spike count responses for each unit across 

conditions (n=16 for each transformation) and trials for each condition (m=10), and 

parses this total variance into the variance that can be attributed to each type of 

experimental parameter and variance attributed to trial variability. Similar to an ANOVA, 

the procedure is designed to parse response variance, including the variance that can 

be attributed to changes in the identity of the visual image, the identity of the target 

object and whether each condition was a target match or a distractor. These variances 

are converted into measures of spike count modulation (i.e. standard deviation around 
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each unit’s grand mean spike count) via a procedure that includes bias correction for 

over-estimates in modulation due to noise.   

The procedure begins by developing an orthonormal basis of 80 vectors 

designed to capture all types of modulation with intuitive groupings.  The number of each 

type is imposed by the experimental design.  This basis 𝒃 included vectors 𝒃! that 

reflected 1) the grand mean spike count across all conditions (𝒃!, 1 dimension), 2) 

whether the object in view was a target or a distractor (𝒃!,  1 dimension), 3) visual image 

identity (𝒃! − 𝒃!, 3 dimensions), 4) target object identity (𝒃! − 𝒃!, 3 dimensions), and 5) 

“residual”, nonlinear interactions between target and object identity not captured by 

target match modulation (𝒃! − 𝒃!",  8 dimensions). A Gram-Schmidt process was used to 

convert an initially designed set of vectors into an orthonormal basis.  

Because this basis spans the space of all possible responses for our task, each 

trial-averaged vector of spike count responses to the 16 experimental conditions for 

each transformation used; 𝑹 can be re-expressed as a weighted sum of these basis 

vectors. To quantify the amounts of each type of modulation reflected by each unit, we 

began by computing the squared projection of each basis vector 𝒃!   and 𝑹. An analytical 

bias correction, described and verified in (Pagan & Rust, 2014b), was then subtracted 

from this value:  

 (8) 𝑤!! = (𝑹 ∙ 𝒃!!)! −
!!! ∙(𝒃𝒊

𝑻)𝟐

!
 

where 𝜎!! indicates the trial variance, averaged across conditions (n=16), and where m 

indicates the number of trials (m=10).  When more than one dimension existed for a type 

of modulation, we summed values of the same type. Next, we applied a normalization 

factor (1/(n-1) where n=16) to convert these summed values into variances.  Finally, we 
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computed the square root of these quantities to convert them into modulation measures 

that reflected the number of spike count standard deviations around each unit’s grand 

mean spike count.  Target match modulation was thus computed as: 

(9) 𝜎!" = !
!!!

∙ 𝑤!! 

and nuisance modulation was computed as: 

(10) 𝜎!"# =
!

!!!
∙ 𝑤!!!"

!!!  

 

Similarly, to compute the different subtypes of nuisance modulation, we replaced 

the weights 𝑤!! in Eq. 10 with the weights that corresponded to the orthonormal basis 

vectors corresponding to each subtype, including visual modulation (𝑖 = 3  𝑡𝑜  5), target 

modulation (𝑖 = 6  𝑡𝑜  8), and 3) residual modulation (𝑖 = 9  𝑡𝑜  16), as described above.  

We computed the trial variability for each unit (𝜎!"#$% , ) in an comparable manner 

as the square root of the average (across conditions) variance across trials: 

(11) 𝜎!"#$% =   
!
!
∙ !

!!!
∙ 𝑠!" −   𝑠!!

!!!
!!

!!!  

where the spike count response for a particular trial 𝑡 of condition  𝑖 was 𝑠!", and the 

mean spike count response across all trials of condition 𝑖 was 𝑠!. 

When estimating modulation for individual units, (Fig 4a), the bias-corrected 

squared values were rectified for each unit before taking the square root.  When 

estimating modulation population means (Fig 4b, 5b), the bias-corrected squared values 

were averaged across units before taking the square root.  Because these measures 
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were not normally distributed, standard error about the mean was computed via a 

bootstrap procedure. On each iteration of the bootstrap (across 1000 iterations), we 

randomly sampled values from the modulation values for each unit in the population, 

with replacement. Standard error was computed as the standard deviation across the 

means of these newly created populations. 

 

Statistical tests 
 

When comparing population decoding measures (Fig 3b), we reported P values 

as an evaluation of the probability that differences were due to chance. We calculated 

these P values as the fraction of resampling iterations on which the difference was 

flipped in sign relative to the actual difference between the means of the full data set (for 

example, if the mean of decoding measure 1 was larger than the mean of decoding 

measure 2, the fraction of iterations in which the mean of measure 2 was larger than the 

mean of measure 1).  

When evaluating whether the single neuron indices (Fig 5) were significantly 

different from zero, we reported p values as computed by a Wilcoxon sign rank test.  
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CHAPTER 3 

Large nuisance modulation has little impact on IT target match performance 

 

ABSTRACT 
 

Many everyday tasks require us to extract a specific type of information from our 

environment while ignoring other things. When the neurons in our brains that carry task-

relevant signals are also modulated by task-irrelevant “nuisance” information, nuisance 

modulation is expected to act as performance-limiting noise. To investigate the impact of 

nuisance modulation on neural task performance, we recorded responses in 

inferotemporal cortex (IT) as monkeys performed a task in which they were rewarded for 

indicating when a target object appeared amid considerable nuisance variation. Within 

IT, we found a robust, behaviorally-relevant target match signal that was mixed with 

large nuisance modulations in individual neurons. Unexpectedly, we also found that 

these nuisance modulations had little impact on performance, either within individual IT 

neurons or across the IT population. We demonstrate how these results follow from fast 

processing in IT, which placed IT in a low spike count regime where the impact of 

nuisance variability was blunted by Poisson-like trial variability. These results 

demonstrate that some basic intuitions about neural coding are misguided in the context 

of a fast-processing, low spike count regime. 
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INTRODUCTION 
 

Task performance is determined not only by the amount of task-relevant signal 

present in our brains, but also by the presence of noise, which can arise from multiple 

sources. Internal noise, or “trial variability” manifests as trial-by-trial variations in neural 

responses under seemingly identical conditions (Fig 1a). External factors can also 

translate into noise, particularly when a task requires extracting a particular type of 

information from our environment amid changes in other task-irrelevant, nuisance 

parameters (Fig 1b; Haefner & Bethge, 2010; Kim et al., 2016). Stated differently, for any 

given task, neurons in a brain area may be modulated by multiple experimental 

variables, but when viewed from the perspective of task performance, one type of 

modulation reflects the task-relevant signal, whereas other types of modulation act as 

noise. 

Despite notions that mixing different types of signals within the responses of 

individual neurons should be detrimental for task performance (Fig 1b), growing 

evidence suggests that the brain does often mix them, both at the locus at which task-

relevant solutions are computed as well as downstream (Freedman & Assad, 2009; 

Kobak et al., 2016; Mante et al., 2013; Meister et al., 2013; Raposo et al., 2014; Rigotti 

et al., 2013; Rishel et al., 2013; Zoccolan et al., 2007). One example is visual target 

search, which requires the brain to compare incoming visual information with a 

remembered representation of a target to create a signal that reports when a target 

match is in view.  When considered across changes in target identity (e.g. looking for 

your car keys and then your wallet), target search can be envisioned as differentiating 

the same images presented as target matches versus as distractors (e.g. when looking 

for your car keys, your wallet is a distractor; when looking for your wallet, your car keys 
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are a distractor and your wallet is a target match). Consequently, other types of 

modulation, such as visual modulation (e.g. signals that differentiate wallets and car 

keys regardless of what you are searching for), act as noise.  A number of lines of 

evidence suggest that target match information emerges in the ventral visual pathway as 

early as V4 (Kosai et al., 2014; Maunsell et al., 1991) and inferotemporal cortex (IT, 

Chelazzi et al., 1993; E.N. Eskandar et al., 1992; Leuschow et al., 1994; Miller & 

Desimone, 1994; Pagan et al., 2013), where nuisance modulation, including visual 

modulation, is expected to be large. This suggests that nuisance modulation may place 

strong limitations on neural target match performance in these ventral visual pathway 

brain areas. 

Understanding how nuisance modulation affects neural task performance 

requires considering its impact in individual neurons as well as across the population. 

Investigations, focused in part on view-invariant object recognition, have demonstrated 

the means by which individual neurons can multiplex different types of signals such that 

each type of signal can be extracted from the population with a simple linear decoder 

(DiCarlo & Cox, 2007; Hong, Yamins, Majaj, & DiCarlo, 2016; Li, Cox, Zoccolan, & 

Dicarlo, 2009; Ohki, Chung, Ch'ng, Kara, & Reid, 2005). But little attention has been 

directed toward understanding how signal mixing impacts population performance within 

the context of these linearly separable representations. Some insight into these issues 

can be gained from work focused on how correlated interactions between neurons 

impacts population performance within a linear decoding scheme (reviewed by Averbeck 

& Lee, 2006; Cohen & Kohn, 2011; Kohn, Coen-Cagli, Kanitscheider, & Pouget, 2016). 

However, this work has focused nearly exclusively on correlated trial (as opposed to 

nuisance) variability (but see Kim et al., 2016). Understanding how nuisance modulation 
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impacts neural task performance will thus require extending these population-based 

approaches to incorporate considerations about nuisance modulation.  

To investigate the impact of nuisance modulation on IT target match 

performance, we recorded neural signals in IT as monkeys performed a modified 

delayed-match-to-sample task in which they were rewarded for indicating when a target 

object appeared across changes in the objects’ position, size and background context. 
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Figure 3-1. Nuisance modulation limits task performance.  a) Schematic of single unit 

task performance (d’) for a classic, two-way discrimination task in which a subject is 

asked to label different conditions as “A” or “B” across repeated trials. Shown are 

hypothetical distributions of spike count responses for the two conditions. d’, is  

measured as the separation of the two spike count distributions in units of the number of 

standard deviations separating their means.  d’ is proportional to the amount of signal, 

which determines the separation between the means of the distributions (cyan), and d’ is 

inversely proportional to spread within each distribution, which arises as a result of 

variability across repeated trials within each condition (“trial variability”; purple).  b) 

Schematic of single unit task performance (d’) for the same discrimination task, but 

extended to require grouping multiple conditions into each of two sets, “As” and “Bs” 

(e.g. an object identification task where two objects are presented in multiple background 

contexts). In this case, “nuisance” modulations (e.g. firing modulations by the 

background context), increase the spread of the responses within each condition and 

thus lower d’.   
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RESULTS 
 

The invariant delayed-match-to-sample task (IDMS) 
 

To investigate the degree to which nuisance modulation impacts neural task 

performance, we trained two monkeys to perform an “invariant delayed-match-to-

sample” (IDMS) task that required them to report when target objects appeared across 

variation in the objects’ positions, sizes and background contexts. In this task, the target 

object was held fixed for short blocks of trials (~3 minutes on average) and each block 

began with a cue trial indicating the target for that block (Fig 2a, “Cue trial”). Subsequent 

test trials always began with the presentation of a distractor and on most trials this was 

followed by 0-5 additional distractors (for a total of 1-6 distractor images) and then an 

image containing the target match (Fig 2a, “Test trial”). The monkeys’ task required them 

to fixate during the presentation of distractors and make a saccade to a response dot on 

the screen following target match onset to receive a reward. To minimize the 

predictability of the match appearing as a trial progressed, on a small subset of the trials 

the match did not appear and the monkey was rewarded for maintaining fixation.  Our 

experimental design differs from other classic DMS tasks (Chelazzi et al., 1993; E.N. 

Eskandar et al., 1992; Leuschow et al., 1994; Miller & Desimone, 1994; Pagan et al., 

2013) in that it does not incorporate a cue at the beginning of each test trial, to better 

mimic real-world object search conditions in which target matches are not repeats of the 

same image presented shortly before.   

Our experiment included a fixed set of 20 images, broken down into 4 objects 

presented at each of 5 transformations (Fig 2b). Our goal in selecting these specific 

images was to make the task of classifying object identity challenging for the IT 
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population and these specific transformations were built on findings from our previous 

work (Rust & DiCarlo, 2010). In any given block (e.g. a squirrel target block), a subset of 

5 of the images would be considered target matches and the remaining 15 would be 

distractors (Fig 2b). Our full experimental design amounted to 20 images (4 objects 

presented at 5 identity-preserving transformations), all viewed in the context of each of 

the 4 objects as a target, resulting in 80 experimental conditions (Fig 2c).  In this design, 

“target matches” fall along the diagonals of each looking at / looking for matrix slice 

(where “slice” refers to a fixed transformation; Fig 2c, gray). For each condition, we 

collected at least 20 repeats on correct trials.  Monkeys generally performed well on this 

task (Fig 2d). Their mean reaction times (computed as the time their eyes left the fixation 

window relative to the target match stimulus onset) were 364 ms and 332 ms (Fig 2e).  
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Figure 3-2.  The invariant delayed-match-to-sample task.  a) Monkeys performed an 

invariant delayed-match-to-sample task. Each block (~3 minutes in duration) began with 

a cue trial indicating the target object for that block. On subsequent trials, monkeys 

initiated a trial by fixating on a small dot. After a 250 ms delay, a random number (1-7) of 

distractors were presented, and on most trials, this was followed by the target match. 

Monkeys were required to maintain fixation throughout the distractors and make a 
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saccade to a response dot within a window 75 - 600 ms following the onset of the target 

match to receive a reward. In cases where the target match was presented for 400 ms 

and the monkey had still not broken fixation, a distractor stimulus was immediately 

presented. b) The experiment included 4 objects presented at each of 5 identity-

preserving transformations (“up”, “left”, “right”, “big”, “small”), for 20 images in total.  In 

any given block, 5 of the images were presented as target matches and 15 were 

distractors.  c) The complete experimental design included looking “at” each of 4 objects, 

each presented at 5 identity-preserving transformations (for 20 images in total), viewed 

in the context of looking “for” each object as a target.  In this design, target matches 

(highlighted in gray) fall along the diagonal of each “looking at” / “looking for” 

transformation slice. d) Percent correct for each monkey, calculated based on both 

misses and false alarms (but disregarding fixation breaks). Percent correct is plotted as 

a function of the number of distractors shown. e) Histograms of reaction times during 

correct trials (ms after stimulus onset) during the IDMS task for each monkey, with 

means indicated by arrows and labeled. 
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As two monkeys performed this task, we recorded neural activity from small 

populations in IT using 24-channel probes. We performed two types of analyses on 

these data. The first type of analysis was performed on the data recorded 

simultaneously across units within a single recording session (n=20 sessions). The 

second type of analysis was performed on data that was concatenated across different 

sessions to create a pseudopopulation after screening for units based on their stability, 

isolation, and task modulation (see Methods; n=204 units).  For all but one of our 

analyses (Fig 4d), we counted spikes in a window that started 80 ms following stimulus 

onset (to allow stimulus-evoked responses time to reach IT) and ended at 250 ms, which 

was always before the monkeys’ reaction times on these trials. For all but one of our 

analyses (Fig 3c), the data are extracted from trials with correct responses. 

 

IT reflects behaviorally-relevant target match information 
 

The primary focus of this report is the impact of mixing signal and nuisance 

modulation on neural task performance. Before exploring the consequences of nuisance 

modulation, we begin by demonstrating that behaviorally-relevant target match 

information is in fact reflected in IT during the IDMS task.  

The IDMS task required monkeys to determine whether each condition (an image 

viewed in the context of a particular target) was a target match or a distractor.  This task 

ultimately maps all the target match conditions onto one behavioral response (a 

saccade) and all the distractor conditions onto another (maintain fixation), and as such, 

this task can be envisioned as a two-way classification that must be performed invariant 

to changes in other nuisance parameters, including changes in target and image identity 
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(Fig 3a).  To quantify the amount and format of target match information within IT, we 

began by quantifying cross-validated performance of this two-way classification with a 

linear population decoder (a Fisher Linear Discriminant, FLD). Linear decoder 

performance began near chance and grew as a function of population size, consistent 

with a robust IT target match representation (Fig 3b, black). To determine the degree to 

which a component of IT target match information might be present in a nonlinear format 

that could not be accessed by a linear decoder, we measured the performance of a 

maximum likelihood decoder designed to extract target match information regardless of 

its format (combined linear and nonlinear, Pagan et al., 2013, see Methods). 

Performance of this nonlinear decoder (Fig 3b, gray) was slightly higher and significantly 

better than linear decoder performance (p = 0.022), suggesting that while the majority of 

IT target match information is reflected in a linearly separable format, a smaller nonlinear 

component exists as well.   

Upon establishing the format of target match information on correct trials, we 

were interested in determining the degree to which behavioral confusions were reflected 

in the IT neural data.  To measure this, we focused on the data recorded simultaneously 

across multiple units within each session, where all units observed the same errors.  

With this data, we trained the linear decoder to perform the same target match versus 

distractor classification described for Fig 3b using data from correct trials, and we 

measured cross-validated performance on pairs of condition-matched trials: one for 

which the monkey answered correctly, and the other for which the monkey made an 

error. On correct trials, target match decoder performance grew with population size and 

reached above chance levels in populations of 24 units (Fig 3c, black).  On error trials, 

decoder performance fell below chance, and these results replicated across each 

monkey individually (Fig 3c, white). These results establish that IT reflects behaviorally-
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relevant target match information insofar as this measure co-varies with the monkeys’ 

behavior.   

We were also interested in understanding how target match modulation was 

reflected in individual units. Target match modulation, by definition, requires a differential 

response to the same images presented as matches versus as distractors - to what 

degree is this modulation reflected by firing rate increases versus decreases?  To 

measure this, we computed a target match modulation index for each unit as the 

average difference between the responses to the same images presented as target 

matches versus as distractors, divided by the sum of those two quantities. This index 

(Fig 3d) was shifted toward target match preferring units, with a mean value of 0.067 

(monkey 1 = 0.071; monkey 2 = 0.063).  These results are consistent with a target match 

signal that is largely reflected in most IT units via increased responses to target matches 

as compared to distractors. 



	   77	  

 

Figure 3-3. IT reflects behaviorally-relevant target match information during the IDMS 

task. a) The target search task can be envisioned as a two-way classification of the 

same images presented as target matches versus as distractors. Shown are cartoon 

depictions where each point depicts a hypothetical population response for a population 

of two neurons on a single trial, and clusters of points depict the dispersion of responses 

across repeated trials for the same condition. Included are responses to the same 

images presented as target matches and as distractors - here only 6 images are 

depicted but 20 images were used in the actual analysis. The dotted line depicts a 

hypothetical linear decision boundary. b) Linear (FLD) and nonlinear (maximum 
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likelihood) decoder performance as a function of population size for a pseudopopulation 

of 204 units. Error bars (SEM) reflect the variability that can be attributed to the random 

selection of units (for populations smaller than the full dataset) and the random 

assignment of training and testing trials in cross-validation. c) Linear decoder 

performance, applied to the simultaneously recorded data for each session, after training 

on correct trials and cross-validating on pairs of correct and error trials matched for 

condition. n=20 sessions.  Error bars (SEM) reflect the variability that can be attributed to 

the random selection of units (for populations smaller than the full dataset) and the 

random assignment of training and testing trials in cross-validation. d) A match 

modulation index, computed for each unit by calculating the mean spike count response 

to target matches and to distractors, and computing the ratio of the difference and the 

sum of these two values.  Arrow indicates the distribution mean.   
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During the IDMS task, nuisance modulation is prominent 
 

As described above, we were interested in understanding whether and how 

nuisance modulation impacted IT target match performance.  As a first step toward 

addressing this question, we wanted to quantify the relative amounts of target match and 

nuisance modulation present within individual units. To quantify the different types of 

modulation reflected in IT, we applied a bias-corrected procedure that quantified different 

types of modulation in terms of the number of standard deviations around each unit’s 

grand mean spike count (Pagan & Rust, 2014b). Modulation types were grouped into 

intuitive sets, including modulation that could be attributed to whether each condition 

was a target match or a distractor (the “target match” signal), modulation due to changes 

in the identity of the visual stimulus (“visual”), modulation due to changes in the identity 

of the target (“target id.”), and “residual” modulations attributed to nonlinear interactions 

between the visual stimulus and target that were not captured by target match 

modulation (e.g. specific distractor conditions).  We also combined all the different types 

of “nuisance” modulation into one measure for each unit.   

Our measure of modulation is similar to a multi-way ANOVA, with important 

extensions.  Specifically, a two-way ANOVA applied to a unit’s responses (configured 

into a matrix of 4 targets * 20 images * 20 trials for each condition) would parse the total 

response variance into two linear terms, a nonlinear interaction term, and an error term.  

We make 3 extensions to the ANOVA analysis.  First, an ANOVA returns measures of 

variance (in units of spike counts squared) whereas we compute measures of standard 

deviation (in units of spike count) such that our measures of modulation are intuitive 

(e.g., doubling firing rates causes signals to double as opposed to quadruple). Second, 

while the linear terms of the ANOVA map onto our “visual” and “target id.” modulations 
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(after squaring), we split the ANOVA nonlinear interaction term into two terms, including 

target match modulation (i.e. Fig 2c gray versus white) and all other nonlinear “residual” 

modulation. This parsing is essential, as target match modulation corresponds to the 

signal for the IDMS task whereas residual modulation acts as noise (described in more 

detail below, Fig 4b).  Finally, raw ANOVA values are biased by trial-by-trial variability 

(which the ANOVA addresses by computing the probability that each term is higher than 

chance given this noise) whereas our measures of modulation are bias-corrected to 

provide an unbiased estimate of modulation magnitude (see Methods). 

Across the 204 IT units, we found that total nuisance modulation was larger than 

target match modulation in most cases (Fig 4a), and that average nuisance modulation 

was 2.8x the average target match signal (Fig 4b). A more detailed parsing of the total 

nuisance modulation into different subtypes revealed that the largest type of nuisance 

modulation could be attributed to “visual” modulations (on average 2.6x the target match 

signal; Fig 4b). Other types of modulation were also prominent, including “target id.” 

modulations (on average 0.8x the target match signal; Fig 4b), and “residual” modulation 

(on average 0.6x the target match modulation; Fig 4b). These results reveal that within 

IT, nuisance modulations are prominent and they are mixed with the target match signal 

in individual units.  

In sum, the results presented thus far verify the existence of a robust, 

behaviorally-relevant target match signal in IT, and they confirm our predictions that IT 

target match signals are mixed with large nuisance modulations within individual IT units.  

Together, these results support assertions that the activity of IT units during visual target 

search should be an effective test of the impact that nuisance modulation has on neural 

task performance.   
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Unexpectedly, the impact of nuisance modulation on single-unit performance is 

modest 

Ultimately, understanding the impact of nuisance modulation on linearly decoded 

task performance requires considering both the responses of individual units as well as 

their population interactions. Here we begin by quantifying the impact of nuisance 

modulation on individual units, the results of which were quite unexpected.   

As a measure of linearly decoded target match performance for individual units, 

we focus on single-unit d’ (Fig 1b).  Single-unit d’ is determined by the separation 

between the spike count responses of a unit to the set of all images presented as target 

matches versus the same images presented as distractors, and is quantified as the ratio 

between the distance between the means over the average standard deviation of the 

two distributions (Fig 1b).  Single-unit d’ is thus proportional to the amount of “target 

match signal”, equivalent to the distance between the means of the responses to target 

matches and to distractors (Fig 1b, cyan).  Conversely, single-unit d’ is inversely 

proportional to the spread within each distribution, where spread is determined by two 

factors.  The first contributor to this spread is the variability in the spike count responses 

across repeated trials of the same condition, or “trial variability” (Fig 1b, purple). The 

second contributor to this spread is the dispersion between different conditions within 

each set, equivalent to all types of modulation that are not the target match signal 

(“nuisance” modulation; Fig 1b, red).  This is why signal mixing is predicted to be 

detrimental to single-unit task performance – because any nuisance modulation that 

exists within a unit is predicted to increase the overlap between target matches and 

distractors.  
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In a previous report, we formalized these intuitions into a mathematical 

relationship between the single-unit modulation magnitudes as measured in Fig 4a-b 

and single-unit d’ (Pagan & Rust, 2014b).  This derivation can be applied here with minor 

extensions. To summarize that approach, d’ is a measure of the ratio between signal 

and noise, where signal is proportional to the amount of target match modulation (Fig 4b, 

cyan) and noise is parsed into one component proportional to total nuisance modulation 

(Fig 4b, red) and another component proportional to trial variability (Fig 4b, purple): 

  |d'| =   
𝑘! ∗ 𝑡𝑎𝑟𝑔𝑒𝑡  𝑚𝑎𝑡𝑐ℎ  𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛!

𝑘! ∗ 𝑛𝑢𝑖𝑠𝑎𝑛𝑐𝑒  𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛! + 𝑡𝑟𝑖𝑎𝑙  𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦!
 

where k1 and k2 are constants (see Methods). With this formulation, the impact of 

nuisance modulation on d’ can be determined by considering the increase in d’ when 

nuisance modulation is incorporated into the calculation (i.e. for the intact data) 

compared to when it is not (i.e. a hypothetical scenario in which nuisance modulation 

does not exist, analogous to the increase in d’ in Fig 1a relative to 1b). Fig 4c shows the 

result of this analysis, which reveals that removing nuisance only results in a modest 

increase in d’ across units, with an average increase of 10.1%. Focusing on the most 

informative units (i.e. those with the highest d’), did not change the qualitative nature of 

the result (average impact for the top 25%, 15%, 10% of units = 10.1%, 9.6% and 9.8% 

respectively). 

This modest increase was surprising in light of the fact that nuisance modulations 

were 2.8x the target match signal (Fig 4b, compare cyan and dark red bars), coupled 

with the intuition that large nuisance modulation should be highly detrimental to task 

performance (Fig 1b). However, this result can be understood by examining the trial 

variability component of the noise, which was 5.2x larger than the target match signal 
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and nearly 2x larger than the nuisance component (Fig 4b, purple bar) and as a result, 

dominated the denominator of the d’ derivation. As an illustrative example, compare 

ratios of the numbers 5/(10+100)=0.045 versus 5/(0+100)=0.05; while the first 

component of the denominator, 10, is 2-fold the size of the numerator (5), including 

versus excluding it only leads to a change in the total ratio of 10% because the 

denominator is dominated by the second entry, 100. Consequently, although the amount 

of nuisance modulation is large relative to the size of the target match signal, its impact 

is blunted by the existence of trial variability, which is even larger.  Stated differently, 

while IT nuisance modulations are larger than the IT target match signal, both are small 

relative to the size of trial variability.  Because trial variability is so much larger than 

nuisance variability, the existence of nuisance modulation has little consequence for d’.   

 

Large trial variability in IT is a consequence of fast processing 
 

Why is trial variability so much larger than nuisance modulation (and signal 

modulation) in our data?  During the IDMS task, spike count windows were short, as a 

consequence of terminating the count window before the monkeys’ reaction times, which 

were fast (Fig 2e; total counting window duration 170 ms, 80-250 ms following stimulus 

onset). Within these short spike count windows, the average grand mean spike count 

was 0.94 spike per condition per trial, and the average peak spike count across the 80 

conditions was 2.63 spikes (which translates into mean and peak firing rates of 5.5 

spikes/sec and 15.5 spikes/sec, respectively).  We also found that, consistent with 

earlier reports, IT trial variability was approximately Poisson (average variance-to-mean 

ratio across units = 1.20, relative to the Poisson benchmark of 1.0).  Simple simulations 
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confirm that within a low spike count, Poisson regime, trial variability is much larger than 

signal modulation.  Large trial variability in IT thus does not arrive from exotic 

mechanisms, rather, it is a natural consequence of the low spike counts that follow from 

fast processing, coupled with Poisson-like trial variability. 

To illustrate how the impact of nuisance modulation depends on overall spike 

count, we recalculated the impact of nuisance modulation as a function of increasing 

window size.  In this analysis, we always started the spike count window for each unit at 

80 ms following stimulus onset, and we ended the count window at different times up to 

170 ms total duration (equivalent to the count window for the analyses presented in Fig 

4b-c).  These results illustrate a systematic increase in the impact of nuisance 

modulation on task performance as a function of spike count window duration (Fig 4d), 

consistent with the interpretation that the impact of nuisance modulation is inversely 

proportional to the overall spike count. 
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Figure 3-4. The impact of nuisance modulation on single-unit d’. Modulations were 

computed for each type of experimental parameter, in units of the standard deviations 

around each unit’s grand mean spike count (see Results). a) Total nuisance modulation 

plotted against target match modulation for each unit. b) Average modulation 

magnitudes across units, parsed into target match modulation (cyan), combined 

nuisance modulation (dark red), and different nuisance modulation subtypes (light red) 

including visual, target identity, and residual.  The right subpanel indicates the size of 

trial variability, computed in a comparable way. Error bars represent standard error 

across units. Numbers above each type of nuisance modulation indicate its size relative 

to the target match signal. c) Single-unit d’ computed on the intact data and with the 
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nuisance-term set to zero. The average proportional impact of nuisance was computed 

as the average proportional increase in performance when nuisance was removed.  d) 

The average impact of nuisance modulation on single-unit d’ (computed as described in 

panel c), applied to data using spike count windows of increasing size.   

 

To illustrate that the amount of signal mixing we observed would have impacted 

task performance at higher spike counts than we recorded in our data (e.g. if counting 

windows were longer and/or firing rates were higher), we performed a simulation in 

which we rescaled the responses for each unit in our data (after noise correction, see 

Methods).  Specifically, we kept the proportions and types of signal and nuisance 

modulation for each unit intact, but rescaled the trial-averaged spike count responses for 

each unit by different factors of N, followed by the reintroduction of Poisson trial 

variability. We then recomputed the impact of nuisance modulation on single-unit d’ as 

described for Fig 4c-d. We found that the impact of nuisance on d’ grew substantially 

with rescaling (Fig 5a). For example, with a 6-fold rescaling, which roughly translates 

into a 1 second counting window (under the assumption that the response properties are 

constant with time), eliminating nuisance resulted in a 53.0% increase in d’ (as 

compared to the 12.1% increase in simulation with no rescaling; Fig 5a).  The increased 

impact of nuisance with rescaling cannot not be attributed to changes in the relative 

amounts of signal and nuisance modulation, as these remained fixed with rescaling 

(compare Fig 4b and 5b, cyan, red).  Rather, the increased impact of nuisance with 

rescaling is due to a decrease in magnitude of trial variability relative to the magnitudes 

of signal and nuisance modulation (compare Fig 4b and 5b, purple).  
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Together, these results indicate that mixing signals in a fast processing regime 

(where spike counts are low) has the unexpected consequence that nuisance 

modulation is largely inconsequential for task performance. In contrast, our simulations 

reveal that mixing signals in the same proportions but in regime where spike counts are 

high (e.g. with long integration windows and/or higher firing rates) would be highly 

detrimental.  These results thus suggest that within IT during the IDMS task, the 

potentially deleterious impact of nuisance modulation is blunted by virtue of a fast 

processing, low spike count regime.   

 

Figure 3-5. Nuisance modulation is predicted to be detrimental for higher spike counts.  

a) The simulated impact of nuisance modulation on single-unit d’ as a function of 

rescaling the spike counts for each unit. b) Average modulation magnitudes across 

simulated units, for the 6-fold spike count rescaling data point in subpanel a. 

 

d’
 in

cr
ea

se
,

nu
is

an
ce

-re
m

ov
ed

 (%
)

a

Tria
l 

Vari
ab

ility

Targ
et 

matc
h

Nuis
an

ce

b

1.8x

2.9x
6-fold rescaling

M
od

ul
at

io
n

Rescale factor
1 3 6 8 12 16 24 32

0

50

100

150

0

1

2

3

4



	   88	  

 

The impact of nuisance modulation on population performance is also modest 
  

In the previous section, we examined the impact of nuisance modulation as it 

applies to single unit performance. Next, we were interested in the impact of nuisance 

modulation on the performance of the neural population. Specifically, any particular 

population decoding scheme defines an axis in population space, and of interest is 

whether or not the single neuron intuitions established above hold when nuisance 

modulations are projected along this population axis. The simplest possible assumption 

for such a population decoding scheme is that every IT unit receives an equal weight of 

one. In such a decoding scheme, the brain simply counts the spikes of all of the units in 

the population to determine whether or not an image is a match or a distractor (i.e. this 

decoding scheme is equivalent to the performance of a spike count classifier on the 

population responses). The impact of the projected nuisance modulation along this axis 

is equivalent to the average impact of nuisance modulation across single units, which we 

have shown to be modest (Fig 4c.) The next simplest population decoding scheme, 

producing a different axis in population space, is a more traditional weighted linear 

readout. In this type of readout, IT units are weighted proportional to the amount of task-

relevant information that they carry and interactions between units are taken into 

consideration. In particular, we have shown that one such linear readout, the Fisher 

Linear Discriminant (FLD), is behaviorally relevant insofar as it reflects misclassifications 

on trials in which the monkeys make errors (Fig 3c). While this axis might not be exactly 

the one that the monkey is using to distinguish matches from distractors, it does in fact 

captures information relevant to that discrimination. For the following is, we thus assume 
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that this is in fact the axis that the monkeys are using to make this discrimination, and 

we examine the impact of nuisance modulations when projected along this axis. 

  As we demonstrate in this section, the impact of nuisance modulation on IT 

performance described above for single units (Fig 4c), remains modest even when 

population factors are considered. To address population considerations, we begin with 

a data-based “pseudosimulation” approach that allows us to compute important 

benchmarks for our results.  However, because these simulations require assumptions 

about the data, we also verify our results with analyses applied directly to neural data. 

To estimate the impact of nuisance modulation on IT population performance, we 

applied an approach similar in concept to the single-unit analysis presented in Fig 4c, 

where we estimated the impact of nuisance by comparing the intact data with a 

hypothetical version of our data with nuisance removed. However, in the case of the 

population, we did not have an analytical solution and we thus performed 

pseudosimulations to determine it.  To perform this analysis, we simulated the 

responses of two versions of each unit: an intact version with the same number and 

types of signals as well as the same grand mean spike count (after noise correction, see 

Methods), and a version in which the nuisance modulation was removed. In both cases, 

we simulated trial variability for each unit with an independent, Poisson process. Cross-

validated linear decoder performance, measured in units of population d’, grew with 

increasing population size for the intact and nuisance-removed populations with an 

approximately fixed ratio (Fig 6a). The proportional impact of nuisance modulation as a 

function of population size saturated at ~18% with larger sized populations (Fig 6b).  

These results suggest that the modest impact of nuisance modulation measured in 
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individual units remains modest across the population (under the assumption that trial 

variability is Poisson and is independent between units). 

 

 

Figure 3-6.  Estimating the impact of nuisance modulation on population performance. 

a) Linear decoder performance, shown in units of population d’, as a function of 

population size for two simulated populations: “Nuisance-Intact”: a version of our data in 

which the responses of each unit are replicated (after noise-correction), coupled with 

independent, Poisson trial variability; “Nuisance-removed”: a similar version of our data, 

but with the nuisance modulations for each unit set to zero (see Methods). Error bars 

(SEM) reflect the variability that can be attributed to the random selection of units (for 

populations smaller than the full dataset) and the random assignment of training and 

testing trials in cross-validation. b) The proportional impact of nuisance (computed as the 

proportional increase in performance when nuisance was removed), plotted as a function 

of population size, computed for the data shown in panel a.   
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Our simulation-based approach allowed us to estimate the impact of nuisance 

modulation on population performance relative to a benchmark of the same population 

but without nuisance.  However, our pseudosimulations incorporate the assumption that 

trial variability is independent (i.e. uncorrelated) between units, whereas we do in fact 

expect it to be weakly correlated (e.g. Cohen & Maunsell, 2009). How might the 

existence of weakly correlated variability impact our results? To summarize the well-

established framework for thinking about correlated trial variability (reviewed by 

Averbeck & Lee, 2006; Cohen & Kohn, 2011; Kohn et al., 2016), when the component of 

trial variability that falls along a linear decoding axis is uncorrelated between neurons, it 

will average away as a function of population size. Relative to this benchmark, correlated 

trial variability has the potential to either be beneficial or detrimental to performance (Fig 

7a). We have determined that nuisance modulation is similar insofar as the component 

of nuisance modulation that falls along a linear decoding axis that is uncorrelated 

between neurons will average away as a function of population size. Relative to this 

benchmark, interactions between neurons can configure nuisance modulation to have 

beneficial or detrimental consequences (Fig 7b).  

When a task does not include nuisance variability (e.g. a two-way discrimination 

between exactly two conditions), the impact of correlated trial variability on population 

performance can be measured by comparing performance for the simultaneously 

recorded, intact data with performance when the trials are independently shuffled for 

each unit to destroy correlations (Averbeck & Lee, 2006).  Increases in performance with 

shuffling indicate that noise correlations are detrimental (Fig 7a, left) whereas decreases 

in performance indicate that noise correlations are beneficial (Fig 7a, right). This 

shuffling procedure can be extended for tasks that incorporate a nuisance component by 

comparing population performance for the intact data with performance when the 
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experimental conditions are shuffled independently for each unit within each class (i.e. 

shuffling conditions within the set of target matches and within the set of distractors).  

To assess the impact of both correlated trial and nuisance variability on IT 

population performance, we analyzed the raw, simultaneously recorded data within each 

session.  Here we present the results only for populations of size 24 (to simplify the data, 

given the number of comparisons of interest).  Relative to the intact data, shuffling trial 

variability resulted in a small increase in performance (Fig 7c, “Intact” versus “Shuffle 

TV”; proportional increase with shuffling = 8%), indicating that correlated trial variability is 

aligned along the target match decoding axis in a manner that is weakly detrimental. 

Next we computed performance when both trial and nuisance variability were shuffled, 

and found that it was slightly higher than shuffling trial variability alone (Fig 7c, “Shuffle 

TV&NV”; proportional increase = 7%). This suggests that like trial variability, nuisance 

variability is correlated in a manner weakly detrimental to performance.  

How does the existence of weakly detrimental correlated trial and nuisance 

variability impact the results presented in Fig 6?  First, note that the analysis presented 

in Fig 6 is not impacted by the existence of correlated trial variability (because any 

correlations that existed were destroyed in the pseudosimulation process).  Second, 

note that Fig 6 presents an estimate of the “total” impact of nuisance variability that 

captures contributions arising from both the existence of nuisance modulations as well 

as any detrimental correlations that fall along the decoding axis. To parse their relative 

contributions, we returned to the pseudosimulation and applied the nuisance shuffling 

procedure.  Shuffling nuisance variability led to a small proportional increase (relative to 

shuffling trial variability alone; Fig 7d; 8%) that was similar to the value measured for the 

intact data (7%, as described above).  The remaining proportional impact of nuisance 
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modulation, calculated as the increase between shuffling nuisance and removing it 

altogether, was 10% (Fig 7d; “Shuffle TV&NV” vs. “Shuffle TV, remove NV”). 

To summarize these results, we measured the impact of nuisance modulation on 

population performance in simulation by comparing performance of an intact population 

(with independent trial variability) with a simulation of the same population with nuisance 

variability removed. In our data, the impact of nuisance modulation was modest (~18%) 

and approximately flat as a function of population size.  An analysis targeted at 

understanding how correlated trial and nuisance variability between units impacts task 

performance revealed that their contributions to task performance were also measurable 

but modest, and did not change the interpretation that while nuisance modulation is large 

in IT, its impact on task performance (both for single units and for the population) is 

small. 
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Figure 3-7.  Understanding how correlated trial variability and correlated nuisance 

modulations impact task performance.  a) Shown are cartoon depictions of the 

“beneficial” and “detrimental” impact that correlated trial variability can have on task 

performance relative to the “uncorrelated” benchmark. Each point depicts a hypothetical 

population response for a population of two neurons on a single trial, and clusters of 

points depict the dispersion of responses across repeated trials. Dotted lines depict the 

linear decision boundary optimized for a two-way classification. Population performance 

is determined by projecting each class onto an axis perpendicular to the decision 

boundary. Correlated trial variability between units can be configured to increase or 

decrease the variance of the projected population response relative to benchmark of 

uncorrelated trial variability, and thus have a detrimental or beneficial impact on 

performance. b) Same as in a, but expanded to incorporate correlated nuisance 

variability. Included are 3 experimental conditions within each set (clusters of points). 

Like trial variability, correlated nuisance variability between units can be configured to 

increase or decrease the variance of the projected population response, relative to 

benchmark of uncorrelated nuisance variability. c) To assess the impact that correlated 

trial and nuisance variability between units has on population performance, we applied 

shuffling procedures to the raw data recorded within each session (across 20 sessions).  

Shown is linearly decoded population performance (d’) for populations of size 24 for: 

“Intact” – without shuffling; “Shuffle TV” – shuffled trial variability while maintaining 

nuisance variability correlations intact; and “Shuffle TV&NV” – shuffling both trial and 

nuisance variability.  This analysis cannot be performed in a manner that determines 

what happens when nuisance variability is removed, indicated by the placeholder “n/a” 

for comparison with subpanel d.  d) The same pseudosimulation data presented in Fig 6 
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(n = 204).  Because that data is simulated as independent between units, the “Intact” 

condition cannot be computed, as indicated by the placeholder n/a for comparison with 

panel c. Shown is linearly decoded population performance for:  “Shuffle TV” – shuffled 

trial variability while maintaining nuisance variability correlations intact; “Shuffle TV&NV” 

– shuffling both trial and nuisance variability;  “Shuffle TV, remove NV”: shuffling trial 

variability and removing nuisance variability. In both c and d, numbers above the arrows 

indicate the proportional increase in d’.  Error bars (SEM) reflect the variability that can 

be attributed to the random assignment of training and testing trials in cross-validation. 
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DISCUSSION 
	  

	  

In many everyday situations, we are faced with the challenge of extracting one 

type of information from our environment while ignoring many other things that are going 

on around us. This study was inspired by a very simple intuition: when the neurons 

involved in computing the solutions for these tasks are modulated by both task-relevant 

signals as well as task-irrelevant nuisance information, nuisance modulation should be a 

source of noise that limits our ability to perform these tasks. Unexpectedly, we found that 

this simple intuition was largely wrong in IT. During a visual target search task, we found 

that nuisance modulations in IT were indeed large and that they were mixed with task-

relevant signals in the responses of individual units, however, their consequences for 

task performance were modest. This result could be explained by the existence of 

another noise source, trial variability, which was larger than nuisance variability and 

blunted its impact on performance. Large trial variability in IT could, in turn, be 

accounted for by fast processing (implied by fast reaction times), which positioned IT 

within a low spike count regime, coupled with trial variability that was approximately 

Poisson.  We found that these results applied not only to individual units but also to the 

performance of the IT population.  Our results thus reveal that when the brain operates 

in a regime where signals are small relative to the size of trial variability, nuisance 

modulations are of very little consequence to task performance. 

Many of our intuitions about neural coding have been developed within the 

context of a high spike count regime, largely following on foundational work in early and 

mid-level visual brain areas in primates (e.g. V1, MT) where firing rates are high.  

Notably, recent work has called into question whether even in those brain areas, high 
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spike counts do in fact translate into a high signal-to-noise ratio, due to supra-Poisson 

trial variability that begins to dominate when spike counts are large (Goris, Movshon, & 

Simoncelli, 2014). Moreover, the low spike count regime that we present here is likely to 

be representative of the operating regime in many brain areas during many real-world 

tasks. The unexpected nature of our results highlights the fact that in this low spike count 

regime, some of the basic intuitions that we have constructed about neural coding may 

not hold.   

Our results shed insight into why the brain might continue to “mix” modulations 

for different task-relevant parameters within individual neurons, even at the highest 

stages.  Growing evidence suggests that the brain does not seek to produce neurons 

with increasingly “pure selectivity” at higher stages of processing, but rather that the 

brain continues to mix modulations for different task-relevant parameters within 

individual neurons, both at the locus at which task-relevant solutions are computed, as 

well as downstream (Freedman & Assad, 2009; Kobak et al., 2016; Mante et al., 2013; 

Meister et al., 2013; Raposo et al., 2014; Rigotti et al., 2013; Rishel et al., 2013; 

Zoccolan et al., 2007). A number of explanations have been proposed to account for 

mixed selectivity. Some studies have documented situations in which signal mixing is an 

inevitable consequence of the computations required for certain tasks, such as 

identifying objects invariant to the view in which they appear (Zoccolan et al., 2007).  

Others have suggested that mixed selectivity may be an essential component of the 

substrate required to maintain a representation that can rapidly and flexibly switch with 

changing task demands (Raposo et al., 2014; Rigotti et al., 2013).  Still others have 

maintained that broad tuning across different types of parameters is important for 

learning new associations (Rigotti et al., 2013). When viewed from the perspective that 

signal mixing introduces noise in the form of nuisance modulation, one might suspect 
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that one or more of these benefits outweigh the performance costs associated with 

mixed selectivity. However as we demonstrate here, within the fast processing, low spike 

count regime that most of these high-level brain areas are likely to operate in, large 

nuisance modulations are expected to have only a modest impact on task performance.   

The framework with which we explore how nuisance interactions between 

different neurons impact population performance builds on foundational work focused on 

correlated trial variability between units, or “noise correlations” (Averbeck & Lee, 2006; 

Cohen & Kohn, 2011; Kohn et al., 2016). Recent work has emphasized the importance 

of not just measuring the degree to which neurons are correlated, but how those 

correlations align with a decoding axis and thus how they impact performance (Moreno-

Bote, 2014). In the visual search task we present here, we found that correlations 

between units in both trial and nuisance variability had a small, detrimental impact on 

performance.  In other tasks, nuisance interactions along a decoding axis may be much 

more impactful – such as in the case of dissociating self versus object motion (Kim et al., 

2016), and in those cases, other decoding schemes may be required to disambiguate 

signal from nuisance modulation. 

Our results support the existence of a robust target match representation in IT 

during this task that reflects confusions on trials in which the monkeys make errors (Fig 

3c); this result has not been reported previously. One earlier study also explored the 

responses of IT neurons in the context of a DMS task in which, like ours, the objects 

could appear at different identity-preserving transformations (Leuschow et al., 1994), but 

this study did not sort neural responses based on behavior. Target match signals have 

been investigated most extensively in IT via a classic version of the delayed-match-to-

sample (DMS) paradigm where each trial begins with a visual cue indicating the identity 
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of the target object, and this cue is often the same image as the target match. In this 

paradigm, approximately half of all IT neurons that differentiate target matches from 

distractors do so with enhanced responses to matches whereas the other half are match 

suppressed (Miller & Desimone, 1994; Pagan et al., 2013). Because match suppressed 

responses are thought to arise as the result of passive, stimulus repetition of the target 

match following the cue, some have speculated that the match enhanced neurons alone 

carry behaviorally-relevant target match information (Miller & Desimone, 1994).  

Conversely, others have argued that a representation comprised exclusively of match 

enhanced neurons would likely confuse the presence of a match with nuisance 

modulations that evoke changes in overall firing rate, such as changes in stimulus 

contrast (Engel & Wang, 2011).  Additionally, these authors have proposed that matched 

suppressed neurons could be used in these cases to disambiguate target match versus 

nuisance modulation.  Our results reveal that when target matches do not follow the 

presentation of the same visual image at a short time before (as is the case for natural 

object search), match suppression is very weak (Fig 3e), and consequently, in these 

cases, this specific disambiguation strategy cannot be employed. Our results also 

suggest that for the types of nuisance modulation that we have investigated here 

(changes in position, size and background context), its impact is modest and in these 

cases, such a strategy is not necessary. 

In this report, we showed that the impact of nuisance modulation was modest, 

both while using a spike count classifier (which reads out target matches versus 

distractors by giving each unit the same weight; Fig 4c) and when using a FLD (which 

weighs each unit by to its ability differentiate target matches versus distractors; Fig 

6). While the performance of the FLD correlated with the behavioral confusions of the 

monkeys (Fig 3c), it is possible that the brain uses a different decoding scheme to read 
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out target matches versus distractors and drive behavior. However, it is likely that if such 

an alternate decoding scheme more optimally reads out target match information than 

the FLD does, the impact of nuisance modulation on decoding performance would 

remain small. 

In a previous series of reports (Pagan & Rust, 2014a; Pagan, Simoncelli, & Rust, 

2016; Pagan et al., 2013), we investigated target match signals in the context of the 

classic DMS design in which target matches were repeats of cues presented earlier in 

the trial and each object was presented on a gray background.  One of our main findings 

from that work was that the IT target match representation was reflected in a partially 

nonlinearly separable format, whereas an IT downstream projection area, perirhinal 

cortex, contained the same amount of target match information but in a format that was 

largely linearly separable.  In the data we present here, we also found evidence for a 

nonlinear component of the IT target match representation, reflected by higher 

performance of a maximum likelihood as compared to linear decoder (Fig 3b).  However, 

in this study, a larger proportion of the IT target match representation was linear as 

compared to our previous DMS results.  The source of these quantitative differences is 

unclear.  They could arise from the fact that the IDMS task requires an “invariant” visual 

representation of object identity, which first emerges in a linearly separable format in the 

brain area that we are recording from (IT; Rust & DiCarlo, 2010), whereas the DMS task 

could rely on the visual representation at an earlier stage.  Alternatively, these 

differences could arise from the fact that during IDMS, images are not repeated within a 

trial, and the stronger nonlinear component revealed in DMS may be produced by 

stimulus repetition.  Our current data cannot distinguish between these alternatives. 
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METHODS 
 

Experiments were performed on two adult male rhesus macaque monkeys 

(Macaca mulatta) with implanted head posts and recording chambers.  All procedures 

were performed in accordance with the guidelines of the University of Pennsylvania 

Institutional Animal Care and Use Committee.  

 

The invariant delayed-match-to-sample (IDMS) task: 
 

All behavioral training and testing was performed using standard operant 

conditioning (juice reward), head stabilization, and high-accuracy, infrared video eye 

tracking. Stimuli were presented on an LCD monitor with an 85 Hz refresh rate using 

customized software (http://mworks-project.org). 

As an overview, the monkeys’ task required an eye movement response to a 

specific location when a target object appeared within a sequence of distractor images 

(Fig 2a).  Objects were presented across variation in the objects’ position, size and 

background context (Fig 2b).  Monkeys viewed a fixed set of 20 images across switches 

in the identity of 4 target objects, each presented at 5 identity-preserving transformations 

(Fig 2c). We ran the task in short blocks (~3 min) with a fixed target before another 

target was pseudorandomly selected. Our design included two types of trials: cue trials 

and test trials (Fig 2a). Only test trials were analyzed for this report. 
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Trials were initiated by the monkey fixating on a red dot (0.15°) in the center of a 

gray screen, within a square window of ±1.5°, followed by a 250 ms delay before a 

stimulus appeared. Cue trials, which indicated the current target object, were presented 

at the beginning of each block and after three subsequent trials with incorrect responses. 

To minimize confusion, cue trials were designed to be distinct from test trials and began 

with the presentation of an image of each object that was distinct from the images used 

on test trials (a large version of the object presented at the center of gaze on a gray 

background; Fig 2a). Test trials, which are the focus of this report, always began with a 

distractor image, and neural responses to this image were discarded to minimize non-

stationarities such as stimulus onset effects. Distractors were drawn randomly from a 

pool of 15 possible images within each block without replacement until each distractor 

was presented once on a correct trial, and the images were then re-randomized. On 

most trials, a random number of 1-6 distractors were presented, followed by a target 

match (Fig 2a).  On a small fraction of trials, 7 distractors were shown, and the monkey 

was rewarded for fixating through all distractors. Each stimulus was presented for 400 

ms (or until the monkeys’ eyes left the fixation window) and was immediately followed by 

the presentation of the next stimulus.  Following the onset of a target match image, 

monkeys were rewarded for making a saccade to a response target within a window of 

75 – 600 ms to receive a juice reward.  In monkey 1 this target was positioned 10 

degrees below fixation; in monkey 2 it was 10 degrees above fixation.  If 400 ms 

following target onset had elapsed and the monkey had not moved its eyes, a distractor 

stimulus was immediately presented.  If the monkey continued fixating beyond the 

required reaction time, the trial was considered a “miss”. False alarms were 

differentiated from fixation breaks via a comparison of the monkeys’ eye movements 

with the characteristic pattern of eye movements on correct trials: false alarms were 
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characterized by the eyes leaving the fixation window via its bottom (monkey 1) or top 

(monkey 2) outside the allowable correct response period and traveling more than 0.5 

degrees whereas fixation breaks were characterized by the eyes leaving the fixation 

window in any other way. Within each block, 4 repeated presentations of the 20 images 

were collected, and a new target object was then pseudorandomly selected.  Following 

the presentation of all 4 objects as targets, the targets were re-randomized.  At least 20 

repeats of each condition were collected.  Overall, monkeys performed this task with 

high accuracy. Disregarding fixation breaks (monkey 1: 8% of trials, monkey 2: 11% of 

trials), percent correct on the remaining trials was as follows: monkey 1: 87% correct, 

3% false alarms, and 10% misses; monkey 2: 96% correct, 1% false alarms, and 3% 

misses. 

 

Neural recording 
 

The activity of neurons in IT was recorded via a single recording chamber in each 

monkey. Chamber placement was guided by anatomical magnetic resonance images in 

both monkeys, and in one monkey, Brainsight neuronavigation (https://www.rogue-

research.com/). The region of IT recorded was located on the ventral surface of the 

brain, over an area that spanned 4 mm lateral to the anterior middle temporal sulcus and 

15-19 mm anterior to the ear canals. Neural activity was largely recorded with 24-

channel U probes (Plexon, Inc) with linearly arranged recording sites spaced with 100 

mm intervals, with a handful of units recorded with single electrodes (Alpha Omega, 

glass-coated tungsten). Continuous, wideband neural signals were amplified, digitized at 

40 kHz and stored using the OmniPlex Data Acquisition System (Plexon). Spike sorting 
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was done manually offline (Plexon Offline Sorter).  At least one candidate unit was 

identified on each recording channel, and 2-3 units were occasionally identified on the 

same channel.  Spike sorting was performed blind to any experimental conditions to 

avoid bias. A multi-channel recording session was included in the analysis if the animal 

performed the task until the completion of 20 correct trials per stimulus condition, there 

was no external noise source confounding the detection of spike waveforms, and the 

session included a threshold number of task modulated units (>4 on 24 channels). The 

sample size (number of units recorded) was chosen to approximately match our 

previous work (Pagan & Rust, 2014a; Pagan et al., 2016; Pagan et al., 2013).  

For all the analyses presented in this chapter, we measured neural responses by 

counting spikes in a window that began 80 ms after stimulus onset. For all analyses but 

Fig 4d, the spike count window ended at 250 ms. On 1.9% of all correct target match 

presentations, the monkeys had reaction times faster than 250 ms, and those instances 

were excluded from analysis such that spikes were only counted during periods of 

fixation. When combining the units recorded across sessions into a larger 

pseudopopulation, we screened for units that met three criteria. First, units had to be 

modulated by our task, as quantified by a one-way ANOVA applied to our neural 

responses (80 conditions * 20 repeats) with p < 0.01. Second, we applied a loose 

criterion on recording stability, as quantified by calculating the variance-to-mean for each 

unit (computed by fitting the relationship between the mean and variance of spike count 

across the 80 conditions), and eliminating units with a variance-to-mean ratio > 5.  

Finally, we applied a loose criterion on unit recording isolation, quantified by calculating 

the signal-to-noise ratio (SNR) of the waveform (as the difference between the maximum 

and minimum points of the average waveform, divided by twice the standard deviation 

across the differences between each waveform and the mean waveform), and excluding 
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(multi)units with an SNR < 2. This yielded a pseudopopulation of 204 units (of 563 

possible units), including 96 units from monkey 1 and 108 units from monkey 2.  

 

Population performance 
 

To determine the performance of the IT population at classifying target matches 

versus distractors, we applied two types of decoders: a Fisher Linear Discriminant (a 

linear decoder) and Maximum Likelihood decoder (a nonlinear decoder) using 

approaches that are described previously in detail (Pagan et al., 2013) and are 

summarized here. 

When applied to the pseudopopulation data (Fig 3b, Fig 6a, Fig 7d), all decoders 

were cross-validated with the same resampling procedure. On each iteration of the 

resampling, we randomly shuffled the trials for each condition and for each unit, and (for 

numbers of units less than the full population size) randomly selected units. On each 

iteration, 18 trials from each condition were used for training the decoder, 1 trial was 

used to determine a value for regularization, and 1 trial from each condition was used for 

cross-validated measurement of performance.   

To ensure that decoder performance was not biased by unequal numbers of 

target matches and distractors, on each iteration of the resampling we included 20 target 

match conditions and 20 (of 60 possible) distractor conditions.  Each set of 20 distractors 

was selected to span all possible combinations of mismatched object and target 

identities (e.g. objects 1, 2, 3, 4 paired with targets 4, 3, 2, 1), of which there are 9 

possible sets. When computing proportion correct (Fig 3b), a mean performance value 

was computed on each resampling iteration by averaging binary performance outcomes 
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across the 9 possible sets of target matches and distractors, each which contained 40 

test trials. Mean and standard error of performance was computed as the mean and 

standard deviation of performance across 2000 resampling iterations. When computing 

population d’ (Fig 6a, Fig 7d), d’ was computed on each resampling iteration for the 20 

target match conditions and 20 distractor conditions, separately for each set of 9 

match/distractor combinations, and then averaged across the 9 sets. Mean and standard 

error of population d’ was computed as the mean and standard deviation of d’ across 

2000 resampling iterations.  For both measures, standard error thus reflected the 

variability due to the specific trials assigned to training and testing and, for populations 

smaller than the full size, the specific units chosen.   

 

 

Fisher Linear Discriminant: 

 

The general form of a linear decoding axis is:  

(1)    𝑓 𝒙 =   𝒘!𝒙 + 𝑏,  

where w is an N-dimensional vector (where N is the number of units) containing the 

linear weights applied to each unit, and b is a scalar value. We fit these parameters 

using a Fisher Linear Discriminant (FLD), where the vector of linear weights was 

calculated as: 
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(2) 𝒘 = Σ!𝟏(𝜇! − 𝜇!) 

and b was calculated as: 

 (3) 𝑏 = 𝒘   ∙ !
!
(𝜇! + 𝜇!) = !

!
𝜇!!Σ!𝟏𝜇! −   

!
!
𝜇!!Σ!𝟏𝜇! 

Here 𝜇!  𝑎𝑛𝑑  𝜇! are the means of the two classes (target matches and distractors, 

respectively) and the mean covariance matrix is calculated as: 

 (4) Σ = !!!!!
!

 

where Σ! and Σ! are the regularized covariance matrices of the two classes. These 

covariance matrices were computed using a regularized estimate equal to a linear 

combination of the sample covariance and the identity matrix 𝐼 (Pagan et al., 2016): 

(5) Σ! =   𝛾  Σ! + (1 − 𝛾) ∙ 𝐼 

We determined 𝛾 by exploring a range of values from 0.01 to 0.99, and we 

selected the value that maximized average performance across all iterations, measured 

with the cross-validation “regularization” trials set aside for this purpose (see above). We 

then computed performance for that value of  𝛾 with separately measured “test” trials, to 

ensure a fully cross-validated measure. Because this calculation of the FLD parameters 

incorporates the off-diagonal terms of the covariance matrix, FLD weights are optimized 

for both the information conveyed by individual units as well as their pairwise 

interactions.    

We computed two measures of performance: proportion correct (Fig 3b-c), and 

population d’ (Fig 6a).  Each calculation began by computing the dot product of the test 

data and the linear weights w, adjusted by b (Eq. 1).  Proportion correct was computed 
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as the fraction of test trials that were correctly assigned as target matches and 

distractors, according to their true labels.  Population d’ was computed for the 

distributions of these values across the 20 different images presented as target matches 

versus as distractors:  

 (6)   𝑑! = !!"#$!!  !!"#$%&'$(%
!!""#$%

,  

where 𝜇!"#$!  and 𝜇!"#$%&'$(% correspond to the mean across the set of matches and 

distractors, 𝜎!""#$% =   
!!"#$!
! !!!"#$%&'$(%

!

!
, and 𝜎!"#$!  and  𝜎!"#$%&'$(% correspond to the 

standard deviation across the set of matches and distractors, respectively. 

To compare FLD performance on correct versus error trials (Fig 3c), we used the 

same methods described above with the following modifications.  First, the analysis was 

applied to the simultaneously recorded data within each session, and the correlation 

structure on each trial was kept intact on each resampling iteration.  Second, when more 

than 24 units were available, a subset of 24 units were selected as those with the most 

task modulation, quantified via the p-value of a one-way ANOVA applied to each unit’s 

responses (80 conditions * 20 repeats). Finally, on each resampling iteration, each error 

trial was randomly paired with a correct trial of the same condition and cross-validated 

performance was performed exclusively for these pairs of correct and error responses.  

As was the case for the pseudopopulation analysis, training was performed exclusively 

on correct trials. A mean performance value was computed on each resampling iteration 

by averaging binary performance outcomes across all possible error trials and their 

condition-matched correct trial pairs, and averaging across different recording sessions. 

Mean and standard error of performance was computed as the mean and standard 

deviation of performance across 2000 resampling iterations. Standard error thus 
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reflected error in a manner similar to the pseudopopulation analysis - the variability due 

to the specific trials assigned to training and testing and, for populations smaller than the 

full size, the specific units chosen.   

To determine the impact of correlated trial and nuisance variability on IT 

population performance (Fig 7c), we compared the FLD applied to the simultaneously 

recorded data as described above where the correlation structure on each trial was kept 

intact on each resampling iteration (Fig 7c, “intact”), with two different shuffling 

procedures.  In the first, we randomly shuffled the trials within each condition, for each 

unit, on each iteration of the bootstrap (Fig 7c, “Shuffle TV”). In the second, we randomly 

shuffled both trial variability as well as the assignment of image identity for each the 20 

distractor conditions and 20 target match conditions on each bootstrap iteration (Fig 7c, 

“Shuffle TV & NV”).  The analysis to determine the impact of correlated nuisance 

variability on the pseudosimulation (Fig 7d) was performed in the same manner, but 

applied to the pseudosimulated data. 

 

Maximum likelihood decoder: 

As a measure of total IT target match information (combined linear and 

nonlinear), we implemented a maximum likelihood decoder (Fig 3b). We began by using 

the set of training trials to compute the average response ruc of each unit u to each of the 

40 conditions c. We then computed the likelihood that a test response k was generated 

from a particular condition as a Poisson-distributed variable: 
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 (7) 𝑙𝑖𝑘!,!(𝑘) =
(!!")!∙!!!!"

!!
 

The likelihood that a population response vector was generated in response to 

each condition was then computed as the product of the likelihoods of the individual 

units. Next, we computed the likelihood that each test vector arose from the category 

target match as compared to the category distractor as the product of the likelihoods 

across the conditions within each category.  We assigned the population response to the 

category with the maximum likelihood, and we computed performance as the fraction of 

trials in which the classification was correct based on the true labels of the test data.  

 

Quantifying single-unit modulation magnitudes 
 

To quantify the degree to which the firing rates of individual units were modulated 

by whether an image was presented as a target match versus as a distractor (Fig 3d), 

we calculated a target match modulation index for each unit by computing its mean spike 

count response to target matches and to distractors, and computing the ratio of their 

difference and their sum.  

To quantify the degree to which individual units were modulated by different 

types of task parameters, we applied a bias-corrected, ANOVA-like procedure described 

in detail by (Pagan & Rust, 2014b) and summarized here.  As an overview, this 

procedure considers the total variance in the spike count responses for each unit across 

conditions (n=80) and trials for each condition (m=20), and parses this total variance into 

the variance that can be attributed to each type of experimental parameter and variance 

attributed to trial variability. Similar to an ANOVA, the procedure is designed to parse 
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response variance, including the variance that can be attributed to changes in the 

identity of the visual image, the identity of the target object and whether each condition 

was a target match or a distractor. These variances are converted into measures of 

spike count modulation (i.e. standard deviation around each unit’s grand mean spike 

count) via a procedure that includes bias correction for over-estimates in modulation due 

to noise.   

The procedure begins by developing an orthonormal basis of 80 vectors 

designed to capture all types of modulation with intuitive groupings.  The number of each 

type is imposed by the experimental design.  This basis 𝒃 included vectors 𝒃! that 

reflected 1) the grand mean spike count across all conditions (𝒃!, 1 dimension), 2) 

whether the object in view was a target or a distractor (𝒃!,  1 dimension), 3) visual image 

identity (𝒃! − 𝒃!", 19 dimensions), 4) target object identity (𝒃!! − 𝒃!", 3 dimensions), 

and 5) “residual”, nonlinear interactions between target and object identity not captured 

by target match modulation (𝒃!" − 𝒃!",  56 dimensions). A Gram-Schmidt process was 

used to convert an initially designed set of vectors into an orthonormal  

basis.  

Because this basis spans the space of all possible responses for our task, each 

trial-averaged vector of spike count responses to the 80 experimental conditions 𝑹 can 

be re-expressed as a weighted sum of these basis vectors. To quantify the amounts of 

each type of modulation reflected by each unit, we began by computing the squared 

projection of each basis vector 𝒃!   and 𝑹. An analytical bias correction, described and 

verified in (Pagan & Rust, 2014b), was then subtracted from this value:  
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 (8) 𝑤!! = (𝑹 ∙ 𝒃!!)! −
!!! ∙(𝒃𝒊

𝑻)𝟐

!
 

 

where 𝜎!! indicates the trial variance, averaged across conditions (n=80), and where m 

indicates the number of trials (m=20).  When more than one dimension existed for a type 

of modulation, we summed values of the same type. Next, we applied a normalization 

factor (1/(n-1) where n=80) to convert these summed values into variances.  Finally, we 

computed the square root of these quantities to convert them into modulation measures 

that reflected the number of spike count standard deviations around each unit’s grand 

mean spike count.  Target match modulation was thus computed as: 

(9) 𝜎!" = !
!!!

∙ 𝑤!! 

and nuisance modulation was computed as: 

(10) 𝜎!"# =
!

!!!
∙ 𝑤!!!"

!!!  

Similarly, to compute the different subtypes of nuisance modulation, we replaced 

the weights 𝑤!! in Eq. 10 with the weights that corresponded to the orthonormal basis 

vectors corresponding to each subtype, including visual modulation (𝑖 = 3  𝑡𝑜  21), target 

modulation (𝑖 = 22  𝑡𝑜  24), and 3) residual modulation (𝑖 = 25  𝑡𝑜  80), as described 

above. 
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We computed the trial variability for each unit (𝜎!"#$% , ) in an comparable manner 

as the square root of the average (across conditions) variance across trials: 

(11) 𝜎!"#$% =   
!
!
∙ !

!!!
∙ 𝑠!" −   𝑠!!

!!!
!!

!!!  

where the spike count response for a particular trial 𝑡 of condition  𝑖 was 𝑠!", and the 

mean spike count response across all trials of condition 𝑖 was 𝑠!. 

When estimating modulation for individual units, (Fig 4a), the bias-corrected 

squared values were rectified for each unit before taking the square root.  When 

estimating modulation population means (Fig 4b, 5b), the bias-corrected squared values 

were averaged across units before taking the square root.  Because these measures 

were not normally distributed, standard error about the mean was computed via a 

bootstrap procedure. On each iteration of the bootstrap (across 1000 iterations), we 

randomly sampled values from the modulation values for each unit in the population, 

with replacement. Standard error was computed as the standard deviation across the 

means of these newly created populations. 
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Relating modulation magnitudes and single unit performance (d’): 

To determine the impact of nuisance modulation on single unit task performance 

(Fig 4c-d, Fig 5a) we re-expressed d’ (Eq. 6) as a function of the different types of signal 

modulations described above (Eqs. 8-10): 

(12) d' =    !!"#$!!  !!"#$%&'$(%
!!""#$%

=    !∙!!"!

!∙!!"#
! !!!"#$%

! where 𝑎 =    !!!
!
  , and 𝑏 =    !!!

!
 

 

This derivation is described in detail in (Pagan & Rust, 2014b). 

To quantify the impact of nuisance modulation on single unit performance (d’), 

we compared each unit’s d’ in the presence of nuisance modulation (Eq. 12) versus d’ 

when the nuisance modulation term 𝜎!"# was set to zero (d’NoNui). We then calculated the 

impact of nuisance modulation as the percent increase in d’ without nuisance: 

(13) 𝐼𝑚𝑝𝑎𝑐𝑡 = !!!"!#$!
!!

− 1 ∙ 100%  
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Simulations 
 

To better understand our results, we performed a number of data-inspired 

simulations.  Each simulation began by computing the bias-corrected weights for each 

unit as described above (Eq. 8).  

To explore how rescaling the spike counts by different factors of N influenced the 

impact of nuisance modulation (Fig 5), we rectified bias-corrected modulations that fell 

below zero, recomputed the noise-corrected mean spike count responses for each 

condition, rescaled the mean spike counts by N, and generated trial variability with an 

independent Poisson process. 

To estimate the impact of nuisance modulation on population performance, we 

simulated two versions of each of our recorded units (Fig 6a compare “Nuisance-intact” 

to “Nuisance-removed”; Fig 7d compare “Shuffle TV” and “Shuffle TV & NV” to “Shuffle 

TV, remove NV”).  In the “Intact” version, we computed each unit’s responses as 

described for the rescaling simulation but with a rescale factor N = 1. In the “Nuisance 

removed” version, we used a similar procedure but set the modulations corresponding to 

all nuisance dimensions to zero. The responses were thus computed based on the 

grand mean spike count response as well as the target match modulation alone.   

 

Statistical tests 
 

When comparing population decoding measures (Fig 3b), we reported P values 

as an evaluation of the probability that differences were due to chance. We calculated 

these P values as the fraction of resampling iterations on which the difference was 
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flipped in sign relative to the actual difference between the means of the full data set (for 

example, if the mean of decoding measure 1 was larger than the mean of decoding 

measure 2, the fraction of iterations in which the mean of measure 2 was larger than the 

mean of measure 1).  
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CHAPTER 4 
	  

General Conclusions 

	  

In this dissertation, we examined the responses of populations of neurons 

recorded in V4 and IT as monkeys performed an invariant delayed match to sample 

object search task. Our results showed that information about whether the currently 

viewed stimulus matches a sought target is reflected by populations of neurons in both 

V4 and IT, but these signals are larger in IT. These results suggest that top-down 

context-specific modulations are integrated into the ventral visual pathway at multiple 

stages. Next, we focused on responses recorded from IT from a neural coding 

perspective. We found that while modulations in IT that were expected to act as noise 

(nuisance modulations) were large, they unexpectedly had little impact on neural task 

performance. In this chapter, we discuss the implications of our results and some 

possible future directions.  

 

The role of V4 and IT in visual search 
 

In Chapter 2, we compared neural responses in V4 and IT while monkeys 

performed invariant object search. In this study, we sought to differentiate between two 

scenarios of how the solution to this task might be computed: one in which top-down, 

context-specific signals are introduced at multiple stages of the ventral visual pathway, 

and another in which V4 is the single locus for that combination. We found multiple lines 

of evidence supporting the hypothesis that context-specific signals are introduced at 

multiple stages of the ventral visual pathway.  First, we found that the V4 population 
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contains less total (and linearly separable) information for this task than the IT population 

does, suggesting that IT does not inherit all of its information from V4. Second, we found 

that V4 single units reflect information about target identity but not information that 

explicitly differentiates between target matches and distractors, while IT units reflect both 

of these types of information. Lastly, we found that while our measures of V4 single unit 

context modulation are largely consistent with previous reports, the same measures 

applied to IT reveal significantly more context-specific modulation.  

 

The format of target-specific signals in V4 and IT  
 

A large body of literature supports the idea that attentional modulation can affect 

the baseline firing rate, gain, or contrast sensitivity, with little effect on feature selectivity 

(Luck et al., 1997; McAdams & Maunsell, 2000; McAdams & Maunsell, 1999; Motter, 

1994; Reynolds, Pasternak, & Desimone, 2000; Treue & Martinez Trujillo, 1999). In 

contrast, a recent series of studies suggests that attentional modulation can cause shifts 

in neural tuning both in V4 single units (David, Hayden, Mazer, & Gallant, 2008) and 

across the human brain (Cukur, Nishimoto, Huth, & Gallant, 2013). The V4 responses in 

our study do not seem to align with these results, as the context-specific modulations we 

found in V4 are primarily linear in format. However, it might be the case that tuning shifts 

do exist in IT. In particular, an idealized neuron whose responses are formatted as 

nonlinear combinations of visual and target signals which show the full solution to the 

task (full diagonal structure, i.e. Fig 2-5a, target match modulation) would reflect a full 

‘tuning shift’: under each different target context, the visual tuning of the neuron is 

completely different. The extent to which we see tuning shifts in our data warrants further 
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investigation in our data.  Specifically, future work will include using both similar 

methodologies to those in (David et al., 2008), as well as extensions of our methods 

which parse modulation magnitudes in single unit responses (Pagan & Rust, 2014b). 

In both V4 and IT, we found information that reflects the identity of the target 

match. Due to the design of our experiment, monkeys knew the identity of the target 

from the beginning of each block of trials. Consistent with this, the target identity 

information in both V4 and IT appears before stimulus onset, reinforcing the idea that it 

is a true working memory signal. However, the exact format of these signals in V4 and IT 

has not been fully investigated. In particular, do different subpopulations of neurons 

signal the identity of the target at different times across the stimulus presentation 

interval? Furthermore, do these working memory signals decrease in strength as a 

function of time after the presentation of the cue at the beginning of a block of trials, and 

do these signals correlate with behavior? These questions remain untested in our data. 

To address them, we are currently investigating the dynamics of the working memory 

signal, both within each stimulus presentation as well as across blocks of trials.  

While previous studies of IT and PRH which studied classic DMS tasks (which 

include a sample stimulus at the beginning of each trial, as opposed to the beginning of 

a block) have mostly found mixes of match enhanced and match suppressed neurons, 

our results revealed mostly match enhanced neurons. This results is in line with a theory 

put forth by Miller and Desimone (1994), wherein match suppressed responses are 

thought to arise as the result of passive, stimulus repetition of the target match following 

the cue, while match enhanced neurons alone carry behaviorally-relevant target match 

information. However, Engel and Wang (2011) argued that a representation comprised 

exclusively of match enhanced neurons would likely confuse the presence of a match 
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with nuisance modulations that evoke changes in overall firing rate, such as changes in 

stimulus contrast. In our experiment, the types of nuisance modulation that we 

investigated (changes in object identity, position, size, and background context) did not 

have a large impact on task performance, suggesting that this confusion does not occur. 

However this theory poses an interesting question that cannot be addressed by our data. 

How might changes in experimental parameters such as stimulus contrast, which are 

thought to be represented via increases in overall firing rate, impact the representation of 

the target match signal? Future experiments designed to test this would require a task in 

which objects are presented under a wider range of visual transformations that are 

expected to change stimulus contrast.  

 

The transformation of target match information along the ventral visual pathway 
 

In our study, we found that visual discriminability between V4 and IT was 

matched for equal sized populations of units, consistent with previous results (Rust & 

DiCarlo, 2010) (DiCarlo et al., 2012). Importantly, it could have been the case that we 

found we needed to record from larger numbers of neuron in one area to make fair 

comparisons (e.g. convergence or divergence ratios different than 1). Our results 

describe that the IT population contained more information than the V4 population, but 

there was still some small amount of total target match information in V4. Thus, there 

might exist a readout rule that could give preferential weights to a small subpopulation 

V4 neurons with the most target match information, and via a different convergence rule 

(e.g. 3x times more V4 neurons than IT neurons), match the amount of task-relevant 

information in IT. To test this, we plan to compare different computational models with 
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the goal to model our IT responses based on V4 inputs. Notably, similar analyses from 

previous work in our lab (Pagan et al., 2016) have been successful at describing 

transformation between IT and PRH, though these areas were matched in their amounts 

of total target match information.  Regardless, these analyses will lend insight to 

potential connectivity rules between V4 and IT.  

 We demonstrated that within our IT population, the representation of target 

match information was behaviorally relevant, insofar as it co-varied with the monkeys’ 

behavior.  While this result is consistent with IT playing a role in the generation of 

behavior, we did not directly establish a causal link. Lastly, a previous study from our lab 

established that a downstream area, PRH, contains the same amount of total target 

match information as IT, but it is formatted in a more linearly separable way (Pagan et 

al., 2013). Both causal and descriptive studies further elucidating the remaining 

components of the circuit responsible for invariant search are thus needed.  

 

The role of signal and noise in determining task performance 
 

In Chapter 3, we focused on the recorded responses in IT from a neural coding 

perspective. In this study, we sought to understand the role that signal and noise play in 

determining task performance. This is particularly important for performance in complex 

visual tasks such as invariant object search, where our brains must combine multiple 

types of information to arrive at the task solution. We expected that modulations 

differentiating between whether an image was a target match versus a distractor (target 

match modulations) would act as signal for the invariant object search task, and all other 

response modulations (nuisance modulations, such as responses that differentiate 

between the visual identity of different objects regardless of whether they are a target 
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match) would act as performance-limiting noise. We found that, surprisingly, while 

nuisance modulation was large in IT, it had little impact on neural task performance.  

These results follow from a low spike count regime, which were a result of both 

short spike counting windows (constrained by the monkeys’ fast reaction times) and 

relatively low firing rates in IT cortex. In fact, our results suggest that at longer spike 

integration windows (with larger spike counts) or earlier brain areas with larger firing 

rates, the impact of nuisance variability on task performance will be greater. Specifically, 

within our data, we found an increase in the impact of nuisance modulation on task 

performance as a function of spike count window duration. However, this increase 

seems to begin to saturate at the end of our spike counting window (170 ms in length). 

Recent work has highlighted that the structure of trial variability deviates from a Poisson 

model, specifically, that trial variability is higher than the mean spike count, particularly 

for large spike counts (Goris et al., 2014). Together, these results imply that at longer 

spike integration windows, variability may deviate further from the Poisson model 

towards the end of a spike integration window. Thus, the ratio of trial variability to signal 

modulation might be expected to increase at these later time points. Since the small 

impact of nuisance on task performance in our data follows from large trial variability, 

what impact would such higher, supra-Poisson, trial variability have as spike counting 

windows are extended?  As our monkeys’ response times were quite short, we were 

unable to test this within the context of our data. Testing this in the context of a fixed 

duration task with a longer integration window may reveal more insights about the 

impact of noise on task performance.  
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These results follow from a low spike count regime, which were a result of both 

short spike counting windows (constrained by the monkeys’ fast reaction times) and 

relatively low firing rates in IT cortex. In fact, our results suggest that at longer spike 

integration windows (with larger spike counts) or earlier brain areas with larger firing 

rates, the impact of nuisance variability on task performance will be greater. Specifically, 

within our data, we found an increase in the impact of nuisance modulation on task 

performance as a function of spike count window duration. However, this increase 

seems to begin to saturate at the end of our spike counting window (170 ms in length). 

Recent work has highlighted that the structure of trial variability deviates from a Poisson 

model, specifically, that trial variability is higher than the mean spike count, particularly 

for large spike counts (Goris et al., 2014). Together, these results imply that at longer 

spike integration windows, variability may deviate further from the Poisson model and be 

larger and larger towards the end of a spike integration window. Since the small impact 

of nuisance on task performance in our data follows from large trial variability, what 

impact would even higher, supra-Poisson, trial variability have as spike counting 

windows are extended?  As our monkeys’ response times were quite short, we were 

unable to test this in the context of our data. Testing this in the context of a fixed duration 

task with a longer integration window may reveal more insights about the impact of noise 

on task performance.  
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