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Essays On Dynamic Updating Of Consumer Preferences

Abstract
Consumers dynamically update their preferences over time based on information learned through product
search and consumption experiences, particularly in online media. Using three unique datasets from different
domains, we address specific ways in which firms can use rich information about their customers' behaviors to
improve (1) the visual display of products on a webpage in online shopping, (2) predictions of new product
adoption in online gaming, and (3) the timing of product release in online learning. First, we explore how
consumers visually search through product options using eye-tracking data from two experiments conducted
on the websites of two online clothing stores, which can inform retailers on how to position products on a
virtual webpage. Second, we examine how consumers' variety-seeking preferences change depending on past
consumption outcomes within the context of an online multi-player video game, which can be used to
improve predictions of new product adoption. Third, we use clickstream data from an online education
platform to test theories of goal progress, knowledge accumulation, and boundedly rational forward-looking
behavior, which can be used to explain binge consumption patterns and inform content providers on the best
way to structure and release content. In each of these three projects, we build a mathematical model of
individual decisions, with the parameterization grounded in theories of consumer behavior, and we
demonstrate through in-sample prediction that our model is able to capture specific heterogeneous patterns
within the data. We then test that our model is able to make out-of-sample predictions related to managerial
interventions, and empirically verify our predictions using either lab experiments or new field data following a
natural experiment policy change.
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ABSTRACT

ESSAYS ON DYNAMIC UPDATING OF CONSUMER PREFERENCES

Tong Lu

Eric T. Bradlow

J. Wesley Hutchinson

Consumers dynamically update their preferences over time based on information learned

through product search and consumption experiences, particularly in online media. Using

three unique datasets from different domains, we address specific ways in which firms can

use rich information about their customers’ behaviors to improve (1) the visual display of

products on a webpage in online shopping, (2) predictions of new product adoption in on-

line gaming, and (3) the timing of product release in online learning. First, we explore how

consumers visually search through product options using eye-tracking data from two exper-

iments conducted on the websites of two online clothing stores, which can inform retailers

on how to position products on a virtual webpage. Second, we examine how consumers’

variety-seeking preferences change depending on past consumption outcomes within the

context of an online multi-player video game, which can be used to improve predictions of

new product adoption. Third, we use clickstream data from an online education platform

to test theories of goal progress, knowledge accumulation, and boundedly rational forward-

looking behavior, which can be used to explain binge consumption patterns and inform

content providers on the best way to structure and release content. In each of these three

projects, we build a mathematical model of individual decisions, with the parameterization

grounded in theories of consumer behavior, and we demonstrate through in-sample predic-

tion that our model is able to capture specific heterogeneous patterns within the data. We

then test that our model is able to make out-of-sample predictions related to managerial

interventions, and empirically verify our predictions using either lab experiments or new

field data following a natural experiment policy change.
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CHAPTER 1 : Introduction

How many decisions does a consumer make in a day? The answer depends on the gran-

ularity at which we define decisions. Economists tend to focus on decisions at relatively

low temporal resolutions, including purchases or investments that unfold over days or even

years. Meanwhile, psychologists may consider the neural and psychological processes in-

volved in decision-making as decisions themselves. These decisions may be conscious or

unconscious and can occur within seconds or fractions of a second. The work presented

in this dissertation examines decisions that span the range of temporal resolutions, from

split-second eye movements occurring within a 5-minute shopping trip, to clickstream deci-

sions that determine the consumption of digital media content tracked across several weeks

or even years. Figure 1 provides a summary of the types of data and temporal resolutions

addressed in the following chapters of this dissertation.

Figure 1: Examples of consumer decisions across a range of temporal resolutions
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In marketing, it is common to treat each purchase as a single decision, but retail firms

are increasingly interested in collecting more detailed information about their customers’

consumption patterns that precede the final outcome. Advancements in process tracing

methods enable both practitioners and researchers to track behaviors that lead up to a final

purchase for material goods, as well as customer engagement in experiential goods. That

is, firms are interested in the precursors to sales.

For example, clickstream data is commonly used as a measure of online activity such as

shoppers’ decisions to enter a store’s website and examine particular product pages before

checking out (Bucklin and Sismeiro 2003; Moe and Fader 2004; Montgomery et al. 2004) or

when consuming digital media, such as online video streaming (Schweidel and Moe 2016).

RFID (radio-frequency identification) sensors placed on store shelves or shopping carts

can analogously measure a shopper’s foot traffic through different areas of a brick-and-

mortar store (Hui, Bradlow, and Fader 2009; Hui et al. 2013; Larson, Bradlow, and Fader

2005). Within each webpage or physical area of a store, we can measure the behavior of

shoppers at even higher temporal resolution using eye-tracking equipment to observe their

eye movements as they collect product information. Eye-tracking allows researchers to

determine exactly what shoppers were looking at during each moment and make inferences

about their knowledge of products and consideration sets (Chandon et al. 2009; Shi, Wedel,

and Pieters 2013; Stüttgen, Boatwright, and Monroe 2012; Yang, Toubia, and de Jong 2015).

Using three unique datasets from different product domains that track consumer decisions

measured at different temporal resolutions, we address specific ways in which firms can use

this rich information to respond to the changing preferences of consumers. Using this data,

we model how consumers are dynamically updating their preferences over time based on

information gained when they learn about products through information search and expe-

rienced consumption. By empirically modeling these dynamic preferences, we can suggest

ways for retailers to respond in terms of the product layout in an online store, predictions

of whether or not consumers will adopt new versions of the product, and decisions about

2



the timing of product release.

In Chapter 2, we focus on information search on the landing page of an online store in

order to test boundedly rational models of eye movements and choice. Like the physical

entrance of a brick-and-mortar store, the landing page of an online retailer draws shoppers

deeper into the website, and landing page decisions are likely to have important downstream

consequences. We explore the internal decision processes and external characteristics of

the shopping environment that determine how extensively shoppers search on the landing

page. Our findings are based on eye-tracking data collected during two incentive-compatible

online shopping experiments. We build a sequential sampling model of information search

that captures eye fixations as decisions, with the shopper ending search by clicking on

a fixated link when its attractiveness crosses a decision threshold. Our baseline model

is able to make accurate in-sample predictions regarding search length, as well as which

links shoppers fixate on and ultimately click on. In addition, we find that extending this

baseline model with forward-looking and threshold-learning components improves model fit

and in-sample predictions. We also conduct parametric sensitivity analyses to estimate a

“rationalizing exchange rate” for the costs and benefits of eye fixations. Finally, we use

counterfactual simulations to predict the effects of product layout on search in Experiment

1 and empirically verify our predictions in Experiment 2, which provides implications for

the design of online store displays.

In Chapter 3, we focus on modeling variety-seeking preferences to predict new product

adoption within the context of online video games. As consumers engage in experiential

products, they may exhibit variety-seeking behavior by switching frequently between differ-

ent options within the same category, or exhibit inertial behavior by consistently choosing

the same option. We propose that variety-seeking may be characterized by both the in-

cidence of option switching as well as the distance between options, as measured by the

number of shared and unshared attributes. We model consumers with variety-seeking pref-

erences that vary in response to consumption outcomes, which indicate the quality of the

3



consumer’s experience for a specific consumption occasion. We test our model within the

context of an online video game, in which players choose between different map environ-

ments for each round of play and consumption outcomes can be measured objectively by

a player’s performance during the round. A unique feature of our context is that the firm

released five sets of expansion packs containing new maps at various dates following the ini-

tial release of the base game. We demonstrate that including our dynamic variety-seeking

parameterization in the map choice model can help improve out-of-sample predictions of

whether or not players “adopt” these new products by playing on the new maps following

their release.

In Chapter 4, we focus on content consumption within the context of online education.

Online education possesses unique features such as scheduled content tied to learning as-

sessments that make it an appropriate testing ground for behavioral theories of how con-

sumers progress towards their goals and accumulate knowledge. Using clickstream data

from Coursera, an online educational platform, we build a model that captures individual

decisions about which course to consume at each moment in time, whether the content

is a lecture or a quiz, and when to take breaks of different lengths. There are three key

features of our model: First, individuals may be heterogeneously motivated to progress

towards the goal of completing the course by watching lecture videos and taking quizzes.

Second, individuals can accumulate knowledge through lectures in order to pass quizzes.

Third, individuals can be forward-looking in a boundedly rational way. We demonstrate

that these model features are able to capture patterns in the data that we characterize as

“binge learning,” a topic of recent significant academic and practical importance. We also

use our model to conduct counterfactual simulations to determine how the timing of content

release (a key decision variable for online platforms) affects consumption and knowledge ac-

cumulation, and empirically test these predictions using data following a policy change on

the Coursera platform.

Across these three chapters, we are able to observe at relatively high temporal resolu-

4



tion customers’ behaviors during product search (Chapter 2) or how they engage in online

experiential content (Chapters 3 and 4). By modeling how people incorporate product

information from either search or through consumption experiences into their present and

future preferences and choices, we can provide recommendations for improving the sequence

of product offerings. In Chapter 2, by “sequence” we refer to the positioning of products on

the landing page of an online store. Specifically, we test for whether the ordering of prod-

ucts on the page (i.e., best products shown first vs. worst products shown first) affects the

length of search on a webpage and what link the shopper chooses to click on. In Chapters

3 and 4, a “sequence” refers to the temporal sequence and timing of product release (e.g.,

maps or online course content). We plan to explore how these sequences affect consumption

choices, the rate of consumption, as well as more downstream behaviors like performance,

enjoyment, and future product purchases.

5



CHAPTER 2 : Information Search on the Landing Page: Boundedly Rational

Models of Eye Movements and Choice

2.1. Introduction

Marketers have long held that increasing foot traffic within physical stores and increasing

the click through rate within virtual environments usually leads to more purchases. Brick-

and-mortar retailers create attention-grabbing displays to draw people farther into the store

and consider more products (Pegler 2006). Similarly, the landing page of an online retailer

can draw people deeper into the website. Online retailers will often fill the landing page with

attractive product images that link to more detailed product information, or with category

links that help guide shoppers to more organized groups of products. Thus, the landing

page is especially important because the first click reflects both the shopper’s preferences

and the retailer’s desire to influence downstream shopper decisions.

Despite these intuitions and the rapid growth of online retail, to our knowledge, no work

has been done on how people make decisions on the landing page of an online store. We

address this gap in the literature by modeling the internal decision processes and external

characteristics of the shopping environment that determine how shoppers search on this

first page before clicking on either a product or a category link that takes them deeper into

the virtual store. How long shoppers spend in certain areas of a store may have downstream

consequences regarding their consideration sets and final purchases. For example, Hui et al.

(2013) find that increasing travel distance within a grocery store leads to more unplanned

purchases, and Bronnenberg, Kim, and Mela (2016) find strong state dependence in the

search path through the attribute space of digital cameras in online search such that early

search is highly predictive of the characteristics of the camera eventually purchased.

To study how shoppers search on the landing page of an online store, we conducted two

incentive-compatible eye-tracking experiments with female undergraduates shopping for 5

minutes at the website of an online clothing retailer. In both experiments, shoppers be-

6



gan at the landing page of the website that displayed a grid of featured products, plus

links to available product categories (see Figure 2). Using eye-tracking methods, we were

able to observe exactly where on the page participants were looking at each moment in time.

Figure 2: Layout of American Apparel landing page for Experiment 1

In order to describe our units of analysis, we introduce here some terms commonly used

in the eye-tracking literature. The recorded stream of eye movements consists of fixations,

defined as when the eyes are still for at least 50 milliseconds, and saccades, defined as when

the eyes are rapidly moving. Only fixated visual information can be processed at a detailed

level, while no information is processed during saccades. Thus, we use fixations as a measure

of visual search on the landing page. Each fixation provides high resolution information

from a spatial area of about 2 degrees of visual angle; outside of the fixated area, the quality
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of information acquisition is highly degraded. For example, a single fixation can encode 5-7

letters when reading text and one product image when identifying image features (Rayner

1998).

To determine what information shoppers gain from each fixation, we divided up the landing

page into areas of interest (AOIs), each containing a link to a specific product (“Product

AOI”) or more general category of products (“Category AOI”), as shown in Figure 2.

Thus, each fixation corresponds to an AOI “choice” that provides a small sample of visual

information. Sampled information accumulates over time and provides a low-level record of

the search process. Note that the AOIs that we used were relatively small, so two or three

fixations would be required to sample all the information in the AOI, and we did not further

subdivide Product AOIs by product image and price or the Category AOI by specific links.

2.1.1. Research Contributions

In our work, we make four main research contributions. First, we use eye-tracking data to

investigate the decisions that shoppers make on a real retailer’s webpage at a more granular

level compared to clickstream data. We primarily focus on modeling shopper behaviors on

the landing page, and we find that these behaviors are predictive of downstream decisions

that occur later on in the shopping trip. Specifically, in both of our experiments, we find that

additional fixations on the landing page reduce both the number of subsequent webpages

visited and subsequent spending. These findings suggest that the initial decision about

how to leave the landing page is an important determinant of subsequent search and that,

consistent with Hui et al. (2013), perhaps it is better to send shoppers deeper into the store

than to encourage them to linger on the landing page.

In line with the emerging stream of research that treats visual search patterns as part of

the decision-making process (Chandon et al. 2009; Shi, Wedel, and Pieters 2013; Stüttgen,

Boatwright, and Monroe 2012; Towal, Mormann, and Koch 2013; Yang, Toubia, and de

Jong 2015), we model eye fixations on the landing page as a series of “split-second” decisions
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(50-500 milliseconds) that depend on the shopper’s valuations of the AOIs and the effort of

making eye movements within a sequential sampling framework (Busemeyer and Townsend

1993; Gluth, Rieskamp, and Büchel 2013; Otter et al. 2008; Ratcliff and Smith 2004).

We assume that shoppers acquire information incrementally by sampling small amounts of

information with each eye fixation (Krajbich, Armel, and Rangel 2010; Towal, Mormann,

and Koch 2013). When the attractiveness of an AOI exceeds a decision threshold, the

shopper clicks on a link. This baseline model is able to capture the heterogeneity of landing

page search characteristics across shoppers, specifically in terms of search length (i.e., total

number of fixations) and the fixation pathway (i.e., the series of fixations and the clicked

link).

Second, we demonstrate that goodness-of-fit and in-sample predictions can be improved with

model extensions that capture cognitive processes described in prior work on “boundedly

rational” decision making (Gigerenzer and Goldstein 1996; Kahneman 2003; Simon 1955).

We allow individuals to be one-step forward-looking when making fixation decisions by

taking into account the probability of subsequently clicking on an AOI, either when deciding

which AOI to fixate on or when making click/continue decisions (De los Santos and Koulayev

2017; Gabaix et al. 2006; Yang, Toubia, and de Jong 2015). We also allow individuals to

change their decision thresholds as a function of search length or based on the value of

AOIs seen so far, which is consistent with explore-exploit strategies of information search

(Dellaert and Haübl 2012; Huang and Hutchinson 2013; March 1991).

Third, we assess the optimality of the estimated search process for each person. Note that

we do not assume in our model that shoppers search optimally, and in fact the decisions

made by shoppers in our data are more complicated that those assumed in standard analyses

of optimal sequential search (e.g., Weitzman 1979; Lippman and McCardle 1991; see Section

2.4. for extended discussion). Instead, bounded rationality is tested by using parametric

sensitivity analyses to estimate a “rationalizing exchange rate” for the costs and benefits of

eye fixations. This allows us to assess whether shoppers were close to optimal search; for
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example, could a shopper have clicked on a better AOI by searching longer with a higher

decision threshold, or gotten a similar outcome by searching less with a lower decision

threshold.

Fourth, one question of managerial interest is whether retailers can change the layout of the

landing page to directly influence how long shoppers spend on the page, thereby affecting

downstream behaviors. Thus, using the model estimated with Experiment 1 data, we

conducted a set of counterfactual simulations to predict shopper behaviors on the landing

page if products were positioned in a different order based on individual-level preferences.

In Experiment 2, using a different online retailer, we empirically tested the counterfactual

predictions by including two experimental conditions where the ordering of products on the

landing page was customized for each shopper based on her preferences. The results of this

experiment were consistent with the counterfactual predictions.

The plan for the rest of this chapter is as follows. Section 2.2. gives an overview of our

decision threshold model of eye fixation and click decisions on the landing page. Section

2.3. lays out the specification of the baseline model and extensions. Section 2.4. describes

the setup and results from Experiment 1. Section 2.5. describes the setup and results from

Experiment 2. Section 2.6. concludes with discussion.

2.2. Model Overview

We are interested in modeling the pathway of eye fixations on different AOIs on the landing

page of an online store. We treat fixations as a sequence of split-second decisions leading

up to a final decision to click on a link within an AOI to move on to a different part of the

website. Path data (e.g., grocery shopping, eye-tracking, web browsing, etc.) can be used

by marketers to understand the dynamic decision processes of consumers as they interact

with their virtual or physical shopping environment (see Hui, Fader, and Bradlow 2009 for

an overview).
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2.2.1. Sequential Sampling Models of Visual Attention and Information Search

We use eye fixations on specific AOIs as a measure of visual search on the landing page. After

each fixation on an AOI, we assume that shoppers accumulate information and update their

beliefs about the attractiveness of the fixated AOI through a sequential sampling process

(Otter et al. 2008; Ratcliff and Smith 2004; Townsend and Ashby 1983). In our models, each

fixation is followed by an implicit click/continue decision and the shopper clicks on an AOI

once the attractiveness of one of the AOIs exceeds a decision threshold. Hui, Bradlow, and

Fader (2009) use a similar approach to model how shoppers move through different areas of

a physical store, with each visit to a specific area or “node” followed by a checkout/continue

decision, and the attractiveness of different nodes updated after each visit.

Sequential sampling models have been shown to be psychologically and neurologically plau-

sible accounts of how consumers make fast decisions (split-second or within a few seconds;

see Otter et al. 2008 for a review). Random walk models like Decision Field Theory (Buse-

meyer and Townsend 1993), diffusion models (Krajbich, Armel, and Rangel 2010; Ratcliff

and Tuerlinckx 2002; Satomura, Wedel, and Pieters 2014), and Poisson race models (Huang

and Hutchinson 2008; Van Zandt, Colonius, and Proctor 2000) all fall under the umbrella

of sequential sampling models. Treating the decision process as a stochastic accumula-

tion of information can explain the differences in reaction times for simple versus complex

choices, speed-accuracy tradeoffs, memory retrieval, and serial position effects. Branco,

Sun, and Villas-Boas (2012) describe a similar model for product search (albeit across a

much longer time horizon) in which product knowledge is accumulated over time until it

reaches a threshold for purchase or no purchase.

2.2.2. Eye Movements as Split-Second Decisions

We extend upon traditional sequential sampling models by assuming that consumers’ la-

tent evolving preferences can be measured explicitly via eye movements and that shoppers

make active split-second fixation decisions based on the attractiveness of the AOIs and the
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effort of making eye movements towards the AOIs. In contrast, a passive accumulation

process is assumed by most sequential sampling models. Prior work has treated fixation

pathways as dependent on the value, position, and visual salience of options (Chandon et al.

2007; Towal, Mormann, and Koch 2013), as following specific patterns within latent states

(Liechty, Pieters, and Wedel 2003; Shi, Wedel, and Pieters 2013; Stüttgen, Boatwright, and

Monroe 2012; Wedel, Pieters, and Liechty 2008), and as a one-step forward-looking utility

maximization process (Yang, Toubia, and de Jong 2015).

In our model, each fixation event occurs in two stages. In Stage 1, the shopper chooses an

AOI to fixate on. In Stage 2, she decides whether or not the attractiveness of the currently

fixated AOI exceeds a decision threshold. If it does, she clicks on the link within the AOI; if

not, she moves on to the next fixation, which may be on the same or a different AOI. In the

baseline model, the threshold is static and the probability of fixating on an AOI depends

on its attractiveness and the effort of making the eye movement towards it.

2.2.3. Boundedly Rational Model Extensions

In addition to the baseline model, where the decision threshold is estimated as a single

static heterogeneous non-AOI specific parameter, we also test extensions of the model that

are based on empirical and theoretical findings about boundedly rational search processes.

First, we allow individuals to be one-step forward-looking, either when making their Stage

1 fixation decisions or their Stage 2 click/continue decisions. In the Stage 1 extension, when

shoppers decide which AOI to fixate on, they may take into consideration the probability of

actually clicking on the AOIs. In the Stage 2 extension, when shoppers consider whether to

click on the currently fixated AOI or to continue search, they may take into consideration

the future expected attractiveness of the clicked AOI if they were to make one more fixation,

under the assumption that this fixation would be their last opportunity to search.

Gabaix et al. (2006) demonstrated that this type of limited time horizon forward-looking

model predicted a sequence of choices that more closely resembled how lab participants
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behaved during a product search task, compared to the sequence predicted by infinite

time horizon index strategies (Weitzman 1979; Gittins 1979). Yang, Toubia, and de Jong

(2015) applied this approach to visual search within a conjoint experiment. Additionally,

since shoppers in our experiments can fixate on AOIs as many times as they want in any

order, and accumulate information with each fixation, modeling the full state space using a

structural dynamic programming approach is infeasible. De los Santos and Koulayev (2017)

faced a similar challenge in modeling consumer choices of search refinement tools during

online hotel search and also implemented a one-step lookahead approach.

Second, we allow the decision threshold to change after each fixation. Lab participants

engaged in stylized search tasks often exhibit declining thresholds (Adam 2001; Brown,

Flinn, and Schotter 2011; Koulayev 2014), which may be explained by focus on elapsed

time or rising search costs, but also represents a reasonable heuristic that more time spent

searching implies lower values of available options. Also, consumers may decrease their

decision threshold when shifting from explore mode to exploit mode (Huang and Hutchinson

2013; March 1991), or from search mode to choice mode (Dellaert and Häubl 2012). Thus,

we test the general phenomenon of declining thresholds by estimating the slope on the

decision threshold across fixations; a negative slope corresponds to a decreasing threshold

and therefore an increasing probability of clicking on a link within an AOI to leave the

landing page.

We also allow the decision threshold to change based on the attractiveness of AOIs seen

so far to test a specific set of theories where individuals are influenced by recently seen

options. This includes the “bounce rules” described by Hey (1982, 1987) where individuals

establish a reference point by initially inspecting a small set of options, as well as the local

behavioral influences modeled by Häubl, Dellaert, and Donkers (2010), where individuals

respond excessively to the attractiveness of current and recent options, as well as the contrast

between them.
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2.2.4. Relationship to Optimal Search

The decision threshold model that we propose shares similarities and differences with classic

problems of sequential search. Morgan and Manning (1985) model search as multiple draws

from a single distribution, with each draw corresponding to a realized outcome that the

individual can accept or reject. Similarly, our shoppers can make multiple samples of the

same option to gather information (i.e., by re-fixating on an AOI). However, our model also

needs to account for shoppers searching across multiple options, which is more similar to

the Weitzman (1979) model of sequential search with recall. There, the optimal solution

is characterized by the reservation values of each option, defined as the value of the “sure

thing” that would equate the cost and benefit of search. Shoppers search options in de-

scending order of reservation values and learn the “true” or “realized” value of each option

with a single sample. They stop when there are no more options with reservation values

that exceed the best option on-hand. This solution has been popular within the marketing

literature where there are many settings with multiple brands or firms (Chen and Yao 2017;

Honka and Chintagunta 2016; Kim, Albuquerque, and Bronnenberg 2010). However, it

does not allow for multiple samples of the same option.

To summarize, our model assumes that shoppers examine the options on the landing page

based on their attractiveness, with four key distinctions from classical sequential search

problems. First, our model assumes that shoppers sample from multiple options, and can

revisit these options multiple times to gather more information. Second, shoppers have a

single decision threshold for all options that determines when to end search on the landing

page, rather than separate reservation utilities for each option that are computed before

search begins. Third, there is path dependence such that both the physical position and

perceived attractiveness of searchable options factors into the probability of those options

being searched, and these values change with each fixation. Fourth, because of the nature of

eye movements and clicks, shoppers only click on options they just searched (or physically

nearby options), and so the last maximization step across all options assumed within optimal
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sequential search models is potentially violated.

Based on these four distinctions, generalized optimal search solutions that allow for multiple

searches with learning (Lippman and McCardle 1991; Koulayev 2014) and even very recent

work that employs numerical approximations that allow for non-consecutive revisits (Chick

and Frazier 2012; Ursu, Wang, and Chintagunta 2017) are also not mappable to the specific

decisions of shoppers in our setting. Moreover, the purpose of our model is not to assume

that shoppers are optimal, but rather to use a boundedly rational framework that allows

us to assess how close to optimally shoppers were searching.

2.3. Model Specification and Estimation

Let i = 1, ..., I denote shoppers and let m = 1, ...,Mi denote shopper i’s sequence of fixa-

tions. Each fixation m is the result of a two-stage decision process. In Stage 1, the shopper

selects which AOIj , for j ∈ {1, ..., J}, to fixate on with probability PijF [m], which depends

on both the attractiveness of the AOI, given by Aij [m], and the physical and mental effort

of making the eye movement from the previously fixated AOI, given by Eij [m].

In Stage 2, the shopper decides whether to click on the currently fixated AOI, which depends

on the attractiveness of the AOI relative to the decision threshold (note that effort is

assumed to be zero because the AOI is currently fixated). The probability of clicking on

the currently fixated AOIj is given by PijC [m], while the probability of continuing search

on the landing page is given by 1 − PijC [m]. Note that during Stage 2, individuals base

their continue/click decisions on the AOIj , that they chose to fixate on during Stage 1.

Intuitively, it makes sense that shoppers would only click on an AOI they had just fixated

on instead of clicking without looking. Also in our data we did in fact find that all shoppers

clicked on a currently fixated AOI.1

Therefore, the probability Pij [m] of observing each fixation m is simply the product of the

1In some contexts consumers may be able to direct visual and motor attention to different screen areas
and end up clicking on adjacent or recently fixated AOIs. Our model formulation could easily be relaxed to
include such situations.

15



Stage 1 and Stage 2 probabilities (i.e., probability of fixating on a specific AOI multiplied by

the conditional probability of clicking on the link within the AOI, given the fixation on the

AOI). Since shoppers choose to continue search in Stage 2 of fixations m = 1, ...,Mi−1, and

only click in Stage 2 of the last fixation m = Mi, we can express the fixation probabilities

as follows:

Pij [m] =


PijF (1− PijC [m]), if m = 1, ...,Mi − 1

PijFPijC [m], if m = Mi

(2.1)

The fixation events for all shoppers can be captured by the following likelihood function,

where θi = {βi,γi, ρi, λ1i, λ2i, λ3i, λ4i} (described in detail in the subsequent sections) rep-

resents the vector of estimated parameters for shopper i.

L(θi) =

Mi∏
m=1

Pij [m] (2.2)

In Sections 2.3.1.-2.3.3., we describe the specification of the baseline model with a static

decision threshold. In Sections 2.3.4. and 2.3.5., we describe alternative specifications of

the model to account for the boundedly rational forward-looking and threshold-changing

components. Section 2.3.6. lays out the estimation procedure.

2.3.1. The Baseline Model: AOI Attractiveness and Effort

Each fixation event m depends on AOI attractiveness, Aij [m], and the effort of making

the eye movement, Eij [m]. Aij [m] consist of a linear combination of S features and Eij [m]

consist of a linear combination of T features. Xi refers to the J × S × Mi matrix of

attractiveness feature values and βi is the corresponding vector of coefficients (recall that

J is the number of AOIs and Mi is the number of events). Zi is the J × T ×Mi matrix of

effort feature values and γi is its vector of coefficients. Thus, the attractiveness Aij [m] and
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effort Eij [m] associated with AOIj are given by the following:

Aij [m] =
S∑
s=1

βisxijs[m] (2.3)

Eij [m] =
T∑
t=1

γitzijs[m] (2.4)

Since shoppers presumably have no knowledge of the attractiveness values of the AOIs

before they fixate on them, we assume that Xi represents the shopper’s perceived feature

values and start at the same neutral point for all AOIs at m = 1. The perceived feature

values are then updated to approach their true values (i.e., true preference, true price, etc.)

as information is accumulated over time via fixations on the AOIs. Note that true values

might be larger or smaller than the neutral starting value. If the shopper fixates on AOIj

at fixation m, then the perceived feature value xijs for AOIj is updated according to the

following expression, where x∗ijs represents the true value of that feature:

xijs[m+ 1] = (1− αs)xijs[m] + αsx
∗
ijs (2.5)

The AOI features in the matrices Xi and Zi that we included in the estimation of AOI

attractiveness Aij [m] and effort Eij [m], respectively, are provided in the context of Experi-

ment 1 in Section 2.4.3.

2.3.2. Stage 1: AOI Fixation Decision

In Stage 1, the shopper decides which AOI to fixate on. The utility of fixating on AOIj

is given by Uij [m] = Aij [m] + Eij [m] + εijU , and thus depends on both attractiveness and

effort (see Equations 2.3 and 2.4). Assuming the error term εijU follows the type-1 extreme

value distribution, the probability of fixating on AOIj is modeled as a multinomial logit:

PijF [m] =
eAij [m]+Eij [m]∑J
k=1 e

Aik[m]+Eik[m]
(2.6)
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The perceived attractiveness feature values of the fixated AOI are then updated according

to Equation 2.5 after Stage 1, but before Stage 2.

2.3.3. Stage 2: Click vs. Continue Search on the Landing Page

In Stage 2, the shopper decides whether to continue search with another fixation or click on

the AOI that was fixated on in Stage 1. Clicking on an AOI ends search on the landing page

and brings the shopper to another page in the store. The shopper’s estimate of the value

of clicking on AOIj at event m is Vij [m] = Aij [m+ 1] + εiV . (Note that the attractiveness

used here has been updated following Stage 1.)

The shopper’s decision threshold is ViR[m] = Ri[m] + εiV and represents the perceived

value of continuing search on the landing page. This value is subjective and no assumptions

about optimality are made. We will test the optimality of the empirically estimated decision

threshold via simulation in Section 2.4.6.

The probability PijC [m] that the shopper will click on AOIj (given that it is currently

fixated on) is modeled as a binary logit that represents the likelihood that Vij [m] > ViR[m],

assuming the error term εiV follows the type-1 extreme value distribution:

PijC [m] =
eAij [m+1]

eAij [m+1] + eRi[m]
(2.7)

For each shopper we can estimate a decision threshold that defines the stopping rule for

information search. In the baseline model, the decision threshold is assumed to be a static

heterogeneous parameter:

Ri[m] = ρi (2.8)

2.3.4. Forward-Looking Extensions

Here we introduce two extensions of the baseline model that represent boundedly rational,

one-step forward-looking dynamics. First, individuals may be making “forward-looking
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fixations,” such that when choosing which AOI to fixate on in Stage 1, they take into

account the probability of clicking on the AOI in Stage 2, given by PijC [m]. In other

words, the utility of fixating on AOIj , given by Uij [m] = Aij [m] + Eij [m] + εijU in the

baseline model, is weighted by the term Wij [m] = PijC [m]λ1i and Equation 2.6 becomes the

following:

PijF [m] =
e(Aij [m]+Eij [m])∗Wij [m]∑
k e

(Aik[m]+Eik[m])∗Wik[m]
(2.9)

The parameter λ1i ∈ [0, 1] indicates the degree to which individuals weight the Stage 1

utilities for each AOI by the Stage 2 probabilities of clicking on that AOI. At λ1i = 0, all

AOIs utilities are equally weighted, as in the baseline model. For small values of λ1i near

zero, the exponential function is steeply curved and equates the highest probabilities at a

value near one and strongly penalizes the lowest probabilities, similar to a consideration set

function. At λ1i = 1 the click probabilities are directly used as weights.

Alternatively, individuals may be making “forward-looking clicks,” such that when choosing

whether to click on the currently fixated AOI in Stage 2, they take into account the expected

attractiveness of the AOI they would click on if they were to make one more fixation.

Equation 2.8 now becomes:

Ri[m] = ρi + λ2i

( ∑
j∈Seen

PijF [m+ 1]Aij [m+ 2]) +
∑

k/∈Seen

PikF [m+ 1]Aik[m+ 1]

)
(2.10)

The terms in the parentheses represent the expected attractiveness of the clicked AOI if

the individual were to make one more fixation at m + 1 by taking the sum of the future

attractiveness values of the AOIs, weighted by the probability of fixating on the AOIs,

given by PijF [m + 1]. Note that for each AOIj that the shopper has already “Seen” (i.e.,

at least one fixation), the future attractiveness of the AOI, given by Aij [m + 2], can be

calculated by extrapolating the updating process described in Equation 5. However, we

assume that the future attractiveness of each unseen AOIk is not extrapolated and remains

at Aik[m + 1] (i.e., the neutral starting value) because the shopper has no information on
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which to base an extrapolation. The parameter λ2i indicates the degree to which individuals

take into account the future value of making one more fixation at m+ 1 when making the

click/continue decision at m.

Thus, with either model variation, individuals can range from being myopic to forward-

looking in a boundedly rational way. With forward-looking fixations, the model allows the

shopper to place additional value on AOIs that are likely to result in a click, over and

above their feature-based attractiveness. With forward-looking clicks, individuals assume

that the next fixation at m+ 1 will be the last fixation ending with a click. This approach

is similar to those used by other models of choice behavior that assume consumers are

boundedly rational and maximize expected utility one step into the future (De los Santos

and Koulayev 2017; Gabaix 2006; Yang, Toubia, and de Jong 2015).

2.3.5. Threshold-Changing Extensions

Here we introduce two extensions of the baseline model that represent how individuals might

change their decision threshold. First, we allow the decision threshold to change linearly

with the number of fixations as an empirical test of the declining thresholds described in

prior literature. For example, starting with a threshold that is “too high” and then declines

to an “appropriate” level is consistent with explore-exploit strategies where shoppers expect

to learn more about the values of the offered products and do not want to terminate search

too early, as well as the meta-cognition that if one’s threshold has not been reached, then

perhaps one’s expectations are too high (Dellaert and Haübl 2012; Huang and Hutchinson

2013; March 1991). Equation 2.8 now becomes the following:

Ri[m] = ρi + λ3im (2.11)

Second, we allow the decision threshold to start at ρi at m = 1 and approach the maximum

attractiveness of all Seen AOIs, with a learning rate of λ4i ∈ [0, 1]. Thus, we test a parame-

terization of the bounce rules (Hey 1982, 1987) that are closely related to local information
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influencing behavior (Häubl, Dellaert, and Donkers 2010), and Equation 2.8 becomes the

following:

Ri[m] = (1− λ4i)Ri[m− 1] + λ4i(maxj∈SeenAij [m+ 1]) (2.12)

Note that Ri[m] is a mixture of the threshold value at the previous fixation m − 1, given

by Ri[m − 1], and the maximum AOI attractiveness at the next fixation m + 1, given by

Aij [m+ 1], because AOI attractiveness is updated after Stage 1, before the Stage 2 decision

that involves the decision threshold.

2.3.6. Estimation

The main goal of our estimation procedure is to compare the performance of the base-

line static decision threshold model to extensions that incorporate forward-looking and/or

threshold-changing dynamics. Table 1 provides a summary of the parameters and utility

specifications of the four model extensions relative to the baseline model.

Table 1: Summary of forward-looking and threshold-changing model extensions

Model Add Fixation Utility Decision Threshold

Baseline N/A Aij [m] + Eij [m] ρi

Forward-Looking

Fixations λ1i (Aij [m] + Eij [m]) ∗ PijC [m]λ1i ρi

Clicks λ2i Aij [m] + Eij [m]

ρi + λ2i

(∑
j∈Seen PijF [m+ 1]Aij [m+ 2])

+
∑
k/∈Seen PikF [m+ 1]Aik[m+ 1]

)
Threshold-Changing

Empirical Pattern λ3i Aij [m] + Eij [m] ρi + λ3im

Bounce Rule λ4i Aij [m] + Eij [m] (1− λ4i)Ri[m− 1] + λ4i(maxj∈SeenAij [m])

To capture the heterogeneity across shoppers, we estimated our model using a standard

hierarchical Bayes procedure (Gelman et al. 2014). For the first-stage priors, we assumed
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the set of parameters θi = {βi,γi, ρi, λ′1i, λ2i, λ3i, λ
′
4i} followed a multivariate normal distri-

bution with mean µ and precision Ω. (Note that λ′1i and λ′4i were logit-transformed versions

of λ1i and λ4i, whose values were thereby constrained to fall between between 0 and 1.)

For the second-stage priors, we assumed that µ followed a conjugate multivariate normal

distribution with mean µ0 (a vector of zeros) and precision Ω0 (an identity matrix), and

that Ω followed a conjugate Wishart distribution with degrees of freedom r (the number of

parameters in θi plus 3) and inverse scale matrix Λ (where Λ−1 was an identity matrix). Be-

cause the attractiveness feature coefficients βi and the attractiveness updating rates αi are

combined multiplicatively (see Equations 2.3 and 2.5), it is empirically difficult to estimate

them simultaneously; therefore a grid search was used to obtain population level estimates

of α (see Section 2.4.3. for details).

We simulated the parameters using a Markov chain Monte Carlo (MCMC) sampler in

the programming language R. For each model, we ran three MCMC chains from different

starting values for 100,000 iterations each. We used the first 90,000 iterations as burn-in

and checked for convergence by determining that the Gelman-Rubin convergence statistic

was less than 1.2 for all parameters (Gelman and Rubin 1992). After thinning the chains

to reduce auto-correlation, we were left with 3,000 posterior samples for each parameter.

To check for empirical identification, we estimated each version of our model on simulated

data to ensure parameter recovery (see Appendix A.1. for details).

We compared the relative performance of the models by calculating the deviance information

criterion (DIC), which is a Bayesian version of the Akaike information criterion (AIC). Like

the AIC, the DIC includes a penalty for the number of parameters by using the deviance

from the mean of the posterior samples, and may increase when parameters are added to

the baseline model (Gelman et al. 2014).2

We also compared the in-sample model fit with posterior predictive checks by using the

2We use DIC = −2logp(y|θ̂) + 2pDIC where the first term represents the likelihood of the data y given
the posterior mean θ̂ and the second term pDIC = 2(logp(y|θ̂)− 1

S

∑S
s=1 logp(y|θs)) represents the deviance

of the posterior samples θs from the mean.
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posterior samples to simulate each shopper’s fixation pathways (3,000 simulations per shop-

per) and looked at how closely simulated descriptive statistics matched observed descriptive

statistics. Specifically, we assess whether our model captures search length (as measured by

the total number of fixations before a click), which AOIs are fixated on and their frequency,

as well as which AOI is ultimately clicked on.

2.4. Experiment 1: Comparison of Baseline Model and Extensions

The purpose of Experiment 1 was to collect data for modeling the eye movements of shoppers

on the landing page of an online store. We compare the fit of five models (i.e., the baseline

model, two forward-looking extensions, and two threshold learning extensions; see Table 1)

using the DIC and posterior predictive checks. All analyses for Experiment 1 were replicated

with the data collected in Experiment 2.

2.4.1. Experimental Design

We conducted an incentive-compatible eye-tracking experiment in which female undergrad-

uates at a large university were paid $10 to browse the online store of American Apparel,

plus a 1 in 20 chance of winning a randomly chosen item from their cart up to a maximum

price of $75.

When shopping for clothing, consumers rely heavily on visual features, so eye-tracking was

well-suited for capturing the accumulation of product information in this setting. Partici-

pants in our study were informed that their eye movements and mouse activity would be

unobtrusively recorded, and were calibrated to the eye-trackers using the standard proce-

dures recommended for SensoMotoric Instruments eye-tracking systems.

Participants were told that they would be shopping for a new female wearable top, and

randomly assigned either a utilitarian shopping goal (i.e., something to wear for work or

class) or a hedonic shopping goal (i.e., something to wear for a party; see exact instructions

in Appendix A.2.). The purpose of this manipulation was to induce exogenous variations in
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search patterns and test whether or not these patterns could be recovered by our models. In

particular, we expected that hedonic shoppers would be more stimulus-driven rather than

goal-driven compared to utilitarian shoppers (Corbetta and Shulman 2002; Holbrook and

Hirschman 1982) and thus explore the landing page more extensively.

Participants were then brought to the landing page of American Apparel, and given 5

minutes to shop. The virtual landing page (see Figure 2) was a slightly modified version

of the actual store website’s “New Arrivals” page and remained unchanged across the data

collection period. The first row of products was visible upon arrival to the website, while

the remaining rows could be seen by scrolling down with the computer mouse.

After clicking on a link on the landing page, shoppers could not return to the landing page,

but were free to visit any other part of the website and could select items by adding them

to their virtual carts. Eye-tracking data and mouse clicks were collected throughout the

entire shopping trip. We restricted data collection to a 3-week period so that the product

selection and prices would not change substantially. In this chapter, only data from the

landing page are analyzed.

After 3 months, participants were contacted by email to complete a follow-up survey for an

additional $10 and a chance to win a $100 American Apparel gift card. They rated how

much they liked the 30 products from the landing page, the products from their virtual

cart, and a random sample of 30-35 products from other participants’ carts, presented in

random order without price information. Measuring individual preferences for products

either before or after the main experimental task is common within research employing

psychophysical or neurophysiological methods in order to study individual-level preferences

(Krajbich, Armel, and Rangel 2010; Reutskaja et al. 2011). Out of the 84 total participants,

8 were excluded from the analyses because of eye-tracker calibration issues, and 10 were

excluded for not completing the follow-up survey, leaving 67 shoppers total.
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2.4.2. Descriptive Analysis

Table 2 contains the descriptive statistics for several features of the shopping trip. The

statistics from the landing page fixation pathways include the total number of fixations, the

number of fixations on Product AOIs, the total number of unique AOIs seen, the lowest

row of Product AOIs seen, and the percentage of shoppers who clicked on the Product AOI.

Table 2: Descriptive statistics of shopping trips, reporting means and standard deviations
in parentheses.

Shopping Stage Activity Exp 1
Exp 2

Random
Exp 2

Worst-First
Exp 2

Best-First

Landing Page

Total fix 29.39 (24.69) 94.49 (82.80) 109.38 (59.83) 76.61 (57.03)

Product AOI fix 23.09 (24.88) 88.61 (80.52) 104.18 (60.24) 74.65 (56.07)

AOIs seen 10.06 (9.05) 22.39 (13.70) 28.31 (11.63) 20.13 (14.21)

Lowest row 2.81 (2.17) 6.39 (3.79) 7.56 (2.91) 5.83 (3.82)

Exit Landing
Page

% clicked on
Product AOI

19.40% 92.68% 93.33% 89.13%

Final
Shopping

Cart

# of products 2.17 (1.18) 2.66 (1.93) 2.78 (2.15) 3.0 (1.52)

Total value $96.04 (62.59) $55.89 (51.12) $56.91 (52.80) $55.51 (34.51)

In Experiment 1, shoppers fixated on between a quarter to a third of the Product AOIs

and got about a third to halfway down the page. Most shoppers ended up clicking on the

Category AOI rather than on one of the Product AOIs, and found on average 2 products to

put in their shopping carts, valued at around $90 total. In addition, we found that shoppers

who were randomly assigned to the hedonic shopping goal condition made significantly more

fixations on the last three rows of product AOIs (M = 8.39, SD = 11.60) compared to

shoppers assigned to the utilitarian goal condition (M = 3.19, SD = 7.08, t(48.10) = −2.17,

p = .04), and we verify in Section 2.4.4 that our model is able to capture this difference.

Finally, although the focus of our model is capturing the fixations and clicks on the landing

page, we find that landing page decisions are predictive of subsequent search. Specifically,

shoppers who spent more time searching on the landing page subsequently explored less of
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the rest of the store’s website, with about one less unique webpage per 20 additional eye

fixations (t = −13.10, p < 0.01, R2 = 0.11), and put $0.58 less in their shopping carts per

additional fixation (t = −1.95, p = 0.06, R2 = 0.04).

2.4.3. Baseline Model: Features of AOI Attractiveness and Effort

Table 3 summarizes the features we included in the calculation of AOI attractiveness Aij [m]:

product preferences, product prices, whether the product was out-of-budget, and an inter-

cept for the Category AOI. The shopper’s perceived value of each attractiveness feature s

was initialized at a starting value and updated by learning rate αs (see Equation 2.5).

Table 3: Summary of features comprising AOI attractiveness and effort

Feature Type Name Description Range of Values

Attractiveness Aij [m]

Preference Self-reported product liking ratings -3 to 3

Price Product prices -2.50 to 2.30

Out-of-Budget Was the product in the given budget 0 or 1

Category AOI contained category links 0 or 1

Effort Eij [m]

Scroll Requires initial scrolling to be visible -1 or +1

Distance Near vs. far fixations -1 or +1

Unseen Has not been fixated on yet -1 or +1

True product preferences were measured by using the 7-point liking ratings (1=“Don’t Like

At All”, 7 = “Like Very Much”) from each shopper. These ratings were centered at 0 and

the preference for each product started at 0 and was gradually updated to its true value

(ranging from -3 to +3) as shoppers made more fixations to gather information about the

product. On average, among all the products that shoppers rated in the follow-up survey,

only 8% were liked more than the products in their own carts. This suggests that shoppers

were pretty good at finding products they liked and lends validity to the liking rating as a

measure of stable product preferences.
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For products that were within the $75 budget, prices were mean-centered and scaled by

dividing by 10, with 0 as the starting value. Although higher prices are typically viewed

as undesirable, in our experiment shoppers were incentivized to select products that were

close to $75, without going over, so we expect price to contribute positively to Product AOI

attractiveness. (Note that in Experiment 2 we use an alternative incentive scheme that

predicts a negative price coefficient.) We also included a variable that indicated whether

products were out-of-budget, which began at 0 for all products and approached 1 for prod-

ucts that cost over $75. The out-of-budget feature captures non-linearities in price effects

for products that participants would not have been able to purchase.

Since the Category AOI did not possess any inherent measurable features, we included a

feature that started at 0 and approached 1 for fixations on the Category AOI. This Category

feature is scaled by the coefficient estimate and is the only feature that contributes to the

attractiveness of the Category AOI; all other feature values are fixed at 0 for the Category

AOI. The Category feature is fixed at 0 for the Product AOIs.

The price, out-of-budget, and category features are objective and can be learned by the

shopper “at-a-glance.” Thus, we set the updating rates for these features to 1, so their

perceived values are instantly updated to their true values after a single fixation. For the

preference feature, we used a grid search of αs ∈ {.1, .3, .5, .7, .9} to estimate the updating

rate, since it is empirically difficult to disentangle low/high updating rates from weak/strong

preferences. Based on this grid search, we selected αs = .1 as the updating rate for the

preference feature (see Appendix A.3. for details; Yang, Toubia, and de Jong 2015 employ

a similar approach). For example, suppose individual i fixates on AOIj at event m = 1,

and that AOIj has a true preference value of x∗ijs = 2. Then at the next fixation m = 2,

the perceived preference value of AOI j is updated according to Equation 5: xijs[2] =

(1− αs)xijs[1] + αsx
∗
ijs = (1− .1) ∗ 0 + .1 ∗ 3 = 0.3.

Table 3 also summarizes the features that contributed to AOI effort Eij [m]: Scroll, Distance,

and Unseen. The Scroll feature separated AOIs that required the shopper to scroll down
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with a computer mouse from those that were immediately available upon entering the

landing page (including the first row of Product AOIs and the Category AOI). Distance

indicated that the AOI was positioned non-adjacent to the previously fixated AOI, thus

requiring “far” rather than “near” eye movements. Thus, Distance captured differences in

fixation probabilities for AOIs that are in the more central versus more peripheral areas of

the shopper’s field of view, taking into account the changes in the screen display due to

mouse scrolls.3 Unseen indicated that the AOI had not been fixated on previously; new

AOIs were expected to take more cognitive effort to fixate on. We used contrast coding (-1

and +1) to refer to the two levels of the effort variables.

2.4.4. Model Comparison: Goodness-of-fit and Posterior Predictive Checks

Table 4 panel A compares the fit of the baseline model and all model extensions for Ex-

periment 1, based on the DIC and a series of posterior predictive checks. The DIC is an

aggregate measure of model fit, with a better fit corresponding to a lower DIC. To generate

posterior predictive checks, for each individual, we took each of their 3,000 posterior sam-

ples and simulated a fixation pathway ending in a click, and then looked at whether the

characteristics of the simulated pathways matched those of the observed pathways in terms

of the total number of fixations, which AOIs were fixated, and which AOI was clicked.

Total number of fixations and fixation share correlations describe the fixation patterns of

shoppers. To compute the root mean squared error (RMSE) for the total number of fixa-

tions, we took the median number of fixations across each individual’s simulated pathways,

and compared these medians to the observed number of fixations. To compute the fixation

share correlations, for each shopper, we computed the AOI fixation shares (i.e., percentage

of times each AOI was fixated on) for each simulated pathway and calculated the corre-

lation with the fixation shares of the observed pathway. We averaged across simulations

within-shopper, and Table 4 panel A reports the average across shoppers.

3See Appendix A.4. for an alternative specification of the Distance variable based on Euclidean pixel
distance, which did not perform as well as our binary Distance variable.
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Table 4: Comparison of model fit statistics

A. Experiment 1

Model DIC # Fix (RMSE)
Actual = 29.39

Fix Corr
Prod Click
Ref = .69

AOI Click
Ref = .66

Baseline 8803 26.24 (13.46) .41 .6571 .5283

Forward-Looking

Fixations 8778 25.66 (13.36) .45 .7036 .5629

Clicks 8832 26.24 (13.96) .42 .6495 .5197

Threshold-Changing

Empirical Pattern 8736 29.16 (7.86) .41 .6458 .5326

Bounce Rule 8780 26.16 (13.17) .41 .6521 .5237

Full Model 8731 28.73 (7.30) .44 .6739 .5442

B. Experiment 2

Model DIC # Fix (RMSE)
Obs = 94.49

Fix Corr
Prod Click
Ref = .86

AOI Click
Ref = .06

Baseline 17486 78.61 (56.02) .20 .8973 .1642

Forward-Looking

Fixations 17387 84.51 (53.99) .21 .9006 .1737

Clicks 17492 93.76 (57.62) .21 .9038 .1764

Threshold-Changing

Empirical Pattern 17465 87.27 (25.21) .20 .9033 .1650

Bounce Rule 17486 77.98 (48.40) .20 .9004 .1626

Full Model 17383 88.39 (33.83) .21 .9077 .1724
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We also look at how well the simulated pathways were able to predict the AOIs that shop-

pers ultimately clicked on. We calculated the percentage of times the simulations correctly

predicted either a Product vs. Category click, as well as the percentage of times the simu-

lations correctly predicted the exact AOI (across all 31 AOIs) that the shopper clicked on.

If we simply treat the click on either a Product or Category AOI as a random draw with

equal probabilities, then the average percentage of correct simulated clicks is well above

chance (50%). Similarly, the average percentage of clicks out of all 31 AOIs is also well

above chance (3.22%).

However, a more stringent reference point would be to assume a zero-order, multinomial

stochastic process with the probabilities of each choice option estimated by the marginal

frequencies observed in the data. This is done by by taking the sum of squared marginal

frequencies of clicking on the AOIs. This gives us a reference of 69% for the Product vs.

Category click, and a reference of 66% for the click out of all 31 AOIs. In Experiment 1,

80.6% of shoppers actually clicked on the Category AOI, so the click reference is very high

and our model actually falls short of predicting the Category click. In Experiment 2, we

see that our model is more suited to situations where there is a more even spread across

the large number of Product AOI choices.

Table 4 panel A shows that between the two forward-looking model extensions, forward-

looking fixations improves the DIC, the fixation correlation, as well as the percentage of

correct clicks, while forward-looking clicks only slightly improves the fixation correlation.

Both threshold-updating extensions improve the DIC and the RMSE of total fixations, with

the empirical pattern resulting in the most improvement. Figure 3 panel A plots how the

decision threshold changes as an empirical pattern versus the bounce rule. Both versions

result in decreasing decision thresholds, with the bounce rule able to explain some, but not

all, of the decrease demonstrated with the empirical pattern.

In the last row, we tested a “Full Model” with forward-looking fixations (λ1) and empirical

threshold-changing (λ3), which resulted in the best fit across all models in terms of DIC,
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Figure 3: Comparison of decision thresholds for threshold-changing extensions

as well as improvements over the baseline model across all four posterior predictive checks.

The forward-looking fixations component is built into the Stage 1 fixation decisions, so it

makes sense that it improves predictions of which AOIs the shopper fixates on and which

AOI she clicks on (since she is fixating on the correct AOIs). The empirical threshold-

changing component is built into the Stage 2 continue/click decisions, so it makes sense

that it improves predictions of when the shopper will end search with a click, in terms of

the number of fixations.

In addition, Figure 4 panel A plots the observed versus simulated total number of fixations
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for each individual, as well as the regression line through the points, which demonstrates

that our model is able to capture the heterogeneity across shoppers in terms of search

length, with most individuals lying close to the 45-degree reference line. We also overlaid

the regression line for the baseline model to show that the static decision threshold model

systematically underestimates the total number of fixations. This is corrected primarily

by the empirical threshold-changing component of the model, which allows the decision

threshold to start high so shoppers can gather information (and not end too soon, as with

the static threshold in the baseline model), and gradually decrease as shoppers approach a

click decision.

Figure 4: Observed versus simulated number of fixations for baseline vs. full model

Moreover, our full model was also able to capture the differences in fixations on the bottom

three rows that we observed between shoppers given a hedonic vs. utilitarian shopping goal.

On average, our simulations resulted in 7.42 (SD = 10.21) fixations for hedonic shoppers

and 4.39 (SD = 8.29) fixations for utilitarian shoppers, which closely matches the observed

difference (although the simulated difference is not significant, likely due to shrinkage from

the hierarchical Bayes estimation procedure). This demonstrates that our model is able to

capture exogenously-induced differences in search length.
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2.4.5. Parameter Estimation Results

Table 5 gives the parameter estimates of the full model, including the mean of the posterior

samples µ, the 95% Credible Intervals (CI), and the mean of the posterior variance samples

σ2. The product preference, product price, and category features have positive coefficients,

while the out-of-budget feature has a negative coefficient. The variables that represent

search effort, including Scroll, Distance, and Unseen, have negative coefficients. Thus, the

signs of all coefficients are as predicted, demonstrating that the model yields plausible

results.

The forward-looking fixations term λ1 captures how much shoppers weighed the proba-

bility of clicking on an AOI in Stage 2 when deciding where to fixate in Stage 1. The

explore-exploit learning term λ3 is negative and captures the decreasing decision threshold,

as illustrated in Figure 3.

Table 5: Parameter estimation results for full model

Experiment 1 Experiment 2

Parameter µ 95% CI σ2 µ 95% CI σ2

β1 Preference .98 [.45, 1.51] 1.69 .65 [.42, .87] .43

β2 Price .43 [-.01, .51] .54 -.11 [-.34, .12] .46

β3 Out-of-Budget -.83 [-1.38, -.39] 1.25 N/A N/A N/A

β4 Category 2.81 [2.14, 3.69] 3.65 1.94 [1.24, 2.68] 1.94

γ1 Effort -1.47 [-1.79, -1.17] 0.68 -3.75 [-4.60, -2.85] 2.36

γ2 Distance -1.74 [-2.40, -1.26] 2.12 -.88 [-1.45, -.40] 2.03

γ3 Unseen -.58 [-.93, -.23] .86 -.84 [-1.44, -.32] 1.96

ρ Static Threshold 7.04 [5.81, 8.58] 1.42 7.42 [6.72, 8.19] 1.10

λ1 Forward-Looking Fixations .03 [.01, .06] .000 .12 [.08, .16] .001

λ3 Explore/Exploit Updating -.97 [-1.56, -.47] .71 -.12 [-.20, -.04] .01
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2.4.6. Tests of Near-Optimality

Since we did not assume that shoppers were searching optimally, we were interested in

assessing “how well” they searched, in terms of clicking on attractive AOIs. To do this,

we independently varied the values of the constant term of the decision threshold ρ, the

forward-looking fixations parameter λ1, and the empirical threshold-changing parameter

λ3. We simulated fixation pathways for each shopper and looked at how the attractiveness

of the clicked AOI and number of fixations changed with these alternative sets of parameter

values.4

Figure 5 panel A plots the perceived and true attractiveness of the clicked AOI as open and

closed circles, respectively, averaged across individuals. The dotted vertical line represents

the point of 0 deviance form the original posterior parameter samples.

For all three parameters, we see that at 0 deviance, the attractiveness of the clicked AOIs

are near their max values, indicating that shoppers seem to searching close to optimally,

and there are not huge gains to changing the values of their decision thresholds. Very

negative deviations of the constant term of the decision threshold ρ result in fewer fixations

and clicking on AOIs that are low in attractiveness. Shoppers may click on slightly more

attractive AOIs (and also shrink the difference between the perceived and true values) by

either being more selective with a higher decision threshold ρ, or slowing the decrease of the

decision threshold by increasing the empirical threshold-changing parameter λ3. However,

this comes at the cost of making more fixations.

Shoppers may also take the Stage 2 click probability more into consideration when making

their fixation decisions in Stage 1 by increasing the forward-looking fixations term λ1, which

slightly increases the attractiveness of clicked AOIs up to a deviation of 0.1, at which point

the attractiveness starts to decrease. One possible reason for this is that higher λ1 values

4For λ1, the deviance is on the logit-transformed parameter λ′
1 in order to restrict λ1 to values between

0 and 1. For large positive deviations of ρ and λ3, we simulate “never-ending” search because the decision
threshold is too large or increasing, so we artificially end a simulation if the number of fixations exceeds 500.
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lead to more fixations on AOIs that are likely to be clicked on, and thus decreases the length

of search and the possibility of finding more attractive AOIs.

Figure 5: Comparison of clicked AOI attractiveness with different parameter values

For each shopper, we rationalize their parameter estimates by solving for the “exchange

rate” between attractiveness and total fixations for which the original estimated parameter

(i.e., at zero deviance) is a local maximum for net attractiveness (i.e., attractiveness minus

scaled fixations; see Appendix A.5. for details). The curved dotted lines in Figure 5 panel

A represent the slope-adjusted difference between attractiveness and total fixations, which

peaks at the dotted vertical line representing 0 deviance. For the decision threshold ρ,

we obtained maxima for each shopper and an average exchange rate of 0.04, indicating

that if each additional fixation is worth 0.04 attractiveness points, then net attractiveness

is maximized at zero deviance. For the forward-looking fixations term λ1, we obtained a
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maxima for only 69% of shoppers with an average exchange rate of -0.06. For the empirical

threshold-changing term λ3, we obtained maxima for all shoppers, with an average exchange

rate of 0.003.

2.4.7. Counterfactual Analysis: Preference-Based Product Ordering

Online retailers often provide shoppers with search refinement tools, such as the option to

organize the products on a page by price or popularity. Retailers also use past browsing

behavior to make recommendations to consumers or use morphing to customize the “look

and feel” of a website (Hauser et al. 2009). De los Santos and Koulayev (2017) uses past

observed search refinements to predict the performance of targeted hotel rankings in terms

of increasing click-through rates (CTRs).

Similarly, we are interested in how search patterns would change if the products on the

landing page had been ordered in a different way. Thus, we conducted a counterfactual

analysis in which we simulated shoppers’ patterns of fixations for conditions in which the

30 products on the page were ordered according to each individuals’ self-reported liking

ratings of the landing page products, either “worst-first” or “best-first”.

Figure 6 panel A compares the results from simulations for the best-first and worst-first

orderings to a random ordering. With the worst-first ordering, we predicted that shoppers

would make more fixations (M = 32.03, SD = 20.85) compared to the best-first ordering

(M = 29.72, SD = 18.23; paired-t(68) = 2.56, p = 0.01). However, we also predicted

that shoppers in the worst-first ordering would click on less preferred AOIs (M = 2.66,

SD = 1.51) compared to the best-first ordering (M = 2.95, SD = 1.28; paired-t(68) = 2.31,

p = 0.02), based on the 7-point liking rating scales, despite the presence of the relatively

attractive Category AOI in the same position for all orderings.
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Figure 6: Counterfactual comparison of total number of fixations with best-first vs. worst-
first product ordering

2.5. Experiment 2: Replication and Empirical Test of Product Ordering

The main purpose of Experiment 2 was to empirically test the predictions of our counter-

factual simulations from Experiment 1 with worst-first and best-first product orderings. In

addition, we verify that our results from Experiment 1 can be replicated in a different retail

setting with a new sample of participants.

2.5.1. Experimental Design

We conducted a second eye-tracking experiment in which female undergraduates at a large

university were paid $10 to browse the online store of the clothing retailer Forever 21. We

required that all participants complete a pre-screening survey at least 5 days prior to the eye-

tracking portion of the study. In this survey, participants were presented with the images

of 60 products that were available for online purchase from Forever 21. Participants first

rated their liking of each product on a 7-point Likert scale, and then ranked the products

within each point rating to break ties, which gave us a full ranking of all 60 products from

each individual. Among the 151 participants, 19 were excluded from the analysis because

of eye-tracker calibration issues, which left 132 participants total for analysis.

During the eye-tracking experiment, participants were brought to a modified version of the

landing page of Forever 21 and had 5 minutes to shop, again with the possibility that they
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might win one of the items in their shopping cart up to $50. We lowered the “budget” from

$75 in Experiment 1 to $50 in Experiment 2 because the Forever 21 products had lower

prices. Participants were also told that if chosen for the lottery they would receive the

chosen item plus the difference between the item price and the $50 budget in cash. Thus, in

contrast to Experiment 1, we expect price to have a negative effect on AOI attractiveness.

The Forever 21 landing page consisted of 40 Product AOIs and 1 Category AOI, each with

links to specific products or more general product categories (see Figure 7). The 40 products

were a subset of the 60 products that they had rated and ranked in the pre-screening survey.

Participants were again free to shop anywhere on the website once they left the landing page.

Figure 7: Layout of Forever 21 landing page for Experiment 2
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2.5.2. Analysis and Results

Table 2 compares the descriptive statistics for shoppers in Experiments 1 and 2. We find that

across all three product ordering conditions (random, worst-first, and best-first), shoppers

in Experiment 2 searched longer on the landing page compared to shoppers in Experiment

1 by making more total fixations, and the vast majority clicked on one of the Product AOIs

rather than on the Category AOI. This might have been because in Experiment 2, we used

a different retailer (Forever21) that was more popular with participants in our sample, there

were more products on the landing page, and shoppers also liked the set of products more,

rating them more highly on the 7-point liking scales (M = 3.8, SD = 0.8) compared to the

average ratings from Experiment 1 (M = 3.4, SD = 0.8; t(134.9) = 3.2, p < 0.01).

To further illustrate these differences, Figure 7 plots the average liking ratings across shop-

pers for the products ranked from lowest to highest in average liking rating. Note that

there were 30 products in Experiment 1 and 40 products in Experiment 2. The distribution

of liking ratings is generally higher among the Forever 21 products in Experiment 2 com-

pared to the American Apparel products in Experiment 1, and this difference increases as

the product rank decreases. This is consistent with the resulting greater number of total

fixation on the landing page and greater number of clicks on Product AOIs in Experiment

2. These large differences in shopping behavior between the two experiments enhances the

value of Experiment 2 as a test of external validity for our decision threshold model. Our

model is able to capture the fixations and clicks on landing pages where most shoppers

prefer (and end up clicking on) the Category AOI, as in Experiment 1, as well as those

where most shoppers actually prefer the Product AOIs, as in Experiment 2.

In Experiment 2, we also replicated the finding from Experiment 1 that search patterns on

the shopping page are predictive of downstream behaviors. Specifically, shoppers in Ex-

periment 2 visited one less unique webpage per 55 additional fixations on the landing page

(t = −3.22, p < 0.01, R2 = 0.07), and put $0.18 less in their shopping carts per additional

fixation (t = −3.27, p < 0.01, R2 = 0.08).
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Figure 8: Comparison of average liking ratings for Experiments 1 and 2

To replicate the model comparison and estimation from Experiment 1, we used the data

from the 41 shoppers in the random ordering condition in Experiment 2 (we obtained

similar results using data from the best-first and worst-first conditions; see Appendix A.6.

for details). We again estimated the different variations to the model to compare to the

baseline model, with results shown in Table 4 panel B. In general, the pattern of results is

very similar to those observed for Experiment 1. Among the forward-looking extensions, we

see that forward-looking fixations improves the model fit in terms of DIC and the percentage

of correct clicks, while forward-looking clicks does not improve the DIC but does improve

the percentage of correct clicks as well. Among the threshold-changing extensions, the

empirical pattern improves the DIC and the RMSE of the total number of fixations, while

the bounce rule does not improve the DIC but does improve the RMSE of the total number

of fixations. Again, from Figure 3 panel B we see that both types of threshold-changing

result in decreasing decision thresholds, and from Figure 4 panel B we see that the full model

improves the slight overestimation of the number of fixations over the baseline model.
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Table 5 shows the parameter estimation results for both experiments. We included the same

variables for AOI attractiveness and effort as we did for the Experiment 1 data, except for

the out-of-budget parameter because in Experiment 2 all the products presented on the

landing page were within the $50 budget. We see that for most of the parameters, the sign

of the posterior sample mean µ is the same across both experiments, with the exception

of the price parameter, which is positive in Experiment 1. This difference was expected

because we told participants that they could keep the difference between the product’s

price and the maximum budget price if they were selected for the lottery. However, in both

experiments the price parameter was not significant (i.e., 0 is contained in the 95% Credible

Interval), suggesting an effect of “playing with house money.” Again, λ1 reflects the degree

to which participants were one-step forward-looking when making fixation decisions, while

λ3 is the rate at which the decision threshold decreases, which is considerably smaller for

Experiment 2 compared to Experiment 1- consistent with the longer search length among

shoppers in Experiment 2.

Again, we varied the parameter values of the static decision threshold ρ, the forward-looking

fixations term λ1, and the explore-exploit learning term λ3. Figure 5 panel B shows that we

again find that shoppers are searching close to optimally and there are not huge gains in AOI

attractiveness to be had from deviating away from the estimated parameter values. Again,

we are able to calculate the exchange rate of clicked AOI attractiveness and fixations. For

the decision threshold ρ, we calculated an exchange rate for all shoppers, with an average

of 0.009. For the forward-looking fixations term λ1, we calculated an exchange rate for 68%

of shoppers, with an average of -0.003. For the empirical threshold-changing term λ3, we

calculated an exchange rate for all shoppers, with an average of 0.002.

2.5.3. Empirical Verification of Counterfactual on Preference-Based Ordering

We also simulated fixation pathways with best-first and worst-first product orderings, based

on each individual’s self-reported product liking ratings in the random ordering condition.

Figure 6 panel B shows that we again find that the worst-first ordering is predicted to
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result in more total fixations (M = 137.26, SD = 82.08) compared to the best-first ordering

(M = 112.63, SD = 90.32; t(40) = 3.25, p < 0.01). We also predict the worst-first ordering

to result in lower clicked AOI attractiveness (M = 3.37, SD = 3.49) compared to the

best-first ordering (M = 3.93, SD = 1.49; t(40) = 3.14, p < 0.01).

Importantly, in Experiment 2, we also have data from individuals assigned to conditions

where we experimentally manipulated whether they saw the landing page products in the

best-first or worst-first orderings, based on their individual self-reported product ratings.

Figure 6 panel C shows the results of the experiment. Consistent with the counterfactual

predictions of both Experiments 1 and 2, we find that shoppers in the worst-first condition

made more fixations (M = 109.38, SD = 59.83) compared to shoppers in the best-first

condition (M = 78.61, SD = 57.03; t(88.56) = 2.51, p = 0.01). This empirical verification

lends credence to the assumptions of our decision threshold model of how shoppers make

fixation and click decisions on the landing page.

2.6. Discussion

We contribute to the growing literature that treats the eye fixations of shoppers as decisions

determined by the shopper’s internal valuations of the product options as well as the physical

positioning of the options within the shopping environment. Using a sequential sampling

framework, we build and empirically test a search model for how online shoppers visually

acquire product information on a store’s landing page leading up to the decision to click on

a link that brings them to a new part of the website. We estimate a heterogeneous decision

threshold, and also find that shoppers exhibit both forward-looking and threshold-changing

behaviors when making fixation and click decisions on the landing page.

In this work, we focus on shopper decisions on the landing page, and also provide preliminary

evidence that early search may be predictive of more downstream behaviors. Specifically,

we found that more search on the landing page is negatively correlated with the depth

of search in the remainder of the shopping trip, as measured by the number of unique
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web pages visited, as well as the dollar value of the final shopping cart. In addition, we

find that an experimentally manipulated worst-first ordering resulted in fewer total pages

visited compared to the best-first ordering (t(85.2) = 2.88, p < 0.01). Thus, our findings

have implications for how retailers may personalize a virtual store landing page to increase

traffic through a store. Although online retailers may not always have available detailed self-

reported individual product preferences, other methods may be used to infer preferences,

such as information from prior store visits or collaborative filtering methods.

One challenge in future research will be in formulating models for the complex decision

processes within an entire shopping trip, or possibly across multiple shopping trips within

a customer’s “lifetime”. On the landing page, the decision processes of shoppers can be

reduced to a sequence of “stay” versus “leave” choices. But as shoppers visit different

virtual or physical areas of a store, the set of possible actions grows very large and the search

stopping rules become more complicated. For example, for any given area of the store, we

must take into account the qualitative differences between ending search to visit a new

location versus to revisit a prior location, which adds further complexity to incorporating

dynamics like time considerations or forward-looking computations into models of shoppers’

split-second decisions.

Trying to model the behavior of shoppers as they diverge from a common landing page

and continue on their own search paths presents an opportunity to test different theories

about how shoppers process and retain product information, as well as how they manage the

physical and cognitive effort involved in search. For example, shoppers may begin to employ

more forward-looking strategies in later stages of the shopping trip as they familiarize

themselves with the shopping environment, as suggested by Gopalakrishnan, Iyengar, and

Meyer (2014). However, note that the type of micro-level modeling that we employed in

this chapter quickly becomes intractable for “real” stores because of the number of products

and store locations. Thus, the current data could be modeled at a more macro-level or we

can conduct future experiments within more limited shopping environments.
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CHAPTER 3 : Using Variety-Seeking Preferences to Predict New Product

Adoption within Online Video Games

3.1. Introduction

As consumers spend time engaging in experiential products, they may become satiated on

certain product attributes and exhibit preferences for new experiences (variety-seeking),

or they may become hooked on certain familiar features and prefer consistency (inertia).

It is useful for firms to identify when consumers are variety-seeking or inertial when pre-

dicting purchase patterns and offering recommendations for future consumption occasions.

Although there are multiple definitions of variety-seeking versus inertial behavior, in the

present research we are focusing specifically on how consumers choose between different

options across multiple consumption occasions within the same product category.

Researchers have proposed several reasons for why consumers exhibit variety-seeking behav-

iors, including response to external factors such as price promotions, satiation on product

attributes over time, and exploration of different options to reduce future preference un-

certainty (Kahn 1995). We propose that consumers may also become variety-seeking in

response to consumption outcomes, which we define to be measures of the quality of the

consumer’s experience for a specific consumption occasion.

Our first main contribution in this chapter is to quantify variety-seeking preferences not

just by the incidence of switching between products, but also by the perceptual distance

between products, as measured by the relative number of shared and unshared attributes.

There is a wealth of theories and empirical evidence for reward signaling and reinforcement

learning behaviors predicting that humans and animals are drawn towards positive stimuli

and away from negative stimuli (Schultz 2015), which corresponds to the prediction that

positive consumption outcomes lead to inertial preferences (i.e., repeated selection of the

same or similar choices). However, in this chapter we are also interested in testing whether

or not negative consumption outcomes lead to variety-seeking (i.e., subsequent selection of
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conceptually distant choices). Therefore, we build a model framework that flexibly cap-

tures variety-seeking preferences as the coefficient on the distance from previously chosen

options, and these preferences may vary over time in response to consumption outcomes.

Furthermore, we allow these effects to be heterogeneous across individual consumers.

For example, Pandora is a music streaming platform that uses algorithms to predict cus-

tomer preferences based on past behavior. Users can specify music artists or songs and

the platform will create a radio station playlist based on this input. For each song that

is played, the user can give feedback in the form of a thumbs up or a thumbs down, and

Pandora will incorporate this feedback into future song selections. So if the user gave a song

a thumbs up, Pandora might recommend songs by similar artists, but if the user gave a song

a thumbs down, Pandora might try to recommend songs by more dissimilar artists. For

Pandora, the similarity between songs is based on the firm’s proprietary database known as

the Music Genome Project, which consists of genre and subgenre categorizations of songs

that are manually coded by human listeners.

To test the effects of consumption outcomes on variety-seeking preferences, we use data

on individual player behavior in an online video game. Across 30 to 40-minute rounds of

play, players choose which map they want to play on and experience consumption outcomes

that can be measured by their performance or points earned during the round. A unique

feature of our context is that the firm released five sets of expansion packs containing new

maps at various dates following the initial release of the base game. Thus, our second main

contribution is using our parameterization of variety-seeking in response to consumption

outcomes to help improve out-of-sample predictions of whether or not players will adopt

the new maps following their release. Although we focus specifically on the context of

online video games, our findings can be applied to the broader set of experiential products,

including watching movies and dining at restaurants.
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3.2. Literature

In this chapter, we are specifically focused on decisions that consumers make when choosing

between different options across consumption occasions within the same product category.

Variety-seeking is defined to be when consumers switch frequently between very different

options, while inertia (or reinforcement) is defined to be when consumers repeatedly choose

the same or similar options across multiple consumption occasions. We review the main

reasons that researchers have identified for why consumers exhibit variety-seeking or iner-

tial behavior, the behavioral literature that predicts the effects of consumption outcomes,

models that have been developed to capture variety-seeking, and models that use different

variables (e.g., marketing mix, individual or household differences, cross-category learning)

to predict new product adoption.

3.2.1. Why Are Consumers Variety-Seeking or Inertial?

The concepts of inertia or reinforcement behaviors and variety-seeking were developed sep-

arately before researchers began to think of them as two ends of the same continuum, so

much of the research that provides explanations for these behaviors focuses on one extreme.

Early models used time-lagged variables to capture inertial choices and attributed them

to “brand loyalty” (Jacoby and Kyner 1973; Guadagni and Little 1983). Researchers ex-

plored alternative explanations for inertial behaviors such as state dependence and habit

persistence, which can be disentangled using more sophisticated utility models (Erdem and

Keane 1996; Seetharaman 2004).

On the other hand, Kahn (1995) summarizes the three main reasons for why consumers

may be variety-seeking: (1) external situations, (2) satiation, and (3) future preference

uncertainty. External situations include marketing decisions made by firms. For exam-

ple, different firms may promote in alternating weeks (Kahn and Raju 1991) or engage in

price discrimination (Shaffer and Zhang 2000), driving consumers to switch between brands.

Satiation is a well-studied phenomenon in both behavioral and quantitative research. Sa-
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tiation may occur on brands or attributes and lead consumers to seek out products with

new features (McAlister 1982; Inman 2001). Finally, forward-looking consumers may use

variety-seeking as a way to resolve future preference uncertainty and learn about unknown

choices (Walsh 1995; Erdem 1996).

3.2.2. Effects of Consumption Outcomes on Variety-Seeking Preferences

In this chapter, we are interested in how consumers vary their variety-seeking preferences

in response to consumption outcomes. Consumption outcomes are observable for a variety

of experiential products. These include star ratings for movies or TV shows on Netflix, star

ratings for restaurants on Yelp, thumbs up or down for videos on YouTube, and a player’s

score on a video game. We are going to focus on the context of video games, which has

been mostly unexplored within the marketing literature. Player scores allow for a clean,

relatively objective, and continuous measure of each player’s consumption outcomes.

In our setting, players are able to select the specific map environment they want to play

on during each round of gameplay, or specify specific attributes they prefer and let the

firm’s platform choose a corresponding map. Each map possesses a set of attributes, and

thus we are able to calculate a perceptual map distance between any pair of maps based on

their shared versus unshared attributes (Blin and Dodson 1980; Hutchinson 1986, 1989).

This is contrast to the approach of Kitahira (1990), which uses individual choices in a logit

framework to construct a perceptual mapping.

In our model, an individual’s degree of variety-seeking (vs. inertia) is measured by his or

her preferences for perceptually close vs. distant map choices in the subsequent round of

gameplay. To test how these variety-seeking preferences change with consumption outcomes,

we allow the coefficient on distance to vary in response to the performance measure from

the previous round (i.e., points earned, kill count, etc.).

Since video games are designed to be immersive and stimulating, we assume that positive

and negative outcomes correspond to positive and negative affect, respectively. Researchers
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in psychology and consumer behavior have long been interested in the effects of emotions

on people’s choice behaviors, but there is some disagreement on how positive and negative

affect influences variety-seeking. For example, positive affect has been shown to increase

variety-seeking behavior among enjoyable products, as long as they don’t have any negative

features (Kahn and Isen 1993). Positive moods seem to drive people to seek out more

stimulation, but this pattern might break down at very extreme positive moods (Roehm and

Roehm 2005). Other research shows that differentiation of positive and negative emotions

of the experience slows the satiation process due to cognitive appraisal, and so focusing on

negative emotions may result in more enjoyment of repeated experiences (Poor, Duhachek,

and Krishnan 2012). These findings would predict that in our model, the coefficient on

distance (for the next map choice) should vary positively with consumption outcomes; in

other words, better outcomes should lead to variety-seeking while negative outcomes should

lead to inertia.

In contrast, the reinforcement learning literature (Schultz 2015) and related work suggests

that encountering high value rewards will intensify motivational states towards the same

reward source (Berridge 2012) and that positive rewards may even “whet” the reward

appetite (Wadhwa, Shiv, and Nowlis 2008). In our context, a video game player may

experience a hot streak and expect continued positive outcomes from playing within the

same or similar map environments. Research that has focused on negative outcomes has

shown that helplessness and sadness result in people wanting to change their current state

(Keltner, Ellsworth, and Edwards 1993; Lazarus 1991), and they may express this desire

through their consumption choices (Lerner et al. 2004). A player may feel sad or frustrated

after a tough loss, and thus seek a change of scene in the next round. Thus, these findings

predict that the coefficient on distance should vary negatively with consumption outcomes.

3.2.3. Dynamic Discrete Choice Models

In the classic models of variety-seeking, the underlying assumption is that the consumer

is making choices between options following a first-order Markov process (Jeuland 1979;
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Givon 1984; Kahn, Kalwani, and Morrison 1986). The key feature is that there is an ex-

plicit variety-seeking parameter that can be estimated for each individual consumer. Brand

choices are formulated as a standard logit model, but the first-order Markov property al-

lows the probability of choice to depend on the brand that was chosen previously. The

individual-specific variety-seeking parameter determines whether repeat choices or brand

switching is more likely between subsequent consumption occasions.

There have been various extensions to this classic model to take into account variation

across brands, consumers, and time. The brand choice probabilities can be revised to in-

clude brand-specific marketing variables (Seetharaman and Chintagunta 1998). The variety-

seeking parameter can also vary within shoppers by assuming they come from a flexible

distribution. For example, the Beta distribution allows for a bimodal pattern that can

account for shoppers switching between inertial and variety-seeking states (Trivedi, Bass,

and Rao 1994). Heterogeneity across individuals can be modeled as individuals receiving

information that arrives according to a Poisson timing function (Roy, Chintagunta, and

Haldar 1996). In our current model, we will demonstrate the advantages of attribute-based

variety-seeking using a continuous distance between options (Chintagunta 1998). We also

allow variety-seeking preferences to change over time based on previously experienced con-

sumption outcomes.

3.2.4. Predicting New Product Adoption

We use our model of dynamic variety-seeking preferences to improve predictions of new

product adoption. There is a rich literature on modeling new product diffusion and ex-

amining the characteristics of consumers and retailers that drive new product adoption

and acceptance (Bass 1969; Bronnenberg and Mela 2004; Chandrasekaran and Tellis 2008;

Gielens and Steenkamp 2007). Social networks often facilitate diffusion of new products

(Berger et al. 2010), for example within networks of physicians adopting new prescription

medications (Iyengar, Van den Bulte, and Valente 2011). New product adoption has also

been studied as a result of attribute-based preference learning (Chintagunta, Jiang, and Jin
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2009), as well as cross-category learning (Shridhar, Bezawada, and Trivedi 2012).

In our context, the game platform released five new expansion packs, at various dates

following the release of the original base set of map options. Each expansion pack contained

a set of new maps with both shared and unshared attributes with the previously available

maps, and therefore we can calculate the distance between any pair of old and new maps.

Our baseline model is a discrete choice model that allows map preferences to depend only

on the attributes. We use the data of players before the release of the expansion packs

as the “training” data to calculate the coefficients on map attributes. We then use these

coefficients to make out-of-sample predictions of whether players will adopt the maps in the

expansion packs following their release by choosing them to play on, as well as other choice

sequence characteristics such as overall map choice shares and the degree of map switching.

3.3. Model Specification

The degree of variety-seeking may vary across product categories (Kahn, Kalwani, and

Morrison 1986) or across individuals (Givon 1984), but the model we develop is more ap-

propriate for capturing how the degree of variety-seeking varies within individual consumers.

Our model captures individual choices across multiple consumption occasions. First, we out-

line the baseline model where choice depends on a linear combination of the attributes of

each option within a logit framework. Then, we lay out the specification of an alternative

benchmark model with state dependence and a model with a variety-seeking component

that varies with time and consumption outcomes from the previous choice.

3.3.1. Baseline Model: Attribute-Based Map Choices

In the baseline model, the probability of a consumer choosing option j ∈ {1, ..., J} at

consumption occasion t depends on the individual’s intrinsic preferences for option j’s vector

of attributes xj , which is given by the attribute coefficients βi. Without any time varying
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effects, the probability of each choice j is formulated by a standard logit:

Pij [t] =
exp{β>i xj}∑J
k=1 exp{β>i xk}

(3.1)

In our context, the options are the different maps that individual players can choose from in

each round t, and the attributes are the different binary features of the maps (e.g., whether

or not the landscape is a forest, whether or not players can use a specific weapon, etc.). Each

individual’s likelihood function is the product of map choice probabilities, with parameters

θi = {βi, αi,γi} described in detail in the following sections:

L(θi) =

Ti∏
t=1

Pij [t] (3.2)

3.3.2. State Dependence

To test whether map switching across rounds can be captured by state dependence, we

include a parameter αi as the coefficient of a dummy variable for whether the map choice

j at the current round t is the same map as the map j′ chosen during the previous round

t− 1. Thus, the probability of choosing map j at round t becomes the following:

Pij [t] =
exp{β>i xj + αi1{j = j′}}∑J
k=1 exp{β>i xk + αi1{k = j′}}

(3.3)

3.3.3. Dynamic Variety-Seeking Parameter

To capture how consumers respond to consumption outcomes over time, we specify choice

preferences to be first-order Markov across rounds. So the probability of selecting map j

depends on the map j′ that was selected in the previous round t−1 through a variety-seeking

parameter δi ∈ [−∞,+∞] that determines how much weight is given to the perceptual

distance djj′ between map j and the previously chosen map j′. Thus, the probability of

51



choosing map j during round t is conditional on j′:

Pi,j|j′ [t] =
exp{βixj + δi[t]djj′}∑J
k=1 exp{βixk + δi[t]dkj′}

(3.4)

In our context, the distance between any two map options is determined by the relative

number of shared and unshared binary attributes between the maps. Note that we allow

the variety-seeking parameter δ to vary across rounds t.

To illustrate how δi[t] comes into play, we note that the probability of repeating option j′

(in other words, if j = j′) is different from the probability of switching from option j′ to

different option j (in other words, if j 6= j′), since the distance between a map and itself is

0. For example, the probability of repeating map j during round t is given by the following

probability:

Pi,j|j [t] =
exp{βxj}∑

k exp{βxk + δ[t]dkj}
(3.5)

If δi[t] ≥ 0, then the player has a positive weight on map distance and can be considered

variety-seeking during round t, and so the probability of switching maps (relative to the

previous map j′) is higher. On the other hand, if δi[t] ≤ 0, then the individual has a negative

weight on map distance and can be considered inertial at round t, and so the probability of

staying with the previous map is higher.

These probabilities also depend on the distance between the maps. So a variety-seeking

player is also more likely to switch to maps that are farther away, while an inertial player

is more likely to choose maps that are closer to the previously chosen map.

We allow each individual’s variety-seeking parameter δi[t] to vary across rounds t as a

function of the number of rounds that have passed so far and the consumption outcome

experienced at the previous round t − 1. For example, in our context, the consumption
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outcome could be the points earned during the round or the number of kills.

δi[t] = γi0 + γi1t+ γi2Outcome[t-1] (3.6)

3.4. Data

Our dataset was awarded through the Wharton Customer Analytics Initiative (WCAI) from

a large video game developer. We have data on the activity of 1,309 frequent players of an

online multiplayer first-person shooter video game. Players engage in campaigns averaging

20 minutes in length in two competing teams. We focus on the rounds played on the firm’s

public servers and exclude the rounds played on player’s private servers. There are on av-

erage 20 players involved in each round, and people rarely play with the same player twice.

We have each player’s daily rounds played across two years, starting from the game’s release.

Figure 9: Outline of a player’s sequence of actions for each round

Figure 9 illustrates a player’s actions before and after each round of play. During each

round, players are presented with a set of J maps (which may vary over time with the

release of expansion packs). A map is basically a game environment with a set of attributes

or features.The player chooses a map and is dropped into a server by the firm’s matching

algorithm with other players to play a round. After the round, the player is shown his/her

53



individual round outcomes, which might include the number of kills, number of deaths,

individual points earned for completing certain tasks in the round, etc. In the next round,

the player will again have the opportunity to select a map.

On the first day of the game’s release, there were 9 “base” maps available for players to

choose from. At various dates in the following two-year period, the firm released 5 expansion

packs, each containing 4 maps, for a total of 29 maps. One main objective of our model

is to use our parameterization of dynamic variety-seeking preferences during the base map

period to predict whether players adopt the new maps upon their release in the expansion

packs. Therefore we restrict our analyses to players who had played at least 10 rounds on

at least 2 different maps before the release of the first expansion pack, which resulted in 569

players for analysis. In other words, we excluded players with insufficient training data.

Figure 10 shows the frequency of rounds played across the days following the base map

release date. Expansion packs were released 50 days, 226 days, 316 days, 400 days, and 498

days after the game’s release, as indicated by the black bars. We see that after the release

of each expansion pack, there is an increase in player activity.

Figure 11 shows the round frequency across maps, averaged across players. Maps 1 through

9 belong to the base map set, and were by far the most popular in terms of round frequency.

Rounds played on the expansion pack maps, consisting of Maps 10 through 29, account for

24% of the rounds played.

Figure 12 shows the percentage of players who played at least one round for each map

choice. We see that nearly all players in our sample played at least once on each map in

the base set (Maps 1 through 9), with lower percentages for the different map expansion

packs (Maps 10 through 29, released in groups of 4). Whether or not players play a round

on a map is our measure of new product adoption, which we will use the data on rounds
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Figure 10: Distribution of rounds over time since game release

Figure 11: Outline of a player’s sequence of actions for each round of play.
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preceding the expansion pack release to predict.

Figure 13 shows the distribution of the number of total rounds across players. The 569

players in our sample played an average of 639 total rounds (SD = 782) across the data

collection period, with high variation across players.

Figure 12: Percentage of players who played at least one round for each map

3.5. Descriptive Analysis

To examine the variety-seeking preferences of players in an exploratory way, we first look

at how often players simply switch maps between rounds. For each player in our sample,

we calculated the percentage of rounds where they switched to a different map from the

previous round. We see that the average switching rate is quite high at 83%, so it would

appear that players are very variety-seeking because they are switching between maps very

often, as shown in Figure 14.
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Figure 13: Distribution of total rounds across players

Figure 14: Distribution of map switching rates across players

57



However, one important extension of the classic brand switching variety-seeking model is

the use of attribute-based variety-seeking. For example, we might conclude that a player

is very variety-seeking because they are switching maps nearly every round, but they may

actually be switching only occasionally between clusters of similar maps.

In order to quantify the similarity between any two maps, we created a measure of map dis-

tance. We have 29 maps total, and they possess 14 different binary attributes. To calculate

the distance between any two maps, we simply take the correlations across the maps and

subtract them from 1. The map distance can fall anywhere between 0 and 2. The distance

between any map and itself is 0. The range of map distances in our dataset falls between 0

and 1.4, as shown in Figure 15.

Figure 15: Distribution of map distances

If we rank the maps from most played to least played for each player, and look at the

cumulative percentage of rounds played on these maps, we see that most players spend

their time playing on just a few maps (see Figure 16). The top 10 favorite maps make
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up on average about 90% of a player’s rounds. If we plot the average distance from the

favorite map (see Figure 17), then we see that the most commonly played maps are also

more similar to each other.

Figure 16: Cumulative frequency of maps played, ranked from most to least played

Over time, the average rate of map switching across the entire player sample seems to de-

crease slightly over time (see Figure 18). There are two explanations for this pattern. One

is that at the individual level, players are first exploring the different map options, and

eventually settle on playing a smaller set of their favorite maps. The second explanation

is that this pattern arises from the heterogeneity across players. It is possible that players

who start playing the game early on are more variety-seeking, while players who enter later

are less variety-seeking and bring down the average switching rate. However, because we

restricted our sample to players who played at least 10 rounds before the release of the first

expansion pack, we can rule out the second explanation.

After each round, the player experiences a set of individual consumption outcomes. These
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Figure 17: Distance from favorite maps, with maps ranked from most to least played

Figure 18: Players switch between maps less over time
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include Total Points, Combat Points, Kill Count, Death Count, and net kills (Kills - Deaths).

These variables are all pretty highly correlated (see Table 6), so we use Kills, which is gen-

erally the primary and most salient objective of the game.

Table 6: Correlation between consumption outcomes

Total Points Combat Points Kill Count Death Count Kills - Deaths

Total Points 1

Combat Points .79 1

Kill Count .73 .84 1

Death Count .47 .59 .66 1

Kills - Deaths .44 .44 .57 -.24 1

3.6. Model Estimation Results

We estimate the model using maximum likelihood estimation for each individual, using

the rounds played on the base maps before the release of any expansion packs. We are

able to implement this because of the large number of rounds for each player. However,

in future work, we plan to use a hierarchical Bayes estimation procedure, which will allow

information pooling across players and improve the robustness of the results. First, we

compare the model fit across three model variations: (1) a baseline model with choices

based only on map attributes, (2) a model with state dependence, and (3) a model with

our dynamic variety-seeking parameterization.

Each player in our sample had a sufficient amount of training data, so we use their individual-

level parameter estimates to predict their out-of-sample map choices upon the release of

each of the five expansion packs.

3.6.1. Comparison of Model Fit Statistics

Table 7 reports the in-sample model fit statistics, with the likelihoods summed across indi-

viduals to compute the -2LL, AIC, and BIC. In addition to these fit statistics, we were also

61



interested in looking at whether our model was able to capture the patterns in the sequence

of map choices, specifically in terms of the map choice shares and how often players switched

between maps.

For each player, we simulated 1,000 map choice sequences using their estimated parameters,

conditioning on the observed number of choices, for the period before the first expansion

pack release. For each simulated sequence, we computed the correlation between the sim-

ulated map choice shares (across the 9 base maps) and the observed choice shares. We

also computed the mean map switching rate, as well as the root mean squared error of the

map switching rate between the simulated and observed sequences (the observed average

switching rate is 83.72%).

Table 7: Comparison of fit statistics across models

Model -2LL AIC BIC Choice Corr Switch Rate (RMSE)

Attribute-Based Choice 248389.6 254079.6 260559.4 .53 .8481 (.090)

State Dependence 246022.0 252850 260625.7 .56 .8370 (.050)

Variety-Seeking 244654.9 250344.9 256824.7 .53 .8393 (.051)

We see that adding state dependence and the variety-seeking parameters improves the in-

sample model fit statistics. Interestingly, adding state dependence improves model fit in

terms of the map choice share correlation and the switching rate, but adding variety-seeking

does not. Both state dependence and variety-seeking slightly improve the RMSE of the map

switching rate.

However, our main objective is to assess whether the variety-seeking parameter is able to

improve out-of-sample predictions of whether players adopted the new maps upon their

release across the five expansion packs. Therefore, we simulated map choice sequences

using each individual’s parameter estimates during the periods following the release of the

5 expansion packs, conditioning on the number of rounds they played between releases. We
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then computed the percentage of times the model was able to correctly predict whether or

not players actually played on one of the new maps.

Figure 19 compares the percentage of correct adoption predictions for each of the five ex-

pansion packs across the three model variations. We see that the state-dependence model

does not improve predictions over the attribute-based model. However, the variety-seeking

model does significantly improve the percentage of correct adoption predictions across all 5

expansion packs. This suggests that the firm could potentially use individual players’ past

variety-seeking preferences, as exhibited through their sequence of map choices, to predict

how receptive they would be to adopting new content (i.e., maps), given that the firm knows

the perceptual relationship between the old and new options.

Figure 19: Expansion pack map adoption predictions across models
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3.6.2. State Dependence and Variety-Seeking Parameters

In this section we take a closer look at the heterogeneity across players for the coefficient on

state dependence, as well as the coefficients on the variety-seeking variables, including the

intercept, the round number, and the consumption outcome. There is a lot of heterogeneity

across all variables. On average, the state dependence variable is negative, which captures

the frequent switching between maps. The intercept on variety-seeking is positive on av-

erage, which captures the overall propensity to also switch to more distant options. The

coefficient on round is negative, which reflects the general trend that players become less

variety-seeking over time (consistent with Figure 18). The coefficient on round outcome is

evenly spread around 0, which suggests that we may need to consider whether individuals

have different reference points for “good” versus “bad” outcomes.

Figure 20: Distribution of individual parameter estimates for state dependence and variety-
seeking
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We can also examine how the variety-seeking parameter changes across rounds. Figure 21

plots δi[t] from Equation 3.6 for a sample player. We see that the player’s variety-seeking

intercept is negative, so the player’s overall prefers closer maps. Across rounds, the overall

trend is a decrease in variety-seeking preferences, but there are also round-to-round spikes

that reflects the reaction to the round outcomes (i.e., kill count). This suggests that an

alternative model specification might involve allowing round outcomes to have more long-

term or “smoother” effects on variety-seeking.

Figure 21: Variety-seeking parameter δi across rounds for one sample individual

3.7. Discussion

We built a descriptive model that allows for an individual-specific variety-seeking parameter

to vary over time. Variety-seeking depends explicitly on time and consumption outcomes.

Specifically, we show that incorporating dynamic variety-seeking preferences into the model

improves out-of-sample predictions of whether or not consumers adopt new options in the

future. Although our analyses were conducted within the context of player map choices
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within an online video game, our model can be extended to other domains of experiential

products, including TV shows and restaurants.

There are several extensions that could be made to our current model. Currently we are

assuming that all attributes contribute equally to the distance between maps, but this

assumption could be relaxed and we could potentially estimate a different weight for each

attribute. Since our data begins at the game’s release, we could also incorporate how players

are learning map attributes or map distances over time. In addition, we are assuming that

players are simply maximizing of the utility for each map, but they may actually be trying

to fill some goal or quota of gameplay, which would change the way we formulate their

utility function. Finally, we may consider that players have different reference points for

their consumption outcomes that could vary across maps or even be learned over time as

players gain experience and improve their skills within the game.

For managers, this research will provide a method for determining individual customer

preferences and how these preferences change either over time or based on consumption

outcomes, as well as when customers might be more susceptible to the release of new prod-

ucts and whether they should be novel or similar to existing products. For example, within

our specific context, the firm could determine in real-time whether players are becoming

bored or frustrated with the current playing experience and prefer a change of scene, or

prefer to continue with the same experience. This provides an opportunity to enhance the

firm’s current matching algorithm by suggesting that the player’s variety-seeking prefer-

ences should be taken into account. In the long run, the firm can also use information

about players’ variety-seeking preferences to determine the timing of new content release,

as well as the design of the new content relative to the existing content.
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CHAPTER 4 : Testing Theories of Goal Progress and Knowledge Accumulation in

Online Learning

4.1. Introduction

Providers of online content cover a wide spectrum of content types, ranging from entertain-

ment to education. For example, video streaming services like Netflix and Hulu offer content

for entertainment, while websites like Coursera, edX, and Khan Academy offer educational

content. YouTube offers a mix of both; for example, music videos and comedic skits could

be categorized as entertainment, while how-to videos and TED talks could be categorized

as educational.

Most of the prior work studying online content consumption has looked at entertainment

platforms (e.g., Nelson, Meyvis, and Galak 2009; Hui, Meyvis, and Assael 2014; Schweidel

and Moe 2016). In contrast, we specifically focus on the setting of online education, which

has experienced rapid growth and change within the last decade, with firms offering both

free and monetized content, as well as partnering with universities to offer specializations

and degrees. The setting of online education has unique features such as scheduled content

tied to learning assessments that make it an appropriate testing ground for theories of how

consumers progress towards their goals and accumulate knowledge.

Using a unique clickstream dataset from Coursera, we examine the behavior of two groups of

paying users engaged in two business courses offered on the platform between 2015 and 2017:

Introduction to Marketing and Introduction to Operations Management, each consisting of

four weeks of lecture videos and quizzes. We observe individual-level lecture video and

quiz consumption across both courses, as well as outcome variables such as quiz scores,

which learners accumulate to obtain a certificate for passing a given course. For the first

group of users, course content was released sequentially with a few videos and lectures made

available each week, akin to scheduled TV programming. For the second group of users,

course content was released simultaneously with all videos and lectures available from the
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start, akin to Netflix’s full season release style. This data provides a rich, real-life testing

ground for recent behavioral theories as described in the next section.

4.1.1. Research Contributions

We make four main research contributions. First, we build a mathematical model of choice

that captures individual decisions about which course to consume, whether the content is a

lecture or a quiz, and when to take breaks of different lengths. Thus, our model integrates

choice and discrete timing components. The parameters of our model can be mapped to

specific theories from consumer psychology, which provides an underlying behavioral inter-

pretation for the patterns we find in the data. There are three key components in our model:

the contemporaneous utility of consumption as individuals make goal progress (Kivetz, Ur-

minsky, and Zhang 2006), the utility gained from accumulating knowledge through lectures

in order to pass quizzes (Alba and Hutchinson 1987; Camerer and Ho 1999), and “boundedly

rational” forward-looking decisions (Camerer, Ho, and Chong 2004; Gabaix et al. 2006).

These components are particularly well-suited to capturing consumption within the con-

text of online education, but individuals may exhibit these behaviors within other media

domains as well. For example, consumers may be motivated to continue watching a TV

show because they have the goal to get to the season finale, or to accumulate knowledge of

the show’s characters within a complex storyline.

Second, we demonstrate that our model is able to capture patterns in the data that we

characterize as “binge learning.” In this chapter, we are the first to distinguish between

two types of binging: “temporal binging,” which depends on the amount of content that is

consumed in a single sitting, and “content binging,” which depends on the type of content

that is consumed. In our context, temporal bingers consume multiple lectures and quizzes

without taking a break, while content bingers switch infrequently between courses, and we

observe that many learners in our dataset exhibit both types of binging. Similarly, Schweidel

and Moe (2016) modeled in a reduced-form way how viewers of TV shows on Hulu.com

choose to continue the viewing session, whether the next episode viewed is from the same
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show or a different show, and the time elapsed between sessions, as a function of the number

of episodes viewed of various shows so far and individual-level traits. This approach allowed

them to distinguish between bingers and non-bingers, which was related to individual-

level advertising response. In contrast to this approach, in our model, binge behaviors

(both temporal binging and content binging) are not explicit choices that individuals are

making or explicit parameters, but are instead an endogenous outcome of consumer decision

processes. This is similar to the approach of Erdem and Keane (1996) who demonstrate

that variety-seeking may be a result of consumers reducing uncertainty about brands.

Third, firms like Coursera have some control of more upstream marketing policies. Thus,

we test how the timing of content release affects consumption patterns and knowledge

accumulation. To do this, we use data on individual learner behavior from both before and

after a natural experiment policy change that shifted content release from weekly sequential

release to on-demand simultaneous release for the courses that we examine. For each set of

data, we use the parameter estimates of our model to conduct counterfactual simulations in

order to predict consumption patterns in the alternative scenario (i.e., we use the sequential

data to predict the simultaneous data, and the simultaneous data to predict the sequential

data). This has implications for how firms should time product release, either using the

traditional scheduling of TV networks or the on-demand streaming of online sites.

Fourth, we examine whether temporal and content binging patterns are predictive of more

downstream behaviors that are of interest to both instructors and firms. In particular,

prior research has found that the clumpiness of purchase decisions is predictive of customer

lifetime value (Zhang, Bradlow, and Small 2014), satiation and variety-seeking are incor-

porated into models to improve predictions of brand choice (McAlister 1982; Chintagunta

1998), and binge-watching TV shows has been related to advertising response (Schweidel

and Moe 2016). In our data, we find that temporal and content binging are predictive of

both within-course and cross-course downstream behaviors. For example, binging in ear-

lier weeks within a course is predictive of binging in later weeks, course completion, and
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grades. Binging within Marketing and Operations is also predictive of engagement in later

courses such as Accounting and Finance, in terms of total consumption, course completion,

and whether individuals pay for the course certificate. These findings have implications for

new product launch, cross-selling, bundling, monetization of subscription services, and CLV

(Kumar et al. 2008; Fader, Hardie, and Lee 2005; Zhang, Bradlow, and Small 2015).

The remainder of this chapter is outlined as follows. In Section 4.2., we describe a click-

stream dataset obtained from Coursera where we observe the lecture and quiz consumption

patterns of students across two business courses offered on the platform (Marketing and

Operations). We also present an overview of our model of individual consumption decisions

of lectures and quizzes within the two courses. In Section 4.3., we provide descriptive ev-

idence of binge consumption within the individuals observed in our dataset; importantly,

we distinguish between content binging and temporal binging. We also examine how the

propensity to engage in the two courses changes as individuals progress through the content.

Section 4.4. lays out our formal model, including the parameterization of each component

of the choice utilities. Section 4.5 presents our estimation procedure. Section 4.6 describes

the results from the parameter estimation of the model for each dataset and the behavioral

implications of the parameter values.

In Section 4.7., we conduct counterfactual simulations to see how consumption patterns

might change with different content release schedules, and also test our predictions using

observed data. In Section 4.8., we look at whether the patterns observed in Marketing

and Operations are predictive of within-course behaviors, as well as cross-course behaviors,

which is akin to assessing the value of this data for different product launches. Section 4.9.

concludes with directions for future research in the area of online consumption.

4.2. Data and Model Overview

We examine the behavior of individuals engaged in the introductory Marketing and Op-

erations courses offered on the Coursera platform through Wharton Online. We describe
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our sequential data sample for individuals who took the courses in 2015, as well as our

simultaneous data sample for individuals who took the courses in 2016 and 2017 follow-

ing the platform’s policy change regarding the timing of content release. We then give an

overview of our model where individuals make two-stage consumption decisions, with the

first stage involving the choice of which course to take (with the outside option being to

take a break) and the second stage involving the choice between watching lectures or taking

quizzes within a course (or breaks of different lengths).

4.2.1. Sequential Data Sample

During the sequential weekly release period in 2015, both Marketing and Operations were

offered multiple times throughout the year, which we refer to as “sections”. Each section of

each course spanned 5 weeks, with 4-7 hours of lecture videos and quizzes made available

at the beginning of the week for the first 4 of the 5 weeks.

In order to be observed in the data, individuals had to be registered for a section of a

course. Focusing on a single section of Marketing and Operations, in which both courses

were held during the same four weeks (June 1st to June 29th), we observe 61,661 individuals

registered for Marketing and 46,388 individuals registered for Operations. Because we are

interested in modeling how learners switch between courses, we then filtered our sample by

looking at individuals who had registered for both Marketing and Operations, resulting in

13,690 unique individuals. However, individuals could register without actually consuming

any of the content, so we further filtered them by whether they had visited at least one quiz

or lecture within each course, resulting in 2,943 individuals.

Finally, we focus on registered users who had also paid for both courses, giving us a final

sample of 467 individuals. Thus, we are focusing on the most committed students who

have consumed most or all of the course, which allows us to assess whether our model can

capture their temporal and content binging patterns.1

1Our model can be applied to a broader set of online courses with similar lecture and quiz structures,
and although here we condition on payment, our model can also be extended to make predictions about if
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For each individual in our final sample, we obtained their clickstream sequence recorded

while they were on the Coursera website. We aggregated this data to the URL level, focusing

on “submissions,” which were defined to be when individuals neared the end a lecture video

(80%) or submitted a quiz score for grading.2 Thus, at each observation we know whether

the individual is at the URL of a lecture or a quiz,3 which lecture or quiz they were looking

at in particular, and the timestamp of the URL submission.

Lectures consisted of 2-30 minute videos, while quizzes consisted of multiple-choice ques-

tions. The Marketing course consisted of 34 lectures and 4 quizzes, while the Operations

course consisted of 26 lectures and 5 quizzes. For all individuals in our sample, we used

the first time they engaged in either course as their start date, and looked at URL sub-

missions within a 5-week period following this individualized start date (i.e., effectively

“left-justifying” the data). We observed a mean of 64.0 URL submissions per individual

(SD = 39.2).

Each week, new lecture and quiz materials were released, and individuals could revisit

material from previous weeks. Figure 22 shows the weekly release schedule of lecture and

quiz content for both Marketing and Operations (see Appendix A.7. for a list of lecture/quiz

names and video run times). We refer to this type of weekly release as sequential, in contrast

to simultaneous release where all content is made available from day one.

We abstract away from the specific lecture or quiz number in this research because binging,

under our definition, does not depend on the specific unit consumed, but rather on how

much in total the individual has engaged in the lectures and quizzes, as well as the knowl-

edge that results from content consumption.

and when individuals pay. However, we leave these possibilities for future research.
2We removed redundant observations where individuals submitted the same lecture multiple times within

a 1-hour cutoff period.
3We ignore URLs of pages on the website that did not offer content (e.g., FAQs, course announcements,

forums, etc.), as well as optional in-lecture quizzes that were presented as one-question answers required to
move through the lecture.
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Figure 22: Sequential release of content for Marketing and Operations

Figure 23 plots the density of URL submissions over time for Marketing and Operations,

separated by the week that the content was made available. At the beginning of each week,

there is a spike in activity when new content is released, which drops off until the end of

the week, after which there is a second spike in activity, which can be interpreted either as

individuals cramming for quizzes or increasing engagement due to the new content. Note

that individuals can’t (and don’t) engage in content that has not been made available yet.

Figure 24 plots the sequence of URL submissions for a single individual (each submission

here is referred to as an “event” j), separated by Marketing and Operations. The lectures

and quizzes are numbered from 1 to 38 for Marketing and from 1 to 31 for Operations, in the

order of their appearance on the website. In this example, at Event 1, the individual chose

to engage in Marketing Lecture/Quiz 1 (see left hand side of Figure 24), and continued to

engage in Marketing lectures and quizzes until Event 9. At Event 9, she switched over to

Operations (see right hand side of Figure 24) and engaged in Operations Lecture/Quiz 1,

and so on and so forth. Overall, her visits seem to be relative evenly distributed across

the different lectures and quizzes. In fact, the individual mostly seems to progress system-
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atically through the material by watching lectures and taking quizzes one-by-one in order,

with few “skips” ahead or back to previous content.

Figure 23: Density of engagement in content separated by week.

Figure 24: Sequence of lecture and quiz choices at each event j for a sample individual.
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Figure 25 plots bars for each lecture and quiz representing the percentage of individuals

who visited that particular lecture or quiz at least once. The shades of grey indicate the

week that the content was released, while the stars indicate the bars that represent quizzes.

We make three main observations. First, the quizzes were visited by a larger percentage

of individuals than the lectures, which is consistent with the fact that only passing the

quizzes was required for passing the course. Second, the percentages exhibit a decreasing

trend, especially in Operations, which is consistent with the general observation within on-

line courses that there is attrition over time. It is also possible that individuals who had

passed “enough” of the course (i.e., obtained at least 80% of the quiz points) simply felt

they didn’t need to continue consuming content during the later stages of the course. Third,

we notice that there are not glaring differences in the percentages within a particular week

(besides the greater percentages for quizzes vs. lectures), which further suggests that there

might not be significant gains, as previously mentioned, to modeling choices at the specific

lecture/quiz level.

Figure 25: Percentage of individuals who viewed each lecture and quiz at least once
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4.2.2. Simultaneous Data Sample

During the simultaneous release period beginning in 2016, all the content from both Market-

ing and Operations were available on-demand (i.e., at any time) to registered individuals.

We started with 7,198 individuals who had registered and paid for Marketing and 2,828

individuals who had registered and paid for Operations. We then filtered our sample by

looking at individuals who had registered and paid for both Marketing and Operations,

resulting in 1,736 unique individuals.

Unlike during the sequential release period, there were no sessions or explicit start course

dates. In order to create a matching sample of users with the simultaneous release data, we

again assumed that each individual’s start time was the time at which they first engaged in

a lecture or quiz from either course. We then filtered our sample by selecting for individual

who had started the other course within two weeks following the initial start time. This

gave us enough overlap to examine and model switching behaviors between the two courses,

and matched the characteristics of individuals in the sequential data. This resulted in a

final sample of 448 individuals for analysis.

In addition, just like with the sequential data, we use URL submissions within the 5-week

period following the initial start date. This resulted in a mean of 92.4 (SD = 56.8) URL

submissions across the individuals in our simultaneous data sample.

4.2.3. Choice Model Overview

We assume that at each event j individuals are making a two-stage decision, as illustrated

in Figure 26. In stage 1, the individual decides whether she wants to engage in Market-

ing, engage in Operations, or take a Break. In stage 2, the choice set for the individual is

conditional on what she chose in stage 1. If she decided to engage in either Marketing or

Operations in stage 1, then in stage 2 she chooses to either consume a quiz or a lecture. If

she decided to take a Break in stage 1, then in stage 2 she chooses among 3 “ranges” of

break lengths: (1) Short: 1 hour to 12 hours, (2) Medium: 12 hours to 36 hours, and (3)
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Long: 36 hours to 5 weeks. In summary, there are 7 choice options: Marketing Quiz (MQ),

Marketing Lecture (ML), Operations Quiz (OQ), Operations Lecture (OL), Short Break

(B1), Medium Break (B2), and Long Break (B3).4

Figure 26: Two-stage decision process

Note that Figure 26 depicts the available choices at event j as being conditional on the

choices made at event j − 1. If either Marketing or Operations quizzes or lectures were

chosen at event j − 1 (as represented by the white and grey triangles), then at event j,

the individual can choose between Marketing, Operations, and Break. However, if a Break

of any length was chosen at event j − 1 (as represented by the white square), then at

event j, the individual can choose between only Marketing and Operations. This prevents

individuals from taking multiple breaks in a row, which we have no way of identifying in

the data.

Figure 27 shows the frequency of each choice across the entire course for both the sequential

and simultaneous data. In general, individuals chose Marketing more often than Operations,

4The shortest Marketing lecture was 2:09, while the longest Marketing lecture was 19:57. The shortest
Operations lecture was 6:22, while the longest Operations lecture was 26:16. So we coded all breaks that
existed at least twice as long as the longest lecture. The cutoff locations and robustness checks are further
discussed in Appendix A.8.
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which is consistent with the fact that Marketing has more lectures and quizzes, as well as

less attrition over time. Individuals also chose lectures more often than quizzes, consistent

with the fact that there are simply more lectures than quizzes, and lectures are needed to

accumulate knowledge to pass the quizzes. The Short Break (B1) was the most common

among the three break lengths, followed by the Long Break (B3) and Medium Break (B2).

In addition, individuals in the simultaneous dataset had on average more submissions or

visits to the lectures and quizzes of both courses compare to individuals in the sequential

dataset, but nearly the same number of breaks of different lengths.

Figure 27: Number of times each choices was made, averaged across individuals.

We assume three restrictions on the choice set that impact our model and the likelihood

function. First, if no quizzes were available in a particular week (i.e., Operations during

week 1) or all quiz attempts were “used up” (i.e., Marketing quizzes were limited to 3

attempts each), then these options were not available in stage 2 of the event.5 Second,

5In other words, we use dynamic choice sets, noting that in our case the choice set is observed unlike in
work that models latent consideration sets (Ben-Akiva and Boccara 1995).
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observed activity of individuals is restricted to the 5 weeks following their individualized

start times, and so longer break length options are unavailable when there is not enough

time remaining. For example, on the last day it would not be possible to choose the Long

Break of 36 hours to 5 weeks. Third, as mentioned earlier, individuals can’t take two

consecutive breaks, as that would be categorized as a longer break (compare the left and

right hand sides of Figure 26).

4.2.4. Model Overview: Stage 1 Choices

Figure 28 depicts the constructs that contribute to the utilities of the options available in

stage 1 of each individual’s decision process (i.e., uM [j], uO[j], and uB[j]). In stage 1 of

each event j, individuals choose between Marketing, Operations, and Break.

Figure 28: Stage 1 choice at event j.

First, we include intercepts to capture the baseline propensity of individuals to engage in

Marketing, Operations, and Break. In Figure 27, we saw that Marketing overall has a higher

choice share compared to Operations, which can be accounted for by the relative values of

the intercepts for Marketing and Operations. In addition, these intercepts can account for

the individual-level propensity to consume course content rather than take a break.

Second, we allow the utility of Marketing and Operations to depend on goal progress, as

measured by the percentage of available lectures and quizzes within a course that the in-

dividual has visited at least once so far. Within the context of online learning, it seems

particularly appropriate to incorporate how the utility of consuming course content is in-
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fluenced by individuals’ goals to complete the course. Consumers may experience utility

from consuming course content, and exhibit patterns of increasing motivation for consump-

tion as they approach completion of the course, which is consistent with the goal-gradient

hypothesis that predicts that individuals are more motivated to engage in a task as they

approach an end goal (Kivetz, Urminsky, and Zhang 2006). Thus, one reason why individ-

uals may be temporal bingers is that the Marketing and Operations choices become more

attractive (relative to taking a Break) as they approach the goal of visiting each lecture

and quiz at least once within a given course. Similarly, individuals may be content bing-

ing because Marketing, for example, becomes more attractive (relative to Operations and

Break) as individuals approach the goal within Marketing, with the same intuition applying

to Operations.

On the other hand, consumers may also exhibit patterns of decreasing motivation because

of satiation or hedonic adaptation, which has been observed in prior work for both pleasant

and unpleasant experiences (Inman 2001; McAlister 1982; Nelson and Meyvis 2008; Nelson,

Meyvis, and Galak 2009). Our model flexibly allows for both increasing and decreasing

motivation to consume course content over time, as well as non-monotonic patterns. For

example, the “stuck in the middle” effect is an extension of the goal-gradient theory that

suggests a consumer’s reference point for progress may shift from the beginning to the end

state, resulting in a dip in motivation in the middle of the course (Bonezzi, Brendl, and De

Angelis 2011). Alternatively, individuals may exhibit an inverse U-shaped utility because

early on, when they first committed to taking the course, they may have overestimated

their future slack for time resources (Zauberman and Lynch 2005), resulting in a peak and

then dip in utility with progress.

Third, we allow our model to capture what might happen to the utilities of the courses once

individuals actually reach “completion” of their goal. In extant research that documents

goal progress, the task is either “terminal,” that is the researcher stops observing the indi-

vidual’s consumption patterns after task completion, or the task “resets” so the individual
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starts again with a new goal (e.g., a customer starts a second coffee loyalty stamp card after

completing the first; see Kivetz, Urminsky, and Zhang 2006). In our data, individuals are

allowed to revisit any available lectures and quizzes throughout the 5 weeks of the course,

so before new content is released to “reset” the goal, we would actually expect individuals

to experience a “crash” in their likelihood to consume course content once they have visited

all available lectures or quizzes within a particular course. This “completion effect” might

contribute to content binging: once individuals complete their goal, they may then switch

entirely to consuming content from the other course until new content is made available in

a subsequent week.

4.2.5. Model Overview: Stage 2 Choices

In stage 2 of each event j, individuals choose among a set of options, with the available

choices conditional on the choice made in stage 1. Figure 29 outlines the constructs that

determine the utilities of Marketing Lectures and Quizzes, given that Marketing was chosen

in stage 1. These constructs also contribute to the utilities of Operations Lectures and

Quizzes, given the choice of Operations in stage 1. The utilities of Short, Medium, and

Long Breaks are determined by the intercepts only (under the assumption of a myopic

individual with no forward-looking steps, and is generalized under our model of boundedly

rational forward-looking behavior).

When taking online courses, an important purpose for consumers is to gain expertise or

accumulate knowledge (Alba and Hutchinson 1987; Camerer and Ho 1999) as they engage

in the course material. Some individuals may be purely interested in gaining knowledge

by watching lectures (although for some individuals, watching lectures may actually be an

indication of a lack of knowledge), while others may be more interested in passing the course

to earn a certificate, which may be done by passing the quizzes. So we propose that indi-

viduals’ desire to take quizzes vs. watch lectures may be determined by their accumulated

knowledge, as measured by how many lectures they have watched so far or beliefs about

their quiz-taking abilities, which are updated in a Bayesian way as they get feedback from
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taking quizzes. The details of the updating equations are presented in Section 4.4.6.

Figure 29: Stage 2 choice at event j, conditional on Marketing being chosen in Stage 1.

4.2.6. Model Overview: Boundedly Rational Consumers

Rather than assuming that individuals are solving a fully forward-looking utility maximiza-

tion problem, we assume that they are forward-looking in a boundedly rational way, such

that they may take into account the discounted expected utilities from one or two decisions

into the future. As depicted in Figure 30, our model allows individuals to make choices as if

they were capable of thinking at most one or two stages ahead. This “forward-lookingness”

can be extended farther into the future (i.e., three stages ahead, four stages ahead, etc.).The

computation of utilities farther and farther into the future quickly becomes very intensive,

and classic experimental work has demonstrated that most people are limited to one or two

“thinking steps” ahead (Camerer, Ho, and Chong 2004) and that limited (versus infinite)

time-horizon models are more accurate in capturing real behaviors (Gabaix et al., 2006).

In the myopic version of our model, we assume that individuals are maximizing the utility
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Figure 30: Boundedly rational forward-looking consumers during events j and j + 1.

of their choices at each stage without consideration of how the current choice may impact

the utilities of choices at future stages. In other words, decisions made in either stage 1 or

stage 2 of a particular event j does not depend on the expected utilities of choices in future

stages or events.

Allowing individuals to be forward-looking in a boundedly rational way (i.e., thinking one

or two steps ahead) means that individuals may take into account the utility of choices in

future stages when making choices at the current stage. Consumers may be thinking “One-

Stage Ahead” such that during stage 1 of event j, they take into account the expected

utilities of the choices that could be made in stage 2 of event j, but they also assume that

at stage 2 of event j they will be myopic. Consumers may also be thinking “Two-Stages

Ahead” such that during stage 1 of event j, they take into account the expected utilities

of the stage 2 choices, but now also assume that at stage 2 they will take into account the

expected utilities of the stage 1 choices at the next event j + 1 instead of being myopic.

For example, when an individual in our dataset is making a decision about whether to

watch another lecture video or to take a break, she may take into consideration the greater
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expected future utility she can obtain from getting closer to course completion by taking a

quiz in the next decision period.

We are particularly interested in quantifying how the expected utilities from the next stage

impact the decisions in the current stage, which we accomplish by estimating a coefficient

(or “discount factor”) on the expected utilities, as described in the subsequent sections.

Thinking one or two stages ahead may contribute to temporal binging; for example, if

individuals anticipate greater utilities from stage 2 (or even stage 1 of the next event) if

they engage in Marketing or Operations in stage 1 of the current event, then they may be

less likely to choose Break in stage 1. In the Estimation section, we will present results

comparing the myopic vs. One-Stage Ahead models. We note that our model can be

generalized to individuals thinking more stages ahead, as shown in Figure 30.

In summary, the stage 1 utilities of Marketing, Operations, and Break depend on the fol-

lowing constructs: Intercepts, Goal Progress, Completion, and Time (see Figure 28). The

stage 2 utilities of Quiz vs. Lecture (given that either Marketing or Operations was chosen

in stage 1) or Short vs. Medium vs. Long Break (given that a Break was chosen in stage

1) depend on the Intercepts, Knowledge Accumulation, and Knowledge Belief Priors (see

Figure 29). Moreover, individuals may be thinking One-Stage or Two-Stages Ahead when

incorporating the utilities from future stages when making decisions in the current stage

(see Figure 30).

4.3. Descriptive Analysis

Before we introduce our formal model, we present results from exploratory analyses of the

data to provide descriptive evidence of how the utilities for the Marketing and Operations

courses might vary with goal progress, as well as descriptive evidence of binge consumption,

specifically distinguishing between temporal binging and content binging.

First, to demonstrate that our Goal Progress construct can be disentangled from time
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Figure 31: Stage 1 choice shares between Marketing and Operations vary with goal progress.

and/or state dependence, we look at how the stage 1 choices shares for Marketing and

Operations (vs. Break) vary with “Progress,” as measured by the percentage of available

lectures and quizzes in each course. Figure 31 plots these choice shares for both the sequen-

tial and simultaneous data in Panels A and B, respectively. We see that for both datasets,

the choice shares for Marketing and Operations both exhibit non-monotonic patterns. Im-

portantly, a simple state dependence model would not be able to explain these systematic

changes in choices shares. We also see that there is a large drop-off in choice shares when

Progress reaches 1, which illustrates the importance of the Completion construct, which

captures the drop-off engagement when an individual has submitted all content at least

once. We verify this descriptive evidence by looking at the parameter estimates of Goal

Progress and Completion in the next section.
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Next, using metrics of temporal and content binging, we can test whether an individual is

observed to be a temporal binger, a content binger, both, or neither. These metrics can

then be used to test whether our model is able to capture the temporal and content binging

patterns of the observed data, using posterior predictive checks (Gelman et al. 2014), as

described in Sections 4.5 and 4.6.

Binging has been described as a phenomenon where consumers actually derive increasing

returns to consumption, which is akin to the concepts of “fluency” in learning and judgment

(Whittlesea and Leboe 2000; Greifeneder, Bless, and Pham 2011) and “flow” in video games

(Chou and Ting 2003), as well as addiction in extreme cases (Becker and Murphy 1988;

Gordon and Sun 2015). The way we define binge behavior in this chapter is agnostic to

the underlying causes of this behavior, and we distinguish between temporal binging, which

depends on the amount of content that is consumed in a single sitting, and content binging,

which depends on the type of content that is consumed.

Temporal and content binging are both related to patterns of consumer behavior that

have been modeled in other marketing settings. Temporal binging is analogous to the

“clumpiness” of a series of purchase incidences, which takes into account the total number

of events and inter-event times (Zhang, Bradlow, and Small 2014). On the other hand,

content binging would mean that the individual consumes lectures from the same course

in succession with few switches between courses, disregarding how spread out the lectures

and quizzes are across time. The distinction between content binging vs. content savoring

can be compared to inertial vs. variety-seeking behavior within the brand choice literature

(Givon 1984; Kahn, Kalwani, and Morrison 1986; Chintagunta 1998).

In order to assess each individual’s degree of temporal binging, we can look at the average

length of consecutive quiz/lecture events (“runs”) with no breaks. Longer runs correspond

to more temporal binging. To assess the degree of content binging, we can look at the

percentage of times individuals did not switch between Marketing and Operations content,

given the opportunity. Larger no-switch percentages correspond to more content binging.
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Figure 32 plots the average run lengths against the average percentage of non-switches for

learners in the sequential dataset (one dot for each person in our sample), which shows that

there is a positive relationship between the two binging metrics (r = 0.43, t(465) = 0.47,

p < 0.001) such that individuals who are temporal bingers are also likely to be content

bingers. However, note that this positive relationship is mainly driven by the long tails of

each distribution.

Figure 32: Distribution of average run length and percentage of non-switches

In order to determine whether or not individuals were statistically significant temporal

bingers or content bingers (or both), we first created a null distribution of run lengths and

non-switch percentages. We took each individual’s sequence of stage 1 event choices (Mar-

keting, Operations, or Break) and randomly permuted the sequence 10000 times, with two

constraints: (1) breaks could not occur consecutively (as mentioned in the choice overview),

and (2) events were permuted only within weeks to account for the sequential release of

content. We excluded the 9% of individuals in our sample for whom there were no such

permutations.
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To determine whether or not individuals were temporal bingers, we calculated the percent-

age of random permutations with (strictly) longer average runs compared to the individual’s

actual sequence. To determine whether individuals were content bingers, we calculate the

percentage of random permutations with (strictly) more Marketing/Operations switches

compared to the individuals’ actual sequence of events. These percentages represent the

likelihood of observing a random sequence of choices with more binging behavior compared

to the individual’s actual sequence, which can be interpreted as a p-value. Figure 33 shows

the distributions of the logit-transformed p-values.

73% of individuals had a p-value of 0 for temporal binging, that is, there were actually

no permutations that had longer runs compared to their observed data, while 77% of in-

dividuals had a p-value of 0 for content binging, so none of their permutations had fewer

switches. Since the logit-transform of 0 is negative infinity, we represent these individuals

by the spike at -10 in each plot in Figure 33. We see that nearly all values in both plots fall

below -3, which corresponds to a p-value of 0.05. This implies that there is evidence that

most individuals were both temporal bingers and content bingers, according to our metrics.

Specifically, we find that 82% of the individuals in our sample were statistically significant

temporal bingers, 86% were statistically significant content bingers, and 69% were both.

4.4. Model and Notation

Our model captures how individuals choose to watch lectures, take quizzes, and take breaks

as a series of discrete events. First, we outline the notation for the two-stage decision process

that occurs at each event, and how individuals maximize over the utilities of the options at

each stage. Next, we describe the parameterization of each construct that contributes to

the utilities of the options.
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Figure 33: Distributions of logit-transformed p-values for temporal and content binging

4.4.1. Two-Stage Decision Process

For each individual i = 1, ..., I we observe a sequence of events j = 1, ..., Ji. At each event j,

the individual makes a two-stage decision (see Figure 27) that ultimately results in choosing

one of 7 options: Marketing Quiz (MQ), Marketing Lecture (ML), Operations Quiz (OQ),

Operations Lecture (OL), Short Break (B1), Medium Break (B2), and Long Break (B3).

Note that although we treat these choice events as discrete, each event j is observed to

occur at a continuous calendar time t[j], which we will take into account when simulating

choice pathways from the estimated parameters to form posterior predictive checks.

Let S1[j] represent the choice made in stage 1 of event j between Marketing, Operations,

and Break. Let S2[j] represent the choice made in stage 2 of event j between Marketing

Quiz/Lecture, Operations Quiz/Lecture, or Short/Medium/Long Break. The following

expression gives the likelihood of an individual’s sequence of observed choices, given the

individual’s parameters θi = {βi,αi, δi,πi,ηi,γi}. The product across all individuals then
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results in the full likelihood expression.

L(θi) =

Ji∏
j=1

P (S2[j]|S1[j])× P (S1[j]) (4.1)

Table 8 outlines the parameters of the model. Note that although we allow all parameters

to be heterogeneous across individuals in a Bayesian fashion (see the Estimation section for

details), for ease of exposition we suppress the individual-level subscripts on the parameters

and variables in the remainder of this section, except where noted.

Table 8: Summary of model parameters

Construct Parameter Variable Description

Intercepts

β0M , β0O – Stage 1

α0M – Stage 2 (Marketing Quiz)

α0O – Stage 2 (Operations Quiz)

δ1 – Stage 2 (Short Break)

δ2 – Stage 2 (Medium Break)

Goal Progress
β1M , β1O GM [j] or GO[j] Linear

β2M , β2O GM [j]2 or GO[j]2 Quadratic

Completion
β3M , β3O 1(GMQ[j] = 1) or 1(GOQ[j] = 1) All available Quizzes visited

β4M , β4O 1(GML[j] = 1) or 1(GOL[j] = 1) All available Lectures visited

Knowledge

α1M , α1O CML[j] or COL[j] Consecutive Lectures

α2M , α2O πM [j] or πO[j] Quiz-Abilities

π0M , π0O – Initial beliefs (Mean)

η0M , η0O – Initial beliefs (Precision)

Forward-Looking
γ E One-Stage Ahead

ρ F Two-Stages Ahead

In stage 1 of event j, the individual is maximizing over the utilities of engaging in Mar-

keting (uM [j]), engaging in Operations (uO[j]), and taking a Break (uB[j]). The utility of

Marketing in stage 1 of event j can be represented by the following equation (as depicted
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in Figure 28).

Stage 1: uM [j] = InterceptsM [j] + Goal ProgressM [j]

+ CompletionM [j] + TimeM [j] + εM [j]

(4.2)

If the individual chose Marketing in stage 1 of event j, then in stage 2 she maximizes

over the utilities of taking a Marketing quiz (uMQ[j]) versus watching a Marketing lecture

(uML[j]), and likewise if she chose Operations or Break in stage 1 instead. The utility of

a Marketing Quiz in stage 2 of event j can be represented by the following equation (as

depicted in Figure 29). Note that the Knowledge construct represents both the knowledge

accumulated and the priors on knowledge beliefs.

Stage 2: uMQ[j] = InterceptsMQ[j] + KnowledgeMQ[j] + εMQ[j] (4.3)

Assuming that the error terms follow a type-1 extreme value distribution, the choice prob-

abilities in stage 1 and stage 2 can each be formulated as a multinomial logit between the

utilities of the available options.

We describe our model as being “one-stage” or “two-stages” forward-looking, without loss

of generality, as more stages can be added (as depicted in Figure 30). Let γ represent the

“One-Stage Ahead” term, or how much the individual weighs the expected utilities from

stage 2 in the utilities of stage 1 during event j. We assume that when making a decision

at stage 1 of event j, individuals are able to infer the maximum of the expected utilities

of stage 2. For example, if the individual chose Marketing at stage 1, then the maximum

expected utility during stage 2 would be given by the following expression:

E = log

(
euMQ[j] + euML[j]

)
(4.4)

Thus, if individuals are thinking One-Stage Ahead, then γE is added to the utilities of the
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stage 1 options.6 In this way, our model is similar to a nested logit in that the 7 options (MQ,

ML, OQ, OL, B1, B2, B3) are grouped into 3 “nests” (Marketing, Operations, Break), and

so the probability of choosing one of the 7 options is the probability of the nest multiplied by

the probability of choosing the option, conditional on the nest (see Equation 4.1). Just like

the nest choice in a nested logit, the stage 1 choice in our model is an intermediate outcome,

while the stage 2 choice (i.e., within a nest) is the end outcome of the consumer’s decision

process. The One-Step Ahead coefficient γ in our model is analogous to the correlation in

unobserved factors within nests in a nested logit, while the expected maximum of the stage

2 utilities, E, is analogous to the inclusive value term.

Let ρ represent the “Two-Stages Ahead” parameter, or how much the individual weighs the

expected utility of her choices in stage 1 of the next event j + 1, when making a choice at

stage 2 of the current event j. Let uM[j + 1], uO[j + 1], and uB[j + 1] represent the utility

of choosing either Marketing, Operations, or Break at the next event j+ 1. Note that these

utilities will vary depending on the stage 2 decision at event j. The following expressions

give the expected maximum of the stage 1 utilities at event j + 1:

F = log

(
euM[j+1] + euO[j+1] + euB[j+1]

)
(4.6)

By adding this Two-Stage Ahead ρF to the utilities of the choices in stage 2 of event j, we

can allow the model to account for individuals thinking two stages ahead, such that they

take into account the utilities of stage 1 of event j+ 1 when making a decision at stage 2 of

event j, and this propagates up to the utilities of stage 1 of event j through the One-Stage

Ahead term γE. We next describe each of the model components in turn.

6Alternatively, the One-Stage Ahead term can be formulated as the expected mean utility rather than
the expected maximum utility, in which case the expressions for E would be the following:

E =
euMQ[j]uMQ[j] + euML[j]uML[j]

euMQ[j] + euML[j]
(4.5)
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4.4.2. Intercepts

The intercepts β0M and β0O represent the baseline utility of choosing Marketing and Op-

erations, respectively, in stage 1. The intercept for Break is set to 0 for identification. The

intercepts α0M and α0O represent the inherent utility of choosing a Quiz in stage 2, with

the utility of Lectures set to 0. The intercepts δ1 and δ2 represent the baseline utility of

choosing a Short or Medium Break, with the utility of a Long Break set to 0.

4.4.3. Goal Progress

Let GM [j] and GO[j] represent the proportion of all available quizzes and lectures in Mar-

keting and Operations, respectively, that the individual has visited at least once by event

j. In the sequential data the number of available lectures and quizzes changes each week

in both Marketing and Operations, while in the simultaneous data the number of available

lectures and quizzes remains the same across all weeks.

We define each individual’s “goal” to be to visit all available lectures and quizzes. (Note

that this is a general goal and is inclusive of more specific goals, such as passing all quizzes

in order to obtain a certificate.) To capture the effect of Goal Progress, we estimate the

coefficients {β1M , β1M} and {β2O, β2O} on the proportion and squared proportion of visited

quizzes and lectures for each course. The following expression gives the Goal Progress effect

for Marketing at event j.

Goal ProgressM [j] = β1MGM [j] + β2MGM [j]2 (4.7)

Depending on the shape of the quadratic function, individuals may become more or less

motivated to engage in content from a course as they approach completion, or there may

be a non-monotonic pattern. Figure 34 illustrates the values of the linear and quadratic

coefficients that would result in different curves for how utility changes relative to progress.
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Figure 34: Illustration of the Goal Progress construct

Figure 34 panel A shows 8 possible shapes of how the utility of a course option changes with

goal progress, which represents the percentage of quizzes and lectures visited at least once

so far (centered at 0 to range between -0.5 and 0.5). The curves may be monotonically in-

creasing or decreasing, either exponentially or logarithmically, or be non-monotonic. Curves
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2 and 3, for example, illustrate the goal gradient effect (Kivetz, Urminsky, and Zhang 2006)

where utility is monotonically increasing with progress. Curves 6 and 7 illustrate satiation

or fatigue (Inman 2001; McAlister 1982). Curves 1 and 8 illustrate the “stuck in the middle”

effect as individuals switch from monitoring their progress relative to the initial state to the

end state (Bonezzi, Brendl, and De Angelis 2011). Curves 4 and 5 illustrate mispredictions

in future time slack (Zauberman and Lynch 2005).

Figure 34 panel B shows the corresponding values of the linear (β1M and β1O) and quadratic

(β2M and β2O) coefficients that would result in each of the 8 Goal Progress curves. Using

each individual’s parameter estimates, we can classify individuals in our sample as differ-

ent types of Goal Progress learners, similar to how Gilbride and Allenby (2002) classify

individuals by the type of screening rules they use during choice.

4.4.4. Completion

As demonstrated in the descriptive analyses, we also expect individuals to experience a

“crash” in their likelihood to consume course content once they have visited all available

lectures (GML = 1 or GOL = 1) or quizzes (GMQ = 1 or GOQ = 1) within a particular

course at least once, in other words when their Progress equals 1. Since the Goal Progress

component of our model is not able to capture this “completion effect,” we use indicator

variables, with coefficients {β3M , β4M} for Marketing and {β3O, β4O} for Operations. De-

pending on the sign of the coefficients, “completing” all quizzes or all lectures (i.e., visiting

them all at least once) may either result in an increase or decrease in utility for the re-

spective course. The following expression gives the Completion construct for Marketing at

event j.

CompletionM [j] = β3M1(GMQ[j] = 1) + β4M1(GML[j] = 1) (4.8)

Note that for the sequential data, after new content is released each week, the Goal Progress

values are reset, so individuals may vary between states of completion and non-completion.

For the simultaneous data, since all the content is available from the start, once an individual
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has completed all the quizzes or lectures in a course, she remains in the completion state

for that subset of options.

4.4.5. Knowledge Accumulation

If individuals chose either Marketing or Operations in stage 1, then in stage 2 they choose

between a Marketing Lecture/Quiz or Operations Lecture/Quiz. We allow the utility of

taking a Quiz to depend on the accumulation of knowledge in the course, which may come

from watching lectures or taking quizzes.

Let CML[j] and COL[j] represent the number of consecutive lectures that the individual

visited in Marketing and Operations, respectively, by event j, with α2M and α2O as the

coefficients. The intuition here is that each quiz corresponds to a certain subset of lectures,

and so individuals may choose to watch these lectures leading up to taking the correspond-

ing quiz. In future work, we plan to use content analysis to map out the relationships

between specific lectures and quizzes. For now, we use the number of immediately preced-

ing consecutive lectures within a course as a proxy.

Let α1M and α1O be the coefficients on the individual’s beliefs about her quiz-taking abilities

πM in Marketing and πO in Operations. After taking a quiz, the individual Bayesianly

updates her beliefs about her quiz-taking abilities with a “signal” (à la Erdem and Keane

1996) that has a mean of the observed quiz score x[j] ∈ [0, 1] and precision φ (set to 1 for

identification). For example, if the individual took a Marketing quiz at j, then she updates

the mean πM and precision ηM of her quiz-taking abilities for Marketing in the following

way, with a parallel updating process for Operations quizzes.

πM[j + 1] =
ηM[j]

ηM[j] + φ
πM[j] +

φ

ηM[j] + φ
x[j] (4.9)

ηM[j + 1] = ηM[j] + φ (4.10)

The following gives the expression for Knowledge within Marketing, which is an empirically
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determined weighted average of knowledge accumulated from watching lectures and getting

feedback from quiz scores:

KnowledgeMQ[j] = α1MCML[j] + α2MπM [j] (4.11)

4.4.6. Knowledge Belief Priors

In order to compute the beliefs about quiz-taking abilities in Equations 4.10 and 4.11,

individuals must have some initial beliefs at event j = 1, characterized by the prior means

πM [1] or πO[1] and precisions ηM [1] or ηO[1].

First, we can assume that for all individuals the prior mean is 0.5 (i.e., 50% correct on

quizzes) and the prior precision is 1 (i.e., equivalent to having taken one quiz, since we set

the quiz precision to φ = 1).

Alternatively, we can estimate the prior beliefs, with means πM [1] = π0M or πO[1] = π0O

and precisions ηM [1] = η0M or ηO[1] = η0O heterogeneously across individuals. This would

capture the differences across individuals in terms of how much the quiz score signals affect

their beliefs about their quiz-taking abilities, and thus their probabilities of choosing quizzes

over lectures. For example, an individual with a low prior precision may greatly increase

her probability of taking a quiz after receiving good feedback, but an individual with high

prior precision would not be affected as much.

4.5. Estimation and Model Comparison

We describe our estimation approach, which involves using a hierarchical Bayes procedure

to account for the heterogeneity across individuals in the parameter estimates. We also de-

scribe our procedure for nested model comparison to demonstrate that each construct built

into the utilities contributes to explaining the data in some way. This involves simulating

data from the individual-level parameter samples to form posterior predictive checks.
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4.5.1. Estimation Procedure

We use hierarchical Bayes estimation to account for unobserved heterogeneity across in-

dividuals (Gelman et al. 2014). We assume that each individual’s vector of parameters

θi follows a multivariate normal prior distribution with θi ∼ MVN(µ,Ω). Let the mean

µ follow a conjugate multivariate normal distribution with µ ∼ MVN(µ0,Ω0), where the

mean µ0 is a vector of zeros and the precision Ω0 is an identity matrix. Then let Ω−1 follow

a conjugate Wishart distribution with ρ degrees of freedom, which is set to the number of

parameters in θi plus 3 to make it proper, and an inverse scale matrix R, with the inverse

R−1 as an identity matrix.

We estimated the parameters using a Markov chain Monte Carlo (MCMC) sampler in

the programming language R. For each model, we ran three MCMC chains from different

starting values for 3,000 iterations each. We used the first 2,000 iterations as burn-in and

we checked for convergence by determining that the Gelman-Rubin convergence statistic

was less than 1.2 for all parameters (Gelman and Rubin 1992). After thinning the chains

to reduce auto-correlation, we were left with 300 posterior samples for each parameter.

To ensure parameter recovery, we picked a set of means and a covariance matrix with “rea-

sonable” values to form a multivariate normal distribution, from which we drew parameter

values and simulated data for 500 individuals (comparable to our observed sample size of

467 in the sequential data and 448 in the simultaneous data). We then estimated the model

using this simulated data to determine that we could recover the true parameter values (see

results in Appendix A.9.).

4.5.2. Model Comparison

We describe the estimation results for different versions of our model for both the sequential

and simultaneous datasets. We start with an intercepts-only model, and then add each

construct in succession (i.e., in a series of nested models) to determine whether or not they

improve the in-sample model fit. For the sequential data, we estimated a model for each
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additional construct. For the simultaneous data, because we did not have a comparable

measure of quiz scores, we did not estimate the models for the Knowledge Accumulation

and One-Step Forward constructs. However, we do plan to include the simultaneous data

quiz scores and additional models in future work.

To compare the fit across the model variations, we calculated the Deviance Information

Criterion (DIC) and also simulated data utilizing the MCMC draws to determine whether

the models could recover the patterns in the observed data according to a series of posterior

predictive checks. We then present and interpret the parameter estimates for the full model,

which was also the “winning model” based on the DIC.

Table 9: Models fit statistics for different nested versions of the model

Sequential Simultaneous

Model DIC Run Length % Switch DIC Run Length % Switch

Observed N/A 3.45 0.13 N/A 5.01 0.07

Intercepts 839598 3.91 (.94) .43 (.32) 1145069 5.03 (1.85) .36 (.32)

Goal Progress 837357 3.89 (1.01) .39 (.29) 1137386 5.13 (1.93) .30 (.27)

Completion 833122 3.36 (1.19) .35 (.24) 1132653 4.96 (1.62) .28 (.24)

Knowledge 831548 3.52 (1.20) .34 (.25) N/A N/A N/A

One-Stage Ahead 830934 3.46 (1.41) .34 (.24) N/A N/A N/A

To determine whether adding the different constructs improves the fit of the model, com-

pared to a baseline “Intercepts-only” model, we calculated the DIC for each version of the

model, as shown in Table 9. We see that for the sequential data, adding the parameters for

the Goal Progress, Completion, Knowledge Accumulation, and One-Step Ahead constructs

improves the in-sample model fit in terms of decreasing the DIC. For the simultaneous data,

adding the parameters for the Goal Progress and Completion constructs also improves the

model fit. Note that the fit statistics in Table 9 are for nested models, for example the

“Completion” model includes the constructs of Intercepts, Goal Progress, and Completion.

99



Based on the DIC, the winning model for both datasets is the full model with all the

constructs (up to One-Stage Ahead for the sequential data and up to Completion for the

simultaneous data). In addition to the model fit, we are also interested in how well our

model could capture the specific patterns within each individual’s sequence of choices, in

particular the metrics for temporal binging (i.e., average run length) and content binging

(% of non-switches).

To construct a series of posterior predictive checks, we took each individual’s set of 300

posterior samples and simulated a sequence of choices, resulting in 300 simulations for

each of the 476 individuals in the sequential data and each of the 448 individuals in the

simultaneous data. For each individual MCMC sample, we start at tj = 0 for the first event

j = 1, with the initial conditions being that the individual has not yet consumed any course

content. We then simulate their choices until they reach the end of 5 weeks.

Although we treat individual choices as discrete in the model estimation, individuals are

also moving through continuous calendar time (for example, for the sequential data, the

calendar time determines which lectures and quizzes were available in the Goal Progress

construct). This means that each lecture, quiz, and break must take up some amount of

calendar time. Although we do not explicitly model the amount of time spent on each of

these event choices (besides the break length ranges), in the simulation we can “predict”

how much time the individual would have spent by using the distribution of event lengths in

the observed data, either via random sampling from the empirical distribution or using the

parameter estimates of a regression on relevant variables such as lagged event lengths, week

indicators, course progress, etc. This is consistent with the literature that uses rational

expectations to generate predictive distributions of endogenous variables (i.e., price, Muth

1961).

Similarly, for the sequential data, we can use a regression to predict quiz scores for when

individuals take either Marketing or Operations quizzes, which allows for updating of indi-

vidual beliefs about quiz-taking abilities in each course. Thus, each time individuals made
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a choice in our simulation, we were able to assign the choice an event length, which allowed

the individual to move forward in calendar time until they reached the end of 5 weeks, as

well as a quiz score if the individual took a quiz, which allowed her to update her quiz-taking

abilities. (See Appendix A.10. for further details).

After obtaining the simulated choice sequences for each individual sample, we can examine

how closely the simulated patterns fit the observed data. First, we look at whether the

models can capture the temporal and content binging patterns of the data, as proxied

by the average course choice run length (without breaks) and the percentage of switching

between Marketing and Operations, respectively. Thus, in addition to the DIC values, Table

9 also compares the observed and simulated average run length and percent switches for

each nested version of the model.

We see that the Intercepts model is able to accurately simulate the average run length,

but greatly overestimates the percentage of choices for which individuals switch between

courses. The addition of the various constructs reduces the switching percentage, bringing

it closer to the observed pattern of content binging. Although the simulated percentage

is still greater than the observed percentage, we note that there is no state dependence

parameter in this version of the model to provide additional short-term “stickiness” in the

cross-course decisions akin to brand loyalty (Guadagni and Little 1983), so the patterns of

content binging are being captured purely by the theory-driven constructs in our model.

Since we estimated our model using hierarchical Bayes methods, we can also look at whether

our model is able to capture the heterogeneity in consumption patterns across individuals.

For both sequential and simultaneous datasets, Figure 35 plots the observed vs. simulated

values for the run length and % switches. Each point in each plot represents the mean

across simulations for one individual, and the solid line represents the 45-degree line. We

see that for both sequential and simultaneous datasets, the models are able to simulate the

heterogeneity across individuals in terms of run length, with most individuals falling on

or near the 45-degree line. However, the models overestimate the percentage of switching,
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which could be corrected for by the inclusion of a state dependence parameter.

Figure 35: Individual-level posterior predictive checks for observed vs. simulated data

4.6. Parameter Estimation Results

We present the estimated parameters for the full 2-stage model with all constructs. We

summarize the posterior distributions for the elements of µ and the diagonal elements of Ω,

with each individual’s parameters θi ∼MVN(µ,Ω).

First, we discuss the parameter estimation results for the constructs that determine the

utilities in Stage 1, including the Intercepts, Goal Progress, Completion, and One-Stage

Ahead. Then we discuss the constructs that determine the utilities in Stage 2, including

the Intercepts and Knowledge Accumulation. Note that in the 2-stage model, for each

construct we are able to estimate a set of parameters for both Marketing and Operations.

4.6.1. Stage 1 Constructs

Table 10 shows the results for the estimation of the parameters in Stage 1, while the results

for Stage 2 are presented in the next subsection in Table 11. In both tables, we present the

mean of the posterior draws of µ, the 95% credible interval of the posterior draws of µ, as
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well as the mean of the posterior draws of σ2, i.e. the diagonal elements of the variance-

covariance matrix Ω.

Table 10: Summary of estimated parameters in stage 1

Sequential Simultaneous

Construct Parameter µ 95% CI σ2 µ 95% CI σ2

Intercepts
β0M .46 [.41, .52] 0.26 .97 [.91, 1.03] .29

β0O .05 [-.03, .12] 0.23 1.49 [1.43, 1.57] .25

Goal Progress

β1M .22 [.11, .32] 0.42 .44 [.32, .56] .40

β2M 1.06 [.77, 1.31] 1.82 1.74 [1.37, 2.20] 5.31

β1O -.03 [-.20, 0.14] .90 .52 [.36, .71] .48

β2O -3.22 [-3.55, -2.89] 3.36 -5.49 [-5.79, -5.03] 8.98

Completion

β3M -1.99 [-2.14, -1.84] 1.38 -.33 [-.44, -.21] .86

β4M -.31 [-.40, -.21] 0.34 -1.36 [-1.53, -1.20] 1.58

β3O -.46 [-.57, -.36] .51 -.47 [-.58, -.35] .70

β4O .28 [.18, .37] .38 -.65 [-.81, -.52] 1.45

One-Stage Ahead γ .74 [.65, .82] 0.29 N/A N/A N/A

The Intercept parameter estimates capture the relative choice shares of Marketing and

Operations (vs. Breaks) for each dataset. The parameters values of the Goal Progress

construct allow us to determine which of the 8 curves depicted in Figure 34 describes the

change in utility with respect to goal progress for the population as a whole, as well as for

each individual. The negative parameter estimates in the Completion construct indicate

that the utility for courses drops off significantly after visiting all quizzes or lectures at least

once. This effect is especially strong for Marketing quizzes (β3M = −1.99) in the sequential

data and for Marketing lectures in the simultaneous data (β3M = −1.36). For the sequential

data, the One-Stage Ahead construct has a mean of γ = .74. This indicates that individuals

are taking into account a fraction of the utility that could be obtained in stage 2 of the
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decision process when they make a choice during stage 1. In future work, we plan to obtain

the analogous estimate for the One-Stage Ahead construct for the simultaneous data.

In Figure 36, we plot the posterior means of the linear and quadratic terms within the

Goal Progress construct for each individual, with separate parameters for Marketing and

Operations. This way, we can categorize each individual as a specific type of learner based

on how the utilities of the courses change with progress.

In Marketing, 76% of sequential learners and 79% of simultaneous learners have parameters

that classify them as Curve 1 (in Figure 34), which indicates a non-monotonic U-shaped

function where utility first decreases and then increases greatly with progress, correspond-

ing to the stuck in the middle effect. In Operations, 90% of sequential learners and 95% of

simultaneous learners are classified as Curve 4, which indicates a non-monotonic inverse-U-

shaped function where utility first increases and then decreases with progress, corresponding

to slack theory. Interestingly, we find that these effects are more extreme (i.e., the param-

eters are farther from zero) and more varied for the simultaneous data compared to the

sequential data.

One potential reason for why Marketing and Operations have different Goal Progress effects

is that Operations has more quizzes at the end, including a cumulative final. Thus, the

workload towards the ends of the Operations course, in terms of lectures and quizzes, is

much higher compared to Marketing. Thus, one interpretation for the inverse U-shaped

function for utility with respect to progress is that individuals underestimate the effort

needed for Operations at the beginning, but motivation starts to drop off near the end as

they run low on time or other resources.

In contrast, individuals in Marketing exhibit a U-shaped function for utility with respect to

progress, indicating that they start strong and end strong, with a lull in the middle. The

decrease at the beginning may be due to the general trend that learners tend to start the

Marketing course first, and then wait a few days or weeks before starting the Operations
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course. The Operations course may take away from time and resources that could be spent

on Marketing, resulting in the lull in the middle, but as individuals become less motivated

to engage in Operations due to its difficulty, they may switch back to the relatively easy

Marketing course and exhibit a goal gradient increase in utility as they approach completion.

Figure 36: Goal Progress individual-level parameter estimates for Marketing and Operations

4.6.2. Stage 2 Constructs

Table 11 shows the estimates for the parameters in the stage 2 constructs. Note that we

estimated the Intercepts and the Knowledge Accumulation construct parameters for the

sequential data, but only the Intercepts for the simultaneous dataset. In future work, we

plan to transform or normalize the quiz score data from the simultaneous dataset into values

that are comparable to those in the sequential dataset in order to estimate the Knowledge
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Accumulation construct parameters for the simultaneous learners.

For the Knowledge Accumulation construct, we set the initial means of the quiz-taking

abilities to π0M = π0O = 0.5 and the precision to η0M = η0O = 1. This can be interpreted

as individuals having a “weak” prior belief that they have average quiz-taking abilities for

the course. In future work, we can estimate {π0M , π0O} and {η0M , η0O} heterogeneously

to determine whether there are differences in initial beliefs across individuals and across

courses.

Table 11: Summary of estimated parameters in stage 2 construct

Sequential Simultaneous

Construct Parameter µ 95% CI σ2 µ 95% CI σ2

Intercepts

α0M -2.03 [-2.25, -1.82] 0.75 -1.32 [-1.40, -1.25] .43

α0O -3.15 [-3.41, -2.95] 1.11 -1.04 [-1.19, -.93] 1.26

δ1 .16 [.07, .23] 0.47 .54 [.46, .62] .45

δ2 -.30 [-0.38, -.22] 0.34 -.07 [-.15, .02] .30

Knowledge

α1M .18 [-.04, .41] 0.68 N/A N/A N/A

α2M .14 [.10, .17] 0.10 N/A N/A N/A

α1O 2.07 [1.82, 2.35] 1.20 N/A N/A N/A

α2O 0.18 [.14, .21] 0.10 N/A N/A N/A

For both the sequential and simultaneous data, the intercepts for quizzes in both Marketing

(α0M ) and Operations (α0O) are negative, which accounts for the lower choice shares for

quizzes in stage 2 of both courses. The intercepts for the different break lengths reflect the

higher frequency of short breaks (δ1) and lower frequency of medium breaks (δ2), compared

to long breaks.

Within the Knowledge construct, depending on the sign of the coefficient, different variables

can be interpreted as contributing to either knowledge accumulation or decay. We see that
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beliefs about quiz-taking abilities have a positive effect on the utility of taking a quiz in

both courses (α1M and α1O). Since individuals are allowed to attempt quizzes more than

once, one interpretation is that when individuals receive high quiz scores, their beliefs about

their quiz-taking abilities increase, and so they become more motivated to take more quizzes

(assuming that there are still available quizzes to take).

Watching more consecutive lectures has a positive effect in both Marketing (α2M ) and

Operations (α2O). These results are akin to the traditional view that watching more lectures

can lead to knowledge accumulation, and therefore a greater likelihood to take quizzes. In

future work, we can explore other factors that might lead to knowledge accumulation or

decay, such as taking breaks of different lengths or engaging in other courses.

4.7. Counterfactual Simulations

In our analyses, we were able to estimate our model on two datasets that occurred before

and after the Coursera platform switched the Marketing and Operations course content

from weekly sequential release to on-demand simultaneous release. It is of interest to the

firm and the academic institution offering the content how this change to the courses affects

individuals consumption patterns. Thus, we conducted a counterfactual simulation where

we changed the release structure of the lectures and quizzes in each course, and examine

how the distribution of course content visited over time changes.

Figure 37 depicts the cumulative percentage of total visits to Marketing and Operations,

averaged across individuals, for the sequential versus simultaneous datasets. The start date

for each course is individual-specific and course-specific. We see that for both courses, the

visits in the simultaneous data is more “front-loaded” compared to the visits in the sequen-

tial data, resulting in a more concave shape in the cumulative distribution.

First, we use the parameter estimates from the sequential data to perform out-of-sample

predictions of the simultaneous data. In the sequential data, the lectures and quizzes in
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Figure 37: Comparison of observed sequential vs. simultaneous cumulative distribution of
visits

each course were released on a weekly basis, so in the counterfactual scenario, we simulated

simultaneous release by having all lectures and quizzes available from the moment the

individual starts consuming content. The main source of variation comes from the Goal

Progress construct, since now instead of having an exogenous goal reset each week, there is

one over-arching goal to complete all the content.

Figure 38 compares the simulated data using the parameter estimates from the sequential

data. Thus, in this figure the solid sequential curve represents an in-sample fit, while the

dotted simultaneous curve represents the counterfactual out-of-sample fit. We see that us-

ing sequential data to predict the simultaneous data is able to capture the contrast between

the two datasets, especially for Marketing.

108



Figure 38: Using sequential data to simulate simultaneous data

Second, we use the parameter estimates from the simultaneous data to perform out-of-

sample predictions of the sequential data. In the simultaneous data, the lectures and quizzes

were all available from the moment individuals started consuming content. Therefore, in the

counterfactual scenario, we randomly drew a “course start time” (relative to the individual’s

own consumption start time) from the observed sequential data, and then had lectures and

quizzes “released” each week relative to this course start time, for 4 weeks.

Figure 39 compares the simulated data using the parameter estimates from the simultaneous

data. In this figure, the dotted simultaneous curve represents the in-sample fit, while the

solid sequential curve represents the counterfactual out-of-sample fit. We see that using the

simultaneous data to predict the sequential data fails to capture the difference between the

two datasets, and moreover overestimates the concavity in consumption across the weeks.
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Figure 39: Using simultaneous data to simulate sequential data

In summary, we conducted counterfactual simulations where the content release policy was

changed from weekly sequential to on-demand simultaneous release, and vice versa. We then

took advantage of a natural experiment policy change where the Marketing and Operations

courses offered on the Coursera platform actually transitioned from sequential to simulta-

neous release. The predictions of our simulations were able to capture the change in course

content visit patterns going from sequential to simultaneous data, but not from simultane-

ous to sequential data. In future work, we will explore these differences to understand why

the predictions are accurate in one direction but not the other.

4.8. Predicting Downstream Behaviors

Binge consumption patterns may be predictive of more downstream behaviors that are of

interest to both instructors on the Coursera platform and the firm itself. For example, in
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prior work, clumpiness has been shown to be predictive of customer lifetime value (Zhang,

Bradlow, and Small 2014), variety-seeking has been used to improve predictions of brand

choice (McAlister 1982; Chintagunta 1998), and binging on Hulu has been related to ad-

vertising response (Schweidel and Moe 2016).

In our online learning context, a notable characteristic in the consumption patterns of

learners in both our sequential and simultaneous datasets was the long runs of course content

consumption without breaks, which we referred to as temporal binging, and the low rate of

switching between Marketing and Operations, which we referred to as content binging. In

the following subsections, we examine whether our temporal and content binging metrics

are predictive of both within and cross-course behaviors. In these analyses, we focus on

learners from the sequential release dataset.

4.8.1. Within-Course Behaviors

First we look at whether temporal and content binging patterns are predictive of activity

within the focal courses, Marketing and Operations. Using simple linear regression analyses,

we find that binging in earlier weeks of the course is predictive of binging in later weeks.

For example, the coefficient from the regression of temporal binging in week 2 on week 1 is

significant (β = 0.44, p < 0.001), and this relationship is robust across all 5 weeks, and for

content binging as well.

We also find that more binging predicts more course completion, in terms of the percentage

of the content that has been visited so far (temporal binging: β = 0.03, p < 0.001, content

binging: β = 2.37, p < 0.001). Interestingly, more temporal binging is actually correlated

with lower grades in the course (β = −0.02, p < 0.001 for average quiz scores in Operations,

and β = −0.01, p < 0.05 for final grades in Marketing), which is consistent with the lay

intuition that cramming is not good for test-taking, or indicates that the individuals who

cram may also be those who are not good learners and already behind in the course. These

results are also consistent with work that finds that distributed (vs. massed) learning leads
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to better memory and retention (Childers and Tomasello 2002; Bloom and Shuell 1982;

Cepeda et al. 2006).

4.8.2. Cross-Course Behaviors

In 2015 when we observed the sequential dataset, two other courses were being offered in

addition to Marketing and Operations as part of the Wharton Online Business Foundations

package: Introduction to Accounting and Introduction to Finance. Among the 467 individ-

uals in our original sample who registered and paid for Marketing and Operations, 83.7%

had also registered for Accounting, while 81.5% had registered for Finance (and had visited

at least one lecture/quiz). This allows us to look at cross-course downstream behaviors.

A question of interest for the Coursera platform, as with many new product introductions,

is whether the diffusion and adoption of one product can help predict the adoption of related

products (Wind and Mahajan 1997; Van den Bulte 2000). For online learning environments

like Coursera, “adoption” can mean engagement in course content or payment for different

certification levels (similar to basic vs. premium subscription services, for example).

Because we are able to track the same individuals across multiple courses offered by Wharton

Online on the Coursera platform, we can look at how the activity in one course predicts

engagement in other courses. For example, we can look at whether the number of lecture

visits in Operations is predictive of whether or not individuals later registered for Accounting

or Finance.

In Figure 40, we separated individuals into quartiles based on their total visits to Operations

lectures, and plotted the percentage of individuals in each quartile who later registered for

Accounting and Finance. We see that individuals within higher quartiles were more likely

to register for Accounting and Finance.

A binary logistic regression also reveals a significant positive effect of the number of visits to

Operations lectures on Accounting registration (β = 0.02, z = 4.59, p < 0.001) and Finance
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registration (β = 0.04, z = 5.25, p < 0.001). Likewise, in future work, we can look further

into how engagement in Operations or Marketing predicts both registration and payment

for other courses offered by Wharton Online.

Figure 40: Operations lecture visits and cross-course registration

In addition, we found that content binging in Marketing and Operations was predictive of

overall consumption, in terms of total number of URL visits, for both Accounting (β =

39.7, p < 0.05) and Finance (β = 45.0, p < 0.01). Content binging in Marketing and

Operations was also predictive of percent completion in Accounting (β = 0.53, p < 0.05)

and Finance (β = 0.55, p < 0.05). Interestingly, temporal binging within Marketing and

Operations was also able to predict whether individuals ended up paying for the certificate

in the Finance course (β = 0.07, p < 0.05), which suggests that perhaps individuals who

are able to consumer content for longer periods of time without breaks are more likely to

pursue additional courses.
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In future work, we can examine whether or not these results hold for the individuals in our

simultaneous dataset from 2016-2017, who had much more flexibility in when they could

take each course as well as a broader set of courses available on the platform compared to

the individuals in the sequential dataset.

4.9. Discussion

In this chapter, we investigated content consumption within an online learning setting

where individuals can watch lecture videos and take quizzes to evaluate their accumulated

knowledge. We model individual decisions to watch lectures, take quizzes, and take breaks

within a two-stage decision process where they consider both the contemporaneous utility of

consumption as they make progress through the course, as well as the utility from knowledge

accumulation. Our model is able to capture the patterns in the data that we refer to as

temporal and content binging. In addition, we use data from two different content release

formats, sequential and simultaneous, and use the model estimation results from each format

to make predictions about the alternative format.

One feature of our model is that we treat individual decisions to engage in content as

discrete, with a finite set of break length ranges to choose from. One extension of our

model would be to further assume that individuals can choose the continuous length of

time they engage in a particular lecture, quiz, or break. In the context of online learning,

there is reason to believe that breaks of different lengths may have different effects on

utilities and the accumulation of knowledge; for example, research has shown that sleep can

lead to improvements in recently acquired memories (Ellenbogen et al. 2006).

We can also extend our model to incorporate the choice of visiting new content versus

repeating a lecture or a quiz. In the current model, we use Goal Progress as a measure of

the utility of consumption. Goal Progress is quantified by the percentage of lectures and

quizzes in a course that have been visited at least once. However, another construct that

could capture the decreasing or increasing returns to consumption could be “Efficiency”
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or the effect of the total number of times individuals have visited lectures and quizzes

so for, which would reflect both first visits and revisits to content. Depending on the

sign of the parameters, Efficiency could capture satiation or hedonic adaptation (Inman

2001; Nelson and Meyvis 2008; Nelson, Meyvis, and Galak 2009) if individuals experience

decreasing returns to consumption, or fluency if individuals experience increasing returns

to consumption (Chou and Ting 2003; Whittlesea and Leboe 2000; Greifeneder, Bless, and

Pham 2011).

In our model, we made the assumption that individuals were making decisions using a two-

stage process, where they first chose the course (vs. a break), and then choice the specific

type of content within the course to consume (or a specific break length). However, there are

many alternative decision trees that are plausible. For example, we might collapse decisions

into a single stage consisting of 7 choices, or extend decisions to take place across three

stages where individuals might first choose between consuming anything at all vs. taking a

break, and then go on to choose between Marketing/Operations, and then lectures/quizzes

within each course. (See Appendix A.11. for detailed examples.)

We also restricted our analyses to individuals who had registered and paid for the course, in

order to obtain a sample with enough observations to quantify and model binge consumption

at the individual level. In future work, we can extend our model to capture how individuals

actually make payment decisions. For example, they might register and sample the course

content before deciding to pay. We can also model more sparse consumption patterns of

individuals who may quit after only a few lectures.

Finally, we focused on a short time horizon of individuals engaged in a single 5-week session

simultaneously in two courses. However, individuals who have paid and did not pass the

course in a particular session can return for later sessions for additional opportunities to

pass the course and obtain an online certificate. In future work, we plan to examine how

individuals make “repeat registration” decisions after the initial payment investment, and

also how individuals complete portfolios or “bundles” of courses (e.g., all four courses in
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the Business Foundations bundle) over multiple years, and how their binge consumption

patterns relate to the long-term completion of these bundles.

In summary, this chapter provides one way of using behavioral theory constructs to model

binge consumption patterns of individuals in an online learning setting, within a framework

where there is tension between the utility of consumption and the utility from knowledge

accumulation. By shedding light on how individuals make daily decisions to engage in

content within specific courses, our work provides implications for how content providers

should time content release and make predictions about future course engagement.
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CHAPTER 5 : Conclusion

We examine how consumers dynamically update their preferences across three different

online settings: online shopping, online gaming, and online learning. Consumers can up-

date their preferences based on information they get from the environment and through

experience with the available products. Table 12 gives an overview. In each chapter, we

build a mathematical model of consumer decisions that parameterizes specific phenomena

from behavioral theory. We test that our model captures the specific patterns observed in

the data via in-sample simulations of consumers’ sequences of choices. We also test the

effects of specific managerial interventions using out-of-sample counterfactual simulations,

and empirically verify our predictions using lab experiments or by taking advantage of data

following natural experiment policy changes.

Table 12: Overview of chapters

Online Shopping
(Chapter 2)

Online Gaming
(Chapter 3)

Online Learning
(Chapter 4)

1. Mathematical model of
consumer decisions

Sequential sampling
model with

forward-looking and
threshold-updating

Dynamic variety-
seeking preferences
based on perceptual

map distances

Course consumption
with goal progress,

knowledge
accumulation,

and forward-looking

2. Test that model captures
patterns in data

(in-sample)

Search length,
sequence of fixations
and clicks on AOIs

Sequence of map
choices, switching

Temporal and
content binging

3. Counterfactual
simulation

of managerial interventions
(out-of-sample)

Preference-based
product ordering

New product
release

Sequential vs.
simultaneous

content release

4. Empirical verification
of counterfactuals

Experimental
manipulation in lab

Natural experiment
policy change

Natural experiment
policy change
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In Chapter 2, we built a sequential sampling model of individual shopper eye fixations and

clicks on the landing page of an online store, and used extensions of our model to test

for forward-looking and threshold-updating behaviors. Using in-sample simulations from

the posterior parameter samples, we were able to capture search length on the landing

page, the sequence of fixations and clicks on AOIs, as well as the heterogeneity in search

patterns across shoppers. We performed counterfactual simulations to test whether different

preference-bass product orderings would change search length and the products that were

clicked on. We empirically verified our counterfactual predictions using a follow-up lab

experiment with different experimental conditions.

In Chapter 3, we built a model to capture the map choices of players of an online game

across rounds of gameplay. We parameterized players’ variety-seeking preferences using a

coefficient on the perceptual distance between maps that could vary over time and with

round outcomes. We used in-sample simulations to predict the sequence of map choices

and map switching. We then used out-of-sample simulations to predict whether individuals

would adopt new maps upon their release in various expansion packs, and compared this

to observed behavior following the firm’s real-world release of the new maps.

In Chapter 4, we modeled the course consumption decision of users on an online learning

platform. To capture individual decisions about whether to engage in a course or take a

break and whether to watch lectures or take quizzes, we used the parameterization of our

model to test various theories of goal progress, knowledge accumulation, and boundedly

rational forward-looking. We demonstrate that our model is able to improve in-sample

simulations of individual sequences of consumption decisions, and in particular the various

components of our model improves predictions of temporal and content binging that we

find in the observed data. In addition, we test whether our model is able to accurately

make out-of-sample counterfactual predictions by using separate datasets from when course

content was released sequentially versus simultaneously, and examine whether the model

results from one dataset is able to predict the patterns in the other dataset, and vice versa.
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In summary, we examine three different online consumer settings that vary widely in tem-

poral resolutions, from eye movements that occur within a second and comprise a 5-minute

shopping trip, to online gaming and online video decisions that occur several times a day

and may span weeks or even years. We demonstrate that building models that are grounded

in behavioral theory can help predict the sequence of choices the consumers make, and also

capture how these choices change with different managerial interventions.

119



APPENDIX

A.1. Model simulation and recovery

We simulated data for 67 shoppers for the baseline and full models, with the true means of

the parameters shown in Table 13, and the true variance-covariance matrix as a diagonal

matrix with 0.1 along the diagonal. Using a hierarchical Bayes estimation procedure, we

were able to recover the means of the parameters, with nearly all 95% Credible Intervals

overlapping the true means.

Table 13: Recovery of Simulated Data for Baseline and Full Model

Parameter Baseline Forward-Looking Fixations Empirical Threshold-Changing

True Est 95% CI True Est 95% CI True Est 95% CI

β1 Preference 1 1.01 [.69, 1.31] 1 1.07 [.75, 1.40] 1 1.26 [.6, 1.80]

β2 Price .5 .62 [.40, .83] .5 .72 [.53, .92] .5 .56 [.33, .78]

β3 Out-of-Budget -1 -1.21 [-1.66, -.80] -1 -1.36 [-1.79, -.98] -1 -1.00 [-1.73, -.42]

β4 Category 3 3.44 [2.98, 3.91] 3 3.78 [3.52, 4.04] 3 3.55 [3.22, 3.92]

γ1 Scroll -1 -1.00 [-1.17, -.82] -1 -1.29 [-1.54, -1.07] -1 -1.12 [-1.32, -.95]

γ2 Distance -1 -1.19 [-1.42, -.95] -1 -1.49 [-1.76, -1.22] -1 -1.32 [-1.57, -1.10]

γ3 Unseen -1 -.93 [-1.21, -.66] -1 -1.07 [-1.41, -76] -1 -.69 [-1.01, -.39]

ρ 7 7.38 [6.89, 7.83] 7 7.82 [7.39, 8.18] 6 5.89 [5.52, 6.29]

λ1 N/A N/A N/A .05 .08 [.06, .10] N/A N/A N/A

λ3 N/A N/A N/A N/A N/A N/A -3 -2.89 [-3.79, -2.07]

A.2. Experiment 1 Shopping Instructions

Participants in Experiment 1 were randomly assigned to one of the following goal conditions,

with the wording based on literature suggesting that consumers may be motivated by utili-

tarian, practical considerations or hedonic, pleasure-seeking ones (Holbrook and Hirschman

1982).

Utilitarian goal instructions: “You have decided to go shopping for a new top. Think of

this as a shopping trip for practical, every day, casual clothing, something you might wear

to work or class. Your goal is to find a top.”
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Hedonic goal instructions: “You have decided to go shopping for a new top. Think of this

as a shopping trip for frivolous, indulgent, fun clothing, something you might wear to a

party. Your goal is to find a top, and also to enjoy the shopping experience.”

A.3. Grid Search for Preference Value Updating Rate αs

To determine the updating rate αs for the preference feature, we used a grid search and

estimated the baseline model using five different values of αs. Table 14 shows that in both

Experiments 1 and 2, we find that the model with αs = .1 results in the lowest DIC. There-

fore, we use this value for the remaining analyses.

Table 14: DIC values for different updating rates

αs for Preference Experiment 1 Experiment 2

.1 8802 17486

.3 8807 17606

.5 8834 17640

.7 8838 17646

.9 8849 17660

A.4. Alternative Distance Variable Specification

As an alternative to the binary Distance variable that we used in the model estimation,

which captured “near” versus “far” AOIs, we tried using the Euclidean pixel distance be-

tween the center of the AOIs. For example, if the centers of two AOIs were 200 pixels apart

vertically on the screen and 400 pixels apart horizontally, then the Distance between them

would be
√

2002 + 4002 = 447.21. The pixel distance between an AOI and itself if 0.

We estimated the baseline model using Euclidean Distance and found that the average

simulated number of fixations was 25.93 (10.24), RMSE = 16.46. Figure 41 compares the

results for Euclidean and Binary Distances, and we see that the Euclidean distance tends
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to more severely under-predict the total number of fixations. One explanation is that since

the relationship between the effort and the Euclidean pixel distance is linear, there is a very

high probability of re-fixating on the same AOI, which has 0 distance from itself, resulting

in less exploration of other products on the page and shorter search length.

Figure 41: Observed vs. simulated fixations for alternative distance variables

A.5. Calculation of Exchange Rate of Attractiveness and Fixations

V = (β0 + β1x+ β2x
2 + β3x

3)− α(γ0 + γ1x+ γ2x
2 + γ3x

3)

= (β0 − αγ0) + (β1 − αγ1)x+ (β2 − αγ2)x2 + (β3 − αγ3)x3

= ∆0 + ∆1x+ ∆2x
2 + ∆3x

3

(A.1)

To solve for the maximum, we take the derivative of V with respect to x and set to 0:

V ′ = ∆1 + 2∆2x+ 3∆3x
2 = 0 (A.2)
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One solution to this is α = β1
γ1

. To ensure this is a maximum and not a minimum, we check

that β3 − β1
γ1
γ3 < 0.

A.6. Estimation Results for Experiment 2 Conditions

Table 15 shows the estimation results for all participants in Experiment 2, as well as sep-

arated by ordering condition (random, worst-first, and best-first). We see that across con-

ditions, the mean values of the parameters are very close in terms of sign and order of

magnitude. There are some expected differences between conditions. For example, the

preference coefficient β1 is smaller in magnitude and the effort coefficient γ2 is larger in

the best-first condition compared to in other conditions because all the products at the top

of the page had high liking ratings, so they were differentiated more by effort rather than

attractiveness. Furthermore, the decision threshold intercept ρ is largest in the worst-first

condition where shoppers made the most fixations on average, and smaller in the best-first

condition where shoppers made the fewest fixations.
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A.7. List of lecture and quiz names and video run times

Table 16: List of lectures and quizzes in Marketing

Number Week Type Name Time

1 1 Lecture Marketing 101: Building Strong Brands Part I 15:10
2 1 Lecture Marketing 101: Building Strong Brands Part II (4:10) 4:10
3 1 Lecture Strategic Marketing 11:39
4 1 Lecture Segmentation and Targeting 12:45
5 1 Lecture Brand Positioning 12:48
6 1 Lecture Brand Mantra: The Elevator Speech 9:41
7 1 Lecture Experiential Branding 13:24
8 1 Quiz Quiz #1
9 2 Lecture From Product-Centric to Customer-Centric Management 15:25
10 2 Lecture Cracks in the Product-Centric Approach 9:49
11 2 Lecture Data-Driven Business Models 4:26
12 2 Lecture Three Cheers for Direct Marketing 3:51
13 2 Lecture Which Firms Are Customer Centric? 12:11
14 2 Lecture What is Customer Centricity? 11:28
15 2 Lecture Living in a Customer-Centric World 14:48
16 2 Lecture More Reflections on Customer Centricity 3:21
17 2 Lecture Questions on Customer Centricity 6:00
18 2 Quiz Quiz #2
19 3 Lecture Introduction and Execution 2:09
20 3 Lecture Friction 4:39
21 3 Lecture Online/Offline Competition 4:51
22 3 Lecture The Long Tail Part 1 10:58
23 3 Lecture The Long Tail Part 2 9:55
24 3 Lecture Preference Isolation 14:37
25 3 Lecture Customers and Digital Marketing 9:49
26 3 Lecture Influence and How Information Spreads 11:02
27 3 Lecture Pricing Strategies 1: Introduction 11:14
28 3 Lecture Distribution Strategies 1: Introduction 13:38
29 3 Lecture Distribution Strategies 2: Channel Design 13:39
30 3 Quiz Quiz #3
31 4 Lecture Brand Messaging & Communication 12:08
31 4 Lecture Brand Elements: Choosing a Brand Name 19:57
31 4 Lecture Brand Elements: Color & Taglines 11:41
31 4 Lecture Brand Elements: Packaging 10:09
31 4 Lecture Brand Elements: Persuasion 13:59
31 4 Lecture Repositioning a Brand 18:58
31 4 Quiz Final Exam
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Table 17: List of lectures and quizzes in Operations

Number Week Type Name Time

1 1 Lecture Intro Session 1 7:55
2 1 Lecture Intro Session 2 7:56
3 2 Lecture Module 2 Session 1 Video 9:29
4 2 Lecture Module 2 Session 2 Video 11:24
5 2 Lecture Module 2 Session 3 Video 15:21
6 2 Lecture Module 2 Session 4 Video 6:35
7 2 Lecture Module 2 Session 5 Video 7:25
8 2 Lecture Module 2 Session 6 Video 10:56
9 2 Lecture Module 2 Session 7 Video 14:14
10 2 Lecture Module Review of Process Analysis 26:16
11 2 Quiz Module 2 - Process Analysis
12 3 Lecture Module 3 Session 1 Video 7:56
13 3 Lecture Module 3 Session 2 Video 9:39
14 3 Lecture Module 3 Session 3 Video 6:44
15 3 Lecture Module 3 Session 4 Video 6:22
16 3 Lecture Module 3 Session 5 Video 12:34
17 3 Lecture Module 3 Session 6 Video 8:35
18 3 Lecture Module 3 Session 7 Video 9:11
19 3 Lecture Module 3 Session 8 Video 10:00
20 3 Lecture Review of Productivity 19:57
21 4 Lecture Module 4 Session 1 Video 10:30
22 4 Lecture Module 4 Session 2 Video 19:40
23 4 Lecture Module 4 Session 3 Video 12:17
24 4 Lecture Module 4 Session 4 Video 9:12
25 4 Lecture Module 4 Session 5 Video 8:26
26 4 Lecture Module 4 Session 6 Video 7:05
27 4 Lecture Module 4 Review 19:12
28 4 Quiz Module 4 - Quality
29 4 Quiz Final Exam - Module 2
30 4 Quiz Final Exam - Module 3
31 4 Quiz Final Exam - Module 4
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A.8. Determining Break Lengths

In order to assess how sensitive our analyses were to different break cutoff lengths, we

tried different cutoff times, ranging from 15 minutes to 2 weeks, when constructing each

individual’s sequence of choices. We looked at two metrics to determine how the cutoff

times influence the choice process: the total number of breaks and the average lecture/quiz

run (consecutive lectures/quizzes in either course with no breaks in between), which are

both measures of temporal binging. Note that the number of switches between Marketing

and Operations, which is a measure of content binging, is not affected by the break cutoff

times.

Figure 42 plots the total breaks and average lecture/quiz runs, averaged across individuals,

for each cutoff time. We see that there is a distinct jump between 1 and 24 hours, with

the curves flattening out around 48 hours. This suggests that there may be a large number

of breaks that are less than 24 hours long. So we decided on 1 hour as the break cutoff length.

Figure 42: Total breaks and average runs for different cutoff times

In order to determine the number of break length options for each individual, we looked
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at the distribution of break lengths across all individuals in our sample. Figure 43 shows

these distributions for all break lengths, as well as a closeup of break lengths that were less

than a week long. We see that there is a distinct temporal pattern where the break lengths

are concentrated around the minimum break length of 2 hours, as well as 24-hour intervals.

Therefore, we chose break lengths that ranged between the peaks: 1-12 hours, 12-36 hours,

and 36+ hours (up to 5 weeks).

Figure 43: Distribution of break lengths

A.9. Parameter Recovery

To determine that our model was identified, we simulated data for 500 individuals, with the

parameters for each individual drawn from a multivariate normal distribution with mean

and covariance similar to the values of the parameters estimated using the observed data.

Table 18 shows the true mean values for the full model with the following constructs: In-

tercepts, Goal Progress, Completion, Knowledge, and One-Stage Ahead. Note that in this

simulation, instead of the Time construct, we used Weekly intercepts. We used an MCMC

procedure to estimate the model, which resulted in estimated 95% Credible Intervals that
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contained the true means for each parameter.

Table 18: Summary of true and estimated parameters for simulated data

Construct Parameter True Mean Est. Mean Est. 95% CI Est. Variance

Intercepts

β0M 1.50 1.40 [1.16, 1.64] 1.48
β0O 0.50 0.42 [0.17, 0.68] 1.05
α0M -2.0 -1.95 [-2.24, -1.73] 1.35
α0O -2.0 -2.23 [-2.52, -1.96] 1.62
δ1 0.05 0.26 [-0.06, 0.53] 1.64
δ2 -0.5 -0.57 [-0.85, -0.34] 1.88

Week

β1M 0.20 0.19 [-0.04, 0.23] 0.54
β2M 0.10 0.01 [-0.15, 0.19] 0.54
β3M 0.01 -0.21 [-0.37, -0.03] 0.67
β4M -0.50 -0.43 [-1.62, -0.27] 0.70
β1O -1.0 -1.31 [-1.59, -0.96] 1.60
β2O -0.50 -0.71 [-1.02, -0.39] 1.49
β3O -0.50 -0.49 [-0.71, -0.39] 1.52
β4O 0.10 -0.06 [-0.31, 0.23] 0.99

Goal Progress

β5M 0.20 0.14 [-0.04, 0.30] 0.68
β6M -0.20 -0.03 [-0.29, 0.37] 1.74
β5O -1.0 -0.71 [-1.11, -0.36] 1.51
β6O -1.0 -1.13 [-1.58, -0.59] 3.75

Completion

β7M -0.50 -0.29 [-0.45, -0.10] 0.54
β8M -0.20 -0.16 [-0.09, -0.25] 0.48
β7O -0.50 -0.51 [-0.97, -0.18] 1.05
β8O 0.50 0.32 [0.13, 0.51] 0.93

Knowledge

α1M 2.00 1.50 [1.30, 1.70] 1.10
α2M -0.50 -0.48 [-0.45, -0.51] 0.96
α1O 2.00 1.83 [1.75, 1.86] 1.50
α2O 0.50 0.23 [0.13, 0.32] 0.50

One-Stage Ahead γ 0.10 0.30 [0.05, 0.51] 1.15

A.10. Predicting Quiz Scores and Event Lengths

We do not explicitly model the values of quiz scores or the length of calendar time that

individuals spend on each lecture, quiz, and break (with the exception of short/medium/long

break range choices) as an endogenous outcome in our full model. However, when we

simulate data from the posterior draws obtained via the MCMC procedure to determine

whether we can recover the temporal and content binging patterns observed in the data,

we need to “plug in” a quiz score so that the individual can Bayesianly update her beliefs

about her quiz-taking abilities whenever she takes a quiz, and also the calendar times of

events so that she can move forward through the 5 weeks of the course.
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We regress the quiz scores and break lengths from the observed data on a number of ex-

planatory variables, and then use the estimates from the regressions to “realistically” plug

in quiz scores and break lengths when simulating individual choice sequences. This is consis-

tent with the literature that uses rational expectations to generate predictive distributions

of endogenous variables (i.e., price; Muth 1961).

Tables 19, 20, and 21 show the results from regressing quiz scores and the event lengths

on the following variables: the total number of times the individual had visited Market-

ing quizzes (TMQ), Marketing lectures (TML), Operations quizzes (TOQ), and Operations

lectures (TOL) at the time the quiz was taken, the total number of times the individual

had visited the three break options (TB1, TB2, and TB3), an indicator for whether the

individual had visited all available lectures/quizzes at least once (percentages represented

by GMQ, GML, GOQ, and GOL), and the log of the time spent on the quiz.

Table 19: Regression results for quiz scores

Quiz Score (M) Quiz Score (O)

Intercept 0.62 (0.05)*** 0.14 (0.04)***
Lag [j − 1] 0.13 (0.03)*** 0.05 (0.02)***
Lag [j − 2] 0.02 (0.03) 0.13 (0.02)***
Lag [j − 3] 0.13 (0.03)*** 0.11 (0.02)***
log(TMQ) -0.04 (0.02)* -0.09 (0.02)***
log(TML) 0.02 (0.01)** -0.01 (0.01)
log(TOQ) 0.02 (0.01)** 0.09 (0.01)***
log(TOL) -0.00 (0.01) -0.02 (0.01)**
log(TB1) -0.02 (0.01)* 0.01 (0.01)
log(TB2) 0.02 (0.01)* 0.03 (0.01)*
log(TB3) -0.00 (0.02) 0.03 (0.02)
1(GMQ = 1) 0.07 (0.02)*** 0.01 (0.01)
1(GML = 1) -0.01 (0.02) -0.00 (0.02)
1(GOQ = 1) -0.01(0.02) 0.09 (0.02)***
1(GOL = 1) 0.06 (0.04) 0.02 (0.03)
log(time) 0.00 (0.01) 0.03 (0.01)***

Adj-R2 0.12 0.43

*** p < 0.001, ** p < 0.01, *p < 0.05
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Table 20: Regression results for quiz/lecture event lengths

MQ Length ML Length OQ Length OL Length

Intercept 0.10 (0.02)*** 0.11 (0.01)*** 0.16 (0.03)*** 0.05 (0.01)***
Lag [j − 1] 0.09 (0.03)*** 0.24 (0.01)*** 0.14 (0.02)*** 0.23 (0.01)***
Lag [j − 2] 0.02 (0.03) 0.13 (0.02)*** 0.10 (0.0)*** 0.14 (0.01)***
Lag [j − 3] -0.04 (0.03) 0.11 (0.01)*** 0.02 (0.02) 0.11 (0.01)***
log(TMQ) 0.01 (0.01)* -0.01 (0.00) -0.02 (0.01)* 0.01 (0.001)
log(TML) -0.00 (0.00) -0.02 (0.00)*** 0.00 (0.01) -0.02 (0.00)***
log(TOQ) 0.00 (0.00) 0.00 (0.00 -0.04 (0.01)*** -0.01 (0.00)**
log(TOL) -0.01 (0.00) -0.01 (0.00)*** -0.002 (0.01) -0.01 (0.00)**
log(TB1) 0.02 (0.01)* 0.04 (0.00)*** 0.02 (0.01)** 0.04 (0.00)***
log(TB2) 0.01 (0.00) 0.00 (0.00) 0.03 (0.01)*** 000 (0.00)
log(TB3) 0.01 (0.01) 0.01 (0.00) 0.01 (0.02) 0.02 (0.01)***
1(GMQ = 1) -0.00 (0.01) -0.04 (0.01)*** 0.03 (0.01)* 0.02 (0.01)**
1(GML = 1) 0.01 (0.01) -0.04 (0.00)*** -0.01 (0.01) -0.02 (0.01)***
1(GOQ = 1) -0.05 (0.02)** -0.00 (0.00) -0.00 (0.01) -0.01 (0.01)
1(GOL = 1) -0.00 (0.02) 0.01 (0.01) 0.00 (0.02) -0.01 (0.01)

Adj-R2 0.02 0.15 0.08 0.13

*** p < 0.001, ** p < 0.01, *p < 0.05

Table 21: Regression results for break event lengths

B1 Length B2 Length B3 Length

Intercept 0.10 (0.02)*** 0.11 (0.01)*** 0.16 (0.03)***
Lag [j − 1] 0.09 (0.03)*** 0.24 (0.01)*** 0.14 (0.02)***
Lag [j − 2] 0.02 (0.03) 0.13 (0.02)*** 0.10 (0.0)***
Lag [j − 3] -0.04 (0.03) 0.11 (0.01)*** 0.02 (0.02)
log(TMQ) 0.01 (0.01)* -0.01 (0.00) -0.02 (0.01)*
log(TML) -0.00 (0.00) -0.02 (0.00)*** 0.00 (0.01)
log(TOQ) 0.00 (0.00) 0.00 (0.00 -0.04 (0.01)***
log(TOL) -0.01 (0.00) -0.01 (0.00)*** -0.002 (0.01)
log(TB1) 0.02 (0.01)* 0.04 (0.00)*** 0.02 (0.01)**
log(TB2) 0.01 (0.00) 0.00 (0.00) 0.03 (0.01)***
log(TB3) 0.01 (0.01) 0.01 (0.00) 0.01 (0.02)
1(GMQ = 1) -0.00 (0.01) -0.04 (0.01)*** 0.03 (0.01)*
1(GML = 1) 0.01 (0.01) -0.04 (0.00)*** -0.01 (0.01)
1(GOQ = 1) -0.05 (0.02)** -0.00 (0.00) -0.00 (0.01)
1(GOL = 1) -0.00 (0.02) 0.01 (0.01) 0.00 (0.02)

Adj-R2 0.02 0.15 0.08

*** p < 0.001, ** p < 0.01, *p < 0.05
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A.11. Alternative Decision Trees

In our model, we assume that individuals are making decisions in 2 stages. However,

alternative decision “trees” are plausible, as illustrated in Figure 44. Different decision

trees have different psychological interpretations, and may result in better or worse fit (i.e.,

Neslin et al. 2014 review the differences between brand and channel choice).

For example, we might collapse stage 1 of the 2-stage model and assume that individuals are

actually making a 1-stage decision between all 7 choice options. The main difference between

the 1 and 2-stage models would be the utilities of quizzes/lectures and short/medium/long

break lengths.

Figure 44: Decision trees for models with 1 vs. 2 vs. 3 stages.

We might also assume that individuals are making decisions within a 3-stage process by

first making a choice between general content vs. break, and then deciding on the specific
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course, Marketing vs. Operations. Note that in the 2-stage model, temporal and content

binging are both captured in stage 1. In the 3-stage model, temporal binging occurs in

stage 1, as individuals decide between content and break, while content binging occurs in

stage 2 of the content branch, as individuals decide between the two courses.

We note that by adding “stage-ahead” parameters, which is analogous to the inclusive value

terms within a nested logit that induces correlation between options within nests (i.e., stage

2 of the 2-stage model, stage 2 and 3 of the 3-stage model), we can further assess the validity

and differences between these alternative decision trees. For example, the 1-stage model is

equivalent to a 2-stage model in which individuals have a discount factor of γ = 1 on the

utilities in stage 2 when incorporating these utilities into their decision in stage 1.
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