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Mechanistic Contributions To Geomorphic Changes Of State

Abstract
Transitions abound in geomorphology. Be it the transition from static to dynamic or the shift in a dune field
from one dune morphology to another, many questions involve changes of state. This dissertation empirically
studies state changes over three scales with an emphasis placed on contributing mechanical factors. First, we
examine the transition from static to dynamic at the grain scale in bedload transport (hopping, rolling, and
skipping of grains along a riverbed). Transport of grains is continuous at high rates but becomes unpredictable
near the threshold of motion. Results show that this unpredictability is similar to how avalanches occur in a
sandpile. Transport events are similar in size and merge as transport increases. Grain displacement in the
system appears governed by mobile grain-bed kinetic energy exchange. Next, we study the static to dynamic
transition at the scale of many grains by examining how soil mechanical properties influence the threshold of
motion. Sandbed experiments indicate that, when moisture is the primary variable, shear strength is
proportional to the threshold of motion. Finally, we examine a landscape scale pattern transition that arises
from the physics of sediment transport interacting with vegetation in a dune field. The onset of vegetation
destroys a fluid instability that is fundamental for maintaining the dune pattern prevalent in the dune fields
center. Plants destroy the mechanism maintaining the dune field pattern which helps give rise to a qualitative
shift in dune morphology. This work highlights the continued relevance of physically informed experiments
and field studies for understanding geomorphic transitions from the grain to the landscape scale.
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but I am appreciative of her willingness to take the time to provide a fresh perspective on

my research.

I owe the entire faculty and staff of the Department of Earth and Environmental Science a

dept of gratitude. I thank Alaine Plante for giving me the opportunity to TA his course.

His passion for both science and teaching is inspiring and I learned alot from working with

him. I thank Ed Doheny for his scientific and moral support. I always enjoyed talking

to him at happy hour. I thank Art Johnson for teaching me about soils and for his wry

wisdom. I am grateful to Gomaa Omar for his sense of humor, love of science, and for

giving me the opportunity to TA the lab section of his introductory geology course. Jane

Willenbring always had unique feedback on my research and I’m glad that I was able to

learn from her unique approach to earth science both in the classroom and in the field. I

thank Jane Dmochowski for her help interpreting aerial photographs from White Sands. I
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ABSTRACT

MECHANISTIC CONTRIBUTIONS TO GEOMORPHIC CHANGES OF STATE

Dylan Bentley Lee

Douglas J. Jerolmack

Transitions abound in geomorphology. Be it the transition from static to dynamic or the

shift in a dune field from one dune morphology to another, many questions involve changes

of state. This dissertation empirically studies state changes over three scales with an em-

phasis placed on contributing mechanical factors. First, we examine the transition from

static to dynamic at the grain scale in bedload transport (hopping, rolling, and skipping of

grains along a riverbed). Transport of grains is continuous at high rates but becomes un-

predictable near the threshold of motion. Results show that this unpredictability is similar

to how avalanches occur in a sandpile. Transport events are similar in size and merge as

transport increases. Grain displacement in the system appears governed by mobile grain-

bed kinetic energy exchange. Next, we study the static to dynamic transition at the scale of

many grains by examining how soil mechanical properties influence the threshold of motion.

Sandbed experiments indicate that, when moisture is the primary variable, shear strength

is proportional to the threshold of motion. Finally, we examine a landscape scale pattern

transition that arises from the physics of sediment transport interacting with vegetation

in a dune field. The onset of vegetation destroys a fluid instability that is fundamental

for maintaining the dune pattern prevalent in the dune fields center. Plants destroy the

mechanism maintaining the dune field pattern which helps give rise to a qualitative shift

in dune morphology. This work highlights the continued relevance of physically informed

experiments and field studies for understanding geomorphic transitions from the grain to

the landscape scale.
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CHAPTER 1 : Introduction

Landscapes are complex systems whose spatial and temporal evolution arises from the

multi-scale interaction of tectonics, sediment transport, climate, and biotic factors. One

way to conceptualize this evolution is as a system undergoing transitions from one state

to another. Here geomorphic state is defined generally as the configuration of the system

(Phillips and Van Dyke, 2017). In a landscape, a state can be thought of as a snapshot of

the morphology of the system. Much work in geomorphology assumes that the landscape

tends towards a state of dynamic equilibrium (Hack , 1975; Willett and Brandon, 2002).

That is, the morphology of the landscape approaches one quasi-steady state with variability

occurring around this mean state. Over longer timescales landscapes are often thought to

evolve from one state of dynamic equilibrium to another (Bishop, 2007). Though it is

sometimes the case that this evolution happens as a gradual shift, abrupt shifts from one

state to another are also possible (Brunsden and Thornes, 1979). These shifts often occur

when a threshold is reached that induces a qualitative shift in the landscape. For example,

Schumm developed the geomorphic threshold concept as applied to ’metamorphosing’ river

channels (Schumm, 1979; Nadler and Schumm, 1981). Where he posited that changes in

slopes, discharge, and sediment supply above given threshold values introduce transitions

of channels from braided to sinuous and meandering. Stability diagrams were developed for

different channel states based off of the physical parameters governing the channel (such as

grain size, Froude number, discharge) (Schumm, 1985).

Changes of morphological state can be governed purely by physical factors. However, strong

feedbacks can exist between biota and sediment transport that modulate landscape pattern.

In wetlands, there is a strong bidirectionality between vegetation and flow conditions that

introduce feedbacks which can lead to dramatic shifts in morphology (Larsen and Harvey ,

2010). The influence of vegetation is also an area of active study in aeolian environments.

The presence of vegetation on dune surfaces tends to slow down or stop dune migration

through the introduction of increased form drag around the plant bodies that reduces the
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effective stress on the sand (Durán and Herrmann, 2006b). Disturbance of vegetative

communities on dunes has the potential to ’reactivate’ previously immobile dunes (Barchyn

and Hugenholtz , 2013). In coastal dunes, vegetation sets the maximum size that dunes can

achieve (Durán and Moore, 2013). Workers have also documented that the competition

between the deposition rates of a migrating dune and plant growth rates leads to a state

change in dune morphology due the progressive inversion of crescent shaped barchan dunes

to parabolic dunes (Durán and Herrmann, 2006b; Reitz et al., 2010).

In addition to large, qualitative shifts in morphology, much of the small scale dynamics of

landscapes are also characterized by changes of state around a threshold. At the grain scale,

dynamic states can be defined and transitions between states determined using observations

of grain kinematics. Perhaps one of the most well known examples of a change of state at a

threshold is the entrainment of coarse grains from an approximately static population to a

moving bed load population. Here bed load is defined as the rolling, skipping, and hopping

motions of grains near a sediment bed. In streams, the effects of this grain scale threshold

percolate up to the channel scale through the organization of coarse grained channel geom-

etry to values near the threshold of motion (Phillips and Jerolmack , 2016; Parker et al.,

2007). Because naturally occurring gravel channels predominantly exist near this threshold

state, the threshold of motion is an important factor controlling the geomorphic response

of landscapes to transport events (Phillips and Jerolmack , 2016).

Though it is a crucial geomorphic parameter, the threshold of motion for bedload is noto-

riously difficult to predict. Empirically derived formulations for the bed load flux can have

prediction errors up to order of magnitude near the threshold of motion (Recking , 2010).

Much of this difficulty in prediction arises from large, intermittent fluctuations in transport

in both time and space (Ancey et al., 2008a; Singh et al., 2009; Ancey and Heyman, 2014;

Heyman et al., 2013). These fluctuations arise from both variability in the turbulent driv-

ing stress as well as granular factors. It is well documented that turbulent bursts above

the mean fluid stress can be responsible for entrainment (Diplas et al., 2008; Schmeeckle
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and Nelson, 2003; Papanicolaou et al., 2001). Recently, the role of the disordered granular

bed in contributing to these fluctuations has become increasingly acknowledged (Frey and

Church, 2011a). It has been found that the transition of grains into bedload bears many of

the hallmarks of what granular physicists call a jamming transition (Houssais et al., 2015;

Maurin et al., 2016; Houssais et al., 2016). This transition has been found to govern the

dynamics of the shift from static to flowing in many granular systems and is characterized

in part by a dramatic growth in the variance of grain motion upon the approach to jam-

ming (Liu and Nagel , 2010). Given that the complex, heterogeneous dynamics observed

at the jamming transition are similar to bedload transport, an improved understanding of

the relationship between the threshold of motion and this transition holds the promise of

placing the phenomena of bed load transport within a more general framework.

Whether ultimately arising from turbulence, granular effects, or a mixture of both; the

stochastic variations of bed load flux at the particle scale give rise to several unique be-

haviors. Both the waiting times between transport events and grain hop distances dis-

play statistics that deviate significantly from the behavior one would expect if entrain-

ment/disentrainment events were independent of one another and time independent. This

statistical behavior appears to have its basis in phenomena such as anomalous diffusion

that are controlled by the underlying dynamics (Martin et al., 2012; Tucker and Bradley ,

2010; Phillips et al., 2013). An understanding of the basis for this behavior is relevant

because ultimately grain scale mechanics percolate upwards in scale and find expression in

the landscape (Stark et al., 2009; Mariotti et al., 2013; Voller and Paola, 2010).

The dynamics that govern transport near the threshold of motion make accurate predictions

of transport difficult. This difficulty is further enhanced in the field by additional factors

because conditions can introduce large variability in the threshold of motion that do not have

their origin solely in grain dynamics. In the field, variability in the threshold of motion is

induced by the collusion of physical and biotic factors. Among them soil moisture (Jackson

and Nordstrom, 1997), microbial activity (Belnap and Gillette, 1998; Fang et al., 2014),
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vegetation (Lancaster and Baas, 1998), compaction (Webb, 1983), and others. Patterns of

variability in the threshold of motion affect the erosive response of the land to wind events

and influence larger scale patterns of ecology and morphology in the landscape (Webb

and Strong , 2011; Okin et al., 2006; Barchyn and Hugenholtz , 2013). At the global scale,

our ability to accurately model dust emissions is hampered by the sensitivity of emissions

to estimates of the threshold of motion that are poorly constrained (Kok et al., 2014).

Inaccurate predictions of these emissions confound our ability to accurately model the dust

cycles contribution to climate change or anticipate the human health implications of different

land use patterns (Cakmur et al., 2006; Watanabe et al., 2011; Goudie, 2014). We currently

have a poor grasp on the real world heterogeneity of the threshold of motion due to the

difficulty associated with acquiring the number of measurements that would be necessary

to provide adequate constraints.

This dissertation examines the mechanics of sediment transport near changes of state at

three distinct scales: landscape scale feedbacks between transport dynamics and vegetation;

the relationship between a soils mechanical properties and its threshold of motion; and

grain scale dynamics as the threshold of motion is approached. For both field and lab

measurements, an emphasis is placed on implementing methods that allow for empirical

observations that provide a foundation for inferences about the physical processes involved

in the observed state changes.

Chapter 2 considers bed load transport as the rate of transport is decreased from near

continuous to close to the threshold of motion. Due to bed load transports stochastic nature,

probabilistic approaches that build off of the original work of Einstein (1950) are one of the

primary ways bedload transport is modeled (Papanicolaou et al., 2002; Ancey et al., 2008a;

Heyman et al., 2013). Further incorporation of the underlying physics governing bed load

has the potential to improve existing statistical mechanical models as our understanding

improves (Furbish et al., 2017). A recent example is the growing awareness of the role grain-

bed impacts play in entrainment (Pähtz and Durán, 2017; Vowinckel et al., 2017). Despite
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their success, direct observation of key parameters introduced by some probabilistic models

has proven challenging. One model parameter that is difficult to quantify directly are

collective ’bursts’ of entrainment of many grains at once. Collective entrainment is thought

to be a key cause for the large variances around mean transport typical of bed load (Gomez

and Phillips, 1999; Nikora et al., 2002; Singh et al., 2009). In an attempt to examine the

effects of collective entrainment on transport we perform experiments that allow us to track

the trajectories of individual grains. A key feature of the experimental design is that we can

precisely control the frequency with which grains are fed into the system. Transport rates are

varied from intermittent transport close to threshold to near continuous at high transport

rates. We directly observe collective entrainment as well as the behavior of the length scale

of collective motion as a function of the range of transport rates studied. These experiments

allow us to explore the relative contribution of collective entrainment and the waiting times

between transport events to the observed growth in transport intermittency. In addition,

the data is used to assess the role of grain-bed collisions on observed entrainment.

Chapter 3 examines variability in the threshold of motion itself. Similar to chapter 2, coarse

grained transport is studied, though here the emphasis is placed on sub-aerial transport.

Constraining the variation of the threshold of motion in arid environments remains a chal-

lenge (Kok et al., 2014). While parametric models that attempt to relate variations to

factors such as surface moisture, drag partitioning, and other environmental factors are

useful, they require tuning constants for each field site (Zender et al., 2003). Historically,

in-situ attempts to measure variations in the threshold of motion have used portable wind

tunnels or been reliant on natural wind speeds to trigger saltation measurable by saltation

sensors (Gillette, 1978; Shao et al., 1993; Wiggs et al., 2004; Stout , 2007). Portable wind

tunnels provide on demand estimates of the threshold of motion, but they are large (typical

lengths of 5 meters), and the logistics involved in obtaining a large number of measurements

can be formidable (Van Pelt et al., 2010). A new device, the Portable In Situ Wind ERo-

sion Laboratory (PI-SWERL), has highlighted the applicability of more rapidly performable

tests of erodibility (Etyemezian et al., 2007; Goossens and Buck , 2009). In this spirit, we
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develop a new mechanical test of a soils surface shear strength that has the potential to

be deployed by the semi-autonomous robotic platform recently described by Qian et al.

(2017). We then examine the ability of the newly developed test to provide an estimate of

the threshold of motion by comparing the measured shear strength with estimates of the

threshold of motion provided by the PI-SWERL. The possibility of using this test along

with other robotically deployable, in situ tests of a soils mechanical response to provide a

fuller characterization of erosive response is discussed.

Chapter 4 zooms out to examine the interaction between sediment transport and vegetation

at the scale of a dune field. Dunes are dynamic features of the landscape that are inher-

ently out of equilibrium. Interestingly, though individual dunes are unstable, interactions

between dunes are thought to maintain some dune fields in a state of dynamic equilibrium

(Elbelrhiti et al., 2008, 2005). A fundamental mechanism controlling this equilibrium is a

fluid instability on the order of tens of meters that arises on the gently sloping, stoss surfaces

of dunes (Elbelrhiti et al., 2005; Ping et al., 2014). This instability leads to the formation

and emission of new dunes from existing dunes and counteracts the tendency of dunes to

grow bigger as a result of collisions (Hersen and Douady , 2005). Near the boundaries of pat-

tern stable regions of dune fields, the role of plants in contributing to morphological shifts

in dunes is well established (Durán and Herrmann, 2006b; Reitz et al., 2010; Barchyn and

Hugenholtz , 2012; Yan and Baas, 2015). Plants are thought to slow down the rate of dune

migration by: reducing boundary shear stress due to form drag (Durán and Herrmann,

2006b; Lancaster and Baas, 1998); binding and consolidation of sand by roots (Waldron,

1977); and facilitating the formation of sand-stabilizing soil crusts. Though the role of

plants in modifying rates of migration is undeniable, it is likely that they have other effects

on transport that help disrupt dune field pattern. Chapter 4 explores how plants interact

with the fluid instability that helps regulate the dynamic equilibrium of dune fields. We do

this using remote sensing data acquired at White Sands National Monument in Mexico to

directly relate information about dune kinematics and morphology to estimates of how the

fraction plant cover varies throughout the dune field.
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A unifying theme of this dissertation is that, regardless of scale, shifts in landscapes often

occur as abrupt changes of state around a threshold as one state of dynamic equilibrium

gives way to another. This work focuses on the role that sediment transport, a fundamental

driver of earth surface evolution, plays in these changes of state. Both the dynamics of

transport itself as well as the interaction of those dynamics with other shapers of the

landscape. Through seeking to contribute to our understanding of this interaction, this

dissertation continues the work of relating grain scale physics to larger scale morphology.
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CHAPTER 2 : Scales of collective entrainment and intermittent transport in

collision-driven bed load

Chapter submitted for publication as:

Lee, D. B. and Jerolmack, D.: Scales of collective entrainment and intermittent transport

in collision-driven bed load, Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-

2018-8, in review, 2018.

Abstract:

Fluvial bed-load transport is notoriously unpredictable, especially near the threshold of mo-

tion where stochastic fluctuations in sediment flux are large. A general statistical mechanics

framework has been developed to formally average these fluctuations, and its application

requires an intimate understanding of the probabilistic motion of individual particles. Lab-

oratory and field observations suggest that particles are entrained collectively, but this

behavior is not well resolved. Collective entrainment introduces new length and time scales

of correlation into probabilistic formulations of bed-load flux. We perform a series of experi-

ments to directly quantify spatially-clustered movement of particles (i.e., collective motion),

using a steep-slope 2D flume in which centimeter-scale marbles are fed at varying rates into

a shallow and turbulent water flow. We observe that entrainment results exclusively from

particle collisions and is generally collective. In contrast, particles deposit independently

of each other. The size distribution of collective motion events is roughly exponential and

constant across sediment feed rates. The primary effect of changing feed rate is simply to

change the entrainment frequency, although the relation between these two diverges from

the expected linear form in the slowly-driven limit. The total displacement of all particles

entrained in a collision event is proportional to the kinetic energy deposited into the bed

by the impactor. The first-order picture that emerges is similar to generic avalanching

dynamics in sandpiles: “avalanches” (collective entrainment events) of a characteristic size

relax with a characteristic timescale regardless of feed rate, but the frequency of avalanches

increases in proportion to the feed rate. The transition from intermittent to continuous
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bed-load transport then results from the progressive merger of entrainment avalanches with

increasing transport rate. As most bed-load transport occurs in the intermittent regime,

the length scale of collective entrainment should be considered a fundamental addition to

any probabilistic bed-load framework.
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2.1. Introduction

Bed load, the motion of particles along a stream bed by rolling, hopping and sliding, is

the dominant mode of transport in rivers for particles larger than 10mm (Parker et al.

(2007); Dade and Friend (1998); Jerolmack and Brzinski (2010)). Bed-load flux equations

lose their predictive power as fluid stress decreases toward the threshold of motion (Recking

(2010)), where sediment transport becomes increasingly intermittent and exhibits fluctua-

tions across a wide range of length and time scales (Ancey et al. (2008a); Singh et al. (2009);

Ancey and Heyman (2014); Heyman et al. (2013)). Gravel-bed rivers organize their bank-

full geometry such that they are always near threshold (Parker et al. (2007); Phillips and

Jerolmack (2016)). There are two potential causes of intermittency in near-threshold bed

load: (i) variability in the driving stress due to turbulent eddies near the bed (Nelson et al.

(1995); Papanicolaou et al. (2001); Sumer et al. (2003); Diplas et al. (2008); Schmeeckle

and Nelson (2003)); and (ii) variability in the resistive force of the bed due to structural

arrangements of the grains (Charru et al. (2004); Martin et al. (2014); Prancevic and Lamb

(2015); Yager et al. (2007)). The role of turbulence has received the most attention, though

granular contributions to bed-load dynamics are increasingly being recognized (Frey and

Church (2011a); Houssais et al. (2015); Maurin et al. (2016)). One of the defining fea-

tures of granular systems is a continuous transition from flowing to static regimes known

as the jamming transition. On approach to jamming, particle motion becomes progres-

sively slower and more heterogeneous; the variance in fluctuations of particle displacements

grows rapidly (Keys et al. (2007); Liu and Nagel (2010)). Experiments show that the onset

of bed-load transport has the hallmarks of a jamming transition (Houssais et al. (2015);

Maurin et al. (2016); Houssais et al. (2016)). Near-threshold transport rates exhibit strong

correlations and intermittency, while fluxes at rates far above threshold are uncorrelated

and smooth (Singh et al. (2009)). As most gravel-bed rivers exhibit bank-full fluid stresses

only marginally above threshold (Parker et al. (2007); Phillips and Jerolmack (2016)), this

implies that these channels exist near the jammed state (Frey and Church (2011b); Houssais

et al. (2016)). The stress distribution along a river bed is expected to exhibit a complicated
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structure, making the granular response to an applied fluid stress highly unpredictable (Al-

bert et al. (2000)). Moreover, particle motion is expected to be highly localized and to

exhibit nontrivial fluctuations.

Given these challenges, and the many-body nature of the problem, one sensible approach is

to examine bed-load transport in a probabilistic framework after Einstein (1950). Einstein

defined a bed-load flux function of the form qx = EL̄x. In this formulation of bed-load

flux qx, the entrainment rate function E assumes a fixed timescale for the exchange of an

inactive particle with an active one. More importantly, it assumes that both entrainment

and deposition of particles are a time independent, Poisson process and that particles do

not interact. With these assumptions, the probability of entrainment is dependent only on

flow conditions and the intensity of bed-load transport in an area of the bed. L̄x is the

mean hop length. The discussion above, however, indicates that bed-load transport has

characteristics that deviate from the time-independent, non-correlated process assumed by

Einstein. Indeed, experimental and field observations have revealed extreme fluctuations in

particle activity/flux above the mean (i.e. extreme variance) (Gomez and Phillips (1999);

Nikora et al. (2002); Singh et al. (2009); Ancey et al. (2008a)), collective grain motion

(Drake et al. (1988); Dinehart (1999); Ancey et al. (2008b)), and anomalous diffusion of

particles (Ganti et al. (2010); Tucker and Bradley (2010); Phillips et al. (2013)). Starting

with Ancey et al. (2008b), a series of models for bed-load transport have been proposed that

posit that particles are often entrained collectively rather than individually at low mean

transport rates. These models propose modifications of Einstein’s entrainment function

that take this correlated behavior into account through the introduction of a collective en-

trainment rate, µ, that leads to a characteristic correlation length , lc (Ancey et al. (2008b);

Heyman et al. (2013); Ma et al. (2014); Heyman et al. (2014)). As the mean transport rate

is lowered, the relative contribution of µ derived from the models must increase in order

to reproduce the observed growth in variance of bed-load activity (i.e., the number density

of moving grains). Collective entrainment is thus hypothesized to be the primary driver of

observed intermittent and correlated bursts in bed-load transport near threshold; however,
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it has not been directly observed and quantified. Furbish et al. (2017) has taken a more

generalized approach to modeling stochastic bed-load transport, by viewing all probabilistic

formulations of bed-load flux that incorporate diffusivity as an approximation of a Master

equation that exactly conserves both probability and mass. One key to making this approx-

imation effective is a deep understanding of the underlying assumptions used to construct

the effective diffusivity of the particles. Einstein (1950) and others have assumed that bed

load transport could be modeled as a Brownian process, though there are important dif-

ferences between bed load and Brownian motion. These can lead to major departures in

how the diffusion approximation is to be applied and interpreted in the context of bed-load

transport. For example, recently Fathel et al. (2016) showed that the apparent anomalous

behavior in the diffusivity of bed load particles at short times is actually a byproduct of the

nonlinear growth in the variance of particle hop lengths as particle travel times are short-

ened. Furbish and colleagues’ statistical mechanics framework is the most general model for

bed-load transport; given knowledge of the microscopic and probabilistic motions of par-

ticles, one may derive continuum-like expressions for the macroscopic behavior. Collective

particle motion could be incorporated into this framework, but this requires an intimate

understanding of the associated scales and correlations.

The probabilistic approach has proven valuable for describing the nature of transport near

threshold. Ultimately it is vital to link this approach to a description of the physical

origins of the stochastic behavior. If collective entrainment is the primary cause of bed load

flux intermittency then what leads to it? One possible mechanism for collective motion

is collisional impulses. Collisions are widely recognized as drivers of bed load transport

in aeolian systems where separate thresholds for entrainment without collision, the fluid

threshold, and with collisions, the impact threshold, have been defined (Bagnold (1941);

Martin and Kok (2016)). In aeolian systems these collisions are accompanied by dramatic

’splash’ events where numerous particles are ejected at once (i.e. collectively). Recently,

it has been proposed that entrainment in sub-aqueous systems has a significant collisional

component as well especially in the case of large Stokes numbers (Pähtz and Durán (2017)).
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The Stokes number is the ratio of a particle’s inertial forces to the viscous forces of the fluid

and, for binary collision between same-sized spheres, is given by (Schmeeckle et al. (2001)):

St = (19)RDusν . Here, R is the submerged specific density, us is particle velocity, ν is

fluid viscosity, and D is particle diameter. For St > 102, viscous damping of collisions

is negligible (Schmeeckle et al. (2001)) and thus collisions from saltation are expected to

impart significant momentum to both the bed and neighboring particles for D ≥ 10−2m.

Thus, it is likely that in coarse gravel streams, colliding particles cause a subdued ’splash’

similar to aeolian systems. If the analogy with aeolian systems holds then this splash

entrainment will involve many particles becoming entrained at once. This hypothetical,

collision-induced collective entrainment could be strong enough to be a primary driver of

burstiness in bed-load flux near threshold.

There are other physical systems examined previously that organize themselves near a

threshold, and display intermittent mass flux; the behavior of avalanching sand and rice

piles comes to mind (Rajchenbach (1990); Lemieux and Durian (2000)). These systems

have been extensively studied and display intermittent transport in the limit where they

are slowly driven past a threshold (in this case a critical angle). In the intermittent regime,

the size and duration of avalanches is indeterminate (Frette et al. (1996)). As the sand

pile is driven harder this intermittent regime gives way to continuous flow down the heap

with an approximately constant flux. Hwa and Kardar (1992) showed how this transition

into continuous flow can be viewed as a merger of the intermittent, avalanching events.

Might bed load fit into a class of more generic avalanching systems that transition from

intermittent to continuous transport as they are taken from slowly driven to continuously

driven?

In this paper we use the slowly to continuously driven limits as end members to explore

how the nature of particle activity in an idealized bed-load experiment changes as the

frequency of mean transport is varied. Control of the mean transport rate is achieved by

using a system that allows for precise control of the sediment feed rate while slope and
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fluid discharge are held constant. During the experiment particle motion is tracked using

sequential images. The imposed feed rate is analogous to a driving frequency. We replicate

the previously observed growth in the intermittency of transport as the imposed sediment

feed rate/driving frequency is slowed. Our major contribution is the direct observation of

collective entrainment, which reveals that collisions release spatially-grouped clusters from

the bed that are analogous to avalanches. We relate the scales of collective entrainment

to the kinetic energy deposited into the bed by colliding saltators. This assumption lends

credence to the hypothesis that saltator-bed collisions play a large role in entrainment

(both collective or otherwise). In our experiments, the growth in intermittency in bed-

load transport appears to arise primarily from the non-linear growth in the waiting times

between transport events as the driving rate is slowed.

2.2. Methods

2.2.1. Experimental setup

The experiments are conducted using a narrow, quasi 2-dimensional (2D) flume in which all

the grains in the subsurface and surface can be monitored. The flume channel is 2.3 meters

long and 20 mm wide. For all experiments, two different sized spherical glass beads, 12mm

and 16mm in diameter, are fed into the channel in an even mixture. The two different sizes

are chosen to ensure a randomly packed bed. The ”quasi 2D” nature of the experiment

arises from the fact that the small glass beads have significant overlap with one another

along the axis orthogonal to the viewing window. All experiments are conducted in a flume

slope of 6%, and a fixed discharge of 37.9 liters per minute, while the feed rate at which

the particle mixture is introduced to the channel is varied. The feed rate is the control

parameter used in the experiments, and throughout the rest of the paper will be referred

to as the driving frequency. The driving frequencies used for the experiment were: 40, 60,

80, 160, and 200 marbles per minute. Throughout the paper the abbreviation MPM will

be used for marbles per minute.
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At the flow rate used, all flows in the channel are turbulent with Reynolds numbers greater

than 104. Flow depths were found to be uniform with the exception of 10-15 cm near

the inlet and outlet of the flume. The flow is supercritical with Froude numbers greater

than one, though any bedforms that would be present at these flow conditions are sup-

pressed due to the narrowness of the channel. Experiments are in the high Stokes number

regime where collisions are expected to be important, in order to mimic the conditions of

gravel-bed rivers. Although collision velocities vary (they are quantified below), they scale

roughly with settling velocity; using terminal fall velocity as a scale parameter, St > 102

for all experiments. Details about the flow parameters observed during the experiments are

given in table 2.1. Only mean flow parameters are listed as the flow parameters are kept

approximately constant across experiments. The assumption of approximately constant

flow conditions was verified during the experimental runs where the range of flow condi-

tions that occurred during a single experiment was similar to the variability in conditions

seen across experiments. This flume is thought to represent the simplest possible physical

model of bed-load transport. A diagram of the experimental setup can be seen in figure

2.1. The experiment is very similar to that used by Ancey (Ancey et al. (2008b)). This

similarity is intentional so that their results can guide the current study and the findings

can be compared to their data.

A camera is situated approximately 100 cm downstream of the flume inlet. The viewing

window of the camera is 35 cm for all experiments. This section of the flume is back-lit

using a white LED panel array that outputs at 300 lumen. This arrangement produces

a sharp silhouette of all the grains in the viewing window that can then be used to ac-

quire approximate particle centers. Images are acquired at a rate of 120 fps and streamed

continuously to a computer. This acquisition rate is necessary to adequately capture the

trajectories of individual particles as they move through the viewing window.
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2.2.2. Data acquisition and analysis

Once images are acquired, approximate particle centers are located using a hybrid form

of the algorithms outlined in Khan and Maruf (2013) and Parthasarathy (2012). Using

this method it is possible to obtain particle centers that are accurate to better than 1 mm.

However, the method is highly sensitive to the degree of occlusion that the particles in

the bed experience, and therefore centers can sometimes be less accurate. Once particle

centers are obtained, particles are linked together from image to image to obtain particle

trajectories using the method outlined by Crocker and Grier (Crocker et al. (1996)). An

example trajectory that is the final output of this process can be seen in figure 2.2.

With a particle trajectory affixed to each particle that enters and leaves the viewing window,

it becomes possible to analyze the dynamics of mobile particles over a wide variety of

timescales. Emigration events sampled in the viewing window are also simple to obtain

from these trajectories. Emigration series are obtained by choosing a fixed along-stream

distance, x, to sample along the viewing window for all experiments in question. If a

particle center crosses this position in the downstream direction it is counted as a positive

emigration event. If it crosses this position in the upstream direction it is counted as a

negative emigration event. This definition is identical to that used in Ma et al. (2014). To

study the active particles within the viewing window it was necessary to set a threshold for

particle mobility. To do this particle trajectories were analyzed over 1/10 of a second. If the

particle displaced 2.4 mm within this time window then the particle was deemed mobile.

One approach to estimating the intermittency of the series of emigration events obtained

during an experiment (see figure 2.4) is to look at how long one needs to sample to arrive

at a threshold standard deviation. In the case of a uniform, low intermittency time series

this sampling timescale will be very short, whereas in the case of a highly intermittent

series a long sampling time will be needed. This timescale is referred to throughout the

rest of the paper as tconv. It is computed directly from the obtained emigration series

for all of the driving frequencies studied, by incrementally increasing the time, τ , used to
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sample from the emigration series. For a given τ , 500 samples from the emigration series are

randomly re-sampled from the emigration series in question using a ”bootstrap” technique.

The standard deviation of these samples is then computed and normalized by the mean

emigration rate for the samples taken from the series. As τ grows, the standard deviation

approaches the value chosen as the threshold standard deviation, tconv. When the threshold

standard deviation is reached this value is interpreted as tconv. This approach is identical

to that used in Houssais et al. (2015).

Waiting times are sampled from the emigration series as well. They are interpreted to

be the time periods in between active emigration events over position x. A waiting time

period is started after an emigration event over position x occurs, and ends when the next

emigration event happens.

Activity within the whole viewing window sampled in the experiments is characterized

in the paper through two different event-based metrics. One type of event is referred to

specifically as a “collective entrainment event”. This event is defined as a group of one

or more mobile particles (mobility was determined using the criteria above) moving within

one large-grain diameter of each other. This analysis is a simplified version of that used

to identify mobile clusters in Keys et al. (2007). An example of a collective entrainment

event is given in figure 2.3. In this example, the 4 large grains that are in color would

be considered a collective entrainment event. Collective entrainment events were identified

directly from analysis of the mobile particle trajectories sampled in the viewing window for

a given experiment. For a given time step all N mobile grain trajectories were identified.

For i = 1 to i = N , the distance of the ith mobile grain to all the rest of the mobile grains

was computed. A clustering algorithm was then employed to identify clusters of grains that

were within a threshold distance of one another. This algorithm is capable of identifying an

arbitrary number of mobile clusters occuring at the same time within the viewing window.

A single mobile cluster of grains is defined as a collective entrainment event. This cluster

analysis was performed for the entirety of the time steps available for a given experiment.

17



This method allowed us to gather statistics of all of the collective entrainment events that

occurred in the viewing window for a given experiment.

The other type of event is a “transport event”; it is more general, and contains collective

entrainment events within it as a subset. It is defined as a time period where there is at

least one mobile grain within the viewing window. As long as this situation is the case, an

event is said to be taking place. Once there are no mobile grains within the viewing window

then the transport event has stopped. A portion of a transport event is pictured in figure

2.3. Here all the grains that are colored are considered to be part of the current transport

event that is taking place. It is possible to see there are time instances in figure 2.3 where

collective motion is not occurring but particle activity is still ongoing. These time instances

with no collectively moving particles would be counted as part of a transport event, but

not as part of a collective motion event.

To analyze the effects of impacts during events, saltating grains were separated from the

rest of the mobile population for a given event. The trajectories of the saltators were then

numerically differentiated twice to obtain acceleration series of the trajectories. A change-

point detection algorithm was then employed to identify the spikes in the acceleration series

representative of impact events.

2.3. Results

All of our experiments exhibited intermittent particle activity (figure 2.4). This intermit-

tency confounds efforts to determine the time needed to arrive at an average activity or

flux for a given rate of transport, ∆tconv. We computed ∆tconv for all driving rates used

in the present study, and found that it declines monotonically with increasing feed rate

(figure 2.5A). A naive expectation for the decrease in the averaging time is that it should

be proportional to the inverse of the driving frequency; that is, ∆tconv = a/Qi, where a

is a scaling parameter that depends on the percent standard deviation threshold chosen to

determine tconv. This relation can be thought of as marking the growth in time required
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to count a fixed number of particles emigrating past a line if driving frequency were the

only factor that mattered. Strong driving frequency dependence should be the case at high

transport rates where we expect smoother transport; accordingly, we choose a = 110 such

that the relation matches the observed data for the highest feed-rate experiment. We see

that the naive relation describes the convergence time reasonably well for the three highest

feed-rate experiments (figure 2.5). For the two slowest feed rates in the study, however, the

actual increase in averaging time with a reduction in Qi is more rapid than this expectation.

The waiting times between all observed emigration events for a given experiment were sam-

pled, and used to compute empirical complementary cumulative distributions (figure 2.6A).

We compare these distributions to a Poisson distribution with a value λ = 1, which is on

the order of the mean waiting times seen in the experiments. The Poisson distribution was

chosen for comparison because of the extensive body of literature showing its fitness for

modeling uncorrelated random processes (Lawler and Limic (2010)). If the waiting times

are uncorrelated and truly random they should follow a Poisson distribution; however, the

measured waiting times decay much more slowly (figure 2.6A). As expected, the waiting

times between emigration events seem to be a function of the driving frequency. When

the former are non-dimensionalized by the latter, the variance among the experiments is

significantly reduced (figure 2.6B). Moderate dispersion remains among the different exper-

iments, however, indicating that driving rate is not the only factor controlling the waiting

times. We compute the average waiting time for each experiment; the naive expectation is

that this waiting time is precisely the inverse of the driving frequency. The data follow this

expectation for the three highest driving frequencies; however, the mean waiting times for

the two slowest-driven experiments are significantly larger than expected (figure 2.7).

The above results demonstrate that driving frequency has a strong effect on the timing of

emigration events, and the timescale required for averaging. To determine if this frequency

also effects how particles are transported, it is necessary to examine the particle kinematics

during times when particle activity is present. We examine here the complementary cumu-
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lative distributions of particle speed for all experiments (figure 2.8). The tails of the speed

distributions do not vary strongly as a function of driving frequency. This observation is

sensible as the slow speeds (< 0.1 mm/s) are associated with essentially immobile particles,

whereas the fast speeds (> 100 mm/s) are almost exclusively associated with saltators.

As the fluid discharge is kept constant across experiments, we do not expect to see large

differences in the speed of saltating grains. We do detect an effect of driving frequency,

however, for the intermediate speeds (figure 2.8). As the driving frequency declines, the

transition between mobile (fast) and immobile (slow) particles appears to grow more abrupt;

this transition is manifest as a growing kink in curves. In other words, the distribution of

particle speeds is more continuous at high driving frequencies, and becomes more bimodal

at low driving frequencies as motion separates more distinctly into slow and fast particles.

Thus far we have examined the motion of individual particles. Here we consider collec-

tive entrainment events — in particular, the size distribution of particles that have been

determined to be moving together. These mobile clusters are analogous to avalanches in

other granular systems. Interestingly, the distribution of mobile clusters does not vary sig-

nificantly with driving frequency (figure 2.9). All experiments show a roughly exponential

distribution of cluster sizes, with a mean size that varies only slightly with driving frequency.

We observe qualitatively that almost all entrainment is associated with impacts. However,

the exact nature of this relationship is extremely difficult to untangle for individual entrain-

ment events. Entrainment can happen immediately after an event, or after an unpredictable

time delay. In addition, because the disordered bed absorbs and transmits momentum in a

complex way, a particle can be entrained as a result of an impact that happened a signif-

icant distance (>> D) upstream. To avoid these issues, while still gaining insight on the

effects of impacts on entrainment, an attempt to look at all impacts for a given period of

particle activity in the observational window of an experiment was performed. An event

was defined as a period where at least one particle was always mobile. Once all particles in

the observation window become immobilized, the event is deemed over (see above). For a
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given event we computed: (i) the amount of kinetic energy (KE) deposited into the observed

section of the bed; (ii) the cumulative displacement of all mobilized particles; and (iii) the

number of particles mobilized. Deposited KE was determined by identifying the points in

time when an entrained saltator collided with the bed. The saltator velocity immediately

before the collision and the velocity immediately after the collision was used to obtain the

difference in KE of the saltating particle that occurs as a result of the collision. This dif-

ference in KE was interpreted as occurring because of the inelastic collision of the saltator

with the bed, and can be interpreted as being the kinetic energy transferred (or deposited)

by the saltator into the bed. The KE deposited, cumulative displacement, and the number

of particles mobilized was compiled for all events and for all driving rates, in order to de-

termine the extent to which particle mobility may be understood from collision energetics.

The data reveal a remarkably clear, linear relation between the total KE deposited and the

cumulative displacement of mobile particles (figure 2.10A). Also the number of mobilized

particles systematically increases with KE deposited, though there is significant variability

(figure 2.10B).

2.4. Discussion and conclusion

For all driving frequencies, both the magnitude of collective entrainment events (figure

2.9) and the speed of saltating (fast) particles (figure 2.8) are similar. This determination

indicates that collision dynamics do not vary significantly across the range of sediment feed

rates probed here. Roughly, the intermittency of transport is controlled by the growth in the

mean waiting time as the driving frequency is slowed (see figure 2.7). Changing the driving

rate appears to primarily affect how quickly events happen, and not the fundamental nature

of entrainment. In the slowly driven limit, (collective) entrainment events are infrequent

and may be considered as discrete bursts in transport. As the system is driven at higher

feed frequencies, events occur more frequently and begin to overlap with one another. At

the fastest driving rates, events become indistinguishable from one another and continuous

transport emerges. This picture aligns with behavior seen in avalanching systems that
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display an intermittent to continuous transition (Hwa and Kardar (1992); Rajchenbach

(1990)). A sand pile model by Hwa and Kardar (1992) showed that overlapping avalanches

may interact, introducing correlations in the flux output of the system. The observed

changing distribution of particle speeds with driving rate in our experiments may be an

indication of this kind of complex behavior.

Much of the difference in entrainment rate and intermittency can be related simply to the

driving rate, though some of it cannot. In particular, at low driving rates we see waiting and

averaging times that are significantly longer than expected, suggesting that the first-order

kinematic avalanching model described above is incomplete. One timescale that has not

been considered is the relaxation time of avalanches, which for our experiments would be the

deposition timescale of mobile clusters following an entrainment event. This timescale may

not be independent of driving rate, and it becomes impossible to measure when avalanches

overlap in time. Another complicating factor at low driving rates is the influence of creep,

which has been demonstrated to drive bursty bed-load transport in the viscous flow regime

(Houssais et al. (2015)). Movies of our experiments reveal the presence of slow creep also,

but quantifying the significance of this phenomena is beyond the scope of the present paper.

Indeterminate, complex behavior (such as the possible scenario outlined above) is often

an inherent feature of many-bodied, driven and strongly dissipative systems (Regev et al.

(2013)). For the system of a turbulent fluid driving marbles that collide with a bed, it is

not possible to predict the response of a collision. Some collisions result in a strong rebound

of the saltator and no (observable) response of the bed; others drive an immediate splash

as several grains are entrained; and yet others lead to a delayed response, in which a large

number of grains become destabilized and slowly accelerate to become entrained. Knowledge

of the kinetic energy of an impact is not sufficient to understand entrainment, due to the

complicated nature of energy dissipation. Knowledge of energy dissipation, however, allows

for significant predictive power. The strong relations between energy deposited, and the

size and cumulative displacement of entrained particles, provide some mechanistic basis for

22



understanding collective entrainment and burstiness in collision-driven bed load.

The similarity of collective entrainment events between driving rates shows that, while

collective entrainment is present, its associated length scale does not vary as a function of

intermittency. It is likely that collision-induced momentum transfer into the bed is what

sets the scale of collective entrainment, though more analysis remains to be done. Fluid

discharge did not vary in our experiments, therefore the velocity of saltating grains (and

hence impact energy) remained roughly constant for all driving rates. The approximately

constant exponential trend (figure 2.9) aligns with the expectation that momentum transfer

due to saltator-bed impacts should be a primary driver of entrainment in this system.

Ancey et al. (2008b) were correct in positing a length scale for collective entrainment; we

see definite evidence for a length scale of particle motion that is larger than that of a

single particle. While this length scale does not vary in these experiments, it is challenging

to extrapolate to other systems. At smaller Stokes numbers, collisions are damped and

turbulence becomes an important driver of collective entrainment (Nelson et al. (1995);

Papanicolaou et al. (2001); Sumer et al. (2003); Diplas et al. (2008); Schmeeckle and Nelson

(2003)). The shapes and size distributions of natural particles, and roughness of the river

bed (e.g., bed forms), will also likely influence collective entrainment in ways that are

difficult to anticipate. Nevertheless, collision-driven entrainment should be the norm for

gravel-bed rivers (Jerolmack and Brzinski (2010)), and collective entrainment has already

been observed in the field (Drake et al. (1988)). Incorporating this length scale into the

general probabilistic framework proposed by Furbish (e.g. Furbish et al. (2012, 2017)) will

be important in the effort to build statistical-mechanical models of bed-load transport, that

start with correct assumptions of the underlying dynamics that govern bed-load particle

trajectories. Understanding the scales of bursty bed-load transport will also inform the

requisite times for bed-load sampling in the field and laboratory (Singh et al. (2009)).
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Figure 2.1: Schematic of the experimental setup. The system is 2.3 meters long and 20
mm wide. This quasi-two dimensional channel is fed at a constant water discharge for all
experiments. The slope is kept constant at 6 %. The sediment feed is uncoupled from the
fluid discharge, and is introduced from above using a custom designed feeder built at the
PennSed laboratory. A viewing window on the order of 35 cm is selected two thirds of the
way down the flume. The window is back-lit and the resulting images can be seen in the
figure inset.
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Figure 2.2: An example saltator trajectory obtained during one of the experimental runs.
Trajectories are created for all particles present in the sampling area of the experiment.
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t1 t2 t3 t4

Figure 2.3: An example of a collective motion event sampled at 4 different times during the
event. The particles that are displacing actively during the event are color coded according
to their position at the time step (t1, t2, and so on) associated with a given color. At t1
only two particles are moving. The large particle collides with three particles on the bed
at t2 and these three particles displace at t3 and t4. The four large particles would be
classified as moving together collectively.
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Figure 2.4: Example time series of emigration events for Qi = 40 MPM. A position x along
the bed viewing window (as seen in Figure 2.1) is monitored during the experimental runs.
When a particle passes position x it is considered an emigration event. This is a simple
measure of particle activity that can be converted to a time-averaged flux. Time series of
emigration sampled at a fixed position x along the bed were determined for all experimental
runs.
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Figure 2.5: Determination of convergence time for experiments at all driving rates. (A)
Standard deviation of an ensemble of samples over a given ∆t. As ∆t grows the the
standard deviation decreases and approaches the threshold standard deviation. This value
of ∆t is interpreted to be the convergence time tconv. The standard deviation is normalized
by the mean emigration rate Q. Legend indicates feed rate in marbles per minute (MPM).
(B) The time ∆tconv necessary for flux measurements to converge to a threshold standard
deviation of 10 percent, as a function of the driving frequency in number of marbles per
minute. The dotted markers are the actual observed convergence times, while the dashed
red line displays the trend that one would expect the convergence time to take if it were
simply a function of the feed frequency (∆tconv = 110/finput; see text for details).
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Figure 2.6: Complementary cumulative probability plots of waiting times between emigra-
tion events; (A) data for all experiments, and (B) the same data normalized by the driving
frequency of each respective experiment. Expectation from a Poisson distribution is shown
for comparison with dashed line. Legend as in figure 2.5.
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Figure 2.7: Relationship between the driving frequency finput, and mean waiting time
between observed emigration events W , for each experimental run. Dashed red line shows
the expected relation that the mean waiting time is the inverse of the driving frequency,
W = 1/finput.
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Figure 2.8: Complementary cumulative distributions of active particle speeds for all exper-
iments. Legend as in figure 2.5.
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moving together in space. The dashed black line is an exponential trend, plotted for the
sake of comparison. Note logarithmic y axis.
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Figure 2.10: Particle mobility as a function of kinetic energy (KE) deposited into the bed
for an event. (A) Cumulative displacement for all mobile particles during an event increases
linearly with KE deposited. (B) Probability distribution of the amount of deposited KE
necessary to entrain a given number of mobile particles. The mean of the distribution is
displayed as a red cross, and the medians are shown as green squares.
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Experimental flow parameters

h (mm) slope(%) ūf (m/s) Sh Fr Re St
33.6 8.5 .73 .14 1.3 10.7E3 >1000

Table 2.1: Mean flow conditions observed during the experiments. All values are means
taken around the range of flow conditions observed over all experiments. h is the mean flow
depth, ūf is the mean flow velocity, Sh is the Shields number, Fr is the Froude number, Re
is the Reynolds number, and St is the Stokes number of the large diameter grains. St for
the small diameter grains is also much larger than the viscously damped limit.
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CHAPTER 3 : Correspondence between surface shear strength and critical shear

stress in unconsolidated sand: lab measurements and potential field

applications
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Lee, D.B., Qian, F., Nikolich, G., Koditschek, D., Jerolmack, D.J.: Correspondence between

surface yield strength and critical shear stress in unconsolidated sand: lab measurements

and potential field applications, Journal of Geophysical Research: Earth Surface, in prep,

2018

Abstract:

A soils response to wind stress is a multivariate function of grain-size, soil moisture, and

compaction state among other factors. Understanding the spatial variation in this response

is a problem that has been difficult to address due to the difficulty obtaining in situ measure-

ments using portable wind tunnels. As a result, most models of dust and sand transport

in aeolian environments still use a single value for the critical shear stress necessary for

entrainment. New technologies such as the PI-SWERL wind erosion device and robotic

platforms for measuring aeolian processes hold the promise of dramatically improving our

understanding of the site specific variability affecting arid sediment transport. This work

focuses on the potential of mechanical tests performable by semi-autonomous robots to

rapidly provide maps of a soils susceptibility to wind erodibility over large areas. To ac-

complish this goal, a necessary first step is developing an understanding of the relationship

between the mechanical response of a soil and its response to fluid shear. We develop a new

test of a soil surfaces shear strength and empirically relate the soils mechanical response

to its critical shear stress. This is done by varying a sand beds surface moisture and then

testing the surfaces’ threshold shear stress and shear strength. The relationship between

the two is found to be roughly linear between 0-5 % moisture. At values higher than ∼5 %

we can only provide lower bounds on both threshold stress and shear strength. The increase

in both measurements is hypothesized to be due to state transitions in the soil saturation
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state. The results of this test demonstrate the feasibility of using robotic platforms to

estimate variability in critical shear stress in a field setting.
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3.1. Introduction

Human activities have accelerated the pace of desertification in many parts of the earth

as a consequence of anthropomorphic climate change and land use patterns (Dai , 2013;

Wu and Ci , 2002; Reich et al., 2001; Yong-Zhong et al., 2005). Increasing aridity increases

the severity of dust storms, affects the biogeochemical cycle, and reduces the net ecological

productivity of the earths land surface (Schlesinger et al., 1990; Rosenfeld et al., 2001;

Loye-Pilot et al., 1986; Goudie and Middleton, 2001; Dregne and Chou, 1992). In turn,

these effects profoundly influences human health (Watanabe et al., 2011). Determining how

changes in arid landscapes will affect the sand and dust flux through a region is an important

objective both scientifically and from a resource management perspective. Workers have

documented documented that land use patterns can have an effect on dust emissions at

both the site and regional scale (Hoffmann et al., 2008; Celik , 2005; Yang et al., 2003; Neff

et al., 2008; Macpherson et al., 2008). In large part, human activity affects dust emissions

in arid and semi-arid landscapes by changing soils erosive potential (Bakker et al., 2008;

Yang et al., 2003). Part of this change comes from altering the response of the soil to fluid

stress. The geomorphic changes arising from disturbance that have the potential to alter

this response include compaction, changes in soil water content, alteration of infiltration

patterns and a decrease in vegetation (Liddle and Grieg-Smith, 1975; Webb, 1983; Webb

and Wilshire, 2012; Kutiel et al., 1999)). For example, disturbing the extent of desert

crust cover in an area can dramatically lower the threshold wind speed needed to transport

sediment (see figure 3.1 and Belnap and Gillette (1998)).

Landscape scale heterogeneity introduced by topography, life, soil type, and soil state intro-

duces multiple feedbacks to the sand and dust transport dynamics of an area (Okin et al.,

2006; Yan and Baas, 2017). Our understanding of the nature and extent of these feedbacks

is still incomplete. In part, this incompleteness is because of the multi-faceted nature of the

problem. Another issue is that patch scale dynamics are still poorly constrained and highly

variable. Transports site dependent nature means that collecting the large amount of field
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data necessary to constrain the problem remains challenging; though recent developments

hold the promise of remedying this issue by enabling more rapid data collection (Qian et al.,

2017; Vrieling , 2006; Etyemezian et al., 2007). One area where notable progress has been

made is the effect of vegetation on wind. Plants raise the threshold wind speed needed for

sand and dust transport (Lancaster and Baas, 1998; Wolfe and Nickling , 1993, 1996). These

studies have been able to relate the aerodynamics of various plant types and communities

to variability in the shear experienced by the soil surface. Being able to predict vegeta-

tion induced wind shear stress modifications is a crucial step and an important addition to

models of a landscapes erosive potential (Kimura and Shinoda, 2010).

However, the soils response to this modified stress is another important factor that hasn’t

received as systematic a treatment. Initiation of transport is often modeled using a single

threshold criterion for the critical shear stress (τc). This assumption neglects the real world

variability in τc for different types of desert soils (Shao et al., 1993). Figure 3.1 illustrates

that fluid velocities associated with transport initiation can vary by as much as a factor of

two (and possibly more) even for samples that have similar grain size distributions. In this

case, the difference in erodibility comes from the extent of soil crustal development, but

the erosive response to fluid shear is also likely to co-vary with moisture, compaction state,

and other factors that display high heterogeneity in the real world. As a strong filter on

transport, the threshold of motion is a key component of erodibility. Figure 3.1 as well as

the work of Gillette et al. (1980) and others also point to the threshold of motion showing

a large degree of variability in the field.

Understanding the spatial variation in soil erodibility, as well as the factors controlling

this variation, is necessary to accurately model sediment transport dynamics in real world

environments (Webb and Strong , 2011; Cornelis and Gabriels, 2003). Traditionally, aeolian

scientists use in-situ wind tunnels to perform erosion tests (Gillette, 1978; Gillette et al.,

1980; Shao et al., 1993). This method is inherently limited in spatial resolution primarily

due to a lack of portability. To ensure reasonable turbulent stresses, the tunnels are large,
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and this factor leads to a high time cost in the installation, deployment, and size of these

devices. In addition, the wind tunnel averages over a length scale of the terrain that itself

might contain significant variability. New devices to assess a surfaces susceptibility to wind

erosion have started to be explored (Etyemezian et al., 2007; Sweeney et al., 2008; Goossens

and Buck , 2009). These devices offer the advantage of reduced size, greater portability,

and automated detection of the wind speed at which course and fine size fractions begin to

move.

A crucial next step lies in being able to assess erodibility at fine resolution over a large

area in a field setting. Beyond giving some indication of a locations susceptibility to wind

erosion, it is also important to indicate how the soil surface is likely to respond to the

mechanical disturbances that are a common component of human land use. If enough of

this data was gathered, a soils geomorphic response to different types of disturbance could

begin to be modeled. The data would allow us to measure feedbacks between the response

of a soil, the time evolution of its erodibility, and the net erosion that occurs in a field site

under different conditions. Maps of soil erodibility could also be coupled to knowledge of

the distribution and types of plant communities in an area. This coupling would allow the

feedbacks between plants, soil, elevation, and aeolian processes to be studied over a large

spatial extent.

Autonomous and semi-autonomous data collection methods hold great promise for allowing

us to create these maps. Recently, a semi-autonomous robotic platform known as RHex

has demonstrated a capability for gathering rapid, high-resolution data in aeolian settings

(Qian et al., 2017; Roberts et al., 2014a,b). Figure 3.2 shows RHex in active deployment.

It has recently been shown that RHex can be used to estimate a soils erosive response to

mechanical disturbance by examining the resistive force of the soil in response to a probe

undergoing constant displacement (Qian et al., in prep). The rapidity with which different

types of mechanical tests can be performed, the large range of spatial scales that can be

mapped, and the promise of full autonomy provides a strong motivation to more fully
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explore the potential of using RHex to map variations in erodibility.

A confounding factor in the use of RHex or another robotic platform to assess the threshold

of motion is the non-obvious relationship between mechanically probing a soil and the

soils response to turbulent fluid shear stresses. There has been some work examining the

relationship of τc and shear strength. Existing studies are conducted in highly cohesive,

fully saturated sediments and look at the relationship between subaqueous stresses and

shear strength among completely different soil types in the lab, or in-situ where natural

variation in soil state and type is to be expected (Léonard and Richard , 2004; Meng et al.,

2012; Kimiaghalam et al., 2016). A review by Léonard and Richard (2004) found that linear

scaling between critical grain shear stress and shear strength in cohesive soils is common.

The linear relationship between τc and shear strength in the cohesive setting of rills and

mudflats, along with the possibility of relating the two stresses for soil types found in aeolian

settings has motivated the present work. In this study, an empirical attempt to test the

relationship between the threshold of motion due to wind stress and a test of a soil surfaces

shear strength is performed. We develop a test of shear strength that can be performed by

a robotic probe similar to the one previously deployed by RHex. The tests are performed in

the lab using a consistent grain-size with the surface moisture of the soil being the control

variable. We present the observed relationship between τc and surface shear strength and

discuss future field applications of the newly established method.

3.2. Methods

Moisture was used as the primary control variable on the erodibility. One advantage of using

moisture is its long recognized importance as a variable affecting soil erodibility in the field,

particularly in arid areas (Chepil , 1956; Fécan et al., 1998). To isolate the control of soil

moisture on erodibility, we performed laboratory experiments with a controllable mister

system that allows us to systematically vary soil moisture on the sand surface. The mister

system, shown in figure 3.3, was mounted on a linear actuator and swept back and forth
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to prevent variance in the spatial distribution of surface moisture. Tests were performed to

ensure the misting system generated sand beds with a consistent enough moisture. Before

wetting, beds of sand were prepared by pouring sand into the bed and then leveling the

surface with a straight edge. After each misting cycle, we measured the soil moisture using a

Decagon capacitive moisture sensor. Figure 3.7A shows the soil moisture distribution after

various numbers of misting cycles in the sandbox used for the shear strength tests. Figure

3.7B shows the average soil moisture across the entire sandbox as the number of misting

cycles increases. The Decagon moisture sensor (and other capacitive moisture probes)

integrate over the depth of the probe. Although this was not an obstacle when determining

the spatial homogeneity of the misting device, in the actual experiments, it was decided that

a non-depth integrated moisture that represents moisture as close to the surface as possible

was desired. As such, a Speedy R© moisture tester was used to measure surface moisture

during the experiments. For each moisture test, six grams of sample was scraped as close

to the surface as possible and then tested. The act of disturbing the surface introduces a

degree of uncertainty into the measurement that was found to vary from 0 - 0.5 % moisture.

Throughout the rest of the paper, moistures are reported as percent wet weight.

The foundation of the proposed method used to characterize soil erodibility is the hypothesis

that soil susceptibility to erosion and stability under external perturbations (such as vehicle

disturbance, wind shear, or other disturbance) can be characterized through measurements

of the shear strength of the substrate. To test this hypothesis, we examined a potential

correspondence between a soil surface’s shear strength and its threshold shear stress. The

measurement of the shear strength was conducted using an idealized probe (pictured in

figure 3.3) inserted into a bed of sand of medium grained sand (grain size distribution is

shown in figure 3.6) scored with a predetermined groove to ensure a consistent contact

geometry. The sand bed was 30 cm long by 11 cm wide. The probe was inserted into the

center of the box to avoid boundary conditions. This probe was a 37 mm long cylinder 12

mm in diameter attached through a 17.5 cm lever arm to a direct drive motor provided by

Ghost Robotics. The direct-drive motor didn’t have gearboxes so it responded sensitively to
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external torques and forces. The motor design allowed for the resistive force of the sand in

response to the applied torque of the motor to be measured. The resistive force is modeled

as being normal to the surface area of the cylinder that is in contact with the sand bed.

This force is converted into a stress by dividing by the effective surface area of the probe

that is in contact with the bed at the moment of failure.

The protocol for applying force to the sand bed and determining a shear strength was as

follows: First, the probe tip was submerged 4 mm relative to the sand surface. The probe

was positioned strictly normal to the sand at position pi/2 defined by the referenced frame

pictured in figure 3.4. A groove in the sand surface ensured that there were no compressive

forces on the probe. This corresponds to the ’Time A’ schematic in the subpanel of figure

3.4. After positioning, the force output of the motor was gradually increased. The sand

deformed, though only slightly, in response to this force and the probe shifted off being

strictly vertical by 0-.1 rad. Eventually, the force output reached a peak that represented

the peak resistive force of the sand before failure. An example can be seen in the ’Time

B’ schematic of figure 3.4. Next, a sudden failure of the sand bed occurred and the probe

’kicked out’ of its approximately vertical position. An example can be seen in the ’Time

C’ schematic of figure 3.4. This test was then repeated for different soil surface moistures

ranging from 0-18 % percent (soil moisture is reported in the study as percent wet weight

of soil sample). Because the test was a destructive test of the sand surface, after each test

a new, dry bed of sand was prepared and brought up to a given percent moisture within

the range being tested.

In practice, a more sophisticated probe design, such as a modified version of the leg described

by Kenneally et al. (2016) and pictured in figure 3.2 is likely to be employed in the field.

This allows for the robot to control the specifics of the probe entry into the sand surface and

gives the robot the flexibility to perform other mechanical tests, such as those described

in Qian et al. (in prep). However, for our purposes, the probe design we used in the

present study was deemed sufficient to conduct the shear strength test described above.
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Given that the quantity desired (surface peak shear strength) was a highly local value in

an unconsolidated, low-cohesivity soil under virtually no confinement, our definition of the

shear strength is by necessity a working definition. However, we believe it captures the key

feature of a peak shear strength (namely the loss of rigidity of the area being probed). It is

worth noting that the test developed here appears to work well for the pure sand used in

the study. This result is not the case with in-situ vane testers which are traditionally only

used in soils which exhibit a high clay content. The sensitivity of the new test is possibly

because the design of the motor allows for low magnitude, controlled forces to be applied to

the surface and read out from the motor at high resolution in comparison to hand deployed

shear vanes. This resolution and range allows for small differences in the peak shear before

failure to be reliably detected in the sandy soils used.

We compared the results of our measurement to estimates of τc necessary to initiate salta-

tion. These estimates were obtained by the Portable In Situ Wind Erosion Laboratory

(PI-SWERL) described in (Etyemezian et al., 2007). Figure 3.3 shows the PI-SWERL situ-

ated on the 1 x 1 x .15 m sand bed used for the wind shear testing. Given the large volume

of sand involved in creating a testing bed for the PI-SWERL and the minimal disturbance

that the short-time ramping protocol had on the bed surface compared to the shear strength

test, the sand in these tests was only replaced after the surface was deemed to have been

disturbed enough from all the previous tests. The sand used in this bed was the same as

that used in the shear strength tests (see figure 3.6 for the grain size distribution). The

version of the PI-SWERL employed was outfitted with two optical gate sensors near the

annular ring that generates shear inside the device. Peak voltages generated by the optical

gate occur when saltating grains occlude the gate above a threshold area. Optical gate

peak area is then obtained by integrating the area of observed optical peaks over 1 second.

Shear stress was increased within the PI-SWERL by gradually increasing the RPM the

annular ring shearing the sand surface. The RPM ramp protocol is shown in figure 3.5.

Past a certain RPM/shear stress the optical gate peak area increases dramatically (figure

3.5). This dramatic increase was interpreted as the beginning of sustained saltation. The
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RPM value associated with the optical gate peak area value of 5 was interpreted to be τc. A

sensitivity analysis revealed that within the parameter range 5-17 for the optical gate area,

the observed trend in τc was relatively invariant. The RPM associated with this threshold

optical gate area was then converted to shear stress using the empirical relation given in

the PI-SWERL manual:

τ = −4.05× 10−12R3 + 5.35× 10−8R2 − 2.20× 10−5R+ .0351 (3.1)

where τ is the friction velocity and R is RPM. It is important to note that τc estimated by

the PI-SWERL may not be strictly analogous to the estimate provided by a straight line

wind tunnel (Sweeney et al., 2008). Though the fluid stress generated by the PI-SWERL

is not strictly ’natural,’ it was deemed appropriate enough for this study. This conclusion

is not unreasonable considering that we were concerned with the shear associated with the

onset of transport of the saltating layer and not the equilibrium transport conditions that

would be most heavily affected by the deviation of the PI-SWERL’s design away from that

of a straight line wind tunnel. The shear stress values generated by the PI-SWERL were

sufficient to explore the existence of a relationship between mechanical and turbulent fluid

stresses.

Inherent in misting an initially dry surface is the infiltration that will occur as added water

seeps into the bed. The sensitivity of the measurements to the amount of time that added

water has been allowed to infiltrate onto an existing sand bed of a given moisture was

tested. This test was done using the PI-SWERL by taking τc for beds of sand where added

water had been allowed to infiltrate for ninety minutes or greater. These shear stress values

were then compared to τc observed in beds of sand where added water was only allowed

to infiltrate for five to ten minutes before taking the measurement. Figure 3.8 shows the

existence of what appear to be two distinct groupings for measured τc as a function of

surface moisture that is dependent on the amount of infiltration time that samples were
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allowed to undergo before measurement with the PI-SWERL. To remove this effect reported

measurements for both τc and the shear strength were all conducted a maximum of fifteen

minutes after the most recent misting cycle.

3.3. Results

Figure 3.9 shows the observed trend in both shear strength and τc. From 0-5 % surface

moisture both quantities appear to increase linearly with increasing surface moisture. After

5 % surface moisture, both τc and the shear strength continue to increase. However, there

appears to be more variance associated with the increase in τc past 7 % surface moisture.

This variance is possibly an effect of the large interrogation area of the PI-SWERL being

able to probe patches of fine sand on the surface. These patches would be associated with

a lower τc on average and lead to local scour patterns. Above 5 % surface moisture there

appears to be a distinct jump in the shear strength with a clustering of values from 5 % to

7 %.

There is another dramatic jump in the shear strength at ∼7 % surface moisture. This jump

in the shear strength is consistent with previously proposed transitional zones between

the capillary and funicular states in partially saturated soils (Schubert , 1975). The large

increase in shear strength at values above 7 % made it untenable to gather data for higher

percent moistures because the torque output of the motor reached its limit. Two attempts

to measure the shear strength of the soil near 7 % moisture were stopped near the upper

limit of the torque output of the motor. These points are color-coded red in figure 3.9 and

represent a lower limit for the shear strength at this percent moisture rather than an actual

value for shear strength. A similar increase in τc also caused us to exceed the upper limit

of the shear stress generatable by the PI-SWERL at roughly 7 % moisture. The majority

of measurements taken at the higher % moistures do not represent actual values for τc but

bound the lower limit for τc. There were two values above 10 % surface moisture where τc was

successfully measured. The reemergence of two quantifiable values at moistures above 10-12

% is likely an artifact of uncontrolled for variations in the sand bed preparation protocol, the
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large interrogation area of the PI-SWERL, and the large fluctuations in turbulent stresses

associated with the highest stress the PI-SWERL is capable of generating.

As the surface approaches complete saturation the shear strength was observed to approach

a value similar to the dry condition. This finding is consistent with observations of how

bulk tensile stresses in granular piles rapidly decline as saturation is approached (Schubert ,

1975). One significant qualitative difference was observed between the two conditions upon

failure of the sand surface. In the dry case, the ’kick out’ of the probe from submergence

in the sandbed is associated with grains leaving the bed surface. In the fully saturated

case, the ’kick out’ is only associated with a puddling of grains near the location where the

probe leaves the surface. Conducting a similar test of completely saturated conditions was

not possible with the PI-SWERL. Even if significant grain motion occurred at the surface,

if it was similar to that observed during the shear strength test, there would be no grains

leaving the film of sand and water at the surface. This observation means attaining saltation

measurable by the optical gate is not possible.

It was observed that the stress applied to each grain in contact with the probe at yield

appears to be of the same order as the grain scale τc estimate provided by the PI-SWERL.

This can be seen by taking the average grain size (D50) of the sand used in the study and

calculating an average number of grains that would be expected to be in contact with the

probe. An average per-grain stress at yield can then be obtained by dividing the shear

strength by the average number of grains in contact. When this calculation is done for the

dry case, the per grain stress at yield is .75 Pa. This result differs from the dry τc estimate

reported in figure 3.9 by a factor of three.

3.4. Discussion

The roughly linearly increasing trend in surface shear strength at different degrees saturation

in the pendicular (roughly 0-5% for grain sized used) and funicular (5-90%) regimes are

consistent with the increases in tensile strength reported experimentally by Lu et al. (2007)
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and Schubert (1975) for medium sand with a wide size distribution. This finding provides

support that the increase in the strength of the sand comes from an increase in capillary

pressure as the sand becomes more highly saturated. This increase arises first from an

increase in the liquid bridge volume causing larger Laplace pressures in between bridged

grains (Scheel et al., 2008). In the pendicular regime, capillary pressures arising from bulk

pressure gradients within the media are superimposed onto forces associated with liquid

bridges leading to a further rise in strength (Schubert , 1975). Our observation of a return

to near-dry shear strength values with total saturation is also consistent with this picture.

The large rise in threshold shear stress with moisture validates the observation of Bisal

and Hsieh (1966) and Wiggs et al. (2004) that under most conditions soil above 4-5 %

moisture is difficult to erode by wind. Our observed linear trend is also consistent with the

empirical results reported for τc of coarse sands of various wetness by McKenna-Neuman

and Nickling (1989). Though their reported trend only goes from 0-2 percent gravimetric

moisture. This determination implies that moisture is the dominant factor controlling the

observed increase in the shear stress rather than unaccounted for variations in compaction

state or other factors. One difference between the τc measurements and the shear strength is

that, near full saturation, the values for τc remain high. The difference is likely attributable

to the absence of grains leaving the sand surface in the case of yielding in the fully saturated

test. This absence would imply that the τc necessary to cause surface motion for fully

saturated beds is similar to the dry case. However, additional force is required to introduce

complete separation of the grains from the sandbed. In the fully saturated case, grains will

experience increased viscous dissipation as well as a suction pressure that is generated as

the grain begins to leave the film of sand and water. This is consistent with the behavior

observed in spheres rebounding off of thin viscous films (Barnocky and Davis, 1988).

The proposed mechanism for the increase in both τc and mechanical strength of the soil with

% moisture in the work discussed above is increasing capillary pressure. The correspondence

between the two soil properties directly seen in this study lends further credence to the idea
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that, in the case of soil moisture, both our shear strength test and τc are controlled by the

same underlying physical cause. This hypothesis is further supported by our observation

that the per-grain stresses experienced at the transition to dynamic behavior appear to

be of the same order. The similarity in stresses would imply that, for the case of surface

moisture, using a test of the near-surface shear strength as a proxy for τc is valid.

A possible reason for the larger variability in τc at higher percent moisture versus the shear

strength measure is that the mechanical forcing that generates the shear strength has none

of the variability associated with the turbulent forcing associated with the shear stress

estimate. Given that fluctuations in boundary stress associated with turbulence are likely

to affect entrainment (especially at the high Reynolds numbers associated with generating

higher stresses in the PI-SWERL) it is likely that a growth in variance around the time-

averaged turbulent stresses leads to increased scatter in any estimate for τc that relies on

time-averaged flow velocities (Diplas et al., 2008; Durán et al., 2011; Weaver and Wiggs,

2011).

The influence of infiltration time on the observed trends in τc seen in figure 3.8 seem to

support the idea proposed by McKenna-Neuman and Nickling (1989) that a soils matric

potential could be a more important control of τc than actual moisture content. In this

work, the surface moisture was used because it was considered to be more realistically

attainable by the robotic platform that is the target for the deployment of the proposed shear

strength test. Also, because of the challenges associated with measuring near-surface matric

potential, most existing studies that examine the relationship between τc and moisture look

at surface moisture rather than tension (Bolte et al., 2011; Wiggs et al., 2004). Further

work to establish whether or not the response of the yield-strength test and measured τc

remain consistent for different near-surface matric potentials is necessary.

It is an open question if surface shear strength and τc respond similarly to other variables

that control soil state. For example, figure 3.1 and previous work point to the strong

effect of desert crusts on the threshold of motion. Does the mechanical response of the
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soils near-surface behave in a similar way to τc for desert crusts? Compaction also seems

to play a large role in the erodibility of barchan dune surfaces (Qian et al., in prep).

Compaction has been hypothesized to influence the critical yield stress of bedload material

in rivers (Charru et al., 2004). It has also been documented that repeated compaction

events can influence the rheology of granular materials (Richard et al., 2005). Compaction

can be controlled in the lab (Gravish and Goldman, 2014) and future work might look at

the response of variably compacted materials to both wind stress and our test of surface

shear strength. More detailed information into this relationship should allow us to begin

to deconvolve the relative contributions of moisture and compaction state on the erosive

response of unvegetated desert surfaces. Cohesivity is another important state variable that

determines the mechanical response of a soil. The work establishing relationships between

shear strength and τc in extremely cohesive sediments is encouraging (Meng et al., 2012;

Léonard and Richard , 2004). It is possible that the effect of cohesivity will remain similar

under wind-stress and under partially saturated conditions.

Though further developments could extend the applicability of the proposed techniques to

other settings (such as desert crusts or soils with significant organic matter), the existing

data show that the method could already be applied at some field sites where soil moisture

is hypothesized to be the dominant control of variability in the threshold stress, such as

most beaches (Jackson and Nordstrom, 1997). Surface moisture is recognized as one of the

primary control variables of τc in the field. However, the increase in τc associated with

a given rise in moisture appears highly site dependent and difficult to model (Webb and

Strong , 2011). Rapid, direct estimates of τc provided by RHex or a similar robotic platform

could overcome this problem. Given the rapidity with which the shear strength test can

be performed, one practical way to field verify its ability to assess changes in sediment flux

related to variation in τc would be to attempt to relate variations in measured sand flux to

changes in surface shear strength in the spirit of Wiggs et al. (2004).

Improvements to the probe used in Qian et al. (in prep) would enable the shear strength
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test described here to be performed in conjunction with the constant displacement test that

has already shown potential in being able to characterize the erosive response of different

substrates in the field. Figure 3.10 shows the design of a probe that is capable of performing

both types of soil tests. Modifications to the probe tip to more directly engage the sand

surface rather than integrating the surface with several millimeters of sub-surface are also

under consideration.

3.5. Conclusion

The main motivation for this study arises from the arrival of robotic platforms such as RHex

that are capable of semi-autonomous deployment in aeolian field settings. These platforms

enable rapid, high-resolution mobile data collection and have the potential to be a valuable

tool in addressing under-constrained aspects of aeolian processes in the field. Soil erodibility

is one such process and understanding variations in erodibility is crucial in creating accurate

models of sediment transport (Webb and Strong , 2011). The ability of RHex to perform

rapid in-situ tests of a soils mechanical properties has recently been demonstrated (Qian

et al., in prep). Coupling this ability to other environmental parameters obtainable by

RHex (saltation flux, wind speed, vegetation extent) could lead to a greater understanding

of the relationship between erodibility and observed sediment transport. Thus, it is highly

desirable to develop rapidly performable tests of erosive response that can be performed by

RHex.

This study presents the results of one newly developed test in the form of a proposed measure

of a soil surface’s shear strength. We compare a shear strength to the value of shear stress

associated with incipient motion and find evidence for a similarity in scaling between the

two properties. A linear relationship was observed for the two properties between 0-7 %

moisture. After roughly 7 % moisture the ability of our measurement devices to measure

both τc and shear strength is exceeded and only a lower limit can be provided. Upon

approaching complete saturation the observed shear strength approaches that seen for dry

values. The behavior of both measurements is consistent with the theory that they are
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controlled by an increase in capillary pressure as the degree of saturation is increased. We

believe that this test is the first demonstrating a relationship between τc and shear strength

for sandy soil of different degrees of saturation.
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Loose sand: 4.6 m/s Thin crust: 7.1 m/s Thick crust: 8.7 m/s 

A B C

Figure 3.1: Height averaged wind speed measurements observed at the initiation of saltation
for different types of sand cover in White Sands, NM. Measurements were collected at the
outlet of a portable wind tunnel and are included for relative comparison. Here, the variation
in observed wind speed appears determined by the extent of desert crust development on
the surface. Loose sand (panel A) has the lowest wind speed associated with saltation.
The requisite speed for saltation associated with a thick desert crust (Panel C) is higher by
roughly a factor of two.
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Figure 3.2: An example of the recently developed RHex robotic platform deployed in the
field in White Sands, NM. The robot is outfitted with a probe assembly mounted near the
front of the body. The probe uses force feedback from two motors to obtain force and
position output that can be used to perform various mechanical tests of the sand surface.
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Probe

PI-SWERL

Mister

x

y

A B

Figure 3.3: Photographs of the lab equipment used in the study. Panel A: the mister and
the PI-SWERL. Mister is mounted to a linear rail and sprays sand beds at a constant rate
to ensure a consistent surface moisture profile. PI-SWERL is shown sitting on the 1 x 1 x
.15 m bed of sand that was used to estimate τc. Panel B: The probe used in the current
study. The force output of the probe is given in the Cartesian reference plane inset into
panel B. For a more in-depth schematic of this test see figure 3.4
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Figure 3.4: Top panel shows an example of the force output of the probe used in the current
study. The A,B, and C labels inset into this output are linked to schematics in the bottom
panel showing the probe output at times A,B, and C. At time A, approximately 1/3 of the
probe tip is submerged at position π/2 and the force is beginning to ramp up. At time B,
probe is slightly shifted away from π/2 because of deformation of sand (angle exaggerated).
This time corresponds to peak force output by the probe in response to the resistive force
of the sand. This peak force immediately before the sand bed fails is defined as the shear
strength of the sand. At time C, the sand has failed and the probe tip has kicked out above
the sand bed.
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Figure 3.5: An example of the raw output of the PI-SWERL used to determine a threshold
for saltation. As the RPM of the PI-SWERL increases past a threshold the integrated
optical gate output from the PI-SWERL rises abruptly signifying saltation. Optical gate
peak output above a threshold is integrated over 1 s to obtain the Optical Gate Peak Area
pictured above.
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Figure 3.6: Cumulative grain sized distribution of the sand used in the current study (D50 =
0.56mm). Qualitatively, sand was fine to medium size with a small course size fraction
overlying the main distribution.
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Figure 3.8: Infiltration time dependent differences in τc (estimated by the PI-SWERL)
against surface moisture. Blue circles (long wait) depict τc for sand beds that have under-
gone infiltration times of 90 minutes or longer after wetting. Green stars (short wait) show
τc for beds with infiltration times of 5-10 minutes. Distinct groupings of the two measure-
ments suggest that τc of the sand surface is controlled by sub-surface saturation state as
well as surface moisture.
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Figure 3.9: A comparison of surface shear strength as measured by the test described in
figure 3.4 and the estimate of τc provided by the PI-SWERL. From 0-6% the two appear
to be roughly proportional. There is a jump in both τc and shear strength above 6 %
moisture. This result is evident by the lower limit points colored in red, which indicate
that true measurements were unobtainable for the higher percent moisture values (except
for outliers in τc at 11 and 13 %). At the percent moisture corresponding to full saturation
of the surface, the measured shear strength approaches its dry value.
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Figure 3.10: Future design of the field-deployable probe. Center bar would allow for probe
tip to stay on the axis of radius of the motors controlling the probe motion. This de-
sign is capable of performing the test described here with the added flexibility of constant
displacement tests and constant force tests.
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CHAPTER 4 : The imprint of vegetation on desert dune dynamics

Lee, D.B., Ferdowsi, B., and Jerolmack, D.J.: The imprint of vegetation on desert dune

dynamics, Geophysical Research Letters, in revision, 2018

Abstract:

In this study we demonstrate the imprint of vegetation on the dynamics of parabolic dunes,

which form when migrating barchan dunes become colonized by plants and invert their

shape. We use topographic data to isolate translation and deformation of dune patterns,

upwind of and across a sharp gradient of vegetation, at White Sands dune field, New

Mexico. Barchan dunes are unstable due to an aerodynamic surface-wave instability. The

dynamics of vegetated parabolic dunes are different; deformation becomes localized, and

random, once plant density reaches a critical value associated with the barchan-parabolic

transition. Plants stabilize dunes not only by slowing them down, but also by killing the

fundamental mechanism that generates new sand waves and destabilizes dunes. Increasing

plant density downwind increases vegetation-induced form drag and results in decreasing

dune migration rate. Biological modulation of pattern-forming instabilities may also occur

in other landscapes.
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4.1. Introduction

Dunes in primarily unidirectional wind regimes act as downstream propagating waves of

sand, but they are fundamentally unstable. Elevation perturbations along the crests of

transverse dunes cause them to become sinuous, and eventually break up into barchans in

sand-starved environments (Parteli et al., 2011). Aerodynamic perturbations generate new

surface waves on the backs of dunes at a wavelength λ of order 10s of meters (Elbelrhiti

et al., 2005; Ping et al., 2014), causing barchans to emit smaller dunes from their horns.

This phenomena counteracts collision-driven dune growth and leads to barchan fields that

are stable in aggregate, even though individual dunes are unstable (Elbelrhiti et al., 2005).

Vegetation acts to slow dune migration, through three mechanisms: (i) reducing boundary

shear stress τb due to form drag (Durán and Herrmann, 2006b; Lancaster and Baas, 1998);

(ii) binding and consolidation of sand by roots (Waldron, 1977); and (iii) facilitating the

formation of sand-stabilizing soil crusts (Fig. 4.1). In order for plants to gain a foothold,

however, their growth rate must outpace the rate of burial by sand on the lee faces of

dunes (Durán and Herrmann, 2006b; Reitz et al., 2010; Jerolmack et al., 2012; Barchyn

and Hugenholtz , 2015) (Fig. 4.1). This growth occurs at a threshold dune migration rate,

below which the stabilizing effects of plants result in a positive feedback that further slows

dune migration (Durán and Herrmann, 2006b; Baas and Nield , 2007; Pelletier et al., 2009).

Stabilization typically occurs first at the low elevation horns because, because they have

smaller deposition rates than the center. This initial pinning of the dune horns, while the

rest of the dune continues to migrate, results in barchans inverting their shape to a parabolic

form(Durán and Herrmann, 2006b; Reitz et al., 2010) (Fig. 4.1).

The current understanding of how vegetation stabilizes dunes is essentially a kinematic

picture; plants decrease erosion rate and ultimately pin the substrate in place (Corenblit

et al., 2011). Here we posit that plants disrupt the fundamental dune-forming instability

by perturbing the sand flux (qs) field — effectively shutting down the formation of surface

waves, and the emission of smaller dunes from the horns of barchans. To test this idea
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we examined dune dynamics at the White Sands National Monument (New Mexico, USA),

a well-studied unidirectional gypsum dune field (Reitz et al., 2010; Jerolmack et al., 2012;

Langford , 2003; Kocurek et al., 2007; Kocurek and Ewing , 2005) that arises abruptly from

a line source of sediment (downwind distance, x = 0). While not exact, a unidirectional

approximation for both the dune migration direction and wind direction is reasonable. Wind

speeds above threshold are strongly unimodal (from the Southwest) and the majority of

dune migration occurs along these SW winds(Pedersen et al., 2015; Jerolmack et al., 2012).

Previous research has identified three regions associated with differing sediment transport

and dune dynamics (Fig. 4.2). Region I lies between the sediment source and x ≈ 2km,

where initially-transverse dunes break up into barchans and migration rate drops rapidly

due to a topographically-induced downwind decline in τb (Jerolmack et al., 2012; Pelletier ,

2015). Downwind in Region II, τb approaches a stable value and there is a ∼5 km long

section where barchan dunes increase their spacing, but otherwise maintain a consistent

size and migration rate (Ewing and Kocurek , 2010; Baitis et al., 2014). Beginning around

the location x ≈ 7km, the barchans rapidly become colonized by vegetation and invert their

shape — over a scale of 1 km — to a parabolic morphology (Durán and Herrmann, 2006b;

Reitz et al., 2010; Jerolmack et al., 2012; Barchyn and Hugenholtz , 2015) (Fig. 4.1). Region

III is associated with parabolic dunes that become increasingly vegetated, elongated, and

slower moving as they progress downwind (Jerolmack et al., 2012; Pelletier , 2015).

4.2. Results and Discussion

We make use of repeat aerial LIDAR topographic data (DOIs: 10.5069/G9ZK5DMD;

10.5069/ G97D2S2D) collected in September 2009 and June 2010, to construct digital eleva-

tion models (DEMs) with horizontal and vertical resolutions of 1 m and 0.1 m, respectively

(see Methods). The dunes at White Sands have characteristic lengths of ∼100 m, heights of

several meters, and migration rates of several meters per year, so structure and dynamics

are well resolved with this data set (Pelletier , 2015; Barchyn and Hugenholtz , 2015; Xia and

Dong , 2016). We assume that the rates of dune migration for the 2009-2010 windy season
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are typical of the migration that would occur in any other given year. In addition, we use

high-resolution (∼0.3 m/px) aerial photography from 2004, that is capable of resolving in-

dividual plants to quantify the spatial distribution of vegetation across the study area (Fig.

4.1). An implicit assumption is that the vegetation remained in a quasi-steady-state over

the course of six years between images and topography data. Because we interpret vegeta-

tion density averaged over the width of the dune field in this study — and not at the scale

of individual plants or dunes — we consider this a reasonable assumption; if the vegetated

boundary migrated at the rate of individual dunes, this migration would result in a maxi-

mum offset of 20 m relative to the 2004 location. Anecdotally, vegetation communities have

not changed notably over our ten years of field work in the dune field. The novelty of our

approach is that we examine dune deformation — changes in both the profile and planform

shape that are independent of net translation — to probe the dynamics of dune-pattern

transitions and the influence of vegetation (Fig. 4.2). Profile deformation is quantified

in the downwind (x) direction using a technique first developed for subaqueous bed forms

(McElroy and Mohrig , 2009). Dunes are separated from the substrate, and the phase lag

associated with maximizing correlation is used to determine a dune’s migration rate Vc from

the two DEMs; the residual elevation differences,
∏

[m/yr], represent deformation at each

point on the dune.
∏

is defined as:

∏
=
η (x+ Vc, t2)− η (x, t1)

∆t
, (4.1)

where η is elevation and t indicates profiles separated by time ∆t. We use the magnitude

of
∏

throughout the paper instead of the rate itself. A different technique, though similar

in spirit, is used to quantify deformation in the planform shape of dunes. A cloud of points

that represent the footprint of a dune are tracked between the two surveys. The residual

differences in the positions of these points, after subtracting Vc, are used to compute a

quantity called D2
min (units of m2) and a measure of homogeneous strain we call Daff (units

of m2) (Fig. 4.2; see Supporting Information). These metrics are commonly employed to
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study the deformation of granular materials (Utter and Behringer , 2008). D2
min quantifies

the amount of non-affine deformation that a body under shear has undergone and is defined

as:

D2
min(t, δt, rc) =

∑
i=1,...,N(rc)

∥∥∥r′i − r′Ai ∥∥∥2 (4.2)

where N(rc) is the number of dune sample points belonging to a cluster centered in rc,

r′i is the current point being sampled and r
′A
i is the location that r′i would be in if all

deformation occurred along the affine deformation matrix A (see Supporting Information

for further explanation). Daff is computed from A in the course of finding D2
min. We

first examine qualitative patterns in the maps of profile-deformation (|
∏
|) and planform

deformation (D2
min), in the context of the dune-pattern transitions (transverse to barchan,

and barchan to parabolic) at White Sands. The most striking result is the presence of

laterally-coherent stripes of large deformation rate in dune profiles, approximately 15-20 m

in wavelength, which are pervasive on transverse and barchan dunes but nearly absent on

parabolic dunes (Figs. 4.3; 4.14). Spectral analysis of the (|
∏
|) map confirms the presence

of a characteristic wavelength ( 15.1 m) for deformation on unvegetated dunes (see Fig.

4.14) that is consistent with the surface-wave instability proposed by Elbelrhiti (Elbelrhiti

et al., 2005). While field evidence for this instability has been documented in the structure

of dune profiles (Elbelrhiti et al., 2005; Ping et al., 2014), it has not to our knowledge been

observed from dune dynamics. In the parabolic region these stripes largely disappear; not

only is deformation rate lower, but it is also visibly less coherent (Fig. 4.3). These findings

provide a first confirmation that plants suppress the dune-forming instability. Turning to

planform deformation, the most significant pattern is a zone of large D2
min and Daff in

Region I compared to the rest of the dune field. Large values of planform deformation

are associated with the initial upwind margin of the dune field, where proto-dunes are

combining to form transverse dunes. This initial peak is followed by a consistent decline

in D2
min that follows the breakup of transverse dunes into barchans (see Fig. 4.4 panel
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B). This behavior is consistent with the planform instability proposed by Parteli (Parteli

et al., 2011). There is also a second, more subtle change in D2
min and Daff associated with

changes in planform pattern across the barchan-parabolic transition. Taken together, data

indicate that the transverse-barchan transition primarily involves planform deformation.

We suggest that the dynamics of the barchan-parabolic transition can be described as an

abrupt shutdown of the surface-wave instability and a gradual planform inversion, which

are manifest as notable declines in profile deformation and modest increases in planform

deformation.

To examine quantitative downwind trends in dune dynamics and vegetation, we compute

width-averaged quantities of dune migration, affine deformation Daff , and vegetation den-

sity ρveg which represents the area fraction of dunes that are covered in plants (Fig. 4.4).

Here width-averaging refers to averaging in the cross wind direction. To ensure that the

averaged trends rise above the error associated with our methods, we performed error anal-

ysis of quantities involved to confirm that associated error is second order or smaller (see

Supporting Information for more detail). Dune migration data confirm previous findings

that Vc declines rapidly in transverse Region I, is roughly constant in the barchan Region

II, and then gradually decreases toward zero in the parabolic Region III. The latter spatial

decrease in dune migration rate is roughly linear, and is mirrored by an approximately

linear increase in vegetation density. The inverse correlation between Vc and ρveg also holds

at the individual dune scale (Fig. 4.15). Because Vc ∝ qs, and qs ∝ (τb− τc) where τc is the

threshold entrainment stress (Bagnold , 2012; Durán and Herrmann, 2006a), the decline in

dune migration rate is due to either a decrease in the boundary stress or an increase in the

threshold entrainment stress (or both). In the unvegetated dunes of White Sands, it has

been shown that the dominant winds produce a boundary stress approximately 1.6 times

the threshold stress, i.e., τb/τc ≈ 1.6 (Jerolmack et al., 2011). Previous work has shown an

inverse relation between vegetation density and boundary shear stress due to the form drag

effect (Durán and Herrmann, 2006b):
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τb =
τ0

1 +mβρveg/σ
, (4.3)

where τ0 is the boundary stress in the absence of plants, m = 0.16 is a model parameter,

β is the ratio of plant to surface drag coefficients, and σ is the ratio of basal to frontal

area of a plant. Considering that plant density increases from ρveg ≈ 0 to ρveg ≈ 0.02 over

the parabolic region, and utilizing parameter values found by Wyatt to be applicable to

creosote desert shrubs (β = 200; σ = 1.45) (Wyatt and Nickiing , 1997), we would expect

the excess boundary shear stress (τb − τc) to decrease by roughly a factor of five. This

decrease is consistent with the magnitude and the trend of decreasing Vc, suggesting that

vegetation-induced form drag may exert the greatest influence on declining migration rates

of parabolic dunes.

In order to quantify coherent deformation patterns (Fig. 4.3) and relate them to plant

density, we compute a “coherent deformation density” ρCD. We perform blob detection on

the |
∏
| map of the entire study area, compute the ratio of blob to dune area for each dune

in the dataset, and then perform width averaging to obtain a downwind profile of ρCD (see

Methods). This quantity detects spatial coherence of dune profile deformation, even when

magnitudes are low. There are two major features in the profile of ρCD: first, coherent

deformation is highest at the upwind margin and gradually decreases downwind to the end

of the barchan Region II ; and second, there is a marked drop in coherent deformation at

the barchan-parabolic transition, that corresponds to the location where vegetation density

begins to increase. This drop provides quantitative support for the qualitatively distinct

behaviors observed up- and down-wind of the barchan-parabolic transition (Fig. 4.3). The

onset of vegetation in the parabolic region leads to a rapid loss of coherent deformation.

4.3. Conclusion

The current work has used the lens of deformation to examine two dune-pattern transitions

at White Sands that are common in desert environments. This new approach demonstrates
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that a proposed planform instability (Parteli et al., 2011) is responsible for the breakup

of transverse dunes into barchans. After this breakup, migration and deformation data

indicate that the barchans evolve to a state of pattern stability that is maintained by the

aerodynamic surface-wave instability, as proposed by Elbelrhiti (Elbelrhiti et al., 2005).

This instability is detected as coherent stripes of profile deformation, that are completely

disrupted with the onset of vegetation. In the parabolic region, deformation becomes smaller

in magnitude and more localized, while migration rate gradually slows due to the increase

in plant density and its associated form drag. While it is well known that increasing

plant density results in decreasing erosion (Pelletier et al., 2009), the vegetation gradient

at White Sands provides an unusually clear and quantitative demonstration of this effect.

More fundamentally, this work shows how plants can drive a qualitative shift in the form

and dynamics of a landscape pattern, by modulating an abiotic pattern-forming instability.

A related example is the vegetation-induced transition from braided to single-thread river

channels; by slowing the rate of bank erosion, plants prevent the formation of mid-channel

bars (Tal and Paola, 2007; Braudrick et al., 2009; Gran and Paola, 2001). There are

few studies that have identified distinctive and quantifiable effects of life on the landscape

(Dietrich and Perron, 2006; Reinhardt et al., 2010; Corenblit et al., 2011), and this study

may provide guidance for that search.

4.4. Methods

Digital elevation models (DEMs) of the study area outlined in Fig. 4.1 were collected by

the National Center for Airborne Laser Mapping (NCALM) (DOIs: 10.5069/G9ZK5DMD;

10.5069/G97D2S2D) in September, 2009 and June, 2010. For each DEM, 2D elevation

profiles were sampled along the width of the study area along the time-averaged wind

direction. For each elevation profile, individual dune profiles were identified for both DEMs.

A unique Vc for each dune profile was then obtained by finding the spatial lag that maximized

correlation between the sample years. The Vc for every dune profile in the study area was

then subtracted from the June, 2010 DEM. This variably shifted DEM was then compared to
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the 2009 data to obtain the values used to quantify both vertical and planform deformation:

Daff ,
∏

, and ρcd. The vegetation data used to calculate ρveg was produced from circa-

2004 high-resolution aerial photography that covers the same area as the DEMs. For more

information on methodology see Supporting Information.

4.5. Supporting Information

4.5.1. DEM preparation

Digital elevation models (DEMs) for September, 2009 and June, 2010 were prepared from LI-

DAR point cloud data downloaded from www.opentopography.org (DOIs: 10.5069/G9ZK5DMD;

10.5069/ G97D2S2D). These points clouds average 5.63 pts/m2 and 4.62 pts/m2 respec-

tively. DEMs with a resolution of 1 m2 per pixel were prepared using a protocol almost

identical to that used by Pelletier [Pelletier, 2015]. The protocol involved downloading all

available .LAZ files from the LIDAR surveys associated with the dune field for both years.

For each year, the LAStools software suite was then used to stitch these files together into a

contiguous point cloud. The software points2grid (available from www.opentopography.org)

was used to create a .LAS formatted DEM from the lowest elevation return in every square

meter. This DEM was then opened in GRASS GIS where the subset of the dune field

DEM used in the study was selected and exported to .MAT format. Inside Matlab R©, the

2009 DEM was shifted vertically by 0.34 meters so that both DEMs had the same mean

elevation. For both the 2009 and 2010 DEMs, there were 5-10 anomalously low returns

(<0.001 % of the dataset). These elevations were deleted and replaced with an average

of the immediately surrounding elevations. The DEM matrices were then rotated by 25

degrees clockwise so that the horizontal axis of each matrix represented the predominate

migration direction of the dune. As noted above, the area used in this study was a subset

of the total DEMs available for both years obtained. The area was selected so that, for a

given line drawn perpendicular to the dominant wind direction, any point sampled along

this line would be roughly the same distance away from the upwind margin. This criteria

was viewed as important to ensure consistency in the width-averaged trends displayed in
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Fig. 4. The criteria restricted our analysis to an area of 1.2 km (transverse/across-wind

direction) by 12.0 km (downwind direction).

4.5.2. Detecting Individual Dune Profiles

Once DEMs for both years were obtained and processed, elevation transects of the study

area were sampled for every 1 m wide row in the DEM matrix along the predominant wind

direction. A subset of one of these transects can be seen in Fig. 4.5. A modified peak

detection algorithm was then used to estimate the start of the stoss side, the crest height,

and the end of the lee side of the dune profiles found in each transect. More details about

the original algorithm can be found in Yoder [2016]. This peakfinding algorithm was used

to detect approximate dune peaks. Starting from this peak, a local, iterative search was

performed both downwind and upwind of the peaks to determine the start and stop locations

of the dune profile. This search assembles all of the local minimums below a threshold

elevation in between the current peak, the downwind peak, and the upwind peak. This

threshold was determined by adding a constant value to the global minimum between the

current profile peaks and the neighboring peaks. A maximum elevation threshold ensured

that only local minimums in the interdune or near-interdune were considered. The local

minimum that was closest to the current profile peak on the downwind side was identified as

the beginning of the stoss side. The local minimum closest to the peak on the upwind side

was identified as the lee side. Once the stoss start and lee stop locations are determined,

profile averaged quantities such as Vc are assigned to the middle of the profile’s width.

A typical result of this procedure is demarcated for a number of dunes in Fig. 4.5. Error

is associated with the method, though, in the majority of cases, the algorithm adequately

demarcates each dune profile from its neighbors and separates dune profiles from: (1)

shallow slope, interdune regions, and (2) masses of sand that are not tall enough to properly

be called a dune. Individual dune profiles from the June, 2010 DEM are shifted back onto

the 2009 data using the technique described in the next section. The performance of the

method in both successfully evaluating dune profiles and the beginning of the profile stoss
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side and end of the lee side is described below.

In assessing the accuracy of the dune profile detection algorithm, we were mainly concerned

with the rate of successful identification of profiles and how well stoss and lee locations were

detected. The performance of peak identification was largely ancillary as peaks are only

used in the paper to obtain a starting point along the dune to search for the stoss and lee

locations. We classified profile identification errors into three different types - unidentified

profiles, lumped profiles, and split profiles. Occasionally a peak was not detected and this

resulted in a dune profile not being included in the analysis. Unidentification of some small

dune profiles was a necessary consequence of having to choose a threshold over which a

local peak in the elevation data was considered the peak of a dune. At a minimum, the

threshold should be over a meter due to the presence of large features in some interdune

areas that were not actually associated with a dune. The choice of this threshold was further

influenced by the bipartite and tripartite peak structure of individual dune profiles; if the

threshold was set too low, than a single dune profile was identified as several profiles. In

this work a threshold of two meters was used. Table 4.1 shows the number of unidentified

small dune profiles for 10 randomly selected elevation transects from the study area. For

each of these transects, the automatically detected dunes were compared to dunes classified

by eye. On average less than 10 percent of dunes were not detected. Because dune profile

width scales with dune height this Unidentification represented a much smaller fraction

of total dune surface along a transect than one would initially assume. An average dune

width for all dunes in a profile was on the order of 100 meters, while profile widths for dune

profiles with 1-2 meter peaks were typically 30-50 meters. These widths implied that the

percentage of unidentified dunes in a profile actually made up 2-4 percent of the total dune

surface along a given elevation profile. A lumped profile resulted when two dune profiles

were identified as one. This occurrence was uncommon and usually occurred when there

was almost no interdune in between successive profiles. A split dune occurred when a single

dune was classified as two or more dunes. This over-identification happened because of the

multi-peak structure of some profiles. The prevalence of both split and lumped dunes for

72



the manually classified transects can be seen in table 4.1.

The other type of error associated with the profile detection involves assignment errors at

the start of the stoss side and the end of the lee side. Due to the gradual transition from

interdune to dune at the stoss side, the determination of the beginning of the stoss side of

the dune was subject to a certain degree of subjectivity. This was true even in the field. Our

approach created an objective measure to determine when the stoss side begins and this

led to certain instances where an observer would disagree with the results of the method.

Stoss side start identification was further complicated by the wide variety of curvatures

represented by the transition from the interdune area to the stoss surface of the dune. The

lee side was characterized by a dramatic change in curvature for most profiles and so was

arguably less prone to identification errors. To characterize the error range present in both

the stoss start and lee stop locations, we compared the performance of the automated profile

detection method to a visual assessment of the profile start and stop locations. Fig. 4.6

shows a histogram of the difference in meters between the start and stop locations between

the two approaches. The analysis was performed for 100 dunes selected at random. Relative

to manual profile detection, the automated method both over-identified and under-identified

both the stoss start and lee stop locations. To assess how large this error was relative to

the total dune profile, we compared the total amount of stoss start and lee stop discrepancy

as a fraction of dune width. Fig. 4.7 shows a histogram of identification errors as a percent

of total dune width for the 100 dunes we compared. Most identified dune profiles had

identification errors of less than 10 percent with over-identification being more prevalent.

While both dune identification and profile start/stop errors were large enough to introduce

artifacts into the data, we were still able to use the profile information to make the other

measurements presented in the paper. When relevant, the effects of these errors on other

measurements will be discussed in the proceeding sections.
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4.5.3. Estimating Dune Profile Migration Rates

Once dune profiles were identified, then each individual profile from 2010 was shifted back-

wards by N meters. N was the shift that maximized the cross-correlation between the dune’s

2010 elevation profile and a segment of elevation from the analogous 2009 profile that was of

the same length as the 2010 profile. For example, if a dune migrated forward 4 meters dur-

ing the study period, then the initial correlation was between the the 2010 dune profile and

part of the 2009 profile plus 4 data points of either interdune area or a neighboring dune.

As the 2010 dune profile was shifted continuously backwards by N steps, the correlation

between the two profiles reached a maximum where the shapes overlap without including

data from interdune areas or other dunes. For most dunes, the maximum correlation values

were high (0.8 was typical), but not 1 because the dunes deformed as they migrated along.

The end result of this technique is illustrated in the bottom of Fig. 2. This method assumed

that dunes move forward or remain stationary. The method also assumed that a dune did

not migrate more than its entire length during the study period. An additional limitation of

this method was that calculated displacements were only accurate to the pixel width used

in the study (1 m).

Once the value N was found that maximized the cross-correlation, it was recorded as Vc,

or the migration rate for that dune profile. The operation of maximizing the cross corre-

lation has been shown to be the equivalent operation of finding the displacement in the

case of the simple translation by Bergonnier et al. [2005]. The operation we performed was

exactly analogous to this method for the 1D case with the exception that vertical deforma-

tion affected the correlation. For most of the 1 m sample points along the dune profiles,

this deformation was not coherent. Furthermore, noise arising from deformation was high

wavelength with the longer wavelength features still being preserved without appreciable

change. The performance of this method for determining profile displacement was verified

by eye for 50 dunes randomly selected throughout the dune field and found to be accurate

to 1 m resolution.
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To analyze errors arising from discretizing displacements to an accuracy with 1 m, a dis-

placement error was defined v that represented the difference between the dune displacement

calculated to an accuracy of 1 m and the actual dune position. v had a range of -.5-.5 m

with a peak magnitude occurring halfway between each successive one meter increment.

The shape of v was a sawtooth function and can be visualized in Fig. 4.8. After assuming

equal likelihood for all values of v, it was possible to estimate how discretizing would effect

the across-wind averaged (width averaged) trend presented in Fig. 4 panel A. In practice,

a moving window was used to average all the Vc measurements assigned to all the dune

profiles located within a 1241 x 50 m moving area. Because the density of observed dune

profiles varied throughout the dune field, the number of values within the averaging window

also changed. The density of observations was usually somewhere between 500-1500. The

effect of averaging on the error of the final Vc trend can be seen in Fig. 4.9. It was seen

that, if one assumed that discretization errors occurred uniformly within a range of v from

-.5 and .5, then sampling from this range and taking the mean of this sample produced

an average error centered around 0 m with the majority of errors occurring within .015 m.

Errors taken evenly from a uniform distribution centered around zero had a tendency to

cancel out and produced an average total error clustered around zero.

The effect of dune classification errors on Vc was primarily seen in the unidentified dunes. In

the case of split and lumped dunes, the dune was still assigned a value for Vc and was shifted.

The effect of unidentified dunes on the width averaged Vc measurement was minimal. If one

assumed that unidentified dunes were uniformly distributed through an elevation transect

and a representative number of unidentified dunes was taken to be 6 with a width of 50 m

on average. For a given width (across-wind) averaged profile in the along-wind direction,

the probability of not including a Vc measurement was 2.5 %. The probability of missing

two or more measurements in the averaging area was .06 % and so on.

The effect of stoss start and lee stop errors on Vc was negligible in the case of over-

identification of a dune profile. This was because the noisy, low signal interdune elevations
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did not a have a strong effect on which dune displacement displayed the maximum corre-

lation coefficient. To assess the effect of under-identification errors, 50 dunes were selected

at random and the efficacy of the Vc shift was assessed by eye. The portion of the under-

identified dune profile that was classified as a dune appeared to be shifted as well as other

dunes. This appeared to be because, even in the extreme cases of maximal error, over 80

% of the dune form remained to be correlated.

The end result of the dune migration analysis was a map of Vc values for each individual

dune profile that was used to create a variably shifted version of the 2010 DEM where each

profile was shifted by its unique Vc. The creation of this shifted DEM was crucial because

it allowed us to analyze the deformation of dunes across the entire study area using the

techniques described below.

4.5.4. Quantifying Vertical Deformation

McElroy and Mohrig [McElroy and Mohrig, 2009] defined a useful metric of vertical dune

deformation, which formed the basis for the technique we employed here. A deformation rate

or
∏

was defined in the main text in Eq. 1. Eq. 1 can be thought of as the net aggradation

and/or degradation that occurred at a point on the bed over the sampling duration in the

Lagrangian reference frame, or the reference frame that was arrived at when the distance

each dune profile travels over the study period was removed. This removal resulted in a

shifting of each dune profile back onto its previous years position. The variable x is the

along-wind location of the dune profile, η is elevation, and t indicates profiles separated by

time. Because it is computed in the reference frame of the migrating dune,
∏

represents a

local deformation rate for the time step in question.

The dune identification errors discussed above affected
∏

. Local points on the |
∏
| map

were not computed. The main effect was seen in unidentified dunes and in dunes that were

under-identified. These errors were not prevalent enough to prevent the |
∏
| map from being

used to explore patterns in the vertical deformation. Zones of coherent deformation were
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still clearly visible in Fig. 3. It should also be noted that these types of error should have

destroyed the signal of coherent deformation noted in the main text, instead of amplifying

apparent coherence. Other errors that affected
∏

arose from the discretization error, v,

described in the section discussing how Vc is obtained. Here, the magnitude of the error

was dependent on slope. Sections of a profile that have a steeper slope showed apparently

higher
∏

values when v was at its peak. Fig. 4.10 shows how artificially shifting 67 real

dune profiles identified from the 2009 DEM at the sub-meter scale and then re-shifting the

dune at the 1 m scale to obtain a Vc introduces error into
∏

. Peak average errors are on

the order of .08 m/9mo. In general, these errors introduced artifacts akin to uniform, white

noise into the
∏

values calculated for the profiles. This noise was large enough to affect the

floor of the values observed. However, the main analysis that
∏

was used for involves using

|
∏
| to determine patterns of coherent deformation with average |

∏
| values of .83 m/9 mo.

This was much higher than the observed noise floor. Our empirical estimate of the error

in
∏

supports the idea that the noise introduced by discretization was not large enough to

destroy the signal of coherent deformation.

Computing
∏

as defined above allowed access to the component of deformation associated

with the vertical deformation of the free surface of the dune. However, there are other

components of the deformation tensor that should be accessed to gain further insight into

how the dune field at White Sands is evolving. Namely we would like to get some idea of

the amount of planform deformation that was occurring in the dune field.

4.5.5. Quantifying Planform Deformation

To provide an estimate of the local amount of planar deformation we examined both the

affine strain tensor, Daff , and a metric, D2
min, commonly used in granular physics. In

this approach, the planform shape change of the dune body is thought to be analogous to

a strain. This allowed us to separate the shape change into different components. One

component, the affine strain, is the shape change associated with linear transformations of

the dune outline (simple shear, extension, compression, etc). The other component, the
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non-affine deformation, is represented by D2
min. The non-affine deformation is the residual

left over after using a best fit value for the local affine strain tensor (Falk and Langer , 1998).

At any given time t we considered a small cluster of points sampled along a dune outline

surrounding a given point on a dune with center position rc and the displacement of these

dunes within the time interval [t; t
′

= t+ δt].

We call ri the relative position of point i in that cluster of points sampled along the dune

at time t, while r
′
i indicates the respective relative position of the point at time t

′
. The

positions were sampled relative to the center of mass of the cluster at the corresponding

time (Utter and Behringer , 2008).

If the overall mechanical deformation of the cluster is completely homogeneous between

time t and t
′
, then each dune sample point i has, at time t

′
, a relative position given by a

simple mathematical mapping (geometrical transformation) from its position at time t ; i.e.,

r
′A
i = E(t, δt, rc)ri, where E(t, δt, rc)ri is an affine transformation matrix for the cluster of

dune sample points around the point at position rc, at time t.

The estimation of E(t, δt, rc)ri, at each time t, and for each dune point with position rc

was obtained by formulating an optimization problem, consisting of minimizing the least

squares error function. This takes the form:

D2
min(t, δt, rc) =

∑
i=1,...,N(rc)

∥∥∥r′i − r′Ai ∥∥∥2 (4.4)

where N(rc) is the number of dune sample points belonging to the cluster of dune sample

points centered in rc .

The minimization was done with respect to the elements of E. Its solution led to a best fit

of the actual, local deformation with an affine transformation model and an estimate of the

residual amount of non-affine deformation, given by the corresponding minimum value of

D2
min. The non-affine deformation metric represented the departure from a homogeneous
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affine deformation field and was a measure of the plastic, irreversible component of planform

deformation in the dune field at that point (Utter and Behringer , 2008). In this analysis

Daff is a strain tensor that can be separated into components of shear, rotation, etc. while

D2
min is a deformation tensor. Similarly to its effects on

∏
, the dune identification errors

and effect of discretization were sources of noise that do not prevent us from examining first

order trends in the patterns of planform deformation.

The map of of both Daff and D2
min can be seen in Fig. 4.11. Both Daff and D2

min track

each other well with concomitant increases and decreases in each quantity. Daff was also

width (cross-wind) averaged along the dune field and this result is presented along with the

other width averaged trends in Fig. 4.

4.5.6. Measuring Coherent Deformation

Visual inspection of the |
∏
| maps showed frequent patches of coherent deformation in the

transverse and barchan portion of the dune field thought to be associated with the instability

reported by Elbelrhiti et al(Elbelrhiti et al., 2005). To provide some measure of the frequency

of this coherent deformation in different parts of the dune field, we computed the coherent

deformation density, ρCD. To detect coherent blobs of deformation, we used a wavelet based

image segmentation method described in Sengar et al. (2016). This method was chosen over

more commonly used methods because of its performance in dealing with extracting areas of

deformation above a threshold value and size above the noisy, in-homogeneous background

deformation of the rest of the dune field. For further information on the performance of

the method on images of similar noise level to that obtained from the deformation map the

reader is referred to Sengar et al. (2016).

Once the blobs of deformation above a certain intensity were reliably identified, ρCD was

computed throughout the dune field as ρCD = ACD/AD. Here AD is the total dune area

that is currently being considered and ACD is the portion of this area that is coherently

deforming. ρCD was then width averaged to give the downwind trend for ρCD seen in Fig.
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4C.

4.5.7. Calculating Vegetation Density

Vegetation density (ρveg) was calculated using a high resolution, georeferenced, aerial survey

of the dune field that was performed in 2004 by the National Park Service. This survey

had a resolution of 1 ft per pixel and was performed on a clear day with even illumination

conditions. The quality of the aerial images allowed for an automated estimation of the

fraction plant cover for a given area dune. To do this, first a threshold was applied to

the images. Pixels below a certain grey level were considered to be too dark to be sand.

Then Matlab R©’s built in image segmentation command was run on the images to connect

the darker pixels into blobs. Most of the interdune areas showed up as extremely large

blobs and these were removed since we were only concerned with the dune surface. The

smaller blobs were then considered to be potential vegetation on the dune surface. A

primary challenge of this method was that, in the aerial images, the distinction between the

beginning of the stoss side of a dune surface and the end of an interdune were challenging

to discern and had a degree of subjectivity. To determine if a patch that was identified as

potential vegetation by the thresholding algorithm was on a dune, we looked at the grey

level of the pixels around the perimeter of an identified blob. If the average grey level

of the perimeter was above a threshold lightness then the patch was interpreted as being

on a dune surface. Another challenge was that small patches of vegetation and certain

plant types can have the same grey levels as the dune surface itself. These small, sparse

patches of vegetation were interpreted as being associated with smaller, less dense stands

such as patches of small grass. These smaller, shorter plants were assumed to have less

influence on transport processes. Thus, to avoid over-classification of plants relative to

dune surfaces, the threshold chosen to classify plant pixels from sand was set higher than

the darkest values associated with unvegetated sand surface. This led to a strong cutoff

in the detected plant stands with plant stands below a certain density and size not being

detected. This should not change the qualitative results of the paper concerning the trends
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in the vegetation. This is especially true if one accepts that the highest density plant stands

(i.e. the darkest, largest stands) will be the most likely to affect the migration flux through

the form drag mechanism proposed in this work. Future studies will need to impose a less

stringent threshold on the vegetation and algorithms that can detect more subtle patches

of vegetation will need to be devised if the relationship between fraction plant cover and

dune morphodynamics is to be quantified beyond associating trends in the relative amount

of fraction plant cover throughout the dune field to the migration rate.

The results of the method described above can be seen in Fig. 4.12. As discussed above, it

was observed that there was significant overlap in the grey levels associated with very sparse

vegetation and the completely unvegetated dune surface. Because of this, it was decided that

the threshold for classifying a pixel as a plant would be set to avoid this overlap. To quantify

this threshold, 10 square regions of approx. 45 m by 45 m were randomly selected from

portions of the dune field with vegetation. The distribution of grey levels of unvegetated

portions of these regions was then calculated. This result can be seen in Fig. 4.13. The

left hand tail of this distribution was then used as the threshold below which pixels would

be classified as plants in our automated method. That there is slight overlap between the

grey levels classified as vegetation in the automated method and grey levels classified as

dune surfaces arises from the fact that identified plant areas underwent a dilation operation

in the code before being included in the data-set as a vegetated area. The results of the

automated vegetation classification scheme were also compared to the distribution of grey

levels that results when vegetation is classified by eye in the 10 randomly selected regions.

The intensity distribution of the eye classified vegetation pixels can be seen in Fig. 4.13

in red. It is apparent that the eye tends to select regions on the dunes whose grey levels

significantly overlap with grey levels of unvegetated surface. The automated classification

scheme avoids this ambiguity while capturing the darker grey levels that are also classified

as belonging to vegetated patches in the visual inspection method.

Once pixels on dune surfaces were classified as either vegetation or non-vegetation, ρveg was
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calculated in a similar manner to ρCD. ρveg is given by ρveg = Aveg/AD. Here AD is the

total dune area that is currently being considered and Aveg is the portion of this area that

is vegetated. Please see the included script for more details on the vegetation detection

scheme.

4.5.8. Radially Averaged Power Spectral Density Analysis

To ensure that the wavelength of the coherent deformation structures we observed in Fig.

3 was of a similar length-scale to the wavelengths observed by Elbelrhiti et al. (2005), we

performed a radially averaged power spectral density analysis in a region of the unvegetated

dunes and a region of the vegetated dunes. While the 1D radially averaged result does not

give an exact wavelength because of the anisotropy of the coherent deformation structures,

it does provide an additional check that what we observed was consistent with a dune

forming instability.

The procedure used to obtain the power spectral density plots inset in Fig. 4.14 was as

follows. To remove long wavelength, coherent noise a pre-whitening scheme similar to

that outlined in Hyvärinen and Oja (2000) was employed on the deformation maps. Pre-

whitening effectively acted as a high-pass filter on the deformation maps by making all the

individual elements in the map uncorrelated to one another. A 2D, discrete fast Fourier

transform was then performed on the whitened map. This 2D fft map was then area

normalized and converted to a 2D PSD map. A radial averaging scheme was employed on

the 2D PSD map to produce the 1D PSD trend that shows the direction-independent mean

spectrum for a given wavelength. This entailed selecting a frequency in the 2D PSD map

and averaging it in all directions to obtain an idea of the mean intensity at that frequency

(Ruzanski , 2011). This analysis was done at the dune scale to highlight the presence of sub-

dune scale coherent deformation structures in the barchan dunes and their marked absence

in the parabolic dunes (see the peak at the 15 m wavelength in the 1D PSD plot for the

barchan dune in Fig. 4.14).
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Figure 4.1: Landscape patterns at White Sands National Monument. (A) Aerial photograph
of the dune field; black rectangle marks the region of this study. The three zones of distinct
dune dynamics and morphology described in the text are indicated as regions I, II, III in
the figure. (B)-(D) Representative barchan, transverse, and parabolic dunes, respectively.
Varied effects of vegetation across scales include (E) stabilization of soil through roots, (F)
sediment deposition due to to wake effects, and (G) growth of surface crusts.
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ShiftedUnshifted

Figure 4.2: Definition sketch of deformation variables. Left “unshifted” shows a dune
planform outline sampled at two different years (year one is blue and year two is red for
entire figure), and below it is the elevation profile of the dune sampled along the green
dashed transect. Right “shifted” shows the outlines and profiles shifted between years 1
and 2 by the net dune migration rate, Vc. Vertical deformation is then measured profile
by profile along the dune using

∏
. Planform deformation is computed using the metric

Daff and D2
min. For details of how deformation quantities are calculated see main text and

Supporting Information.

84



Along−Wind(m)A
cr

os
s−

W
in

d(
m

)

1000 3000 5000 7000 9000

200
600

1000
0

1

2
A

B

C

D

E

F

G

H
I

B C

D E F

G H I

J

A

A

Figure 4.3: Nine regions roughly 100 m by 150 m in area showing patterns of vertical defor-
mation, |

∏
|, across the dune field. (A-F) laterally-coherent vertical deformation structures

are seen on unvegetated transverse and barchan dunes, by mapping
∏

for every square
meter in the DEM. Though these deformation structures are most intense closest to the
upwind margin (A-C) they are still markedly present in the unvegetated barchans (D-F).
(G-I) Map of |

∏
| for representative parabolic regions of the dune field; the absence of co-

herent deformation in these panels is typical for vegetated dunes. The bottom panel, J,
shows a map of |

∏
| for the whole study area. The spatial locations that the regions A-F

were taken from is shown on the map. Transverse, barchan, and parabolic zones of dune
field are demarcated by I, II, and III. The units of the color-map are in m/9mo and are
consistent for both the study area |

∏
| map as well as the regions.
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Figure 4.4: Downwind trends in dune kinematics and deformation; all quantities are aver-
aged in the transverse (cross-wind) direction. (A) Dune migration rate Vc (blue) calculated
from the 2009-2010 DEMs and vegetation density ρveg (green) calculated from 2004 aerial
image; approximately linear decrease in Vc in the parabolic zone III corresponds to an ap-
proximately linear increase in ρveg, indicated by dashed red lines. Vc and ρveg are smoothed
using a 40 m running average in the transverse direction. (B) Affine deformation Daff ,
which generally tracks downwind changes in Vc with the exception of the zone II to III
transition. D2

min isn’t shown because it generally follows Daff . (C) Density of coherent
deformation ρ(c), which also generally tracks changes in Vc and D but shows an abrupt
drop across the barchan-parabolic transition (vertical dashed line) associated with the dis-
appearance of the surface-wave instability. The transverse, barchan, and parabolic zones of
the trends are demarcated by I, II, and III on the plots.
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Figure 4.5: Illustration of the results of the dune profile detection algorithm. A ∼2.5 km
long segment of one 2D elevation profile is shown. Estimated crests of detected dunes are
marked in red. The beginning of the stoss side of the dune is marked in green. The lee-
side toe is marked in black. In between many profiles, flat interdune regions can be seen
(demarcated as the spaces between successive black and green markers).
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Figure 4.6: Histogram of identification errors introduced by the automated detection scheme
for both the beginning of the profile stoss surface and the end of the profile lee. A positive
location error of X meters indicates that the stoss/lee position is inclusive of a portion of
an interdune surface. A negative location error of X meters indicates that the stoss/lee
position truncates a portion of the profile relative to the dune profile selected by eye. 100
dunes were selected evenly from the 2009 and 2010 DEMs.
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Figure 4.7: % of dune profile misidentified relative to the width of the profile. Positive
percentages connote over-identification and the inclusion of interdune elevations. Negative
percentages connote under-identification. The analysis here was performed for 50 dunes
each from the 2009 and 2010 DEMs.
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Figure 4.8: A plot of the displacement error v for an idealized dune displacement as the
displacement of the dune is shifted from being 0 m away from a displacement resolved to
1m resolution to 1m away. As the real displacement approaches the meter scale values v
goes to zero. v reaches a maximum magnitude of .5 m when the actual displacement is .5
m away from either meter scale value.
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Figure 4.9: A histogram showing the frequency of different magnitudes of average error for a
typical width averaged Vc value. The result was obtained by sampling 1000 times (a typical
observation density for the area that Vc is averaged over) from the range discretization
errors, v, associated with a single dune profile. The mean of this sample was then taken
and the distribution of means plotted. The average error that results from width averaging
many dune profiles together is centered around zero with the majority of the average error
falling between -.015 and .015.
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Figure 4.10: An empirical estimate of the average error caused in |
∏
| by discretizing Vc

to a resolution of 1 m. The x-axis shows an artificially induced displacement shift of 67
dunes sampled relative to a fixed, arbitrary discrete dune displacement. For each sub-meter
displacement shift, a Vc accurate to a meter is found that attempts to shift the original dune
profile back onto itself. The average |

∏
| that results is found. All non-zero values of |

∏
| are

introduced into the calculation by the displacement discrepancy introduced by discretization
and hence any non-zero |

∏
| represent an error. At each shift the maximum |

∏
| for 67 dunes

that have been artificially displaced is calculated and then averaged together. Peak error
occurs at approx. .5m away from the initial position at 0m and then declines again as the
actual position approaches the next resolvable position.
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Figure 4.11: Panel A shows a map of affine strain Daff . Panel B shows a map of non-
affine deformation D2

min. Zones of high Daff appear to be associated with zones of high
D2
min. Transverse, barchan, and parabolic regions of dune field are demarcated by I, II,

and III. Primary and secondary peaks in planform deformation are associated with the
transverse-barchan and barchan-parabolic transitions, respectively.
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Figure 4.12: The result of the vegetation detection scheme used to calculate ρveg of dunes,
which ignores inter-dune areas. Detected dune plants are shown as light green blobs. Fig.
4.13 shows a comparison of this classification method to that done by eye.
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Figure 4.13: Histogram of the grey levels of the aerial images as classified by different
methods of plant detection. Grey level 255 are completely white pixels and grey level 0
represents completely black. The Blue histogram shows the frequency at which different
grey levels that are classified as vegetation by the automated detection code. The red
histogram shows the frequency at which grey levels were classified as vegetation when the
analysis was performed by eye on a set of randomly selected vegetated areas of 45m x 45m.
The black histogram shows the grey levels of unvegetated portions of the dunes. Note the
overlap between the unvegetated portions of the dune field and the eye detected grey levels
that were classified as vegetation.

95



100 m

A B

110

5

10

15x 10−7

Wavelength (m)

P
ow

er

110

5

10

15x 10−7

Wavelength (m)

P
ow

er

Figure 4.14: Patterns of deformation across the dune field along with spectral analysis of the
deformation. (A) Laterally-coherent vertical deformation structures are seen on unvegetated
dunes, by mapping |

∏
| for every square meter in the DEM; more examples can be seen in

Fig. S2. (B) Map of |
∏
| for a representative parabolic region of the dune field; the absence

of coherent deformation in this panel is typical for vegetated dunes. Insets in panels A and
B show radially-averaged, detrended 2D power-spectral density (PSD) plots computed from
representative portions of |

∏
| maps for a subset of the barchan and parabolic portions of

the dune field, respectively. The spike in the spectral density at approx. 15m that is present
in panel A is noticably absent in panel B.
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Figure 4.15: A dune-scale analysis of dune migration rate against fraction plant cover.
Figure is included to illustrate the robustness of the width-averaged trends reported in the
main text. Dunes were arbitrarily selected by hand from various locations in the dune field,
and the Vc values of all profiles associated with each dune were then averaged together and
compared to the vegetation density, ρveg, of that dune. Data roughly follow the inverse
relation between Vc and ρveg observed in the width-averaged global data seen in Fig. 4.
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Identified profiles Unidentified profiles Lumped profiles Split profiles Total profiles % unidentified
65 6 1 0 72 8.3
75 7 1 3 80 8.8
64 6 0 5 65 9.2
67 4 1 2 70 5.7
61 6 1 7 61 9.8
71 5 0 6 70 7.1
67 6 1 1 73 8.2
71 3 0 2 72 4.2
64 7 1 2 70 10.0
60 8 2 2 68 11.8

Table 4.1: Dune profile classification errors for 10 random study area transects
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CHAPTER 5 : Summary and Conclusions

5.1. Summary

In this dissertation, I have studied geomorphic changes of state that occur around a thresh-

old. For each state change, the underlying physics of sediment transport has played a

dominant role. Given that the chapters cover a broad range of scales, the findings empha-

size the importance of physical understanding in understanding change in the landscape

at all scales of interest. The work also highlights the frequency with which transport pro-

cesses interact with other morphological controls to modulate both landscape expression

and evolution.

At the grain scale, the threshold of motion determines the transition of grains from the

approximately static state to the mobile state. Chapter 2 examined the dynamics of coarse

grained sediment transport near this threshold. In particular, I characterized the growth in

the intermittency of transport as this threshold is approached. I directly observe a measure

of collective entrainment as transport becomes more intermittent. I find strong evidence for

a length scale of collective entrainment similar to that posited by Ancey et al. (2008b). In my

model system, distributions of collective entrainment events are invariant with regard to the

mean transport frequency at which grains travel through the system. In contrast, waiting

times do vary with transport frequency. As transport is lowered, average waiting times

begin to deviate significantly from the naive expectation that the time between transport

events is controlled by the frequency with which grains are fed into the system. This

result leads us to a first order characterization of transport being dominated by collective

entrainment events of a characteristic size similar to the characteristic scale of avalanches on

slowly driven sandpiles (Rajchenbach, 1990; Lemieux and Durian, 2000). As the transport

frequency is increased these events merge and transport becomes continuous. Once again,

this behavior is analogous to the behavior of sandpiles as described by Hwa and Kardar

(1992). I also find compelling evidence for the role of collisional momentum transfer as a

99



dominant driver of all entrainment in my model system (and hence collective entrainment),

in agreement with recent models (Pähtz and Durán, 2017; Vowinckel et al., 2017).

Chapter 3 was concerned with developing and testing a novel method to assess how the

threshold of motion varies in the field. I corroborate previous work that has documented

the relationship between a soils shear strength and the threshold of motion (Léonard and

Richard , 2004). While previous studies focused on fully saturated, highly cohesive soils I

analyze the relation between shear strength and incipient motion as the saturation state of

one soil is increased. The test probe uses novel, force feedback technology which allows the

gathering of surface shear strength measurements in soils which are loosely consolidated

with low cohesivity. This appears to be due to the probe’s ability to control its force output

at high resolution at low absolute force values. I found that both my measure of surface

shear strength and an estimate of the soil’s threshold of motion appear to increase as the

surface moisture of the soil is increased. Though the experiments were performed in the lab,

my shear strength test was explicitly designed to be performable by the recently introduced

semi-autonomous robotic platform described by Qian et al. (2017). Given that this platform

has already demonstrated the ability to measure gradients in erodibility (see Qian et al.

(in prep)), it is hoped that this test will eventually be part of a suite of tests that are each

designed to measure different aspects of a soil’s erosive response to perturbation.

One of the primary controls on threshold transport in the field is vegetation (Lancaster

and Baas, 1998). Chapter 4 used the dune field at White Sands National Monument to

determine feedbacks between vegetation and sediment transport. I quantified rates of dune

profile migration and found further evidence supporting the role of fraction plant cover in

slowing down dune kinematics. More interestingly, this approach allowed the use of dune

dynamics to reveal the presence of a striped deformation pattern in the unvegetated portion

of the dune field that would have been unobservable in the topography. This deformation

pattern is related to the instability proposed by Elbelrhiti et al. (2005) to be crucial in

maintaining the quasi-equilibrium state of barchan dune fields. I demonstrate that the
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appearance of vegetation above a threshold level shuts off the instability. Thus vegetation

not only slows down dunes but also induces a qualitative shift in transport that helps destroy

the equilibrium of the dune field and encourages a shift to a parabolic dune morphology.

5.2. Implications and Future Prospects

5.2.1. Specific Implications and Future Work

This section discusses implications of the work presented in the preceding chapters as well as

future work to be done. At the grain scale, the characteristic size of collective entrainment

events coupled with my observation that it is the kinetic energy transfer of saltating grains

with the bed that drives entrainment suggests that the impact velocity of saltating grains

sets the size of collective entrainment events. The velocities of saltators will be primarily

controlled by the fluid flow. Future experiments that vary the flow conditions while at low

feed rates would allow the verification of this hypothesis. If correct, it would be expected

that the characteristic length scale of collective entrainment would grow as flow velocity

was increased. In the current experiments, the length scale of transport is larger than the

grain scale and hence a non-trivial component of bedload transport. Its future incorpora-

tion into general probabilistic frameworks such as those proposed by Furbish et al. (2017)

has the potential to improve existing models. Personal communication with Furbish has

also indicated enthusiasm for incorporating the observation of saltator-bed kinetic energy

transfer into future statistical mechanical models. This would imply that future work that

examines the role of kinetic energy absorption by the bed due to its interaction with both

turbulent structures and grain-bed collisions could improve the mechanical basis of existing

models.

The successful experimental calibration of a shear strength strength test performable by a

newly developed robotic platform (RHex) to a soils threshold shear stress is only the first

step. Another test of the soil erodibility designed to explore the soils erosive response to

mechanical disturbance has already demonstrated RHex’s ability to map gradients in the
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erosive response of the soil that happen concurrently with variations in soil moisture and

vegetation (Qian et al., in prep). A sensible next step would be to do a field campaign where

the additional test developed in chapter 4 would be performed in tandem with the other

erodibility test. Given the portability of the PI-SWERL, it would also be sensible to perform

threshold stress measurements to confirm that the threshold still varies in proportion with

the shear strength. While these measurements would have the disadvantage of not being

able to isolate all the controls affecting the erodibility, it would be an additional test of the

robustness of the observed relationship between shear strength and threshold shear stress.

If the relationship holds, then additional deployments of RHex that take advantage of its

ability to rapidly test large field areas at high spatial resolution should give us novel insight

into how erodibility varies with factors such as plant density, grain size and shape, and

moisture that could also be measured by RHex.

Spatially resolved, on the ground estimates of the threshold of motion could find immediate

applicability towards improving my understanding of vegetation mediated shutdown of the

dune instability observed in chapter 5. Knowledge of how the threshold of motion changes

as vegetation grows more prevalent in the dune field would allow the estimation of what role,

if any, variability in this threshold plays in slowing rates of dune migration and shutting off

the duneform instability. Given that the biogeomorphic feedbacks governing the inversion

of barchans into parabolics is still poorly understood, it is also possible that biologically

controlled alterations in soil properties help encourage this transition (Yan and Baas, 2017).

Other work that could build off of the observations of chapter 5 could make use of the

additional years of elevation data that are available at White Sands to obtain a longer

record of the dynamics of the dune field. This record might allow us to observe the ejection

of new dunes formed by the observed instability from the horns of barchan dunes. This

hypothesis was proposed by Elbelrhiti et al. (2005) as one of the ways that the instability

I observe at White Sands regulates the mean size of the barchan portion of dune fields. A

successful observation of these new barchans would be further confirmation of the role of

this instability in modulating dune evolution at White Sands.
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5.2.2. Broad Prospects

There is a fascinating interplay between sediment transport dynamics and larger scale land-

scape patterns. This thesis has sought to demonstrate that a better understanding of the

mechanisms governing this interplay is crucial for understanding shifts in landscape pattern

and process. Perhaps most crucially, developing a fuller understanding of the physics of

grain scale processes will continue to provide insight as a statistical mechanical descrip-

tion of sediment transport develops. The fields of geology, geography, and environmental

science are uniquely situated to benefit from the dramatic growth in the capability of semi-

autonomous and autonomous terrestrial and airborne unmanned robotic platforms (Im-

merzeel et al., 2014; Qian et al., 2017). This advance should allow us to answer increasingly

complex questions about how landscapes transition to a new steady state. The ever increas-

ing availability of remote sensing data is also exciting and the results of chapter 4 highlight

that the short time dynamics of landscape evolution (dynamics over the yearly to decadal

scale) may contain novel information not obtainable from topography alone. As repeat

LIDAR and photogrammetric surveys become more common, it will become increasingly

possible to use field observations of landscape dynamics to test geomorphological theories.

The increasing availability of dynamic information should also make it possible to better

observe behavior near abrupt morphological changes of state (such as the dune pattern

transition studied in this thesis).
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