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Advancing Statistical Inference For Population Studies In Neuroimaging
Using Machine Learning

Abstract
Modern neuroimaging techniques allow us to investigate the brain in vivo and in high resolution, providing us
with high dimensional information regarding the structure and the function of the brain in health and disease.
Statistical analysis techniques transform this rich imaging information into accessible and interpretable
knowledge that can be used for investigative as well as diagnostic and prognostic purposes.

A prevalent area of research in neuroimaging is group comparison, i.e., the comparison of the imaging data of
two groups (e.g. patients vs. healthy controls or people who respond to treatment vs. people who don't) to
identify discriminative imaging patterns that characterize different conditions. In recent years, the
neuroimaging community has adopted techniques from mathematics, statistics, and machine learning to
introduce novel methodologies targeting the improvement of our understanding of various neuropsychiatric
and neurodegenerative disorders.

However, existing statistical methods are limited by their reliance on ad-hoc assumptions regarding the
homogeneity of disease effect, spatial properties of the underlying signal and the covariate structure of data,
which imposes certain constraints about the sampling of datasets.

1. First, the overarching assumption behind most analytical tools, which are commonly used in neuroimaging
studies, is that there is a single disease effect that differentiates the patients from controls. In reality, however,
the disease effect may be heterogeneously expressed across the patient population. As a consequence, when
searching for a single imaging pattern that characterizes the difference between healthy controls and patients,
we may only get a partial or incomplete picture of the disease effect.

2. Second, and importantly, most analyses assume a uniform shape and size of disease effect. As a
consequence, a common step in most neuroimaging analyses it to apply uniform smoothing of the data to
aggregate regional information to each voxel to improve the signal to noise ratio. However, the shape and size
of the disease patterns may not be uniformly represented across the brain.

3. Lastly, in practical scenarios, imaging datasets commonly include variations due to multiple covariates,
which often have effects that overlap with the searched disease effects. To minimize the covariate effects,
studies are carefully designed by appropriately matching the populations under observation. The difficulty of
this task is further exacerbated by the advent of big data analyses that often entail the aggregation of large
datasets collected across many clinical sites.

The goal of this thesis is to address each of the aforementioned assumptions and limitations by introducing
robust mathematical formulations, which are founded on multivariate machine learning techniques that
integrate discriminative and generative approaches.

Specifically,

1. First, we introduce an algorithm termed HYDRA which stands for heterogeneity through discriminative
analysis. This method parses the heterogeneity in neuroimaging studies by simultaneously performing
clustering and classification by use of piecewise linear decision boundaries.
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2. Second, we propose to perform regionally linear multivariate discriminative statistical mapping (MIDAS)
toward finding the optimal level of variable smoothing across the brain anatomy and tease out group
differences in neuroimaging datasets. This method makes use of overlapping regional discriminative filters to
approximate a matched filter that best delineates the underlying disease effect.

3. Lastly, we develop a method termed generative discriminative machines (GDM) toward reducing the effect
of confounds in biased samples. The proposed method solves for a discriminative model that can also
optimally generate the data when taking into account the covariate structure.

We extensively validated the performance of the developed frameworks in the presence of diverse types of
simulated scenarios. Furthermore, we applied our methods on a large number of clinical datasets that included
structural and functional neuroimaging data as well as genetic data. Specifically, HYDRA was used for
identifying distinct subtypes of Alzheimer's Disease. MIDAS was applied for identifying the optimally
discriminative patterns that differentiated between truth-telling and lying functional tasks. GDM was applied
on a multi-site prediction setting with severely confounded samples. Our promising results demonstrate the
potential of our methods to advance neuroimaging analysis beyond the set of assumptions that limit its
capacity and improve statistical power.
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”Deep in the human unconscious is a pervasive need for a logical universe

that makes sense. But the real universe is always one step beyond logic.”

—from ’The Sayings of Muad’Dib’ by the Princess Irulan
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ABSTRACT

ADVANCING STATISTICAL INFERENCE FOR POPULATION STUDIES IN

NEUROIMAGING USING MACHINE LEARNING

Erdem Varol

Christos Davatzikos

Modern neuroimaging techniques allow us to investigate the brain in vivo and in high

resolution, providing us with high dimensional information regarding the structure and

the function of the brain in health and disease. Statistical analysis techniques transform

this rich imaging information into accessible and interpretable knowledge that can be used

for investigative as well as diagnostic and prognostic purposes.

A prevalent area of research in neuroimaging is group comparison, i.e., the compari-

son of the imaging data of two groups (e.g. patients vs. healthy controls or people who

respond to treatment vs. people who don’t) to identify discriminative imaging patterns

that characterize different conditions. In recent years, the neuroimaging community has

adopted techniques from mathematics, statistics, and machine learning to introduce novel

methodologies targeting the improvement of our understanding of various neuropsychi-

atric and neurodegenerative disorders.

However, existing statistical methods are limited by their reliance on ad-hoc assump-

tions regarding the homogeneity of disease effect, spatial properties of the underlying sig-

nal and the covariate structure of data, which imposes certain constraints about the sam-

pling of datasets.

• First, the overarching assumption behind most analytical tools, which are commonly

used in neuroimaging studies, is that there is a single disease effect that differentiates
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the patients from controls. In reality, however, the disease effect may be heteroge-

neously expressed across the patient population. As a consequence, when searching

for a single imaging pattern that characterizes the difference between healthy con-

trols and patients, we may only get a partial or incomplete picture of the disease

effect.

• Second, and importantly, most analyses assume a uniform shape and size of disease

effect. As a consequence, a common step in most neuroimaging analyses it to apply

uniform smoothing of the data to aggregate regional information to each voxel to

improve the signal to noise ratio. However, the shape and size of the disease patterns

may not be uniformly represented across the brain.

• Lastly, in practical scenarios, imaging datasets commonly include variations due to

multiple covariates, which often have effects that overlap with the searched disease

effects. To minimize the covariate effects, studies are carefully designed by appro-

priately matching the populations under observation. The difficulty of this task is

further exacerbated by the advent of big data analyses that often entail the aggrega-

tion of large datasets collected across many clinical sites.

The goal of this thesis is to address each of the aforementioned assumptions and limita-

tions by introducing robust mathematical formulations, which are founded on multivari-

ate machine learning techniques that integrate discriminative and generative approaches.

Specifically,

1. First, we introduce an algorithm termed HYDRA which stands for heterogeneity

through discriminative analysis. This method parses the heterogeneity in neuroimag-

ing studies by simultaneously performing clustering and classification by use of
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piecewise linear decision boundaries.

2. Second, we propose to perform regionally linear multivariate discriminative statistical

mapping (MIDAS) toward finding the optimal level of variable smoothing across

the brain anatomy and tease out group differences in neuroimaging datasets. This

method makes use of overlapping regional discriminative filters to approximate a

matched filter that best delineates the underlying disease effect.

3. Lastly, we develop a method termed generative discriminative machines (GDM) to-

ward reducing the effect of confounds in biased samples. The proposed method

solves for a discriminative model that can also optimally generate the data when

taking into account the covariate structure.

We extensively validated the performance of the developed frameworks in the pres-

ence of diverse types of simulated scenarios. Furthermore, we applied our methods on

a large number of clinical datasets that included structural and functional neuroimag-

ing data as well as genetic data. Specifically, HYDRA was used for identifying distinct

subtypes of Alzheimer’s Disease. MIDAS was applied for identifying the optimally dis-

criminative patterns that differentiated between truth-telling and lying functional tasks.

GDM was applied on a multi-site prediction setting with severely confounded samples.

Our promising results demonstrate the potential of our methods to advance neuroimag-

ing analysis beyond the set of assumptions that limit its capacity and improve statistical

power.
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Chapter 1

Introduction

1.1 Overview

Neuroimaging techniques enable a detailed non-invasive in vivo exploration of the brain.

There is a variety of imaging modalities that provide complementary information about

the brain structure and function. Structural magnetic resonance imaging (sMRI) allows

the scrutiny of static anatomical structures. Functional magnetic resonance imaging (fMRI)

enables the measurement of dynamic activity through measurements of blood flow. Diffu-

sion tensor imaging (DTI) helps to understand the structural connections across the brain.

The analysis of neuroimaging data has been able to shed light on the complex struc-

ture and function of the human brain under normal or pathological conditions. Group

studies are amongst the most common ways of studying changes in the brain, and they

involve the analysis of differences between a control group and a patient group. Analysis

techniques for group studies typically fall under two categories: voxel-based analyses and

multivariate pattern analysis techniques.
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Voxel-based analysis techniques perform statistical tests on a voxel by voxel basis. Such

mass univariate tools are used to tease out of the data anatomical and functional enti-

ties that describe brain structure and function in an unbiased, hypothesis-free way. These

techniques can be further classified depending on the type of information the statistical

tests are performed on. Specifically, deformation-based morphometry (DBM) [24, 56] and

tensor-based morphometry (TBM) [50, 128] compare the deformation fields, or the deriva-

tives of deformation fields, between different populations, respectively. DBM and TBM

both rely on highly accurate registration of brain images, which may not always be possi-

ble given the large variation of human brains. On the other hand, voxel-based morphom-

etry (VBM) analysis [3, 160, 62, 58] conducts voxel wise t-tests to compare groups of tissue

density maps across different populations with the goal to investigate focal differences in

brain anatomy. The generation of tissue density maps is typically accompanied by spatial

smoothing of the signal to account for registration errors and to Gaussianize the data. This

process makes VBM robust to small registration errors, which makes it one of the most

widely used methods for population neuroimaging analysis.

Nevertheless, voxel-based analysis techniques ignore multivariate relations between

brain regions that may best characterize population differences. Instead, multivariate pat-

tern analysis (MVPA) methods [6, 106] take advantage of dependencies among brain re-

gions, which leads to increased sensitivity. Statistical mapping frameworks, such as Search-

light [89], aim to capture multivariate relations in local neighborhoods of voxels to more

accurately detect the underlying differences between groups. Nonetheless, Searchlight

does not account for signal that spans distant locations in the brain [44]. For this reason,

there exist machine learning methods, such as support vector machine (SVM) [147], that
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enable the analysis of the entire brain [85, 88, 154]. These methods mainly focus on se-

lecting voxels or regions that maximize classification accuracy and may not capture all the

differences between groups.

Critically, current group analysis techniques either make some assumptions regarding

disease effects or are bound by limitations on sample distributions. Specifically:

1. A common assumption of group analyses is that there is a single disease process that

affects all samples in the disease group in a unified way, thus resulting in a single

imaging pattern of brain differences that discriminates patients from controls.

2. Group analysis methods commonly assume that the spatial extent and the shape of

the underlying disease effect is uniform across the brain. Consequently, a smooth-

ing filter with a single bandwidth is applied on imaging maps prior to analysis.

3. A limitation in group analyses is the requirement to match control and disease sam-

ples for covariates (e.g., for age and sex) that can have an effect that may overlap

with the disease effects one searches for. Otherwise, the assumption is that the un-

matched covariates have no confounding effects on the results.

These assumptions are limiting neuroimaging analysis techniques in utilizing the avail-

able rich imaging data to its full potential. Particularly, disease processes are rarely homo-

geneous. There is ample evidence for the heterogeneity of pathological phenotypes pre-

sented by many diseases, such as Alzheimer’s disease [111, 92], Schizophrenia [46, 114, 86],

Autism spectrum disorder [142, 75], and Attention-deficit hyperactivity disorder [155]. As

a consequence, current approaches may miss heterogeneous disease effects in the data

when searching for a single disease effect pattern. These approaches can only find dif-

ferences in the central tendency, such as a common imaging pattern of difference when
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comparing two populations. Thus, the derived imaging patterns are at best incomplete,

and at worst, misleading.

Also, the spatial extent and shape of the differences between controls and patients are

seldom uniform across the brain anatomy. Thus, applying a single bandwidth of Gaus-

sian smoothing to the imaging data will fail to amplify the signal that has a spatial extent

greater than the width of smoothing kernel and conversely will smear out the signal that

is narrower than the width of the kernel width [82]. In both cases, this will result in loss of

statistical power by way of reducing sensitivity and specificity, respectively.

Lastly, in real-world datasets, it is often difficult to have a perfect covariate match be-

tween groups without pruning very expensive and hard to acquire data. As a result, either

the statistical power of group analysis suffers from the reduced sample size that is balanced

for covariates, or the sample is confounded by covariate imbalances [125].

1.2 Aims of this thesis

The general goal of this thesis is to develop techniques to move beyond the aforementioned

assumptions and propose a set of advanced machine learning tools for robust analysis of

neuroimaging data. This goal is divided into the three following aims that are detailed

below.

Aim 1: Inference in the presence of population heterogeneity

Brain disorders often exhibit a heterogeneous clinical presentation: autism spectrum disor-

der (ASD) encompasses neurodevelopmental disabilities characterized by deficits in social

communication and repetitive behaviors [57]; schizophrenia can be subdivided into dis-
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tinct groups by separating its symptomatology to discrete symptom domains [18]; Alzheimer’s

disease (AD) can be separated into three subtypes on the basis of the distribution of neu-

rofibrillary tangles [112]; and mild cognitive impairment (MCI) may be further classified

based on the type of specific cognitive impairment [157].

Disentangling disease heterogeneity may greatly contribute to our understanding of

disease mechanisms and lead to more accurate diagnosis and prognosis, as well as targeted

treatment. However, most commonly used neuroimaging analysis approaches assume a

single unifying pathophysiological process governing the presence of disease and perform

a monistic analysis to identify it. Such approaches typically aim to either identify voxels

that characterize group differences through mass-univariate statistical techniques [3] or

use MVPA to identify the multivariate imaging pattern that best discriminates between

two populations [153]. Thus, the heterogeneity of the disease is completely ignored, which

results in deriving imaging patterns that are at best incomplete, and at worst misleading.

Recognizing this limitation, few research efforts have focused on revealing the inherent

disease heterogeneity. These methods can be mainly classified into two groups. The first

class assumes an a priori subdivision of the diseased samples into coherent groups, based

on independent criteria, and opts to identify group-level anatomical differences using uni-

variate statistical methods [87, 156]. Thus, multivariate effects are ignored, while the a

priori definition of disease subtypes is either difficult to obtain (e.g., from autopsy near

the date of imaging), or noisy and non-specific (e.g., cognitive or clinical evaluations). The

second class focuses on the diseased population and maps it to distinct anatomical sub-

types by applying multivariate unsupervised clustering driven by considering all image

elements [157, 118]. These methods tend to group patients along the direction of largest
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variability, which may be confounded by effects such as age and sex, and thus may not be

induced by pathology.

To tackle these challenges, the second aim of the thesis is to develop a method for

detecting and characterizing heterogeneity through the data-driven identification of dis-

ease subgroups.

Aim 2: Inference through optimal spatial filtering

Group analysis studies how distinct clinically-defined groups of individuals differ in brain

anatomy and function, aiming to understand the pathophysiological processes that steer

these differences. Towards this goal, mass-univariate [3] as well as MVPA techniques

[89, 55] have been developed to summarize and understand imaging patterns reflecting

a clinical change.

Mass-univariate techniques, such as VBM, have been widely used for neuroimaging

analysis. However, mass-univariate techniques ignore multivariate relations in the data,

while also suffering from multiple comparison problems. Critically, local smoothing is

typically applied to reduce voxel-wise noise, account for errors in spatial alignment of

images and Gaussianize the data before performing statistical analyses. However, this

smoothing is seldom adapted to the anatomical structures of the brain and may obscure

the effects of interest. A narrow blurring kernel cannot effectively account for noise in the

data, thus reducing the statistical power. Contrarily, a wide blurring kernel diffuses signal,

potentially leading to false conclusions about the real loci of the effect. Additionally, it may

introduce signal from regions that have no group difference, thus reducing sensitivity in

detecting group differences.
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MVPA methods characterize group differences by harnessing multivariate relation-

ships in the data. They can be distinguished into two classes according to whether they

perform local or global learning. Local learning techniques, such as Searchlight [89], ana-

lyze the information content of local neighborhoods, while global learning methods, such

as SVM [55], perform inference by modeling signal relationships across the entire brain.

Local techniques are computationally expensive, while they may also lead to serious in-

terpretation errors [44]. Global techniques, by construction, select regions sufficient for

discrimination and may not fully reflect the group difference [68].

Toward addressing the above limitations of univariate and multivariate techniques,

the last aim of this thesis is to develop a method for performing statistical inference

through optimal spatial filtering of data and regional discriminative analysis.

Aim 3: Inference in the presence of confounds

Univariate statistical methods, such as general linear models, effectively account for con-

founds by explicitly parametrizing them in the model. However, there is no clear consen-

sus on how to reduce confounding effects within MVPA predictive settings. Confounding

effects are an important problem in MVPA prediction methods as powerful machine learn-

ing methods may learn the covariate structure rather than group effects, which may lead

to overfitting and failure to generalize.

Prior approaches have either 1) ignored confounds, or have taken them into account

either 2) implicitly, or 3) explicitly [125]. The first approach is to ignore the confounds

and proceed with the predictive learning task using the imaging features. The second

approach is to implicitly account for the confounds by correcting a posteriori the learned
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model using the underlying covariate structure [68]. Lastly, confounds can be adjusted for

explicitly. Weighting schemes [136, 139, 101] and residualization approaches [40] explicitly

account for confounds prior to the learning model. The limitation of these approaches

is that they either compromise generalization for interpretability, or interpretability for

generalization. Furthermore, they seldom allow for immediate statistical inference due to

lack of insight into the probability distribution of the model parameters.

Toward addressing the above limitations, the first aim of the thesis is to develop a

framework for performing multivariate statistical inference and pattern analysis that is

robust to confounding variations.

1.3 Main Contributions

In this thesis, we move beyond the aforementioned commonly applied assumptions by

introducing three novel machine learning techniques for reliable and efficient analysis of

neuroimaging data.

1. Statistical inference in the presence of disease heterogeneity: We introduced a

novel convex polytope based learning method that is used to disentangle disease

subtypes in a semi-supervised fashion. This method is termed HYDRA, which is

an acronym for heterogeneity through discriminative analysis. This method can be

kernelized, which eases the computational burden on high dimensionality datasets.

This work is validated using simulated data and applied to an imaging and genetic

study of Alzheimer’s disease.

2. Statistical inference through optimal spatial filtering: We introduced a novel frame-

work that utilizes multiple overlapping local learners, which act as adaptive filters,
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to optimally tease out group differences. This method is termed MIDAS, which

stands for regionally linear multivariate discriminative statistical mapping. A key nov-

elty of this method is that its resulting statistic is equipped with an analytical form

of null distribution, which enables rapid statistical inference in large neuroimaging

datasets. This method is extensively validated using simulated data and is tested

using an fMRI dataset of truth-telling and lying to delineate correlated brain regions

as well as a sMRI dataset that studies the effects of aging on cognition.

3. Statistical inference in the presence of confounds: We introduce a novel discrim-

inative model that encompasses a generative regularization term, which explicitly

removes the effects of confounds yielding a confound invariant model. This frame-

work is termed generative discriminative machine or GDM for short. A key novelty

of this method is that the null distribution of the resulting statistical model can be

analytically approximated, which allows for accurate statistical inference and sig-

nificance testing. We demonstrated the robustness of the proposed approach by

using data from neuroimaging studies of Schizophrenia and Alzheimer’s Disease

to carefully design settings influenced by different confounding factors.

By moving beyond commonly applied assumptions in neuroimaging analysis, these

frameworks aim to derive data-driven disease subtypes, attain more specific and sensitive

imaging biomarkers, and control for confounding variations, respectively. Taken together,

these contributions demonstrate great potential in improving our understanding of pathol-

ogy, enabling therapeutic innovation and improving diagnosis and prognosis.
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1.4 Organization of this thesis

The three main methodological contributions of this thesis are described in Chapters 2, 3

and 4. In Chapter 2, we describe the HYDRA method for disentangling heterogeneous

populations and its validation on simulated data as well as its applications to structural

MRI and genetics datasets. Chapter 3 details the MIDAS method that estimates the opti-

mal spatial filtering for statistical inference and its validation on simulated data as well as

clinical applications on functional and structural MRI data. Chapter 4 describes the GDM

method for adjusting for confounds in neuroimaging datasets and its applications to struc-

tural MRI datasets. Chapter 5 summarizes all the contributions of this thesis and discusses

possible directions of future research.
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Chapter 2

Inference in the presence of

population heterogeneity: HYDRA

2.1 Introduction

Automated analysis of spatially aligned medical images has become the main framework

for studying the anatomy and function of the human brain. This is typically performed by

either employing voxel-based (VBA) or multivariate pattern analysis (MVPA) techniques.

VBA complements region of interest (ROI) volumetry by providing a comprehensive

assessment of anatomical differences throughout the brain, while not being limited by

a-priori regional hypotheses. VBA typically performs mass-univariate statistical tests on

either tissue composition or deformation fields, aiming to reveal regional anatomical or

shape differences [5, 60, 3, 33, 25, 51, 78, 90, 26, 138, 13, 59, 77, 107, 2]. However, voxel-wise

methods often suffer from low statistical power and more importantly, ignore multivariate

relationships in the data.
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On the other hand, MVPA techniques have gained significant attention due to their

ability to capture complex relationships of imaging signals among brain regions. This

property allows to better characterize group differences and could potentially lead to im-

proved diagnosis and personalized prognosis. As a consequence, machine learning meth-

ods have been used with increased success to derive highly sensitive and specific biomark-

ers of diseases on individual basis [109, 84, 32, 153, 39, 130, 105, 42, 69, 28].

A common assumption behind both VBA and MVPA methods is that there is a sin-

gle pattern that distinguishes the two contrasted groups. In other words, most compu-

tational neuroimaging analyses assume a single unifying pathophysiological process and

perform a monistic analysis to identify it. However, this approach ignores the heteroge-

neous nature of diseases, which is supported by ample evidence. Typical examples of

brain disorders that are characterized by a heterogeneous clinical presentation include

both neurodevelopmental and neurodegenerative disorders: Autism Spectrum Disorder

(ASD) comprises neurodevelopmental disorders characterized by deficits in social com-

munication and repetitive behaviors [57, 76]; Schizophrenia and Parkinson’s Disease can

be subdivided into distinct groups by separating its symptomatology to discrete symptom

domains [18, 63, 87, 115, 163, 99]; Alzheimer’s Disease (AD) can be separated into three

subtypes on the basis of the distribution of neurofibrillary tangles [112]; and Mild Cog-

nitive Impairment (MCI) may be further classified based on the type of specific cognitive

impairment [73, 157].

Disentangling disease heterogeneity may significantly contribute to our understand-

ing and lead to a more accurate diagnosis, prognosis, and targeted treatment. However,

few research efforts have been focused on revealing the inherent disease heterogeneity.
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These approaches can be categorized into two distinct classes. The first class assumes an

a priori subdivision of the diseased samples into coherent groups, based on independent

(e.g., clinical) criteria, and opts to identify group-level anatomical or functional differences

using univariate statistical methods [73, 87, 115, 156, 163]. As a consequence, multivari-

ate relationships in the data are ignored. Moreover, and more importantly, these methods

depend on an a priori disease subtype definition, which may be either difficult to obtain

(e.g., from autopsy near the date of imaging), or noisy and non-specific (e.g., cognitive or

clinical evaluations). Methods belonging to the second class apply multivariate clustering

(typically driven by all image elements) directly to the diseased population towards seg-

regating subsets of distinct anatomical subtypes [63, 157, 99, 118]. Such an approach aims

to cluster brain anatomies instead of pathological patterns. Thus, it has the potential risk

of estimating clusters that reflect normal inter-individual variability, some of which is due

to sex, age, and other confounds, instead of highlighting disease heterogeneity.

To tackle the aforementioned limitations, it is necessary to develop a principled ma-

chine learning approach that can simultaneously identify a class of pathological samples

and separate them into coherent subgroups based on multivariate pathological patterns.

To the best of our knowledge, one approach has been previously proposed in this direction

[47]. That work tackled disease subtype discovery by simultaneously solving classification

and clustering in a semi-supervised maximum margin framework. It jointly estimated two

hyperplanes, one that separates the diseased population from the healthy one, and another

hyperplane that splits the estimated diseased population into two groups. Thus, only one

linear classifier was used to separate patients from controls, thereby limiting its ability to

capture heterogeneous pathologic processes. Moreover, it arbitrarily assumed that exactly
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two disease subgroups exist, rather than attempting to determine the number of subtypes

from the data.

Here, we propose a novel non-linear semi-supervised1 machine learning algorithm for

integrated binary classification and subpopulation clustering aiming to reveal HeterogeneitY

through DiscRiminative Analysis (HYDRA). To the best of our knowledge, ours is the first

algorithm to deal with anatomical/genetic heterogeneity in a supervised-clustering fash-

ion with an arbitrary number of clusters. The proposed approach is motivated by recent

machine learning methods that derive non-linear classifiers through the use of multiple-

hyperplanes[52, 65, 148, 83, 143, 120]. Classification is performed through the separation of

healthy controls from pathological samples by a convex polytope that is formed by com-

bining multiple linear max-margin classifiers. Heterogeneity is disentangled by implic-

itly clustering pathologic samples through their association to single linear sub-classifiers.

Multiple dimensions of heterogeneity may be captured by varying the number of esti-

mated hyperplanes (faces of the polytope). This is in contrast to non-linear kernel clas-

sification methods which may accurately fit heterogeneous data in terms of disease pre-

diction, but do not provide any explicit clustering information that can be used to deter-

mine subtypes of pathology. HYDRA is a hybrid between unsupervised clustering and su-

pervised classification methods; it can simultaneously fit maximum margin classification

boundaries and elucidate disease subtypes, which is not possible with neither unsuper-

vised clustering methods nor non-linear kernel classifiers.

Note that a preliminary version of this work was presented in [149]. The current chap-

ter extends our previous work in multiple ways: i) A more sophisticated initialization

1The term semi-supervised is in reference to lack of disease subtype labels that must be inferred from data
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scheme based on Determinantal Point Processes is employed (Sec. 2.3.1); ii) The sensitivity

to initialization due to the non-convexity of the objective function has been improved by

using multiple initializations and consensus strategies (Sec. 2.3.4); iii) A symmetric ver-

sion of the algorithm is developed towards accounting for the heterogeneity of the healthy

controls and avoiding over-learning (Sec. 2.2.4). iv) A detailed description of the proposed

methodology is provided. v) We extensively evaluate our method, HYDRA, by using ad-

ditional (imaging and genetic) datasets and comparing it to unsupervised clustering and

non-linear classification methods.

The remainder of this chapter is organized as follows. In section 2.2, we detail the pro-

posed approach. Next, we experimentally validate our method using synthetic (Sec. 2.4)

and clinical (Sec. 2.5) data. We discuss the results in Sec. 2.6, while section 2.6 concludes

the chapter with our final remarks.

2.2 Method

In high dimensional spaces, the modeling capacity of linear Support Vector Machines

(SVMs) is theoretically rich enough to discriminate between two homogeneous classes.

However, while two classes are linearly separable with high probability, the resulting mar-

gin may be small. This case arises for example when one class is generated by a multimodal

distribution that models a heterogeneous process (see Fig. 2.1a). This may be remedied by

the use of non-linear classifiers, allowing for larger margins and thus, better generaliza-

tion. However, while kernel methods, such as Gaussian Radial Basis Function (GRBF)

kernel SVM, provide non-linearity, they lack interpretability when aiming to characterize

heterogeneity.
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(a) (b) (c)

Figure 2.1: Illustrating the effect of heterogeneity when separating a positive class (denoted
by gray squares) from a heterogeneous negative class (denoted by red rhombuses). (a)
Linear SVM separates the positive class from a heterogeneous negative class (presence of
two clusters) by a small margin. (b) Our method classifies each cluster separately, resulting
in a larger margin. (c) Heterogeneity introduced by the presence of three clusters modeling
distinct deviations from normality. Each deviation is captured by a different face of the
convex polytope. Solid lines correspond to the classifier, dashed lines indicate margin
while highlighted linear segments define the separating convex polytope.

Here, we take advantage of the previous intuition to design a novel machine learn-

ing technique that will provide larger margins while being able to elucidate heterogeneity.

We introduce non-linearity using multiple linear classifiers that form locally linear hyper-

planes whose linear segments separate the clusters of negative samples from the positive

class (see Fig. 2.1b). In this way, subjects are explicitly clustered by being assigned to dif-

ferent hyperplanes, giving rise to interpretable directions of variability that may be useful

in discovering heterogeneity.

Suppose that our dataset consists of n binary labelled d-dimensional data points (D =

(xi , yi)ni=1,xi ∈R
d and yi ∈ {−1,1}). Without loss of generality, we assign the negative class to

the pathological population whose heterogeneity we seek to reveal. Let us note that while

there may be heterogeneity in the healthy population, we focus here on revealing disease

heterogeneity. Our aim is twofold. First, we aim to estimate k hyperplanes that form a

convex polytope that separates the two classes with a large margin. Second, we aim to
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assign each pathological sample to the hyperplane that best separates it from the normal

controls. The main idea is that samples that belong to different pathological subgroups

will be assigned to different hyperplanes, each of which reflects a respective pathological

process (see Fig. 2.1c). Towards fulfilling the aims mentioned above, we introduce the

proposed approach by extending standard linear maximum margin classifiers.

2.2.1 Large Margin Classification

For completeness, let us briefly introduce standard linear maximum margin classifiers.

Maximum margin classifiers aim to estimate a hyperplane that separates the two classes

by a half space, while ensuring that the distance (or margin) from the decision boundary

for each sample is maximized. More formally, suppose that the set F comprises the set of

all linear classifiers w such that for the given dataset D all samples are correctly classified,

or ∀i, yi(wT xi) + b ≥ 1. The goal is to find the classifier w belonging to the set F that

maximizes the margin between classes. The margin is defined as the orthogonal distance

between the two hyperplanes:

wTu+ b = −1, and wT v+ b = +1,

where the set of points u,v that satisfy the equations, represent points from both classes

with active constraints. Notice that setting u = − 1+b
‖w‖22

w and v = 1−b
‖w‖22

w satisfies the previ-

ous equations. Since u,v are parallel, the orthogonal distance between the hyperplanes is

simply ‖u− v‖2 = 2
‖w‖2

, which is the margin for SVM [147].

The optimal classifier is estimated by solving an optimization problem. However, in-
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stead of maximizing the margin, its inverse ( ‖w‖
2
2

2 ) is typically minimized subject to the

separability constraints. This results in the well known SVM objective:

minimize
w,b,ξ

‖w‖22
2

+C
n∑
i=1

ξi

subject to

yi(w
T xi + b) ≥ 1− ξi and ξi ≥ 0

where ξ = (ξ1, . . . ,ξn). The second term of the objective
(
C

∑n
i=1ξi

)
accounts for slack when

classes are non-separable.

2.2.2 Convex Polytope Classification

Standard SVMs assume that there is a single pattern (encoded by the estimated hyper-

plane) that distinguishes the two classes. However, this assumption is violated in the case

of heterogeneity. We aim to model heterogeneity by utilizing multiple linear hyperplanes,

each one corresponding to a different pathological pattern. By combining multiple linear

classifiers in a piecewise fashion, we extend linear max-margin classifiers to the non-linear

case. Thus, we consider the extended hypothesis class that consists of the set of sets of K

hyperplanes, generalizing the geometry of the classifier to that of a convex polytope [143].

Due to the interior/exterior asymmetry of the polytope, it is necessary to confine one class

to its interior while restricting the other class to its exterior. Without loss of generality,

we confine the positive class to the interior of the polytope. Thus, the search space FK is
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defined as:

FK ,
{
{wj ,bj}Kj=1 | ∀j,w

T
j xi + bj ≥ 1 if yi = +1,

∃j :wT
j xi + bj ≤ −1 if yi = −1

}
.

In other words, FK comprises all sets of K classifiers such that all classifiers correctly clas-

sify all members of the positive class, while for every negative sample, there is at least one

classifier that correctly classifies it.

The latter gives rise to an assignment problem, where samples that have been affected

by the same pathological process are assigned to the same hyperplane. This can also be

seen as a clustering task since samples that have been assigned to the same hyperplane can

be equivalently considered as clustered together. Thus, if S− = [si,j ] ∈ {0,1}n
−×K denotes

the binary matrix that describes the assignment of the i-th negative class sample (n− in

number) to the j-th face of the polytope, then the search space becomes:

FK (S−) ,
{
{wj ,bj}Kj=1 | ∀j,w

T
j xi + bj ≥ 1 if yi = +1,

wT
j xi + bj ≤ −1 if yi = −1 and si,j = 1

}
.

Given the assignment S−, there are K margins; each one corresponding to one face

of the polytope. Analogous to the SVM formulation, the margin for the j-th face of the

polytope is 2
‖wj‖2

. However, due to the piecewise nature of the convex polytope, there are

multiple notions of margin for the surface of the polytope. In this work, aiming to keep

the problem tractable, we maximize the average margin across all the faces of the polytope:
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m̄ = 1
K

∑K
j=1

2
‖wj‖2

. Thus, for a given dataset D and assignment S− for the negative class, the

objective becomes:

maximize
{wj ,bj }Kj=1

1
K

K∑
j=1

2
‖wj‖2

subject to

wT
j xi + bj ≥ 1 if yi = +1 for j = 1, . . . ,K

wT
j xi + bj ≤ −1 if yi = −1 and si,j = 1

Note that, given the assignments, the objective, and the constraints are separable into

K independent subproblems. Each subproblem is analogous to the SVM formulation after

adding the slack terms ξi,j , or:

minimize
wj ,bj ,ξj

‖wj‖22
2

+C
n∑
i=1

ξi,j

subject to

wT
j xi + bj ≥ 1− ξi,j if yi = +1

wT
j xi + bj ≤ −1+ ξi,j if yi = −1 and si,j = 1

ξi,j ≥ 0 for i = 1, . . . ,n

where C is a penalty parameter on the training error. If we now use the definition of

the slack terms as ξi,j = max{0,1 − yi(wT
j xi + bj )}, and consider all hyperplanes ({W,b} ,
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{wj ,bj}Kj=1) at the same time, we get:

minimize
{wj ,bj }Kj=1

K∑
j=1

‖wj‖22
2

+C
∑
i|yi=+1

j

1
K
max{0,1−wT

j xi − bj}

+C
∑
i|yi=−1

j

si,jmax{0,1+wT
j xi + bj} (2.1)

So far, we have assumed that the assignment matrix S− is known. However, this is not

the case in practice, and S− has to be estimated too.

Attempting to solve for both {W,b} and S− results in a non-convex objective function

which is combinatorially difficult to optimize. Furthermore, optimization for the binary

assignment S− is itself non-convex since it constitutes an integer programming task. To

make the problem tractable, we take two steps. First, we relax the binary assignment

(si,j ∈ {0,1}) to a soft assignment (si,j ∈ [0,1],
∑K
j=1 si,j = 1, ∀i). Given this relaxation, the

objective becomes block-wise convex with respect to the groups of variables {W,b} and

{S−}. We then use this relaxed objective function to obtain locally optimal solutions by

iteratively solving for {W,b} and {S−}. The details of the iterative optimization are given in

2.3.

Prediction

Once the polytope classifier {W,b} is trained, predicting the class y∗ of a new instance x∗ is

straightforward:

y∗ = sign(min
j

wT
j x
∗ + bj )
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In other words, if x∗ is in the interior of the polytope defined by the estimated hyperplanes

({W,b}), then it is classified as positive by all classifiers corresponding to the faces of the

polytope (wT
j x
∗ + bj > 0), resulting in an overall positive class prediction (y∗ = +1). Other-

wise, if x∗ is in the exterior of the polytope, then it is classified as negative by at least one

classifier corresponding to a face of the polytope (wT
j x
∗ + bj < 0), resulting in an overall

negative class prediction (y∗ = −1). Analogously, the prediction score is simply the mini-

mum of the prediction scores of all classifiers corresponding to the faces of the polytope:

(min
j

wT
j x
∗ + bj). Moreover, a new sample may be assigned to the existing clusters by com-

puting the assignment index s∗,j using Eq. 2.3.

2.2.3 HYDRA Algorithm

Given the solutions of {W,b} and S− outlined in Sec. 2.3.2 and Sec. 2.3.3, we solve for the

maximum margin convex polytope in an iterative fashion. This is the main workhorse be-

hind the proposed framework that aims to elucidate HeterogeneitY through DiscRiminative

Analysis (HYDRA) and is outlined in Algorithm 1. However, due to the non-convex na-

ture of the problem, it is necessary to take additional steps to ensure the high quality of the

solution.

Our approach towards enhancing the quality of the solution is twofold. First, particular

care is taken to initialize the iterative algorithm in such a way that clustering solutions that

exhibit disease-related diversity are promoted. This is made possible by employing Deter-

minantal Point Processes (DPP) [91] to sample diverse directions of pathology, which can

subsequently be used to estimate the initial clustering assignments (see 2.3.1 for details).

Second, acknowledging the fact that, in non-convex settings, the estimated solution
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Algorithm 1 — HYDRA

Input: X ∈ R
n×d , y ∈ {−1,+1}n (training signals), C (loss penalty), K (number of clus-

ters/hyperplanes)
Output: W ∈Rd×K , b ∈R1×K (Classifier); S− ∈ [0,1]n−×K (Clustering Assignment)
Initialization: Initialize S− by Algorithm 2
Loop: Repeat until convergence (or a fixed number of iterations)
• Fix S− — Solve for W,b by weighted LIBSVM (sample weights set by Eq. 2.4)
• Fix W,b — Solve for S− using Eq. 2.3

may vary greatly depending on the initialization, we employ a multi-initialization strategy

that is coupled with a fusion step. Multiple runs of the Algorithm 1 are performed using

different initializations generated by the previously described DPP sampling process, as

well as different subsets of the population. The estimated clusters constitute hypotheses

that capture perturbations of the underlying group topography. These clustering hypothe-

ses are aggregated by taking into account the consensus of the respective solutions, pro-

ducing the final clustering result that is free of noisy perturbations and emphasizes the

underlying group structure (see 2.3.4 for details).

2.2.4 Symmetric HYDRA algorithm

The algorithm that we have so far outlined is asymmetric. The patients lie on the exterior

of the polytope while the controls are constrained on the interior of the polytope. This

property may result in over-fitting when classifying. This can be remedied by symmetriz-

ing the algorithm. One can run the Algorithm 1 twice, once using the actual labels Y and

once using the negated labels: −Y . In that case, one can use the estimated output polytopes

[W+,b+] and [W−,b−] to make predictions using the following formula:

y∗ = sign
((
min
j

w+
j
T x∗ + b+j

)
−
(
min
j

w−j
T x∗ + b−j

))
, (2.2)
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where both classifiers are taken into account.

Note that the symmetric model does not affect the clustering of the patients since the

two runs of Algorithm 1 are independent of each other. The difference is that the symmet-

ric model provides two clusterings, one for the patients, and one for the controls.

2.3 Optimization

Similar to other clustering methods, HYDRA algorithm requires an initialization step fol-

lowed by iterations of assignment and convex polytope solutions. To make the clustering

robust, we further find the consensus of the clustering results obtained in multiple runs

of HYDRA. Here we detail the techniques used for each of these steps. Initialization is

found in 2.3.1, assignment step is found in 2.3.2, convex polytope solution is in 2.3.3 and

consensus is found in 2.3.4.

As mentioned in the main text, HYDRA is geometrically asymmetric, requiring one of

the groups to lie inside the polytope. We provide the solution for the symmetric version of

HYDRA in 2.2.4.

Lastly, HYDRA can be solved in the dual domain if the sample size is relatively lower

than the dimensionality. The dual solution is in 2.3.6.

2.3.1 Initialization

Due to the non-convex nature of the maximum margin polytope problem, the initializa-

tion is crucial in directing the iterative algorithm towards favorable solutions. Since we

are interested in elucidating discriminative patterns between controls and patients, simply

initializing by clustering the patients may not be sufficient. This is because standard clus-
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Algorithm 2 — Initialization — Determinantal Point Processes

Input: X ∈ R
n×d , y ∈ {−1,+1}n (training signals), K (number of clusters), m (number of

hyperplanes samples to draw)
Output: S−0 ∈ [0,1]n−×K (Initial Clustering Assignment)
• Randomly draw m pairs of negative (x−) and positive (x+) samples (with replacement):
{x−i ,x

+
i }
m
i=1

• Obtain m hyperplanes by taking the difference between members of the same pair: ui =
(x+i − x

−
i )/‖x

+
i − x

−
i ‖2

• Sample K hyperplanes {w0
j }
K
j=1 from {ui}mi=1 by Determinantal Point Processes [91]

• Set rows of S− such that s
i,argminjw0

j
T xi

= 1, otherwise set si,j = 0

tering may group patients by following global patterns, such as the brain volume, or even

more subtle patterns that nonetheless reflect normal inter-individual variability and not

variability in the disease process. On the contrary, patients should be assigned to initial

clusters by considering their difference map with respect to controls. In other words, since

we aim to explore different directions of deviation from normal anatomy without concern

for the magnitude of that deviation, we initially group patients into clusters based on the

regions in which they differ from the controls and not the magnitude of their difference.

To achieve this, we initialize the assignments of patients into clusters by sampling K unit

length hyperplanes obtained by considering the space of all pairwise differences between

patients and controls. We choose K unique hyperplanes by applying Determinantal Point

Processes (DPP) [91]. DPP is a sampling technique that aims to obtain samples that are as

diverse as possible. This type of sampling ensures that the differences we sample reflect

unique biomarkers instead of repeated biomarkers with varying magnitudes. This is cru-

cial in preventing clustering patients into groups that are not related to variability in the

disease process. The steps of the initialization algorithm are given in Algorithm 2.
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2.3.2 Assignment Step Solution

For {W,b} fixed, the problem of estimating S− is an assignment problem that can be cast

as a linear program (LP). The LP problem has infinite solutions when the loss function

max{0,1 +wT
j xi + bj} is equal to 0 for multiple classifiers j and for the same sample i. In

this case, we choose the solution that is proportional to the margin:

si,j =


0 if max{0,1+wT

j xi + bj} > 0

1+wT
j xi+bj∑

j (1+w
T
j xi+bj )1(max{0,1+wT

j xi+bj }≤0)
otherwise

(2.3)

where 1(·) is the indicator function. Let us note here that the obtained clustering is inher-

ently different from the result that is obtained by standard clustering techniques. Instead

of grouping together samples based on the similarity of their appearance, we aggregate

here samples that are best separated by the same classifier. Thus, the inferred clustering is

driven by discrimination. The more pronounced the pathology is, the easier it is to disen-

tangle the underlying heterogeneity in the imaging profiles.

2.3.3 Convex Polytope Solution

For S− fixed, the solution to {W,b} can be obtained using K calls to a modified version

of LIBSVM [21]2 that allows for adaptive sample weightings. The adaptive weight ci,j of

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/weights/
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sample i for the classifier j is calculated as:

ci,j =


Csi,j if yi = −1

C
K if yi = +1

(2.4)

In case the dataset is highly unbalanced (i.e., one of the classes is overrepresented)

samples in each class can be further weighted by their inverse relative proportion within

the training set.

2.3.4 Consensus Solution

While DPP initialization serves as the first step in avoiding poor locally optimal solutions,

consensus clustering serves as the second layer to eliminate unstable clusterings that may

arise due to the non-convexity of the objective function. In noisy, or high dimensional

data, the clustering obtained via Algorithm 1 may depend greatly on the initialization. To

decrease this dependency and obtain stable clustering results that characterize the disease

heterogeneity, we opt for a multi-initialization strategy, endowed by a fusion step. First,

multiple runs of Algorithm 1 result in a number of clustering hypotheses. Then, we aim

to fuse the respective hypotheses by harnessing the wisdom of the crowd to obtain an

aggregate clustering. A consensus is achieved by grouping together samples that co-occur

(i.e., they are assigned to the same clustering) across different clustering hypotheses. In

practice, we first compute a co-occurrence matrix of the subjects based on each clustering

result and then perform spectral clustering using it.

27



Algorithm 3 — Consensus Clustering

Input: {S−p ∈ [0,1]n−×K }Pp=1 (P clusterings from Algorithm 1), K (number of clusters)
Output: S− ∈ [0,1]n−×K (Final Clustering Assignment)
• Compute co-occurrence matrix A using Eq. 2.5
• Spectral clustering on A:

• Compute Laplacian matrix L = diag
(∑n−

l=1Ai,l
)
−A

• Compute the K eigenvectors (v1, . . . ,vK ) that correspond to K smallest eigenvalues
of L (λ1 ≤ . . . ≤ λK )

• S−← K-means([v1 . . .vK ])

Co-occurrence Matrix

Given P clusterings {S−p}Pp=1 obtained by running Algorithm 1 P times, the co-occurence

matrix A is given by:

Ai,l =
P∑
p=1

K∑
j=1

s
p
i,js

p
l,j i, l = 1 . . .n, i , l (2.5)

Ai,i = 0 i = 1 . . .n

In other words, each il-th entry of the matrix enumerates the number of cases that the i-th

and l-th sample were assigned to the same cluster.

Spectral Clustering

The consensus clustering involves the calculation of the Laplacian matrix from the co-

occurrence matrix A and the computation of the K eigenvectors ([v1 . . .vk]) that correspond

to the K smallest eigenvalues (λ1 ≤ . . . ≤ λK ). Then, the aggregate clustering of subjects is

obtained by running K-means in the obtained subspace. The implementation of consensus

clustering is outlined in Algorithm 3. It should be noted that the consensus clustering

presented herein is analogous to spectral clustering [116].
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2.3.5 Dual Optimization

Due to the high dimensional, low sample size nature of neuroimaging data, it would be

useful to operate in the dual domain to ease the computational burden. The dual formula-

tion of HYDRA can be obtained by converting Eq. 2.1 to:

maximize
{αi,j }

i=1,...,n
j=1,...,K

K∑
j=1

n∑
i=1

αi,j −
1
2

K∑
j=1

n∑
i=1

n∑
l=1

αi,jαl,jyiylx
T
i xl

subject to
n∑
i=1

αi,jyi = 0 j = 1, . . . ,K

C/K ≥ αi,j ≥ 0 if yi = −1 j = 1, . . . ,K

Csi,j ≥ αi,j ≥ 0 if yi = +1 j = 1, . . . ,K

The advantages of this formulation are two-fold. First, it allows us to solve for only n×K

variables {αi,j}
i=1,...,n
j=1,...,K instead of K ×d variables, which may be prohibitively large. Second,

via the kernel trick, we may substitute xTi xj with any kernel satisfying the Mercer condi-

tion. In terms of implementation, this formulation is readily adaptable to the weighted

LIBSVM [21] implementation. Similar to the case of the primal problem, the weights are

given by Eq. 2.4.

This formulation does not affect the assignment step solution since the assignment step

requires only the prediction score for each subject corresponding to the K hyperplanes.

Since the hyperplanes are defined as wj =
∑n
i=1 yiαi,jxi , the prediction score for each hy-
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perplane wj can be simply calculated as:

wT
j xl =

n∑
i=1

yiαi,jx
T
i xl

which can be readily obtained from the Gram matrix that stores the inner products be-

tween data points. Furthermore, the bias terms bj can be solved in the dual by:

bj = yl −
n∑
i=1

αi,jyix
T
i xl

using any labeled sample (xl , yl) such that C > αi,l > 0. The solutions for {αi,j ,bj} can be

directly used in Equation 2.3 to solve for the assignments S−. In addition, the prediction

for the dual version of HYDRA is:

y∗ = sign

min
j

n∑
i=1

yiαi,jx
T
i x
∗ + bj


2.3.6 Dual Symmetric Prediction

In the case of the symmetric version of the algorithm, the final prediction can be obtained

as:

y∗ = sign


min

j

n∑
i=1

yiα
+
i,jx

T
i x
∗ + b+j


−

min
j

n∑
i=1

yiα
−
i,jx

T
i x
∗ + b−j
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2.4 Experiments using Simulated Data

We first validated the proposed method using synthetic data. We used a two-dimensional

toy dataset to provide insight into the workings of the proposed approach. Then, we

quantitatively validated the proposed approach against common clustering and classifi-

cation approaches in a simulated dataset where heterogeneity has been introduced. We

evaluated the ability of HYDRA to distinguish between two classes and demonstrated its

potential to reveal relevant subgroups.

Let us note that for all experiments, the classification was performed using the sym-

metric version of HYDRA, while the clustering of the negative class was used to reveal

disease heterogeneity. The final clustering was the consensus result of twenty repetitions.

The primal formulation was employed when tackling low-dimensional data, while the

dual formulation was preferred in the case of high-dimensional data (see 2.3.6 for the dual

formulation).

2.4.1 Toy Example

To illustrate the behavior of our method, we generated a synthetic two-dimensional dataset

with thousand instances (see Fig. 2.2). The first half of the samples were drawn from

a unimodal distribution, simulating the healthy control population (denoted by magenta

squares). The other half consisted of a crescent-shaped cluster of points, corresponding to

the heterogeneous disease group (denoted by rhombuses colored using different variants

of blue). To provide a more comprehensive setting, we additionally considered two dif-

ferent separability cases between the two populations. In the first case (see Fig. 2.2a), the

two classes overlapped highly, resulting in low separability. In the second case (see Fig.
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Positive (squares) and negative (rhombuses) instances in a continuous two-
dimensional feature space. Instances of the two classes either (a) overlap and are not lin-
early separable, or (b) are highly separable. Linear SVM is used to classify the low (b) and
high (e) separability toy dataset. Similarly, HYDRA (K=2) is applied to the low (c) and
high (f) separability toy dataset. Dark gray lines correspond to the estimated separating
hyperplanes, while light gray lines denote the estimated margins. Note the increase of
the margin that is made possible through the use of multiple linear classifiers that form
a convex polytope denoted by the highlighted line segments. The classes, as well as the
estimated subgroups, are encoded using different colors.

2.2d), the two groups did not overlap and were separated by a significant margin, thus

increasing separability.

To further clarify the advantages of the proposed framework, we compared the per-

formance of HYDRA (using two hyperplanes, K = 2) against the performance of standard

linear SVM. The results of the experiments are shown in Fig. 2.2. There are two important

observations to make. First, the introduced non-linearity in HYDRA allows for improved

separability between the two groups in both scenarios (see Fig. 2.2b, 2.2c, 2.2e and 2.2f).

This increase is more important in the case of low-separability between classes (see Fig.

2.2b and 2.2c), where the linear SVM was not able to fully separate them. In the case of

high-separability, the hyperplane that was estimated by the linear SVM effectively sepa-
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rated positive from negative samples. However, it did so by a relatively small margin (see

Fig. 2.2b). On the other hand, HYDRA harnessed the non-linear structure of the data and

separated them with a high margin that led to improved generalization performance (see

Fig. 2.2f).

Second, and most importantly, HYDRA separated the negative class into two sub-

groups that differ from the positive class in two distinct directions. This clustering is

directly related to the hyperplanes that separate the two classes. As a consequence, the

obtained clustering is obtained in a supervised fashion, and thus, it is driven by discrimi-

nating patterns that capture disease heterogeneity. This is in contrast to standard cluster-

ing techniques that group together samples based on appearance, which is not necessarily

related to disease variability.

2.4.2 Simulated High-Dimensional Heterogeneous Data

Despite ample evidence of disease heterogeneity, the lack of labeled ground-truth poses

a fundamental obstacle in validating the proposed approach. Thus, to overcome these

limitations, we construct a simulated validation setting that allows for quantitative com-

parisons with other algorithms.

Aiming to replicate the common high-dimensional low sample size regime that is preva-

lent in neuroimaging studies, we generated a synthetic dataset with three hundred in-

stances (or subjects) that are sampled as images with features on a 64×64 grid. The positive

class (healthy group) was generated by randomly sampling 150 samples from a multivari-

ate unimodal Gaussian distribution with zero mean and unit variance (N (0,1)). The neg-

ative class (disease group) was generated by drawing 150 samples from a tri-modal distri-
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Figure 2.3: (a) Patterns of simulated heterogeneity. Mean difference images between the
positive class and the three negative class subgroups, respectively. (b) The results that were
obtained using HYDRA (K = 3) are visualized by performing group comparison between
each estimated subgroup and the positive class. The negative logarithm of the estimated
p-values is shown. (c) Similarly, the groups that were obtained using K-means (K = 3)
are reported. Note that the groups estimated by HYDRA capture distinct focal effects that
align well with the simulated ones, while the ones estimated by K-means mix the focal
effects and recapitulate different stages of disease progression.

bution, where each mode simulates a different focus of disease progression (see Fig. 2.3a).

Each focal effect had a radius of 10 pixels, with a variance of 0.5 units. To simulate the

effect of disease progression, an age effect was simulated. This was generated by adding

unit variance random noise to simulate progression. Therefore, there were three distinct

focal effects in each subgroup, the subgroup specific effect with variance 1.5 units and the

34



non-specific effects with unit variance. Additionally, 10% of the labels were mislabeled to

simulate misdiagnosis and label noise.

Validation Measures

HYDRA is in principle an exploratory analysis tool, aiming to reveal disease heterogeneity.

However, it operates by simultaneously performing classification and clustering. Thus, it

is of interest to understand how well the proposed method accomplishes each step.

To validate the classification performance, we computed the Area Under the receiver

operating characteristic Curve (AUC) [16]. The AUC statistic summarizes the quality of

the performance of a binary classifier. It is equal to the probability that a classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative one.

Thus, an AUC equal to one indicates a perfect classifier. We calculated the distribution

of AUC values by performing 100 realizations of 10-fold cross-validation. During each

iteration, the data were partitioned into ten folds. Each fold was successively used as a

test set while the remaining folds were used to train the method. The optimal parameter

C of the method was estimated by performing a grid search over C ∈ {2−5, . . . ,23} using an

internal round of 10-fold cross-validation.

The clustering performance of our approach was assessed by taking into account the

stability of the obtained results. The adjusted Rand Index (ARI) [74] was used to quantify

the similarity between different clustering results. This index is corrected for grouping by

chance, resulting in a more conservative estimation of the overlap. A value equal to one

indicates a perfect clustering. We calculated the ARI in a cross-validated fashion, following

the previously described cross-validation scheme. However, in our calculations, we took
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into account only the clustering stability between training folds. Any pair of training folds

shared 80% of the subjects, allowing us to compute how consistently the common subjects

were placed in the same clusters despite the variations due to the ∼ 10% difference in the

sample composition across folds. In detail, given the optimal C value that was estimated

during the inner-fold cross-validation, we trained the model, yielding a clustering of the

negative subjects in the training set. This procedure was repeated for all realizations of the

10-fold cross-validation, yielding a set of clusterings of the negative subjects of the respec-

tive training sets. Finally, we computed the average pairwise ARI between the estimated

clusterings.

Let us note that the classification accuracy and the clustering stability are only surro-

gate measures that allow us to elucidate the underpinnings of the proposed method. HY-

DRA does not directly target increased classification accuracy, but instead, it focuses on

detecting disease subgroups. Moreover, while clustering stability is desirable, it does not

necessarily imply that the estimated clusters correspond to the underlying heterogeneity.

Quantitatively evaluating the relevance of the clustering to the intrinsic heterogeneity is in

general not feasible. However, in this simulated scenario, the ground truth was available

by default. Thus, we calculated the ARI between the estimated clusters and the simulated

ones. Moreover, to further assess the performance, we conducted group analysis between

the estimated subgroups and the positive class. The derived p-value maps allow for the

visualization of the estimated clusters and their comparison to the generated ones.
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Comparison with existing methods

To further validate HYDRA, we compared it to common classification and clustering ap-

proaches.

As far as classification is concerned, we first compared our method against linear

SVMs. In fact, our method is a generalization of the linear SVM framework. By setting

the parameter K equal to one, our method reduces to a linear SVM classifier. Parameter

selection (i.e., fixing C value) was performed using the same strategy as the one for the

proposed framework.

Moreover, because HYDRA establishes a non-linear separation boundary between the

two classes, we contrasted its performance against the GRBF kernel SVM. The free param-

eters were determined through a nested cross-validation strategy. A grid search was per-

formed over the parameter space defined by the regularization parameterC (C ∈ {2−5, . . . ,23})

and the parameter σ that controls the bandwidth of the RBF kernel (σ ∈ {2−5, . . . ,23}).

Verifying that HYDRA achieves comparable accuracy with commonly used classifiers,

thus retaining discriminative power, is important because discrimination is inextricably

tied to the cluster definition. However, the main focus of the method is on discovering

clusters in the abnormal cohort. To validate the clustering potential of our framework,

we included the performance of the K-means clustering [102] (20 replicates were used).

We also examined the potential of the approach that performs classification on top of the

clustering results. In particular, we first used K-means to cluster samples from one class

and then trained a linear SVM for each cluster. This procedure was performed for both the

negative and positive classes. The out of sample prediction was obtained using Eq. 2.2.

This approach [65] is termed here K-means/SVM. Similar to the previous cases, nested
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cross-validation was performed for selecting the C parameter. Note also that we run K-

means and HYDRA for the same value of the parameter K that varied from one to nine

(K ∈ {1, . . . ,9}).

Results

Decoding simulated focal effects
Data Method K AUC ARI ARI with Ground Truth

Synthetic Data

Gaussian SVM — 0.9327 ± 0.0368 — —
Linear SVM 1 0.9258 ± 0.0498 — —

HYDRA
2 0.9404 ± 0.0471 0.1353 ± 0.1464 0.3487
3* 0.9423 ± 0.0460 0.3620 ± 0.1514 0.6175

K-means/SVM
2* 0.9347 ± 0.0484 0.8237 ± 0.0641 -0.0076
3 0.9369 ± 0.0470 0.3235 ± 0.0985 0.0233

Table 2.1: Table summarizing the results for the simulated dataset. Cross-validated classi-
fication accuracy is reported for Gaussian SVM, linear SVM, HYDRA, and K-means/SVM.
Cross-validated cluster stability and overlap with the ground truth are reported for HY-
DRA and K-means. * denotes the value of the parameter K that was chosen based on the
cluster stability analysis. All models achieved comparable classification performance in
terms of AUC. However, HYDRA was able to correctly identify the ground truth clusters.
Note that while K-means achieved the highest reproducibility, it estimated clusters that
did not correspond to the generated focal effects.

The results of the cross-validated classification accuracy are reported in Fig. 2.4a. We

note that the classification results depend on the value of the parameter K . The high di-

mension and low sample size setting allowed linear SVM to separate the two classes with

high accuracy. However, the non-linearity that is introduced by Gaussian SVM, as well

as by HYDRA and K-means/SVM, resulted in a slight improvement in the classification

performance (see also Table 2.1). We should underline that a statistically significant im-

provement of the performance was observed only for HYDRA results (p-value for t-test

comparison between K = 3 HYDRA results and linear SVM equals to 0.016). Lastly, we

observe that the classification accuracy that was obtained by HYDRA peaks at K = 3 and
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relatively decreases for higher values ofK . This indicates that HYDRA was able to estimate

the intrinsic dimensionality of the pathological class correctly.

As far as the clustering reproducibility is concerned, we note a significant difference

between HYDRA and K-means (see Fig. 2.4b). Note that K-means obtained the highest re-

producibility, yet the estimated clusters did not reflect the simulated focal effects. K-means

consistently grouped the data into two clusters, while HYDRA segregated the data with

higher stability into three subgroups (see also Table 2.1). The importance of this differ-

ence was further emphasized by the fact that K-means results were significantly different

from the HYDRA clustering. HYDRA clusters overlapped highly with the simulated ones

while K-means results did not match the generated subgroups (see Table 2.1). This is be-

cause K-means, being blind to class information, was driven by global patterns that were

confounded by the variations stemming from covariate effects rather than relevant het-

erogeneity. On the contrary, HYDRA was able to identify the heterogeneous groups by

exploiting patterns that encode directions along which the two groups differ.

To further appraise the differences between the two methods, we report in Fig. 2.3b

and Fig. 2.3c the group differences between the positive class and the three subgroups

K-means and HYDRA estimated, respectively. By visually comparing them to the group

differences for the simulated groups (see Fig. 2.3a), we observe that HYDRA recovered the

three modes of differences with high certainty. Contrarily, K-means captured global effects

that reflect the overall progression of the simulated pathology (note the relevant increase

of the group differences in Fig. 2.3c), instead of teasing out distinct pathological directions.

Our synthetic validation setting provides two key insights. First, while all methods

were able to successfully separate the two groups, only HYDRA was able to distinguish
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between pathological subgroups. Thus, to effectively disentangle disease heterogeneity,

one should focus on discriminating patterns rather than global image appearance. Sec-

ond, and most importantly, analyzing the clustering stability allows for the estimation of

the intrinsic dimensionality of the pathological group. Therefore, we adopt hereafter this

popular approach [10, 94] to perform model selection.

2.5 Experiments using Clinical Data

Having shown the interest of the proposed approach in synthetic data, we next applied

our method to data from the Alzheimer’s Disease Neuroimaging Initiative3 (ADNI). The

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial Mag-

netic Resonance Imaging (MRI), Positron Emission Tomography (PET), other biological

markers, clinical and neuropsychological assessment can be combined to measure the pro-

gression of mild cognitive impairment and early Alzheimer’s disease4. Here, our goal was

to investigate both the anatomical and the genetic heterogeneity in Alzheimer’s Disease.

2.5.1 Visualization of Heterogeneity

Anatomical heterogeneity

To visualize the neuroanatomical heterogeneity of both the anatomically and genetically-

defined disease clusters, voxel-based analyses (VBA) were performed between the controls

and patient groups.

3adni.loni.usc.edu
4www.adni-info.org
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To perform VBA, MRI scans were first pre-processed using previously validated and

published techniques [60]. The preprocessing pipeline includes: (1) alignment to the Ante-

rior and Posterior Commissures plane; (2) skull-stripping [36]; (3) N3 bias correction [137];

(4) tissue segmentation into gray matter (GM), white matter, cerebrospinal fluid, and ven-

tricles using MICO [100]; (5) deformable mapping [121] to a standardized template space

[81]; (6) formation of regional volumetric maps called RAVENS maps [33], generated to

enable analyses of volume data rather than raw structural data; (7) the RAVENS were nor-

malized by individual intracranial volume to adjust for global differences in intracranial

size and smoothed for incorporation of neighborhood information using an 8-mm Full

Width at Half Maximum Gaussian filter.

The GM RAVENS were used for all VBA experiments, where a general linear model

(GLM) was applied voxel-wise to estimate the disease effect on the voxel value using age

and sex as covariates. False Discovery Rate (FDR) correction for multiple comparisons

was used for all voxel-based analyses. Only results surviving the statistical threshold at

q < 0.05 are shown.

Genetic heterogeneity

In addition to anatomical heterogeneity, the genetic differences between the subgroups of

AD were assessed by performing ANOVA on genetic markers, followed by a Bonferroni

test for multiple comparisons. Only results surviving the statistical threshold at q < 0.05

are reported.
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2.5.2 Anatomical Heterogeneity of Alzheimer’s Disease

Participants and MRI data preprocessing

The first dataset comprises MRI scans that were made available by the ADNI study5. T1-

weighted MRI volumetric scans were obtained at 1.5 Tesla for 123 AD patients and 177

normal controls (CN) (see demographic information given in Table 2.2).

A low-level representation was extracted by automatically partitioning the MRI scans

of all participants into 153 ROIs spanning the entire brain. The ROI segmentation was

performed by applying a new multi-atlas label fusion method [37]. The derived ROIs

were used as features for all clustering and classification methods.

Correction for age and sex effects

To remove age and sex related differences between patient groups while retaining disease-

associated neuroanatomical variation, the strategy outlined in [40] was used. Within each

cross-validation training fold, we calculated voxel-level β-coefficients for age and sex in

control subjects’ ROIs using partial correlation analysis. Then, all subjects were residual-

ized using these coefficients to correct for age and sex effects not attributable to disease

related factors.

Evaluation of results for structural MRI AD data

Classification results are reported in Fig. 2.5a. The standard linear SVM achieved a highly

accurate classification performance (AUC for K = 1 is greater than 0.9), which emphasizes

the high separability between AD patients and healthy controls. Similar to linear SVM,

5http://adni.loni.usc.edu/data-samples/mri/
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HYDRA was able to separate the two groups with high accuracy but, contrary to the sim-

ulated case, it did not improve on the results of linear SVM. This is most likely because

the data were already linearly separable. However, the classification performance of the

proposed method remained relatively stable for different values of K (no statistically sig-

nificant differences between the results were found), demonstrating that HYDRA was able

to retain the important discriminative information that is necessary for disease subtype

clustering. Furthermore, the stable AUC at K ≥ 2 may indicate a possible plateau in the

AD vs. control classification rate [28]. Lastly, we should emphasize that HYDRA aims to

increase the margin with K , which is indeed achieved. This has two important implica-

tions: i) that there is heterogeneity in the data; and ii) that HYDRA successfully harnesses

this heterogeneity to improve the margin.

The clustering stability results are presented in Fig. 2.5b, while the AUC and ARI

values for the HYDRA model at K = 1,2,3 are given in Table 2.3. The stability analysis

suggests that three clusters are appropriate for capturing the intrinsic dimensionality for

representing the disease heterogeneity. At finer levels (higher values of K), these three

clusters are partitioned into smaller clusters, giving rise to a hierarchical structure. This

observed hierarchy provides further evidence that the data has an inherent structure that

HYDRA effectively reveals.

The optimal clustering is visualized through the use of VBA (see Fig. 2.6B, 2.6C and

2.6D). The commonly performed voxel-wise group difference analysis between all healthy

subjects and all patients (see Fig. 2.6A) provides the necessary baseline for comparison.

It should be noted that the statistical significance of the group comparisons between the

controls and the subgroups of AD may be biased due to sample splitting. Thus, these

46



Experiment Classification/Clustering Performance
Data K AUC ARI

MRI
1 0.9149 ± 0.0563 —
2 0.9123 ± 0.0517 0.2054 ± 0.2477
3* 0.9021 ± 0.0572 0.2724 ± 0.1430

Genotype
1 0.7296 ± 0.1033 —
2* 0.7047 ± 0.1105 0.7986 ± 0.2266
3 0.6990 ± 0.1121 0.6412 ± 0.3124

Table 2.3: Table summarizing the classification and clustering performance of HYDRA for
the experiments using structural MRI and genetic data, respectively. Results are reported
for three values of the parameter K. The optimal value of the parameter K that was esti-
mated by performing model selection based on clustering stability is denoted by *. The
differences in AUC were statistically insignificant between K = 1 and K = 3 for MRI data
(two-tailed t-test p-value equals to 0.115) and between K = 1 and K = 2 for genetic data
(two-tailed t-test p-value equals to 0.102). This suggests that discriminative signal was
preserved, allowing for clinically relevant clusters to be found.

comparisons should serve a qualitative visualization function, rather than a quantitative

one. For this reason, we do not state the statistical significance levels for these differences.

We observe that at the K = 3 cluster level (see Fig. 2.6) the estimated subgroups are

associated with distinct patterns of structural brain alterations: i) diffuse atrophy subtype

(see Fig. 2.6B) exhibiting a typical AD pattern, similar to the one that is found by com-

monly applied monistic VBA (see Fig. 2.6A). This subtype was characterized by atrophy

in nearly all cortical regions and increased lesion load in the periventricular white matter;

ii) lateral parietal/temporal subtype (see Fig. 2.6C) in which bilateral parietal lobe, bilat-

eral temporal cortex, bilateral dorsolateral frontal lobe, precuneus were mainly involved,

and few periventricular white matter lesions were present; iii) medial temporal dominant

subtype (see Fig. 2.6D) involving predominantly bilateral medial temporal cortex.

The estimated subgroups were associated with distinct demographic, cognitive and

cerebrospinal fluid (CSF) biomarker characteristics. The first subgroup comprised 24% of
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Figure 2.6: Comparison between group differences obtained using commonly applied
monistic analysis and the results that were obtained using our method for heterogene-
ity detection in structural MRI data. The voxel-based analysis was performed using GM
RAVENS. Color-maps indicate the scale for the t-statistic. Colder colors indicate relative
GM volume increases (CN < pathological population), while warmer colors correspond to
relative GM volume decreases (CN > pathological population). Images are displayed in
radiological convention. Axial views of the VBA results obtained from GM group compar-
isons of (A) CN vs. AD; (B) CN vs. first AD subgroup; (C) CN vs. second AD subgroup;
and (D) CN vs. third AD subgroup are shown. The first subgroup exhibited diffuse at-
rophy; the second subgroup was characterized by bilateral parietal lobe, precuneus, and
bilateral dorsolateral frontal lobe atrophy, while the third subgroup exhibited bilateral me-
dial temporal dominant atrophy.
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AD subjects. It included relatively more male participants (21 males, 8 females) of rela-

tively increased age (78.9 ± 5.75). Members of this group achieved a Mini-Mental State

Examination (MMSE6) score of 23.97±1.97, while the frequency of APOE ε4 allele carriers

was 72.4%. In addition, this group had the highest CSF Amyloid-beta 1 to 42 peptide (Aβ)

concentration, 157.3 pg/mL, and the lowest CSF total tau (t-tau) and CSF tau phosphory-

lated at threonine 181 (p-tau) concentrations, 97.3 pg/mL and 31.2 pg/mL, respectively,

on average compared to the other subgroups.

The second subgroup was the largest one, consisting of 51% of AD subjects, 60.32% of

whom are APOE ε4 carriers. Both sexes were nearly equally represented (31 males and

32 females), having a mean age of 73.7 years (±7.63 standard deviation). Its members

performed relatively worse regarding MMSE (23.16 ± 1.99). The average CSF p-tau con-

centration for this group was the highest compared to the other subgroups at 44.9 pg/mL.

The last subgroup included the 25% of AD patients. Contrary to the previous sub-

group, it was dominated by females (9 males and 22 females) of relatively younger age

(72.62 ± 6.85) with a rather higher frequency of APOE ε4 allele carriers (74.19%). MMSE

performance of this subgroup was 24.06± 1.34. The CSF Aβ concentration was the lowest

for this group at 127.9 pg/mL while the CSF t-tau concentration was the highest at 139.4

pg/mL, on average, compared to the other subgroups.

Comparing the genetic profiles of these three subgroups of AD yielded further in-

sight on the differences between the pathologies exhibited by each subgroup. One-way

ANOVA was performed for each of the single nucleotide polymorphisms (SNPs) identi-

fied in two recent genome-wide association studies that reported loci associated with AD

6MMSE is a quantified clinical assessment for dementia [49]
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[93] and cognitive decline [135] (see C). Three SNPs were statistically significantly differ-

ent: rs10948363, which is related to gene CD2AP, rs11023139, which is related to gene

SPON1, and rs7245858, which is related to gene LOC390956.

For SNP rs10948363, which is related to gene CD2AP, 58% of the first subgroup and

74% of the third subgroup were carriers of the minor G allele, while 39% of the second

subgroup were carriers of this risky allele.

For SNP rs11023139, which is related to gene SPON1, 29% of the first subgroup were

carriers of the minor A allele, while 2% of the second subgroup and 11% of the third sub-

group were carriers of this allele.

Lastly, for SNP rs7245858, which is related to gene LOC39095, 23% of the first subgroup

were carriers of the minor A allele, while 2% of the second subgroup and 4% of the third

subgroups were carriers of this allele.

2.5.3 Genetic Heterogeneity of Alzheimer’s Disease

Genotype data

The second dataset comprises genotypes for 103 AD patients and 139 normal controls (see

demographic information in Table 2.4), obtained from the ADNI study7. ADNI genotyp-

ing is performed using the Human610-Quad Bead-Chip (Illumina, Inc., San Diego, CA)

which results in a set of 620,901 single nucleotide polymorphisms (SNPs) and copy num-

ber variation markers (for details see [133]).

Due to the weak or spurious signal in most of the genome, we opted to only use SNP

loci that were associated with Alzheimer’s disease or cognitive decline in recent large scale

7http://adni.loni.usc.edu/data-samples/genetic-data/
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genome wide association studies [93, 135]. This resulted in a reduced set of 66 SNPs (see

table in C)that were represented through the use of two binary variables encoding the

presence of major-major or major-minor alleles, thus raising the total number of features

to 132.

Evaluation of results for genotype AD data

Classification results are reported in Fig. 2.7a. The standard linear SVM discriminated

fairly between healthy controls and AD patients (AUC for K = 1 equals to 0.72). Compared

to the result that was obtained using imaging features, this highlights the difficulties as-

sociated with disease classification in the genotype domain. HYDRA was able to separate

the two groups with similar accuracy for K = 2 (AUC equals to 0.70). The classification

accuracy dropped for higher values of K . However, the difference between the results for

K = 1 and K = 2 was statistically insignificant (p = 0.10).

The clustering stability results are presented in Fig. 2.7b, while the AUC and ARI

values for the HYDRA model at K = 1,2,3 are given in Table 2.3. The stability analysis

suggested that two clusters are appropriate for capturing the intrinsic dimensionality for

representing the genetic heterogeneity associated with AD. Similar to the anatomically-

driven clustering results, these two clusters are successively partitioned to smaller clusters

for higher values of K , showing a hierarchical organization. This suggests that the data

has the structure that HYDRA reveals.

The optimal genotype clustering is visualized by contrasting the imaging phenotypes

of the estimated subgroups against the healthy control population through VBA (see Fig. 2.8A

and Fig. 2.8B).

53



Figure 2.8: Comparison between group differences obtained using commonly applied
monistic analysis and the results that were obtained using our method for heterogeneity
detection in genetic data. The voxel-based analysis was performed using GM RAVENS.
Color-maps indicate the scale for the t-statistic. Images are displayed in radiological con-
vention. Axial views of the VBA results obtained from GM group comparisons of (A) CN
vs. first AD subgroup; (B) CN vs. second AD subgroup; and (C) first AD subgroup vs. sec-
ond AD subgroup are shown. For (A) and (B), colder colors indicate relative GM volume
increases (CN < AD subgroups), while warmer colors correspond to relative GM volume
decreases (CN > AD subgroups). Similarly, for (C), warmer colors indicate relative GM
volume increases (first AD subgroup < second AD subgroup), while colder colors corre-
spond to relative GM volume decreases (first AD subgroup > second AD subgroup). Both
groups exhibit atrophy in the temporal lobe and posterior medial cortex while white mat-
ter lesions are present in the periventricular area. However, the first AD subgroup, which
mainly comprises APOE ε4 carriers, is characterized by significantly more hippocampus
and entorhinal cortex atrophy and less superior frontal lobe atrophy.

We observe that at the K = 2 cluster level, the estimated subgroups were associated

with distinct patterns of structural brain alterations: i) increased temporal lobe atrophy

subtype (see Fig. 2.8A) including posterior medial cortex atrophy and increased white
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matter lesion load; ii) increased superior frontal lobe atrophy subtype (see Fig. 2.8B) in-

cluding temporal lobe atrophy and periventricular white matter lesions.

The first subgroup exhibited reduced GM volumes in the hippocampus and entorhinal

cortex (Fig. 2.8A), while the second subgroup exhibited reduced GM volumes in the supe-

rior frontal lobe (Fig. 2.8B). The difference between the brain images in the two subgroups

is visualized in Fig. 2.8C.

The sex and age composition of the two estimated subgroups was similar for both

cases. The proportion of the females in the first subgroup was 48.52%, while for the second

one was 45.71% (see also Table 2.4). The average age of the first subgroup was 74.5, while

for the second one was 76.2 years old.

In addition to anatomical differences, the two subgroups exhibited significantly dif-

ferent levels of APOE ε4 allele and CSF biomarkers. While the first subgroup was com-

posed of 98% APOE ε4 carriers, only 14% of the second subgroup were APOE ε4 carriers.

Also, the first group had lower Aβ concentration, 133.6 pg/mL, and higher t-tau and p-tau

concentrations, 129.5 pg/mL and 42.5 pg/mL, respectively, on average compared to the

second subgroup.

Further analysis of the genetic differences between the two subgroups yielded two

additional loci of interest. While 32% of the first subgroup were carriers of the risk related

A allele of the SNP rs6656401 (related to gene CR1), 49% of the second subgroup was

composed of carriers of this allele.

The second locus that differed between the two subgroups was the SNP rs6733839,

which is related to gene BIN1. While 72.06% of the first subgroup consisted of risk related

C allele carriers of rs6733839, 85.71% of the second group comprised carriers of this allele.
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However, similar to the voxel-based analysis of the differences between the subgroups

of AD patients, these statistical findings should be approached with care as there might

be bias due to sample splitting. The statistical power needed to make a definite statement

about the genetic differences between the subtypes of AD may require a much higher

sample size.

2.6 Discussion & Conclusion

Synopsis

In this chapter, we presented HYDRA, a method for disentangling heterogeneity in a prin-

cipled semi-supervised machine learning framework. HYDRA aims to generalize the ba-

sic assumption of computational neuroimaging studies from a single separating pattern

to many patterns, thus addressing one of the major challenges that characterizes many

studies, namely the presence of heterogeneity. HYDRA attempts to find patterns associ-

ated with the underlying disease process, or more generally with the difference between

two groups. These different patterns could potentially identify different dimensions of the

underlying disease process and hence lead to diagnostic subcategories.

The proposed approach seamlessly integrates clustering and discrimination in a coher-

ent framework by solving for a non-linear classifier that bears common geometric prop-

erties with convex polytopes. Discrimination is achieved by constraining one class in the

interior of the polytope, while at the same time maximizing the margin between examples

and class boundary. On the other hand, clustering is performed by associating disease

samples to different faces of the polytope and hence to different disease processes. Thus,
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each face of the polytope informs us about the distinct foci of disease effects that distin-

guish the patients from the healthy control subjects. This coupling between clustering and

classification allows for segregating patients based on disease patterns rather than global

anatomy.

In our experiments, we demonstrated the ability of the proposed approach to discern

disease foci in both synthetic and clinical datasets without undermining its predictive

power. Moreover, our method is endowed with improved generalization performance due

to its maximum margin property of the method and the low complexity of the model (com-

pared to standard non-linear classifiers, e.g., Gaussian kernel SVM). The latter allows it to

efficiently handle small sample size high dimensionality data that are commonly encoun-

tered in neuroimaging studies by exploiting the dual model representation and operating

in the inner product space.

Model selection

Choosing an appropriate number of hyperplanes, or corresponding disease subtypes is

an important and difficult model selection question. The difficulty is underlined by the

fact that there is no ground truth available against which one may test a clustering result.

However, we presented a strategy based on examining the clustering stability [10, 94]. The

basic premise behind this strategy is that as one gets closer to the intrinsic dimensionality

of the pathological group, the clustering algorithm should obtain similar results for dif-

ferent datasets generated by sampling the initial population. The group structure should

remain relatively stable accounting for the fact that the datasets have been generated by

the same factors.
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Anatomical heterogeneity of AD

Applying the proposed framework to structural imaging data from ADNI, resulted in the

definition of three AD subgroups. Our results largely agree with a recent study employ-

ing surface-based morphometry to study AD heterogeneity based on cortical thickness

[118] and bear similarity to the subtypes that were recently identified in a pathologic study

based on the distribution and density of neurofibrillary tangles [112]. The first subgroup is

similar to the diffuse atrophy subtype reported in [118] and the typical AD group in [112].

The second subgroup is comparable to the parietal dominant in [118] and the first subtype

in [112]. The third subgroup maps to the medial temporal subtype of [118] and the third

group of [112].

The agreement of the results, despite the differences in the design of the studies, em-

phasizes the fact that AD should be considered as a neuroanatomically heterogeneous dis-

ease, characterized by multiple pathological dimensions. Among the pathological dimen-

sions revealed in this study, only the first one (Fig. 2.6B) bore important resemblance with

a typical AD pattern involving signature AD regions, while the other two (Fig. 2.6B and

Fig. 2.6C) exhibited distinct pathological patterns. These dimensions may reflect distinct

pathways leading to AD, associated with distinct disease processes that may constitute

potential therapeutic targets.

Aiming to elucidate the recovered pathological dimension of AD further, we found

that the anatomically defined clusters exhibit significant differences in their genotypes,

demographic characteristics and CSF biomarker distributions.

The first subgroup comprised more male participants of relatively older age. 72.4%

of its members were APOE ε4 allele carriers, while SNPs rs11023139 and rs7245858 were
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carried relatively more by members of this subgroup than members of the other two; 29%

of the first subgroup were carriers of the minor A allele for rs11023139 and 23% of the first

subgroup were carriers of the minor A allele for rs7245858, respectively (see Sec. 2.5.2).

This subgroup was characterized by the most widespread pattern of atrophy, yet the most

normal CSF biomarker levels. Moreover, the cognitive performance of its members was

comparable to one of the other subgroups. The older age of the group, the relatively more

normal levels of CSF biomarkers as well as the protective nature of rs11023139, which has

been associated with a slower rate of cognitive decline [135], suggest a protracted disease

progression. The possible long disease progression may have allowed for compensatory

mechanisms to develop resulting in a cognitive performance that is comparable to the

other groups despite the extended atrophy.

The second subgroup was the largest one (comprising 51% of AD subjects), with nearly

equal sex proportions. However, it comprised proportionally fewer APOE ε4 carriers

(60.32%), fewer carriers of the risky allele of SNP rs10948363 (39%), and almost no car-

riers of the minor A allele of SNP rs10948363 (2%) and SNP rs7245858 (2%). This was the

group whose members performed worse regarding MMSE.

The third subgroup included predominantly females of relatively younger age. Most of

the patients (74.19%) were APOE ε4 allele carriers, while also 74% of them were carriers of

the minor G allele of the SNP rs10948363, whose corresponding gene is CD2AP. CD2AP is a

scaffolding protein that is involved in cytoskeletal reorganization and intracellular traffick-

ing [41] and has been previously associated with late-onset AD [113]. Moreover, a direct

link between CD2AP and amyloid β toxic effects has been noted in yeast, nematodes, and

rat cortical neurons after study of the role of several genes in amyloid β and tau pathways
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[145]. This along with the fact that this group exhibits the most abnormal levels of CSF

t-tau and Aβ concentration may explain why members of this group are diagnosed as AD,

despite being of younger age and exhibiting more focal atrophy. The sex difference in the

population of this subgroup may result from the gender difference in the AD-promoting

effect of the APOE genotype [122]. Given that APOE ε4 preferably affects medial temporal

lobe structures, women may have a more vulnerable medial temporal cortex than men,

giving rise to this specific subtype.

Genetic heterogeneity of AD

Applying the proposed framework to genetic data from ADNI, resulted in the identifi-

cation of two AD subgroups. These groups were essentially dichotomized based on the

presence of APOE ε4 allele (98% of the members of the first subgroup carry it, while only

14% of the second subgroup do). However, the two groups exhibit additional genetic dif-

ferences, as well as anatomical differences and distinct distributions of CSF biomarkers.

Genetic differences were found for the SNP rs6656401 (related to gene CR1) and the

SNP rs6733839 (related to gene BIN1). Genetic variations at CR1 have been associated with

the risk of cerebral amyloid angiopathy and decreased entorhinal cortex volume [14, 17].

Increased expression of the BIN1 gene has been recently implicated in modulating tau

pathology [22], while BIN1 has also been associated with entorhinal and temporal pole

cortex thickness [14].

Anatomical differences were mainly found in the hippocampal and entorhinal cortex,

where the first group was characterized by significantly more atrophy. The anatomical

differences between the subgroups may be explained by the genetic variations. APOE ε4
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has been related to increased atrophy in hippocampus [67, 71], entorhinal [80] and medial

frontal cortex [45]. Given that, the first subgroup is expected to exhibit more atrophy in

these areas.

The two groups were characterized by differences in the distribution of the CSF biomark-

ers. This difference was more significant for the CSF Aβ, which was significantly reduced

in the first group. This difference may also be attributed to the effect of APOE ε4, which

has been previously associated with reduced levels of CSF Aβ and t-tau[124, 140].

While the dominant presence of APOE ε4 in the first subgroup provides the means

to interpret the anatomical and CSF biomarker differences between the two subgroups,

the relatively higher expression of the SNPs related to CR1 and BIN1 genes in the second

subgroup (where APOE ε4 allele is less expressed) may be an indication that these genes

may be part of an alternative pathway for AD pathogenesis in the absence of APOE ε4

expression. The atrophy exhibited by the second subgroup in the entorhinal cortex seen

in Fig. 2.8B) may be a product of CR1 expression since APOE ε4 is mostly absent in this

subgroup. While this hypothesis remains to be validated, this underlines the value of

data-driven, multivariate, exploratory techniques in forming new hypotheses.

Limitations and future work

There are some limitations to this work. First, the lack of ground truth for the clinical

datasets does not allow us to quantitatively validate the proposed method. However,

on the one hand, when AD patients were clustered based on imaging information, the

identified patterns of abnormality aligned well with findings based on neuropathology re-

ported in [112] and the subtypes defined based on cortical thickness in [118]. Moreover, the
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anatomically defined subgroups also exhibited genetic differences, which provides addi-

tional evidence for the validity of the obtained clustering. On the other hand, when cluster-

ing based on genetic information, we identified subpopulations that exhibited meaningful

anatomical differences. In summary, our results were consistent with the existing picture

of pathological neurodegeneration and the function of the related SNPs.

Nevertheless, the sample size that is necessary for drawing reliable conclusions about

the full extent of heterogeneity of AD may be higher than what was analyzed. In general,

we were able to demonstrate the presence of heterogeneity in AD given the ADNI dataset.

However, to be able to elucidate disease heterogeneity and map the distinct pathologi-

cal processes that drive it, a wider sampling of the patient population probed in a multi-

parametric fashion may be required.

Another limitation of this work is that the diseased population was studied by us-

ing either structural imaging data or genetic information. While this demonstrates the

ability of the proposed framework to handle both imaging and non-imaging data, includ-

ing additional information (e.g., amyloid PET imaging, tau imaging, cerebrospinal fluid

biomarkers, etc.) would be beneficial in better characterizing the dimensions and extent of

heterogeneity. Nonetheless, HYDRA cannot currently handle multiple sources of informa-

tion. This could be made possible by extending HYDRA through the adoption of multiple

kernel techniques [7]. Different kernels could be employed to encode different sources of

information, allowing for their seamless integration. This extension could make HYDRA

even more general, allowing its application to other exploratory problems, such as charac-

terization of the breast cancer heterogeneity and the analysis of abnormal tissue subtypes,

without being limited to the clustering of brain images.
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We should note that the estimation of the subpopulations may be influenced by con-

founding variations due to age and sex differences. In its current form, our method does

not explicitly take into account this case. Instead, we circumvent this by performing uni-

variate covariate correction before feeding the data to our method. To tackle this short-

coming, we are currently working on extending the proposed method by explicitly mod-

eling the effect of covariates within a unified clustering framework. However, the effect

of the covariates also renders prohibitive the usage of the classification model to interpret

the weight vectors of the hyperplanes (as explained in [68]). We circumvent this by per-

forming voxel-wise group analysis between the inferred patient clusters. However, the

interpretation of the group comparison results should be made with care since the sig-

nificance of the comparison may be biased due to the sample splitting. The voxel-based

comparisons should serve only as a qualitative tool and not as a quantitative one. Further-

more, to avoid the circularity of assessing group differences using the same features that

the groups are clustered by, we have assessed group differences using features that have

not been used in the clustering. Namely, we have assessed the genetic and demographic

differences between the anatomic subtypes of AD and the anatomic and demographic dif-

ferences between the genetic subtypes of AD.

A possible extension of our method is towards handling regression and longitudinal

studies. This could allow us to elucidate the complex nature of spatiotemporal disease

dynamics as well as to reveal varying paths of normal progression. Lastly, it is straight-

forward to derive a one-class version of HYDRA, analogous to the work of [132], to detect

and subtype outliers among controls. This could potentially shed light on the heteroge-

nous nature of healthy phenotypes.
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Conclusion

HYDRA aims to separate two groups by deriving a non-linear classification boundary that

is constructed by using multiple linear hyperplanes. The constructed polytope allows for

the revealing heterogeneity by assigning subgroups of patients to different hyperplanes.

HYDRA is general; it can handle imaging and non-imaging data and can find applications

in exploratory analyses other than the clustering of brain images. We evaluated the perfor-

mance of the method in simulated data, providing insight into its workings. Furthermore,

we applied HYDRA to structural imaging and genetic dataset from ADNI, revealing dis-

ease subtypes that are consistent with the existing picture of pathological neurodegenera-

tion and the function of the related SNPs. These results demonstrate the potential of our

approach in teasing out heterogeneity.
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Chapter 3

Inference through optimal spatial

filtering: MIDAS

3.1 Introduction

Voxel-wise statistical mapping is a widely used technique in neuroimaging within cross-

sectional studies. Its overarching goal is to generate maps that represent structural or

functional patterns associated with either group differences or with non-imaging vari-

ables. This is typically performed by spatially aligning imaging measurements from a

set of images, smoothing them using a fixed-size Gaussian kernel, and comparing them

using mass-univariate voxel-wise statistical tests. Depending on the type of imaging fea-

tures, these techniques may fall under the category of voxel-based morphometry (VBM)

[159, 60, 3, 33, 78, 90, 134, 13, 59, 77, 19, 107], deformation-based morphometry (DBM)

[5, 25, 26], or tensor-based morphometry (TBM) [144, 51, 138, 98, 23, 72]. These methods

do not require a priori definition of regions of interest and have the advantage of exam-
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ining the brain as a whole. As a consequence, they offer an automated, data-driven, and

unbiased way to assess brain structure and function comprehensively.

One major limitation of mass-univariate techniques is that they ignore multivariate re-

lations in the data. Additionally, the commonly applied local smoothing may obscure the

effects of interest. Smoothing the data is necessary to ensure that the assumptions under-

lying the theory of Gaussian random fields are met, and to account for registration errors.

Perhaps most importantly, smoothing is used to amplify the signal and reduce the noise

before performing statistical analyses and can lead to a dramatic increase in sensitivity to

detecting effects of interest. However, smoothing is typically not adapted to the scale and

shape of the signal of interest (e.g., activation, atrophy, neuropathology), which is neces-

sary to achieve high sensitivity and specificity in group comparisons or regressions with

non-imaging variables. If the smoothing kernel is too small, noise and limited pooling of

regional signal can severely reduce the statistical power of the ensuing statistical maps.

Conversely, if the kernel is too large, the spatial specificity of the maps is reduced, leading

to false conclusions about the origin of the effect of interest. Additionally, a kernel that is

too large may also decrease the statistical power for detecting effects of interest by smear-

ing them out through the introduction of information from regions that display no effect

of interest. As a consequence, selecting the appropriate kernel size is a challenging task

[79, 164]. In practice, this is performed in an empirical, or ad hoc fashion.

Towards addressing these limitations, information-based brain mapping techniques

have become increasingly popular in recent years. These techniques use pattern classi-

fiers to harness the rich multivariate information present in the interactions across many

voxels to obtain more powerful statistical maps. These approaches were popularized by
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the introduction of the searchlight methods [89, 123, 1]. Searchlight commonly applies

local discriminative classifiers and creates an information map by assigning each search-

light’s classification accuracy to its center voxel. In some variants of searchlight, Monte-

Carlo sampling and combining information across overlapping neighborhoods is used to

increase stability [15]. Despite its appealing multivariate nature, this strategy does not ap-

propriately encode the importance of each voxel as it effectively ignores its contribution

to the discriminative pattern. This may lead to important interpretation errors in prac-

tice. [44] demonstrated that searchlight methods might fail to detect informative voxels, or

could misclassify voxels as informative, unless the searchlight region sufficiently covers,

or matches the underlying pattern. Specifically, it is possible for voxels in the searchlight

map to be categorized as significant, not because they are informative, but because they

are at the center of a searchlight that contains the informative voxels. It is also possible to

detect weakly-informative voxels when they are sufficiently numerous.

Towards addressing this limitation, a more refined way to characterize each voxel’s

importance was proposed by [161, 162] in their framework for optimally-discriminative

voxel-based analysis (ODVBA). In ODVBA, non-negative discriminative projection was

employed regionally to estimate the direction that best discriminates between two groups.

Given this direction, the statistic of each voxel was assessed by taking into account the dis-

crimination power of the voxel in terms of the pattern seen in its neighborhood. However,

ODVBA was limited only in group-comparison settings, not being able to address regres-

sion tasks. More importantly, to obtain a statistical parametric map of group differences,

ODVBA requires computationally expensive permutations tests.

To tackle these shortcomings, we propose a novel statistical method for cross-sectional
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studies, termed MIDAS, which originates from regionally linear multivariate discriminative

statistical mapping. Our goal is to efficiently obtain highly specific and sensitive brain maps

with applications in structural and functional imaging. MIDAS seeks to increase statistical

power by combining the signal from all voxels that constitute the effect of interest. To-

wards this end, it aims to locally determine the shape and spatial extent of the effect/signal

of interest by fitting least squares SVM to a large number of overlapping neighborhoods,

which fully and redundantly cover the brain. In this way, the effect of interest is estimated

as the pattern that best discriminates between two groups, or predicts the variable of inter-

est in regression designs. This pattern is equivalent to local filtering by an optimal kernel

whose coefficients define the optimally discriminative/predictive pattern. By combining

information from all neighborhoods that contain a given voxel, we produce voxel-wise

statistics. These statistics are calculated by summing the contributions of each voxel to the

estimated local hyperplanes and normalizing them by the sum of the respective SVM mar-

gins. In other words, informative voxels are defined as ones that contribute significantly

to the discriminative direction of SVMs, which in turn, discriminate between two groups,

or predict a variable of interest with a margin as large as possible. Critically, motivated

by recent advances in deriving statistical significance maps for SVM classification [54, 55],

we derive an analytical approximation of the null distribution of the estimated statistics.

This allows us to effectively estimate voxel-wise p-value maps at a dramatic speed-up

compared to permutation tests.

We validated the proposed framework against mass univariate techniques, as well as

multivariate pattern analysis methods including searchlight, ODVBA, and SVM-based sta-

tistical significance maps. We created simulated data by introducing synthetic atrophy to
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structural brain scans of healthy subjects to quantitatively evaluate the performance of the

method. Quantitative evaluations were performed by assessing the sensitivity and speci-

ficity of the statistical significance maps in relation to the ground-truth regions. Moreover,

we used data from a task-based functional magnetic resonance imaging study to test MI-

DAS. This dataset consisted of brain activation maps of subjects who took part in a forced

choice deception experiment, where the groups were defined by truth-telling versus lying

tasks [34, 95]. Due to the absence of ground-truth, the methods were quantitatively an-

alyzed by measuring split sample reproducibility. Our experimental results indicate that

the proposed method outperforms the commonly used univariate and multivariate algo-

rithms in terms of sensitivity and specificity, as well as reproducibility. Lastly, the regres-

sion ability of MIDAS was demonstrated using a structural magnetic resonance imaging

study of the cognitive performance of mild cognitive impairment subjects [108, 146]. In

this setting, MIDAS was also able to yield highly sensitive maps compared to other state

of the art methods.

The remainder of this chapter is organized as follows. In Section 3.2, we detail the pro-

posed approach. In Section 3.3, we first experimentally validate MIDAS using simulated

data and then apply MIDAS to data from functional and structural neuroimaging studies.

We discuss the results in Section 3.4, while Section 3.4 concludes the chapter with our final

remarks.
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Figure 3.1: Overview of MIDAS: I) Neighborhoods are uniformly sampled such that the
brain volume is sufficiently covered; II) Local discriminative analysis is performed on
neighborhoods yielding weight vectors w; III) A voxel-wise statistic is computed using
the weight vectors; and IV) statistical significance is assessed through analytically approx-
imating the null distribution of the voxel-wise statistic.

3.2 Method

3.2.1 Overview

Multivariate inference using discriminative adaptive smoothing (MIDAS) is a group anal-

ysis and regression framework that integrates a large number of regional discriminant, or

regression, pattern analyses to obtain a voxel-wise statistical map analogous to those ob-

tained via the general linear model (see Fig. 3.1). MIDAS scans the imaging volume using

a sufficiently large set of overlapping neighborhoods (Fig. 3.1 I), and performs regional

discriminative analysis that yields weight vectors (denoted by w) (Fig. 3.1 II). The statistic

for a particular voxel is computed by summing the weights corresponding to the voxel in

all of the neighborhoods it resides in, and normalizing by the sum of the discriminative

power of the respective neighborhoods (Fig. 3.1 III). Finally, the p-value corresponding to

the voxel statistic is analytically obtained by approximating permutation tests (Fig. 3.1 IV).

70



3.2.2 Least squares support vector machine

MIDAS is based on the least squares support vector machine (LS-SVM) [141] to perform

local discriminative analysis. LS-SVM is an ideal base learning method for the MIDAS

framework as it can readily handle both classification and regression problems while ad-

mitting a closed form solution. Let X ∈ Rn×d denote the n by d matrix that contains d-

dimensional imaging features from n independent subjects arranged row-wise. Likewise,

let y ∈ Rn denote the vector that stores the clinical variables of the corresponding n sub-

jects. LS-SVM aims to relate the imaging features X with clinical variables y via a weight

vector w and a bias term b by optimizing the following objective:

min
w,b,ε

‖w‖22
2

+ c
‖ε‖22
2

subject to Xw+ 1b = y+ ε. (3.1)

This formulation describes a generalized fitting setting where the predictors captured

in X can be used to predict the responses y. The responses y can be either binary, yielding

a group difference setting or they can be continuous, yielding a regression setting. Here, w

is a d-dimensional vector that contains the weights given to each of the d features for the

fitting task, while ε is an n-dimensional vector providing slack for errors. Furthermore, c is

a hyper-parameter than controls the closeness of fit. The weight vector w can be solved in

closed form by satisfying the Karesh-Kunh-Tucker (KKT) conditions, leading to a solution

in the form:

w = Cy, (3.2)
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where the solution for the C matrix is given in 3.2.3. Note that this is a linear solution in

the y vector. Being able to express the solution vector in a closed linear form is important

because it allows us also to express the null distribution of w analytically and without the

need for very costly random permutations of the clinical variables y.

3.2.3 Optimization

The Lagrangian for LS-SVM is:

L(w,b,ε,λ) =
‖w‖22
2

+ c
‖ε‖22
2

+λT (Xw+ 1b − y− ε), (3.3)

which leads to the following KKT conditions:

∂L
∂w

=w+XTλ = 0

∂L
∂b

= λT 1 = 0

∂L
∂ε

= cε −λ = 0

∂L
∂λ

= Xw+ 1b − y− ε = 0. (3.4)

These lead to the matrix equation:



I 0 0 XT

0 0 0 1T

0 0 −I cI

X 1 −I 0

︸                  ︷︷                  ︸
M



w

b

ε

λ


=



0

0

0

y


, (3.5)
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which yields the solutions for w and b as:



w

b

ε

λ


=M−1



0

0

0

y


(3.6)

Therefore, if C =M−1 then w and b can be recovered by taking into account the respective

submatrices of C:

w = C[1 : d,d +1+n+1 : d +1+2n]y

b = C[d +1,d +1+n+1 : d +1+2n]y, (3.7)

which are linear solutions with respect to the clinical variables y. Recall that d is the di-

mensionality, and n is the sample size of the data matrix X.

3.2.4 Interpretability of weights through activations

[68] have cautioned against directly using discriminative model weights for interpretation

in neuroimaging. This is because underlying noise patterns may skew the discriminative

directions away from the true effect. Importantly, [68] showed that it is possible to pro-

portionally recover the interpretable underlying effect, also known as the activation, a, by

rotating the estimated linear discriminative model w (i.e., Xw = y) by left multiplying it
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with the covariance matrix of the data:

a ∝ Cov(X)w =
1
n
(X−X)T (X−X)w. (3.8)

The covariance matrix can be estimated either empirically, or by using shrinkage esti-

mators [97].

In the case of LS-SVM, the multivariate discriminative pattern is estimated as w = Cy.

Therefore, one can obtain the activation a through the following rotation:

a ∝ 1
n
(X−X)T (X−X)C︸                  ︷︷                  ︸

M

y. (3.9)

One of the important advantages of activations a over discriminative weights w is that

activations allow the capture of multiple informative correlated features whereas the dis-

criminative weights w may only act on a subset of these features. Note that utilizing ac-

tivations over weights does not completely circumvent the issues of multicollinearity in

features [110]. However, covariance matrix multiplication does redistribute the signal cap-

tured in weights to correlated features. Furthermore, the sign of activations a is in parity

with their correlation with the responses y. This allows the summation of correspond-

ing activations across multiple learners without cancellation, an issue that is present with

summing discriminative weights.

Hereafter, the activation a and its corresponding parametric matrix M (M = Cov(X)C)

along with the weight vector w and its corresponding parametric matrix C will be used to

construct the MIDAS statistic.
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3.2.5 MIDAS Statistic

For all voxels in one volume, we estimate multiple multivariate discriminative patterns wp

and their corresponding activations ap by applying the LS-SVM to different neighborhoods

(indexed by p) that contain it. Thus, for the ith voxel, we obtain a set of values {wpi } and

{api } corresponding to the coefficient values of the weight vectors and the activations at

the respective location, as well as a set of squared decision margins { 1
‖wp‖22

}. Our goal is

to summarize these values by a single measure that represents the effect of interest (e.g.,

group difference) at that spatial location, which will be used for statistical analysis.

We expect voxels that reflect effects of interest to have high absolute values of activa-

tions with the sign of the activation in correspondence with the direction of effect. The

contribution of the ith voxel to the local activation at the pth neighborhood is given by

a
p
i . Taking into account that a voxel belongs to multiple neighborhoods, its total activation

contribution is given by the sum of the respective activations across these neighborhoods:

vi =
P∑
p=1

a
p
i . (3.10)

The above quantity should be high when a voxel is well localized in an area of signif-

icant effects of interest (e.g., group difference), as it would contribute significantly to the

activation patterns of multiple neighborhoods that contain it.

From a multivariate discrimination sense, in uninformative neighborhoods, we expect

voxels to take low weight coefficient values. However, it is possible that some voxels

take high absolute weight coefficient values due to overfitting. In such cases though, the

decision margin of the neighborhood will be small, suggesting poor predictive power. As a
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consequence, the predictive power of the learner provides us with a measure of reliability.

If we denote the half squared margin for the LS-SVM applied to the pth neighborhood

by 1
‖wp‖22

, then the sum of the inverse predictive power of all learners, in which voxel i

participates, is given by:

mi =
P∑
p=1

‖wp‖22. (3.11)

In designing the MIDAS statistic, we opt to emphasize contributions of voxels that are

part of highly reliable machine learners, while limiting the importance of the ones that

participate in regional learners of poor predictive power. Thus, we compute the per voxel

statistic by modulating the total contribution of each voxel to the estimated local activation

patterns with the total predictive power of the respective machine learners:

si =
vi
mi

=

∑P
p=1 a

p
i∑P

p=1 ‖wp‖22
. (3.12)

The above normalization enables higher scrutiny for voxels in non-discriminative neigh-

borhoods, while further increasing the statistic of voxels in highly discriminative neighbor-

hoods.

3.2.6 Moments calculation

Here, it is assumed that the data X and the clinical variables y remained fixed for a par-

ticular analysis. The randomness occurs from applying permutation operations on the

clinical variables y. Therefore, the expectation, variance and covariance operators, E(·),

Var(·), Cov(·) are with respect to the uniform distribution of permutations on y.

76



Without loss of generality, it is assumed that the clinical variables are z-scored, such

that under random permutation, E(yj ) = 0 and Var(yj ) = 1. Otherwise, these can be z-

scored prior to analysis.

The first moment is approximated, up to the first order term, using the delta method

[20]:

E(si) = E
(
vi
mi

)
≈ E(vi)

E(mi)

=

∑P
p=1E(api )∑P

p=1E(‖wp‖22)

=

∑P
p=1

∑n
j=1M

p
i,jE(yj )∑P

p=1E(‖wp‖22)

= 0. (3.13)

The second moment is also approximated, up to the first order term, using the delta

method:

Var(si) ≈
Var(vi)
E(mi)2

=
Var

(∑P
p=1 a

p
i

)
E
(∑P

p=1 ‖wp‖22
)2

=

∑P
p=1

∑P
q=1Cov(api , a

q
i )

E
(∑P

p=1 ‖wp‖22
)2 . (3.14)

Note that Var(api ) =
∑n
i=1M

p
i,j

2
, and Cov(api , a

q
i ) =

∑n
i=1M

p
i,jM

q
i,j .
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Also, since E(wpi ) =
∑n
j=1C

p
i,jE(yj ) = 0, then E(wpi

2
) = Var(wpi ) =

∑n
j=1C

p
i,j

2
. Therefore,

E

 P∑
p=1

‖wp‖22

 = P∑
p=1

d∑
k=1

E(wpi
2
) =

P∑
p=1

d∑
i=1

n∑
j=1

C
p
i,j

2
. (3.15)

Taken together, the second moment is estimated as:

Var(si) ≈
∑P
p=1

∑P
q=1

∑n
j=1M

p
i,jM

q
i,j(∑P

p=1
∑d
i=1

∑n
j=1C

p
i,j

2
)2 . (3.16)

3.2.7 Statistical significance

Permutation tests, or exact tests, are a well known framework for hypothesis testing when

the underlying distribution of the statistic of interest is either hard to compute, or un-

known [117]. Permutation testing has been previously explored to assess the statistical

significance of SVM weight vectors [54, 55]. Specifically, voxel-wise p-values can be ob-

tained by comparing the estimated solution to a null distribution constructed by solv-

ing the LS-SVM problem using instances of target clinical variables y shuffled by random

permutations. Such permutation procedures are computationally intensive. However, a

statistic of the form wi
‖w‖2 can be analytically approximated by a normal distribution, result-

ing in efficient inference strategies [55]. Using analogous analysis, one can show (see 3.2.6)

that the MIDAS statistic (Eq. 3.12) is a sub-gaussian random variable whose tails can be

approximated by a Gaussian distribution:

si√
V ar(si)

=


∑P
p=1

∑P
q=1

∑n
j=1M

p
i,jM

q
i,j(∑P

p=1
∑d
i=1

∑n
j=1C

p
i,j

2
)2


−1/2 ∑P

p=1 a
p
i∑P

p=1 ‖wp‖22

D→N (0,1). (3.17)
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3.2.8 Multiple clinical variables

The optimal weight vector in LS-SVM is a product of the aforementioned C matrix, which

solely depends on the data samples X and the non-imaging variables y (e.g., clinical di-

agnosis). Therefore, multiple discriminative model weights, W ∈ Rd×r , can be obtained

if multiple non-imaging variables, Y ∈ Rn×r (e.g., diagnosis, age, sex, etc.), are used for

training:

W = CY . (3.18)

As explored in [68], these models can be adjusted for the underlying noise patterns,

as well as the interdependent effects between the non-imaging variables, by left and right

multiplying the weight vectors W with the data covariance matrix and the inverse label

covariance matrix, respectively. This results in activation patterns A, where the effect cap-

tured by each weight vector is independent of the underlying noise and possible imbal-

ances in the non-imaging variable distributions:

A = Cov(X)CYCov(Y )−1

=
1
n
(X−X)T (X−X)C︸                  ︷︷                  ︸

M

Y
(1
n
(Y −Y )T (Y −Y )

)−1
. (3.19)

The expectation of the multiple activations is still zero, which results in the correspond-

ing MIDAS statistic for the qth non-imaging variable, sqi to also have an expectation of zero:

E(sqi ) = 0. (3.20)
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Using the steps taken to estimate variance yields that for the qth weight vector,

Var(sqi ) ≈H
T
q Cov(Y )Hq

∑P
p=1

∑P
q=1

∑n
j=1M

p
i,jM

q
i,j(∑P

p=1
∑d
i=1

∑n
j=1C

p
i,j

2
)2 , (3.21)

where H =
(
1
n (Y −Y )

T (Y −Y )
)−1

, and Hq is the qth column of H .

3.2.9 Parameters Selection and Implementation

There are two main parameters in MIDAS. The first parameter is the neighborhood radius,

r, which controls the size of the local discriminative analysis window. The second param-

eter is the weight c in the LS-SVM objective (Eq. 3.1). This parameter controls for the

amount of slackness in the constraints of the LS-SVM objective, allowing for cases when

the data points X are not linearly separable with respect to the labels y. In other words,

c controls the degree to which w fits the data. One particular way by which the c and r

parameters can be selected is by using the resulting significance maps for feature selection

and assessing out of sample predictive performance through nested cross-validation [119].

One can also set the number of neighborhoods P , which are sampled such that the full

brain volume is covered. The MIDAS statistic (Eq. (3.12)) is self-normalized to have zero

mean and unit variance independent of the selection of P . In our experiments, P is selected

such that each voxel across the brain is covered at least 20 times for a given neighborhood

radius. A practical suggestion for setting P is to assess the reproducibility of resulting

statistical maps over a range of candidate of a number of neighborhoods and choose the

minimum value that attains stability.

Note that the topology of the regional neighborhoods need not be spherical nor com-
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pact for the resulting statistic to be valid. Thus, neighborhoods that are discontinuous or

anisotropic may be deployed in implementation. However, for simplicity, spherical neigh-

borhoods were used in the implementation described within.

Lastly, to ensure that the coverage of the brain is relatively uniform, the MIDAS imple-

mentation accounts for the number of times each voxel has been covered to cover under-

sampled regions at each iteration adaptively.

3.3 Experimental Validation

3.3.1 Evaluated Methods

Towards evaluating the proposed method, we qualitatively and quantitatively compare

MIDAS against commonly used brain mapping methods using both simulated and real

neuroimaging data.

Voxel-based morphometry (VBM) [60, 3, 4, 33] This has been one of the most widely

used and established methods for voxel-based analysis in neuroimaging studies. The

method entails segmentation of gray matter (GM) tissue and spatial normalization to a

common template. Local intensities of GM maps are modulated by scaling with the amount

of contraction. Differences are then detected by comparing modulated GM maps after

Gaussian smoothing. Comparisons are performed by applying Student’s t-test in a mass-

univariate fashion.

Permutation-based voxel-based morphometry (P-VBM) [117, 158] This is a non-parametric

analog of the VBM method, where the voxel-wise significance is assessed by comparing
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the test statistic against a null distribution formed by permuting the clinical variables. We

performed 2000 permutations in our experiments.

Optimally discriminative voxel-based analysis (ODVBA) [161, 162] ODVBA is a tech-

nique that aims to determine the optimal spatially adaptive smoothing of images. It uses

local non-negative discriminative projection (NDP) to estimate the direction that best dis-

criminates between two groups. The local NDP vectors are then used to derive voxel-wise

statistics, whose significance is assessed through permutation tests. The lack of a closed

form solution to the NDP problem results in a significant computational burden.

Searchlight [89, 123] Searchlight aims to pull signal from all voxels in a spatial region

through multivariate analysis. Specifically, a local classifier is applied to the neighborhood

surrounding each voxel in k-fold cross-validation (CV) setting. In the following experi-

ments, linear SVM is used as the base learner for searchlight analysis. Each voxel is char-

acterized by the cross-validated classification accuracy. Statistical significance is assessed

by permuting the group memberships and recalculating the k-fold CV accuracy for the

null distribution.

SVM-based statistical significance testing (P-SVM) [30, 54, 55] SVM classification is

performed to estimate the optimal hyperplane that separates two classes using all vox-

els as features and the group memberships as labels. The importance of the hyperplane

coefficients is assessed through an analytic approximation of permutation testing. This

method is very similar to MIDAS in its use of SVM weight vectors to assign significance

to voxel-wise differences. However, the key difference is that MIDAS attempts to find re-
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Figure 3.2: The frontal lobe regions that were subjected to simulated atrophy in the valida-
tion experiments is denoted by the red mask.

gionally optimal filters, while P-SVM takes into account the whole volume. Furthermore,

P-SVM utilizes a hard margin variant of LS-SVM, which may lead to overfitting and false

positive regions in high-dimensional settings.

3.3.2 Experiments Using Simulated Data

We first validated the proposed method using synthetic data. Specifically, we used a struc-

tural magnetic resonance imaging (sMRI) data set consisting of 1.5 Tesla T1-weighted MRI

volumetric scans of 200 healthy control subjects. MRI scans were first pre-processed using

previously validated and published techniques [60]. The preprocessing pipeline includes:

(1) skull-stripping [36]; (2) N3 bias correction [137]; (3) tissue segmentation into gray mat-

ter (GM), white matter, cerebrospinal fluid, and ventricles [100]; (4) deformable mapping

[121] to a standardized template space [81]; (5) calculation of regional volumetric maps

called RAVENS maps [33]; (6) normalization of the resulting maps by the individual in-

tracranial volume; and (7) resampling to 2mm3. After pre-processing, the samples were

split into equally sized groups, and group differences were induced by simulating atrophy
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within a predefined regional mask (Fig. 3.2). Atrophy was introduced as a multiplicative

reduction to the existing tissue volume to preserve the underlying covariance structure of

the brain anatomy.

This synthetic setting allows for quantitative evaluation of the sensitivity and speci-

ficity of the proposed method in detecting the introduced atrophy. Moreover, it allows for

quantitative comparisons against the methods above. In evaluating all methods, we sim-

ulated several scenarios that are commonly encountered in neuroimaging studies. First,

we examined the robustness of the methods in detecting a fixed level of simulated atrophy

under varying parameter settings. Next, we assessed the sensitivity of the methods by

analyzing their ability to detect decreasing levels of simulated atrophy at a fixed param-

eter setting. Similarly, we tested the effectiveness of the methods in detecting differently

shaped and sized atrophy patterns. Next, we evaluated how the sample size affects the

performance of the methods. Lastly, we assessed the false positive rate of these methods.

Analytical vs. Experimental Estimation of p-values

MIDAS makes use of an efficient, analytic approximation to estimate p-values (Eq. 3.17).

To assess the validity of the approximation, we compared the analytically approximated

p-values of the MIDAS statistic to the ones that were empirically estimated through non-

parametric testing based on 2000 permutations (see Fig. 3.3 Left). One can visually ap-

praise the high alignment between the two estimations. Few inconsistencies were ob-

served, which may be due to an insufficient number of permutations. This is further sup-

ported by the decreasing mean squared error of the analytically approximated p-values

compared to the empirically estimated ones with increasing number of permutations (Fig. 3.3
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Figure 3.3: Left: Log-log scale plot of the distribution of analytic- vs. permutation-based
estimation of MIDAS p-values. Right: Mean squared error of p-value estimation as a func-
tion of increasing number of permutations.

Right).

Robustness to parameter variation

In this experiment, we introduced 35% atrophy in the data, and evaluated how the per-

formance of each method changes when varying its key parameters. For VBM, P-VBM,

and P-SVM the full-width half maximum (FWHM) of the Gaussian smoothing kernel for

the input images was varied from 4mm to 10mm, at 2mm intervals. For Searchlight, the

searchlight radius was ranged from 2 voxels (4mm) to 5 voxels (10mm). For ODVBA and

MIDAS, the neighborhood radius r was varied from 8 voxels (16mm) to 20 voxels (40mm).

For MIDAS, the c parameter was varied from 10-1 to 100. The performance was assessed

by thresholding detections at false discovery rate (FDR) [11] level q < 0.05, and then calcu-

lating the True Positive Rate (TPR) and the False Positive Rate (FPR).

Quantitative results for all methods are shown in Fig. 3.5. The TPR and FPR, as well as
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Figure 3.4: Detection results obtained by all methods using the dataset with 35% simu-
lated atrophy. Regions were estimated by thresholding significance maps at FDR level of
q < 0.05. The resulting masks were compared to the ground-truth: true positives for all
methods are color-coded by yellow to red gradient, false positives are denoted by blue
voxels, while false negatives are denoted by green voxels. Results by varying the Gaus-
sian smoothing kernel size (in the case of VBM, P-VBM, P-SVM), the neighborhood radius
size (in the case of ODVBA and Searchlight), as well as the neighborhood radius and c
parameter (in the case of MIDAS), are shown.

the entire receiver operating curve (ROC) for all methods, are reported. MIDAS produced

the fewest false positives for almost all parameter configurations. At the same time, MI-

DAS was able to obtain high TPR. Methods that depend on Gaussian smoothing, such as

VBM, P-VBM, and P-SVM, were able to obtain high TPR at the cost of high FPR. Similarly,

Searchlight was not able to attain high TPR without conceding high FPR. Converging con-
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clusions can be drawn by visually inspecting the ROC curve. MIDAS achieved the highest

area under the curve, followed by ODVBA. ODVBA and MIDAS are similar in spirit as

they both perform local discriminative learning to tease out local signal patterns. How-

ever, MIDAS, on top of attaining a slightly higher TPR, is computationally more efficient

than ODVBA. MIDAS makes use of efficient analytical approximations resulting in a com-

putational time that is three magnitudes faster than that of ODVBA, which is based on

computationally expensive permutation tests.

The regions that were detected as significant for all methods and parameter configu-

rations are shown in Fig. 3.4. In agreement with the quantitative results, we note that

VBM, P-VBM, were able to decrease the number of false negatives (shown in white) with

increasing smoothing, albeit at the cost of increasing the number of false positives (shown

in orange). A similar trend was observed in the case of Searchlight when increasing the

neighborhood radius. P-SVM detects the effect of interest for all parameters, but produces

false positives. ODVBA, on the contrary, did not produce false positives, but the num-

ber of false negatives depended on the size of the local neighborhood. MIDAS produced

few false positives, while also achieving few false negatives. Importantly, the results were

stable across all parameter settings.

Sensitivity to the size of the simulated effect

To further evaluate the capability of the compared methods to detect the simulated atro-

phy, we created additional datasets by varying the simulated atrophy in the frontal lobe

mask (Fig. 3.2) from 15% to 35%. Detected regions were first determined by threshold-

ing significance maps at FDR level q < 0.05, and then compared to the ground-truth. As
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previously, we evaluated the performance of the methods by calculating TPR and FPR, as

well as measuring the area under the receiver operating characteristic curve (AUC). For

each method, the parameters that yielded the highest TPR for the 35% simulated atrophy

experiment were used. Specifically, for VBM, P-VBM, and P-SVM, the FWHM of the Gaus-

sian smoothing kernel for the input images was set to 8mm. The Searchlight radius was

also fixed to an 8mm radius. The neighborhood radius of ODVBA and MIDAS was set to

16mm, while the c parameter of MIDAS was set to the default value of 1.

As expected given the choice of parameters, all methods achieved high TPR, while in-

creasing the degree of simulated atrophy resulted in increased TPR (see Fig. 3.6). MIDAS

was able to reveal the true signal for varying levels of atrophy, and at a TPR comparable

to VBM and P-VBM. Importantly, MIDAS was able to attain lower FPR than both VBM

and P-VBM for all atrophy levels. Only ODVBA was able to attain slightly lower FPR

than MIDAS for some atrophy levels, but that was achieved at the cost of much lower

TPR. The above differences were also reflected in the AUC measurements. Increased at-

rophy resulted in increased AUC values for all methods, with VBM, P-VBM, and Search-

light converging in lower values than MIDAS and ODVBA. MIDAS and ODVBA achieved

similar best performance for high levels of atrophy, while MIDAS retained high-quality

performance for low levels of atrophy too.

The regions that were detected as significant for all methods and degrees of atrophy are

shown in Fig. 3.7. In agreement with the quantitative results, we note that VBM, P-VBM,

P-SVM, and Searchlight were able to identify increased portions of the underlying signal

for increased degrees of simulated atrophy. However, they also resulted in an increas-

ing number of false positives. ODVBA and MIDAS, on the contrary, were able to able to
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recover increasing portions of the simulated signal, while introducing less false positives.

Sensitivity to the shape of the simulated effect

The goal of this experiment is to investigate how the shape and extent of the underlying

pathology influence, in conjunction with the used parameters, the performance of the dif-

ferent methods. Towards this end, the simulated atrophy in the frontal lobe was broken

into three subregions of different morphology (Fig. 3.8 A, B, C), and 35% atrophy was

introduced successively to each subregion while leaving the rest intact. Moreover, each

method was run by using multiple parameters. For VBM, P-VBM, and P-SVM, we varied

the FWHM of the Gaussian smoothing kernel from 4mm to 10mm, with a step of 2mm.

Similarly, the radius of the searchlight was ranged from 4mm to 10mm. The neighborhood

radius of ODVBA and MIDAS was ranged from 16mm to 40mm. Lastly, the c parameter

of MIDAS was set to 1.

The performance of all combinations of methods and parameters was assessed by mea-

suring the AUC, which was calculated by comparing the ground-truth mask and the re-

spective voxel-wise statistics (Fig. 3.8). We note that different levels of smoothing (as

utilized by VBM, P-VBM, and P-SVM) were optimal for detecting different effects. For

example, in the case of elongated and more focal simulated effects (Fig. 3.8A and C), less

smoothing was optimal for VBM compared to the case of the larger simulated effect in Fig.

3.8B. This is because, to detect the underlying signal better, a matched filter is required.

As a consequence, focal patterns require less smoothing than larger ones to yield specific

brain maps. Similarly, in the case of Searchlight, different neighborhood sizes, containing

sufficient informative voxels, were optimal for detecting different effects. Contrary to the
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other methods, MIDAS was able to detect effects of different shape and extent with high

accuracy regardless of the choice of parameters.

Exploring the effect of the sample size

This experiment aims to study the statistical power of each method as a function of the

sample size. Towards this end, we generated multiple datasets by introducing 35% sim-

ulated atrophy in the frontal lobe mask (Fig. 3.2), and varying the sample size from 40 to

400. For every sample size, we applied each method ten times, and estimated the average

AUC (Fig. 3.9).

Given enough samples, all methods were able to detect the strong simulated signal.

With increasing available data, most methods converged to a high AUC value. How-

ever, important differences were observed for lower samples sizes. In these cases, MIDAS

demonstrated advantageous statistical power in detecting the underlying signal compared

to the other methods. Additionally, the comparable statistical power of ODVBA relative to

MIDAS is offset by its high computational expense, which is at least two orders of magni-

tude higher than the runtime of MIDAS.

Evaluating the family-wise error

In this experiment, we evaluated the probability of making one or more false discoveries

for each method. Towards this end, we used random subsets of healthy controls subjects

without inducing any simulated atrophy. As a consequence, the null hypothesis of no

group difference should be true. Group comparisons were performed ten times using each

method, and the FPR at p < 0.05 level was computed for each method (Fig. 3.10 Left).
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As expected, the FPR at p < 0.05 was within 5% for all methods. It should be noted

that P-SVM yielded noticeably higher FPR than all other methods. This finding was also

observed in experiments discussed in Secs. 3.3.2 and 3.3.2.

To further compare the behavior of the methods in the absence of any signal, p-value

scatter plots between the different methods are shown in Fig. 3.10 Right. One observation

is that the p-values of Searchlight were uncorrelated to the p-values of all other methods.

Another interesting finding is that the p-values of P-SVM followed a sub-linear relation-

ship with respect to VBM p-values. While higher p-values of P-SVM followed a linear

trend with VBM p-values, the lower p-values of VBM were further lowered by P-SVM.

This may explain why P-SVM generates a higher number of significant voxels, even in the

absence of underlying signal.

Simulated regression case study

To demonstrate the regression ability of MIDAS, we created another validation dataset by

continuously varying the simulated atrophy in bilateral temporal lobe regions (Fig. 3.11) as

a function of age in 100 control subjects whose ages ranged from 55 to 90. For the mildest

effect simulated, 55-year-olds experienced zero atrophy while 90-year-olds were simulated

to have 15% atrophy. In the strongest case simulated, 55-year-olds again experienced zero

atrophy, while 90-year-olds experienced 50% atrophy bilaterally in temporal lobe regions.

To further render this simulation realistic and to decrease signal to noise ratio, 15 % label

noise was added in the sense that the exhibited atrophy was randomly modulated to be

within 15 % of the expected atrophy at the subject age.

For evaluation, in addition to MIDAS, only VBM and searchlight were suitable for
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Figure 3.8: The AUC of compared methods for three simulated effect shapes. The red
subregion of the atrophy mask (in yellow) was subjected to 35% atrophy. The resulting
AUC of the compared methods under varying smoothing parameters (as in the case of
VBM, P-VBM, and P-SVM), or radii (as in the case of MIDAS, ODVBA, and Searchlight),
is shown on the right.
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Figure 3.11: The temporal lobe regions that were subjected to simulated atrophy in the
regression validation experiments is denoted by the red mask.

COLORSCALE

False negatives

False positives

True positives4 88-log(p)

Atrophy=15% 20% 30% 50%

Figure 3.12: Regions detected by all methods for different degrees of introduced atrophy.
Regions were estimated by thresholding significance maps at FDR level of q < 0.05. True
positives for all methods are color-coded by yellow to red gradient, false positives are
denoted by blue voxels, while false negatives are denoted by green voxels.
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regression cases and were thus tested in this validation study.

Similar to previous evaluations, detected regions were first determined by threshold-

ing significance maps at FDR level q < 0.05, and then compared to the ground-truth. We

evaluated the performance of the methods by calculating TPR and FPR, as well as measur-

ing the area under the receiver operating characteristic curve (AUC). For VBM, the FWHM

of the Gaussian smoothing kernel for the input images was set to 8mm. The Searchlight

radius was also fixed to an 8mm radius. The neighborhood radius of MIDAS was set to

16mm, while the c parameter of MIDAS was set to the default value of 1.

The TPR and FPR of MIDAS, VBM, and searchlight in the simulated regression case

study are displayed in Figure 3.13. MIDAS was able to uncover the underlying atrophy

pattern at much weaker level of signal than both VBM and searchlight. As observed in

previous sections, all methods exhibited higher TPR at increasing signal strength but with

increased levels of false positives. However, the AUC plot demonstrates that the increase

in true positives is much greater in magnitude than false positives. In addition, VBM and

searchlight exhibited similar levels of true positives. However, searchlight false positives

were considerably greater which resulted in lower AUC.

To further visualize the results, the regions that were detected as significant for all

methods and degrees of atrophy are shown in Fig. 3.12.

3.3.3 Functional Neuroimaging Data from a Lie Detection Study

We applied MIDAS along with the comparative methods to a dataset comprising func-

tional MRI (fMRI) scans of individuals undertaking lying and truth-telling tasks in a forced

choice deception experiment [95]. For the study, 52 right-handed males (mean age=19.36±0.5)
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were recruited. Functional data were pre-processed to obtain parameter estimate images

(PEIs) as described by [34], who also provided the data.

The parameters used for MIDAS were c=1 and r=16. For ODVBA, r=16 was used. For

Searchlight, r=3 was used. For VBM, P-VBM, and P-SVM, FWHM=8mm was the smooth-

ing kernel for the images.

The estimated PEIs were then given as input to the compared methods to locate the

brain regions that were most distinctive between the two tasks. Specifically, two PEIs for

each subject were obtained and formed two groups that included 52 PEIs corresponding

to truth-telling and 52 PEIs corresponding to lying, disregarding the pairing present in the

samples. Although this neglect reduces potential statistical power, this was done to com-

pare all methods on equal footing. Statistically significant regions at FDR level q < 0.05

for all methods are shown in Fig. 3.14. We note that Searchlight and VBM approaches de-

tected fewer regions. On the contrary, P-SVM, ODVBA and MIDAS found similar regions

to be significantly different between the task-based groups, including cerebellum, insular

cortex, cingulate, medial frontal gyrus, and postcentral gyrus. Detected regions align well

with previously reported results [95]. P-SVM resulted in statistical maps exhibiting the

largest spatial extent. However, this may be due to including false positive regions as was

observed in the simulation experiments. MIDAS, on the contrary, demonstrated the high-

est significance in group differences within the identified voxels. Specifically, MIDAS was

able to detect highly specific activation in the supramarginal gyrus, which is associated

with truth-telling.

Due to the lack of ground-truth, we further quantitatively evaluated the compared

methods in terms of split sample reproducibility. The study sample was randomly di-
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vided into halves ten times, and for each split, the compared methods were applied. Re-

producibility was calculated in two ways by measuring the Dice coefficient and the ad-

justed Rand index (ARI) [74] between the significant regions detected at each split after

FDR correction (q < 0.05). While Dice coefficient is a common measure for assessing the

overlap between sets, ARI provides a complementary view of set similarity that is adjusted

for chance. This property of ARI enables a more fair comparison of the set of voxels that

pass the significance threshold across sample splits when the regions of significance vary

in spatial extent. Although there is no consensus on what is considered to be a good value

of Dice coefficient and ARI, a Dice of over 0.50 is considered to be acceptable while ARI of

over 0.75 is deemed excellent, 0.40 to 0.75 as fair to good, and below 0.40 as poor [48].

The average Dice coefficient and adjusted Rand index (ARI) across pairs of sample

splits are reported in Fig. 3.15 for all methods. MIDAS demonstrated the highest average

split sample reproducibility at 0.64±0.07 (Dice) and 0.46±0.09 (ARI). The second highest

performing method in terms of Dice coefficient was P-SVM with an average Dice of 0.61±

0.08. On the other hand, VBM had the second highest ARI at an average of 0.31 ± 0.08.

Searchlight had the lowest average split sample reproducibility at with an average Dice

coefficient of 0.18± 0.20 and average ARI of 0.17± 0.04.

3.3.4 Structural Neuroimaging Data from a Cognitive performance study

To observe the regression performance in a clinical dataset, we applied MIDAS, VBM,

and searchlight to a structural MRI (sMRI) dataset comprising of 100 mild cognitive im-

pairment subjects from the Alzheimer’s disease neuroinitiative (ADNI) study. The sMRI

images were processed using the same steps as described in section 3.3.2 to yield gray mat-
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Figure 3.14: Significant regions detected after FDR correction (q < 0.05) by all methods
using the functional MRI lie detection task dataset. The color intensity indicates -log p
value. Warmer colors indicate increased activation during truth telling, while colder colors
indicate increased activation during lying. The color scale is matched for all methods to
facilitate comparisons.

ter volumetric tissue density maps. The continuous score that the imaging features were

regressed against was Alzheimer’s Disease Assessment Scale Cognitive Behavior Section(Adas-

cog-13) which is a measure of cognitive performance that is widely used in Alzheimer’s

disease trials [108]. A higher Adas-cog-13 score indicates a greater level of cognitive dys-

function.

The parameters used for MIDAS were c=1, r=16. The searchlight radius was r=3 while
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Figure 3.15: Average split sample reproducibility of the compared methods for the lie de-
tection dataset measured by Dice coefficient and adjusted Rand index. The error bars de-
note standard deviation. MIDAS demonstrated the highest reproducibility at 0.64 Dice
coefficient and 0.46 adjusted Rand index on average. P-SVM had the second highest Dice
coefficient at 0.61 on average while VBM had the second highest adjusted Rand index at
0.43 on average. Searchlight achieved the lowest reproducibility with an average Dice
coefficient and adjusted Rand index of 0.18 and 0.17, respectively.

the VBM smoothing kernel was FWHM=8mm.

The gray matter tissue density maps, known as RAVENS maps [33], were given as in-

put to the compared methods to locate the brain regions that were most associated with

cognitive performance as quantified by Adas-cog-13 score. Statistically significant regions

at FDR level q < 0.05 for all methods are shown in Fig. 3.16. For maps that are corrected for

multiple comparisons, VBM yielded fewer regions than MIDAS while searchlight failed to

yield any significant regions. Significance maps that are not corrected for multiple com-

parisons are shown in Fig. 3.17 with voxels passing p < 0.05. Similarly, MIDAS yielded

regions with more extreme p-values as well as a greater amount of them relative to VBM

and searchlight. Importantly, MIDAS was able to accurately associate white matter hyper-

intensities and medial temporal lobe atrophy with increased Adas-cog-13 scores which is

corroborated by larger sample studies in past literature [146].
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Figure 3.16: Significant regions detected after FDR correction (q < 0.05) by all methods
using the structural MRI mild cognitive impairment dataset. The color intensity indicates
-log p value. Warmer colors indicate increased tissue density correlated with Adas-cog-13
score, while colder colors indicate decreased tissue density correlated with Adas-cog-13
score. The color scale is matched for all methods to facilitate comparisons.

Figure 3.17: Significant regions uncorrected for multiple comparisons (p < 0.05) by all methods
using the structural MRI mild cognitive impairment dataset. The color intensity indicates
-log p value. Warmer colors indicate increased tissue density correlated with Adas-cog-13
score, while colder colors indicate decreased tissue density correlated with Adas-cog-13
score. The color scale is matched for all methods to facilitate comparisons.
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3.4 Discussion & Conclusion

Synopsis

In this chapter, we have introduced a novel multivariate pattern analysis method, termed

MIDAS, for statistical parametric mapping analysis of images. In the proposed frame-

work, discriminative learning is applied to regional neighborhoods towards estimating

the multivariate pattern that best reflects the effect of interest, such as a group difference

or regression against a clinical variable. Information from regional discriminants derived

from multiple neighborhoods is combined to estimate a statistic for each voxel that is asso-

ciated with them. Intuitively speaking, this statistic assigns high values to voxels that con-

tribute significantly to highly discriminative learners. Critically, an analytic approximation

of the null distribution is employed towards efficiently estimating voxel-wise significance

without the need for very costly permutation tests. The proposed framework was exten-

sively validated using simulated data, and tested on real functional MRI data pertaining

to lie detection and a structural MRI dataset of mild cognitive impairment. Compared to

commonly used brain mapping techniques, the proposed framework demonstrated ad-

vantageous performance, underscoring its potential to efficiently map effects of interest in

both structural and functional data.

Comparison with voxel-based analysis methods

Commonly applied voxel-based analysis techniques smooth the data spatially using ker-

nels defined in an ad hoc or empirical way, thus imposing a priori assumptions regarding

the shape and spatial extent of the effect of interest, which itself might be heterogeneous
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throughout the brain. Such assumptions may lead to reduced statistical power and spa-

tial specificity of the resulting maps as the applied smoothing is seldom adapted to the

scale and shape of the signal of interest. In sharp contrast to them, the main premise

of MIDAS is that it optimally detects effects of interest by effectively applying a form of

matched filtering. Since the underlying effect to which the matched filter should adapt is

not known in advance, regional discriminative analyses are used to combine information

from the most informative voxels resulting in optimal regional filtering. Critically, this fil-

tering does not blur or smear out the derived statistical parametric maps, since those are

eventually formed at the voxel resolution by forming a voxel-wise statistic informed by all

regional learners that include a particular voxel.

Comparison with multivariate methods

MIDAS is somewhat similar in spirit to Searchlight, ODVBA, and P-SVM. Nonetheless, it

significantly deviates from them. First, MIDAS creates the information map by taking into

account the contribution of each voxel to the classifiers that include it as well as the classi-

fier’s discriminative power. This is in contrast to Searchlight that assigns each searchlight’s

classification accuracy to its center voxel. This difference has two important implications:

i) it allows for a more refined characterization of the importance of each voxel, and ii) it

increases computational efficiency by relaxing the requirement of running regional classi-

fication for every voxel. The only requirement in the case of MIDAS is that the employed

neighborhoods should cover sufficiently the whole image volume. By appropriately com-

bining information from all neighborhoods, MIDAS can estimate the per-voxel statistics.

Second, MIDAS and ODVBA share the goal of estimating the optimal spatially adap-
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tive filtering of the data. However, their design and implementation are significantly dif-

ferent. ODVBA is designed to tackle group comparison tasks, and cannot naturally handle

regression tasks. Moreover, ODVBA is based on non-negative discriminative projection,

which hinders an analytical approximation of the statistical significance map. As a con-

sequence, computationally expensive permutation tests are required for the estimation of

voxel-wise p-values. On the contrary, MIDAS is generic and can readily handle both group

comparison and regression tasks. Additionally, MIDAS introduces an analytical approx-

imation of the null distribution of the proposed statistic, achieving significant speed-up

making it attractive for computational neuroanatomy applications using large neuroimag-

ing data.

P-SVM is also based on an analytical estimation of voxel-wise significance maps. This

estimation is founded on the assumption of a high dimensional low sample size setting.

MIDAS does not make such an assumption when deriving its analytical approximation

model. Interestingly, this model can be understood as a bootstrapping generalization of P-

SVM [54, 55], endowed with a similar, yet different, null distribution. Theoretically, boot-

strapping can be used to stabilize otherwise noisy statistics [43]. Empirically, we showed

that MIDAS statistic yields a higher AUC than P-SVM for different degrees of atrophy

(Fig. 3.5) and number of samples (Fig. 3.9). Lastly, in MIDAS, we further incorporated

the correction procedure proposed by [68] to utilize interpretable activations rather than

weight vectors.

In summary, the proposed framework addresses important limitations of alternative

methods. MIDAS makes use of optimal spatially adaptive filtering to detect with im-

proved sensitivity structural, or functional signal of interest. Specifically, MIDAS was
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found in several experiments to consistently delineate effects of interest while being rela-

tively invariant to the tuning parameters, facilitating its usage and favoring reproducible

research. Additionally, it demonstrated increased sensitivity in detecting the signal of

interest at various degrees of strength, without introducing false positives. Notably, in-

creased sensitivity was observed for both small and large sample sizes. Moreover, we

experimentally found that MIDAS is capable of revealing underlying effects of different

shape and spatial extent across multiple parameter settings. The robustness of MIDAS

with respect to varying shape and size of regions sought is primarily due to its inherent

adaptive nature in estimating the regionally optimal way to filter the data. This optimal fil-

tering does not smear out the underlying signal while allowing MIDAS to truly delineate

sharp multivariate patterns rather than peri-voxel patterns mapped through searchlight

[44]. Critically, using functional MRI data in a split sample setting, we showcased the high

robustness of the proposed framework as quantified by the reproducibility of the obtained

results. Reproducibility, being orthogonal to the measures of sensitivity and specificity,

further assures the reliability and robustness of the proposed method.

Comparison with multivariate feature selection methods

The output of MIDAS is a spatial map reflecting significant group effects or correlations

with non-imaging variables. As such, this map can be used to perform feature selection

for a subsequent classification, or regression task using a properly nested cross-validation

scheme. In that sense, MIDAS bears similarities to multivariate feature selection methods

[66, 96, 126, 53, 129]. These methods are designed to identify a set of appropriate features

for making predictions on unseen data. Towards this end, they are often based on elaborate
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measures whose null distribution is difficult to estimate. Importantly, as these methods

are particularly concerned with maximizing the accuracy of the predictions, they may be

influenced by confounding variations in the data, rendering the features uninterpretable

with respect to the processes under study [68]. Lastly, they often choose a small set of

features, which may not fully reflect the true underlying variability despite their superior

prediction performance. On the other hand, MIDAS may not result in improved predictive

accuracy, but yields tractable, analytically solvable statistics for interpretable inferences.

Importance of the choice of local learner

The choice of the least squares support vector machine as the base learner for the local dis-

criminative analysis is important for the computational efficiency of the proposed frame-

work. The LS-SVM admits a closed form solution, which is estimated as a linear function

of clinical variables. This allows for analytically estimating the solution vector’s null dis-

tribution, which in turn enables the analytical estimation of the distribution of the MIDAS

statistic. This is in contrast to several variants of the searchlight family of methods, as well

as ODVBA, whose base learners cannot be solved in closed form, thereby requiring costly

permutation testing procedures.

Importantly, the choice of the LS-SVM adds to the versatility of the proposed frame-

work. The LS-SVM can tackle both classification and regression designs. Moreover, the

LS-SVM can be readily modified to accommodate different regularization terms encoding

distinct assumption regarding the nature (e.g., smoothness, or spatial extent) of the under-

lying signal (see 3.4). Critically, this does not impact the closed form nature of the solution,

thus maintaining the benefits of rapid analytical approximations of null distributions.
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Generalization to different study designs and data types

The proposed framework is designed for cross-sectional studies where each subject pro-

vides a single image. However, the framework is general in terms of input imaging modal-

ity. In this chapter, we demonstrated its applicability to both structural and functional data.

However, the underlying statistical model does not make any further assumptions regard-

ing the nature of the input data and can be applied to a very broad family of statistical

parametric mapping tasks. Moreover, while our validation setting was based on classi-

fication tasks, MIDAS is also applicable to regression tasks. Our formulation does not

make any assumption about the domain of clinical variables, which are not constrained

to be binary. As a consequence, one may readily apply MIDAS when aiming to capture

effects of interest reflected by continuous variables, such as aging or development. This

is an important advantage of MIDAS compared to ODVBA, which is designed for binary

scenarios.

A note about regularization

MIDAS employs LS-SVM as the base local discriminative learner. In the described for-

mulation, the LS-SVM makes use of the Euclidean norm ‖w‖22 to enforce the smoothness

of the estimated weights. Nonetheless, this choice does not preclude the use of different

regularization terms, which could better encode the nature of the imaging data. Such a

regularization term is wTΣw, which enforces nearby voxels to carry similar weights [12],

potentially improving the quality of the resulting statistical brain maps.
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Accounting for covariate effects

A practical feature of the MIDAS framework is that the use of local linear learner admits

explicit covariate effect corrections as derived in [68] and explained in detail in 3.2.8. This

procedure enables the analysis of datasets with non-uniform distribution of covariates,

whose effects would otherwise bias the resulting statistical parametric maps. This property

of MIDAS is in stark contrast with ODVBA and searchlight family of methods, which

necessitate the prior correction of the covariate effects. The latter may be problematic if

the covariates to be corrected are not uniformly distributed with respect to the groups of

interest.

Limitations and extensions

MIDAS in its formulation assumes a linear relation between clinical variables and the

imaging features where the statistical mapping is to be performed. While this assumption

is mainly made to facilitate the use of the analytical estimation of the null distribution for

fast computational speed, it is one of the limitations of MIDAS. Contrastingly, searchlight

family of methods can admit non-linear learners such as Gaussian kernels for information

mapping and may be more sensitive to non-linear relations between the clinical variables

and imaging features.

It is possible to generalize MIDAS statistic to handle non-linear kernels such as Gaus-

sian radial basis function (RBF) kernel and non-differentiable regularizations such as `1-

norm that induces a sparse prior on model weights. One possible extension of MIDAS is

one that utilizes the Gaussian kernel in the local learner formulation. [27] have shown that

the non-linear decision boundaries using Gaussian kernels can be locally linearly approx-
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imated. While these approaches may have advantages in its ability to generalize a wider

class of predictive situations, it incurs a high computational price as present in searchlight

family of methods since the estimation of null distribution is not as straightforward as in

the linear case and requires permutation testing.

One limitation of MIDAS is that in its current formulation it is only applicable to cross-

sectional study designs where each subject provides a single image for analysis. However,

it is possible to extend MIDAS to allow paired sample study designs as well as longitudinal

studies by utilizing difference maps and longitudinal slopes as input features. Specifically,

to emulate a paired statistical test, a group of difference images can be contrasted against a

group of a commensurate number of empty images using the current MIDAS implemen-

tation. Furthermore, to emulate a longitudinal study where each subject provides a set of

images over the course of time, the slopes and intercepts of subject trajectories can be in-

put to MIDAS to result in corresponding slope and intercept statistical maps. To fully take

into account paired and longitudinal study designs requires an alternative loss function in

equation (3.1) and is an interesting future direction.

Lastly, another limitation of MIDAS is that it can handle only a single imaging modality

in its analysis. A future direction of work is to incorporate multiple kernel methods [61] in

the base learners of MIDAS to handle multi-modal datasets such as imaging and genetic

or MRI and positron emission tomography (PET) imaging.

Conclusion

In conclusion, we have shown in this chapter that it is possible to efficiently obtain high-

quality brain maps by exploiting locally linear discriminative analysis and analytic ap-
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proximations of permutation tests. We experimentally demonstrated that MIDAS bears

important advantages compared to commonly used brain mapping techniques, underlin-

ing its potential value in neuroimaging studies.
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Chapter 4

Inference in the presence of

confounds: Generative discriminative

machine (GDM)

4.1 Introduction

Voxel-based analysis [3] of imaging data has enabled the detailed mapping of regionally

specific effects, which are associated with either group differences or continuous non-

imaging variables, without the need to define a priori regions of interest. This is achieved

by adopting a generative model that aims to explain signal variations as a function of

categorical or continuous variables of clinical interest. Such a model is easy to interpret.

However, it does not fully exploit the available data since it ignores correlations between

different brain regions [31].

Conversely, supervised multivariate pattern analysis methods take advantage of de-
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pendencies among image elements. Such methods typically adopt a discriminative setting

to derive multivariate patterns that best distinguish the contrasted groups. This results in

improved sensitivity and numerous approaches have been proposed to efficiently obtain

meaningful multivariate brain patterns [89, 131, 126, 29, 64, 53]. However, such approaches

suffer from certain limitations. Specifically, their high expressive power often results in

overfitting due to modeling spurious distracter patterns in the data [68]. Confounding

variations may thus limit the application of such models in multi-site studies [125] that

are characterized by significant population or scanner differences, and at the same time

hinder the interpretability of the models. This limitation is further emphasized by the lack

of analytical techniques to estimate the null distribution of the model parameters, which

makes statistical inference costly due to the requirement for permutation tests.

Hybrid generative discriminative models have been proposed to improve the inter-

pretability of discriminative models [104, 9]. However, these models also do not have

analytically obtainable null distribution, which makes challenging the assessment of the

statistical significance of their model parameters. Last but not least, their solution is often

obtained through non-convex optimization schemes, which reduces reproducibility and

out-of-sample prediction performance.

To tackle the aforementioned challenges, we propose a novel framework termed generative-

discriminative machine (GDM), which aims to obtain a multivariate model that is both accu-

rate in prediction and whose parameters are interpretable. GDM combines ridge regression[70]

and ordinary least squares (OLS) regression to obtain a model that is both discriminative,

while at the same time being able to reconstruct the imaging features using a low-rank ap-

proximation that involves the group information. Importantly, the proposed model admits
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a closed-form solution, which can be attained in dual space, reducing computational cost.

The closed form solution of GDM further enables the analytic approximation of its null

distribution, which makes statistical inference and p-value computation computationally

efficient.

We validated the GDM framework on two large datasets. The first consists of Alzheimer’s

disease (AD) patients (n=415), while the second comprises Schizophrenia (SCZ) patients

(n=853). Using the AD dataset, we demonstrated the robustness of GDM under varying

confounding scenarios. Using the SCZ dataset, we effectively demonstrated that GDM

could handle multi-site data without overfitting to spurious patterns, while at the same

time achieving advantageous discriminative performance.

4.2 Method

4.2.1 Generative Discriminative Machine:

GDM aims to obtain a hybrid model that can both predict group differences and gener-

ate the underlying dataset. This is achieved by integrating a discriminative model (i.e.,

ridge regression [70]) along with a generative model (i.e., ordinary least squares regres-

sion (OLS)). Ridge and OLS are chosen because they can readily handle both classification

and regression problems while admitting a closed form solution.

Let X ∈ Rn×d denote the n by d matrix that contains the d dimensional imaging features

of n independent subjects arranged row-wise. Likewise, let Y ∈ Rn denote the vector that

stores the clinical variables of the corresponding n subjects. GDM aims to relate the imag-

ing features X with the clinical variables Y using the parameter vector J ∈ Rd by optimizing
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the following objective:

min
J
‖J‖22 +λ1‖Y−XJ‖

2
2︸                 ︷︷                 ︸

ridge

+λ2‖XT − JYT ‖22︸            ︷︷            ︸
OLS

. (4.1)

If we now take into account information from k additional covariates (e.g., age, sex or

other clinical markers) stored in C ∈ Rn×k , we obtain the following GDM objective:

min
J,W0,A0

‖J‖22 +λ1‖Y−XJ−CW0‖22︸                           ︷︷                           ︸
ridge

+λ2‖XT − JYT −A0C
T ‖22︸                       ︷︷                       ︸

OLS

, (4.2)

where W0 ∈ Rk contains the bias terms and A0 ∈ Rd×k the regression coefficients pertain-

ing to their corresponding covariates. The inclusion of the bias terms in the ridge regres-

sion term allows us to preserve the direction of the parameter vector that imaging pat-

tern that distinguishes between the groups, while at the same time achieving accurate

subject-specific classification by taking into account each sample’s demographic and other

information. Similarly, the inclusion of additional coefficients in the OLS term allows for

reconstructing each sample by additionally taking into account its demographic or other

information. Lastly, the hyperparameters λ1 and λ2 control the trade-off between discrim-

inative and generative models, respectively.

In figure 4.1, we demonstrate the trade-off between obtaining an interpretable gener-

ative model that captures the entirety of the underlying effects versus a discriminative

model that captures the minimal number of features to achieve a prediction. The key

concept of the GDM model is that through enforcing a discriminative model to be inter-

pretable, we may avoid overfitting and obtain better predictive performance.
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Figure 4.1: A demonstration of the GDM framework on a simulated dataset that comprises
of a control group of uniform random data and a ”patient” group that exhibits a square
pattern of correlated features. Top row illustrates the GDM model weights J, while the
middle row shows the spatial locations that pass statistical significance testing. The bottom
row compares the group predictions Ŷ with the true groups Y. Left to right progression
illustrates the effect of increasing the discriminative penalty λ1 on both the interpretability
of the GDM model and the prediction accuracy. Higher generative penalty λ2 (towards
left) yields a model that captures the underlying square effect while a higher discriminative
penalty (towards right) yields a model that better predicts Y. The goal of GDM is to fine-
tune the trade-off between interpretability and prediction accuracy.

4.2.2 Closed form solution:

The formulation in Eq. 4.2 is optimized by the following closed form solution:

J =
[
I+λ1(X

TX−XTC(CTC)−1CTX) +λ2(YTY−YTC(CTC)−1CTY)
]−1

×
[
(λ1 +λ2)(X

TY−XTC(CTC)−1CTY)
]
, (4.3)
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which requires a d × d matrix inversion that can be costly in neuroimaging settings. To

account for that, we solve Eq. 4.2 in the subject space using the following dual variables

Λ ∈ Rn:

Λ =M−1[1:n,1:n]

(
I+

λ2XXTC(CTC)−1CT −λ2XXT

1+λ2(YTY−YTC(CTC)−1CTY)

)
Y, (4.4)

where M is the following n+ k ×n+ k matrix:

M =


− XXT

1+λ2(YTY−YTC(CTC)−1CTY)
− I/λ1 C

CT 0

 . (4.5)

The dual variables Λ can be used to solve J using the following equation:

J =
λ2XTY−λ2XTC(CTC)−1CTY−XTΛ

1+λ2(YTY−YTC(CTC)−1CTY)
. (4.6)

Once the solution for J has been obtained, the bias terms W0 and the regression coeffi-

cients A0 can be obtained using the following equations:

A0 = XTC(CTC)−1 − JYTC(CTC)−1 (4.7)

W0 = (CTC)−1CTY− (CTC)−1CTXJ
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4.2.3 Analytic approximation of null distribution:

Using the dual formulation, the GDM parameters J can be shown to be a linear combina-

tion of the group labels Y and the following matrix Q:

Q =
λ2XT −λ2XTC(CTC)−1CT −XTM−1[1:n,1:n]

(
I+ λ2XXTC(C

TC)−1CT −λ2XXT

1+λ2(YTY−YTC(CTC)−1CTY)

)
1+λ2(YTY−YTC(CTC)−1CTY)

,

(4.8)

such that J = QY. It is shown in 4.2.4 that Q is approximately invariant to permutation

operations on Y. Assuming Y is zero mean, unit variance yields that E(Ji) = 0 and Var(Ji) =∑
jQ

2
i,j under random permutations of Y approximated by random draws. As shown in

[151], asymptotically this yields that

Ji
D→N

(
0,

√∑
j

Q2
i,j

)
, (4.9)

which allows efficient statistical inference on the parameter values of Ji . Specifically, sta-

tistical significance of Ji can be obtained by performing z-test on Ji√∑
jQ

2
i,j )

.

4.2.4 Permutation invariance of the parametric matrix

The only appearance of the permuted labels Y in the parametric Q matrix described in

equation 4.8 comes in the form of YTY−YTC(CTC)−1CTY whereC(CTC)−1CT is a rank de-

ficient projection matrix with rank of k. We show here that YTr Yr−YTr C(CTC)−1CTYr where

Y is a random variable under random draws of elements of Y is concentrated around n− k

with high probability, thus Q is approximately invariant to randomness in permutations
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of Y.

Theorem 1. Let Y ∈ Rn be a vector such that E(Yi) = 0 and Var(Yi) = 1 under random permuta-

tions. Let M ∈ Rn×n be rank n− k projection matrix where k < n and k is fixed. Then as n→∞,

P

(∣∣∣∣∣YTMY
n

− n− k
n

∣∣∣∣∣ >
√

2
n

)
≤ k
n

Proof. In [8], it is shown that E(YTMY) = tr(MΣ) +µTMµ where Σ = Cov(Y) and µ = E(Y).

Since n is assumed to be large, Σ→ In. Furthermore, µ = 0 as given. Therefore,

E(YTMY) = tr(MIn) = n− k (4.10)

since M is a projection matrix of rank n− k.

The variance of YTMY can be analyzed by first decomposing M = In −H where H is a

projection matrix of rank k. Using this yields:

Var(YTMY) = Var(YTY−YTHY)

= Var(YTHY) (4.11)

since YTY is constant under random permutations of Y. Furthermore, the variance of

YTHY is upper bounded by the variance of YTg HYg where Yg are a multivariate Gaussian

random variable with same mean and variance as Y since YTHY is a subgaussian random

variable due to finite support. As shown in [127],

Var(YTg HYg ) = 2tr(HΣHΣ) + 4µTHΣHµ
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= 2tr(HInHIn)

= 2tr(HH )

= 2tr(H )

= 2k

≥ Var(YTHY) (4.12)

Note that HH = H since H as a projection matrix is idempotent. We can invoke Cheby-

shev’s inequality to demonstrate the concentration of YTMY:

P

(∣∣∣∣∣YTMY− (n− k)
∣∣∣∣∣ > α√2k) ≤ P (∣∣∣∣∣YTMY− (n− k)

∣∣∣∣∣ > αVar(YTMY)
)

≤ 1
α2 (4.13)

If α is set as
√
n
k then we get:

P

(∣∣∣∣∣YTMY− (n− k)
∣∣∣∣∣ > √2n) ≤ kn

⇓

P

(∣∣∣∣∣YTMY
n

− n− k
n

∣∣∣∣∣ >
√

2
n

)
≤ k
n

(4.14)
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Figure 4.2: Left: The simulated probability of the event I
(∣∣∣∣∣YTMY

n − n−kn

∣∣∣∣∣ >√
2
n

)
for Y ∈ Rn for

n = 10, . . . ,200 and the upper bound O(1/n). Right: The deviation of Q from Q̂: ‖Q − Q̂‖F
and the upper bound O(1/n)

Therefore, as n→∞ and k is fixed, Q matrix in Eq. 4.8 concentrates around Q̂ where

Q̂ =
[
I(1 +λ2(n− k)) +λ1(XTX−XTC(CTC)−1CTX)

]−1 [
(λ1 +λ2)(X

T −XTC(CTC)−1CT )
]

(4.15)

is invariant to permutations in Y.

To confirm the validity of Eq. 4.14, we plot the expectation of the event I
(∣∣∣∣∣YTMY

n −n−kn

∣∣∣∣∣ >√
2
n

)
for Y drawn from a uniform distribution U [−1,1]n for n = 10, . . . ,200 for 1000 repetitions

while M = C(CTC)−1CT is a rank 5 projection matrix i.e. C ∈ Rn×5. The expectation of the

event I
(∣∣∣∣∣YTMY

n − n−kn

∣∣∣∣∣ >√
2
n

)
and the provided upper bound is plotted in figure 4.2.

4.3 Experimental validation

We compared GDM with a purely discriminative model, namely ridge regression [70],

as well as with its generative counter-part, which was obtained through the procedure
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outlined by Haufe et al. [68]. We chose these methods because their simple form allows

the computation of their null distribution, which in turns enables the comparison of the

statistical significance of their parameter maps.

We used two large datasets in two different settings. First, we used a subset of the

ADNI study, consisting of 228 controls (CN) and 187 Alzheimer’s disease (AD) patients,

to evaluate out-of-sample prediction accuracy and reproducibility. Second, we used data

from a multi-site Schizophrenia study, which consisted of 401 patients (SCZ) and 452 con-

trols (CN) spanning three sites (USA n=236, China n=286, and Germany n=331), to evalu-

ate the cross-site prediction and reproducibility of each method.

For all datasets, T1-weighted MRI volumetric scans were obtained at 1.5 Tesla. The

images were pre-processed through a pipeline consisting of (1) skull-stripping; (2) N3 bias

correction; and (3) deformable mapping to a standardized template space. Following these

steps, a low-level representation of the tissue volumes was extracted by automatically par-

titioning the MRI volumes of all participants into 151 volumetric regions of interest (ROI).

The ROI segmentation was performed by applying a multi-atlas label fusion method [37].

The derived ROIs were used as the input features for all methods.

4.3.1 Analytical approximation of p-values

To confirm that the analytical approximation of null distribution of GDM is correct, we es-

timated the p-values through the approximation technique as well as through permutation

testing. A range of 10 to 10,000 permutations was applied to observe the error rate. This ex-

periment was performed on the ADNI dataset. The results displayed in figure 4.3 demon-

strate that the analytic approximation holds with approximately O(1/
√
#permutations) er-
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Figure 4.3: Comparison of permutation based p-values of GDM with their analytic approx-
imations at varying permutation levels.

ror.

4.3.2 Out-of-sample prediction and reproducibility

To assess the discriminative performance and reproducibility of the compared methods

under varying confounding scenarios, we used the ADNI dataset. We simulated four dis-

tinct training scenarios in increasing potential for confounding effects:

• Case 1: 50% AD + 50% CN subjects, mean age balanced

• Case 2: 75% CN + 25% AD, mean age balanced

• Case 3: 50% AD + 50% CN, oldest ADs, youngest CNs

• Case 4: 75% CN + 25% AD, oldest ADs, youngest CNs.

All models had their respective parameters cross-validated in an inner fold before per-

forming out-of-sample prediction on a left out test set consisting of equal numbers of AD

and CN subjects with balanced mean age. Furthermore, the inner product of training

model parameters was compared between folds to assess the reproducibility of models.

The trade-off between the reproducibility and prediction accuracy in training sets can be

seen in figure 4.4. Training and testing folds were shuffled 100 times to yield a distribution.
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the training AUC of the predictions made by using the J vector obtained at a particular
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model.

The prediction accuracies and the model reproducibility for the above cases are shown

in figure 4.5. The results demonstrate that while GDM is not a purely discriminative

model, its predictions outperformed ridge regression in all four cases. Regarding repro-

ducibility, the Haufe et al. (2013) procedure yielded the most stable models since it yields

a purely generative model. However, GDM was more reproducible than ridge regression.

Multi-site study

To assess the predictive performance of the compared methods in a multi-site setting, we

used the Schizophrenia dataset that comprises data from three sites. All models had their

respective parameters cross-validated while training in one site before making predictions

in the other two sites. Each training involved using 90% of the site samples to allow for

resampling the training sets 100 times to yield a distribution. The reproducibility across
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the resampled sets was measured using the inner product between model parameters. The

multi-site prediction and reproducibility results are visualized in figure 4.7.

In five out of six cross-site prediction settings, GDM outperformed all compared meth-

ods in terms accuracy. Also, GDM had higher reproducibility than ridge regression, while

having slightly lower reproducibility than the generative procedure in Haufe et al. (2013).

Statistical maps and p-values

To qualitatively assess and explain the predictive performance of the compared methods

for the AD vs. CN scenario, we computed the model parameter maps using full resolution

gray matter tissue density maps for the ADNI dataset (Fig. 4.6 top). Furthermore, since

the null distribution of GDM, as well as ridge regression, can be estimated analytically, we

computed p-values for the model parameters and displayed the regions surviving false

discovery rate (FDR) correction [11] at level q < 0.05 (Fig. 4.6 bottom).

The statistical maps demonstrated that both GDM and Haufe procedure yield patterns

that accurately delineate the regions associated with AD, namely the widespread atrophy

present in the temporal lobe, amygdala, and hippocampus. This is in contrast with the

patterns found in ridge regression that resemble a hard to interpret speckle pattern with

meaningful weights only on the hippocampus. This once again confirmed the tendency

of purely discriminative models to capture spurious patterns. Furthermore, the p-value

maps of the Haufe method and ridge regression demonstrate the wide difference between

features selected by generative and discriminative methods and how GDM strikes a bal-

ance between the two to achieve superior predictive performance.
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Figure 4.6: Top: Normalized parameter maps of compared methods for discerning group
differences between AD patients and controls. Bottom: Parameter log10 p-value maps of
the compared methods for discerning group differences between AD patients and controls
after FDR correction at level q < 0.05. Warmer colors indicate decreasing volume with AD,
while colder colors indicate increasing volume with AD.

4.4 Discussion & Conclusion

The interpretable patterns captured by GDM coupled with its ability to outperform dis-

criminative models in terms of prediction underline its potential for neuroimaging anal-

ysis. We demonstrated that GDM obtains highly reproducible models through gener-
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ative modeling, thus avoiding overfitting that is commonly observed in neuroimaging

settings. Overfitting is especially evident in multi-site situations, where discriminative

models might subtly model spurious dataset effects and perform poorly in an out-of-site

setting. Furthermore, by using a formulation that yields a closed form solution, we ad-

ditionally demonstrated that is possible to assess the statistical significance of the model

parameters efficiently.

While the methodology presented herein is analogous to generatively regularizing

ridge regression with ordinary least squares regression, the framework proposed can be

generalized to include generative regularization in other commonly used discriminative

learning methods. Namely, it is possible to augment linear discriminant analysis (LDA),

support vector machine (SVM), artificial neural network (ANN) objective with a similar

generative term to yield an alternative generative discriminative model of learning. How-

ever, the latter two cases would not permit a closed form solution, making it impossible to

estimate a null distribution analytically.
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Chapter 5

Summary and future work

Synopsis

Group studies in neuroimaging have the potential to elucidate the workings of the human

brain in health and disorder. However, both univariate and multivariate analysis tech-

niques, which are used to extract the differentiating patterns between control and patient

groups, are limited by ad-hoc assumptions regarding the homogeneity and spatial unifor-

mity of disease effects or confounds in the study sample. In this thesis, we have introduced

three novel pattern analysis methods that allow us to move beyond these assumptions and

limitations, thus allowing us to make use of the rich imaging data fully and enabling more

powerful inferences.

In Chapter 2, we proposed a method that allows us to move beyond the assumption

that there is a single imaging pattern of brain differences that discriminates patients from

controls. To disentangle heterogeneous disease patterns, we developed a method termed

HYDRA that optimizes a piecewise linear decision boundary between the control popu-
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lation and the patient population. The piecewise linear boundary was shown to induce a

subgrouping of the patient population that is informed by the differences of the patients

from the controls, effectively yielding a supervised clustering solution. This feature con-

trasts HYDRA with unsupervised clustering methods that group patients based on their

similarities to each other rather than their differences with respect to controls. Further-

more, we provided optimization routines for HYDRA in the dual domain to handle high

dimensional neuroimaging settings. We validated the HYDRA algorithm on synthetic data

with the known ground truth. Then, we applied HYDRA to an imaging and genetic study

of Alzheimer’s disease, which revealed novel data-driven anatomical and genetic subtypes

of Alzheimer’s disease.

In Chapter 3, we refuted the assumption that the spatial extent and the shape of the

underlying disease effect is uniform across the brain, which justified the use of a sin-

gle bandwidth filter to smooth the imaging data. We demonstrated that the traditional

method of uniformly smoothing the entire anatomy is suboptimal in extracting the un-

derlying signal in a highly specific and sensitive manner. To address this, we introduced

the MIDAS algorithm, which optimizes for local adaptive filters that cover the brain vol-

ume. The local filters are formulated as linear discriminative models that are designed to

maximize the differences between groups. We additionally showed that the coefficients of

local adaptive filters could be used to construct a statistic whose null distribution can be

analytically estimated, which enables efficient statistical significance testing. Furthermore,

MIDAS was validated extensively using simulated atrophy experiments and was applied

to both structural and functional MRI studies. In comparative scenarios against standard

pattern analysis tools, MIDAS was shown to have higher sensitivity and specificity in un-
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covering the underlying patterns. Furthermore, we showed that MIDAS could be utilized

in both binary group comparison settings as well as regression settings with continuous

clinical labels, making it pertinent for a wide range of neuroimaging studies.

Lastly, in Chapter 4, we identified that the current pattern analysis tools rely on the

limitation that the control and disease groups are matched for covariates or the assump-

tion that the unmatched covariates do not confound the group differences. To move be-

yond these limitations and assumptions, we introduced a methodology termed generative

discriminative machine (GDM) that can generatively model the effects of confounds, while

providing a discriminative model that is invariant to confounding effects. Our derivations

showed that the model coefficients of GDM follow a null distribution that can be analyt-

ically estimated, which enables efficient statistical significance testing. Furthermore, the

optimization of GDM was shown to be viable in the dual domain, which allows us to take

advantage of the low sample size high dimensionality setting to improve computational

speed. To demonstrate the utility of GDM, we have applied it to two large structural MRI

studies. First, we applied it to a study of Alzheimer’s disease patients and controls. There

we artificially introduced confounds by resampling the dataset to reflect large covariate

differences between the control group and the patients. In this setting, we showed that

GDM was able to counteract the effects of confounds and more accurately discriminate

between the controls and patients than traditional supervised learning methods. In ad-

dition, GDM was able to yield qualitatively more interpretable statistical maps compared

to standard discriminative MVPA methods, accurately capturing meaningful anatomical

structures. Next, we applied GDM to a study of Schizophrenia that spans multiple datasets

from various countries. The confounding variations in multi-site studies is a significant
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obstacle in the way of advancing big neuroimaging data analysis. In this setting, we also

demonstrated that GDM was able to effectively handle the difficult confound due to site

differences and to yield accurately discriminative and interpretable patterns.

Future Work

The work presented in this thesis has advanced our capability to analyze neuroimaging

studies by allowing us to move beyond the common assumptions made by standard an-

alytical tools. However, there are several avenues for improving and extending the pre-

sented tools, which are left for future work. We detail below some of these directions.

Regional multivariate inference for connectivity studies

The general optimization objective of MIDAS and corresponding statistic are suitable for

any type data. Applying MIDAS to functional connectivity studies would potentially help

amplify the detection of underlying patterns, which are relatively less pronounced and

more difficult to detect than the structural patterns observed in neurodegenerative dis-

eases. The input for this application would be the vectorized lower-triangular component

of the connectivity graph matrices. The main challenge would be to determine the topol-

ogy of the graph neighborhoods that would be sampled to replicate the overlapping MI-

DAS neighborhood sampling routine. These can be based on a seed node and the ε-graph

neighborhood around that node. Once graph neighborhoods have been determined, the

node wise statistic can be derived using the same procedure as in equation (3.12).

135



Non-linear regional multivariate inference

MIDAS is ultimately based on linear models to obtain analytically approximated null dis-

tributions. It would be of interest to utilize non-linear models as the base learner in re-

gional discriminative analysis to handle a higher level complexity of features. However,

non-linear models seldom permit closed-form solutions and thus obtaining an analytic ap-

proximation of the null distribution of model coefficients is not straightforward. Inspired

by [103], it may be possible to obtain an approximate null distribution for statistics derived

from models, such as lasso, that does not have a closed-form solution.

Globally optimal maximum margin convex polytope using softmax functions

The HYDRA algorithm in Chapter 2 involves an iterative optimization routine that in-

cludes an assignment step followed by a hyperplane solution step. The optimization pro-

cedure is iterative due to the non-differentiability of the max(·) function, which is used to

assign each sample to the hyperplane that separates it from the control population with

a maximum margin. Namely, the assignment variable of a subject is the signifier for the

hyperplane that is maximally correlated with the imaging features of that subject. How-

ever, if the max(·) function is relaxed by a function such as softmaxα(x)i = eαxi∑
j e
αxj that is

differentiable, one can derive a reformulation of equation (2.1) that is globally optimizable

without the need for additionally solving for the assignment step.

minimize
{wj ,bj }Kj=1

K∑
j=1

‖wj‖22
2

+C
∑
i

softmaxα{0,1− yi(wT
j xi + bj )} (5.1)
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This formulation, which is convex and differentiable, yields a globally optimal solution,

W′, which can also be used to induce a clustering on the patient population by using

equation (3.3).

Maximum margin convex regression polytope

While the current formulation of HYDRA can utilize the dichotomy between patients

and controls to cluster the patients, many neuroanatomical processes involve continuous

changes rather than binary groupings. Therefore, it would be valuable to extract hetero-

geneous trajectories of change for processes such as aging or development. To be able

to distinguish heterogeneity using continuous scores requires a regression reformulation

of HYDRA. This is readily available since HYDRA is a generalization of support vector

machines and thus a regression version of HYDRA would be analogously obtained by

generalizing support vector regression [38].

Statistical inference a posteriori to clustering

One of the challenges encountered in Chapter 2 was the validity of obtaining p-values

for statistical significance testing between the control group and the subgroups of patients

clustered by HYDRA. While this problem is not unique to the setting of HYDRA, the con-

cept of statistical inference following clustering remains an open problem. The main dif-

ficulty is to determine the null distribution of the statistic that is obtained after clustering.

A permutation testing procedure can be followed to estimate the null distribution of the

resulting statistics.
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Synthesis of GDM, HYDRA, and MIDAS frameworks

Each of the methods described in this thesis allows us to independently address certain

assumptions about the data that limit the statistical inferences we can draw from it. How-

ever, in almost all neuroimaging studies, limitations that we address in this thesis appear

in synchrony. For example, the imaging patterns of Alzheimer’s disease may be both het-

erogeneous and exhibit spatial non-uniformity. In addition, factors such as scanner differ-

ences and survivorship bias may further confound the ADNI dataset. Thus, it is imper-

ative to take into account all of these factors and perform statistical inference using tools

that can simultaneously be impervious to their confounding effects. Such a tool requires

the combination of the frameworks of GDM, HYDRA, and MIDAS in a principled manner

and is an important but challenging direction for future work.
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Appendix A

Image preprocessing techniques

Neuroimaging data obtained from the scanner cannot be used for our analysis directly.

In this section, we describe the common preprocessing steps that were used in all of our

experiments.

Region of interest (ROI) volumetry

The high dimensionality of MR images hinders their analysis and interpretation. Extract-

ing region of interests (ROI) effectively reduces the dimensionality of the data in an in-

terpretable and anatomically meaningful way. We employed a multi-atlas segmentation

algorithm [37] which uses a consensus labeling framework to fuse/integrate segmenta-

tion hypotheses generated by warping a broad ensemble of labeled atlases to the target

space via the use of several warping algorithms, regularization parameters, and atlases.

The label fusion integrates two complementary sources of information: a local similarity

ranking to select locally optimal atlases and a boundary modulation term to refine the seg-

mentation consistently with the target images intensity profile. The flowchart of the ROI

139



algorithm is presented in Figure A.1. In our analyses, we used this algorithm to parti-

tion the brain into approximately one hundred disjoint ROIs generated and obtained the

volume of each ROI as a feature representation of the brain.

Figure A.1: Multi-atlas region of interest segmentation flowchart.

Tissue density maps

ROIs provide us with data in a dimension that we can easily handle in order to parse dis-

ease heterogeneity. However, in order to characterize disease processes in greater spatial

detail, we employed tissue density maps for subsequent subgroup-analyses. Towards this

end, we employed tissue density maps that allow us to characterize disease processes in

greater spatial detail. Specifically, we employed a previously published volumetric ap-

proach to generate tissue density map for group comparisons [31], termed RAVENS (re-
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gional analysis of volumes examined in normalized space) map. The RAVENS maps are

obtained with the following procedures. An established deformable registration method

[121] is used for warping individual images to a single subject brain template. The brain

image scans are segmented into three tissue types: gray matter, white matter and cere-

brospinal fluid [100]. RAVENS maps encode, locally and separately for each tissue type,

the volumetric changes (local expansion or shrinkage) observed during the registration.

They hence have the advantage of accounting for imperfect registration by taking the resid-

ual (error) of the imperfect registration into account.
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Appendix B

Software

All three of the methodologies presented in this thesis have been supplemented with open-

source MATLAB implementations shared on MathWorks File Exchange at https://www.

mathworks.com/matlabcentral/fileexchange/.

HYDRA

HYDRA takes a comma separated values (csv) file as input. This file contains the imaging

features of the subjects, covariate information, as well as group information. The program

yields a clustering of the patient group that is informed by their differences to the control

group. A snapshot of the HYDRA command-line is shown in Figure A.1.

MIDAS

MIDAS takes a comma separated values (csv) file as input. This file contains the image

paths of the subjects, covariate information, as well as group information. The program

yields a statistical map of the differences between groups that have undergone optimal
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discriminative filtering. A snapshot of the MIDAS command-line is shown in Figure A.2.

Generative discriminative machine (GDM)

GDM takes a comma separated values (csv) file as input. This file contains the image

paths of the subjects, covariate information, as well as group information (i.e., whether

the subject is a control or a patient) or continuous variables for regression. The program

yields a discriminative map that distinguishes between groups while providing a low-rank

generative approximation of the data. A snapshot of the GDM command-line is shown in

Figure A.3.
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Figure B.1: Command line interface of HYDRA
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Figure B.2: Command line interface of MIDAS
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Figure B.3: Command line interface of GDM
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Appendix C

List of genetics features for

heterogeneity of Alzheimer’s Disease

The SNPs used as features is given in table C.1. Two features were extracted from each

subject for each SNP: the presence of the major-major and the major-minor alleles. Minor

allele frequency (MAF) column in table C.1 denotes the likelihood of observing the rare

minor allele in the population.
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Genetic features used for Control vs. AD Classification/Clustering using HYDRA
SNPs associated with cognitive decline identified in [135].

aSNP bChr. cPosition dGene eMAF aSNP bChr. cPosition dGene eMAF
rs2421847 1 171557600 PRRC2C 0.04 rs4836694 9 132939792 NCS1 0.11
rs12091371 1 240605052 FMN2 0.07 rs118048115 10 122279476 PPAPDC1A 0.04
rs6738962 2 80281173 CTNNA2 0.04 rs11023139 11 14224346 SPON1 0.05
rs78022502 2 128396167 LIMS2 0.06 rs61883963 11 14338703 RRAS2 0.06
rs538867 3 39513278 MOBP 0.03 rs34162548 11 14556220 PSMA1 0.05
rs9857727 3 51095028 DOCK3 0.1 rs326946 11 110499253 ARHGAP20 0.17
rs2668205 3 165493136 BCHE 0.03 rs147845115 12 51878760 SLC4A8 0.03
rs78647349 4 5237153 STK32B 0.04 rs61144803 12 94235165 CRADD 0.04
rs340635 4 87931404 AFF1 0.03 rs1399439 12 101221239 ANO4 0.04
rs113689198 5 109111327 MAN2A1 0.03 rs143258881 13 93945858 GPC6 0.03
rs112724034 5 109221026 PGAM5P1 0.03 rs17393344 13 109473946 MYO16 0.06
rs77636885 5 110719187 CAMK4 0.03 rs115102486 14 95764564 CLMN 0.03
rs116348108 5 118435127 DMXL1 0.04 rs74006954 15 27712644 GABRG3 0.03
rs143954261 5 126729450 MEGF10 0.04 rs17301739 15 58730639 LIPC 0.07
rs146579248 5 127382302 FLJ33630 0.04 rs8045064 16 24675589 FLJ45256 0.05
rs148763909 5 153837106 SAP30L 0.03 rs9934540 16 77876763 VAT1L 0.03
rs117780815 6 124326227 NKAIN2 0.03 rs62076103 17 45888374 OSBPL7 0.07
rs9494429 6 136288895 PDE7B 0.03 rs62076130 17 45905622 MRPL10 0.06
rs75253868 6 151102830 PLEKHG1 0.04 rs4794202 17 45930539 SP6 0.08
rs58370486 7 16707861 BZW2 0.03 rs117964204 17 48692082 CACNA1G 0.04
rs73071801 7 16811139 TSPAN13 0.04 rs72832584 17 59292436 BCAS3 0.05
rs1861525 7 25161602 CYCS 0.03 rs7245858 19 51430596 LOC390956 0.04
rs17172199 7 43377276 HECW1 0.08 rs34972666 20 2384972 TGM6 0.11
rs73660619 8 3088173 CSMD1 0.06 rs75617873 22 44526105 PARVB 0.03

SNPs associated with AD identified in [93]
aSNP bChr. f Position dGene MAF aSNP bChr. f Position dGene eMAF
rs6656401 1 207692049 CR1 0.197 rs11218343 11 121435587 SORL1 0.039
rs35349669 2 234068476 INPP5D 0.488 rs983392 11 59923508 MS4A6A 0.403
rs6733839 2 127892810 BIN1 0.409 rs10498633 14 92926952 SLC24A4 - RIN3 0.217
rs10948363 6 47487762 CD2AP 0.266 rs17125944 14 53400629 FERMT2 0.092
rs11771145 7 143110762 EPHA1 0.338 rs3865444 19 51727962 CD33 0.307
rs28834970 8 27195121 PTK2B 0.366 rs4147929 19 1063443 ABCA7 0.19
rs9331896 8 27467686 CLU 0.379 rs429358 19 44908684 APOE 0.1492
rs10792832 11 85867875 PICALM 0.358 rs7412 19 44908822 APOE 0.07392
rs10838725 11 47557871 CELF1 0.316 rs7274581 20 55018260 CASS4 0.083

Table C.1: Genetic features used in HYDRA to classify AD from Controls and discover
subtypes of AD. Abbreviations: aSNP — Single nucleotide polymorphism bChr. — Chro-
mosome, cPosition — indicates base pair location in release 19, build 135 of the human
genome in the dbSNP database, dGene — Genes located ±100 kb of the top SNP, eMAF —
minor allele frequency. f Position — indicates base pair location in release 19, build 37 of
the human genome in the dbSNP database.
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Appendix D

Related Published Work

The frameworks presented in this thesis and their applications have materialized in pub-

lications over the several years. Below is a chronological listing of the peer-reviewed

journals and conference proceedings where the methods presented in this thesis have ap-

peared:

Journal Articles

1. Dong, Aoyan, Jon B. Toledo, Nicolas Honnorat, Jimit Doshi, Erdem Varol, Aristeidis

Sotiras, David Wolk, John Q. Trojanowski, Christos Davatzikos, and Alzheimers

Disease Neuroimaging Initiative. ”Heterogeneity of neuroanatomical patterns in

prodromal Alzheimers disease: links to cognition, progression and biomarkers.”

Brain (2016). [35]

2. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”HYDRA: Revealing het-

erogeneity of imaging and genetic patterns through a multiple max-margin discrim-

inative analysis framework.” NeuroImage 145 (2017): 346-364. [152]
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3. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”MIDAS: regionally lin-

ear multivariate discriminative statistical mapping.” NeuroImage 174 (2018): 111-

126. [151]

4. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”Generative discrimina-

tive machines for multivariate inference and statistical mapping in medical imag-

ing” NeuroImage, (In Preparation)

Conference Articles

1. Varol, Erdem, and Christos Davatzikos. ”Supervised block sparse dictionary learn-

ing for simultaneous clustering and classification in computational anatomy.” MIC-

CAI, 2014. [148]

2. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”Disentangling disease

heterogeneity with max-margin multiple hyperplane classifier.” MICCAI, 2015.[149]

3. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”Structured Outlier De-

tection in Neuroimaging Studies with Minimal Convex Polytopes.” MICCAI, 2015.[150]

4. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”Brain mapping through

regional multivariate pattern analysis and discriminative adaptive smoothing.” OHBM

(2017)

5. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”Regionally discrimina-

tive multivariate statistical mapping.” ISBI 2018

6. Varol, Erdem, Aristeidis Sotiras, and Christos Davatzikos. ”Generative discrimina-

tive models for multivariate inference and statistical mapping in medical imaging”

MICCAI 2018
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[143] TAKÁCS, G. Convex polyhedron learning and its applications. PhD thesis, Citeseer,

2009.

[144] THOMPSON, P. M., GIEDD, J. N., WOODS, R. P., MACDONALD, D., EVANS, A. C.,

AND TOGA, A. W. Growth patterns in the developing brain detected by using con-

tinuum mechanical tensor maps. Nature 404, 6774 (2000), 190–193.

[145] TREUSCH, S., HAMAMICHI, S., GOODMAN, J. L., MATLACK, K. E. S., CHUNG,

C. Y., BARU, V., SHULMAN, J. M., PARRADO, A., BEVIS, B. J., VALASTYAN, J. S.,

HAN, H., LINDHAGEN-PERSSON, M., REIMAN, E. M., EVANS, D. A., BENNETT,

172



D. A., OLOFSSON, A., DEJAGER, P. L., TANZI, R. E., CALDWELL, K. A., CALD-

WELL, G. A., AND LINDQUIST, S. Functional Links Between A Toxicity, Endocytic

Trafficking, and Alzheimer’s Disease Risk Factors in Yeast. Science 334, 6060 (Dec.

2011), 1241–1245.

[146] VAN DE POL, L. A., KORF, E. S., VAN DER FLIER, W. M., BRASHEAR, H. R., FOX,

N. C., BARKHOF, F., AND SCHELTENS, P. Magnetic resonance imaging predictors of

cognition in mild cognitive impairment. Archives of neurology 64, 7 (2007), 1023–

1028.

[147] VAPNIK, V. The nature of statistical learning theory. springer, 2000.

[148] VAROL, E., AND DAVATZIKOS, C. Supervised block sparse dictionary learning for

simultaneous clustering and classification in computational anatomy. In Medical

Image Computing and Computer-Assisted Intervention–MICCAI 2014. Springer,

2014, pp. 446–453.

[149] VAROL, E., SOTIRAS, A., AND DAVATZIKOS, C. Disentangling disease heterogeneity

with max-margin multiple hyperplane classifier. In Medical Image Computing and

Computer-Assisted Intervention–MICCAI 2015. Springer, 2015, pp. 702–709.

[150] VAROL, E., SOTIRAS, A., AND DAVATZIKOS, C. Structured outlier detection in neu-

roimaging studies with minimal convex polytopes. In International Conference on

Medical Image Computing and Computer-Assisted Intervention (2016), Springer,

pp. 300–307.

173



[151] VAROL, E., SOTIRAS, A., AND DAVATZIKOS, C. Midas: Regionally linear multivari-

ate discriminative statistical mapping. NeuroImage (2018).

[152] VAROL, E., SOTIRAS, A., DAVATZIKOS, C., INITIATIVE, A. D. N., ET AL. Hydra:

Revealing heterogeneity of imaging and genetic patterns through a multiple max-

margin discriminative analysis framework. NeuroImage 145 (2017), 346–364.

[153] VEMURI, P., GUNTER, J. L., SENJEM, M. L., WHITWELL, J. L., KANTARCI, K.,

KNOPMAN, D. S., BOEVE, B. F., PETERSEN, R. C., AND JACK, C. R. Alzheimer’s dis-

ease diagnosis in individual subjects using structural MR images: validation studies.

NeuroImage 39, 3 (Feb. 2008), 1186–97.

[154] VEMURI, P., GUNTER, J. L., SENJEM, M. L., WHITWELL, J. L., KANTARCI, K.,

KNOPMAN, D. S., BOEVE, B. F., PETERSEN, R. C., AND JACK JR, C. R. Alzheimer’s

disease diagnosis in individual subjects using structural mr images: validation stud-

ies. Neuroimage 39, 3 (2008), 1186–1197.
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