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Learning And Decision Making In Groups

Abstract
Many important real-world decision-making problems involve group interactions among individuals with
purely informational interactions. Such situations arise for example in jury deliberations, expert committees,
medical diagnoses, etc. We model the purely informational interactions of group members, where they receive
private information and act based on that information while also observing other people's beliefs or actions.

In the first part of the thesis, we address the computations that a rational (Bayesian) decision-maker should
undertake to realize her optimal actions, maximizing her expected utility given all available information at
every decision epoch. We use an approach called iterated eliminations of infeasible signals (IEIS) to model the
thinking process as well as the calculations of a Bayesian agent in a group decision scenario. Accordingly, as
the Bayesian agent attempts to infer the true state of the world from her sequence of observations, she
recursively refines her belief about the signals that other players could have observed and beliefs that they
would have hold given the assumption that other players are also rational. We show that IEIS algorithm runs
in exponential time; however, when the group structure is a partially ordered set the Bayesian calculations
simplify and polynomial-time computation of the Bayesian recommendations is possible. We also analyze the
computational complexity of the Bayesian belief formation in groups and show that it is NP-hard. We
investigate the factors underlying this computational complexity and show how belief calculations simplify in
special network structures or cases with strong inherent symmetries. We finally give insights about the
statistical efficiency (optimality) of the beliefs and its relations to computational efficiency.

In the second part, we propose the "no-recall" model of inference for heuristic decision-making that is rooted
in the Bayes rule but avoids the complexities of rational inference in group interactions. Accordingly to this
model, the group members behave rationally at the initiation of their interactions with each other; however, in
the ensuing decision epochs, they rely on heuristics that replicate their experiences from the first stage and can
be justified as optimal responses to simplified versions of their complex environments. We study the
implications of the information structure, together with the properties of the probability distributions, which
determine the structure of the so-called ``Bayesian heuristics'' that the agents follow in this model. We also
analyze the group decision outcomes in two classes of linear action updates and log-linear belief updates and
show that many inefficiencies arise in group decisions as a result of repeated interactions between individuals,
leading to overconfident beliefs as well as choice-shifts toward extreme actions. Nevertheless, balanced regular
structures demonstrate a measure of efficiency in terms of aggregating the initial information of individuals.
Finally, we extend this model to a case where agents are exposed to a stream of private data in addition to
observing each other's actions and analyze properties of learning and convergence under the no-recall
framework.
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ABSTRACT
LEARNING AND DECISION MAKING IN GROUPS

M. Amin Rahimian
Ali Jadbabaie

Many important real-world decision-making problems involve group interactions among indi-
viduals with purely informational interactions. Such situations arise for example in jury delibera-
tions, expert committees, medical diagnoses, etc. We model the purely informational interactions
of group members, where they receive private information and act based on that information while
also observing other people’s beliefs or actions.

In the first part of the thesis, we address the computations that a rational (Bayesian) decision-
maker should undertake to realize her optimal actions, maximizing her expected utility given all
available information at every decision epoch. We use an approach called iterated eliminations of
infeasible signals (IEIS) to model the thinking process as well as the calculations of a Bayesian
agent in a group decision scenario. Accordingly, as the Bayesian agent attempts to infer the true
state of the world from her sequence of observations, she recursively refines her belief about the
signals that other players could have observed and beliefs that they would have hold given the as-
sumption that other players are also rational. We show that IEIS algorithm runs in exponential time;
however, when the group structure is a partially ordered set the Bayesian calculations simplify and
polynomial-time computation of the Bayesian recommendations is possible. We also analyze the
computational complexity of the Bayesian belief formation in groups and show that it is NP-hard.
We investigate the factors underlying this computational complexity and show how belief calcula-
tions simplify in special network structures or cases with strong inherent symmetries. We finally
give insights about the statistical efficiency (optimality) of the beliefs and its relations to computa-
tional efficiency.

In the second part, we propose the “no-recall” model of inference for heuristic decision-making
that is rooted in the Bayes rule but avoids the complexities of rational inference in group interac-
tions. Accordingly to this model, the group members behave rationally at the initiation of their
interactions with each other; however, in the ensuing decision epochs, they rely on heuristics that
replicate their experiences from the first stage and can be justified as optimal responses to simpli-
fied versions of their complex environments. We study the implications of the information structure,
together with the properties of the probability distributions, which determine the structure of the so-
called “Bayesian heuristics” that the agents follow in this model. We also analyze the group decision
outcomes in two classes of linear action updates and log-linear belief updates and show that many
inefficiencies arise in group decisions as a result of repeated interactions between individuals, lead-
ing to overconfident beliefs as well as choice-shifts toward extreme actions. Nevertheless, balanced
regular structures demonstrate a measure of efficiency in terms of aggregating the initial informa-
tion of individuals. Finally, we extend this model to a case where agents are exposed to a stream
of private data in addition to observing each other’s actions and analyze properties of learning and
convergence under the no-recall framework.
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Chapter 1

Introduction & Overview

In this chapter, we give an overview of our contributions to the group decision mak-
ing and learning literature, while highlighting the background of the study and our
motivations for it. Individuals often exchange opinions with their peers in order to
learn from their knowledge and experiences, and in making various decisions such as
investing in stock markets, voting in elections, choosing their political affiliations, se-
lecting a brand of a product or a medical treatment. These interactions occur in groups
and through a variety of media which we collectively refer to as social networks. In
this thesis, we examine the Bayesian and non-Bayesian models of decision making in
groups or social networks by analyzing their computational properties and exploring
their common behavioral foundations.1

1I would like to thank Mohsen Jafari Songhori for pointing me to the relevant literature in organization
science, and Weiwen Leung for discussions about heuristic decision making and its relations to dual process
theory.
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In Section 1.1, we provide the background of our work and present our motivations; in particular,
we explain the two major theoretical approaches: Bayesian (rational) and non-Bayesian (heuristics)
for modeling group decision making. In Section 1.2, we present a summary of our contributions
and explain how they are organized in the three chapters that follow.

1.1 Background & Motivation
Social learning or learning form actions of others is an important area of research in mi-
croeconomics. Author James Surowiecki in his popular science book on wisdom of crowds
[1], provides well-known cases for information aggregation in social networks, and argues
how under the right circumstances (diversity of opinion, independence, decentralization
and aggregation) groups outperform even their smartest or best informed members. One
historical example provided in [1] is the essentially perfect performance of the middlemost
estimate at the weight-judging competition of the 1906, West of England Fat Stock and
Poultry Exhibition studied by Francis Galton in his 1907, Nature article [2], entitled “Vox
Populi” (The Wisdom of Crowds). Another historical case mentioned by James Surowiecki
is the market’s reaction to the 1986 challenger disaster in [3], where its is pointed out that
the main responsible company’s (Morton Thiokol) stock was hit hardest of all, even months
before the cause of the accident could be officially established.

On the other hand, several studies point out that the evolution of people’s opinions and
decisions in groups are subject to various kind of biases and inefficiencies [4–8]. Daniel
Kahneman in his highly acclaimed work, “Thinking, Fast and Slow”, points out that the
proper way to elicit information from a group is not through a public discussion but rather
confidentially collecting each person’s judgment [9, Chapter 23]. Indeed, decision making
among groups of individuals exhibit many singularities and important inefficiencies that
lead to Kahneman’s noted advice. As a team converges on a decision, expressing doubts
about the wisdom of the consensus choice is suppressed; subsequently teams of decision
makers are afflicted with groupthink as they appear to reach a consensus.1 The mechanisms
of uncritical optimism, overconfidence, and the illusions of validity in group interactions
also lead to group polarization, making the individuals more amenable toward extreme
opinions [11]. An enhanced understanding of decision making and learning in groups sheds
light on the role of individuals in shaping public opinion and how they influence efficiency
of information transmissions. These in turn help to improve the predictions about group
behavior and provide guidelines for designing effective social and organizational policies.

In decision theory, the seminal work of Aumann [12] studies the interactions of two

1Gar Klein proposes a famous method of project premortem to overcome the groupthink through an
exercise: imagining that the the planned decision was failed in implementation and writing a brief report of
the failure [10].
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rational agents with common prior beliefs and concludes that if the values of their poste-
rior beliefs are common knowledge between the two agents, then the two values should
be the same: rational agents cannot agree to disagree. The later work of Geanakoplos and
Polemarchakis [13] investigates how rational agents reach an agreement by communicating
back and forth and refining their information partitions. Following [12] and [13], a large
body of literature studies the strategic interaction of agents in a social network, where they
receive private information and act based on that information while also observing each
other’s actions [14, 15]. These observations are in turn informative about other agents’
private signals; information that can be then used in making future decisions. In this line
of work, it is important to understand the effectiveness of information sharing/exchange
through observed actions and the effectiveness of decision-making using the available in-
formation; indeed, the quality of decision-making depends on the quality of information
exchange and vice versa.

In organization science, the economic theory of teams has a rich history devoted to
choosing optimal information instruments subject to limited and dispersed resources in or-
ganizations [16]. Some of the main issues that arise in the study of decision-making orga-
nizations are information aggregation [17] and architecture [18].1 The author in [21] com-
pares the performance of hierarchical and polyarchical organization structures in a project
selection task, where each agent possesses a private signal about the quality of the projects
and acts rationally (maximizing the expected pay-off from subject to her information).
Limiting attention to two decision-makers, the author shows how each agent’s decision re-
flects the organizational structure while accounting for the rationality of the other actor.
Algorithmic and complexity aspects of organizational decision-making are relatively unex-
plored. The author in [22] uses the formalism of constraint satisfaction problems to model
the product development process in organizations. The author is thus able to identify some
algorithmic and structural features that help reduce backtracking and rework costs of the
design process in the organization. In this thesis, we provide new algorithmic and com-
putational results about decision-making organizations. Addition of new results in this
domain can further facilitate scalable and efficient cooperation among colleagues in large
organizations (cf. Remark 2.2 and Subsection 3.3.3).

Throughout this thesis, we model the purely informational interactions of rational agents
in a group, where they make private observations and act based upon that information while
also observing other people’s recommendations repeatedly; such lack of strategic external-
ities in group interactions arise since people are interested in each other’s action, only to
learn what others know which they do not know, for example, in jury deliberations, expert
committees, medical diagnosis, etc. (cf. Fig. 1.1).

1The organizational economics literature devotes considerable attention to incentive issues and agency
problems that arise in organizational decision-making [19]; however, issues relating to distributed information
processing and communication are less explored [20].

3



Figure 1.1: On the left, “The Jury”, by John Morgan(1861) - public domain; on the right, “Wikimedia
advisory board meeting, Taipei, 2007” - photo credit: Chih Hao, Taiwan, CC BY-SA 2.0 Creative Commons
license. Many professional societies in engineering, science, and medicine rely on technical committees to
deliberate on different issues and make important policy decisions.

1.1.1 Rational Decision-Making

Some of the early results addressing the problem of social learning are due to Banerjee
in [23], and Bikhchandani, Hirshleifer, and Welch in [24] where the authors consider a
complete graph structure where the agent’s observations are public information and also
ordered in time, such that each agent has access to the observations of all the past agents.
These assumptions help analyze and explain the interplay between public and private in-
formation leading to fashion, fads, herding, etc. Later results by [14] relax some of these
assumptions by considering the agents that make simultaneous observations of only their
neighbors rather than the whole network, but the computational complexities limit the anal-
ysis to networks with only two or three agents. In more recent results, [25] provides a
framework of rational learning that is analytically amenable and applies to general choice
and information structures.

It is worth noting here that in this line of work and in ours as well, it is considered
infeasible for the agents to share their private signals. Formally, sharing the signals may
come at a prohibitive cost to the agents. Indeed, private signals might belong to different
spaces and might not be interpretable by different agents. For example experts may observe
signals that pertain to their domains of expertise and these signals may not be readable
to people outside of their domains. In such a case, obtaining the required expertise for
communicating signals come at a very high cost to non-experts. Moreover, signal spaces
that represent personal experiences or individual perceptions might be far richer than action
or belief spaces through which the agents communicate.

In general, when a rational agent observes her neighbors in a network, she should com-
pensate for redundancies in information: the same neighbors’ actions are repeatedly ob-
served and neighboring actions may be affected by the past actions of the agent herself.
Hence major challenges of Bayesian inference for social learning are due to the private

4



signals and third party interactions that are hidden from the agent. Moreover, the existence
of loops in the network causes dependencies and correlations in the information received
from different neighbors, which further complicates the inference task. Failure to account
for such structural dependencies subjects the agents to mistakes and inefficiencies such as
redundancy neglect [26] (by neglecting the fact that several of the neighboring agents may
have been influenced by the same source of information), and data incest [27] (by neglect-
ing the fact that neighboring actions may have been affected by the past actions of the agent
herself).

The agents form beliefs about unknown parameters of interest and their actions and de-
cisions reflect their beliefs. The rational approach advocates formation of Bayesian poste-
rior beliefs by application of Bayes rule to the entire sequence of observations successively
at every step. However, such repeated applications of Bayes rule in networks become very
complex, especially if the agents are unaware of the global network structure, and have to
use their local data to make inferences about global contingencies that can lead to their
observations. While rational learning continues to receive quite a significant amount of at-
tention [28], it has also been criticized in the literature due to its unrealistic computational
and cognitive demand on the agents [29]. Indeed, one of our goals in the first part of the
thesis is to formalize this complexity notion and investigate the structural conditions around
it. On the one hand, the properties of rational learning models are difficult to analyze be-
yond some simple asymptotic facts such as convergence. On the other hand, these models
make unrealistic assumptions about the cognitive ability and amount of computations that
agents perform before committing to a decision. To avoid these shortcomings, an alterna-
tive non-Bayesian approach relies on simple and intuitive “heuristics” that are descriptive
of how agents aggregate the reports of their neighbors before coming up with a decision.

1.1.2 Heuristic Decision-Making

Heuristics are used widely in the literature to model social interactions and decision making
[30–32]. They provide tractable tools to analyze boundedly rational behavior and offer in-
sights about decision making under uncertainty. A dual process theory for the psychology
of mind and its operation identifies two systems of thinking [33]: one that is fast, intuitive,
non-deliberative, habitual and automatic (system one); and a second one that is slow, at-
tentive, effortful, deliberative, and conscious (system two).1 Major advances in behavioral
economics are due to incorporation of this dual process theory and the subsequent models

1While many decision science applications focus on developing dual process theories of cognition and
decision making (cf. [34, 35] and the references therein); other researchers identify multiple neural sys-
tems that derive decision making and action selection: ranging from reflexive and fast (Pavlovian) responses
to deliberative and procedural (learned) ones; and these systems are in turn supported by several motoric,
perceptual, situation-categorization and motivational routines which together comprise the decision making
systems [36, Chapter 6].
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of bounded rationality [37]. Reliance on heuristics for decision making is a distinctive fea-
ture of system one that avoids the computational burdens of a rational evaluation; but also
subjects people to systematic and universal errors: the so-called “cognitive biases”. Hence,
it is important to understand the nature and properties of heuristic decision making and
its consequences to individual and organizational choice behavior. This premise underlies
many of the recent advances in behavioral economics [38], and it also motivates our work
in the second part of the thesis.

Hegselmann and Krause [39] investigate various ways of averaging to model opin-
ion dynamics and compare their performance for computations and analysis. Using such
heuristics one can avoid the complexities of fully rational inference, and their suitability
are also verified in experimental studies by Grimm and Mengel [40] and Chandrasekhar,
Larreguy and Xandri [41]. The study of such heuristics took off with the seminal work of
DeGroot [42] in 1974 on linear opinion pooling, where agents update their opinions to a
convex combination of their neighbors’ beliefs and the coefficients correspond to the level
of confidence that each agent puts in each of her neighbors. More recently, Jadbabaie,
Molavi and Tahbaz-Salehi [43–45] consider a variation of this model for streaming obser-
vations, where in addition to the neighboring beliefs the agents also receive private signals.
Despite their widespread applications, theoretical and axiomatic foundations of social in-
ferences using heuristics and non-Bayesian updates have received attention only recently
[45, 46].

One of the main goals of this work is to analyze the connection between rational and
heuristic approaches from a behavioral perspective. Some of the non-Bayesian update rules
have the property that they resemble the replication of a first step of a Bayesian update
from a common prior, and we aim to formalize such a setup. For instance [47] interpret
the weights in the DeGroot model as those assigned initially by rational agents to the noisy
opinions of their neighbors based on their perceived precision. However, by repeatedly
applying the same weights over and over again, the agents ignore the need to update these
weights with the increasing information.

1.2 Contributions & Organization
Both the rational and heuristic approach have a deep history in the decision theory of
groups. Sobel [48] provides a theoretical framework to study the interplay between in-
dividual recommendations and rationality of group decisions. The seminal work of Janis
[4] provides various examples involving the American foreign policy in the mid-twentieth
where the desire for harmony or conformity in the group have resulted in bad group de-
cisions, a phenomenon that he coins groupthink. Various other works have looked at the
choice shift toward more extreme options [5, 6] and group polarization [7, 8]. In [49] the
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authors investigate the effects of mistakes and biases that arise from the group members’
emphasis on their common information and their negligence of their private data leading to
a hidden profile problem in group decision making.

1.2.1 The Group Decision Setup

Throughout this work, we model the group decision process (GDP) by postulating an un-
derlying state of the world (denoted by θ) that is common but unknown to all agents. The
state θ belonging to the finite set Θ models the topic of the discussion/group decision pro-
cess. For example, in the course of a political debate, Θ can be the set of all political
parties and it takes a binary value in a bipartisan system (cf. Fig. 1.3, on the left). The
value/identity of θ is not known to the agents. To each agent, we assign an action space
and a utility function that rewards their actions depending on the true state of the world
and irrespective of the actions of others. Agents are interested in other people’s actions
only to the extent that other actions are informative about other people’s private signals and
allows them to make inferences about what other people know that they do not know. Such
modeling of rewards to actions at successive time periods is common place in the study of
learning in games and a central question of interest is that of regret which measures possi-
ble gains by the players if they were to play other actions from what they have chosen in a
realized path of play; in particular, existence of update/decision rules that would guarantee
a vanishing time-average of regret as t → ∞, and possible equilibria that characterize the
limiting behavior of agents under such rules have attracted much attention, cf. [50–52].
Under a similar framework Rosenberg et al. [15] consider consensus in a general setting
with players who observe a private signal, choose an action and receive a pay-off at every
stage, and pay-offs that depend only on an unknown parameter and players’ actions. They
show that in this setting with no pay-off externalities and interactions which are purely in-
formational players asymptoticly play their best-replies given their beliefs and will agree
in their pay-offs; in particular, all motives for experimentation will eventually disappear.

In modeling the group decision process, we assume that the preferences of agents across
time are myopic. At every time t, agents i takes action ai,t to maximize her expected util-
ity, Ei,t{ui(ai,t, θ)}. This myopia is rooted in the underlying group decision scenario that
we are modeling: the agents’ goal for interacting with other group members is to come up
with a decision that is more informed than if they were to act solely based on their own pri-
vate data; hence, by observing the recommendations of their neighboring agents aj,t they
hope to augment their information with what their neighbors, as well as other agents in
the network, know that they do not. In particular, the agent does not have the freedom
to learn from consequences of their recommendations, not before committing to a choice.
Specifically in the group decision scenario, the agents do not learn from the realized val-
ues of the utilities of their previous recommendations (unless they commit to their choice
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and end the group discussion); rather the purpose of the group discussion is to augment
their information by learning from recommendations of others as much as possible before
committing to a choice. The network externalities that arise in above settings are purely
informational. People are therefore interacting with each other, only to learn from one an-
other, and to improve the quality of their decisions; for example, in jury deliberations, after
jurors are each individually exposed to the court proceedings, the jury enters deliberations
to decide on a verdict. In another case, several doctors may examine a patient and then
engage in group discussions to determine the source of an illness; or a panel of judges may
repeatedly evaluate the performance of contenders in weightlifting, figure skating, or div-
ing competitions. Lack of strategic externalities is an important characteristic of the kind
of human interactions that we investigate in this thesis.1

Throughout this work, we analyze the repeated interactions of agents in a GDP follow-
ing both the Bayesian and non-Bayesian frameworks. We first show how the computations
of a Bayesian agent scale up with the increasing network size and give some structural
conditions that can help curb this computational complexity. We then propose the no-recall
model of belief formation and decision making in groups to offer a behavioral framework
for heuristic decision making, by relying on the time-one Bayesian update and using it for
all future decision epochs.

1.2.2 Algorithms and Complexity of Rational Group Decisions

In Chapter 2, we focus on the development of algorithms for Bayesian decision-making in
groups and characterizing their complexity. We are interested in the computations that the
Bayesian agent should undertake to achieve the goal of producing best recommendations
at every decision epoch during a group discussion. We are further interested in determining
how the complexity of these computations scale up with the increasing network size.2

1Rosenberg et al. in their study of the emergence of consensus under purely informational externalities
[15], show that even with forward-looking agents the incentives to experiment disappear, thus leading them
to a consensus on their myopic best-responses subject to common utility and action structures. The authors
in [53] also look at forward-looking agents with binary state and action space and propose an egalitarian
condition on the topology of the network to guarantee learning in infinite networks. An egalitarian graph is
one in which all degrees are bounded and every agent who is being observed by some agent i, observes her
back, (possibly indirectly) through a path of bounded length.

2The authors in [54] analyze the problem of estimating a binary state of the world from a single initial
private signal that is independent and identically distributed among the agents conditioned on the true state.
The authors show that by repeatedly observing each other’s best estimates of the unknown, as the size of
the network increases, Bayesian agents asymptotically learn the true state with high probability. Hence, the
agents are able to combine their initial private observations and learn the truth. This setting is very close to
our formulation of group decision processes; however, rather than the asymptotic analysis of the probability
of mistakes with the increasing network size, we are interested in the computations that each agent should
undertake to realize her rational choices during the group decision process. In particular, we investigate how
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We begin by explaining the Bayesian model of decision-making in groups, the so-called
group decision process (GDP), and the kind of calculations that it entails. In recent works,
recursive techniques have been applied to analyze Bayesian decision problems with partial
success [55–57]. The importance of a recursive implementation becomes apparent in light
of the fact that a forward reasoning approach is bound to scale terribly with the increasing
group size (cf. Appendix C). In a forward reasoning approach, to interpret observations
of the actions of others, the agent considers the causes of those actions and is able to
form a Bayesian posterior by weighing all contingencies that could have lead to those
actions according to their probabilities. This requires the rational agent to simulate the
inferences of her neighbors at all possible actions that they could have observed, and which
she cannot observe directly but can only learn about partially (and indirectly) after knowing
what her neighbors do. Although this forward reasoning about causes of the actions is
natural to human nature [58], it is extremely difficult to adapt to the complexities of a
partially observed setting where hidden causes lead to a multiplicity of contingencies.

In Chapter 2, we will use the framework of iterated eliminations to model the thinking
process of a Bayesian agent in a group decision-making scenario: As the Bayesian agent
attempts to infer the true state of the world from her private signal and sequence of obser-
vations of actions of others, her decision problems at every epoch can be cast recursively,
as a dynamic program [57]. By the same token, the private signals of all agents constitute
the state space of the problem and with every new observation, the agent refines her knowl-
edge about the private signals that other agents have observed, by eliminating all cases that
are inconsistent with her observations under the assumption that other agents are acting
rationally. The iterated elimination of infeasible signals (IEIS) approach curbs some of the
complexities of the group decision process, but only to a limited extent.

In a group decision scenario, the initial private signals of the agents constitute a search
space that is exponential in the size of the network. The ultimate goal of the agents is to
get informed about the private signals of each other and use that information to produce
the best actions. A Bayesian agent is initially informed of only her own signal; however,
as the history of interactions with other group members becomes enriched, her knowledge
of the possible private signals that others may have observed also gets refined; thus en-
abling her to make better decisions. While the search over the feasible signal profiles in the
IEIS algorithm runs in exponential time, these calculations may simplify in special highly
connected structures: in Subsection 2.1.2, we give an efficient algorithm that enables a
Bayesian agent to compute her posterior beliefs at every decision epoch, where the graph
structure is a partially ordered set (POSET) as in [59]. In such structures, any agent whose
actions indirectly influences the observations of agent i is also directly observed by her.
Hence, any neighbor of a neighbor of agent i is a neighbor of agent i as well; the same is

the complexity of these computations scale up with the increasing network size.
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Figure 1.2: POSET structures: on the left, in a POSET structure any neighbors of a neighbor of an agent are
also among her immediate (directly observable) neighbors; in the middle, a round-table discussions; on the
right, a vested agent (in blue) investigates the sources of her information in one-on-one meetings; imposing a
POSET structure on her neighborhood.

true for all neighbors of the neighbors of the neighbors of agent i, who would themselves
be a neighbor of agent i, and so on and so forth. The complete graph, where everybody
sees the actions of everybody else is an example of a POSET structure.1 Such rich com-
munication structures are in fact characteristic of round-table discussions, and they arise
quite often in settings with purely informational externalities: for example in applications
such as jury deliberations where jurors enter a group discussion after they each is indepen-
dently exposed to the court proceedings. Other examples include group decision-makings
among professionals such as medical doctors who have each made their own examination
of a critically ill person and have come together to decide on the best course of treatment.
A POSET structure may also arise as a result of a vested agent investigating the sources of
her information; thus deliberately imposing a POSET structure on her neighborhood. Such
scenarios arise when stakes are high enough as in gathering legal evidence, or document-
ing factual data for business decisions (cf. Fig. 1.2). Subsequently, in Subsection 2.1.2
we provide a partial answer to one of the open problems raised by [60], where the authors
provide an efficient algorithm for computing the Bayesian binary actions in a complete
graph: we show that efficient computation is possible for non-complete graphs (POSETs)
with general finite action spaces.

IEIS approach curbs some of the complexities of the group decision process, but only
to a limited extent. The Bayesian iterations during a group decision process can be cast into
the framework of a partially observed Markov decision process (POMDP). Thereby, the pri-
vate signals of all agents constitute the state space of the problem and the decision maker
only has access to a deterministic function of the state, the so-called partial observations.
In GDP the actions or beliefs of the neighbors constitute the partial observations. The par-
tially observed problem and its relations to the decentralized and team decision problems

1See Definition 2.1 for a formal statement of the POSET property and the respective constraints that are
imposed on the network topology.
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have been the subject of major contributions [61, 62]; in particular, the partially observed
problem is known to be PSPACE-hard in the worst case [63, Theorem 6]. However, unlike
the general POMDP, the state (private signals) in a GDP do not undergo Markovian jumps
as they are fixed at the initiation of GDP. Hence, determining the complexity of GDP re-
quires a different analysis. To address this requirement, in Section 2.2 we shift focus to a
case where agents repeatedly exchange their beliefs (as opposed to announcing their best
recommendations); subsequently in Section 2.2.3, we are able to show that computing the
Bayesian posterior beliefs in a GDP is NP-hard with respect to the increasing network
size.1 This result complements and informs the existing literature on Bayesian learning
over networks; in particular, those which offer efficient algorithms for special settings such
as Gaussian signals in a continuous state space [55], or with binary actions in a complete
graph [60].

The conflict and interplay between rationality and computational tractability in eco-
nomic models of human behavior has been a focus of attention by both the earlier and the
contemporary scholars of the field: for example in the early works of Herbert Simon on
bounded rationality, artificial intelligence and cognitive psychology [64], and in the con-
temporary research of Vela Velupillai on the computable foundations for economics [65].
Our work in Chapter 2 can be regarded as an effort in this direction; a particularly relevant
recent study along these lines is due to [66] on complexity of agreement, who investigates
the question of convergence of beliefs to a consensus and the number of messages (bits)
that needs to be exchanged before one can guarantee that everybody’s beliefs are close to
each other.

There is another relevant body of literature that is dedicated to computations of the Nash
equilibria in games and characterizing their complexity [67]. Such equilibria of games
are predictors for the behavior of rational players. The computational complexity results
concerning Nash equilibria address the following problem (referred to as NASH): given a
description of the game in terms of the strategy profiles and payoffs of its players (a normal-
form game), compute a Nash equilibrium or an ε-approximation of it (a profile of mixed
strategies where players cannot unilaterally improve their payoffs by more than ε for some
positive rational ε). NASH is closely related to the problem of computing fixed points
for certain maps, a class of problems which Etessami and Yannakakis [68] have coined as
FIXP (for fixed points). The complexity of computing Nash equilibria is also tied with the
PPAD complexity class (Polynomial Parity Arguments on Directed graphs), and NASH is
known to be PPAD-complete [67, 69–71].2 The authors in [73] study the related question

1We provide two reductions to known NP-complete problems. One reduction relies on the increasing
number of different types of signals that are observed by different agents in the the network. The other
reduction relies on the increasing size of the agent’s neighborhood (with i.i.d signals).

2The PPAD formalism accounts for the fact that the existence of a solution is guaranteed for all instances
of NASH by Brouwer’s fixed point theorem [72]. This is in sharp contrast with the majority ofNP-complete
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of communication complexity for reaching a Nash equilibrium. They consider a setup,
where each player is initially informed of only her own utility function. They show that the
number of bits that need to be transmitted before reaching a pure or mixed Nash equilibrium
increases exponentially with the number of players; however, a correlated equilibrium can
be reached after exchanging a polynomial number of bit.

Our results also enrich the evolving body of literature on various inference problems
over graphs and networks. The interplay between statistical and computational complexity
in such problems, as well as their complexity and algorithmic landscapes, are interesting
issues that we highlight along with other concluding remarks and discussions of future
directions in Chapter 5.

1.2.3 Heuristics and Biases in Group Decision Making

In Chapter 3, we propose the no-recall model of belief formation and decision making in
groups that avoids the computational drawbacks of the Bayesian model, by relying on the
time-one Bayesian update and using it for all future decision epochs.

The “no-recall” model offers a behavioral foundation for non-Bayesian updating that is
compatible with the dual-process psychological theory of decision making and the princi-
ples of judgment under uncertainty subject to heuristics and biases. Since our 2014 paper
[74], various other authors have also developed results based on variations of this no-recall
idea. In [75] the authors propose this model to analyze dynamic consensus and use it to
study the effects of correlation neglect on voting behavior [75], as well as the persuasion
power of media [76]. In [77], the authors use this model to analyze the structural and envi-
ronmental conditions that are necessary for learning with binary actions. Where we depart
from this body of work is in developing a behavioral rationale for no-recall updates. In par-
ticular, we show when such updates lead to inefficient information aggregation and leverage
these insights to propose better team and organizational decision making strategies.

On the one hand, our model of inference based on no-recall heuristics is motivated by
the real-world behavior of people induced by their system one (the fast/automatic system)
and reflected in their spur-of-the-moment decisions and impromptu behavior: Basing deci-
sions only on the immediately observed actions and disregarding the history of the observed
actions or the possibility of correlations among different observations; i.e. “what you see
is all there is” [9]. On the other hand, the proposed Bayesian (no-recall) heuristics offer a
boundedly rational approach to model decision making over social networks. 1 By ignor-
ing the history of interactions, the heuristic (no-recall) agents are left with a substantially

problems, for which determining the existence of a solution (the feasibility problem) is just as hard.
1This is bounded-rationality in the sense of the word as coined by Herbert A. Simon, i.e. “to incorporate

modifications that lead to substantial simplifications in the original choice problem” [78]. Simon advocates
“bounded rationality” as compatible with the information access and the computational capacities that are
actually possessed by the agents in their environments. Most importantly he proposes the use of so-called
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simplified model of their environment that they can respond to optimally. This is in contrast
with the Bayesian approach which is not only unrealistic in the amount of cognitive burden
that it imposes on the agents, but also is often computationally intractable and complex to
analyze [29].

In Chapter 3, we analyze the format of the no-recall update rules under various struc-
tural conditions and investigate the evolution of beliefs and properties of the group decision
outcome as the agents repeatedly interact with each other and deliberate their options un-
der the no-recall model. Specific cases of Bayesian heuristics that we explore in Chapter 3
are the log-linear (multiplicative) updating of beliefs over the probability simplex, and the
linear (weighted arithmetic average) updating of actions over the Euclidean space.

1.2.4 Learning from Streaming Data

In Chapter 4, we focus on a case of repeated interactions for social learning when agents
receive new private signals in addition to observing their neighboring decisions (actions)
at every point in time. Such a model is a good descriptor for online reputation and polling
systems such as Yelp® and TripAdvisor®, where individuals’ recommendations are based
on their private observations and recommendations of their friends [81, Chapter 5]. The
analysis of such systems is important not only because they play a significant role in gen-
erating revenues for the businesses that are being ranked [82], but also for the purposes of
designing fair rankings and accurate recommendation systems.

Consider a Bayesian agent trying to estimate an unknown state of the world. She bases
her estimation on a sequence of independent and identically distributed (i.i.d.) private sig-
nals that she observes, whose common distribution is determined by the unknown state.
Suppose further that her belief about the unknown state is represented by a discrete prob-
ability distribution over the set of finitely many possibilities (denoted by Θ), and that she
sequentially applies Bayes rule to her observations at each step, and updates her beliefs ac-
cordingly. It is a well-known consequence of the classical results in merging and learning
theory [83, 84] that the beliefs formed in the above manner constitute a bounded martingale
and converge to a limiting distribution as the number of observations increases. However,
the limiting distribution may differ from a point mass centered at the truth, in which case
the agent fails to learn the true state asymptotically. This may be the case, for instance if
the agent faces an identification problem, that is when there are states other than the true
state which are observationally equivalent to the true state and induce the same distribution
on her sequence of privately observed signals. However, by communicating in a social
network the agents can resolve their identification problems by relying on each other’s
observational abilities.

“satisficing” heuristics; i.e. to search for alternatives that exceed some “aspiration levels” by satisfying a set
of minimal acceptability criteria [79, 80].
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Figure 1.3: On the left, bipartisanship is an example of a binary state space. On the right, people reveal their
beliefs through status updates and what they share and post on various social media platforms.

The fact that different people make independent observations about the underlying truth
state, θ, gives them incentive to communicate in social networks, in order to benefit from
each others’ observations and to augment their private information. Moreover, different
people differ in their observational abilities. For instance, let the signals and their likeli-
hoods for some agent i be denoted by si and `i(si|θ), respectively. Further suppose that
the signal structure of agent i allows her to distinguish the truth θ and the false state θ̌,
while the two states θ̂ and θ are indistinguishable to her: i.e. `i(si|θ̌) 6= `i(si|θ) for some
si ∈ Si, whereas `i(si|θ̌) = `i(si|θ) for all si ∈ Si, where Si is the signal space (the set of
all signals that i may observe). In such circumstances, agent i can never resolve her ambi-
guity between θ and θ̌ on her own; hence, she has no choice but to rely on other people’s
observations to be able to learn the truth state with certainty.

The chief question of interest in Chapter 4 is whether the agents, after being exposed to
sequence of private observations and while communicating with each other, can learn the
truth using the Bayesian without recall update rules. The learning framework of Chapter 4
in which agents have access to a stream of new observations is in contrast with the group
decision models of Chapter 2 and 3; the difference being in the fact that in Chapters 2 and
3 the agents have a single initial observation and engage in group decision making to come
up with the best decision that aggregates their individual private data with those of the other
group members.

We begin by specializing the no-recall model to a case where agents try to decide be-
tween one of the two possible states and are rewarded for every correct choice that they
make; for example, when voting in a bipartisan political system (cf. Fig. 1.3, on the left).

When there are only finitely many states of the world and agents choose actions over
the probability simplex, then the action spaces are rich enough to reveal the beliefs of
every communicating agent. We show that under a quadratic utility and by taking actions
over the probability simplex, agents announce their beliefs truthfully at every epoch; in
practice, jurors may express their belief about the probability of guilt in a criminal case
or more generally people may make statements that are expressive of their beliefs (cf.
Fig. 1.3, on the right). It is explained in [26] that rich-enough action spaces can reveal
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the underlying beliefs that lead to actions; subsequently, an individual’s action is a fine
reflection of her beliefs. The author in [85] characterizes the distinction between coarse and
rich action spaces using the concept of “responsiveness”: the utility function is responsive,
if a player with that utility chooses different actions at different beliefs (as is the case
for the quadratic utility described above); the role of responsiveness in determining the
observational learning outcome is also discussed in [85].

We show that the no-recall updates in the belief exchange case are log-linear in the
reported beliefs of the neighbors and the likelihood of private signals. We investigate the
properties of convergence and learning for such agents in a strongly connected social net-
work, provided that the truth is identifiable through the aggregate observations of the agents
across entire network. This is of particular interest, when the agents cannot distinguish the
truth based solely on their private observations, and yet together they learn. Analysis of
convergence and learning in this case reveals that almost-sure learning happens only if the
agents are arranged in a directed circle. We characterize the rate of log-learning1 in such
cases as being asymptotically exponentially fast with an exponent that is linear in time and
whose coefficient can be expressed as a weighted average of the relative entropies of the
signal likelihoods of all agents.

1In the literature on theory of learning in games [50], log-linear learning refers to a class of randomized
strategies, where the probability of each action is proportional to an exponential of the difference between
the utility of taking that action and the utility of the optimal choice. Such randomized strategies combine in
a log-linear manner [86], and they have desirable convergence properties: under proper conditions, it can be
shown that the limiting (stationary) distribution of action profiles is supported over the Nash equilibria of the
game [87].
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Chapter 2

Rational Decision Making in Groups

In this chapter, we analyze the decision problem of a Bayesian agent in the course
of group interactions, as she attempts to infer the true state of the world from her se-
quence of observations of actions of others as well as her own private signal. Such
an agent recursively refines her belief on the signals that other players could have ob-
served and actions that they could have taken given the assumption that other players
are also rational. The existing literature addresses asymptotic and equilibrium prop-
erties of Bayesian group decisions and important questions such as convergence to
consensus and learning. In this work, we address the computations that the Bayesian
agents should undertake to realize the optimal actions at every decision epoch. We use
a scheme called iterated eliminations of infeasible signals (IEIS) to model the thinking
process as well as the calculations of a Bayesian agent in a group decision scenario.
Following IEIS, with every new piece of information the agent refines her knowledge
about the private signals that other agents have observed, by eliminating all cases that
are inconsistent with her observations given that other agents are acting rationally. We
show that IEIS algorithm runs in exponential time; however, when the group structure
is a partially ordered set the Bayesian calculations simplify and polynomial-time com-
putation of the Bayesian recommendations is possible. We next shift attention to the
case where agents reveal their beliefs (instead of actions) at every decision epoch. We
analyze the computational complexity of the Bayesian belief formation in groups and
show that it isNP-hard. We also investigate the factors underlying this computational
complexity and show how belief calculations simplify in special network structures or
cases with strong inherent symmetries. We finally give insights about the statistical
efficiency (optimality) of the beliefs and its relations to computational efficiency.1,2

1The following papers cover the results of this chapter: [29, 88]. Preliminary versions of the results were
also presented in the following non-archival venues: 2017 Statistics & Data Science Center Conference, 2017
New York Computer Science and Economics Day, 2017 ACM Conference on Economics and Computation
(poster session), and 2017 Symposium on the Control of Network Systems.

2I would like to thank Mina Karzand for discussions about the decision flow diagram of two agents (Fig.
2.1), Ankur Moitra for discussions about the symmetric binary environment (Appendix D), Pooya Molavi
for private communication about Bayesian learning in another information structure, and Rasul Tutunov and
Jonathan Weed for discussions about the NP-hardness reductions.
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We begin Section 2.1 by presenting the model of decision making in groups that will be ap-
plied throughout this work. In Subsection 2.1.1, we formalize the calculations of a Bayesian
agent as an iterated elimination of infeasible signals (IEIS) algorithm. The IEIS approach
curbs some of the complexities of the group decision process, but only to a limited extent.
While the search over the feasible signal profiles in the IEIS algorithm runs in exponential
time, these calculations may simplify in special highly connected structures. In Subsection
2.1.2, we give an efficient algorithm that enables a Bayesian agent to compute her pos-
terior beliefs at every decision epoch, where the graph structure is a partially ordered set
(POSET), cf. Definition 2.1 for the POSET property and the respective constraints that are
imposed on the network topology. In Section 2.2 we shift focus to a case where agents
repeated exchange their beliefs (as opposed to announcing their best recommendations);
subsequently in Subsection 2.2.3, we are able to show that computing the Bayesian poste-
rior beliefs in a GDP is NP-hard with respect to the increasing network size. We provide
two reductions to known NP-complete problems. One reduction relies on the increasing
number of different types of signals that are observed by different agents in the the net-
work. The other reduction relies on the increasing size of the agent’s neighborhood (with
i.i.d signals).

2.1 The Bayesian Model

We consider1 a group of n agents, labeled by [n] = {1, . . . , n}, and interact according to
a fixed directed graph G. For each agent i ∈ [n], Ni denotes a neighborhood Ni ⊂ [n],
whose actions are observed by agent i. We use ∇(j, i) to denote the length (number of
edges) of the shortest path in G that connects j to i.

There is a state θ ∈ Θ that is unknown to the agents and it is chosen arbitrarily by
nature from an underlying state space Θ, which is measurable by a σ-finite measure Gθ(·).
For example if a space (Θ or S) is a countable set, then we can take its σ-finite measure
(Gθ or Gs) to be the counting measure, denoted by K(·); and if the space is a subset of Rk

with positive Lebesgue measure, then we can take its σ-finite measure to be the Lebesgue
measure on Rk, denoted by Λk(·). Associated with each agent i, Si is a measurable space
called the signal space of i, and given θ, Li(· | θ) is a probability measure on Si, which
is referred to as the signal structure of agent i. Furthermore, (Ω,F ,Pθ) is a probability

1 Some notations: R is the set of real numbers, N denotes the set of all natural numbers, and N0 := N∪{0}.
For n ∈ N a fixed integer the set of integers {1, 2, . . . , n} is denoted by [n], while any other set is represented
by a capital Greek or calligraphic letter. For a measurable setX we use∇X to denote the set of all probability
distributions over the set X . Furthermore, any random variable is denoted in boldface letter, vectors are
represented in lowercase letters and with a bar over them, measures are denoted by upper case Greek or
calligraphic Latin letters, and matrices are denoted in upper case Latin letters. For a matrix A, its spectral
radius ρ(A) is the largest magnitude of all its eigenvalues.
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triplet, whereΩ = S1× . . .×Sn is a product space, and F is a properly defined sigma field
over Ω. The probability measure on Ω is Pθ(·) which assigns probabilities consistently
with the signal structures Li(· | θ), i ∈ [n]; and in such a way that with θ fixed, the random
variables si, i ∈ [n] taking values in Si, are independent. These random variables represent
the private signals that agents i ∈ [n] observe at time 0. Note that the private signals are
independent across the agents. The expectation operator Eθ{·} represents integration with
respect to Pθ(dω),ω ∈ Ω.

An agents’ belief about the unknown allows her to make decisions even as the outcome
is dependent on the unknown value θ. These beliefs about the unknown state are probability
distributions over Θ. Even before any observations are made, every agent i ∈ [n] holds
a prior belief Vi(·) ∈ ∇Θ; this represents her subjective biases about the possible values
of θ. For each time instant t, let Mi,t(·) be the (random) probability distribution over
Θ, representing the opinion or belief at time t of agent i about the realized value of θ.
Moreover, let the associated expectation operator be Ei,t{·}, representing integration with
respect to Mi,t(dθ).

Let t ∈ N0 denote the time index; at t = 0 the values θ ∈ Θ followed by si ∈ Si of si are
realized and the latter is observed privately by each agent i for all i ∈ [n]. Associated with
every agent i is an action space Ai that represents all the choices available to her at every
point of time t ∈ N0, and a utility ui(·, ·) : Ai×Θ→ R which in expectation represents her
von Neumann-Morgenstern preferences regarding lotteries with independent draws from
Ai and/or Θ.1 We assume that the preferences of agents across time are myopic. At every
time t ∈ N, agents i takes action ai,t to maximize her expected utility, Ei,t{ui(ai,t, θ)},
where the expectation is with respect to Mi,t.

We now proceed to present the elements of the rational model for decision-making
in a group. We assume that the signal, state, and action spaces are finite sets. Because
some of our algorithms rely critically on the ability of the Bayesian agent to enumerate
all possible private signals that the other network agents may have observed. We may
relax this assumption in special cases where calculations are possible without resorting
to exhaustive enumerations. The ultimate goal of a Bayesian agent can be described as
learning enough about the private signals of all other agents in the network to be able to
compute the Bayesian posterior belief about the true state, given her local observations;
this, however, can be extremely complex, if not impossible.

In a rational group decision process (GDP), each agent i ∈ [n] receives a private signal
si at the beginning and then engages in repeated interactions with other group members

1The signal, action, and utility structures, as well as the priors, are all common knowledge among the
players; this assumption of common knowledge, in particular, implies that given the same access to each
other’s behavior or private information distinct agents would make identical inferences; in the sense that
starting from the same belief about the unknown θ, their updated beliefs given the same observations would
be the same: rational agents cannot agree to disagree, in Aumann’s words [12].

18



in the ensuing decision epochs: choosing actions and observing neighbors’ choices every
time. The agents start with a prior belief about the value of θ, which is a probability
distribution over the set Θ with probability mass function ν(·) = dVi/dK : Θ→ [0, 1] for
all i. Throughout Chapter 2, we assume that this prior is common to all agents.1 At each
time t, we denote the Bayesian posterior belief of agent i given her history of observations
by its probability mass function µi,t(·) = dMi,t/dK : Θ → [0, 1]. Initially, every agent
receives a private signal about the unknown θ. Each signal si belongs to a finite set Si and
its distribution conditioned on θ is given by `i(· | θ) := dLi(· | θ)/dK which is referred
to as the signal structure of agent i. We use L(· | θ) to denote the joint distribution of the
private signals of all agents, signals being independent across the agents.2

Accordingly, at every time t, agent i observes the most recent actions of her neighbors,
{aj,t−1 for all j ∈ Ni}, and chooses an action ai,t ∈ Ai, maximizing her expected utility
given all her observations up to time t, {aj,τ for all j ∈ Ni, and τ ≤ t − 1}. For example in
the case of two communicating agents the action of agent one at time two a1,2 is influenced
by own private signal s1 as well as the neighboring action at times zero and one; part of the
difficulty of the analysis is due to the fact that the action of agent two at time one is shaped
not only by the private information of agent two but also by the action of agent one at time
zero, cf. Fig. 2.1. A heuristic behavior may be justified as a mistake (cognitive bias) by
interpreting actions of others as consequences of their private information, thus ignoring
the history of observations when making inferences about the actions of others; in Fig. 2.1
this corresponds to ignoring all the arrows except those which are exiting the signal and
state nodes: s1, s2, and θ (cf. Fig. 3.1). Such biased inferences are the focus of our results
in the next two chapters, where we study the heuristics for decision making and learning in
groups.

In more general structures, there are also unobserved third party interactions that influ-
ence the decisions of agent two but are not available to agent one (and therefore should be
inferred indirectly).

1The assumption of common priors in our framework is without loss of generality, as long as each agents’
prior is known to all people who observe her directly or indirectly in the network. This is due to the fact that
agents can account for their respective priors when making inferences about each other’s actions. In particular,
all of the algorithms presented throughout the paper can be adapted to work with personalized priors. This
is true because when simulating other agents’ actions in (2.1.4) or computing their beliefs in (2.2.5), the
agents can use each individuals’ own prior beliefs in their calculations. The same principle applies to special
structures where computations simplify and exhaustive simulations can be avoided; for example in step (1)
of Algorithm (A2) or step (2) of Algorithm (A3). Finally, our NP-hardness results naturally carry through
since they are concerned with the worst-case structures.

2This independence of private signals allows us to exploit a decomposition property of feasible signal
profiles in case of POSETs in Subsection 2.1.2 to achieve polynomial-time Bayesian computations.
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Figure 2.1: The Decision Flow Diagram for Two Bayesian Agents

For each agent i, her history of observations hi,t is an element of the set:

Hi,t = Si ×
(∏
j∈Ni

Aj
)t−1

.

At every time t, the expected reward to agent i given her choice of action ai and observed
history hi,t is given by the expected reward function ri,t : Ai ×Hi,t → R, as follows:

ri,t(ai,hi,t) = Ei,t {ui(ai, θ) | hi,t} =
∑
θ̂∈Θ

ui(ai, θ̂)µi,t(θ̂),

for all hi,t ∈ Hi,t, where µi,t(θ̂) is the Bayesian posterior of agent i about the truth θ given
the observed history hi,t. The (myopic) optimal action of agent i at time t is then given by
ai,t ←↩ arg maxai∈Ai ri,t(ai,hi,t). Here for a set A, we use the notation a ←↩ A to denote
a deterministic choice from the elements of A that is assigned to a. The deterministic
choice is dictated by a tie-breaking rule that is known to all agents; specifically, we assume
that all of the action spaces are ordered (arbitrarily) and the ordering of each action space
Ai is known to all agents who observe agent i, directly or indirectly. According to the
tie-breaking rule←↩, whenever an agent is indifferent between a multitude of options she
will choose the one that ranks lowest in their ordering. The restriction to deterministic
tie-breaking rules is not without loss of generality. Because in the case of randomized tie-
breaking rules, rational agents would have to make inferences about how past occurrences
of ties have been resolved by other agents, whom they observe directly or indirectly. This
is in addition to their inferences about private signals and other unknown random quantities
whose values they are trying to learn. Thus the agent’s problem is to calculate her Bayesian
posterior belief µi,t, given her history of past observations: hi,t := {si, aj,τ, j ∈ Ni, τ ∈
[t− 1]}. Asymptotic properties of Bayesian group decisions, including convergence of the
actions to a consensus and learning (convergence to an “optimal” aggregate action), can be
studied using the Markov Bayesian equilibrium as a solution concept (cf. Appendix B);
however, our main focus in this paper is on the computational and algorithmic aspects of
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the GDP rather than its asymptotic properties.
Refinement of information partitions with the increasing observations is a key feature

of rational learning problems and it is fundamental to major classical results that establish
agreement [13] or learning [83, 84] among rational agents. Several follow-up works of [13]
have extended different aspects of information exchange among rational agents. In this
line of work, it is of particular interest to derive conditions that ensure the refinement of
information partitions would lead to the consensus on and/or the common knowledge of an
aggregate decision.1 In particular, the author in [25] points out that rational social learning
requires all agents in every period to consider the set of possible information partitions
of other agents and to further determine how each choice would impact the information
partitions of others in the subsequent periods.

In the GDP setting, the list of feasible signals can be regarded as the information set
representing the current understanding of the agent about her environment and the way
additional observations are informative is by trimming the current information set and re-
ducing the ambiguity in the set of initial signals that have caused the agent’s history of past
observations. In Section 2.1.1, we describe a recursive implementation2 for the refinement
of the information sets (partitions) that relies on iterated elimination of infeasible signals
(IEIS) for all the agents. The IEIS calculations scale exponentially with the network size;
this is true with the exception of some very well-connected agents who have, indeed, direct
access to all the observations of their neighbors and can thus analyze the decisions of each
of their neighbors based on their respective observations. We expand on this special case
(called POSETs) in Subsection 2.1.2 and explain how the Bayesian calculations simplify
as a result.

1Some notable examples include the works of [89–91], which consider information exchange by repeat-
edly reporting the values of a general set function f(·) over the state space (rather than the conditional prob-
abilities, which are the Bayesian beliefs). The authors in [89, 90] propose a condition of union consistency
on f(·) and the authors in [91] replace this union consistency condition with a convexity property for f(·), all
ensuring that the value of f(·) become common knowledge among the agents after repeated exchanges.

2The recursive implementation is an important factor in reducing the complexity of Bayesian calcula-
tions. In Appendix C, we describe the Bayesian calculations for causal (forward) reasoning over a path. The
Bayesian calculations in Appendix C involve simulation of the network behavior for all the feasible signal
profiles of the neighboring agents contingent on all of their possible “observations” (i.e. the set of all pos-
sible unobserved histories). Such a need arise as a result of forward reasoning on the part of the agents to
try and combine the incoming information with what they have already learned: agents isolate all the new
information about the private signals of a far away agent that has reached them for the first time and use that
to refine what they already know about previously discovered agents. Such a forward implementation is very
cumbersome for complex network structures; in other words, forward simulation of other people’s inferences
at all their possible observations is extremely inefficient and scales very poorly when applied to general group
structures.
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2.1.1 Iterated Elimination of Infeasible Signals (IEIS)

Building on the prior works [25, 57], we implement the refinement of information parti-
tions for rational agents in a group decision process as an iterated elimination of infeasible
signals. Accordingly, at every decision time, the signal profiles that are inconsistent with
the most recent observations are removed, leading to a refined information set for next
period. In this section, we analyze the Bayesian calculations that take place among the
group members as they calculate their refined information partitions and the corresponding
beliefs. To calculate their Bayesian posteriors, each of the agents keeps track of a list of
possible combinations of private signals of all the other agents. At each iteration, they re-
fine their list of feasible signal profiles in accordance with the most recent actions of their
neighbors.

To proceed, let s = (s1, . . . , sn) ∈ S1×. . .×Sn be any profile of initial signals observed
by each agent across the network, and denote the set of all private signal profiles that agent
i regards as feasible at time t, i.e. her information set at time t, by I i,t ⊂ S1 × . . . × Sn;
this set is a random set, as it is determined by the random observations of agent i up to time
t. Starting from I i,0 = {si}×

∏
j6=i Sj, at every decision epoch agent i removes those signal

profiles in I i,t−1 that are not consistent with her history of observations hi,t and comes up
with a trimmed set of signal profiles I i,t ⊂ I i,t−1 to form her Bayesian posterior belief
and make her decision at time t. The set of feasible signals I i,t is mapped to a Bayesian
posterior for agent i at time t as follows:

µi,t(θ) =

∑
s∈Ii,t L(s|θ)ν(θ)∑

θ̂∈Θ
∑

s∈Ii,t L(s|θ̂)ν(θ̂)
, (2.1.1)

which in turn enables the agent to choose an optimal (myopic) action given her observa-
tions:1

ai,t ←↩ arg max
ai∈Ai

∑
θ̂∈Θ

ui(ai, θ̂)µi,t(θ̂). (2.1.2)

For example at time zero agent i learns her private signal si, this enables her to initialize
her list of feasible signals: I i,0 = {si}×

∏
k∈[n]\{i} Sk. Subsequently, her Bayesian posterior

at time zero is given by:

µi,0(θ) =

∑
s∈Ii,0 L(s|θ)ν(θ)∑

θ̂∈Θ
∑

s∈Ii,0 L(s|θ̂)ν(θ̂)
=

`i(si|θ)ν(θ)∑
θ̂∈Θ `i(si|θ̂)ν(θ̂)

1In this sense, the Bayesian posterior is a sufficient statistic for the history of observations and unlike the
observation history, it does not grow in dimension with time.
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and her optimal action (recommendation) at time one is as follows:

ai,0 ←↩ arg max
ai∈Ai

∑
θ̂∈Θ ui(ai, θ̂)`i(si|θ̂)ν(θ̂)∑

θ̃∈Θ `i(si|θ̃)ν(θ̃)
= arg max

ai∈Ai

∑
θ̂∈Θ

ui(ai, θ̂)µi,1(θ̂). (2.1.3)

In IEIS, the agent not only needs to keep track of the list of private signals that are
consistent with her observations, denoted by I i,t, but also she needs to consider what other
agents regard as consistent with their own observations under the particular set of initial
signals. The latter consideration enables the decision maker to calculate actions of other
agents under any circumstances that arise at a fixed profile of initial signals, as she tries
to evaluate the feasibility of that particular signal profile given her observations. In other
words, the neighbors are acting rationally in accordance with what they regard as being a
feasible set of initial signal profiles. Hence, with every new observation of the neighboring
actions, agent i not only refines her knowledge of other people’s private signals but also
her knowledge of what signal profiles other agents would regard as feasible.

For any agent j 6= i and at every signal profile s, let I (i)
j,t(s) be the set of all signal

profiles that agent i believes have not yet been rejected by agent j, given all her observa-
tions and conditioned on the initial private signals being s. Consider the feasible action
calculated by agent i for agent j under the assumption that the initial private signals are
prescribed by s = (s1, . . . , sn), i.e.

a
(i)
j,τ(s)←↩ arg max

aj∈Aj

∑
θ̂∈Θ

uj(aj, θ̂)

∑
s ′∈I(i)j,τ(s)

L(s ′|θ̂)ν(θ̂)∑
θ̃∈Θ
∑

s ′∈I(i)j,τ(s)
L(s ′|θ̃)ν(θ̃) , ∀τ ∈ [t], (2.1.4)

where I(i)j,τ (s) is defined in Table 2.1. Given a(i)
j,t(s) for all s ∈ I i,t−1 and every j ∈ Ni, the

agent can reject any s for which the observed neighboring action aj,t for some j ∈ Ni does
not agree with the simulated feasible action conditioned on s: aj,t 6= a

(i)
j,t(s). To proceed,

we introduce the notationN τ
i as the τ-th order neighborhood of agent i comprising entirely

of those agents who are connected to agent i through a walk of length τ: N τ
i = {j ∈ [n] :

j ∈ Ni1 , i1 ∈ Ni2 , . . . , iτ−1 ∈ Niτ, iτ = i, for some i1, . . . , iτ−1 ∈ [n]}; in particular,
N 1
i = Ni and we use the conventionN 0

i = {i}. We further denote N̄ t
i := ∪tτ=0N τ

i as the set
of all agents who are within distance t of or closer to agent i; we sometimes refer to N̄ t

i as
her t-radius ego-net. For example, we use N̄ 1

i = N̄i := {i}∪Ni to denote the self-inclusive
neighborhood of agent i. We refer to the cardinality of N̄i as the degree of node i and
denote it by deg(i).

We now describe the calculations that agent i undertakes at every time t to update her
list of feasible signal profiles from I i,t to I i,t+1: agent i initializes her list of feasible
signals I i,0 = {si} ×

∏
j 6=i Sj; at time t she would have access to I i,t, the list of feasible

signal profiles that are consistent with her observations, as well as all signal profiles that
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Table 2.1: List of the variables that play a role in the Bayesian calculations for group decision-making
(BAYES-GROUP).

s s = (s1, s2, . . . , sn) ∈ S1 × . . .× Sn is a profile of initial private signals.
I i,t Ii,t ⊂ S1 × . . . × Sn is the list of all signal profiles that are deemed feasible

by agent i, given her observations up until time t.
I(i)j,t (s) I(i)j,t (s) ⊂ S1 × . . . × Sn is the list of all signal profiles that agent i believes

are deemed feasible by agent j, given what agent i believes agent j could have
observed up until time t conditioned on the event that the initial signals of all
agents are prescribed according to s.

a
(i)
j,t(s) a

(i)
j,t(s) ∈ Aj is the action that agent i deems optimal for agent j, given what

agent i believes agent j could have observed up until time t conditioned on
the event that the initial signals of all agents are prescribed according to s.

she thinks each of the other agents would regard as feasible conditioned on any profile of
initial signals: I(i)j,t−τ(s) for all s ∈ S1 × . . .× Sn, all j ∈ N τ

i , and all τ ∈ [t]. Calculations
of agent i at time t enables her to update her information at time t to incorporate the newly
obtained data which constitute her observations of neighbors’ most recent actions aj,t for
all j ∈ Ni; whence she refines I i,t to I i,t+1 and updates her belief and actions accordingly,
cf. (2.1.1) and (2.1.2). This is achieved as follows (recall that we use ∇(j, i) to denote the
length of the shortest path connecting j to i):
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(I1: BAYES-GROUP). The information available to agent i at time t:

• I(i)j,t−τ(s) for all s ∈ S1 × . . .× Sn, all j ∈ N τ
i , and all τ ∈ [t].

• I i,t, i.e. all signal profiles that she regards as feasible given her observations.

(A1: BAYES-GROUP). Calculations of agent i at time t for deciding ai,t+1:

1. For all s := (s1, . . . , sn) ∈ S1 × . . .× Sn and all j ∈ N t+1
i do:

• If∇(j, i) = t+ 1, initialize I(i)j,0 (s) = {sj}×
∏

k 6=j Sk.
• Else initialize I(i)j,t+1−∇(j,i)(s) = I

(i)
j,t−∇(j,i)(s) and for all s̃ ∈ I(i)j,t+1−∇(j,i)(s) do:

– For all k ∈ Nj if a(i)
k,t−τ(s̃) 6= a

(i)
k,t−τ(s), then I(i)j,t+1−τ(s) = I(i)j,t+1−τ(s) \

{s̃}, where a(i)
k,t−τ(s̃) and a(i)

k,t−τ(s) are calculated using (2.1.4), based on
I(i)k,t−τ(s̃) and I(i)k,t−τ(s).

2. Initialize I i,t+1 = I i,t and for all s ∈ I i,t+1 do:

• For all j ∈ Ni if aj,t 6= a(i)
j,t(s), then I i,t+1 = I i,t+1 \ {s}.

In Appendix A.1 we describe the complexity of the computations that the agent should
undertake using (A1) at any time t in order to calculate her posterior probability µi,t+1 and
Bayesian decision ai,t+1 given all her observations up to time t. Subsequently, we prove
that:

Theorem 2.1 (Complexity of IEIS). There exists an IEIS algorithm with anO(n2M2n−1mA)

running time, which given the private signal of agent i and the previous actions of her
neighbors {aj,τ : j ∈ Ni, τ < t} in any network structure, calculates ai,t, the updated action
of agent i at time t.

Remark 2.2 (Structure and Complexity in Decision Making Organizations). Suppose the
cardinality of the set of agents who influence the decisions of agent i (her cone of influence)
remains bounded with the network size: N̄ n

i ≤ D for some fixedD ∈ N. In such structures,
where the growth is bounded, the Bayesian computations using (A1) become polynomial,
upon replacing n with fixed D in (A.1.2). Such bounded structures can, for example,
arise as a result of horizontal growth in organizations as shown in Fig. 2.2. The question of
structure and its relation to performance receive considerable attention in organization stud-
ies. Through a series of seminal papers [92–94], Sah and Stiglitz popularized a model of
project selection in organizations to study the effect of their structures, and in particular to
compare the performance of hierarchies and polyarchies. The authors in [95] consider the
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Figure 2.2: A structure with bounded growth: each agent is influenced by no more than three other agents
even as the network (organization) size grows to infinity.

optimal decision making structures for reducing the probability of two error types in project
evaluation tasks (rejecting profitable projects, type I error, or accepting unprofitable ones,
type II error). They point out that either of the hierarchical or polyarchical organization
structures are suitable for reducing one error type and they can be combined optimally to
produce good overall performance. They further study the incremental improvement from
the addition of new decision-makers and point out that polyarchical structures allow for the
information to propagate throughout the organization, while in hierarchical organizations
most information is filter out on the way to the top. Therefore, from a complexity stand-
point, extending hierarchies to accommodate new members can lead to better tractability
with the increasing organization size.

2.1.2 IEIS over POSETs

We now shift focus to the special case of POSET networks. A partially ordered set (POSET)
consists of a set together with an order which is a reflexive, antisymmetric, and transitive
binary relation (indicating that, for certain pairs of elements, one of them precedes the other
in the ordering).

Definition 2.1 (POSET Networks). We call a network structure a POSET if the directed
neighborhood relationship between its nodes satisfies the reflexive and transitive properties
(note that we relax the anti-symmetric property). In particular, the transitive property
implies that anyone whose actions indirectly influences the observations of agent i is also
directly observed by her, i.e. any neighbor of a neighbor of agent i is a neighbor of agent i
as well.

In a POSET network it is always true thatN t
i ⊂ N τ

i ⊂ Ni for all t ≤ τ; and in particu-
lar, N̄ t

i = Ni for all t: as time marches on, no new private signals will ever be discovered,
only what is known about the private signals in the neighborhood Ni gets refined. In more
tangible terms, the POSET requirement for an agent i would imply that in observing any of
her neighbors j ∈ Ni, she not only observes agent j but also observes anything that agent j
observes (except for agent j’s private signal).1

1We can regard the directed neighborhood relationship as a binary relation on the set of vertices: i is in
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Table 2.2: List of the variables for Bayesian calculations in POSET groups (BAYES-POSET).

Si,t Si,t ⊂ Si is the list of all private signals that are deemed feasible for agent
i at time t, by an agent who has observed her actions in a POSET network
structure up until time t.

ai,t(si) ai,t(si) ∈ Ai is the optimal choice of agent i at time t, given her observations
in the POSET up until time t conditioned on the event that her initial private
is si.

I i,t(si) I i,t(si) = {si} ×
∏

j∈Ni S j,t is the list of all signal profiles that are deemed
feasible by agent i for the POSET of her neighbors, given her observations of
their actions up until time t conditioned on own private signal being si.

The special structure of POSET networks mitigates the issue of hidden observations,
and as a result, Bayesian inferences in a POSET structure are significantly less complex.
In particular, the fact that the agent has access to all observations of her neighbors while
observing their actions allows her to directly map an observed action to refined information
about the private signals of the particular agent taking that action. We make this intuition
precise in what follows by giving the exact description of the Bayesian calculations that an
agent performs in a POSET structure.

Note from Table 2.2 that agent i needs only to keep track of S j,t for all j ∈ Ni, i.e.
the private signals that she deems feasible for each of her neighbors individually. This is
due to the fact that in a POSET structure all agents whose actions may influence (directly
or indirectly) the recommendations of a decision maker are already directly observed by
her; any other agent’s private signals would be immaterial to her decisions, as she would
never make any observations that might have been influenced by those other agent’s pri-
vate signals. At the t-th decision epoch, the information that is at the disposal of agent i
constitutes the list of private signals that agent i deems feasible for each of her neighbors
j ∈ Ni given her observations up to time t. The goal of the agent at time t is to update her
list of feasible signal profiles from I i,t to I i,t+1 by incorporating her observations of her
neighboring actions at time t: aj,t, j ∈ Ni. The POSET structure allows the list of feasible
signal profiles at time t to be decomposed according to the signals that are feasible for each
of the neighbors individually, i.e. I i,t = {si}×

∏
j∈Ni S j,t; the updating is thus achieved by

incorporating the respective actions aj,t for each j ∈ Ni individually and transforming the

relationRN with j iff j ∈ Ni. Then the POSET property would ensure thatRN is a transitive relation on the
set of vertices. Note that the neighborhood relationship as defined does not specify a partial order on the set
of vertices because it does not satisfy the antisymmetry property. To provide for the anti-symmetry property,
one needs to identify all pairs of vertices with a bidirectional link between them; thus by identifying agents
who have a bidirectional link between them we obtain the neighborhood partial order 4N between the set of
agents in a POSET group: i <N j, ∀j ∈ Ni.
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respective S j,t into S j,t+1. Agent i could then refine her belief and come up with improved
recommendations based on (2.1.1) and (2.1.2). After initializing Sj,0 = Sj for all j ∈ Ni
and I i,0 = {si} ×

∏
j∈Ni S j,0, at any time t the transformation from I i,t into I i,t+1 in a

POSET structure can be achieved as follows:

(I2: BAYES-POSET). The information available to agent i at time t:

• S j,t ⊂ Sj for all j ∈ Ni is the list of private signals that agent i deems feasible for
her neighbor j ∈ Ni given her observations up to time t.

(A2: BAYES-POSET). Calculations of agent i at time t for deciding ai,t+1 in a
POSET:

1. For all j ∈ Ni do:

• Initialize S j,t+1 = S j,t, and for all sj ∈ S j,t+1 do:

– Calculate aj,t(sj) given I j,t(sj) = {sj}×
∏

k∈Nj Sk,t.

– If aj,t 6= aj,t(sj), then set S j,t+1 = S j,t+1 \ {sj}.

2. Update I i,t+1 = {si}×
∏

j∈Ni S j,t+1.

In Appendix A.2, we determine the computational complexity of (A2:BAYES-POSET)
as follows:

Theorem 2.3 (Efficient Bayesian group decisions in POSETs). There exists an algorithm
with running timeO(Amn2M2) which given the private signal of agent i and the previous
actions of her neighbors {aj,τ : j ∈ Ni, τ < t} in any POSET, calculates ai,t, the updated
action of agent i at time t.

The highly connected structure of POSETs leads to the rich history of observations
from the neighboring actions that allows for efficient computation of Bayesian decisions in
POSETs. On the other hand, one can also design efficient algorithms that are tailored to
the special symmetries of the signal or network structure; for example, if all agents observe
i.i.d. binary signals and take their best guess of the underlying binary state (cf. Appendix
D).

We end this section by highlighting the observation from Appendix C that in a path of
length n, the (n − t)-th agent gets fixed in her decisions after time t; and in particular,
no agents will change their recommendations after t ≥ n − 1 (see the left graph in Fig.
2.3 for the case n = 4). The following proposition extends our above realization about
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Figure 2.3: On the left, a directed path of length four. On the right, a directed graph is acyclic if and only if
it has a topological ordering; a topological ordering of a DAG orders its vertices such that every edge goes
from a lesser node (to the left) to a higher one (to the right).

the bounded convergence time of group decision process over paths to all directed acyclic
graphs (DAGs), cf. e.g. [96]. Such ordered structures include many cases of interest in
real-world applications with a conceivable hierarchy among players: each agent observe
her inferiors and is observed by her superiors or vice versa.1 A simple examination of the
dynamics in the case of two communicating agents (with a bidirectional link between them)
reveals how the conclusion of this proposition can be violated in loopy structures.

Proposition 2.1 (Bounded convergence time of group decision process over DAGs). Let
G be a DAG on n nodes with a topological ordering ≺, and let the agents be labeled in
accordance with this topological order as follows: n ≺ n−1 ≺ . . . ≺ 1. Then every agent
n− t gets fixed in her decisions after time t; and in particular, no agents will change their
recommendations after t ≥ n− 1.

2.2 The Case of Revealed Beliefs
Let us label θj ∈ Θ := {θ1, . . . , θm}, j ∈ {1, . . . ,m} by ej ∈ Rm which is a column vector
of all zeros except for its j-th element which is equal to one. Furthermore, we relax the
requirement that the action spacesAi, i ∈ [n] are finite sets; instead, for each agents i ∈ [n]

let Ai be the m-dimensional probability simplex: Ai = ∆Θ = {(x1, . . . , xm)
T ∈ Rm :∑m

1 xi = 1 and xi ≥ 0, ∀i}. If the utility assigned to each action a := (a1, . . . , am)
T ∈ Ai

and at every state θj ∈ Θ, measures the quadratic squared distance between a and ej, then

1The key property of DAGs is their topological ordering [96, Proposition 2.1.3]: a topological ordering
of a directed graph is an ordering of its vertices into a sequence, such that for every edge the start vertex of
the edge occurs earlier in the sequence than the ending vertex of the edge, and DAGs can be equivalently
characterized as the graphs that have topological orderings. This topological ordering property allows for the
influences of other agents to be addressed and analyzed in an orderly fashion, starting with the closest agents
and expanding to farther and farther agents as time proceeds (see the right graph in Fig. 2.3). This topological
ordering can be obtained by removing a vertex with no neighbors (which is guaranteed to exist in any DAG)
and by repeating this procedure in the resultant DAG. Using a depth-first search (DFS) one can devise an
algorithm that is linear-time in the number of nodes and edges and determines a topological ordering of a
given DAG.
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it is optimal for each agent i at any given time t to reveal her belief about the unknown
state as

∑
θ̂∈Θ ui(ai, θ̂)µi,t(θ̂) in (2.1.2) is uniquely maximized over ai ∈ Ai by ai,t =

(µi,t(θ1), . . . ,µi,t(θm))
T .

Thence under the prescribed quadratic utility and by taking actions over the probability
simplex, agents announce their beliefs truthfully at every epoch. Such agents engage in
the discussion by repeatedly exchanging their beliefs about an issue of common interest,
which is modeled by the state θ. For example in the course of a political debate, Θ can
be the set of all political parties and it would take a binary value in a bipartisan system
(cf. Fig. 1.3, on the left). The value/identity of θ is not known to the agents but they each
receive a private signal about the unknown θ and starting from a full-support prior belief
ν(·), at any time t ∈ {0, 1, 2, . . .} each agent holds a belief µi,t, which is her Bayesian
posterior on Θ given her knowledge of the signal structure and priors as well as her history
of observations, which include her initial private signal as well as the beliefs that she has
observed in her neighbors throughout past times τ < t.

Consider the finite state space Θ = {θ1, . . . , θm} and for all 2 ≤ k ≤ m, let:

φi,t(θk) := log
(
µi,t(θk)

µi,t(θ1)

)
, β(θk) := log

(
ν(θk)

ν(θ1)

)
. (2.2.1)

Moreover, for any θk ∈ Θ let λθk : ∪i∈[n]Si → R be the real valued function measur-
ing log-likelihood ratio of the signal si under states θk and θ1, defined as λθk(si) :=

log (`i(si|θk)/`i(si|θ1)). This is a measure of the information content that the signal si
provides for distinguishing any state θk from θ1. Here and throughout Sections 2.2 and
2.2.3, we assume the agents have started from uniform prior beliefs and the size of the
state space is m = 2, thence we enjoy a slightly simpler notation: with uniform priors
β(θk) = log (ν(θk)/ν(θ1)) = 0 for all i, k, whereas otherwise knowing the (common)
priors the agents can always compensate for the effect of the priors as they observe each
other’s beliefs; with a binary state space Θ = {θ1, θ2}, the agents need to only keep track
of one set of belief and likelihood ratios corresponding to the pair (θ1, θ2), whereas in gen-
eral the agents should form and calculate m − 1 ratio terms for each of the pairs (θ1, θk),
k = 2, . . . ,m to have a fully specified belief. For a binary state space with no danger of
confusion we can use the simplified notation λi = λθ2(si) := log (`i(si|θ2)/`i(si|θ1)), and
φi,t = φi,t(θ2) = log (µi,t(θ2)/µi,t(θ1)).

Problem 2.1 (GROUP-DECISION). At any time t, given the graph structure G, the private
signal si and the history of observed neighboring beliefs µj,τ, j ∈ Ni, τ ∈ [t] determine the
Bayesian posterior belief µi,t+1.

In general GROUP-DECISION is a hard problem as we will describe in Subsection
2.2.3. Here, we introduce a special class of structures which play an important role in
determining the type of calculations that agent i should undertake to determine her posterior
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belief (recall that the t-radius ego-net of agent i, N̄ t
i , is the set of all agents who are within

distance t of or closer to agent i):

Definition 2.2 (Transparency). The graph structure G is transparent to agent i at time t,
if for all j ∈ Ni and every τ ≤ t − 1 we have that: φj,τ =

∑
k∈N̄ τj

λk, for any choice of
signal structures and all possible initial signals.

The initial belief exchanges reveal the likelihoods of the private signals in the neigh-
boring agents. Hence, from her observations of the beliefs of her neighbors at time zero
{µj,0, j ∈ Ni}, agent i learns all that she ever needs to know regarding the private signals of
her neighbors so far as they influence her beliefs about the unknown state θ. However, the
future neighboring beliefs (at time one and beyond) are less “transparent” when it comes
to reflecting the neighbors’ knowledge of other private signals that are received throughout
the network. In particular, the time one beliefs of the neighbors φj,1, j ∈ Ni is given by
φj,1 =

∑
k∈N̄ 1j

λk; hence, from observing the time one belief of a neighbor, agent i would
only get to know

∑
k∈Nj λk, rather than the individual values of λk for each k ∈ Nj, which

her neighbor j had gotten to know before reporting the belief φj,1 =
∑

k∈N̄ 1j
λk to agent

i. Indeed, this is a fundamental aspect of inference problems in observational learning (in
learning from other actors): similar to responsiveness in [85], which is defined as a prop-
erty of the utility functions to determine whether players’ beliefs can be inferred from their
actions, transparency in our belief exchange setup is defined as a property of the graph
structure (see Remark 2.4 on why transparency is a structural property) which determines
to what extent other players’ private signals can be inferred from observing the neighboring
beliefs. We also have the following simple consequence:

Corollary 2.1 (Transparency at time one). All graphs are transparent to all their agents at
time one.

Remark 2.4 (Transparency, statistical efficiency, and impartial inference). Such agents j
whose beliefs satisfy the equation in Definition 2.2 at some time τ are said to hold a trans-
parent or efficient belief; the latter signifies the fact that the such a belief coincides with
the Bayesian posterior if agent j were given direct access to the private signals of every
agent in N̄ τ

j . This is indeed the best possible (or statistically efficient) belief that agent j
can hope to form given the information available to her at time τ; it specializes the perfect
aggregation property of Appendix D to the case of revealed beliefs. The same connection
to the statistically efficient beliefs arise in the work of Eyster and Rabin who formulate the
closely related concept of “impartial inference” in a model of sequential decisions by differ-
ent players in successive rounds [97]; accordingly, impartial inference ensures that the full
informational content of all signals that influence a player’s beliefs can be extracted and
players can fully (rather than partially) infer their predecessors’ signals. In other words,
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under impartial inference, players’ immediate predecessors provide “sufficient statistics”
for earlier movers that are indirectly observed [97, Section 3]. Last but not least, it is worth
noting that statistical efficiency or impartial inference are properties of the posterior beliefs,
and as such the signal structures may be designed so that statistical efficiency or impartial
inference hold true for a particular problem setting; on the other hand, transparency is a
structural property of the network and would hold true for any choice of signal structures
and all possible initial signals.

The following is a sufficient graphical condition for agent i to hold an efficient (trans-
parent) belief at time t: there are no agents k ∈ N̄ t

i that has multiple paths to agent i, unless
it is among her neighbors (agent k is directly observed by agent i).

Proposition 2.2 (Graphical condition for transparency). Agent i will hold a transparent
(efficient) belief at time t if there are no k ∈ N̄ t

i \ Ni such that for j 6= j ′, both j and j ′

belonging to Ni, we have k ∈ N̄ t−1
j and k ∈ N̄ t−1

j ′ .

Proof. The proof follows by induction on t, i.e. by considering the agents whose informa-
tion reach agent i for the first time at t. The claim is trivially true at time one, since agent i
can always infer the likelihoods of the private signals of each of her neighbors by observing
their beliefs at time one. Now consider the belief of agent i at time t, the induction hypoth-
esis implies that φi,t−1 =

∑
k∈N̄ t−1i

λk, as well as φj,t−1 =
∑

k∈N̄ t−1j
λk and φj,t−2 =∑

k∈N̄ t−2j
λk for all j ∈ Ni. To form her belief at time t (or equivalently its log-ratio φi,t),

agent i should consider her most recent information {φj,t−1 =
∑

k∈N̄ t−1j
λk, j ∈ Ni} and

use that to update her current beliefφi,t−1 =
∑

k∈N̄ t−2i
λk. To prove the induction claim, it

suffices to show that agent i has enough information to calculate the sum of log-likelihood
ratios of all signals in her t-radius ego-net, N̄ t

i ; i.e. to form φi,t =
∑

k∈N̄ ti
λk. This is the

best possible belief that she can hope to achieve at time t, and it is the same as her Bayesian
posterior, had she direct access to the private signals of all agents in her t-radius ego-net.
To this end, by using her knowledge ofφj,t−1 andφj,t−2 she can form:

φ̂j,t−1 = φj,t−1 −φj,t−2 =
∑

k∈N̄ t−1j \N̄ t−2j

λk,

for all j ∈ Ni. Since,φi,t−1 =
∑

k∈N̄ t−1i
λk by the induction hypothesis, the efficient belief

φi,t =
∑

k∈N̄ ti
λk can be calculated if and only if,

φ̂i,t = φi,t −φi,t−1 =
∑

k∈N̄ ti \N̄
t−1
i

λk, (2.2.2)

can be computed. In the above formulation φ̂i,t is an innovation term, representing the
information that agent i learns from her most recent observations at time t. We now show
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that under the assumption that any agent with multiple paths to an agent i is directly ob-
served by her, the innovation term in (2.2.2) can be constructed from the knowledge of
φj,t−1 =

∑
k∈N̄ t−1j

λk, andφj,t−2 =
∑

k∈N̄ t−2j
λk for all j ∈ Ni; indeed, we show that:

φ̂i,t =
∑
j∈Ni

φ̂j,t−1 −
∑
k∈Ni:

∇(k,j)=t−1

φk,0

 , for all t > 1. (2.2.3)

Consider any k ∈ N̄ t
i \ N̄ t−1

i , these are all agents which are at distance exactly t, t > 1,
from agent i, and no closer to her. No such k ∈ N̄ t

i \ N̄ t−1
i is a direct neighbor of agent i

and the structural assumption therefore implies that there is a unique neighbor of agent i,
call this unique neighbor jk ∈ Ni, satisfying k ∈ N̄ t−1

jk
\ N̄ t−2

jk
. On the other hand, consider

any j ∈ Ni and some k ∈ N̄ t−1
j \ N̄ t−2

j , such an agent k is either a neighbor of i or else at
distance exactly t > 1 from agent i and therefore k ∈ N̄ t

i \ N̄ t−1
i , and element j would be

the unique neighbor jk ∈ Ni satisfying k ∈ N̄ t−1
jk

\ N̄ t−2
jk

. Subsequently, we can partition

N̄ t
i \ N̄ t−1

i = ]j∈NiN̄ t−1
j \

(
N̄ t−2
j ∪Ni

)
,

and therefore we can rewrite the left-hand side of (2.2.2) as follows:

φ̂i,t =
∑
k∈

N̄ ti \N̄
t−1
i

λk =
∑

k∈]j∈Ni
N̄ t−1j \(N̄ t−2j ∪Ni)

λk =
∑
j∈Ni

∑
k∈N̄ t−1j \

(N̄ t−2j ∪Ni)

λk

=
∑
j∈Ni


∑

k∈N̄ t−1j \

N̄ t−2j

λk −
∑
k∈Ni∩

N̄ t−1j \N̄ t−2j

λk

 =
∑
j∈Ni

φ̂j,t−1 −
∑
k∈Ni:

∇(k,j)=t−1

φk,0

 ,
as claimed in (2.2.3), completing the proof.

Note that in the course of the proof of Proposition 2.2, for the structures that satisfy the
sufficient condition for transparency, we obtain a simple algorithm for updating beliefs by
setting the total innovation at every step equal to the sum of the most recent innovations
observed at each of the neighbors, correcting for those neighbors who are being recounted:

1. Initialize: φi,0 = λi, φ̂j,0 = φj,0 = λj,φi,1 =
∑

j∈N̄ 1i
φj,0.
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2. For t > 1 set:

φ̂j,t−1 = φj,t−1 −φj,t−2,

φ̂i,t =
∑
j∈Ni

[φ̂j,t−1 −
∑
k∈Ni:

∇(k,j)=t−1

φk,0],

φi,t = φi,t−1 + φ̂i,t.

Rooted (directed) trees are a special class of transparent structures, which also satisfy
the sufficient structural condition of Proposition 2.2; indeed, in case of a rooted tree for any
agent k that is indirectly observed by agent i, there is a unique path connecting k to i. As
such the correction terms for the sum of innovations observed in the neighbors is always
zero, and we have φ̂i,t =

∑
j∈Ni φ̂j,t−1, i.e. the innovation at every time step is equal to

the total innovations observed in all the neighbors.

Example 2.5 (Transparent structures). Fig. 2.4 illustrates cases of transparent and non-
transparent structures. We refer to them as first, second, third, and forth in their respective
order from left to right. All structures except the first one are transparent. To see how the
transparency is violated in the first structure, consider the beliefs of agent i: φi,0 = λi,
φi,1 = λi + λj1 + λj2; at time two, agent 1 observes φj1,1

= λj1 + λk1 + λk2 and
φj2,1

= λj2+λk2+λk3 . Knowingφj1,0
= λj1 andφj2,0

= λj2 she can infer the value of the
two sub-sums λk1 + λk2 and λk1 + λk3 , but there is no way for her to infer their total sum
λj1 + λj2 + λk1 + λk2 + λk3 . Agent i cannot hold an efficient or transparent belief at time
two. The issue is resolved in the second structure by adding a direct link so that agent k2
is directly observed by agent i; the sufficient structural condition of Proposition 2.2 is thus
satisfied and we haveφi,2 = λi + λj1 + λj2 + λk1 + λk2 + λk3 . In structure three, we have
φi,2 = λi + λj1 + λj2 + λk1 + λk2 = λi +φj1,1

+φj2,0
. Structure four is also transparent

and we have φi,2 = λi + λj1 + λj2 + λk1 + λk2 + λk3 + λk4 = λi + φj1,1
+ φj2,1

and
φi,3 = λi+λj1+λj2+λk1+λk2+λk3+λk4+λl = λi+φj1,1

+φj2,1
+(φj1,2

−φj1,1
), where

in the last equality we have used the fact that λl = (φj1,2
−φj1,1

). In particular, note that
structures three and four violate the sufficient structural condition laid out in Proposition
2.2, despite both being transparent.
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Figure 2.4: The last three structures are transparent but the first one is not.

When the transparency condition is violated, the neighboring agent’s beliefs is a com-
plex non-linear function of the signal likelihoods of the upstream (indirectly observed)
neighbors. Therefore, making inferences about the unobserved private signals from such
“nontransparent” beliefs is a very complex task: it ultimately leads to agent i reasoning
about feasible signal profiles that are consistent with her observations similar to the IEIS
algorithm (A1:BAYES-GROUP). We elaborate on the belief calculations for the nontrans-
parent case in Subsection 2.2.2, where we provide the version of IEIS algorithm that is
tailored to belief communications and it can be used in the most general cases with non-
transparent structures. When the transparency conditions are satisfied, the beliefs of the
neighboring agents reveal the sum of log-likelihoods for the private signals of other agents
within a distance t of agent i. Nevertheless, even when the network is transparent to agent
i, cases arise where efficient algorithms for calculating Bayesian posterior beliefs for agent
i are unavailable and indeed impossible (if P 6= NP). In Subsection 2.2.1, we describe the
calculations of the Bayesian posterior belief when the transparency condition is satisfied.
In Subsection 2.2.3, we show that well-knownNP-complete problems are special cases of
the GROUP-DECISION problem and as such the latter isNP-hard; there we also describe
special cases where a more positive answer is available and provide an efficient algorithm
accordingly.

2.2.1 Belief Calculations in Transparent Structures

Here we describe calculations of a Bayesian agent in a transparent structure. If the network
is transparent to agent i, she has access to the following information from the beliefs that
she has observed in her neighbors at times τ ≤ t, before deciding her belief for time t+ 1:

• Her own signal si and its log-likelihood λi.

• Her observations of the neighboring beliefs: {µj,τ : j ∈ Ni, τ ≤ t}. Due to trans-
parency, these beliefs reveal the following information about sums of log-likelihoods of
private signals of subsets of other agents in the network:

∑
k∈N̄ τj

λk = φi,τ, for all τ ≤
t, and any j ∈ Ni.
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From the information available to her, agent i aims to learn as much as possible about
the likelihoods of the private signals of others whom she does not observe; indeed, as she
has already learned the likelihoods of the signals that her neighbors have observed from
their reported beliefs at time one, at times t > 1 she is interested in learning about the
agents that are further away from her up to the distance t. Her best hope for time t + 1 is
to learn the sum of log-likelihoods of the signals of all agents that are within distance of at
most t+ 1 from her in the graph and to set her posterior belief accordingly; this however is
not always possible as demonstrated for agent i in the leftmost graph of Fig. 2.4. To decide
her belief, agent i constructs the following system of linear equations in card

(
N̄t+1

)
+ 1

unknowns: {λj : j ∈ N̄t+1, and λ̄i,t+1}, where λ̄i,t+1 =
∑

j∈N̄t+1 λj is the best possible
(statistically efficient) belief for agent i at time t+ 1:

∑
k∈N̄ τj

λk = φj,τ, for all τ ≤ t, and any j ∈ Ni,∑
j∈N̄ t+1i

λj − λ̄i,t+1 = 0.
(2.2.4)

Agent i can apply the Gauss-Jordan method and convert the system of linear equations
in card

(
N̄ t+1
i

)
+ 1 variables to its reduced row echelon form. Next if in the reduced row

echelon form λ̄i,t is a basic variable with fixed value (its corresponding column has a unique
non-zero element that is a one, and that one belongs to a row with all zero elements except
itself), then she sets her belief optimally such that φi,t+1 = λ̄i,t+1; this is the statistically
efficient belief at time t+ 1. Recall that in the case of a binary state space, log-belief ratio
φi,t+1 uniquely determines the belief µi,t+1.

Remark 2.6 (Statistical versus computational efficiency). Having φi,t+1 = λ̄i,t+1 signifies
the best achievable belief given the observations of the neighboring beliefs as it corresponds
to the statistically efficient belief that the agent would have adopted, had she direct access
to the private signals of every agent within distance t+ 1 from her; notwithstanding the ef-
ficient caseφi,t+1 = λ̄i,t+1 does not necessarily imply that agent i learns the likelihoods of
the signals of other agents in N̄ t+1

i ; indeed, this was the case for agent i in the forth (trans-
parent) structure of Example 2.5: agent i learns {λi,λj1 ,λj2 ,λk1 + λk2 ,λk3 + λk4 ,λl} and
in particular can determine the efficient beliefs λ̄i,2 = λi+λj1+λj2+λk1+λk2+λk3+λk4
and λ̄i,3 = λi+λj1+λj2+λk1+λk2+λk3+λk4+λl, but she never learns the actual values
of the likelihoods {λk1 ,λk2 ,λk3 ,λk4}, individually. In other words, it is possible for agent
i to determine the sum of log-likelihoods of signals of agents in her higher-order neigh-
borhoods even though she does not learn about each signal likelihood individually. The
case where λ̄i,t+1 can be determined uniquely so that φi,t+1 = λ̄i,t+1, is not only statisti-
cally efficient but also computationally efficient as complexity of determining the Bayesian
posterior belief at time t + 1 is the same as the complexity of performing Gauss-Jordan
steps which isO(n3) for solving the t . card(Ni) equations in card(N̄ t+1

i ) unknowns. Note
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that here we make no attempt to optimize these computations beyond the fact that their
growth is polynomial in n.This is an interesting alignment that emerges between statis-
tical and computational efficiency in group decision process, and it is in contrast with the
trade-off between statistical and computational performance that is reported in other graph-
ical inference problems such as sparse principal component analysis, planted partition and
stochastic block models, as well as sub-matrix localization, where there is an “information-
computation gap” between what is achievable in polynomial-time and what is statistically
optimal (achieves the information theoretic limit); cf. [98, 99].

Next we consider the case where λ̄i,t+1 is not a basic variable in the reduced row ech-
elon form of system (2.2.4) or it is a basic variable but its value is not fixed by the system
and depends on how the free variables are set. In such cases agent i does not have access
to the statistically efficient belief λ̄i,t+1. Instead she has to form her Bayesian posterior
belief by inferring the set of all feasible signals for all agents in N̄ t+1

i whose likelihoods
are consistent with the system (2.2.4). To this end, she keeps track of the set of all signal
profiles at any time t that are consistent with her information, system (2.2.4), at that time.
Following the IEIS procedure of Section 2.1.1, let us denote the set of feasible signal pro-
files for agent i at time t by I i,t. The general strategy of agent i, would be to search over
all elements of I i,t and to eliminate (refute) any signal profile s̄ that is inconsistent with
(i.e. does not satisfy) the Ni new equations revealed to her from the transparent beliefs of
her neighbors. For a signal profile s̄ = (s1, s2, . . . , sn), let λi(s) := log(`i(si|θ2)/`i(si|θ1))
denote the log-likelihood ratio of its i-th component private signal. Given the list of feasi-
ble signal profiles I i,t for agent i at time t, we formalize the calculations of agent i, subject
to observation of the transparent beliefs of her neighborsφj,t, j ∈ Ni, as follows:

(A3: BAYES-TRANSPARENT). Calculations of agent i at time t for deciding
µi,t+1 in a structure that is transparent to her:

1. Initialize I i,t+1 = I i,t.

2. For all s ∈ I i,t+1 and any j ∈ Ni do:

• Ifφj,t 6=
∑

k∈N̄ tj
λk(s), then set I i,t+1 = I i,t+1 \ {s}.

3. Given I i,t+1, calculate the updated belief µi,t+1 according to (2.1.1).

Despite the relative simplification that is brought about by transparency, in general
there is an exponential number of feasible signal profiles and verifying them for the new
Ni equations would take exponential time. The belief calculations may be optimized by
inferring the largest subset of individual likelihood ratios whose summation is fixed by
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system (2.2.4). The verification and refutation process can then be restricted to the remain-
ing signals whose sum of log-likelihoods is not fixed by system (2.2.4). For example in
leftmost structure of Fig. 2.4, agent i will not hold a transparent belief at time 2 but she
can determine the sub-sum λi + λj1 + λj2 and her belief would involve a search only over
the profile of the signals of the remaining agents (sk1 , sk2 , sk3). At time two, she finds all
(sk1 , sk2 , sk3) that agree with the additionally inferred sub-sumsφj1,1

−φj1,0
= λk1 + λk2

andφj2,1
−φj2,0

= λk2 + λk3; indeed we can expressφi,2 as follows:

φi,2 = λi + λj1 + λj2 + log

∑
(sk1 ,sk2 ,sk3 )∈Ii,2

`k1(sk1 |θ2)`k2(sk2 |θ2)`k3(sk3 |θ2)∑
(sk1 ,sk2 ,sk3 )∈Ii,2

`k1(sk1 |θ1)`k2(sk2 |θ1)`k3(sk3 |θ1)
,

where

I i,2 = {(sk1 , sk2 , sk3) : log
`k1(sk1 |θ2)

`k1(sk1 |θ1)
+ log

`k2(sk2 |θ2)

`k2(sk2 |θ1)
= λk1 + λk2 , and

log
`k1(sk1 |θ2)

`k1(sk1 |θ1)
+ log

`k3(sk3 |θ2)

`k3(sk3 |θ1)
= λk2 + λk3}.

Here we make no attempt in optimizing the computations for the refutation process in
transparent structures beyond pointing out that they can increase exponentially with the
network size. In Subsection 2.2.3, we show that the GROUP-DECISION problem is NP-
hard; and as such there are no algorithms that will scale polynomial in network size for all
network structures (unless P = NP).

When transparency is violated the neighboring beliefs are highly non-linear functions of
the log-likelihoods and the forward reasoning approach of (A3: BAYES-TRANSPARENT)
can no longer be applied; indeed, when transparency is violated then beliefs represent
what signal profiles agents regard as feasible rather than what they know about the log-
likelihoods of signals of others whom they have directly or indirectly observed. In partic-
ular, the agent cannot use the reported beliefs of the neighbors directly to make inferences
about the original causes of those reports which are the private signals. Instead, to keep
track of the feasible signal profiles that are consistent with her observations the agent em-
ploys a version of the IEIS algorithm of Section 2.1.1 that is tailored to the case of revealed
beliefs. We describe these calculations of the Bayesian agents for nontransparent structures
in Subsection 2.2.2.

2.2.2 Belief Calculations in Nontransparent Structures

In general nontransparent structures where one or more of the neighboring beliefs do not
satisfy the transparency conditions in Definition 2.2, agent i would have to follow an IEIS
strategy similar to (A1:BAYES-GROUP) to construct her Bayesian posterior belief given
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her observations of her neighbors’ nontransparent beliefs. Accordingly, as in Table 2.1, for
every profile of initial signals s = (s1, s2, . . . , sn) she constructs a list of all signal profiles
that she believes are deemed feasible by another agent j, given what she believes agent
j may have observed up until time t conditioned on the initial signals being prescribed
by s. Subsequently, the information available to her at time t is the same as that in (I1:
BAYES-GROUP); and she uses this information to update her list of feasible signal profiles
from I i,t to I i,t+1. Before presenting the exact calculations for determining the Bayesian
posterior of agent i, note that rather than the conditionally feasible actions for each agent j,
given by a(i)

j,t(s) in Table 2.1, agent i in the case of revealed beliefs would instead keep track
of µ̄(i)

j,t(s) = (µ
(i)
j,t(s; θ1), . . . , µ

(i)
j,t(s; θm)), i.e. the belief that she deems optimal for each

agent j, given what she believes agent j could have observed up until time t conditioned
on the event that the initial signals of all agents are prescribed according to s. Note that
following (2.1.4), we have:

µ
(i)
j,τ(s; θk) =

∑
s ′∈I(i)j,τ(s)

Pθk(s ′)ν(θk)∑m
l=1

∑
s ′∈I(i)j,τ(s)

Pθl(s ′)ν(θl)
. (2.2.5)

Calculations of agent i at time t enables her to update her information at time t to incor-
porate her newly obtained data which constitute her observations of her neighbors’ most
recent beliefs µ̄j,t for all j ∈ Ni; whence she refines I i,t to I i,t+1 and updates her belief
using (2.1.1). This is achieved as follows:

(A4: BAYES-NONTRANSPARENT). Calculations of agent i at time t for de-
ciding her Bayesian posterior µ̄i,t+1:

1. For all s := (s1, . . . , sn) ∈ S1 × . . .× Sn and all j ∈ N t+1
i do:

• If∇(j, i) = t+ 1, initialize I(i)j,0 (s) = {sj}×
∏

k 6=j Sk.
• Else initialize I(i)j,t+1−∇(j,i)(s) = I

(i)
j,t−∇(j,i)(s) and for all s̃ ∈ I(i)j,t+1−∇(j,i)(s)

do:

– For all k ∈ Nj if µ̄(i)
k,t−τ(s̃) 6= µ̄

(i)
k,t−τ(s), then I(i)j,t+1−τ(s) =

I(i)j,t+1−τ(s) \ {s̃}.

2. Initialize I i,t+1 = I i,t and for all s ∈ I i,t+1 do:

• For all j ∈ Ni if µ̄j,t 6= µ̄(i)
j,t(s), then I i,t+1 = I i,t+1 \ {s}.

3. Given I i,t+1, calculate the updated belief µ̄i,t+1 according to (2.1.1).
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Following Appendix A.1, we know the computational complexity of (A4: BAYES -
NONTRANSPARENT) increases exponentially in n and can be bounded as O (n2M2n−1

m). There is a key difference between the refutation process in step (2) of (A3: BAYES-
TRANSPARENT), when the network is transparent to agent i, and the pruning that takes
place in step (2) of the (A4 : BAYES- NONTRANSPARENT) for general (non-transparent)
networks. In the latter case, the agent needs to consider the beliefs of other far way agents
at any possible signal profile and to simulate the subsequent beliefs of her neighbors condi-
tioned on the particular signal profile; cf. step (1) of (A4: BAYES-NONTRANSPARENT).
Each signal profile will be rejected and removed from the feasible set if the simulated be-
lief of a neighbor conditioned on that signal profile does not agree with the actual (ob-
served) beliefs at that time. On the other hand, in a transparent structure, the agent does
not need to simulate the beliefs of other agents conditioned on a signal profile to investi-
gate its feasibility; compare step (1) of (A3: BAYES-TRANSPARENT) with step (1) of
(A4: BAYES-NONTRANSPARENT). She can directly verify whether the individual sig-
nals likelihoods satisfy the most recent set of constraints that are revealed to the agent at
time t from the transparent beliefs of her neighbors; and if any one of the new equations
is violated, then that signal profile will be rejected and removed from the feasible set. This
constitutes an interesting bridge between statistical and computational efficiency in group
decision processes.

2.2.3 Hardness of GROUP-DECISION

In this subsection we prove:

Theorem 2.7 (Hardness of GROUP-DECISION). The GROUP-DECISION (Problem 1) is
NP-hard.

We provide two reductions for the proof of Theorem 2.7, one reduction is to the SUBSET-
SUM problem and the other reduction is to the EXACT-COVER problem. In both reduc-
tions, we use binary signal spaces for all the agents; however, the first reduction requires
agents to receive different signals with non-identical probabilities whose variety increases
with the network size so that we can accommodate the increasing set size. Our second
reduction, on the other hand, works with i.i.d. binary signals but still relies on a complex
network structure (with unbounded degrees, i.e. node degrees increase with the increasing
network size) to realize arbitrary instances of EXACT-COVER.

The particular structures in which the two problems are realized are depicted in Fig. 2.5.
The graph on the left is used for the SUBSET-SUM reduction and the graph on the right is
used for the EXACT-COVER problem. The SUBSET-SUM problem asks if given a set of
n positive integers p1, . . . , pn and another positive integer q, there is a non-empty subset
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of {p1, . . . , pn} that sum to q. We encode the n parameters {p1, . . . , pn} of the SUBSET-
SUM problem using the log-likelihood ratios of binary signals that the n agents in the top
layer of the left graph in Fig. 2.5 receive. The encoding is such that ph = ph − ph for
all h ∈ [n], where ph and p

h
are the log-likelihood ratios of the one and zero signals for

each of the n agents lh, h ∈ [n]. Throughout this section and when working with binary
signals, we use the over and under bars to indicate the log-likelihood ratios of the one and
zero signals, respectively. Similarly, we denote the log-likelihood ratios of the signals of
the two agents k1 and k2 by p? and p? and set them such that −q = p? − p?. The crux of
our reduction is in designing the aggregate beliefs of agents j1 and j2 at time one in such a
way that agent i needs to decide whether the observed aggregates are caused by all of the
indirectly observed agents l1, . . . , ln and k1, k2 having reported zero signals to j1 and j2;
or else it is possible that the contributions from some of the one signals among l1, . . . , ln
is canceled out in the aggregate by the one signals in k1 and k2. In the latter case, those
agents, lh, who have received one signals, slh = 1, constitute a feasibility certificate for the
SUBSET-SUM problem, as their respective values of ph sum to q. In Appendix A.3, we
show that the decision problem of agent i in the designed scenario (after her observations
of the beliefs of j1 and j2) simplifies to the feasibility of the SUBSET-SUM problem with
parameters p1, . . . , pn and q.

We use the right-hand side structure of Fig. 2.5 for the EXACT-COVER reduction.
Unlike the SUBSET-SUM reduction, in the EXACT-COVER reduction we do not rely on
unboundedly many types of signals. Given a set of n elements {j1, . . . , jn} and a family
of m subsets {l1, . . . , lm}, lh ⊂ {j1, . . . , jn} for all h ∈ [m], the EXACT-COVER problem
asks if it is possible to construct a non-intersecting cover (partition) of {j1, . . . , jn} using a
(disjoint) subfamily of {l1, . . . , lm}. Given any instances of the EXACT-COVER problem,
we can encode the inclusion relations between the n elements {j1, . . . , jn} and m subsets
{l1, . . . , lm} using the bipartite graph in the first two layers of the right structure in Fig.
2.5. Here each node represents the respective entity (element jr or subset lh, r ∈ [n] and
h ∈ [m]) of the same name: an edge from a node lh to a node jr for some h ∈ [m] and
r ∈ [n] indicates that element jr is included in the subset lh. Our strategy is again to take
any instance of the EXACT-COVER problem and design the signal structures such that
agent i’s belief in the corresponding instance of GROUP-DECISION problem (with the
network structure given in the right hand side of Fig. 2.5) would indicate her knowledge of
the feasibility of the (arbitrarily chosen) instance of the EXACT-COVER problem (that is
encoded by the first two layers of the right hand side graph in Fig. 2.5). We use p and p for
the log-likelihood ratios of the one and zero signals of the l1, . . . , lm nodes and set these
parameters such that p−p = 1. Similarly, we denote the log-likelihood ratios of the one and
zero signals in the node k by p? and p?, and set them such that p?−p? = −1. In Appendix
A.4, we design a set of observations for agent i such that her belief at time 2 would require
her to know whether her observations of the beliefs of j1, . . . , jn are caused by all agents
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Figure 2.5: The graph structure on the left is used for the SUBSET-SUM reduction. The graph structure
on the right is used for the EXACT-COVER reduction. In the particular instance of EXACT-COVER that
is depicted on the right, we have that j1 ∈ l1 and j1 ∈ lm, as the links in the top two layers indicate the
inclusion relations among subsets l1, . . . , lm and elements j1, . . . , jn.

l1, . . . , lm as well as agent k having received zero signals, or else whether it is possible that
some of the agents among l1, . . . , lm have received one signals and their aggregate effects
on the beliefs of j1, . . . , jn are canceled out by the one signal that agent k has received.
The latter happens only when the corresponding instance of the EXACT-COVER problem
(coded by the right hand graph of Fig. 2.5) is feasible. In such cases, those sets among
l1, . . . , lm whose respective agents have receive one signals, {lh : h ∈ [m], slh = 1},
constitute a disjoint subfamily that covers {j1, . . . , jn}.

The detailed reductions are presented in Appendices A.3 and A.4. It is worth high-
lighting that our NP-hardness reductions show that the GROUP-DECISION problem is
hard to solve in the worst case. In other words, there exist network structures and partic-
ular profiles of private signals that lead to specific observations of the neighboring beliefs,
such that making an inference about the observed beliefs and forming a Bayesian posterior
belief conditioned on those observations is not possible in computation times that increase
polynomially with the network size (unless P = NP). Alternatively, one may be inter-
ested in the complexity of computations in specific network structures with increasing size,
such as trees, cycles, or complete graphs for which we know that beliefs can be computed
efficiently by virtue of their transparency. Moreover, one may also be interested in the com-
plexity of computations in an average sense (for “typical” network structures and “typical”
private signals). Deriving complexity notions in these alternative settings is much more
difficult; indeed, development of such alternative notions of complexity is an active area
of research in theory of computation, cf. e.g. [100] for average-case complexity with re-
spect to random inputs, and cf. e.g. [101] for the relevant complexity notions that apply to
randomized algorithms.

Remark 2.8 (Beyond NP-hardness). Both reductions are set up such that the feasibility
of the corresponding NP-complete problem (SUBSET-SUM or EXACT-COVER) is re-
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flected in the time-two beliefs of agent i. However, the beliefs in both cases contain more
information than the simple yes or no answer to the feasibility questions. Effectually, the
information content of beliefs amounts to a weighted sum over all the feasibility certifi-
cates (each certificate is represented by a particular signal profile and is weighted by the
likelihood of that particular signal profile). One possibility is to prove hardness in a class
of functional problems such as #P . The class #P is comprised of the counting problems
associated with the problems in NP . The latter is a class of decision problems for which
the positive instances have an efficiently verifiable proof. WhileNP captures the difficulty
of finding any certificates, the class #P captures the difficulty of counting the number of
all valid certificates (if any). As such the problems in #P are naturally harder than those in
NP (cf. e.g. [102, Chapter 17]).

The EXACT-COVER reduction relies critically on the fact that the number of directly
observed neighbors (corresponding to the number of equations in the EXACT-COVER
reduction) are allowed to increase. If the number of neighbors is fixed but different agents
receive different signals with varying distributions, then our SUBSET-SUM reduction in
Appendix A.3 again verifies that the hardness property holds. Our next example shows that
either of the two structural features (increasing size of the neighborhood or infinitely many
types of private signals among the indirectly observed agents) are needed to obtain a hard
problem; indeed, an efficient calculation of beliefs may be possible when the neighborhood
sizes are kept fixed and agents receive i.i.d. private signals.

For example in the left structure of Fig. 2.5 we can efficiently compute the beliefs if
{l1, . . . , ln} are receiving i.i.d. binary signals. To see how the belief of agent i at time
two can be computed efficiently in the number of indirectly observed neighbors (n), sup-
pose that the signal structures for agent i, her neighboring agents {j1, j2}, and the indi-
rectly observed agents {k1, k2, l1, . . . , ln} are the same as {jh, h ∈ [n]} and {lh, h ∈ [m]}

in EXACT-COVER reduction of Appendix A.4: {i, j1, j2} receiving non-informative sig-
nals and {k1, k2, l1, . . . , ln} receiving i.i.d. binary signals, whose likelihoods satisfy λr =
sr(p − p) + p for all r ∈ {k1, k2, l1, . . . , ln} as in (A.4.1) of Appendix A.4. Subsequently,
φi,0 = φj1,0

= φj2,0
= φi,1 = 0, due to their initial noninformative signals. At time

two, agent i has to incorporate the time one beliefs of her neighbors, which are themselves
caused by the time zero beliefs of k1, k2, l1, . . . , ln: Given φjr,1 = λkr +

∑n
h=1 λlh , for

r = 1, 2, agent i aims to determine her belief at time two (or equivalently φi,2). Using
(A.4.1), we can write

ψjr = skr +
n∑
h=1

slh =
1

p− p

(
φjr,1 − card (Njr)p

)
, r ∈ {1, 2},

where ψjr are necessarily non-negative integers belonging to [n + 1]0 = {0} ∪ [n + 1],
due to their generation process; i.e. the fact that they count the number of one signals that
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are received in the neighborhood Njr of each of the neighbors jr, r = 1, 2. To proceed,
let η ∈ [n]0 be the number of agents among {l1, . . . , ln} who have received one signals.
Depending on the relative values of ψj1 and ψj2 three cases may arise, and the subsequent
beliefsφi,2 in each case are listed below:

1. If ψj1 6= ψj2 , then exactly one of the two signals sk1 and sk2 is a one and the other one
is zero, the latter corresponding to the lower of the two counts ψj1 and ψj2 . We further
have that η = min{ψj1 ,ψj2} andφi,2 = (η+ 1)p+ (n− η+ 1)p.

2. If ψj1 = ψj2 = 0, then every body in the second order neighborhood of i has received
a zero and we haveφi,2 = (n+ 2)p.

3. If ψj1 = ψj2 ≥ 1, then either sk1 = sk2 = 0 and η = η0 = ψj1 or sk1 = sk2 = 1

and η = η1 = ψj1 − 1. In this case, the belief of agent i at time two is given by:
φi,2 = log(fθ2/fθ1), where fθr , r = 1, 2 is defined as: fθr =

(
n
η1

)
`(s = 1|θr)

η1+2`(s =

0|θr)
n−η1 +

(
m
η0

)
`(s = 1|θr)η0`(s = 0|θr)n−η0+2.

In Appendix A.5, we devise a similar algorithm to calculate the time two belief of agent
i in the left-hand-side structure of Fig. 2.5 (by counting the number of agents h ∈ [m] for
which slh = 1), with time-complexity O(n2nm2n + m1+2n(22n)(3m + 2)): increasing
polynomially inm for a fixed neighborhood size (n).
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Chapter 3

Heuristic Decision Making in Groups

In this chapter, we propose a no-recall model of inference for heuristic decision-
making in groups that is rooted in the Bayes rule but avoids the complexities of rational
inference in partially observed environments with incomplete information, which were
highlighted in the previous chapter. Our model is also consistent with a dual-process
psychological theory of thinking: the group members behave rationally at the initia-
tion of their interactions with each other (the slow and deliberative mode); however, in
the ensuing decision epochs, they rely on a heuristic that replicates their experiences
from the first stage (the fast automatic mode). We specialize this model to a group
decision scenario where private observations are received at the beginning, and agents
aim to take the best action given the aggregate observations of all group members. We
study the implications of the information structure and the choice of the probability
distributions for signal likelihoods and beliefs. These factors also determine the struc-
ture of the so-called “Bayesian heuristics” that the agents follow in our model. We
further analyze the group decision outcomes in two classes of linear action updates
and log-linear belief updates and show that many inefficiencies arise in group deci-
sions as a result of repeated interactions between individuals, leading to overconfident
beliefs as well as choice-shifts toward extreme actions. Nevertheless, balanced regular
structures demonstrate a measure of efficiency in terms of aggregating the initial infor-
mation of individuals. These results not only verify some well-known insights about
group decision-making, but also complement these insights by revealing additional
mechanistic interpretations for the group declension-process, as well as psychological
and cognitive intuitions about the group interaction model.1,2

1The following papers cover the results of this chapter: [103–105]. Preliminary versions of the results
were also presented in the following non-archival venues: 2015 Workshop on Social and Information Net-
works (in conjunction with the 16th ACM Conference on Economics and Computation), INFORMS 2015
Annual meeting, and 2016 NBER-NSF Seminar on Bayesian Inference in Econometrics and Statistics.

2I would like to thank Peter Kraftt and Armand Makowski for insightful discussions, as well as the
participants at the University of Pennsylvania, University of Maryland, Princeton and MIT local seminars for
their comments and feedback.
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In Section 3.1, we describe the mathematical details of the no-recall model; in particular,
we explain the mathematical steps for deriving the so-called Bayesian or no-recall heuris-
tics in a given decision scenario. In Section 3.2, we specialize our group decision model to a
setting involving exponential family of distributions for both signal likelihoods and agents’
beliefs. The agents aim to estimate the expected values of the sufficient statistics for their
exponential family signal structures. We show that the Bayesian (no-recall) heuristics in
this case are affine rules in the self and neighboring actions, and we give explicit expres-
sions for their coefficients. Subsequently, we provide conditions under which these action
updates constitute a convex combination as in the DeGroot model, with actions converg-
ing to a consensus in the latter case. We also investigate the efficiency of the consensus
action in aggregating the initial observations of all agents across the network. Finally in
Section 3.3, we discuss a situation where agents exchange beliefs about a truth state that
can takes one of the finitely many possibilities. The Bayesian heuristics in this case take
the form of log-linear rules that set the updated beliefs proportionally to the product of self
and neighboring beliefs in every decision epoch. We investigate the evolution of beliefs
under the prescribed “no-recall” update rules and compare the asymptotic beliefs with that
of a Bayesian agent with direct access to all the private information; thus characterizing the
inefficiencies of the asymptotic beliefs, in particular, their redundancy.

3.1 The No-Recall Model of Group Decision Making
We present the no-recall model of group decision making which explains the operations of
system one (the fast/automatic system; cf. Subsection 1.1.2) in a group decision process.
This model allows us to study heuristics for information aggregation in group decision
scenarios when the relevant information is dispersed among many individuals. In such
situations, individuals in the group are subjected to informational (but not strategic) ex-
ternalities. By the same token, the heuristics that are developed for decision making in
such situations are also aimed at information aggregation. In our model as the agent in-
teracts with her environment, her initial response would engage her system two (the slow
and deliberative system): she rationally evaluates the reports of her neighbors and uses
them to make a decision. However, after her initial experience and by engaging in repeated
interactions with other group members her system one takes over the decision processes,
implementing a heuristic that imitates her (rational/Bayesian) inferences from her initial
experience; hence avoiding the burden of additional cognitive processing in the ensuing
interactions with her neighbors. This follows the propositions of Tversky and Kahneman
in [106], who argue that humans have limited time and brainpower, therefore they rely on
simple rules of thumb, i.e. heuristics, to help them make judgments under uncertainty.
However, the use of such heuristics causes people to make predictable errors and subjects
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them to various cognitive biases. The specific cognitive bias that we formulate and analyze
in the case of group decision-making is the human error in attributing recommendations of
other people to their private information. In reality these recommendations are shaped not
only by their private information, but also by other recommendations that are observable to
them across the social network.

Given the initial signal si, agent i forms an initial Bayesian opinion Mi,0(·) about the
value of θ and chooses her action ai,0 ←↩ arg maxai∈Ai

∫
Θ
ui(ai, θ

′)Mi,0(dθ
′), maximiz-

ing her expected reward. Here for a set A, we use the notation a ←↩ A to denote an
arbitrary choice from the elements of A that is assigned to a. Not being notified of the
actual realized value for ui(ai,0, θ), she then observes the actions that her neighbors have
taken. Given her extended set of observations {aj,0, j ∈ N̄i} at time t = 1, she refines her
opinion into Mi,1(·) and makes a second, and possibly different, move ai,1 according to:

ai,1 ←↩ arg max
ai∈Ai

∫
Θ

ui(ai, θ)Mi,1(dθ), (3.1.1)

maximizing her expected pay off conditional on everything that she has observed thus far;
i.e. maximizing Ei,1{ui(ai, θ)} = Eθ{ui(ai,1, θ)|si, aj,0 : j ∈ N̄i} =

∫
Θ
ui(ai, θ)Mi,1(dθ).

Subsequently, she is granted her net reward of ui(ai,0, θ) + ui(ai,1, θ) from her past two
plays. Following realization of rewards for their first two plays, in any subsequent time
instance t > 1 each agent i ∈ [n] observes the preceding actions of her neighbors aj,t−1 :
j ∈ N̄i and takes an option ai,t out of the setAi. Of particular significance in our description
of the behavior of agents in the succeeding time periods t > 1, is the relation:

fi(aj,0 : j ∈ N̄i) := ai,1 ←↩ arg max
ai∈Ai

Ei,1{ui(ai, θ)}. (3.1.2)

derived in (3.1.1), which given the observations of agent i at time t = 0, specifies her
(Bayesian) pay-off maximizing action for time t = 1. Once the format of the mapping
fi(·) is obtained, it is then used as a heuristic for decision making in every future epoch.
The agents update their action by choosing: ai,t = fi

(
aj,t−1 : j ∈ N̄i

)
,∀t > 1. We refer to

the mapping fi :
∏

j∈N̄i Aj → Ai thus obtained, as a Bayesian or no-recall heuristic.

Remark 3.1 (“What you see is all there is!”). The heuristics thus obtained suffer from same
fallacies of snap judgments that are associated with the recommendations of system one
in “Thinking, Fast and Slow”; flawed judgments that rely on simplistic interpretations:
“what you see is all there is”, in Kahneman’s elegant words [9]. Indeed, the use of the
initial Bayesian update for future decision epochs entails a certain level of naivety on the
part of the decision maker: she has to either assume that the structure of her neighbors’
reports have not departed from their initial format, or that they are not being influenced
back by her own or other group members and can thus be regarded as independent sources
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Figure 3.1: Heuristic agents ignore the history of interactions (dotted arrows) in their inferences and always
attribute actions to (imaginary) private signals; compare with the decision flow diagram for the inferences of
two rational agents who communicate their actions repeatedly (Fig. 2.1).

of information; see Fig. 3.1. Such naivety in disregarding the history of interactions has
been highlighted in our earlier works on Bayesian learning without recall [107], where
we interpret the use of time-one Bayesian update for future decision epochs, as a rational
but memoryless behavior: by regarding their observations as being direct consequences of
private signals, the agents reject any possibility of a past history beyond their immediate
observations.

Remark 3.2 (Naive inferences). Similar and related forms of naivety have been suggested
in the literature. Eyster and Rabin [26, 97] propose the autarkic model of naive infer-
ence, where players at each generation observe their predecessors but naively think that
any predecessor’s action relies solely on that player’s private information, thus ignoring the
possibility that successive generations are learning from each other. Bala and Goyal [108]
study another form of naivety and bounded-rational behavior by considering a variation of
observational learning in which agents observe the action and pay-offs of their neighbors
and make rational inferences about the action/pay-off correspondences, based on their ob-
servations of the neighboring actions; however, they ignore the fact that their neighbors are
themselves learning and trying to maximize their own pay-offs. Levy and Razin look at
a particularly relevant cognitive bias called correlation neglect, which makes individuals
regard the sources of their information as independent [109]; they analyze its implications
to diffusion of information, and focus in particular, on the voting behavior.
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3.2 Affine Action Updates, Linear Updating, and DeGroot
Learning

In this section we explore the essential modeling features that lead to a linear structure in
the Bayesian heuristics (linear update rules). We present a general scenario that involves
the exponential family of distributions and leads to linear action updates.

To describe the signal structures, we consider a measurable sample space S with a σ-
finite measure Gs(·), and a parametrized class of sampling functions {L(·|θ;σi, δi) ∈ ∆S :

σi > 0 and δi > 0} belonging to the k-dimensional exponential family as follows:

`(s|θ;σi, δi) :=
dL(·|θ;σi, δi)

dGs
= σi

∣∣∣∣Λk(ξ(ds))Gs(ds)

∣∣∣∣ τ (σiξ(s), δi) eσiη(θ)Tξ(s)−δiγ(η(θ)),(3.2.1)

where ξ(s) : S → Rk is a measurable function acting as a sufficient statistic for the random
samples, η : Θ→ Rk is a mapping from the parameter space Θ to Rk, τ : Rk ×(0,+∞)→
(0,+∞) is a positive weighting function, and

γ(η(θ)) :=
1

δi
ln
∫
s∈S

σi

∣∣∣∣Λk(ξ(ds))Gs(ds)

∣∣∣∣ τ(σiξ(s), δi)eσiη(θ)Tξ(s)Gs(ds),
is a normalization factor that is constant when θ is fixed, even though δi > 0 and σi > 0
vary. This normalization constant for each θ is uniquely determined by the functions η(·),
ξ(·) and τ(·). The parameter space Θ and the mapping η(·) are such that the range space
Ωθ := {η(θ) : θ ∈ Θ} is an open subset of the natural parameter space

Ωη :=

{
η ∈ Rk :

∫
s∈S

|Λk(ξ(ds))/Gs(ds)|τ (ξ(s), 1) eη
Tξ(s)Gs(ds) <∞} .

In (3.2.1), σi > 0 and δi > 0 for each i are scaling factors that determine the quality
or informativeness of the random sample si with regard to the unknown θ: fixing either
one of the two factors σi or δi, the value of the other one increases with the increasing
informativeness of the observed value ξ(si). The following conjugate family of priors1 are
associated with the likelihood structure (3.2.1). This family is determined uniquely by the
transformation and normalization functions: η(·) and γ(·), and it is parametrized through
a pair of parameters (α,β), α ∈ Rk and β > 0:

1Consider a parameter space Θ, a sample space S, and a sampling distribution L(·|θ) ∈ ∆S, θ ∈ Θ.
Suppose that s is a random variable which is distributed according to L(·|θ) for any θ. A family F ⊂ ∆Θ is
a conjugate family for L(·|θ), if starting from any prior distribution V(·) ∈ F and for any signal s ∈ S, the
posterior distribution given the observation s = s belongs to F .
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Fγ,η :=
{
V(θ;α,β) ∈ ∆Θ,α ∈ Rk, βi > 0 :

ν(θ;α,β) :=
dV(·;α,β)
dGθ

=

∣∣∣∣Λk(η(dθ))Gθ(dθ)

∣∣∣∣ eη(θ)Tα−βγ(η(θ))κ(α,β)
,

κ(α,β) :=

∫
θ∈Θ

∣∣∣∣Λk(η(dθ))Gθ(dθ)

∣∣∣∣ eη(θ)Tα−βγ(η(θ))Gθ(dθ) <∞}.
Furthermore, we assume that agents take actions in Rk, and that they aim for a minimum
variance estimation of the regression function or conditional expectation (given θ) of the
sufficient statistic ξ(si). Hence, we endow every agent i ∈ [n] with the quadratic util-
ity ui(a, θ) = −(a − mi,θ)

T(a − mi,θ), ∀a ∈ Ai = Rk, where mi,θ := Ei,θ{ξ(si)} :=∫
s∈S ξ(s)L(ds|θ;σi, δi) ∈ Rk.

Our main result in this section prescribes a scenario in which each agent starts from
a prior belief V(·;αi, βi) belonging to Fγ,η and she observes a fixed number ni of i.i.d.
samples from the distributionL(· | θ;σi, δi). The agents then repeatedly communicate their
actions aimed at minimum variance estimation ofmi,θ. These settings are formalized under
the following assumption that we term the Exponential Family Signal-Utility Structure.

Assumption 3.1 (Exponential family signal-utility structure).

(i) Every agent i ∈ [n] observes ni i.i.d. private samples si,p, p ∈ [ni] from the com-
mon sample space S and that the random samples are distributed according to the
law L(·|θ;σi, δi) given by (3.2.1) as a member of the k-dimensional exponential
family.

(ii) Every agent starts from a conjugate prior Vi(·) = V(·;αi, βi) ∈ Fγ,η, for all i ∈
[n].

(iii) Every agent chooses actions a ∈ Ai = Rk and bears the quadratic utilityui(a, θ) =
−(a−mi,θ)

T(a−mi,θ), wheremi,θ := Ei,θ{ξ(si)} :=
∫
s∈S ξ(s)L(ds|θ;σi, δi) ∈ Rk.

The Bayesian heuristics fi(·), i ∈ [n] under the settings prescribed by the exponential
family signal-utility structure (Assumption 3.1) are linear functions of the neighboring ac-
tions with specified coefficients that depend only on the likelihood structure parameters:
ni, σi and δi as well as the prior parameters: αi and βi, for all i ∈ [n].

Theorem 3.3 (Affine action updates). Under the exponential family signal-utility structure
specified in Assumption 3.1, the Bayesian heuristics describing the action update of every
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agent i ∈ [n] are given by: ai,t = fi(aj,t−1 : j ∈ N̄i) =
∑

j∈N̄i Tijaj,t−1 + εi, where for all i,
j ∈ [n] the constants Tij and δi are as follows:

Tij =
δiσj(nj + δ

−1
j βj)

σi(βi +
∑

p∈N̄i npδp)
, εi = −

δi

σi(βi +
∑

p∈N̄i npδp)

∑
j∈Ni

αj.

The action profile at time t is the concatenation of all actions in a column vector: at =
(aT1,t, . . . , aTn,t)T . The matrix T with entries Tij, i, j ∈ [n] given in Theorem 3.3 is called the
social influence matrix. The constant terms εi in this theorem appear as the rational agents
attempt to compensate for the prior biases of their neighbors when making inferences about
the observations in their neighborhood; we denote ε = (εT1 , . . . , ε

T
n)
T and refer to it as

the vector of neighborhood biases. The evolution of action profiles under conditions of
Theorem 3.3 can be specified as follows: at+1 = (T⊗Ik)at+ε, where Ik is the k×k identity
matrix and (T ⊗ Ik) is a Kronecker product. Subsequently, the evolution of action profiles
over time follows a non-homogeneous positive linear discrete-time dynamics, cf. [110]. If
the spectral radius of T is strictly less than unity: ρ(T) < 1, then I−T is non-singular; there
is a unique equilibrium action profile (the steady-state action profile that is regarded as the
group decision outcome) given by ae = ((I− T)−1 ⊗ Ik) ε and limt→∞ at = ae. If unity is
an eigenvalue of T , then there may be no equilibrium action profiles or an infinity of them.
If ρ(T) > 1, then the linear discrete-time dynamics is unstable and the action profiles may
grow unbounded in their magnitude, cf. [111].

Example 3.4 (Gaussian Signals with Gaussian Beliefs). Mossel and Tamuz [55] consider
the case where the initial private signals as well as the unknown states are normally dis-
tributed and the agents all have full knowledge of the network structure. They show that
by iteratively observing their neighbors’ mean estimates and updating their beliefs using
Bayes rule all agents converge to the same belief. The limiting belief is the same as what
a Bayesian agent with direct access to everybody’s private signals would have hold; and
furthermore, the belief updates at each step can be computed efficiently and convergence
occurs in a number of steps that is bounded in the network size and its diameter. These
results however assume complete knowledge of the network structure by all the agents.

Here, we consider the linear action updates in the Gaussian setting. Let Θ = R be
the parameter space associated with the unknown parameter θ ∈ Θ. Suppose that each
agent i ∈ [n] holds onto a Gaussian prior belief with mean αiβ−1

i and variance β−1
i ; here,

γ(θ) = θ2/2 and η(θ) = θ. Further suppose that each agent observes an independent
private Gaussian signal si with mean θ and variance σ−1

i = δ−1i , for all i ∈ [n]; hence,
ξ(si) = si and τ(σiξ(si), δi) = τ(σisi, σi) = (2π/σi)

−1/2 exp(σis2i/2). After observing
the private signals, everybody engages in repeated communications with her neighbors.
Finally, we assume that each agent is trying to estimate the mean mi,θ = Ei,θ{si} of her
private signal with as little variance as possible. Under the prescribed setting, Theorem 3.3
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applies and the Bayesian heuristic update rules are affine with the coefficients as specified
in the theorem with ni = 1 and σi = δi for all i. In particular, if αi = (0, . . . , 0) ∈ Rk and
βi → 0 for all i, then εi = 0 for all i and the coefficients Tij = σj/

∑
p∈N̄i σp > 0 specify

a convex combination:
∑

j∈N̄i Tij = 1 for all i.

Example 3.5 (Poisson signals with gamma beliefs). As the second example, suppose that
each agent observe ni i.i.d. Poisson signals si,p : p ∈ [ni] with mean δiθ, so thatΘ = Ai =
(0,+∞) for all i ∈ [n]. Moreover, we take each agent’s prior to be a Gamma distribution
with parameters αi > 0 and βi > 0, denoted Gamma(αi,βi):

νi(θ) :=
dVi
dΛ1

=
βi
αi

Γ(αi)
θαi−1e−βiθ,

for all θ ∈ (0,∞) and each i ∈ [n]. Note that here η(θ) = log θ, γ(η(θ)) = exp(η(θ)) =
θ, κ(αi, βi) = Γ(αi)βi

−αi , mi,θ = δiθ, ξ(si,p) = si,p, σi = 1 and τ(σiξ(si,p), δi) =

δ
si,p
i /(si,p!), for all i, p. This setting corresponds also to a case of Poisson observers with

common rate θ and individual exposures δi, i ∈ [n], cf. [112, p. 54]. The posterior
distribution over Θ after observing the sum of ni Poisson mean δiθ samples is again a
Gamma distribution with updated (random) parameters

∑ni
p=1 si,p+αi and niδi+βi, [112,

pp. 52–53]. Using a quadratic utility −(a − δiθ)
2, the expected pay-off at time zero

is maximized by the δi-scaled mean of the posterior Gamma belief distribution [112, p.
587]: ai,0 = δi(

∑ni
p=1 si,p + αi)/(niδi + βi). Given the information in the self-inclusive

neighborhood:
∑nj

p=1 sj,p = (nj+βjδ
−1
j )aj,0−αj, ∀j ∈ N̄i, agent i can refine her belief into a

Gamma distribution with parameters αi+
∑

j∈N̄i [(nj+βjδ
−1
j )aj,0−αj] and βi+

∑
j∈N̄i njδj.

The subsequent optimal action at time 1 and the resultant Bayesian heuristics are as claimed
in Theorem 3.3 with σi = 1 for all i ∈ [n]. Here if we let αi, βi → 0 and δi = δ > 0

for all i, then εi = 0 for all i and the coefficients Tij = nj/
∑

p∈N̄i np > 0 again specify a
convex combination:

∑
j∈N̄i Tij = 1 for all i as in the DeGroot model. In the following two

subsections, we shall further explore this correspondence with the DeGroot updates and the
implied asymptotic consensus among the agents.

3.2.1 Linear Updating and Convergence

In general, the constant terms εi in Theorem 3.3 depend on the neighboring prior param-
eters αj, j ∈ Ni and can be non-zero. Accumulation of constant terms over time when
ρ(T) ≥ 1 prevents the action profiles from converging to any finite values or may cause
them to oscillate indefinitely (depending upon the model parameters). However, if the prior
parameters are vanishingly small, then the affine action updates in Theorem 3.3 reduce to
linear update and εi = 0. This requirement on the prior parameters is captured by our next
assumption.
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Assumption 3.2 (Non-informative priors). For a member V(·;α,β) of the conjugate family
Fγ,η we denote the limit limαi,βi→0 V(·;α,β) by V∅(·) and refer to it as the non-informative
(and improper, if V∅(·) 6∈ Fγ,η) prior. 1 All agents start from a common non-informative
prior: Vi(·) = V∅(·), ∀i.

As the name suggest non-informative priors do not inform the agent’s action at time 0
and the optimal action is completely determined by the observed signal si,p : p ∈ [ni] and
its likelihood structure, parameterized by σi and δi. If we let αi, βi → 0 in the expressions
of Tij and εi from Theorem3.3, then the affine action updates reduce to linear combinations
and the succeeding corollary is immediate.

Corollary 3.1 (Linear updating). Under the exponential family signal-utility structure (As-
sumption 3.1) with non-informative priors (Assumption 3.2); the Bayesian heuristics de-
scribe each updated action ai,t as a linear combination of the neighboring actions aj,t−1, j ∈
N̄i: ai,t =

∑
j∈N̄i Tijaj,t−1, where Tij = δiσjnj/(σi

∑
p∈N̄i npδp).

The action profiles under Corollary 3.1 evolve as a homogeneous positive linear discrete-
time system: at+1 = (T ⊗ Ik)at and if the spectral radius of T is strictly less than unity,
then limt→∞ at = 0. For a strongly connected social network with Tii > 0 for all i the
Perron-Frobenius theory [115, Theorems 1.5 and 1.7] implies that T has a simple posi-
tive real eigenvalue equal to ρ(T). Moreover, the left and right eigenspaces associated
with ρ(T) are both one-dimensional with the corresponding eigenvectors l = (l1, . . . , ln)

T

and r = (r1, . . . , rn)
T , uniquely satisfying ‖l‖2 = ‖r‖2 = 1, li > 0, ri > 0, ∀i and∑n

i=1 liri = 1. The magnitude of any other eigenvalue of T is strictly less than ρ(T). If
ρ(T) = 1, then limt→∞ at = limt→∞(T t ⊗ Ik)a0 = (rl

T ⊗ Ik) a0; in particular, the asymp-
totic action profile may not represent a consensus although every action converges to some
point within the convex hull of the initial actions {ai,0, i ∈ [n]}. The asymptotic actions
also deviate from the efficient actions defined as follows:

Definition 3.1 (Efficiency of the group decision outcome). The efficient action of an agent
in the group decision process is her expected utility maximizing action, given her Bayesian
posterior belief subject to all the private signals of all agents across the network.

1Conjugate priors offer a technique for deriving the prior distributions based on the sample distribution
(likelihood structures). However, in lack of any prior information it is impossible to justify their applica-
tion on any subjective basis or to determine their associated parameters for any agent. Subsequently, the
use of non-informative priors is suggested by Bayesian analysts and various techniques for selecting non-
informative priors is explored in the literature [113]. Amongst the many proposed techniques for selecting
non-informative priors, Jeffery’s method sets its choice proportional to the square root of Fisher’s informa-
tion measure of the likelihood structure [114, Section 3.5.3], while Laplace’s classical principle of insufficient
reason favors equiprobability leading to priors which are uniform over the parameter space.
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If ρ(T) > 1, then the linear discrete-time dynamics is unstable and the action profiles
may increase or decrease without bound, pushing the decision outcome to extremes. Thus,
we can associate ρ(T) > 1 to cases of polarizing group interactions.

3.2.2 DeGroot Updates, Consensus, and Efficiency

In order for the linear action updates in Corollary 3.1 to constitute a convex combination as
in the DeGroot model1, we need to introduce some additional restrictions on the likelihood
structure of the private signals.

Assumption 3.3 (Locally balanced likelihoods). The likelihood structures given in (3.2.1)
are called locally balanced if for all i ∈ [n], (δi/σi) = (

∑
j∈N̄i δjnj) /

∑
j∈N̄i σjnj.

Assumption 3.3 signifies a local balance property for the two exponential family pa-
rameters σi and δi, across every neighborhood in the network. In particular, we need for
the likelihood structures of every agent i and her neighborhood to satisfy: δi

∑
j∈N̄i σjnj

= σi
∑

j∈N̄i δjnj. Since parameters σi and δi are both measures of accuracy or precision
for private signals of agent i, the balance condition in Assumption 3.3 imply that the signal
precisions are spread evenly over the agents; i.e. the quality of observations obey a rule of
social balance such that no agent is in a position of superiority to everyone else. Indeed,
fixing δi = δ for all i, the latter condition reduces to a harmonic property for the parame-
ters σi, when viewed as a function of their respective nodes (cf. [129, Section 2.1] for the
definition and properties of harmonic functions):

σi =
∑
j∈N̄i

njσj∑
k∈N̄i nk

, δi = δ,∀i. (3.2.2)

However, in a strongly conceded social network (3.2.2) cannot hold true unless σi is a
constant: σi = σ for all i. Similarly, when σi = σ is a constant, then under Assumption
3.3 δi is spread as a harmonic function over the network nodes, and therefore can only take

1The use of linear averaging rules for modeling opinion dynamics has a long history in mathematical soci-
ology and social psychology [116]; their origins can be traced to French’s seminal work on“A Formal Theory
of Social Power” [117]. This was followed up by Harary’s investigation of the mathematical properties of
the averaging model, including the consensus criteria, and its relations to Markov chain theory [118]. This
model was later generalized to belief exchange dynamics and popularized by DeGroot’s seminal work [42]
on linear opinion pools. In engineering literature, the possibility to achieve consensus in a distributed fashion
(through local interactions and information exchanges between neighbors) is very desirable in a variety of
applications such as load balancing [119], distributed detection and estimation [120–122], tracking [123],
sensor networks and data fusion [124, 125], as well as distributed control and robotics networks [126, 127].
Early works on development of consensus algorithms originated in 1980s with the works of Tsitsiklis et.al
[128] who propose a weighted average protocol based on a linear iterative approach for achieving consensus:
each node repeatedly updates its value as a weighted linear combination of its own value and those received
by its neighbors.
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a constant value in a strongly connected network: δi = δ for all i, cf. [129, Section 2.1,
Maximum Principle]. In particular, fixing either of the parameters σi or δi for all agents
and under the local balance condition in Assumption 3.3, it follows that the other parameter
should be also fixed across the network; hence, the ratio σi/δi will be a constant for all i.
Later when we consider the efficiency of consensus action we introduce a strengthening
of Assumption 3.3, called globally balanced likelihood (cf. Assumption 3.4), where the
ratio δi/σi should be a constant for all agents across the network. Examples 1 and 2 above
provide two scenarios in which the preceding balancedness conditions may be satisfied: (i)
having σi = δi for all i, as was the case with the Gaussian signals in Example 1, ensures
that the likelihoods are globally balanced; (ii) all agents receiving i.i.d. signals from a
common distribution in Examples 2 (Poisson signals with the common rate θ and common
exposure δ) makes a case for likelihoods being locally balanced.

Theorem 3.6 (DeGroot updating and consensus). Under the exponential family signal-
utility structure (Assumption 3.1), with non-informative priors (Assumption 3.2) and lo-
cally balanced likelihoods (Assumption 3.3); the updated action ai,t is a convex combina-
tion of the neighboring actions aj,t−1, j ∈ N̄i: ai,t =

∑
j∈N̄i Tijaj,t−1,

∑
j∈N̄i Tij = 1 for all i.

Hence, in a strongly connected social network the action profiles converge to a consensus,
and the consensus value is a convex combination of the initial actions ai,0 : i ∈ [n].

In light of Theorem 3.6, it is of interest to know if the consensus action agrees with
the minimum variance unbiased estimator ofmi,θ given all the observations of every agent
across the network, i.e. whether the Bayesian heuristics efficiently aggregate all the infor-
mation amongst the networked agents. Our next result addresses this question. For that to
hold we need to introduce a strengthening of Assumption 3.3:

Assumption 3.4 (Globally balanced likelihoods). The likelihood structures given in (3.2.1)
are called globally balanced if for all i ∈ [n] and some common constant C > 0, δi/σi =
C.

In particular, under Assumption 3.4, σiδj = σjδi for all i, j, and it follows that the local
balance of likelihoods is automatically satisfied. According to Definition 3.1, the consensus
action is efficient if it coincides with the minimum variance unbiased estimator of mi,θ for
all i and given all the observations of every agent across the network. Our next result
indicates that global balance is a necessary condition for the agents to reach consensus on a
globally optimal (efficient) action. To proceed, let the network graph structure be encoded
by its adjacency matrix A defined as [A]ij = 1 ⇐⇒ (j, i) ∈ E for i 6= j, and [A]ij = 0

otherwise. Following the the common convention, we consider the adjacency matrix A
with zero diagonals. To express the conditions for efficiency of consensus, we need to
consider the set of all agents who listen to the beliefs of a given agent j; we denote this set
of agents by N̄ out

j := {i ∈ [n] : [I + A]ij = 1} and refer to them as the (self-inclusive)
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out-neighborhood of agent j. This is in contrast to her (self-inclusive) neighborhood N̄j,
which is the set of all agents whom she listens to. Both sets N̄j and N̄ out

j include agent j as
a member.

Theorem 3.7 ((In-)Efficiency of consensus). Under the exponential family signal-utility
structure (Assumption 3.1) and with non-informative priors (Assumption 3.2); in a strongly
connected social network, the agents achieve consensus at an efficient action if, and only
if, the likelihoods are globally balanced and

∑
p∈N̄outj

npδp =
∑

p∈N̄i npδp, for all i and j.

The efficient consensus action is then given by a? =
∑n

j=1

(
δjnjaj,0/

∑n
p=1 npδp

)
.

Following our discussion of Assumption 3.3 and equation (3.2.2), we pointed out that if
either of the two parameters σi and δi that characterize the exponential family distribution
of (3.2.1) are held fixed amongst the agents, then the harmonicity condition required for
the local balancedness of the likelihoods implies that the other parameter is also fixed for
all the agents. Therefore the local balancedness in many familiar cases (see Example 3.5)
restricts the agents to observing i.i.d. signals: allowing heterogeneity only in the sample
sizes, but not in the distribution of each sample. This special case is treated in our next
corollary, where we also provide the simpler forms of the Bayesian heuristics and their
linearity coefficients in the i.i.d. case:

Corollary 3.2 (DeGroot learning with i.i.d. samples). Suppose that each agent i ∈ [n]

observes ni i.i.d. samples belonging to the same exponential family signal-utility structure
(Assumption 3.1 with σi = σ and δi = δ for all i). If the agents have non-informative priors
(Assumption 3.2) and the social network is strongly connected, then the (no-recall) heuris-
tic agents update their action according to the linear combination: ai,t =

∑
j∈N̄i Tijaj,t−1,

where Tij = nj/
∑

p∈N̄i np, and reach a consensus. The consensus action is efficient if, and
only if,

∑
p∈N̄outj

np =
∑

p∈N̄i np for all i and j, and the efficient consensus action is given

by a? =
∑n

j=1

(
aj,0nj/

∑n
p=1 np

)
.

It is notable that the consensus value pinpointed by Theorem 3.6 does not necessarily
agree with the MVUE of mi,θ given all the private signals of all agents across the net-
work; in other words, by following Bayesian heuristics agents may not aggregate all the
initial data efficiently. As a simple example, consider the exponential family signal-utility
structure with non-informative priors (Assumptions 3.1 and 3.2) and suppose that every
agent observes an i.i.d. sample from a common distribution L(·|θ; 1, 1). In this case, the
action updates proceed by simple iterative averaging: ai,t = (1/|N̄i|)

∑
j∈N̄i aj,t−1 for all

i ∈ [n] and any t ∈ N. For an undirected graph G it is well-known that the asymp-
totic consensus action following simple iterative averaging is the degree-weighted average∑n

i=1(deg(i)/|E |)ai,0, cf. [130, Section II.C]; and the consensus action is different form the
global MVUE a? = (1/n)

∑n
i=1 ai,0 unless the social network is a regular graph in which

56



case, deg(i) = d is fixed for all i, and |E | = n · d. In Appendix E, we consider the gen-
eral problem of minimum variance estimation of a complete sufficient statistic from several
i.i.d. samples that the networked agents collect. We rely on linear averaging to combine
the observations of all agents; moreover, when the agents receive streams of data over time,
we modify the update rule to accommodate the most recent observations and demonstrate
the efficiency of our algorithm by proving convergence to the globally efficient estimator
given the observations of all agents. We supplement these results by investigating the rate
of convergence and providing finite-time performance guarantees when applicable.

Remark 3.8 (Efficiency of Balanced Regular Structures). In general, if we assume that all
agents receive the same number of i.i.d. samples from the same distribution, then the condi-
tion for efficiency of consensus,

∑
p∈N̄outj

np =
∑

p∈N̄i np, is satisfied for balanced regular
structures. In such highly symmetric structures, the number of outgoing and incoming links
are the same for every node and equal to a fixed number d.

Our results shed light on the deviations from the globally optimal (efficient) actions,
when consensus is being achieved through the Bayesian heuristics. This inefficiency of
Bayesian heuristics in globally aggregating the observations can be attributed to the agents’
naivety in inferring the sources of their information, and their inability to interpret the
actions of their neighbors rationally, [130]; in particular, the more central agents tend to
influence the asymptotic outcomes unfairly. This sensitivity to social structure is also due
to the failure of agents to correct for the repetitions in the sources of the their information:
agent i may receive multiple copies that are all influenced by the same observations from
a far way agent; however, she fails to correct for these repetitions in the sources of her
observations, leading to the co-called persuasion bias, [47].

3.3 Log-Linear Belief Updates
When the state space Θ is finite, the action space is the probability simplex and the agents
have a quadratic utility that measures the distance between their action and the point mass
on the true state, the communication structure between the agents is rich enough for them
to reveal their beliefs at every time period, as in Section 2.2. The Bayesian heuristic in this
case leads to a log-linear updating of beliefs.

We can follow the steps of Appendix A.13 to derive the Bayesian heuristic fi in (3.1.2)
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by replicating the time-one Bayesian belief update for all future time-steps:1

µi,t(θ
′) =

µi,t−1(θ
′)
(∏

j∈Ni
µj,t−1(θ

′)

νj(θ ′)

)
∑

θ̃∈Θ µi,t−1(θ̃)
(∏

j∈Ni
µj,t−1(θ̃)

νj(θ̃)

) , for all θ ′ ∈ Θ and at any t > 1. (3.3.1)

Remark 3.9 (History-neglect and no-Recall). In writing (3.3.1), every time agent i regards
each of her neighbors j ∈ N̄i as having started from some prior belief νj(·) and arrived at
their currently reported belief µj,t−1(·) upon observing their private signals, hence rejecting
any possibility of a past history, or learning and correlation between their neighbors. Such
a rule is of course not the optimum Bayesian update of agent i at any step t > 1, because
the agent is not taking into account the complete observed history of beliefs and is instead,
basing her inference entirely on the initial signals and the immediately observed beliefs.

Remark 3.10 (Generalization to one-step recall belief updates). In updating her belief at
time t according to (3.3.1), agent i is implicitly assuming that each of her neighbors, j ∈ Ni,
have inferred their reported beliefs at time t − 1, µj,t−1(·), from a fixed prior, νj(·). To
improve on this assumption, one can instead use each neighbor’s own beliefs at time t− 2
for the denominators of the multiplicative belief ratio terms in (3.3.1). This modifications
requires only a single unit of memory and leads to the following update rule:

µi,t(θ
′) =

µi,t−1(θ
′)
(∏

j∈Ni
µj,t−1(θ

′)

µj,t−2(θ
′)

)
∑

θ̃∈Θ µi,t−1(θ̃)
(∏

j∈Ni
µj,t−1(θ̃)

µj,t−2(θ̃)

) , for all θ ′ ∈ Θ and at any t > 1. (3.3.2)

This requires agent i to remember the penultimate beliefs of her neighbors when interpret-
ing their most recent reports; hence, relaxing the no-recall constraint. In Appendix F, we
analyze the evolution of beliefs when the agents interact and update their beliefs according

1It is notable that the Bayesian heuristic in (3.3.1) has a log-linear structure. Geometric averaging and
logarithmic opinion pools have a long history in Bayesian analysis and behavioral decision models [131, 132]
and they can be also justified under specific behavioral assumptions [45]. The are also quite popular as a
non-Bayesian update rule in engineering literature for addressing problems such as distributed detection and
estimation [133–137]. In [137] the authors use a logarithmic opinion pool to combine the estimated posterior
probability distributions in a Bayesian consensus filter; and show that as a result: the sum of KullbackLeibler
divergences between the consensual probability distribution and the local posterior probability distributions
is minimized. Minimizing the sum of KullbackLeibler divergences as a way to globally aggregate locally
measured probability distributions is proposed in [138, 139] where the corresponding minimizer is dubbed
the KullbackLeibler average. Similar interpretations of the log-linear update are offered in [140] as a gradient
step for minimizing either the KullbackLeibler distance to the true distribution, or in [141] as a posterior
incorporation of the most recent observations, such that the sum of KullbackLeibler distance to the local
priors is minimized; indeed, the Bayes’ rule itself has a product form and the Bayesian posterior can be
characterized as the solution of an optimization problem involving the KullbackLeibler divergence to the
prior distribution and subjected to the observed data [142].
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to (3.3.2). In particular, we show that (3.3.2) implements the Bayesian (rational) belief
update for agent i, where the network structure is a directed rooted tree, rooted at node i.
Hence, the update rule in (3.3.2) can also describe the behavior of an agent who updates
her belief as if the group structure is a rooted directed tree. The bounded rationality, in this
case, arise from the agent’s “naivety” in regarding the actual complex network structure as
a rooted directed tree. Other authors have also pointed out the grounds for such naivety by
processing the streaming information from neighboring agents as independent sources [57,
Remark V.4].

Both the linear action updates studied in the previous section as well as the weighted
majority update rules that arise in the binary case and are studied in [107, 143] have a
familiar algebraic structure over the respective action spaces (the Euclidean space Rk and
the Galois field GF(2)). In the next subsection, we develop similar structural properties
for belief updates in (3.3.1) and over the space ∆Θ, i.e. the points of the standard (m− 1)-
simplex. In particular, ∆Θ can be endowed with an addition and a subtraction operation as
well as an identity element (the uniform distribution over the state statesΘ). In the resultant
abelian group, the updated belief in (3.3.1) can be expressed as an addition of the self and
neighboring beliefs subtracted by their priors, cf. (3.3.3).1

3.3.1 An Algebra of Beliefs

Given two beliefs µ1(·) and µ2(·) over Θ we denote their “addition” as

µ1 ⊕ µ2(θ ′) =
µ1(θ

′)µ2(θ
′)∑

θ ′′∈Θ µ1(θ
′′)µ2(θ ′′)

.

Indeed, let ∆Θo denote the (m − 1)-simplex of probability measure over Θ after all the
edges are excluded; ∆Θo endowed with the ⊕ operation, constitutes a group (in the alge-
braic sense of the word). It is easy to verify that the uniform distribution µ̄(θ ′) = 1/|Θ|

acts as the identity element for the group; in the sense that µ̄⊕µ = µ for all µ ∈ ∆Θo, and

1It is instructive to also point out the propinquity to “cognitive algebras” that arise in information integra-
tion theory. Indeed, cognitive and psychological roots of the Bayesian heuristics as aggregation rules can be
traced to Anderson’s seminal theory of information integration, developed throughout 1970s and 1980s [144].
Accordingly, a so-called “value function” assigns psychological values to each of the stimuli and these psy-
chological values are then combined into a single psychological (and later an observable) response through
what is called the “integration function”. A fundamental assumption is that valuation can be represented at a
higher (molar) level as a value on the response dimension for each stimulus, as well as a weight representing
the salience of this stimulus in the overall response. These valuations and weights are themselves the result
of integration processes in the lower (molecular) level. At the heart of information integration theory is the
“cognitive algebra” which describes the rules by which the values and weights of stimuli are integrated into
an overall response [145].
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given any such µ we can uniquely identify its inverse as follows:

µinv(θ ′) =
1/µ(θ ′)∑

θ ′′∈Θ 1/µ(θ
′′)
.

Moreover, the group operation ⊕ is commutative and we can thus endow the abelian group
(∆Θo,⊕) with a subtraction operation:

µ1 	 µ2(θ ′) = µ1 ⊕ µinv2 (θ ′) =
µ1(θ

′)/µ2(θ
′)∑

θ̃∈Θ µ1(θ̃)/µ2(θ̃)
.

We are now in a position to rewrite the Bayesian heuristic for belief updates in terms of the
group operations ⊕ and 	 over the simplex interior:

µi,t = ⊕
j∈N̄i
µj,t−1 	

j∈Ni
νj. (3.3.3)

The above belief update has a structure similar to the linear action updates studied in (3.3):
the agents incorporate the beliefs of their neighbors while compensating for the neighboring
priors to isolate the observational parts of the neighbors’ reports. A key difference between
the action and belief updates is in the fact that action updates studied in Section 3.2 are
weighted in accordance with the observational ability of each neighbor, whereas the belief
updates are not. Indeed, the quality of signals are already internalized in the reported
beliefs of each neighbor; therefore there is no need to re-weight the reported beliefs when
aggregating them.

Given the abelian group structure we can further consider the “powers” of each element
µ2 = µ ⊕ µ and so on; in general for each inetger n and any belief µ ∈ ∆Θo, let the n-th
power of µ be denoted by n� µ := µn, defined as follows:1

µn(θ ′) =
µn(θ ′)∑
θ̃∈Θ µ

n(θ̃)
.

Using the ⊕ and � notations, as well as the adjacency matrix A we get:

µi,t+1 = ⊕
j∈N̄i
µj,t 	

j∈Ni
νj = ⊕

j∈[n]
([I+A]ij � µj,t) 	

j∈[n]
([A]ij � νj). (3.3.7)

1This notation extends to all real numbers n ∈ R, and it is easy to verify that the following distributive
properties are satisfied:

n� (µ1 ⊕ µ2) = (n� µ1)⊕ (n� µ2),
(m+ n)� µ1 = (m� µ1)⊕ (n� µ1),

(m.n)� µ1 = m� (n� µ1),

for allm,n ∈ R and µ1, µ2 ∈ ∆Θo.
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With some abuse of notation, we can concatenate the network beliefs at every time t into a
column vector µt = (µ1,t, . . . ,µn,t)

T and similarly for the priors ν = (ν1, . . . , νn)
T ; thus

(3.3.7) can be written in the vectorized format by using the matrix notation as follows:

µt = {(I+A)� µt−1}	 {A� ν} . (3.3.8)

Iterating over t and in the common matrix notation we obtain:

µt =
{
(I+A)t � µ0

}
	
{
(
∑t

τ=0(I+A)
τA)� ν

}
. (3.3.9)

The above is key to understanding the evolution of beliefs under the Bayesian heuristics in
(3.3.1), as we will explore next. In particular, when all agents have uniform priors νj = µ̄
for all j, then (3.3.8) and (3.3.9) simplify as follows: µt = (I+A)�µt−1 = (I+A)t�µ0.
This assumption of a common uniform prior is the counterpart of Assumption 1 (non-
informative priors) in Subsection 3.2.1, which paved the way for transition from affine
action updates into linear ones. In the case of beliefs over a finite state spaceΘ, the uniform
prior µ̄ is non-informative. If all agents start form common uniform priors, the belief update
in (3.3.1) simplifies to:

µi,t(θ
′) =

∏
j∈N̄i µj,t−1(θ

′)∑
θ̃∈Θ
∏

j∈N̄i µj,t−1(θ̃)
. (3.3.10)

Our main focus in the Subsection 3.3.2 is to understand how the individual beliefs
evolve under (3.3.1), or (3.3.10) which is a spacial case of (3.3.1). The gist of our analy-
sis is encapsulated in the group theoretic iterations: µt = (I + A)t � µ0, derived above
for the common uniform priors case. In particular, our understanding of the increasing
matrix powers (I + A)t plays a key role. When the network graph G is strongly con-
nected, the matrix I + A is primitive. The Perron-Frobenius theory [115, Theorems 1.5
and 1.7] implies that I+A has a simple positive real eigenvalue equal to its spectral radius
ρ(I + A) = 1 + ρ, where we adopt the shorthand notation ρ := ρ(A). Moreover, the
left and right eigenspaces associated with this eigenvalue are both one-dimensional and the
corresponding eigenvectors can be taken such that they both have strictly positive entries.
The magnitude of any other eigenvalue of I + A is strictly less than 1 + ρ. Hence, the
eigenvalues of I +A denoted by λi(I +A), i ∈ [n], can be ordered in their magnitudes as
follows: |λn(I+A)| ≤ |λn−1(I+A)| ≤ . . . < λ1(I+A) = 1+ρ. Subsequently, we can em-
ploy the eigendecomposition of (I+A) to analyze the behavior of (I+A)t+1. Specifically,
we can take a set of bi-orthonormal vectors li, ri as the left and right eigenvectors corre-
sponding to the ith eigenvalue of I+A, satisfying: ‖li‖2 = ‖ri‖2 = 1, l

T

i ri = 1 for all i and
l
T

i rj = 0, i 6= j; in particular, the left eigenspace associated with ρ is one-dimensional with
the corresponding eigenvector l1 = α = (α1, . . . , αn)

T , uniquely satisfying
∑n

i=1 αi = 1,
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αi > 0, ∀i ∈ [n], and αTA = (ρ + 1)αT . The entry αi is called the centrality of agent i
and as the name suggests, it measures how central is the location of agent in the network.
We can now use the spectral representation of A to write [111, Section 6]:

(I+A)t = (1+ ρ)t

(
r1α

T

+

n∑
i=2

(λi(I+A)/(1+ ρ))
tril

T

i

)
. (3.3.11)

Asymptotically, we get that all eigenvalues other than the Perron-Frobenius eigenvalue 1+ρ
are subdominant; hence, (I+A)t → (1+ ρ)tr1α

T

and µt = (1+ ρ)tr1α
T �µ0 as t→∞;

the latter holds true for the common uniform priors case and also in general, as we shall
see in the proof of Theorem 3.11.

3.3.2 Becoming Certain about the Group Aggregate

We begin our investigation of the evolution of beliefs under (3.3.1) by considering the
optimal response (belief) of an agents who has been given access to the set of all private
observations across the network; indeed, such a response can be achieved in practice if
one follows Kahneman’s advice and collect each individual’s information privately before
combining them or allowing the individuals to engage in public discussions [9, Chapter 23].
Starting from the uniform prior and after observing everybody’s private data our aggregate
belief about the truth state is given by the following implementation of the Bayes rule:

µ?(θ ′) =

∏n
j=1 `j(sj|θ

′)∑
θ̃∈Θ
∏n

j=1 `j(sj|θ̃)
. (3.3.12)

Our next theorem describes the asymptotic outcome of the group decision process when
the agents report their beliefs and follow the Bayesian heuristic (3.3.1) to aggregate them.
The outcome indicated in Theorem 3.11 departs from the global optimum µ? in two ma-
jor respects. Firstly, the agents reach consensus on a belief that is supported over Θ3

:= arg maxθ̃∈Θ
∑n

i=1 αi log(`i(si|θ̃)), as opposed to the global (network-wide) likelihood
maximizer Θ? := arg maxθ̃∈Θ µ

?(θ̃) = arg maxθ̃∈Θ
∑n

i=1 log(`i(si|θ̃)); note that the signal
log-likelihoods in the case of Θ3 are weighted by the centralities (αi) of their respective
nodes. Secondly, the consensus belief is concentrated uniformly over Θ3, its support does
not include the entire state space Θ and those states which score lower on the centrality-
weighted likelihood scale are asymptotically rejected as a candidate for the truth state; in
particular, if {θ3} = Θ3 is a singlton, then the agents effectively become certain about the
truth state of θ3, in spite of their essentially bounded aggregate information and in contrast
with the rational (optimal) belief µ? that is given by the Bayes rule in (3.3.12) and do not
discredit or reject any of the less probable states. This unwarranted certainty in the face
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of limited aggregate data is a manifestation of the group polarization effect that derive the
agents to more extreme beliefs, rejecting the possibility of any alternatives outside of the
most probable states Θ3.

Theorem 3.11 (Certainty about the group aggregate). Under the no-recall belief update
(3.3.1), withΘ3 := arg maxθ̃∈Θ

∑n
i=1 αi log(`i(si|θ̃)), we have that limt→∞ µi,t(θ ′) = 1/|Θ3|

for θ ′ ∈ Θ3 and limt→∞ µi,t(θ ′) = 0 for θ ′ 6∈ Θ3. In particular, if the sum of signal log-
likelihoods weighted by node centralities is uniquely maximized by θ3, i.e. {θ3} = Θ3,
then limt→∞ µi,t(θ3) = 1.
Remark 3.12 (Relative efficiency of balanced regular networks). The fact that log-likelihoods
in Θ3 are weighted by the node centralities is a source of inefficiency for the asymptotic
outcome of the group decision process. This inefficiency is warded off in especially sym-
metric typologies, where in and out degrees of all nodes in the network are the same. In
these so-called balanced regular digraphs, there is a fixed integer d such that all agents
receive reports from exactly d agents, and also send their reports to some other d agents;
d-regular graphs are a special case, since all links are bidirectional and each agent sends her
reports to and receive reports from the same d agents. In such structures α = (1/n)1 so
that Θ? = Θ3 and the support of the consensus belief identifies the global maximum like-
lihood estimator (MLE); i.e. the maximum likelihood estimator of the unknown θ, given
the entire set of observations from all agents in the network.

In the next subsection, we use the insights from the no-recall belief exchange model
to propose a coordination scheme for teaming agents across several time-steps without
exposing them to redundant beliefs.

3.3.3 Teaming for Efficient Belief Exchange subject

Studies in committee mechanism design [146, 147], and Group Decision Support Sys-
tems (GDSS) [148], strive to construct mechanisms for information aggregation so that the
group members arrive at optimal results. The overconfidence that Theorem 3.11 predicts as
a result of redundancy in aggregated beliefs has many adverse consequences to the health,
wealth and welfare of the general public: overconfident investors take on excessively risky
projects, overconfident doctors reject otherwise beneficial alternative treatments, overcon-
fident voters are susceptible to polarization and be enticed by political extremes, overconfi-
dent jurors impose excessive penalties on presumed culprits in terms of fines and damages,
etc.

We begin by the observation that the no-recall belief updates in (3.3.1) are efficient in
aggregating the observations of neighboring agents after hearing their reports at time one.
Hence, one may propose an efficient deliberation mechanism by having all agents hear
each other’s initial beliefs only once; and subsequently expect them all to hold efficient

63



beliefs at time one as predicted by (3.3.1). Indeed, such a scheme achieves efficient belief
aggregation, and the time-one beliefs of all agents would coincide with their Bayesian
posteriors given all the private signals in the network (cf. (F.0.4)). However, for large
groups the requirement to listen to reports of all other n−1 agents, all at once, may impose
excessive cognitive and communicative burdens on the agent and would thus be difficult to
implement in practice.

To mitigate the burdens of meeting in large groups, we propose the deliberations to take
place through a sequence of coordinated meetings, such that at any given period agents
meet in groups of size at most D. The question of the optimal group size D for efficient
group performance has a long history in social psychology, going back to mid-twentieth
century [149, 150]. A classic study of group size in 1958 by Slater [149] concludes that
groups of size five are most efficient for dealing with intellectual tasks that involve the
collection or exchange of information and decision-making based on the aggregate infor-
mation. The conventional wisdom is that there is an inverted-U relationship between team
size and group performance, but the exact nature of the relationship depends on the task
types and specific coordination requirements. The inverted U-relationship has been pointed
out by Steiner and others [150, 151], who articulate the trade-offs between additions of in-
dividual skills with the increasing group size, and faculty losses that are due to motivational
or coordinational shortcomings of large groups. The combination of such conflicting ef-
fects leads to an inverted-U relationship between the team size and group performance:
on the one hand, larger groups have more potential for productivity but these potentials
are compromised by the difficulties of coordination, communication and sustained motiva-
tion in large groups [152]. Determining an optimal group size in each case depends, not
only, on the task type and task requirements, but also on the social relations between group
members and other intra-group factors [153, 154]. A good rule is to have sufficiently many
members, but not greater than that [155, 156]. The authors in [157] model the quality of
organizational decisions as a function of the number of and time-commitment of individual
decision-makers and show that a limit on the optimal size follows under natural convex-
ity assumptions for the objective function and costs. Their results are especially relevant
to decision-making organizations, such as legal or medical consulting firms and the pub-
lic sector bureaus. Overall, team size is considered to be important in determining group
performance by both theoretical and experimental studies [158, 159]. It continues to at-
tract attention in social and organizational psychology for both business and management
applications [160–163].

Let Tn,D := dlog
D
(n)e, where d·e denotes the smallest integer greater than or equal

to its argument. Then a total of Tn,D time-steps would be enough to coordinate all the
necessary meetings for all the private information to be aggregated in everybody’s beliefs.
To achieve efficient belief aggregation, the meetings should be coordinated such that people
are regrouped at the end of each round, after reporting their beliefs to and hearing the beliefs
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of the other group members at that round. The regrouping should take into account the
history of interactions among agents to avoid redundancies in the aggregate belief following
no-recall heuristics. The procedure is not sensitive to the initial assignment of agents to
different subgroups, but a random assignment at t = 0 is a reasonable design choice. At
the ensuing periods t > 0, a set ofD people will be grouped together (and hear each other’s
beliefs) only if no two of them have met with each other or with a same person or with other
people who have met between themselves or with a same person, or other people who have
met with other people who have met between themselves or with a same person, and so on
and so forth. This no-redundancy requirement can be expressed inductively as follows:

Condition 3.1 (No-redundancy).

(i) Two people cannot meet if they have met with each other or with a same person.

(ii) Two people cannot meet if they have met with people who themselves cannot meet
with each other.

The following procedure ensures that the coordinated meetings satisfy the requirements
of Condition 3.1 (no-redundancy). To describe the procedure formally, let n := DTn,D ,
Xn,D,t = DTn,D−t−1 = n/Dt+1, Zn,D = n/D = DTn,D−1 = DtXn,D,t, where t indexes the
rounds of communications and Tn,D = dlog

D
(n)e is as defined above.

(A5: NO-REDUNDANCY-COORDINATION). For n people to exchange beliefs in Tn,D
rounds, with Zn,D parallel meetings during each round and at most D people in each
meeting:

1. Impose an arbitrary (possibly random) ordering ≺ on the agents and label them
accordingly: 1 ≺ 2 ≺ . . . ≺ n.

2. Add n−n dummy agents labeled by {n+1, n+2, . . . , n} to the group (if logD(n)
is an integer, then n = n is a power of D and no dummy agents are added).

3. For t = 0, . . . , Tn,D − 1, organize Zn,D = DtXn,D,t meetings in parallel, where the
participants in each meeting are indexed as follows:

{τ+ τ ′Dt + τ ′′Dt+1 : τ ′ = 0, 1, 2, . . . , D− 1}, (3.3.13)

and the range of the constants τ and τ ′′ are given by: τ = 1, 2, . . . ,Dt , and τ ′′ =
0, 1, 2, . . . , Xn,D,t− 1, generating the desired Zn,D = DtXn,D,t meetings at round t.
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According to (A5), at t = 0 people meet and learn each other’s private signals in groups
of sizeD. At t = 1,D groups of sizeD are “combined” according to the ordering that has
been imposed on the agents from step (1) of (A5): highest ranked members from each of the
D groups meet each other in a new group of size D, second highest ranked members also
meet each other, and the third highest ranked members, and so on and so forth until the least
ranked members. At the end of t = 1, there are Xn,D,1 = n/D2 groups of size D2 each.
The beliefs of the members of each subgroup aggregates all the information pertaining to
the D2 private signals that are available in the respective subgroups after the second round
of meetings (t = 1). In general, at round t, D subgroups of size Dt are combined and new
meetings are coordinated among their members (according to the ordering of the agents)
such that at the end of round t there are Xn,D,t subgroups of sizeDt+1 and the information in
each subgroup is fully aggregated among its members. In (3.3.13), τ indexes the members
of each subgroup of size Dt according to their rankings and τ ′′ indexes the Xn,D,t different
subgroups whose information will be aggregated at the end of round t. This aggregation
continues to propagate by combining eachD subgroups at every round, until the final round
(t = Tn,D − 1) where D subgroups of size DTn,D−1 will be combined. At the end of the
final round, there would be Xn,D,Tn,D−1 = 1 group of size n = DTn,D with fully aggregated
information among all members.

Example 3.13 (Six people coordinated to meet in pairs). In Fig. 3.2, we provide an example
implementation of (A5) with D = 2 and n = 6. The top diagram in Fig. 3.2 depicts the
propagation of information with advancing time steps, as groups are merged and agents are
regrouped in new pairs. The bottom diagrams of Fig. 3.2 depict the flow of information in
the network and across time as agents are regrouped according to (A5). The no-redundancy
requirement of Condition 3.1 implies that there is a unique path connecting each of the
agents at t = 0 to another agent at t = 2. Subsequently, the network is a directed rooted
tree from the viewpoint of each of the agents at the end of the meetings. The coordination
imposed by (A5) ensures that after Tn,D rounds there are n rooted spanning trees, one for
each agent, giving them access to the aggregate information with no redundancy (see Fig.
3.2, the diagram on the bottom left).

It is worth highlighting that if we do not follow a coordinated schedule, then situations
may arise where reaching an optimal belief becomes impossible, given the history of past
meetings, even if that history has not expose the agents to any redundancy hitherto. In the
example above with n = 6 and D = 2, suppose we pair the agents such that {1, 2}, {3, 4},
{5, 6} meet at time one and {2, 3}, {1, 5}, {4, 6} meet at time two. Then there is no way
to pair the agents for time three without exposing them to redundancy, and if we stop at
time two, then the beliefs are sub-optimal (there is some information missing from each
person’s belief). For example, on the one hand, agent 1 has not learned about the private
information of agents 3 or 4 and on the other hand, pairing her with any of the other agents
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Figure 3.2: Implementation of (A5) for a group with D = 2 and n = 6. Agents 7 and 8 are dummies and
whoever is paired with them at a particular round, will be idle at that round.

2, 3, 4, 5 or 6 at time three would expose her (and the agent with whom she is paired) to
some redundancy.

If the agents start from uniform common priors, then the no-recall belief update in
(3.3.1) simplifies as follows:

µi,t(θ
′) =

µi,t−1(θ
′)
∏

j∈Gi,t µj,t−1(θ
′)∑

θ̃∈Θ µi,t−1(θ̃)
∏

j∈Gi,t µj,t−1(θ̃)
. (3.3.14)

where Gi,t ⊂ [n] is the group of people with whom agent i is scheduled to meet at time
t. Under (3.3.14) and after attending Tn,D meetings all agents will hold the (common)
Bayesian aggregate belief in (3.3.12). However, if different agents start with different priors
then after no-recall updating they will each hold the Bayesian posterior belief given all the
information available in the network subject to their own priors (cf. (F.0.4) in Appendix F).
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Chapter 4

Learning from Stream of Observations

In this chapter, we investigate the no-recall heuristic behaviors when the agents
observe a stream of private signals in addition to each other’s actions. As be-
fore, we present the implications of various choices for the structure of the
action space and utility functions for such agents and investigate the properties
of learning, convergence, and consensus in special cases. The chief question
of interest is whether the agents, after being exposed to sequence of private ob-
servations and while communicating with each other, can learn the truth using
the Bayesian without recall update rules. This learning framework in which
agents have access to an stream of new observations is in contrast with the
group decision model of the previous chapter; the difference being in the fact
that there the agents have a single initial observation and engage in group deci-
sion making to come up with the best decision that aggregates their individual
private data with those of the other group members.1,2

1The following papers cover the results of this chapter: [74, 105, 107, 164–167].
2Our initial results on applying the no-recall idea to the case of two communicating agents with stream-

ing observations (Example 4.3) was derived in collaboration with Pooya Molavi. Our results in Subsection
4.3.3 (Learning without recall by random walks on directed graphs) are derived in collaboration with Shahin
Shahrampour.
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In Section 4.2 we specialize the no-recall model to a binary state, signal, and action space
and investigate the evolution of actions in the resultant Ising model. We show that the
no-recall action updates in this case are given by weighted majority and threshold rules
that linearly combine the observed binary actions and log-likelihoods of private signal.
We show that under these update rules the action profiles evolve as a Markov chain on
the Boolean cube and that the properties of consensus and learning are subsequently deter-
mined by the equilibria of this Markov chain. Next in Section 4.3 we analyze the case where
the network agents are announcing their beliefs at every epoch and the no-recall updates
become log-linear, similar to Section 3.3 with the added complexity of having streaming
observations. Naivety of agents when they have access to a stream of observations impedes
their ability to learn; except in simple social structures such as cycles or rooted trees. We
explain how the circular no-recall updates generalize to any strongly connected topology
if agents choose a neighbor randomly at every round and restrict their belief update to the
selected neighbor each time.

4.1 The No-Recall Model Applied to Streaming Data
In this section, we consider how the no-recall framework may be applied in a setting, where
the agents are observing a stream of private signals that arrive sequentially at every time
period, in addition to observing each other’s actions. The following examples help highlight
the complexities of inference from social data when it is coupled with streaming data.

Example 4.1 (Decisions of a Single Agent in a Binary World). For clarity of exposition
we consider a single agent, i, who observes binary signals si,t ∈ {±1} and takes actions
ai,t ∈ {±1} at every instant t ∈ N0. She lives in a binary world were the truth θ can take
one of the two values±1 with equal probability (cf. Fig. 1.3); and her actions are rewarded
by +1 if ai,t = θ and are penalized by −1 otherwise. Suppose further that her probability
of receiving the signal θ is p > 0.5; so that

Pθ{si,t = θ} = 1− Pθ{si,t = −θ} = p > 0.5 .

We assume that the agent is myopic so that at every time t she is only concerned about
her immediate reward at that decision epoch. Consider the decision problems of agent
i at every time instant t ∈ N0; to model them as Markov decision processes we de-
fine her state as the collection of all private signals that she would ever observe: s∞ :=

(si,0, . . . , si,t, . . .) ∈ SN0
i . Subsequently, at any time t she has only partial knowledge of her

state. Let st := (si,0, . . . , si,t) be the collection of all private signals that is revealed to her
up until time t. Her expected reward from taking an action ai,t is then given by

r(ai,t, st) = Pθ{ai,t = θ | st}− Pθ{ai,t 6= θ | st} = 2Pθ{ai,t = θ | st}− 1.
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Since both {θ = +1} and {θ = −1} are initially equally likely, the agents’ optimal decisions
is given by:

a?
i,t =

{
+1, if P+1{st} ≥ P−1{st},
−1, otherwise.

(4.1.1)

Using the likelihood ratio statistics

P+1{st}
P−1{st}

=

(
p

1− p

)∑t
τ=0 si,τ

,

we can rewrite (4.1.1) as a threshold rule in terms of the sufficient statistic Si,t =
∑t

τ=0 si,τ
that is the running total of the observed signals:

a?
i,t =

{
+1, if Si,t ≥ 0,
−1, otherwise.

(4.1.2)

Example 4.2 (Two Communicating Agents). The authors in [56] have considered more
sophisticated scenarios involving two agents, one of whom (called j) observes the other’s
(called i) actions (unidirectionally) in addition to her own sequence of private signals. They
distinguish two cases: in case one the more informed agent j only observes her neighbor’s
penultimate action ai,t−1; in case two she observes the whole sequence of actions taken
by her neighbor, (ai,0, . . . , ai,t−1), and use them in her decisions. The optimal (Bayesian)
decision for agent j in both cases can be derived as threshold rules on the sum Sj,t; how-
ever, the respective thresholds are time-varying and more complex. In particular, if agent
j in addition to her private signals also observes the last action of agent i, who only ob-
serves private signals, then the optimal action of agent j involves a time-varying threshold
expressed below, while the optimal action of agent i is the same as (4.1.2):

a?
j,t =

{
sign(Sj,t), if |Sj,t| ≥ η?t ,
ai,t−1, otherwise,

where

η?t =

(
log
Pθ{ai,t−1 = θ}
Pθ{ai,t−1 6= θ}

)/( p

1− p

)
,

is set to optimally balance the probability of a mistake by agent i with the strength of
private signals of agent j; thus enabling the latter to decide whether to imitate her neighbor
or else disregard her neighbors’ action and act based on her own signals. If j observes
the entire sequence of actions taken by i the optimal threshold depend also on the length
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of last run that is the number of time periods in which agent i has taken the same action
as her last choice, cf. [56, Proposition 14]; the authors further highlight the difficulties in
the case where both agents i and j observe each other’s actions. In particular, while the
optimal decisions in the bidirectional case are not known, the increased interaction and the
more information that is available as a result of bidirectional communication do not lead to
a faster rate of learning. The slower rate of learning is caused by a process of “Bayesian
groupthink”, when the agents’ mistakes reinforce each other, thus preventing them from
taking a correct action despite the ample evidence presented by their private signals.

In general, when a rational agent observes her neighbors in a network, she should com-
pensate for repetitions in the sources of her information: the same neighbors’ actions are
repeatedly observed and neighboring actions may be affected by the past actions of the
agent herself; thence major challenges of Bayesian inference for social learning are due to
the private signals and third party interactions that are hidden from the agent. Moreover,
existence of loops in the network cause dependencies and correlations in the information
received from different neighbors, which further complicates the inference task. we now
present an application of the no-recall scheme to this streaming observations setting that
avoids the complexities of Bayesian inference in such circumstances.

For clarity of exposition in the rest of the chapter, we restrict attention to finite signal
and action spaces. Given si,0, agent i forms an initial Bayesian opinion µi,0(·) about the
value of θ, which is given by

µi,0(θ̂) =
νi(θ̂)li(si,0 | θ̂)∑
θ̃∈Θ νi(θ̃)li(si,0 | θ̃)

, ∀θ̂ ∈ Θ. (4.1.3)

She then chooses the action: ai,0 ←↩ arg maxai∈Ai
∑

θ̂∈Θ ui(ai, θ̂)µi,0(θ̂), maximizing
her expected reward: Ei,0{ui(ai,0, θ)}. Not being notified of the actual realized value for
ui(ai,0, θ), she then observes the actions that her neighbors have taken: aj,0, j ∈ Ni. Given
her extended set of observations at time t = 1, she makes a second and possibly different
move ai,1 according to

ai,1 ←↩ arg max
ai∈Ai

∑
θ̂∈Θ

ui(ai, θ̂)µi,1(θ̂), (4.1.4)

maximizing her expected pay off conditional on everything that she has observed thus far:
Ei,1{ui(ai,1, θ̂)} = E{ui(ai,1, θ̂) | si,0, aj,0 : j ∈ Ni}.

Of particular significance in our description of the behavior of agents in the succeeding
time periods t > 1, is the relation

fi(si,0, aj,0 : j ∈ Ni) := ai,1 ←↩ arg max
ai∈Ai

Ei,1{ui(ai, θ̂)},
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derived in (4.1.4), which given the observations of agent i from time t = 0, specifies her
(Bayesian) pay-off maximizing action for time t = 1. Note that in writing (4.1.4), we
assumed that the agents do not receive any private signals at t = 1 and there is therefore no
si,1 appearing in the updates of any agent i; and this convention is exactly to facilitate the
derivation of mapping fi : Si ×

∏
j∈Ni Aj → Ai, from the private signal space and action

spaces of the neighbors to succeeding actions of each agent. In every following instance we
aim to model the inferences of agents about their observations as being rational but mem-
oryless: as of those who come to know their immediate observations which include the
actions of their neighbors and their last private signals, but cannot trace these observations
to their roots and has no ability to reason about why their neighbors may be behaving the
way they do. In particular, such agents have no incentives for experimenting with false re-
ports, as their lack of memory prevents them from reaping the benefits of their experiment,
including any possible revelations that a truthful report may not reveal. Subsequently, we
argue on normative grounds that such rational but memoryless agents would replicate the
behavior of a Bayesian (fully-rational) agent between times zero and one; whence by re-
garding their observations as being direct consequences of inferences that are made based
on the initial priors, they reject any possibility of a past history beyond their immediate
observations:1

ai,t = fi (si,t, aj,t−1 : j ∈ Ni) , ∀t > 1.

On the other hand, note that rationality of agents constrains their beliefs µi,t(·) given their
immediate observations; hence, we can also write

ai,t ←↩ arg max
ai∈Ai

Ei,t{ui(ai, θ̂)}, (4.1.5)

1Memory constraints have been also looked at in the context of social learning [168, Chapter 5]. In recent
results, [169] considers the model of a decision maker who chooses between two actions with pay-offs that
depend on the true state of the world. Furthermore, the decision maker must always summarize her informa-
tion into one of finitely many states, leading to optimal decision rules that specify the transfers between states.
The problem of learning with finite memory in the context of hypothesis testing was originally formulated by
[170, 171] under memory constraints for storing the test statistics. Accordingly, while sufficient statistics are
very useful computational tools their utility for memory reduction is not clear. Subsequent results provide
sophisticated algorithms using automata to perform the task of hypothesis testing using test statistics that take
only finitely many values and to guarantee an asymptotically vanishing error probability [172–175]. More
recently, [176] have considered this problem in a setting where agents each receive an independent private
signal and make decisions sequentially. Memory in this context refers to the number of immediate prede-
cessors whose decisions are observable by any given agent at the time of making her decision. Accordingly,
while the almost sure convergence of the sequence of individual decisions to the correct state is not possible
in this finite memory setting, the authors construct decision rules that achieve convergence and learning in
probability. They next go on to consider the behavior of rational (pay-off maximizing) agents in this context
and show that in no equilibrium of the associated Bayesian game learning can occur.
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or equivalently ai,t ←↩ arg maxai∈Ai
∑

θ̂∈Θ ui(ai, θ̂)µi,t(θ̂).
We next demonstrate this procedure through an example with two agents observing

private and communicating their beliefs repeatedly.

Example 4.3 (The case of Two Agents Exchanging Beliefs). Consider first the case of
two agents, labeled one and two, which communicate with each other using a two-way
communication link. Following the formation of initial beliefs according to (4.1.3) for
j ∈ {1, 2}, the agents communicate their initial beliefs to each other, that is µ1,0(·) is made
known to agent two and µ2,0(·) is made known to agent one. Each agent now updates its
belief according to the Bayes’ rule. This, in the case of agent two, leads to the refined belief
µ2,1(·) given by:

µ2,1(θ̂) = P(θ = θ̂ | s2,0,µ1,0(·)) =
P(θ = θ̂, s2,0,µ1,0(·))
P(s2,0,µ1,0(·))

=
P(θ = θ̂, s2,0,µ1,0(·))∑
θ̃∈ΘP(θ̃, s2,0,µ1,0(·))

,∀θ̂ ∈ Θ. (4.1.6)

To calculate P(θ̃, s2,0,µ1,0(·)), ∀θ̃ ∈ Θ, proceed as follows. Conditioning on s1,0 yields:

P(θ = θ̃, s2,0,µ1,0(·)) =
∑
s∈S1

P(θ = θ̃, s2,0,µ1,0(·) | s1,0 = s)P(s1,0 = s). (4.1.7)

Next, note that if s1,0 = s, then µ1,0(·) is known deterministically, and is given by (4.1.3)
with s1,0 replaced by s. Whence, if s ∈ I1(µ1,0(·)), then P(θ = θ̃, s2,0,µ1,0(·) | s1,0 = s) =
P(θ = θ̃, s2,0 | s1,0 = s), and else P(θ = θ̃, s2,0,µ1,0(·) | s1,0 = s) = 0. Therefore, (4.1.7)
can be rewritten as:

P(θ = θ̃, s2,0,µ1,0(·)) =
∑

s∈I1(µ1,0(·))

P(θ = θ̃, s2,0 | s1,0 = s)P(s1,0 = s)

=
∑

s∈I1(µ1,0(·))

P(θ = θ̃, s2,0, s1,0 = s).

In the latter, P(·) can be expressed in terms of the signal structures and common priors as
P(θ = θ̃, s2,0, s1,0 = s) = ν(θ̃)l2(s2,0 | θ̃)l1(s | θ̃) leading to P(θ = θ̃, s2,0,µ1,0(·)) =∑

s∈I1(µ1,0(·))
ν(θ̃)l2(s2,0 | θ̃)l1(s | θ̃). Next note that for all s ∈ I1(µ1,0(·)), it is inferred

from (4.1.3) that ν(θ̃)l1(s | θ̃) = µ1,0(θ̃)
∑

θ̄∈Θ ν(θ̄)l1(s | θ̄), which along with (A.13.2)
yields:

P(θ = θ̃, s2,0,µ1,0(·)) = l2(s2,0 | θ̃)µ1,0(θ̃)
∑

s∈I1(µ1,0(·))

∑
θ̄∈Θ

ν(θ̄)l1(s | θ̄)

= l2(s2,0 | θ̃)µ1,0(θ̃)K1(µ1,0(·)). (4.1.8)
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Substituting (4.1.8) for P(θ̃, s2,0,µ1,0(·)) in (4.1.6) and canceling out K1(µ1,0(·)) from the
the numerator and denominator leads to:

µ2,1(θ̂) =
l2(s2,0 | θ̂)µ1,0(θ̂)∑
θ̃∈Θ l2(s2,0 | θ̃)µ1,0(θ̃)

, ∀θ̂ ∈ Θ, (4.1.9)

which is the Bayesian inferred belief that agent two holds about the true state of the world
θ, following its observation of the private signal s2,0 as well as agent one’s initial belief
µ1,0(·). Replacing µ2,1(·), µ1,0(·), and s2,0 with µ2,t(·), µ1,t−1(·), and s2,t in (4.1.9) leads to
a Non-Bayesian update rule for the succeeding steps t > 1, as follows:

µ2,t(θ̂) =
l2(s2,t | θ̂)µ1,t−1(θ̂)∑
θ̃∈Θ l2(s2,t | θ̃)µ1,t−1(θ̃)

, ∀θ̂ ∈ Θ. (4.1.10)

Swapping the roles of indices 1 and 2 in (4.1.10) yields the corresponding rule for agent
one. To see the distinction, consider the Bayesian opinion of agent two at time t = 2, that is
when agent two has observed two private signals s2,0 and s2,2, as well as agent one’s beliefs
µ1,1(·) and µ1,0(·). This Bayesian opinion is given for all θ̂ ∈ Θ by:

µ2,2(θ̂) =
l2(s2,2 | θ̂)l2(s2,0 | θ̂)µ1,0(θ̂)∑
θ̃∈Θ l2(s2,2 | θ̃)l2(s2,0 | θ̃)µ1,0(θ̃)

. (4.1.11)

Note that no private signals are received at time t = 1, and therefore s2,1 does not appear in
the preceding formulation. Moreover, given the knowledge of s2,0 and conditioned on the
value of s1,0 both µ1,0(·) and µ1,1(·) would be known deterministically and that is why the
latter does not appear in (4.1.11). In forming the Bayesian opinion in (4.1.11), the agent is
using the entire history of its available information up to time t = 2. This is in contrast with
the opinion suggested by (4.1.10), which takes into account only the immediately available
private signal and the other agent’s last opinion. An interesting feature of (4.1.10) is that
the agent’s own prior beliefs do not appear in their update rules. This, however, is seen to
be not true in the general case of a social network unless the agent in question has only a
single neighbor.

As a numeric example, let Θ = {1, 2, 3} and suppose that each agent i ∈ {1, 2} receives
binary private signals si,t, t > 1, with the probability of zero at each state of the world
given as follows:

likelihoods θ̂ = 1 θ̂ = 2 θ̂ = 3

l1(s1,t = 0 | θ̂) 1
3

1
3

1
4

l2(s2,t = 0 | θ̂) 1
2

1
3

1
3

At time t = 0 the state θ = 2 is realized, at which point each agent receives an
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initial signal si,0 and forms an opinion µi,0(·) using the Bayes rule (4.1.3). The agents
then communicate and update their beliefs according to (4.1.10) at every following step
of time t >. Note that at the realized state of the world Θ = 2 neither of the agents is
able to correctly infer the realized state based only on their private signals. It is because
the signal structures are such that agent one cannot distinguish between the first two states
θ̂ ∈ {1, 2} and agent two is unable to distinguish between the states θ̂ ∈ {2, 3}. Nonetheless,
the evolution of the belief dynamics and the difference between the two agents beliefs in
Figs. 4.1 and 4.5 indicate that both agents have indeed learned the true state of the world. In
other worlds, by communicating in a social network the two agents are able to effectively
combine each other’s observations so that overall they both learn the true state of the world,
while alone neither would have been able to. .
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Figure 4.1: Evolution of the first agent’s beliefs over time

We can indeed formalize the convergence result in case of two communicating agents
as a proposition:

Proposition 4.1. Suppose that θ ∈ Θ is such that for any θ̂ ∈ Θ and θ̂ 6= θ, there exist an
agent i ∈ {1, 2} with li(· | θ) 6≡ li(· | θ̂), i.e. li(s | θ) 6= li(s | θ̂) for some s ∈ Si. If
θ = θ is realized by the nature and the two agent follow the update rule in (4.1.10), then
both agents learn the true state θ of the world, P-almost surely.
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Figure 4.2: The difference in agents’ beliefs over time

Proof. For all ω ∈ Ω, let 1θ=θ(ω) = 1 if θ(ω) = θ and 1θ=θ(ω) = 0, otherwise.
Let {i, j} = {1, 2} and define Fi,t = σ (si,t, sj,t−t, si,t−2, . . . , si,1, si,0) for t odd and Fi,t =

σ (si,t, sj,t−t, . . . , si,2, sj,1, si,0) for t even, as the sigma fields generated by the private signals
of the agents in alternating order. Note in particular that F0,t = σ({si,0}) and {Fi,t, t ∈ W}

is a filtration on the measure space (Ω,F ). Moreover, from the Bayes rule in (4.1.3), it
follows that:

µi,0(θ) = P{θ = θ | si,0} = E{1θ=θ | Fi,0}. (4.1.12)

Now two successive applications of (4.1.10) at times t and t− 1, yields ∀t > 1:

µi,t(θ) =
li(si,t | θ)µj,t−1(θ)∑
θ̃∈Θ li(si,t | θ̃)µj,t−1(θ̃)

,µj,t−1(θ) =
lj(sj,t−1 | θ)µi,t−2(θ)∑
θ̃∈Θ lj(sj,−1 | θ̃)µi,t−2(θ̃)

,

and replacing for µj,t−1(θ) in µi,t(θ) yields:

µi,t(θ) =
li(si,t | θ)lj(sj,t−1 | θ)µi,t−2(θ)∑
θ̃∈Θ li(si,t | θ̃)lj(sj,t−1 | θ̃)µi,t−2(θ̃)

, (4.1.13)

for all t > 1. However, starting from the Bayesian opinion in (4.1.12) the above is exactly
the Bayesian update of agent i’s belief from time t − 2 to time t, given that at time t − 1
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agent j has observed the signal sj,t−1 and at time t agent i has observed the signal si,t.
Whence, (4.1.13) can be combined with (4.1.12) to get µi,t(θ) = E{1θ=θ | Fi,t}, ∀t > 0.
The beliefs form a bounded martingale with respect to the filtration introduced above, and
stage is set for the martingale convergence theorem. Indeed, the proof is now immediate,
since as a consequence of the supposition {θ = θ} ∈ Fi,∞ and by Levy’s zero-one law
[177], limt→∞ µi,t(θ) = E{1θ=θ | Fi,∞} = 1θ=θ, P-almost surely. �

The proof verifies the intuition that by following (4.1.10), the agents can enjoy the full
benefits of each other’s observations. Indeed, (4.1.13) implies that the belief of an agent
(call it i) at time t is the Bayesian update of its belief at time t− 2, given that at time t− 1
the other agent (call it j) has observed the signal sj,t−1 and at time t, agent i has observed
the signal si,t. This further indicates that the exponential convergence rate that holds true
in the case of Bayesian learning can be applied here as well [168]. In Appendix A.13, a set
of steps that parallel (4.1.6) to (4.1.10) are followed to derive an update rule for the general
case of agents exchanging beliefs in a social network, which we discuss in Section 4.3.

In the sequel, we explore various structures for the action space and the resultant update
rules fi. In Section 4.2, we show how a common heuristic such as weighted majority can
be explained as a rational but memoryless behavior with actions taken from a binary set. In
Section 4.3, we shift focus to a finite state space and the probability simplex as the action
space. There agents exchange beliefs and the belief updates are log-linear.

4.2 Weighted Majority and Threshold Rules
In this section, we consider a binary state space Θ = {+1,−1}, and suppose that the agents
have a common binary action space Ai = {−1, 1}, for all i. Let their utilities be given by
ui(a, θ) = 21a(θ) − 1, for any agent i and all θ, a ∈ {−1, 1}; here, 1a(θ) is equal to one
only if θ = a and is equal to zero otherwise. Subsequently, the agent is rewarded by +1

every time she correctly determines the value of θ and is penalized by −1 otherwise.
We can now calculate

∑
θ̂∈Θ ui(ai, θ̂)µi,t(θ̂) = a(µi,t(+1)−µi,t(−1)) = a(2µi,t(+1)−

1), ∀a ∈ {−1, 1}; and from (4.1.5), we get1

ai,t =

{
1 if µi,t(+1) ≥ µi,t(−1),
−1 if µi,t(+1) < µi,t(−1),

(4.2.1)

We can thus proceed to derive the memoryless update rule fi under the above prescribed
settings. This is achieved by the following expression of the action update of agent i at

1In writing (4.2.1) we follow the convention that agents choose +1 when they are indifferent between
their two options. Similarly, the sign function is assumed to take the value +1 when its argument is zero.
This assumption is consistently followed everywhere throughout this paper, except in Proposition 4.2 and its
proof in Appendix A.12, see the footnote therein for further details.
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time 1. Throughout this section and without any loss of generality, we assume that θ = −1.
Recall that λ1(si) := log (`i(si|+ 1)/`i(si|− 1)) is the log-likelihood ratio of signal si.

Lemma 4.1 (Time-One Bayesian Actions). The Bayesian action of agent i at time one
following her observations of actions of her neighbors at time zero and her own private
signal at time zero is given by ai,1 = sign(

∑
j∈Ni wjaj,0 + ηi + λ1(si,0)), where wi and ηi

are constants for each i and they are completely determined by the initial prior and signal
structures of agent i and her neighbors.

The exact expressions of the constants wi, ηi and their derivations can be found in Ap-
pendix A.10. Indeed, making the necessary substitutions we derive the following memory-
less update fi for all t > 1: ai,t = sign

(∑
j∈Ni wjaj,t−1 + ηi + λ1(si,t)

)
. This update rule

has a familiar format as a weighted majority and threshold function1 with the weights and
threshold given by wi and ti,t := −λ1(si,t) − ηi, the latter being random and time-varying.

Following this model, every agent i ∈ [n] chooses her action ai,t ∈ {±1} as the sign of∑
j∈Ni wjaj,t−1 + ηi + λ1(si,t). Subsequently, in processing her available data and choos-

ing her action ai,t, every agent seeks to maximize (
∑

j∈Ni wjaj,t−1ai,t + ai,t(ηi + λ1(si,t)).
Hence, we can interpret each of the terms appearing as the argument of the sign function,
in accordance with how they influence agent i’s choice of action. In particular, the term
ηi + λ1(si,t) represents the propensity of agent i in choosing the false action θ1 := 1 at
time t, and it is determined by the log-likelihood ratio of private signal λ1(si,t), as well as
her innate tendency towards +1 irrespective of any observations. The latter is reflected in
the constant ηi := log (νi(θ1)/νi(θ2)) + logVi based on the log-ratio of her initial prior
belief and her knowledge of her neighbor’s signal structures, as captured by the constant
Vi in (A.10.2) of Appendix A.10. The latter is increasing in `j(sj | θ1) and decreasing in
`j(sj | θ2) for any fixed signal sj ∈ Sj, j ∈ Ni; cf. Lemma A.3 of Appendix A.10.

By the same token, we can also interpret the interaction terms wjaj,t−1ai,t. Lemma A.4
of Appendix A.10 establishes that constants wj are non-negative for every agent j ∈ [n].
Hence, in maximizing

∑
j∈Ni wjaj,t−1a + a(ηi + λ1(si,t)) through her choice of a ∈ ±1

at every time t, agent i aspires to align her choice with as many of her neighbors j ∈ Ni
as possible. However, in doing so she weighs more the actions of those of her neighbors

1Majority and threshold functions are studied in the analysis of Boolean functions [178, Chapter 5] and
several properties of them including their noise stability are of particular interest [179–181]. This update rule
also appears as the McCulloch-Pitts model of an artificial neuron [182], with important applications in neural
networks and computing [183]. This update rule is also important in the study of the Glauber Dynamics in
the Ising model, where the ±1 states represent atomic spins. The spins are arranged in a graph and each spin
configuration has a probability associated with it depending on the temperature and the interaction structure
[184, Chapter 15], [185]. The Ising model provides a natural setting for the study of cooperative behavior
in social networks. Recent studies have explored the applications of Ising model for analysis of social and
economic phenomena such as rumor spreading [186], study of market equilibria [187], and opinion dynamics
[188].
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j ∈ Ni who have larger constantswj. The constantwj := logWj withWj given in (A.10.3)
of Appendix A.10 is a measure of observational ability of agent j as relates to our model:
agents with large constants wj are those who hold expert opinions in the social network
and they play a major role in shaping the actions of their neighboring agents. Positivity
of wi for any i ∈ [n], per Lemma A.4 of Appendix A.10, also signifies a case of positive
externalities: an agent is more likely to choose an action if her neighbors make the same
decision.

4.2.1 Analysis of Convergence and Learning in Ising Networks

To begin with the analysis of the binary action update dynamics derived above, we intro-
duce some useful notation. For all t ∈ N0, let at := (a1,t, . . . , an,t)T be the profile of actions
taken by all agents at time t. Subsequently, we are interested in the probabilistic evolution
of the action profiles at, t ∈ N0 under the following dynamics

ai,0 = sign
(

log
νi(θ1)

νi(θ2)
+ λ1(si,0)

)
, (4.2.2)

ai,t = sign

(∑
j∈Ni

wjaj,t−1 + ηi + λ1(si,t)

)
, t ≥ 1, (4.2.3)

for all i ∈ [n]. The two constants wi and ηi for each agent i are specified in Appendix
A.10 and they depend only on the signal structure and initial prior of that agent and her
neighbors. The evolution of action profiles at in (4.2.3) specifies a finite Markov chain that
jumps between the vertices of the Boolean hyper cube, {±1}n. The analysis of the time-
evolution of action profiles is facilitated by the classical results from the theory of finite
Markov chains with the details spelled out in Appendix A.11.

If the signal structures are rich enough to allow for sufficiently strong signals (having
large absolute log-likelihood ratios), or if the initial priors are sufficiently balanced (di-
viding the probability mass almost equally between θ1 and θ2), then any action profiles
belonging to {±1}n is realizable as a0 with positive probability under (4.2.2). In particular,
any recurrent state of the finite Markov chain over the Boolean cube is reachable with pos-
itive probability and the asymptotic behavior can be only determined up to a distribution
over the first set of communicating recurrent states that is reached by at, cf. Proposition A.1
of Appendix A.11. However, if a recurrent class constitutes a singleton, then our model
makes sharper predictions: limt→∞ at almost surely exists and is identified as an absorb-
ing state of the finite Markov chain. This special case is treated next due to its interesting
implications.
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4.2.2 Equilibrium, Consensus, and (Mis-)Learning

We begin by noting that the absorbing states of the Markov chain of action profiles specify
the equilibria under the action update dynamics in (4.2.3). Formally, an equilibrium a∗ ∈
{±1}n is such that if the dynamics in (4.2.3) is initialized by a0 = a∗, then with probability
one it satisfies at = a∗ for all t ≥ 1. Subsequently, the set of all equilibria is completely
characterized as the set of all absorbing states, i.e. any action profiles a∗ ∈ {±1}n satisfying
P(a∗, a∗) = 1, where P : {±1}n × {±1}n → [0, 1] specifies the transition probabilities in
the Markov chain of action profiles, as defined in (A.11.1) of Appendix A.11. It is useful to
express this condition in terms of the model parameters as follows. The proof is included
in Appendix A.12 and with a caveat explained in its footnote.

Proposition 4.2 (Characterization of the Equilibria). An action profile (a∗1, . . . , a
∗
n) ∈

{±1}n is an equilibrium of (4.2.3) if, and only if, −minsi∈Si a
∗
i (λ1(si) + ηi) ≤

∑
j∈Ni

wja
∗
ja
∗
i , ∀i ∈ [n].

Of particular interest are the two action profiles (1, . . . , 1)T and (−1, . . . ,−1)T which
specify a consensus among the agents in their chosen actions. The preceding characteriza-
tion of equilibria is specialized next to highlight the necessary and sufficient conditions for
the agents to be at equilibrium whenever they are in consensus.

Corollary 4.1 (Equilibrium at Consensus). The agents will be in equilibrium at consensus
if, and only if, maxsi∈Si |λ1(si) + ηi| <

∑
j∈Ni wj, ∀i ∈ [n].

The requirement of learning under our model is for the agents to reach a consensus on
truth. That is for the action profiles at to converge to (θ, . . . , θ) as t → ∞. In particular,
as in Corollary 4.1, we need agents to be at equilibrium when in consensus; hence, there
would always be a positive probability for the agents to reach consensus on an untruth:
with a positive probability, the agents (mis-)learn.

Next in Section 4.3 we show that when the action space is rich enough to reveal the
beliefs of the agents, then the rational but memoryless behavior culminates in a log-linear
updating of the beliefs with the observations. The analysis of convergence and learning
under these log-linear updates consumes the bulk of that section.

4.3 Log-Linear Learning
In Appendix A.13, for a finite state space, a quadratic utility function, and with agents
taking actions over the m-dimensional probability simplex, we calculate the following
Bayesian belief at time one, in terms of the observed neighboring beliefs and private signal
at time zero. The steps are very similar to Example 4.3.
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Lemma 4.2 (Time-One Bayesian Beliefs). The Bayesian belief of agent i at time one fol-
lowing her observations of beliefs of her neighbors at time zero and her own private signal
at time zero is given by

µi,1(θ̂) =
νi(θ̂)li(si,0 | θ̂)

(∏
j∈N (i)

µj,0(θ̂)

νj(θ̂)

)
∑

θ̃∈Θ νi(θ̃)li(si,0 | θ̃)
(∏

j∈N (i)

µj,0(θ̃)

νj(θ̃)

) , ∀θ̂ ∈ Θ. (4.3.1)

Subsequently, at any time step t > 1, each agent i observes the realized values of si,t as
well as the current beliefs of her neighbors µj,t−1(·), ∀j ∈ Ni and forms a refined opinion
µi,t(·), using the following rule:

µi,t(θ̂) =

νi(θ̂)li(si,t | θ̂)

(∏
j∈Ni

µj,t−1(θ̂)

νj(θ̂)

)
∑̃
θ∈Θ

νi(θ̃)li(si,t | θ̃)

(∏
j∈Ni

µj,t−1(θ̃)

νj(θ̃)

) , (4.3.2)

for all θ̂ ∈ Θ and at any t > 1. In writing (4.3.2), every time agent i regards each of her
neighbors j ∈ Ni as having started from prior belief νj(·) and arrived at their currently
reported belief µj,t−1(·) directly, hence rejecting any possibility of a past history. This is
equivalent to the assumption that the reported beliefs of every neighbor are formed from a
private observation and a fixed prior, and not through repeated communications.

Such a rule is of course not the optimum Bayesian update of agent i’s belief at any step
t > 1, because the agent is not taking into account the complete observed history of her
private signals and neighbors’ beliefs and is instead, basing her inference entirely on the
immediately observed signal and neighboring beliefs; hence, the name memoryless. Here,
the status of a Rational but Memoryless agent is akin to a person who is possessed of a
knowledge but cannot see how she has come to be possessed of that knowledge. Likewise,
it is by the requirement of rationality in such a predicament that we impose a fixed prior
νi(·) on every agent i and carry it through for all times t. Indeed, it is the grand tradition
of Bayesian statistics, as advocated in the prominent and influential works of [189], [190],
[191], [192] and many others, to argue on normative grounds that rational behavior in a
decision theoretic framework forces individuals to employ Bayes rule and appropriate it to
their personal priors.

4.3.1 Analysis of Convergence and Log-Linear Learning

A main question of interest is whether the agents can learn the true realized value θ:
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Definition 4.1 (Learning). An agent i is said to learn the truth, if limt→∞ µi,t(θ) = 1,
Pθ-almost surely.

We begin our analysis of convergence and learning under the update rule in (4.3.2) by
considering the case of a single agent i, who starts from a prior belief νi(·) and sequentially
updates her beliefs according to Bayes rule:

µi,t(θ̂) =
µi,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µi,t−1(θ̃)`i(si,t | θ̃)
, ∀θ̂ ∈ Θ. (4.3.3)

The Bayesian belief update in (4.3.3) linearizes in terms of the log-ratio of beliefs and
signal likelihoods,φi,t(·) and λθ̌(·), leading to

φi,t(θ̌) = log

(
νi(θ̌)

νi(θ)

)
+

t∑
τ=0

λθ̌(si,τ)→ log

(
νi(θ̌)

νi(θ)

)
+ (t+ 1)Eθ {λθ̌(si,0)} , (4.3.4)

Pθ-almost surely, as t → ∞; by the strong law of large numbers [177, Theorem 22.1]
applied to the sequence of Eθ-integrable, independent and identically distributed variables:
λθ̌(si,t), t ∈ N0. In particular, ifDKL

(
`i(·|θ)||`i(·|θ̌)

)
:= −Eθ {λθ̌(si,t)} > 0, thenφi,t(θ̌)→

−∞ almost surely and agent i asymptotically rejects the false state θ̌ in favor of the true
state θ, putting a vanishing belief on the former relative to the latter. Therefore, the single
Bayesian agent following (4.3.3) learns the truth if and only if DKL

(
`i(·|θ)||`i(·|θ̌)

)
> 0

for all θ̌ 6= θ and the learning is asymptotically exponentially fast at the rate minθ̌∈Θ\{θ}
DKL

(
`i(·|θ)||`i(·|θ̌)

)
as shown in [165].1

The preceding result is also applicable to the case of a Bayesian agents with direct
(centralized) access to all observations across the network: consider an outside Bayesian
agent ô who shares the same common knowledge of the prior and signal structures with
the networked agents; in particular, ô knows the signal structures `i(·|θ̂), for all θ̂ ∈ Θ
and i ∈ [n]; thence, making the same inferences as any other agent when given access to
the same observations. Consider next a Gedanken experiment where ô is granted direct
access to all the signals of every agent at all times. The analysis leading to (4.3.4) can be
applied to the evolution of log belief ratios for ô, whose observations at every time t ∈ N0

1Note from the information inequality for the Kullback-Leibler divergence that DKL (·||·) ≥ 0 and the
inequality is strict whenever `i(·|θ̌) 6≡ `i(·|θ), i.e. ∃s ∈ Si such that `i(s|θ̌) 6= `i(s|θ) [193, Theorem 2.6.3].
Further note that whenever `i(·|θ̌) ≡ `i(·|θ) or equivalently DKL

(
`i(·|θ)||`i(·|θ̌)

)
= 0, then the two states θ̌

and θ are statically indistinguishable to agent i: there is no way for agent i to distinguish between θ̌ and θ,
based only on her received signals. This is because both θ and θ̌ induce the same probability distribution on
her sequence of observed i.i.d. signals. Since different states θ̂ ∈ Θ are distinguished through their different
likelihood functions `i(· | θ̂); the more refined such differences are, the better the states are distinguished.
Hence, the proposed asymptotic rate is one measure of resolution for the likelihood structure of agent i.
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is an element of the product space
∏

i∈[n] Si. Subsequently, the centralized Bayesian beliefs
concentrate on the true state at the asymptotically exponentially fast rate of

Rn := min
θ̌∈Θ\{θ}

DKL

∏
i∈[n]

`i(·|θ)
∣∣∣∣∣∣∣∣∏
i∈[n]

`i(·|θ̌)

 = min
θ̌∈Θ\{θ}

∑
i∈[n]

DKL

(
`i(·|θ)||`i(·|θ̌)

)
. (4.3.5)

Next to understand the evolution of beliefs under the log-linear updates in (4.3.2),
consider the network graph structure as encoded by its adjacency matrix A defined as
[A]ij = 1 ⇐⇒ (j, i) ∈ E , and [A]ij = 0 otherwise. For a strongly connected G the Perron-
Frobenius theory [115, Theorem 1.5] implies that A has a simple positive real eigenvalue,
denoted by ρ > 0, which is equal to its spectral radius. Moreover, the left eigenspace asso-
ciated with ρ is one-dimensional with the corresponding eigenvector α = (α1, . . . , αn)

T ,
uniquely satisfying

∑n
i=1 αi = 1, αi > 0, ∀i ∈ [n], and αTA = ραT . The entry αi is also

called the centrality of agent i and as the name suggests, it is a measure of how central is
the location of agent in the network. Our main result state that almost sure learning cannot
be realized in a strongly connected network unless it has unit spectral radius which is the
case only of a directed circle.

Theorem 4.4 (No Learning when Spectral Radius ρ > 1). In a strongly connected social
network and under the memoryless belief updates in (4.3.2), no agents can learn the truth
unless the spectral radius ρ = 1.

Proof outline: A complete proof is included in Appendix A.14, but here we provide a
description of the mechanism and the interplay between the belief aggregation and infor-
mation propagation. To facilitate the exposition of the underlying logic we introduce some
notation. We define a global (network-wide) random variable Φt(θ̌) :=

∑n
i=1 αiφi,t(θ̌),

where αi is the centrality of agent i and Φt(θ̌) characterizes how biased (away from the
truth and towards θ̌) the network beliefs and priors are at each point in time. In partic-
ular, if any agent is to learn the truth, then Φt(θ̌) → −∞ as t → ∞ for all the false
states θ̌ ∈ Θ \ {θ}. To proceed, we define another network-wide random variable Λt(θ̌)

:=
∑n

i=1 αiλθ̌(si,t) which characterizes the information content of the observed signals
(received information) for the entire network, at each time t. Moreover, since the re-
ceived signal vectors {(s1,t, . . . , sn,t), t ∈ N0} are i.i.d. over time, ∀θ̌ 6= θ, {Λt(θ̌), t ∈
N0} constitutes a sequence of i.i.d. random variables satisfying E

{
Λt(θ̌)

}
= −

∑n
i=1

αiDKL

(
`i(·|θ)||`i(·|θ̌)

)
6 0. In order for the agents to learn the true state of the world

based on their observations, it is necessary that at each false state θ̌ 6= θ some agent be
able to distinguish θ̌ from the truth θ, in which case E

{
Λt(θ̌)

}
< 0, and we can refer to

this criterion as global identifiablity for the true state θ. This global identifiability condi-
tion can be also viewed in the following sense: consider a gedanken experiment where an
external fully rational observer ô is granted direct access to all the signals of all agents in
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the network and assume further that she shares the same common knowledge of the prior
and signal structures with the network agents. Then ô learns the truth if, and only if, it is
globally identifiable.

In Appendix A.14 we argue that under the update rules in (4.3.2) the global belief ratio
statisticsΦt(θ̌) evolves as a sum of weighted i.i.d. variables ρτΛt−τ(θ̌):

Φt(θ̌) =

t∑
τ=0

ρτ
(
Λt−τ(θ̌) + (1− ρ)β(θ̌)

)
, (4.3.6)

where β(θ̌) :=
∑n

i=1 αi log
(
νi(θ̌)/νi(θ)

)
is a measure of bias in the initial prior beliefs.

The weights in (4.3.6) form a geometric progressions in ρ; hence, the variables increase
unbounded in their variance and convergence cannot hold true in a strongly connected
social network, unless ρ = 1. This is due to the fact that ρ upper bounds the average degree
of the graph [194, Chapter 2], and every node in a strongly connected graph has degree
greater than or equal to one, subsequently ρ ≥ 1 for all strongly connected graphs. �

Remark 4.5 (Polarization, data incest and unlearning). The unlearning in the case of ρ > 1
in Theorem 4.4, which applies to all strongly connected topologies except directed cir-
cles (where ρ = 1, see Subsection 4.3.2 below), is related to the inefficiencies associated
with social learning and can be attributed to the agents’ naivety in inferring the sources of
their information, and their inability to interpret the actions of their neighbors rationally
[195]. In particular, when ρ > 1 the noise or randomness in the agents’ observations is
amplified at every stage of network interactions; since the agents fail to correct for the
repetitions in the sources of their observations as in the case of persuasion bias argued by
DeMarzo, Vayanos and Zwiebel [47], or data incest argued by Krishnamurthy and Hoiles
[27]. When ρ > 1 the effect of the agents’ priors is also amplified through the network
interactions and those states θ̂ for which β(θ̂) > 0 in (4.3.6), will be asymptotically re-
jected as

∑t
τ=0 ρ

τ(1 − ρ)β(θ̌)→ −∞, irrespectively of the observed data Λτ(θ̌), τ ∈ N0.
This phenomenon arises as agents engage in excessive anti-imitative behavior, compensat-
ing for the neighboring priors at every period [97]. It is justified as a case of choice shift
toward more extreme opinions [5, 6] or group polarization [7, 8], when like-minded people
after interacting with each other and under the influence of their mutually positive feedback
become more extreme in their opinions, and less receptive of opposing beliefs.

4.3.2 Learning in Circles and General Connected Topologies

For a strongly connected digraph G, if ρ = 1, then it has to be the case that all nodes have
degree 1 and the graph is a directed circle. Subsequently, the progression for Φt(θ̌) in
(4.3.6) reduces to sum of i.i.d. variables in L1 and by the strong law of large numbers [177,
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Theorem 22.1], it converges almost surely to the mean value

Φt(θ̌) = β(θ̌) +

t∑
τ=0

Λτ(θ̌)→ β(θ̌) + (t+ 1)E
{
Λ0(θ̌)

} → −∞,
as t→∞, provided that E

{
Λ0(θ̌)

}
< 0, i.e. if the truth is globally identifiable. Note also

the analogy with (4.3.4), whereΛt(θ̌) is replaced by λθ̌(si,t) as both represent the observed
signal(s) or received information at time t. Indeed, if we further assume that νi(·) ≡ ν(·)
for all i, i.e. all agents share the same common prior, then (4.3.2) for a circular network
becomes

µi,t(θ̂) =
µj,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µj,t−1(θ̃)`i(si,t | θ̃)
, ∀θ̂ ∈ Θ, (4.3.7)

where j ∈ [n] is the unique vertex j ∈ N (i). Update (4.3.7) replicates the Bayesian update
of a single agents in (4.3.3) but the self belief µi,t−1(·) on the right-hand side being is
replaced by the belief µj,t−1(·) of the unique neighbor {j} = Ni. Indeed, the learning in this
case is asymptotically exponentially fast at the rate (1/n) min

θ̌∈Θ\{θ}

∑n
j=1DKL

(
`j(·|θ)||`j(·|θ̌)

)
= 1/3R3; hence, the same exponential rate as that of a central Bayesian can be achieved
through the BWR update rule, except for a 1/n factor that decreases with the increasing
cycle length, cf. [165].

Example 4.6 (Eight Agents with Binary Signals in a Tri-State World.). Consider the net-
work of agents in Fig. 4.3 with the true state of the world being 1, the first of the tree
possible states Θ = {1, 2, 3}. The agents receive binary signals about the true state θ ac-
cording to the likelihoods listed in the table.
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1

2
5

4
3

6

7

8

likelihoods θ̂ = 1 θ̂ = 2 θ̂ = 3

l1(s1,t = 0 | θ̂) 1
3

1
3

1
5

l2(s2,t = 0 | θ̂) 1
2

2
3

1
2

l3(s3,t = 0 | θ̂) 1
4

1
4

1
4

Figure 4.3: A hybrid structure

We begin by the observation that this network can be thought of as a rooted directed
tree, in which the root node is replaced with a directed circle (the root circle).1 Next note
that the root circle is comprised of three agents and none of them can learn the truth on
their own. Indeed, agent 3 does not receive any informative signals; therefore, in isolation
i.e. using (4.3.3), her beliefs shall never depart from their initial priors. We further set
lj(· | ·) ≡ l3(· | ·) for all j ∈ [8] \ [3], so that all the peripheral follower agents are also
unable to infer anything about the true state of the world from their own private signals.

Starting from a uniform common prior and following the proposed rules (4.3.7), all
agents asymptotically learn the true state, even though none of them can learn the true state
on their own. The plots in Figs. 4.4 and 4.5 depict the evolutions of the beliefs for the third
agent as well as the difference between the beliefs for the first and eighth agents. We can
further show that all agents learn the true state at the same exponentially fast asymptotic
rate. In fact, the three nodes belonging to the directed circle learn the true state of the
world at the exponentially fast asymptotic rate of (1/3)R3 noted above, irrespectively of the
peripheral nodes. The remaining peripheral nodes then follow up with the beliefs of root
circle nodes, except for a vanishing difference that increases with the increasing distance of
a peripheral node from the root circle: following (4.3.7), the first three agents form a circle
of leaders where they combine their observations and reach a consensus; every other agent
in the network then follows whatever state that the leaders have collectively agreed upon.

1Any weakly connected digraph G which has only degree zero or degree one nodes can be drawn as a
rooted tree, whose root is replaced by a directed circle, a so-called root circle. This is true since any such
digraph can have at most one directed circle and all other nodes that are connected to this circle should be
directed away from it, otherwise G would have to include a node of degree two or higher.
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Figure 4.4: Evolution of the third agent’s beliefs over time

In the next subsection, we show the application of the update rule in (4.3.7) to general
strongly connected topologies where agents have more than just a single neighbor in their
neighborhoods. It is proposed to choose a neighbor j ∈ Ni independently at random every
time and then apply (4.3.7) with the reported belief from that neighbor.

4.3.3 Learning by Random Walks on Directed Graphs

Here we propose the application of the Learning without Recall updates that we described
in the previous section to general networks, by requiring that at every time step t, node i
make a random choice from her set of neighborsNi and uses that choice for the unique j in
(4.3.7). To this end, let σt ∈ Πi∈[n]Ni, t ∈ N be a sequence of independent and identically
distributed random vectors such that ∀t ∈ N, σt,i ∈ Ni is that neighbor of i which she
chooses to communicate with at time t. Hence, for all t and any i, (4.3.7) becomes

µi,t(θ̂) =
µ

σt,i
,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µ
σt,i

,t−1(θ̃)`i(si,t | θ̃)
, ∀θ̂ ∈ Θ. (4.3.8)
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Figure 4.5: The difference between the first and eighth agents’ beliefs over time

To proceed, annex the random choice of neighbors for every node i ∈ [n] and all times
t ∈ N to the original probability space; and for t ∈ N arbitrary, let P{σt,i = j} = pi,j > 0.
Wherefore,

∑
j∈Ni pi,j = 1 − pi,i ≤ 1, and pi,j = 0 whenever j 6∈ N̄i. Let P be the row

stochastic matrix whose (i, j)-th entry is equal to pi,j. Let 1{σt,i=j} = 1 if σt,i = j and
1{σt,i=j} = 0 otherwise. Then (4.3.8) can be written as

µi,t(θ̂) =

n∑
j=1

1{σt,i=j}
µj,t−1(θ̂)`i(si,t | θ̂)∑

θ̃∈Θ

µj,t−1(θ̃)`i(si,t | θ̃)

= `i(si,t | θ̂)
n∏
j=1

 µj,t−1(θ̂)∑
θ̃∈Θ

µj,t−1(θ̃)`i(si,t | θ̃)


1{σt,i=j}

We dub this procedure “gossips without recall” and analyze its properties in Appendix
A.15. In particular, consider the following global identifiablity condition:

Definition 4.2 (Global Identifiability). In a strongly connected topology, the true state
θ is globally identifiable, if for all θ̌ 6= θ there exists some agent m ∈ [n] such that
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DKL

(
`m(·|θ)‖`m(·|θ̌)

)
< 0, i.e. m can distinguish between θ̌ and θ based only on her

private signals.

Here again if truth is globally identifiable, all agents learn the truth at an asymptotically
exponentially fast rate given by min

θ̌∈Θ\{θ}

∑n
j=1 πjDKL

(
`j(·|θ)||`j(·|θ̌)

)
, where πj are the prob-

abilities in the stationary distribution of the Markov chain whose transition probabilities
are the same as the probabilities for the random choice of neighbors at every point in time.1

It is notable that the asymptotic rate here is a weighted average of the KL distances
DKL

(
`i(·|θ)||`i(·|θ̌)

)
, in contrast with the arithmetic (unweighted) mean (1/nRn) that arise

in the circular case. Both rates are upper bounded by the centralized Bayesian learning
rate of Rn calculated in (4.3.5). Finally, we point out that the rate of distributed learning
upper bounds the (weighted) average of individual learning rates. It is due to the fact
that observations of different agents complement each other, and while one agent may be
good at distinguishing one false state from the truth, she can rely on observational abilities
of other agents for distinguishing the remaining false states: consider agents 1 and 2 in
Example 4.6, the former can distinguish θ̂ = 2 from θ = 1, while the latter is good at
distinguishing θ̂ = 3 from θ = 1; together they can distinguish all states. Hence, the
overall rate of distributed learning upper bounds the average of individual learning rates,
and is itself upper bounded by the learning rate of a central Bayesian agent:

1

n

n∑
i=1

min
θ̌∈Θ\{θ}

DKL

(
`i(·|θ)||`i(·|θ̌)

)
< min

θ̌∈Θ\{θ}

1

n

n∑
i=1

DKL

(
`i(·|θ)||`i(·|θ̌)

)
=
1

n
Rn < Rn.

In Appendix A.15 we establish the following conditions for learning under the without
recall updates in (4.3.3) and (4.3.7), where the neighbor j is chosen randomly with strictly
positive probabilities specified in transition matrix P:

Theorem 4.7 (Almost-Sure Learning). Under the gossips without recall updates in a strongly
connected network where the truth is globally identifiable, all agents learn the truth asymp-
totically almost surely. The learning is asymptotically exponentially fast with the rate∑n

m=1 πmDKL

(
`m(·|θ)‖`m(·|θ̌)

)
, where (π1, . . . , πn) is the stationary distribution of the

transition matrix P.
1In many distributed learning models over random and switching networks, agents must have positive

self-reliant at any time; as for instance in gossip algorithms [196] and ergodic stationary processes [197].
This condition however is relaxed under (4.3.7), as our agents rely entirely on the beliefs of their neighbors
every time that they select a neighbor to communicate with. Moreover, unlike the majority of results that rely
on the convergence properties of products of stochastic matrices and are applicable only to irreducible and
aperiodic communication matrices, cf. [130, Proporition 1]; the convergence results in [166] do not require
the transition probability matrix to be aperiodic, as it relies on properties of ergodic Markov chains and holds
true for any irreducible, finite-state chain [198, Theorems 1.5.6 and 1.7.7].
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Example 4.8 (Eight Agents with Binary Signals in a Tri-State World). As an illustration
consider the network of agents in Fig. 4.6 with the true state of the world being 1, the first
of the tree possible states Θ = {1, 2, 3}. The likelihood structure for the first three agents is
given in the tale and note that none of them can learn the truth on their own; indeed, agent 3
does not receive any informative signals and her beliefs shall never depart from their initial
priors following (4.3.3). We further set lj(· | ·) ≡ l3(· | ·) for all j ∈ [8] \ [3], so that all the
remaining agents are also unable to infer anything about the true state of the world from
their own private signals.

1

2
5

4
3

6

7

8

Figure 4.6: Network Structure for Example 1

likelihoods θ̂ = 1 θ̂ = 2 θ̂ = 3

l1(s1,t = 0 | θ̂) 1
3

1
3

1
5

l2(s2,t = 0 | θ̂) 1
2

2
3

1
2

l3(s3,t = 0 | θ̂) 1
4

1
4

1
4

Starting from a uniform common prior and following the proposed gossip without recall
scheme with neighbors chosen uniformly at random, all agents asymptotically learn the true
state, even though none of them can learn the true state on their own. The plots in Figs. 4.7
and 4.8 depict the belief evolution for the second agent, as well as the difference between
the beliefs for the third and eighth agents. It is further observable that all agents learn the
true state at the same exponentially fast asymptotic rate of learning.

Fixing the priors over time will not result in convergence of beliefs, except in very
specific cases as discussed above. In the next subsection, we investigate the properties
of convergence and learning under the update rules in (4.3.2), where the priors νj(·) are
replaced by time-varying distributions ξi,j(·, t) that parametrize the log-linear updating of
the agents’ beliefs over time.

4.3.4 Log-Linear Learning with Time-Varying Priors

In this subsection, we consider the performance of no-recall belief updates (4.3.2), where
the priors νj(·), ∀j are replaced with time-varying distributions ξi,j(·, t), and argue that
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Figure 4.7: Evolution of the second agents beliefs over time

a Rational but Memoryless agent i would make her rational inference about the opin-
ion µj,t−1(·) that agent j reports to her at time t according to some time-varying prior
ξi,j(·, t), j ∈ [n]. Here, any choice of distributions ξi,j(·, t), j ∈ [n] should satisfy the in-
formation constraints of a Rational but Memoryless agent, so long as such a choice does
not require an agent to recall any information other than what she has just observed si,t and
what her neighbors have just reported to her µj,t−1(·), j ∈ Ni. A memoryless yet rational
agent of this type can process the beliefs of her neighbors, but cannot recall how these
beliefs were formed. Accordingly, (4.3.2) becomes

µi,t(θ̌) =
ξi,i(θ̌, t)li(si,t | θ̌)

(∏
j∈Ni

µj,t−1(θ̌)

ξi,j(θ̌,t)

)
∑

θ̂∈Θ ξi,i(θ̂, t)li(si,t | θ̂)
(∏

j∈Ni
µj,t−1(θ̂)

ξi,j(θ̂,t)

) , (4.3.9)

for all θ̌ ∈ Θ and at any t > 1. In writing (3.3.1), the time one update is regarded as a
function that maps the priors, the private signal, and the neighbors’ beliefs to the agent’s
posterior belief; and in using the time one update in the subsequent steps as in (3.3.1), every
time agent i regards each of her neighbors j ∈ Ni as having started from some prior belief
ξi,j(·, t) and arrived at their currently reported belief µj,t−1(·) directly after observing a
private signal, hence rejecting any possibility of a past history. Such a rule is of course not
the optimum Bayesian update of agent i’s belief at any step t > 1, because the agent is not
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Figure 4.8: The difference between the third and eighth agents beliefs over time

taking into account the complete observed history of her private signals and neighboring
beliefs and is instead, basing her inference entirely on the immediately observed signal
and neighboring beliefs; hence, the name memoryless. In the next section, we address the
choice of random and time-varying priors ξi,j(·, t), j ∈ Ni while examining the properties
of convergence and learning under the update rules in (3.3.1).

We begin our analysis of (4.3.9) by forming the log-ratios of beliefs, signals, and priors
under the true and false states as:

φi,t(θ̌) := log(µi,t(θ̌)/µi,t(θ)),

λi,t(θ̌) := log
(
`i(si,t|θ̌)/`i(si,t|θ)

)
,

γi,j(θ̌, t) := log(ξi,j(θ̌, t)/ξi,j(θ, t)),

for all i, j and t. Consequently, (3.3.1) can be linearized as follows:

φi,t(θ̌) = γi,i(θ̌, t) + λi,t(θ̌) +
∑
j∈Ni

(φj,t−1(θ̌) − γi,j(θ̌, t)). (4.3.10)

The network graph structure is encoded by its adjacency matrix A defined as [A]ij =

1 ⇐⇒ (j, i) ∈ E , and [A]ij = 0 otherwise. For a strongly connected G the Perron-
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Frobenius theory, cf. [115, Theorem 1.5], implies that A has a simple positive real eigen-
value, denoted by ρ > 0, which is equal to its spectral radius. Moreover, the left eigenspace
associated with ρ is one-dimensional with the corresponding eigenvectorα = (α1, . . . , αn)

T ,
uniquely satisfying

∑n
i=1 αi = 1, αi > 0, ∀i ∈ [n], and α

T

A = ρα
T

. The quantity αi is
also known as the eigenvector centrality of vertex i in the network, cf. [199, Section 7.2].
Multiplying both sides of (4.3.10) by αi and summing over all i we obtain that

Φt(θ̌) = tr{Ξt(θ̌)}+Λt(θ̌) + ρΦt−1(θ̌) − tr{Ξt(θ̌)AT }

=

t∑
τ=0

ρτ
(
Λt−τ + tr{(I−AT)Ξt−τ(θ̌)}

)
, (4.3.11)

where Φt(θ̌) :=
∑n

i=1 αiφi,t(θ̌) and Λt(θ̌) :=
∑n

i=1 αiλi,t(θ̌) are global (network-wide)
random variables, and Ξt(θ̌) is a random n × n matrix whose i, j-th entry is given by
[Ξt(θ̌)]i,j = αiγi,j(θ̌, t). At each epoch of time, Φt(θ̌) characterizes how biased (away
from the truth and towards θ̌) the network beliefs are, andΛt(θ̌) measures the information
content of the received signal across all the agents in the network. Note that in writing
(4.3.11), we use the fact that

n∑
i=1

αi
∑
j∈Ni

φj,t−1(θ̌) = α
T

Aφt−1(θ̌) = ρα
T

φt−1(θ̌) = ρΦt−1(θ̌),

where φt(θ̌) := (φ1,t(θ̌), . . . ,φn,t(θ̌))
T . On the other hand, since the received signal

vectors {si,t, i ∈ [n], t ∈ N0} are i.i.d. over time, {Λt(θ̌), t ∈ N0} constitutes a sequence of
i.i.d. random variables satisfying

E
{
Λt(θ̌)

}
=

n∑
i=1

αiE{λi,t(θ̌)} =
n∑
i=1

αiλi(θ̌) 6 0, (4.3.12)

where λ(θ̌) := (λ1(θ̌), . . . , λn(θ̌))
T :=

−
(
DKL

(
`1(·|θ)||`1(·|θ̌)

)
, . . . , DKL

(
`n(·|θ)||`n(·|θ̌)

))T
, (4.3.13)

and the non-positivity of (4.3.12) follows from the information inequality for the Kullback-
Leibler divergence: DKL (·||·) ≥ 0, and is strict whenever `i(·|θ̌) 6≡ `i(·|θ) for some i, i.e.
∃s ∈ Si, i ∈ [n] such that `i(s|θ̌) 6= `i(s|θ), cf. [193, Theorem 2.6.3]. In particular, if for
all θ̌ 6= θ there exists an agent i with λi(θ̌) < 0, then E

{
Λt(θ̌)

}
< 0 and we say that the

truth θ is globally identifiable. Indeed, if any agent is to learn the truth, then we need that
Φt(θ̌)→ −∞ as t→∞ for all the false states θ̌ 6= θ.

Fixing the priors over time will not result in convergence of beliefs, except in very spe-
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cific cases such as directed circles or with randomly chosen neighbors that were discussed
in preceding subsections. In the sequel, we investigate the properties of convergence and
learning under the update rules in (3.3.1), where the parameterizing priors ξi,j(·, t) are
chosen to be random and time-varying variables, leading to the log-linear updating of the
agents’ beliefs over time. We distinguish two cases depending on whether the agents do
not recall their own self-beliefs or they do, leading respectively to time-invariant or time-
varying log-linear update rules.

Priors Set to a Geometric Average:

We propose setting the time-varying priors ξi,j(·, t), j ∈ Ni of each agent i and at every
time t, proportionally to the geometric average of the beliefs reported to her by all her
neighbors at every time t:

∏
j∈Ni µj,t−1(·)

1/deg(i). Therefore, (3.3.1) becomes

µi,t(θ̌) =
li(si,t | θ̌)

(∏
j∈Ni µj,t−1(θ̌)

)1/deg(i)
∑

θ̂∈Θ li(si,t | θ̂)
(∏

j∈Ni µj,t−1(θ̂)
)1/deg(i) . (4.3.14)

To analyze the evolution of beliefs with this choice of priors, let

λt(θ̌) := (λ1,t(θ̌), . . . ,λn,t(θ̌))
T ,

be the stacked vector of log-likelihood ratios of received signals for all agents at time t.
Hence, we can write the vectorized update φt(θ̌) = Tφt−1(θ̌) + λt(θ̌), where T is the
normalized adjacency of the graph defined by [T ]ij = 1/deg(i)[A]ij for all i and j. We can
now iterate the vectorized update to getφt(θ̌) =

∑t
τ=0 T

τλt−τ(θ̌)+T
tψ(θ̌). Next note from

the analysis of convergence for DeGroot model, cf. [130, Proporition 1], that for a strongly
connected network G if it is aperiodic (meaning that one is the greatest common divisor of
the lengths of all its circles), then limτ→∞ T τ = 1sT , where s := (s1, . . . , sn)

T is the unique
left eigenvector associated with the unit eigenvalue of T and satisfying

∑n
i=1 si = 1, si > 0,

∀i. Hence, the Cesàro mean together with the strong law implies that limt→∞ 1
t
φi,t(θ̌) =

−
∑n

i=1 siλi(θ̌), almost surely for all θ̌ 6= θ, and the agents learn the truth asymptotically
exponentially fast, at the rate minθ̌6=θ

∑n
i=1−siλi(θ̌); λi(θ̌) as defined in (4.3.13) measures

the ability of agent i to distinguish between θ̌ and θ.
If the agents i ∈ [n] recall their self-beliefs µi,t−1(·), i ∈ [n] when making decisions

or performing inferences at time t, then we set ξi,i(·, t) ≡ µi,t−1(·) for all i and t. Fur-
thermore, we set ξi,j(·, t) ≡ µj,t−1(·)ηt/ζj(t) for all i, j ∈ Ni and t, where ζj(t) :=∑

θ̂∈Θ µj,t−1(θ̂)
ηt is the normalization constant to make the exponentiated probabilities sum

to one. The choice of 0 < ηt < 1 as time-varying exponents to be determined shortly, is
motivated by the requirements of convergence under (3.3.1). Subsequently, in Appendix
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A.16 we investigate the properties of convergence and learning for the following log-linear
update rule with time-varying coefficients

φi,t(θ̌) = φi,t−1(θ̌) + λi,t(θ̌) + (1− ηt)
∑
j∈Ni

φj,t−1(θ̌),

where 1 − ηt is the weight that the agent puts on her neighboring beliefs (relative to her
own) at any time t. Let xt := ρ(1 − ηt). In Appendix A.16, we identify

∑∞
u=1 xu < ∞

as a necessary condition for convergence of beliefs with log-linear time-varying updates,
in the case of agents who have no recollection of the past, excepting their own immediate
beliefs. With xt representing the relative weight on the neighboring beliefs, such agents
facing individual identification problems can still learn the truth in a strongly connected and
aperiodic network by relying on each other’s observations; provided that as time evolves
they put less and less weight on the neighboring beliefs and rely more on their private
observations: xt → 0 as t→∞.

For such agents who recall their immediate self-beliefs µi,t(·), if we relax the require-
ment that ξi,i(·, t) ≡ µi,t−1(·) then it is possible to achieve asymptotic almost sure expo-
nentially fast learning using time-invariant updates just as in (4.3.14). In particular, for any
0 < η < 1 fixed, we can set ξi,i(·, t) proportional to µi,t−1(·)η for all i, and we can further
set ξi,j(·, t) at every time t, for any i, and all j ∈ Ni proportional to µj,t−1(·)1−(1−η)/deg(i).
Subsequently, (3.3.1) becomes

µi,t(θ̌) =
li(si,t | θ̌)µi,t−1(θ̌)η

(∏
j∈Ni µj,t−1(θ̌)

) 1−η
deg(i)

∑̂
θ∈Θ

li(si,t | θ̂)µi,t−1(θ̂)η
(∏

j∈Ni µj,t−1(θ̂)
) 1−η
deg(i)

. (4.3.15)

To analyze (4.3.15), we form the log-belief and likelihood ratios and set B = (ηI + (1 −

η)T), where T is the same normalized adjacency as in Subsection 4.3.4. Hence, we recover
the vectorized iterations φt(θ̌) = Bφt−1(θ̌) + λt(θ̌) =

∑t
τ=0 B

τλt−τ(θ̌) + B
tψ(θ̌) and

it follows from [200, Theorems 5.1.1 and 5.1.2] that for a strongly connected network G,
limτ→∞ Bτ = 1sT , where s := (s1, . . . , sn)

T is the unique stationary distribution associated
with the Markov chain whose probability transition matrix is T (or equivalently B); whence
it follows from the Cesàro mean and the strong law that the agents learn the truth asymp-
totically exponentially fast, at the rate minθ̌6=θ

∑n
i=1−siλi(θ̌), similar to Subsection 4.3.4.

Note that here, unlike Subsection 4.3.4 but similarly to [166], we only use properties of er-
godic chains and existence and uniqueness of their stationary distributions; hence, relaxing
the requirement for the social network to be aperiodic.

An interesting extension of the streaming data model is when the agents’ access to new
private observations is intermittent. In Appendix G, we consider the case where nodes
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(agents) have an initial data set and they communicate their beliefs in order to combine
their local data and come up with the model parameter that best describes all their data
collectively; i.e. the global maximum likelihood estimator. We then shift attention to a
learning framework where agents instead of starting with an initial data set receive new
observations at every round. The data received at every point can provide differing and
possibly complementary information about the unknown parameter and the number of data
points that is observed at every round varies randomly.
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Chapter 5

Conclusions & Future Directions

In this final chapter, we summarize our contributions from the two parts of the thesis.
We also provide some reflections and comparative remarks to highlight the intuition
behind several of the results and relations between them. We end by giving some
directions for future work on each of the two parts.

5.1 Summary & Discussion of Part one

In Chapter 2, we analyzed recommendations of rational agents in a group decision pro-
cess, as they each observe an exogenous initial private signal and are exposed to the rec-
ommendations of (a subset) of other group members in the ensuing decision epochs. Such
agents in a group decision process (GDP) have purely informational externalities, but they
still need to interpret (and learn from) the actions of others subject to the fact that they are
acting rationally. Other members’ actions reveal additional information about the state of
the world, which can be then used to make better future recommendations. Indeed, the
actions of neighbors are informative only to the extent that they reveal information about
their private signals; and as time marches on, more information is revealed about the private
signals of neighbors, and neighbors of neighbors, etc. Hence, after a long enough time, all
players would be (partially) informed about the private signals of all other players if the
graph is connected. We analyzed the complexity of decision-making in this information
structure. Iterated elimination of infeasible signals (IEIS) curbs some of the complexities
of inference in group decision-making, although its running time is exponential. These
computations simplify and become efficient in a POSET structure where the agent has
direct access to all observations of her neighbors (except their private signals). The com-
putations also simplify in special symmetric settings, for example with i.i.d. binary signals
over a directed path, or a rooted (directed) tree (cf. Appendix D).

In the special case that agents reveal their beliefs to each other, we introduce and an-
alyze a structural property of the graph, referred to as transparency, which plays a critical
role in characterizing the complexity of the computations when forming Bayesian posterior
beliefs. Bayesian beliefs in transparent structures are both easy to compute and statically
efficient; in the sense that they coincide with the Bayesian posterior of the agent, had she
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direct access to the private signals of all agents whom she has observed, either directly, or
indirectly through their influences on her neighbors, neighbors of neighbors, etc.

We proved the NP-hardness of the Bayesian belief exchange problem by providing
reductions that show well-known NP-complete problems such as SUBSET-SUM and
EXACT-COVER are special cases of GDP. The former relies on the increasing variety
of signal types and the latter relies on the increasing neighborhood size.

Transparency of the network structure to agent i allows her to trace the reported beliefs
of her neighbors directly to their root causes which are the private signals of other agents.
When transparency is violated, the neighboring beliefs are complicated highly non-linear
functions of the signal likelihoods and the forward reasoning approach can no longer be
applied to search for possible signals that lead to observed beliefs; indeed, if transparency
is violated, then the observed beliefs only represent what signal profiles are regarded as
feasible by the neighbors. This is quite different from the transparent case where the beliefs
of neighbors directly reflect their knowledge about the likelihoods of signals that occur
in the higher-order neighborhoods. In other words, in a nontransparent structure, agent i
cannot use the reported beliefs of her neighbors to make direct inferences about the original
causes of those reports which are the private signals in the higher-order neighborhoods.
Instead, to keep track of the feasible signal profiles that are consistent with her observations
agent i should consider what beliefs other agents would hold under each of the possible
signal profiles and to prune the infeasible ones following an IEIS procedure. A similar
observation can be made in the case of POSETs and actions: as compared with general
graphs, POSETs remove the need to simulate the network at a given signal profile to reject
or approve it. Instead, we can directly verify if each individual private signal agrees with
the observed action of its respective agent and if it does not, then it is rejected and removed
from the list of feasible private signals.

Although determining the posterior beliefs during a GDP is, in general, NP-hard, for
transparent structures the posterior belief at each step can be computed efficiently using the
reported beliefs of the neighbors. Furthermore, the optimality of belief exchange over trans-
parent structures is a unique structural feature of the inference set up in GDP. It provides an
interesting and distinct addition to known optimality conditions for inference problems over
graphs. In particular, the transparent structures over which efficient and optimal Bayesian
belief exchange is achievable include many loopy structures in addition to trees.1

1It is well known that if a Bayesian network has a tree (singly connected or polytree) structure, then
efficient inference can be achieved using belief propagation (message passing or sum-product algorithms),
cf. [201]. However, in general loopy structures, belief propagation only gives a (potentially useful) approx-
imation of the desired posteriors [202]. Notwithstanding, our Bayesian belief exchange set up also greatly
simplifies in the case of tree structures, admitting a trivial sum of innovations algorithm. The authors in [203]
study the complexity landscape of inference problems over graphical models in terms of their treewidth. For
bounded treewidth structures the junction-tree method (performing belief propagation on the tree decomposi-
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5.2 Summary & Discussion of Part Two

In Chapter 3, we proposed the Bayesian heuristics framework to address the problem of
information aggregation and decision making in groups. Our model is consistent with the
dual process theory of mind with one system developing the heuristics through deliberation
and slow processing, and another system adopting the heuristics for fast and automatic de-
cision making: once the time-one Bayesian update is developed, it is used as a heuristic for
all future decision epochs. On the one hand, this model offers a behavioral foundation for
non-Bayesian updating; in particular, linear action updates and log-linear belief updates.
On the other hand, its deviation from the rational choice theory captures common falla-
cies of snap-judgments and history neglect that are observed in real life. Our behavioral
method also complements the axiomatic approaches which investigate the structure of be-
lief aggregation rules and require them to satisfy specific axioms such as label neutrality
and imperfect recall, as well as independence or separability for log-linear and linear rules,
respectively [45].

We showed that under a natural quadratic utility and for a wide class of distributions
from the exponential family the Bayesian heuristics correspond to a minimum variance
Bayes estimation with a known linear structure. If the agents have non-informative priors,
and their signal structures satisfy certain homogeneity conditions, then these action updates
constitute a convex combination as in the DeGroot model, where agents reach consensus
on a point in the convex hull of their initial actions. In case of belief updates (when agents
communicate their beliefs), we showed that the agents update their beliefs proportionally
to the product of the self and neighboring beliefs. Subsequently, their beliefs converge to
a consensus supported over a maximum likelihood set, where the signal likelihoods are
weighted by the centralities of their respective agents.

Our results indicate certain deviations from the globally efficient outcomes, when con-
sensus is being achieved through the Bayesian heuristics. This inefficiency of Bayesian
heuristics in globally aggregating the observations is attributed to the agents’ naivety in in-
ferring the sources of their information, which makes them vulnerable to structural network
influences, in particular, redundancy and multipath effects: the share of centrally located
agents in shaping the asymptotic outcome is more than what is warranted by the quality of
their data. Another source of inefficiency is in the group polarization that arise as a result
of repeated group interactions; in case of belief updates, this is manifested in the structure
of the (asymptotic) consensus beliefs. The latter assigns zero probability to any alternative
that scores lower than the maximum in the weighted likelihoods scale: the agents reject the
possibility of less probable alternatives with certainty, in spite of their limited initial data.

tion of the graph) works efficiently [204] but there is no class of graphical models with unbounded treewidth
in which inference can be performed in time polynomial in treewidth.
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This overconfidence in the group aggregate and shift toward more extreme beliefs is a key
indicator of group polarization and is demonstrated very well by the asymptotic outcome
of the group decision process.

We pinpoint some key differences between the action and belief updates (linear and log-
linear, respectively): the former are weighted updates, whereas the latter are unweighted
symmetric updates. Accordingly, an agent weighs each neighbor’s action differently and in
accordance with the quality of their private signals (which she expects in them and infers
from their actions). On the other hand, when communicating their beliefs the quality of
each neighbor’s signal is already internalized in their reported beliefs; hence, when incor-
porating her neighboring beliefs, an agent regards the reported beliefs of all her neighbors
equally and symmetrically. Moreover, in the case of linear action updates the initial biases
are amplified and accumulated in every iteration. Hence, the interactions of biased agents
are very much dominated by their prior beliefs rather than their observations. This issue
can push their choices to extremes, depending on the aggregate value of their initial biases.
Therefore, if the Bayesian heuristics are to aggregate information from the observed ac-
tions satisfactorily, then it is necessary for the agents to be unbiased, i.e. they should hold
non-informative priors about the state of the world and base their actions entirely on their
observations. In contrast, when agents exchange beliefs with each other the multiplicative
belief update can aggregate the observations, irrespective of the prior beliefs. The latter are
asymptotically canceled; hence, multiplicative belief updates are robust to the influence of
priors.

In Chapter 4, we extended the no-recall model of inference and belief formation to
a social and observational learning scenario, where agents attempt to learn some unknown
state of the world which belongs to a finite state space. Conditioned on the true state, a
sequence of i.i.d. private signals are generated and observed by each agent of the network.
The private signals do not provide the agents with adequate information to identify the
truth on their own. Hence, agents interact with their neighbors to augment their imperfect
observations with those of their neighbors.

Following the no-recall approach, the complexities of a fully rational inference at the
forthcoming epochs are avoided, while some essential features of Bayesian inference are
preserved. We analyzed the specific form of no-recall updates in two cases of binary state
and action space, as well as a finite state space with actions taken over the probability
simplex. In the case of binary actions the no-recall updates take the form of a linear majority
rule, whereas if the action spaces are rich enough for the agents to reveal their beliefs,
then belief updates take a log-linear format. In each case we investigate the properties of
convergence, consensus and learning. The latter is particularly interesting when the truth
is identifiable through the aggregate private observations of all individuals in a strongly
connected social network, but not individually.

On the one hand, the specific forms of the no-recall update rules in each case help us
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better understand the mechanisms of naive inference, when rational agents are devoid of
their ability to make recollections. On the other hand, our results also highlight the con-
sequences of such naivety in shaping the mass behavior; by comparing our predictions
with the rational learning outcomes. In particular, we saw in Subsection 4.2.2 that there
is a positive probability for rational but memoryless agents in an Ising model to mis-learn
by reaching consensus on an untruth. However Bayesian (fully rational) beliefs constitute
a bounded martingale; hence, when truth is identifiable and number of observations in-
creases, the beliefs of rational agents converge almost surely to a point mass centered at
the true state [83, 84]. Similarly Theorem 4.4 states the impossibility of asymptotic learn-
ing under the no-recall belief updates, whenever the spectral radius of the interconnection
graph adjacency is greater than one.

Finally, based on our results in Appendices E and G, we can point out some key differ-
ences between the linear and log-linear update rules in the way they accommodate stream-
ing observations. The requirement of averaging over time for linear updates necessitates
that new observations be discounted as 1/t with increasing time, which avoids fluctuations
with new observations in the limit. The same principle governs the discounting or diminish-
ing step sizes in the case of consensus+innovation algorithm [205], as well as other online
learning methods [206]. However, in case of log-linear update rules no such discounting is
necessary. Because the product-nature of such rules imply that as beliefs approach a point
mass their multiplication with the product of likelihoods of new observations will have less
and less effect. This in turn allows us to effectively accommodate the varying sizes of data
sets at every time-period using log-linear update rules with fixed coefficients.

Another key difference between the linear and log-linear updates is that the weights in
the former need to be adjusted for the initial sample sizes, whereas the latter require no such
adjustment of weights. Accordingly, in the linear case an agent weighs each neighbor’s
report differently and in accordance with the quality and quantity of their samples. On the
other hand, when communicating their beliefs for log-linear updating the quality of each
neighbor’s signal is already internalized in their reported beliefs; hence, when incorporating
its neighboring beliefs, an agent regards the reported beliefs of all its neighbors equally, and
irrespective of the quality of their sample points. These observations lead to the conclusion
that: log-linear aggregation schemes (as opposed to linear ones) are very effective design
tools for dealing with various types of heterogenities that arise in networked systems.
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5.3 Directions for Future Work
In extensions of part one, it would be particularly interesting if one can provide a tight
graphical characterization for transparency or provide other useful sufficient conditions
that ensure transparency and complement our Proposition 2.2. Furthermore, the nature of
the two reductions in Appendices A.3 and A.4 leave space for strengthening the complexity
class of the GROUP-DECISION problem beyond NP , cf. Remark 2.8 in Section 2.2.3.
Another possibility is to prove that the beliefs are even hard to approximate, by exploiting
the gap that exists between the log-ratio of beliefs, depending on whether the underlying
instance of the decision problem is feasible or not. More importantly, one would look for
other characterizations of the complexity landscape and find other notions of simplicity
that are different from transparency. Another promising venue is to further investigate
the algorithmic and complexity theoretic foundation for the actions. Our hardness results
are specific to the case of belief exchange and it would be valuable to develop parallel
results for the action exchange case. An open problem is to investigate configurations
and structures for which the computation of Bayesian actions is achievable in polynomial-
time. It is also of interest to know the quality of information aggregation; i.e. under what
conditions on the signal structure and network topology, Bayesian actions coincide with
the best action given the aggregate information of all agents. In Appendix D, we take some
preliminary steps in this direction for i.i.d. binary signals and actions.

For part two, it is valuable to extend the no-recall model of group decision-making to
agents with bounded memory. We take some initial steps along this direction in Appendix
F with one-step recall belief update rules. Nonetheless, the analysis of Bayesian update
even in the simplest cases become increasingly complex. As an example, consider a ratio-
nal agent who recalls only the last two epochs of her past. In order for such an agent to
interpret her observations in the penultimate and ultimate steps, she needs not only a prior
to interpret her neighbor’s beliefs at the penultimate step, but also a prior to interpret her
neighbor’s inferences about what she reported to them at the penultimate step leading to
their ultimate beliefs. In other words, she needs a prior on what her neighbor’s regard as her
prior when they interpret what she reports to them as her penultimate belief. Indeed, such
belief hierarchies are commonplace in game-theoretic analysis of incomplete information
and are captured by the formalism of type space [207, 208].

On a broader scale, our Bayesian model of group decision-making in part one, extends
the project selection model of Sah and Stiglitz [92–94] to an iterative setup with managers
iterating on their decisions before committing to a final choice. Such connections to orga-
nization science can be deepened to obtain useful insights about the operations of teams
in medical, legal and other industrial decision-making organizations. We have explored
these connections to some extent in Chapter 2 (Remark 2.2) by pointing out how addition
of new members in an organization can be done in a way that curbs the increased com-
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plexity of organizational decision-making. Similarly, in Subsection 3.3.3 we give a method
for organizing teams of decision-makers to avoid redundancy and increase the efficiency
of the aggregate group-decision outcome. However, there is much space for improvement
in this regard. For example, the transparent structures of Subsection 2.2 can be developed
into a useful architecture for organizational decision-making. Overall with the exception
of the hand full of works that we explained in the Introduction (Chapter 1), the algorith-
mic, computational, and optimality aspects of decision-making in organizations are vastly
unexplored, leaving many untapped potentials for applying our techniques in organization
science.

The no-recall model of part two, is strongly motivated by the behavioral processes
that underlie human decision making. These processes often deviate from the predictions
of the rational choice theory, and our investigation of the Bayesian heuristics highlights
both the mechanisms for such deviations and their ramifications. In future research, one
can expand this behavioral approach by incorporating additional cognitive biases such as
inattentiveness, and investigate how the decision processes are affected. On the one hand,
the obtained insights highlight the value of educating the public about benefits of rational
decision making and unbiased judgment, and how to avoid common cognitive errors when
making decisions. On the other hand, by investigating the effect of cognitive biases, we
can improve the practice of social and organizational policies, such that new designs can
accommodate commonly observed biases, and work well in spite of them. Examples for
such as approach can be found in [209, 210] where the effects of confirmatory and hindsight
biases are modeled and analyzed.
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Appendix A

Proofs & Mathematical Derivations

A.1 Complexity of Bayesian Decisions Using (A1: BAYES-
GROUP)

Suppose that agent i has reached her t-th decision epoch in a general network structure.
Given her information (I1) at time t, for all s = (s1, . . . , sn) ∈ S1 × . . . × Sn and any
j ∈ N̄ t+1

i she has to update I(i)j,t−∇(j,i)(s) into I(i)j,t+1−∇(j,i)(s) ⊂ I
(i)
j,t−∇(j,i)(s). If ∇(j, i) =

t + 1 then agent j is being considered for the first time at the t-th decision epoch and
I(i)j,0 (s) = {sj} ×

∏
k 6=j Sk is initialized without any calculations. However if ∇(j, i) ≤ t,

then I(i)j,t−∇(j,i)(s) can be updated into I(i)j,t+1−∇(j,i)(s) ⊂ Ij,t−∇(j,i)(s) only by verifying the

condition a(i)
k,t−∇(j,i)(s̃) = a

(i)
k,t−∇(j,i)(s) for every s̃ ∈ I(i)j,t−∇(j,i)(s) and k ∈ Nj: any s̃ ∈

I(i)j,t−∇(j,i)(s) that violates this condition for some k ∈ Nj is eliminated and I(i)j,t+1−∇(j,i)(s) is

thus obtained by pruning I(i)j,t−∇(j,i)(s).
Verification of a(i)

k,t−∇(j,i)(s̃) = a
(i)
k,t−∇(j,i)(s) involves calculations of a(i)

k,t−∇(j,i)(s̃) and

a
(i)
k,t−∇(j,i)(s) according to (2.1.4). The latter requires the addition of card(I(i)k,t−∇(j,i)(s))

product terms uk(ak, θ̂) L(s ′|θ̂) ν(θ̂) = uk(ak, θ̂) `1(s ′1|θ̂) . . . `n(s ′n|θ̂) ν(θ̂) for each s ′ ∈
I(i)k,t−∇(j,i)(s), θ̂ ∈ Θ, and ak ∈ Ak to evaluate the left hand-side of (2.1.4). Hence, we can
estimate the total number of additions and multiplications required for calculation of each
(conditionally) feasible action a(i)

k,t−∇(j,i)(s) as A . (n + 2) .m . card(I(i)k,t−∇(j,i)(s)), where
m := card(Θ) and A = maxk ∈ [n]card(Ak). Hence the total number of additions and
multiplications undertaken by agent i at time t for determining actions a(i)

k,t−∇(j,i)(s) can be
estimated as follows:

A . (n+ 2) . card(Θ) .
∑

j:∇(j,i)≤t,

∑
k∈Nj

card(Ik,t−∇(j,i)(s)) ≤ A . (n+ 2) . n .Mn−1 .m ,

(A.1.1)

where we upper-bound the cardinality of the union of the higher-order neighborhoods of
agent i by the total number of agents: card(N̄ t+1

i ) ≤ n and use the inclusion relationship
I(i)k,t−∇(j,i)(s) ⊂ I

(i)
k,0(s) = {sk}×

∏
j 6=k Sj to upper-bound card(I(i)k,t−∇(j,i)(s)) byMn−1 where

M is the largest cardinality of finite signal spaces, Sj, j ∈ [n] . As the above calculations
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are performed at every signal profile s ∈ S1 × . . .Sn the total number of calculations
(additions and multiplications) required for the Bayesian decision at time t can be bounded
as follows:

A .Mn ≤ A .C1 ≤ (n+ 2) . n .M2n−1 .m, (A.1.2)

where we apply (A.1.1) for the right-hand side. In particular, the calculations grow expo-
nential in the number of agents n. Once agent i calculates the action sets a(i)

k,t−∇(j,i)(s) for

all k ∈ Nj with ∇(j, i) ≤ t she can then update the feasible signal profiles I(i)j,t−∇(j,i)(s),
following step 1 of (A1), to obtain I(i)j,t+1−∇(j,i)(s) for all j : ∇(j, i) ≤ t + 1 and any
s ∈ S1 × . . . × Sn. This in turn enables her to calculate the conditional actions of her
neighbors a(i)

j,t(s) at every signal profile and to eliminate any s for which the conditionally
feasible action set a(i)

j,t(s) does not agree with the observed action aj,t for some j ∈ Ni.
She can thus update her list of feasible signal profiles from I i,t to I i,t+1 and adopt the
corresponding Bayesian belief µi,t+1 and action ai,t+1. The latter involves an additional
(n + 2)mAcard(I i,t+1) additions and multiplication which are nonetheless dominated by
the number calculations required in (A.1.2) for the simulation of other agents’ actions at
every signal profile.

A.2 Computational Complexity of (A2:BAYES-POSET)
According to (I2), in a POSET structure at time t agent i has access to the list of feasible
private signals for each of her neighbors: S j,t, j ∈ Ni given their observations up until
that point in time. The feasible signal set for each agent j ∈ Ni is calculated based on
the actions taken by others and observed by agent j until time t − 1 together with possible
private signals that can explain her history of choices: aj,0, aj,1, and so on up until her most
recent choice which is aj,t. At time t, agent i will have access to all the observations of
every agent in her neighborhood and can vet their most recent choices aj,t against their
observations to eliminate the incompatible private signals from the feasible set S j,t and
obtain an updated list of feasible signals S j,t+1 for each of her neighbors j ∈ Ni. This
pruning is achieved by calculating aj,t(sj) given I j,t(sj) = {sj} ×

∏
k∈Nj S j,t for each

sj ∈ S j,t and removing any incompatible sj that violates the condition aj,t = aj,t(sj); thus
obtaining the pruned set S j,t+1. The calculation of aj,t(sj) given I j,t(sj) = {sj}×

∏
k∈Nj S j,t

is performed according to (2.1.4) but the decomposition of the feasible signal profiles based
on the relation I j,t(sj) = {sj}×

∏
k∈Nj S j,t together with the independence of private signals

across different agents help reduce the number of additions and multiplications involved as
follows:
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aj,t(sj)←↩ arg max
aj∈Aj

∑
θ̂∈Θ

uj(aj, θ̂)

∑
s ′∈Ii,t(sj) L(s

′|θ̂)ν(θ̂)∑
θ̃∈Θ
∑

s ′∈Ii,t(sj) L(s
′|θ̃)ν(θ̃)

= arg max
aj∈Aj

∑
θ̂∈Θ

uj(aj, θ̂)
L(sj|θ̂)

∏
k∈Nj

∑
sk∈Sk,t L(sk|θ̂)ν(θ̂)∑

θ̃∈Θ L(sj|θ̃)
∏

k∈Nj

∑
sk∈Sk,t L(sk|θ̃)ν(θ̃)

.

Hence, the calculation of the conditionally feasible action aj,t(sj) for each sj ∈ S j,t can
be achieved through card(Θ)A

∑
k∈Nj card(Sk,t) additions and card(Θ) (card(Nj) + 2)A

multiplications; subsequently, the total number of additions and multiplications required
for agent i to update the feasible private signals of each of her neighbor can be estimated
as follows:

A
∑
j∈Ni

card(Θ)card(S j,t)

∑
k∈Nj

card(Sk,t) + card(Nj) + 2

 ≤
An2M2m+An2Mm+ 2nMmA, (A.2.1)

whereM, n,m and A are as in (A.1.2). After updating her lists for the feasible signal pro-
files of all her agents the agent can refine her list of feasible signal profiles I i,t+1 = {si}×∏

j∈Ni S j,t+1 and determine her belief µi,t+1 and refined choice ai,t+1. The latter is achieved
through an extra card(Θ)A

∑
j∈Ni card(Sj,t+1) additions and card(Θ)A (card(Ni) + 2) mul-

tiplications, which are dominated by the required calculations in (A.2.1). Most notably, the
computations required of the agent for determining her Bayesian choices in a POSET in-
crease polynomially in the number of agents n, whereas in a general network structure
using (A1) these computations increase exponentially fast in the number of agents n.

A.3 Proof of Theorem 2.7: A SUBSET-SUM Reduction
The SUBSET-SUM problem can be described as follows and it is know to beNP-complete
(cf. [211, A3.2, SP13]):

Problem A.1 (SUBSET-SUM). Given a set of n positive integers {p1, . . . , pn} and a posi-
tive integer q, determine if any non-empty subset of {p1, . . . , pn} sum to q.

We now describe the reduction to an arbitrary instance of SUBSET-SUM from a par-
ticular instance of GROUP-DECISION. Consider the problem of determining the belief of
agent i at time 2, µi,2, in the graph G with n + 5 nodes and 2n + 4 edges as in the left
graph in Fig. 2.5: agent i have two neighbors j1 and j2, who themselves have n neighbors
in common l1, . . . , ln. Furthermore, j1 and j2 each has one additional neighbor, k1 and
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k2 respectively, whom they do not share. We take the signal spaces of i, j1, and j2 to be
singletons Si = Sj1 = Sj2 = {s̊}, so that their private signals reveal no information and
as such φi,0 = φj1,0

= φj2,0
= φi,1 = 0, following the simplifying assumptions of the

binary state space with common uniform priors. We assume that each of the remaining
agents l1, l2, . . . , ln have a binary signal space slh ∈ {0, 1}, with the probabilities that are
set such that

p
h
:= log

(
`(slh = 0|θ2)

`(slh = 0|θ1)

)
, ph := log

(
`(slh = 0|θ2)

`(slh = 0|θ1)

)
, ph = ph − ph, for all h ∈ [n].

(A.3.1)

As for the agents k1 and k2, they also receive binary signals but with probabilities that are
set such that for r = 1, 2:

p? := log
(
`(skr = 0|θ2)
`(skr = 0|θ1)

)
, p? := log

(
`(skr = 1|θ2)
`(skr = 1|θ1)

)
,−q = p? − p?. (A.3.2)

Suppose further that at time 2, agent i observes the beliefs of both agents j1 and j2 to be as
follows: φj1,1

= φj2,1
=
∑m

h=1 ph + p
?. Note that in the above notation we have

λkr = skr(p? − p?
−q

) + p?, and λlh = slh(plh − plh
ph

) + p
lh
, r = 1, 2, h ∈ [n]. (A.3.3)

These quantities are important as they determine the beliefs of agents j1 and j2 at time one,
which are reported to agent i for processing her belief update at time 2. In particular, at
time 2, and from the fact that φj1,1

= φj2,1
=
∑m

h=1 ph + p
? agent i infers the following

information:

φj1,1
=

n∑
h=1

λlh + λk1 =

m∑
h=1

p
h
+ p?, andφj2,1

=

n∑
h=1

λlh + λk2 =

m∑
h=1

p
h
+ p?.

Replacing from (A.3.1), (A.3.2) and (A.3.3), the preceding relations can be written in terms
of the private signals slh , h ∈ [n] and sk1 , sk1 as follows:

n∑
h=1

slhph − sk1q = 0, and
n∑
h=1

slhph − sk2q = 0. (A.3.4)

Note that the constant term
∑m

h=1 ph + p? is canceled out from both sides of the two
equations leading to the homogeneous system in (A.3.4). To compute her Bayesian pos-
terior belief µi,2 or equivalently φi,2, agent i should first solve the arbitrary instance of
SUBSET-SUM for the given parameters: SUBSET-SUM(p1, . . . , pn;q). If she deter-
mines that the answer to SUBSET-SUM(p1, . . . , pn;q) is negative then she concludes that
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all agents must have received zero signals and she sets her belief accordingly: φi,2 =∑n
h=1 slhph − sk1q− sk1q+

∑m
h=1 ph + 2p

? =
∑m

h=1 ph + 2p
?; in particular, we have:

If SUBSET-SUM(p1, . . . , pn;q) = FALSE, thenφi,2 =
∑m

h=1 ph + 2p
?. (I)

It is also worth highlighting that when SUBSET-SUM(p1, . . . , pn;q) = FALSE the belief
of agent i at time two is in fact an efficient belief but that does not imply the transparency
of the graph structure because the latter is a structural property that should hold true for all
choices of the signal structure parameters; in fact, the graph structure in Fig. 2.5, on the
left, is not transparent. On the other hand, if the answer to SUBSET-SUM(p1, . . . , pn;q)

is positive, then agent i concludes that in addition to the case of all zero signals, there are
additional cases (i.e. feasible signal profiles) in which some agents receive a one signal.
In any such cases, we should necessarily have that sk1 = sk1 = 1, in order for (A.3.4) to
remain satisfied. Subsequently, for all such nontrivial signal profiles we have that:

(
����−qsk1 + p

?
)
+
(
−qsk2 + p

?
)
+

n∑
h=1

(
���phslh + ph

)
= p? + (−q+ p?

p?

) +

n∑
h=1

p
h

=

n∑
h=1

p
h
+ p? + p? <

n∑
h=1

p
h
+ 2p?,

where in the first equality we use (A.3.4) to cancel out the indicated terms and in the last
inequality we use the fact that p? = (−q) + p? < p?. Agent i thus needs to find all these
feasible signal profiles and set her belief at time two based on the the set of all feasible
signal profiles. In particular, since in all the non-trivial cases (feasible signal profiles that
are not all zero signals),

∑n
k=1 λk+λk1 +λk2 =

∑n
h=1 ph+ p

? + p? <
∑n

h=1 ph+ 2p
? we

have that:

If SUBSET-SUM(p1, . . . , pn;q) = TRUE, thenφi,2 <
∑n

h=1 ph + 2p
?. (II)

This concludes the reduction because if an algorithm is available that solves any instances
of GROUP-DECISION in polynomial time then by inspecting the output of that algorithm
according to (I) and (II) for the particular instance of GROUP-DECISION described above,
agent i can decide the feasibility of any instance of the SUBSET-SUM problem in polyno-
mial time.

A.4 Proof of Theorem 2.7: An EXACT-COVER Reduc-
tion

EXACT-COVER is the fourteenth on Karp’s list of 21 NP-complete problems. It is de-
scribed as follows [212]:
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Problem A.2 (EXACT-COVER). A set of n items {j1, . . . , jn} = {jh : h ∈ [n]} and a family
{l1, . . . , lm} ofm subsets: lh ⊂ {j1, . . . , jn} for all h ∈ [m], are given. Determine if there is
a subfamily of disjoint subsets belonging to {l1, . . . , lm} such that their union is {j1, . . . , jn}:
{lh1 , . . . , lhp} ⊂ {l1, . . . , lm}, lhq ∩ lhq ′ = ∅ for all q, q ′ ∈ [p], and ∪pq=1lhq = {j1, . . . , jn}.

The input to EXACT-COVER can be represent by a graph Ĝm,n on the m + n nodes
{l1, . . . , lm ; j1 , . . . , jn } which is bipartite between {l1, . . . , lm} and {j1, . . . , jn} and the
only edges are from nodes lh to jh ′ whenever subset lh contains the element jh ′ for some
h ∈ [m] and h ′ ∈ [n] in the description of EXACT-COVER. Henceforth, w e use the
notation EXACT-COVER(Ĝm,n) to denote the output of EXACT-COVER for an arbitrary
input Gm,n: EXACT-COVER(Ĝm,n) ∈ {TRUE,FALSE}. If there is a subset lh, h ∈ [m]

that alone covers all the items {j1, . . . , jn}, then the answer to EXACT-COVER(Ĝm,n) is
(trivially) true, and we can thus check for and remove this case in our polynomial reduction.

To construct the reduction from an arbitrary instance of EXACT-COVER to a particular
instance of GROUP-DECISION, we consider the decision problem of agent i in a graph G
that is derived from Ĝm,n by adding two additional nodes i and k and 2n additional edges:
n edges that are directed from node k to each of {j1, . . . , jn} and another n edges from
each of {j1, . . . , jn} to node i (cf. the right graph in Fig. 2.5). We assume that agents i and
j1, . . . , jn can only receive the non-informative signal s̊: Si = Sj1 = Sj2 = . . . = Sjn = {s̊};
hence,φi,0 = φj1,0

= φj2,0
= . . . = φjn,0 = φi,1 = 0.

We assume that agents l1, . . . , lm observe initial i.i.d. binary signals: slh ∈ {0, 1} with
the probabilities set such that for all h ∈ [m]:

log
(
`(slh = 1|θ2)

`(slh = 1|θ1)

)
= p, log

(
`(slh = 0|θ2)

`(slh = 0|θ1)

)
= p, p− p = 1.

Similarly, agent k receives a binary signal but with probabilities such that

log
(
`(sk = 1|θ2)
`(sk = 1|θ1)

)
= p?, log

(
`(sk = 0|θ2)
`(sk = 0|θ1)

)
= p?, p? − p? = −1.

Note that with the above setting,

λk = sk(p? − p?
−1

) + p?, and λlh = slh(p− p
1

) + p, h ∈ [m]. (A.4.1)

At time two, agent i observes that each of her neighbors j1, . . . , jn have changed their
beliefs from their initial uniform priors, such that

φjr,1 = card ({h ∈ [m] : jr ∈ lh})p+ p? = (card (Njr) − 1)p+ p?. (A.4.2)

Note thatNjr = {k}∪{lh : h ∈ [m], jr ∈ lh}, and card (Njr)−1 = card ({h ∈ [m] : jr ∈ lh})
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counts the number of subsets lh, h ∈ [m] that cover item jr in the original description of
EXACT-COVER (Problem A.2). To make a Bayesian inference about the reported beliefs
in (A.4.2) and to decide her time two belief µi,2 (or equivalentlyφi,2), agent i should first
consider the following construction of the reported beliefs,φjr,1 for all r ∈ [n]:

φjr,1 = λk +
∑

lh∈Njr\{k}

λlh = (−sk + p?) +
∑

lh∈Njr\{k}

(slh + p)

=

 ∑
lh∈Njr\{k}

slh − sk

+ (card (Njr) − 1)p+ p?, (A.4.3)

Combining her observations in (A.4.2) with the construction of the reported beliefs in
(A.4.3), agent i should consider the solutions of the resultant system of n equations in
the following m + 1 binary variables: sl1 , . . . , slm and sk. In particular, she has to decide
whether her observations in (A.4.2) are the result of k and l1, . . . , lm having all received
zero signals, or else if it is possible that agent k has received a one signal (φk,0 = λk =

−1 + p?) and a specific subset of the agents l1, . . . , lm have also received one signals
(φlh,0

= λlh = 1 + p, for all lh who see slh = 1) enough to exactly balance the net ef-
fect, leading to (A.4.2). The latter is possible only if there is a non-trivial solution to the
following system:∑

lh∈Njr\{k}

slh − sk = 0, for all r ∈ [n] ; (sl1 , . . . , slm , sk) ∈ {0, 1}m+1. (A.4.4)

This is equivalent to the feasibility of EXACT-COVER(Ĝm,n) since the latter can be for-
mulated as the following 0/1-integer program:∑

h∈[m]:jr∈lh

slh = 1, for all jr ∈ {j1, . . . , jn} ; (sl1 , . . . , slm) ∈ {0, 1}m. (A.4.5)

Note that a variable slh in System (A.4.5) will be one only if the corresponding set lh
is chosen in the solution of the feasible EXACT-COVER; moreover, the constraints in
(A.4.5) express the requirement that the chosen sets do not intersect at any of the elements
{j1, . . . , jn}. In other words, each of the n items are contained in one and exactly one subset:
for each p ∈ [n], there is a unique h ∈ [m] such that jp ∈ lh and slh = 1. System (A.4.4)
having a non trivial solution is equivalent to the feasibility of System (A.4.5), because in
any non trivial solution of (A.4.4) we should necessarily have sk = 1; and furthermore,
from our construction of the graph G based on the EXACT-COVER input Ĝm,n we have
that Njp = {lh : h ∈ [m], jp ∈ lh} ∪ {k} for all jp ∈ {j1, . . . , jn}.

Note that since in our polynomial reduction we have removed the case where all of the
items {j1, . . . , jn} are covered by one subset lh for some h ∈ [m], in any nontrivial solution
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of exact cover, we have that slh = 1 for at least two distinct values of h ∈ [m]: at least
two subsets are needed for all the elements to be covered in a feasible EXACT-COVER.
Subsequently, if agent i determines that EXACT-COVER(Ĝm,n) is FALSE, then she con-
cludes that all agents must have received zero signals and she sets her belief accordingly:
φi,2 = λk+

∑m
h=1 λlh+

∑n
r=1 λjr+λi = p

?+mp, where we use the facts that λjr = λi = 0
for all r ∈ [n], as well as λk = p? and λlh = p for all l1, . . . , lm with zero signals. Put
succinctly,

If EXACT-COVER(Ĝm,n) = FALSE, thenφi,2 = p
? +mp. (III)

However, if the answer to EXACT-COVER(Ĝm,n) is TRUE, then for any additional feasible
signal profile that agent i identifies and determines to satisfy (A.4.4), it is necessarily true
that sk = 1 and slh = 1, for at list two distinct agents among {l1, . . . , lm}; hence, for any
such additionally feasible signal profiles it is always true that

λk +

m∑
h=1

λlh = −sk + p? +
m∑
h=1

slh +mp ≥ 1+ p? +mp,

where in the latter lower-bound we use the facts that sk as well as at least two of slh are
one in any non-trivially feasible signal profile, i.e. −sk +

∑m
h=1 slh ≥ 1. In particular, we

conclude that

If EXACT-COVER(Ĝm,n) = TRUE, thenφi,2 > p
? +mp. (IV)

Hence we conclude the NP-hardness of GROUP-DECISION by its reduction to EXACT-
COVER. Because if the polynomial time computation of beliefs in GROUP-DECISION
was possible, then by inspecting the computed beliefs according to (III) and (IV) for the
particular instance of GROUP-DECISION (with i.i.d. binary signals) described above,
agent i can decide the feasibility of any instance of the EXACT-COVER problem in poly-
nomial time.

A.5 Belief Calculations in Bounded Neighborhoods with
i.i.d. Signals

In this example, we consider a variation of the right-hand-side structure in Fig. 2.5 in
which agent k is removed and also n, the number of directly observed neighbors of agent
i, is fixed. We show that the belief of agent i at time two can be computed efficiently in
the number of indirectly observed neighbors (m). We suppose that the signal structures
for agent i, her neighboring agents j1, . . . , jn, and the indirectly observed agents l1, . . . , lm
are as in Appendix A.4; subsequently, φi,0 = φj1,0

= φj2,0
= . . . = φjn,0 = φi,1 = 0.
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At time two, agent i has to incorporate the time one beliefs of her neighbors, which are
themselves caused by the time zero beliefs of l1, . . . , lm: Given φjr,1 =

∑
lh∈Njr

λlh , for
r = 1, . . . , n, agent i aims to determine her belief at time two (or equivalentlyφi,2). Using
(A.4.1), we can write ψjr =

∑
lh∈Njr

slh , where

ψjr =
1

p− p

(
φjr,1 − card (Njr)p

)
, r ∈ [n],

are necessarily non-negative integers belonging in to [m]0 = {0} ∪ [m], due to their gen-
eration process, i.e. the fact that they count the number of one signals that are received in
the neighborhood Njr of each of the neighbors jr, r ∈ [n]. For all r ∈ [n] and r ′ ∈ [m],
let ajr,lr ′ = 1 if lr ′ ∈ Njr and ajr,lr ′ = 0 otherwise. Denoting ajr = (ajr,l1, . . . , ajr,lm) and
using the transpose notation T , we can rewrite ψjr as an inner product ψjr = ajrsT , where
s = (sl1 , . . . , slm). To proceed for each r ∈ [m], let alr = (aj1,lr , . . . , ajn,lr). To determine
her belief, agent i acts as follows:

1. For each κ = (κ1, . . . , κn) ∈ {0, 1}n, let Ψκ = {lr : alr = κ}, note that Ψκ are non-
intersecting, possibly empty sets, whose union is equal to {l1, . . . , lm}. Also let ηκ be
the number of agents belonging to Ψκ who have received one signals; the rest having
received zero signals, the variables ηκ, κ ∈ {0, 1}n should satisfy:∑

κ∈Ξr

ηκ = ψjr , for all r ∈ [n], where Ξr = {κ : κ = (κ1, . . . , κn), κr = 1}. (A.5.1)

2. Note that ηκ ∈ [card(Ψκ)]0 for each k ∈ {0, 1}n, and to determine her belief, agent i
needs to find the set Γi of all such non-negative integer solutions of (A.5.1):

• Initialize Γi = ∅.

• For each η := (ηκ, κ ∈ {0, 1}n) ∈∏k∈{0,1}n [card(Ψκ)]0, if all ηκ, k ∈ {0, 1}n satisfy
(A.5.1) for each r ∈ [n], then set Γ = Γ ∪ {η}.

3. Having thus found Γi, agent i sets her belief (or equivalently its log-ratio) as follows:

φi,2 = log

∑
η∈Γi

 ∏
κ∈{0,1}n

(
card(Ψκ)
ηκ

)[`(s = 1|θ2) ∑
κ∈{0,1}n

ηκ
] [
`(s = 0|θ2)

m−
∑

κ∈{0,1}n
ηκ
]

∑
η∈Γi

 ∏
κ∈{0,1}n

(
card(Ψκ)
ηκ

)[`(s = 1|θ1) ∑
κ∈{0,1}n

ηκ
] [
`(s = 0|θ1)

m−
∑

κ∈{0,1}n
ηκ
] .

(A.5.2)

Note that with private signals restricted to be i.i.d. binary signals, the set Γi in fact represents
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the set of all private signals profiles that are deemed feasible by agent i at time two, as with
I i,t in (2.1.1). The symmetry of the binary structure allows for the summation over the fea-
sible signal profiles to be simplified as in (A.5.2) by counting the number of ways in which
the agents would receive one signals within each of subsets Ψκ, κ ∈ {0, 1}n; this is achieved
by the product of the binomial coefficients in (A.5.2). The overall complexity of comput-
ing the Bayesian posterior belief in (A.5.2) can now be bounded by a total of O(n2nm2n)

additions and multiplications for computing the set Γi and anotherO(m1+2n(22n)(3m+2))

for computing the beliefs (or their ratio) in (A.5.2). Note that we made no effort in opti-
mizing these computations beyond the fact that they increase polynomially inm for a fixed
neighborhood size (n).

A.6 Proof of Theorem 3.3
If agent i starts from a prior belief Vi(·) = V(·;αi, βi) ∈ Fγ,η, then we can use the Bayes
rule to verify that, cf. [114, Proposition 3.3.13], the Radon-Nikodym derivative of the
Bayesian posterior of agent i after observing ni samples si,p ∈ S, p ∈ [ni], with likelihood
(3.2.1) is ν(·;αi + σi

∑ni
p=1 ξ(si,p), βi + niδi), and in particular the Bayesian posterior at

time zero belongs to the conjugate family Fγ,η: Mi,0(·) = V(·;αi + σi
∑ni

p=1 ξ(si,p), βi +
niδi).

Subject to the quadratic utility ui(a, θ) = −(a−mi,θ)
T(a−mi,θ), the expected pay-off

at any time time t is maximized is by choosing [213, Lemma 1.4.1]:

ai,t = Ei,t{mi,θ} :=

∫
θ∈Θ

mi,θMi,t(dθ),

which coincides with her minimum variance unbiased estimator (Bayes estimate) formi,θ.
The members of the conjugate family Fγ,η satisfy the following linearity property of the
Bayes estimates that is key to our derivations.1

Lemma A.1 (Proposition 3.3.14 of [114]). Let ζ ∈ Rk be a parameter and suppose that
the parameter space Ωζ is an open set in Rk. Suppose further that ζ ∈ Ωζ has the prior
distributionW(·;α,β) with density κ ′(α,β)eζ

Tα−βγ(ζ) w.r.t. Λk where κ ′(α,β) is the nor-
malization constant. If s ′ ∈ S ′ ⊂ Rk is a random signal with distribution D(·; ζ) and
density τ ′(s)eζts−γ ′(ζ) w.r.t. Λk, then∫

ζ∈Ωζ

∫
s ′∈S ′

sD(ds; ζ)W(dζ;α,β) =
α

β
.

1In fact, such an affine mapping from the observations to the Bayes estimate characterizes the conjugate
family Fγ,η and every member of this family can be uniquely identified from the constants of the affine
transform [214].
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Hence for any V(·;α,β) ∈ Fγ,η we can write∫
θ∈Θ

mi,θV(dθ;α,β) =
∫
θ∈Θ

∫
s∈S
ξ(s)L(ds|θ;σ, δ)V(dθ;α,β) (A.6.1)

=

∫
θ∈Θ

∣∣∣∣Λk(η(dθ))Gθ(dθ)

∣∣∣∣ eη(θ)Tα−βγ(η(θ))κ(α,β)
Gθ(dθ)× . . .

. . .

∫
s∈S

ξ(s)σ

∣∣∣∣Λk(ξ(ds))Gs(ds)

∣∣∣∣ τ (σξ(s), δ) eση(θ)Tξ(s)−δγ(η(θ))Gs(ds)
=

∫
ζ∈Ωθ

∣∣∣∣Λk(η(dθ))Gθ(dθ)

∣∣∣∣ eη(θ)Tα−βγ(η(θ))κ(α,β)
Gθ(dθ)× . . .

. . .

∫
s∈S

ξ(s)σ

∣∣∣∣Λk(ξ(ds))Gs(ds)

∣∣∣∣ τ (σξ(s), δ) eση(θ)Tξ(s)−δγ(η(θ))Gs(ds)
=

∫
ζ∈Ωη

eζ
Tα−β

δ
γ ′(ζ)

κ(α,β)
Λk(dζ)

∫
s ′∈S ′

s ′τ ′(s ′)

σ
eζ
T s ′−γ ′(ζ)Λk(ds

′) =
αδ

σβ
,

where in the penultimate equality we have employed the following change of variables:
ζ = η(θ), s ′ = σξ(s), γ ′(ζ) = δγ(ζ), τ ′(s ′) = τ(s ′, δ); and the last equality is a direct
application of Lemma A.1. In particular, given Mi,0(·) = V(·;αi + σi

∑ni
p=1 ξ(si,p), βi +

niδi), the expectation maximizing action at time zero coincides with:

ai,0 =
∑ni

p=1 ξ(si,p) + σ
−1
i αi

ni + δ
−1
i βi

. (A.6.2)

Subsequently, following her observations of aj,0, j ∈ Ni and from her knowledge of her
neighbor’s priors and signal likelihood structure, agent i infers the observed values of∑nj

p=1 ξ(sj,p) for all her neighbors. Hence, we get

nj∑
p=1

ξ(sj,p) = (nj + δ
−1
j βj)aj,0 − σ

−1
j αj, ∀j ∈ Ni. (A.6.3)

The observations of agent i are therefore augmented by the set of independent samples
from her neighbors: {

∑nj
p=1 ξ(sj,p) : j ∈ Ni}, and her refined belief at time 1 is again a

member of the conjugate family Fγ,η and is give by:

Mi,1(·) = V(·;αi +
∑
j∈N̄i

σj

nj∑
p=1

ξ(sj,p), βi +
∑
j∈N̄i

njδj).
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We can again invoke the linearity of the Bayes estimate for the conjugate family Fγ,η and
the subsequent result in (A.6.1), to get that the expected pay-off maximizing action at time
1 is given by:

ai,1 =
δi

(
αi +

∑
j∈N̄i σj

∑nj
p=1 ξ(sj,p)

)
σi

(
βi +

∑
j∈N̄i njδj

) . (A.6.4)

Finally, we can use (A.6.3) to replace for the neighboring signals and derive the expression
of the action update of agent i at time 1 in terms of her own and the neighboring actions aj,0,
j ∈ N̄i; leading to the expression of linear Bayesian heuristics as claimed in Theorem 3.3.
�

A.7 Proof of Theorem 3.6
The balancedness of likelihoods (Assumption 3.3) ensures that the coefficients of the lin-
ear conbination from Corollary 3.1 sum to one:

∑
j∈N̄i Tij = 1, for all i; thus forming a

convex combination as in the DeGroot model. Subsequently, the agents begin by setting
ai,0 =

∑ni
p=1 ξ(si,p)/ni according to (A.6.2), and at every t > 1 they update their actions

according to at = (T⊗Ik)at−1 = (T t⊗Ik)a0, where at = (aT1,t, . . . , aTn,t)T and T is the n×n
matrix whose i, j-th entry is Tij. Next note from the analysis of convergence for DeGroot
model, cf. [130, Proporition 1], that for a strongly connected network G if it is aperiodic
(meaning that one is the greatest common divisor of the lengths of all its circles; and it is
the case for us, since the diagonal entries of T are all non-zero), then limτ→∞ T τ = 1s

T

,
where s := (s1, . . . , sn)

T is the unique left eigenvector associated with the unit eigenvalue
of T and satisfying

∑n
i=1 si = 1, si > 0, ∀i. Hence, starting from non-informative priors

agents follow the DeGroot update and if G is also strongly connected, then they reach a
consensus at

∑n
i=1 siai,0 =

∑n
i=1 si(

∑ni
p=1 ξ(si,p)/ni). �

A.8 Proof of Theorem 3.7
We begin by a lemma that determines the so-called global MVUE for each i, i.e. the MVUE
ofmi,θ given all the observations of all agents across the network.

Lemma A.2 (Global MVUE). Under the exponential family signal-utility structure (As-
sumption 3.1), the (global) MVUE of mi,θ given the entire set of observations of all the
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agents across the network is given by:

a?
i =

δi

(
αi +

∑n
j=1 σj

∑nj
p=1 ξ(sj,p)

)
σi

(
βi +

∑n
j=1 njδj

) . (A.8.1)

If we further impose non-informative priors (Assumption 3.2), then the global MVUE for
each i can be rewritten as

a?
i =

δi

(∑n
j=1 σj

∑nj
p=1 ξ(sj,p)

)
σi

(∑n
j=1 njδj

) =
δi

σi

n∑
j=1

σjnj∑n
p=1 npδp

aj,0. (A.8.2)

This lemma can be proved easily. Following the same steps that lead to (A.6.4), yields
(A.8.1). Next by making the necessary substitutions under Assumption 3.2, (A.8.2) is ob-
tained. From (A.8.2), it is immediately clear that if some consensus action is to be the
efficient estimator (global MVUE) for all agents i ∈ [n], then we need δiσj = σiδj for
all i, j; hence, the global balance is indeed a necessary condition. Under this condition,
the local balance of likelihoods (Assumption 3.3) is automatically satisfied and given non-
informative priors Theorem 3.6 guarantees convergence to consensus in a strongly con-
nected social network. Moreover, we can rewrite (A.8.2) as a?

i = a? = (
∑n

j=1 δjnjaj,0) /∑n
p=1 npδp, for all i. Hence, if the consensus action (

∑n
i=1 siai,0 in the proof of Theo-

rem 3.6, Appendix A.7) is to be efficient then we need si = δini/
∑n

j=1 njδj for all i; s =
(s1, . . . , sn) being the unique normalized left eigenvector associated with the unit eigen-
value of T : sTT = sT , as defined in Appendix A.7. Using δiσj = σiδj, we can also rewrite
the coefficients Tij of the DeGroot update in Theorem 3.6 as Tij = δjnj/(

∑
p∈N̄i npδp).

Therefore, by expanding the eigenvector condition sTT = sT we obtain that in order
for the consensus action sTa0 to agree with the efficient consensus a?, it is necessary and
sufficient to have that for all j

n∑
i=1

siTij =

n∑
i=1

(
δini∑n
j=1 δjnj

)
δjnj[I+A]ij∑

p∈N̄i npδp
= sj =

δjnj∑n
j=1 δjnj

, (A.8.3)

or equivalently, ∑
i:j∈N̄i

δini∑
p∈N̄i npδp

=
∑
i∈N̄outj

δini∑
p∈N̄i npδp

= 1, (A.8.4)

for all j. Under the global balance condition (Assumption 3.4), δiσj = δjσi, the weights
Tij = δjnj/(

∑
p∈N̄i npδp) as given above, correspond to transition probabilities of a node-

weighted random walk on the social network graph, cf. [215, Section 5]; where each node
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i ∈ [n] is weighted by wi = niδi. Such a random walk is a special case of the more
common type of random walks on weighted graphs where the edge weights determine the
jump probabilities; indeed, if for any edge (i, j) ∈ E we set its weight equal towi,j = wiwj
then the random walk on the edge-weighted graph reduces to a random walk on the node-
weighted graph with node weightswi, i ∈ [n]. If the social network graph is undirected and
connected (so that wi,j = wj,i for all i, j), then the edge-weighted (whence also the node-
weighted) random walks are time-reversible and their stationary distributions (s1, . . . , sn)T

can be calculated in closed form as follows [216, Section 3.2]:

si =

∑
j∈N̄i wi,j∑n

i=1

∑
j∈N̄i wi,j

. (A.8.5)

In a node-weighted random walk we can replace wi,j = wiwj for all j ∈ N̄i and (A.8.5)
simplifies into

si =
wi
∑

j∈N̄i wj∑n
i=1wi

∑
j∈N̄i wj

.

Similarly to (A.8.3), the consensus action will be efficient if and only if

si =
wi
∑

j∈N̄i wj∑n
i=1wi

∑
j∈N̄i wj

=
wi∑n
k=1wk

,∀i, or equivalently:

(

n∑
k=1

wk)
∑
j∈N̄i

wj =

n∑
i=1

(wi
∑
j∈N̄i

wj), ∀i,

which holds true only if
∑

j∈N̄i wj is a common constant that is the same for all agents, i.e.∑
j∈N̄i wj =

∑
j∈N̄i δjnj = C

′ > 0 for all i ∈ [n]. Next replacing in (A.8.4) yields that, in
fact, C ′ =

∑
i∈N̄outj

δini for all j, completing the proof for the conditions of efficiency. �

A.9 Proof of Theorem 3.11
Using the log-ratio variables and their concatenations defined at the beginning of Appendix
F, we can rewrite the log-linear belief updates of (3.3.1) in a linearized vector format as
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shown below:

φt+1(θ̂, θ̌) =(I+A)φt(θ̂, θ̌) −Aγ(θ̂, θ̌) = (I+A)t+1φ0(θ̂, θ̌) −

t∑
τ=0

(I+A)τAγ(θ̂, θ̌)

=(I+A)t+1
(
λ(θ̂, θ̌) + γ(θ̂, θ̌)

)
−

t∑
τ=0

(I+A)τAγ(θ̂, θ̌)

=(I+A)t+1λ(θ̂, θ̌) +

(
(I+A)t+1 −

t∑
τ=0

(I+A)τA

)
γ(θ̂, θ̌).

Next we use the spectral decomposition in (3.3.11) to obtain: 1

φt+1(θ̂, θ̌) = (1+ ρ)t+1r1Λ(θ̂, θ̌) + ((1+ ρ)t+1 −

t∑
τ=0

(1+ ρ)τρ)r1β(θ̂, θ̌) + o((1+ ρ)
t+1)

= (1+ ρ)t+1

(
r1Λ(θ̂, θ̌) + (1−

t∑
τ=0

(1+ ρ)τ−t−1ρ)r1β(θ̂, θ̌) + o(1)

)
→ (1+ ρ)t+1r1Λ(θ̂, θ̌), (A.9.1)

where we adopt the following notations for the global log likelihood and prior ratio statis-
tics: β(θ̂, θ̌) := αTγ(θ̂, θ̌) and Λ(θ̂, θ̌) := αTλ(θ̂, θ̌); furthermore, in calculation of the
limit in the last step of (A.9.1) we use the geometric summation identity

∑∞
τ=0 ρ(1+ρ)

τ−1 =

1.
To proceed denoteΛ(θ̂) :=

∑n
i=1 αi`i(si|θ̂) so thatΛ(θ̂, θ̌) = Λ(θ̂)−Λ(θ̌). SinceΘ3

consists of the set of all maximizers ofΛ(θ̂), we have thatΛ(θ̂, θ̌) < 0 whenever θ̌ ∈ Θ3

and θ̂ 6∈ Θ3. Next recall from (A.9.1) that φt+1(θ̂, θ̌)→ (1 + ρ)t+1r1Λ(θ̂, θ̌) where r1 is
the right Perron-Frobenius eigenvector with all positive entries; hence, for all θ̃ ∈ Θ3 and
any θ̂,φi,t(θ̂, θ̃)→ −∞ if θ̂ 6∈ Θ3 andφi,t(θ̂, θ̃) = 0 whenever θ̂ ∈ Θ3; or equivalently,
µi,t(θ̂)/µi,t(θ̃) → 0 for all θ̂ 6∈ Θ3, while limt→∞ µi,t(θ̂) = limt→∞ µi,t(θ̃) for any θ̂ ∈
Θ3. The latter together with the fact that

∑
˜θ∈Θ µi,t(θ̃) = 1 for all t implies that with

probability one: limt→∞ µi,t(θ̃) = 1/|Θ3|, ∀θ̃ ∈ Θ3 and limt→∞ µi,t(θ̃) = 0, ∀θ̃ 6∈ Θ3 as
claimed in the Theorem. In the special case that Θ3 is a singleton, {θ3} = Θ3, we get that
limt→∞ µi,t(θ3) = 1 almost surely for all i ∈ [n].

1Given two functions f(·) and g(·) we use the asymptotic notation f(t) = o(g(t)) to signify the relations
limt→∞ |f(t)/g(t)| = 0.
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A.10 Proof of Lemma 4.1: Time-One Bayesian Actions
Note that given her observation of private signal si,0, the posterior probability assigned by
agent i to the set θ1 is given by (4.1.3) with θ̂ = θ1. We form a dichotomy of the signal
space Si of each agent into S1i and S−1

i ; by setting S1i := {s ∈ Si : `i(s|θ1)νi(θ1) ≥
`i(s|θ2)νi(θ2)} and S−1

i := Si \ S1i . It thus follows from (4.2.2) that for any j ∈ Ni the
observation that aj,0 = 1 is equivalent to the information that {sj,0 ∈ S1j } and aj,0 = −1 is
equivalent to the information that {sj,0 ∈ S−1

j }. Thereby, the belief of agent i at time t = 1
given her observation of the actions of her neighbors and the private signal sj,0 is given by

µi,1(θ1) =

`i(si,0|θ1)
∏
j∈Ni

 ∑
sj∈S

aj,0
j

`j(sj|θ1)

νi(θ1)
∑
θ̂∈Θ

`i(si,0|θ̂)
∏
j∈Ni

 ∑
sj∈S

aj,0
j

`j(sj|θ̂)

νi(θ̂)
,

and we can thus form the ratio

µi,1(θ1)

µi,1(θ2)
=
`i(si,0|θ1)νi(θ1)
`i(si,0|θ2)νi(θ2)

∏
j∈Ni


∑

sj∈S
aj,0
j

`j(sj|θ1)

∑
sj∈S

aj,0
j

`j(sj|θ2)


=
`i(si,0|θ1)νi(θ1)
`i(si,0|θ2)νi(θ2)

Vi
∏
j∈Ni

W
aj,0

j , (A.10.1)

where for all i ∈ [n] we have defined

Vi =
∏
j∈Ni


∑
sj∈S1j

`j(sj|θ1)

∑
sj∈S1j

`j(sj|θ2)
×

∑
sj∈S−1j

`j(sj|θ1)

∑
sj∈S−1j

`j(sj|θ2)


1/2

, (A.10.2)

Wi =


∑
si∈S1i

`i(si|θ1)∑
si∈S1i

`i(si|θ2)
×

∑
si∈S−1i

`i(si|θ2)

∑
si∈S−1i

`i(si|θ1)


1/2

. (A.10.3)
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Furthermore let wi := logWi and ηi := log(Viνi(θ1)/νi(θ2)) be constants that are deter-
mined completely by the initial prior and signal structures of each agent and her neighbors.
Subsequently, taking logarithms of both sides in (A.10.1) yields the following update rule
for the log-ratio of the beliefs at time one,

log
(
µi,1(θ1)

µi,1(θ2)

)
=
∑
j∈Ni

wjaj,0 + ηi + λ1(si,0). (A.10.4)

Finally, we can apply (4.2.1) to derive the claimed expression in Lemma 4.1 for the updated
Bayesian action of agent i following her observations of her neighbors’ actions aj,0, j ∈ Ni
and her own private signal si,0. We end our derivation by pointing out some facts concerning
constants ηi and wi which appear in (A.10.4).

Lemma A.3 (Monotonicity of ηi). Consider any i ∈ [n] and fix a signal sj ∈ Sj for some
j ∈ Ni. It holds true that the constant ηi is increasing in `j(sj | θ1) and decreasing in
`j(sj | θ2).

Proof. The claim follows directly from the defining relation ηi = log(νi(θ1)/νi(θ2)) +
logVi, as replacing from (A.10.2) yields

logVi =+
1

2

∑
j∈Ni

log
∑
sj∈S1j

`j(sj|θ1) +
1

2

∑
j∈Ni

log
∑
sj∈S−1j

`j(sj|θ1)

−
1

2

∑
j∈Ni

log
∑
sj∈S1j

`j(sj|θ2) −
1

2

∑
j∈Ni

log
∑
sj∈S−1j

`j(sj|θ2). (A.10.5)

The proof now follows upon the realization that for any fixed sj ∈ Sj, j ∈ Ni the term
`j(sj | θ1) appears in one of the first two terms appearing with a plus sign in (A.10.5), and
the term `j(sj | θ2) appears in one of the last first two terms appearing with a minus sign
in (A.10.5). Hence, when all else kept constant, logVi and subsequently ηi is increasing in
`j(sj | θ1) and decreasing in `j(sj | θ2).

Lemma A.4 (Positivity of wi). It holds true for any i ∈ [n] that wi ≥ 0.

Proof. First note from the definitions of the sets S1i and S−1
i that ∀s ∈ S1i ,

`i(s|θ1)

`i(s|θ2)
≥ νi(θ2)
νi(θ1)

, and ∀s ∈ S−1
i ,
`i(s|θ2)

`i(s|θ1)
>
νi(θ1)

νi(θ2)
.

Next we sum the numerators and denominators of the likelihood ratios of the signals in
each of sets S1i and S−1

i ; invoking basic algebraic properties from the resultant fractions
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yields ∑
s∈S1i

`i(s|θ1)∑
s∈S1i

`i(s|θ2)
≥ νi(θ2)
νi(θ1)

, and

∑
s∈S−1i

`i(s|θ2)∑
s∈S−1i

`i(s|θ1)
>
νi(θ1)

νi(θ2)
.

Subsequently, replacing form (A.10.3) yields that

Wi :=

∑
s∈S1i

`i(s|θ1)∑
s∈S1i

`i(s|θ2)
×

∑
s∈S−1i

`i(s|θ2)∑
s∈S−1i

`i(s|θ1)
≥ νi(θ2)
νi(θ1)

× νi(θ1)
νi(θ2)

= 1,

and proof follows from the defining relation wi := logWi ≥ 0.

A.11 A Markov Chain on the Boolean Cube

To begin, for any vertex of the Boolean hypercube a := (a1, . . . , an)
T ∈ {±1}n and each

agent i, define the function πi : {±1}n → [0, 1] as πi(a) := P{ai,t+1 = +1 | at = a} =

Pθ{−λ1(si,t+1) ≤
∑

j∈Ni wjaj + ηi}. The transition probabilities for the Markov chain of
action profiles on the Boolean hypercube are given by

P(a ′, a) := P{at+1 = a ′ | at = a} =
∏

i:a ′i=+1

πi(a)
∏

i:a ′i=−1

(1− πi(a)), (A.11.1)

for all t ∈ N0 and any pair of vertices a ′ := (a ′1, . . . , a
′
n)
T ∈ {±1}n and a ∈ {±1}n.

It follows from the classification of states and chains in [200, Section 2.4] that {±1}n
can be partitioned into sets of transient communication classes: C ′1, . . ., C ′r ′ , and recurrent
(ergodic) communication classes: C1, . . ., Cr. Moreover, as t → ∞, at almost surely
belongs to ∪i∈[r]Ci. It is further true that if at0 ∈ Ci for some i ∈ [r] and t0 ∈ N, then
at ∈ Ci almost surely for all t ≥ t0: the process will almost surely leave any set of transient
action profiles, i.e. ∪i∈[r ′]C ′i, and will almost surely remain in the first recurrent set that
it reaches before any other. Let r∗ := arg minρ∈[r]{t : at ∈ Cρ} be the random variable
that determines the first ergodic set of action profiles that is reached by the Markov chain
process {at, t ∈ N0}; suppose τ := card(Cr∗) and further denote Cr∗ := {a∗1, . . . , a∗τ}. The
asymptotic behavior of the process can now be characterized as follows.

Proposition A.1 (Asymptotic Distribution of Action Profiles). Let p := (p1, . . . ,pτ)T

be the stationary distribution over Cr∗ which uniquely satisfies pk
∑τ

j=1 P(a
∗
k, a∗j ) =

∑τ
j=1

P(a∗k, a∗j )pj, for all k ∈ [τ]. Then P{limt→∞ at = a∗k} = pk, for all k ∈ [τ]. �
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A.12 Proof of Proposition 4.2: Equilibrium Action Pro-
files

Any equilibrium a∗ := (a∗1, . . . , a
∗
n) of (4.2.3) should satisfy a∗i = sign(

∑
j∈Ni wja

∗
j +ηi+

λ1(si,t)), with probability one for all i and t. Hence, a∗ ∈ {±1}n is an equilibrium of (4.2.3)
if, and only if, −λ1(si) ≤

∑
j∈Ni wja

∗
j + ηi, ∀si ∈ Si whenever a∗i = 1, and −λ1(si) ≥∑

j∈Ni wja
∗
j+ηi, ∀si ∈ Si whenever a∗i = −1. By multiplying both sides of the inequalities

by a∗i in each case and reordering the terms we derive the claimed characterization of the
equilibria or the absorbing states under the action update dynamics in (4.2.3).1 �

A.13 Proof of Lemma 4.2: Time-One Bayesian Beliefs
We begin by applying the Bayes rule to the observation of agent i at time 1 which include
her neighbors’ initial beliefs {µj,0(·); j ∈ Ni} as well as her private signal si,0. Accordingly,
for any θ̂ ∈ Θ:

µi,1(θ̂) = Pi,0
(
θ̂ | si,0, {µj,0(·); j ∈ Ni}

)
=
Pi,0(θ̂, si,0, {µj,0(·); j ∈ Ni})
Pi,0(si,0, {µj,0(·); j ∈ Ni})

=
Pi,0(θ̂, si,0, {µj,0(·); j ∈ Ni})∑
θ̃∈ΘPi,0(θ̃, si,0, {µj,0(·); j ∈ Ni})

. (A.13.1)

The succeeding steps follow those in [74] for the case of two communicating agents. For
any j ∈ [n] and all π(·) ∈ ∆Θ, define the correspondence Ij : ∆Θ →P(Sj) and function
Kj : ∆Θ→ R, given by:

Ij(π(·)) = {s ∈ Sj : π(θ̂) =
νj(θ̂)lj(s | θ̂)∑
θ̃∈Θ νj(θ̃)lj(s | θ̃)

, ∀θ̂ ∈ Θ},

Kj(π(·)) =
∑

s∈Ij(π(·))

∑
θ̃∈Θ

νj(θ̃)lj(s | θ̃). (A.13.2)

In (A.13.2), Ij(π(·)) signifies the set of private signals for agent j, which are consistent
with the observation of belief π(·) in that agent. By the same token, Kj(π(·)) in (A.13.2)
is the ex-ante probability for the event that the private signal of agent j belongs to the set

1Here, and in writing the conditions for the case of a∗i = −1 as non-strict inequalities we have violated
our earlier convention that agents choose +1 when they are indifferent between +1 and −1. Instead, we are
assuming that ties are broken in favor of the equilibrium action profile. This assumption facilitates compact
expression of the characterizing conditions for the equilibrium action profiles, and it will have no effect unless
with some pathological settings of the signal structure and priors leading to

∑
j∈Ni

wja
∗
j + ηi = 0 for some

si ∈ Si, i ∈ [n].
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Ij(π(·)).
The terms Pi,0(θ̃, si,0, {µj,0(·); j ∈ Ni}) for θ̃ ∈ Θ, which appear in the both numerator

and denominator of (A.13.1) can be simplified by conditioning on the neighbors’ observed
signals {sj,0; j ∈ Ni} as follows in (A.13.3).

Pi,0(θ, si,0, {µj,0(·); j ∈ Ni}) = (A.13.3)∑
sj∈Sj,
j∈Ni

P(θ, si,0, {µj,0(·); j ∈ Ni} | {sj,0 = sj; j ∈ Ni})× Pi,0({sj,0 = sj; j ∈ Ni}).

We next express Pi,0(·) in terms of the priors and signal structures leading to:

Pi,0(θ̃, si,0, {µj,0(·); j ∈ Ni}) =
∑

{sj∈Ij(µj,0(·)),j∈Ni}

νi(θ̃)li(si,0 | θ̃)
∏
j∈Ni

lj(sj | θ̃) (A.13.4)

=
νi(θ̃)li(si,0 | θ̃)∏

j∈Ni νj(θ̃)

∏
j∈Ni

 ∑
sj∈Ij(µj,0(·))

νj(θ̃)lj(sj | θ̃)

 .
Bayes rule in (4.1.3), together with the functions defined in (A.13.2), can now be used to
eliminate the product terms involving sj from (A.13.4) and get:

Pi,0(θ̃, si,0, {µj,0(·); j ∈ Ni}) =
νi(θ̃)li(si,0 | θ̃)∏

j∈Ni νj(θ̃)

∏
j∈Ni

µj,0(θ̃) ∑
sj∈Ij(µj,0(·))

∑
θ̄∈Θ

νj(θ̄)lj(s | θ̄)



= νi(θ̃)li(si,0 | θ̃)

(∏
j∈Ni

µj,0(θ̃)

νj(θ̃)

)∏
j∈Ni

Kj(µj,0(·)). (A.13.5)

Upon replacing (A.13.5) in (A.13.1), the product terms involvingKj(µj,0(·)) cancel out and
(4.3.1) follows. �

A.14 Proof of Theorem 4.4: No Learning when ρ > 1
We begin the analysis of the beliefs propagation under (4.3.2) by forming the ratio

µi,t(θ̌)

µi,t(θ)
=
νi(θ̌)

νi(θ)
× li(si,t | θ̌)
li(si,t | θ)

×
∏
j∈Ni

µj,t−1(θ̌)

µj,t−1(θ)
× νj(θ)
νj(θ̌)

,
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for any false state θ̌ ∈ Θ \ {θ} and each agent i ∈ [n] at all times t ∈ N. The above has
the advantage of removing the normalization factor in the dominator out of the picture;
thence, focusing instead on the evolution of belief ratios, which has a log-linear format.
The latter motivates definitions of log-likelihood ratios for signals, beliefs, and priors as
follows. Similarly to λθ̌(si,t) and φi,t(θ̌), define the log-ratios of prior beliefs as γi(θ̌) :=
log
(
νi(θ̌)/νi(θ)

)
. Starting from the above iterations for the belief ratio and taking the

logarithms of both sides yields

φi,t(θ̌) = γi(θ̌) + λθ̌(si,t) +
∑
j∈Ni

φj,t−1(θ̌) − γj(θ̌).

Multiplying both sides of (4.3.10) by αi, which is the centrality of agent i, and summing
over all i ∈ [n] yields that

Φt(θ̌) =

n∑
i=1

αiγi(θ̌) +

n∑
i=1

αiλθ̌(si,t) +
n∑
i=1

αi
∑
j∈Ni

(φj,t−1(θ̌) − γj(θ̌)).

First note that we can write
n∑
i=1

αiγi(θ̌) −

n∑
i=1

αi
∑
j∈Ni

γj(θ̌) = tr
{(
I−AT

)
αγ

(
θ̌
)T}

= (1− ρ)β(θ̌), (A.14.1)

where γ(θ̌) := (γ1(θ̌), . . . , γn(θ̌))
T .

Next note that by the choice of α as the eigenvector corresponding to the ρ eigenvalue
of matrix A we get

n∑
i=1

αi
∑
j∈Ni

φj,t−1(θ̌) = α
T

Aφt−1(θ̌) = ρα
T

φt−1(θ̌) = ρΦt−1(θ̌). (A.14.2)

whereφt(θ̌) := (φ1,t(θ̌), . . . ,φn,t(θ̌))
T . Now replacing (A.14.1) and (A.14.2) in (4.3.11)

yields the following recursion forΦt(θ̌):

Φt(θ̌) = Λt(θ̌) + ρΦt−1(θ̌) + (1− ρ)β(θ̌), (A.14.3)

initialized by Φ0(θ̌) = β(θ̌) + Λ0(θ̌), where β(θ̌) :=
∑n

i=1 αi log
(
νi(θ̌)/νi(θ)

)
is a

constant that is determined by the initial prior beliefs, and it measures the total bias in the
network relative between the two states θ̌ and θ. In particular, if the agents are unbiased
starting from uniform priors on Θ, then β(θ̌) = 0, ∀θ̌ ∈ Θ. Note also that the assumption
of full support priors implies that |β(θ̌)| is finite. By iterating (A.14.3) for t ∈ N we obtain
(4.3.6). Next note that in a strongly connected graph every node has a degree greater than
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or equal to one so that ρ ≥ 1, [194, Chapter 2]. If ρ > 1, then the term ρtΛ0(θ̌) increases
in variance as t → ∞, and unless Λ0(θ̌) < ε with Pθ-probability one for some ε < 0,
almost sure convergence to −∞ forΦt(θ̌) in (4.3.6) cannot hold true. �

A.15 Proof of Theorem 4.7: Learning by Random Walks
on Directed Graphs

To analyze the propagation of beliefs under (4.3.8) we form the belief ratio

µi,t(θ̌)

µi,t(θ)
=
`i(si,t | θ̌)
`i(si,t | θ)

n∏
j=1

(
µj,t−1(θ̌)

µj,t−1(θ)

)1{σt,i=j}

, (A.15.1)

for any false state θ̌ ∈ Θ \ {θ} and each agent i ∈ [n] at all times t ∈ N. The above has the
advantage of removing the normalization factor in the dominator out of the picture; thence,
focusing instead on the evolution of belief ratios. To proceed, we take the logarithms of
both sides in (A.15.1) to obtain

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+

n∑
j=1

1{σt,i=j} log

(
µj,t−1(θ̌)

µj,t−1(θ)

)
. (A.15.2)

Next we can iterate (A.15.2) to replace for (µj,t−1(θ̌)/µj,t−1(θ)) and so on, from which
we get (A.15.3) at the top of next page. Also note,

n∑
i1=1

. . .

n∑
it=1

1{σt,i=i1} . . .1{σ1,it−1=it} = 1,

almost surely, and in fact every where onΩ, so that the initial prior belief ratio log(ν(θ̌)/ν(θ))
always appears in the summation (A.15.3), and it simplifies as in (A.15.4).
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log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+

n∑
i1=1

1{σt,i=i1} log

(
`i1(si1,t−1 | θ̌)
`i1(si1,t−1 | θ)

)

+ 1{σt,i=i1}

n∑
i2=1

1{σt−1,i1=i2} log

(
`i2(si2,t−2 | θ̌)
`i2(si2,t−2 | θ)

)

+ 1{σt,i=i1}1{σt−1,i1=i2}

n∑
i3=1

1{σt−2,i2=i3} log

(
`i3(si3,t−3 | θ̌)
`i3(si3,t−3 | θ)

)
+ . . .

+ 1{σt,i=i1}1{σt−1,i1=i2}...1{σ1,it−2=it−1}

n∑
it=1

1{σ1,it−1=it}

{
log

(
`it(sit,0 | θ̌)
`it(sit,0 | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)}
(A.15.3)

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)
+

n∑
i1=1

1{σt,i=i1}{log

(
`i1(si1,t−1 | θ̌)
`i1(si1,t−1 | θ)

)

+

n∑
i2=1

1{σt,i1=i2}

{
log

(
`i2(si2,t−2 | θ̌)
`i2(si2,t−2 | θ)

)
+ . . .+

n∑
iτ=1

1{σt−τ+1,iτ−1=iτ}

{
log

(
`iτ(siτ,t−τ | θ̌)
`iτ(siτ,t−τ | θ)

)

+ . . .+

n∑
it−1=1

1{σ1,it−2=it−1}

{
log

(
`it−1(sit−1,1 | θ̌)
`it−1(sit−1,1 | θ)

)
+

n∑
it=1

1{σ1,it−1=it} log

(
`it(sit,0 | θ̌)
`it(sit,0 | θ)

)

}
. . .
}
.

(A.15.4)

We now claim that whenever t → ∞ and the network graph G is strongly concerted,
with P-probability one the likelihood ratios of private signals from any node m ∈ [n]

appears in the summation (A.15.4) as `m(sm,t−τ | θ̌)/`m(sm,t−τ | θ) for infinitely many
values of τ. The gist of the proof is in realizing the correspondence between the summation
(A.15.3) and a random walk on the directed graph G that starts at time t on node i, proceeds
in the reversed time direction, and terminates at time zero. The jumps in this random walk
are made from each node i to one of her in-neighbors j ∈ Ni and in accordance with the
probabilities pi,j specified by matrix P = [pi,j]. Indeed, we can denote the random sequence
of nodes that are hit by this random walk as (i, i1, . . . , it) where the random variables
iτ ∈ [n], τ ∈ [t] are defined recursively by i1 := σt,i, i2 := σt−1,σt,i1 , i3 := σt−2,σt−1,i2 , . . .,
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it := σ1,σ2,it−1 . Whence (A.15.4) is written succinctly as

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)
+

t∑
τ=1

log

(
`iτ(siτ,t−τ | θ̌)

`iτ(siτ,t−τ | θ)

)
.

(A.15.5)

As t → ∞, the sequence iτ, τ ∈ N forms a Markov process with transition matrix P.
Given (A.15.5), our claim can be restated as that for every m ∈ [n] and as t → ∞ there
are infinitely many values of τ ∈ N for which iτ = m, and it is true because in a finite
state Markov chain with transition matrix P every state is persistent (recurrent) and will
be hit infinitely many times provided that the directed graph G is strongly connected [198,
Theorem 1.5.6], i.e. we have that ∀m ∈ [n],

P{iτ = m, for infinitely many τ} = 1.

For any agent m ∈ [n] let T m := {τm,j, j ∈ N} be the sequence of stopping times that
record the first, second and so on passage times of node m by the process iτ, τ ∈ N. That
is we have τm,1 = inf{τ ∈ N : iτ = m} and for j > 1, τm,j = inf{τ > τm,j−1 : iτ = m}.
Using the above notation, (A.15.5) can be rewritten as

log

(
µi,t(θ̌)

µi,t(θ)

)
= log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+ log

(
ν(θ̌)

ν(θ)

)

+

n∑
m=1

∑
τ∈T m,
τ≤t

log

(
`m(sm,t−τ | θ̌)
`m(sm,t−τ | θ)

)
. (A.15.6)

On the other hand, note that log
(
`m(sm,t−τm,j | θ̌)/`m(sm,t−τm,j | θ)

)
, j ∈ N is a sequence

of independent and identically distributed signals, so that by the strong of large numbers
we obtain that with P-probability one,

lim
n→∞

1

n

n∑
j=1

log

(
`m(sm,t−τm,j | θ̌)
`m(sm,t−τm,j | θ)

)
= E log

(
`m(sm,0 | θ̌)
`m(sm,0 | θ)

)
:= −DKL

(
`m(·|θ)‖`m(·|θ̌)

)
6 0, (A.15.7)

where the non-positivity follows from the information inequality for the Kullback-Leibler
divergence DKL (·||·) and is strict whenever `m(·|θ̌) 6≡ `m(·|θ), i.e. ∃s ∈ Si such that
`i(s|θ̌) 6= `i(s|θ) [193, Theorem 2.6.3]. Note that whenever `i(·|θ̂) ≡ `i(·|θ) or equivalently
DKL

(
`i(·|θ̂)‖`i(·|θ))

)
= 0, then the two states θ̂ and θ are statically indistinguishable

to agent i. In other words, there is no way for agent i to differentiate θ̂ from θ based
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only on her private signals. This follows from the fact that both θ and θ̂ induce the same
probability distribution on her sequence of observed i.i.d. signals. On the other hand,
having DKL

(
`m(·|θ)‖`m(·|θ̌)

)
< 0 for some agent m ∈ [n] would ensure per (A.15.7) and

persistence of statem that with P-probability one,

∑
τ∈T m,
τ≤t

log

(
`m(sm,t−τ | θ̌)
`m(sm,t−τ | θ)

)→ −∞
as t → ∞ in (A.15.6); consequently, log

(
µi,t(θ̌)/µi,t(θ)

) → −∞ for all agent i ∈ [n]

and any such θ̌ ∈ Θ, θ̌ 6= θ. Indeed, having log
(
µi,t(θ̌)/µi,t(θ)

) → −∞ for all θ̌ 6= θ

is necessary and sufficient for learning, and Definition 4.2 provides the required character-
ization, as claimed in Theorem 4.7, for learning under the without recall updates in (4.3.3)
and (4.3.7), where the neighbor j is chosen randomly with strictly positive probabilities
specified in transition matrix P.

We can now extend the above analysis to derive an asymptotic rate of learning for the
agents that is exponentially fast and is expressed as

∑m
m=1 πmDKL

(
`m(·|θ)‖`m(·|θ̌)

)
< 0,

where π := (π1, . . . , πn) is the stationary distribution of the transition matrix P, which for
a strongly connected G is the unique probability distribution on [n] satisfying πP = π. To
see how, for each agent m ∈ [n] and all time t, define T m(t) := {τm,j, j ∈ N : τm,j ≤ t}
and divide both sides of (A.15.6) by t to obtain

1

t
log

(
µi,t(θ̌)

µi,t(θ)

)
=
1

t
log

(
`i(si,t | θ̌)
`i(si,t | θ)

)
+
1

t
log

(
ν(θ̌)

ν(θ)

)

+
1

t

n∑
m=1

∑
τ∈T m(t)

log

(
`m(sm,t−τ | θ̌)
`m(sm,t−τ | θ)

)
.

Upon invoking (A.15.7) we obtain

lim
t→∞

1

t
log

(
µi,t(θ̌)

µi,t(θ)

)
= −

n∑
m=1

lim
t→∞

|T m(t)|

t
DKL

(
`m(·|θ)‖`m(·|θ̌)

)
. (A.15.8)

Finally the ergodic theorem ensures that the average time spent in any state m ∈ [n]

converges almost surely to its stationary probability πm, i.e. with probability one [198,
Theorem 1.10.2]:

lim
t→∞

|T m(t)|

t
= πm.
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Hence, (A.15.8) becomes

lim
t→∞

1

t
log

(
µi,t(θ̌)

µi,t(θ)

)
= −

n∑
m=1

πmDKL

(
`m(·|θ)‖`m(·|θ̌)

)
,

completing the proof for the claimed asymptotically exponentially fast rate.

A.16 Analysis of Convergence when Agents Recall their
Self Beliefs

Using xt := ρ(1−ηt) and B := (1/ρ)A, the previous equation can be written in vectorized
format as follows

φt(θ̌) = (I+ xtB)φt−1(θ̌) + λt(θ̌) =

t∑
τ=0

P(t,τ)λτ(θ̌) + P
(t,0)ψ(θ̌), (A.16.1)

where P(t,t) := I, and P(t,τ) :=
∏t

u=τ+1(I + xuB) for τ < t. Next note that P(t,τ) can be
expanded as follows

P(t,τ) =

t−τ∑
j=0

M
(t,τ)
j Bj,

whereM(t,τ)
0 = 1, τ ≤ t and

M
(t,τ)
j =

t−j+1∑
u1=τ+1

t−j+2∑
u2=u1+1

. . .

t∑
uj=uj−1+1

xu1xu2 . . . xuj .

Consequently, (A.16.1) can be rewritten as

φt(θ̌) =

t∑
τ=0

t−τ∑
j=0

M
(t,τ)
j Bjλτ(θ̌) +

t∑
j=0

M
(t,0)
j Bjψ(θ̌), (A.16.2)

To proceed, for fixed τ and j let M(τ)
j := limt→∞M(t,τ)

j . Next consider the summands in
(A.16.2) for each τ, 0 ≤ τ ≤ t. Note that for j fixed, {Bjλτ(θ̌), τ ∈ N0} is a sequence of
independent and identically distributed random vectors. On the other hand, since B has unit
spectral radius and given that xu > 0, havingM(0)

1 :=
∑∞

u=1 xu <∞ is sufficient to ensure
that the random vectors M(t,τ)

j Bjλτ(θ̌) are all in L2 and have variances that are bounded
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uniformly in the choice of t, τ. This is because for any t, τ, and j we have that

M
(t,τ)
j ≤M(τ)

j ≤M
(0)
j ≤

1

j!

(
M

(0)
1

)j
,

all as a consequence of positivity, xu > 0. In particular, withM(0)
1 <∞ we can bound∥∥∥∥∥

∞∑
j=0

M
(0)
j B

jψ(θ̌)

∥∥∥∥∥ ≤
∞∑
j=0

M
(0)
j

∥∥Bjψ(θ̌)∥∥ ≤ ∥∥ψ(θ̌)∥∥ exp(M0
1), (A.16.3)

so that the contribution made by the initial bias of the network is asymptotically bounded
and therefore sub-dominant when

lim
t→∞

t∑
τ=0

t−τ∑
j=0

M
(t,τ)
j Bjλτ(θ̌) = (−∞)n,

almost surely; here, by (−∞)n we mean the entry-wise convergence of the column vector
to −∞ for the each of the n entries, corresponding to the n agents. In the sequel we
investigate conditions under which this almost sure convergence would hold true.

We begin by noting that the condition M(0)
1 < ∞ is indeed necessary for convergence,

because if M(0)
1 = ∞, then the term M

(t,0)
1 Bλ0(θ̌) appearing in (A.16.2) for j = 1 and

τ = 0 increases unbounded in its variance as t → ∞, so that (A.16.2) cannot converge in
an almost sure sense.

Next note that with M(0)
1 < ∞ we can invoke Kolmogorov’s criterion, [217, Section

X.7], to get that as t → ∞ the summation in (A.16.2) converges almost surely to its
expected value, i.e. the following almost sure limit holds true

lim
t→∞φi,t(θ̌) =

∞∑
τ=0

∞∑
j=0

M
(τ)
j

[
Bjλ(θ̌)

]
i
+

∞∑
j=0

M
(0)
j

[
Bjψ(θ̌)

]
i
, (A.16.4)

the second term being bounded per (A.16.3). Moreover, for a strongly connected social
network G, if it is aperiodic, then the matrix B is a primitive matrix; and in particular for
all j ≥ d := diam(G) + 1, every entry of Bj is strictly greater than zero, and if the truth is
globally identifiable then one can take an absolute constant ε > 0 such that

[
Bjλ(θ̌)

]
i
< −ε

whenever j ≥ d, while
[
Bjλ(θ̌)

]
i
≤ 0 for any j. Subsequently, we get that

∞∑
τ=0

∞∑
j=0

M
(τ)
j

[
Bjλ(θ̌)

]
i
≤ −ε

∞∑
τ=0

∞∑
j=d

M
(τ)
j . (A.16.5)

Combining the results of (A.16.3), (A.16.4) and (A.16.5) leads to the following characteri-
zation: all agents will learn the truth (that is limt→∞φi,t(θ̌) = −∞, almost surely for all i
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and any θ̌ 6= θ), if M(0)
1 <∞ and

∑∞
τ=0

∑∞
j=dM

(τ)
j =∞. Notice the preceding conditions

are indeed not far from necessity. Firstly, we need M(0)
1 <∞ to bound the growth of vari-

ance for convergence, as noted above. Moreover, with B having a unit spectral radius we
can bound ∣∣[Bjλ(θ̌)]

i

∣∣ ≤ ∥∥Bjλ(θ̌)∥∥ ≤ ∥∥λ(θ̌)∥∥ ,
so that we can lower-bound limt→∞φi,t(θ̌) in (A.16.4) as follows

−
∥∥λ(θ̌)∥∥ ∞∑

τ=0

∞∑
j=0

M
(τ)
j −

∥∥ψ(θ̌)∥∥ exp(M0
1) ≤ lim

t→∞φi,t(θ̌).

Consequently, if
∑∞

τ=0

∑∞
j=0M

(τ)
j < ∞, then lim

t→∞φi,t(θ̌) is almost surely bounded away
from −∞ and agents do not learn the truth.

For a strongly connected and aperiodic social network G, matrix B has a single eigen-
value at one (corresponding to the largest eigenvalue of the adjacency A) and all of the
other eigenvalues of B have magnitudes strictly less than one. Therefore, by the iter-
ations of the power method, [199, Section 11.1], we know that

[
Bjλ(θ̌)

]
i

converges to∑n
k=1 αkλk(θ̌) for every i, and the convergence is geometrically fast in the magnitude-

ratio of the first and second largest eigenvalues of the adjacency matrix A. Subsequently,
for a strongly connected and aperiodic social network G, we can replace −ε and d in
(A.16.5) by ε +

∑n
i=1 αiλi(θ̌) < 0 and some constant D(ε). Here, ε > 0 is a small

but arbitrary and D(ε) is chosen large enough in accordance with the geometric rate of[
Bjλ(θ̌)

]
i
→∑n

k=1 αkλk(θ̌), such that |
[
Bjλ(θ̌)

]
i
−
∑n

k=1 αkλk(θ̌)| < ε for all j ≥ D(ε),
and the analysis of convergence and its rate can thus be refined.

Furthermore, having

K1 < lim inf
t→∞

1

t

t∑
τ=0

t−τ∑
j=d

M
(t,τ)
j ≤ lim sup

t→∞
1

t

t∑
τ=0

t−τ∑
j=d

M
(t,τ)
j < K2,

for some positive constants 0 < K1 < K2 implies that the learning rate is asymptoti-
cally exponentially fast, as was the case for all the other update rules that we discussed in
this paper. However, depending on how slow or fast (compared to t) is the convergence∑t

τ=0

∑t−τ
j=dM

(t,τ)
j → ∞ as t → ∞, the almost sure asymptotic rate at which for some

θ̌ 6= θ and i ∈ [n], µi,t(θ̌)→ 0 as t→∞ could be slower or faster than an exponential.
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Appendix B

Rational Equilibrium and Consensus in
Symmetric Groups

Following [218] and [15], the asymptotic outcome of Bayesian group decision can be char-
acterized as a Markov perfect Bayesian equilibrium in a repeated game of incomplete infor-
mation that is played by successive generations of short-lived players. Short-lived agents
inherit the beliefs of the player playing in the previous stage in their role while also ob-
serving the last stage actions of the players in their social neighborhood. Rational myopia
arise by nature of short-lived agents, and the equilibrium concept can be used to study
the rational myopic decisions, subject to the assumption that other players are also play-
ing their myopic best responses given their own information. Markov perfect Bayesian
equilibrium is the appropriate solution concept for the study of Bayesian group decision
process because a Markovian strategy for agent i can depend on the information available
to her, hi,t, in her role as agent i at time t, only to extent that hi,t is informative about θ,
the pay-off relevant state of the world. In [218] the authors provide the following recursive
construction of Markovian strategy profiles: consider the probability triplet (Ω,B,P),
where Ω = Θ ×∏i∈[n] Si, B is the Borel sigma algebra, and P assigns probabilities to
the events in B consistently with the common prior ν and the product of the likelihoods
L(· | ·); for each i, let σi,0 : Ω → Ai be a measurable map defined on (Ω,B,P) that
specifies the time zero action of agent i as a function of her private signal, and let Hi,0

denote the information available to agent i at time zero which is the smallest sub-sigma
algebra of B that makes si measurable. Then for any time t, we can define a Markovian
strategy σi,t ,recursively, as a random variable which is measurable with respect to H σt−1

i,t ,
where σt−1 = (σ1,t−1, . . . , σn,t−1), σi,t−1 = (σi,0, . . . , σi,t−1) for all i, and H σt−1

i,t is the
smallest sub-sigma algebra of B that makes si and σj,t−1, j ∈ Ni measurable. The contri-
butions of [218] and [15] consist of proving convergence to an equilibrium profile σ∞ and
showing consensus properties for the equilibrium profile, the former (convergence result)
relies on the compactness of the action space, while the latter (asymptotic consensus re-
sult) replies on an imitation principle argument that works for common (symmetric among
the agents) utility and action structures.1 Both results rely on some analytical properties

1In symmetric groups all agents have the same action space Ai = Aj for all i, j and identical utility
functions ui(a, θ) = uj(a, θ) for all a ∈ A and any θ ∈ Θ. Symmetric settings arise very naturally in
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of the utility function as well, such as supermodularity1 in [218] or continuity (where the
action spaces are metric compact spaces) and boundedness between L2 integrable functions
in [15]. Other works have looked at different asymptotics; in particular, information aggre-
gation and learning as the number of agents grows [53, 54]. In this work we are interested
in the computations that are required of a Bayesian agent in order for her to achieve her
optimal recommendations at every (finite) step during a group decision process, rather than
the asymptotic and equilibrium properties of such recommendations.

group-decision scenarios where people have similar preferences about the group-decision outcome and seek
the same truth or a common goal. In such scenarios, the question of consensus or unanimity is of particular
importance, as it gives a sharp prediction about the group decision outcome and emergence of agreement
among individual decision makers.

1In general, the supermodularity of the utilities signifies strategic complementarity between the actions of
the players, as is the case for [218]; however, in the absence of strategic externalities (as is the case for GDP)
supermodularity implies a case of diminishing returns: ui(·, ·) is strictly supermodular iff ui(min{a, a ′}, θ)+
u+ i(max{a, a ′}, θ) > ui(a, θ) + ui(a ′, θ), for all a 6= a ′ ∈ Ai and each θ ∈ Θ.
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Appendix C

Bayesian Calculations for Forward Rea-
soning

In this Appendix, we explain the Bayesian calculations that are involved in a forward rea-
soning implementation of a decision process, and in particular focus on the case of a di-
rected path. Taking up after (2.1.3), at time one having observed her neighbor’s actions
from time zero agent i learns something about the private signals of each of her neighbors
{sj, j ∈ Ni}. In particular, from her observation of {aj,0, j ∈ Ni} she infers that sj for each
j ∈ Ni should necessarily satisfy:

sj ∈
{
sj ∈ Sj : aj,0 ∈ arg max

aj∈Aj

∑
θ̂∈Θ uj(aj, θ̂)`j(sj|θ̂)ν(θ̂)∑

θ̃∈Θ `j(sj|θ̃)ν(θ̃)

}
.

Subsequently, she crosses out any signal profile s ∈ Ii,0 for which sj does not satisfy

aj,0 ∈ arg max
aj∈Aj

∑
θ̂∈Θ uj(aj, θ̂)`j(sj|θ̂)ν(θ̂)∑

θ̃∈Θ `i(sj|θ̃)ν(θ̃)
,

thus pruning I i,0 into the smaller set I i,1. Agent i then updates her Bayesian posterior
µi,1 and changes her recommendation ai,1 according to (2.1.1) and (2.1.2), respectively. At
time 2 the agent observes her neighbors recommendations {aj,1, j ∈ Ni} for a second time.
The second interaction informs her about what actions her neighbor’s neighbors could have
taken at time zero and in turn what private signals they could have observed at time zero;
in addition, she also refines what she has already learned about private observations of her
neighbors in Ni based on their actions at time one, {aj,1, j ∈ Ni}, cf. Fig. C.1.

Considering her neighbors’ neighbors for the first time at t = 2, agent i calculates the
time-one actions of all of the agents in N 2

i for each of the signal profiles belonging to I i,1
and uses the result to calculate the time two actions of all her neighbors for each s ∈ I i,1.
Any s for which the calculated time 2 action of some neighbor j ∈ Ni does not agree with
the observed action aj,2 is subsequently removed from I i,1 and the updated list I i,2 is thus
obtained. A similar set of calculations is repeated at time three: for every signal profile in
I i,2 that have survived the pruning process up until t = 3, the agent starts by calculating
the actions of agents in N 3

i at time zero (as determined by their private signals fixed in
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Figure C.1: Learning about the private signals of neighbors, neighbors of neighbors, and so on.

s). These actions along with the rest of the private signal in turn determine the choices of
the agents in N 2

i at time one as well those of Ni at time two; subsequently, the agent can
compare the latter calculated actions with her most recent observation of the actions of her
neighbors and eliminate the signal profiles for which there is a mismatch.

For clarity consider a path of length n, and label them in the order of their location in
the path agent n being the leaf node with no neighbors and agent 1 begin the agent who has
(indirect) access to everybody’s decisions (see Fig. 2.3 for the case n = 4). We begin by
the observation that all agents become fixed in their decisions after n−1 steps; in particular,
agent n never changes her decisions:

an,0 = an,1 = . . . = an,t ←↩ arg max
a∈An

∑
θ̂∈Θ un(a, θ̂)`n(sn|θ̂)ν(θ̂)∑

θ̃∈Θ `n(sn|θ̃)ν(θ̃)
,∀t.

Agent n− 1, will get fixed in her decision after two steps (after learning her private signal
and the decision of agent n):

an−1,0 ←↩ arg max
a∈An−1

∑
θ̂∈Θ un−1(a, θ̂)`n−1(sn−1|θ̂)ν(θ̂)∑

θ̃∈Θ `n−1(sn−1|θ̃)ν(θ̃)
, (C.0.1)

an−1,1 = an−1,2 = . . . = an−1,t (C.0.2)

←↩ arg max
a∈An−1

∑
θ̂∈Θ un−1(a, θ̂)`n−1(sn−1|θ̂)

 ∑
s∈S(n−1)

n,1

`n(s|θ̂)

ν(θ̂)
∑

θ̃∈Θ `n−1(sn−1|θ̃)

 ∑
s∈S(n−1)

n,1

`n(s|θ̃)

ν(θ̃)
,∀t,
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where

S(n−1)
n,1 =

{
s ∈ Sn : an,0 ∈ arg max

a∈An

∑
θ̂∈Θ un(a, θ̂)`n(s|θ̂)ν(θ̂)∑

θ̃∈Θ `n(s|θ̃)ν(θ̃)

}
,

is the information that n− 1 infers about the private signal of n from observing her action
an,0, i.e. the list of private signals that n− 1 deems feasible for n given her observation of
an,0. Note that in this notation S(n−1)

n,0 = Sn, since at time zero agent n − 1 knows nothing
about agent n and any value of sn is deemed feasible.

Agent n − 2, will become fixed in decisions after three rounds: once she observes the
final decision of agent n− 1 at time one, i.e. an−1,1, she updates her decisions to an−2,2 and
then she remains fixed at this decision for the ensuing decision epochs. Her final decision
is influenced not only by her knowledge of what private signals agent n − 1 might have
observed but also by those of agent n. In particular, her decisions an−2,0 and an−2,1 are
obtained based on her private signal sn−2 and the initial action of agent n − 1, identical to
(C.0.1) and (C.0.2) with n − 1 and n replaced for n − 2 and n − 1. A time t = 2, agent
n − 2 already knows that the private signal of agent n − 1 should necessarily belong to
S(n−2)
n−1,1 given by:

S(n−2)
n−1,1 =

{
s ∈ Sn−1 : an−1,0 ∈ arg max

a∈An−1

∑
θ̂∈Θ un−1(a, θ̂)`n−1(s|θ̂)ν(θ̂)∑

θ̃∈Θ `n−1(s|θ̃)ν(θ̃)

}
.

To decide about an−2,2, agent n − 2 should reason about the initial signal and action of
agent n, and also update her knowledge of the private signal of agent n − 1. This can be
achieved as follows: for each a ∈ An, let San be the list of initial signals that can cause
agent n to take action a at time zero:

San =

{
s ∈ Sn : a ∈ arg max

a∈An

∑
θ̂∈Θ un(a, θ̂)`n(s|θ̂)ν(θ̂)∑

θ̃∈Θ `n(s|θ̃)ν(θ̃)

}
, ∀a ∈ An. (C.0.3)

To analyze the decisions of agent n − 2 at times 2 and onward, we should determine
all pairs of signals that she deems feasible for agents n and n − 1 combined, given her
observations of an−1,0 and an−1,1; in particular, as the initial action of agent n directly
influence her observation of an−1,1, agent n − 2 should reject any initial action a ∈ An
for agent n that cannot be supported by at least one private signal sn−1 ∈ S(n−2)

n−1,1. In
the due process she should also remove any private signal sn−1 ∈ S(n−2)

n−1,1 that cannot be
combined by any of the feasible initial actions of agent n to justify the decision of agent
n − 1 to choose an−1,1. Both these goal are achieved by the construction of In−2,2 the list
of all feasible pairs (sn, sn−1) ∈ Sn × Sn−1 that are not refuted by her observation of the
two actions an−1,0 and an−1,1. Furthermore, since agent 2 will not obtain any additional
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information about private signals of any of the other remaining agents, this list is never
again updated; neither is her decisions in the ensuing epochs: an−2,2 = an−2,3 = . . . =

an−2,t for all t. These calculations and the subsequent decision an−2,2 are summarized
below.

Calculations of agent n − 2 at time 2 for deciding an−2,2 = an−2,3 = . . . = an−2,t for
all t, in a path of length n:

1. Initialize In−2,2 = ∅.

2. For each a ∈ An do:

• Set San according to (C.0.3).

• For each s ∈ S(n−2)
n−1,1, and every a ∈ An check if

an−1,1 ∈ arg max
a∈An−1

∑
θ̂∈Θ un−1(a, θ̂)`n−1(s|θ̂)

(∑
s∈San

`n(s|θ̂)

)
ν(θ̂)

∑
θ̃∈Θ `n−1(sn−1|θ̃)

 ∑
s∈S(n−1)

n,1

`n(s|θ̃)

ν(θ̃)
,

is satisfied, then set In−2,2 = In−2,2 ∪ San × {s}.

3. Set an−2,2 = an−2,3 = . . . = an−2,t as follows:

an−2,2 (C.0.4)

←↩ arg max
a∈An−2

∑
θ̂∈Θ

un−2(a, θ̂)

`n−2(sn−2|θ̂)
∑

(s,s ′)∈In−2,2
`n(s|θ̂)`n−1(s

′|θ̂)ν(θ̂)∑̃
θ∈Θ

`n−2(sn−2|θ̃)
∑

(s,s ′)∈In−2,2
`n(s|θ̃)`n−1(s ′|θ̃)ν(θ̃)

.

Next, to consider choices of agent n − 3 notice that her calculations and inferences at
times t = 0, t = 1, and t = 2 are identical to those of agent n − 2, except for the shift
in the indices of the agents whose private signals (and initial actions) are being inferred.
However, at time t = 3, in order to interpret an−2,2, which is set according to (C.0.4),
agent n − 3 must simulate In−2,2 for all possible pairs and combine them with what she
has learned so far about private signals of agent n− 2 to reject any triple of signals for the
three upstream agents that are not supported by her observation of an−2,2. Such a need for
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simulation of the feasible signal profiles of the neighboring agents contingent on all of their
possible “observations”, arise as a result of forward (causal) reasoning on the part of the
agents to try and combine the incoming information with what they have already learned:
agents isolate all the new information about the private signals of a far away agent that has
reached them for the first time and use that to refine what they already know about previ-
ously discovered agents. Such a forward implementation is very cumbersome for complex
network structures; in other words, forward simulation of other people’s inferences at all
their possible observations is extremely inefficient and scales very poorly when applied to
general group structures. Hence, in Section 2.1.1 we propose a recursive implementation of
these calculations that relies on iterative elimination of infeasible signal profiles for all the
agents whose decisions directly or indirectly influence the decisions of agent i. Although
the calculations scale exponentially with the network size, they are much more amenable
for application to complex structures as they circumvent the need to simulate the inferences
of the neighboring agents at their possible observations (which the agent do not always ob-
serve directly). This is true with the exception of some very well-connected agents who
have indeed direct access to all the observations of their neighbors and can thus analyze
their decisions using forward reasoning, we expand on this special case (called POSETs)
in Section 2.1.2 and explain how the Bayesian calculations simplify as a result.

We end this Section by expanding on the above realization that in a path of length n,
every agent n−t gets fixed in decisions after time t; and in particular, no agents will change
their recommendations after t ≥ n − 1. There is an easy inductive proof upon noting that
indeed agent n, who is a leaf node with no access to the recommendations of anybody else,
will never change initial action. Moreover, if agent n − t + 1 fixes her decision at time
t− 1, then agent n− t would necessarily fix her decision at time t as she receives no new
information following her observation of an−t+1,t−1. This finite time convergence property
of paths can be extended to more general structures where a “strict” partial order can be
imposed on the set of agents, and in such a way that this order respects the neighborhood
relationships among the agents. The strictness property restricts our method to structures
without loops or bidirectional links, which are widely known as directed acyclic graphs
(DAGs), cf. e.g. [96]. Proposition 2.1 in Section 2.1.2 extends our above realization about
the bounded convergence time of group decision process over paths to all DAGs.

Proposition C.1 (Bounded convergence time of group decision process over DAGs). Let
G be a DAG on n nodes with a topological ordering ≺, and let the agents be labeled in
accordance with this topological order as follows: n ≺ n−1 ≺ . . . ≺ 1. Then every agent
n− t gets fixed in her decisions after time t; and in particular, no agents will change their
recommendations after t ≥ n− 1.
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Appendix D

Efficient Rational Choice in Symmetric
Binary Environments

Suppose that the agents are in a binary environment with two states: θ1 = 0 and θ2 = 1

and uniform priors ν(θ1) = ν(θ2) = 1/2. They receive i.i.d. binary initial signals si ∈
{0, 1}, i ∈ [n], such that for some p > 1/2 fixed we have `i(si|θ) = p if si = θ and
`i(si|θ) = 1 − p, otherwise. Since, p > 1/2, at time zero all agents will act based on their
signals by simply choosing ai,0 = si. At time two, agent i gets to learn the private signals of
her neighbors from their time zero actions and therefore takes the action that indicates the
majority over the signals observed in by her and everybody in her immediate neighborhood.
Since the signals are i.i.d. the agent could be indifferent between her actions, thus in the
sequel, we assume that the agent sticks with own signal whenever her information makes
her indifferent between her actions. This assumption may seem natural and harmless but
in fact, it leads to drastically different behaviors in the case of a directed path. Consider,
the directed path of length four in Fig. 2.3, on the left. At time one, if any agent observes
an action that contradicts own, then she will be indifferent between the two actions. If
we assume that agents resolve their indifference by reverting to their private signals then
no agent will ever shift her initial action in a directed path and we have ai,t = si for
all t and i. However, a starkly different outcome will emerge if we instead assume that
the agents will always shift their actions whenever they are indifferent. In particular, for
a directed path we get that at any time the agents will take the optimal action given the
initial signals of everybody in their t-radius ego-net (i.e. prefect information aggregation):
ai,t ∈ arg maxx∈{0,1}

∑
j∈N̄ ti

1{sj = x}, where we use the indicator function notation: 1{P}

is one if P is true, and it is zero otherwise. At time t, N̄ t
i is the set of all agents who

directly or indirectly influence the decisions of agent i, and perfect aggregation ensures
that the action of agent i at time t coincides with her optimal action if she had given direct
access to all the signals of all agents who have influenced her decision directly or indirectly;
hence, the name “perfect aggregation”. We can verify that perfect aggregation holds true in
any directed path by induction; in particular, consider agent one in the left graph of Fig. 2.3:
she gets to know about the private signal of agent two at time one, after observing a2,0 = s2,
next at time two, she observes a2,1 = a3,0 = s3 (note that if agents switch actions when
indifferent then, at time one in a directed path all agents will replicate their neighbor’s time
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zero actions); hence, agent one learns the private signal of agent three at time two leading
her to take the majority over all three signals {s1, s2s3}. By the same token at time three
agent one observes a2,2, which is the majority over {s2, s3, s4} and having learned s2 and s3
from her observation at previous time steps, she can now infer the value of s4 and thus take
the majority over all the private signals {s1, s2, s3, s4}, achieving the global optimum at time
three. More generally, in any directed path, at time t agent i learns the values of the private
signals of the agent at distance t from her. She achieves this by combining two pieces of
information: (i) her knowledge at time t − 1, which constitutes the values of the signals
of all agent at distance t − 1 from her, (ii) her observation at time t, which constitutes her
neighbor’s action at time t− 1 and is equal to the majority over all signals within distance
t of agent i, excluding herself. Put more succinctly, suppose i > t and let the agents be
labeled in accordance with the topological ordering of the directed path, then knowing the
values of the all t − 1 preceding signals and also the majority over all t preceding signals,
agent i can learn the value of the t-th signal at time t.

Therefore, switching actions or staying with own past actions when indifferent, makes
the difference between no aggregation at all (ai,t = si for all t , i) and perfect aggregation
in the case of a directed path; indeed, by switching their actions at time one, after observing
their neighbor’s time zero action (or equivalently private signal) the agent can pass along
her information about her neighbor’s signal to the person who is observing her. In the case
of a directed path, this indirect signaling is enough to ensure perfect aggregation. The exact
same argument can be applied to the case of a rooted ordered tree, cf. Fig. D.1 on the left;
in such a structure the set of all agents who influence the actions of some agent i always
constitute a directed path that starts with the root node and ends at the particular agent i.
As such when computing her Bayesian actions in a rooted ordered tree agent i need only
consider the unique path that connects her to the root node; thus reducing her computations
to those of an agent in a directed path.

In a general structure (beyond rooted trees and symmetric binary environments), perfect
aggregation can be defined as:

ai,t ∈ arg max
ai∈Ai

∑
θ̂∈Θ ui(ai, θ̂)

∏
j∈N̄ ti

`j(sj|θ̂)ν(θ̂)∑
θ̃∈Θ
∏

j∈N̄ ti
`j(sj|θ̃)ν(θ̃)

, for all i, t.

While many asymptotic characterizations are available for the efficiency of the GDP equi-
librium outcomes (cf. Appendix B), deriving tight conditions that ensures perfect aggrega-
tion for GDP in general structures is a significant open problem. Our focus in this paper is
on the computations of the Bayesian agent; hence we address the efficiency of information
aggregation only to the extent that it relates to the computations of the Bayesian agent.
In particular, when investigating the complexity of Bayesian belief exchange in Section
2.2, we introduce and study a graph property, called “transparency”, that ensures perfect
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aggregation for beliefs.
We end our discussion of the symmetric binary environment by considering an oriented

tree of depth three and focusing on the actions of the root node, call her agent i (cf. Fig.
D.1, on the right). At time zero all agents report their initial signals as their actions ai,0 =
si; having learned her neighbors’ private signals, at time one each agent takes a majority
over all the signals in her immediate neighborhood (including own signal). Indeed, this
is true for any graph structure in a symmetric binary environment that ai,0 = si and ai,1 ∈
arg maxx∈{0,1}

∑
j∈N̄ 1i

1{sj = x} for all i. At time two, agent i is informed about the time-one
actions of her neighbors which gives her the majority values over each of their respective
local neighborhoods N̄ 1

j , j ∈ Ni. In a (singly connected) tree structure these neighborhoods
are non-intersecting; hence, agent i can form a refined belief ratio at time two, by summing
over all (mutually exclusive) signal profiles that lead to each of the observed majority values
in each local neighborhood N̄ 1

j , j ∈ Ni and then form their product, using the fact that
signals are generated independently across the non-intersecting neighborhoods:

µi,2(0)

µi,2(1)
=

p1−si(1− p)si
∏
j∈Ni

p1−aj,0(1− p)aj,0f
aj,1
p (bdj/2c+ 1, dj)|aj,1−aj,0|

f
aj,1
p (ddj/2e, dj)1−|aj,1−aj,0|

(1− p)1−sipsi
∏
j∈Ni

(1− p)1−aj,0paj,0f
aj,1
1−p(bdj/2c+ 1, dj)

|aj,1−aj,0|
f

aj,1
1−p(ddj/2e, dj)

1−|aj,1−aj,0|
,

where we use dj := card(Nj) and for non-negative integers x, y and 0 < p < 1 we define:

fap(x, y) =

y∑
ηj=x

(
y

ηj

)
pηj(1−a)+(dj−ηj)a(1− p)ηja+(dj−ηj)(1−a), (D.0.1)

where bdj/2c and ddj/2e are respectively, the greatest integer less than or equal to dj/2,
and the least integer greater than or equal to dj/2. Note that the summations in (D.0.1)
are over the set of signal profiles that agent i deems feasible for each of the disjoint neigh-
borhoods Nj, j ∈ Ni. Computation of these summations and their use in the belief ratio
µi,2(0)/µi,2(1) are simplified by fixing the majority population ηj in each neighborhood
Nj: bdj/2c + 1 ≤ ηj ≤ dj if aj,1 6= aj,0 and ddj/2e ≤ ηj ≤ dj if aj,1 = aj,0; then using the
binomial coefficients to count the number of choices to form the fixed majority population
ηj out of the total neighborhood size dj = card (Nj). Given µi,2(0)/µi,2(1), agent i can
take actions as follows: ai,2 = 1 if µi,2(0)/µi,2(1) < 1, ai,2 = 0 if µi,2(0)/µi,2(1) > 1, and
ai,2 = 1− ai,1 if µi,2(0)/µi,2(1) = 1.

141



Figure D.1: On the left, the Bayesian computations of agent i in a rooted ordered tree reduces to those in the
unique path connecting her to the root (the leftmost node); On the right, an oriented (singly connected) tree
with depth three.
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Appendix E

Minimum Variance Unbiased Estimation
and Online Learning

There is a large body of literature on decentralized detection with the notable examples of
[120, 121, 219]; and recently there is a renewed interest in this topic due to its applications
to sensor and robotic networks [220–224] and the emergence of new literature considering
network of sensor and computational units [135, 141, 225]. Other relevant results inves-
tigate the formation and evolution of beliefs in social networks and subsequent shaping
of the individual and mass behavior through social learning [136, 226, 227]. Obtaining a
global consensus by combining noisy and unreliable locally sensed data is a key step in
many wireless sensor network applications; subsequently, many sensor fusion schemes of-
fer reasonable recipes to address this requirement [124, 125]. In many such applications,
each sensor forms an estimate of the field using its local measurements and then the sen-
sors initiate distributed optimization to fuse their local estimates. If all the data from every
sensor in the network can be collected in a fusion center, then a jointly optimal decision
is readily available by solving the global optimization problem given all the data. How-
ever, many practical considerations limit the applicability of such a centralized solution.
This gives rise to the distributed sensing problems that include distributed network con-
sensus or agreement [12, 13, 120], and distributed averaging [228]; with close relations to
the consensus and coordination problems that are studied in the distributed control theory
[126, 127, 229].

In this appendix, we allow the parameter space Θ to be any measurable set, and in par-
ticular not necessarily finite. Consider again the network of n agents and suppose that each
agent i ∈ [n] observes an i.i.d. samples si from a common distribution `(·|θ) over a mea-
surable sample space S. We consider an undirected network graph and let the symmetric
network graph structure be encoded by its modified adjacency matrixA = [aij]

n
i,j=1, defined

according to the Metropolis-Hastings weights [230]: aij = 1/max{di, dj} if (j, i) ∈ E , and
[A]ij = 0 otherwise for i 6= j; furthermore, aii = 1−

∑
j 6=i aij.

We assume that `(·|θ) belongs to a one-parameter exponential family so that it admits
a probability density or mass function that can be expressed as

`(s|θ) = τ(s)eα(θ)
Tξ(s)−β(α(θ)), (E.0.1)
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where ξ(s) ∈ R is a measurable function acting as a complete sufficient statistic for the
i.i.d. random samples si, and α : Θ → R is a mapping from the parameter space Θ to the
real line R, τ(s) > 0 is a positive weighting function, and

β(α) := ln
∫
s∈S

τ(s)eαξ(s)ds, (E.0.2)

is a normalization factor known as the log-partition function. In (E.0.1), ξ(·) is a com-
plete sufficient statistic for θ. It is further true that

∑n
i=1 ξ(si) is a complete sufficient

statistic for the n i.i.d. signals that the agents have received [213, Section 1.6.1]. The
agents aim to estimate the expected value of ξ(·): mθ = E{ξ(si)}, with as little variance as
possible. The Lehmann-Scheffé theory (cf. [231, Theorem 7.5.1]) implies that any func-
tion of the complete sufficient statistic that is unbiased for mθ is the almost surely unique
minimum variance unbiased estimator of mθ. In particular, the minimum variance unbi-
ased estimator of mθ given the initial data sets of all nodes in the network is given by:
mn = (1/n)

∑n
i=1 ξ(si). The agents can compute this value using any average consensus

algorithm [232]; guaranteeing convergence to average of the initial values asymptotically.

The agents initialize with: µi,0 = ξ(si), and in any future time period the agents
communicate their values and update them according to the following rule:

µi,t = aii µi,t−1 +
∑
j∈Ni

aijµj,t−1. (III)

The mechanisms for convergence in this case rely on the product of stochastic matrices,
similar to mixing of Markov chains (cf. [184, 225]); hence, many available results on
mixing rates of Markov chains can be employed to provide finite time grantees after T
iteration of the average consensus algorithm for fixed T . Such results often rely on the
eigenstructure (eigenvalues/eigenvectors) of the communication matrix A, and the facts
that it is a primitive matrix and its ordered eigenvalues satisfy −1 < λn(A) ≤ λn−1(A) ≤
. . . ≤ λ1(A) = 1, as a consequence of the Perron-Frobenius theory [115, Theorems 1.5
and 1.7].

Theorem E.1 (Minimum Variance Unbiased Estimation). Under (III), limt→∞ µi,t = mn

almost surely, for all i. Furthermore, |µi,t − mn| ≤ ε, whenever

t >
(

log(ε) − log(Mn

√
n− 1)

)/
logβ?,

where Mn = max
i∈[n]

|ξ(si)| and β? = max{λ2(A), |λn(A)|}.
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Proof. Define the concatenated variables µt = (µ1,t, . . . ,µn,t)
T , λ = (ξ(s1), . . . , ξ(sn))T

and note that mn = (1/n)
∑n

i=1 ξ(si) = (1/n)1Tλ. Initialized by µ0 = λ, the evolution
of beliefs under (III) can be written in the following vectorized form: µt = Aµt−1 = Atλ,
and as in Appendix A.9 for a connected network G, we have that limt→∞At = (1/n)11T ;
and subsequently, limt→∞ µt = (1/n)11Tλ = 1mn. Hence, the claim about the almost
sure limits of every agents’ beliefs is verified. To investigate the rate of convergence of µt
to 1mn we can write: µt − 1mn = (At − (1/n)11T)λ. Hence for each node i we have:

|µi,t − mn| =

∣∣∣∣∣
n∑
j=1

(
[At]ij −

1

n

)
ξ(sj)

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣[At]ij − 1

n

∣∣∣∣ |ξ(sj)| ≤Mn

n∑
j=1

∣∣∣∣[At]ij − 1

n

∣∣∣∣ . (E.0.3)

We next use the fact that A can specify the transition probabilities of an aperiodic ir-
reducible Markov chain with uniform stationary distribution. In particular, it is a time-
reversible Markov chain and [233, Proposition 3] implies that

n∑
j=1

∣∣∣∣[At]ij − 1

n

∣∣∣∣ ≤√(n− 1) (β?)t , (E.0.4)

where β? = max{λ2(A), |λn(A)|} and 0 ≤ β? < 1 as a consequence of Perron-Frobenius
theory [115, Theorems 1.5 and 1.7] applied to the primitive matrix A. Replacing (E.0.4) in
(E.0.3) yields that for all i the distance to the limiting values mn decrease at least exponen-
tial fast and can be bounded as follows: |µi,t − mn| ≤ Mn

√
(n− 1) (β?)t. The claimed

finite time guarantee now follows upon setting Mn

√
(n− 1) (β?)t < ε or equivalently: t

>
(
log(ε) − log(Mn

√
n− 1)

) /
logβ?.

We now take a brief look at the case where the initial data sets are of different sizes
ni, so that each agent has access to a set of ni initial data points s1i , . . . , s

ni
i , each of which

is identically distributed according to the common exponential family distribution `(·|θ).
We explain how (III) should be modified to accommodate the varying sample sizes. In this
case, the globally efficient (minimum variance) estimator of the mean sufficient statistic
mθ given all the initial data sets is as follows: m?

n =
(
1
/∑n

p=1 np

)∑n
i=1

∑ni
j=1 ξ(s

j
i). The

agents can initialize with: µi,0 = (1/ni)
∑ni

j=1 ξ(s
j
i) for all i; however, to ensure conver-

gence to the right limit the coefficients of the linear update rule in (III) should be modified
in accordance with the initial sample sizes. Let δi = ni

/∑n
p=1 np; the following modifica-

tion of the Metropolis - Hastings weights explained in [230, 234], incorporates the sample
sizes and ensures convergence of the linear iterations in (III) to the right limit m?

n:
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aij =


1
di

min{1, δjdi
djδi

} if (j, i) ∈ E ,
1−
∑

j 6=i aij if i = j,
0 otherwise.

(E.0.5)

In (E.0.5), we use the notation di = deg(i) − 1 for the cardinality of Ni, i ∈ [n].
Next, suppose that every time t ∈ N, each agent i ∈ [n] receives an i.i.d. sample si,t,

in addition to communicating their current estimates µi,t. All signals {si,t : i ∈ [n], t ∈ N}

are distributed according to the same distribution `(·|θ), and as before the agents aim to
estimate the expected value of the complete sufficient sufficient statistic ξ(·) with as little
variance as possible. Here we propose a 1/t discounting of new samples with increasing
time t. This would enable the agents to learn the true value mθ asymptotically almost
surely; and in such a way that the variance of their estimates decreases as 1/t: linearly in
time. The exact upper bound for Var{µi,t} is derived in the proof of Theorem E.2 as follows:

Var{µi,t} ≤
n(n− 1)E{ξ(sj,τ)2}

t (1− β?2)
+

Var{ξ(s1,1)}
n t

. (E.0.6)

We can further use the properties of the exponential family to express the expectation and
variance of the complete sufficient statistic ξ(·) in terms of the first and second deriva-
tives of the log-partition function given in (E.0.2), cf. [213, Theorem 1.6.2]: E{ξ(sj,τ)} =
β ′(α(θ)) and Var{ξ(s1,1)} = β ′′(α(θ)). Hence, (E.0.6) becomes:

Var{µi,t} ≤
n(n− 1)(β ′(α(θ))2 + β ′′(α(θ))

t (1− β?2)
+
β ′′(α(θ))

n t
, (E.0.7)

The preceding upper-bound can be used to provide finite-time guarantees for the quality
of the estimate µi,T at any node i and after a finite termination time T . These bounds are
comprised of two additive terms: the first terms on right-hand sides of (E.0.6) and (E.0.7)
capture the rate at which the powers of Metropolis-Hastings weight matrix A approach
their limit: At → 1

n
11T as t → ∞; the second term captures the diminishing variance of

the estimates with the increasing number of samples, as gathered by all the agents in the
network. The latter is a simple consequence of the Chebyshev inequality applied to the
entire set of nt samples that are gathered by all the n agents up to time t. On the other
hand, the first term on the right-hand side of the bounds is governed by the mixing rate
of the Metropolis-Hastings weights; in particular, it is influenced by the structure of the
network through β?: the second largest magnitude of the eigenvalues of matrix A. The
same structural effect appears through β? in the bound claimed in Theorem E.1. A similar
effect can be observed through α? from the expression of the finite-time T in the proof of
Theorem G.1, (Appendix A.9).
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Initializing µi,0 arbitrarily, in any future time period t ≥ 1 the agents observe a signal
si,t, communicate their current values µi,t−1, and update their beliefs to µi,t, according
to the following rule:

µi,t =
t− 1

t

(
aii µi,t−1 +

∑
j∈Ni

aijµj,t−1

)
+
1

t
ξ(si,t). (IV)

Theorem E.2 (Online Learning of Expected Values). Under (IV), limt→∞ µi,t = mθ al-
most surely, for all i. Furthermore, Var{µi,t} = O(1/t) and E{µi,t} = mθ for all t.

Proof. Let µt be as in the proof of Theorem E.1, λt = (ξ(s1,t), . . . , ξ(sn,t))T , and At =
t−1
t
A. Under (IV) the beliefs evolve as follows:

µt = Atµt−1 +
1

t
λt =

1

t
λt +

t−1∑
τ=1

(
t∏

u=τ+1

Au

)
1

τ
λτ

=
1

t
λt +

t−1∑
τ=1

(
t− 1

t
× t− 2
t− 1

× . . .× τ

τ+ 1
At−τ

)
1

τ
λτ

=
1

t

t∑
τ=1

At−τλτ. (E.0.8)

As in proof of Theorem E.1, we have that limτ→∞Aτ = (1/n)11T , and we can invoke the
Cesàro mean together with the strong law to conclude that

lim
t→∞µt = 1

(
lim
t→∞

1

nt

t∑
τ=1

n∑
i=1

ξ(si,τ)

)
= 1E{ξ(si,1)},

so that µi,t → mθ with probability one for all agents i ∈ [n]; in particular, µi,t for each
i is a strongly consistent estimator of θ. We can further bound the rate of decrease in
Var(µi,t) as t increases. Taking expectation of both sides in (E.0.8) yields that E{µt} =
(1/t)

∑t
τ=1A

t−τ1mθ = 1mθ. Hence, we can subtract 1mθ from both sides of (E.0.8) and
bound the variance of µt in terms of the variance of i.i.d. random variable λt and rate of
convergence (mixing) for At → (1/n)11T . Indeed, using (E.0.8) we can write

|µi,t −mθ| =

∣∣∣∣∣1t
t∑
τ=1

n∑
j=1

[At−τ]ijξ(sj,τ) −mθ

∣∣∣∣∣ .
Next by adding and subtracting 1

nt

∑t
τ=1

∑n
j=1 ξ(sj,τ), which is the average of all signals
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across all times and agents; and then applying the triangle inequality we obtain:

|µi,t −mθ| ≤
1

t

∣∣∣∣∣
t∑
τ=1

n∑
j=1

(
[At−τ]ij −

1

n

)
ξ(sj,τ)

∣∣∣∣∣+ 1

nt

∣∣∣∣∣
t∑
τ=1

n∑
j=1

(ξ(sj,τ) −mθ)

∣∣∣∣∣ .
Taking squares of both sides and using the Cauchy-Schwartz inequality yields that

(µi,t −mθ)
2 ≤ (E.0.9)

1

t2

{
t∑
τ=1

n∑
j=1

(
[At−τ]ij −

1

n

)2}{ t∑
τ=1

n∑
j=1

ξ(sj,τ)2
}

+
1

n2t2

(
t∑
τ=1

n∑
j=1

(ξ(sj,τ) −mθ)

)2
.

We next apply the Markov chain mixing time inequality (E.0.4) from the proof of Theorem
E.1 to bound

t∑
τ=1

n∑
j=1

(
[At−τ]ij −

1

n

)2
≤

t∑
τ=1

(
n∑
j=1

∣∣∣∣[At−τ]ij − 1

n

∣∣∣∣
)2

≤
t∑
τ=1

(n− 1) (β?)2(t−τ) ≤ n− 1

1− β?2
, (E.0.10)

where β? = max{λ2(A), |λn(A)|} and 0 ≤ β? < 1. Furthermore, since {ξ(sj,τ), j ∈ [n], t ∈
N} form a sequence of i.i.d. random variables with meanmθ, we have:

E


(

t∑
τ=1

n∑
j=1

(ξ(sj,τ) −mθ)

)2 = ntVar{ξ(sj,τ)}.

We can now bound Var{µi,t} by taking expectations of both sides in (E.0.9) and using
(E.0.10) to get (E.0.6) and subsequently (E.0.7); whence, Var{µi,t} = O(1/t) as claimed.

Unlike the log-linear update rules which could be easily modified to accommodate
intermittent data streams with varying sizes (compare (I) and (II)), the linear update rules
are not amenable to heterogenities in the network. It is due the requirement to discount the
new observations with increasing time and the need to adapt the linearity coefficients to the
varying sample sizes (see (E.0.5)). These factors make the linear update rules unnameable
to the case of intermittent observations (compare (III) and (IV)).
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Appendix F

Generalization to Belief Updates with One-
Step Recall

Consider the log-ration statistics defined in (2.2.1) and further define φ̂i,t(θ̂, θ̌) := φi,t(θ̂, θ̌)−

φi,t−1(θ̂, θ̌). By concatenating the log-ratio statistics of the n networked agents, we obtain
the following four vectorizations for the log-ratio statistics:

φt(θ̂, θ̌) := (φ1,t(θ̂, θ̌), . . . ,φn,t(θ̂, θ̌))
T ,

φ∆,t := (φ̂1,t(θ̂, θ̌), . . . , φ̂n,t(θ̂, θ̌))
T ,

λ(θ̂, θ̌) := (λ1(θ̂, θ̌), . . . ,λn(θ̂, θ̌))
T ,

γ(θ̂, θ̌) := (γ1(θ̂, θ̌), . . . , γn(θ̂, θ̌))
T .

Under (3.3.2) the log-belief ratios evolve as follows:

φi,t(θ̂, θ̌) = φi,t−1(θ̂, θ̌) + φ̂i,t(θ̂, θ̌), where φ̂i,t(θ̂, θ̌) :=
∑
j∈Ni

φ̂j,t−1(θ̂, θ̌), (F.0.1)

initialized by: φi,0(θ̂, θ̌) = γi(θ̂, θ̌) + λi(θ̂, θ̌) and φ̂i,0(θ̂, θ̌) = λi(θ̂, θ̌), for all i. In
[29, Proposition 4.3 and its following paragraph] we point out that (F.0.1) implements the
rational (Bayesian) belief update if the network structure is a rooted directed tree, where
there is a unique path connecting each “upstream” agent j to the agent i. We refer to
the φ̂i,t(θ̂, θ̌) terms as innovations. Following (F.0.1), the total innovation in the belief
of agent i at time t is set equal to the sum of innovations in the beliefs of her neighbors
in the preceding time step. The uniqueness of paths in rooted directed trees ensures that
innovations are not multiply counted and the updated beliefs are not subject to redundancy,
as expected, for an optimal (Bayesian) belief. However if there are multiple paths between
pairs of agents in the network, then the beliefs deviate from Bayesian rationality.

Using the adjacency matrix A and the vectorized notations for the log-ratio statistics,
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the belief dynamics under (3.3.2) (or equivalently (F.0.1)) can be analyzed as follows:

φ∆,t(θ̂, θ̌) = Aφ∆,t−1(θ̂, θ̌) = A
tφ∆,0(θ̂, θ̌), and

φt(θ̂, θ̌) = φt−1(θ̂, θ̌) +φ∆,t(θ̂, θ̌) = φ0(θ̂, θ̌) +

t∑
τ=1

Aτφ∆,0(θ̂, θ̌)

= γ(θ̂, θ̌) +

t∑
τ=0

Aτλ(θ̂, θ̌).

Note that Ct(i, j) :=
∑t

τ=0[A
τ]i,j denotes the number of paths of length less than or

equal to τ (with possibly repeated edges and vertices) that start from node j and end at
node i (using the convention C0(i, j) = 1 if i = j and C0(i, j) = 0, otherwise) [199,
Section 6.10]. Using the Ct(i, j) notation, the log-ratio of belief of agent i at time t can be
expressed as:

φi,t(θ̂, θ̌) = γi(θ̂, θ̌) +

n∑
j=1

Ct(i, j)λj(θ̂, θ̌). (F.0.2)

When the network structure is a directed acyclic graph (DAG), there are no paths of
length greater than n connecting any two nodes. Hence, Ct(i, j) = Cn(i, j) for all t ≥ n.
As a consequence of (F.0.2), in such cases the asymptotic outcome will be reached in finite
time (bounded by n); i.e. agents become constant in their beliefs after n steps. This final
belief is then given by:

µi,t(θ
′) =

νi(θ
′)
∏n

j=1 `j(sj|θ
′)Cn(i,j)∑

θ ′′∈Θ νi(θ
′′)
∏n

j=1 `j(sj|θ ′′)
Cn(i,j)

, ∀t ≥ n. (F.0.3)

In the special case of directed rooted trees, agent i is connected to each of the agents whose
decisions influence her beliefs (directly or indirectly), through a unique path. Without any
loss of generality, we can assume that the directed tree is rooted at agent i (by possibly
eliminating the agents whose decisions will not influence the beliefs of agent i). Hence, in
a directed rooted tree we have that Cn(i, j) = 1 for all j and the final belief of agent i in a
directed rooted tree is given by:

µi,t(θ
′) =

νi(θ
′)
∏n

j=1 `j(sj|θ
′)∑

θ ′′∈Θ νi(θ
′′)
∏n

j=1 `j(sj|θ ′′)
, ∀t ≥ n. (F.0.4)

The final belief (F.0.4) in a directed rooted tree coincides with the Bayesian posterior for
agent i given all the private signals of all agents who influence her decisions (directly or in-
directly). However, the final belief in general acyclic structure, deviates from the Bayesian
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optimum. In particular, the latter beliefs are subject to redundancy effects, as reflected in
the exponential weights Cn(i, j) that appear in (F.0.3). The Cn(i, j) coefficients weigh the
signal likelihoods of different agents in the final belief of agent i, according to the total
number of paths that connects each of them to agent i. In presence of cycles between i and
j, the total number of paths Ct(i, j) grows unbounded with increasing t since traversing
the same cycles repeatedly yields an increasing number of longer paths. Hence, in loopy
structures redundancy leads to overconfidence and the asymptotic beliefs concentrate on a
subset of alternatives, rejecting others. We elaborate on such overconfident asymptotic be-
liefs in Subsection 3.3.2. In Subsection 3.3.3, we exploit the optimality of directed rooted
trees for information aggregation (even with Bayesian heuristics) by proposing a coordina-
tion scheme that ensures all agents see a directed rooted information structure, following a
prescribed schedule of meetings that take place in a few rounds.
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Appendix G

Distributed Estimation and Learning from
Intermittent Data

In sensor networks, due to the diverse sensing capabilities and other unpredictable physical
factors, usually the quality and availability of local observations varies among the different
sensors and over time. A main focus of this Appendix is to demonstrate how log-linear
aggregation schemes can be modified to accommodate the heterogeneity of the sensed data
both over time and across different sensors. Suppose that the set of n agents aim to col-
lectively distinguish the true state θ from a set of finitely many possibilities Θ. Each agent
i ∈ [n] has access to a set of ni initial data points s1i , . . . , s

ni
i , each of which is identically

distributed according to a common distribution `i(·|θ). In this section we give a proce-
dure so that by forming a belief over the set Θ and iteratively updating these beliefs, the
agents can determine the maximum likelihood estimator of θ given all the initial data sets:
{s1i , . . . , s

ni
i }, i ∈ [n]. Similar to Appendix E, suppose that the symmetric network graph

structure is encoded by the weighted adjacency matrix A = [aij]
n
i,j=1, and the weights are

set according to the Metropolis-Hastings [230]: aij = 1/max{di, dj} if (j, i) ∈ E , and
[A]ij = 0 otherwise for i 6= j; furthermore, aii = 1−

∑
j 6=i aij.

The agents begin by forming: γi(θ̃) =
∏ni

j=1 `i(s
j
i|θ̃), and initializing their beliefs to

µi,0(θ̂) = γi(θ̂)/
∑

θ̃∈Θ γi(θ̃). In any future time period the agents update their belief
after communication with their neighboring agents, and according to the following
update rule for any θ̂:

µi,t(θ̂) =

µ1+aiii,t−1 (θ̂)
∏
j∈Ni

µ
aij
j,t−1(θ̂)∑̃

θ∈Θ
µ1+aiii,t−1 (θ̃)

∏
j∈Ni

µ
aij
j,t−1(θ̃)

. (I)

For any θ̂ ∈ Θ we can define Λ(θ̂) =
∑n

i=1

∑ni
j=1 log(`i(sji|θ̂)), then the global max-

imum likelihood estimate of θ given all the initial data points is any member of the set
Θ? := arg maxθ̂∈ΘΛ(θ̂).
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Theorem G.1 (Maximum Likelihood Estimation). Under (I), limt→∞ µi,t(θ̃) = 1/|Θ?|, ∀θ̃
∈ Θ? and limt→∞ µi,t(θ̃) = 0, ∀θ̃ 6∈ Θ? almost surely, for all i ∈ [n]. In particular, ifΘ? =

{θ?} is a singleton, then limt→∞ µi,t(θ?) = 1, almost surely for all i. Hence, after a large
enough number of iterations any agent i ∈ [n] can recover θ? as θ? = arg maxθ̃∈Θ µi,t(θ̃).

Proof. Consider the following log-belief ratio statistics:

φi,t(θ̂, θ̌) := log
(
µi,t(θ̂)/µi,t(θ̌)

)
,λi(θ̂, θ̌) := log

(
γi(θ̂)/γi(θ̌)

)
, (G.0.1)

and their vectorization

φt(θ̂, θ̌) := (φ1,t(θ̂, θ̌), . . . ,φn,t(θ̂, θ̌)),λ(θ̂, θ̌) := (λ1(θ̂, θ̌), . . . ,λn(θ̂, θ̌)). (G.0.2)

By forming the belief ratio µi,t(θ̂)/µi,t(θ̌), taking the logarithms of both sides, and
using the vectorization in (G.0.2), we can rewrite the belief updates in (I) as a linear updated
in terms of log ratios:

φt+1(θ̂, θ̌) = (I+A)φt(θ̂, θ̌) = (I+A)t+1φ0(θ̂, θ̌) = (I+A)t+1λ(θ̂, θ̌). (G.0.3)

When the network graph G is connected, the matrix I + A is primitive. The Perron-
Frobenius theory [115, Theorems 1.5 and 1.7] implies that I + A has a simple posi-
tive real eigenvalue equal to its spectral radius ρ(I + A) = 2. Moreover, the left and
right eigenspaces associated with this eigenvalue are both one-dimensional and the cor-
responding eigenvectors can be taken to be both equal to (1/

√
n)1. The magnitude of

any other eigenvalue of I + A is strictly less than 2. Hence, the eigenvalues of I + A

denoted by αi := λi(I + A), i ∈ [n], which are all real, can be ordered as follows:
−2 < λn(I + A) ≤ λn−1(I + A) ≤ . . . ≤ λ1(I + A) = 2. Susequently, we can em-
ploy the eigendecomposition of (I + A) to analyze the behavior of (I + A)t+1 in (G.0.3).
Specifically, we can take a set of bi-orthonormal vectors li, ri as the left and right eigenvec-
tors corresponding to the ith eigenvalue of I + A, satisfying: ‖li‖2 = ‖ri‖2 = 1, l

T

i ri = 1

for all i and l
T

i rj = 0, i 6= j; in particular, l1 = r1 = (1/
√
n)1. Moreover, we have that

[111]:

(I+A)t = 2t

(
1

n
11

T

+

n∑
i=2

(αi/2)
tril

T

i

)
. (G.0.4)

To proceed denote Λ(θ̂, θ̌) := Λ(θ̂) − Λ(θ̌) and note that Λ(θ̂, θ̌) = 1Tλ(θ̂, θ̌). We
can use (G.0.4) and (G.0.3), together with the fact that |αi| < 2 for all i > 1, established
above using the Perron-Frobenius theory, to conclude that φt(θ̂, θ̌) → (2t/n)1Λ(θ̂, θ̌)

almost surely. Moreover, since Θ? consists of the set of all maximizers of Λ(θ̃), we have
that Λ(θ̂, θ̃) < 0 whenever θ̃ ∈ Θ? and θ̂ 6∈ Θ?. Hence, for all θ̃ ∈ Θ? and any θ̂,
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φi,t(θ̂, θ̃) → −∞ if θ̂ 6∈ Θ? and φi,t(θ̂, θ̃) = 0 whenever θ̂ ∈ Θ?; or equivalently,
µi,t(θ̂)/µi,t(θ̃) → 0 for all θ̂ 6∈ Θ?, while µi,t(θ̂) = µi,t(θ̃) for any θ̂ ∈ Θ?. The latter
together with the fact that

∑
˜θ∈Θ µi,t(θ̃) = 1 for all t implies that with probability one:

limt→∞ µi,t(θ̃) = 1/|Θ?|, ∀θ̃ ∈ Θ? and limt→∞ µi,t(θ̃) = 0, ∀θ̃ 6∈ Θ? as claimed.
Furthermore, we can use (G.0.4) and (G.0.3) to bound the distance between φi,t(θ̂, θ̌)

and (2t/n)Λ(θ̂, θ̌) for any i, as follows:∣∣∣∣φi,t(θ̂, θ̌) −
2t

n
Λ(θ̂, θ̌)

∣∣∣∣ ≤ ∥∥∥∥φt(θ̂, θ̌) −
2t

n
Λ(θ̂, θ̌)1

∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=2

(αi
2

)t
lir

T

i λ(θ̂, θ̌)

∥∥∥∥∥
2

≤
n∑
i=2

∣∣∣αi
2

∣∣∣t ∣∣rTi λ(θ̂, θ̌)∣∣ ∥∥li∥∥2
≤

n∑
i=2

∣∣∣αi
2

∣∣∣t ∥∥λ(θ̂, θ̌)∥∥
2
‖ri‖2

∥∥li∥∥2 . (G.0.5)

Orthonormality of the eigenvectors yields that ‖ri‖2 =
∥∥li∥∥2 = 1; also by monotonicity of

the `p norm we get that

∥∥λ(θ̂, θ̌)∥∥
2
≤
∥∥λ(θ̂, θ̌)∥∥

1
=

n∑
i=1

|λi(θ̂, θ̌)| ≤ 2nLn,

where Ln = maxi∈[n] maxθ̃∈Θ | log(γi(θ̃)| is the largest absolute log of product likelihoods
that is achieved in the initial data sets, so that |λi(θ̂, θ̌)| = | log(γi(θ̂))− log(γi(θ̌))| < 2Ln
for all i. Subsequently, (G.0.5) becomes∣∣∣∣φi,t(θ̂, θ̌) −

2t

n
Λ(θ̂, θ̌)

∣∣∣∣ ≤ 2Lnn(n− 1)(α?)t,

where α? = (1/2)max{α2, |αn|} Hence,

log(µi,t(θ̂)) ≤ log

(
µi,t(θ̂)

µi,t(θ̃)

)
= φi,t(θ̂, θ̃) ≤

2t

n
Λ(θ̂, θ̃) + 2Lnn(n− 1)(α?)t,

for all i and any θ̃ ∈ Θ?. Next suppose that the maximum likelihood estimator is unique so
that Θ? = {θ?} and let lΘ = minθ̂6=θ?

∣∣Λ(θ̂, θ?)
∣∣. Then for any θ̂ 6= θ? and all agents i we

can bound the belief on θ̂ as follows:

log(µi,t(θ̂)) ≤ −
2t

n
ln + 2Lnn(n− 1)(α?)t.
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Therefore, if we take

T = max

1+ log
(
n log(n−1)

ln

)
log 2

,
log
(

log(n−1)
2Lnn(n−1)

)
log(α?)

 , (G.0.6)

then for all t > T, log(µi,t(θ̂)) ≤ − log(n−1) so that µi,t(θ̂) <
1
n−1

< µi,t(θ
?) for all θ̂ 6=

θ? and any i ∈ [n]; whence, any agent i ∈ [n] can recover θ? as θ? = arg maxθ̃∈Θ µi,t(θ̃)
at all t > T.

In the proof of Theorem G.1, we also give a more detailed description of the claimed
belief convergence result; in particular, we characterize a finite time T, such that any agent
i ∈ [n] can recover θ? by θ? = arg maxθ̃∈Θ µi,t(θ̃) at all t > T, cf. (G.0.6) of the appendix
and the explanations therein.

We next consider a network of agents that make streams of observations intermittently
and communicate their beliefs at every time period. At any time t, agent i makes ni,t
i.i.d. observations s1i,t, . . . , sni,t

i,t that are distributed according to `(·|θ); and the numbers
of observations at each time period: {ni,t, t ∈ N} constitute a sequence of i.i.d. signals
with mean E{ni,t} = νi. The agents aim to determine the true state θ from their stream of
observations.

Every time t ∈ N0, each agent forms the likelihood product of the signals that it has
received at that time-period: γi,t(θ̃) =

∏ni,t
j=1 `i(s

j
i,t|θ̃), if ni,t ≥ 1, and γi,t(θ̃) = 1 if

ni,t = 0. It then updates its belief according to:

µi,t(θ̂) =
γi,t(θ̂)µ

aii
i,t−1(θ̂)

∏
j∈Ni µ

aij
j,t−1(θ̂)∑̃

θ∈Θ
γi,t(θ̃)µ

aii
i,t−1(θ̃)

∏
j∈Ni µ

aij
j,t−1(θ̃)

, (II)

initialized by: µi,0(θ̂) = γi,0(θ̂)/
∑

θ̃∈Θ γi,0(θ̃).

Theorem G.2 (Learning from Intermittent Streams). For all i ∈ [n], and any pair of states
θ̂, θ̌ ∈ Θ, letΛi(θ̂, θ̌) = Eθ{log(`i(si,0|θ̂)/`i(si,0|θ̌))}. If

∑n
i=1 νiΛi(θ̂, θ) < 0 for all θ̂ 6= θ,

then under (II), limt→∞ µi,t(θ) = 1, for all i. Moreover, the learning is asymptotically
exponentially fast with the rate equal to minθ̂6=θ{(−1/n)

∑n
i=1 νiΛi(θ̂, θ)}.

Proof. The belief update rule proposed in (II) is the same as the time-invariant log-linear
update with weighted self-beliefs considered in [164, Equation (13)]; except that here at
every round each agent is receiving a random number of signals. Hence, the proof of
convergence in [164, Equation (13)] can be applied here and with minor modifications.
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Specifically, we letφt(θ̂, θ̌) be the vectorized log belief ratio statistics as defined in (G.0.1)
and (G.0.2), and define the log ratio of the likelihood products of the received signals:
λi,t(θ̂, θ̌) = log(γi,t(θ̂)/γi,t(θ̌)), and its vectorization λt(θ̂, θ̌) = (λ1,t(θ̂, θ̌), . . . ,λn,t(θ̂, θ̌)).
Then after forming the log belief ratios, (II) in vectorized form yields that: φt(θ̂, θ̌) =

Aφt−1(θ̂, θ̌) + λt(θ̂, θ̌) =
∑t

τ=0A
τλt−τ(θ̂, θ̌) and the latter converges almost surely to(

(t/n)1TE{λ0(θ̂, θ̌)}
)
1, as t → ∞; this is a simple consequecen of the Cesàro mean

together with the strong law of large numbers. The proof follows since E{λ0(θ̂, θ̌)} =
(Λ1(θ̂, θ̌), . . . , Λn(θ̂, θ̌))

T ; in particular, limt→∞ 1
t
φt(θ̂, θ̌) =

(
(1/n)

∑n
i=1Λi(θ̂, θ̌)

)
1,

with probability one and whenever
∑n

i=1Λi(θ̂, θ̌) < 0, the agents learn the truth asymptot-
ically exponentially fast, at the rate minθ̂6=θ

{
(−1/n)

∑n
i=1Λi(θ̂, θ)

}
.

To understand the nature of the convergence result and learning rate in Theorem G.2,
consider the special case where each agent at every time t may or may not have access
to a sample point si,t and the accessibility of the new measurement si,t is determined by
the outcome of an idependent coin flip with success probability pi, i.e. {ni,t, t ∈ N}

are i.i.d Bernoulli(pi) variables. Then the convergence rate in Theorem G.2 becomes
minθ̂6=θ{(−1/n)

∑n
i=1 piΛi(θ̂, θ)}, which decreases linearly with the decreasing probabil-

ity of making new obsrevations. Also note that Λi(θ̂, θ) = Eθ{log(`i(si,0|θ̂)/`i(si,0|θ))} :=
−DKL

(
`i(·|θ̂)||`i(·|θ)

)
6 0, where DKL (·||·) ≥ 0 is the Kullback-Leibler divergence. It

measures a psudo-distance between the two distributions and it is strictly positive when-
ever `i(·|θ̂) 6≡ `i(·|θ), i.e. the two distributions disagree over a non-trivial (nonzero mea-
sure) set [193, Theorem 2.6.3]; hence, the closer the alternative distributions are to the true
distributions the slower is the rate.
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[141] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for distributed
non-bayesian learning,” arXiv preprint arXiv:1508.05161, 2015.

[142] A. Zellner, “Optimal information processing and bayes’s theorem,” The American
Statistician, vol. 42, no. 4, pp. 278–280, 1988.

[143] M. A. Rahimian and A. Jadbabaie, “Naive social learning in ising networks,” Amer-
ican Control Conference, 2016.

[144] N. H. Anderson, “Integration theory and attitude change.” Psychological review,
vol. 78, no. 3, p. 171, 1971.

[145] ——, Foundations of information integration theory. Academic Press, 1981.

[146] J. Glazer and A. Rubinstein, “Motives and implementation: On the design of mech-
anisms to elicit opinions,” Journal of Economic Theory, vol. 79, no. 2, pp. 157–173,
1998.

[147] J.-F. Laslier and J. Weibull, “Committee decisions: optimality and equilibrium,”
cahier de recherche 2008-24. v3 du halshs-00121741, 2008.

[148] G. Desanctis and R. B. Gallupe, “A foundation for the study of group decision sup-
port systems,” Management Science, vol. 33, no. 5, pp. 589–609, May 1987.

[149] P. E. Slater, “Contrasting correlates of group size,” Sociometry, vol. 21, no. 2, pp.
129–139, 1958.

[150] I. D. Steiner, Group Processes and Productivity, Social psychology: a series of
monographs, treatises, and texts. Academic Press, 1972.

[151] G. E. Littlepage, “Effects of group size and task characteristics on group perfor-
mance: A test of steiner’s model,” Personality and Social Psychology Bulletin,
vol. 17, no. 4, pp. 449–456, 1991.

[152] N. L. K. Bray, Robert M. and R. S. Atkin, “Effects of group size, problem difficulty,
and sex on group performance and member reactions,” Journal of Personality and
Social Psychology, vol. 36, no. 11, p. 1224, 1978.

[153] J. R. Hackman and N. Vidmar, “Effects of size and task type on group performance
and member reactions,” Sociometry, pp. 37–54, 1970.

167



[154] F. Frank and L. R. Anderson, “Effects of task and group size upon group productivity
and member satisfaction,” Sociometry, vol. 34, no. 1, pp. 135–149, 1971.

[155] H. JR, Groups that work (and those that don’t). San Francisco: Jossey-Bass, 1990.

[156] R. A. Guzzo and G. P. Shea, “Group performance and intergroup relations in organi-
zations,” Handbook of industrial and organizational. Palo Alto, CA, US: Consulting
Psychologists Press, pp. 269–313, 1992.

[157] M. Gradstein, S. Nitzan, and J. Paroush, “Collective decision making and the limits
on the organization’s size,” Public Choice, vol. 66, no. 3, pp. 279–291, 1990.

[158] C. F. Thomas, Edwin J.; Fink, “Effects of group size,” Psychological Bulletin,
vol. 60, no. 4, pp. 371–384, 1963.

[159] R. Z. Gooding and J. A. Wagner, “A meta-analytic review of the relationship between
size and performance: The productivity and efficiency of organizations and their
subunits,” Administrative Science Quarterly, vol. 30, no. 4, pp. 462–481, 1985.

[160] L. A. Curral, R. H. Forrester, J. F. Dawson, and M. A. West, “It’s what you do and the
way that you do it: Team task, team size, and innovation-related group processes,”
European Journal of Work and Organizational Psychology, vol. 10, no. 2, pp. 187–
204, 2001.

[161] M. Hoegl, “Smaller teams-better teamwork: How to keep project teams small,” Busi-
ness Horizons, vol. 48, no. 3, pp. 209–214, 2005.

[162] W. School, “Is your team too big? too small? whats the right number?” Knowl-
edge@Wharton, Jul. 2006.

[163] A. Mao, W. Mason, S. Suri, and D. J. Watts, “An experimental study of team size
and performance on a complex task,” PloS one, vol. 11, no. 4, p. e0153048, 2016.

[164] M. A. Rahimian and A. Jadbabaie, “Learning without recall: A case for log-linear
learning,” 5th IFAC Workshop on Distributed Estimation and Control in Networked
Systems, 2015.

[165] ——, “Learning without recall in directed circles and rooted trees,” American Con-
trol Conference, pp. 4222–4227, 2015.

[166] M. A. Rahimian, S. Shahrampour, and A. Jadbabaie, “Learning without recall by
random walks on directed graphs,” IEEE Conference on Decision and Control
(CDC), 2015.

168



[167] M. A. Rahimian and A. Jadbabaie, “Distributed estimation and learning over hetero-
geneous networks,” in Communication, Control, and Computing (Allerton), 2016
54th Annual Allerton Conference on. IEEE, 2016, pp. 1314–1321.

[168] C. P. Chamley, Rational Herds: Economic Models of Social Learning. Cambridge
University Press, 2004.

[169] A. Wilson, “Bounded memory and biases in information processing,” Econometrica,
vol. 82, no. 6, pp. 2257–2294, 2014.

[170] T. M. Cover, “A note on the two-armed bandit problem with finite memory,” Infor-
mation and Control, vol. 12, no. 5, pp. 371–377, 1968.

[171] ——, “Hypothesis testing with finite statistics,” The Annals of Mathematical Statis-
tics, pp. 828–835, 1969.

[172] L. Kontorovich, “Statistical estimation with bounded memory,” Statistics and Com-
puting, vol. 22, no. 5, pp. 1155–1164, 2012.

[173] M. E. Hellman and T. M. Cover, “Learning with finite memory,” The Annals of
Mathematical Statistics, pp. 765–782, 1970.

[174] T. M. Cover, M. A. Freedman, and M. E. Hellman, “Optimal finite memory learning
algorithms for the finite sample problem,” Information and Control, vol. 30, no. 1,
pp. 49 – 85, 1976.

[175] T. M. Cover and M. E. Hellman, “The two-armed-bandit problem with time-invariant
finite memory,” IEEE Transactions on Information Theory, vol. 16, no. 2, pp. 185–
195, 1970.

[176] K. Drakopoulos, A. Ozdaglar, and J. N. Tsitsiklis, “On learning with finite memory,”
IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6859–6872, 2013.

[177] P. Billingsley, Probability and Measure, 3rd ed. Wiley-Interscience, 1995.

[178] R. O’Donnell, Analysis of boolean functions. Cambridge University Press, 2014.

[179] I. Benjamini, G. Kalai, and O. Schramm, “Noise sensitivity of boolean functions and
applications to percolation,” Publications Mathématiques de l’Institut des Hautes
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