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ABSTRACT

CELLULAR SHEAVES AND COSHEAVES
FOR DISTRIBUTED TOPOLOGICAL DATA ANALYSIS

Hee Rhang Yoon

Robert W. Ghrist

This dissertation proposes cellular sheaf theory as a method for decomposing data
analysis problems. We present novel approaches to problems in pursuit and evasion
games and topological data analysis, where cellular sheaves and cosheaves are used
to extract global information from data distributed with respect to time, boolean con-
straints, spatial location, and density. The main contribution of this dissertation lies
in the enrichment of a fundamental tool in topological data analysis, called persistent
homology, through cellular sheaf theory. We present a distributed computation mecha-
nism of persistent homology using cellular cosheaves. Our construction is an extension
of the generalized Mayer-Vietoris principle to filtered spaces obtained via a sequence of
spectral sequences. We discuss a general framework in which the distribution scheme
can be adapted according to a user-specific property of interest. The resulting persis-
tent homology reflects properties of the topological features, allowing the user to per-
form refined data analysis. Finally, we apply our construction to perform a multi-scale
analysis to detect features of varying sizes that are overlooked by standard persistent
homology.
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Chapter 1

Introduction

1.1 An Introduction to Applied Topology

Applied topology is an extension of both the subject and the tools of topology. The sub-

ject of topology, in the context of data analysis, seeks an understanding of qualitative

features such as shape, inconsistencies, and obstructions in data. The tools of topology

allow one to combine locally gathered information or locally solved solutions to obtain

global information. The tools are often used to study topological information, but they

can also be applied to study questions that may not seem topological at first glance.

Applied topology embodies both the subject and the tools of topology, and the degree

of emphasis on the different aspects may vary depending on the application.

This dissertation focuses on two important aspects of applied topology: persistent

homology and cellular (co)sheaf theory. Persistent homology is a fundamental tool in

topological data analysis that extracts qualitative features of data and summarizes the

information in a barcode. Its use has revealed interesting features in various problems

in neuroscience [16], biology [22], sensor networks [25], and many other subjects. There

are various great sources for an introduction to persistent homology, including the sur-

vey articles [7] and [14]. A selection of topics from persistent homology that are most

closely relevant to this dissertation is provided in Chapter 2.

Cellular sheaf theory epitomizes the idea of extracting global information from local

data, rendering itself an ideal candidate for distributed computation tools. Topics from

cellular sheaf theory that are necessary for the understanding of this dissertation are

provided in Chapter 2. A selection of applications of sheaf theory that emphasizes
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different aspects of topological information and distribution are included in Chapter 2

and Chapter 3. A rich introduction to cellular sheaf theory can be found in [10].

This dissertation uses the tool of sheaf theory to strengthen persistent homology,

both in terms of the computation aspect (Chapter 4) and in terms of the information

revealed (Chapter 3 and Chapter 5).

1.2 Contributions

The main contributions of this dissertation are the following.

In Chapter 3, novel sheaf theoretic approaches to variations of pursuit and evasion

problems are proposed. Cellular sheaves and cosheaves are utilized to analyze data

distributed with respect to time and boolean relations.

In Chapter 4, a distributed computation scheme for persistent homology is pro-

vided using cellular cosheaves. The generalized Mayer-Vietoris principle [5], phrased

using the language of cellular (co)sheaf theory, provides a mechanism for computing

homology in a distributed manner. Our construction addresses the question of relating

the generalized Mayer-Vietoris sequences of filtered spaces. Let X1 ⊆ X2 ⊆ · · · ⊆ XN

be a filtration of a topological space. For each Xi, assume that there exists a finite open

cover Ui = {Ui
j}j∈J of Xi such that any triple intersection of members of Ui is trivial.

Furthermore, assume that there is a filtration U1
j ⊆ U2

j ⊆ · · · ⊆ UN
j for each j ∈ J.

Then, we obtain the following exact sequences.

· · · ⊕
j∈J

Hn(U1
j ) Hn(X1)

⊕
j,k∈J

Hn−1(U1
j ∩U1

k ) · · ·

· · · ⊕
j∈J

Hn(U2
j ) Hn(X2)

⊕
j,k∈J

Hn−1(U2
j ∩U2

k ) · · ·

...
...

...

· · · ⊕
j∈J

Hn(UN
j ) Hn(XN)

⊕
j,k∈J

Hn−1(UN
j ∩UN

k ) · · ·

f 1 g1

f 2 g2

f N gN
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We can compute the homology of spaces Xi with field coefficients as the following.

Hn(X1) ∼= coker f 1 ⊕ ker g1

Hn(X2) ∼= coker f 2 ⊕ ker g2

...

Hn(XN) ∼= coker f N ⊕ ker gN

We address the question of constructing the map Hn(Xi) → Hn(Xi+1) induced by in-

clusion Xi ↪→ Xi+1 from the direct sum decomposition of each homology. It turns out,

the most naturally induced maps ker gi → ker gi+1 and coker f i → coker f i+1 are not

enough to reconstruct the map Hn(Xi)→ Hn(Xi+1). We use spectral sequences to find

the missing ingredient.

In Chapter 5, we provide a framework for multiscale persistence using the dis-

tributed computation scheme introduced in Chapter 4. Given data with some charac-

teristic of interest such as density, proximity to a landmark, or time, this distributed

computation scheme returns a barcode that reflects properties of its represented fea-

ture. We apply our method to a point cloud whose feature size is inversely proportional

to the density of its constituent points. Our example illustrates the discerning power of

this distributed computation method to detect significant features that are overlooked

by the usual persistent homology method.
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Chapter 2

Preliminaries

This chapter provides an introduction to the two main subjects of this dissertation: per-

sistent homology (§2.1) and cellular sheaf theory (§2.2). While both persistent homol-

ogy and sheaf theory have a rich literature, this chapter contains a selection of topics

that are most closely relevant to this dissertation.

2.1 Persistent Homology

Persistent homology is a popular tool in applied topology that detects topological fea-

tures from data in a robust manner. The subject plays a central role in Chapter 4 and

Chapter 5 of this dissertation, where both its computation and the information con-

veyed are strengthened via cellular sheaf theory. In §2.1.1, we discuss some of the

fundamental ideas of persistent homology. In §2.1.2, we summarize a generalization of

persistent homology, called zigzag persistence. Morphisms of zigzag modules, intro-

duced in §2.1.3, provide tools for comparing zigzag modules. The zigzag modules and

their morphisms will be compared to cellular sheaves and sheaf morphisms in §2.2,

and the comparison will provide an understanding of cellular sheaf cohomology that

will be particularly useful in Chapter 5.

2.1.1 Persistent homology

Given some data, which is usually represented by a collection of points in some Eu-

clidean space Rd, information about the ‘shape’ of this data can provide insight into
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the underlying phenomenon that generates the data. Many data we encounter, how-

ever, come from a high dimensional space, and we can no longer rely on visualization

or projection techniques to faithfully extract information about the shape of the dataset.

Persistent homology, introduced by Edelsbrunner, Letscher, and Zomorodian [13] and

extended by Carlsson and Zomorodian [28], uses tools from algebraic topology to infer

global information about the shape of high dimensional datasets.

Given a space X, the topological properties of X can be summarized in a combina-

torial way using the nerve of a covering.

Definition 1. Given an open covering U = {Ui}i∈I of X, the nerve of the covering,

denoted by NU, is a family of non-empty finite subsets J ⊆ I such that

⋂
j∈J

Uj 6= ∅.

An n-simplex of NU corresponds to a non-empty intersection of n + 1 members of

U. When discussing the nerve of a covering, we will often identify the nerve NU with

its geometric realization instead of its definition as an abstract simplicial complex. A

particularly well-behaved covering U is called a good cover.

Definition 2. Given a topological space X, an open covering U of X is a good cover if

every non-empty finite intersection of members of U is contractible.

When we have a good cover U of X, the nerve NU captures the topology of X, as

stated by the following Nerve Lemma.

Lemma 1 (Nerve Lemma [20], [4]). Let X be a paracompact space and let U be a good cover

of X. Then, the nerve of U is homotopic to the union of sets in U.

Let’s switch our focus from understanding the topology of space X to ‘topology’ of

some data set. Data is often represented as a point cloud.

Definition 3. A point cloud P is a finite set of points of some Euclidean space Rm.
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Our goal is to build an analogous combinatorial representation of the underlying

space determined by a given point cloud. One of the most natural complexes one can

build from a point cloud is a Čech complex.

Definition 4. Given a point cloud P in Rd and a parameter ε, let Uε denote the collection

of ε-radius open balls centered at points of P. A Čech complex Cε with parameter ε is

a simplicial complex whose k-simplices correspond to (k + 1)-tuples of points from P

whose ε/2-radius balls have a nonempty intersection.

Note that the Čech complex is the nerve of Uε/2. It follows from the Nerve Lemma

that Čech complex Cε faithfully represents the topology of the union of open sets in

Uε/2. Constructing and storing a Čech complex, however, can be an expensive process,

so we consider building other complexes that are still informative topological models.

Another effective method of approximating the topology of a point cloud is to build

a Vietoris-Rips complex first introduced in [27].

Definition 5. The Vietoris-Rips complex Rε is an abstract simplicial complex whose

k-simplices correspond to (k + 1)-tuple of points from P that have pairwise distance

≤ ε.

For brevity, we will use the term “Rips complex” to refer to the Vietoris-Rips com-

plex.

Note that a Rips complex is an example of a flag complex, i.e., once we determine

the 1-skeleton, we can build the Rips complex by finding the maximal simplicial com-

plex with the given 1-skeleton. Such property gives Rips complex a computational

advantage over the Čech complex.

Even though Rips complexes are less expensive to compute and store, it is not im-

mediately clear whether Rips complexes are reasonable substitutes for Čech complexes.

The following theorem shows that Rips complexes are good approximations to Čech

complexes.
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Theorem 1 ([26]). There exist inclusions

Rε ⊂ Cε′ ⊂ Rε′

whenever ε′

ε ≥
√

2d
d+1 .

Thus, given ε and ε′ satisfying the conditions, a topological feature that exists in

both Rε and Rε′ must be a feature in Cε′ . Hence, it is important to study not only

the topological features of Rε and Rε′ individually, but also to examine which features

of Rε persist to features in Rε′ . Studying such relations among features in different

parameters lies at the heart of persistent homology.

Once we decide on which complex to build from a given point cloud P, we now face

the question of choosing the parameter ε that will build the most informative model.

However, it is impossible to know a priori which ε parameter leads to the most faithful

model. Moreover, as we have seen in Theorem 1, studying the relations among features

at various ε parameters can reveal crucial information. In fact, examining how features

evolve and die across parameters is what allows us to discern true topological features

from noise.

We thus consider an increasing family of parameters (εi)
N
i=1 and build a complex Xi

for each parameter εi. These complexes naturally have inclusion maps between each

pair, leading to the sequence

X1 ↪→ X2 · · · ↪→ XN .

One can apply the homology functor with coefficients in a field K to obtain the

sequence of vector spaces

H•(X1)→ H•(X2) · · · → H•(XN). (2.1)

The maps encode relations among homology classes of complexes. One might consider

homology classes that live across a large range of parameters as significant features
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while features that live across a short range of parameters can be considered as noise.

For example, consider the sequence of complexes in Figure 2.1.

FIGURE 2.1: A sequence of Rips complexes

By applying the homology functor in dimension 1, one obtains the following se-

quence of vector spaces

K
φ1−→ K2 φ2−→ K, (2.2)

where the map φ1 is represented by the matrix

1

1

 and the map φ2 is represented by

the matrix
[

1 0

]
. One can visualize maps φ1 and φ2 on the standard basis of each

vector space as in Figure 2.2.

FIGURE 2.2: Visualization of maps between vector spaces

Recall that we are interested in studying the birth and death parameters of homo-

logical features. Examining Figure 2.2, we can see that there is one feature at parameter

ε1, two features at parameter ε2, and one feature at parameter ε3. However, we quickly

run into some ambiguities when we attempt to make sense of the features while taking

the maps φ1 and φ2 into account: Are there two features across parameters, namely one

feature that is born at parameter ε1 and persists until parameter ε3, and another fea-

ture that is born at parameter ε1 that persists until parameter ε2? Does this contradict
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the fact that there is only one feature at parameter ε1? How can we discuss birth and

death times of features when it is not even clear how to determine features from the

sequence?

In order to examine the sequence from Equation 2.1 in a systematic manner, we

take advantage of the underlying algebraic structure as described by Zomorodian and

Carlsson [28].

Definition 6. Let R be a commutative ring with unity. A persistence module M is

a family of R-modules Mi with morphisms φi : Mi → Mi+1. A persistence module

M = {Mi, φi} is of finite type if each component module is finitely generated, and if

the maps φi are isomorphisms for i ≥ m for some integer m.

Consider the following graded module

α(M) =
∞⊕

i=1

Mi

over R[t], where the action of t shifts the elements of the module up in degree. The

above α establishes an equivalence of categories between category of persistence mod-

ules of finite type over R and the category of finitely generated non-negatively graded

modules over R[t].

Thus, in order to classify the persistence modules, we can instead classify finitely

generated non-negatively graded modules over R[t]. Note that classifying such mod-

ules over R[t], in general, is an extremely difficult problem. (Consider R = Z).

However, when R is a field K, then the graded ring K[t] is a principal ideal domain,

and every ideal of K[t] has the form tn ·K[t]. By the Structure Theorem for finitely

generated modules over principal ideal domains, we obtain the following Theorem.

Theorem 2 (Structure Theorem [28]). Every graded module M over a graded PID over K[t]

decomposes uniquely into the form

(⊕
i

tui K[t]
)
⊕
(⊕

j

tvj(K[t]/(twj ·K[t]))
)

(2.3)
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Let’s revisit the sequence from Equation 2.1 and call it V. Note that V is a persis-

tence module of finite type. The Structure Theorem states that

V ∼=
(⊕

i

tui K[t]
)
⊕
(⊕

j

tvj(K[t]/(twj ·K[t]))
)
.

In order to obtain such decomposition of the persistence module, we need to find

a basis for this module V that is compatible with all the vector spaces, i.e., we need a

change of basis so that all maps of Equation 2.1 become diagonal matrices with 1’s and

0’s on the diagonals. The Structure Theorem guarantees that there exists such change

of basis.

Each free portion tui K[t] corresponds to a homology class that is born at H•(Xuj).

Each torsion portion tvj(K[t]/(twj ·K[t])) corresponds to a homology class that is born

at H•(Xvj) and dies at H•(Xvj+wj). Such birth and death times of homology classes of

H•(X; K) can be summarized using a set of intervals of the form (ui, ∞) and (vj, vj +

wj). Note that (vj, vj + wj) represents a homological feature born at parameter vj that

lasts until parameter vj + wj − 1.

One can visualize such birth and death times of homology classes using a barcode.

Given a persistence module V, a barcode, denoted barcode(V) is a collection of bars

that correspond to the intervals obtained from the decomposition of V.

Let’s return to the example persistence module from Equation 2.2. With the appro-

priate change of basis, we can express the persistence module with respect to the new

basis as the following

K
φ1−→ K2 φ2−→ K,

where φ1 is represented by the matrix

1

0

 and the map φ2 is represented by the matrix

[
1 0

]
. The barcode for this persistence module is illustrated in Figure 2.3.

Given a persistence module

H•(X1)→ H•(X2) · · · → H•(XN),
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FIGURE 2.3: Barcode

the number of bars that span the parameter interval [i, j] in barcode(V) equals the rank

of the map from H•(Xi) to H•(Xj) in the persistence module. For instance, in Figure

2.3, there is one interval spanning from ε1 to ε3, which equals the rank of the map

φ2 ◦ φ1.

FIGURE 2.4: Point cloud and barcode

In general, when considering a wide range of ε parameter values, as illustrated in

Figure 2.4, the long bars of the barcode capture significant features while the short bars

correspond to noise. Barcodes, thus, provide qualitative means of distinguishing es-

sential topological features from noise without requiring the user to select a particular

value of parameter ε. Barcodes, or an equivalent visualization technique called persis-

tence diagrams, are stable with respect to changes in input [9], and there exist efficient

algorithms for computations [17]. For a survey of computation methods for persistent

homology, we direct the reader to [23].
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Remark. Throughout this dissertation, all homologies will be computed with re-

spect to coefficients in a field K.

2.1.2 Zigzag persistence

Persistent homology can be a powerful tool for studying topological features, but its

usage depends on having a nested family of spaces. There are situations where it is

natural to consider a sequence of spaces that have more interesting relations. Consider

the following point cloud in Figure 2.5.

FIGURE 2.5: Point cloud with varying density

Let’s say we are interested in studying how topological features change as we ex-

amine points with various density values. Note that there are various ways to esti-

mate the density around a point p. For instance, one can count the number of points

in an ε-neighborhood of p, or one can compute the distance to the kth nearest point.

Given a density estimate ρ(p) for each point p, let X1 be a complex built among points

whose density lies above the 25th percentile, and let X2 be a complex built among points

whose density lies below the the 75th percentile. Note that there is no natural inclusion

between the two complexes, making it difficult to compare the complexes X1 and X2.

What one can do is to build a third complex X1,2 from points whose density lies above

the 25th percentile and below the 75th percentile. Then, there are natural inclusion maps

X1 ←↩ X1,2 ↪→ X2.
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Applying the homology functor, we obtain the following sequence of vector spaces

H•(X1)← H•(X1,2)→ H•(X2) (2.4)

Studying the above sequence would reveal how topological features change as we

filter data at different density levels. The work of de Silva and Carlsson [8] on zigzag

persistence generalizes the theory of persistent homology to address such situations.

For the purpose of this thesis, we will interpret certain cellular cosheaves as zigzag

persistence to understand cellular cosheaf homology.

Definition 7. A zigzag module is a sequence of vector spaces over a field K and linear

maps

V1 ↔ V2 ↔ · · · ↔ Vn

where each↔ can represent either a forward map→ or a backward map←.

We call such a zigzag module V with n-number of vector spaces as having length

n. Note that a persistence module is a zigzag module where all the maps are forward

maps.

As we have done so with persistence modules, we would like a principled method

of classifying such zigzag modules. We can show that zigzag modules have a nice

decomposition into building blocks called interval modules.

Definition 8. An interval module with birth time b and death time d is written I(b, d),

and defined as the zigzag module

0↔ . . . 0↔ K
1←→ K

1←→ . . . 1←→ K↔ 0↔ · · · ↔ 0,

where

I(b, d)i =


K if b ≤ i ≤ d

0 otherwise.

The linear maps are identity maps between adjacent pairs of K, and zero maps other-

wise.
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The simplest form of Gabriel’s Theorem tells us that any finite zigzag module can

be described up to isomorphism.

Theorem 3 (Gabriel’s Theorem, [12]). A finite zigzag module V can be decomposed as

V ∼=
N⊕

l=1

I(bl , dl).

Given such decomposition, the zigzag persistence of V of length n is the multiset

Pers(V) = {[bj, dj] ⊆ {1, . . . , n}|j = 1, . . . , N}.

Each interval [bj, dj] corresponds to a homological feature that is born at parameter bj

and dies at parameter dj. Thus, a long interval corresponds to a feature that is sta-

ble across varying parameter values. The set of intervals Pers(V) can be represented

pictorially as a barcode.

Zigzag persistence expands the subject of persistent homology by relaxing the re-

quirement that a space needs to be filtered in one direction. Zigzag persistence is partic-

ularly important in this dissertation as it provides an interpretation of specific cellular

sheaves and cosheaves. The correspondence between the specific cellular sheaves and

zigzag persistence will be established in §2.2. Such perspective will be particularly

useful in understanding certain properties of features in Chapter 5.

2.1.3 Morphisms of zigzag modules

Data often comes with multiple parameters that influence the analysis process, and a

comparison framework across various parameters becomes useful in such situations.

For example, the zigzag module

V : H•(X1)← H•(X1,2)→ H•(X2)
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in Equation 2.4 was built from a sequence of complexes

X1 ←↩ X1,2 ↪→ X2,

where each complex Xi was built from subsets Pi of point cloud P. Recall that building

a complex from a set of points requires a proximity parameter ε. If we were to build a

sequence of complexes on the same subsets Pi’s using a larger proximity parameter ε′,

we would then obtain a different sequence of complexes

X′1 ←↩ X′1,2 ↪→ X′2,

leading to a different zigzag module

V′ : H•(X′1)← H•(X′1,2)→ H•(X′2).

A morphism of persistence modules allows us to compare the two different zigzag

modules V and V′.

Definition 9. Let V and W be zigzag modules such that the linear maps Vi ↔ Vi+1

and Wi ↔ Wi+1 are both forward or both backward maps for every i. A morphism

of zigzag modules α : V → W is a collection of linear maps α : Vi → Wi that are

compatible with the maps of V and W.

The compatibility condition of the above definition refers to the fact that the follow-

ing diagram commutes.

V1 V2 · · · Vn

W1 W2 · · · Wn

α1 α2 αn
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For our example, the two sequence of complexes built on different proximity pa-

rameters are related by the following inclusion maps.

X1 X1,2 X2

X′1 X′1,2 X′2

Applying the homology functor results in the following morphism α : V → V′ of

zigzag modules.

H•(X1) H•(X1,2) H•(X2)

H•(X′1) H•(X′1,2) H•(X′2)

Morphisms of persistence modules allow us to compare two different persistence

modules V and W. For example, if the vector spaces of V and W model the same data

at different time points, then a morphism α : V→W allows us to compare data across

time.

In particular, when each α : Vi → Wi is an isomorphism, then we call α : V → W

to be an isomorphism of zigzag modules. Given a zigzag module V, the decomposition

from Gabriel’s Theorem (Theorem 3) is an isomorphism between V and the direct sum

of interval modules
N⊕

l=1
I(bl , dl). Thus, if V and V′ are isomorphic zigzag modules, then

the two zigzag modules must have identical barcodes. Given a persistence module V

of interest, efficient computation of an isomorphic persistence module V′ would then

lead to a faster computation of the barcode. In Chapter 4, we find the barcode of a

persistence module V by computing an isomorphic persistence module in a distributed

manner.

2.2 Cellular Sheaves and Cosheaves

Cellular sheaves and cosheaves are systematic tools for encoding local data and rela-

tions to extract global information. The practice of inferring global structure from local
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computations renders cellular sheaf theory well suited for distributed systems. This

section provides a summary of topics from cellular sheaf theory that are utilized in

Chapters 3, 4, and 5 of the dissertation. This section contains a collection of examples

selected to communicate different intuitions and a variety of problems modeled via

cellular sheaves. While some examples are substantial, many of the examples are fun

and simple illustrations. The reader may safely skip the examples and move on to the

next chapter.

We introduce cellular sheaves and cellular sheaf cohomology in §2.2.1 and §2.2.2.

Sheaf morphisms in §2.2.3 are the main tools that allow us to study changes in global

structure from local changes in data. In §2.2.4, we provide the machinery for examining

the changes that occur when the base space evolves. An important connection between

zigzag persistence and cellular sheaf cohomology is established in §2.2.5.

2.2.1 Cellular sheaves and cosheaves

A cellular sheaf is an assignment of algebraic structure to a cell complex. We direct the

reader to [10] for a review of definitions involving cell complexes. Given a cell complex

X, there is a cell category whose objects are the cells of X. Given a pair of cells τ and

σ such that τ is a face of σ, this category assigns a unique morphism τ → σ. Let τ E σ

denote the face relation τ ⊂ σ̄.

Definition 10 ([24], [10]). A cellular sheaf F on a cell complex X with values in category

D is a covariant functor from the associated cell category to D, i.e., F is a mapping that

• for each cell σ of X, assigns an object F(σ) in D, called local section of F on σ, and

• for each face relation τ E σ, assigns a restriction map F(τ E σ) : F(τ) → F(σ)

such that

◦ F(τ E τ) : F(τ)→ F(τ) is the identity morphism for every cell τ, and

◦ if ρ E τ E σ, then F(ρ E σ) = F(τ E σ) ◦ F(ρ E τ).
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Dually, a cellular cosheaf G on a cell complex X with values in category D is a

contravariant functor from the associated cell category to D. The morphism G(τ E

σ) : G(σ) → G(τ) assigned for each pair of cells with face relation τ E σ is called an

extension map.

In this thesis, we will mostly be studying sheaves and cosheaves with values in the

category of vector spaces. We will occasionally examine sheaf of sets and cosheaf of

sets, which have values in the category of sets.

Once we construct a cellular sheaf or a cosheaf on X, we want to use algebraic tools

to extract useful information about our construction. One natural question to ask is

whether there are elements of the local sections that are compatible with the restriction

maps or the extension maps. Such is the idea of a global section. A global section

of sheaf F on X, denoted F(X), is a collection of elements of local sections that are

compatible with the restriction maps, i.e.,

F(X) = {~s ∈ ∏
σ∈X

F(σ) | sσ = F(τ E σ)sτ}.

Given a cosheaf G on X, the global sections of G is given by

G(X) =
⊕
σ∈X

G(σ)/ ∼,

where sσ ∈ G(σ) and sτ ∈ G(τ) have equivalence relation sσ ∼ sτ if

sτ = G(τ E σ)sσ.

The global section of cosheaf G is not a collection of compatible local sections.

Rather, it is a collection of local sections where elements that are mapped from higher

dimensional cells are identified. One might think that it’s unnatural that the global

sections on sheaves and cosheaves seem to have such different definitions. However,

when the definitions are written in terms of limits and colimits [19], one can see that

the definitions are dual to each other.
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Definition 11. Given a sheaf F on X, the global section is

F(X) := lim←−−−
σ∈X

F(σ).

Similarly, given a cohseaf G on X, the global section is

G(X) := colim−−−−−−→
σ∈X

G(σ).

Example 1. Recall the zigzag module from Equation 2.4. This zigzag module can be

considered as a cosheaf on a cell complex as illustrated in Figure 2.6a. The local sections

on the vertices are H•(X1) and H•(X2). The local section on the edge is H•(X1,2), and

the extension maps are the morphisms induced by inclusion of complexes. Dually, one

can construct a cellular sheaf F on the same cell complex as the following. Let the local

sections on the vertices be H•(X1) and H•(X2), as before. Let the local section on the

edge be H•(X), where X is a complex built using all points of the point cloud P. Let the

restriction maps be the morphisms H•(X1) → H•(X) and H•(X2) → H•(X) induced

by the inclusion of complexes. Such sheaf F is illustrated in Figure 2.6b. The global

section of this sheaf is a collection of homology classes (s, t) ∈ H•(X1)⊕ H•(X2) such

that s and t are mapped to the same homology class in H•(X) via the restriction maps.

Thus, the global section represents the homology classes that exist in both X1 and X2.

(A) Cosheaf (B) Sheaf

FIGURE 2.6: Zigzag modules as cellular cosheaves and sheaves

2.2.2 Cellular sheaf cohomology and cellular cosheaf homology

Homology and cohomology provide the algebraic tools to study cellular sheaves and

cosheaves. Ideally, given a data system, we want to construct sheaves and cosheaves

whose homology and cohomology reveal interesting information about the data. This
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section was written with the intention to communicate as much intuition about sheaf

cohomology and cosheaf homology as possible. The examples, in particular, were cho-

sen to convey various perspectives of sheaf cohomology and cosheaf homology. For

the remainder of this thesis, we will assume that all our sheaves and cosheaves have

values in vector spaces unless stated otherwise. Moreover, we will restrict ourselves to

situations where cell complexes are compact.

Given a cellular sheaf F over a compact cell complex X, let

Cn(X,F) =
⊕

dim σ=n

F(σ).

Define ∂n : Cn(X,F)→ Cn+1(X,F) by

∂n(sτ) = ∑
τEσ

[τ : σ]F(τ E σ)(sτ),

where [τ : σ] is the incidence number: for τ a codimension-1 face of σ, [τ : σ] = 1 if the

attaching map of σ preserves the induced orientation from ∂σ→ τ, and [τ : σ] = −1 if

orientation is reversed. If τ is not a codimension-1 face of σ, then [τ : σ] = 0. One can

show that ∂n+1 ◦ ∂n = 0, and obtain the following cochain complex

(C•F, ∂•) = 0 −→
⊕

dim σ=0

F(σ)
∂0

−→
⊕

dim σ=1

F(σ)
∂1

−→
⊕

dim σ=2

F(σ)
∂2

−→ · · · .

For brevity, we will denote the above cochain complex by C•F.

Definition 12 ([24]). Given a cellular sheaf F on X, the sheaf cohomology of F is the

cohomology of the cochain complex C•F.

In other words, the sheaf cohomology in dimension n is ker ∂n/ im ∂n−1. We will

denote sheaf cohomology by Hn(C•F).

Dually, given a cellular cosheaf G over a compact cell complex X, let

Cn(X,G) =
⊕

dim σ=n

G(σ),
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and define ∂n : Cn(X,G)→ Cn−1(X,G) by

∂n(sσ) = ∑
τEσ

[τ : σ]G(τ E σ)(sσ).

One can again show that ∂n−1 ◦ ∂n = 0 and obtain the following chain complex

(C•G, ∂•) = · · ·
∂3−→

⊕
dim σ=2

G(σ)
∂2−→

⊕
dim σ=1

G(σ)
∂1−→

⊕
dim σ=0

G(σ)
∂0−→ 0. (2.5)

For brevity, we will denote the above chain complex by C•G.

Definition 13. Given a cellular cosheaf G on X, the cosheaf homology of G is the ho-

mology of the chain complex C•G.

Note that we have assumed our base space to be a compact cell complex X. A more

general definition of cellular sheaf cohomology and cosheaf homology is introduced in

[10]. We now provide a variety of examples that emphasize different interpretations of

cellular sheaf cohomology and cosheaf homology.

One of the useful ways to think of H0(C•F) and H0(C•G) is to view them as the

global sections of sheaf F and cosheaf G respectively.

Lemma 2. Given a sheaf F on X,

H0(C•F) = F(X). (2.6)

Given a cosheaf G on X,

H0(C•G) = G(X). (2.7)

This Lemma shows that global sections of sheaves and cosheaves are completely

determined by local sections on the 0-cells and 1-cells. Recall from Definition 11 the

limit and colimit definitions of global sections of sheaves and cosheaves. Then, Lemma

2 and Definition 11 implies that the global section on X is determined by the local

sections on the 0 and 1 dimensional cells, i.e., two sheaves F and F′ on X have the same

global sections if the local sections and the maps agree on the 1-skeleton of X. In fact,
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one can show that for any sheaf F on X, the limit over X can be computed by the limit

over the 1-skeleton of X.

Lemma 3. Given a cell complex X, and F on X,

lim←−−−
σ∈X

F(σ) = lim←−−−
σ∈X,

dim σ≤1

F(σ).

Dually, given a cosheaf G on X,

colim−−−−−−→
σ∈X

G(σ) = colim−−−−−−→
σ∈X,

dim σ≤1

G(σ).

The following selection of examples illustrate a few interpretations of sheaf coho-

mology and cosheaf homology.

Example 2. One natural way to interpret cosheaf homology is to consider it as an ex-

tension of homology in data. Homology with field coefficients detects the holes in the

underlying space. Similarly, one can consider cosheaf homology as reading ‘holes’ in

the data above the space. For example, consider a map f : X → R illustrated in Fig-

ure 2.7. Let V = {B, R} be an open cover of f (X). One can define a cosheaf G on

the nerve NV (Definition 1) as the following. For each σ ∈ NV, let G(σ) be the 0th ho-

mology functor with field coefficients applied to the preimage of the corresponding

set under f , i.e., G(vB) = H0( f−1(B)) and G(vR) = H0( f−1(R)). For eBR ∈ NV, let

G(eBR) = H0( f−1(B ∩ R)). The extension maps are naturally induced. Such construc-

tion is a Leray cellular cosheaf [6]. Figure 2.8 illustrates the cosheaf G.

The extension maps are each represented by the matrix
[

1 1

]
. One can compute

H1(C•F) = K, which one can interpret as reading the hole in space X. The idea of

sheaves and cosheaves as tools for summarizing homological and cohomological in-

formation among data is explored further in Chapter 4.

Example 3. Another valuable interpretation of sheaf cohomology is to consider it as

detecting global inconsistencies in data. To make this idea concrete, we will first revisit
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FIGURE 2.7: A map f : X → R and a cover V of f (X)

FIGURE 2.8: Visualization of cellular cosheaf

cohomology through the lens of detecting inconsistency, and we will extend the idea

to sheaf cohomology. Let F be the constant sheaf on a 2-cell illustrated in Figure 2.9.

Consider the local sections on the 0-cells as representing values for three different vari-

ables x, y, and z. Consider the local sections on the 1-cells xy, yz, and xz as representing

the differences between values of adjacent 0-cells. For instance, a ∈ F(xy) implies that

y− x = a. Thus, we can consider local sections on 1-cells as encoding relations among

pairs of variables.

FIGURE 2.9: Constant sheaf on a 2-cell

The cochain complex for sheaf F is the following.
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C•F : 0→ K3 ∂0

−→ K3 ∂1

−→ K→ 0.

Now, consider H1(C•F) = ker ∂1/ im ∂0. Note that dimension of ker ∂1 is 2. A

particular basis for ker ∂1 is illustrated in Figure 2.10 .

FIGURE 2.10: Basis elements of ker ∂1

Interpreting these basis of ker ∂1 as indicating relations among variables as we men-

tioned earlier, the first basis element on the left of Figure 2.10 corresponds to the system

of equations 
y− x = 1

z− y = −1

z− x = 0,

and the second basis element on the right of Figure 2.10 corresponds to the equations


y− x = 1

z− y = 0

z− x = 1.

If (sxy, syz, sxz) ∈ F(xy)⊕ F(yz)⊕ F(xz) is an element of ker ∂1, then the variables

must satisfy the relations sxy + syz + sxz = 0, or sxy + syz = −sxz. What this implies is

that given two equations corresponding to each element, the third equation is uniquely

determined in a manner consistent with the map ∂1. For instance, considering the first

basis element of ker ∂1, any two equations, say y− x = 1 and z− y = −1 determines
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the third equation, z− x = 0. Thus, ker ∂1 represent relations among variables that are

compatible with the restriction maps from 1-cells to 2-cells.

On the other hand, im ∂0 represents relations that can arise from actual data that are

assigned to the variables. Then, H1(C•F) = ker ∂1/ im ∂0 represents the relations that

cannot arise from the true values of the variables. For the example from Figure 2.9, one

can check that H1(C•F) = 0, implying that any relations among variables compatible

with the restriction map into 2-cells actually arises from data assignment of variables

x, y, and z.

Example 4. Let’s now consider a sheaf with nontrivial first cohomology. Consider the

game of rock-paper-scissors. Let x represent rock, y represent paper, and z represent

scissors. The pairwise relations among rock, paper, scissors can be represented by the

following equations.


y− x = 1

z− y = 1

x− z = 1

One can represent such game via sheaf F illustrated in Figure 2.11.

FIGURE 2.11: Game of rock-paper-scissors as a cellular sheaf

Then, ker ∂1 are elements (sxy, syz, sxz) ∈ F(xy)⊕F(yz)⊕F(xz) that satisfy 0 ∗ sxy +

0 ∗ syz + 0 ∗ sxz = 0, i.e., all the relations among variables represented by sxy, syz, sxz can

be completely independent. Taking the quotient of ker ∂1 by im ∂0 then eliminates those

relations that arises from data assignment to x,y, and z. Then, the fact that H1(C•F) 6= 0
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implies that there exist relations among x, y, z that cannot be realized via values as-

signed to the variables, namely, the fact that there are partial orders among the vari-

ables, but the fact that there isn’t a global ordering of the variables.

Example 5. With this perspective of H1(C•F) as an indicator of some form of struc-

tural inconsistency or impossibility, consider the example from Figure 2.12, where the

restriction maps are both given by

1

1

 . Let x, y each be the variable represented by the

0-cells. The local section on the 1-cell can be represented by the following equations,

each equation representing a component of K.

FIGURE 2.12: A cellular sheaf


y− x = a

y− x = b

While the relation y − x = a is possible for any value of a, it is impossible for

data assigned to x and y to satisfy the above equations simultaneously if a 6= b. Such

inconsistency in relations is reflected by the fact that H1(C•F) 6= 0.

2.2.3 Sheaf and cosheaf morphisms

We have so far seen that sheaf cohomology and cosheaf homology can reveal interest-

ing information about data. Their real power, however, becomes even clearer when

we compare cohomology and homology across different sheaves and cosheaves. Sheaf

morphism is the tool that allows us to extract stable information from various sheaf

constructions in Chapter 4 and Chapter 5.

Given multiple data systems encoded via different sheaves on a fixed base space,

sheaf morphisms provide tools for transforming data from one system to another.
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Definition 14 ([6]). Let F and F′ be sheaves on X. A sheaf morphism φ : F → F′ is a

transformation between local sections that respects restriction maps.

In other words, for each cell σ ∈ X, there exists a homomorphism φ|σ : F(σ) →

F′(σ) such that for each face relation τ E σ, the following diagram commutes :

F(τ) F′(τ)

F(σ) F′(σ)

F(τEσ)

φ|τ

F′(τEσ)

φ|σ

Thus, a sheaf morphism φ : F → F′ is a natural transformation from the functor F

to F′. Sheaf morphisms are useful tools of transforming data over a fixed base space.

The dual notion cosheaf morphism can be defined analogously.

Given a sheaf morphism φ, let φn be the collection of morphisms φ|σ on n-cells σ. Let

∂, ∂′ be the coboundary maps of F,F′ respectively. Then, every square of the following

diagram commutes.

· · · ⊕
dim σ=n−1

F(σ)
∂n−1

−−−→ ⊕
dim σ=n

F(σ)
∂n
−−−→ ⊕

dim σ=n+1
F(σ) · · ·yφn−1

yφn

yφn+1

· · · ⊕
dim σ=n−1

F′(σ)
∂′n−1

−−−→ ⊕
dim σ=n

F′(σ)
∂′n−−−→ ⊕

dim σ=n+1
F′(σ) · · ·

Since the sheaf morphism φ defines a cochain map φ• : C•F → C•F′, they induce

moprphisms Hn(φ) : Hn(C•F)→ Hn(C•F′) for every n. Similarly, a cosheaf morphism

ψ : G → G′ defines a chain map ψ• : C•G → C•G′, which induces homomorphism

Hn(ψ) : Hn(C•G)→ Hn(C•G′) for every n.

Lemma 4. A sheaf morphism φ : F → F′ induces morphisms

Hn(φ) : Hn(C•F)→ Hn(C•F′)
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for every n. A cosheaf morphism ψ : G→ G′ induces morphisms

Hn(ψ) : Hn(C•G)→ Hn(C•G′)

for every n.

The map Hn(φ) reveals the features of Hn(C•F) that persist to Hn(C•F′). One can

extend this idea to a collection of sheaves F1, . . . ,Fk with sheaf morphisms φi,i+1 :

Fi → Fi+1 between adjacent pair of sheaves and examine the sequence of induced

morphisms Hn(C•F1)→ Hn(C•F2)→ · · · → Hn(C•Fk).

In fact, a sheaf morphism between Fi and Fi+1 does not have to be oriented in the

direction of increasing indices. Consider a zigzag diagram of sheaf morphisms

F1 ↔ F2 ↔ · · · ↔ Fk

where each ↔ between Fi and Fi+1 represents either a sheaf morphism Fi → Fi+1 or

Fi ← Fi+1. Since each sheaf morphism induces a morphism of sheaf cohomology, the

zigzag diagram of sheaf morphisms induces a zigzag module of sheaf cohomology:

Hn(C•F1)↔ Hn(C•F2)↔ · · · ↔ Hn(C•Fk)

for each n. The above zigzag module can be decomposed into interval modules, ac-

cording to Theorem 3. We can represent the decomposition via barcodes, which then

represents the birth and death of sheaf cohomology classes. Similarly, given a sequence

of cosheaves and morphisms between each pair of cosheaves, one obtains a zigzag

module of cosheaf homology :

Hn(C•G1)↔ Hn(C•G2)↔ · · · ↔ Hn(C•Gk).
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Let’s now consider a special kind of sheaf morphism. Let F,G, and H be cellular

sheaves on X such that

0→ F(σ)→ G(σ)→ H(σ)→ 0

is exact for all σ ∈ X. We then say that

0→ F → G→ H→ 0

is a short exact sequence of sheaves over X. This leads to a long exact sequence of sheaf

cohomology

· · · → Hn−1(C•H)→ Hn(C•F)→ Hn(C•G)→ Hn(C•H)→ · · · .

The following instance of long exact sequence comes in particularly handy when

studying obstructions to extensions of local data. Let A be a subcomplex of X. Given a

sheaf G on X, let G|A be the restriction of G to A, and let G|X−A be the complementary

restriction of G. Then, we have a short exact sequence of sheaves

0→ G|X−A → G→ G|A,

which results in the following long exact sequence of sheaf cohomology.

0→ H0(C•G|X−A)→ H0(C•G) r−→ H0(C•G|A)
δ−→ H1(C•G|X−A)→ H1(C•G)→ · · ·

Given an element sA ∈ H0(C•G|A), an extension of sA to the entire complex X

is an element s ∈ H0(C•G) such that r(s) = sA. By exactness, im r = ker δ. Thus,

sA ∈ H0(C•G|A) is extendable if and only if δ(sA) = 0. We can hence consider δ as

representing obstruction to extending sections on A to global sections on X. One can

address several interesting questions by using this obstruction.
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The following examples were selected to illustrate the use of sheaf morphisms in

detecting paradoxical information. The reader familiar with sheaf morphisms may

safely skip the following examples and move on to §2.2.5.

Example 6. The long exact sequence of sheaf cohomology plays a central role in work

by Abramsky, Barbosa, Kishida, Lal, and Mansfield [1] in detecting contextuality in

physical systems. Contextuality is a foundational concept in quantum theory which

states that the measurement result of an observable does not have a preset value, but

the result depends on the specific experiments used to measure the observable. Qubits,

or quantum bits, are 2-state quantum systems, such as the spin of a particle, photon

polarization, and atomic orbitals. A qubit is an element of a 2-dimensional Hilbert

space, and its state can be written as a unit vector

α

β

 ∈ C2. It is commonly expressed

as a superposition of its two states |0〉 and |1〉 using the Dirac notation

|ψ〉 = α|0〉+ β|1〉

such that α, β ∈ C and |α|2 + |β|2 = 1. In order to know the state of the qubit, we make

a measurement with respect to the standard basis {|0〉, |1〉}, which results in 0 with

probability |α|2 and 1 with probability |β|2. In fact, we can perform measurements

with respect to any orthonormal basis {|v〉, |w〉} as the following. We first express

|ψ〉 with respect to this new basis as |ψ〉 = α′|v〉 + β′|w〉. Then, our measurement

will return v with probability |α′|2 and w with probability |β′|2. An important aspect

of measurement is that the measurement process alters the state. For instance, if the

outcome of the measurement with respect to the standard basis returns 0, then α is

changed to 1, and β is changed to 0.

Consider a system of two qubits, which reflects quantum states of several particles.

Such system of two qubits has four states

|ψ〉 = α00|0〉 ⊗ |0〉+ α01|0〉 ⊗ |1〉+ α10|1〉 ⊗ |0〉+ α11|1〉 ⊗ |1〉,
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where each αij ∈ C and ∑i,j |αij|2 = 1. Again, one can interpret each |αij|2 as the

probability of obtaining a measurement outcome of i in the first qubit and j in the

second qubit.

Suppose we have two qubits, |ψ1〉 = α|0〉+ β|1〉 and |ψ2〉 = α′|0〉+ β′|1〉. Interpret-

ing the qubit expressions as probabilities of measurement outcomes, it seems quite rea-

sonable to express the joint qubit as |ψ1〉 ⊗ |ψ2〉 = αα′|0〉 ⊗ |0〉+ αβ′|0〉 ⊗ |1〉+ βα′|1〉 ⊗

|0〉+ ββ′|1〉 ⊗ |1〉. However, there are two qubit states that cannot be decomposed as

such individual states. A two qubit state |ψ〉 that can be expressed as |ψ1〉 ⊗ |ψ2〉 is

called disentangled or separable. If |ψ〉 cannot be decomposed as such, then |ψ〉 is said

to be entangled. For example, the following state

|Φ+〉 = 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

is entangled. Entanglement is a phenomenon that occurs from interactions of individ-

ual states which results in a correlation of the states even after being separated by a

large distance.

Consider a scenario in which two agents, Alice and Bob, each have access to one

qubit of an entangled 2-qubit state. Alice can perform measurements a1 and a2 on the

first qubit, and Bob can perform measurements b1 and b2 on the second qubit. Note that

the different measurements on each qubit refer to different sets of orthonormal basis.

Assume that Alice and Bob communicate with each other the outcome of their mea-

surements. The result can be summarized in a table that shows whether a particular

outcome was observed or not. For example, Table 2.1 illustrates the Popescu-Rohrlich

(PR) box.

A B (0, 0) (0, 1) (1, 0) (1, 1)
a1 b1 1 0 0 1
a1 b2 1 0 0 1
a2 b1 1 0 0 1
a2 b2 0 1 1 0

TABLE 2.1: Popescu-Rohrlich (PR) box.
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Each row represents the possible measurements made by Alice and Bob simultane-

ously. The ones indicate that a particular outcome (column) of a measurement (row) is

possible, and the zeros indicate that a particular outcome is impossible.

In a classical system, the observables have a state, and the result of our measure-

ments reflect this true state. In particular, the outcome should always reflect the physi-

cal truth, and hence should be independent of the measurements performed. However,

this viewpoint fails to capture the nature of microphysical systems.

The PR box represented as a bundle is illustrated in Figure 2.13. The possible out-

comes 0 and 1 are the fibers over the variables. We connect two outcomes with an edge

when the outcomes can be measured together. A global section is a closed path that

traverses the fibers exactly once.

FIGURE 2.13: The PR box represented as a bundle

Logical contextuality refers to a system in which local assignment, as observed by

each measurement, cannot be extended to a compatible global assignment. For ex-

ample, the section (a1, b1) = (0, 0), marked by the red edge in Figure 2.13, cannot be

extended to a global section. Thus, PR box is logically contextual.
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Strong contextuality refers to a system in which no global assignment is consistent

with the measurement. One can see from Figure 2.13 that PR box is strongly contextual.

Abramsky et all formalized such bundle representation as a sheaf and examined

the Čech cohomology of a sheaf [6] with respect to a particular cover M for indications

of contextuality. We summarize their construction in terms of cellular sheaves on the

nerve of the cover NM.

Let X be a finite set of variables. Let Ci be subsets of X, which is a collection of

variables that can be measured together in one experiment. Assume that M = {Ci} is a

cover of X that contains only the maximal measurements, i.e., if C, C′ ∈M and C ⊆ C′,

then C = C′. Let O denote the set of possible values of each variable in X. Note that

the possible values do not have to be uniform for all variables in X, but we will assume

that such is the case for now. For the PR box example, X = {a1, a2, b1, b2}, and M =

{C0, C1, C2, C3}, where C0 = {a1, b1}, C1 = {a1, b2}, C2 = {a2, b1}, and C3 = {a2, b2}.

Let NM be the nerve (Definition 1) of this covering M. Construct a sheaf F of sets

on NM as the following. For each n-simplex σi0,...,in ∈ NM that corresponds to an in-

tersection of measurement contexts, Ci0 , . . . , Cij , let F(σi0,...,in) be the set of outcomes

possible via every measurements Ci0 through Cin , i.e., if x0, . . . , xm are the variables that

are being commonly observed by measurements Ci0 , . . . , Cin , then

F(σi0,...,in) = {s ∈ O{x0,...,xm}|s is a possible outcome of each measurement Ci0 , . . . , Cin}.

Given τ E σ, let the restriction map F(τ E σ) : F(τ) → F(σ) be the restriction

s 7→ s|σ. The global section of F is an assignment of values of the variables that is

compatible with the measurement context.

In order to compute cohomology of a sheaf, the authors turn the sheaf of sets F to a

sheaf of R-modules G by applying the free functor FR : Set→ R-Mod. By doing so, one

obtains a sheaf G on NM whose local section G(σ) is the free R-module generated by the

set F(σ). Given τ E σ, the restriction maps G(τ E σ) : G(τ) → G(σ) is then induced by

F(τ E σ) and the universal property of free R-modules.
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Now that we have a sheaf with algebraic structure that allows us to take cohomol-

ogy, given any vertex v of NM, one obtains the following long exact sequence.

0→ H0(C•G|NM−v)→ H0(C•G)→ H0(C•G|v)
γ−→ H1(C•G|NM−v)→ H1(C•G)→ · · ·

(2.8)

Note that G|v is simply the local section G(v).

Definition 15 ([1]). If there exists a vertex v ∈ NM and a local section s ∈ G|v such

that γ(s) 6= 0, where γ is the connecting map from the long exact sequence in Equa-

tion 2.8, then the system is cohomologically logically contextual. If γ(s) 6= 0 for all

local sections s ∈ G|v for every v ∈ NM, then the system is cohomologically strongly

contextual.

The following proposition uses cohomological obstructions to study contextuality.

Proposition 1 ([1]). If a system is cohomologically logically contextual, then the system is

logically contextual. If a system is cohomologically strongly contextual, then the system is

strongly contextual.

To illustrate Proposition 1, consider the PR box from Table 2.1. An illustration of

sheaves F and G are provided in Figure 2.14. As the sheaf of sets F, each local section

should be considered as a set, and the arrows should be considered as morphisms of

sets. As the sheaf of R-modules G, the illustrated blue boxes should be considered as the

generating basis, and the arrows should be considered as maps among basis elements

that induce the restriction maps.

One can check that γ(s) 6= 0 for every local section s ∈ G(v) for every v ∈ NV. Thus,

by Proposition 1, we conclude that PR box is a strongly contextual system. Indeed,

considering Figure 2.14 as an illustration of sheaf of sets F, one can see that no local

section extends to a global section that traverses the fibers once.

Proposition 1 provides sufficient conditions for logical contextuality and strong

contextuality, but not the necessary conditions. For example, one can visualize the

Hardy model from table 2.2 to check that the model is logically contextual. However,
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FIGURE 2.14: An illustration of cellular sheaves F and G

one can check that γ(s0) = 0 for all local sections of G. This occurs because global sec-

tions of G read false positive global sections of the sheaf of sets F. Given local section

s ∈ F that does not extend to a global section in F, it is possible for s to define a local

section s0 ∈ G that does admit a global extension in G.

A B (0, 0) (0, 1) (1, 0) (1, 1)
a1 b1 1 1 1 1
a1 b2 0 1 1 1
a2 b1 0 1 1 1
a2 b2 1 1 1 0

TABLE 2.2: Hardy model.

In the language of category theory, such false positives occur because the free func-

tor FR : Set → R-Mod we applied to obtain sheaf G from F doesn’t preserve limits.

The free functor, being the left adjoint of the forgetful functor, preserves colimits, while

the forgetful functor, being the right adjoint of the free functor, preserves limits. Thus,

G(X) = lim←−−−
σ∈X

G(σ) and F(X) = lim←−−−
σ∈X

F(σ) may differ.

Example 7. The following examples discuss a simple illustration of sheaf theoretic per-

spective on 2-coloring problems on a graph X: is it possible to color the vertices of X
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using two colors, say red and blue, such that no two vertices connected by an edge

have the same color?

There are a variety of sheaves and cosheaves one can build on X to approach the

problem. We will provide a few examples of such sheaves and cosheaves, each of which

emphasizes different aspects of graph coloring problems.

First of all, consider a sheaf of sets F, whose local sections on each vertex is {r, b},

denoting the two possible colors. Let the local sections on edges be the set {rb, br}. To

make sense of the local sections and restriction maps, assume that all edges of X are

oriented. If a vertex v is the head of an edge e, then let F(v E e) be the map of sets

mapping r to rb and b to br. If a vertex w is the tail of an edge e, then let F(w E e) be

the map of sets mapping r to br and b to rb. An illustration of sheaf of sets F on two

different graphs is provided in Figure 2.15.

(A) Sheaves F and G on X (B) Sheaves F and G on Y

FIGURE 2.15: Cellular sheaves F and G for 2-coloring problem

Since the sheaf F models the possible colors that can be assigned to each vertex, a

global section of the sheaf F corresponds to a 2-coloring of the graph X. Thus a graph is

2-colorable if and only if the sheaf F has a global section. As it was the case in Example

6, we have very limited tools when it comes to sheaf of sets. Thus, we construct a

sheaf of vector spaces G by applying the free functor from category of sets to category
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of K-modules for field K. Then, the local section G(σ) of σ ∈ X is the vector space

generated by the set F(σ), and the restriction maps G(v E e) are induced by F(v E e).

One can consider Figure 2.15 as illustrating sheaf of vector spaces G, where each set

above σ ∈ X represents a basis for G(σ).

One can use sheaf cohomology to determine whether a graph is 2-colorable or not,

as stated in the following proposition.

Proposition 2. A graph X is 2-colorable if and only if dim H0(C•G) = 2.

One can understand the construction of the sheaf G and Proposition 2 from the per-

spective of orientability of vector bundles. For example, given a base space S1, the

Möbius band can be considered as a vector bundle on S1. Consider a similar con-

struction on graph X, where each edge of X represents a half-twist of the band. Let

π : E → X denote the resulting vector bundle. We then ask whether the resulting

vector bundle is orientable or not. In fact, the sheaves in Figure 2.15 represent the ori-

entation covers of vector bundles on graphs X and Y. Construct a sheaf of sets on X

whose local sections are the choices of an orientation of fiber over each cell, and whose

restriction maps reflect the maps of the orientations. This sheaf, in fact, coincides with

sheaf of sets F introduced earlier.

Proposition 3. Let E be a rank-n vector bundle on a connected manifold M. Then, the ori-

entation cover O has either one or two connected components. Moreover, the following two

statements are equivalent.

• The bundle E is orientable

• The manifold O is not connected

Note that the number of connected components of O is reflected by the global sec-

tion of sheaf G. Since our sheaf G allows for construction of cohomology, we know

from Lemma 2 that H0(C•G) = G(X). If dim H0(C•G) = 2, this implies that mani-

fold O has two connected components, implying that the bundle E is orientable. If

dim H0(C•G) = 1, then O is connected, and bundle E is not orientable.
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So far, we have concluded that dim H0(C•G) tells us whether a graph is colorable

or not. Let’s now go back to the language of graph theory and understand what

dim H1(C•G) represents. For starters, let’s compare H0(C•G) on X and Y, as shown

in Figure 2.15. Recall that the vector bundles were obtained by applying a half twist at

each edge. Then, the vector bundle on X must be orientable, since we are applying this

half twist even number of times, while the vector bundle on Y must be non-orientable

since the half twist has been applied an odd number of times. This is, in fact reflected

by the fact that dim H0(C•G) = 2 on X and dim H0(C•G) = 1 on Y. The fact that

odd-length cycles is precisely what contributes to non-orientability of vector bundles

is reflected in the language of graph theory in the following theorem that appears in

one of the first textbooks on graph theory.

Theorem 4 ([18]). A graph G is 2-colorable if and only if it has no odd-length cycles.

Another way to approach such 2-coloring problem is to use a constant sheaf C on X

whose local sections are C(σ) = F2 for all σ ∈ X. Note that all restriction maps of C are

the identity maps.

A graph X is 2-colorable if and only if it is bipartite, i.e., the vertices of X can be

divided into disjoint sets U and V such that every edge connects between vertices in

U and V. Then, whether or not a graph is colorable with two colors amounts to the

following statement :

Proposition 4. A graph X is 2-colorable if and only if the 1-cycle (1, 1, . . . , 1) of C lies in

the image of ∂0 : C0(C•C) → C1(C•C), i.e., the homology class [(1, 1, . . . , 1)] is trivial in

H1(C•C).

2.2.4 Change of base spaces

So far, we discussed sheaf morphisms as tools for studying changes in sheaf F over a

fixed base space. We can also ask ourselves how we might relate a sheaf on one space to

a sheaf on another space. The ideas of pullback and pushforward allow us to address

these questions.
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Definition 16 ([10]). Let X and Y be cell complexes. Let G be a sheaf on Y, and let

f : X → Y be a cellular map. The pullback or inverse image sheaf f ∗G on X is defined

as the following.

For σ ∈ X, the local section is f ∗G(σ) = G( f (σ))

If τ E σ, then the restriction map is f ∗G(τ E σ) = G( f (τ)E f (σ)).

We can define the pullback of a cosheaf analogously.

Theorem 5 (Vietoris-Begle Mapping Theorem, [3]). Let f : X → Y be a proper map

between locally compact spaces with acyclic fibers. For any sheaf G on Y, the induced map

f ∗ : Hn(C•G)→ Hn(C• f ∗G)

is an isomorphism for all n,

On the other hand, given a sheaf on Y, we can define a sheaf on X as the following.

Definition 17 ([10]). Let X and Y be cell complexes. Let F be a sheaf on X, and let

f : X → Y be a cellular map. The pushforward sheaf f∗F on Y is defined as the

following.

For σ ∈ Y, the local section is f∗F(σ) = lim←−−−
f (τ)Dσ

F(τ)

If τ E σ, then the map f∗F(τ)→ f∗F(σ) is defined by the universal property of limits.

In other words, the local section f∗F(σ) is the global section of F over all cells τ

such that f (τ)D σ.

To define the pushforward for a cosheaf G on X, let f∗G(σ) = colim−−−−−−→
f (τ)Dσ

G(τ).

Example 8. One way to think of the pushforward sheaf is to consider it as a way of

summarizing data over X as we simplify the base space via f . For example, consider

the sheaf F on X illustrated in Figure 2.17a. A cellular map from X to Y is illustrated in

Figure 2.16. The map f : X → Y is the cellular map defined by mapping 0-cell v to w.

The pushforward sheaf f∗F on Y is illustrated in Figure 2.17b. Note that F and f∗F

have the same homologies for this particular example.
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FIGURE 2.16: A cellular map f : X → Y

(A) Cellular sheaf F on X (B) Cellular sheaf f∗F on Y

FIGURE 2.17: Cellular sheaf F on X and pushforward sheaf f∗F on Y

One should note that there are multiple kinds of pushforward of a sheaf. Consider-

ing a sheaf F as a functor from cell category to a category D, the pushforward f∗F is the

right Kan extension of F along f . One can approach the pushforward by using a left

Kan extension as well. The pushforward obtained by left Kan extension, denoted by f†,

is called pushforward with open supports. Some calculated examples of pushforward

sheaf, pushforward with open supports, pushfoward with compact supports, and their

adjoint relations are described in detail in [10].

2.2.5 Sheaf cohomology, cosheaf homology, and zigzag modules

In previous sections, we have alluded to the fact that specific types of zigzag modules

can be viewed as cellular sheaves or cosheaves and vice versa. Interpreting cellular

sheaves (and cosheaves) as zigzag modules allows us to take advantage of Theorem 3
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to decompose cellular sheaves in terms of simpler sheaves. Furthermore, such decom-

position allows us to understand sheaf cohomology in terms of these simpler building

blocks. Understanding the relations between sheaf cohomology and sheaf decomposi-

tion will play a crucial role in Chapter 5.

When our base space X is a compact subset of R with some cell structure, we can

approach cellular sheaves and cellular cosheaves through the lens of zigzag modules.

Indeed, given any sheaf F or cosheaf G on X, the local sections and the restriction or

extension maps constitute a zigzag module. From Theorem 3, we know that such a

finite zigzag module can be decomposed into a sum of interval modules I(b, d). Each

of these interval modules I(b, d) are, in fact, indecomposable sheaves or cosheaves on

X. Hence, we can decompose our sheaf or cosheaf into a direct sum of indecomposable

sheaves and cosheaves. Such decomposition allows us to approach sheaf cohomology

and cosheaf homology in terms of these simpler data structures.

For example, assume that a cellular sheaf F can be decomposed as a direct sum of

indecomposable sheaves as illustrated in Figure 2.18.

FIGURE 2.18: A cellular sheaf F decomposed as a direct sum of indecomposable
sheaves

Note that there are four types of indecomposable sheaves possible: sheaves I[−]

whose left and right most supports are 0-cells, sheaves I]−[ whose left and right most

supports are 1-cells, sheaves I[−[ whose left most support is a 0-cell and the right most

support is a 1-cell, and the sheaves I]−] whose left most support is a 1-cell and the right

most support is a 0-cell.

The following lemmas establish the connections between sheaves and barcodes of

zigzag modules.
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Lemma 5 ([10]). The indecomposable sheaves I satisfy

H0(C•I[−]) = K, H1(C•I]−[) = K, Hi(C•I[−[) = Hi(C•I]−]) = 0.

If sheaf F is decomposed as F ∼=
⊕

I, then Hi(C•F) ∼= ⊕Hi(C•I). Thus, dim H0(C•F)

counts the number of bars of form [−] in the decomposition, whereas dim H1(C•F)

counts the number of bars of form ]− [ in the decomposition.

Analogously, a cosheaf G on X can be decomposed into a sum of indecomposable

cosheaves I[−], I]−[, I[−[, and I]−].

Lemma 6 ([10]). The indecomposable cosheaves I satisfy

H0(C•I[−]) = K, H1(C•I]−[) = K, Hi(C•I[−[) = Hi(C•I]−]) = 0.

Thus, if cosheaf G can be decomposed as G ∼=
⊕

I, then Hi(C•G) ∼= ⊕Hi(C•I). The

connections between sheaves and barcodes of zigzag modules established by Lemma

5 and Lemma 6 is the key to enriching the persistent homology barcodes in Chapter 5.

The cellular sheaf theory introduced in this chapter will be used to establish dis-

tributed systems for a variety of applications, where the distribution can occur with

respect to time, sensing modalities, spatial relations, density estimates, and other prop-

erties of interest. The sheaf morphisms will allow us to examine such distributed sys-

tems that undergo changes with respect to factors such as time, base spaces, and other

parameters in the system. In Chapter 4, cellular sheaf theory and persistent homology

come together to produce a distributed computation scheme of persistent homology. In

Chapter 5, the correspondence between cellular sheaves and zigzag persistence further

strengthens persistent homology by enriching the information conveyed via barcodes.



43

Chapter 3

Distributed Systems for Pursuit and

Evasion

The local to global nature of sheaf theory makes it a suitable tool for distributed data

analysis. This chapter discusses applications of cellular sheaves and cosheaves to vari-

ations of problems in pursuit and evasion. These novel applications highlight the util-

ity of information distribution and collation with respect to particular aspects of the

problem. In §3.1 we use cellular sheaves to encode evader’s information at different

time points. We propose a necessary and sufficient condition for determining whether

an evasion path exists over a given time interval. In §3.2 we consider a variation of

pursuit and evasion problems where a teamwork of pursuers is required to capture

an evader. Information available to each team of pursuers is then collated via cellular

sheaves to determine if an evader can hide from the team of pursuers that is specified

by a boolean expression. While these applications are constructed in the context of pur-

suit and evasion problems, they allude to further applications of cellular sheaf theory

to time varying data, propositional logic, and many more.

3.1 Pursuit and Evasion

We consider a variation of a pursuit and evasion game. Suppose that a collection of

mobile sensors (or pursuers) with minimal sensing abilities wanders in a bounded

domain. The sensors are minimal in the sense that they do not know their location
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coordinates. However, the sensors can detect objects (other sensors and evaders) that

are within a certain distance from them. The goal of the sensors is to capture evaders,

where capture occurs when an evader is in a sensed region. An interesting topological

question, then, is whether we can determine if an evader can successfully hide from

the pursuers, given only the connectivity information conveyed by the sensors.

To mathematically formulate the problem, let D ⊂ Rd be a bounded domain where

pursuers (or sensors) and evaders can move around. Let S ⊂ D× [0, 1] denote the re-

gions that sensors occupy over the time interval [0, 1], and let E = Sc, which represents

the possible areas an evader can hide. An evasion path is a section s : [0, 1] → E of

the time projection map π : E → [0, 1]. The question of interest is whether there is a

necessary and sufficient condition for the existence of an evasion path.

An approach by de Silva and Ghrist [25] gives a partial answer to this question

by providing the necessary condition to the existence of an evasion path. Adams

and Carlsson [2] phrase an equivalent condition in the language of zigzag persistence,

hence allowing the necessary condition to be computed in a streamlining fashion. They

also provide an example illustrating the fact that it is impossible to find a necessary and

sufficient condition from connectivity of sensors alone. Curry [10] rephrases Adams

and Carlsson’s approach in the language of cellular cosheaves obtained from studying

Reeb graph of π : E → [0, 1]. The author found such sheaf theoretic approach to be

particularly helpful, so we will begin our discussion in a similar framework.

Note that a necessary and sufficient condition to a very general pursuit and evasion

problem is provided by Ghrist and Krishnan [15] using positive (co)homology and

positive variant of Alexander Duality. The goal of this section is to further explore the

sheaf theoretic viewpoint phrased by Curry and to provide a variant of cellular sheaf

that gives a necessary and sufficient condition for the existence of an evasion path given

π : E→ [0, 1].
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3.1.1 Sheaf theoretic viewpoint of pursuit and evasion

Let π : E → [0, 1] be a cellular map that projects the escape region to the time axis. Let

R(E) denote the Reeb graph of π. We then obtain a cellular map R(E) → [0, 1]. For

the remainder of this chapter, we will take the projection map π to denote π : R(E) →

[0, 1]. Let X denote [0, 1] with the given cell structure. The vertices of X correspond

to discrete time points, say t0, . . . , tK, and edges of X correspond to intervals between

consecutive time points.

We present a summary of the construction by Adams and Carlsson and the coun-

terexample for the construction using sheaf theoretic language as expressed by Curry.

Let π : R(E)→ [0, 1] be the cellular map illustrated in Figure 3.1a. Let C be the constant

sheaf of vector spaces on R(E). One can then construct a sheaf G on X = [0, 1] by taking

the pushforward sheaf (Definition 17) of C, i.e., G = π∗C. The sheaf G on X is illustrated

in Figure 3.1b.

(A) A cellular map

(B) Sheaf G

(C) Barcode

FIGURE 3.1: A counterexample cellular map and sheaf

Considering the sheaf G as a zigzag persistence module, Adams and Carlsson show
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that if there exits an evasion path, then there exists a full length interval in the barcode.

The example in Figure 3.1b illustrates the fact that the existence of a full length interval

in the barcode is not sufficient condition for an evasion path to exist. The barcode,

illustrated in Figure 3.1c, show that there exists a full length interval. However, from

Figure 3.1a, we can see that it is not possible for an evader to escape unless the evader

is allowed to travel back in time.

In order to resolve this issue, Curry proposes a new sheaf on X by linearizing the

sheaf of sections. When such a sheaf is constructed for the example in Figure 3.1a, we

no longer detect the full length bar in its barcode decomposition. However, Curry also

provides a counterexample, illustrated in Figure 3.2a, showing how a non-escape path

can lead to a full length interval in the barcode, illustrated in 3.2b.

(A) Cellular map (B) Barcode

FIGURE 3.2: Counterexample by Curry

We provide another sheaf construction on X whose existence of a full length bar-

code provides a necessary and sufficient condition for the existence of an escape path.

For each vertex vi of X, let F(vi) be the vector space generated by the set π−1(vi). For

example, if π−1(vi) consists of three components, say a, b, c, then let F(vi) be the vector

space with basis denoted by ~ea,~eb,~ec. For each edge ei,i+1 connecting the vertex vi on

the left and vi+1 on the right, let F(ei,i+1) = F(vi+1). To define the restriction maps,

given vi+1 E ei,i+1, let F(vi+1 E ei,i+1) : F(vi+1) → F(ei,i+1) be the identity map. Given

vi E ei,i+1, we will define F(vi E ei,i+1) on the basis vectors of F(vi) as the following. Let

~e i
1, . . . ,~e i

n be the basis vectors of F(vi) each representing the cells ai
1, . . . , ai

n of π−1(vi),

and let ~e i+1
1 , . . . ,~e i+1

m be the basis vectors of F(ei,i+1) = F(vi+1) each representing the

cells ai+1
1 , . . . , ai+1

m of π−1(vi+1). For each component ai
j of π−1(vi), let ai+1

j1
, . . . , ai+1

jk
be

the elements of π−1(vi+1) that are connected to ai
j via an edge in R(E). Then, define
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F(vi E ei,i+1) to be the linear transformation that maps ~e i
j to ~e i+1

j1
+ · · ·+~e i+1

jk
, i.e., the

morphism F(vi E ei,i+1) maps~e i
j to~e i+1

l if it’s possible for an evader to move from ai
j to

ai+1
l in R(E). Note that if there are no evasion paths possible from ai

j, then F(vi E ei,i+1)

maps~e i
j to the zero vector.

Once we define sheaf F of vector spaces, we obtain the following cochain complex

0→ C0F
∂−→ C1F → 0,

where C0F =
⊕
v
F(v). By construction, for every vi+1 E ei,i+1, the restriction map

F(vi+1 E ei,i+1) is an identity map. Thus, if γ ∈ ker ∂ and v0, . . . , vK are the vertices

of X, then by construction, γ can be expressed as the following

γ = γ0 + γ1 + · · ·+ γK, (3.1)

where γ0 ∈ F(v0), γ1 ∈ F(v1), . . . , γK ∈ F(vK), and γi+1 = F(vi E ei,i+1)(γi) for every

i.

Lemma 7. H0(C•F) ∼= F(v0).

Proof. Given γ ∈ H0(C•F), recall from Equation 3.1 the expression of

γ = γ0 + γ + 1 + · · ·+ γK.

Define f : H0(C•F)→ F(v0) by

f (γ) = γ0.

Note that this map f is linear.
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We will show that f is an isomorphism. Given γ0 ∈ F(v0), let γ1 ∈ F(v1), . . . ,

γK ∈ F(vK) be defined by the following

γ1 = F(v0 E e0,1)(γ0)

γ2 = F(v1 E e1,2)(γ1)

...

γK = F(vK−1 E eK−1,K)(γK−1).

Let

γ′ = γ0 + γ1 + · · ·+ γK.

Then, f (γ′) = γ0. So f is surjective.

To show that f is injective, assume that f (γ) = 0, i.e., γ0 = 0. Then, by Equation

3.1, γi = 0 for all i, and γ = 0. Thus, f is injective.

Thus, f is an isomorphism.

A useful conclusion from Lemma 7 is that we can find an explicit basis for H0(C•F)

as the collection of standard basis vectors ~e 0
j ’s of F(v0), i.e., given a standard basis

vector~e 0
j of F(v0), define~e i

j ∈ F(vi) by

~e 1
j = F(v0 E e0,1)(~e 0

j )

~e 2
j = F(v1 E e1,2)(~e 1

j )

...

~e K
j = F(vK−1 E eK−1,K)(~e K−1

j ).

Then, the collection of vectors of form

e′j = ~e 0
j +~e 1

j + · · ·+~e K
j (3.2)
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form a basis of H0(C•F). Note that each such vector e′j represents an evasion path

starting at component a0
j of π−1(v0).

Example 9. Let’s now revisit the Reeb graph from Figure 3.3a. The sheaf F on X is

illustrated in Figure 3.3b.

(A) A cellular map (B) Sheaf F

FIGURE 3.3: A cellular map and sheaf

The basis for H0(C•F) and the corresponding escape path are illustrated in Figures

3.4a and 3.4b.

(A) (B)

FIGURE 3.4: A basis vector of H0(C•F) and its representing escape path

Example 10. Consider the escape region illustrated in Figure 3.5a. It’s corresponding

sheaf F is illustrated in Figure 3.5b.

(A) A cellular map (B) Sheaf F

FIGURE 3.5: A cellular map and sheaf

The two basis vectors of H0(C•F) are illustrated in Figures 3.6a and 3.6c. The escape

paths they represent are illustrated in Figures 3.6b and 3.6d. Note from Figures 3.6b and
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3.6d that the escape paths represent all possible movements starting from a particular

node at time t0.

(A) (B)

(C) (D)

FIGURE 3.6: Basis vectors of H0(C•F) and the corresponding escape paths

Note that each component of H0(C•F) corresponds to a possible escape path that

starts at a particular node at time t0. The escape paths that emerge from an intermediate

time point are not detected by H0(C•F). However, the sheaf cohomology H0(C•F) fails

to distinguish escape paths that continue to the end from the ones that don’t.

From previous examples, we have seen that while H0(C•F) detects possible escape

paths, it fails to distinguish the true escape paths from the ones that disappear in an

intermediate time point. To address this issue, we use persistent homology.

Recall the sheaf of vector spaces F on the graph X. Let G be a sheaf on X such that

G(vK) = F(vK) for the very last vertex vK of X and G(σ) = 0 for any other cell σ of X.

Define a sheaf morphism φ : F → G as the following. Let φvK : F(vK) → G(vK) be

the identity morphism. For all other cells σ of X, let φσ be the zero map.

The induced morphism H0(φ) : H0(C•F) → H0(C•G) then checks whether an

escape path emerging at time t0, as read by H0(C•F), continues until the final time tK.
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The image of the induced morphism H0(φ) then correspond to escape paths beginning

at t0 and ending at time tK. The following Lemma makes this statement formal.

Lemma 8. An escape path exists in R(E) if and only if dim(imH0(φ)) 6= 0.

Proof. If there exists an escape path in R(E), say starting at node a0
j at time t0, let ~e 0

j

be the standard basis vector of F(v0) that represents this node. Recall from Equation

3.2 that one can find an explicit basis e′j = ~e 0
j +~e 1

j + · · · +~e K
j of H0(C•F). Since e′j

represents all escape paths starting at node j, we know that ~e K
j ∈ F(vK) is nontrivial.

In fact, H0(φ)[e′j] = ~e K
j , so dim(im H0(φ)) 6= 0.

On the other hand, assume that no escape path exists. For any node a0
j at time t0, let

~E 0
j be the standard basis vector of F(v0) that represents this node. Again, we can find

an explicit basis e′j = ~e 0
j +~e 1

j + · · ·+~e K
j of H0(C•F). Since there are no escape paths,

we know that~e K
j = 0. Then, im H0(φ) must be trivial, and dim(im H0(φ)) = 0.

An equivalent formulation of Lemma 8 can be obtained by considering the sheaf F

as a zigzag module. Then, dim(im H0(φ)) 6= 0 if and only if the barcode decomposi-

tion of F contains a full-length bar. Note that by construction, every backwards map

F(vi+1 E ei,i+1) is an identity map. Thus, instead of examining the sheaf F as a zigzag

module, one can consider the following persistence module

VF : F(v0)
F(v0Ev1)−−−−−→ F(v1)

F(v1Ev2)−−−−−→ · · · F(vK−1EvK)−−−−−−→ F(vK),

where F(vi E vi+1) : F(vi) → F(vi+1) is the restriction map F(vi E ei,i+1) from earlier.

Then, a full length bar exists in the barcode decomposition of F is and only if there

exists a full length bar in the barcode decomposition of VF.

Corollary 1. Given F on X, the barcode of VF contains a full length bar if and only if there

exists an escape path in R(E).

Example 11. Recall the escape regions from Figure 3.3a. The sheaf F illustrated in

Figure 3.3b gives rise to the following persistence module illustrated in Figure 3.7a.
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(A) Persistence module from sheaf F (B) Barcode

FIGURE 3.7: Persistence module and barcode

The barcode of this persistence module, illustrated in Figure 3.7b, lacks a full length

interval, implying that there is no escape path in Figure 3.3a.

On the other hand, consider the escape region from Figure 3.5a. The associated

sheaf, illustrated in Figure 3.5b, results in a persistence module illustrated in Figure

3.8a, and its barcode illustrated in Figure 3.8b contains a full length interval, implying

the fact that there exists an escape path.

(A) Persistence module from sheaf F (B) Barcode

FIGURE 3.8: Persistence module and barcode

3.2 Boolean Pursuit and Evasion

Consider a variation of a pursuit and evasion problem, where the domain D is now a

graph or a grid. Assume that the pursuers know their exact coordinates on D. More-

over, assume that the pursuers are divided into teams of different colors, say red, blue,

and yellow. Specific teamwork is required for a pursuer to be captured. For example,

an evader can be captured if both the red and blue pursuers are at the same location as

the evader, or if both the blue and yellow pursuers are at the same location.

Such rule for combination of sensors required for capture will be called a capture

criterion. Let p = {p1, . . . , pM} be the collection of different colored team of pursuers.



Chapter 3. Distributed Systems for Pursuit and Evasion 53

For the remainder of this section, we will refer to each pi, which is a collection of pur-

suers belonging to a same colored team, as one pursuer. For example, if pi is a collection

of red pursuers, we will refer to pi as the red pursuer.

Let Pi be a binary variable. One can think of Pi = 1 as indicating that an evader is

sensed by pursuer pi and Pi = 0 as indicating that the evader is not sensed by pi.

A capture criterion can be written as

C = T1 ∨ T2 ∨ · · · ∨ TK,

where each Ti = Pi1 ∧ · · · ∧ PiM denotes the teams of pursuers required for capture. For

example, the following capture criterion

C = (PR ∧ PB) ∨ (PR ∧ PY) (3.3)

indicates that capture occurs if both red and blue pursuers are present or if both red

and yellow pursuers are present.

For each node x ∈ D, the variables Pi are assigned a value depending on whether x

is sensed by pursuer pi. Let Cx denote the value of expression C for the node x. Then,

Cx = 1 if an evader at node x is captured by pursuers, and Cx = 0 if the evader at node

x can escape.

Given a coverage criterion C, our goal is to determine the nodes x ∈ D that do not

satisfy C, i.e., we want to find the nodes x ∈ D such that Cx = 0. Note that ¬Cx = 1 if

Cx = 0 and ¬Cx = 0 if Cx = 1. So let

E = ¬C

be the escape criterion. If Ex = 1, then an evader at node x can escape, and if Ex = 0,

then an evader at node x cannot escape.
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For the capture criterion C = (PR ∧ PB) ∨ (PR ∧ PY) from Equation 3.3, the corre-

sponding escape criterion is

E = (¬PR ∨ ¬PB) ∧ (¬PR ∨ ¬PY).

Since every propositional formula can be written in a conjunctive normal form, we

can equivalently write the escape criterion as

E = ¬PR ∨ (¬PB ∧ ¬PY).

Since each pursuer pi knows the exact nodes of D that are covered by pi, the pursuer

also knows the nodes of D that remain undetected by pursuer pi. From each pursuer’s

knowledge of the uncovered region, we can use sheaves and cosheaves to determine if

it’s possible for an evader to hide.

3.2.1 Boolean capture via sheaves and cosheaves of sets

In this section, we construct sheaves and cosheaves that allow us to determine if it’s

possible for an evader to hide given an escape criterion. We assume that the escape

criterion is given in either conjunctive normal form or disjunctive normal form.

Escape criterion in disjunctive normal form

Assume that we are given an escape criterion of the form

E = E1 ∨ E2 ∨ · · · ∨ EK,

where each Ei has the form Ei = ¬Pi0 ∧ · · · ∧ ¬Pin .

We first define the base space. Given M number of pursuers, let X be a (M − 1)-

simplex. Each vertex of X corresponds to a pursuer pi, so label such vertex by vpi . For

each n-simplex σ of X, label σ by its vertices. For example, if vpi0
, . . . , vpin+1

are the

vertices of σ, then label σ by σpi0 ,...,pin+1
.
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We will now construct a cosheaf S of sets on X that encodes the region remaining

undetected by the pursuers. For each vertex vpi of X, let S(vpi) be the set of nodes

of D that are not detected by the pursuer pi. For each σpi0 ,...,pin+1
, let S(σpi0 ,...,pin+1

) =
n+1⋂
j=0

S(vpij
), the set of nodes of D that are not detected by any of the pursuers pi0 , . . . , pin+1 .

Let the extension maps be the inclusion of sets.

For example, let D be a graph that is covered by three pursuers as illustrated in

Figure 3.9. The base space X and the labels of its simplices are illustrated in Figure

3.10a. The cosheaf S on X is illustrated in Figure 3.10b. Note that even though Fig-

ure 3.10b shows the graph D as local sections, the local sections of S are just the sets

corresponding to the colored nodes of the graph D.

FIGURE 3.9: Domain D with pursuers.

(A) Labels of simplices of
base space X (B) Cosheaf of sets S encoding the nodes not occupied by pur-

suers.

FIGURE 3.10: Cosheaf of sets S on base space X

Assume that the escape criterion is

E = ¬PR ∨ (¬PB ∧ ¬PY). (3.4)

Note that S(vR) represents the two nodes that are not detected by the red sensors,

and S(eBY) represents the two nodes that are not detected by both the blue sensors
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and the yellow sensors. The nodes that satisfy the escape criterion are the nodes that

are in either S(vR) or S(eBY). We can find such nodes by computing the colimit of the

following diagram.

S(eRB) S(vR)

S( fRBY) S(eRY)

S(eBY)

(3.5)

The above diagram is illustrated in Figure 3.11.

FIGURE 3.11: Diagram for colimit.

Note that the resulting colimit is the local section of S on the subset

{vR, eBY, eRY, eRB, fRBY} of X. This local section is the set representing the nodes in

Figure 3.12.

FIGURE 3.12: Local section of S on {vR, eBY, eRY, eRB, fRBY}.

In general, given an escape criterion of the form

E = E1 ∨ E2 ∨ · · · ∨ EK,

where each Ei has the form Ei = ¬Pi0 ∧ · · · ∧ ¬Pin , the local sections S(σpi0 ,...,pin
) on

σpi0 ,...,pin
represent the escape nodes that satisfy the criterion Ei. An escape node satis-

fying E is an escape node satisfying any of the criteria Ei’s. The set of nodes satisfying
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E can then be computed by

colim−−−−−−→
τ∈S

S(τ),

where S is the collection of cells

S = {τ|σpi0 ,...,pin
E τ E F for some i},

where F is the top dimensional cell in X and σpi0 ,...,pin
is the cell corresponding to the

escape criterion Ei.

Escape criterion in conjunctive normal form

The escape criterion can be equivalently expressed in its dual form

E = E1 ∧ · · · ∧ EK,

where each Ei is a disjunction Ei = ¬Pi0 ∨ · · · ∨ · · · ¬Pin . In such cases, a dual construc-

tion of S can come in handy. While the local sections of cosheaf S on higher dimen-

sional simplices encoded intersection relations of lower dimensional simplices, a dual

construction would encode union relations instead of intersection relations.

On the same base space X, construct a sheaf Ŝ as the following. Let Ŝ(vpi) be the set

of nodes on D that are not detected by pursuer pi as before. On each σpi0 ,...,pin+1
of X, let

Ŝ(σpi0 ,...,pin+1
) =

n+1⋃
j=0

Ŝ(vpij
). Let the restriction maps be inclusion maps of sets.

Recall the example illustrated in Figure 3.9. The sheaf Ŝ for this example is illus-

trated in Figure 3.13.

The escape criterion in Equation 3.4 can be expressed in the following conjunctive

normal form

E = (¬PR ∨ ¬PB) ∧ (¬PR ∨ ¬PY).

The local section Ŝ(eRB) denotes the set of nodes that satisfy the criterion ¬PR ∨¬PB,

and Ŝ(eRY) represents the nodes that satisfy the criterion ¬PR ∨ ¬PY. The nodes that
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FIGURE 3.13: Sheaf Ŝ.

satisfy the escape criterion E are nodes that are present in both Ŝ(eRB) and Ŝ(eRY). Such

nodes can be computed as the limit of diagram 3.6.

Ŝ(eRB) Ŝ( fRBY)

Ŝ(eRY)

(3.6)

The diagram is illustrated in Figure 3.14. The nodes that satisfy the escape criterion

then, are the local sections of the sheaf Ŝ on the subset {eRB, eRY, fRBY}.

FIGURE 3.14: Diagram for limit.

In general, given an escape criterion in the conjunctive normal form

E = E1 ∧ · · · ∧ EK,

where each Ei is a disjunction Ei = ¬Pi0 ∨ · · · ∨ · · · ¬Pin , the local section Ŝ(σpi0 ,...,pin
)

on σpi0 ,...,pin
represents the escape nodes that satisfy the criterion Ei. An escape node

satisfying E is an escape node satisfying every criteria Ei. Such escape nodes can be
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computed by

lim←−−−
τ∈S

Ŝ(τ),

where S is the collection of cells

S = {τ|σpi0 ,...,pin
E τ E F for some i},

where F is the top dimensional cell in X and σpi0 ,...,pin
is the cell corresponding to escape

criterion Ei.

3.2.2 Boolean algebra via sheaves of vector spaces

We now present a different construction, one that allows us to take advantage of al-

gebraic structure. Assume that an escape criterion is given in the conjunctive normal

form

E = E1 ∧ · · · ∧ EK,

where each Ei is a disjunction Ei = ¬Pi0 ∨ · · · ∨ ¬Pin . We will construct a sheaf of vector

spaces that can be used to determine if an evader can hide from the escape criterion E.

To start, let’s assume a simpler escape criterion

E = ¬P0 ∨ · · · ∨ ¬Pi.

Recall the cosheaf of sets S constructed in §3.2.1. Let V be a cosheaf on X obtained

from S by applying the free functor from category for sets to category of K-modules,

where K is a field, i.e., for every σ ∈ X, let V(σ) be the vector space generated by the

set S(σ). Note that the extension maps of S also define the extension maps of V.

One can visualize V using the same picture as S. For example, recall the locations

of pursuers on D from Figure 3.9. Figure 3.10b, which represents a picture for S, also

visualizes the cosheaf V on X. The nodes illustrated on σ ∈ X can be interpreted as the

basis for vector space V(σ).
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For a concrete example, assume that our escape criterion is

E = ¬PB ∨ ¬PY,

which represents the fact that if a node is not detected by a blue pursuer or it’s not

detected by a yellow pursuer, then it’s possible for an evader on the node to escape.

Recall that the nodes that satisfy this escape criterion is computed by the colimit of

the following diagram, which is the local section of S(ēBY) on the closed cell ēBY with

vertices vB and vY.

S(eBY) S(vB)

S(vY)

Analogously, the local section of V(ēBY) on the closed cell ēBY is the colimit of the

following diagram.

V(eBY) V(vB)

V(vY)

Note that since the free functor is left adjoint to the forgetful functor, the free functor

preserves colimits. Thus, V(ēBY) is the vector space generated by S(ēBY), i.e., V(ēBY)

is the vector space generated by nodes that are escapable, and dimV(ēBY) equals the

number of escape nodes.

In general, given an escape criterion

E = ¬P0 ∨ · · · ∨ ¬Pi,

the vector space generated by the escape nodes is the local section of V on the closed

cell σp0,...,pi .
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Let’s now consider the general case in which an escape criterion is given by

E = E1 ∧ · · · ∧ EK,

where each Ei is a disjunction Ei = ¬Pi0 ∨ · · · ∨ ¬Pin .

From the above construction of cosheaf V, we know how to compute the number of

escape nodes that satisfy each Ei. Our job now is to find the number of escape nodes

that satisfy every Ei.

For example, assume that we are given the escape criterion

E = (¬PR ∨ ¬PB) ∧ (¬PR ∨ ¬PY).

Then, the escape nodes satisfying ¬PR ∨ ¬PB can be found as V(eRB), the local sec-

tion over the closed cell eRB whose vertices are vR and vB. Similarly, the escape nodes

satisfying ¬PR ∨ ¬PY can be found as V(eRY), the local section over the closed cell eRY.

To find the vector space generated by escape nodes satisfying the escape criterion

E, construct a sheaf on a new base space X′ as the following. Let X′ be the complete

graph on K number of vertices, where K is the number of disjunctive clauses in the

escape criterion. In our example, we have two such clauses, E1 = ¬PR ∨ ¬PB and

E2 = ¬PR ∨ ¬PY, so X′ is a graph with two vertices connected by an edge. Each vertex

of X′ correspond to one disjunctive clause, so label each vertex of X′ by vEi to indicate

the fact that it corresponds to the clause Ei.

Construct a sheaf S′ on X′ by S′(vEi) = S(σEi) for each Ei = ¬Pi0 ∨ · · · ∨ ¬Pin , where

S is the sheaf of sets constructed in §3.2.1, and σ is the closed cell σpi0 ,...,pin
of X. On

every edge e of X′, let S′(e) be the set of all nodes in domain D. Let the restriction maps

be the inclusion of sets. Let VS′ be the sheaf of vector spaces on X′ obtained from S′ by

applying the free functor. Then, for every vertex vEi of X′, the local section VS′(vEi) is

the vector space generated by S(σEi), i.e.,

VS′(vEi) = V(σEi),
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where V is the sheaf of vector spaces obtained from sheaf of sets S. Note that for each

edge e of X′, the local section VS′(e) is the vector space generated by all nodes of domain

D.

Figure 3.15 provides a visualization of the sheaves S′ and VS′ constructed for Figure

3.9 and the escape criterion

E = (¬PR ∨ ¬PB) ∧ (¬PR ∨ ¬PY).

Note that E1 = ¬PR ∨ ¬PB and E2 = ¬PR ∨ ¬PY. As the sheaf of sets S′, the nodes

of graph D on a cell of X′ should be considered as a set, and the arrows should be

considered as a map of sets. As the sheaf of vector spaces VS′ , the illustrated nodes of

D should be considered as the generating basis, and the arrows should be considered

as maps among basis vectors that induce maps of vector spaces.

FIGURE 3.15: Visualization of sheaves S′ and VS′

The dimension of 0th sheaf cohomology of VS′ gives the number of escape nodes.

Theorem 6. H0(C•VS′) is the vector space generated by escape nodes satisfying escape crite-

rion E.

The proof of Theorem 6 depends on the commutativity of various limits and col-

imits specific to this construction. We establish some Lemmas before proving Theorem

6.

Let X∗ be the K − 1 simplex that has X′ as its 1-skeleton. We will first construct

a sheaf of sets A∗ on X∗ whose global section equals the set of nodes that satisfy the

escape criterion E. For each vEi ∈ X∗, let A∗(vEi) = S′(vEi), the set of nodes that satisfy
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the escape criterion Ei. For each σ
Ei0 ,...,Eij ∈ X∗ that has vEi0 , . . . , v

Eij as its vertices, let

A∗(σ
Ei0 ,...,Eij ) = A∗(vEi0 ) ∪ · · · ∪A∗(v

Eij ).

Let the restriction maps be the inclusion of sets. By construction, the global section

A∗(X∗) is the set of nodes that satisfy the escape criterion E.

Recall that the global section A∗(X∗) is defined as

A∗(X∗) = lim←−−−
σ∈X∗

A∗(σ).

Moreover, recall from Lemma 3 that the above limit can be computed over the 1-

skeleton of X∗, which is X′. Let A be the sheaf on X′ such that for every σ ∈ X′,

the local section A(σ) = A∗(σ). Given vE e, the restriction maps A(vE e) = A∗(vE e).

Then, by Lemma 3,

A(X′) = A∗(X∗),

so A(X′) is the set of nodes that satisfy the escape criterion E.

For our example, the sheaf A is illustrated in Figure 3.16.

FIGURE 3.16: Illustration of sheaf A

Let VA denote the sheaf of vector spaces on X′ obtained by applying the free functor

to A.

Lemma 9. H0(C•VA) = H0(C•VS′).

Proof. Let’s compare the cochain complexes of the two sheaves.

C•VA : C0VA

∂0
A−→ C1VA → 0
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C•VS′ : C0VS′
∂0
S′−→ C1VS′ → 0

By construction, VA(v) = VS′(v) for every vertex v ∈ X′, so C0VA = C0VS′ . For each

edge e ∈ X′, note that there is an inclusion of sets from A(e) to S′(e) since S′(e) is the

set of all nodes in domain D while A(e) is a subset of the nodes in D. Then, VA(e) is a

subspace of the space VS′(e). Thus, there exists an inclusion map i : C1VA → C1VS′ . So

far, we have the following diagram.

C0VA = C0VS′ C1VA

C1VS′

∂0
A

∂0
S′

i

Then, ker ∂0
A = ker ∂0

S′ . Thus, H0(C•VA) = H0(C•VS′).

Note that A is a copoduct of sheaf of sets Ji, where each sheaf Ji is defined as the

following. For each node ni of domain D and each cell σ ∈ X′, the local section Ji(σ) is

defined as the following.

Ji(σ) =


{ni} if ni ∈ A(σ)

∅ if ni /∈ A(σ)

If Ji(v) = {ni} for some vertex v of X′, then Ji(e) = {ni} for all edges e that have v

as a face, and the restriction map Ji(v E e) = Ji(v)→ Ji(e) is the identity map. We can

write A as the coproduct.

A = ä
ni∈D

Ji.

For our example sheaf of sets A, illustrated in Figure 3.16, the sheaf A as a coproduct

is illustrated in Figure 3.17. In Figure 3.17, each {a}, {b}, {c}, {d}, and {e} corresponds

to a node of D from left to right.

For the remainder of this chapter, we will use Free to denote the free functor from

category of sets to category of vector spaces.
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FIGURE 3.17: Sheaf A as a coproduct A = äni∈D Ji

Lemma 10. Free( lim←−−−
σ∈X′

Ji(σ)) = lim←−−−
σ∈X′

Free(Ji(σ)) for every ni ∈ D.

Proof. In general, free functors do not preserve limits. In our case, the Lemma holds

true because the sheaves Ji are simple enough. Recall that for every σ ∈ X′, the local

section Ji(σ) is either a set with one element {ni} or the empty set. We consider two

cases.

Case 1: If Ji(v) = {ni} for every vertex v ∈ X′, then Ji(e) = {ni} for every edge e ∈ X′

as well. Moreover, lim←−−−
σ∈X′

Ji(σ) = {ni}, and Free( lim←−−−
σ∈X′

Ji(σ)) = K is a one dimensional

vector space. On the other hand, Free(Ji(σ)) = K for every σ ∈ X′, and Free(Ji) is the

constant sheaf on X′. Thus, lim←−−−
σ∈X′

Free(Ji(σ)) = K.

Case 2: If Ji(v) = ∅ for some vertex v ∈ X′, then lim←−−−
σ∈X′

Ji(σ) = ∅, and Free( lim←−−−
σ∈X′

Ji(σ))

is the trivial vector space. On the other hand, Free(Ji(v)) is the trivial vector space for

some vertex v ∈ X′, and lim←−−−
σ∈X′

Free(Ji(σ)) is trivial as well.

Thus, the Lemma holds for every sheaf Ji.

Lemma 11. ä
ni∈D

lim←−−−
σ∈X′

Free(Ji(σ)) = lim←−−−
σ∈X′

ä
ni∈D

Free(Ji(σ)).

Proof. Note that coproducts and limits do not commute in general.

Let F denote the sheaf F = ä
ni∈D

Free(Ji). Note that the coproduct is, in fact, a direct

sum in the category of vector spaces, so we can write the sheaf F as F =
⊕

ni∈D
Free(Ji).
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We know that

lim←−−−
σ∈X′

ä
ni∈D

Free(Ii(σ)) = lim←−−−
σ∈X′

F(σ) = H0(C•F) = ker ∂0,

where ∂0 : C0F → C1F is the boundary map of the cochain complex. The cochain

complex is ⊕
v∈X′

⊕
ni∈D

Free(Ji(v))
∂0

−→
⊕
e∈X′

⊕
ni∈D

Free(Ji(e)),

which can be expressed equivalently as

⊕
ni∈D

⊕
v∈X′

Free(Ji(v))
∂0

−→
⊕

ni∈D

⊕
e∈X′

Free(Ji(e)).

For each ni ∈ D, let C•Free(Ji) denote the cochain complex

C•Free(Ji) :
⊕
v∈X′

Free(Ji(v))
∂0

i−→
⊕
e∈X′

Free(Ji(e)).

Then,

ker ∂0 =
⊕

ni∈D

ker ∂0
i

=
⊕

ni∈D

lim←−−−
σ∈X′

Free(Ji(σ))

= ä
ni∈D

lim←−−−
σ∈X′

Free(Ji(σ)).

The second equality follows from the fact that ker ∂0
i = H0(C•Free(Ii)) =

lim←−−−
σ∈X′

Free(Ii). Thus, the Lemma holds true.

We are now ready to prove Theorem 6.

Proof of Theorem 6. From Lemma 9, we know that H0(C•VS′) = H0(C•VA). We also

know that A(X′) is the set of nodes that satisfy the escape criterion E. We will thus

show that H0(C•VA) = Free(A(X′)).
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Recall that A is a coproduct of sheaf of sets Ji:

A = ä
ni∈D

Ji.

Then,

Free(A(X′)) = Free( lim←−−−
σ∈X′

ä
ni∈D

Ji(σ))

= Free( ä
ni∈D

lim←−−−
σ∈X′

Ji(σ))

= ä
ni∈D

Free( lim←−−−
σ∈X′

Ji(σ))

= ä
ni∈D

lim←−−−
σ∈X′

Free(Ji(σ))

= lim←−−−
σ∈X′

ä
ni∈D

Free(Ji(σ))

= lim←−−−
σ∈X′

Free( ä
ni∈D

Ji(σ))

= lim←−−−
σ∈X′

Free(A(σ))

= H0(C•VA)

The second equality follows from the fact that sheaf A can be considered as a bi-

functor A : Po(X′) × D → Set, where Po(X′) is the indexing poset of X′ and D is

the set of nodes. Then, A(σ, ni) = Ji(σ). Since Po(X′) is a connected category, then

ä
ni∈D

lim←−−−
σ∈X′

Ji(σ) = lim←−−−
σ∈X′

ä
ni∈D

Ji(σ) follows from the commutativity of coproducts and con-

nected limits.

The third equality follows from the fact that free functors preserve colimits, and

hence coproducts. The fourth equality follows from Lemma 10. The fifth equality fol-

lows from Lemma 11. The sixth equality follows again from the fact that free functors

preserve colimits. The last two equalities follow from definition.



Chapter 3. Distributed Systems for Pursuit and Evasion 68

This chapter introduced various constructions of cellular sheaves and cosheaves

for summarizing globally consistent data from information distributed with respect to

different properties. The cellular sheaf constructed in §3.1 collated information dis-

tributed over time. It’s construction alludes to the possibility of sheaves as tools for

studying time varying data. On the other hand, in §3.2, we introduced cellular sheaves

and cosheaves that extract information satisfying a particular boolean expression. A

natural question that follows §3.2 is to determine the existence of an evasion path given

mobile pursuers and evaders with boolean capture condition.

As this chapter illustrated, the construction of cellular sheaves and cosheaves de-

pend on the nature of the distribution of information, and it is the author’s belief that

cellular sheaves have great potential to model various kinds of distribution system. In

Chapter 4 and Chapter 5, we will construct cellular cosheaves that collate information

distributed with respect to coordinate location. In fact, our construction generalizes to

model information distributed with respect to any user specific function.
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Chapter 4

Distributed Topological Data

Analysis

In this chapter, cellular sheaf theory is used to assemble information distributed with

respect to properties of interest. Such a distribution system, when combined with per-

sistent homology, provides the necessary tools to address the following question:

Given a large point cloud P can we compute persistent homology on P by combining per-

sistence modules from the subsets of the points P?

We discuss a distributed computation method for homology using Leray cellular

cosheaves in §4.1. The heart of this dissertation provides an affirmative answer to the

above question by constructing a distributed persistent homology computation mech-

anism which is provided in §4.2. As discussed in Chapter 5, our construction not only

provides an efficient computation mechanism for large point clouds but also enriches

the information conveyed via barcodes.

4.1 Distributed Computation of Homology

We summarize the distributed homology computation method for topological spaces

by Curry, Ghrist and Nanda [11] and adapt it for a distributed homology computation

of Rips complexes built from a point cloud. The original constructions by Leray [6] and

Serre [21] are phrased in the language of sheaf cohomology in [11] as the following.
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Remark. Throughout this chapter, we assume:

• a cover V of a space is an open cover consisting of finitely many sets, and

• every homology is computed with coefficients in a field K.

Let f : X → Y be a continuous map of topological spaces, and let V be a cover of

f (X) ⊂ Y. Let NV denote the nerve of V (Definition 1). Given an n-simplex σ ∈ NV,

we will let Uσ be the corresponding (n + 1)-intersection of members of V. The Leray

cellular cosheaf Ln associated to the map f and cover V is a cosheaf on NV defined as

the following. Given σ ∈ NV, let Ln(σ) = Hn( f−1(Uσ)), the homology of the preim-

age with coefficients in a field K. Let Ln(σ E τ) be the map induced by inclusion

f−1(Uτ) ↪→ f−1(Uσ). The following can be obtained from a basic spectral sequence

argument as shown, for example, in Theorem 5.7 of [11].

Theorem 7. ([11]) Let f : X → Y be continuous. Let V be a cover of the image f (X) ⊂ Y

with one-dimensional nerve NV. Then, for each n ∈N,

Hn(X) ∼= H0(C•Ln)⊕ H1(C•Ln−1).

Note that the above special case of the Leray spectral sequence coincides with the

generalized Mayer-Vietoris principle [6].

We now address a problem of interest in topological data analysis. Given a point

cloud P, our goal is to compute the homology of a Rips complex Rε built with respect to

some parameter ε in a distributed manner using Rips complexes built on subsets of P.

Note that while we focus our attention on Rips complexes, the following construction

can be easily generalized for computations involving other complexes built on P.

Let f : P→ Rd be any map, and for any ε, let Rε be the Rips complex built on P. Let

V be a cover of f (P). For each n-simplex σ ∈ NV, let Uσ ⊂ Rd be the corresponding in-

tersection of members of V. Let Rε
σ denote the Rips complex built on points of f−1(Uσ)

for proximity parameter ε.

Remark. We will use the following terminologies throughout the remainder of this

dissertation:
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• we will refer to the collection ä
dim σ=n

Rε
σ as the "Rips complexes over the n-

simplices of NV", and

• we will refer to the entire collection ä
σ∈NV

Rε
σ as the "Rips system".

Define a cosheaf Fε
n on NV as the following. For each σ ∈ NV, let Fε

n(σ) = Hn(Rε
σ),

the nth homology with coefficients in a field K. For σ E τ, let Fε
n(σ E τ) be the map

induced by inclusion Rε
τ ↪→ Rε

σ.

A proof similar to that of Theorem 7 can be used to obtain the following isomor-

phism. The proof is reconstructed in order to clarify ideas in §4.2.2.

Lemma 12. Let P be a point cloud, and let f : P → Rd be any map. Let V be a cover of f (P)

such that NV is one-dimensional. Assume that the Rips system is a covering of Rε. Then,

Hn(R
ε) ∼= H0(C•Fε

n)⊕ H1(C•Fε
n−1). (4.1)

Proof. Consider the following commutative diagram.

...
...

...
...

...

0 C2(Rε)
⊕

v∈NV

C2(Rε
v)

⊕
e∈NV

C2(Rε
e ) 0

0 C1(R
ε)

⊕
v∈NV

C1(R
ε
v)

⊕
e∈NV

C1(R
ε
e ) 0

0 C0(Rε)
⊕

v∈NV

C0(Rε
v)

⊕
e∈NV

C0(Rε
e ) 0

j2 e2

j1 e1

j0 e0

(4.2)

The leftmost column is a chain complex of Rε, the middle column is a chain complex

of the Rips complexes over the vertices
⊕

v∈NV

Rε
v, and the rightmost column is the chain

complex of the Rips complexes over the edges
⊕

e∈NV

Rε
e . The maps jn :

⊕
v∈NV

Cn(Rε
v)

are each collections of inclusion maps. The maps en :
⊕

e∈NV

Cn(Rε
e ) →

⊕
v∈NV

Cn(Rε
v) are

also collections of inclusion maps that take the incidence numbers into account : if
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γ ∈ ⊕
e∈NV

Cn(Rε
e ) and v1, v2 are the faces of e, then en(γ) = [v1 : e]γ + [v2 : e]γ, where

[v1 : e]γ ∈ Cn(Rε
v1
) and [v2 : e]γ ∈ Cn(Rε

v2
).

When the Rips system covers Rε, every row of Diagram 4.2 is exact. Hence, taking

the spectral sequence with respect to the horizontal maps results in a trivial page. One

can then show that the following spectral sequence converges to the homology of Rε.

...
...

⊕
v∈NV

C2(Rε
v)

⊕
e∈NV

C2(Rε
e )

⊕
v∈NV

C1(R
ε
v)

⊕
e∈NV

C1(R
ε
e )

⊕
v∈NV

C0(Rε
v)

⊕
e∈NV

C0(Rε
e )

e2

e1

e0

(4.3)

Taking the homology with respect to the vertical maps, we obtain the following page.

...
...

⊕
v∈NV

H2(Rε
v)

⊕
e∈NV

H2(Rε
e )

⊕
v∈NV

H1(R
ε
v)

⊕
e∈NV

H1(R
ε
e )

⊕
v∈NV

H0(Rε
v)

⊕
e∈NV

H0(Rε
e )

∂2

∂1

∂0

(4.4)

One can check that the nth row of Diagram 4.4 coincides with the chain complex

C•Fε
n :

⊕
v∈NV

Fε
n(v)←

⊕
e∈NV

Fε
n(e)
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of cosheaf Fε
n. Taking the homology with respect to the horizontal maps in Diagram 4.4

then results in the following cosheaf homologies.

...
...

H0(C•Fε
2) H1(C•Fε

2)

H0(C•Fε
1) H1(C•Fε

1)

H0(C•Fε
0) H1(C•Fε

0)

(4.5)

As noted earlier, the spectral sequence converges to the homology Hn(Rε). Thus,

Hn(R
ε) ∼= H0(C•Fε

n)⊕ H1(C•Fε
n−1)

While Lemma 12 can be considered as an analogue to Lemma 7, note that Lemma

12 contains an additional condition that the Rips system must cover Rε. An analogous

condition was not necessary in Lemma 7 because the collection of pre-images f−1(Uσ)

formed a cover of the space X by construction. The following lemma allows us to

bound the parameter ε for which the Rips system provides a covering of Rε without

having to build Rε.

Lemma 13. Let P be a point cloud, and let f : P → Rd be any map. Let V be a cover of f (P)

such that NV is one-dimensional. There exists a constant K such that

Hn(R
ε) ∼= H0(C•Fε

n)⊕ H1(C•Fε
n−1) (4.6)

for every ε < K.
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Proof. We first specify K. In the following proof, we let the minimum over an empty

set to be ∞.

For each p ∈ P, if there exists an unique set U ∈ V such that f (p) ∈ U, then let

Kp = min
{q| f (q)/∈U}

d(p, q). (4.7)

If there are two sets of the cover, say U, W ∈ V such that f (p) ∈ U ∩W, then first let

k1
p = min

{q| f (q)/∈U∪W}
d(p, q), (4.8)

and let

k2
p = min

{q,q′|d(p,q)<k1
p, f (q)/∈U,

d(p,q′)<k1
p, f (q′)/∈W}

d(q, q′). (4.9)

Let

Kp = min{k1
p, k2

p}.

Let K = minp∈P Kp. Assume ε < K. We will now show that Equation 4.6 holds by

showing that the Rips system covers Rε. Let ω be a simplex of Rε. We can express ω

in terms of its vertices as ω = (v0, . . . , vl). The fact that ω ∈ Rε implies that for any

two vertices vi and vj of ω, the pairwise distance d(vi, vj) < ε. We will show that there

exists some Uσ ∈ V such that f (v0), . . . , f (vl) ∈ Uσ, which implies that ω ∈ Rε
σ.

If there exists a vertex, say v0 of ω, such that v0 has a unique set U with f (v0) ∈ U,

then by construction, K < Kv0 , where Kv0 = min{q| f (q)/∈U} d(v0, q) from Equation 4.7.

Thus, for any other vertex v of ω, we have d(v0, v) < ε < Kv0 , and hence, f (v) ∈ U as

well. Thus, f (v0), . . . , f (vl) ∈ U.

On the other hand, assume that for every vertex v of ω there exist two sets Uv, Wv ∈

V such that f (v) ∈ Uv ∩Wv. Without loss of generality, assume that f (v0) ∈ U ∩W.

Note that for any other vertex v of ω, we have

d(v0, v) < ε < Kv0 ≤ k1
v0

, (4.10)
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where k1
v0

is given by Equation 4.8. By Equation 4.8, the above inequality implies that

f (v) ∈ U ∪W (4.11)

for every v ∈ ω. In fact, we can show that either f (v0), . . . , f (vl) ∈ U or

f (v0), . . . , f (vl) ∈ W. Assume not. Then there exist distinct vertices, say v1 and v2,

such that f (v1) /∈ U and f (v2) /∈ W. By construction, d(v0, v1) < ε < k1
v0

, and

d(v0, v2) < ε < k1
v0

. By definition of k2
v0

from Equation 4.9, we know that k2
v0
≥ d(v1, v2).

However, this contradicts the fact that d(v1, v2) < ε < k2
v0

. Thus, it must be the case that

f (v0), . . . , f (vl) ∈ U or f (v0), . . . , f (vl) ∈W, and ω is covered by some subcomplex Rε
σ.

Thus, the Rips system covers Rε, and Lemma 13 follows from Lemma 12.

Example 12. Let P ⊂ R2 be a point cloud, as illustrated in Figure 4.1. Let f : P → R

be a projection map to the horizontal coordinate. Let f (P) be covered by intervals

VB, VY, VR illustrated in Figure 4.1.

FIGURE 4.1: Point cloud P, projection map f : P→ R, and a covering V of f (P).

Let’s compute H1(R
ε) for some parameter ε. The Rips complex Rε and the Rips

system over the nerve NV are illustrated in Figure 4.2a and 4.2b. Let vB, vY, vR denote

the vertices of NV that each corresponds to the intervals VB, VY, VR. Let eBY and eYR

denote the edges of NV that correspond to the intervals VB ∩VY and VY ∩VR.
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(A) Rips complex Rε

(B) Rips system over the nerve NV

FIGURE 4.2: Rips complex and the associated Rips system

Since we are interested in computing H1(R
ε), we need to build two cosheaves, Fε

0

and Fε
1, from the Rips system. Cosheaf Fε

1 is trivial since none of the Rips subcomplexes

of the Rips system have non-trivial 1-cycles. The local sections of Fε
0 on eBY is Fε

0(eBY) =

K⊕K. The local section of Fε
0 on any other simplex of NV is K. The extension maps

are given by Fε
0(vB E eBY) = Fε

0(vY E eBY) =

[
1 1

]
. All other extension maps are the

identity maps. The two relevant cosheaves are illustrated in Figure 4.3a and 4.3b.

(A) Cosheaf Fε
1 (B) Cosheaf Fε

0

FIGURE 4.3: The two relevant cosheaves for computing H1(R
ε)

One can verify that Equation 4.1 holds by computing

H0(C•Fε
1) = 0, H1(C•Fε

0) = K. (4.12)

Example 13. Let’s now consider a larger epsilon parameter ε′. Considering such a

case will allow us to clarify the difference between H0(C•Fε
1) and H1(C•Fε

0). The Rips

complex Rε′ and the Rips system are illustrated in Figure 4.4a and 4.4b.

The cosheaf Fε′
1 has trivial local sections except for Fε′

1 (vY) = K. Cosheaf Fε′
0 is
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(A) Rips complex Rε′

(B) Rips system over the nerve NV

FIGURE 4.4: Rips complex and the associated Rips system

a constant cosheaf with local sections K everywhere. The cosheaves Fε′
1 and Fε′

0 are

illustrated in Figure 4.5a and 4.5b. One can compute

H0(C•Fε′
1 ) = K, H1(C•Fε′

0 ) = 0. (4.13)

(A) Cosheaf Fε′
1 (B) Cosheaf Fε′

0

FIGURE 4.5: The two relevant cosheaves for computing H1(R
ε′)

Let’s compare the cosheaf homologies from Equation 4.12 and Equation 4.13 for the

two parameters ε < ε′. Note that both H1(R
ε) = K and H1(R

ε′) = K. In Example 12,

the nonzero component appeared in H1(C•Fε
0), while for the larger ε′ parameter, the

nonzero component appears in H0(C•Fε′
1 ). The reason for such a difference becomes

apparent when we compare the Rips systems from Figures 4.2b and 4.4b. In Figure

4.4b, one can see that the Rips complex Rε
vY

contains a non-trivial 1-cycle, while in

Figure 4.2b, there is no such 1-cycle contained in any of the complexes Rε
σ for σ ∈ NV.

In fact, H0(C•Fε
n) reads non-trivial n-cycles that exist in Rε

σ for some σ ∈ NV. On the

other hand, H1(C•Fε
n−1) reads non-trivial n-cycles of Rε that are not cycles of Hn(Rε

σ)
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for any σ ∈ NV.

4.2 Distributed Computation of Persistent Homology

In §4.1, we computed the homology of a Rips complex from homologies of subcom-

plexes. A natural question that arises is whether we can leverage such a construction

to compute persistence modules in a distributed manner.

Constructing the Rips complexes on a point cloud P for increasing parameter values

(εi)
N
i=1 results in the following sequence of Rips complexes and inclusion maps.

R1 ι1

↪−→ R2 ι2

↪−→ . . .
ιN−1

↪−−→ RN

Applying the homology functor of dimension n with coefficients in a field K, we obtain

the persistence module

V : Hn(R
1)

ι1∗−→ Hn(R
2)

ι2∗−→ . . .
ιN−1
∗−−→ Hn(R

N). (4.14)

Assume that we have a map f : P → Rd and a covering V that satisfies the conditions

of Lemma 12. Hence, we have the following isomorphisms

Hn(R
i) ∼= H0(C•Fi

n)⊕ H1(C•Fi
n−1) (4.15)

for every i and n. Can we construct a persistence module

VΨ : H0(C•F1
n)⊕ H1(C•F1

n−1)
Ψ1

−→ · · · ΨN−1

−−−→ H0(C•FN
n )⊕ H1(C•FN

n−1)

that is isomorphic to the persistence module V from Equation 4.14?

In §4.2.1, we show that the most naturally induced cosheaf morphisms H0(φi
n) :

H0(C•Fi
n) → H0(C•Fi+1

n ) and H1(φ
i
n−1) : H1(C•Fi

n−1) → H1(C•Fi+1
n−1) are not enough

to construct a persistence module isomorphic to V. In §4.2.2 we construct the missing

ingredient ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n ) using spectral sequences. For the interested
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reader, we provide an alternate construction of the missing map ψi using long exact

sequences in Appendix A. In §4.2.3, we construct the persistence module

VΨ : H0(C•F1
n)⊕ H1(C•F1

n−1)
Ψ1

−→ · · · ΨN−1

−−−→ H0(C•FN
n )⊕ H1(C•FN

n−1).

In §4.2.4, we show that the constructed persistence module VΨ is isomorphic to the

persistence module V.

For §4.2.1 and §4.2.2, we limit our attention to the situation with two parameters

εi < εi+1 in order to simplify notations. In §4.2.3 and §4.2.4, we come back to consider-

ing the entire family of parameters (εi)
N
i=1 as we construct VΨ.

4.2.1 Cosheaf morphisms

Given two parameters εi < εi+1, let Ri
σ and Ri+1

σ each denote the Rips complexes built

on f−1(Uσ) for the two parameters. Let Fi
n and Fi+1

n be the cosheaves on NV obtained

by applying the nth homology functor to the Rips system for the two parameters. Note

that for every σ ∈ NV, there exists an inclusion map Ri
σ ↪→ Ri+1

σ . Such inclusion maps

induce maps Fi
n(σ)→ Fi+1

n (σ) for every σ that are compatible with the extension maps.

Let φi
n : Fi

n → Fi+1
n be the resulting cosheaf morphism. Recall from Lemma 4 that

cosheaf morphisms induce morphisms in cosheaf homology. In particular, the cosheaf

morphisms φi
n and φi

n−1 induce the following morphisms

H0(φ
i
n) : H0(C•Fi

n)→ H0(C•Fi+1
n ),

H1(φ
i
n−1) : H1(C•Fi

n−1)→ H1(C•Fi+1
n−1).

(4.16)

The maps H0(φi
n) and H1(φ

i
n−1) can be used to construct a persistence module

VΨi : H0(C•Fi
n)⊕ H1(C•Fi

n−1)
Ψi
−→ H0(C•Fi+1

n )⊕ H1(C•Fi+1
n−1)

by

Ψi(u, v) = (H0(φ
i
n)(u), H1(φ

i
n−1)(v)).
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However, the resulting persistence module VΨi cannot be isomorphic to the persistence

module of interest V : Hn(Ri)
ιi∗−→ Hn(Ri+1). Recall from Definition 9 that if VΨi and

V were isomorphic persistence modules, then there would exist isomorphisms Φi and

Φi+1 such that the following diagram commutes.

H0(C•Fi
n)⊕ H1(C•Fi

n−1) Hn(Ri)

H0(C•Fi+1
n )⊕ H1(C•Fi+1

n−1) Hn(Ri+1)

Ψi

Φi

ιi∗

Φi+1

(4.17)

However, one can check that Diagram 4.17 fails to commute for any isomor-

phisms Φi and Φi+1 by examining Examples 12 and 13. Let Ri denote the Rips com-

plex built on parameter εi from Example 12, and let Ri+1 denote the Rips complex

built on parameter εi+1 from Example 13. Let’s say we are interested in computing

V : H1(R
i) → H1(R

i+1). Recall from Equations 4.12 and 4.13 that the relevant cosheaf

homologies are

H0(C•Fi
1) = 0, H1(C•Fi

0) = K,

H0(C•Fi+1
1 ) = K, H1(C•Fi+1

0 ) = 0.

Let s ∈ H1(C•Fi
0) which represents the non-trivial 1-cycle in Figure 4.2a, i.e., Φi(s) is

the non-trivial 1-cycle illustrated in Figure 4.2a. Then, ιi∗ ◦Φi(s) must be the non-trivial

1-cycle represented in Figure 4.4a. On the other hand, with our current construction of

Ψi, we have Ψi(s) = 0, and hence, Φi+1 ◦ Ψi(s) = 0 for any isomorphism Φi+1. Thus,

Diagram 4.17 cannot commute.

To understand why the diagram fails to commute, note that elements of H0(C•Fi
n)

correspond to homology classes of Hn(Ri) that can be represented by a cycle γ such that

γ ∈ Hn(Ri
σ) for some σ ∈ NV. Elements of H1(C•Fi

n−1) correspond to homology classes

of Hn(Ri) that cannot be represented by such cycles. As one can see from Examples 12

and 13, as we increase the parameter from εi to εi+1, a cycle in H1(C•Fi
n−1) can become

homologous to a cycle in H0(C•Fi+1
n ). However, the current definition of Ψi fails to take

such subtlety into account. In order for the Diagram 4.17 to commute, Ψi must map an
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element of H1(C•Fi
n−1) to H0(C•Fi+1

n ).

4.2.2 Connecting morphism via spectral sequences

In this section, we will construct a map ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n ) that is required

to define a map Ψi that makes Diagram 4.17 commute. Recall from Equation 4.16 that

H0(φi
n) and H1(φ

i
n−1) denote the morphisms on cosheaf homology induced by cosheaf

morphisms φi
n : Fi

n → Fi+1
n . Before constructing ψi, we will show that there exists a

morphism δi : ker H1(φ
i
n−1)→ coker H0(φi

n) using a spectral sequence type argument.

The importance of the morphism δi is that it extends to a map ψi : H1(C•Fi
n−1) →

H0(C•Fi+1
n ) (Lemma 14), which, along with H0(φi

n), and H1(φ
i
n−1), can construct a per-

sistence module isomorphic to V : Hn(Ri)
ιi∗−→ Hn(Ri+1) (§4.2.4).

Theorem 8. Let P be a point cloud, and let f : P → Rd be any map. Let V be a cover of

f (P) ⊂ Rd such that NV is at most one dimensional. Cosheaf morphisms φi
n, φi

n−1 induce a

morphism δi : ker H1(φ
i
n−1)→ coker H0(φi

n).

Proof. Consider the following commutative diagram. Let ιin :
⊕

v∈NV

Cn(Ri
v) →⊕

v∈NV

Cn(Ri+1
v ) denote the collection of inclusion maps of the Rips complexes over the

vertices of NV, and let κi
n :

⊕
e∈NV

Cn(Ri
e) →

⊕
e∈NV

Cn(Ri+1
e ) denote the collection of in-

clusion maps of the Rips complexes over the edges of NV. Let ei
n :

⊕
e∈NV

Cn(Ri
e) →⊕

v∈NV

Cn(Ri
v) denote the collection of inclusion maps. The maps ∂’s denote the bound-

ary maps. Note that the front and back faces of the cube are the 0th pages of the spectral
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sequence 4.3 for parameters εi and εi+1 respectively.

⊕
v∈NV

Cn(Ri+1
v )

⊕
e∈NV

Cn(Ri+1
e )

⊕
v∈NV

Cn(Ri
v)

⊕
e∈NV

Cn(Ri
e)

⊕
v∈NV

Cn−1(R
i+1
v )

⊕
e∈NV

Cn−1(R
i+1
e )

⊕
v∈NV

Cn−1(R
i
v)

⊕
e∈NV

Cn−1(R
i
e)

∂

ei+1
n

∂

ιin

∂

ei
n

κi
n

ei+1
n−1

ei
n−1

ιin−1 κi
n−1

∂

(4.18)

Computing the homology with respect to the boundary maps ∂, we obtain the fol-

lowing diagram. The maps denoted by ∂n’s in Diagram 4.19 now refers to the boundary

maps of the chain complexes C•Fi
n of the respective cosheaves. Note that the front and

back faces of the cube are the E1 pages of the spectral sequences illustrated in Diagram
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4.4.

⊕
v∈NV

Hn(Ri+1
v )

⊕
e∈NV

Hn(Ri+1
e )

⊕
v∈NV

Hn(Ri
v)

⊕
e∈NV

Hn(Ri
e)

⊕
v∈NV

Hn−1(R
i+1
v )

⊕
e∈NV

Hn−1(R
i+1
e )

⊕
v∈NV

Hn−1(R
i
v)

⊕
e∈NV

Hn−1(R
i
e)

∂i+1
n

(φi
n)v

∂i
n

(φi
n)e

∂i+1
n−1

∂i
n−1

(φi
n−1)v (φi

n−1)e

(4.19)

Now compute the homology with respect to the maps ∂i
n. We then obtain the fol-

lowing diagram of cosheaf homologies. The front and back faces of the cube corre-

spond to the E2 pages of the spectral sequences illustrated in Diagram 4.5. Note that

the only remaining maps are the ones induced by cosheaf morphisms.

H0(C•Fi+1
n ) H1(C•Fi+1

n )

H0(C•Fi
n) H1(C•Fi

n)

H0(C•Fi+1
n−1) H1(C•Fi+1

n−1)

H0(C•Fi
n−1) H1(C•Fi

n−1)

H0(φ
i
n) H1(φ

i
n)

H0(φ
i
n−1) H1(φ

i
n−1)

(4.20)
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We now take the homology with respect to the cosheaf morphisms. We will show

that there is an induced map from ker H1(φ
i
n−1) to coker H0(φi

n) as shown in the fol-

lowing diagram.

coker H0(φi
n) coker H1(φ

i
n)

ker H0(φi
n) ker H1(φ

i
n)

coker H0(φi
n−1) coker H1(φ

i
n−1)

ker H0(φi
n−1) ker H1(φ

i
n−1)

(4.21)

First, we establish some notation. Let 〈 〉, { }, and [ ] each denote the homology

classes that appear in diagrams 4.19, 4.20, and 4.21. For example, let γ ∈ ⊕
e∈NV

Cn−1(R
i
e).

• If ∂γ = 0, then 〈γ〉 denotes the homology class of γ in
⊕

e∈NV

Hn−1(R
i
e).

• If ∂i
n−1〈γ〉 = 0, then {〈γ〉} denotes the homology class of 〈γ〉 in H1(C•Fi

n−1).

• If H1(φ
i
n−1){〈γ〉} = 0, then [{〈γ〉}] denotes the homology class of {〈γ〉} in

ker H1(φ
i
n−1).

Let [{〈γ〉}] represent an element of ker H1(φ
i
n−1). Then, γ ∈ ⊕

e∈NV

Cn−1(R
i
e) must

satisfy the three conditions listed above.

The third condition, that H1(φ
i
n−1){〈γ〉} = 0, implies that (φi

n−1)e〈γ〉 is trivial in⊕
e∈NV

Hn−1(R
i+1
e ), i.e., there exists αi+1 ∈ ⊕

e∈NV

Cn(Ri+1
e ) such that

∂αi+1 = κi
n−1γ. (4.22)
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The second condition, that ∂i
n−1〈γ〉 = 0 in

⊕
v∈NV

Hn−1(R
i
v), implies that there exists

βi ∈ ⊕
v∈NV

Cn(Ri
v) such that

∂βi = ei
n−1γ. (4.23)

Define a map δi : ker H1(φ
i
n−1)→ coker H0(φi

n) by

δi[{〈γ〉}] = [{〈−ei+1
n αi+1 + ιinβi〉}]. (4.24)

One can check that −ei+1
n αi+1 + ιinβi represents an element in coker H0(φi

n) and that

δi is well defined. The proofs are in Appendix B.1.

Lemma 14. The map δi : ker H1(φ
i
n−1) → coker H0(φi

n) extends to a map ψi :

H1(C•Fi
n−1)→ H0(C•Fi+1

n ).

Proof. Note that ker H1(φ
i
n−1) is a subspace of H1(C•Fi

n−1) and that coker H0(φi
n) is

a subspace of H0(C•Fi+1
n ). Since H1(C•Fi

n−1) and H0(C•Fi+1
n ) are finite dimensional

vector spaces, we have the following decompositions

H1(C•Fi
n−1) = ker H1(φ

i
n−1)⊕ Ai , (4.25)

H0(C•Fi+1
n ) = coker H0(φ

i
n)⊕ Bi . (4.26)

So every u ∈ H1(C•Fi
n−1) can be written uniquely as u = (w1, w2), with w1 ∈

ker H1(φ
i
n−1) and w2 ∈ Ai. Define ψi : H1(C•Fi

n−1)→ H0(C•Fi+1
n ) by

ψi(u) = ψi(w1, w2) = (δi(w1), 0) . (4.27)

The following example illustrates the choice of αi+1 and βi in the construction of δi .
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(A) Rips complex Ri

(B) Rips system for parameter εi

(C) Rips complex Ri+1

(D) Rips system for parameter εi+1

FIGURE 4.6: Rips complexes and the Rips systems for parameters εi and εi+1

Example 14. Consider the Rips complexes Ri and Ri+1 built for parameters εi and εi+1

illustrated in Figure 4.6a and Figure 4.6c. The Rips system for the two parameters are

illustrated in Figure 4.6b and Figure 4.6d.

Note that

H0(C•Fi
1) = 0, H1(C•Fi

0) = K

H0(C•Fi+1
1 ) = K, H1(C•Fi+1

0 ) = 0.
(4.28)

The map H1(φ
i
0) : H1(C•Fi

0)→ H1(C•Fi+1
0 ) is trivial, so ker H1(φ

i
0) = H1(C•Fi

0).

Let [{〈γ〉}] ∈ ker H1(φ
i
0). The process of finding αi+1 is illustrated in Figure 4.7.

The coset representative γ ∈ ⊕
e∈NV

C0(Ri
e) is illustrated in Figure 4.7a. Note that κi

n−1γ ∈⊕
e∈NV

C0(Ri+1
e ), so κi

n−1γ is illustrated in a Rips system for parameter εi+1 in Figure 4.7b.

Recall that αi+1 ∈ ⊕
e∈NV

C1(R
i+1
e ) satisfies Equation 4.22, i.e., αi+1 is a 1-chain whose

boundary equals κi
n−1γ. The element αi+1 is illustrated in Figure 4.7c. Finally, ei+1

n α ∈
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(A) γ illustrated in Rips system for εi
(B) κi

n−1γ illustrated in Rips system for εi+1.

(C) αi+1 illustrated in Rips system for εi+1 (D) ei+1
n αi+1 illustrated in Rips system for εi+1

FIGURE 4.7: Finding αi+1

⊕
v∈NV

C1(R
i+1
v ) is illustrated in Figure 4.7d.

On the other hand, the process of finding βi is illustrated in Figure 4.8. We start

with the same coset representative γ ∈ ⊕
e∈NV

C0(Ri
v) illustrated in Figure 4.8a. Note that

ei
n−1γ ∈ ⊕

v∈NV

C0(Ri
v), which is illustrated in Figure 4.8b. The element βi ∈ ⊕

v∈NV

C1(R
i
v)

must satisfy Equation 4.23, i.e., ei
n−1γ must be the boundary of βi. Such βi is illustrated

in Figure 4.8c. Lastly, ιinβi is illustrated in Figure 4.8d.

From Figures 4.7 and 4.8, one can now visualize the map δi[{〈γ〉}] = [{〈−ei+1
n αi+1 +

ιinβi〉}], as illustrated in Figure 4.9.

In Appendix A, we provide an alternate construction of map ψi
∗ : H1(C•Fi

n−1) →

H0(C•Fi+1
n ) via long exact sequences. We also show that the two maps ψi and ψi

∗ are

the same maps up to a change of basis.
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(A) An element [{〈γ〉}] ∈ ker H1(φ
i
0) (B) ei

n−1γ illustrated in Rips system for εi

(C) βi illustrated in Rips system for εi (D) ιinβi illustrated in Rips system for εi+1

FIGURE 4.8: Finding β
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FIGURE 4.9: −ei+1
n αi+1 + ιinβi illustrated in Rips system for parameter εi+1

4.2.3 Construction of distributed persistence module

Given a family of parameters (εi)
N
i=1 such that the isomorphism

Hn(R
i) ∼= H0(C•Fi

n)⊕ H1(C•Fi
n−1)

holds for each εi, we now construct maps

Ψi : H0(C•Fi
n)⊕ H1(C•Fi

n−1)→ H0(C•Fi+1
n )⊕ H1(C•Fi+1

n−1)

such that the resulting persistence module

VΨ : H0(C•F1
n)⊕ H1(C•F1

n−1)
Ψ1

−→ · · · ΨN−1

−−−→ H0(C•FN
n )⊕ H1(C•FN

n−1)

is isomorphic to the persistence module

V : Hn(R
1)

ι1∗−→ · · · ιN−1
∗−−→ Hn(R

N)

from Equation 4.14.
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Recall the maps

H0(φ
i
n) :H0(C•Fi

n)→ H0(C•Fi+1
n )

H1(φ
i
n−1) :H1(C•Fi

n−1)→ H1(C•Fi+1
n−1)

(4.29)

from Equation 4.16 and the map

ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n )

from Equation 4.27. For each εi, it is possible to construct a map

Ψi : H0(C•Fi
n)⊕ H1(C•Fi

n−1)→ H0(C•Fi+1
n )⊕ H1(C•Fi+1

n−1)

by

Ψi({〈x〉}, {〈y〉}) = (H0(φ
i
n){〈x〉}+ (−1)n+1ψi{〈y〉}, H1(φ

i
n−1){〈y〉}).

Given two parameters εi < εi+1, the persistence module

H0(C•Fi
n)⊕ H1(C•Fi

n−1)
Ψi
−→ H0(C•Fi+1

n )⊕ H1(C•Fi+1
n−1)

can be shown to be isomorphic to the persistence module

Hn(R
i)

ιi∗−→ Hn(R
i+1).

Given more than two parameters, the maps Ψi may define a persistence module that

is different from the persistence module V that we are interested in. Thus, one should

be mindful of the subtleties involved when constructing a persistence module for more

than two parameters. Example 15 at the end of this chapter illustrates a situation where

the maps Ψi lead to a persistence module that is not isomorphic to the persistence

module of interest.

The subtlety arises from the fact that for each parameter εi, the cosheaf homology

H1(C•Fi
n−1) can potentially represent multiple cycles of Hn(Ri). When considering
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multiple εi parameters, the naive construction might force H1(C•Fi
n−1) to represent

cycles that are not compatible with other parameters.

In this section, we construct morphisms Ψi that ensures that H1(C•Fi
n−1) represent

cycles that are compatible across parameters. We achieve this goal by reconstructing

morphisms

ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n ).

Recall from Equations 4.24 and 4.27 that a map ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n ) has

been defined by extending the map δi. The map δi was defined by

δi[{〈γ〉}] = [{〈−ei+1
n αi+1 + ιinβi〉}],

where αi+1 satisfies Equation 4.22 and βi satisfies Equation 4.23.

Instead of extending the map δi, we will define the map ψi : H1(C•Fi
n−1) →

H0(C•Fi+1
n ) directly, as

ψi{〈γ〉} = {〈−ei+1
n αi+1 + ιinβ〉}

for {〈γ〉} ∈ ker H1(φ
i
n−1).

When there are multiple candidates for αi+1 and βi, the different choices of αi+1

and βi can lead to different constructions of ψi. It turns out, the different choices for

αi+1 do not affect the map ψi. It is the different choices of βi that can lead to varying

constructions of ψi. In particular, we want to choose elements βi such that the maps ψi

are compatible across parameters.

To that end, we construct the maps ψi on a fixed basis Bi of H1(C•Fi
n−1) in an in-

ductive manner so that we can guarantee that choices of βi for a parameter εi are com-

patible with the choices of βi−1 for parameter εi−1. Once we define the map ψi, we will

be able to define Ψi.

The construction of map ψi will make use of Diagram 4.30. Note that while the

previous commutative diagrams were constructed for two parameters εi < εi+1, the

following diagram is constructed for the entire collection of ε parameters. Moreover,
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the following diagram is seen from a different perspective in three dimensions than the

previous diagrams for display purposes. In this diagram, each horizontal face of the

cube corresponds to the 0th page of the spectral sequence from Diagram 4.3 for a fixed

ε parameter.

Note that ∂ are the usual boundary maps and ei
n :

⊕
e∈NV

Cn(Ri
e) →

⊕
v∈NV

Cn(Ri
v)

is the inclusion of n-chains on the edges of NV to the vertices of NV. The map

ιin :
⊕

v∈NV

Cn(Ri
v)→

⊕
v∈NV

Cn(Ri+1
v ) and κi

n :
⊕

e∈NV

Cn(Ri
e)→

⊕
e∈NV

Cn(Ri+1
e ) are both inclu-

sion maps.

⊕
v∈NV

Cn(R1
v)

⊕
e∈NV

Cn(R1
e )

⊕
v∈NV

Cn−1(R
1
v)

⊕
e∈NV

Cn−1(R
1
e )

⊕
v∈NV

Cn(R2
v)

⊕
e∈NV

Cn(R2
e )

⊕
v∈NV

Cn−1(R
2
v)

⊕
e∈NV

Cn−1(R
2
e )

⊕
v∈NV

Cn(R3
v)

⊕
e∈NV

Cn(R3
e )

⊕
v∈NV

Cn−1(R
3
v)

...
⊕

e∈NV

Cn−1(R
3
e )

...

...
...

∂ ι1n

e1
n

κ1
n

∂

ι1n−1

e1
n−1

∂ ι2n

e2
n

κ2
n

∂

ι2n−1

e2
n−1

κ1
n−1

∂

ι3n

e3
n

κ3
n

∂

ι3n−1

e3
n−1

κ2
n−1

κ3
n−1

(4.30)

For parameter ε1, we will fix a basis B1 of H1(C•F1
n−1). We will define a linear map

Γ1 : H1(C•F1
n−1) →

⊕
v∈NV

Cn(R1
v) and a linear map ψ1 : H1(C•F1

n−1) → H0(C•F2
n) by

defining the maps on the basis B1 and extending the maps linearly.
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For each parameter εi, we will go through the following steps to construct the map

ψi.

• Step 1. Fix a basis Ci of H1(C•Fi
n−1) that is compatible with the basis Bi−1 of

H1(C•Fi−1
n−1).

• Step 2. Define a map Γi : H1(C•F1
n−1) →

⊕
v∈NV

Cn(Ri
v) by defining the map on Ci

and extending linearly.

• Step 3. Fix a new basis Bi of H1(C•Fi
n−1).

• Step 4. Define the map ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n ) on basis Bi using the map

Γi defined in Step 2.

The map Γi : H1(C•Fi
n−1)→

⊕
v∈NV

(Ri
v) defined in Step 2 will encode the choice of βi

for each basis vector {〈b〉} ∈ Bi. The basis Ci of H1(C•Fi
n−1) of Step 1 will allow us to

define the map Γi in a manner compatible with map Γi−1 from the previous parameter

εi−1.

We proceed with the base case for parameter ε1.

Base case

Recall from Equation 4.25 that

H1(C•F1
n−1) = A1 ⊕ ker H1(φ

1
n−1).

Let B1
A be a basis of A1, and let B1

ker be a basis of ker H1(φ
1
n−1). Then,

B1 = B1
A ∪B1

ker

is a basis of H1(C•F1
n−1). For each basis vector {〈b〉} ∈ B1, fix a coset representative b∗

of 〈b∗〉. Thus, we can express the basis as

B1 = { {〈b∗1〉}, . . . , {〈b∗m〉} }.
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We will define Γ1 : H1(C•F1
n−1) →

⊕
v∈NV

Cn(R1
v) on the basis B1. For a basis vector

{〈b∗〉} ∈ B1, we know from Equation 4.23 that there exists some β1 ∈ ⊕
v∈NV

Cn(R1
v) such

that

∂β1 = e1
n−1b∗.

Among all possible candidates for β1 that satisfy the above equation, choose any par-

ticular β1, and denote the chosen element by β1
∗. For each {〈b∗〉} ∈ B1, let

Γ1{〈b∗〉} = β1
∗. (4.31)

Extend this map Γ1 linearly to the vector space H1(C•F1
n−1), i.e., define

Γ1( a1{〈b∗1〉}+ · · ·+ am{〈b∗m〉} ) = a1Γ1{〈b∗1〉}+ · · ·+ amΓ1{〈b∗m〉}.

We now define ψ1 : H1(C•F1
n−1) → H0(C•F2

n) on the basis B1 and extend the map

linearly. By construction, a basis vector {〈b∗〉} ∈ B1 must satisfy either {〈b∗〉} ∈ B1
ker

or {〈b∗〉} ∈ B1
A. If {〈b∗〉} ∈ B1

ker, recall from Equation 4.22 that there exists an α2 ∈⊕
e∈NV

Cn(R2
e ) such that

∂α2 = κ1
n−1b∗. (4.32)

Define ψ1 for each {〈b∗〉} ∈ B1 by

ψ1{〈b∗〉} =


{〈−e2

nα2 + ι1n ◦ Γ1{〈b∗〉} 〉} if {〈b∗〉} ∈ B1
ker

0 if {〈b∗〉} ∈ B1
A

(4.33)

where α2 ∈ ⊕
e∈NV

Cn(R2
e ) can be any element satisfying Equation 4.32 and Γ1 is the map

defined in Equation 4.31.

Extend the map ψ1 to the vector space H1(C•F1
n−1), i.e., let

ψ1(a1{〈b∗1〉}+ · · ·+ am{〈b∗m〉}) = a1ψ1{〈b∗1〉}+ · · ·+ amψ1{〈b∗m〉}. (4.34)
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One can check that the map ψ1 is well-defined (Appendix B.2).

Inductive step

Recall from Equation 4.25 that

H1(C•Fi−1
n−1) = Ai−1 ⊕ ker H1(φ

i−1
n−1).

Assume that we are given a basis Bi−1 of H1(C•Fi−1
n−1) that has the form

Bi−1 = Bi−1
A ∪Bi−1

ker ,

where Bi−1
A is a basis of Ai−1 and Bi−1

ker is a basis of ker H1(φ
i−1
n−1). Moreover, assume

that for each basis vector {〈b〉} ∈ Bi−1, a coset representative b∗ of 〈b〉 has been fixed,

i.e., we can write the basis Bi−1 as

Bi−1 = { {〈b∗1〉}, . . . , {〈b∗i−1m
〉} }.

Lastly, assume that the map Γi−1 : H1(C•Fi−1
n−1)→

⊕
v∈NV

Cn(Ri−1
v ) has been defined such

that for every {〈b∗〉} ∈ Bi−1, we have

∂Γi−1{〈b∗〉} = ei−1
n−1b∗. (4.35)

• Step 1. We first fix a basis Ci of H1(C•Fi
n−1). By assumption, the basis Bi−1 of

H1(C•Fi−1
n−1) has the form Bi−1 = Bi−1

A ∪Bi−1
ker . Without loss of generality, assume

that

Bi−1
A = { {〈b∗1〉}, . . . , {〈b∗t 〉} }.

One can show that {〈κi−1
n−1b∗1〉}, . . . , {〈κi−1

n−1b∗t 〉} are linearly independent in

H1(C•Fi
n−1) (Appendix B.3). Let

Ci
im = { {〈κi−1

n−1b∗1〉}, . . . , {〈κi−1
n−1b∗t 〉} }.
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Extend Ci
im to a basis Ci of H1(C•Fi

n−1). Let Ci
D denote the basis vectors of Ci that

are not in Ci
im, i.e.,

Ci = Ci
im ∪ Ci

D. (4.36)

For each {〈c〉} ∈ Ci, fix a coset representative c∗ of 〈c〉 as the following. If {〈c〉} ∈

Ci
im such that {〈c〉} = {〈κi−1

n−1b∗s 〉}, then let c∗ = κi−1
n−1b∗s be the coset representative

of 〈c〉. If {〈c〉} ∈ Ci
D, fix any coset representative c∗ of 〈c〉.

• Step 2. We will now define Γi : H1(C•Fi
n−1) →

⊕
v∈NV

Cn(Ri
v) on the basis Ci.

Given a basis vector {〈c∗〉} ∈ Ci, we know from Equation 4.23 that there exists

some βi ∈ ⊕
v∈NV

Cn(Ri
v) such that

∂βi = ei
n−1c∗. (4.37)

If {〈c∗〉} = {〈κi−1
n−1b∗〉} ∈ Ci

im, then by Equation 4.35 and commutativity of Di-

agram 4.30, one can check that ιi−1
n Γi−1{〈b∗〉} is a candidate for βi that satisfies

Equation 4.37. Define Γi on each {〈c∗〉} ∈ Ci by

Γi{〈c∗〉} =


ιi−1
n Γi−1{〈b∗〉} if {〈c∗〉} = {〈κi−1

n−1b∗〉} ∈ Ci
im

βi if {〈c∗〉} ∈ Ci
D

(4.38)

where βi ∈ ⊕
v∈NV

Cn(Ri
v) is any element satisfying Equation 4.37. Note that by

construction, for each {〈c∗〉} ∈ Ci, we defined Γic∗ such that

∂Γi{〈c∗〉} = ei
n−1c∗. (4.39)

Extend the map Γi linearly to the vector space H1(C•Fi
n−1).

• Step 3. Recall from Equation 4.25 the decomposition

H1(C•Fi
n−1) = Ai ⊕ ker H1(φ

i
n−1).
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Let Bi
A be a basis of Ai, and let Bi

ker be a basis of ker H1(φ
i
n−1). Then,

Bi = Bi
A ∪Bi

ker

is a basis of H1(C•Fi
n−1). Each basis vector {〈b〉} ∈ Bi can be written as a linear

combination of basis Ci = { {〈c∗1〉}, . . . , {〈c∗l 〉} } as

{〈b〉} = d1{〈c∗1〉}+ · · ·+ dl{〈c∗l 〉}.

Then, let

b∗ = d1c∗1 + · · ·+ dlc∗l (4.40)

be the coset representative of 〈b〉. We can express the basis Bi of H1(C•Fi
n−1) as

Bi = { {〈b∗1〉}, . . . , {〈b∗k 〉} }. (4.41)

Note that by construction, for any basis vector {〈b∗〉} ∈ Bi, we have

Γi{〈b∗〉} = d1Γi{〈c∗1〉}+ · · ·+ dlΓi{〈c∗l 〉}

and

∂Γi{〈b∗〉} = ei
n−1b∗,

which is a condition we need to pass on to the next inductive step.

• Step 4. We now define ψi : H1(C•Fi
n−1) → H0(C•Fi+1

n ) by defining ψi on the

basis Bi and extending the map linearly. If {〈b∗〉} ∈ Bi
ker, recall from Equation

4.22 that there exists some αi+1 ∈ ⊕
e∈NV

Cn(Ri+1
e ) such that

∂αi+1 = κi
n−1b∗. (4.42)
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Define ψi on each {〈b∗〉} ∈ Bi by

ψi{〈b∗〉} =


{〈−ei

nαi+1 + ιi−1
n ◦ Γi{〈b∗〉} 〉} if {〈b∗〉} ∈ Bi

ker

0 if {〈b∗〉} ∈ Bi
A

, (4.43)

where αi+1 ∈ ⊕
e∈NV

Cn(Ri+1
e ) is any element satisfying Equation 4.42 and Γi is the

map defined in Equation 4.38. Define the linear map ψi by extending the above

to the vector space H1(C•Fi
n−1) by

ψi(a1{〈b∗1〉}+ · · ·+ al{〈b∗l 〉}) = a1ψi{〈b∗1〉}+ · · ·+ alψ
i{〈b∗l 〉}. (4.44)

One can check that ψi is well-defined (Appendix B.2).

Once we define the maps ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n ) inductively, we can define

Ψi : H0(C•Fi
n)⊕ H1(C•Fi

n−1)→ H0(C•Fi+1
n )⊕ H1(C•Fi+1

n−1)

by

Ψi({〈x〉}, {〈y〉}) = ( H0(φ
i
n){〈x〉}+ (−1)n+1ψi{〈y〉} , H1(φ

i
n−1){〈y〉} ), (4.45)

where H0(φi
n) and H1(φ

i
n−1) are the maps defined in Equation 4.16.

Let VΨ denote the persistence module

VΨ : H0(C•F1
n)⊕ H1(C•F1

n−1)
Ψ1

−→ · · · ΨN−1

−−−→ H0(C•FN
n )⊕ H1(C•FN

n−1). (4.46)

4.2.4 Isomorphism of persistence modules

We show that the persistence module VΨ constructed in Equation 4.46 is isomorphic to

the persistence module

V : Hn(R
1)

ι1∗−→ · · · ιN−1
∗−−→ Hn(R

N .)
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To show that the persistence module VΨ is isomorphic to V, we will show that both

VΨ and V are isomorphic to a third persistence module

VTot : Hn(Tot1)
ι1Tot−→ Hn(Tot2)

ι2Tot−→ · · ·
ιN−1
Tot−−→ Hn(TotN),

where each Hn(Toti) is the homology of the double complex from Diagram 4.3 for pa-

rameter εi, and ιiTot is the morphism induced by maps of double complexes. We will

first show that VTot is isomorphic to the persistence module V. This first step cor-

responds to constructing an isomorphism Φi
Tot for each εi that make the right half of

Diagram 4.47 commute (Theorem 9). We will then show that VΨ is isomorphic to VTot,

by constructing maps Φi that make the left half of Diagram 4.47 commute (Theorem

10).

H0(C•F1
n)⊕ H1(C•F1

n−1) Hn(Tot1) Hn(R1)

H0(C•F2
n)⊕ H1(C•F2

n−1) Hn(Tot2) Hn(R2)

...
...

...

H0(C•FN
n )⊕ H1(C•FN

n−1) Hn(TotN) Hn(RN)

Ψ1

Φ1 Φ1
Tot

ι1Tot ι1∗

Ψ2

Φ2 Φ2
Tot

ι2Tot ι2∗

ΨN−1 ιN−1
Tot ιN−1

∗

ΦN ΦN
Tot

(4.47)

Before we proceed with the proof, we provide a summary of the construction of the

homology of a double complex. For a fixed εi parameter, consider the 0th page of the
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spectral sequence in Diagram 4.48.

...
...

⊕
v∈NV

C2(Ri
v)

⊕
e∈NV

C2(Ri
e)

⊕
v∈NV

C1(R
i
v)

⊕
e∈NV

C1(R
i
e)

⊕
v∈NV

C0(Ri
v)

⊕
e∈NV

C0(Ri
e)

∂ ∂

∂

ei
2

∂

∂

ei
1

∂

ei
0

(4.48)

Let

C•,•n =
⊕

v∈NV

Cn(R
i
v)⊕

⊕
e∈NV

Cn−1(R
i
e),

and let Dn : C•,•n → C•,•n−1 be defined by

Dn = ∂ + (−1)nei
n−1.

One can check that Dn−1 ◦ Dn = 0, and hence obtain the following chain complex,

called total complex.

Toti
• : · · · D3−→ C•,•2

D2−→ C•,•1
D1−→ C•,•0

D0−→ 0

Let Hn(Toti) denote the homology of the total complex. Note that a coset of Hn(Toti)

is represented by [a, b], where a ∈ ⊕
v∈NV

Cn(Ri
v), b ∈ ⊕

e∈NV

Cn−1(R
i
e), ∂b = 0 and ∂a =

(−1)n−1ei
n−1b.

A coset [a, b] is trivial in Hn(Toti) if there exist pn+1 ∈
⊕

v∈NV

Cn+1(R
i
v) and qn ∈⊕

e∈NV

Cn(Ri
e) such that ∂qn = b and ∂pn+1 + (−1)n+1ei

n(qn) = a.

Given increasing parameter values (εi)
N
i=1, one can construct Diagram 4.48 for each
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parameter εi. There exists an inclusion map from double complex associated with pa-

rameter εi to that of parameter εi+1, as illustrated in Diagram 4.50. Each horizontal

face of Diagram 4.50 corresponds to a double complex for a parameter εi. The vertical

maps ιin’s and κi
n’s constitute the inclusion maps of double complexes. Such inclu-

sion of double complexes induces morphisms on the corresponding total complexes

Toti
• → Toti+1

• , which induces morphism ιiTot : Hn(Toti) → Hn(Toti+1). The morphism

ιiTot can be written explicitly as

ιTot([a, b]) = [ιin(a), κi
n−1(b)]. (4.49)

⊕
v∈NV

Cn(R1
v)

⊕
e∈NV

Cn(R1
e )

⊕
v∈NV

Cn−1(R
1
v)

⊕
e∈NV

Cn−1(R
1
e )

⊕
v∈NV

Cn(R2
v)

⊕
e∈NV

Cn(R2
e )

⊕
v∈NV

Cn−1(R
2
v)

⊕
e∈NV

Cn−1(R
2
e )

⊕
v∈NV

Cn(R3
v)

⊕
e∈NV

Cn(R3
e )

⊕
v∈NV

Cn−1(R
3
v)

...
⊕

e∈NV

Cn−1(R
3
e )

...

...
...

∂ ι1n

e1
n

κ1
n

∂

ι1n−1

e1
n−1

∂ ι2n

e2
n

κ2
n

∂

ι2n−1

e2
n−1

κ1
n−1

∂

ι3n

e3
n

κ3
n

∂

ι3n−1

e3
n−1

κ2
n−1

κ3
n−1

(4.50)

We first show that the right half of Diagram 4.47 commutes.
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Theorem 9. There exist isomorphisms Ψi
Tot : Hn(Toti) → Hn(Ri) such that the following

diagram commutes.

Hn(Tot1) Hn(R1)

Hn(Tot2) Hn(R2)

...
...

Hn(TotN) Hn(RN)

Ψ1
Tot

ι1Tot ι1∗

Ψ2
Tot

ι2Tot ι2∗

ιN−1
Tot ιN−1

∗

ΨN
Tot

(4.51)

Proof. We first define isomorphisms Ψi
Tot : Hn(Toti) → Hn(Ri). For each parameter εi,

let ji
n :

⊕
v∈NV

Cn(Ri
v)→ Cn(Ri) be a collection of inclusion maps. Define Ψi

Tot by

Ψi
Tot([x, y]) = [ji

n(x)]. (4.52)

One can check that Ψi
Tot is well-defined and bijective (Appendix B.4).

We now show that Diagram 4.51 commutes. Given [x, y] ∈ Hn(Toti), we have

ιi∗ ◦Ψi
Tot[x, y] = ιi∗[j

i
n(x)] = [ιi ◦ ji

n(x)],

and

Ψi+1
Tot ◦ ιiTot[x, y] = Ψi+1

Tot [ι
i
n(x), κi

n−1(y)] = [ji+1
n ◦ ιin(x)].

The following diagram commutes because all the maps involved are inclusion maps.

⊕
v∈NV

Cn(Ri
v) Cn(Ri)

⊕
v∈NV

Cn(Ri+1
v ) Cn(Ri+1)

jin

ιin
ιi

ji+1
n

So we know that ιi∗ ◦Ψi
Tot = Ψi+1

Tot ◦ ιiTot. Thus, Diagram 4.51 commutes.

We now show that the left half of Diagram 4.47 commutes.



Chapter 4. Distributed Topological Data Analysis 103

Theorem 10. There exists an isomorphism Φi : H0(C•Fi
n)⊕ H1(C•Fi

n−1) → Hn(Toti) for

every parameter εi such that the following diagram commutes.

H0(C•F1
n)⊕ H1(C•F1

n−1) Hn(Tot1)

H0(C•F2
n)⊕ H1(C•F2

n−1) Hn(Tot2)

...
...

H0(C•FN
n )⊕ H1(C•FN

n−1) Hn(TotN)

Ψ1

Φ1

ι1Tot

Ψ2

Φ2

ι2Tot

ΨN−1 ιN−1
Tot

ΦN

(4.53)

Proof. Note that Lemma 12 already tells us that there exists an isomorphism between

H0(C•Fi
n) ⊕ H1(C•Fi

n−1) and Hn(Toti) for parameter εi < K. For clarity, we will de-

fine isomorphisms Φi : H0(C•Fi
n) ⊕ H1(C•Fi

n−1) → Hn(Toti) explicitly on vectors of

H0(C•Fi
n) and H1(C•Fi

n−1).

For {〈x〉} ∈ H0(C•Fi
n), let

Φi({〈x〉}, 0) = [x, 0]. (4.54)

To define the map Φi on H1(C•Fi
n−1), recall the basis Bi of H1(C•Fi

n−1) from Equation

4.41. We will define Φi on each basis Bi as the following. Given {〈b∗〉} ∈ Bi, let

Φi(0, {〈b∗〉}) = [(−1)n+1Γi{〈b∗〉}, b∗], (4.55)

where Γi is the map defined in Equation 4.38. Extend this map linearly to H1(C•Fi
n−1).

Note that given ({〈x〉}, {〈y〉}) ∈ H0(C•Fi
n)⊕ H1(C•Fi

n−1), the map Φi is

Φi({〈x〉}, {〈y〉}) = Φi({〈x〉}, 0) + Φi(0, {〈y〉}).

One can check that Φi is well-defined and bijective (Appendix B.5).
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We now show that Diagram 4.53 commutes. It suffices to show that each square of

Diagram 4.53 commutes.

H0(C•Fi
n)⊕ H1(C•Fi

n−1) Hn(Toti)

H0(C•Fi+1
n )⊕ H1(C•Fi+1

n−1) Hn(Toti+1)

Ψi

Φi

ιiTot

Φi+1

(4.56)

We will show that the above diagram commutes for each vector of H0(C•Fi
n) and

H1(C•Fi
n−1).

Case 1: Given {〈x〉} ∈ H0(C•Fi
n), we know that

ιiTot ◦Φi({〈x〉}, 0) = ιiTot([x, 0]) = [ιinx, 0].

On the other hand, note that {〈ιinx〉} ∈ H0(C•Fi+1
n ), and

Φi+1 ◦Ψi({〈x〉}, 0) = Φi+1({〈ιinx〉}, 0) = [ιinx, 0].

Thus, the diagram commutes for every {〈x〉} ∈ H0(C•Fi
n).

Case 2: To show that the diagram commutes for every vector in H1(C•Fi
n−1), it suffices

to show that the diagram commutes for the basis Bi of H1(C•Fi
n−1) from Equation

4.41. We consider two cases separately: the first, if {〈b∗〉} ∈ Bi
ker, and the second, if

{〈b∗〉} ∈ Bi
A.

Case 2A: Assume {〈b∗〉} ∈ Bi
ker. We know that

ιiTot ◦Φi(0, {〈b∗〉}) = ιiTot([(−1)n+1Γi{〈b∗〉}, b∗]) = [(−1)n+1ιin ◦ Γi{〈b∗〉}, κi
n−1(b

∗)].
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On the other hand,

Φi+1 ◦Ψi(0, {〈b∗〉}) = Φi+1((−1)n+1ψi{〈b∗〉}, {〈κi
n−1b∗〉})

= Φi+1((−1)n+1{〈−ei+1
n αi+1 + ιin ◦ Γi{〈b∗〉}〉}, 0)

= [−(−1)n+1ei+1
n αi+1 + (−1)n+1ιin ◦ Γi{〈b∗〉}, 0]

Then,

ιiTot ◦Φi(0, {〈b∗〉})−Φi+1 ◦Ψi(0, {〈b∗〉}) = [(−1)n+1ei+1
n αi+1, κi

n−1b∗].

Recall from Equation 4.43 that αi+1 ∈ ⊕
e∈NV

Cn(Ri+1
e ) satisfies κi

n−1b∗ = ∂αi+1. Thus,

ιiTot ◦ Φi(0, {〈b∗〉}) − Φi+1 ◦ Ψi(0, {〈b∗〉}) = 0, and the diagram commutes for basis

vectors {〈b∗〉} ∈ Bi
ker.

Case 2B: If {〈b∗〉} ∈ Bi
A, then again,

ιiTot ◦Φi(0, {〈b∗〉}) = ιiTot([(−1)n+1Γi{〈b∗〉}, b∗]) = [(−1)n+1ιin ◦ Γi{〈b∗〉}, κi
n−1b∗].

On the other hand,

Φi+1 ◦Ψi(0, {〈b∗〉}) = Φi+1(ψi{〈b∗〉}, {〈κi
n−1b∗〉})

= Φi+1(0, {〈κi
n−1b∗〉})

= [(−1)n+1Γi+1{〈κi
n−1b∗〉}, κi

n−1b∗]

= [(−1)n+1ιin ◦ Γi{〈b∗〉}, κi
n−1b∗].

The third equality follows from the fact that Γi+1 was defined in Equation 4.38 such that

Γi+1{〈κi
n−1b∗〉} = ιinΓi{〈b∗〉}. Thus, the diagram commutes for basis vectors {〈b∗〉} ∈

Bi
A.

Thus, Diagram 4.53 commutes.
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The following immediate corollary tells us that the persistence module

VΨ : H0(C•F1
n)⊕ H1(C•F1

n−1)
Ψ1

−→ · · · ΨN−1

−−−→ H0(C•FN
n )⊕ H1(C•FN

n−1)

constructed via distributed computation is isomorphic to the persistence module

V : Hn(R
1)

ι1∗−→ · · · ιN−1
∗−−→ Hn(R

N .)

Hence, barcode(VΨ) = barcode(V).

Corollary 2. The maps Φi and Φi
Tot are isomorphisms that make the Diagram 4.47 commute.

In §4.2.2, we defined the map ψi : H1(C•Fi
n−1) → H0(C•Fi+1

n ) in Equation 4.27

by extending a map δi constructed in Equation 4.24. In §4.2.3, we redefined the map

ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n ) explicitly on a basis Bi of H1(C•Fi
n−1) in Equation 4.43.

One might wonder why it was necessary for us to reconstruct the map ψi explicitly

when we already had ψi defined in Equation 4.27.

To clarify the discussion, let

ψi : H1(C•Fi
n−1)→ H0(C•Fi+1

n )

denote the map defined in Equation 4.27, and let

ψi
B : H1(C•Fi

n−1)→ H0(C•Fi+1
n )

denote the map constructed explicitly on a basis Bi in Equation 4.43. Let Ψi :

H0(C•Fi
n)⊕ H1(C•Fi

n−1)→ H0(C•Fi+1
n )⊕ H1(C•Fi+1

n−1) be the map defined by

Ψi({〈x〉}, {〈y〉}) = (H0(φ
i
n){〈x〉}+ (−1)n+1ψi{〈y〉}, H1(φ

i
n−1){〈y〉}), (4.57)
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and let Ψi
B : H0(C•Fi

n)⊕H1(C•Fi
n−1)→ H0(C•Fi+1

n )⊕H1(C•Fi+1
n−1) be the map defined

by

Ψi
B({〈x〉}, {〈y〉}) = (H0(φ

i
n){〈x〉}+ (−1)n+1ψi

B{〈y〉}, H1(φ
i
n−1){〈y〉}). (4.58)

When given just two parameters, say εi and εi+1, then the two maps Ψi and Ψi
B both

define persistence modules

VΨ : H0(C•Fi
n)⊕ H1(C•Fi

n−1)
Ψi
−→ H0(C•Fi+1

n )⊕ H1(C•Fi+1
n−1),

VB
Ψ : H0(C•Fi

n)⊕ H1(C•Fi
n−1)

Ψi
B−→ H0(C•Fi+1

n )⊕ H1(C•Fi+1
n−1)

that are each isomorphic to the persistence module

V : Hn(R
i)→ Hn(R

i+1).

However, given more than two parameters, the persistence module defined by the

maps Ψi may not be isomorphic to the persistence module of interest. We provide an

illustration of the disparity in the following example.

Example 15. Consider the following example point cloud P, a map f : P → R, and a

cover V of f (P) in Figure 4.10. The cover V consists of two intervals, VB and VR. Assume

that we are given two parameters ε1 < ε2. The Rips complexes and the Rips systems

FIGURE 4.10: A point cloud P, map f : P→ R, and a cover V

for the two parameters are illustrated in Figure 4.11. The relevant cosheaf homologies
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(A) Rips system for parameter ε1 (B) Rips complex for parameter ε1

(C) Rips system for parameter ε2 (D) Rips complex for parameter ε2

FIGURE 4.11: Rips systems and Rips complexes for parameters ε1 and ε2

for computing H1(R
i) are

H0(C•F1
1) = K, H1(C•F1

0) = K

H0(C•F2
1) = K, H1(C•F2

0) = 0.

The map H0(φ1
1) : H0(C•F1

1) → H0(C•F2
1) is the identity map, and the map

H1(φ
1
0) : H1(C•F1

0) → H1(C•F2
0) is the trivial map. Then, we can construct a map

δ1 : ker H1(φ
1
0) → coker H0(φ1

1) as we have in Equation 4.24. Note that δ1 is a triv-

ial map since coker H0(φ1
1) is trivial. Hence, when we extend δ1 to ψ1 as we have in

Equation 4.27, we obtain a trivial map

ψ1 : H1(C•F1
0)→ H0(C•F2

0).

When we define the map

Ψ1 : H0(C•F1
1)⊕ H1(C•F1

0)→ H0(C•F2
1)⊕ H1(C•F2

0) (4.59)
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as in Equation 4.57, we obtain the following persistence module

VΨ1 : K⊕K
Ψ1

−→ K,

where Ψ1 can be expressed by the matrix

[
1 0

]
.

The persistence module VΨ1 is illustrated in Figure 4.12.

FIGURE 4.12: Persistence module Ψ1

One can check that VΨ1 is isomorphic to the persistence module

V : H1(R
1)→ H1(R

2).

The persistence module V is illustrated in Figure 4.13. The map between the left cycles

represents the map H0(φ1
1) : H0(C•F1

1) → H0(C•F2
1), and the map between the right

cycles represents the map H1(φ
1
0) : H1(C•F1

0) → H1(C•F2
1). In particular, we can see

that H1(C•F1
0) represents the right cycle in Figure 4.13.

Let’s now consider what happens if we were given three parameters ε0, ε1, and ε2.

The Rips systems and the Rips complexes for the three parameters are illustrated in

Figure 4.14.
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FIGURE 4.13: Rips complexes R1 ↪→ R2

(A) Rips system for parameter ε0 (B) Rips complex for parameter ε0

(C) Rips system for parameter ε1 (D) Rips complex for parameter ε1

(E) Rips system for parameter ε2 (F) Rips complex for parameter ε2

FIGURE 4.14: Rips systems and Rips complexes for parameters ε0, ε1 and ε2
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The relevant cosheaf homologies for computing H1(R
i) are

H0(C•F0
1) = 0, H1(C•F0

0) = K

H0(C•F1
1) = K, H1(C•F1

0) = K

H0(C•F2
1) = K, H1(C•F2

0) = 0.

The map Ψ0 : H0(C•F0
1) ⊕ H1(C•F0

0) → H0(C•F1
1) ⊕ H1(C•F1

0) maps H1(C•F0
0)

identically to H1(C•F1
0). Note that the map Ψ1 has been constructed in Equation 4.59.

Then, we obtain a persistence module

VΨ : K
Ψ0

−→ K⊕K
Ψ1

−→ K,

where Ψ0 is represented by the matrix

0

1

 ,

and Ψ1 is represented by the matrix

[
1 0

]
.

Figure 4.15 illustrates the persistence module VΨ.

FIGURE 4.15: Persistence module VΨ

Note that this persistence module is not isomorphic to the persistence module

V : H1(R
0)→ H1(R

1)→ H1(R
2).
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(A) Barcode for VΨ (B) Barcode for V

FIGURE 4.16: Barcodes for persistence modules VΨ and V

(A) Cycle represented by
{〈y〉}

(B) Cycle that should be rep-
resented by Ψ0(0, {〈y〉})

(C) Cycle that should be rep-
resented by Ψ1 ◦Ψ0(0, {〈y〉}

FIGURE 4.17: Cycles that should be represented at parameters ε0, ε1, and ε2

The difference between the two persistence modules VΨ and V are illustrated by the

different barcodes in Figure 4.16.

The disparity occurs because the map Ψ0 and Ψ1 effectively determines the cycle of

R1 represented by H1(C•F1
0). The construction of the maps Ψ0 and Ψ1 assume distinct

cycle representations of H1(C•F1
0).

Let’s start with a basis element {〈y〉} ∈ H1(C•F0
0). This element {〈y〉} represents

the cycle illustrated in Figure 4.17a. The image Ψ0(0, {〈y〉}) = (0, H1(φ
0
0){〈y〉}) must

represent the cycle illustrated in Figure 4.17b, and the image Ψ1 ◦ Ψ0(0, {〈y〉}) must

represent the cycle illustrated in Figure 4.17c.

In reality, we have seen in Figure 4.13 that H1(C•F1
0), and hence Ψ0(0, {〈y〉}) =

(0, H1(φ
0
0){〈y〉}), represents a cycle illustrated in Figure 4.18. It is such inconsistency

in the represented cycles that prevents VΨ from being isomorphic to the persistence

module V.

FIGURE 4.18: Cycle represented by H1(C•F1
0)
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The construction of §4.2.3 fixes this issue, by ensuring that H0(C•F1
0) actually rep-

resents the cycle in Figure 4.17b and not the cycle in Figure 4.18.
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Chapter 5

Multiscale Persistent Homology

Data often comes with additional properties one might want to consider during the

analysis process. For example, density estimate, coordinates, and time dependence of

a point cloud are some of the factors that can affect one’s analysis of a barcode. The goal

of this chapter is to introduce a multiscale analysis framework for persistent homology

using the distributed computation method from Chapter 4. The general structure for

multiscale analysis is provided in §5.1. The result of this framework is a barcode an-

notated with the properties of interest. One can then use this annotated barcode for

a finer analysis taking the characteristics into account. For example, one may analyze

any trends in the barcode or if the significant features share a common property. In §5.2,

we study a dataset in which the feature sizes depend on the density of the constituting

points. In such situations, the annotated barcode allows the user to detect significant

features that are overlooked by standard persistent homology methods.

5.1 Multiscale Persistent Homology

We provide a general schematic for using distributed persistent homology computation

for multiscale analysis purposes. Our goal is to enrich the barcode so that it reflects

properties of interest. In particular, given a point cloud P, let f : P → R be a map

that reflects some characteristic of the point cloud. For example, f can be a projection

map to one of the coordinates, a density estimate, distance to a landmark, or any other

characteristic of interest. Construct a cover V of f (P) so that points p ∈ P with similar
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f (p) values belong to the same member of V. In particular, choose a cover V such that

its nerve NV is a compact subset of R.

Let V denote the persistence module

V : Hn(R
1)→ Hn(R

2)→ · · · → Hn(R
N)

obtained by applying persistence to entire point cloud P in the usual sense. Let

barcode(V) denote the barcode of V. Recall that each bar of a barcode represents a

feature in the Rips complexes. If a bar with birth time εi represents a feature γ that

consists of points in f−1(U) for some U ∈ V, we say that the feature γ lives in U, and

we annotate the corresponding bar with the set U. Our goal is to annotate the bars of

barcode(V) by such sets U of V.

An algorithmic summary of the annotation process is provided, followed by a de-

tailed explanation of each step.

Algorithm 1 Annotate barcode(V).

1: Compute V∗ using distributed computation.
2: Label vector spaces of V∗.
3: For each persistence module Ws of V∗ =

⊕
s

Ws, annotate barcode(Ws).

4: From the annotated barcode(V∗), annotate barcode(V).
5: Return annotated barcode(V).

Step 1. Compute persistence module V∗

Recall that V is the persistence module

V : Hn(R
1)→ Hn(R

2)→ · · · → Hn(R
N)

of interest. Let εL be the largest ε parameter such that

Hn(R
ε) ∼= H0(C•Fε

n)⊕ H1(C•Fε
n−1),
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i.e., εL < K, where K is the upper bound from Lemma 13. Let V|L denote the sequence

of vector spaces and maps of V up to parameter εL:

V|L : Hn(R
1)→ Hn(R

2)→ · · · → Hn(R
L).

We can compute the persistence module

V|ΨL : H0(C•F1
n)⊕ H1(C•F1

n−1)
Ψ1

−→ . . . ΨL−1

−−→ H0(C•FL
n)⊕ H1(C•FL

n−1), (5.1)

that is isomorphic to V|L using the distributed computation method from Chapter 4.

Each map Ψi is defined in Equation 4.45.

In fact, instead of computing the persistence module V|ΨL , we will compute a persis-

tence module V∗ that is isomorphic to V|ΨL , and hence isomorphic to V|L, that can re-

veal some additional information about the features represented by the barcode. Recall

from §2.2.5 that for each parameter εi, the cosheaf Fi
n can be decomposed as Fi

n
∼= ⊕Ii

n,

where each Ii
n is an indecomposable cosheaf over NV. In other words, there exists an

isomorphism of cosheaves

Di
n : Fi

n → ⊕Ii
n. (5.2)

For each parameter εi, let Vi
∗ denote the vector space

Vi
∗ = H0(C• ⊕ Ii

n)⊕ H1(C•Fi
n−1).

Let (V|ΨL )i denote the ith vector space of the persistence module V|ΨL defined in Equa-

tion 5.1. Note the difference between Vi
∗ and (V|ΨL )i: we only replaced the cosheaf Fi

n

by the direct sum of its indecomposables. Cosheaf Fi
n−1 remains intact. The isomor-

phism Di
n of cosheaves from Equation 5.2 induces an isomorphism αi : (V|ΨL )i → Vi

∗

defined by

αi( {〈x〉}, {〈y〉} ) = ( H0(Di
n){〈x〉}, {〈y〉} ),
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where H0(Di
n) : H0(C•Fi

n) → H0(C• ⊕ Ii
n) is the map induced by Di

n. Let V∗ be the

persistence module

V∗ : H0(C• ⊕ I1
n)⊕ H1(C•F1

n−1)
Ψ1
∗−→ · · · ΨN−1

∗−−−→ H0(C• ⊕ IN
n )⊕ H1(C•FN

n−1),

where the map Ψi
∗ is defined by Ψi

∗ = αi+1 ◦Ψi ◦ (αi)−1.

To write Ψi
∗ explicitly, recall from Equation 4.45 that given a pair of parameters

εi < εi+1 < K, the map Ψi : H0(C•Fi
n)⊕ H1(C•Fi

n−1) → H0(C•Fi+1
n )⊕ H1(C•Fi+1

n−1) is

defined by

Ψi( {〈x〉}, {〈y〉} ) = ( H0(φ
i
n){〈x〉}+ (−1)n+1ψi{〈y〉} , H1(φ

i
n−1){〈y〉} ),

where H0(φi
n) and H1(φ

i
n−1) are the maps defined in Equation 4.16 and ψi is the map

defined in Equation 4.43. Then, Ψi
∗ : H0(C• ⊕ Ii

n) ⊕ H1(C•Fi
n−1) → H0(C• ⊕ Ii+1

n ) ⊕

H1(C•Fi+1
n−1) is defined by

Ψi
∗( {〈x〉}, {〈y〉} ) = ( H0(φ

i
n∗){〈x〉}+ (−1)n+1ψi

∗{〈y〉} , H1(φ
i
n−1){〈y〉} ), (5.3)

where H0(φi
n∗) is the map induced by

φi
n∗ = Di+1

n ◦ φi
n ◦ (Di

n)
−1 (5.4)

and ψi
∗ is defined by ψi

∗ = H0(Di+1
n ) ◦ ψ.

By construction, V∗ is isomorphic to the persistence module V|ΨL and hence isomor-

phic to V|L. Even though V∗ is isomorphic to V|L, the reason we prefer to compute via

V∗ is because the persistence module V∗ allows us to understand the cosheaf homolo-

gies in terms of the indecomposable cosheaves Ii
n.
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Step 2. Label the vector spaces of V∗

For any parameter εi, recall that

Vi
∗ = H0(C• ⊕ Ii

n)⊕ H1(C•Fi
n−1).

Recall from Lemma 6 that H0(C• ⊕ Ii
n)
∼= H0(C• ⊕ Ii

[−]), where ⊕Ii
[−] is a direct sum

of indecomposables of the form Ii
[−]. Moreover, H0(C• ⊕ Ii

[−]) = ⊕H0(C•Ii
[−]). Thus,

each component of H0(C• ⊕ Ii
n) corresponds to an indecomposable cosheaf of the form

Ii
[−]. We will annotate each component of H0(C• ⊕ Ii

n) by examining the support of the

corresponding indecomposable cosheaf Ii
[−].

Note that the left and rightmost supports of an indecomposable cosheaf Ii
[−] are the

vertices of NV. Let vj ∈ NV be the leftmost support of Ii
[−] and let vk ∈ NV be the

rightmost support of Ii
[−]. We will call such a cosheaf as being supported over [vj, vk],

and we will denote the cosheaf by Ii
[vj,vk ]

. Recall that a vertex vj of NV correspond to

member Uj of the cover V. If vj, vj+1, . . . , vk represent all the vertices of NV between

vertices vj and vk, then a cosheaf Ii
[vj,vk ]

supported over [vj, vk] represents a feature that

lives in all Uj, Uj+1, . . . , Uk. Thus, we can annotate the component of H0(C• ⊕ Ii
n) that

corresponds to H0(C•Ii
[vj,vk ]

) by its support [Uj, Uk]. Since this component represents a

feature that lives in all Uj, Uj+1, . . . , Uk, the user may choose to annotate this component

by Uj or Uk depending on the user’s goal.

For example, assume that

Vi
∗ = H0(C• ⊕ Ii

n)⊕ H1(C•Fi
n−1) = K⊕K⊕K⊕K,

where the first three components come from H0(C• ⊕ Ii
n) and the last component K

comes from H1(C•Fi
n−1). An example of cosheaf ⊕Ii

n is illustrated in Figure 5.1.

Note that

⊕Ii
n
∼= Ii

[vB,vB]
⊕ Ii

[vR,vR]
⊕ Ii

[vB,vR]
.

Then, each component of H0(C• ⊕ Ii
n) = K⊕K⊕K can be labeled as H0(C• ⊕ Ii

n) =
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FIGURE 5.1: An example decomposition of a cosheaf Fi
n
∼= ⊕Ii

n

KB ⊕KR ⊕KBR, where each label corresponds to the support of the indecomposable

cosheaf in Figure 5.1. Then, the vector space Vi
∗ can be labeled as KB⊕KR⊕KBR⊕K.

Depending on the user’s interest, one can choose to label the component KBR by either

KB or KR.

Our mechanism of decomposing the cosheaf Fi
n into indecomposable cosheaves

may seem like a cumbersome step. However, such decomposition allows us to label

components of cosheaf homologies according to properties of the features represented

by the indecomposable cosheaves.

The labels of vector spaces Vi
∗ will allow us to enrich the barcode barcode(V∗) of the

persistence module V∗, which will then allow us to annotate the barcode barcode(V) of

the persistence module V.

Step 3. Annotate the barcode of each Ws of V∗ =
⊕
s

Ws

Note that V∗ can be expressed naturally as a sum of persistence modules as

V∗ =
⊕

s
Ws.

Moreover, barcode(V∗) is the same as the collection of barcodes barcode(Ws). Thus, for

each Ws, we will compute barcode(Ws) and annotate bars of barcode(Ws).

Compute barcode(Ws). If a bar b is born at parameter εi, consider the vector space

Wi
s and the labeling of its components from Step 2. The bar b of barcode(Wi

s) with birth

time εi corresponds to a linear combination of the components of Wi
s. If all components

of Wi
s were annotated as living in a unique set U ∈ V inStep 2, then b, representing

some linear combination of features that live in U, must also represent a feature that
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lives in U. We can thus annotate b by U. If some components of Wi
s were annotated

as living in Uj and some were annotated as living in Uk, then b can represent a linear

combination of features among points in Uj and Uk. At this point, depending on the

user’s goal, the user can decide to either not annotate the bars at all, to annotate the

bars as Uj, or to annotate the bars as Uk, depending on the question of interest.

After repeating the above process for each bar in barcode(Ws), one can proceed to

analogously annotate bars from barcode(Ws) for every Ws of V =
⊕
s

Ws.

Step 4. Annotate the barcode of V

So far, we have enriched barcode(V∗). We now explore how barcode(V∗) and barcode(V)

are related so that we can enrich barcode(V) accordingly. Note that barcode(V∗) can be

obtained from barcode(V) by truncating barcode(V) at parameter εL, i.e., a bar [b, d] of

barcode(V) with b ≤ εL corresponds to a bar [b, min{d, εL}] of barcode(V′).

If a bar [b, d] of barcode(V∗) with d < εL has been annotated by a particular set U in

Step 3, then we can find a bar [b, d] with the same birth and death time in barcode(V)

and annotate it using the same set U. If a bar [b, εL] of barcode(V∗) is annotated by U,

then it is possible that this bar is a truncated version of a longer bar [b, d] of barcode(V)

with d > εL. Hence, we use the birth time b to identify the corresponding bar in

barcode(V). If [b, εL], annotated by U, is the unique bar with birth time b in barcode(V∗),

then there exists a unique bar [b, d] with the same birth time b in barcode(V). We can

then annotate the bar [b, d] of barcode(V) by U.

The result is a barcode of persistence module V with bars annotated by proper-

ties of the corresponding features. This annotated barcode can then be used in various

ways to perform finer data analysis. For example, one can select the bars that are an-

notated by a particular set, say U, and analyze only those chosen bars to determine

significant features. In the following section, we provide an explicit example of multi-

scale analysis for point cloud with varying density.



Chapter 5. Multiscale Persistent Homology 121

5.2 Data with Varying Density

We now use the framework developed in §5.1 to study variable-density point cloud.

Consider a situation where the size of a feature depends on the density of the consti-

tuting points. In such situation, using a uniform metric to analyze the data can lead to

loss of information.

For example, consider a point cloud in Figure 5.2 where the sparse points constitute

a large feature and the dense points constitute a small feature. In such situation, apply-

FIGURE 5.2: A point cloud with varying density

ing the standard persistent homology method results in an analysis where the small,

but densely sampled features become overlooked. For example, Figure 5.3 illustrates

the barcode in dimension 1. By observing this barcode, one would conclude that there

is one significant feature, disregarding the small but densely sampled features as being

insignificant. The multiscale framework from §5.1 can give insight into which bars of

the barcode correspond to small but densely sampled features and annotate them as

being significant.

Recall that the multiscale framework in §5.1 involved a choice of map f : P → Rd

from the point cloud that reflects some property of interest and a choice of covering V of

f (P). For the point cloud P in Figure 5.2, we will let f : P→ R be the function mapping

each point to its estimated density value. Note that there are multiple methods for

computing the density of each point. One option computes density of a point p by



Chapter 5. Multiscale Persistent Homology 122

FIGURE 5.3: Barcode from standard persistent homology in dimension 1

computing the number of points whose Euclidean distance to p is less than a user

specified parameter r. For our example, we used such density computation with r =

0.1.

The covering V of f (P) should be chosen so that distinct members Ui, Uj of V reflect

different ranges of the property of interest. For our example, we use a histogram to plot

the number of points p for each density value to gain some insight into the distribution

of density values. Figure 5.4 shows the histogram.

FIGURE 5.4: Histogram plot of estimated density values

Let V = {Us, Ud} be a covering of f (p), where Us = (0, 18) and Ud = (8, 26). We

will refer to points in f−1(Us), which are the points whose density values are between

0 and 18, as the sparse points, and we will denote S = f−1(Us). Similarly, we will

refer to points in f−1(Ud) as the dense points, and we will denote the collection by D.
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Figures 5.5a and 5.5b illustrate the sparse and dense points.

(A) Sparse points (B) Dense points

FIGURE 5.5: Sparse and dense points

Let

V : H1(R
1)→ · · · → H1(R

N)

be the persistence module obtained from the point cloud P. For this example, the maxi-

mum parameter is εN = 1.6. Let K be the upper bound of the parameter ε from Lemma

13 for which the isomorphism

Hn(R
ε) ∼= H0(C•Fε

n)⊕ H1(C•Fε
n−1)

holds. Compute the persistence module

V∗ : H0(C• ⊕ I1
1)⊕ H1(C•F1

0)→ · · · → H0(C• ⊕ IK
1 )⊕ H1(C•FK

0 ) (5.5)

up to ε = K following Step 1 of Algorithm 1. For this example, the upper bound K is

K = 0.0719.

Step 2 of Algorithm 1 labels the components of vector space H0(C•Ii
0) by D or S

according to the support of the indecomposable Ii
[−]. Let vd and vs denote the vertices

of NV that each corresponds to sets Ud and Us of V. For each cosheaf Ii
[vd,vd]

with support

vd ∈ NV, label the component H0(C•Ii
[vd,vd]

) of H0(C•Ii
1) by D. Similarly, for a cosheaf

Ii
[vs,vs]

with support vs ∈ NV, label the component H0(C•Ii
[vs,vs]

) of H0(C•Ii
1) by S. Given
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a cosheaf of the form Ii
[vs,vd]

, such cosheaf represents a feature that lives in both Us and

Ud. In our example, we decided to interpret such a cosheaf as representing a feature

that lives in Ud. Thus, we can annotate the component H0(C•Ii
[vs,vd]

) of H0(C•Ii
1) by D.

Step 3 of Algorithm 1 results in an annotated version of barcode(V∗), illustrated in

Figure 5.6. The top two bars colored in blue correspond to bars annotated by S and the

remaining red bars correspond to bars annotated by D.

FIGURE 5.6: Annotated barcode(V∗)

Step 4 of Algorithm 1 allows us to transfer the annotation of barcode(V∗) to

barcode(V) resulting in an annotated version of barcode(V) illustrated in 5.7. The two

bars enclosed by the blue box are annotated by S, and the bars enclosed by red box are

annotated by D.

FIGURE 5.7: Annotated barcode(V)

What one can do with such annotated barcode depends on the problem of interest.

In our example, the goal is to determine small but significant features that consist of

the denser points. Thus, we focus on the bars of Figure 5.7 that have been annotated by



Chapter 5. Multiscale Persistent Homology 125

D, which are illustrated in Figure 5.8. By restricting our attention to only the bars that

represent features in Ud, we are able to determine the significant features built among

the denser points. From Figure 5.8, one can conclude that there are eight significant

bars.

FIGURE 5.8: The dense bars

Lastly, we return to barcode(V) and annotate significant bars of Figure 5.8 as being

significant. We then obtain barcode in Figure 5.9, where the red bars are annotated

as being significant. Note that we have one long red bar, which is deemed significant

because of its length. We have eight additional shorter significant bars which were

identified via Algorithm 1.

FIGURE 5.9: Final annotation of barcode(V)

Using the persistent homology computation software Eirene [17], we were able to

identify the points of P that constitute each significant feature. The newly determined

eight significant short bars indeed correspond to the eight small but densely sampled

features in Figure 5.2.
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Appendix A

Alternate Construction to §4.2.2

In Chapter 4, we constructed a morphism ψi : H1(C•Fi
n−1) → H0(C•Fi+1

n ) using a

spectral sequence type argument. Recall that in §4.2.2, computing the homology of the

commutative cube 4.18 allowed us to construct the map δi. Once we reached Diagram

4.19, we decided to take the homology with respect to the maps ∂n. Note that we

could have taken the homology with respect to maps φi
n instead of maps ∂i

n in Diagram

4.19. In this section, we explore the outcome of taking homology with respect to the

maps φi
n−1 instead of the maps ∂n. When we take this alternative route, we end up

constructing a map δi
∗ : H1(C• ker φi

n−1) → H0(C• coker φi
n) while emphasizing the

perspective of long exact sequence of pairs.
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We start with the same commutative diagram as we have in §4.2.2.

⊕
v∈NV

Cn(Ri+1
v )

⊕
e∈NV

Cn(Ri+1
e )

⊕
v∈NV

Cn(Ri
v)

⊕
e∈NV

Cn(Ri
e)

⊕
v∈NV

Cn−1(R
i+1
v )

⊕
e∈NV

Cn−1(R
i+1
e )

⊕
v∈NV

Cn−1(R
i
v)

⊕
e∈NV

Cn−1(R
i
e)

∂

ei+1
n

∂

ιin

∂

ei
n

κi
n

ei+1
n−1

ei
n−1

ιin−1 κi
n−1

∂

(A.1)

Taking the homology with respect to the boundary maps ∂, we obtain the same

diagram as Diagram 4.19. Note that in Diagram 4.19, the terms on the right and left
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faces of the cube are related by relative homology as illustrated in Diagram A.2.

⊕
v∈NV

Hn(Ri+1
v )

⊕
e∈NV

Hn(Ri+1
e )

⊕
v∈NV

Hn(Ri
v)

⊕
e∈NV

Hn(Ri
e)

⊕
v∈NV

Hn(Ri+1
v ,Ri

v)
⊕

e∈NV

Hn(Ri+1
e ,Ri

e)

⊕
v∈NV

Hn−1(R
i+1
v )

⊕
e∈NV

Hn−1(R
i+1
e )

⊕
v∈NV

Hn−1(R
i
v)

⊕
e∈NV

Hn−1(R
i
e)

j0 j1

∂i+1
n

(φi
n)v ∂i

n
(φi

n)e

∂0

j

∂i+1
n−1

∂i
n−1

(φi
n−1)v (φi

n−1)e

∂1

(A.2)

Diagram A.2 can be laid out in a more familiar long exact sequence form as the follow-

ing.

· · · ⊕
e∈NV

Hn(Ri
e)

⊕
e∈NV

Hn(Ri+1
e )

⊕
e∈NV

Hn(Ri+1
e ,Ri

e)
⊕

e∈NV

Hn−1(R
i
e)

⊕
e∈NV

Hn−1(R
i+1
e ) · · ·

· · · ⊕
v∈NV

Hn(Ri
v)

⊕
v∈NV

Hn(Ri+1
v )

⊕
v∈NV

Hn(Ri+1
v ,Ri

v)
⊕

v∈NV

Hn−1(R
i
v)

⊕
v∈NV

Hn−1(R
i+1
v ) · · ·

(φi
n)e j1

∂i+1
n j

∂1 (φi
n−1)e

∂i
n−1

(φi
n)v j0

∂0 (φi
n−1)v

The top and bottom sequences are direct sums of long exact sequence of pairs. The

diagram commutes by naturality of long exact sequences. Taking the homology with
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respect to ∂n’s from Diagram A.2, we obtain Diagram A.3.

coker(φi
n)v coker(φi

n)e

ker(φi
n)v ker(φi

n)e

⊕
v∈NV

Hn(Ri+1
v ,Ri

v)
⊕

e∈NV

Hn(Ri+1
e ,Ri

e)

coker(φi
n−1)v coker(φi

n−1)e

ker(φi
n−1)v ker(φi

n−1)e

j0∗

∂i+1
n

j1∗

∂i
n

∂0
∗

j

∂i+1
n−1

∂i
n−1

∂1
∗

(A.3)

Note that ker(φi
n)v and ker(φi

n)e are the collections of local sections of the cosheaf

ker φi
n on the 0-simplices and 1-simplices of NV, i.e., ker(φi

n)v =
⊕

v∈NV

ker φi
n(v), and

ker(φi
n)e =

⊕
e∈NV

ker φi
n(e). Similarly, coker(φi

n)v and coker(φi
n)e are the collections of

local sections of cosheaf coker φi
n on the 0-simplices and 1-simplices of NV.

After taking the homology with respect to the maps ∂i
n’s, a diagram chase will allow

us to construct a map δi : ker ∂i
n−1 → coker ∂i+1

n as shown in Diagram A.4.

coker ∂i+1
n ker ∂i+1

n

coker ∂i
n ker ∂i

n

coker ∂i+1
n−1 ker ∂i+1

n−1

coker ∂i
n−1 ker ∂i

n−1

(A.4)
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As we will show in the following theorem, δi
∗ : ker ∂i

n−1 → coker ∂i+1
n is actually a

map from H1(C• ker φi
n−1) to H0(C• coker φi

n).

Theorem 11. Let P be a point cloud. Let f : P→ Rd be any map. Let V be a cover of f (P) ⊂

Rd such that NV is one dimensional. Let φi
n : Fi

n → Fi+1
n be the cosheaf morphism induced by

inclusion maps of the Rips system. Then φi
n, φi

n−1 induce a morphism δi
∗ : H1(C• ker φi

n−1)→

H0(C• coker φi
n).

The induced morphism δi
∗ extends to a map ψi

∗ : H1(C•Fi
n−1)→ H0(C•Fi+1

n ) (Lemma

15), which is an equivalent map to ψi constructed in Lemma 14.

Proof. Let 〈 〉, { }, and [ ] each denote the homology classes that appear in diagrams

A.2, A.3, and A.4. Consider Diagram A.3 that has been laid out as the following.

0 coker(φi
n)e

⊕
e∈NV

Hn(Ri+1
e ,Ri

e) ker(φi
n−1)e 0

0 coker(φi
n)v

⊕
v∈NV

Hn(Ri+1
v ,Ri

v) ker(φi
n−1)v 0

j1∗

∂i+1
n j

∂1
∗

∂i
n−1

j0∗ ∂0
∗

(A.5)

Note that the top and bottom sequences of the above diagram are exact. Let [{〈γ〉}] in

ker ∂i
n−1. Then, {〈γ〉} ∈ ker(φi

n−1)e, and

∂i
n−1{〈γ〉} = 0. (A.6)

By exactness of the top sequence of Diagram A.5, there exists 〈|γ′|〉 in⊕
e∈NV

Hn(Ri+1
e ,Ri

e) such that

∂1
∗〈|γ′|〉 = {〈γ〉}. (A.7)

Here, γ′ ∈ ⊕
e∈NV

Cn(Ri+1
e ) whose boundary is in

⊕
e∈NV

Cn−1(R
i
e). We use |γ′| to represent

the coset γ′ +
⊕

e∈NV

Cn(Ri
e), and we use 〈|γ′|〉 to denote the homology class of |γ′| in⊕

e∈NV

Hn(Ri+1
e ,Ri

e).
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By commutativity of Diagram A.5, Equations A.6 and A.7, we have

∂0
∗ ◦ j〈|γ′|〉 = ∂i

n−1 ◦ ∂1
∗〈|γ′|〉 = ∂i

n−1{〈γ〉} = 0.

Thus, j〈|γ′|〉 ∈ ker ∂0
∗. By exactness of the bottom sequence of Diagram A.5, there exists

{〈γ′′〉} ∈ coker(φi
n)v such that

j0∗{〈γ′′〉} = j〈|γ′|〉. (A.8)

Recall that [{〈γ′′〉}] denotes the coset {〈γ′′〉} + im ∂i+1
n . Define δi

∗ : ker ∂i
n−1 →

coker ∂i+1
n by

δi
∗[{〈γ〉}] = [{〈γ′′〉}]. (A.9)

We now check that δi
∗ is well-defined by considering different candidates γ′ and γ′′

that satisfy Equations A.7 and A.8.

Since j0∗ is injective, {〈γ′′〉} that satisfies Equation A.8 is uniquely determined once

j〈|γ′|〉 is determined. In other words, if {〈η′′〉} also satisfies j0∗{〈η′′〉} = j〈|γ′|〉, then

{〈η′′〉} = {〈γ′′〉}.

Let’s now consider a different choice of γ′ that satisfies Equation A.7. Let 〈|η′|〉 ∈⊕
e∈NV

Hn(Ri+1
e ,Ri

e) satisfy

∂1
∗〈|η′|〉 = {〈γ〉}. (A.10)

Let {〈η′′〉} ∈ coker(φi
n)v be an element that satisfies

j0∗{〈η′′〉} = j〈|η′|〉. (A.11)

Then, one would define δi
∗[{〈γ〉}] = [{〈η′′〉}.

From Equations A.7 and A.10, one can check that 〈|η′ − γ′|〉 ∈ ker ∂1
∗. By exactness

of the top sequence of Diagram A.5, there exists some {〈ω〉} ∈ coker(φi
n)e such that

〈|η′ − γ′|〉 = j1∗{〈ω〉}. Note j1∗{〈ω〉} = j1〈ω〉 = 〈|ω|〉, where j1 :
⊕

e∈NV

Hn(Ri+1
e ) →
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⊕
e∈NV

Hn(Ri+1
e ,Ri

e) from Diagram A.2. So

〈|ω|〉 = 〈|η′ − γ′|〉. (A.12)

Note that

j0∗ ◦ ∂i+1
n {〈ω〉} = j ◦ j1∗{〈ω〉} = j〈|η′ − γ′|〉 (A.13)

from commutativity of Diagram A.5. Moreover,

∂0
∗ ◦ j〈|η′ − γ′|〉 = ∂i

n−1 ◦ ∂1
∗〈|η′ − γ′|〉 = 0

from commutativity of Diagram A.5 and Equations A.7 and A.10. Thus, j〈|η′ − γ′|〉 ∈

ker ∂0
∗, and by exactness of the bottom sequence of Diagram A.5, there exists {〈ρ〉} ∈

coker(φi
n)v such that

j0∗{〈ρ〉} = j〈|η′ − γ′|〉.

Furthermore, since j0∗ is injective, this {〈ρ〉}must be unique. Note that

j0∗( {〈η′′〉} − {〈γ′′〉} ) = j〈|η′ − γ′|〉

from Equations A.8 and A.11. Recall from Equation A.13 that

j0∗ ◦ ∂i+1
n {〈ω〉} = j〈|η′ − γ′|〉.

By uniqueness of {〈ρ〉}, we thus have

{〈η′′〉} − {〈γ”〉} = ∂i+1
n {〈ω〉},

and [{〈η′′〉}] = [{〈γ′′〉}]. Thus, the map δi
∗ is well-defined.

Note that ker(φi
n−1)e =

⊕
e∈NV

ker φi
n−1(e) and ker(φi

n−1)v =
⊕

v∈NV

ker φn−1(v). More-

over, the map ∂i
n−1 in Diagram A.3 is the boundary map of the chain complex of the
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cosheaf ker φi
n−1. Thus,

ker ∂i
n−1 = H1(C• ker φi

n−1).

Similarly, ∂i+1
n is the boundary map of the chain complex of cosheaf coker φi

n. Thus,

coker ∂i+1
n = H0(C• coker φi

n).

Thus, the map δi
∗ : ker ∂i

n−1 → coker ∂i+1
n is, in fact, a map from H1(C• ker φi

n−1) to

H0(C• coker φi
n).

Lemma 15. The map δi
∗ : ker H1(C• ker φi

n−1) → H0(C• coker φi
n) extends to a map ψi

∗ :

H1(C•Fi
n−1)→ H0(C•Fi+1

n ).

Proof. We first show that H1(C• ker φi
n−1) is a direct summand of H1(C•Fi

n−1) and that

H0(C• coker φi
n) is a direct summand of H0(C•Fi+1

n ). Given cosheaf morphisms φi
n :

Fi
n → Fi+1

n and φi
n−1 : Fi

n−1 → Fi+1
n−1, there exist a pair of short exact sequences of

cellular cosheaves

0→ ker φi
n−1 → Fi

n−1 → coim φi
n−1 → 0,

0→ Fi
n → Fi+1

n → coker φi
n → 0.

The exactness is enforced cell-by-cell.

This leads to the following pair of long exact sequences of cosheaf homology

0→ H1(C• ker φi
n−1)→ H1(C•Fi

n−1)
hn−1−−→ H1(C• coim φi

n−1)→ · · · → 0,

0→ · · · → H0(C•Fn)
H0(φ

i
n)−−−→ H0(C•Fi+1

n )→ H0(C• coker φi
n)→ 0.

We then obtain the following short exact sequence of vector spaces

0→ H1(C• ker φi
n−1)→ H1(C•Fi

n−1)→ im hn−1 → 0,

0→ coim H0(φ
i
n)→ H0(C•Fi+1

n )→ H0(C• coker φi
n)→ 0.
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The above short exact sequences split, so

H1(C•Fi
n−1)

∼= H1(C• ker φi
n−1)⊕ Ai

∗. (A.14)

H0(C•Fi+1
n ) ∼= H0(C• coker φi

n)⊕ Bi
∗, (A.15)

where Ai
∗ = im hn−1 and Bi

∗ = coim H0(φi
n). Given u ∈ H1(C•Fi

n−1), we can write

u uniquely as u = (w1, w2), with w1 ∈ H1(C• ker φi
n−1) and w2 ∈ im Ai

∗. Define ψi
∗ :

H1(C•Fi
n−1)→ H0(C•Fi+1

n ) by ψi
∗(u) = ψi

∗(w1, w2) = (δi
∗(w1), 0).

A.1 Equivalence of maps ψi and ψi
∗

We will show that ψi from Lemma 14 and ψi
∗ from Lemma 15 are the same lin-

ear transformations up to a change of basis. Recall that ψi was obtained by ex-

tending δi : ker H1(φ
i
n−1) → coker H0(φi

n), and that ψi
∗ was obtained by extending

δi
∗ : H1(C• ker φi

n−1) → H0(C• coker φi
n). We will first show that δi and δi

∗ have the

same domain and isomorphic codomain in the following lemmas.

Lemma 16. The maps δi and δi
∗ have the same domain.

Proof. consider the following commutative diagram.⊕
v∈NV

Hn−1(R
i
v)

⊕
v∈NV

Hn−1(R
i+1
v )

⊕
e∈NV

Hn−1(R
i
e)

⊕
e∈NV

Hn−1(R
i+1
e )

(φi
n−1)v

∂i
n−1

(φi
n−1)e

∂i+1
n−1

Let ∂i
n−1 : ker(φi

n−1)e → ker(φi
n−1)v be the map induced by ∂i

n−1. Then,

H1(C• ker φi
n−1) = ker ∂i

n−1 = {x ∈ ker(φi
n−1)v|∂i

n−1(x) = 0} = ker(φi
n−1)e ∩ ker ∂i

n−1.

Similarly, let H1(φ
i
n−1) : ker ∂i

n−1 → ker ∂i+1
n−1 be the map induced by (φi

n−1)e.

Then, ker H1(φ
i
n−1) = {x ∈ ker ∂i

n−1|(φi
n−1)e(x) = 0} = ker ∂i

n−1 ∩ ker(φi
n−1)e. Thus,

H1(C• ker φi
n−1) = ker H1(φ

i
n−1).
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To show that δi and δi
∗ have isomorphic codomains, we will show that both

codomains are isomorphic to

M =
⊕

v∈NV

Hn(R
i+1
v )/(im(φi

n)v + im ∂i+1
n ),

where (φi
n)v :

⊕
v∈NV

Hn(Ri
v) → ⊕

v∈NV

Hn(Ri+1
v ) and ∂i+1

n :
⊕

e∈NV

Hn(Ri+1
e ) →⊕

v∈NV

Hn(Ri+1
v ). Recall the coset notations 〈 〉, { }, and [ ] from the proof of Theorem

8. Because we will be using multiple coset notations, we will denote the notations

from Theorem 8 by { }1 and [ ]1. Given 〈c〉 that represents the homology class of c in⊕
v∈NV

Hn(Ri+1
v ), let ‖〈c〉‖ represent the coset 〈c〉+ (im(φi

n)v + im ∂i+1
n ).

Define a map χ1 : coker H0(φi
n)→ M by

χ1[{〈c〉}1]1 = ‖〈c〉‖ (A.16)

To define a map from H0(C• coker φi
n) to M, recall the notations 〈 〉, { }, and [ ] from

proof of Theorem 11. Note that the coset notations { } and [ ] in Theorem 8 and 11 are

not the same. In order to distinguish the two coset notations, we will denote { } and [

] from Theorem 11 by { }2 and [ ]2.

Define a map χ2 : H0(C• coker φi
n)→ M by

χ2[{〈c〉}2]2 = ‖〈−c〉‖. (A.17)

Note that χ1 and χ2 are linear.

Lemma 17. The maps χ1 and χ2 are each isomorphisms.

Proof. We first check that the map χ1 is well defined. Assume [{〈c〉}1]1 = [{〈c′〉}1]1

in coker H0(φi
n). Then, there exists {〈a〉}1 ∈ H0(C•Fi

n) such that {〈c − c′〉}1 =

H0(φi
n){〈a〉}1, i.e., {〈c− c′〉}1 = {(φi

n)v〈a〉}1. So there exists 〈b〉 ∈ ⊕
e∈NV

Hn(Ri+1
e ) such

that 〈c− c′〉 = (φi
n)v〈a〉+ ∂i+1

n 〈b〉. Note that ‖〈c− c′〉‖ = ‖(φi
n)v〈a〉+ ∂i+1

n 〈b〉‖ is trivial

by definition of the coset represented by ‖ ‖. Thus, χ1[{〈c〉}1]1 = χ1[{〈c′〉}1]1.
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We now check that χ1 is bijective. Note that if [{〈c〉}1]1 ∈ ker χ1, then 〈c〉 ∈

im(φi
n)v + im ∂i+1

n , i.e., there exists 〈x〉 ∈ ⊕
e∈NV

Hn(Ri+1
e ) and 〈y〉 ∈ ⊕

v∈NV

Hn(Ri
v) such

that 〈c〉 = (φi
n)v〈x〉 + ∂i+1

n 〈y〉. Then, {〈c〉}1 = {(φi
n)v〈x〉}1 = H0(φi

n){〈x〉}1, and

[{〈c〉}1]1 is trivial. So χ1 is injective. One can also check that χ1 is surjective.

One can similarly show that χ2 is well-defined and bijective.

We will use the following Lemma to show that ψi and ψi
∗ are the same linear trans-

formations up to a change of basis.

Lemma 18. The maps χ2 ◦ δi
∗ and χ1 ◦ δi are the same maps.

Proof. Let 〈γ〉 ∈ ⊕
e∈NV

Hn−1(R
i
e) be such that 〈γ〉 ∈ ker(φi

n−1)v ∩ ker ∂i
n−1, where

(φi
n−1)e :

⊕
e∈NV

Hn−1(R
i
e)→

⊕
e∈NV

Hn−1(R
i+1
e )

∂i
n−1 :

⊕
e∈NV

Hn−1(R
i
e)→

⊕
v∈NV

Hn−1(R
i
v).

(A.18)

Using notations from Theorem 8, we know that [{〈γ〉}1]1 ∈ ker H1(φ
i
n−1), and using

notations from Theorem 11, we know that [{〈γ〉}2]2 ∈ H1(C• ker φi
n−1). Recall from

Equation 4.24 that δi[{〈γ〉}1]1 = [{〈−ei+1
n α + ιinβ〉}1]1, where α and β can be any ele-

ments satisfying Equations 4.22 and 4.23. From the construction of δi
∗ in Theorem 11, we

will provide explicit choices for α and β that will allows us to show that χ2 ◦ δi
∗ = χ1 ◦ δi.

Recall from Equation A.9 that δi
∗[{〈γ〉}2]2 = [{〈γ′′〉}2]2, where δi

∗ was constructed

by

• first finding γ′ ∈ ⊕
e∈NV

Cn(Ri+1
e ) that satisfies Equation A.7, and

• finding γ′′ ∈ ⊕
v∈NV

Cn(Ri+1
v ) that satisfies Equation A.8.

The first step of finding γ′ will allow us to choose an explicit α, and the second step

of finding γ′′ will allow us to choose an explicit β.
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In the first step, we found γ′ ∈ ⊕
e∈NV

Cn(Ri+1
e ) with ∂γ′ ∈ ⊕

e∈NV

Cn−1(R
i
e) that satisfies

Equation A.7, which, using the fact that ∂1
∗〈|γ′|〉 = {〈∂γ′〉}, one can express as

〈∂γ′〉 = 〈γ〉

in
⊕

e∈NV

Hn−1(R
i
e). So there exists ρ ∈ ⊕

e∈NV

Cn(Ri
e) such that

∂γ′ − γ = ∂ρ. (A.19)

Note that in the above equation, we considered ∂γ′ as living in
⊕

e∈NV

Cn−1(R
i
e). Techni-

cally, ∂γ′ refers to an element in
⊕

e∈NV

Cn−1(R
i
e). In terms of elements in

⊕
e∈NV

Cn−1(R
i
e),

the above equation can be expressed as

∂γ′ − κi
n−1γ = κi

n−1 ◦ ∂ρ. (A.20)

The right hand side of the above equation is equal to ∂ ◦ κi
nρ by commutativity of Dia-

gram A.1. Thus,

∂(γ′ − κi
nρ) = κi

n−1γ.

This implies that γ′ − κi
n is a candidate for α that satisfies Equation 4.22.

Given such γ′, the fact that γ′′ ∈ ⊕
v∈NV

Cn(Ri+1
v ) satisfies Equation A.8 can be ex-

pressed by

〈|γ′′|〉 = 〈|ei+1
n γ′|〉,

where |γ′′| denote the coset γ′′+
⊕

v∈NV

Cn(Ri
v) and 〈|γ′′|〉 represents the homology class

of |γ′′| in
⊕

v∈NV

Hn(Ri+1
v ,Ri

v). Since 〈|ei+1
n γ′ − γ′′|〉 is trivial in

⊕
v∈NV

Hn(Ri+1
v ,Ri

v), there

exists a µ ∈ ⊕
v∈NV

Cn+1(R
i+1
v ) and η ∈ ⊕

v∈NV

Cn(Ri
v) such that

ei+1
n γ′ − γ′′ = ∂µ + ιinη. (A.21)

Recall ρ ∈ ⊕
e∈NV

Cn(Ri
e) that satisfies Equation A.19. We will show that −ei

nρ + η
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is a choice for β. By taking the boundary of Equation A.21 and using the fact that

∂ ◦ ιinη = ∂η, we obtain

∂ ◦ ei+1
n γ′ = ∂η. (A.22)

Then,

∂(−ei
nρ + η) = −∂ ◦ ei

nρ + ∂η

= −ei
n−1 ◦ ∂ρ + ∂ ◦ ei+1

n γ′

= −ei
n−1(∂γ′ − γ) + ∂ ◦ ei+1

n γ′

= −ei
n−1 ◦ ∂γ′ + ei

n−1γ + ∂ ◦ ei+1
n γ′

= ei
n−1γ.

The second equality follows from Equation A.22 and the commutativity of Diagram

4.18. The third equality follows from Equation A.19. Since γ′ ∈ ⊕
e∈NV

Cn(Ri+1
e ) such that

∂γ′ ∈ ⊕
e∈NV

Cn−1(R
i
e), the boundary of ei+1

n γ′, denoted ∂ei+1
n γ′, lives in

⊕
v∈NV

Cn−1(R
i
v)

and ∂ ◦ ei+1
n γ′ = ei

n−1 ◦ ∂γ′. The last equality follows from the fact that ∂ ◦ ei+1
n γ′ =

ei
n−1 ◦ ∂γ′. Recall that in the construction of δ in Theorem 8, we found an element β

such that ∂β = ei
n−1γ. Thus, −ei

nρ + η is a choice of β that satisfies Equation 4.23.

With the choice of α = γ′ − κi
nρ and β = −ei

nρ + η, consider

χ1 ◦ δi[{〈γ〉}1]1 − χ2 ◦ δi
∗[{〈γ〉}2]2 =χ1[{〈−ei+1

n (γ′ − κi
nρ) + ιin(−ei

nρ + η)〉}1]1

− χ2[{〈γ′′〉}2]2

=‖〈−ei+1
n γ′ + ei+1

n ◦ κi
nρ− ιin ◦ ei

nρ + ιinη〉‖+ ‖〈γ′′〉‖

=‖〈−ei+1
n γ′ + ιinη + γ′′〉‖

=‖〈−∂µ〉‖.

The third equality follows from commutativity of Diagram 4.18. The last equality

follows from Equation A.21. Thus, χ2 ◦ δi
∗[{〈γ〉}2]2 = χ1 ◦ δi[{〈γ〉}1]1.
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We now show that ψi and ψi
∗ are the same map under different choices of basis of

H1(C•Fi
n−1) and H0(C•Fi+1

n ).

Theorem 12. There exist isomorphisms Λ1 : H1(C•Fi
n−1) → H1(C•Fi

n−1) and Λ2 :

H0(C•Fi+1
n )→ H0(C•Fi+1

n ) such that ψi = Λ2 ◦ ψi+1 ◦Λ1.

Proof. Recall that we defined ψi : ker H1(φ
i
n−1)⊕ Ai → coker H0(φi

n)⊕ Bi by ψi(u) =

ψi(w1, w2) = (δi(w1), 0) in Lemma 14. Similarly, we defined ψi
∗ : H1(C• ker φi

n−1) ⊕

Ai
∗ → H0(C• coker φi

n)⊕ Bi
∗ by ψi

∗(u) = ψi
∗(w1, w2) = (δi

∗(w1), 0) in Lemma 15.

Recall that ker H1(φ
i
n−1)⊕ Ai ∼= H1(C•Fi

n−1)
∼= H1(C• ker φi

n−1)⊕ Ai
∗ from Equa-

tion A.14 and Equation 4.25. Define Λ1 : ker H1(φ
i
n−1)⊕ Ai → H1(C• ker φi

n−1)⊕ Ai
∗

by

Λ1(w1, w2) = (w1, g1(w2)),

where g1 : Ai → Ai
∗ is an isomorphism. One can check that Λ1 is an isomorphism.

Similarly, we know that coker H0(φi
n)⊕ Bi ∼= H0(C•Fi+1

n ) ∼= H0(C• coker φi
n)⊕ Bi

∗

from Equation A.15 and Equation 4.26. From Lemma 17, we know that coker H0(φi
n)
∼=

H0(C• coker φi
n). Define Λ2 : H0(C• coker φi

n)⊕ Bi
∗ → coker H0(φi

n)⊕ Bi by

Λ2(u1, u2) = (χ−1
1 ◦ χ2(u1), g2(u2)),

where χ1 and χ2 are defined in Equations A.16, A.17, and g2 : Bi → Bi
∗ is an isomor-

phism. Since χ−1
1 ◦ χ2 and g2 are isomorphisms, Λ2 is an isomorphism as well.

From Lemma 18, we know that δi = χ−1
1 ◦ χ2 ◦ δi

∗. Thus,

Λ2 ◦ ψi
∗ ◦Λ1(w1, w2) = Λ2 ◦ ψi

∗(w1, g1(w2))

= Λ2(δ
i
∗(w1), 0)

= (χ−1
1 ◦ χ2 ◦ δi

∗(w1), 0)

= (δi(w1), 0)

= ψi(w1, w2),
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i.e., the following diagram commutes.

ker H1(φ
i
n−1)⊕ Ai coker H0(φi

n)⊕ Bi

H1(C• ker φi
n−1)⊕ Ai

∗ H0(C• coker φi
n)⊕ Bi

∗

Λ1

ψi

ψi
∗

Λ2

Thus, regardless of which homology we take first from Diagram 4.19, we end up

constructing the same maps ψi and ψi
∗ under different choices of basis of H1(C•Fi

n−1)

and H0(C•Fi+1
n ).
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Appendix B

Details of Proofs

B.1 Details of proof for Theorem 8

For the proof, we drop the superscripts for αi+1 and βi. It should be understood that

α = αi+1 and β = βi.

We will first check that −ei+1
n α + ιinβ represents an element in coker H0(φi

n). Note

that

∂(−ei+1
n α + ιinβ) = −ei+1

n−1 ◦ ∂α + ιin−1 ◦ ∂β

= −ei+1
n−1 ◦ κi

n−1γ + ιin−1 ◦ ei
n−1γ

= 0,

which follows from Equation 4.22, Equation 4.23, and the commutativity of Diagram

4.18. Thus, −ei+1
n α + ιinβ represents an element in

⊕
v∈NV

Hn(Ri+1
v ), and [{〈−ei+1

n α +

ιinβ〉}] represents an element in coker H0(φi
n).

We now show that δi (Equation 4.24) is well defined. Let α′ ∈ ⊕
e∈NV

Cn(Ri+1
e ) be a

different choice of α that satisfies Equation 4.22:

∂α′ = κi
n−1γ.

Note that ∂(α − α′) = κi
n−1γ − κi

n−1γ = 0. So 〈α − α′〉 represents an element in⊕
e∈NV

Hn(Ri+1
e ). Then, 〈ei+1

n (α − α′)〉 = ∂i+1
n 〈α − α′〉 ∈ im ∂i+1

n . So {〈ei+1
n (α − α′)〉} is



Appendix B. Details of Proofs 142

trivial in H0(C•Fi+1
n ). Hence, {〈−ei+1

n α + ιinβ〉} and {〈−ei+1
n α′ + ιinβ〉} represent ho-

mologous elements in H0(C•Fi+1
n ). Thus, [{〈−ei+1

n α + ιinβ〉}] = [{〈−ei+1
n α′ + ιinβ〉}] in

coker H0(φi
n).

Similarly, let β′ ∈ ⊕
v∈NV

Cn(Ri
v) be a different choice of β that satisfies Equation 4.23:

∂β′ = ei
n−1γ.

Note that ∂(β − β′) = ei
n−1(γ − γ) = 0, and 〈β − β′〉 represents an element of⊕

v∈NV

Hn(Ri
v). Then, {〈ιin(β − β′)〉} = {(φi

n)v〈β − β′〉} = H0(φi
n){〈β − β′〉} ∈

im H0(φi
n). Thus, [{〈ιin(β − β′)〉}] is trivial in coker H0(φi

n). Hence, [{〈−ei+1
n α +

ιinβ〉}] = [{〈−ei+1
n α + ιinβ′〉}] in coker H0(φn). Thus, given different choices β′ and

α′, we have [{〈−ei+1
n α + ιinβ〉}] = [{〈−ei+1

n α′ + ιinβ′〉}].

Lastly, consider a different coset representative γ′ ∈ ⊕
e∈NV

Cn−1(R
i
e) of [{〈γ〉}], i.e.,

[{〈γ〉}] = [{〈γ′〉}]. Then, there exists ω ∈ ⊕
e∈NV

Cn(Ri
e) such that

γ− γ′ = ∂ω. (B.1)

Assume that

δi[{〈γ〉}] = [{〈−ei+1
n α + ιinβ〉}]

δi[{〈γ′〉}] = [{〈−ei+1
n α′ + ιinβ′〉}]

(B.2)

for some α, α′ ∈ ⊕
e∈NV

Cn(Ri+1
e ), β, β′ ∈ ⊕

v∈NV

Cn(Ri
v). We will use the following fact that

α − α′ − κi
nω and β − β′ − ei

nω are cycles, which can be shown from Equations 4.22,

4.23, B.1, and Diagram 4.18.

∂(α− α′ − κi
nω) = κi

n−1(γ− γ′ − ∂ω) = 0,

∂(β− β′ − ei
nω) = ei

n−1(γ− γ′ − ∂ω) = 0.
(B.3)
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One can show that

[{〈−ei+1
n (α− α′) + ιin(β− β′)〉}] =[{〈−ei+1

n (α− α′) + ιin(β− β′)

+ ιin ◦ ei
nω− ιin ◦ ei

nω〉}]

=[{〈−ei+1
n (α− α′) + ιin(β− β′)

+ ei+1
n ◦ κi

nω− ιin ◦ ei
nω〉}]

=[{〈−ei+1
n (α− α′ − κi

nω)〉}] + [{〈ιin(β− β′ − ei
nω)〉}]

=[{〈0〉}].

(B.4)

The second equality follows from commutativity of Diagram 4.18. The third equality

follows from the fact that ei+1
n (α − α′ − κi

nω) and ιin(β − β′ − ei
nω) are cycles, which

follows from Equation B.3 and Diagram 4.18. To show the last equality of Equation B.4,

note that

〈ei+1
n (α− α′ − κi

nω)〉 = ∂i+1
n 〈α− α′ − κi

nω〉 ∈ im ∂i+1
n ,

{〈ιin(β− β′ − ei
nω)〉} = H0(φ

i
n){〈β− β′ − ei

nω〉} ∈ im H0(φ
i
n).

(B.5)

Thus, both [{〈ei+1
n (α − α′ − κi

nω)〉}] and [{〈κi
n(β − β′ − ei

nω)〉}] are trivial in

coker H0(φi
n). This shows that δi[{〈γ〉}] = δi[{〈γ′〉}]. Thus, the map δi is well defined.

B.2 Proof of well-definedness of map ψi

We show that the maps ψi : H1(C•Fi
n−1) → H0(C•Fi+1

n ) defined in Equations 4.34 and

4.44 are well-defined maps.

Proof. We omit the superscripts for αi+1 and βi.

Recall that for each basis {〈b∗〉} ∈ Bi, the map ψi was defined as

ψi{〈b∗〉} = {〈−ei+1
n α + ιinβ∗〉},
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where α ∈ ⊕
e∈NV

Cn(Ri+1
e ) satisfies

∂α = κi
n−1b∗,

and β∗ is the element defined by

β∗ = Γi{〈b∗〉}.

Recall that β∗ satisfies

∂β∗ = ei
n−1b∗.

We first show that −ei+1
n α + ιinβ∗ actually defines an element in H0(C•Fi+1

n ). One

can check that

∂(−ei+1
n α + ιinβ∗) = −ei+1

n−1 ◦ ∂α + ιin−1 ◦ ∂β∗

= −ei+1
n−1 ◦ κi

n−1b∗ + ιin−1 ◦ ei
n−1b∗

= 0

from the commutativity of Diagram 4.30. Thus, {〈−ei+1
n α + ιinβ∗〉} does represent an

element of H0(C•Fi+1
n ).

We now show that the map ψi is well-defined. By construction, it suffices to show

that ψi is well-defined on each basis {〈b∗〉} ∈ Bi. When defining

ψi{〈b∗〉} = {〈−ei+1
n α + ιinβ∗〉},

note that β∗ was a fixed element given by Γi{〈b∗〉} = β∗. However, there may be other

choices of α′ ∈ ⊕
e∈NV

Cn(Ri+1
e ) that satisfy ∂α = κi

n−1b∗. Note that

∂(α′ − α) = κi
n−1b∗ − κi

n−1b∗ = 0,
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i.e., 〈α′ − α〉 represents an element in
⊕

e∈NV

Hn(Ri+1
e ).

Then,

〈−ei+1
n α + ιinβ∗〉 − 〈−ei+1

n α′ + ιinβ∗〉 = 〈ei+1
n (α′ − α)〉

= ∂i+1
n 〈α′ − α〉

Since ∂i+1
n 〈α′ − α〉 ∈ im ∂i+1

n , then {〈−ei+1
n α + ιinβ∗〉 − 〈−ei+1

n α′ + ιinβ∗〉} is trivial in

H0(C•Fi+1
n ). Thus, {〈−ei+1

n α + ιinβ∗〉} and {〈−ei+1
n α′ + ιinβ∗〉} represent homologous

elements in H0(C•Fi+1
n ), and ψi{〈b∗〉} is well-defined for each basis {〈b∗〉} ∈ Bi. Thus,

ψi is well-defined.

B.3 Obtaining basis Ci
im from basis Bi−1

A of Ai−1.

Lemma 19. Let Bi−1 = Bi−1
A ⊕ Bi−1

ker be a basis of H1(C•Fi−1
n−1) = Ai−1 ⊕ ker H1(φ

i−1
n−1).

Let Bi−1
A = {{〈b1〉}, . . . , {〈bm〉}} be the basis of Ai−1. Then, {〈κi−1

n−1b1〉}, . . . , {〈κi−1
n−1bm〉} is

linearly independent in H1(C•Fi
n−1).

Proof. Assume not, i.e., assume that

c1{〈κi−1
n−1b1〉}+ · · ·+ cm{〈κi−1

n−1bm〉} = {〈0〉}

for some c1, . . . , cm that are not all zero. By construction, this implies that

c1〈κi−1
n−1b1〉+ · · ·+ cm〈κi−1

n−1bm〉 = 〈0〉

for some c1, . . . , cm that are not all zero. Then, 〈c1b1 + . . . cmbm〉 ∈ ker H1(φ
i−1
n−1). Note

that 〈c1b1 + . . . cmbm〉 ∈ Ai−1 as well since Ai−1 is a subspace of H1(C•Fi−1
n−1). This

contradicts the fact that H1(C•Fi−1
n−1) is a direct sum of ker H1(φn−1) and A. Thus,

{〈κi−1
n−1b1〉}, . . . , {〈κi−1

n−1bm〉} are linearly independent.
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B.4 Details of proof of Theorem 9

We show that the map Ψi
Tot : Hn(Toti) → Hn(Ri) is well-defined and bijective. For the

proof, we omit the superscript i indicating the parameter εi.

Proof. We first show that ΨTot is a well-defined map. Assume that [x1, y1] = [x2, y2]

in Hn(Tot). Recall that jn :
⊕

v∈NV

Cn(Rv) → Cn(R) is the map into the left column in

Diagram 4.2. Recall from Diagram 4.2 that the following rows are exact.

0 Cn+1(R)
⊕

v∈NV

Cn+1(Rv)
⊕

e∈NV

Cn+1(Re) 0

0 Cn(R)
⊕

v∈NV

Cn(Rv)
⊕

e∈NV

Cn(Re) 0

∂

jn+1

∂ ∂

jn en

(B.6)

Since [x1, y1] = [x2, y2] in Hn(Tot), there exists pn+1 ∈
⊕

v∈NV

Cn+1(Rv) and qn ∈⊕
e∈NV

Cn(Re) such that y2 − y1 = ∂qn and x2 − x1 = ∂pn+1 + (−1)n+1enq. Then,

jn(x2 − x1) =jn(∂pn+1 + (−1)n+1enq)

=jn(∂pn+1)

=∂(jn+1(pn+1)).

The second equality follows from the fact that jn ◦ en(q) = 0, which follows from exact-

ness of Diagram B.6. Thus, [jn(x2)] = [jn(x1)], and the map ΨTot is well-defined.
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We now show that ΨTot is surjective. Let [γ] ∈ Hn(R). Recall from Diagram 4.2 that

the following rows are exact.

0 Cn(R)
⊕

v∈NV

Cn(Rv)
⊕

e∈NV

Cn(Re) 0

0 Cn−1(R)
⊕

v∈NV

Cn−1(Rv)
⊕

e∈NV

Cn−1(Re) 0

0 Cn−2(R)
⊕

v∈NV

Cn−2(Rv)
⊕

e∈NV

Cn−2(Re) 0

∂

jn

∂ ∂

∂

jn−1

∂

en−1

∂

jn−2 en−2

(B.7)

Then, there exists γn ∈
⊕

v∈NV

Cn(Rv) such that γ = jn(γn). Then,

jn−1 ◦ ∂γn = ∂ ◦ jn(γn) = ∂γ = 0.

So ∂γn ∈ ker jn−1, and by exactness, there exists γn−1 ∈
⊕

e∈NV

Cn−1(R
ε
e ) such that

en−1(γn−1) = ∂γn. Moreover,

en−2 ◦ ∂γn−1 = ∂ ◦ en−1γn−1 = ∂∂γn = 0.

Since en−2 is injective, we know that ∂γn−1 = 0. Then, ΨTot[γn, γn−1] = [γ]. Thus, ΨTot

is surjective.

Lastly, we show that ΨTot is injective. Assume that ΨTot([x, y]) = 0. Then, there

exists pn+1 ∈ Cn+1(R) such that ∂pn+1 = jn(x). Since the rows of Diagram B.6 are

exact, jn and jn+1 are surjective maps. Thus, there exists p′n+1 ∈
⊕

v∈NV

Cn+1(Rv) such

that pn+1 = jn+1(p′n+1). Then,
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jn(∂p′n+1 − x) = jn ◦ ∂p′n+1 − jn(x)

= ∂ ◦ jn+1(p′n+1)− jn(x)

= ∂pn+1 − jn(x)

= 0.

Thus, ∂p′n+1 − x ∈ ker jn. Again, from exactness of the rows of Diagram B.6, there

exists qn ∈
⊕

e∈NV

Cn(Re) such that ∂p′n+1 − x = en(qn).

Note that

∂(∂p′n+1 − x) = ∂en(qn),

while the left hand side of above is equal to−∂x = −(−1)n+1en(y) by definition. Then,

en∂qn = ∂en(qn) = −∂x = −(−1)n+1en(y). Since en is injective, this implies that ∂qn =

−(−1)n+1y. Let q′n = −(−1)n+1qn, so that ∂q′n = y.

Thus, we have p′n+1 ∈
⊕

v∈NV

Cn+1(Rv) and q′n ∈
⊕

e∈NV

Cn(Re) such that

∂q′n = y

and

x = ∂p′n+1 − en(qn) = ∂p′n+1 − en(−(−1)n+1q′n) = ∂p′n+1 + (−1)n+1enq′n.

Thus, [x, y] = 0 in Hn(Tot), and ΨTot is injective.

B.5 Details of proof of Theorem 10

We provide proofs that the map Φi : H0(C•Fi
n)⊕ H1(C•Fi

n−1) → Hn(Toti) defined in

Theorem 10 is well-defined and bijective. For the remainder of the proof, we omit the

superscript i indicating the parameter εi.
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Proof. We first show that Φ is well-defined. Assume that ({〈x〉}, {〈y〉}) =

({〈x′〉}, {〈y′〉}) in H0(C•Fn) ⊕ H1(C•Fn−1), i.e., {〈x〉} = {〈x′〉} in H0(C•Fn) and

{〈y〉} = {〈y′〉} in H1(C•Fn−1).

Let B be the fixed basis of H1(C•Fn−1) given by

B = {{〈b∗1〉}, . . . , {〈b∗m〉}}.

We can express {〈y〉} and {〈y′〉} in terms of the basis Bi, as

{〈y〉} = {〈y′〉} = {〈c1b∗1 + · · ·+ cmb∗m〉}.

Then, by construction,

Φ({〈y〉}) = [(−1)n+1(c1β∗1 + · · ·+ cmβ∗m), c1b∗1 + · · ·+ cmb∗m]

= Φ({〈y′〉})

Then,

Φ({〈x〉}, {〈y〉})−Φ({〈x′〉}, {〈y′〉}) = Φ({〈x〉})−Φ({〈x′〉})

= [x− x′, 0].

Since {〈x〉} = {〈x′〉} in H0(C•Fn), there exists pn+1 ∈
⊕

v∈NV

Cn+1(Rv) such that ∂pn+1 =

x− x′. Thus, [x− x′, 0] is trivial in Hn(Tot), and Φ is a well-defined map.

We now show that Φ is surjective. Given [x, y] ∈ Hn(Tot), we know that ∂(y) = 0,

so {〈y〉} is an element of H1(C•Fn−1). In terms of this fixed basis Bi of H1(C•Fn−1), we

can express {〈y〉} as

{〈y〉} = {〈c1b∗1 + · · ·+ cmb∗m〉}.

Then, there exists qn ∈
⊕

e∈NV

Cn(Re) such that

c1b∗1 + · · ·+ cmb∗m − y = ∂qn. (B.8)
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Recall from Equation 4.55 that Φ{〈b∗j 〉} = [(−1)n+1β∗j , b∗j ], where β∗j ∈
⊕

v∈NV

Cn(Rv)

satisfies

∂β∗j = en−1b∗j , (B.9)

where en :
⊕

e∈NV

Cn(Re)→
⊕

v∈NV

Cn(Rv) is an inclusion map.

Let

rn = x− (−1)n+1(c1β∗1 + · · ·+ cmβ∗m) + (−1)n+1en(qn).

Note that

∂rn = ∂x− (−1)n+1∂(c1β∗1 + · · ·+ cmβ∗m) + (−1)n+1∂en(qn)

= (−1)n−1en−1(y)− (−1)n+1en−1(c1b∗1 + · · ·+ cmb∗m) + (−1)n+1en−1∂qn

= (−1)n+1en−1(y)− (−1)n+1en−1(c1b∗1 + · · ·+ cmb∗m) + (−1)n+1en−1∂qn

= 0,

which follows from commutativity of Diagram 4.30, Equation B.9, and Equation B.8.

Thus, {〈rn〉} represents an element of H0(C•Fn). Then,

Φ({〈rn〉}+ {〈y〉}) = [rn, 0] + [(−1)n+1(c1β∗1 + · · ·+ cmβ∗m), c1b∗1 + · · ·+ cmb∗m]

= [x + (−1)n+1en(qn), y + ∂qn]

= [x, y] + [(−1)n+1en(qn), ∂qn]

= [x, y]

Thus, Φ is surjective.

Lastly, we show that Φ is injective. Let ({〈x〉}, {〈y〉}) ∈ H0(C•Fn)⊕ H1(C•Fn−1).

Assume that Φ({〈x〉}, {〈y〉}) = 0. Again, in terms of the fixed basis B of H1(C•Fn−1),

we can express {〈y〉} as

{〈y〉} = {〈c1b∗1 + · · ·+ cmb∗m〉}.
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Then Φ({〈y〉}) = [(−1)n+1(c1β∗1 + · · ·+ cmβ∗m), c1b∗1 + · · ·+ cmb∗m], and

Φ({〈x〉}, {〈y〉}) = [x + (−1)n+1(c1β1 + · · ·+ cmβm), c1b∗1 + · · ·+ cmb∗m].

If Φ({〈x〉}, {〈y〉}) = 0, then there exists qn ∈
⊕

e∈NV

Cn(Re) and pn+1 ∈
⊕

v∈NV

Cn+1(Rv)

such that

∂qn = c1b∗1 + · · ·+ cmb∗m, (B.10)

(−1)n−1enqn + ∂pn+1 = x + c1β∗1 + · · ·+ cmβ∗m. (B.11)

Then, from Equation B.10, we know that {〈c1b∗1 + · · ·+ cmb∗m〉} = {〈y〉} is trivial in

H1(C•Fn−1). Thus, Φ({〈x〉}, {〈y〉}) = Φ({〈x〉}) = [x, 0].

If [x, 0] is trivial in Hn(Tot), then there exists qn ∈
⊕

e∈NV

Cn(Re) and pn+1 ∈⊕
v∈NV

Cn+1(Rv) such that

∂qn = 0,

(−1)n−1enqn + ∂pn+1 = x.

The above two equations imply that {〈x〉} is trivial in H0(C•Fn). Thus, Φ is injective.
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