
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2018

Random Testing For Language Design
Leonidas Lampropoulos
University of Pennsylvania, llamp@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2879
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Lampropoulos, Leonidas, "Random Testing For Language Design" (2018). Publicly Accessible Penn Dissertations. 2879.
https://repository.upenn.edu/edissertations/2879

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/219379417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2879&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2879?utm_source=repository.upenn.edu%2Fedissertations%2F2879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2879
mailto:repository@pobox.upenn.edu


Random Testing For Language Design

Abstract
Property-based random testing can facilitate formal verification, exposing errors early on in the proving
process and guiding users towards correct specifications and implementations. However, effective random
testing often requires users to write custom generators for well-distributed random data satisfying complex
logical predicates, a task which can be tedious and error prone.

In this work, I aim to reduce the cost of property-based testing by making such generators easier to write, read
and maintain. I present a domain-specific language, called Luck, in which generators are conveniently
expressed by decorating predicates with lightweight annotations to control both the distribution of generated
values and the amount of constraint solving that happens before each variable is instantiated.

I also aim to increase the applicability of testing to formal verification by bringing advanced random testing
techniques to the Coq proof assistant. I describe QuickChick, a QuickCheck clone for Coq, and improve it by
incorporating ideas explored in the context of Luck

to automatically derive provably correct generators for data constrained by inductive relations.

Finally, I evaluate both QuickChick and Luck in a variety of complex case studies from programming
languages literature, such as information-flow abstract machines and type systems for lambda calculi.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Benjamin C. Pierce

Keywords
Coq, Property Based Testing, QuickCheck, QuickChick, Random Testing, Urn

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2879

https://repository.upenn.edu/edissertations/2879?utm_source=repository.upenn.edu%2Fedissertations%2F2879&utm_medium=PDF&utm_campaign=PDFCoverPages


RANDOM TESTING FOR LANGUAGE DESIGN

Leonidas Lampropoulos

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2018

Supervisor of Dissertation

Benjamin C. Pierce

Professor, Computer and Information Science

Graduate Group Chairperson

Lyle Ungar, Professor, Computer and Information Science

Dissertation Committee:

Steve Zdancewic, Professor of Computer and Information Science

Stephanie Weirich, Professor of Computer and Information Science

Majur Naik, Professor of Computer and Information Science

John Hughes, Professor of Computing Science, Chalmers University of Technology, Gothenburg



RANDOM TESTING FOR LANGUAGE DESIGN

COPYRIGHT

2018

Leonidas Lampropoulos



Acknowledgments

I want to begin by thanking my advisor, Benjamin Pierce, who was as great an

advisor as anyone could hope to have. I’ve learned so much by working with you

and alongside you that I would be happy to eventually pass on even a fraction to

my own students.

I also want to extend my thanks to Stephanie Weirich and Steve Zdancewic for

hosting everyone in their home so many times and showing me that one can remain

fun at the highest level. To John Hughes for being a great source of inspiration

throughout my testing adventures. To Majur Naik for joining my committee and

his flexibility that made actually picking a defense date possible. To Dimitrios

Vytiniotis and Aditya Nori for giving me a chance to work with them on something

completely different during my summer internship. To Catalin Hriţcu for being a

wonderful collaborator.

I have to express extreme gratitude towards my undergrad advisor, Kostis Sag-

onas, for introducing me to the magic world of programming languages, guiding

me towards my path at Penn, and being a great source of advice whenever I needed

it for almost 10 years. And to Nikos Papaspyrou, who gave me the bug for pro-

gramming contests and set an example of the kind of teacher and person I aspire

to be.

Throughout my years at Penn, I was fortunate to interact with many more

wonderful people. Thanks to Antal Spector-Zabusky, who has made every one

of my papers prettier with his LaTeX wizardry. To Arthur Azevedo de Amorim,

who made all my proof attempts easier by introducing me to ssreflect. To Kenny

Foner for his punny paper titles, and also to Hengchu Zhang for including me in

their crazy StrictCheck idea. To Jennifer Paykin and Robert Rand, who have been

iii



helping since our first year together. And to the entirety of the Penn PL Club for

their amazing feedback in my talks and projects over the years. And of course, to

Nikos Vasilakis, who has been as amazing a friend as he has been a coworker.

My PhD would not have been possible without my friends in the Greek PL

chat. Thanks to Zoe Paraskevopoulou, who was fundamental in the work presented

in this thesis. To Niki Vazou and her amazing academic matchmaking skills. To

George Karachalias and our all-encompassing chats. To Aggelos Biboudis for trying

(and failing) to convince me that Haskell is not the only answer. And to Nick

Giannarakis for sharing the same sports fandom.

My work all this years was only possible due to the love and support of my

friends. I want say thanks to my friends in Philly: Mike, Stathis, Venetia, Pavlos,

Melissa, Markos, Aris, Nasia, Aphrodite, Michael, Vlassis, Dafni, Alexia, Alex,

Yannis, George, Tassos, Spiros, Kostas, Vasilis, Fragiskos, Giorgos and Ioanna,

who made moving across the Atlantic fun. To the asado and cumbia crew: Santi,

Luiz, Miguel, Fernando and Luana, who have elevated barbeques to an art form.

To my friends from Penn Gamers: Chris (both the suspicious, agreeable and the

evasive variety), Derek and Sid, who shared my passion of heavy board games.

To my friends from undergrad: Despoina, Nikolas, Alexandros, Mary, Sergios,

Ignatios, Nikos, Vasilis, Evridiki and Lydia, who embarked on a similar journey

across the globe at the same time. And, of course, to my closest group of friends

back home. Rigo, Ari, Christo, Andrea, Toli, Tasso, Vaggeli, Kate and Anneza:

you make my life great just by being in it.

Last, but certainly not least, I want to thank my parents, Sofia and Konstanti-

nos, and my amazing sister, Elena, who have always been there through good and

bad. I love you and your support means everything to me.

iv



ABSTRACT

RANDOM TESTING FOR LANGUAGE DESIGN

Leonidas Lampropoulos

Benjamin C. Pierce

Property-based random testing can facilitate formal verification, exposing er-

rors early on in the proving process and guiding users towards correct specifica-

tions and implementations. However, effective random testing often requires users

to write custom generators for well-distributed random data satisfying complex

logical predicates, a task which can be tedious and error prone.

In this work, I aim to reduce the cost of property-based testing by making such

generators easier to write, read and maintain. I present a domain-specific language,

called Luck, in which generators are conveniently expressed by decorating predi-

cates with lightweight annotations to control both the distribution of generated

values and the amount of constraint solving that happens before each variable is

instantiated.

I also aim to increase the applicability of testing to formal verification by bring-

ing advanced random testing techniques to the Coq proof assistant. I describe

QuickChick, a QuickCheck clone for Coq, and improve it by incorporating ideas

explored in the context of Luck to automatically derive provably correct generators

for data constrained by inductive relations.

Finally, I evaluate both QuickChick and Luck in a variety of complex case

studies from programming languages literature, such as information-flow abstract

machines and type systems for lambda calculi.

v



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 QuickChick 9

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Generator Combinators . . . . . . . . . . . . . . . . . . . . . 13

2.3 Printers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Shrinkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Verifying QuickChick . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Case Study: Information-Flow Control 39

3.1 Stack Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Abstract Machine . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Noninterference . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . 42

3.1.4 Test Driven Development . . . . . . . . . . . . . . . . . . . 44

3.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Generation Techniques . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Strengthening the Property . . . . . . . . . . . . . . . . . . 50

3.3 Experiences from Extending the Machine . . . . . . . . . . . . . . . 54

3.3.1 Decoupling of Generators and Predicates . . . . . . . . . . . 54

vi



3.3.2 Debugging Generators . . . . . . . . . . . . . . . . . . . . . 55

3.4 Shrinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Luck : A Language for Property-Based Generators 59

4.1 Luck by example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Semantics of Core Luck . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Syntax, Typing, and Predicate Semantics . . . . . . . . . . . 68

4.2.2 Constraint Sets . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Narrowing Semantics . . . . . . . . . . . . . . . . . . . . . . 75

4.2.4 Matching Semantics . . . . . . . . . . . . . . . . . . . . . . 82

4.2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Constraint Set Specification . . . . . . . . . . . . . . . . . . 94

4.3.2 Properties of the Narrowing Semantics . . . . . . . . . . . . 97

4.3.3 Properties of the Matching Semantics . . . . . . . . . . . . . 99

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 The Luck Top Level . . . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Pattern Match Compiler . . . . . . . . . . . . . . . . . . . . 103

4.4.3 Constraint Set Implementation . . . . . . . . . . . . . . . . 105

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.1 Small Examples . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.2 Well-Typed Lambda Terms . . . . . . . . . . . . . . . . . . 108

4.5.3 Information-Flow Control . . . . . . . . . . . . . . . . . . . 110

5 Generating Good Generators for Inductive Relations 113

5.1 Good Generators, by Example . . . . . . . . . . . . . . . . . . . . . 116

5.1.1 Nonempty Trees . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.2 Complete Trees . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.3 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . 119

5.1.4 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Generating Good Generators . . . . . . . . . . . . . . . . . . . . . . 122

vii



5.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.2 Unknowns and Ranges . . . . . . . . . . . . . . . . . . . . . 123

5.2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.4 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.5 Handling Hypotheses . . . . . . . . . . . . . . . . . . . . . . 129

5.2.6 Assembling the Final Result . . . . . . . . . . . . . . . . . . 130

5.2.7 Putting it All Together . . . . . . . . . . . . . . . . . . . . . 131

5.3 Generating Correctness Proofs . . . . . . . . . . . . . . . . . . . . . 131

5.3.1 Verification Framework . . . . . . . . . . . . . . . . . . . . . 134

5.3.2 Proof Generation . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.3 Typeclasses for Proof Generation . . . . . . . . . . . . . . . 140

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4.1 QuickChecking Software Foundations . . . . . . . . . . . . . 143

5.4.2 QuickChecking Noninterference . . . . . . . . . . . . . . . . 145

5.4.3 QuickChecking STLC . . . . . . . . . . . . . . . . . . . . . . 148

5.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . 150

6 Implementation 152

6.1 Generic Programming Framework in Coq . . . . . . . . . . . . . . . 152

6.1.1 Datatype Representation . . . . . . . . . . . . . . . . . . . . 154

6.1.2 A Term-Building DSL . . . . . . . . . . . . . . . . . . . . . 154

6.1.3 A Worked Example . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Urns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.1 Sampling Discrete Distributions . . . . . . . . . . . . . . . . 163

6.2.2 The Urn Data Structure . . . . . . . . . . . . . . . . . . . . 165

6.2.3 A Weighty Matter . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.4 Turning Over a New Leaf . . . . . . . . . . . . . . . . . . . 171

6.2.5 A Balancing Act . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2.6 Losing Direction . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2.7 A Value Un-urned . . . . . . . . . . . . . . . . . . . . . . . 175

6.2.8 Building Up To (Almost) Perfection . . . . . . . . . . . . . . 178

6.2.9 Applications and Evaluation . . . . . . . . . . . . . . . . . . 182

viii



7 Related Work 190

7.1 QuickChecks in Theorem Proving . . . . . . . . . . . . . . . . . . . 190

7.2 Generating Random Programs . . . . . . . . . . . . . . . . . . . . . 192

7.3 Dynamic IFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.4 Automatically Generating Constrained Data . . . . . . . . . . . . . 197

7.4.1 Random Testing . . . . . . . . . . . . . . . . . . . . . . . . 197

7.4.2 Enumeration-Based Testing . . . . . . . . . . . . . . . . . . 198

7.4.3 Constraint Solving . . . . . . . . . . . . . . . . . . . . . . . 199

7.4.4 Semantics for Narrowing-Based Solvers . . . . . . . . . . . . 200

7.4.5 Probabilistic Programming . . . . . . . . . . . . . . . . . . . 200

7.4.6 Inductive to Executable Specifications . . . . . . . . . . . . 201

7.5 Urns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.5.1 Alternative Discrete Distribution Representations . . . . . . 202

7.5.2 Balancing Binary Trees . . . . . . . . . . . . . . . . . . . . . 204

8 Conclusion and Future Work 206

A Core Luck Proofs 208

B Luck Examples 240

ix



List of Illustrations

3.1 Single-step Reduction Rules . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Binary Search Tree Checker and Two Generators . . . . . . . . . . 64

4.2 Core Luck Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Standard Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Typing Rules for Nonstandard Constructs . . . . . . . . . . . . . . 72

4.5 Predicate Semantics for Standard Core Luck Constructs . . . . . . 73

4.6 Predicate Semantics for Nonstandard Constructs . . . . . . . . . . . 74

4.7 Narrowing Semantics of Standard Core Luck Constructs (part 1) . . 77

4.8 Narrowing Semantics of Standard Core Luck Constructs (part 2) . . 78

4.9 Narrowing Semantics for Non-Standard Expressions . . . . . . . . . 78

4.10 Auxiliary Relation choose . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Auxiliary Relation sampleV . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Matching Semantics of Standard Core Luck Constructs . . . . . . . 84

4.13 Matching Semantics for Function Cases . . . . . . . . . . . . . . . . 85

4.14 Failure Propagation for Matching Semantics . . . . . . . . . . . . . 86

4.15 Matching Semantics of Nonstandard Core Luck Constructs . . . . . 87

4.16 Matching Semantics for Constraint-Solving case . . . . . . . . . . . 90

4.17 Expanded Nested Pattern Match . . . . . . . . . . . . . . . . . . . 104

4.18 Red-Black Tree Experiment . . . . . . . . . . . . . . . . . . . . . . 108

5.1 General Structure of each Sub-generator . . . . . . . . . . . . . . . 125

5.2 Unification Monad . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Unification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 127

x



5.4 Derivation of one Generator Case . . . . . . . . . . . . . . . . . . . 132

5.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 STLC in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Original OCaml Derivation Code . . . . . . . . . . . . . . . . . . . 153

6.2 A Sample Urn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Indexing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4 The Urn API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5 Distribution Representations . . . . . . . . . . . . . . . . . . . . . . 169

6.6 Sampling from an Urn . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.7 Iteratively constructing a directed tree . . . . . . . . . . . . . . . . 174

6.8 Uninsert Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.9 QuickCheck’s frequency . . . . . . . . . . . . . . . . . . . . . . . . 184

6.10 frequency vs urns . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.11 Pa lka’s permuteWeighted . . . . . . . . . . . . . . . . . . . . . . . 187

7.1 Runtime Comparison of Data Structure Operations . . . . . . . . . 203

xi



Chapter 1

Introduction

Software errors are becoming an increasingly important problem as our society

grows more and more reliant on computer systems. With formal verification, we

can guarantee the absence of such errors in software artifacts by proving that these

artifacts adhere to a formal specification. Unfortunately, even though recent ad-

vances in verification technology have allowed for incredible feats of proof engineer-

ing, like CompCert [85] (a verified optimizing compiler for C) and CertiKOS [57]

(an extensible architecture for building certified OS kernels), such endeavors are

still very expensive. It is not uncommon to spend weeks attempting to prove a

theorem in a proof assistant only to discover that it is not actually true, wasting

valuable time and effort.

Random testing techniques provide an interesting alternative. On the one hand,

we can use such techniques to find bugs in extremely complex software. For in-

stance, the CSmith project [127] uncovered more than 400 bugs in various C com-

pilers, including GCC and LLVM. On the other hand, we cannot use them to

guarantee the absence of such bugs. Nevertheless, we can still leverage random

testing to aid our verification efforts, by revealing bugs early on in the process and

helping in the discovery of complex program invariants.

A particularly effective form of random testing is property-based random test-

ing (PBT). Popularized by QuickCheck [33], PBT is a semi-automatic technique

that has since been adopted in a variety of programming languages [2, 87, 67, 100]

1



and theorem provers [27, 17, 99, 39]. At a high level, PBT tools require as input

properties in the form of executable specifications, and generate random inputs in

hopes of falsifying these properties. For example, consider the following specifica-

tion and implementation of a delete function, written in Haskell: after deleting

some number x from a list l, the result should not contain x. However, the imple-

mentation is faulty!

propDeleteCorrect :: Int -> [Int] -> Bool

propDeleteCorrect x l = not (member x (delete x l))

delete :: Int -> [Int] -> [Int]

delete _ [] = []

delete x (h:t) | x == h = t

| otherwise = h : delete x t

To test this property, QuickCheck first generates an integer x and a list l randomly;

it then executes propDeleteCorrect, and tests if the result is True or not. If it is,

QuickCheck tries again until it reaches a prespecified number of successful tests; if

not, QuickCheck reports the counterexample to the user.

In this case QuickCheck quickly discovers an error, reporting a bug when x is

0 and l is the two element list [0,0]:

*** Failed! Falsifiable (after 29 tests and 8 shrinks):

0

[0,0]

Indeed, the error in the recursive delete implementation is that when the head

of the list is equal to the element to be deleted, we do not recursively delete x

from its tail; this can only manifest if the list contains (at least) two copies of the

element under deletion.

The counterexample reported above was minimal because of shrinking, a sur-

prisingly underappreciated but crucial component of PBT: when a pair of falsifying

inputs (x,l) is first discovered, it likely contains a lot of random noise that is irrel-

evant to the actual error. QuickCheck tries progressively smaller counterexamples

2



(for example, by dropping elements from the list). To put this in perspective, test-

ing the exact same property and disabling shrinking altogether yields a practically

unreadable counterexample:

*** Failed! Falsifiable (after 36 tests):

-57

[-47,30,-2,-57,-43,19,-45,-69,-15,-56,33,-57,-16,-44,55,-5,61]

Naturally, -57 appears twice in the output list—can you spot where?

In general, random testing can be very effective out of the box, just like in this

delete example. In such cases, it is far more time efficient to test and debug a

property, gaining a certain degree of confidence in its correctness, and then attempt

to prove it, than embarking on a costly journey of trying to prove False.

However, there is a large, important class of properties where random testing is

less effective: properties involving preconditions. Consider for instance the follow-

ing property of an insert function for ordered lists, which asserts that inserting

an element into a sorted list yields a sorted result:

propInsertSorted x l = isSorted l ==> isSorted (insert x l)

In QuickCheck, ==> is used to encode preconditions. To test such a property,

QuickCheck generates random values for x and l and then tests if isSorted l

holds. If the generated list is sorted, it proceeds to test the actual property (that

the result of inserting an element into l is also sorted); if not, the generated

values are discarded and the whole process starts from scratch. Especially for

sparse predicates (i.e., ones that are rarely satisfied relative to their input type),

this generate-and-test approach can be extremely inefficient. Even worse, it often

provides unsatisfactory coverage, since only small inputs will satisfy the predicate.

Indeed, testing propInsertSorted using QuickCheck’s default behavior results in

l being the empty list 40% of the time and a singleton list another 30%; clearly,

such testing does not inspire confidence.

When dealing with preconditions, standard QuickCheck practice dictates writ-

ing custom generators: programs that produce a distribution of terms satisfying a

3



predicate (like isSorted) directly. QuickCheck provides a useful library of gener-

ator combinators to facilitate writing such programs and controlling the resulting

distribution of terms—a crucial feature in practice [33, 65, 55]. The following

code snippet shows a simple generator for sorted lists alongside the definition of

isSorted:

isSorted :: [Int] -> Bool

isSorted [] = True

isSorted (x:l) = aux x l

where aux x [] = True

aux x (y:l) = x < y && aux y l

genSorted :: Gen [Int]

genSorted = oneof [ return []

, do x <- arbitrary

l <- auxG x

return (x:l) ]

where auxG x = oneof [ return []

, do y <- genIntGreaterThan x

l <- auxG y

return (y : l) ]

The isSorted predicate has a standard recursive implementation in Haskell: an

empty list is always sorted; a nonempty list is sorted if the head x is smaller than

all the elements in the tail l and l itself is sorted, as computed by the auxiliary

predicate aux.

The generator genSorted is written in QuickCheck’s Gen monad, used to hide

low-level plumbing of a random number generator. At a high level, genSorted

closely follows the structure of isSorted. Just like isSorted first decides whether

or not the list is empty by pattern matching, genSorted first chooses whether to

produce an empty list (return []) or not. This is done using QuickCheck’s oneof

combinator (with type [Gen a] -> Gen a) that takes a list of generators and picks

one at random to evaluate.

4



Similarly, like the nonempty branch of isSorted uses pattern matching to

extract the head of the input list, the nonempty list generator first creates the

head element x using arbitrary (a QuickCheck function that can be used to create

random integers). It then uses an auxiliary generator auxG, which in turn is dual

to aux: where aux x holds for lists that are both sorted and whose elements are

greater than x, auxG creates such lists. The top-level pattern match in aux becomes

another call to oneof, choosing between an empty list or a cons cell whose head y

is greater than x and whose tail l is generated recursively to satisfy aux y.

Unfortunately, as predicates become more complex, coming up with efficient

generators becomes increasingly more challenging—to the point of being a research

contribution in its own right! For example, papers have recently been written

about random generation techniques for well-typed lambda terms [103, 111, 43,

120] and for indistinguishable states of information-flow-control machines [65, 66].

Moreover, testing invariant properties (like well typedness for preservation of a type

system) poses additional difficulties. Specifically, it requires both a generator, for

obtaining inputs satisfying some predicate, and a checker, an executable form of

the same predicate. These artifacts must then be kept in sync; the result is a

maintenance nightmare that serves as a rich source of potential bugs.

If random testing is to be used to facilitate verification, discovering bugs through

testing should be (much) faster than uncovering them by just attempting a proof

directly. Whenever possible, testing feedback should be immediate with minimal

user effort. The main goal of this work is to amplify the applicability of random

testing in programming language design and verification.

As a first step, we implement the first fully-functional property-based testing

tool for Coq, called QuickChick [36], initially as a complete clone of Haskell’s

QuickCheck. Using extraction to OCaml to take care of randomness and IO,

QuickChick allows Coq users to enjoy the benefits of property-based testing, as

users of other proof assistants have for quite some time.

We then expand on the natural idea of deriving generators automatically from

predicates. Of course, this idea is not new; researchers have tried to generate

testing inputs automatically using the structure of a predicate by borrowing ideas

from both functional logic programming [44, 30, 110, 48, 31, 43] and constraint

5



solving [24, 116, 53, 79, 49, 117, 20, 5, 124]. However, in our experience, fully

automatic methods soon reach a limit. Hand-tuned generators can be more efficient

by an order of magnitude by exploiting domain-specific knowledge and, equally

critically, by applying fine control over the distribution of generated inputs.

To further explore the design space of deriving generators while giving more

control to the user, we develop a new domain-specific language, called Luck, that

synergistically combines the complementary strengths and weaknesses of differ-

ent approaches: in Luck, generators are written as lightly annotated predicates,

with the annotations controlling both the distribution of generated values and the

amount of constraint solving that happens before each variable is instantiated.

Finally, we improve upon QuickChick, adopting for it the ideas explored in the

context of Luck. Specifically, we introduce an algorithm for deriving generators

for data satisfying predicates in the form of dependently-typed inductive relations.

Compared to Luck and similar techniques where the generation of data is per-

formed by an interpreter, we compile inductive relations into generators in the

host language. This in turn has multiple benefits. First, the generators themselves

are compiled and optimized by the mature OCaml compiler, leading to increased

performance. Second, we can provide certificates of correctness for each derived

generator: that it is sound and complete with respect to the relation it was derived

from. Last, but certainly not least, it gives users far more customizability. While

it is possible to enjoy the push-button style automation by using the derived gen-

erators everywhere, it is also easy to mix and match, allowing experienced users to

infuse domain specific knowledge for particularly tricky predicates that are beyond

the scope of fully-automatic techniques.

6



1.1 Contributions

The rest of this thesis offers the following contributions:

� In Chapter 2, we introduce QuickChick [36], the first complete property-based

random testing tool for the Coq proof assistant. QuickChick provides the full

range of functionality of Haskell’s QuickCheck, and additionally takes advan-

tage of the dependently typed setting to offer possibilistic correctness guar-

antees for generator combinators, as discussed in our ITP 2015 paper [105].

This chapter also serves as a tutorial for QuickChick providing an in-depth

explanation of its features and notations.

� Chapter 3 describes a case study in using random property-based testing

to debug and inform the design of noninterfering information-flow abstract

machines, a line of work that was presented in ICFP 2012 [65] and extended

to a journal version [66]. In this case study, we explore different techniques

for coming up with and implementing custom generators, identifying at the

same time the key drawbacks of this approach: writing such generators for

complex predicates can be both difficult and error-prone.

� In Chapter 4, we present Luck, a language for writing generators in the form

of lightly annotated predicates, combining ideas from functional logic pro-

gramming and constraint solving. The design of Luck is supported by a

strong formal foundation; we evaluate this design by providing a prototype

implementation. This work was the basis of the POPL 2017 paper “Begin-

ner’s Luck” [81].

� In Chapter 5, we enhance QuickChick with an automatic derivation procedure

for random generators satisfying predicates in the form of inductive relations.

We generalize the notion of narrowing from functional logic programming to

obtain a compilation process from inductive definitions to both random gen-

erators satisfying them, and a proof of the generator’s correctness—soundness

and completeness—with respect to these definitions. We evaluate their effi-

ciency in the same case studies as we evaluated Luck. This work was pre-

7



sented in the POPL 2018 paper “Generating Good Generators for Inductive

Relations” [82].

� In Chapter 6, we address implementation concerns raised throughout the

previous chapters. First, in Section 6.1, we describe a generic library for

Coq, that was used to facilitate the derivation algorithm as a Coq plugin.

Second, in Section 6.2, we develop a simple data structure, the urn, that

allows sampling from updatable discrete distributions with asymptotically

better performance than the currently available list-based solutions. The

urn data structure was presented in Haskell Symposium 2018 [83].

� We explore related work in Chapter 7, while Chapter 8 concludes and draws

several interesting directions for future work.

A lot of the work in this thesis is the product of collaboration with many

wonderful collaborators. The end of each chapter includes a description of my

specific contributions, as well as a list of the places the work involved has been

presented.

8



Chapter 2

QuickChick

The first step towards integrating random testing and theorem proving in Coq is to

create a proper testing tool for it. Prior efforts to bring such methods in Coq [126]

were relatively simple and focused exclusively in aiding proof automation. In our

approach, we aim for the full range of QuickCheck’s functionality. Moreover, com-

pared to existing random testing solutions for other proof assistants, we advocate

a slightly different approach. In particular, Isabelle’s QuickCheck [17], and, for

more general language design frameworks, PLT Redex [43], provide a seamless

push-button automation approach to testing. On the other hand, we wanted to

allow expert users to be able to fully customize their generators, as hand-written

fine-tuned generators are still an order of magnitude more efficient than state-of-

the-art automated methods [31, 43]. At the same time, we want to provide similar

automation support, by deriving such custom generators automatically, that users

can inspect, read, use or modify at will.

In this chapter we introduce QuickChick, our own property-based testing tool

for Coq. This chapter also serves as a tutorial for random testing using QuickChick,

exploring all levels of its functionality. As a clone of Haskell’s QuickCheck, a

lot of the typeclass-based infrastructure is shared with the original. We describe

both this infrastructure and the generalizations that were necessary to deal with

Coq’s Prop and unique typeclass implementation. However, before we describe

this infrastructure, we need to address a rather unique issue of porting a random

9



testing tool in Coq: the need for extraction.

Haskell’s QuickCheck is just a regular Haskell program that takes as input

properties in the form of plain Haskell functions and tests them. It reports the

current status at regular intervals before finally showing any counterexamples found

to the user, all while requiring no support from the compiler. Unlike Haskell and

most regular programming languages however, Coq does not support side effects.

QuickChick, therefore, if written entirely in Gallina, would not be able to perform

I/O and show testing feedback to users! Furthermore, despite a lot of recent

progress, executing a program within Coq is slower than executing its counterpart

in a traditional functional language. This efficiency gap is widened even further

by the use of optimizing compilers.

To address both of these concerns, we turn to extraction. Extraction is a mecha-

nism that transforms potentially dependently typed Coq proofs and programs into

functional programs in another language. While various target languages are sup-

ported, including Haskell and Scheme, QuickChick extracts to OCaml: first, the

extraction infrastructure for OCaml is the most mature and robust, and second,

OCaml is already required for Coq and wouldn’t pose an additional dependency

for users.

2.1 Overview

In the introduction, we saw how one could test a simple delete function using

Haskell’s QuickCheck. In Gallina, the same faulty function can be similarly written

as follows, where beq nat is the library function that tests for standard natural

number equality:

Fixpoint delete (x : nat) (l : list nat) : list nat :=

match l with

| [] => []

| h::t => if beq_nat h x then t else h :: delete x t

end.

10



The specification, however, can be expressed in two ways. Like before, the

property can be expressed in executable form:

Lemma delete_correct_bool (x : nat) (l : list nat) :

„„ (List.member x (delete x l)).

To test such a property, QuickChick requires the same components as Haskell’s

QuickCheck:

1. generators for x and l to generate inputs,

2. printers for x and l to show counterexamples,

3. and shrinkers for x and l to minimize them.

However, specifications in Coq often appear in a propositional form, where in-

stead of a predicate (member : nat -> list nat -> bool) an inductive relation

(In : nat -> list nat -> Prop) is used:

Lemma delete_correct_prop : forall x l, „ (In x (remove x l)).

To test this version of the property, QuickChick requires an additional component:

a checker, i.e. a decidability procedure for delete correct prop to decide whether

a generated input satisfies the desired property.

In the rest of this chapter we will look more closely at all different components

and how QuickChick supports each one.

2.2 Generators

We will first take a look at random generators. At a high level, generators for some

type A are just probability distributions over A. To enable efficient sampling from

such distributions, we can represent them as functions from a random seed to A. To

facilitate combining generators together in a compositional manner, we wrap this

functional representation in a generator monad and provide a library of generator

combinators.

11



2.2.1 Randomness

Unfortunately, Coq does not provide a library for creating, manipulating and con-

suming random seeds. Once again, we turn to extraction; QuickChick axiomatizes

the type of random seeds.

Axiom RandomSeed : Type.

This command introduces an axiom, RandomSeed. It is then realized by extraction

to the Random.State.t type of OCaml:

Extract Constant RandomSeed => "Random.State.t".

Thus, we can leverage the existing random infrastructure of the Random.State

module of OCaml.

QuickChick provides two ways of obtaining random seeds; one relying on the

self-initialization function of OCaml to obtain entropy in a system-dependent man-

ner, and one where the user provides an initial integer seed, to allow for repeatable

random draws.

Axiom newRandomSeed : RandomSeed.

Axiom mkRandomSeed : Z -> RandomSeed.

Extract Constant newRandomSeed =>

"(Random.State.make_self_init ())".

Extract Constant mkRandomSeed =>

"(fun x -> Random.init x; Random.get_state())".

In particular, QuickChick introduces a constant newRandomSeed which is extracted

to a call to the self-initialization function Random.State.make self init : unit

-> Random.State.t, which returns a different result every time. This obviously

can be used to break referential transparency upon extraction, so it needs to be

used with care.

Finally, we also need to use random seeds to produce useful data. The basis

will be a function that receives a pair of natural numbers x and y, as well as a

RandomSeed, and produces a random natural number in the range rx, ys, raising

an error if x ą y. In addition, it returns the modified random seed.

12



Axiom randomRNat : nat * nat -> RandomSeed -> nat * RandomSeed.

We can leverage OCaml’s method for creating random integers, Random.State.int,

which takes a seed r and a positive integer n and produces an integer between 0

(inclusive) and n (exclusive).

Extract Constant randomRNat =>

"(fun (x,y) r ->

if y < x then failwith "..."

else (x + (Random.State.int r (y - x + 1)), r))".

As Random.State.int modifies the input random seed in place, we just return the

input seed r, giving the QuickChick user an illusion of a functional implementation.

2.2.2 Generator Combinators

The G Monad Building generators as functions from RandomSeed to a pair A

* RandomSeed is possible, but would soon become extremely tedious. QuickChick

wraps random seeds inside a reader monad, named G. Using the two basic functions

returnGen and bindGen,

returnGen : forall {A}, A -> G A

bindGen : forall {A B}, G A -> (A -> G B) -> G B,

where A and B denote universally quantified type parameters, we can provide a

typeclass instance of the Monad typeclass: 1

Instance gMonad : Monad G :=

{

ret := @returnGen;

bind := @bindGen

}.

1This piece of code defines a constant gMonad with type Monad G. A record-like syntax is used
to provide bindings for each typeclass method, as the implementation of typeclasses in Coq is
based on records.

13



Primitive Generators Next, QuickChick provides generators for most primitive

types, using choose:

choose : forall {A}, ChoosableFromInterval A -> A * A -> G A

The choose combinator uses a ChoosableFromInterval typeclass that describes

primitive types A, for which it makes sense to randomly generate elements from a

given interval, like natural numbers.

Class ChoosableFromInterval (A : Type) : Type :=

{

super : Ord A;

randomR : A * A -> RandomSeed -> A * RandomSeed;

...

}.

We have already seen a suitable implementation of the randomR method in the form

of the randomRNat axiom realized via extraction. Similar instances are provided

for other ordered primitive types, like integers and booleans.

Lists Since lists are arguably the most commonly used datatype in functional

programming, QuickChick provides two list-specific combinators: vectorOf and

listOf. The vectorOf combinator takes as input a natural number n, the length

of the list to be generated, as well as a generator for elements of some type A and

produces lists of As. For example, if we sample the generator vectorOf 3 (choose

(0,4)) using the Sample command provided by QuickChick, we will only get lists

of length 3 with elements between 0 and 4:

Sample (listOf (choose (0,4))).

*output*

[ [0, 1, 4], [1, 1, 0], [3, 3, 3], [0, 2, 1] ,

[3, 3, 0], [3, 0, 4], [2, 3, 3], [3, 2, 4] ]

14



The second combinator, listOf, also requires a generator for elements of A,

but no size argument:

Sample (listOf (choose (0,4))).

*output*

[ [ 0, 3, 2, 0 ],

[ 1, 3, 4, 1, 0, 3, 0, 2, 2, 3, 2, 2, 2, 0, 4, 2, 3, 0, 1 ],

[ 3, 4, 3, 1, 2, 4, 4, 1, 0, 3, 4, 3, 2, 2, 4, 4, 1 ],

[ 0 ],

[ 4, 2, 3 ],

[ 3, 3, 4, 0, 1, 4, 3, 2, 4, 1 ],

[ 0, 4 ],

[ ],

[ 1, 0, 1, 3, 1 ],

[ 0, 0 ],

... ]

Which begs the question, how does listOf decide the size of the generated list?

The answer lies in the G monad. In addition to handling random-seed plumbing,

the G monad also maintains a ”current maximum size” : a natural number that can

be used as an upper bound on the depth of generated objects. That is, internally,

G A is just a synonym for nat -> RandomSeed -> A:

Inductive G (A:Type) : Type :=

| MkG : (nat -> RandomSeed -> A) -> G A.

When searching for counterexamples, QuickChick progressively tries larger and

larger values for the size bound n, in order to explore larger and deeper part of

the search space. Each generator can choose to interpret the size bound however

it wants, and there is no enforced guarantee that generators pay attention to it

at all; however, it is good practice to respect this bound when programming new

generators.

15



Custom Generators Of course, we often need generators involving user-defined

datatypes. To begin with, consider a simple enumeration of colors:

Inductive color := Red | Green | Blue.

To generate colors, we just need to pick one of the constructors Red, Green or Blue.

To support this, QuickChick provide the elements combinator, which receives a

list of elements of some type A and returns one of them uniformly at random.

elements : forall {A}, A -> list A -> G A

In Haskell’s QuickCheck, the similar elements combinator raises an error on

an empty list. Unlike Haskell however, Coq is a total language. Therefore, in

QuickChick, elements takes an additional element that is returned when the list

is empty. To avoid this inconvenience in the common case, QuickChick provides

a shorthand notation elems for when the list is notempty. Thus, a generator for

colors could simply be written as:

Definition genColor : G color :=

elems [ Red ; Green ; Blue ].

For more complicated ADTs, QuickChick provides more combinators. We will

showcase these using standard polymorphic binary trees; either Leafs or Nodes

containing some payload of type A and two subtrees.

Inductive Tree A :=

| Leaf : Tree A

| Node : A -> Tree A -> Tree A -> Tree A.

The first useful generator combinator is oneof.

oneof : forall {A}, G A -> list (G A) -> G A

This combinator takes a default generator for some type A and a list of generators

for the same type, and it picks one of the generators from the list uniformly at

random (as long as the list is not empty, in which case it picks from the default

generator). Just like with elements, QuickChick introduces a more convenient

notation, oneOf to hide this default element.

16



The “obvious” first generator for trees that one might write is the following

function genTree, which generates either a Leaf or else a Node whose subtrees are

generated recursively (and whose payload is produced by a generator g for elements

of type A).

Fixpoint genTree {A} (g : G A) : G (Tree A) :=

oneOf [ ret Leaf ;;

liftM3 Node g (genTree g) (genTree g)

].

At this point, Coq’s termination checker is going to save us from shooting our-

selves in the foot by disallowing this definition. Attempting to justify this fixpoint

informally, one might first say that, at some point, the random generation will pick

a Leaf so it will eventually terminate; a kind of probabilistic reasoning that the

termination checker cannot understand. However, even informally, this reasoning

is wrong: every time we choose to generate a Node, we create two separate branches

that must both be terminated with a Leaf. From this, it is not hard to show that

the expected size of the generated trees is actually infinite!

The solution is to use the standard “fuel” idiom that Coq users should be

familiar with. We add an additional natural number sz as a parameter. We

decrease this size in each recursive call, and when it reaches O, we always generate

Leaf. Thus, the initial sz parameter serves as a bound on the depth of the tree.

Fixpoint genTreeSized {A} (sz : nat) (g : G A) : G (Tree A) :=

match sz with

| O => ret Leaf

| S sz’ =>

oneOf

[ ret Leaf ;

liftM3 Node g (genTreeSized sz’ g) (genTreeSized sz’ g)

]

end.

17



Now that we have a generator, let’s generate some samples!

Sample (genTreeSized 3 (choose(0,3))).

*output*

[ Leaf,

Leaf,

Node (3) (Node (0) (Leaf) (Leaf))

(Node (2) (Leaf) (Node (3) (Leaf) (Leaf))),

Leaf,

Leaf,

Leaf,

Node (1) (Leaf) (Node (1) (Leaf) (Node (0) (Leaf) (Leaf))),

Leaf,

Node (3) (Leaf) (Leaf),

Node (1) (Leaf) (Leaf),

Leaf,

Leaf,

... ]

While this generator succeeds in avoiding nontermination, we can see just by ob-

serving the result of Sample that there is a problem: genTreeSized produces way

too many Leafs! This is actually to be expected, since half the time we generate

a Leaf right at the outset.

We can obtain bigger trees more often if we skew the distribution towards Nodes

using the most expressive QuickChick combinator, frequency.

frequency : forall {A}, G A -> list (nat * G A) -> G A

The frequency combinator, and its more convenient derived notation freq, take

a list of generators, each tagged with a natural number that serves as the weight of

that generator. For example, in the following generator, a Leaf will be generated
1

sz+1
of the time and a Node the remaining sz

sz+1
of the time.

18



Fixpoint genTreeSized’ {A} (sz : nat) (g : G A) : G (Tree A) :=

match sz with

| O => ret Leaf

| S sz’ =>

freq [ (1, ret Leaf) ;

(sz, liftM3 Node g (genTreeSized’ sz’ g)

(genTreeSized’ sz’ g))

]

end.

Attempting to sample from this generator yields a much better looking distribution:

Sample (genTreeSized’ 3 (choose(0,3))).

*output*

[ Node (3) (Node (1) (Node (3) (Leaf) (Leaf)) (Leaf))

(Node (0) (Leaf) (Node (3) (Leaf) (Leaf))),

Leaf,

Node (2) (Node (1) (Leaf) (Leaf)) (Leaf),

Node (0) (Leaf) (Node (0) (Node (2) (Leaf) (Leaf))

(Node (0) (Leaf) (Leaf))),

Node (1) (Node (2) (Leaf) (Node (0) (Leaf) (Leaf)))

(Leaf),

Node (0) (Node (0) (Leaf) (Node (3) (Leaf) (Leaf)))

(Node (2) (Leaf) (Leaf)),

Node (1) (Node (3) (Node (2) (Leaf) (Leaf))

(Node (3) (Leaf) (Leaf)))

(Node (1) (Leaf) (Node (2) (Leaf) (Leaf))),

...

]

19



Typeclasses for Generation QuickChick, in order to facilitate generator com-

positionality, offers two typeclasses, GenSized and Gen, that describe data that

can be generated with sized and unsized generators respectively.

Class GenSized (A : Type) :=

{

arbitrarySized : nat -> G A

}.

Class Gen (A : Type) :=

{

arbitrary : G A

}.

We can easily provide a GenSized instance for Trees using the genTreeSized’

generator we previously introduced:

Instance GenSizedTree {A} ‘{Gen A} : GenSized (Tree A) :=

{| arbitrarySized n := genTreeSized’ n arbitrary |}.

In this instance declaration, we assume that the type A already has a Gen A in-

stance as a class constraint: instead of explicitly providing a generator for A as an

argument, we allow Coq to fill it for us at every use site. 2 We then use the size

argument n as input to genTreeSized’, and arbitrary, i.e. the typeclass method

from Gen A, as the generator for the inner elements.

To go from a sized generator to an unsized one, QuickChick provides the sized

combinator.

Definition sized {A : Type} (f : nat -> G A) : G A :=

MkG (fun n r =>

match f n with

MkG g => g n r

end).

2The notation ‘{ ... } is implicit generalization: unbound variables mentioned within are
automatically bound in front of the binding where they occur.

20



All this sized combinator does is call the input parameterized generator f with

the size argument drawn from the G monad, while taking care of the necessary

internal random seed plumbing.

Armed with sized, we could write a Gen instance for trees.

Instance GenTree {A} ‘{Gen A} : Gen (Tree A) :=

{

arbitrary := sized arbitrarySized

}.

Writing this instance for every single type would prove tedious rather quickly. How-

ever, nothing about it is Tree-specific! QuickChick provides a generic conversion

function from GenSized to Gen instances.

Instance GenOfGenSized {A} ‘{GenSized A} : Gen A :=

{

arbitrary := sized arbitrarySized

}.

Automation Finally, QuickChick comes with a derivation mechanism so that

users don’t have to write GenSized instances for every new custom datatype.

Derive GenSized for Tree.

*output*

GenSizedTree is defined

After executing the Derive vernacular command, QuickChick produces a generator

that is identical to genTreeSized, up to alpha-conversion and frequency weights.

To that end, QuickChick also provides a command, QuickChickWeights, for fine

tuning the derived frequency weights.

QuickChickWeights [(Leaf, 1); (Node, 1)].

QuickChickWeights [(Leaf, 1); (Node, size)].

The first command will set the weights of both Leaf and Node to 1, as if we had

used the oneOf combinator. The second will set the weight of Node to use the size

parameter instead, just like our more efficient genSizedTree’ generator.

21



2.3 Printers

The second component of property based testing we are going to explore is printers.

In addition to the generation typeclasses, QuickChick provides a Show typeclass,

just like Haskell’s homonymous one.

Class Show A : Type :=

{

show : A -> string

}.

QuickChick provides default instances for the most commonly used Coq datatypes:

booleans, nats, integers, options, products, lists, etc. In fact, we have already used

these instances to inspect the outcome of Sample in the previous section!

For user-defined datatypes it provides a derivation mechanism similar to that

of generators. For example, we can obtain a generator for trees using the following

vernacular command:

Derive Show for Tree.

*output*

ShowTree is defined

We can inspect the derived printer to see that it is relatively straightforward.

ShowTree = fun (A : Type) (_ : Show A) =>

{| show := fun x : Tree A =>

let fix aux (x’ : Tree A) : string :=

match x’ with

| Leaf => "Leaf"

| Node p0 p1 p2 =>

"Node " ++

smart_paren (show p0) ++ " " ++

smart_paren (aux p1) ++ " " ++

smart_paren (aux p2)

end in

aux x |}

22



The show method is defined as a fixpoint over the input type, here Tree A. If this

input is a Leaf, we just return the string representation of the constructor’s name;

if it is a node, we print the constructors name, and then for each argument we

either use the show method for that type (just like in p0 above which has type

A), or recursively call the fixpoint aux. Finally, we wrap these calls with calls

to smart paren, which just adds parentheses around a string, unless that string

doesn’t contain spaces, for prettier printing.

2.4 Shrinkers

A third, equally important component of property-based testing is shrinking. As

we saw in the introduction with the remove example, counterexamples discovered

by random testing tools are often large, containing a lot of noise that is irrelevant

to the bug at hand. Shrinking is responsible for minimizing such counterexamples

to smaller, minimal ones, to enable reasoning about the actual problems without

additional clutter.

At its core, shrinking is just a greedy hill-climbing algorithm. Given a shrinking

function s of type A -> list A and a value x of type A that is known to falsify

some property P, QuickChick (lazily) tries P on all members of s x until it finds

another counterexample. It then repeats this process starting from this new coun-

terexample, until it reaches a point where x fails property P but every element of

s x succeeds. This x is then a locally minimal counterexample. Naturally, this

greedy algorithm only works if all elements of s x are strictly “smaller” than x

for all x; that is, there should be some total order on the type of x such that s is

strictly decreasing in this order.

Just like with generators and printers, QuickChick provides a typeclass, Shrink,

for composing shrinkers in a simple fashion.

Class Shrink (A : Type) :=

{

shrink : A -> list A

}.

23



Let’s take a closer look at the default shrinking function for lists.

Fixpoint shrinkList {A : Type} (shr : A -> list A) (l : list A) :=

match l with

| [] => []

| x :: xs =>

xs ::

List.map (fun xs’ => x :: xs’) (shrinkList shr xs) ++

List.map (fun x’ => x’ :: xs) (shr x)

end

To shrink a list l with elements of some type A, we also need a shrinker for A (just

like we needed a generator for A to generate trees of A). If the list is empty, there

is nothing we can shrink to — the counterexample is already minimal. Otherwise,

we can either drop the head of the list, recursively try to shrink the tail of the list,

or try to shrink any one element of the list.

Just like with generators and printers, QuickChick provides instances for most

of Coq’s basic types, as well as support for automatically deriving shrinkers for

any user-defined datatype:

Derive Shrink for Tree.

*output*

ShrinkTree is defined

2.5 Checkers

We can now use our generators, printers, and shrinkers to try and falsify properties,

like the delete correct bool of the introduction:

Lemma delete_correct_bool (x : nat) (l : list nat) :

„„ (List.member x (delete x l)).

We would like to use QuickChick generators for nat and list nat to produce

random inputs, check whether for each one delete correct bool returns true or

24



false, and then report shrunk versions of any counterexamples found. In other

words, we want to use delete correct bool to build a generator for test results.

Results and Checkers To begin with, we need to define a type of results. We

will start with a simplified version and build up increasingly more complex and

useful ones in the course of this section.

Inductive Result := Success | Failure.

Derive Show for Result.

If we think of results as an enumerated type with two constructors, Success and

Failure, then we can define the type of checkers to be a generator for Result:

Definition Checker := G Result.

A Checker embodies some way of performing a randomized test about the truth of

a proposition, which will yield either Success (that is, the proposition survived this

test) or Failure (that is, this test demonstrated that the proposition was false).

Sampling a Checker many times causes many different tests to be performed.

To check delete correct bool, we’ll need a way to build a Checker out of

a function from nat to list nat to bool. Since we will in general need to

build Checkers based on many different types, QuickChick defines a typeclass,

Checkable, where an instance for Checkable A provides a way of converting an A

into a Checker.

Class Checkable A :=

{

checker : A -> Checker

}.

Instead of checking delete correct bool directly, let’s start simpler and see

how to build a Checker out of just a bool.

Instance checkableBool : Checkable bool :=

{

checker b := if b then ret Success else ret Failure

}.

25



The boolean value true passes every test we might subject it to, while false fails

all tests.

We can now sample these checkers!

Sample (checker true).

*output*

[Success, Success, Success, Success, Success,

Success, Success, Success, Success, Success ]

Sample (checker false).

*output*

[Failure, Failure, Failure, Failure, Failure,

Failure, Failure, Failure, Failure, Failure ]

Generating inputs We now know that the result of delete correct bool is

Checkable. What we need is a way of taking a function returning a checkable

thing and making the function itself checkable. We can easily do this, as long as

the argument type of the function is something we know how to generate!

Definition forAll {A B : Type} ‘{Checkable B}

(g : G A) (f : A -> B) : Checker :=

a <- g ;; checker (f a).

Armed with forAll, we can write a checker for the lemma we want to test, using

arbitrary to generate both natural numbers and lists:

Definition delete_checker : Checker :=

forAll arbitrary (fun x : nat =>

forAll arbitrary (fun l : list nat =>

delete_correct_bool x l)).

Sample delete_checker.

*output*

[Success, Success, Success, Success, Success,

Failure, Success, Success, Success, Success ]

26



Great! The property fails! Unfortunately, there’s one tiny problem: what are the

tests that are failing? We can tell that the property is bad, but we can’t see the

counterexamples!

Showing counterexamples We can fix this by going back to the beginning and

enriching the Result type to keep track of failing counterexamples.

Inductive Result :=

| Success : Result

| Failure : forall {A} ‘{Show A}, A -> Result.

The failure case for boolean checkers doesn’t need to record anything except the

Failure, so we put tt (the sole value of type unit) as the “failure reason”.

Instance checkableBool : Checkable bool :=

{

checker b := if b then ret Success else ret (Failure tt)

}.

The more interesting change lies in the forAll combinator. Here, we do have

actual information to record in the failure case — namely, the argument that caused

the failure.

Definition forAll {A B : Type} ‘{Show A} ‘{Checkable B}

(g : G A) (f : A -> B) : Checker :=

a <- g ;;

r <- checker (f a) ;;

match r with

| Success => ret Success

| Failure b => ret (Failure (a,b))

end.

Rather than just returning Failure a, we package up a together with b, which

is the “reason” for the failure of f a. This allows us to write several forAlls in

sequence and capture all of their results in a nested tuple.

27



Armed with the new forAll we can sample our checker for delete once again.

Sample delete_checker.

*output*

[Success, Success, Success, Success, Success,

Failure : (17, ([42,0,4,-7,17,-6,-15,17,0,1,-13,8], tt)),

Success, Success, Success, Success ]

Instead of using the rather awkward Sample command, we can instead use the

QuickChick command. This command takes a Checkable input (a Checker like

delete checker is trivially Checkable), runs tests until a counterexample is found

(or some predefined limit of successful runs is reached).

QuickChick delete_checker.

*output*

QuickChecking delete_checker...

*** Failed after 6 tests and 0 shrinks. (0 discards)

17

[42,0,4,-7,17,-6,-15,17,0,1,-13,8]

Adding back shrinking We run now again against the problem of random noise

in the counterexamples. Even though we can now see the counterexample, it is

too large to be practical: we cannot easily see why this property fails. That’s

where shrinking comes in. We can use the forAllShrink checker combinator, a

variant of forAll that takes a shrinker as an additional argument, to define a

better property...

Definition delete_checker’ : Checker :=

forAllShrink arbitrary shrink (fun x : nat =>

forAllShrink arbitrary shrink (fun l : list nat =>

delete_correct_bool x l)).

28



...and we can use QuickChick to test it:

QuickChick delete_checker’.

*output*

QuickChecking delete_checker’...

*** Failed after 6 tests and 11 shrinks. (0 discards)

0

[0,0]

At this point the bug is clearly identifiable: it occurs when we attempt to delete

an element that is present twice in the list.

Putting it all together Now we’ve got pretty much all the basic machinery

we need, but the way we write properties (using forAllShrink and explicitly

providing generators and shrinkers) is a bit heavy. We can use a bit more typeclass

magic to lighten things. First, for convenience, we package Gen and Shrink together

into an Arbitrary typeclass that is a subclass of both.

Class Arbitrary (A : Type) ‘{Gen A} ‘{Shrink A}.

We can then provide a typeclass instance that automatically uses Arbitrary and

Show instances to produce checkers for executable properties:

Instance testFun {A prop : Type} ‘{Show A} ‘{Arbitrary A}

‘{Checkable prop} : Checkable (A -> prop) :=

{

checker f := forAllShrink arbitrary shrink f

}.

Thus, we could directly check delete correct bool without explicitly annotating

generators and shrinkers.

Inductive Specifications There still remains the question of testing specifica-

tion in non-executable form. Indeed, Coq users usually write such specifications in

propositional forms, which are not immediately Checkable like bool. For example,

we saw in the earlier the following specification for our delete function:

29



Lemma delete_correct_prop : forall x l, „ (In x (remove x l)).

To test such properties, QuickChick uses the decidable definition from ssreflect:

Print decidable.

*output*

decidable = fun P : Prop => {P} + {„P}

...where {P} + {„P} is an “informative disjunction” of P and „P. QuickChick

wraps this in a typeclass of decidable propositions:

Class Dec (P : Prop) : Type :=

{

dec : decidable P

}.

QuickChick also provides convenient notation P? that converts a decidable propo-

sition P into a boolean expression.

Notation "P ’?’" :=

match (@dec P _) with

| left _ => true

| right _ => false

end

(at level 100).

Thus, a decidable Prop is not too different from a boolean, and we should be

able to build a checker from that.

Instance checkableDec ‘{P : Prop} ‘{Dec P} : Checkable P :=

{

checker p := if P? then ret Success else ret (Failure tt)

}.

This definition might look a bit strange since it doesn’t use its argument p. The

intuition is that all the information in p is already encoded in its type P!

30



We also need a counterpart to testFun for propositions:

Instance testProd {A : Type} {prop : A -> Type}

‘{Show A} ‘{Arbitrary A}

‘{forall x : A, Checkable (prop x)} :

Checkable (forall (x : A), prop x) :=

{| checker f :=

forAllShrink arbitrary shrink (fun x => checker (f x))

|}.

Finally, we can provide Dec instances for the In proposition (which is trivial,

since such a lemma already exists in the Coq library) and directly QuickCheck

delete correct prop.

Collecting statistics Earlier in this section we claimed that our first definition

of genTreeSized produced “too many Leafs”. While looking at the result of

Sample gives us a rough idea that something is going wrong, just observing a

handful of samples cannot realistically provide statistical guarantees. This is where

collect, another property combinator, comes in.

collect : forall {A P} ‘{Show A} ‘{Checkable P}, A -> P -> Checker

The collect combinator takes a Checkable proposition and returns a new Checker

(intuitively, for the same proposition). On the side, it takes a value from some

Showable type A, which it remembers internally (in an enriched variant of the

Result structure that we saw above) so that it can be displayed at the end. For

example, suppose we measure the size of Trees like this:

Fixpoint size {A} (t : Tree A) : nat :=

match t with

| Leaf => O

| Node _ l r => 1 + size l + size r

end.

We could write a dummy property treeProp to check our generators and measure

the size of generated trees.

31



Definition treeProp (g : nat -> G nat -> G (Tree nat)) n :=

forAll (g n (choose (0,n))) (fun t => collect (size t) true).

QuickChecking this property results in the following statistics:

QuickChick (treeProp genTreeSized 5).

*output*

4947 : 0

1258 : 1

673 : 2

464 : 6

427 : 5

393 : 3

361 : 7

302 : 4

296 : 8

220 : 9

181 : 10

127 : 11

104 : 12

83 : 13

64 : 14

32 : 15

25 : 16

16 : 17

13 : 18

6 : 19

5 : 20

2 : 21

1 : 23

+++ OK, passed 10000 tests

We see that 62.5% of the tests are either Leafs or empty Nodes, while rather few

32



tests have larger sizes. Compare this with genTreeSized’:

QuickChick (treeProp genTreeSized’ 5).

*output*

1624 : 0

571 : 10

564 : 12

562 : 11

559 : 9

545 : 8

539 : 14

534 : 13

487 : 7

487 : 15

437 : 16

413 : 6

390 : 17

337 : 5

334 : 1

332 : 18

286 : 19

185 : 4

179 : 20

179 : 2

138 : 21

132 : 3

87 : 22

62 : 23

20 : 24

17 : 25

+++ OK, passed 10000 tests

A lot fewer terms have small sizes, allowing us to explore larger terms.

33



2.6 Verifying QuickChick

In this chapter so far, we introduced QuickChick through a tutorial of its fea-

tures, both adapted from Haskell’s QuickCheck and novel Coq-specific ones. The

uniqueness of QuickChick’s setting gives rise to another option: instead of just

using testing to facilitate interactive theorem proving, we can provide strong guar-

antees of the correctness of generators themselves [105].

Given a QuickChick generator g of type G A in the G monad, the function

semGen assigns to it a (non-computable) set of outcomes (of type A -> Prop).

That means that we can prove that g produces a desired set of outcomes O by

showing that semGen g is extensionally equal to O, where sets (and extensional

equality between them) have the following Coq representations:

Definition set T := T -> Prop.

Definition set_eq {A} (m1 m2 : set A) :=

forall (a : A), m1 a <--> m2 a.

We write <--> as shorthand for set eq.

QuickChick combinators come with precise, high-level specifications in terms

of semGen. For an example, we can look at some combinators that appear in

GenSizedTree in . For the simplest one, ret, the set of outcomes of ret x is just

the singleton set {x}.

Lemma semReturn {A} (x : A) : semGen (ret x) <--> [set x].

A more complicated combinator we’ve encountered is frequency:

frequency: forall {A : Type}, G A -> list (nat * G A) -> G A

However, its specification is rather intuitive. Given a default generator def of type

G A and a list l of pairs of natural numbers and generators, the set of outcomes of

frequency def l depends on the natural weights chosen in the list. If there are no

nonzero weights in the list (or if the list is empty), then the set of outcomes semGen

(frequency def l) is the set of outcomes of the default generator (semGen def).

Otherwise, it is the union of all the sets of outcomes of the nonzero-weighted

generators in l.

34



Lemma semFrequency {A} (l : list (nat * G A)) (def : G A) :

semGen (frequency def l) <-->

let l’ := [seq x <- l | x.1 != 0] in

if l’ is nil then semGen def else

\bigcup_(x in l’) semGen x.2.

Here, the notation \bigcup_(i in A) F denotes the union of all sets F(i) for the

various i in the set A.

At this point, it would be tempting to give bind a similar intuitive specification

as the bind of a probability/nondeterminism monad:

semGen (bind g f) <--> \bigcup_(a in semGen g) semGen (f a).

Unfortunately, this specification is wrong. The G monad (just like Gen in Haskell)

is more than just a probability monad: it also provides size information that might

be used by the generators. In the right hand side of the (wrong) spec, the size

parameters passed to g and f a can differ, while bind calls both with the same

one.

To facilitate reasoning in the presence of sizes QuickChick also provides specifi-

cations in terms of size; for most combinators the size variants just propagate size

information inside.

Lemma semReturnSize A (x : A) (s : nat) :

semGenSize (ret x) s <--> [set x].

Lemma semFreqSize {A} (l : list (nat * G A)) (def : G A)

(size : nat) :

semGenSize (frequency def l) size <-->

let l’ := [seq x <- l | x.1 != 0] in

if l’ is nil then semGenSize def size

else \bigcup_(x in l’) semGenSize x.2 size.

35



This approach allows us to give a (correct) specification for bindGen by thread-

ing the size parameter explicitly for both generators:

Lemma semBindSize :

forall A B (g : G A) (f : A -> G B) (size : nat),

semGenSize (bindGen g f) size <-->

\bigcup_(a in semGenSize g size) semGenSize (f a) size.

Reasoning with low-level size information is very tedious. Fortunately, we can

avoid it for a large class of generators, called size-monotonic generators, including

the ones automatically derived by QuickChick. Size-monotonic generators produce

larger sets of outcomes when given larger sizes as inputs:

Class SizeMonotonic {A} (g : G A) :=

{

monotonic :

forall s1 s2, s1 <= s2 ->

semGenSize g s1 \subset semGenSize g s2

}.

For size-monotonic generators we have a simpler specification for bindGen:

Parameter semBindSizeMonotonic :

forall {A B} (g : G A) (f : A -> G B)

‘{SizeMonotonic _ g} ‘{forall a, SizeMonotonic (f a)},

semGen (bindGen g f) <--> \bigcup_(a in semGen g) semGen (f a).

The genTreeSized generator we saw earlier has an implicit notion of size:

Leafs have size 0, while Nodes have size 1 plus the maximum of the sizes of its

left and right subtree. We generalize this notion to derive a CanonicalSize for

arbitrary user-defined datatypes, with the same behavior.

36



For example, the canonical size of trees is derived automatically to be the

following:

Instance sizeTree {A : Type} ‘{CanonicalSize A} :=

{|

sizeOf := fun x : Tree A =>

let fix aux_size (x’ : Tree A) : nat :=

match x’ with

| Leaf => 0

| Node _ p1 p2 => S (max (aux_size p1) (aux_size p2))

end in

aux_size x

|}

To prove the monotonicity of our derived generators we first need to provide

an induction principle of sorts, describing how to combine objects of specific sizes

to create an object of an immediately larger size.

forall (size : nat) (A : Type),

Leaf

|: \bigcup_(f0 in (fun _ : A => true))

\bigcup_(f1 in (fun f1 : Tree A => sizeOf f1 < size))

\bigcup_(f2 in (fun f2 : Tree A => sizeOf f2 < size))

[set Node f0 f1 f2]

<--> (fun x : Tree A => sizeOf x <= size)

The set of Trees x whose size is less than or equal to some specific natural

number size consists of the base case, Leaf, as well as any Node whose left and

right subtree are strictly smaller than size. This Lemma is straightforward, but

extremely tedious to prove manually. Even worse, LTac automation seems to be

very hard because it relies on knowing type information for various constructors

appearing in its statement. Fortunately, the proof term is rather canonical and

can be generated automatically! We will return again to this point of proving

generators automatically in Chapter 5.

37



Acknowledgments

While the original iteration of QuickChick was written entirely by me during the

first year of my studies, the now-available version is the product of labor by many

amazing people. In particular, Zoe Paraskevopoulou and her master thesis advisor

Catalin Hriţcu are the main authors of the proof framework for random generators.

Moreover, Maxime Denes’ familiarity with Coq and its internals was crucial in

implementing the tool as a Coq plugin and maintaining it across versions. Finally,

Benjamin Pierce has guided the development and progress of QuickChick towards

success throughout its life.

The work presented in this chapter is adapted from various projects during

the course of my dissertation. The main part of the tutorial is adapted from the

QuickChick documentation and the lectures on “Property-based random testing

with QuickChick” in the DeepSpec 2017 summer school, co-authored with Ben-

jamin Pierce and Nicolas Koh. The proof-framework component of the tutorial

is in turn adapted from our ITP 2015 paper “Foundational Property-Based Test-

ing” [105], the majority of which exists thanks to Zoe Paraskevopoulou.

38



Chapter 3

Case Study:

Information-Flow Control

In this chapter, we will present a case study on using random testing techniques

to guide the design of a simple, low-level information-flow abstract machine. Se-

cure information-flow control (IFC) is notoriously hard to achieve by careful de-

sign alone; the intricacies of the mechanisms involved, whether static [114] or

dynamic [3, 4, 115, 42, 113, 130, 118, 64], make it hard to gain confidence in their

correctness without formal proofs.

We will show that we can use QuickChick to speed the design of state-of-the-art

IFC mechanisms by identifying bugs early in the design process, saving valuable

time and effort. However, we will also draw attention to the complexity of the

random generators involved, as well as the variety of subtle ways that one can

introduce flaws in the testing code itself. Such flaws can lull a tester into a false

sense of security, when confidence in the correctness of a program is ill founded.

3.1 Stack Machine

Before presenting the abstract stack machine, we need to introduce some notation:

if xs is a list and 0 ď j < |xs|, then xspjq selects the jth element of xs and xsrj := xs

produces the list that is like xs except that the jth element is replaced by x.

39



3.1.1 Abstract Machine

In a (fine-grained) dynamic IFC system [3, 118, 64, 115, 62, 13, 6] security levels

(called labels) are attached to runtime values and propagated during execution,

enforcing the constraint that information derived from secret data does not leak

to untrusted processes or to the public network. Each value is protected by an

individual IFC label representing a security level (e.g., secret or public).

Instead of bare integers, the basic data items in our abstract machine are labeled

integers of the form n@`, where n is an integer and ` is a label :

` ::= L | H

We read L as “low” (public) and H as “high” (secret). Additionally, we order

labels by L Ď H and write `1 _ `2 for the join (least upper bound) of `1 and `2.

The instructions of our simple stack machine are unsurprising.

Instr ::= Push n@` | Pop | Load | Store | Add | Noop

| Jump | Call n k | Return | Halt

The argument to Push is a labeled integer to be pushed on the stack and the

numeric arguments to Call the number of integers that should be passed or returned

(0 or 1 in the latter case). To account for stack frames, each stack element e can

either be a labeled integer n@` or a return address, marked R, recording the pc

from which the corresponding Call was made, as well as the number of arguments

to be returned.

Finally, a machine state S is a 4-tuple, written pc s m i , consisting of a

program counter pc (an integer), a stack s, a memory m (a list of labeled integers),

and an instruction memory i (a list of instructions). Since i cannot change during

execution we will often write just pc s m for the varying parts of the machine

state. The set of initial states of this machine, Init, contains states of the form

0 r s m0 i , where m0 can be of any length and contains only 0@L. We use Halted

to denote the set of halted states of the machine, i.e., ippcq = Halt .

40



3.1.2 Noninterference

We then need to define what it means for such a machine to be “secure” using a

standard notion of termination-insensitive noninterference [114, 64, 3, 6]; we call it

end-to-end noninterference (or EENI ) to distinguish it from the stronger notions

we will introduce later on. In EENI we directly encode the intuition that secret

inputs should not influence public outputs. By secret inputs we mean integers

labeled H in the initial state (because of the simplicity of our initial states, such

labeled integers can appear only in instruction memories); by public outputs we

mean integers labeled L in a halted state.

More precisely, EENI states that for any two executions starting from initial

states that are indistinguishable to a low observer (or just indistinguishable) and

ending in halted states S1 and S2, the final states S1 and S2 are also indistinguish-

able. We write S ó S 1 to denote an execution starting from S and ending in S 1.

Intuitively, two states are indistinguishable if they differ only in integers labeled H.

To make this formal, we define an equivalence relation on states compositionally

from equivalence relations over their components.

Definition 3.1.2.1.

� Two labeled integers n1@`1 and n2@`2 are said to be indistinguishable, written

n1@`1 « n2@`2, if either `1 = `2 = H or else n1 = n2 and `1 = `2 = L.

� Two instructions i1 and i2 are indistinguishable if they are the same, or if

i1 = Push n1@`1, and i2 = Push n2@`2, and n1@`1 « n2@`2.

� Two return addresses Rpn1, k1q@`1 and Rpn2, k2q@`2 are indistinguishable if

either `1 = `2 = H or else n1 = n2, k1 = k2 and `1 = `2 = L.

� Two lists (memories, stacks, or instruction memories) xs and ys are indistin-

guishable if they have the same length and xspiq « yspiq for all i such that

0 ď i < |xs|.

Definition 3.1.2.2. Machine states S1 = pc1 s1 m1 i1 and S2 = pc2 s2 m2 i2

are indistinguishable with respect to memories, written S1 «mem S2, if m1 « m2

and i1 « i2.

41



Definition 3.1.2.3. A machine semantics is end-to-end noninterfering with re-

spect to some sets of states Start and End and an indistinguishability relation «,

written EENIStart,End,«, if for any S1, S2 P Start such that S1 « S2 and such that

S1 ó S
1
1, S2 ó S

1
2, and S 11, S

1
2 P End, we have S 11 « S 12.

We take EENIInit,Halted,«mem as our baseline security property; i.e., we only con-

sider executions starting in initial states and ending in halted states, and we use

indistinguishability with respect to memories 1. The EENI definition above is,

however, more general, and we will consider other instantiations of it later.

3.1.3 Operational Semantics

The final task is to enrich standard rules for the step function to take information-

flow labels into account. For most of the rules, there are multiple plausible ways

to do this and there are a lot of opportunities for subtle mistakes. In “Testing

Noninterference, Quickly”, we illustrated a test-driven development approach: we

first proposed a naive set of rules and then used counterexamples generated using

QuickChick and custom generation and shrinking techniques (which we will de-

scribe in later sections) to identify and help repair mistakes until no more could

be found. Here, we will demonstrate this methodology using a progression of in-

creasingly more refined rules for a single instruction (Store) and present the final

version of the rules directly, as discovered by random testing and verified in the

Coq proof assistant. This sound and permissive set of rules (and the single-step

reduction relation on machine states, written S ñ S 1, it gives rise to) appears in

Figure 3.1.3.

A Noop simply increments the program counter by 1, leaving the rest of the

machine unaffected (all non-control-flow instructions have the same effect on the

program counter and we will omit it from the explanation). A Push n@` instruction

1 At this point we have a choice as to how much of the state we want to consider observable; we
choose (somewhat arbitrarily) that the observer can only see the data and instruction memories,
but not the stack or the pc. Other choices would give the observer either somewhat more power—
e.g., we could make the stack observable—or somewhat less—e.g., we could restrict the observer
to some designated region of “I/O memory,” or extend the architecture with I/O instructions
and only observe the traces of inputs and outputs [6]

42



ippcq = Noop

pc@`pc s m ñ pc+1@`pc s m
(Noop)

ippcq = Push n@`

pc@`pc s m ñ pc+1@`pc n@` : s m
(Push)

ippcq = Add

pc@`pc n1@`1 : n2@`2 : s m ñ pc+1@`pc pn1+n2q@p`1_`2q : s m
(Add)

ippcq = Pop

pc@`pc n@`n : s m ñ ppc+1q@`pc s m
(Pop)

ippcq = Load mppq = n@`n

pc@`pc p@`p : s m ñ pc+1@`pc n@p`n _ `pq : s m
(Load)

ippcq = Store mppq = n1@`1n `p_`pc Ď `1n m1 = mrp := n@p`n_`p_`pcqs

pc@`pc p@`p : n@`n : s m ñ ppc+1q@`pc s m1

(Store)
ippcq = Jump

pc@`pc n@`n : s m ñ n@p`n _ `pcq s m
(Jump)

ippcq = Call k k1 k1 P t0, 1u ns = n1@`1 : . . . : nk@`k

pc@`pc n@`n : ns : s m ñ n@p`n _ `pcq ns : Rppc+1, k1q@`pc : s m
(Call)

ippcq = Return ns = n1@`1 : . . . : nk1@`k1

nspc = n1@p`1_`pcq : . . . : nk1@p`k1_`pcq

pc@`pc ns : ns 1 : Rpn, k1q@` : s m ñ n@` nspc : s m
(Return)

Figure 3.1: Single-step Reduction Rules

43



adds n@` to the stack. An Add instruction adds the two top elements of the stack

and pushes the result. The label of the new element is equal to the join of the

labels of the values added, as is standard in information-flow control. A Pop just

drops the top element of the stack, which must not be a return frame. A Load

instruction takes a value p@`p off the stack, finds the element at the p-th location

of the memory and returns it with its label tainted by `p. A Store instruction takes

two elements off the stack, uses the value p of the first as an address and updates

the p-th location of the memory to contain the second. The (rather complicated)

IFC content will be discussed shortly. Jump updates the pc to the address pointed

by the top element of the stack. Call takes an address off the stack, updates the

pc and adds a stack frame separator (marked R) in the stack. Finally, Return

looks for a stack frame Rpn, k1q@`, updates the pc address to n and keeps the top

k1 elements from the stack (as return values of the corresponding call).

3.1.4 Test Driven Development

To showcase our development methodology, let’s consider a version of the Store

rule without the complicated information-flow checks.

ippcq = Store m1 = mrp := n@`ns

pc p@`p : n@`n : s m ñ pc+1 s m1

(Store-1)

In the rule above, the label of the element stored in the memory remains unchanged

and no checks are done. Using QuickChick, we quickly discover the following

counterexample to this formulation.

i =
”

Push 1@L,Push 0
1@H, Store,Halt

ı

pc m s ippcq

0 r0@L, 0@Ls r s Push 1@L

1 r0@L, 0@Ls r1@Ls Push 0
1@H

2 r0@L, 0@Ls
”

0
1@H, 1@L

ı

Store

3
”

1
0@L, 0

1@L
ı

r s Halt

44



The first line of the figure is the counterexample itself: a pair of four-instruction

programs, differing only in the constant argument of the second Push. The first

program pushes 0@H, while the second pushes 1@H (since the labels are high,

these two labeled integers are indistinguishable). We display the two programs,

and the other parts of the two machine states, in a “merged” format. Pieces of

data that are the same between the two machines are written just once; at any

place where the two machines differ, the value of the first machine is written above

the value of the second machine, separated by a horizontal line.

The rest of the figure shows what happens when we run this program. On the

first step, the pc starts out at 0; the memory, which has two locations, starts out

as r0@L, 0@Ls; the stack starts out empty; and the next instruction to be executed

(ippcq) is Push 1@L. On the next step, this labeled integer has been pushed on

the stack and the next instruction is either Push 0@H or Push 1@H; one or the

other of these labeled integers is pushed on the stack. On the next, we Store the

second stack element (1@L) into the location pointed to by the first (either 0@H

or 1@H), so that now the memory contains 1@L in either location 0 or location

1 (the other location remains unchanged, and contains 0@L). At this point, both

machines halt.

This pair of execution sequences shows that EENI fails: in the initial state,

the two programs are indistinguishable to a low observer (their only difference is

labeled H). However, in the final states the memories contain different integers at

the same location, both of which are labeled L.

Thinking about this counterexample, it soon becomes apparent what went

wrong with the Store instruction: since pointers labeled H are allowed to vary

between the two runs, it is not safe to store a low integer through a high pointer.

One simple but draconian fix is simply to stop the machine if it tries to perform

such a store (i.e., we could add the side condition `p = L to the rule). A more

permissive option is to allow the store to take place, but require it to taint the

stored value with the label on the pointer:

ippcq = Store m1 = mrp := n@p`n_`pqs

pc p@`p : n@`n : s m ñ pc+1 s m1

(Store-2)

45



Sadly, the next counterexample shows that this rule is still not quite good enough.

i =
”

Push 0@L,Push 0
1@H, Store,Halt

ı

pc m s ippcq

0 r0@L, 0@Ls r s Push 0@L

1 r0@L, 0@Ls r0@Ls Push 0
1@H

2 r0@L, 0@Ls
”

0
1@H, 0@L

ı

Store

3
”

0@
H
L , 0@

L
H

ı

r s Halt

This counterexample is quite similar to the first one, but it illustrates a more subtle

point: our definition of noninterference allows the observer to distinguish between

final memory states that differ only in their labels.2 Since the Store-2 rule taints

the label of the stored integer with the label of the pointer, the fact that the Store

changes different locations is visible in the fact that a label changes from L to

H on a different memory location in each run. To avoid this issue, we adopt the

“no sensitive upgrades” rule [128, 3], which demands that the label on the current

contents of a memory location being stored into are above the label of the pointer

used for the store —i.e., it is illegal to overwrite a low value via a high pointer

(and trying to do so results in a fatal failure).

ippcq = Store mppq = n1@`1n `p Ď `1n m1 = mrp := n@p`n_`pqs

pc p@`p : n@`n : s m ñ pc+1 s m1

(Store-3)

2See the first clause of Definition 3.1.2.1. One might imagine that this could be fixed easily by
changing the definition so that whether a label is high or low is not observable—i.e., n@L « n@H
for any n. Sadly, this is known not to work [113, 42]. (QuickChick can also find a counterexample)

46



Moving on, there are still problems with rule Store-3; it doesn’t take the pc label

into account.

i =

«

Push 3
6@H,Call 0 0,Halt ,Push 1@L,Push 0@L,

Store,Return

ff

pc m s ippcq

0 r0@Ls r s Push 3
6@H

1 r0@Ls
”

3
6@H

ı

Call 0 0

Machine 1 continues. . .

3 r0@Ls rRp2, 0q@Ls Push 1@L

4 r0@Ls r1@L,Rp2, 0q@Ls Push 0@L

5 r0@Ls r0@L, 1@L,Rp2, 0q@Ls Store

6 r1@Ls rRp2, 0q@Ls Return

2 r1@Ls r s Halt

Machine 2 continues. . .

6 r0@Ls rRp2, 0q@Ls Return

2 r0@Ls r s Halt

This counterexample shows we need to be careful about stores in high contexts.

We change the rule to taint the value written in memory with the current pc label:

ippcq = Store mppq = n1@`1n `p Ď `1n m1 = mrp := n@p`n_`p_`pcqs

pc@`pc p@`p : n@`n : s m ñ ppc+1q@`pc s m1

(Store-4)

This eliminates the current counterexample; QuickChick then uncovers a very

similar one in which the labels of values in the memories differ between the two

machines. The usual way to prevent this problem is to extend the no-sensitive-

upgrades check so that low-labeled data cannot be overwritten in a high con-

text [128, 3]. This leads to the correct rule for Store, first seen in Figure 3.1.3.

ippcq = Store mppq = n1@`1n `p_`pc Ď `1n m1 = mrp := n@p`n_`p_`pcqs

pc@`pc p@`p : n@`n : s m ñ ppc+1q@`pc s m1

(Store)

47



3.2 Testing

While the counterexample progression in the previous section clearly shows the

benefits of using random testing to design a complex system, such an approach

does not come without effort. Indeed, to present such polished counterexamples we

put a lot of work into generating, shrinking and pretty printing abstract machines.

Moreover, for more efficient testing, we needed to strengthen the property under

test as the machine grew more complex. The rest of this section is devoted to

describing the various techniques developed for these purposes. More importantly,

we interleave critiques of these techniques and sketch directions where research

opportunities arise.

3.2.1 Generation Techniques

To test our design we need to construct random indistinguishable pairs of machine

states. If we were to generate two random states independently, the chance of them

being indistinguishable is minuscule, since they would have to coincide in all “low”

places. The obvious solution to this problem is to generate one abstract machine

first and then to create the second machine by randomly varying the “high” parts

of the first one.

At this point, and every time when we write a custom generator satisfying some

precondition (here indistinguishability), we need to ensure that our generation

process is complete with respect to the predicate: if there exist indistinguishable

pairs of states that cannot be generated, we might not be able to find certain bugs!

This will be a growing concern throughout this section: while generating variations

of initial states is trivial, as the complexity of our generation strategies grows, so

does the possibility of incompleteness.

The next aspect of generation we need to tackle is the generation of instructions.

A naive first approach by generating instructions independently and uniformly

doesn’t work: most of the time, machines fail to reach a halted state as required

by EENI and the generated inputs are therefore discarded. In fact, by collect-

ing statistics about the various executions, we learned that the average execution

length is less than half a step! Clearly, such short runs cannot lead to effective bug

48



finding. We need to fine tune the distribution of instructions to achieve longer,

more interesting runs.

Further statistics show that the most common reason for early termination is

stack underflows. Indeed, starting from the empty stack of an initial state, unless

the next instruction is a Push, Halt or a Noop, execution will fail. To counter

this problem we leverage the frequency combinator we introduced in the previous

chapter. As a reminder, frequency (with type list (nat * G A) -> G A) takes

a list of pairs of natural numbers and generators and picks a generator at random,

based on the distribution induced by the weights. By increasing the weight of

Push instructions, we reduce stack underflows; by increasing the likelihood of Halt ,

fewer tests fail to satisfy the termination condition of EENI; by increasing Stores,

we ensure any information-flow violations become observable by appearing in the

memory. This weighted distribution of instructions leads to longer runs (average

2.69 steps) and lowers discard rates (by 16%), which translates to an order of

magnitude better testing performance in terms of mean time to find a failing case

(MTTF) for all bugs that were found.

We further improve the MTTF by generating useful instruction sequences to-

gether: for example, pushing an integer followed by a Load or pushing two integers

followed by a Store. Another order-of-magnitude improvement can be attained by

skewing the distribution of generated integers towards valid addresses (leading to

fewer out-of-bounds errors).

However, the most important generation technique developed was generation by

execution: we generate a single instruction (or a small sequence) from a restricted

subset that does not cause the machine to crash in the current state. For instance,

we never generate an Add instruction if there are not at least two elements in the

stack to pop and operate on. Afterwards, we execute the generated instruction,

reach a new state and repeat. Due to control flow, it is possible to reach a state

where the next instruction has already been generated. In that case, we just keep

execution going until the next instruction hasn’t been generated (or until we reach

a loop-avoiding predetermined cutoff). Finally, to ensure that generated machines

successfully terminate we increase the likelihood of Halts the more instructions we

generate. The combination of all generation strategies leads to consistently finding

49



all but one injected bugs with a (geometric) average MTTF of 334.6 seconds.

3.2.2 Strengthening the Property

EENI While EENIInit,Halted,«mem is the property we ultimately care about, it does

not lend itself to efficient testing. Much like when proving noninterference we would

come up with stronger, potentially inductive, specifications that imply EENI and

are easier to prove, the same is true for testing: stronger properties can be much

better at finding bugs.

A first observation is that information flows often appear early in counterexam-

ples in the form of a low variation in the stack or the pc, but then it is necessary

to store the leak into the memory to make it observable by our property. By re-

defining indistinguishability to take into account the entire machine state, we can

obtain shorter counterexamples (that are easier to find):

Definition 3.2.2.1. Machine states S1 = pc1 s1 m1 i1 , S2 = pc2 s2 m2 i2

are indistinguishable with respect to entire low states, written S1 «low S2, if either

`pc1 = `pc2 = H or else `pc1 = `pc2 = L, m1 « m2, i1 « i2, s1 « s2, and pc1 « pc2.

A second, dual observation is that all counterexamples begin by pushing ele-

ments onto the stack before exploiting some information-flow bug to leak a secret.

This is necessary since initial states in our stack machine begin with an empty

stack! By generating quasi-initial states, containing arbitrary (but indistinguish-

able with respect to «low) stacks in addition to memories, we can significantly

improve the average MTTF. However, this approach doesn’t come without a price.

When generating such quasi-initial states, there is no guarantee that such a state is

actually reachable from an initial state. In principle, that means that QuickChick

could report spurious problems that cannot actually arise in any real situation. In

general, we can address such problems by carefully formulating invariants of reach-

able states and ensuring that we generate quasi-initial states satisfying them. In

practice, though, for this extremely simple machine we did not encounter any spu-

rious counterexamples (that was not the case for an extended, more complicated

register machine that we tried afterwards!).

50



Thus, by instantiating EENI appropriately, we obtain a stronger property

EENIQInit,HaltedXLow,«low
that finds all bugs much faster, with a geometric average

MTTF of 46.48 seconds, an order of magnitude less than the baseline of 334.6.

LLNI Making the full state observable and starting from quasi-initial states sig-

nificantly improved testing performance. However, we can get even better results

by moving to a yet stronger noninterference property. The intuition is that EENI

generates machines and runs them for a long time, but it only compares the final

states, and only when both machines successfully halt; these preconditions lead

to rather large discard rates. On the other hand, comparing intermediate states

as well and reporting a bug as soon as intermediate states are distinguishable can

lead to yet shorter and easier-to-find counterexamples. While the pc is high, the

two machines may be executing different instructions, so their states will natu-

rally differ; we ignore these states and require only that low execution states are

pointwise indistinguishable. We call this new property low-lockstep noninterfer-

ence (or LLNI ). Benchmarking LLNI in the same bugs reveals a further increase

in performance, with an impressive MTTF of only 7.69 seconds!

SSNI Still, there is more room for improvement! LLNI essentially checks the

following invariant: if two low indistinguishable machines take a step and remain

low, then they stay indistinguishable. The drawback is when machines are in a

high state they are allowed to differ arbitrarily. In a noninterference proof, an

inductive invariant would have to guarantee that after after the machines go back

to a low state, they would be low indistinguishable. In our development, this

stronger invariant gives rise to the single-step noninterference property (SSNI).

Definition 3.2.2.2. A machine semantics is single-step noninterfering with re-

spect to an indistinguishability relation « (written SSNI«) if the following condi-

tions (often called unwinding conditions) are satisfied:

1. For all S1, S2 P Low, if S1 « S2, S1 ñ S 11, and S2 ñ S 12, then S 11 « S 12;

2. For all S R Low if S ñ S 1 and S 1 R Low, then S « S 1;

51



3. For all S1, S2 R Low, if S1 « S2, S1 ñ S 11, S2 ñ S 12, and S 11, S
1
2 P Low, then

S 11 « S 12.

Note that SSNI talks about completely arbitrary states, not just initial or quasi-

initial ones.

The definition above is parametric in the indistinguishability relation used.

Finding the right relation can take some work, just like in proofs! Fortunately,

QuickChick can help with this process as well. Low indistinguishability («low)

is too weak and QuickChick can easily find counterexamples to condition 3, e.g.,

by choosing two indistinguishable machine states with i = rReturns, pc = 0, and

s =
”

Rp0
1 , 0q@L

ı

; after a single step the two machines have distinguishable pcs 0

and 1, respectively. On the other hand, treating high states exactly like low states

in the indistinguishability relation is too strong. In this case QuickChick finds

counterexamples to condition 2, e.g., a single machine state with i =
”

Pop
ı

,

pc = 0, and s = r0@Ls steps to a state with s = rs, which would not be considered

indistinguishable.

These counterexamples show that indistinguishable high states can have differ-

ent pcs and can have completely different stack frames at the top of the stack. So

all we can require for two high states to be equivalent is that their memories and

instruction memories agree and that the parts of the stacks below the topmost low

return address are equivalent. This is strong enough to ensure condition 3.

Definition 3.2.2.3. Machine states S1 = pc1 s1 m1 i1 , S2 = pc2 s2 m2 i2

are indistinguishable with respect to whole machine states, written S1 «full S2, if

m1 « m2, i1 « i2, `pc1 = `pc2 , and additionally

� if `pc1 = L then s1 « s2 and pc1 « pc2, and

� if `pc1 = H then cropStack s1 « cropStack s2.

The cropStack helper function takes a stack and removes elements from the top

until it reaches the first low return address (or until all elements are removed).

Using SSNI«full
for testing, even with arbitrary starting states, performs very

well (12.87 seconds MTTF). At that point, it felt natural that since machines are

52



executed only for one step, we could get away with very small states. Indeed, after

fine-tuning the resulting distribution we got a MTTF average of less than 0.5 sec-

onds! Once again however, messing with the generation (this time to only produce

tiny states) is not without risks. For example, we originally only created instruc-

tion memories of size 1 (the single instruction to be executed). Unfortunately, that

is not enough to exhibit bugs where the secrets leaked concern instruction memory

pointers: without two different instruction memory locations all valid pointers are

equal!

MSNI When optimizing the generation for SSNI, we must be extremely cautious

to avoid ruling out useful parts of the state space. Since SSNI operates by executing

a machine state for a single step to check the invariant, generating the complete

state space of pairs of indistinguishable machines becomes very important.

Comparing LLNI and SSNI with respect to their efficiency in testing, we identify

an interesting tradeoff. On the one hand, a significant limitation of LLNI is that

bugs that appear when the pc is high are not detected immediately, but only after

the pc goes back low, if ever. One example is the Store-4 buggy rule presented

earlier, where we do not check whether the pc label flows to the label of the

memory cell. On such bugs LLNI demonstrates orders of magnitude worse bug-

finding efficiency. On the other hand, SSNI is significantly less robust with respect

to starting state generation. If we do not generate every valid starting state, then

SSNI will not test executions starting in the missing states, since it only executes

one instruction. LLNI avoids this problem as long as all valid states are potentially

reachable from the generated starting states.

These observations lead us to formulate one final property that combines the

advantages of both LLNI and SSNI: : multi-step noninterference (MSNI). The for-

mal definition of MSNI is given in the journal version of the paper [66]. Informally,

we start from an arbitrary pair of indistinguishable machine states and we check the

SSNI invariant along a whole execution trace. Using generation by execution with

fine-tuned instruction frequencies for this property leads to an efficiency that is on

par with the better of SSNI or LLNI, uncovering IFC violations as soon as they

appear; at the same time, unlike SSNI, MSNI is robust against faulty generation.

53



3.3 Experiences from Extending the Machine

A natural question that arose from this line of work is whether our testing method-

ology scales to larger, more realistic machines. To answer that question we ex-

tended the machine to include registers, as well as advanced IFC features such as

a richer lattice of first-class labels and dynamically allocated memory with mu-

table labels. Presenting all the features of that machine here is out of scope of

this thesis; the interested reader is referred to the journal version of the “Testing

Noninterference, Quickly” paper [66]. However, two specific extensions will allow

us to continue the discussion of custom generators: using a larger label lattice and

parameterizing the IFC rules in a rule table.

3.3.1 Decoupling of Generators and Predicates

In the extended machine, we moved from a two-point lattice for labels to an arbi-

trary lattice. For the purposes of this section, we can restrict our attention to a

four-element diamond lattice:

` ::= L |M1 |M2 | H

where L Ď M1, L Ď M2, M1 Ď H, and M2 Ď H. The labels M1 and M2 are

incomparable. With this richer lattice, our definition of “low” and “high” becomes

relative to an arbitrary observer label `: we call some label `1 low with respect to

` if `1 Ď ` and high otherwise.

In the new setting, a correct definition of indistinguishability of machine states

requires the program counters to be equal only if their labels are “low” compared

to the observer label; otherwise they can be different. QuickChick quickly finds

a counterexample if we use an indistinguishability relation that is too restrictive.

During our proof efforts for the register machine, we initially got the “fix” wrong:

we allowed one machine to be “high” while the other was “low”. Such faulty

definitions were not uncommon in our original designs; we used QuickChick to find

much more subtle ones throughout our efforts. What makes this particular bug

interesting however, is that our testing infrastructure (even MSNI) could not find

54



it at all!

The reason is, once again, that our generators for indistinguishable states were

incomplete with respect to the (now faulty!) indistinguishability predicate. Indeed,

our generator for indistinguishable machines never created starting configurations

where one machine was in a “high” state and the other one in a “low” state,

even though that was allowed by the indistinguishability relation. As a result, a

large part of the state space was not exercised and a counterexample could not be

produced. One of the main goals of this thesis is to tightly couple generators and

predicates, so that such occurrences cease to exist.

3.3.2 Debugging Generators

In the extended machine, to avoid cluttering the step function with the IFC logic

and injected bugs, we parameterized the step relation to take a rule table as an

argument. A single rule would receive a number of labels as inputs (the pc label

and the labels of any arguments), potentially perform checks and return labels for

the result and the new pc. For example, the IFC entry for the Store instruction of

the stack machine (whose semantics are repeated here for convenience)

ippcq = Store mppq = n1@`1n `p_`pc Ď `1n m1 = mrp := n@p`n_`p_`pcqs

pc@`pc p@`p : n@`n : s m ñ ppc+1q@`pc s m1

(Store)

would look like this:

Check F inal pc Label Result Label

`p_`pc Ď `1n `pc `n_`p_`pc

This factorization of IFC rules allowed a more systematic approach to debugging

our generators. Since we are striving for a sound and permissive set of information-

flow rules, every check performed and every tainting of result labels has to be

essential; in other words, if we were to remove a check or a label join, our testing

infrastructure should lead to a counterexample. By doing exactly that, we can

systematically construct all possible mutants of a candidate rule in the rule table,

55



using the lattice structure of the labels. For example, the Store rule above gives

rise to the following mutants, where each row depicts a single dropped taint or

check.
Check F inal pc Label Result Label

`pc Ď `1n `pc `n_`p_`pc

`p Ď `1n `pc `n_`p_`pc

True `pc `n_`p_`pc

`p_`pc Ď `1n K `n_`p_`pc

`p_`pc Ď `1n `pc `p_`pc

`p_`pc Ď `1n `pc `n_`pc

`p_`pc Ď `1n `pc `n_`p

`p_`pc Ď `1n `pc `n

`p_`pc Ď `1n `pc `p

`p_`pc Ď `1n `pc `pc

`p_`pc Ď `1n `pc K

If QuickChick cannot find a counterexample to a specific mutant, it has revealed

something interesting: either the testing is not complete or the IFC rule is too

strict! This is a particularly fortunate situation compared to standard mutation

testing [71]: it completely avoids the “equivalent mutant problem” by construction.

Unfortunately, preliminary attempts to generalize this approach to a more general

setting like arbitrary inductive properties have failed. This is discussed further in

future work (Chapter 8).

3.4 Shrinking

The counterexamples presented earlier on in this section are not the initial ran-

domly generated machine states; they are the result of shrinking these to minimal

counterexamples. For example, randomly generated counterexamples to EENI for

the Store bugs usually consist of 20–40 instructions; the minimal counterexample

we presented uses just 4.

Similarly to generation, one difficulty that arises when shrinking noninterference

56



counterexamples is that the test cases must be pairs of indistinguishable machines.

Shrinking each machine state independently will most likely yield distinguishable

pairs, which are invalid test cases, since they fail to satisfy the precondition of the

property we are testing. In order to shrink effectively, we need to shrink both states

of a variation simultaneously, and in the same way. For instance, if we shrink one

machine state by deleting a Noop in the middle of its instruction memory, then we

must delete the same instruction in the corresponding variation.

Initially, we used a shrink-and-test approach, were we shrunk variations of

machine states and then discarded the ones that were not indistinguishable. To

dramatically decrease the shrinking time, we needed to implement many heuristics,

such as removing an instruction while decrementing some integer value at the

same time to preserve relative jumps. Unfortunately, even though the generator

combinator library of QuickChick is comprehensive and many common practices

have been developed, support for sophisticated shrinking is somewhat lacking.

Indeed, a general approach to “smart” shrinking in the presence of preconditions

does not exist—yet. We also discuss this in the future work section 8.

3.5 Takeaways

In this chapter, we presented in some detail our work on testing noninterference,

demonstrating that random testing can indeed be used to find bugs efficiently.

When predicates with preconditions are involved, it is necessary to write custom

generators for well-distributed random data satisfying those predicates. Some of

the time, coming up with an efficient generator requires a lot of research effort

and ingenuity (such as the generation by execution techniques). More often, even

if writing a generator is a seemingly straightforward task (like varying a machine

state to obtain an indistinguishable one), the process can be very error prone.

Worse, the fact that generators and predicates are different artifacts that need to

be kept in sync is a very real source of bugs. It would be much better to have

a single program, preferably in the more declarative predicate form, and derive

generators automatically. This is the main focus of the next two chapters and this

dissertation in general.

57



We also identified two more open problems in our methodology that we leave

for future work. The first is figuring out how much confidence you can really

obtain from testing. Is the fact that no bugs can be found in a specification

enough to make a proof go through? Currently, the only way to know for sure is to

actually complete the proof! In the context of the register machine, we relied on

a particularly useful formulation of mutation testing that revealed most flaws in

our development. While work on mutation testing (and other ways of evaluating

generators such as using coverage metrics) is both important and interesting, it is

beyond the scope of this thesis.

The second is a more foundational treatment of shrinking. Shrinking tests

while preserving some invariant is in a sense dual to generating random inputs

satisfying some precondition. The naive method, shrink-and-test, where we filter

potential shrinks based on the precondition, is as inefficient as generate-and-test

is for producing random inputs. Coming up with more automated methods of

writing specialized shrinkers that are tightly coupled with predicated, along with

developing a theory of what it means for such shrinkers to be correct is an important

task for the near future.

Acknowledgments

The experiments presented in this chapter were originally performed in Haskell

using QuickCheck, in the context of the ICFP 2013 paper “Testing Noninterference,

Quickly”, with Catalin Hriţcu, John Hughes, Benjamin Pierce, Antal Spector-

Zabusky, Dimitrios Vytiniotis and Arthur Azevedo de Amorim [65]. My main

contribution in this line of work was extending the simple machine to the more

complicated register machine and coming up with MSNI, leading to a journal

version of the same paper [66]. Moreover, we’ve since ported all of these generators

in QuickChick, to aid our efforts to prove the correctness of the design.

58



Chapter 4

Luck : A Language for

Property-Based Generators

To enable effective property-based random testing of complex software artifacts,

we need a better way of writing predicates and corresponding generators that are

tightly coupled. A natural idea is to derive an efficient generator for a given predi-

cate p directly from p itself. Indeed, two variants of this idea, with complementary

strengths and weaknesses, have been explored by others—one based on local choices

and backtracking, one on general constraint solving.

The first approach, which is often called narrowing in the literature, can be

thought of as a kind of incremental generate-and-test: rather than generating com-

pletely random valuations and then testing them against p, we instead walk over

the structure of p and instantiate each unknown variable x at the first point where

we meet a constraint involving x. For example, consider the following standard

member predicate:

member x (h:t) = (x == h) || member x t

member x [] = False

In member, following the narrowing approach, we make a random choice on each

recursive call between the branches of the ||. If we choose the left, we instantiate

x to the head of the list; otherwise we leave x unknown and continue with the

recursive call to member on the tail. Intuitively, just like a custom generator would,

59



we traverse the list and pick one of its elements. But we also need to be careful:

naively picking each branch with probability 1/2 every time leads to a distribution

which is heavily skewed towards the first elements.

We will refer to this local instantiation approach also as narrowing, because

it resembles the narrowing mechanism in functional logic programming [1, 60, 87,

123]. It is attractively lightweight, admits natural control over distributions (as we

will see in the next section), and has been used successfully [44, 30, 110, 48], even in

challenging domains such as generating well-typed programs to test compilers [31,

43].

However, choosing a value for an unknown when we encounter the first con-

straint on it risks making choices that do not satisfy later constraints, forcing us

to backtrack and make a different choice when the problem is discovered. For

example, consider the notMember predicate:

notMember x (h:t) = (x /= h) && notMember x t

notMember x [] = True

Suppose we wish to generate values for x such that notMember x ys for some

predetermined list ys. When we first encounter the constraint x /= h, we generate

a value for x that is not equal to the known value h. We then proceed to the

recursive call of notMember, where we check that the chosen x does not appear in

the rest of the list—we’ve essentially fallen back to the generate-and-test approach!

Since the values in the rest of the list are not taken into account when choosing

x, this may force us to backtrack if our choice of x was unlucky. If the space of

possible values for x is not much bigger than the length of ys—say, just twice as

big—then we will backtrack 50% of the time. Worse yet, if notMember is used to

define another predicate—e.g., distinct, which tests whether each element of an

input list is different from all the others—and we want to generate a list satisfying

distinct, then notMember’s 50% chance of backtracking will be compounded on

each recursive call of distinct, leading to unacceptably low rates of successful

generation.

The second existing method that uses a predicate to obtain a generator lever-

ages a constraint solver to generate a diverse set of valuations satisfying that pred-

60



icate.1 This approach has been widely investigated, both for generating inputs

directly from predicates [24, 116, 53, 79] and for symbolic-execution-based test-

ing [49, 117, 20, 5, 124], which additionally uses the system under test to guide

generation of inputs that exercise different control-flow paths. For notMember,

gathering a set of disequality constraints on x before choosing its value avoids any

backtracking.

However, pure constraint-solving approaches do not give us everything we need.

They do not provide effective control over the distribution of generated valuations.

At best, they might guarantee a uniform (or near-uniform) distribution [26], but

this is typically not the distribution we want in practice (see §4.1). Moreover, the

overhead of maintaining and solving constraints can make these approaches signif-

icantly less efficient than the more lightweight, local approach of needed narrowing

when the latter does not lead to backtracking, as for instance in member.

The complementary strengths and weaknesses of local instantiation and global

constraint solving suggest a hybrid approach, where limited constraint propagation,

under explicit user control, is used to refine the domains (sets of possible values)

of unknowns before instantiation. To explore this approach we designed Luck, a

new domain-specific language for writing generators via lightweight annotations

on predicates, combining the strengths of the local-instantiation and constraint-

solving approaches to generation.

The main contributions of this chapter are organized as follows:

� We introduce this new domain-specific language, Luck, and illustrate its novel

features using binary search trees as an example (Section 4.1).

� To place Luck’s design on a firm formal foundation, we define a core calculus

and establish key properties, including the soundness and completeness of its

probabilistic generator semantics with respect to a straightforward interpre-

tation of expressions as predicates (Sections 4.2 and 4.3).

1Constraint solvers can, of course, be used to directly search for counterexamples to a property
of interest by software model checking [15, 68, 7, 70, etc.]. We are interested here in the rather
different task of quickly generating a large number of diverse inputs, so that we can thoroughly
test systems like compilers whose state spaces are too large to be exhaustively explored.

61



� We provide a prototype interpreter (Section 4.4) including a simple imple-

mentation of the constraint-solving primitives used by the generator seman-

tics. We do not use an off-the shelf constraint solver because we want to

experiment with a per-variable uniform sampling approach (as we will see

in the next section) which is not supported by modern solvers. In addition,

using such a solver would require translating Luck expressions—datatypes,

pattern matching, etc.—into a form that it can handle. We leave this for

future work.

� We evaluate Luck’s expressiveness on a collection of common examples from

the random testing literature (Section 4.5) and on two significant case stud-

ies; the latter demonstrate that Luck can be used (1) to find bugs in a widely

used compiler (GHC) by randomly generating well-typed lambda terms and

(2) to help design information-flow abstract machines by generating “low-

indistinguishable” machine states, replicating the results of the case study of

Chapter 3. Compared to hand-written generators, these experiments show

comparable bug-finding effectiveness (measured in test cases generated per

counterexample found) and a significant reduction in the size of testing code.

The interpreted Luck generators run an order of magnitude slower than com-

piled QuickCheck versions (8 to 24 times per test), but many opportunities

for optimization remain.

Auxiliary material for this chapter are available online: (1) a Coq formaliza-

tion of the narrowing semantics of Luck and machine-checked proofs of its prop-

erties (available at https://github.com/QuickChick/Luck) (Section 4.2.3); (2)

the prototype Luck interpreter and a battery of example programs, including all

the ones we used for evaluation (also at https://github.com/QuickChick/Luck)

(Section 4.5).

4.1 Luck by example

Figure 4.1 shows a recursive Haskell predicate bst that checks whether a given tree

with labels strictly between low and high satisfies the standard binary-search tree

62

https://github.com/QuickChick/Luck
https://github.com/QuickChick/Luck


(BST) invariant [97]. It is followed by a QuickCheck generator genTree, which

generates BSTs with a given maximum depth, controlled by the size parameter.

This generator first checks whether low + 1 >= high, in which case it returns

the only valid BST satisfying this constraint—the Empty one. Otherwise, it uses

QuickCheck’s frequency combinator, which takes a list of pairs of positive integer

weights and associated generators and randomly selects one of the generators using

the probabilities specified by the weights. In this example, 1
size+1

of the time it

creates an Empty tree, while size
size+1

of the time it returns a Node. The Node generator

is specified using monadic syntax: first it generates an integer x that is strictly

between low and high, and then the left and right subtrees l and r by calling

genTree recursively; finally it returns Node x l r.

The generator for BSTs allows us to efficiently test conditional properties of

the form “if bst t then xsome other property of ty,” but it raises some new issues

of its own. First, even for this simple example, getting the generator right is a

bit tricky (for instance because of potential off-by-one errors in generating x), and

it is not immediately obvious that the set of trees generated by the generator is

exactly the set accepted by the predicate. Worse, we now need to maintain two

similar but distinct artifacts and keep them in sync. (We can’t just throw away the

predicate and keep the generator because we often need them both, for example

to test properties like “the insert function applied to a BST and a value returns

a BST.”) As predicates and generators become more complex, these issues can

become quite problematic (e.g., [65]).

Enter Luck. The bottom of Figure 4.1 shows a Luck program that represents

both a BST predicate and a generator for random BSTs. Modulo variations in

concrete syntax, the Luck code follows the Haskell bst predicate quite closely. The

significant differences are: (1) the sample-after expression !x, which controls when

node labels are generated, and (2) the size parameter, which is used, as in the

QuickCheck generator, to annotate the branches of the case with relative weights.

Together, these enable us to give the program both a natural interpretation as a

predicate (by simply ignoring weights and sampling expressions) and an efficient

interpretation as a generator of random trees with the same distribution as the

QuickCheck version. For example, evaluating the top-level query bst 10 0 42

63



Binary tree datatype (in both Haskell and Luck):

data Tree a = Empty | Node a (Tree a) (Tree a)

Test predicate for BSTs (in Haskell):

bst :: Int -> Int -> Tree Int -> Bool

bst low high tree =

case tree of

Empty -> True

Node x l r ->

low < x && x < high

&& bst low x l && bst x high r

QuickCheck generator for BSTs (in Haskell):

genTree :: Int -> Int -> Int -> Gen (Tree Int)

genTree size low high

| low + 1 >= high = return Empty

| otherwise =

frequency [(1, return Empty),

(size, do

x <- choose (low + 1, high - 1)

l <- genTree (size ‘div‘ 2) low x

r <- genTree (size ‘div‘ 2) x high

return (Node x l r))]

Luck generator (and predicate) for BSTs:

sig bst :: Int -> Int -> Int -> Tree Int -> Bool

fun bst size low high tree =

if size == 0 then tree == Empty

else case tree of

| 1 % Empty -> True

| size % Node x l r ->

((low < x && x < high) !x)

&& bst (size / 2) low x l

&& bst (size / 2) x high r

Figure 4.1: Binary Search Tree Checker and Two Generators

64



u = True—i.e., “generate values t for the unknown u such that bst 10 0 42 t

evaluates to True”—will yield random binary search trees of size up to 10 with node

labels strictly between 0 and 42, with the same distribution as the QuickCheck

generator genTree 10 0 42.

An unknown in Luck is a special kind of value, similar to logic variables found

in logic programming languages and unification variables used by type-inference

algorithms. Unknowns are typed, and each is associated with a domain of possible

values from its type. Given an expression e mentioning some set U of unknowns,

our goal is to generate valuations over these unknowns (maps from U to concrete

values) by iteratively refining the unknowns’ domains, so that, when any of these

valuations is substituted into e, the resulting concrete term evaluates to a desired

value (e.g., True).

Unknowns can be introduced both explicitly, as in the top-level query above,

and implicitly, as in the generator semantics of case expressions. In the bst exam-

ple, when the Node branch is chosen, the pattern variables x, l, and r are replaced

by fresh unknowns, which are then instantiated by evaluating the constraint low

< x && x < high and the recursive calls to bst.

Varying the placement of unknowns in the top-level bst query yields differ-

ent behaviors. For instance, if we change the query to bst 10 ul uh u = True,

replacing the low and high parameters with unknowns ul and uh, the domains

of these unknowns will be refined during tree generation and the result will be a

generator for random valuations pul ÞÑ i, uh ÞÑ j, u ÞÑ tq where i and j are lower

and upper bounds on the node labels in t.

Alternatively, we can evaluate the top-level query bst 10 0 42 t = True, re-

placing u with a concrete tree t. In this case, Luck will return a trivial valuation

only if t is a binary search tree; otherwise it will report that the query is unsatis-

fiable. A less useful possibility is that we provide explicit values for low and high

but choose them with low ą high, e.g., bst 10 6 4 u = True. Since there are no

satisfying valuations for u other than Empty, Luck will now generate only Empty

trees.

A sample-after expression of the form e !x is used to control instantiation of

unknowns. Typically, x will be an unknown u, and evaluating e !u will cause u

65



to be instantiated to a concrete value (after evaluating e to refine the domains of

all of the unknowns in e). If x reduces to a value rather than an unknown, we

similarly instantiate any unknowns appearing within this value.

As a concrete example, consider the compound inequality constraint 0 < x &&

x < 4. A generator based on pure narrowing (as in [48]), would instantiate x when

the evaluator meets the first constraint where it appears, namely 0 < x (assuming

left-to-right evaluation order). We can mimic this behavior in Luck by writing

((0 < x) !x) && (x < 4). However, picking a value for x at this point ignores

the constraint x < 4, which can lead to backtracking. If, for instance, the domain

from which we are choosing values for x is 32-bit integers, then the probability

that a random choice satisfying 0 < x will also satisfy x < 4 is minuscule. It is

better in this case to write (0 < x && x < 4) !x, instantiating x after the entire

conjunction has been evaluated and all the constraints on the domain of x recorded

and thus avoiding backtracking completely. Finally, if we do not include a sample-

after expression for x here at all, we can further refine its domain with constraints

later on, at the cost of dealing with a more abstract representation of it internally

in the meantime. Thus, sample-after expressions give Luck users explicit control

over the tradeoff between the expense of possible backtracking—when unknowns

are instantiated early—and the expense of maintaining constraints on unknowns—

so that they can be instantiated late (e.g., so that x can be instantiated after the

recursive calls to bst).

Sample-after expressions choose random values with uniform probability from

the domain associated with each unknown. While this behavior is sometimes use-

ful, effective property-based random testing often requires fine control over the

distribution of generated test cases. Drawing inspiration from the QuickCheck

combinator library for building complex generators, and particularly frequency,

Luck also allows weight annotations on the branches of a case expression which

have a frequency-like effect. In the Luck version of bst, for example, the un-

known tree is either instantiated to an Empty tree 1
1+size

of the time or partially

instantiated to a Node (with fresh unknowns for x and the left and right subtrees)
size

1+size
of the time.

Weight annotations give the user control over the probabilities of local choices.

66



These do not necessarily correspond to a specific posterior probability, but the ran-

dom testing community has established techniques for guiding the user in tuning

local weights to obtain good testing. For example, we the user can wrap properties

inside a collect x combinator that we also encountered in the QuickChick tutorial

(Chapter 2); during testing, QuickCheck will gather information on x, grouping

equal values to provide an estimate of the posterior distribution that is being sam-

pled. The collect combinator is an effective tool for adjusting frequency weights

and dramatically increasing bug-finding rates (e.g., [65]). The Luck implementa-

tion provides a similar primitive.

One further remark on uniform sampling: while locally instantiating unknowns

uniformly from their domain is a useful default, generating globally uniform distri-

butions of test cases is usually not what we want, as this often leads to inefficient

testing in practice. A simple example can be drawn from the information-flow-

control experiments of the previous Chapter. Consider the indistinguishability

predicate in Haskell (“high” elements are always indistinguishable, “low” ones re-

quire equal payloads):

indist (v1,H) (v2,H) = True

indist (v1,L) (v2,L) = v1 == v2

indist _ _ = False

If we use 32-bit integers, then for every Low indistinguishable pair there are 232 High

ones! Thus, choosing a uniform distribution over indistinguishable pairs means that

we will essentially never generate pairs with Low labels. Clearly, such a distribution

cannot provide effective testing; indeed, in our experiments we discovered that the

best distribution was actually somewhat skewed in favor of Low labels.

4.2 Semantics of Core Luck

We next present a core calculus for Luck—a minimal subset into which the ex-

amples in the previous section can in principle be desugared (though our imple-

mentation does not do this). The core omits primitive booleans and integers and

replaces datatypes with binary sums, products, and iso-recursive types.

67



We begin in Figure 4.2.1 with the syntax and standard predicate semantics of

the core. We call it the “predicate” semantics because, in our examples, the result

of evaluating a top-level expression will typically be a boolean, though this expec-

tation is not baked into the formalism. We then build up to the full generator

semantics in three steps. First, we give an interface to a constraint solver (Sec-

tion 4.2.2), abstracting over the primitives required to implement our semantics.

Then we define a probabilistic narrowing semantics, which enhances the local-

instantiation approach to random generation with QuickCheck-style distribution

control (Section 4.2.3). Finally, we introduce a matching semantics, building on

the narrowing semantics, that unifies constraint solving and narrowing into a single

evaluator (Section 4.2.4). We also show how integers and booleans can be encoded

and how the semantics applies to the binary search tree example (Section 4.2.5)

The key properties of the generator semantics (both narrowing and matching ver-

sions) are soundness and completeness with respect to the predicate semantics; we

present them in the following section (Section 4.3). Informally, whenever we use a

Luck program to generate a valuation that satisfies some predicate, the valuation

will satisfy the boolean predicate semantics (soundness), and it will generate every

possible satisfying valuation with non-zero probability (completeness).

4.2.1 Syntax, Typing, and Predicate Semantics

The syntax of Core Luck is given in Figure 4.2. Except for the last line in the

definitions of values and expressions, it is a standard simply typed call-by-value

lambda calculus with sums, products, and iso-recursive types. We include recursive

lambdas for convenience in examples, although in principle they could be encoded

using recursive types.

Values include unit, pairs of values, sum constructors (L and R) applied to

values (and annotated with types, to eliminate ambiguity), first class (potentially)

recursive functions (rec), fold -annotated values indicating where an iso-recursive

type should be “folded,” and unknowns drawn from an infinite set. The standard

expression forms include variables, unit, functions, function applications, pairs with

a single-branch pattern-matching construct for deconstructing them, value tagging

68



v ::= pq | pv, vq | LT v | RT v

| rec pf : T1 Ñ T2q x = e | foldT v

| u

e ::= x | pq | rec pf : T1 Ñ T2q x = e | pe eq

| pe, eq | case e of px, yq � e

| LT e | RT e | case e of pL x � eq pR x � eq

| foldT e | unfoldT e

| u | eÐ pe, eq | !e | e ;e

T ::= X | 1 | T + T | T ˆ T | µX. T

T ::= X | 1 | T + T | T ˆ T | µX. T | T Ñ T

Γ ::= H | Γ, x : T

Figure 4.2: Core Luck Syntax

(L and R), pattern matching on tagged values, and fold/unfold . The nonstandard

additions are unknowns (u), instantiation (e Ð pe1, e2q), sample (!e) and after

(e1 ;e2) expressions.

The “after” operator, written with a backwards semicolon, evaluates both e1

and e2 in sequence. However, unlike the standard sequencing operator e1; e2, the

result of e1 ;e2 is the result of e1; the expression e2 is evaluated just for its side-

effects. For example, the sample-after expression e !x of the previous section

is desugared to a combination of sample and after: e ; !x. If we evaluate this

snippet in a context where x is bound to some unknown u, then the expression e

is evaluated first, refining the domain of u (amongst other unknowns); then the

sample expression !u is evaluated for its side effect, instantiating u to a uniformly

generated value from its domain; and finally the result of e is returned as the result

of the whole expression. A reasonable way to implement e1 ; e2 using standard

lambda abstractions would be as pλ x. pλ . xq e2q e1. However, there is a slight

difference in the semantics of this encoding compared to our intended semantics—

we will return to this point in Section 4.2.4.

Weight annotations like the ones in the bst example can be desugared using

69



instantiation expressions. For example, assuming a standard encoding of binary

search trees (Tree = µX. 1 + int ˆX ˆX) and naturals, plus syntactic sugar for

constant naturals:

case punfoldTree tree Ð p1, sizeqq of pL x � . . . qpR y � . . . q

Most of the typing rules are standard (these can be found in Fig. 4.3). The

four non-standard rules are given in Fig. 4.4. Unknowns are typed: each will be

associated with a domain (set of values) drawn from a type T that does not contain

arrows. Luck does not support constraint solving over functional domains (which

would require something like higher-order unification), and the restriction of un-

knowns to non-functional types reflects this. To remember the types of unknowns,

we extend the typing context to include a component U , a map from unknowns

to non-functional types. When the variable typing environment Γ = H, we write

U $ e : T as a shorthand for H;U $ e : T . The rules for the standard constructs

in Fig. 4.3 are as expected (adding U everywhere). An unknown u has type T if

Upuq = T . If e1 and e2 are well typed, then e1 ; e2 shares the type of e1. An

instantiation expression eÐ pel, erq is well typed if e has sum type T 1 + T 2 and el

and er are natural numbers. A sample expression !e has the (non-functional) type

T when e has type T .

The predicate semantics for Core Luck, written e ó v, are defined as a big-step

operational semantics. We assume that e is closed with respect to ordinary vari-

ables and free of unknowns. The rules for the standard constructs are unsurprising

(Figure 4.5). The only non-standard rules are the ones for narrow, sample and

after expressions, which are essentially ignored (Figure 4.6). With the predicate

semantics we can implement a naive generate-and-test method for generating valu-

ations satisfying some predicate by generating arbitrary well-typed valuations and

filtering out those for which the predicate does not evaluate to True.

4.2.2 Constraint Sets

The rest of this section develops an alternative probabilistic generator semantics

for Core Luck. This semantics will use constraint sets (whose type we denote as

70



T-Var
x : T P Γ
Γ $ x : T

T-Unit
Γ $ pq : 1

T-Abs
Γ, x : T1, f : T1 Ñ T2 $ e2 : T2

Γ $ rec pf : T1 Ñ T2q x = e2 : T1 Ñ T2

T-App
Γ $ e0 : T1 Ñ T2 Γ $ e1 : T1

Γ $ pe0 e1q : T2

T-Pair
Γ $ e1 : T1 Γ $ e2 : T2
Γ $ pe1, e2q : pT1 ˆ T2q

T-CasePair

Γ $ e : pT1 ˆ T2q
Γ, x : T1, y : T2 $ e1 : T

Γ $ case e of px, yq Ñ e1 : T

T-L
Γ $ e : T1

Γ $ LT1+T2 e : T1 + T2

T-R
Γ $ e : T2

Γ $ RT1+T2 e : T1 + T2

T-Case

Γ $ e : T1 + T2
Γ, x : T1 $ e1 : T Γ, y : T2 $ e2 : T

Γ $ case e of pinl xÑ e1q pinr y Ñ e2q : T

T-Fold
U = µX. T1 Γ $ e1 : T1rU{Xs

Γ $ foldU e1 : U

T-Unfold
U = µX. T1 Γ $ e1 : U

Γ $ unfoldU e1 : T1rU{Xs

Figure 4.3: Standard Typing Rules

71



T-U
Upuq = T

Γ;U $ u : T
T-After

Γ;U $ e1 : T1 Γ;U $ e2 : T2
Γ;U $ e1 ;e2 : T1

T-Bang
Γ;U $ e : T

Γ;U $!e : T
T-Narrow

Γ;U $ e : T 1 + T 2

Γ;U $ el : nat Γ $ er : nat

Γ;U $ eÐ pel, erq : T 1 + T 2

nat := µX. 1 +X

Figure 4.4: Typing Rules for Nonstandard Constructs

C) to describe the possible values that unknowns can take. For the moment, we

leave the implementation of constraint sets open (the one used by our prototype

interpreter is described in Section 4.4), simply requiring that they support the

following operations:

J¨K :: CÑ Set Valuation

U :: CÑ Map U T

fresh :: CÑ T
∗
Ñ pCˆ U∗q

unify :: CÑ Val Ñ Val Ñ C

SAT :: CÑ Bool

r¨s :: CÑ U Ñ Maybe Val

sample :: CÑ U Ñ C∗

Here we describe these operations informally, deferring technicalities until after we

have presented the generator semantics (Section 4.3).

A constraint set κ denotes a set of valuations (mappings from variables to

values, denoted JκK), representing the solutions to the constraints. Constraint sets

also carry type information about existing unknowns: Upκq is a mapping from κ’s

unknowns to types. A constraint set κ is well typed ($ κ) if, for every valuation

σ in the denotation of κ and every unknown u bound in σ, the type map Upκq

72



P-Val
is value v
v ó v

P-App

e0 ó prec pf : T1 Ñ T2q x = e2q
e1 ó v1

erprec pf : T1 Ñ T2q x = e2q{f, v1{xs ó v

pe0 e1q ó v

P-Pair
e1 ó v1 e2 ó v2
pe1, e2q ó pv1, v2q

P-CasePair

e ó pv1, v2q
e1rv1{x, v2{ys ó v

case e of px, yq Ñ e1 ó v

P-L
e ó v

LT e ó LT v

P-R
e ó v

RT e ó RT v

P-Case-L
e ó LT v e1rv{xs ó v1

case e of pL x � e1qpR y � e2q ó v1

P-Case-R
e ó RT v e2rv{ys ó v2

case e of pL x � e1qpR y � e2q ó v2

P-Fold
e ó v

foldS e ó foldS v

P-Unfold
e ó foldT v

unfoldT e ó v

Figure 4.5: Predicate Semantics for Standard Core Luck Constructs

73



P-Narrow

e ó v e1 ó v1 e2 ó v2
Jv1K ą 0 Jv2K ą 0

eÐ pe1, e2q ó v
P-Bang

e ó v

!e ó v

P-After
e1 ó v1 e2 ó v2

e1 ;e2 ó v1

Jfoldnat pL1+nat pqqK = 0
Jfoldnat pR1+nat vqK = 1 + JvK

Figure 4.6: Predicate Semantics for Nonstandard Constructs

contains u and the binding of u in σ has the type prescribed by Upκq:

@pσ P JκKqpu P σq. u P Upκq ^H;Upκq $ σpuq : Upκqpuq

Many of the semantic rules will need to introduce fresh unknowns. The fresh

function takes as inputs a constraint set κ and a sequence of (non-functional) types

of length k; it draws the next k unknowns (in some deterministic order) from the

infinite set U and extends Upκq with the respective bindings.

The main way constraints are introduced during evaluation is unification. Given

a constraint set κ and two values, each potentially containing unknowns, unify

updates κ to preserve only those valuations in which the values match.

SAT is a total predicate that holds on constraint sets whose denotation contains

at least one valuation. The totality requirement implies that our constraints must

be decidable.

The value-extraction function κrus returns an optional (non-unknown) value:

if in the denotation of κ, all valuations map u to the same value v, then that value

is returned (written tvu); otherwise nothing (written H).

The sample operation is used to implement sample expressions (!e): given a

constraint set κ and an unknown u P Upκq, it returns a list of constraint sets

representing all possible concrete choices for u, in all of which u is completely

determined—that is @κ P psample κ uq. Dv. κrus = tvu. To allow for reasonable

74



implementations of this interface, we maintain an invariant that the input unknown

to sample will always have a finite denotation; thus, the resulting list is also finite.

4.2.3 Narrowing Semantics

As a first step toward a semantics for Core Luck that incorporates both constraint

solving and local instantiation, we define a simpler narrowing semantics. This

semantics is of some interest in its own right, in that it extends traditional “needed

narrowing” with explicit probabilistic instantiation points, but its role here is as a

subroutine of the matching semantics in Section 4.2.4.

The narrowing evaluation judgment takes as inputs an expression e and a con-

straint set κ. As in the predicate semantics, evaluating e returns a value v, but

now it also depends on a constraint set κ and returns a new constraint set κ1. The

latter is intuitively a refinement of κ—i.e., evaluation will only remove valuations.

e ) κ ótq κ
1
( v

The semantics is annotated with a representation of the sequence of random choices

made during evaluation, in the form of a trace t. A trace is a sequence of choices:

integer pairs pm,nq with 0 ď m < n, where n denotes the number of possibilities

chosen among and m is the index of the one actually taken. We write ε for the

empty trace and t ¨ t1 for the concatenation of two traces. We also annotate the

judgment with the probability q of making the choices represented in the trace.

Recording traces is useful after the fact in calculating the total probability of some

given outcome of evaluation (which may be reached by many different derivations).

Traces play no role in determining how evaluation proceeds. We model probabil-

ity distributions using rational numbers q P p0, 1s X Q, for simplicity in the Coq

formalization.

We maintain the invariant that the input constraint set κ is well typed and that

the input expression e is well typed with respect to an empty variable context and

the unknown context Upκq. Another invariant is that every constraint set κ that

appears as input to a judgment is satisfiable and the restriction of its denotation

to the unknowns in e is finite. These invariants are established at the top-level (see

75



Section 4.4.1). The finiteness invariant ensures the output of sample will always be

a finite collection (and therefore the probabilities involved will be positive rational

numbers. Moreover, they guarantee termination of constraint solving, as we will

see in Section 4.2.4. Finally, we assume that the type of every expression has been

determined by an initial type-checking phase. We write eT to show that e has

type T . This information is used in the semantic rules to provide types for fresh

unknowns.

The narrowing semantics is given in Figures 4.7 and 4.8 for the standard con-

structs and in Figure 4.9 for instantiation expressions; Figures 4.10 and 4.11 give

some auxiliary definitions. Most of the rules are intuitive. A common pattern is

sequencing two narrowing judgments e1 ) κ ót1q1 κ1 ( v and e2 ) κ1 ó
t2
q2
κ2 ( v.

The constraint-set result of the first narrowing judgment (κ1) is given as input to

the second, while traces and probabilities are accumulated by concatenation (t1 ¨t2)

and multiplication (q1 ∗ q2). We now explain the rules in detail.

Rule N-Base is the base case of the evaluation relation, handling values that

are not handled by other rules by returning them as-is. No choices are made, so

the probability of the result is 1 and the trace is empty.

Rule N-Pair: To evaluate pe1, e2q given a constraint set κ, we sequence the

derivations for e1 and e2.

Rules N-CasePair-P, N-CasePair-U: To evaluate the pair elimination ex-

pression case e of px, yq Ñ e1 in a constraint set κ, we first evaluate e in κ.

Typing ensures that the resulting value is either a pair or an unknown. If it is a

pair (N-CasePair-P), we substitute its components for x and y in e1 and continue

evaluating. If it is an unknown u of type T 1ˆT 2 (N-CasePair-U), we first use T 1

and T 2 as types for fresh unknowns u1, u2 and remember the constraint that the

pair pu1, u2q must unify with u. We then proceed as above, this time substituting

u1 and u2 for x and y.

(The first pair rule might appear unnecessary since, even in the case where the

scrutinee evaluates to a pair, we could generate unknowns, unify, and substitute,

as in N-CasePair-U. However, unknowns in Luck only range over non-functional

types T , so this trick does not work when the type of the e contains arrows.)

The N-CasePair-U rule also shows how the finiteness invariant is preserved:

76



N-Base
v = pq _ v = prec pf : T1 Ñ T2q x = e1q _ v P U

v ) κ óε1 κ ( v

N-Pair
e1 ) κ ót1q1 κ1 ( v1 e2 ) κ1 ó

t2
q2
κ2 ( v2

pe1, e2q ) κ ót1¨t2q1∗q2 κ2 ( pv1, v2q

N-CasePair-P

e ) κ ótq κa ( pv1, v2q

e1rv1{x, v2{ys ) κa ó
t1

q1 κ1 ( v

case e of px, yq � e1 ) κ ót¨t
1

q∗q1 κ1 ( v

N-CasePair-U

e ) κ ótq κa ( u

pκb, ru1, u2sq = fresh κa rT 1, T 2s

κc = unify κb pu1, u2q u
e1ru1{x, u2{ys ) κc ó

t1

q1 κ1 ( v

case eT 1ˆT 2 of px, yq � e1 ) κ ót¨t
1

q∗q1 κ1 ( v

N-L
e ) κ ótq κ

1 ( v

LT1+T2 e ) κ ótq κ
1 ( LT1+T2 v

N-R
e ) κ ótq κ

1 ( v

RT1+T2 e ) κ ótq κ
1 ( RT1+T2 v

N-Case-L

e ) κ ótq κa ( LT vl
elrvl{xls ) κa ó

t1

q1 κ1 ( v

case e of pL xl � elqpR xr � erq ) κ ót¨t
1

q∗q1 κ1 ( v

N-Case-R

e ) κ ótq κa ( RT vr
errvr{xrs ) κa ó

t1

q1 κ1 ( v

case e of pL xl � elqpR xr � erq ) κ ót¨t
1

q∗q1 κ1 ( v

N-Case-U

e ) κ ót1q1 κa ( u

pκ0, rul, ursq = fresh κa rT l, T rs
κl = unify κ0 u pLT l+T r

ulq κr = unify κ0 u pRT l+T r
urq

choose 1 κl 1 κr Ñ
t2
q2

i
eirui{xis ) κi ó

t3
q3
κ1 ( v

case eT l+T r of pL xl � elqpR xr � erq ) κ ót1¨t2¨t3q1∗q2∗q3 κ
1 ( v

Figure 4.7: Narrowing Semantics of Standard Core Luck Constructs (part 1)

77



N-App

e0 ) κ ót0q0 κa ( prec pf : T1 Ñ T2q x = e2q
e1 ) κa ó

t1
q1
κb ( v1

e2rprec pf : T1 Ñ T2q x = e2q{f, v1{xs ) κb ó
t2
q2
κ1 ( v

pe0 e1q ) κ ót0¨t1¨t2q0∗q1∗q2 κ
1 ( v

N-Fold
e ) κ ótq κ

1 ( v

foldT e ) κ ótq κ
1 ( foldT v

N-Unfold-F
e ) κ ótq κ

1 ( foldT v

unfoldT e ) κ ótq κ
1 ( v

N-Unfold-U

e ) κ ótq κa ( u
pκb, u

1q = fresh κa T rµX.T {Xs
κ1 = unify κb u pfoldµX.T u

1q

unfoldµX.T e ) κ ótq κ
1 ( u1

Figure 4.8: Narrowing Semantics of Standard Core Luck Constructs (part 2)

N-After
e1 ) κ ót1q1 κ1 ( v1 e2 ) κ1 ó

t2
q2
κ2 ( v2

e1 ;e2 ) κ ót1¨t2q1∗q2 κ2 ( v1

N-Bang
e ) κ ótq κa ( v sampleV κa v ñ

t1

q1 κ1

!e ) κ ót¨t
1

q∗q1 κ1 ( v

N-Narrow

e ) κ ótq κa ( v
e1 ) κa ó

t1
q1
κb ( v1 e2 ) κb ó

t2
q2
κc ( v2

sampleV κc v1 ñ
t11
q1
1
κd sampleV κd v2 ñ

t12
q1
2
κe

natκepv1q = n1 n1 ą 0 natκepv2q = n2 n2 ą 0
pκ0, ru1, u2sq = fresh κe rT 1, T 2s

κl = unify κ0 v pLT 1+T 2
u1q κr = unify κ0 v pRT 1+T 2

u2q

choose n1 κl n2 κr Ñ
t 1

q 1 i

eT 1+T 2 Ð penat1 , enat2 q ) κ ó
t¨t1¨t2¨t11¨t

1
2¨t

1

q∗q1∗q2∗q1
1∗q1

2∗q1 κi ( v

Figure 4.9: Narrowing Semantics for Non-Standard Expressions

78



SAT pκ1q SAT pκ2q

choose n κ1 m κ2 Ñ
rp0 ,2 qs
n{pn+mq l

 SAT pκ1q SAT pκ2q

choose n κ1 m κ2 Ñ
ε
1 r

SAT pκ1q SAT pκ2q

choose n κ1 m κ2 Ñ
rp1 ,2 qs
m{pn+mq r

SAT pκ1q  SAT pκ2q

choose n κ1 m κ2 Ñ
ε
1 l

Figure 4.10: Auxiliary Relation choose

sample κ u = S Srms = κ1

sampleV κ uñ
rpm,|S|qs
1{|S| κ1

sampleV κ pq ñε
1 κ

sampleV κ v ñt
q κ

1

sampleV κ pfoldT vq ñ
t
q κ

1

sampleV κ v ñt
q κ

1

sampleV κ pLT vq ñ
t
q κ

1

sampleV κ v ñt
q κ

1

sampleV κ pRT vq ñ
t
q κ

1

sampleV κ v1 ñ
t1
q1
κ1 sampleV κ1 v2 ñ

t2
q2
κ1

sampleV κ pv1, v2q ñ
t1¨t2
q1∗q2 κ

1

Figure 4.11: Auxiliary Relation sampleV

79



when we generate the unknowns u1 and u2, their domains are unconstrained, but

before we substitute them into an expression used as “input” to a subderivation,

we unify them with the result of a narrowing derivation, which already has a finite

representation in κa.

Rules N-L, N-R: To evaluate LT1+T2 e, we evaluate e and tag the resulting value

with LT1+T2 , with the resulting constraint set, trace, and probability unchanged.

RT1+T2 e is handled similarly.

Rules N-Case-L, N-Case-R, N-Case-U: As in the pair elimination rule, we

first evaluate the discriminee e to a value, which must have one of the shapes LT vl,

RT vr, or u P U , thanks to typing. The cases for LT vl (rule N-Case-L) and RT vr

(rule N-Case-R) are similar to N-CasePair-P: vl or vr can be directly substituted

for xl or xr in el or er. The unknown case (N-Case-U) is similar to N-CasePair-

U but a bit more complex. Once again e shares with the unknown u a type T l+T r

that does not contain any arrows, so we can generate fresh unknowns ul, ur with

types T l, T r. We unify LT l+T r
vl with u to get the constraint set κl and RT l+T r

vr

with u to get κr. We then use the auxiliary relation choose (Figure 4.10), which

takes two integers n and m (here equal to 1) as well as two constraint sets (here κl

and κr), to select either l or r. If exactly one of κl and κr is satisfiable, then choose

will return the corresponding index with probability 1 and an empty trace (because

no random choice were made). If both are satisfiable, then the resulting index is

randomly chosen. Both outcomes are equiprobable (because of the 1 arguments to

choose), so the probability is one half in each case. This uniform binary choice is

recorded in the trace t2 as either p0, 2q or p1, 2q. Finally, we evaluate the expression

corresponding to the chosen index, with the corresponding unknown substituted

for the variable. The satisfiability checks enforce the invariant that constraint sets

are satisfiable, which in turn ensures that κl and κr cannot both be unsatisfiable

at the same time, since there must exist at least one valuation in κ0 that maps u

to a value (either L or R) which ensures that the corresponding unification will

succeed.

Rule N-App: To evaluate an application pe0 e1q, we first evaluate e0 to rec pf :

T1 Ñ T2q x = e2 (since unknowns only range over arrow-free types T , the result

cannot be an unknown) and its argument e1 to a value v1. We then evaluate

80



the appropriately substituted body, e2rprec pf : T1 Ñ T2q x = e2q{f, v1{xs, and

combine the various probabilities and traces appropriately.

Rule N-After: Rule N-After is similar to N-Pair; however, the value result

of the derivation is that of the first narrowing evaluation, implementing the reverse

form of sequencing described in the introduction of this section.

Rule N-Fold, N-Unfold-F, N-Unfold-U: Rule N-Fold is similar to N-L. N-

Unfold-F and N-Unfold-U are similar to (though simpler than) N-CasePair-P

and N-CasePair-U.

Rule N-Bang: To evaluate !e we evaluate e to a value v, then use the auxil-

iary relation sampleV (Figure 4.11) to completely instantiate v, walking down the

structure of v. When unknowns are encountered, sample is used to produce a list

of constraint sets S; with probability 1
|S| (where |S| is the size of the list) we can

select the mth constraint set in S, for each 0 ď m < |S|.
Rule N-Narrow is similar to N-Case-U. The main difference is the “weight”

arguments e1 and e2. These are evaluated to values v1 and v2, and sampleV is

called to ensure that they are fully instantiated in all subsequent constraint sets, in

particular in κe. The relation natκepv1q = n1 walks down the structure of the value

v1 (like sampleV ) and calculates the unique natural number n1 corresponding to

v1. Specifically, when the input value is an unknown, natκpuq = n holds if κrus = v1

and JvK = n, where the notation JvK is defined in Figure Fig. 4.6. The rest of the

rule is the same as N-Case-U, except that the computed weights n1 and n2 are

given as arguments to choose in order to shape the distribution accordingly.

Using the narrowing semantics, we can implement a more efficient method for

generating valuations than the naive generate-and-test described in Section §4.2.1:

instead of generating arbitrary valuations we only lazily instantiate a subset of

unknowns as we encounter them. This method has the additional advantage that, if

a generated valuation yields an unwanted result, the implementation can backtrack

to the point of the latest choice, which can drastically improve performance [31].

Unfortunately, using the narrowing semantics in this way can lead to a lot of

backtracking. To see why, consider three unknowns, u1, u2, and u3, and a constraint

set κ where each unknown has type Bool (i.e., 1 + 1) and the domain associated

with each contains both True and False (L1+1 pq and R1+1 pq). Suppose we

81



want to generate valuations for these three unknowns such that the conjunction

u1 && u2 && u3 holds, where e1 && e2 is shorthand for case e1 of pL x �
e2qpR y � Falseq. If we attempt to evaluate the expression u1 && u2 && u3 using

the narrowing semantics, we first apply the N-Case-U rule with e = u1. That

means that u1 will be unified with either L or R (applied to a fresh unknown) with

equal probability, leading to a False result for the entire expression 50% of the

time. If we choose to unify u1 with an L, then we apply the N-Case-U rule again,

returning either False or u3 (since unknowns are values—rule N-Base) with equal

probability. Therefore, we will have generated a desired valuation only 25% of the

time; we will need to backtrack 75% of the time.

The problem here is that the narrowing semantics is agnostic to the desired

result of the whole computation—we only find out at the very end that we need

to backtrack. But we can do better...

4.2.4 Matching Semantics

In this section we present a matching semantics that takes as an additional input

a pattern (a value not containing lambdas but possibly containing unknowns)

p ::= pq | pp, pq | LT p | RT p | foldT p | u

and propagates this pattern backwards to guide the generation process. By allow-

ing our semantics to look ahead in this way, we can often avoid case branches that

lead to non-matching results.

The matching judgment is again a variant of big-step evaluation; it has the

form

p ð e ) κ òtq κ
?

where the pattern p can mention the unknowns in Upκq and where the metavariable

κ? stands for an optional constraint set (H or tκu) returned by matching. Returning

an option allows us to calculate the probability of backtracking by summing the

q’s of all failing derivations. The combined probability of failures and successes

may be less than 1, because some reduction paths may diverge.

82



We keep the invariants from Figure 4.2.3: the input constraint set κ is well

typed and so is the input expression e (with respect to an empty variable context

and Upκq); moreover κ is satisfiable, and the restriction of its denotation to the

unknowns in e is finite. To these invariants we add that the input pattern p is well

typed in Upκq and that the common type of e and p does not contain any arrows (e

can still contain functions and applications internally; these are handled by calling

the narrowing semantics).

The following properties are essential to maintaining these invariants. When-

ever the output option has the form tκ1u, then κ1 is satisfiable. This is easily

ensured by checking the satisfiability of candidate constraint sets and outputting

H if they are not satisfiable. Moreover, when the output has the form tκ1u, then

all the unknowns of p have finite denotations in κ1 (despite them not necessarily

having finite denotations in the input constraint set κ).

The evaluation relation appears in Figures 4.12 (standard constructs) and 4.15

(novel Luck constructs). Additional rules concerning failure propagating cases ap-

pear in Figure 4.14, while match rules that deal with discriminees containing arrow

types appear in Figure 4.13. Most of them are largely similar to the narrowing

rules, only introducing unifications with target patterns in key places. Several of

them rely on the narrowing semantics defined previously.

Rule M-Base: To generate valuations for a unit value or an unknown, we

unify v and the target pattern p under the input constraint set κ. Unlike N-Base,

there is no case for functions, since the expression being evaluated must have a

non-function type.

Rules M-Pair, M-Pair-Fail: To evaluate pe1, e2q, where e1 and e2 have types

T 1 and T 2, we first generate fresh unknowns u1 and u2 with these types. We

unify the pair pu1, u2q with the target pattern p, obtaining a new constraint set

κ1. We then proceed as in N-Pair, evaluating e1 against pattern u1 and e2 against

u2, threading constraint sets and accumulating traces and probabilities. M-Pair

handles the case where the evaluation of e1 succeeds, yielding a constraint set

tκ1u, while M-Pair-Fail handles failure: if evaluating e1 yields H, the whole

computation immediately yields H as well; e2 is not evaluated, and the final trace

and probability are t1 and q1.

83



M-Base
v = pq _ v P U κ1 = unify κ v p

p ð v ) κ òε1 if SAT pκ1q then tκ1u else H

M-Pair

pκ1, ru1, u2sq = fresh κ rT 1, T 2s

κ0 = unify κ1 pu1, u2q p
u1 ð e1 ) κ0 ò

t1
q1
tκ1u u2 ð e2 ) κ1 ò

t2
q2
κ?2

p ð peT 1
1 , eT 2

2 q ) κ òt1¨t2q1∗q2 κ
?
2

M-CasePair

pκa, ru1, u2sq = fresh κ rT 1, T 2s

pu1, u2q ð e ) κa ò
t1
q1
tκbu

p ð e1ru1{x, u2{ys ) κb ò
t2
q2
κ?

p ð case eT 1ˆT 2 of px, yq � e1 ) κ òt1¨t2q1∗q2 κ
?

M-L-Sat

pκ1, uq = fresh κ T 1

κ2 = unify κ1 pLT 1+T 2
uq p

SAT pκ2q u ð e ) κ2 ò
t
q κ

?

p ð LT 1+T 2
e ) κ òtq κ

?

M-R-Sat

pκ1, uq = fresh κ T 2

κ2 = unify κ1 pRT 1+T 2
uq p

SAT pκ2q u ð e ) κ2 ò
t
q κ

?

p ð RT 1+T 2
e ) κ òtq κ

?

M-App

e0 ) κ ót0q0 κ0 ( prec f x = e2q
e1 ) κ0 ó

t1
q1
κ1 ( v1

p ð e2rprec f x = e2q{f, v1{xs ) κ1 òt2q2 κ
?

p ð pe0 e1q ) κ òt0¨t1¨t2q0∗q1∗q2 κ
?

M-Fold

pκ1, uq = fresh κ T rµX. T {Xs
κ2 = unify κ1 pfoldµX. T uq p

u ð e ) κ2 ò
t
q κ

?

p ð foldµX. T e ) κ òtq κ
? M-Unfold

pfoldµX. T pq ð e ) κ òtq κ
?

p ð unfoldµX. T e ) κ òtq κ
?

Figure 4.12: Matching Semantics of Standard Core Luck Constructs

84



M-CasePair-Fun

T1 R T _ T2 R T
e ) κ ót1q1 κ1 ( pv1, v2q

p ð e1rv1{x, v2{ys ) κ1 ò
t2
q2
κ?2

p ð case eT1ˆT2 of px, yq � e1 ) κ òt1¨t2q1∗q2 κ
?
2

M-Case-L-Fun

T1 R T _ T2 R T
e ) κ ót1q1 κ1 ( LT1+T2 v1

p ð e1rv1{xls ) κ1 ò
t11
q1
1
κ?

p ð case eT1+T2 of pL xl � e1qpR xr � e2q ) κ ò
t1¨t11
q1∗q1

1
κ?

M-Case-R-Fun

T1 R T _ T2 R T
e ) κ ót1q1 κ1 ( RT1+T2 v2

p ð e2rv2{xrs ) κ1 ò
t11
q1
1
κ?

p ð case eT1+T2 of pL xl � e1qpR xr � e2q ) κ ò
t1¨t11
q1∗q1

1
κ?

Figure 4.13: Matching Semantics for Function Cases

85



M-Pair-Fail

pκ1, ru1, u2sq = fresh κ rT 1, T 2s

κ0 = unify κ1 pu1, u2q p
u1 ð e1 ) κ0 ò

t1
q1
H

p ð peT 1
1 , eT 2

2 q ) κ òt1q1 H

M-CasePair-Fail

pru1, u2s, κ0q = fresh κ rT 1, T 2s

pu1, u2q ð e ) κ0 ò
t1
q1
H

p ð case eT 1ˆT 2 of px, yq Ñ e1 ) κ òt1q1 H

M-After-Fail
p ð e1 ) κ òt1q1 H

p ð e1 ;e2 ) κ òt1q1 H

M-L-UnSat

pκ1, uq = fresh κ T 1

κ2 = unify κ1 pLT 1+T 2
uq p

 SAT pκ2q

p ð LT 1+T 2
e ) κ òε1 H

M-R-UnSat

pκ1, uq = fresh κ T 2

κ2 = unify κ1 pRT 1+T 2
uq p

 SAT pκ2q

p ð RT 1+T 2
e ) κ òε1 H

Figure 4.14: Failure Propagation for Matching Semantics

86



M-After
p ð e1 ) κ òt1q1 tκ1u e2 ) κ1 ó

t2
q2
κ2 ( v

p ð e1 ;e2 ) κ òt1¨t2q1∗q2 tκ2u

M-Bang

p ð e ) κ òt1q1 tκ1u
sampleV κ1 pñ

t2
q2
κ1

p ð !e ) κ òt1¨t2q1∗q2 tκ
1u

M-Bang-Fail
p ð e ) κ òt1q1 H

p ð !e ) κ òt1q1 H

M-Narrow

p ð e ) κ òtq tκau
e1 ) κa ó

t1
q1
κb ( v1 e2 ) κb ó

t2
q2
κc ( v2

sampleV κc v1 ñ
t11
q1
1
κd sampleV κd v2 ñ

t12
q1
2
κe

natκepv1q = n1 n1 ą 0 natκepv2q = n2 n2 ą 0
pκ0, ru1, u2sq = fresh κe rT 1, T 2s

κl = unify κ0 p pLT 1+T 2
u1q

κr = unify κ0 p pRT 1+T 2
u2q

choose n1 κl n2 κr Ñ
t 1

q 1 i

p ð eT 1+T 2 Ð penat1 , enat2 q ) κ ò
t¨t1¨t2¨t11¨t

1
2¨t

1

q∗q1∗q2∗q1
1∗q1

2∗q1 tκiu

M-Narrow-Fail p ð e ) κ òtq H

p ð eT 1+T 2 Ð penat1 , enat2 q ) κ òtq H

Figure 4.15: Matching Semantics of Nonstandard Core Luck Constructs

87



Rules M-CasePair, M-CasePair-Fail, M-CasePair-Fun: If the type of the

discriminee e contains function types (M-CasePair-Fun), we narrow e to a pair

and substitute its components as in N-CasePair-P, but then we evaluate the

resulting expression against the original target pattern p. Otherwise e has a type

of form T 1 ˆ T 2 and we proceed as in N-CasePair-U with a few differences.

The unknowns u1 and u2 are introduced before the evaluation of e to provide a

target pattern pu1, u2q. If the evaluation succeeds in yielding tκbu (M-CasePair)

we proceed to substitute u1 and u2 (that now have a finite domain as all pattern

unknowns at the resulting constraint sets). If instead evaluation of e yields H

(M-CasePair-Fail), the whole computation returns H immediately.

Rules M-L-Sat, M-R-Sat, M-L-UnSat, M-R-UnSat: To evaluate LT 1+T 2
e,

we generate an unknown u of type T 1 and unify LT 1+T 2
u with the target pattern

p. If the constraint set obtained is satisfiable (M-L-Sat), we simply evaluate e

against the pattern u. Otherwise (M-L-UnSat) we immediately return H. The

same goes for R.

Rules M-App, M-After: To evaluate an application e0 e1, we use the nar-

rowing semantics to reduce e0 to rec f x = e2 and e1 to a value v1, then evaluate

e2rprec f x = e2q{f, v2{xs against the original target pattern p in the matching

semantics. In this rule we cannot use a pattern during the evaluation of e1: we do

not have any candidates! This is the main reason for introducing the sequencing

operator as a primitive e1 ;e2 instead of encoding it using lambda abstractions. In

M-After, we evaluate e1 against he target pattern p and then evaluate e2 using

narrowing, just for its side effects. If we used lambdas to encode sequencing, e1

would be narrowed instead, which is not what we want.

Rules M-Fold, M-Unfold: M-Fold is similar to M-Pair, only simpler. To

evaluate unfoldµX. T e with pattern p, M-Unfold simply evaluates e with the

pattern foldµX. T p.

Rules M-Bang, M-Bang-Fail: This rule is very similar to N-Bang. We first

evaluate e against pattern p. If that succeeds we proceed to use the same auxiliary

relation sampleV as in N-Bang (defined in Figure 4.11). Otherwise, the whole

computation returns H.

Rules M-Narrow, M-Narrow-Fail: Like in M-Bang, we propagate the pat-

88



tern p and evaluate e against it. After checking that the resulting constraint set

option is not H, we proceed exactly as in N-Narrow.

Rules M-Case-L-Fun, M-Case-R-Fun: If the type of the discriminee e con-

tains function types (meaning it cannot be written as T 1 + T 2), we proceed as in

N-Case-L and N-Case-R, except in the final evaluation we match the expression

against p.

The interesting rules are the ones for case when the type of the scrutinee does

not contain functions. For these rules, we can actually use the patterns to guide

the generation that occurs during the evaluation of the scrutinee as well. We use

them to model the constraint solving behavior: instead of choosing which branch

to follow with some probability (50% in N-Case-U), we evaluate both branches,

just like a constraint solver would exhaustively search the entire domain.

Before looking at the rules in detail, we need to extend the constraint set

interface with two new functions:

rename :: U∗ Ñ CÑ C

union :: CÑ CÑ C

The rename operation freshens a constraint set by replacing all the unknowns in a

given sequence with freshly generated ones (of the same type). The union of two

constraint sets intuitively denotes the union of their corresponding denotations.

The four case rules with function-free types appear in Figure 4.16. We inde-

pendently evaluate e against both an L pattern and an R pattern. If both of them

yield failure, then the whole evaluation yields failure (M-Case-4). If exactly one

succeeds, we evaluate just the corresponding branch (M-Case-2 or M-Case-3).

If both succeed (M-Case-1), we evaluate both branch bodies and combine the

results with union. We use rename to avoid conflicts, since we may generate the

same fresh unknowns while independently computing κ?a and κ?b.

If desired, the user can ensure that only one branch will be executed by using

an instantiation expression before the case is reached. Since e will then begin with

a concrete constructor, only one of the evaluations of e against the patterns L and

R will succeed, and only the corresponding branch will be executed.

The M-Case-1 rule is the second place where the need for finiteness of the

restriction of κ to the input expression e arises. In order for the semantics to

89



M-Case-1

pκ0, ru1, u2sq = fresh κ rT 1, T 2s

pLT 1+T 2
u1q ð e ) κ0 ò

t1
q1
tκ1u

pRT 1+T 2
u2q ð e ) κ0 ò

t2
q2
tκ2u

p ð e1ru1{xls ) κ1 ò
t11
q1
1
κ?a p ð e2ru2{yrs ) κ2 ò

t12
q1
2
κ?b

κ? = combine κ0 κ
?
a κ

?
b

p ð case eT 1+T 2 of pL xl � e1qpR yr � e2q ) κ ò
t1¨t2¨t11¨t

1
2

q1∗q2∗q1
1∗q1

2
κ?

where combine κ H H = H

combine κ tκ1u H = tκ1u
combine κ H tκ2u = tκ2u
combine κ tκ1u tκ2u =

tunion κ1 prename pUpκ1q-Upκqq κ2qu

M-Case-2

pκ0, ru1, u2sq = fresh κ rT 1, T 2s

pLT 1+T 2
u1q ð e ) κ0 ò

t1
q1
H

pRT 1+T 2
u2q ð e ) κ0 ò

t2
q2
tκ2u

p ð e2ru2{ys ) κ2 ò
t12
q1
2
κ?b

p ð case eT 1+T 2 of pL x � e1qpR y � e2q ) κ ò
t1¨t2¨t12
q1∗q2∗q1

2
κ?b

M-Case-3

pκ0, ru1, u2sq = fresh κ rT 1, T 2s

pLT 1+T 2
u1q ð e ) κ0 ò

t1
q1
tκ1u

pRT 1+T 2
u2q ð e ) κ0 ò

t2
q2
H

p ð e1ru1{xs ) κ1 ò
t11
q1
1
κ?a

p ð case eT 1+T 2 of pL x � e1qpR y � e2q ) κ ò
t1¨t2¨t11
q1∗q2∗q1

1
κ?a

M-Case-4

pκ0, ru1, u2sq = fresh κ rT 1, T 2s

pLT 1+T 2
u1q ð e ) κ0 ò

t1
q1
H

pRT 1+T 2
u2q ð e ) κ0 ò

t2
q2
H

p ð case eT 1+T 2 of pL x � e1qpR y � e2q ) κ òt1¨t2q1∗q2 H

Figure 4.16: Matching Semantics for Constraint-Solving case

90



terminate in the presence of (terminating) recursive calls, it is necessary that the

domain be finite. To see this, consider a simple recursive predicate that holds for

every number:

rec pf : natÑ boolq u =

case unfoldnat u of pL x � TrueqpR y � pf yqq

Even though f terminates in the predicate semantics for every input u, if we allow a

constraint set to map u to the infinite domain of all natural numbers, the matching

semantics will not terminate. While this finiteness restriction feels a bit unnatural,

we have not found it to be a problem in practice—see Section 4.4.

4.2.5 Example

To show how all this works, let’s trace the main steps of the matching derivations

of two given expressions against the pattern True in a given constraint set. We

will also extract probability distributions about optional constraint sets from these

derivations.

We are going to evaluate A := p0 < u && u < 4q ;!u and B := p0 < u ;!uq &&

u < 4 against the pattern True in a constraint set κ, in which u is independent

from other unknowns and its possible values are 0, ..., 9. Similar expressions were

introduced as examples in Section 4.1; the results we obtain here confirm the

intuitive explanation given there.

Recall that the conjunction expression e1 && e2 is just syntactic sugar for

case e1 of pL a � e2qpR b � Falseq, and that we are using a standard Peano en-

coding of naturals: nat = µX. 1 + X. We elide folds for brevity. The inequality

a < b can be encoded as lt a b, where:

lt = rec pf : nat Ñ nat Ñ boolq x = rec pg : nat Ñ boolq y =

case y of pL � Falseq

pR yR � case x of pL � Trueq

pR xR � f xR yRqq

91



Many rules introduce fresh unknowns, many of which are irrelevant: they might

be directly equivalent to some other unknown, or there might not exist any refer-

ence to them. We abusively use the same variable for two constraint sets which

differ only in the addition of a few irrelevant variables to one of them.

Evaluation of A We first derive True ð p0 < uq ) κ òε1 tκ0u. Since in the

desugaring of 0 < u as an application lt is already in rec form and both 0 and

u are values, the constraint set after the narrowing calls of M-App will stay

unchanged. We then evaluate case u of pL � FalseqpR yR � ...q. Since the

domain of u contains both zero and non-zero elements, unifying u with L1+nat u1

and R1+nat u2 (M-Base) will produce some non-empty constraint sets. Therefore,

rule M-Case-1 applies. Since the body of the left hand side of the match is False,

the result of the left derivation in M-Case-1 is H and in the resulting constraint

set κ0 the domain of u is t1, ..., 9u.

Next, we turn to True ð p0 < u && u < 4q ) κ òε1 tκ1u, where, by a similar

argument following the recursion, the domain of u in κ1 is t1, 2, 3u. There are 3

possible narrowing-semantics derivations for !u: (1) !u ) κ1 ó
rp0,3qs
1{3 κA1 ( u, (2)

!u ) κ1 ó
rp1,3qs
1{3 κA2 ( u, and (3) !u ) κ1 ó

rp2,3qs
1{3 κA3 ( u, where the domain of u in κAi

is tiu. (We have switched to narrowing-semantics judgments because of the rule

M-After.) Therefore all the possible derivations for A = p0 < u && u < 4q ;!u

matching True in κ are:

True ð A ) κ ò
rpi−1,3qs
1{3 tκAi u for i P t1, 2, 3u

From the set of possible derivations, we can extract a probability distribution:

for each resulting optional constraint set, we sum the probabilities of each of the

traces that lead to this result. Thus the probability distribution associated with

True ð A ) κ is

rtκA1 u ÞÑ
1

3
; tκA2 u ÞÑ

1

3
; tκA3 u ÞÑ

1

3
s.

Evaluation of B The evaluation of 0 < u is the same as before, after which

we narrow !u directly in κ0 and there are 9 possibilities: !u ) κ0 ó
rpi−1,9qs
1{9 κBi ( u

92



for each i P t1, ..., 9u, where the domain of u in κBi is tiu. Then we evaluate

True ð u < 4 ) κBi : if i is 1, 2 or 3 this yields tκBi u; if i ą 3 this yields a failure

H. Therefore the possible derivations for B = p0 < u ;!uq && u < 4 are:

True ð B ) κ ò
rpi−1,9qs
1{9 tκBi u for i P t1, 2, 3u

True ð B ) κ ò
rpi−1,9qs
1{9 H for i P t4, ..., 9u

We can again compute the corresponding probability distribution:

rtκB1 u ÞÑ
1

9
; tκB2 u ÞÑ

1

9
; tκB3 u ÞÑ

1

9
; H ÞÑ

2

3
s

Note that if we were just recording the probability of an execution and not its

trace, we would not know that there are six distinct executions leading to H with

probability 1
9
, so we would not be able to compute its total probability.

The probability associated with H (0 for A, 2{3 for B) is the probability of

backtracking. As stressed in Section 4.1, A is much better than B in terms of

backtracking—i.e., it is more efficient in this case to instantiate u only after all

the constraints on its domain have been recorded. For a more formal treatment of

backtracking strategies in Luck using Markov Chains, see [46].

4.3 Metatheory

We close our discussion of Core Luck by stating and proving some key properties.

Intuitively, we show that, when we evaluate an expression e against a pattern p in

the presence of a constraint set κ, we can only remove valuations from the denota-

tion of κ (decreasingness), any derivation in the generator semantics corresponds

to an execution in the predicate semantics (soundness), and every valuation that

matches p will be found in the denotation of the resulting constraint set of some

derivation (completeness).

Since we have two flavors of generator semantics, narrowing and matching, we

also present these properties in two steps. First, we present the properties for the

narrowing semantics; their proofs have been verified using Coq. Then we present

93



the properties for the matching semantics; for these, we have only paper proofs,

but these proofs are quite similar to the narrowing ones (the only real difference

is the case rule). Before that, however, we need to present the formal specification

of the various constraint set operations.

4.3.1 Constraint Set Specification

We introduce one extra abstraction, the domain of a constraint set κ, written

dompκq. This domain corresponds to the unknowns in a constraint set that actually

have bindings in JκK. For example, when we generate a fresh unknown u from κ,

u does not appear in the domain of κ; it only appears in the denotation after we

use it in a unification. The domain of κ is a subset of the set of keys of Upκq.

When we write that for a valuation and constraint set σ P JκK, it also implies

that the unknowns that have bindings in σ are exactly the unknowns that have

bindings in JκK, i.e., in dompκq. We use the overloaded notation σ|x to denote

the restriction of σ to x, where x is either a set of unknowns or another valuation

(where σ is restricted to the domain of x).

The following straightforward lemma relates the two restrictions: 2 if we re-

strict a valuation σ1 to the domain of a constraint set κ, the resulting valuation is

equivalent to restricting σ1 to any valuation σ P JκK.

Lemma 4.3.1.1. σ P κ ñ σ1|dompκq ” σ1|σ

Ordering We introduce an ordering on constraint sets: two constraints sets

are ordered (κ1 ď κ2) if dompκ2q Ď dompκ1q and for all valuations σ P Jκ1K,
σ|dompκ2q P Jκ2K. Right away we can prove that ď is reflexive and transitive, using

Lemma 4.3.1.1 and basic set properties.

2All the definitions in this section are implicitly universally quantified over the free variables
appearing the formulas.

94



Specification of fresh

pκ1, uq = fresh κ T ñ

$

’

&

’

%

u R Upκq

Upκ1q = Upκq ‘ pu ÞÑ T q

Jκ1K = JκK

Intuitively, when we generate a fresh unknown u of type T from κ, u is really fresh

for κ, meaning Upκq does not have a type binding for it. The resulting constraint

set κ1 has an extended unknown typing map, where u maps to T and its denotation

remains unchanged. That means that dompκ1q = dompκq.

Based on this specification, we can easily prove that κ1 is smaller than κ, the

generated unknowns are not contained in any valuation in JκK and that κ1 is well

typed.

Lemma 4.3.1.2 (fresh ordered).

pκ1, uq = fresh κ T ñ κ1 ď κ

Lemma 4.3.1.3 (fresh for valuation).

pκ1, uq = fresh κ T ñ @σ. σ P JκK ñ u R σ

Lemma 4.3.1.4 (fresh types).

pκ1, uq = fresh κ T ñ p$ κ ñ $ κ1q

Specification of sample

κ1 P sample κ u ñ

$

’

&

’

%

Upκ1q = Upκq

SAT pκ1q

Dv. Jκ1K = tσ | σ P JκK, σpuq = v u

When we sample u in a constraint set κ and obtain a list, for every member

constraint set κ1, the typing map of κ remains unchanged and all of the valuations

that remain in the denotation of κ1 are the ones that mapped to some specific

95



value v in κ. Clearly, the domain of κ remains unchanged. We also require a

completeness property from sample, namely that if we have a valuation σ P JκK
where σpuq = v for some u, v, then σ is in some member κ1 of the result:

σpuq = v

σ P JκK

+

ñ Dκ1.

#

σ P Jκ1K
κ1 P sample κ u

We can prove similar lemmas as in fresh: ordering and preservation. In addition,

we can show that if some unknown is a singleton in κ, it remains a singleton in κ1.

This is necessary for the proof of narrowing expressions.

Lemma 4.3.1.5 (sample ordered).

κ1 P sample κ u ñ κ1 ď κ

Lemma 4.3.1.6 (sample types).

κ1 P sample κ u ñ p$ κ ñ $ κ1q

Lemma 4.3.1.7 (sample preserves singleton).

κru1s ‰ H ^ κ1 P sample κ u ñ κ1ru1s = κru1s

Finally, we can lift all of these properties to sampleV by simple induction, using

this spec to discharge the base case.

Specification of unify

Upunify κ v1 v2q = Upκq

Junify κ v1 v2K = tσ P JκK | σpv1q = σpv2q u

When we unify in a constraint set κ two (well-typed for κ) values v1 and v2, the

typing map remains unchanged while the denotation of the result contains just the

valuations from κ that when substituted into v1 and v2 make them equal. The

96



domain of κ1 is the union of the domain of κ and the unknowns in v1, v2.

Once again, we can prove ordering and typing lemmas.

Lemma 4.3.1.8 (unify ordered).

unify κ v1 v2 ď κ

Lemma 4.3.1.9 (unify types).

H;Upκq $ v1 : T

H;Upκq $ v2 : T

$ κ

,

/

.

/

-

ñ $ unify κ v1 v2

4.3.2 Properties of the Narrowing Semantics

With the above specification of constraint sets, we can proceed to proving our main

theorems for the narrowing semantics: decreasingness, soundness and complete-

ness. The first theorem, decreasingness states that we never add new valuations to

our constraint sets; our semantics can only refine the denotation of the input κ.

Theorem 4.3.2.1 (Decreasingness).

e ) κ ótq κ
1
( v ñ κ1 ď κ

Proof: By induction on the derivation of narrowing, using the lemmas about order-

ing for fresh (Lemma 4.3.1.2), sample (Lemma 4.3.1.5) and unify (Lemma 4.3.1.8),

followed by repeated applications of the transitivity of ď.

We will also need a form of big-step preservation for Core Luck: if a constraint

set κ is well typed and an expression e has type T in Upκq and the empty context,

then if we narrow e ) κ to obtain κ1 ( v, κ1 will be well typed and v will also have

the same type T in Upκ1q.

97



Theorem 4.3.2.2 (Preservation).

e ) κ ótq κ
1 ( v

Upκq $ e : T

$ κ

,

/

.

/

-

ñ

#

Upκ1q $ v : T

$ κ1

Proof: The proof can be found in Appendix A.

Soundness and Completeness

Soundness and completeness can be visualized as follows:

ep vp

e ) κ v ( κ1

ó

σPJκK
ótq

σ1PJκ1K

Given the bottom and right sides of the diagram, soundness guarantees that we can

fill in the top and left. That is, any narrowing derivation e ) κ óqt κ
1 ( v directly

corresponds to some derivation in the predicate semantics, with the additional

assumption that all the unknowns in e are included in the domain of the input

constraint set κ (which can be replaced by a stronger assumption that e is well

typed in κ).

Theorem 4.3.2.3 (Soundness).

e ) κ óqt κ
1 ( v

σ1pvq = vp ^ σ1 P Jκ1K
@u. u P eñ u P dompκq

,

/

.

/

-

ñ Dσ ep.

$

’

’

’

&

’

’

’

%

σ1|σ ” σ

σ P JκK
σpeq = ep

ep ó vp

Completeness guarantees the opposite direction: given a predicate derivation

ep ó vp and a “factoring” of ep into an expression e and a constraint set κ such that

for some valuation σ P JκK substituting σ in e yields ep, and under the assumption

that everything is well typed, there is always a nonzero probability of obtaining

some factoring of vp as the result of a narrowing judgment.

98



Theorem 4.3.2.4 (Completeness).

ep ó vp

σpeq = ep

σ P JκK ^ $ κ

H;Upκq $ e : T

,

/

/

/

.

/

/

/

-

ñ

Dv κ1 σ1 q t.
$

’

&

’

%

σ1|σ ” σ ^ σ1 P Jκ1K
σ1pvq = vp

e ) κ ótq κ
1 ( v

The proofs of both soundness and completeness can be found in Appendix A.

4.3.3 Properties of the Matching Semantics

Before we proceed to the theorems for the matching semantics, we need a specifi-

cation for the union and rename operations.

Specification of union

Upκ1q|Upκ1qXUpκ2q = Upκ2q|Upκ1qXUpκ2q
union κ1 κ2 = κ

+

ñ
#

Upκq = Upκ1q Y Upκ2q

JκK = Jκ1KY Jκ2K

To take the union of two constraint sets, their typing maps must obviously agree

on any unknowns present in both. The denotation of the union of two constraint

sets is then just the union of their corresponding denotations.

Similar lemmas concerning types and ordering can be proved about union.

Lemma 4.3.3.1 (union ordered).

κ1 = union κ1 κ2 ñ κ1 ď κ1 ^ κ
1
ď κ2

99



Lemma 4.3.3.2 (union types).

κ1 = union κ1 κ2

$ κ1

$ κ2

,

/

.

/

-

ñ $ κ1

Specification of rename The rename function as introduced in the previous

section can be encoded in terms of fresh and a function that renames a single

unknown to the result of fresh, iteratively.

Properties The decreasingness property for the matching semantics is very sim-

ilar to the narrowing semantics: if the matching semantics yields tκ1u, then κ1 is

smaller than the input constraint set.

Theorem 4.3.3.3 (Decreasingness).

p ð e ) κ òtq tκ
1
u ñ κ1 ď κ

Proof: This is again the simplest proof: by induction on the derivation of match-

ing judgment, using the lemmas about ordering for fresh (Lemma 4.3.1.2), sample

(Lemma 4.3.1.5) and unify (Lemma 4.3.1.8) and repeated applications of the tran-

sitivity of ď.

Preservation is simpler than before since we only deal with a single output.

Theorem 4.3.3.4 (Preservation).

p ð e ) κ òtq tκ
1u

Upκq $ e : T

Upκq $ p : T

$ κ

,

/

/

/

.

/

/

/

-

ñ $ κ1

Soundness is again similar to the matching semantics.

100



Theorem 4.3.3.5 (Soundness).

p ð e ) κ òtq tκ
1u

σ1ppq = vp ^ σ
1 P Jκ1K

@u. pu P e_ u P pq ñ u P dompκq

,

/

.

/

-

ñ Dσ ep.

$

’

’

’

&

’

’

’

%

σ1|σ ” σ

σ P JκK
σpeq = ep

ep ó vp

For the completeness theorem, we need to slightly strengthen its premise; since

the matching semantics may explore both branches of a case, it can fall into a loop

when the predicate semantics would not (by exploring a non-terminating branch

that the predicate semantics does not take). Thus, we require that all valuations

in the input constraint set result in a terminating execution.

Theorem 4.3.3.6 (Completeness).

ep ó vp ^ σ P JκK
H;Upκq $ e : T ^ $ κ

σpeq = ep ^ σppq = vp

@σ1 P JκK. Dv1. σ1peq ó v1

,

/

/

/

.

/

/

/

-

ñ

Dκ1 σ1 q t.
$

’

&

’

%

σ1|σ ” σ

σ1 P Jκ1K
p ð e ) κ òtq tκ

1u

Once again, the full proofs can be found in Appendix A.

4.4 Implementation

We next describe the Luck prototype: its top level, its treatment of backtracking,

and the implementation of primitive integers instantiating the abstract specifica-

tion presented in Section 4.3.1.

4.4.1 The Luck Top Level

The inputs provided to the Luck interpreter consist of an expression e of type bool

(that is, 1+1), containing zero or more free unknowns ~u (but no free variables), and

101



an initial constraint set κ providing types and finite domains3 for each unknown

in ~u, such that their occurrences in e are well typed (H;Upκq $ e : 1 + 1).

The interpreter matches e against True (that is, L1+1 pq), to derive a refined

constraint set κ1:

L1+1 pq ð e ) κ òtq tκ
1
u

This involves random choices, and there is also the possibility that matching fails

(and the semantics generates H instead of tκ1u). In this case, a simple global

backtracking approach could simply try the whole thing again (up to an ad hoc

limit). While not strictly necessary for a correct implementation of the matching

semantics, some local backtracking allows wrong choices to be reversed quickly and

leads to an enormous improvement in performance [32]. Our prototype backtracks

locally in calls to choose: if choose has two choices available and the first one fails

when matching the instantiated expression against a pattern, then we immediately

try the second choice instead. Effectively, this means that if e is already known to

be of the form L , then narrow will not choose to instantiate it using R , and

vice versa. This may require matching against e twice, and our implementation

shares work between these two matches as far as possible. (It also seems useful to

give the user explicit control over where backtracking occurs, but we leave this for

future work.)

After the interpreter matches e against True, all the resulting valuations σ P

Jκ1K should map the unknowns in ~u to some values. However, there is no guarantee

that the generator semantics will yield a κ1 mapping every ~u to a unique values.

The Luck top-level then applies the sample constraint set function to each unknown

in ~u, ensuring that σ|~u is the same for each σ in the final constraint set. The

interpreter returns this common σ|~u if it exists, and backtracks otherwise.

3 This restriction to finite domains appears to be crucial for our technical development to work,
as discussed in the previous section. In practice, we have not yet encountered a situation where
it was important to be able to generate examples of unbounded size (as opposed to examples up
to some large maximum size). We do sometimes want to generate structures containing large
numbers, since they can be represented efficiently, but here, too, choosing an enormous finite
bound appears to be adequate for the applications we’ve tried. The implementation allows for
representing all possible ranges of a corresponding type up to a given size bound. Such bounds
are initialized at the top level, and they are propagated (and reduced a bit) to fresh unknowns
created by pattern matching before these unknowns are used as inputs to the interpreter.

102



4.4.2 Pattern Match Compiler

In Section 4.1, we saw an example using a standard Tree datatype and instantiation

expressions assigning different weights to each branch. While the desugaring of

simple pattern matching to core Luck syntax is straightforward (4.2.1), nested

patterns—as in Figure 4.17—complicate things in the presence of probabilities. We

expand such expressions to a tree of simple case expressions that match only the

outermost constructors of their scrutinees. However, there is generally no unique

choice of weights in the expanded predicate: a branch from the source predicate

may be duplicated in the result. We guarantee the intuitive property that the sum

of the probabilities of the clones of a branch is proportional to the weights given by

the user, but that still does not determine the individual probabilities that should

be assigned to these clones.

The most obvious way to distribute weights is to simply share the weight equally

with all duplicated branches. But the probability of a single branch then depends

on the total number of expanded branches that come from the same source, which

can be hard for users to determine and can vary widely even between sets of

patterns that appear similar. Instead, Luck’s default weighing strategy works as

follows. For any branch B from the source, at any intermediate case expression

of the expansion, the subprobability distribution over the immediate subtrees that

contain at least one branch derived from B is uniform. This makes modifications

of the source patterns in nested positions affect the distribution more locally.

In Figure 4.17, the False branch should have probability 1
3
. It is expanded

into four branches, corresponding to subpatterns Var , Lam , App (Var ) ,

App (App ) . The latter two are grouped under the pattern App , while

the former two are in their own groups. These three groups receive equal shares

of the total probability of the original branch, that is 1
9

each. The two branches

for App (Var ) and App (App ) split that further into twice 1
18

. On the

other hand, True remains a single branch with probability 2
3
. The weights on the

left of every pattern are calculated to reflect this distribution.

103



data T = Var Int | Lam Int T | App T T

sig isRedex :: T Ñ Bool -- Original

fun isRedex t =

case t of

| 2 % App (Lam _ _) _ Ñ True -- 2/3

| 1 % _ Ñ False -- 1/3

sig isRedex :: T Ñ Bool -- Expansion

fun isRedex t =

case t of

| 1 % Var _ Ñ False -- 1/9

| 1 % Lam _ _ Ñ False -- 1/9

| 7 % App t1 _ Ñ

case t1 of

| 1 % Var _ Ñ False -- 1/18

| 12 % Lam _ _ Ñ True -- 2/3

| 1 % App _ _ Ñ False -- 1/18

Figure 4.17: Expanding case expression with a nested pattern and a wildcard.
Comments show the probability of each alternative.

104



4.4.3 Constraint Set Implementation

Our desugaring of source-level pattern matching to core case expressions whose

discriminee e is first narrowed means that rule M-Case-1 is not executed for

datatypes; only one of the evaluations of e against the L and R patterns will

succeed and only one branch will be executed. This means that our constraint-

set representation for datatypes doesn’t need to implement union. We leverage

this to provide a simple and efficient implementation of the unification constraints.

For our prototype, the constraint solving behavior of case is only exploited in our

treatment of primitive integers, which we detail at the end of this section.

The constraint set interface could be implemented in a variety of different ways.

The simplest would be to explicitly represent constraint sets as sets of valuations,

but this would lead to efficiency problems, since even unifying two unknowns would

require traversing the whole set, filtering out all valuations in which the unknowns

are different. On the other extreme, we could represent a constraint set as an

arbitrary logical formula over unknowns. While this is a compact representation,

it does not directly support the per-variable sampling that we require.

For our prototype we choose a middle way, using a simple data structure we

call orthogonal maps to represent sets of valuations. An orthogonal map is a map

from unknowns to ranges, which have the following syntax:

r ::= pq | u | pr, rq | fold r | L r | R r | tL r,R ru

Ranges represent sets of non-functional values: units, unknowns, pairs of ranges,

and L and R applied to ranges. We also include the option for a range to be a

pair of an L applied to some range and an R applied to another. For example,

the set of all Boolean values can be encoded compactly in a range (eliding folds

and type information) as tLpq,Rpqu. Similarly, the set t0, 2, 3u can be encoded as

tLpq,RpRtLpq,Rpququ, assuming a standard Peano encoding of natural numbers.

However, while this compact representation can represent all sets of naturals,

not all sets of Luck non-functional values can be precisely represented. For instance

the set tp0, 1q, p1, 0qu cannot be represented using ranges, only approximated to

ptLpq, RpLpqqu, tLpq, RpLpqquq, which represents the larger set tp0, 0q, p0, 1q, p1,

105



0q, p1, 1qu. This corresponds to a form of Cartesian abstraction, in which we lose

any relation between the components of a pair, so if one used ranges as an abstract

domain for abstract interpretation it would be hard to prove say sortedness of lists.

Ranges are a rather imprecise abstract domain for algebraic datatypes [69, 72, 93].

We implement constraint sets as pairs of a typing environment and an optional

map from unknowns to ranges. The typing environment of a constraint set (Up¨q

operation), is just the first projection of the tuple. A constraint set κ is SAT if the

second element is not H. The sample primitive indexes into the map and collects

all possible values for an unknown.

The only interesting operation with this representation is unify . It is imple-

mented by straightforwardly translating the values to ranges and unifying those.

For simplicity, unification of two ranges r1 and r2 in the presence of a constraint

set κ returns both a constraint set κ1 where r1 and r2 are unified and the unified

range r1. If r1 = r2 = pq there is nothing to be done. If both ranges have the

same top-level constructor, we recursively unify the inner subranges. If one of the

ranges, say r1, is an unknown u we index into κ to find the range ru corresponding

to u, unify ru with r2 in κ to obtain a range r1, and then map u to r1 in the resulting

constraint set κ1. If both ranges are unknowns u1, u2 we unify their corresponding

ranges to obtain r1. We then pick one of the two unknowns, say u1, to map to r1,

while mapping u2 to u1. To keep things deterministic we introduce an ordering on

unknowns and always map ui to uj if ui < uj. Finally, if one range is the compound

range tL r1l,R r1ru while the other is L r2, the resulting range is only L applied to

the result of the unification of r1l and r2.

It is easy to see that if we start with a set of valuations that is representable

as an orthogonal map, non-union operations will result in constraint sets whose

denotation is still representable, which allows us to get away with this simple

implementation of datatypes. The M-Case-1 rule is used to model our treatement

of integers. We introduce primitive integers in our prototype accompanied by

standard integer equality and inequality constraints. In Section 4.2.5 we saw how

a recursive less-than function can be encoded using Peano-style integers and case

expressions that do not contain instantiation expressions in the discriminee. All

integer constraints can be desugared into such recursive functions with the exact

106



same behavior—modulo efficiency.

To implement integer constraints, we extend the codomain of the mapping in

the constraint set implementation described above to include a compact represen-

tation of sets of intervals of primitive integers as well as a set of the unknown’s

associated constraints. Every time the domain of an unknown u is refined, we

use an incremental variant of the AC-3 arc consistency algorithm [88] to efficiently

refine the domains of all the unknowns linked to u, first iterating through the con-

strains associated with u and then only through the constraints of other “affected”

unknowns.

4.5 Evaluation

To evaluate the expressiveness and efficiency of Luck’s hybrid approach to test case

generation, we tested it with a number of small examples and two significant case

studies: generating well-typed lambda terms and information-flow-control machine

states. The Luck code is generally much smaller and cleaner than that of existing

handwritten generators, though the Luck interpreter takes longer to generate each

example—around 20ˆ to 24ˆ for the more complex generators. Finally, while this

is admittedly a subjective impression, we found it significantly easier to get the

generators right in Luck.

4.5.1 Small Examples

The literature on random test generation includes many small examples—list pred-

icates such as sorted, member, and distinct, tree predicates like BSTs (Sec-

tion 4.1) and red-black trees, and so on. In Appendix B, we show the implementa-

tion of many such examples in Luck, illustrating how we can write predicates and

generators together with minimal effort.

We use red-black trees to compare the efficiency of our Luck interpreter to

generators provided by commonly used tools like QuickCheck (random testing),

SmallCheck (exhaustive testing) and Lazy SmallCheck [112]. Lazy SmallCheck

leverages Haskell’s laziness to greatly improve upon out-of-the-box QuickCheck and

107



Figure 4.18: Red-Black Tree Experiment

SmallCheck generators in the presence of sparse preconditions, by using partially

defined inputs to explore large parts of the search space at once. Using both

Luck and Lazy SmallCheck, we attempted to generate 1000 red black trees with

a specific black height bh—meaning that the depth of the tree can be as large as

2 ¨ bh + 1. Results are shown in Fig. 4.18. Lazy SmallCheck was able to generate

all 227 trees of black height 2 in 17 seconds, fully exploring all trees up to depth

5. When generating trees of black height 3, which required exploring trees up

to depth 7, Lazy SmallCheck was unable to generate 1000 red black trees within

5 minutes. At the same time, the Luck implementation lies consistently within

an order of magnitude of a very efficient handwritten QuickCheck generator that

generates valid Red-Black trees directly. Using rejection-sampling approaches by

generating trees and discarding those that don’t satisfy the red-black tree invariant

(e.g., QuickCheck or SmallCheck’s ==>) is prohibitively costly: these approaches

perform much worse than Lazy SmallCheck.

4.5.2 Well-Typed Lambda Terms

Using our prototype implementation we reproduced the experiments of Pa lka et

al. [103], who generated well-typed lambda terms in order to discover bugs in

GHC’s strictness analyzer. We also use this case study to indirectly compare to

108



two narrowing-based tools that are arguably closer to Luck and that use the same

case study to evaluate their work: Claessenet al. [31, 32] and Fetscheret al. [43].

We encoded a model of simply typed lambda calculus with polymorphism in

Luck, providing a large typing environment with standard functions from the

Haskell Prelude to generate interesting well-typed terms. The generated ASTs

were then pretty-printed into Haskell syntax and each one was applied to a partial

list of the form: [1,2,undefined]. Using the same version of GHC (6.12.1), we

compiled each application twice: once with optimizations (-O2) and once without

and compared the outputs.

A straightforward Luck implementation of a type system for the polymorphic

lambda calculus was not adequate for finding bugs efficiently. To improve its per-

formance we borrowed tricks from the similar case study of Fetscher et al. [43],

seeding the environment with monomorphic versions of possible constants and in-

creasing the frequency of seq, a basic Haskell function that introduces strictness,

to increase the chances of exercising the strictness analyzer. Using this, we dis-

covered bugs that seem similar (under quick manual inspection) to those found by

Pa lka et al. and Fetscher et al..

Luck’s generation speed was slower than that of Pa lka’s handwritten generator.

We were able to generate terms of average size 50 (internal nodes), and, grouping

terms together in batches of 100, we got a total time of generation, unparsing,

compilation and execution of around 35 seconds per batch. This is a slowdown of

20x compared to that of Pa lka’s. However, our implementation is a total of 82 lines

of fairly simple code, while the handwritten development is 1684 lines, with the

warning “...the code is difficult to understand, so reading it is not recommended”

in its distribution page [101].

The derived generators of Claessen et al. [31] achieved a 7x slowdown compared

to the handwritten generator, while the Redex generators [43] also report a 7x

slowdown in generation time for their best generator. However, by seeding the

environment with monomorphised versions of the most common constants present

in the counterexamples, they were able to achieve a time per counterexample on

par with the handwritten generator.

109



4.5.3 Information-Flow Control

For a second large case study, we turned to the information-flow control case study

of Chapter 3, re-implementing methods for generating indistinguishable machine

states. Given an abstract stack machine with data and instruction memories,

a stack, and a program counter, one attaches labels—security levels—to runtime

values, propagating them during execution and restricting potential flows of in-

formation from high (secret) to low (public) data. The desired security property,

termination-insensitive noninterference, states that if we start with two indistin-

guishable abstract machines s1 and s2 (i.e., all their low-tagged parts are identical)

and run each of them to completion, then the resulting states s1’ and s2’ are also

indistinguishable.

In “Testing Noninterference, Quickly” [65], we found that efficient testing of this

property could be achieved in two ways: either by generating instruction memories

that allow for long executions and checking for indistinguishability at each low step

(called LLNI, low-lockstep noninterference), or by looking for counter-examples

to a stronger invariant (strong enough to prove noninterference), generating two

arbitrary indistinguishable states and then running for a single step (SSNI, single

step noninterference). In both cases, there is some effort involved in generating

indistinguishable machines: for efficiency, one must first generate one abstract

machine s and then vary s, to generate an indistinguishable one s’. In writing

such a generator for variations, one must effectively reverse the indistinguishability

predicate between states and then keep the two artifacts in sync.

We first investigated the stronger property (SSNI), by encoding the indistin-

guishability predicate in Luck and using our prototype to generate small, indistin-

guishable pairs of states. In 216 lines of code we were able to describe both the

predicate and the generator for indistinguishable machines. The same functional-

ity required ą1000 lines of complex Haskell code in the handwritten version. The

handwritten generator is reported to generate an average of 18400 tests per second,

while the Luck prototype generates an average of 1450 tests per second, around

12.5 times slower.

The real promise of Luck, however, became apparent when we turned to LLNI.

110



In Chapter 3, to generate long sequences of instructions we used generation by

execution: starting from a machine state where data memories and stacks are in-

stantiated, they generate the current instruction ensuring it does not cause the

machine to crash, then allow the machine to take a step and repeat. While intu-

itively simple, this extra piece of generator functionality took significant effort to

code, debug, and optimize for effectiveness, resulting in more than 100 additional

lines of code. The same effect was achieved in Luck by the following 6 intuitive

lines, where we just put the previous explanation in code:

sig runsLong :: Int -> AS -> Bool

fun runsLong len st =

if len <= 0 then True

else case step st of

| 99 % Just st’ -> runsLong (len - 1) st’

| 1 % Nothing -> True

We evaluated our generator on the same set of buggy information-flow analyses.

We were able to find all of the same bugs, with similar effectiveness (number of bugs

found per 100 tests). However, the Luck generator was 24 times slower (Luck: 150

tests/s, Haskell: 3600 tests/s). We expect to be able to improve this result (and

the rest of the results in this section) with a more efficient implementation that

compiles Luck programs to QuickCheck generators directly, instead of interpreting

them in a minimally tuned prototype.

The success of the prototype in giving the user enough flexibility to achieve

similar effectiveness with state-of-the-art generators, while significantly reducing

the amount of code and effort required, suggests that the approach Luck takes is

promising and points towards the need for a real, optimizing implementation.

Acknowledgments

The work presented in this Chapter was the basis for the POPL 2017 paper “Begin-

ner’s Luck” [81], with Diane Gallois-Wong, Catalin Hriţcu, John Hughes, Benjamin

Pierce and Li-yao Xia. While the majority of the work presented in this section

111



is mine, with the exception of the pattern match expansion algorithm that is at-

tributed to Li-yao, this work would not have been possible without the constant

discussions about the semantics of Luck with all the collaborators and especially

Benjamin.

112



Chapter 5

Generating Good Generators for

Inductive Relations

In Chapter 2, we introduced QuickChick, a property-based testing QuickCheck

clone for Coq and demonstrated its functionality. In particular, compared to similar

tools in other proof assistants like Isabelle [17], QuickChick gives the user the

full customizability that QuickCheck provides: one can easily write and compose

generators using an established combinator library.

However, as we saw earlier, for complex properties and especially specifications

involving sparse preconditions, setting up PBRT-style testing can involve substan-

tial work. Writing generators for well-distributed random data for such properties

can be both complex and time consuming, sometimes to the point of being a re-

search contribution in its own right [65, 66, 103]!

In the previous chapter, we identified two techniques for automatically deriving

a generator from a given precondition: narrowing and constraint solving. Auto-

matic narrowing-based generators can achieve testing effectiveness (measured as

bugs found per test generated) comparable to hand-written custom generators,

even for challenging examples [31, 43, 81].

Unfortunately, both hand-written and narrowing-based automatic generators

are subject to bugs. For hand-written ones, this is because generators for com-

plex conditions can often also be complex, often more than the condition itself;

113



moreover, they must be kept in sync if the condition is changed, another source of

errors. Automatic generators do not suffer from the latter problem, but narrowing

solvers are themselves rather complex beasts, whose correctness is therefore ques-

tionable. Even Luck, which we presented in Chapter 4, that comes with a proof

of correctness, only proves an abstract model of the core algorithm, not the rather

large Haskell implementation.

Bugs in generators can come in two forms: they can generate too much, or too

little—i.e., they can be either unsound or incomplete. Unsoundness can lead to

false positives, which can waste significant amounts of time. Incompleteness can

lead to ineffective testing, where certain bugs in the program under test can never

be found because the generator will never produce an input that provokes them.

Both problems can be detected—unsoundness by double-checking whether gener-

ated values satisfy the property, incompleteness by techniques such as mutation

testing [71]—and unsoundness can be mitigated by filtering away generated values

that fail the double-check, but incompleteness bugs can require substantial effort

to understand and repair.

The core contribution of this Chapter is a method for compiling a large class

of logical conditions, expressed as Coq inductive relations, into random generators

together with soundness and completeness proofs for these generators. We do not

prove that the compiler itself is correct in the sense that it can only produce good

generators; rather, we adopt a translation validation approach [107] where we pro-

duce a checkable certificate of correctness along with each generator. A side benefit

of this approach is that, by compiling inductive relations into generators, we avoid

the interpretive overhead of existing narrowing-based generators. As discussed in

the previous Chapter, this overhead is one of the reasons existing generators can

be an order of magnitude slower than their hand-written counterparts.

We have implemented our method as an extension of QuickChick. Using

QuickChick, a Coq user can write down desired properties like

Conjecture preservation : forall (t t’ : tm) (T : ty),

|- t \in T -> t ===> t’ -> |- t’ \in T.

114



and look for counterexamples with no additional effort:

QuickChick preservation. ÝÑ QuickChecking preservation...

Passed 10000 tests

The technical contributions of this chapter are as follows:

� We present a Luck-inspired method for compiling a large class of inductive

definitions into random generators. Section 5.1 introduces our compilation

algorithm through a sequence of progressively more complex examples; Sec-

tion 5.2 describes it in full detail.

� We show how this algorithm can also be used to produce proofs of (pos-

sibilistic) correctness for every derived generator (Section 5.3). Indeed, by

judicious application of Coq’s typeclass features, we can use exactly the same

code to produce both generators and proof terms.

� To evaluate the applicability of our method, we applied the QuickChick im-

plementation to a large part of Software Foundations [106], a machine-checked

textbook on programming language theory. Of the 232 nontrivial theorems

we considered, 84% are directly amenable to PBRT (the rest are higher-order

properties that would at least require significant creativity to validate by ran-

dom testing); of these, 83% can be tested using our algorithm. We discuss

these findings in detail in Section 5.4.1.

� To evaluate the efficiency of our generators, we compare them to fine-tuned

handwritten generators for information-flow control abstract machines (Sec-

tion 5.4.2) and for well typed STLC terms (Section 5.4.3). The derived gen-

erators were 1.75ˆ slower than the custom ones, demonstrating a significant

speedup over previous interpreted approaches such as Luck [81].

We conclude and draw directions for future work in Section 5.5. The implemen-

tation of the algorithm in QuickChick, further integrating testing and proving in

the Coq proof assistant and providing more push-button-style automation while

retaining customizability, is described in the next chapter (Section 6.1).

115



5.1 Good Generators, by Example

The main focus of this chapter is to derive correct generators for simply-typed data

satisfying dependently-typed, inductive invariants. This section uses examples to

showcase different behaviors that our generation algorithm needs to exhibit; the

algorithm itself will be described more formally in the following section. In partic-

ular, we are going to give a few progressively more complex inductive characteri-

zations of trees, and detail how we can automatically produce a generator for trees

satisfying those characterizations. We first encountered Coq trees in Chapter 2.

We repeat their standard definition here for the reader’s convenience:

Inductive Tree A :=

| Leaf : Tree A

| Node : A -> Tree A -> Tree A -> Tree A.

5.1.1 Nonempty Trees

Our first example is nonempty trees, i.e., trees that are not just leaves.

Inductive nonempty : TreeÑ Prop :=

| NonEmpty : @ x l r, nonempty (Node x l r).

From a user’s perspective, we can quickly come up with a generator for nonempty

trees: we just need to create arbitrary x, l and r and combine them into a Node.

Definition gen_nonempty : G (option Tree) :=

do xÐ arbitrary;

do lÐ arbitrary;

do rÐ arbitrary;

ret (Some (Node x l r)).

But how could we automate this process?

We know that we want to generate a tree t satisfying nonempty; that means

that we need to pick some constructor of nonempty to satisfy. Since there is

only one constructor, we only have one option, NonEmpty. By looking at the

conclusion of the NonEmpty constructor we know that t must be a Node. This can

116



be described by a unification procedure. Specifically, we introduce an unknown

variable t (similar to logical variables in logic programming, or unification variables

in type inference) plus one unknown variable for each universally quantified variable

of the constructor (here x, l and r). We then proceed to unify t with (Node x l

r). Since there are no more constraints—we call them “hypotheses”—in NonEmpty,

and since x, l and r are still completely unknown, we instantiate them arbitrarily

(using the Gen instance for natural numbers that is provided by default, as well as

the instance for Trees that can be derived automatically).

5.1.2 Complete Trees

For our second example of a condition, consider complete trees (also known as

perfect trees): binary trees whose leaves are all at the same depth. The shape of a

complete tree can be fully characterized by its depth: a complete tree of depth zero

is necessarily a Leaf, while a complete tree of depth n+1 is formed by combining two

complete trees of depth n into a Node. This is reflected in the following inductive

definition:

Inductive complete : natÑ TreeÑ Prop :=

| CompleteLeaf :

complete 0 Leaf

| CompleteNode : @ n x l r,

complete n lÑ complete n rÑ

complete (S n) (Node x l r).

Since complete has two parameters, we need to decide whether the derived

generator produces all of them or treats some of them as inputs, i.e., we need to

assign modes to the parameters, in the sense of functional logic programming. Let’s

assume that that first parameter is an input to the generator (called in1), and we

want to generate trees t that satisfy complete in1 t. Once again, we introduce

an unknown variable t (that we want to generate), as well as an unknown variable

for in1: since the generator will receives in1 as an argument, we don’t know its

actual value at derivation time!

We now have two constructors to choose from to try to satisfy, CompleteLeaf

117



and CompleteNode. If we pick CompleteLeaf we need to unify t with Leaf and

in1 with O. Since t is unconstrained at this point, we can always unify it with

Leaf. By contrast since we don’t know the value of in1 at derivation time, we

need to produce a pattern match on it: if in1 is O, then we can proceed to return

a Leaf, otherwise we can’t satisfy CompleteLeaf.

On the other hand, if we pick CompleteNode, we introduce new unknowns n, x,

l and r for the universally quantified variables. We proceed to unify t with Node

x l r and m with S n. Like before, we need to pattern match on in1 to decide at

runtime if it is nonzero; we bind n in the pattern match and treat it as an input

from that point onward. We then handle the recursive constraints on l and r,

instantiating both the left and right subtrees with a recursive call to the generator

we’re currently deriving. Finally, x remains unconstrained so we instantiate it

arbitrarily, like in the nonempty tree case.

Fixpoint gen_complete (in1 : nat) : G (option Tree) :=

match in1 with

| O => ret (Some Leaf)

| S n => lÐ gen_complete n ;;

rÐ gen_complete n ;;

xÐ arbitrary ;;

ret (Some (Node x l r))

end.

The complete inductive predicate is particularly well-behaved. First of all, for

every possible input depth m there exists some tree t that satisfies complete m

t. That will not necessarily hold in the general case. Consider for example an

inductive definition that consists of only the CompleteLeaf constructor:

Inductive half_complete : natÑ TreeÑ Prop :=

| CompleteLeaf’ : half_complete 0 Leaf.

Once again, we will need to pattern match on m, and, if m is zero, we can proceed

as in the previous definition of complete to return a Leaf. However, if m is

nonzero there is nothing we can possibly do to return a valid tree that satisfies

half complete. This is the reason why our generators return options of the

118



underlying type:

Definition gen_half_complete (in1 : nat) : G (option Tree) :=

match in1 with

| O => ret (Some Leaf)

| _ => ret None

end.

Secondly, the usage of the input parameter serves as a structurally decreasing

parameter for our fixpoint. In the general case that is not necessarily true and we

will need to introduce a size parameter (like we did in the previous section for

simple inductive types), as we will see in the next example.

5.1.3 Binary Search Trees

For a more complex example, consider binary search trees: for every node, each

label in its left subtree is smaller than the node label while each label in the right

subtree is larger. In Coq code, we could characterize binary search trees whose

elements are between two extremal values lo and hi with the following code:

Inductive bst : natÑ natÑ TreeÑ Prop :=

| BstLeaf : @ lo hi,

bst lo hi Leaf

| BstNode : @ lo hi x l r,

lo < xÑ x < hiÑ

bst lo x lÑ bst x hi rÑ

bst lo hi (Node x l r).

A Leaf is always such a search tree since it contains no elements; a Node is such

a search tree if its label x is between lo and hi and its left and right subtrees are

appropriate search trees as well.

The derived generator (tweaked a bit for readability) is as follows; we explain

it below:

Definition gen_bst in1 in2 : natÑ G (option Tree) :=

let fix aux_arb size (in1 in2 : nat) : G (option (Tree)) :=

119



match size with

| O => ret (Some Leaf)

| S size’ =>

backtrack [ (1, ret (Some Leaf))

; (1, xÐ arbitraryST (fun x => in1 < x) ;;

if (x < in2)? then

lÐ aux_arb size’ in1 x ;;

rÐ aux_arb size’ x in2 ;;

ret (Some (Node x l r))

else ret None

)]

end

in fun size => aux_arb size in1 in2.

This generator is bounded: just like in the previous section, we use a natural

number size to serve as a limit in the depth of the derivation tree. When size is

0 we are only allowed to use constructors that do not contain recursive calls to the

inductive type we’re generating. In the binary search tree example, that means that

we can only choose the BstLeaf constructor. In that case, we introduce unknowns

in1 and in2 that correspond to the inputs to the generation, t that corresponds

to the generated tree, as well as two unknowns lo and hi corresponding to the

universally quantified variables of the BstLeaf case. We then try to unify in1

with lo, in2 with hi, and t with Leaf. Since lo, hi and t are unconstrained, the

unification succeeds and our derived generator returns Some Leaf.

When size is not zero, we have a choice. We can once again choose to satisfy the

BstLeaf constructor, which results in the generator returning Some Leaf. We can

also choose to try to satisfy the recursive BstNode constructor. After introducing

unknowns and performing the necessary unifications, we know that the end product

of this sub-generator will be Some (Node x l r). We then proceed to process the

constraints that are enforced by the constructor.

To begin with, we encounter lo < x. Since lo is mapped to the input in1,

we need to generate x such that x is (strictly) greater than in1. We do that

by invoking the typeclass method arbitraryST for generating arbitrary natural

120



numbers satisfying the corresponding predicate. Now, when we encounter the x <

hi constraint both x and hi are instantiated so we need to check whether or not

the constraint holds. The notation p? looks for a Dec instance of p to serve as the

boolean condition for the if statement. If it does, we proceed to satisfy the rest

of the constraints by recursively calling our generator. If not, we can no longer

produce a valid binary search tree so we must fail, returning None.

One additional detail in the generator is the use of the backtrack combina-

tor instead of frequency to choose between different constructor options. The

backtrack combinator operates exactly like frequency to make the first choice—

choosing a generator with type G (option A) based on the induced discrete dis-

tribution. However, should the chosen generator fail, it backtracks and chooses a

different generator until it either exhausts all options or the backtracking limit.

5.1.4 Nonlinearity

As a last example, we will use an artificial characterization of “good” trees to

showcase one last difficulty that arises in the context of dependent inductive types:

non-linear patterns.

Inductive goodTree : natÑ natÑ TreeÑ Prop :=

| GoodLeaf : @ n, goodTree n n Leaf.

In this example, goodTree in1 in2 t only holds if the tree t is a Leaf and in1

and in2 are equal, as shown by the non-linear occurrence of n in the conclusion

of GoodLeaf. If we assume that both in1 and in2 will be inputs to our generator,

then this will translate to an equality check in the actual generator.

121



Fixpoint gen_good (in1 in2 : nat) size : G (option Tree) :=

match size with

| 0 => backtrack [(1, if in1 = in2 ? then ret (Some Leaf)

else ret None)]

| S _ => backtrack [(1, if in1 = in2 ? then ret (Some Leaf)

else ret None)]

end.

We can see the equality check in1 = in2 ? in the derived generator above.

We can also see that the structure of the generator is similar to the one for binary

search trees, even though it seems unnecessary. In particular, we encounter calls

to backtrack with a single element list (which is equivalent to just the inner gen-

erator), as well as an unnecessary match on the size parameter with duplicated

branch code. This uniform treatment of generators facilitates the proof term gen-

eration of Section 5.3. In addition, we could obtain the simpler and slightly more

efficient generators by a straight-forward optimization pass.

5.2 Generating Good Generators

We now describe the generalized narrowing algorithm more formally.

5.2.1 Input

Our generation procedure targets simply-typed inductive data, which satisfy a

particular form of dependently-typed inductive relations. More precisely, we take

as input an inductively defined relation R with p arguments of types A1, A2, ¨ ¨ ¨ , Ap,

where each Ai is a simple inductive type. Each constructor C in the definition of R

takes as arguments some number of universally quantified variables (x) and some

preconditions—each consisting of an inductive predicate S applied to constructor

expressions (only consisting of constructors and variables) e; its conclusion is R

122



itself applied to constructor expressions e1, e2, ¨ ¨ ¨ , ep.

Inductive R : A1 Ñ A2 Ñ ¨ ¨ ¨ Ñ Ap Ñ Prop :=

. . . | C : @ x, S eÑ R e1 e2 ¨ ¨ ¨ ep | . . .

In Section 5.4 we demonstrate the applicability of this class in practical situations,

in and discuss possible extensions to this format as future work (Section 5.5).

5.2.2 Unknowns and Ranges

We first need to formalize unknowns, which are used to keep track of sets of po-

tential values that variables can take during generation, just like in Luck. One

important difference is that sometimes unknowns will be provided as inputs to the

generation algorithm; this means that they can only take a single fixed value, but

that value is not known at derivation time. Looking back at the complete trees

example, we knew that in1 would be an input to gen complete. However, when

deriving the generator we could not make any assumptions about in1: we could

not freely unify it with O for instance—we had to pattern match against it.

We represent sets of potential values as ranges.

r := undefτ | fixed | u | C r

The first option for the range of an unknown is undefined (parameterized by a

type). The unknowns we want to generate (such as tree, in the binary search tree

example) start out with undefined ranges. On the other hand, a range can also

be fixed, signifying that the corresponding unknown’s value serves as an input at

runtime (in1 and in2 in the binary search tree example). Next, a range of an

unknown can also be a different unknown, to facilitate sharing. Finally, a range

can be a constructor C fully applied to a list of ranges.

We use a map from unknowns to ranges, written κ, to track knowledge about

unknowns during generation. For each constructor C, we initialize this map with

the unknowns that we want to generate mapped to undefτ appropriate types τ ,

the rest of the parameters to R mapped to fixed , and the universally quantified

123



variables of C also mapped to appropriate undefined ranges. For instance, to

generate a tree such that bst in1 in2 tree holds for all in1 and in2, the initial

map for the BstNode constructor would contain in1 and in2 mapped to fixed , tree

mapped to undefTree, and the unknowns lo, hi, x, l and r introduced by BstNode

mapped to corresponding undefined ranges:

κ := pin1 ÞÑ fixedq ‘ pin2 ÞÑ fixedq

‘ ptree ÞÑ undefTreeq

‘ plo ÞÑ undefnatq ‘ phi ÞÑ undefnatq

‘ px ÞÑ undefNatq ‘ pl ÞÑ undefTreeq ‘ pr ÞÑ undefTreeq

5.2.3 Overview

We have already hinted at the general structure of the generation algorithm in

Section 5.1. Let’s assume in1 . . . inn will be the inputs to the generator and

that out1 . . . outm will be the outputs. We then produce a bounded generator

that takes in1 through inn as inputs, as well as an additional natural number

parameter size:

Fixpoint aux_arb size in1 ... inn :=

match size with

| O => backtrack [ ... (wC, gC) ...]

| S size’ => backtrack [ ... (wC, gC) ...]

end.

Both when size is zero and when it is not, we use backtrack to choose between

a number of generators. In the latter case, we have one sub-generator gC for each

constructor C. The former case is nearly the same, except that the sub-generators

that perform recursive calls to aux arb are filtered out of the list. The weights to

backtrack (wc) can be chosen by the user via lightweight annotations, similar to the

local distribution control of Luck, as we will see in the evaluation section (5.4.2).

The general structure of each gC appears in Figure 5.1.

The outer component of every sub-generator will be a sequence of pattern

124



Figure 5.1: General Structure of each Sub-generator

matches: unification will sometimes signify that we need to match an unknown

against a pattern. For instance, in the case of complete trees we needed to match

in1 against O. Each such pattern match has two branches: one that is considered

successful and allows generation to continue; and one that catches all other possible

cases and fails (returns None).

After nesting all possible matches, we need to ensure that any equalities raised

by the unification hold. In the successful branch of the innermost match (if any),

we start a sequence of if-equality-statements. For example, in the case of good trees

that were demonstrating non-linear patterns, we checked that in1 = in2 before

continuing with the generation.

The equalities are followed by a sequence of instantiations and checks that are

enforced by the hypotheses of C. Looking back at the binary search tree example,

we needed to generate a random x such that x was greater than the lower bound

in1; we also needed to check whether that generated x was less than the upper

bound in2.

Finally, we combine all the unknowns that we wanted to generate for in a Some

to return them as the final result. Note that, just like in the nonEmpty trees

example, we might need to perform a few more instantiations if some unknowns

necessary remain completely unconstrained.

125



Figure 5.2: Unification Monad

5.2.4 Unification

The most important component of the derivation algorithm is the unification. For

every constructor C with conclusion R e1 e2 ¨ ¨ ¨ ep, we convert each ei to a range

and unify it with the corresponding unknown argument of R. For instance, in the

binary search tree example, we would unify the in1, in2, and tree unknowns with

lo, hi, and Node x l r respectively.

The entire unification algorithm is written inside a state-option monad, pre-

sented in Figure 5.2. To keep track of information about unknowns we use a Map

from Unknowns to Ranges; to track necessary equalities—like in the good tree of

the previous section—we keep a Set of pairs of unknowns; to produce the necessary

pattern matches—like in complete trees—we gather them in a List ; finally, to be

able to produce fresh unknowns on demand, we keep all existing unknowns in a

Set .

Each of the four components of the state can be modified through specific

monadic actions. The update action sets the range of an unknown; the equality ac-

tion registers a new equality check; pattern adds a pattern match; and fresh gen-

126



Figure 5.3: Unification Algorithm

erates and returns a new unknown. We write κrus for the action that looks up an

unknown, and we write ; for the monadic bind operation and K to signify failure

(the constant action λs. Nothing).

The main unification procedure, unify , is shown in Figure 5.3. At the top

level, we only need to consider three cases for unification—unknown-unknown,

constructor-constructor, and unknown-constructor—because the e1 through ep are

constructor expressions containing only constructors and variables, which are trans-

lated to constructor ranges and unknowns respectively. Most cases are unsurpris-

ing; the main important difference from regular unification is the need to handle

potentially fixed—but not statically known—inputs.

127



Case ui ÞÑ undef : If the range of either of the unknowns, say u1, is undefined,

we update κ so that u1 points to u2 instead. From that point on, they correspond

to exactly the same set of potential values. Consider the goodTree example of the

previous section, where in the initial map for GoodLeaf we have unknowns in1

and in2 as inputs to the generator, tree as the unknown being generated, and n

introduced by GoodLeaf:

κ := pin1 ÞÑ fixedq ‘ pin2 ÞÑ fixedq ‘ ptree ÞÑ undefTreeq ‘ pn ÞÑ undefnatq

We first unify in1 with n; since n ÞÑ undefnat in the initial map, the unification

updates that map such that n ÞÑ in1.

Case ui ÞÑ u1i: If either unknown maps to another unknown we recursively try

to unify using the new unknown as input. For example, when we try to unify in2

with n in the updated map for GoodLeaf, we recurse and attempt to unify in1

with in2.

Case u1 ÞÑ C1 r11 ¨ ¨ ¨ r1n and u2 ÞÑ C2 r21 ¨ ¨ ¨ r2m: If both ranges have some

constructor at their head, there are two possibilities: either C1 ‰ C2, in which case

the unification fails, or C1 = C2 and n = m, in which case we recursively unify

r1i with r2i for all i. We maintain the invariant that all the ranges that appear

as arguments to any constructor contain only constructors and unknowns, which

allows us to call unify and reduce the total number of cases.

The last two cases, dealing with fixed ranges, are the most interesting ones.

Case u1 ÞÑ fixed and u2 ÞÑ fixed : If both u1 and u2 map to a fixed range in

κ, then we need to assert that whatever the values of u1 and u2 are, they are

equal. This will translate to an equality check between u1 and u2 in the derived

generator. We record this necessary check using equality and proceed assuming

that the check succeeds, setting one unknown’s range to the other. Continuing

with the goodTree example, when we attempt to unify in1 and in2, both have

fixed ranges. This results in the equality check n1 = n2 that appears in gen good.

128



Case ui ÞÑ fixed and uj ÞÑ C r1 ¨ ¨ ¨ rn: The last possible configuration pairs a

fixed range against a constructor range C r1 ¨ ¨ ¨ rn. This will result in a pattern

match in the derived generator. We saw such an example in the previous section in

the form of complete’. One branch of the match will be against a representation

of the range C r1 ¨ ¨ ¨ rn and lead to success, while the other branch will terminate

the generation with failure in all other cases. To match against C r1 ¨ ¨ ¨ rn, we

will need to convert all of the ranges r to patterns p, while dealing with potentially

non-linear appearances of unknowns inside the constructor range. This is done by

traversing the ranges r, applying a helper function matchAux to each, and logging

the result in the state monad using pattern.

If r is itself a constructor C, we need to recursively traverse its ranges, convert

them to patterns p and combine them into a single pattern C p. If r is an unknown

u, we look up its range inside the current map. If it is undefined we can use u

as the bound variable in the pattern; we update the binding of u in the map to

be fixed , as it will be extracting information out of the fixed discriminee. On the

other hand, if the range is fixed , we need to create a fresh unknown u1, use that as

the pattern variable and then enforce an equality check between u and u1. Finally,

the unknown and constructor cases result in appropriate recursions.

5.2.5 Handling Hypotheses

Another important part of the derivation of a generator for a single constructor C

is handling all of its hypotheses. Given a hypothesis of the form S e1 e2 ¨ ¨ ¨ em,

we once again identify a few different cases.

If there is exactly one undefined variable amongst the ei, we need to instantiate

it. That translates either to a call to the generic arbitraryST function, or to a

recursive call to the currently derived generator. The bst predicate provides exam-

ples of both: after the unification is complete, the map κ will have the following

form:
κ := pin1 ÞÑ fixedq ‘ pin2 ÞÑ fixedq ‘ ptree ÞÑ Node x l rq

‘ plo ÞÑ in1q ‘ phi ÞÑ in2q

‘ px ÞÑ undefNatq ‘ pl ÞÑ undefTreeq ‘ pr ÞÑ undefTreeq

When processing the hypothesis lo < x, the unknown lo maps to in1which in

129



turn is fixed , while x is still undefined. Thus, to generate x such that lo < x holds,

we need to invoke the arbitraryST method of GenSuchThat for (fun x => in1

< x). After processing this constraint, the range of x becomes to fixed : we know

that it has a concrete value but not what it is. For all intents and purposes it can

be treated as if it was an input to the generation from this point on.

κ := pin1 ÞÑ fixedq ‘ pin2 ÞÑ fixedq ‘ ptree ÞÑ Node x l rq

‘ plo ÞÑ in1q ‘ phi ÞÑ in2q ‘ px ÞÑ fixedq ‘ pl ÞÑ undefTreeq ‘ pr ÞÑ undefTreeq

Therefore, when processing the bst lo x l, only l is unconstrained. However,

since generating l such that bst lo x l holds is exactly the generation mode we

are currently deriving, we just make a recursive call to aux arb to generate l.

The second possibility for a hypothesis is that all expressions ei are completely

fixed, in which case we can only check whether this hypothesis holds. For example,

when we encounter the x < hi constraint, both x and hi have already been in-

stantiated and therefore we need to check whether x < hi holds at runtime, using

the dec method of the decidability typeclass.

A final possibility is that a hypothesis could contain multiple undefined un-

knowns. Deciding which of them to instantiate first and how many at a time is a

matter of heuristics. For example, if in the constraint bst lo hi t, if all of lo,

hi and t were undefined, we could pick to make a call to arbitraryST bst, or we

could instantiate arguments one at a time. In our implementation, we prioritize

recursive calls whenever possible; we leave further exploration and comparison of

different heuristics as future work.

5.2.6 Assembling the Final Result

After processing all hypotheses we have an updated constraint map κ, where, com-

pared to the constraint map after the unification, some unknowns have had their

ranges fixed as a result of instantiation. However, there might still be remaining

unknowns that are undefined. Such was the case for the nonEmpty tree example

where x, l and r were all still undefined. Thus, we must iterate through κ, instan-

tiating any unknowns u for which κrus = undef . To complete the generator gC

130



for a particular constructor, we look up the range of all unknowns that are being

generated, convert them to a Coq expression, group them in a tuple and return

them.

5.2.7 Putting it All Together

A formal presentation of the derivation for a single constructor is shown in Fig-

ure 5.4. Here, for simplicity of exposition, we allow only a single output out. In

general, even though our implementation of the algorithm deals with a single out-

put as well, the algorithm presented in this section can handle an arbitrary number

of outputs.

Given an inductive relation R and a particular constructor C : @ x, S e Ñ

P e1 e2 ¨ ¨ ¨ ep, our goal is to generate out such that for all in, the predicate

R e11 e
1
2 . . . e1p holds via constructor C, where the e1s are constructor expressions

containing only variables in toutu
Ť

in. First, we create an initial map κ as de-

scribed in Subsection 5.2.2. We use it to construct an initial state st for the unifica-

tion monad (Subsection 5.2.4), where the patterns and equalities fields are empty,

while the unknowns field holds in, out and all universally quantified variables of

C. We then evaluate a sequence of monadic actions, each one attempting to unify

ei with its corresponding e1i. If at any point the unification fails, the constructor

C is not inhabitable and we fail. If it succeeds, we proceed to produce all of the

nested pattern matches and equalities in order (emit patterns and emit equalities),

as described in Subsection 5.2.3. Afterwards, we process all the hypotheses using

emit hypotheses as described in Subsection 5.2.5, emitting instantiations or checks

as appropriate, while updating the constraint set κ. Finally, we complete the gen-

eration by instantiating all unknowns that are still undefined and constructing the

result by reading off the range of out in the final constraint set (5.2.7).

5.3 Generating Correctness Proofs

This section describes how we automatically generate proofs that our generators

are sound and complete with respect to the inductive predicates they were derived

131



Figure 5.4: Derivation of one case of a generator gC (for a single constructor C),
in pseudo-code. Boxes delimit “quasi-quoted” Coq generator code to be emitted.
Inside boxes, italic text indicates “anti-quoted” pseudo-code whose result is to be
substituted in its place.

132



from. Following the translation validation approach of Pnueli et al. [107], rather

than proving once and for all that every generator we build is guaranteed to be

correct, we build a proof term certifying that each specific generator is correct at

the same time as we build the generator itself. In fact, the same algorithm that

is used to compile generators from inductive predicates is also used to compile

their corresponding proofs of correctness. We leverage an existing verification

framework for QuickChick, designed to allow users to (manually) prove soundness

and completeness of generators built from QuickChick’s low-level primitives [105].

This verification framework assigns semantics to each generator by mapping it

to its set of outcomes, i.e. the elements that have non-zero probability of being

generated. This enables proving that all the elements in a set of outcomes satisfy

some desired predicate (soundness), and that all the elements that satisfy the

predicate are in the set of outcomes (completeness). To ease reasoning about

user-defined generators, QuickChick provides a library of lemmas that specify the

behavior of built-in combinators.

We leverage this framework to specify the set of outcomes of derived generators:

given an inductive relation and some input parameters, it should be exactly the set

of elements that satisfy the inductive relation. Automatic generation of proofs is

analogous to generation of generators and is done using the same algorithm. Just

as generators are derived by composing generator combinators that we select by

examining the structure of the inductive predicate, proofs are derived by composing

the corresponding correctness lemmas that are provided by QuickChick. We glue

these proof components together in order to obtain proofs for unsized generators

using typeclass resolution, just as we did to obtained unsized generators. To enable

this, we extend the typeclass infrastructure of QuickChick to encode properties of

generators as typeclasses and we automatically generate instances of these classes

for the derived generators.

Section 5.3.1 briefly describes QuickChick’s verification framework, focusing

on the proof generation machinery. Section 5.3.2 outlines the structure of the

generated proofs and describes all the terms, definitions, and proofs that we need

to generate in order to obtain the top-level correctness proof. Finally, Section 5.3.3

describes the extensions to the typeclass infrastructure of QuickChick that we made

133



in order to facilitate proof generation.

5.3.1 Verification Framework

QuickChick assigns semantics to generators by mapping them to the set of values

that have non-zero probability of being generated. Recall from Chapter 2 that gen-

erators are functions mapping a random seed and a natural number to an element

of the underlying type. The semantics of a generator for a given size parameter is

exactly the values that can be generated for this particular size parameter.

JgKs = t x | Dr, g s r = x u

We can then define the semantics of a generator by taking the union of these sets

over all possible size parameters.

JgK =
ď

sPN

JgKs

It may seem as though we could have skipped the first definition and inlined its

right-hand side in the second. However, by separating out the first definition we

can additionally characterize the behavior of generators with respect to the size

parameter. For instance, we can define the class of size-monotonic generators,

whose set of outcomes for a given size parameter is included to the set of outcomes

for every larger size parameter.

sizeMonotonic g
def
= @s1 s2, s1 ď s2 Ñ JgKs1 Ď JgKs2

Another useful class of generators is bound-monotonic generators, i.e., bounded

generators that behave monotonically with respect to their bound parameter. Re-

call that bounded generators are parameterized by a natural number which bounds

the size of the generated terms.

boundMonotonic g
def
= @s s1 s2, s1 ď s2 Ñ Jg s1Ks Ď Jg s2Ks

134



Together, these characterizations allow us to obtain convenient specifications for

combinators. To support reasoning about size-monotonicity properties, we encode

them as typeclasses and provide lemmas (encoded as typeclass instances) that

various generator combinators are size monotonic if all the involved generators are

size monotonic. For instance, here is the lemma for monadic binding:

sizeMonotonic g @x P JgK, sizeMonotonic pf xq

sizeMonotonic pg ąą= fq
monBind

There is a similar lemma that guarantees that sized is size monotonic but it

requires both bound and size monotonicity for the bounded generator.

sizeMonotonic g @s, boundMonotonic pg sq

sizeMonotonic psized gq
monSized

To prove that sized is monotonic, we also need a second premise that requires

the bounded generator to be bound monotonic. This is because sized will use the

internal size parameter of G to instantiate the bound parameter of the generator.

To support reasoning about generators, QuickChick provides a library of lem-

mas that specify the semantics of generator combinators and can be used to com-

positionally verify user defined generators. These lemmas can be seen as a proof

theory for the G monad; one can apply them in order to build derivations that

computations in this monad are correct.

The simplest example of a correctness lemma is the one of ret. Unsurprisingly,

the semantics of the return of the G monad is just a singleton set.

Jret xK = t x u
semRet

The lemma for monadic bind is more interesting. In particular, the expected

specification that composes the set of outcomes of the two generators using an

indexed union is true, but under the additional requirement that the generators

135



involved are size monotonic.

sizeMonotonic g

@x P JgK, sizeMonotonic pf xq JgK = s @x P s, Jf xK = h x

Jg ąą= fK =
ď

xPs

h x
semBind

The intuition behind this requirement [105] is that the set on the left-hand side

of semBind contains elements that are generated when the same size parameter

is threaded to both generators, whereas the right-hand side indexes over elements

that have been generated by g when the size parameter ranges over all natural

numbers. To address this mismatch, we use monotonicity. In particular, to obtain

the right to left inclusion we can pick a witness for the size parameter that is greater

than both of the size parameters we obtain as witnesses from the hypothesis, such

as their sum (or max) and then use monotonicity to prove the inclusion.

The correctness lemma for sized is crucial for proof generation, as it gives us

proofs about unbounded generators. It states that the semantics of the combinator

is the union of the sets of outcomes of the bounded generator indexed over all

natural numbers.

boundMonotonic g

p@x P N, sizeMonotonic pg xqq @x P N, Jg xK = f x

Jsized gK =
ď

xPN

f x
semSized

The lemma requires that the bounded generator is size monotonic for all bounds

and, in addition, that it is monotonic in the bound parameter itself. These condi-

tions are required because the set on the left-hand size of the specification contains

elements that are generated from g using same number for the size and the bound,

whereas in the right-hand side the bound and the size parameter range indepen-

dently over natural numbers. As in the case of the monadic bind, we can work

around this mismatch using monotonicity.

136



5.3.2 Proof Generation

This section describes the proof terms that we generate for each derived generator.

To describe the structure of the constructed proof terms, we will use the generator

for binary search trees presented in 5.1 as a running example. The terms themselves

have the same structure as the generators and are generated using using the same

algorithms, replacing the generator building blocks with their proof counterparts.

For brevity, we assume a single output of the generation procedure; we can easily

encode multiple outputs using tuples.

Top-level proof Let R : AÑ Prop be an inductive predicate and g : option A

a derived generator for this predicate. We want to generate proofs that g is sound

and complete with respect to this predicate, i.e., that the set of outcomes of the

generator is exactly the elements that satisfy P :

isSomeX JgK = SomerP s

Since our generators can fail (their return type is option A), we need to take the

image of P under Some. We also remove None from the set of outcomes of g by

intersecting it with isSome, i.e., the set of elements whose outermost constructor

is Some.

In the case of binary search trees, this amounts to saying that the set of out-

comes of the unbounded generator (which we obtain using sized; it is automati-

cally derived by typeclass resolution) is exactly the set of trees that satisfy the bst

predicate for some given inputs.

@ in1 in2, isSomeX Jsized pgen bst in1 in2qK = Somerbst in1 in2s

As expected, to generate proofs about unbounded generators we have to first

generate proofs about bounded generators. These proofs can be then lifted using

the specification of sized that we saw in the previous section.

137



Proofs for Bounded Generators Before deriving correctness proofs for such

bounded generators, we first need to settle on a specification. To this end, for each

inductive definition for which we derive a generator, we generate automatically an

operator, which we call iter, that maps a natural number to the set of elements

that inhabit the inductive relation and whose proof has height less or equal to

the given natural number. This set will serve as a specification for the bounded

generator for a given size parameter.

This operator has exactly the same shape as the generator, and it is obtained

using the same algorithm; the only thing that changes is that, instead of using

the combinators of the G poption −q monad, we use those of the set monad.

For instance, in the case of the bst predicate the iter operator looks like the

following:

iter bst in1 in2 s =

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

if s = 0,

t Leaf u,

if s = s1 + 1,

t Leaf u Y
Ť

xąin1
if x < in2 then

Ť

lPpiter bst in1 x s1q

Ť

rPpiter bst x in2 s1q
t Node x l r u

else H

The parallels with the generator stand out: we can obtain this by replacing

ret pSome −q with the singleton set (i.e., the return of the set monad),n bind

with indexed union (i.e., the bind of the set monad), and ret None with empty

set (i.e., the fail action of the set monad).

Using iter we can accurately characterize the set of outcomes of a bounded

generator:

isSomeX Jg nK = Someriter ns

The proof term for this proposition also has the same structure as the generator,

but this time, instead of monadic combinators, we use the corresponding proof

rules. Since we only care to specify the Some part of the set of outcomes of the

generators, we can use slightly modified proof rules that require a weaker notion

138



of generator monotonicity. In particular, the new rules only require the generator

to be monotonic in the Some part of its set of outcomes. This is captured by the

following two definitions.

sizeMonotonicOpt g
def
= @s1 s2, s1 ď s2 Ñ isSomeX JgKs1 Ď isSomeX JgKs2

boundMonotonicOpt g
def
= @s s1 s2, s1 ď s2 Ñ isSomeX Jg s1Ks Ď isSomeX Jg s2Ks

Using the above definitions we can formulate the alternative proof rules. Below

are examples of reformulated lemmas for bind and size.

sizeMonotonicOpt g @x, sizeMonotonicOpt pf xq

JgK = s @x, isSomeX Jf xK = h x

isSomeX Jg ąą= fK =
ď

xPs

h x
semOptBind

boundMonotonicOpt g

@n P N, sizeMonotonicOpt pg nqq @n, isSomeX Jg nK = h n

isSomeX Jsized gK =
ď

nPN

h n
semOptSized

Our goal is to lift specification from bounded to unbounded generators using

the corresponding lemma for sized. To that end, we need a proof that the union of

these sets produced by iter over all natural numbers is exactly the set of elements

that satisfy the predicate.
ď

nPN

iter n = P

The above proof also requires us to generate a proof that these sets operators are

monotonic in the size parameter.

@n1 n2, n1 ď n2 Ñ iter n1 Ď iter n2

Monotonicity proofs As described above, to produce correctness proofs we

need to also produce monotonicity proofs for the unbounded generators. These

proofs are used in both constructing the correctness proofs for bounded combina-

139



tors, as well as lifting them to unbounded ones. In order to be able to use the

generators as individual components in other derived generators that come with

correctness proofs, we also lift size monotonicity proofs to unbounded generators.

As in previous cases, this is done using the corresponding lemma for sized. Again,

we automate this process by providing the appropriate typeclass instances. Note

that the choice to generate proofs of this weaker notion of monotonicity is not

essential; we could have generated proofs of full monotonicity instead. However,

we opted for this weaker notion as it significantly simplifies the proof of bound

monotonicity.

5.3.3 Typeclasses for Proof Generation

As we did for generators in Section 5.2, we rely on typeclasses to connect indi-

vidual proof components and lift specifications to unbounded generators. In this

subsection we describe the extensions to the typeclass infrastructure of QuickChick

presented in Chapter 2, which are needed in order to achieve this. We use Coq

notation so that we can display the actual typeclass definitions; the notation :&:

denotes set intersection and the notation @: the image of a function over some set.

Monotonicity First we extend the typeclass hierarchy to encode size and bound

monotonicity properties.

Class SizeMonotonicOpt {A} (g : G (option A)) :=

{ monotonic_opt :

@ s1 s2,

s1 <= s2Ñ

isSome :&: semGenSize g s1

\subset

isSome :&: semGenSize g s2 }.

140



Class BoundMonotonicOpt {A} (g : natÑ G (option A)) :=

{ sizeMonotonicOpt :

@ s s1 s2,

s1 <= s2Ñ

isSome :&: semGenSize (g s1) s

\subset

isSome :&: semGenSize (g s2) s }.

We automatically generate proofs that derived bounded generators are bound and

size monotonic by explicitly constructing the proof term and we automatically cre-

ate instances of these classes. Size monotonicity can then be derived for unbounded

generators using the following provided instance.

Instance SizeMonotonicOptOfBounded (A : Type) (P : AÑ Prop)

(H1 : GenSizedSuchThat A P)

(H2 : @ s : nat, SizeMonotonicOpt (arbitrarySizeST P s))

(H3 : BoundMonotonicOpt (arbitrarySizeST P))

: SizeMonotonicOpt (arbitraryST P).

Given a GenSizedSuchThat instance for a predicate P (H1 above), which pro-

vides access to a constrained bounded generator arbitrarySizeST P, and in-

stances of size and bound monotonicity for this generator (H2 and H3), we can

obtain an instance of size monotonicity for unbounded generator for this predi-

cate, arbitraryST P, which is also obtained automatically by the corresponding

instance.

Set Operators To express the correctness property of generators we introduce

a typeclass that gives a generic interface to predicates which are equipped with an

iter operator.

Class Iter {A : Type} (P : AÑ Prop) :=

{ iter : natÑ set A;

iter_mon : @ n1 n2, n1 <= n2Ñ iter n1 \subset iter n2;

iter_spec : \bigcup_(n : nat) (iter n)ÐÑ P }.

141



Correctness We can define a subclass of the above class, which is used to char-

acterize bounded generators that are correct with respect to a predicate.

Class BoundedSuchThatCorrect {A} (P : AÑ Prop) {Iter A P}

(g : natÑ G (option A)) :=

{ boundedCorrect :

@ s, isSome :&: semGen (g s)ÐÑ Some @: (iter s)

}.

In the above, we are requiring that P is an instance of the Iter class in order to be

able to use iter to express the correctness property. Following our usual practice,

we also define a class for correct unbounded generators.

Class SuchThatCorrect {A} (P : AÑ Prop) (g : G (option A)) :=

{ correct :

isSome :&: semGen gÐÑ Some @: P

}.

As before, we automatically generate instances for correctness of bounded gener-

ators by proving the proof terms, and we then lift them to unbounded generators

by adding the corresponding instance.

Instance SuchThatCorrectOfBounded (A : Type) (P : AÑ Prop)

(H1 : GenSizedSuchThat A P) (H2 : Iter P)

(H3 : @ s : nat, SizeMonotonicOpt (arbitrarySizeST P s))

(H4 : BoundMonotonicOpt (arbitrarySizeST P))

(H5 : SizedSuchThatCorrect P (arbitrarySizeST P))

: SuchThatCorrect P (arbitraryST P).

The above instance is similar to the one for monotonicity but it additionally re-

quires an instance for correctness of the unbounded generator (H5). It also requires

an instance of the Iter class for P (H2). This instance is required as an (implicit)

argument to the instance of correctness and also in the proof itself as it provides

the specification of iter.

142



Figure 5.5: Evaluation Results

5.4 Evaluation

We evaluate two aspects of our generators: the applicability of the restricted class of

inductive types we target (Section 5.4.1) and the efficiency of the derived generators

compared to handwritten ones (Sections 5.4.2 and 5.4.3).

5.4.1 QuickChecking Software Foundations

To evaluate the applicability of our algorithm we tried to automatically test a

large body of specifications that are representative of those commonly used in ver-

ifying properties of programming languages. Such a body of specifications can be

found in Software Foundations [106], a machine-checked textbook for programming

language theory and verification using Coq. We attempted to automatically test

every theorem or lemma in the suggested main course of the textbook, all the way

through the simply typed lambda calculus chapters.

Our findings are summarized in Figure 5.5. To avoid skewing our findings,

we separately count certain classes of examples. Of the 232 nontrivial (non-unit-

test) theorems we considered, 194 (84%) are directly amenable to PBRT; the 38

remaining theorems deal with generation for higher-order properties, which we

deem too difficult for automatic test-case generation (we give examples below).

Of the 194 theorems we believed “should be testable,” 160 (83%) could be tested

using our implemented algorithm. This demonstrates that the class of inductive

propositions targeted by our narrowing generalization is broad enough to tackle

many practical cases in the Software Foundations setting. The rest of this section

discusses the different classes of theorems we considered and our methodology for

testing each one.

143



First of all, Software Foundations incorporates a large number of unit tests, like

the following test for disjunction:

Example test_orb1: (orb true false) = true.

Such examples are trivially checkable and uninteresting from a generation perspec-

tive.

On the other hand, a class of lemmas that are completely out of scope of gener-

ation techniques deal with universally quantified higher-order properties. Consider

the following canonical example of a Hoare triple:

Theorem hoare_seq : forall P Q R c1 c2,

{{Q}} c2 {{R}} -> {{P}} c1 {{Q}} -> {{P}} c1;;c2 {{R}}.

Testing such a property would require generating constrained random elements

of type state -> Prop, which is beyond current automatic random generation

techniques. For context, the number of higher-order properties we excluded were

38; 36 of them came from the Logic and Hoare logic chapters that heavily use

quantification over Props.

Finally, a third class of properties that could be interesting from a generation

perspective but are a poor fit for property-based random testing are existential

properties. For example, consider progress for a type system:

Conjecture progress :

forall t T, |- t \in T -> value t \/ exists t’, t ===> t’.

While generating t and T such that t has type T is both interesting and possible

within the extension of QuickChick presented in this paper, it is not possible to

decide whether the conclusion of the property holds! However, most of the time, it

is possible to rewrite existential conclusions into decidable ones. For example, for

a deterministic step relation, we could write a partial step function and rewrite

the conclusion to check whether the t can take a step: isSome (step t).

With the above in mind we proceeded to automatically derive generators for

all simple inductive types, generators for different modes for inductive relations,

as well as proofs for both. We completely elided unit tests, counted (but other-

wise ignored) properties that required generation of higher order properties, and

144



converted conclusions to decidable when necessary. We then turned each property

into a Conjecture—an automatically admitted property—and attempted to test

it with QuickChick. For example, the preservation property became:

Conjecture preservation : forall t t’ T,

|- t \in T -> t ===> t’ -> |- t’ \in T.

QuickChick preservation.

This simulates a common workflow of Coq users: in order to prove a large theo-

rem (e.g. type safety), one often Admits smaller lemmas to construct the proof,

discharging them afterwards. However, admitting a lemma that is too strong can

lead to a lot of wasted effort and frustration. Using QuickChick, users can uncover

bugs early on while building confidence in such conjectures.

For a small portion of the theorems we allowed minor changes (i.e., convert-

ing preconditions like beq nat n1 n2 to n1 = n2). Overall, we only performed

one major change: converting Software Foundation Maps from a functional rep-

resentation to an explicit list-based one. A functional representation for maps is

convenient for looking up element’s associations, but—unless the domain of the

function is bounded—makes it completely impossible to do the reverse. That re-

quirement is very common in generation—for instance, picking a variable with a

specific type from a given context. Moreover, a lot of properties needed to decide

equivalence of two maps, which is also impossible in a functional representation.

Therefore, we changed maps to a more generation-friendly variant. The new map

code was similar in length with respect to the old one („ 40 lines), including au-

tomatic derivations of generators and decidability instances, but resulted in many

syntactic changes across the rest of the chapters.

5.4.2 QuickChecking Noninterference

To evaluate the efficiency of our approach, we conducted a case study comparing

the runtime performance of our derived generators against carefully tuned hand-

written ones: the generators for the information-flow control experiments in Chap-

ter 3, which generate indistinguishable pairs of machine states using QuickChick to

discover noninterference violations. We reused the mutation testing methodology

145



to systematically evaluate our derived generators and ensure they had roughly the

same bug-finding capabilities. Our experiments showed that the derived generators

were 1.75ˆ slower than the corresponding handwritten ones, while producing the

same distribution and bugfinding performance.

To summarize Chapter 3, dynamic information-flow control tags data values

with security levels, called labels, and uses them to prevent flows from high (secret)

to low (public) data. We enhanced a simple stack machine with label information

and tested it for termination-insensitive noninterference: given two indistinguish-

able machine states, i.e. states that differ only in high data, running them to

completion should yield indistinguishable states. This is a prototypical example

of a conditional property: if we were to generate pairs of arbitrary machine states

and discard those that are not indistinguishable, we would almost never exercise

the conclusion! Instead, we generated a single arbitrary machine state first and

then varied it to produce a new one that was indistinguishable (by construction).

For our evaluation, we focused on a stronger property (also considered in Chap-

ter 3), single-step noninterference, which only runs both machines for a single step.

As we saw, this makes generators for valid initial states substantially simpler: since

only one instruction will be executed, memories do not need to be longer than two

elements (no more than one element can be accessed by each machine), integer

values that are valid pointers are only 0 or 1 (since the memories are two elements

long), and stacks do not need to be large either.

Consider, for instance, a generator for stacks (of a given length n), which can

be empty (Mty), cells that store a tagged integer (Cons), or specially marked stack

frames that store a program counter to be used by a future Return instruction

(RetCons); gen atom produces mostly in-bounds tagged integers.

Fixpoint gen_stack (n : nat) : G Stack :=

match n with

| O => returnGen Mty

| S n’ =>

freq [ (10, liftGen2 Cons gen_atom (gen_stack n’))

; (4, liftGen2 RetCons gen_atom (gen_stack n’)) ]

end.

146



The behavior of this generator can be described by a simple inductive predicate,

where good atom describes the behavior of gen atom.

Inductive good_stack : nat -> Stack -> Prop :=

| GoodStackMty : good_stack 0 Mty

| GoodStackCons : forall n a s ,

good_atom a -> good_stack n s ->

good_stack (S n) (a :: s)

| GoodStackRet : forall n pc s,

good_atom pc -> good_stack n s ->

good_stack (S n) (RetCons pc s).

Finally, we can achieve the same distribution with a weight annotation before

deriving generators.

QuickChickWeights [(GoodStackCons, 10); (GoodStackRet, 4)].

Derive ArbitrarySizedSuchThat for (fun s => good_stack n s).

The implicit assumptions for single-state generators are encoded in inductive pred-

icates, and the indistinguishability relation is used to derive variation generators.

We tested the single-step noninterference property 10000 times using both the

handwritten and the derived generators. Our derived generators were 1.75ˆ slower

than the handwritten ones, while both generators uncovered all mutants success-

fully. To ensure both generators yield similar distributions of inputs, we used

QuickChick’s collect to determine the number of times each instruction was gen-

erated during those 10000 tests (as this was the metric that was used to fine-tune

the handwritten generators in the first place).

The observed 1.75ˆ slowdown is mostly due to the added overhead of local

backtracking and extraneous matches like the one in the goodTree example of

Section 5.1. A few local optimizations (like pulling a match outside of a call to

backtrack) could further improve on our performance, but would require addi-

tional work to produce the corresponding proof terms. Still, this overhead is much

better than the order-of-magnitude overhead of interpreted approaches like Luck.

Finally, what we gain in return for this loss in performance is that the declara-

tive nature of the inductive predicates exposes exactly what assumptions are made

147



about the generated domain, while the produced proofs guarantee completeness

for that domain.

5.4.3 QuickChecking STLC

To conclude our evaluation, we will turn once again to the simply typed lambda

calculus. The original paper on proving generators correct in QuickChick [105],

included a similar case study. In particular, in that paper we modeled STLC in

Coq using a standard representation of lambda terms to include standard constant

natural numbers.

Inductive term : Type :=

| Const : nat -> term

| Id : var -> term

| App : term -> term -> term

| Abs : term -> term.

The types of the calculus are just natural numbers and arrows:

Inductive type : Type :=

| N : type

| Arrow : type -> type -> type.

To represent environments we used lists of types and variables are natural

numbers, indexes into this list. The rest of the typing relation is entirely standard

and shown in Figure 5.6.

The original case study included a sized generator for generating simply typed

lambda terms satisfying this typing relation and a sequence of buggy definitions

of the step relation. We then uncovered these bugs by testing two conditional

properties, progress and preservation, both of which use this typing relation as a

precondition. Finally, we proved in the QuickChick framework the correctness of

these generators with respect to the definition above.

We repeated this case study for the derived generators presented in this Chapter.

In particular, we attempted to derive generators for the typing relation above, as

well as all the simple inductive types (type and term) as necessary. We only needed

148



Inductive typing (e : env) : term -> type -> Prop :=

| TId :

forall x tau,

nth_error e x = Some tau ->

typing e (Id x) tau

| TConst :

forall n,

typing e (Const n) N

| TAbs :

forall t tau1 tau2,

typing (tau1 :: e) t tau2 ->

typing e (Abs t) (Arrow tau1 tau2)

| TApp :

forall t1 t2 tau1 tau2,

typing e t1 (Arrow tau1 tau2) ->

typing e t2 tau1 ->

typing e (App t1 t2) tau2.

Figure 5.6: STLC in Coq

149



to alter a single line, to remove the function call. We changed the precondition in

the TId rule from:

nth_error e x = Some tau

to

bind e x tau,

where bind is an inductive relation that represents indexing into the list.

With that single change we were able to easily derive the appropriate generators

and uncover the same set of (artificially induced) errors. The code necessary was

an order of magnitude less than in the handwritten approach (10 lines vs. 150)

and resulted in practically immediate feedback (compared to the 2 days that were

devoted in the original case study).

5.5 Conclusion and future work

In this chapter, we presented a narrowing-based algorithm for compiling depen-

dently typed inductive relations into generators for random data structures sat-

isfying these relations, together with correctness proofs. We implemented it in

the Coq proof assistant and evaluated its applicability by automatically deriving

generators to test the majority of theorems in Software Foundations.

In the future, we aim to extend our algorithm to a larger class of inductive

definitions, as well as adapt more ideas from Luck. For example, incorporating

function symbols is straightforward: simply treat functions as black boxes, in-

stantiating all of their arguments before treating the result as a fixed range. For

statically known functions, we could also leverage Coq’s open term reduction to

try to simplify function calls into constructor terms. Finally, it would be possible

to adapt the established narrowing approaches for functional programs to mean-

ingfully instantiate unknown function arguments against a known result pattern,

just like in Luck.

We also want to see if our algorithm can be adapted to derive decidability

instances for specifications in Prop, allowing for immediate, fully automatic testing

150



feedback. We are also interested in shrinkers for constrained data, to complete the

property-based testing ecosystem for Coq.

Acknowledgments

The work presented in this Chapter was published in POPL 2018 in the paper

with the same title “Generating Good Generators for Inductive Relations”, with

Zoe Paraskevopoulou (who was responsible for the majority of the proof generation

framework) and Benjamin Pierce.

151



Chapter 6

Implementation

In this Chapter we will present the two major side-contributions that emerged out

of the implementation aspect of the work presented so far: a generic program-

ming library for Coq and an elegant functional data structure for sampling from

updatable discrete probability distributions.

6.1 Generic Programming Framework in Coq

Our initial implementation of the generator derivation algorithm interfaced directly

with Coq’s internals. But, even for the simply-typed inductive generators we saw

in the QuickChick tutorial (Chapter 2), this was neither an extensible nor a main-

tainable approach. Coq’s term data structure, for example, contains far too much

type information that our application does not care about. Similarly, the internal

functions that produce Coq expressions take more arguments than we need, in

order to accurately populate the rich data structure. For example, the (completely

illegible) OCaml code that was used to derive a simple Show typeclass instance

prior to the introduction of our library can be “seen” in Figure 6.1.

To facilitate deriving such instances (generators, proof terms, printers and

shrinkers), we wrote a small generic programming framework consisting of two

parts: a high level representation of the class of inductive terms we target and a

small DSL for producing Coq expressions.

152



Figure 6.1: Previous OCaml code for deriving QuickChick typeclass instances,
prior to the introduction of our library to the QuickChick codebase

153



6.1.1 Datatype Representation

We represent the class we target with the following datatype:

type dep_type =

| DArrow of dep_type * dep_type (* Unnamed arrows *)

| DProd of (var * dep_type) * dep_type (* Binding arrows *)

| DTyParam of ty_param (* Type parameters *)

| DTyCtr of ty_ctr * dep_type list (* Type constructor *)

| DCtr of constructor * dep_type list (* Data constructor *)

| DTyVar of var (* Type variables *)

The representation is relatively standard. Note that arrows and products are

treated as a top-level constructors, since they are of particular importance: ar-

rows can be used to represent side-conditions and products to capture the uni-

versally quantified variables of each constructor. Each type above (like var or

constructor) is an opaque wrapper around Coq identifiers, completing the sepa-

ration of the generic library user from Coq internals.

Using this dep type, we can represent constructors as a pair of an opaque

reference to the constructor name and its corresponding type:

type ctr_rep = constructor * dep_type

Finally, a datatype representation is simply a type constructor, a list of its type

parameters and a list of representations of its constructors. Type constructors

and type parameters are just opaque wrappers around their corresponding Coq

internals:

type dt_rep = ty_ctr * ty_param list * ctr_rep list

6.1.2 A Term-Building DSL

The second component of the generic library is a DSL for abstracting away from

Coq internals when generating terms. For example, the original QuickChick deriva-

tion code for a simple let-fix declaration inside a Show instance contains the

following:

154



let aux = fresh_name "aux" in

let x’ = fresh_name "x’" in

let binderList =

[LocalRawAssum ([(dummy_loc, Name x’)],

Default Explicit, c’)] in

let fix_dcl = (dl aux, binderList, (None, CStructRec),

fix_body, (dl None)) in

CLetIn (dummy_loc, dl (Name "aux"),

G_constr.mk_fix (dummy_loc, true, dl aux, [fix_dcl]),

CApp (dummy_loc, (None, mk_c aux), [(mk_c x, None)]))

Understanding what each term in the expression above does and dealing with

the particularities of different binding forms requires diving into the (not really

documented) Coq internals. Moreover, even when we got this code to work, main-

taining or changing it is virtually impossible. Consider instead the following gRecIn

combinator:

First, the generic programmer needs to specify the name of the function and

its arguments (although they will be made fresh internally to avoid capture). To

construct the body of the fixpoint, the programmer should have at their disposal

opaque symbols for the function and the arguments and use the various DSL com-

binators. By using an opaque representation of the various bound terms, we aim

to guarantee that every term produce via our combinators is well scoped. Similarly

for the body of the let, we should only be able to access the function symbol, not

its arguments.

This leads to an important property of our library, and an important design

tradeoff we made while constructing it: while we do not guarantee that all generic

programs written in our framework produce only well-typed terms, we do guarantee

that all programs written solely against our interface will produce well-scoped terms
1. We ensure this by making sure that for every combinator that requires the

1This presumes that all such generic programs are written in the purely functional fragment
of OCaml, as the use of references in particular can defeat this guarantee.

155



programmer to specify what to do with names, the names are given abstractly.

For instance, when the programmer specifies what should occur in the body of

the let rec, they gives a function of type (var -> coq_expr). Recalling that

var is an opaque, abstract type, we know that this function must therefore be

parametric in its argument. Thus, by strategically using abstract types, we can

enforce a kind of poor-person’s parametricity, resulting in an interface much like

parametric higher-order abstract syntax[28] that can enforce well-scoped-ness, but

not well-typed-ness.

Why not make sure that we can only produce well-typed terms from derivers

written in our DSL as well? For one thing, OCaml’s type system is substantially

less powerful than Coq’s, so in order to enforce that only well-typed terms are ever

produced by OCaml programs written in our library, we would have to encapsulate

all of Coq’s type system—quite a daunting task.

Beside this technical limitation, we also wanted to hit a sweet spot between

ease-of-use for the programmer and enforced correctness. In our opinion, requiring

incredibly complex programming with dependent types would not make it quick

and easy for programmers to write the kind of derivers we wish them to, at least

given the current state of research in dependently typed generic programming.

We feel that assisting the programmer in generically writing well-scoped Coq code

strikes a happy medium between practicality and provable correctness. In practice,

what this means is that if the programmer makes a mistake when implementing

a generic deriver using our framework, their code will fail at compile-time in Coq

(perhaps only for some particular data types but not others). It’s important to note

that regardless, type-safety from the perspective of Coq is still preserved—there is

no way to use our framework to introduce a bogus type equality to Coq.

156



Let us return to the library itself. As an example usage, consider the let-fix

declaration using our combinators:

gRecIn "aux" ["x"] (fun aux [x] -> ...) (fun aux -> ...)

In definitions like this, we aim to mirror the syntax of the Coq source being

generated as much as possible, so as to make the mental translation burden for the

user of the library as light as possible.

Another example of such a combinator is pattern matching. In our current

design, gMatch has the following type:

val gMatch : coq_expr ->

(constructor * string list * (var list -> coq_expr)) list ->

coq_expr

This combinator takes a Coq expression (the discriminee) and a list of branches,

each of which is a constructor (opaque, taken from our datatype representation) a

list of strings to name the patterns, as well as a body for each branch with access

to the particular pattern variables of that constructors, and produces a Coq term

corresponding to the entire expression.

6.1.3 A Worked Example

To illustrate how one might use the library, we now present in its entirety the

implementation of the generic deriver for the Show typeclass. We will then walk

through it step-by-step to explain how it is constructed.

let show_body x =

let branch rec_name (ctr,ty) =

(ctr, generate_names_from_type "p" ty,

fun vs -> str_append (gstr (constructor_to_string ctr ^ " "))

(fold_ty_vars

(fun _ v ty’ ->

str_appends [ gstr "( "

; gapp (if iscurrenttyctr ty’

157



then gvar rec_name

else ginject "show")

[gvar v]

; gstr " )"

])

(fun s1 s2 -> str_appends [s1; gstr " "; s2])

emptystring ty vs))

in

gRecFunIn "aux" ["x’"]

(fun (aux, [x’]) ->

gMatch (gVar x’)

(List.map (branch aux) ctrs))

(fun aux -> gApp (gVar aux) [gVar x])

in

let show_fun = gFun ["x"] (fun [x] -> show_body x) in

gRecord [("show", show_fun)]

Because OCaml does not have where-clauses, the nested structure of this defi-

nition is presented in a somewhat upside-down manner. As such, we shall examine

it from the bottom up.

A typeclass in Coq is merely a record mapping method names (as field names)

to their implementations (as values of that field). In the case of the Show typeclass,

we need to produce a record with exactly one field, named show, which is bound

to a function of type (T -> string)) for whatever type T we are deriving Show

for.

gRecord [("show", show_fun)]

To do this (above), we invoke the gRecord function, which takes a description of

the contents of a record and returns a Coq term corresponding to the actual record.

We then define the function which is bound to the show method.

let show_fun = gFun ["x"] (fun [x] -> show_body x) in ...

158



The function takes one argument, x, and has a body equal to whatever show_body is

(given that abstract variable). It’s worth noting here that one piece of lightweight

dependent typing would be helpful in improving the library interface: it should

always be the case that the list of concrete names passed to gFun be the same

length as the list of abstract names provided to its function argument. We do not

statically describe or enforce this, and it would be nice to use length-indexed lists

to do this in future.

So what does the body of the show function consist of? Well, it’s a (potentially)

recursive function of one parameter. We define it as below.

gRecFunIn "aux" ["x’"] (* 1 *)

(fun (aux, [x’]) -> (* 2 *)

gMatch (gVar x’) (* 3 *)

(List.map (branch aux) ctrs)) (* 4 *)

(fun aux -> gApp (gVar aux) [gVar x]) (* 5 *)

By lines, we:

1. define a recursive function aux of one argument x’

2. ...

3. which matches on that argument,

4. and has a case for each constructor of the data type, where the RHS of the

case is determined by the branch function (discussed below)

5. and then apply that function to the variable x (passed in from above).

There are two present unknowns in the above code: the list ctrs, and the

function branch. The ctrs list is provided to us by initialization code not shown

in the example which uses our library function coerce_reference_to_dt_rep.

This function takes a native Coq internal type and gives us back a coq_type, as

well as a variety of other information about it, including a list of its constructors,

here bound as ctrs.

159



As for the branch function which defines what to do for each possible construc-

tor of the data type we are showing: its logic is relatively simple as well, but let’s

break it down into pieces to clarify just how it works.

let branch rec_name (ctr,ty) =

(ctr, generate_names_from_type "p" ty,

fun vs -> str_append (gstr (constructor_to_string ctr ^ " "))

(fold_ty_vars

(fun _ v ty’ ->

str_appends [ gstr "( "

; gapp (if iscurrenttyctr ty’

then gvar rec_name

else ginject "show")

[gvar v]

; gstr " )"

])

(fun s1 s2 -> str_appends [s1; gstr " "; s2])

emptystring ty vs))

First, for our library, any case of a match is specified by a triple of a constructor,

a list of concrete bound pattern variables names, and a function from (opaque)

variables to an RHS. The first two elements of this triple are quick to write:

(ctr, generate_names_from_type "p" ty, ...)

Here, generate_names_from_type creates the appropriate number of names, pre-

fixing them with a given string and suffixing them with unique numbers to freshen

them.

For each RHS of the match, we need to construct a function from opaque

variables to resultant Coq expressions. Recall that show : T -> string for some

T—so ultimately, we need to return a string. Now we are at the meat of the

problem: given a value built of a particular constructor of a particular data type,

how do we convert it into a string representation generically?

Let us consider the particular case of our running example: Trees. When we

want to show a (Node x l r), we need to first make a string for the constructor,

160



then prefix it to the space-interpolated concatenation of the parenthesized showings

of each of the Node’s arguments. But how to show each of these arguments?

If, in the case of x, such an argument is not another Tree, we merely appeal

to the Show instance of that type. On the other hand, if—as in the case of l

and r—an argument is another Tree, we need to make a recursive call to this

show function. This distinction is necessitated by the way that Coq’s typeclass

mechanism functions: the existence of an instance for a given type is not accessible

within the definition of that very instance.

All the information we need to generically define such a show-function is present

in the type of the data constructor whose case we are defining. If we consider such

a type (A -> B -> C -> T) as a list of types to the left of an arrow [A, B, C],

then we can fold across this list to obtain the desired function. This produces an

expression which, for each variable bound by the pattern match, calls the appro-

priate show function (either recursive or non-recursive) and wraps the result in

parentheses, concatenating the results by interpolating spaces.

161



(fold_ty_vars

(fun _ v ty’ ->

str_appends [ gstr "( "

; gapp (if iscurrenttyctr ty’

then gvar rec_name

else ginject "show")

[gvar v]

; gstr " )"

])

(fun s1 s2 -> str_appends [s1; gstr " "; s2])

emptystring ty vs))

And there you have it: in only a few more lines than the non-generic Show

instance, we have defined a generic deriver for Show instances that works on all

polynomial recursive types. We used this generic library to derive all generators

and proofs described in the previous Chapter, a task that seems impossible without

such a framework.

Acknowledgments

This generic library was first introduced as a semester project for Penn’s “Ad-

vanced Programming Languages Seminar” (CIS 670) in the fall semester of 2016.

The writing is adopted from the final report of that project (written with Ken-

neth Foner) and the implementation section of the POPL 2018 paper that formed

the basis of the previous Chapter (“Generating Good Generators for Inductive

Relations” [82]).

6.2 Urns

A common theme throughout this thesis has been the need to sample from and

update a discrete probability distribution efficiently. In both QuickCheck and

QuickChick, the ability to fine-tune the distribution of generated values is mostly

accomplished using frequency. In the information-flow-control experiments of

162



Chapter 3, we used frequency to skew the distribution of instructions to obtain

longer executions. In Luck 4, implementing weighted random backtracking required

both sampling from a discrete distribution and removing the selected option. In

QuickChick 5, similar functionality is necessary to implement the backtrack com-

binator.

To begin with, QuickCheck (and QuickChick) implement frequency using a

list-based representation of the distribution ([(Int, Gen a)]). While simplistic,

this list-based representation has been used successfully for a long time: while

the asymptotics of sampling from a list-based representation seem inefficient, the

common inputs to frequency are small, and so the linear-time traversal of the list

is inconsequential.

Unfortunately, this representation is not powerful enough when working with

updatable distributions like the ones the backtrack combinator represents: sam-

pling without replacement is only interesting if repeated, which leads to repeated

traversals. Moreover, each traversal requires modifying the list to update the dis-

tribution. This produces quadratic time (and space) overhead, which can lead to

noticeable slowdowns even with relatively small distributions.

In this Chapter, we present the urn, an immutable persistent data structure

that supports efficiently sampling from a distribution, as well as efficiently updat-

ing it: inserting new (weighted) values, removing them, or updating their weights.

We avoid the usual complexity of traditional self-balancing search trees because we

do not need to keep values in a specific order. Instead, we keep the tree maximally

balanced at all times using a single machine word of overhead: its size. Urns pro-

vide an alternative interface for the frequency and backtrack combinators, that

allow for efficient sampling of dynamically-updated distributions. We empirically

evaluate the different versions using examples from the literature.

6.2.1 Sampling Discrete Distributions

Back in your introductory math classes, you may have encountered word problems

about urns containing balls of different colors – like the urn in Figure 6.2 – where

you had to calculate the probability of ending up with specific colors after a few

163



Figure 6.2: A Sample Urn

draws:

Suppose you have an urn containing two red balls, four green balls,

and three blue balls. If you take three balls out of the urn, what is the

probability that two of them are green?

This process, often referred to as sampling without replacement, can be seen as a

particular instance of a more general problem: sampling from updatable discrete

distributions.

At their core, urns represent such discrete distributions. We can represent a

discrete distribution D over a set A as a nonempty set of pairs of positive weights

wi
+ and of values xiA; that is,

D = tpw1, x1q, . . . , pwn, xnqup
+Aq, n1.

Let W =
řn
i=1wi be the sum of all the weights; then, to sample a value from D is

to pick a random xk with probability wk{W .

To sample from such a distribution, we use the range r0,W q as indices into it.

If we pick a natural number uniformly at random from r0,W q, we can map it to

the xi: the first w1 natural numbers correspond to x1, the next w2 natural numbers

correspond to x2, and so on. Intuitively, we are breaking the range r0,W q into n

buckets: r0, w1q, rw1, w1 +w2q, and so on up through rw1 + +wn−1, w1 + +wn−1 +

164



p2, Rq p4, Gq p3, Bq

0 1 2 3 4 5 6 7 8

Figure 6.3: Indexing into the discrete distribution tp2, Rq, p4, Gq, p3, Bqu; natural
number indices are placed below their corresponding weight-value pair (the order
is arbitrary).

wn = W q. Then the kth bucket, which corresponds to xk, is

«

k−1
ÿ

i=1

wi,
k
ÿ

i=1

wi

¸

and has size
k
ÿ

i=1

wi −
k−1
ÿ

i=1

wi = wk.

Thus, there are wk different values for each index that result in picking this bucket.

Since each index is equally likely, the total probability of picking xk is wk{W . An

instantiation of the buckets for the distribution tp2, Rq, p4, Gq, p3, Bqu – which will

be a running example for the remainder of the paper – appears in Figure 6.3.

This approach is the basis of the urn sampling algorithm, as well as the stan-

dard frequency combinator in QuickCheck and QuickChick, and the array-based

binary search variant used in random-fu [119] (for more about the latter two, see

Section 7.5).

6.2.2 The Urn Data Structure

Since urns represent discrete distributions their API must include support for

(a) constructing urns from a list of pairs of weights and values á la frequency

(b) sampling from urns

(c) modifying urns, which there are three ways to do:

(i) a variant of sampling that removes the sampled value from the urn;

165



data Urn a -- a discrete distribution; abstract

type Weight = Word -- nonzero

class Monad m => MonadSample m -- provides randomness

singleton :: Weight -> a -> Urn a

fromList :: [(Weight,a)] -> Maybe (Urn a)

sample :: MonadSample m => Urn a -> m a

remove :: MonadSample m => Urn a -> m (Weight, a, Maybe (Urn a))

insert :: Weight -> a -> Urn a -> Urn a

update :: MonadSample m => (Weight -> a -> (Weight, a)) -> Urn a

:: -> m (Weight, a, Weight, a, Urn a)

replace :: MonadSample m => Weight -> a -> Urn a

:: -> m (Weight, a, Urn a)

size :: Urn a -> Word

totalWeight :: Urn a -> Weight

Figure 6.4: The API for urns: the types, constructors, sampling functions, and
updating functions.

(ii) the ability to insert new (weighted) values into the urn;

(iii) the ability to update the weights and values found in the urn.

The full API for urns is presented in Figure 6.4; the interface is split into five

categories.

Types These include Urn, the type of discrete distributions; Weights in those

distributions; and MonadSample, a type class for monads that support random

number generation to enable sampling from urns, such as IO or QuickCheck’s

Gen type for random generators. 2

Construction The singleton and fromList functions create distributions where

the given values (of type a ) have the corresponding weights. The fromList

function produces a Maybe (Urn a) because distributions cannot be empty.

2While the MonadRandom type class [47] would seem to be a good fit for this purpose, Gen is
unfortunately not an instance of it.

166



Sampling The sample and remove functions both pick a value from the Urn at

random, with probability proportional to its weight. The remove function

also takes that value out of the urn (“sampling without replacement”), and

so returns the Weight of that value and Maybe the updated Urn . Note that

remove takes out the whole weight-value pair, rather than taking out one

copy of the value and reducing its weight by 1.

Modification The insert function simply adds a new value to the distribution

with a given weight. The update and replace functions both choose a

random value to modify, as per sample . The update function will modify

that value and its weight, returning the old weighted value, the new weighted

value, and the new Urn ; the replace function simply overwrites the chosen

value and its weight, returning the old weight and value along with the new

Urn .

Properties Urns keep track of how many values they contain (size ) and their

total weight (weight ).

Coding Conventions As we saw in Section 6.2.1, sampling from a distribution

D with total weight W can be done by sampling a natural number uniformly from

r0,W q and using it as an index into D. The MonadSample type class provides the

index-generation functionality; its only method is

randomWord :: MonadSample m => (Word,Word) -> m Word

where randomWord (low,high) generates a random Word chosen uniformly from

the range [low,high].

In the remainder of this section, we implement all the functions from Fig-

ure 6.4 that require randomness by phrasing them instead in terms of indices

into the urn. Every such function now requires an additional argument of type

Index, where Index is a type synonym for Word. When formulated this way, these

functions are deterministic. Thus, although the user-facing version of sample has

type MonadSample m => Urn a -> m a, the implementation that we show in this

section has type Urn a -> Index -> a, and similarly for remove, update, and

167



replace. We connect the randomized and deterministic versions of these func-

tions by generating random indices with randomWord (0, w-1), where w is the

total weight of the input Urn.

6.2.3 A Weighty Matter

The Urn abstract data type, behind the scenes, is implemented as a balanced binary

tree – the functional programmer’s go-to choice for logarithmic-time operations.

However, before we consider how the trees are balanced, we need to consider how

they represent discrete distributions in the first place; we save balancing concerns

for Section 6.2.5.

As distributions must be nonempty, we use a nonempty binary tree that stores

data – values in the distribution – at the leaves. In addition, we must also store

information about the weights of each value: each location in the tree, leaf and

(internal) node alike, stores a weight. We maintain the invariant that the weight of

a tree or subtree is the total weight of every value in the corresponding distribution.

This means that the weight of a leaf is simply the weight of the value it holds, and

the weight of a node is the sum of the weights of its children. Such a tree can be

represented by the following data type:

type Weight = Word

data Tree a = Node Weight (Tree a) (Tree a)

| Leaf Weight a

weight :: Tree a -> Weight

Our example distribution, tp2, Rq, p4, Gq, p3, Bqu, can be represented as a Tree

in multiple different ways by altering the grouping or the ordering of values. Three

possible tree representations of this distribution are shown in Figure 6.5.

The rationale behind storing the aggregate weights at the internal nodes comes

from thinking about the buckets from Section 6.2.1. We can think of each Node w

l r as representing a single “super-bucket” of size w , where the “super-bucket”

spans the buckets of every value at the leaves. If the total range covered by

168



-- Simple tree representation

Node 9 (Node 6 (Leaf 2 R)

(Leaf 4 G))

(Leaf 3 B)

9

p3, Bq6

p4, Gqp2, Rq

-- An alternate grouping

Node 9 (Leaf 2 R)

(Node 7 (Leaf 4 G)

(Leaf 3 B))

9

7

p3, Bqp4, Gq

p2, Rq

-- Order doesn’ t matter

Node 9 (Node 5 (Leaf 2 R)

(Leaf 3 B))

(Leaf 4 G)

9

p4, Gq5

p3, Bqp2, Rq

Figure 6.5: Three different tree representations of the distribution
tp2, Rq, p4, Gq, p3, Bqu.

169



21

12

5

p2, h qp3, g q

7

p5, f qp2, e q

i2 − 2

i1
9

4

p2, d qp2, c q

5

p1, b qp4, a q

i0 − 9

i0 = 12 ě 9

i1 = 3 < 7

i2 = 3 ě 2

i3 = 1

Figure 6.6: What happens when sampling from an urn. This example looks up
the index 12 in a tree representing the distribution tp4, aq, p1, bq, p2, cq, p2, dq, p2, eq,
p5, fq, p3, gq, p2, hqu. The path taken through the Tree is in bold red; the changes
to the index ix at the xth recursive call are in blue. As this shows, adjusting is
only done when recursing into the right-hand child of a node.

this tree is rb, b + w q, then its two subtrees l and r split it into rb, b + wl q and

rb+wl , b+wl +wr q, where wl = weight l , wr = weight r , and wl +wr = w

by the invariant on weights. An index i into this range falls in the left super-bucket

if i < b + wl, and the right super-bucket otherwise; applying this recursively, we

end up in the correct bucket, which is to say at the correct leaf. This algorithm

can be slightly simplified by always adjusting the super-buckets to start at 0. This

allows every Tree to be considered in isolation, without any need to keep track of

the super-bucket’s base b; to do so, we simply adjust i if it would fall in the right-

hand bucket, subtracting wl . This leads to the following Haskell implementation:

sample :: Tree a -> Index -> a

sample (Leaf _ a) _ = a

sample (Node w l r) i

| i < wl = sample l i

| otherwise = sample r (i - wl)

where wl = weight l

The result of running this algorithm on an 8-leaf Tree is presented in Figure 6.6.

170



6.2.4 Turning Over a New Leaf

The update and replace functions from Figure 6.4 are similar to sample , but

they return a modified Urn in addition to the randomly chosen value. We consider

update first: given a function upd :: Weight -> a -> (Weight,a) and an urn

u , the call update upd u randomly chooses a value a in the urn with some weight

w , applies upd w a to get the result (w’,a’) , and returns a triple ((w,a),

(w’,a’), wt’) consisting of the old weighted value, the new weighted value, and

the new Urn , which has had w and a replaced by w’ and a’ . (We return both

(w,a) and (w’,a’) in case we need the new values, as this avoids recomputing

them when upd is expensive.)

The way that update uses an index to traverse a tree is the same as sample.

However, as update modifies the Tree , we need to update the weights as we

rebuild the tree on the way back up: every weight above the updated leaf must be

adjusted by the difference w’-w . We do not need to worry about rebalancing, since

the structure of the Tree and the number of values it contains is unchanged.

update :: (Weight -> a -> (Weight,a)) -> Tree a

-> Index -> ((Weight,a), (Weight,a), Tree a)

update upd (Leaf w a) i =

let (w’,a’) = upd w a

in ( (w,a), (w’,a’)

, Leaf w’ a’ )

update upd (Node w l r) i =

| i < wl =

let (old, new, l’) = update upd l i

in ( old, new

, Node (w - fst old + fst new) l’ r )

| otherwise =

let (old, new, r’) = update upd r (i-wl)

in ( old, new

, Node (w - fst old + fst new) l r’ )

where wl = weight l

171



We elide the implementation of replace w’ a’, as it is essentially the same

as update ( -> (w’,a’)); the difference is that since w’ and a’ are statically

known, we only need to return a pair ((w,a), wt’) containing the old weighted

value and the new urn.

6.2.5 A Balancing Act

As mentioned at the beginning of Section 6.2.3, if we want logarithmic runtime

for all our operations, we need to make sure our trees stay balanced when we add

or remove values from the distribution. However, the Tree type presented thus

far does not contain enough information to stay balanced if we change the size or

layout dynamically. Because there is no natural ordering to the values contained

within an urn, using a self-balancing binary search tree such as an AVL or red-

black tree is unnecessarily complex and a poor fit for the problem we wish to

solve. Such an implementation would force us to impose an ordering on the values

contained in the urn, and some values we frequently wish to store in an urn – such

as QuickCheck generators, which are wrappers around functions – cannot be given

an ordering at all.

The key insight to balancing Tree s in the simplest way is to realize that,

unlike for binary search trees, order is truly irrelevant ; we first encountered this in

Figure 6.5. The efficiency of sample also does not depend on ordering, as the only

invariant we have imposed on our Trees is that weight (Node w l r) == weight

l + weight r . Thus, if we always insert values at the second-deepest level of the

tree until we must start a new level, we will maintain the balance.

When we wish to insert a new value into the tree, we take some path to get

there, which involves going left or right at each Node. If we always go in the

opposite direction on each successive insertion, we will distribute our updates evenly

throughout the tree. We can do this by storing a direction at each Node : either

left (Ð) or right (Ñ). To decide where to insert, we recurse into the child we are

directed to, and toggle the direction.

This allows us to implement the self-balancing insertion function insert ::

Weight -> a -> Tree a -> Tree a, , where insert w a inserts the value a into

172



a distribution with weight w . As we go down the tree, we add the to-be-inserted

weight w to the weight at every node we pass; to decide which way to go, all we

need to do is follow the directions.

It is easiest to see what this means by looking at how this approach iteratively

builds up a new tree from a singleton distribution, one insertion at a time; we

present an example of this in Figure 6.7. Each successive tree in the figure has a

new leaf at the location found by following the arrows down from the root in the

previous tree (on the right of the old leaf), and all the arrows that were followed

in that traversal are flipped from said previous tree. We can see that this “evenly

distributes” new leaves, rather than filling them in from left to right.

6.2.6 Losing Direction

We can look at the insertion pattern shown in Figure 6.7 and record the directions

we take, using L for left and R for right; every such path ends with an R, as new

leaves are added to the right of old ones. The sequence of insertions we get is

shown in the following table:

The pattern of Ls and Rs is a familiar one: if L is 0 and R is 1, then we can read

any given path backwards as a binary number. Enumerating our paths in this way

counts from 110 = 12 through 710 = 1112. This means that the path we must take

to find a new insertion location is given exactly by the binary representation of the

size of the Tree before insertion!

Thus, all we need beyond our original Tree type is a single Word keeping track

of the size, and we have all the balancing information we need. It is this composite

data type consisting of a size and a Tree that we call an Urn:

data Urn a = Urn { size :: Word

, tree :: Tree a }

All the functions that we defined on Tree s are lifted to Urn s by operating on the

tree field.

This also saves space! A Tree holds the minimum amount of information that

we need to sample from a discrete distribution; if we had to include directions in

a Tree with n values, we would incur Opnq overhead to store them. With an Urn ,

173



p1, aq p3, q

p2, bqp1, aq

p6, q

p2, bqp4, q

p3, cqp1, aq

p10, q

p6, q

p4, dqp2, bq

p4, q

p3, cqp1, aq

p15, q

p6, q

p4, dqp2, bq

p9, q

p3, cqp6, q

p5, eqp1, aq

p21, q

p12, q

p4, dqp8, q

p6, fqp2, bq

p9, q

p3, cqp6, q

p5, eqp1, aq

p28, q

p12, q

p4, dqp8, q

p6, fqp2, bq

p16, q

p10, q

p7, gqp3, cq

p6, q

p5, eqp1, aq

p36, q

p20, q

p12, q

p8, hqp4, dq

p8, q

p6, fqp2, bq

p16, q

p10, q

p7, gqp3, cq

p6, q

p5, eqp1, aq

Figure 6.7: Iteratively constructing a directed tree, building up the distribution
tp1, aq, p2, bq, p3, cq, p4, dq, p5, eq, p6, fq, p7, gq, p8, hqu one value at a time. The bold
paths indicate where the next value will be inserted; the red leaves are the most-
recently-inserted leaf in each tree.

174



our space overhead, with respect to an ordinary tree representation, is reduced to

a single machine word.

We have to change the insertion algorithm to use the size of the urn to perform

traversal instead of embedded directions. At every step, the low bit of the given

size is the direction to travel – if the bit is 1 , we go right, and if it is 0 , we go

left. In the recursive call, we shift off the lowest bit and recurse, getting access to

the next lowest bit, which is the next direction in the path.3

insert :: Weight -> a -> Urn a -> Urn a

insert w’ a’ (Urn size tree) =

Urn (size+1) (go size tree)

where go _ (Leaf w a) =

Node (w+w’) (Leaf w a) (Leaf w’ a’)

go path (WNode w l r)

| path ‘testBit‘ 0 =

WNode (w+w’) l (go path’ r)

| otherwise =

WNode (w+w’) (go path’ l) r

where path’ = path ‘shiftR‘ 1

As we see in insert,binary numbers correspond to root-to-leaf paths in an

urn read backwards. In fact, for an urn of size n, all binary numbers less than

n correspond to valid paths; vice versa, all paths to leaves correspond to binary

numbers less than n. Moreover, just like insert uses n as the path to the insertion

point, we will always be able to use this same n as the path to that location.

6.2.7 A Value Un-urned

Now that we have the definition of Urns, the final piece of functionality we need to

implement is deletion. In order to maintain balance in our trees, we cannot remove

values from arbitrary locations. There is precisely one node whose removal would

leave the tree compatible with further iterated insertion: the most recently inserted

3Computing n ‘testBit‘ b determines whether the b th bit of n is set.

175



value. Removing this value would take us back to the previous, also-balanced

tree.4 We call this operation uninsert , and we can combine it with replace

to implement remove: we uninsert the most-recently-inserted weighted value,

and then replace the weighted value we want to remove with said uninserted

weighted value.

However, as they say, the devil is in the details. The first thing we need to do is

call uninsert to produce the value we need to pass to replace , as well as a new

urn. Since urns cannot be empty, uninsert actually returns a Maybe (Urn a) –

uninsert ing from an Urn of size one produces Nothing. Moreover, if the result is

Nothing , we are done: there was only one possible value we could have removed,

so we must have removed it.

On the other hand, if the result is a Just , we encounter a problem: remove

had as an argument an index i into the urn that we had before calling uninsert

, which means it cannot be used to index into its result – some of the indices may

have shifted during uninsertion. We can see a visualization of what happens to

the indices after an uninsertion in Figure 6.8. So how can we update i to point to

the correct place in the new urn? Again, looking at Figure 6.8, we can see that

the indices that fall after the removed bucket must be shifted down to fill in the

uninserted bucket. We also have to address the case where we were supposed to

remove the uninserted value; if i lay within the removed bucket, then we don’t in

fact need to call replace at all. This accounts for the extra w’ indices that are

valid for the old urn but not the new one.

Thus, uninsert must not only return the weight and the value that was deleted,

but also enough information to completely identify the removed bucket: its lower

bound. The type of uninsert is therefore uninsert :: Urn aÑ ((Weight,a), Weight,

Maybe (Urn a))

The implementation of uninsert is very similar to insert. When inserting

a value, we follow the path given by the bits of size itself and insert a Leaf ,

updating all the parent weights in the process; this produces an Urn of size size+1.

In contrast, to uninsert a value, we just need to follow the path given by the bits

4Even if update s have happened in the meantime, recall that changes to the weights do not
affect the balance of the tree; only its leaf-node structure affects the balance.

176



p2, Rq p4, Gq p3, Bq

0 1 2 3 4 5 6 7 8

p2, Rq p4, Gq p3, Bq

2 3 40 1

Figure 6.8: What happens to indices when uninserting a bucket: if uninsert

returns ((4,G), 2, Just ...), then the indices into the subsequent B bucket
must be shifted down.

of size-1 and remove the Leaf there, again updating internal node weights to

maintain the weight-sum invariant.

The bigger difference is that we also need to calculate the lower bound of the

bucket of the value we removed. If our tree is just a leaf, Leaf w a , then the

bucket for that leaf is just [0,w) . If our tree is a node, Node w l r , then

the “super-bucket” for the whole tree is again [0,w) , and the two subtrees have

“super-buckets” [0, weight l) and [weight l, w) (as we saw in Section 6.2.3).

Therefore, since we know which direction to recurse to find the target, we know

how to adjust the lower bound returned by the recursive call. If we recursed to the

left, then the lower bound is unchanged; if we recursed to the right, then we need

to add weight l to the lower bound.

As promised, we can now combine uninsert with replace to produce remove

. This breaks down into the following three cases:

� If i < lb , then i lies before the removed bucket, so it pointed to the same

value in urn as it now points to in urn’ ; thus, we can use the index i as-is

when calling replace .

� If lb <= i < lb + w’, then i was in the removed bucket, so the uninserted

item was the very item we had wanted to remove; this means we can return

the pair (old, Just u’) directly without calling replace .

� Finally, if lb + w’ <= i , then i lies after the removed bucket, so the value

i points to has been relocated by uninsert ; we need to subtract off w’ to

177



get the new index i-w’ .

The Haskell implementation reflects all of these cases directly.

remove :: Urn a -> Index -> ((Weight,a), Maybe (Urn a))

remove urn i =

let ((w’,a’), lb, maybeUrn’) = uninsert urn

in case maybeUrn’ of

Nothing -> ((w’,a’), Nothing)

Just urn’

| i < lb ->

Just <$> replace w’ a’ urn’ i

| i < lb + w’ ->

((w’,a’), Just urn’)

| otherwise ->

Just <$> replace w’ a’ urn’ (i - w’)

6.2.8 Building Up To (Almost) Perfection

There is only one more nontrivial function from our API that we have not yet

discussed: fromList.5 Having already defined insert , we could define fromList

in terms of it:

fromList :: [(Weight, a)] -> Maybe (Urn a)

fromList ((w,a):was) =

Just $ foldr (uncurry insert) (singleton w a) was

fromList [] = Nothing

Most of the time, this implementation will be fine; it runs in linearithmic –

Opn log nq – time, but since each urn will only be initialized once, this overhead is

not a problem in practice. Still, we can do better.

The fromList function constructs an urn all at once. Any binary tree with n

leaves, such as an Urn with n values, also has exactly n − 1 internal nodes. This

5We elide the implementation of singleton.

178



means that if we could build an Urn while spending only constant effort at each

node and leaf, we would have a construction algorithm which runs in linear time

with respect to the length of the list.

The fold-based algorithm above constructs an urn by iteratively rebuilding it,

traversing the tree from root to leaf and modifying its weights and values. Because

any such traversal must cost at least logarithmic time, any top-down algorithm

must take at least linearithmic time. Instead, to construct an urn in linear time,

we need to build it from the bottom-up, starting from the leaves.

A first useful observation is that all urns of a given size have an identical shape –

they will only differ in their weights and leaf values. As a result, our construction

algorithm need only compute the correct shape for urns with size equal to the

length of the input list, summing weights to fill the internal nodes as it goes.

What, then, is the shape of an urn of a given size? We’ve seen, in Figure 6.7, how

this shape evolves as successive elements are inserted. At all times, we maintain

the invariant that an urn is almost perfect – that is, that the difference in depth

between any two leaves is at most one.6 This means that the shape of an urn is

restricted to being composed of a perfect tree with an additional “fringe” of pairs

of leaves dangling beneath the last fully perfect row of that tree.

Computing an urn’s shape boils down to computing the depth of the deepest

full level of the tree, and the positions of all the dangling pairs of leaves beneath

that level. Were there no such leaves – that is, were the list size a power of two

– then we could build the tree in linear time by simple recursion. We present

the algorithm parameterized over an arbitrary tree type t with node and leaf

construction functions.

This computation is Stateful, storing a list of values that will become leaves;

the consume operation removes and returns the first n elements of that list. The

structure of the recursion in perfect looks like the desired tree, but we still only

consume elements from the list one at a time. We recurse on the depth of the

desired perfect tree; when this hits zero, we consume a single element from the

input list and convert it into a leaf. At non-zero depths, we simply recurse twice

6This is weaker than the definition of a complete tree, which requires in addition that all leaves
on the deepest level are as far left as possible.

179



and produce a node whose children are the two resulting perfect trees.

perfect :: (t -> t -> t) -> (a -> t)

-> [a] -> t

perfect node leaf values =

evalState values $ go perfectDepth

where

size = length values

perfectDepth = floorLog2 size

go 0 = do

[a] <- consume 1

pure $ leaf a

go depth =

node <$> go (depth - 1)

<*> go (depth - 1)

consume :: Word -> State [a] [a]

consume n = state $ splitAt n

Urns, however, are merely almost perfect. When the input list is of size 2d + r,

where 0 < r < 2d, we can handle the extra r elements by sometimes consuming

two elements at once and building a node with two leaves as children instead of

consuming one element and building a leaf. The tricky part is figuring out when

to consume two elements. For example, if we wanted to build a complete tree, we

could consume two elements the first r times, and then one element the remaining

2d − r times. However, the urns built up by fromList will not be complete; they

must have the shape that would have been produced by repeated insertion.

What we need to determine, then, is whether we consume 1 or 2 values with

the ith consume action. Recall the invariant from the end of Section 6.2.6: every

root-to-leaf path in this urn, read as a string of bits, corresponds to the reverse of

a binary number less than 11; at the same time, every binary number less than 11

180



corresponds to a root-to-leaf path. We only perform a consume 2 action when the

leaves it produces satisfy this invariant. Let’s focus on the node containing d and

e , which is produced by the third consume action (with index i = 2). These two

leaves have paths which correspond to 00102 = 210 (for d ) and 1010 2 = 1010 (for

e ). This was allowed to be a consume 2 because both 2 and 10 are indeed less

than 11. An urn of size 10, on the other hand, would instead contain a leaf (not a

node) at this point.

This algorithm is reflected in the almostPerfect function below.

almostPerfect :: (t -> t -> t) -> (a -> t)

-> [a] -> t

almostPerfect node leaf values =

evalState (0,values) $ go perfectDepth

where

size = length values

perfectDepth = floorLog2 size

remainder = size - 2^perfectDepth

go 0 = do

ix <- index -- 0 <= ix < 2^perfectDepth

if reverseBits perfectDepth ix < remainder

then do [l,r] <- consume 2

pure $ leaf l ‘node‘ leaf r

else do [a] <- consume 1

pure $ leaf a

go depth =

node <$> go (depth - 1)

<*> go (depth - 1)

index :: State (Word, [a]) Word

consume :: Word -> State (Word, [a]) [a]

181



The local variable size is the length of the input list, and is equal to 2perfectDepth +

remainder. Calling reverseBits count n reverses the lowest count bits of the

word n. Finally, we augment our state with a counter which is incremented every

time consume is called, and use the index action to read its value.

In the code above, we decide whether to consume 2 or 1 by performing the

check reverseBits perfectDepth ix < remainder, where ix is the index of the

current consume action. This index is a path to the leaf or node that this action

will produce. The check we described before would correspond to checking that

both the reversals of ix 0 and ix 1 are both less than size. The first check is

always trivially true, as ix is less than 2perfectDepth (which is also why our invariant

is automatically satisfied in the consume 1 case). For the ix 1 case, the trailing 1

takes on a value of 2perfectDepth . We can thus compare the reversal of ix without

that to remainder, which is the number of values beyond 2perfectDepth

This function does indeed run in linear time: we access each list element once,

and we perform a constant amount of work to create each leaf and node.

6.2.9 Applications and Evaluation

Now that we have defined urns, we explore their applications to random testing

and benchmark their performance against existing solutions from the literature.

An Alternative frequency Combinator

As we’ve seen in this thesis, the frequency combinator allows the user to combine

different generators of the same type by choosing one of them based on a discrete

distribution. Its implementation is presented in Figure 6.9. Every time frequency

is called, it calculates the sum tot of the weight components of the input list, gen-

erates a random number between 1 and tot , and indexes into the list linearly. For

many applications, the input distribution has only a few values, so this approach

is reasonably fast. However, the linear traversal of the list can cause unnecessary

overheads for medium-to-large inputs.

We propose a new combinator frequency’ that takes an Urn (Gen a) as input

(where Gen is QuickCheck’s type for random generators), using the random sample

182



function from Figure 6.4.

frequency’ :: MonadSample m => Urn (m a) -> m a

frequency’ = join . sample

Its functionality is identical to QuickCheck’s frequency : we generate a number

between zero and the total weight of the urn (Urn s are 0 -indexed where frequency

is 1 -indexed) and index into our structure appropriately. The use of urns provides

a lot of flexibility, allowing us to both use the very expressive combinator library

of QuickCheck and dynamically change the distributions involved efficiently, as we

will see in the rest of this section. Moreover, even in the static case – i.e.,, the case

where we do not modify the distribution – we obtain better performance.

In the information-flow control case study [65] we saw in Chapter 3, we explored

different generation methods for information flow control stack machines, focusing

for the most part on generating “good” instruction sequences; that is, sequences

that lead to longer executions. The instructions for their simple machine are: Push

and Pop , which manipulate the stack; Add, which sums the top two items on the

stack; Load and Store , which are memory operations; Jump , Call and Return ,

which are control flow operations; Halt , which signifies a successful termination;

and Noop , which does nothing. The frequency combinator is featured prominently

in that development: for every generation strategy they explore other than the very

first, nave, one, individual instructions are generated using frequency .

Benchmarking We evaluated the performance of Urns in the static case by

testing one of the early IFC generation strategies (called genWeighted), which

crucially uses frequency to increase the probability of Halt and Push instructions,

skewing the distribution of programs towards those that terminate (Halt ) and

do not crash (because they have a big enough stack to avoid underflows). We

randomly generated 500 instructions in the form of instruction lists of size 10,

and benchmarked the generation time using Criterion [98]. In this benchmark,

sampling from Urns is 2.64ˆ faster than using frequency .

To further evaluate Urns, we wanted to identify the cutoff point (in terms of

input list size) where using an Urn for static sampling becomes more efficient. We

183



frequency :: [(Int, Gen a)] -> Gen a

frequency [] = error "... empty list"

frequency xs0 = choose (1, tot) >>= (‘pick‘ xs0)

where

tot = sum (map fst xs0)

pick n ((k,x):xs)

| n <= k = x

| otherwise = pick (n-k) xs

pick _ _ = error "... empty list"

Figure 6.9: The exact implementation of frequency from QuickCheck 2.8.2 (with
abbreviated string literals) [33, 108].

used Criterion again to benchmark sampling uniformly from the first n integers

(where n ranged from 1 through 10000). For each n, we generated numbers using

frequency and using Urn s; we ran each approach 10000 times with QuickCheck’s

sample’ (which generates 11 values using IO ), and measured the performance.

The results appear in Figure 6.10. There was no cutoff: for small distributions

(n ď 20), the performance of Urn s and lists are the same within the margin of

error; and for larger distributions, Urn s quickly outpace lists. The run time of

frequency , as expected, scales linearly with the size of the input list, requiring

more than 3 seconds to complete when n = 10000; on the other hand, the time

taken to sample from an Urn grows at a much slower rate, rising logarithmically

from roughly 50 ms for small inputs to roughly 80 ms for the larger ones. This

logarithmic curve can be better seen on the right-hand side of Figure 6.10, where

we only plot the time needed to sample from urns.7

7All the benchmarks in this paper were run on a Dell XPS15 laptop with a 2.3 GHz Intel Core
i7-4712HQ with 16 GB of RAM running Ubuntu 16.04.2 LTS; they were compiled with GHC
8.0.2 using -O2 -funbox-strict-fields.

184



Figure 6.10: Left: Performance of frequency (blue, above) vs. Urns (red, below).
Right: Zoomed-in performance of Urns.

185



An Efficient backtrack Combinator

The real benefit of using urns, however, is not just a slight performance boost in

the static case. When we wish to dynamically alter the input distribution, urns

greatly improve the performance and conciseness of our code. This desire to update

a distribution that is being sampled from often arises in random testing when some

generators may fail to produce a value (i.e.,, return Nothing). If we sample from a

generator and the generated value is not a Just, we must backtrack and try again.

As an example, consider the inspiring work of Pa lka et al. [103] on generation of

well-typed lambda terms which we’ve already encounter in the evaluation of both

Chapters 4 and 5. To generate well-typed terms, the authors use the typing rules

of simply typed lambda calculus as generators. They assign an empirically-chosen

weight to each rule; then, to generate a term with type T , they pick a rule whose

conclusion has type T at random based on the weights. This rule may then have

premises, which they attempt to satisfy recursively in the same way. For example,

to generate a term of type Int, we could either use some Int constant like 0 or 1 ;

some variable x from our environment; or a function application f e’ where f ::

T’ -> T and e’ :: T’ for any type T’ .

However, the premises of these typing judgments may not be satisfiable. For

instance, there might not be any Int variables in the environment. Worse, when

using the application rules, T’ is chosen arbitrarily, but there is no guarantee that

we can generate a term of type T’ within the constraints of the generation process.

When a typing judgement is not satisfiable, Pa lka et al. resort to backtracking:

they randomly select the next applicable rule. When the remaining rules are ex-

hausted, generation fails and they backtrack at some higher level if possible.

The way Pa lka et al. choose a rule randomly from a weighted distribution is

by permuting the entire list using a variant of permutation-by-sorting shown in

Figure 6.11, and then iterating through this permuted list as necessary. Standard

permutation-by-sorting shuffles a list by generating a random number for each list

item, and sorting the list by comparing these numbers.8

8One downside of permutation-by-sorting is that it only guarantees a fair shuffle if the gener-
ated comparison keys are unique. This is typically avoided by using a fair shuffling algorithm like
Fisher-Yates [38]; however, this algorithm does not have a natural extension that takes weights

186



-- Weights must be positive!

permuteWeighted :: [(Int, a)] -> Gen [a]

permuteWeighted xs = do

v <- mapM (\n -> replicateM n arbitrary >>=

\ns -> return $ minimum ns)

(map fst xs) :: Gen [Int]

let p = map snd $ sortBy (comparing fst)

$ zip v [0..]

return $ map ((map snd xs)!!) p

where l = length xs

Figure 6.11: The implementation of permuteWeighted from Pa lka et al. [103]
(reformatted).

Pa lka et al. extend permutation-by-sorting to take (positive, integral) weights

w into account by generating w numbers for each item in the list and picking the

minimum as the key for sorting. Intuitively, this approach simulates exploding a

w-weighted item into w identical copies, using permutation by sorting to shuffle

the exploded list and then keeping the first occurrence of each item in the result.

The algorithm in Figure 6.11 has several inefficiencies; apart from implemen-

tation details (the use of !! could be replaced by zip ping with xs directly),

there are two more fundamental problems. First and foremost, the complexity of

the algorithm is pseudo-polynomial; given the weights wi, the algorithm runs in

Opn log n+
ř

iwiq time, since we generate wi keys for every item before sorting.

Secondly, we only need the later items from the shuffled list if we actually back-

track. Thanks to laziness, we may be able to avoid spending the full Opn log nq

time to permute the list, but this depends on the precise sorting algorithm used.

We can avoid completely shuffling a list of generators by putting them in an

Urn, using the backtrack combinator:

into account. Thankfully, the unfairness is not a major concern, since the weights in random
testing are typically tuned based on the observed behavior.

187



backtrack :: Urn (Gen (Maybe a)) -> Gen (Maybe a)

backtrack urn = do

((_w,g), mUrn’) <- remove urn

ma <- g

case ma of

Just a -> pure $ Just a

Nothing -> maybe (pure Nothing) backtrack mUrn’

In backtrack, we remove a generator from the urn, sample from it, and test to

see if we got a result. If so, we Just return that result; otherwise, we repeat this

process until the urn is empty. Since each remove operation only takes Oplog nq

time, this combinator runs in Opn log nq time (with respect to the running time of

the generators).

A similar construct exists in QuickChick [105], but is based on lists; backtrack

could be used to make this more efficient. In general, analogous situations arise

in many other testing applications, such as in explicitly weighted narrowing ap-

proaches (e.g., Luck [81]). At a more abstract level, urns can be used to efficiently

tune randomized search algorithms that choose between prioritized possibilities.

Benchmarking To evaluate urns in this context, we replaced permuteWeighted

in Pa lka et al.’s code [101] with a variation using urns, which inlines the aforemen-

tioned backtrack combinator:

permuteWeighted :: [(Int, a)] -> Gen [a]

permuteWeighted x =

let Just u = Urn.fromList

$ map (first fromIntegral) x

aux u = do

(w, a, mu) <- Urn.remove u

case mu of

Just u’ -> (a:) <$> aux u’

_ -> pure [a]

in aux u

188



We benchmarked the generation time of 11 Haskell terms (as many as produced

by QuickCheck’s sample’ ), without altering anything else in their code. Criterion

reported a 31.52 ms expected time (1.8 ms variance) for the original code; on the

other hand, the urn-based version took 14.95 ms (1.6 ms variance).

While this 2.1ˆ speedup is a victory in its own right, it doesn’t measure the

real difference between the two variants of permuteWeighted. For one, the permu-

tation algorithm is clearly not the bottleneck amongst 1600 lines of complicated

Haskell dealing with polymorphic unification. More importantly, because the Pa lka

variant of permuteWeighted has quasi-polynomial running time, it is not general

purpose: it is only efficient if all the weights are small. On the other hand, the

urn-based variant can be used as-is in any development. Indeed, if we were to

directly benchmark the two variants, we could artificially inflate the difference as

much as we wanted by choosing arbitrarily large weights.

Acknowledgments

The Urn data structure was published as a functional pearl in Haskell symposium

2017 under the title “Ode on a Random Urn”, with Antal Spector-Zabusky and

Kenneth Foner, where Antal was primarily responsible for the implementation and

its optimization and Kenny came up with the efficient construction algorithm.

189



Chapter 7

Related Work

7.1 QuickChecks in Theorem Proving

After property-based random testing was popularized by Haskell’s QuickCheck [33],

it was ported to most programming languages (e.g. [2, 87, 67, 100, 104]). In the

particular case of interactive theorem proving, automatically generating counterex-

amples for false conjectures can prevent wasting time and effort on proof attempts

doomed to fail [54]. There have therefore been plenty of QuickCheck-like tools for

theorem provers and proof assistants [27, 99, 39, 17, 41, 16].

In this thesis we introduced QuickChick, a property-based testing tool for Coq.

The original iteration of QuickChick did not offer much more than the functionality

of the original QuickCheck in a new setting; other than dealing with extraction

and the totality requirement, QuickChick was essentially a complete clone. We

have since improved it with the additional functionality described in this thesis:

a framework for proving that generators are correct, and a derivation procedure

that produces correct generators for data satisfying complex predicates with a

customizable probability distribution.

Arguably, the related work closest to QuickChick is the one in Isabelle/HOL.

Originally, Berghofer et al. [12] proposed a QuickCheck-like tool for Isabelle, which

was recently extended by Bulwahn [17]. Bulwahn included support for exhaustive

testing as well as a narrowing-based approach. The latter uses Horn clause data

190



flow analysis to automatically devise generators that only produce data satisfying

the precondition of a tested conjecture [18]. While both QuickChick and Isabelle’s

QuickCheck aim to facilitate verification efforts, there is a fundamental difference

in the approach. Just like with most of the tools for finding bugs in Isabelle, its

QuickCheck aims to offer a push-button automation experience. This comes with

many benefits: it gives immediate feedback to users and allows testing to be run

in the background, even while the user is attempting their proofs. However, as

we have already discussed earlier in the thesis, automation can only get you so

far. There comes a point where a user must leverage domain-specific knowledge

to obtain efficient testing by writing custom generators. QuickChick offers the

full range of functionality of QuickCheck, including its comprehensive generator

combinator library 2. With the generator derivation infrastructure presented in

Chapter 5, it edges closer to the automated experience that Isabelle offers to the

casual user, while retaining the customizability of QuickCheck, allowing expert

users to seamlessly compose derived and handwritten generators together.

Redex [77, 75, 76, 43] (né PLT Redex) is a domain-specific language for defining

operational semantics within Racket (né PLT Scheme), which includes a property-

based random testing framework inspired by QuickCheck. This framework uses

a formalized language definition to automatically generate simple test-cases. To

generate better test cases, however, Klein et al. find that the generation strat-

egy needs to be tuned for the particular language. Recently, Fetscher et al. [43]

combined a narrowing-based algorithm with a constraint solver for equality and

disequality constraints to improve upon the automatic generation, achieving ex-

cellent performance in testing GHC for bugs (the same case study that was used

to evaluate Luck). We discuss the specifics of both this algorithm and the one in

Bulwahn’s work [18], when addressing the related work of Luck.

Dybjer et al. [39] propose a QuickCheck-like tool for the Agda/Alfa proof as-

sistant, with support for reasoning about the surjectivity (what we call complete-

ness) of generators. They later describe how a user can write a custom generator

for a restricted family of inductive datatypes [40]. The associated PhD thesis by

Haiyan [58] contains a lot more details and impressive examples of handwritten gen-

erators proven surjective, including balanced binary search trees and well-scoped

191



lambda terms. Just like QuickChick, this line of work leverages its dependently

typed setting to allow for strong guarantees about the correctness of generators.

Unfortunately, writing such proofs by hand is extremely tedious, to the point of

being an entire chapter of a PhD thesis. Staying in the Agda ecosystem, Lindblad

later on introduced the Agsy tool [87], with automation support for generating first-

order test data. It is one of the first papers to link narrowing and property-based

testing, paving the path for the recent random testing advances [31, 43, 81, 82].

Eastlund [41] implemented DoubleCheck, an adaption of QuickCheck for ACL2.

Chamarthi et al. [27] later proposed a more advanced counterexample finding tool

for ACL2s, which uses the full power of the theorem prover and libraries to simplify

conjectures so that they are easier to falsify. This work is a great example of how

integrating testing and proving together can yield major benefits. While users

of proof assistants like Coq, Isabelle or Agda can obtain testing feedback about

lemmas or proof goals they have posed themselves, a theorem prover can take

this approach to a new level: the proof search algorithm itself can propose helpful

lemmas or stronger inductive hypotheses and disprove futile ones using testing.

Once again, however, no user customization is allowed for the generators.

Finally, there was an earlier approach to bring random testing in Coq itself

by Wilson [126]. They target a relatively small class of testable properties in

Prop: True, False, conjuction, disjunction, implication, negation and equality of

ground terms, as well as inequalities for natural numbers. They also include a

sized automatic generation for simple inductive types; unfortunately, the genera-

tion procedure seems to be ill-tuned for types with a branching factor of 3 or more,

leading to extremely large data being generated. This is only exacerbated by the

lack of support for handwritten generators. Moreover, the tool is run inside Coq,

which only allows them to efficiently generate and test very small terms.

7.2 Generating Random Programs

Generating random inputs for testing is a large research area. We focus on the

particular sub-area of testing language implementations by generating random pro-

grams, like we did in our IFC and STLC case studies.

192



We have already extensively discussed the work of Pa lka et al. on generating

well-typed lambda terms and finding bugs in the GHC strictness analyzer [103,

102]. This work served as inspiration for much of this thesis, as one of the best

examples of what a good fine-tuned handcrafted generator can do. There have

been other attempts at generating lambda terms. Kennedy and Vytiniotis [73]

take the interesting approach of using bit representations of typed programs, and

translating large enough random bitstring sequences into typed lambda terms.

Yakushev [111] provides enumerators for terms at a given type, using GADTs to

do generic programming in Haskell. Their approach allows to obtain typed terms

“for free” as the enumeration is done on the constrained GADT space, but it is

also, in the author’s words, “the slowest”. In an interesting more recent take,

Tarau [120] used prolog to generate well-typed lambda terms in order to answer

statistical queries about such terms. A similar goal is shared among generators

for untyped lambda terms [56, 86], where obtaining a reasonable distribution for

testing purposes would be even harder.

Klein et al. [78] use PLT Redex’s QuickCheck-inspired random testing frame-

work to asses the safety of the bytecode verification algorithm for the Racket virtual

machine. They observe that naively generated programs only rarely pass bytecode

verification (88% discard rate), and that many programs fail verification because of

a few common violations that can be easily remedied in a post-generation pass that

for instance replaces out-of-bounds indices with random in-bounds ones. These

simple changes to the generator are enough for reducing the discard rate (to 42%)

and for finding more than two dozen bugs in the virtual machine model, as well as

a few in the Racket machine implementation, but three known bugs were missed

by this naive generator. The authors conjecture that a more sophisticated test

generation technique could probably find these bugs. Adopting advanced random

testing techniques, similar to the narrowing concepts in Luck, resulted in much

better bug-finding performance [43], ranging from on par with the handwritten

generators to an order of magnitude slower for case studies like the one in Pa lka et

al.

CSmith [127] is a C compiler testing tool that generates random C programs,

avoiding ones whose behavior is undefined by the C99 standard. When generating

193



programs, CSmith does not attempt to model the current state of the machine;

instead, it chooses program fragments that are correct with respect to some static

safety analysis (including type-, pointer-, array-, and initializer-safety, etc.). In our

IFC adventures, we found that modeling the actual state of our (much simpler)

machine to check that generated programs were hopefully well-formed, as in our

generation by execution strategy, made our test-case generation far more effective

at finding noninterference bugs. In order to get smaller counterexamples, Regehr et

al. present C-Reduce [109], a tool for reducing test-case C programs such as those

produced by CSmith. They note that conventional shrinking methods usually in-

troduce test cases with undefined behavior; thus, they put a great deal of effort and

domain specific knowledge into shrinking well-defined programs only to programs

that remain well-defined. To do this, they use a variety of search techniques to

find better reduction steps and to couple smaller ones together. Our use of double

shrinking when testing noninterference is similar to their simultaneous reductions,

although we observed no need in our setting for more sophisticated searching meth-

ods than the greedy one that is guaranteed to produce a local minimum. Regehr et

al.’s work on reduction is partly based on Zeller and Hildebrandt’s formalization

of the delta debugging algorithm ddmin [129], a non-domain-specific algorithm for

simplifying and isolating failure-inducing program inputs with an extension of bi-

nary search. In our experiments, as in Regehr et al.’s, domain-specific knowledge

was crucial for successful shrinking. In recent work, Koopman et al. [80] propose

a technique for model-based shrinking.

Another relevant example of testing programs by generating random input is

Randoop [100], which generates random sequences of calls to Java APIs. Noting

that many generated sequences crash after only a few calls, before any interesting

bugs are discovered, Randoop performs feedback directed random testing, in which

previously found sequences that did not crash are randomly extended. This enables

Randoop to generate tests that run much longer before crashing, which are much

more effective at revealing bugs. Our generation by execution strategy is similar

in spirit, and likewise results in a substantial improvement in bug detection rates.

A state-machine modeling library for (an Erlang version of) QuickCheck has

been developed by Quviq [67]. It generates sequences of API calls to a state-

194



ful system satisfying preconditions formulated in terms of a model of the system

state, associating a (model) state transition function with each API call. API call

generators also use the model state to avoid generating calls whose preconditions

cannot be satisfied. Our generation-by-execution strategy works in a similar way

for straightline code.

A powerful and widely used approach to testing is symbolic execution—in par-

ticular, concolic testing and related dynamic symbolic execution techniques [22, 89].

The idea is to mix symbolic and concrete execution in order to achieve higher code

coverage. The choice of which concrete executions to generate is guided by a con-

straint solver and path conditions obtained from the symbolic executions. Origi-

nating with DART [49] and PathCrawler [125], a variety of tools and methods have

appeared; some of the state-of-the-art tools include CUTE [117], CREST [19], and

KLEE [20] (which evolved from EXE [21]) . We wondered whether dynamic sym-

bolic execution could be used instead of random testing for finding noninterference

bugs. As a preliminary experiment, we implemented a simulator for a version of

our abstract machine in C and tested it with KLEE. Using KLEE out of the box

and without any expert knowledge in the area, we attempted to invalidate various

assertions of noninterference. Unfortunately, we were only able to find a counterex-

ample for Push*, the simplest possible bug, in addition to a few implementation

errors (e.g., out-of-bound pointers for invalid machine configurations). The main

problem seems to be that the state space we need to explore is too large [23], so

we don’t cover enough of it to reach the particular IFC-violating configurations.

More recently, Torlak et al. [124] used our information-flow stack machine and its

bugs with respect to EENI as a case study for their symbolic virtual machine, and

report better results.

Balliu et al. [8] created ENCoVer, an extension of Java PathFinder, to verify

information-flow properties of Java programs by means of concolic testing. In their

work, concolic testing is used to extract an abstract model of a program so that

security properties can be verified by an SMT solver. While ENCoVer tests

the security of individual programs, we use testing to check the soundness of an

entire enforcement mechanism. Similarly, Milushev et al. [92] have used KLEE

for testing the noninterference of individual programs, as opposed to our focus on

195



testing dynamic IFC mechanisms that are meant to provide noninterference for all

programs.

7.3 Dynamic IFC

Even though the focus of Chapter 3 was on the generation aspect of testing non-

interference, there is a lot of related work for nonintereference itself. Birgisson et

al. [14] have a good overview of such related work. Our correct rule for Store for

the stack machine is called the no-sensitive-upgrades policy in the literature and

was first proposed by Zdancewic [128] and later adapted to the dynamic IFC set-

ting by Austin et al. [3]. To improve precision, Austin et al. [4] later introduced a

different permissive-upgrade policy, where public locations can be written in a high

context as long as branching on these locations is later prohibited, and they dis-

cuss adding privatization operations that would even permit this kind of branching

safely. Hedin et al. [62] improve the precision of the no-sensitive-upgrades policy

by explicit upgrade annotations, which raise the level of a location before branch-

ing on secrets. They apply their technique to a core calculus of JavaScript that

includes objects, higher-order functions, exceptions, and dynamic code evaluation.

Birgisson et al. [14] show that random testing with QuickCheck can be used to in-

fer upgrade instructions in this setting. The main idea is that whenever a random

test causes the program to be stopped by the IFC monitor because it attempts

a sensitive upgrade, the program can be rewritten by introducing an upgrade an-

notation that prevents the upgrade from being deemed sensitive on the next run

of the program. In recent work, Bichhawat et al. [13] generalize the permissive-

upgrade check to arbitrary IFC lattices. They present involved counterexamples,

apparently discovered manually while doing proofs. We believe that our testing

techniques are well-suited at automatically discovering such counterexamples.

Terauchi et al. [121] and later Barthe et al. [10] propose a technique for stat-

ically verifying the noninterference of individual programs using the idea of self-

composition. This reduces the problem of verifying secure information flow for a

program P to a safety property for a program P̂ derived from P , by composing P

with a renaming of itself. Self-composition enables the use of standard (i.e., not

196



relational [11, 9]) program logics and model checking for showing noninterference.

The problem we addressed in Chapter 3 is different: we test the soundness of dy-

namic IFC mechanisms by randomly generating (a large number of) pairs of related

programs. One could imagine extending our technique in the future to testing the

soundness of static IFC mechanisms such as type systems [114], relational program

logics [11, 9], and self-composition based tools [10].

In recent work Ochoa et al. [96] discuss a preliminary model-checking based

technique for discovering unwanted information flows in specifications expressed

as extended finite state machines. They also discuss about testing systems for

unwanted flows using unwinding-based coverage criteria and mutation testing. In

a recent position paper, Kinder [74] discusses testing of hyperproperties [34].

7.4 Automatically Generating Constrained Data

The two major research contributions of this thesis (Chapters 4 and 5) both deal

with generating constrained random data where the distribution is under user con-

trol. Since this work borrows concepts from many different topics in programming

languages the potentially related literature is huge. Here, we present just the

closest related work.

7.4.1 Random Testing

The works that are most closely related to our own are the narrowing-based ap-

proaches of Gligoric et al. [48], Claessen et al. [31, 32] and Fetscher et al. [43]. Glig-

oric et al. use a “delayed choice” approach, which amounts to needed-narrowing, to

generate test cases in Java. Claessen et al. exploit the laziness of Haskell, combin-

ing a narrowing-like technique with FEAT [37], a tool for functional enumeration

of algebraic types, to efficiently generate near-uniform random inputs satisfying

some precondition. While their use of FEAT allows them to get uniformity by

default, it is not clear how user control over the resulting distribution could be

achieved. Fetscher et al. [43] also use an algorithm that makes local choices with

the potential to backtrack in case of failure. Moreover, they add a simple version

197



of constraint solving, handling equality and disequality constraints. This allows

them to achieve excellent performance in testing GHC for bugs (as in [103]). They

present two different strategies for making local choices: uniformly at random, or

by ordering branches based on their branching factor. While both of these strate-

gies seem reasonable (and somewhat complementary), there is no way of exerting

control over the distribution as necessary like we do in Luck. In QuickChick, we

build upon their success, adapting narrowing for Coq’s inductive relations, show-

ing how to produce Coq generators getting rid of interpretation overheads, and

producing proofs of the generators correctness in the process.

7.4.2 Enumeration-Based Testing

An interesting related approach appears in the inspiring work of Bulwahn [18] in

the context of Isabelle’s [94] QuickCheck [17]. Bulwahn automatically constructs

enumerators for a given precondition via a compilation to logic programs using

mode inference. This work successfully addresses the issue of generating satisfying

valuations for preconditions directly and serves for exhaustive testing of “small”

instances, significantly pushing the limit of what is considered “small” compared to

previous approaches. Lindblad [87] and Runciman et al. [112] also provide support

for exhaustive testing using narrowing-based techniques. Instead of implementing

mechanisms that resemble narrowing in standard functional languages, Fischer

and Kuchen [44] leverage the built-in engine of the functional logic programming

language Curry [59] to enumerate tests satisfying a coverage criterion. In a later,

black-box approach for Curry, Christiansen and Fischer [30] additionally use level

diagonalization and randomization to bring larger tests earlier in the enumeration

order. While exhaustive testing is useful and has its own merits and advantages

over random testing in a lot of domains, we turn to random testing because the

complexity of our applications—testing noninterference or optimizing compilers—

makes enumeration impractical.

198



7.4.3 Constraint Solving

Many researchers have turned to constraint-solving-based approaches to generate

random inputs satisfying preconditions. In the constraint-solving literature con-

cerning witness generation for SAT problems, the pioneering work of Chakraborty et

al. [26] stands out because of its efficiency and its guarantees of approximate uni-

formity. However, there is no way—and no obvious way to add it—of controlling

distributions. In addition, their efficiency relies crucially on the independent sup-

port being small relative to the entire space 1 While true for typical SAT instances,

this is not the case for random testing properties, like, for example, noninterference.

In fact, a minimal independent support for indistinguishable machines includes one

entire machine state and the high parts of another; thus, the benefit from their

heuristics may be minimal. Finally, they require logical formulae as inputs, which

would require a rather heavy translation from a high-level language like Haskell.

Such a translation from a higher-level language to the logic of a constraint

solver has been attempted a few times to support testing [24, 53], the most recent

and efficient for Haskell being Target [116]. Target translates preconditions in

the form of refinement types, and uses a constraint solver to generate a satisfying

valuation for testing. Then it introduces the negation of the generated input to

the formula, in order to generate new, different ones. While more efficient than

Lazy SmallCheck in a variety of cases, there are still cases where a narrowing-

like approach outperforms the tool, further pointing towards the need to combine

the two approaches as in Luck. Moreover, the use of an automatic translation

and constraint solving does not give any guarantees on the resulting distribution,

neither does it allow for user control.

Constraint solving is also used in symbolic-evaluation-based techniques, where

the goal is to generate diverse inputs that achieve higher coverage [49, 117, 20, 5,

89, 19, 21, 50, 22]. Recently, in the context of Rosette [124], symbolic execution

was used to successfully find bugs in the same information-flow-control case study.

1 The support X of a boolean formula p is the set of variables appearing in p and the inde-
pendent support is a subset D of X such that no two satisfying assignments for p differ only in
XzD.

199



7.4.4 Semantics for Narrowing-Based Solvers

Recently, Fowler and Hutton [45] put needed-narrowing-based solvers on a firmer

mathematical foundation. They presented an operational semantics of a purely

narrowing-based solver, named Reach, proving soundness and completeness. In

their concluding remarks, they mention that native representations of primitive

datatypes do not fit with the notion of lazy narrowing since they are “large, flat

datatypes with strict semantics.” In Luck, we were able to exhibit the same be-

havior for both the primitive integers and their datatype encodings successfully

addressing this issue, while at the same time incorporating constraint solving into

our formalization.

7.4.5 Probabilistic Programming

Semantics for probabilistic programs share many similarities with the semantics

of Luck [91, 51, 52], while the problem of generating satisfying valuations shares

similarities with probabilistic sampling [90, 84, 25, 95]. For example, the semantics

of the language PROB in the recent probabilistic programming survey of Gordon

et al. [52] takes the form of probability distributions over valuations, while Luck se-

mantics can be viewed as (sub)probability distributions over constraint sets, which

induces a distribution over valuations. Moreover, in probabilistic programs, obser-

vations serve a similar role to preconditions in random testing, creating problems

for simplistic probabilistic samplers that use rejection sampling—i.e., generate and

test. Recent advances in this domain, like the work on Microsoft’s R2 Markov

Chain Monte Carlo sampler [95], have shown promise in providing more efficient

sampling, using pre-imaging transformations in analyzing programs. An important

difference is in the type of programs usually targeted by such tools. The difficulty in

probabilistic programming arises mostly from dealing with a large number of com-

plex observations, modeled by relatively small programs. For example, Microsoft’s

TrueSkill [63] ranking program is a very small program, powered by millions of

observations. In contrast, random testing deals with very complex programs (e.g.,

a type checker) and a single observation without noise (observe true).

We did a simple experiment with R2, using the following probabilistic program

200



to model indistinguishability of atoms, where we use booleans to model labels:

double v1 = Uniform.Sample(0, 10);

double v2 = Uniform.Sample(0, 10);

bool l1 = Bernoulli.Sample(0.5);

bool l2 = Bernoulli.Sample(0.5);

Observer.Observe(l1==l2 && (v1==v2 || l1));

Two pairs of doubles and booleans will be indistinguishable if the booleans are

equal and, if the booleans are false, so are the doubles. The result was somewhat

surprising at first, since all the generated samples have their booleans set to true.

However, that is an accurate estimation of the posterior distribution: for every

“false” indistinguishable pair there exist 264 “true” ones! Of course, one could prob-

ably come up with a better prior or use a tool that allows arbitrary conditioning

to skew the distribution appropriately. If, however, for such a trivial example the

choices are non-obvious, imagine replacing pairs of doubles and booleans with arbi-

trary lambda terms, and indistinguishability by a well-typedness relation. Coming

up with suitable priors that lead to efficient testing would become an ambitious

research problem on its own!

7.4.6 Inductive to Executable Specifications

Finally, at a high level, the algorithm described in Section 5.2 has similarities to

earlier attempts at extracting executable specifications from inductive ones [35, 122]

in the Coq proof assistant. In principle, we could use the algorithm described in

this section to obtain a similar transformation. Consider for example, an inductive

predicate P : A -> B -> C -> Prop. If we transform it to a predicate P’ : A

-> B -> C -> unit -> Prop by adding () as an additional argument at every

occurrence of P, we could ask our algorithm to generate x such that P’ a b c x

holds for all a, b, and c. We would then obtain a partial decision procedure for P,

based on whether the generator returns Some or None. In fact, our algorithm can

be seen as a generalization of their approach as the derived decision procedures

are equivalent (modulo size) for the class of inductive datatypes they handle that

yields deterministic functional programs.

201



7.5 Urns

We conclude the exploration of related work by addressing representations for

discrete distributions compared to urns, as well as comparing urns with other self-

balancing binary tree structures.

7.5.1 Alternative Discrete Distribution Representations

The literature contains several existing representations for discrete distributions.

For example, the QuickCheck [33, 108] and random-fu [119] packages both provide

support for sampling from such distributions. For each of these approaches, we

present in Figure 7.1 its asymptotic run time for initialization and for performing

the four operations we want to support, as compared with the run time of an urn

for the same operation. The table highlights the trade-offs that we have made: urns

cost more to create – their internal structure requires linearithmic time to produce

– but achieve competitive sampling performance with cumulative arrays, whereas

lists are simple and so benefit from constant-time initialization (id) and insertion

((:)). Only urns are designed to support the three dynamic update operations,

however, and are the only structure to achieve consistent logarithmic performance.

The basic idea behind sampling from a discrete distribution is simple: given the

distribution tpw1, x1q, , pwn, xnqu, we break the range r0,
řn
i=1wiq into n subranges

(r0, w1q, rw1, w1 + w2q, etc.) and generate a random number r from the total

range; the index of the subrange r belongs to is the index of the desired value.

Urns, QuickCheck and random-fu follow the same high-level approach, but use

different data structure representations.

QuickCheck Perhaps the simplest representation of a discrete distribution over

values of type a is [(Weight,a)] – a list of values paired with their weights. This is

the implementation used by QuickCheck’s frequency combinator and is considered

in column 1 of Figure 7.1.2

2The frequency function actually has type [(Int, Gen a)] -> Gen a, so it deals with a
“distribution over distributions”; however, all the representations function equally well holding
as and Gen as, so we elide this extra detail.

202



Operation Lists Arrays Urns

Create from list Op1q Opnq Opnq
Sample Opnq Oplog nq Oplog nq
Total weight Opnq Op1q Op1q

Insert Op1q Opnq Oplog nq
Remove Opnq Opnq Oplog nq
Update/Replace Opnq Opnq Oplog nq

Figure 7.1: Comparison of runtimes for operations on different distribution data
structures; n is the number of values in distribution.

Using a list representation is very simple, uses only standard data types, and

requires only simple, local invariants on the input data: that the list is nonempty

and that its weights aren’t all 0. However, while this simple implementation works

for small cases it has some obvious inefficiencies: recalculation of the total weight

and worst-case linear traversal to generate samples.

On the plus side, inserting a new value into the distribution is constant-time: if

we want to add the new value x’ with weight w’ to the distribution d, we can simply

cons them onto the front to produce the new distribution (w’,x’):d. Because all

the invariants are local, no other computation is needed. Other modifications –

deleting a value, replacing a value, or updating the weight of a value – take linear

time in the worst case, however, as modifying the structure of a linked list always

does.

random-fu The random-fu package [119] uses a similar representation for dis-

crete distributions – also called categorical distributions – in its Data.Random.

Distribution.Categorical.Categorical type. However, it instead uses an ar-

ray (specifically, a Vector from the vectory package [61]) and pairs values with

their cumulative weights: the distribution

tpw0, x0q, pw1, x1q, , pxn, xnqu

becomes the array

203



[(w0,x0), (w0+w1,x1), ..., (w0+w1+...+wn,xn)]

This representation is considered in column 2 of Fig. 7.1. Now, the total weight is

stored in the last position in the vector, which is accessible in constant time; and

we can use binary search to find which bucket an element of r0, totalq belongs

to in logarithmic time. This works because each position in the vector stores the

upper bound on its bucket, which is the value that the index needs to be compared

against.

As it is not a design goal of the library, random-fu itself does not expose any

operations for dynamic updates. Nevertheless, we can consider how this repre-

sentation would work if were to extend it to support them. As it happens, this

representation requires linear time for all updates. For delete, update, and replace,

this is independent of the runtime of the array operations; since the array stores

cumulative weights, modifying any weight in the middle of the array requires mod-

ifying all subsequent weights as well. To insert an value, we can add a new value

to the end of the array without the need to update any other weights; however,

because our arrays are immutable, this still requires copying the entire array and

thus takes linear time. If our distribution were mutable (in ST or IO), we could get

amortized constant-time append, and thus improve the efficiency of insertion.

7.5.2 Balancing Binary Trees

Urns are reminiscent of other data structures based on complete binary trees:

certain variants of heaps store a tree linearized into an array, with the children

of node i at indices 2i + 1 and 2i + 2 (using 0-indexing). If we always fill the

array from left to right – taking care to convert leaves into nodes when necessary

– then we will always have a balanced tree. However, as with all array-based

representations, updates in a purely functional setting require copying the entire

array, and so cost Opnq; we get no sharing at all. Urns provide an elegant, purely

functional alternative, filling a very real need in the random testing community as

we saw in the previous section. Additionally, since urns are immutable trees with

no important laziness properties, they may be used in a persistent context with

the same performance as when used ephemerally. That is to say, backtracking to

204



a previous state of an urn costs nothing.

Even in the functional setting, there already exist self-balancing data struc-

tures like red-black trees and AVL trees. However, these data structures maintain

complicated invariants, and are notoriously difficult to get (and prove) correct [29].

Moreover, QuickCheck generators, one of the main applications of urns, cannot be

given an Ord structure: they are implemented as Haskell functions. Since urns do

not maintain a specific arrangement of their values, they can contain generators,

as well as arbitrary functions, IO actions, or other objects without imposing any

constraints.

205



Chapter 8

Conclusion and Future Work

In this thesis we described work that aims to amplify both the efficiency and

applicability of random testing, especially in the context of programming language

design and verification. We introduced QuickChick, the first complete property-

based random testing tool for Coq. We developed Luck, a domain-specific language

for writing generators as lightly annotated predicates, where disparate techniques

from the literature (narrowing and constraint solving) are synergistically combined

under user control. We also ported to QuickChick ideas formalized and evaluated

in Luck, further facilitating future verification efforts.

This thesis was largely focused on generation. The two major research pa-

pers [81, 82] that originated from this work both address the problem of auto-

matically deriving generators for well-distributed random data satisfying a certain

predicate. The main artifact produced, QuickChick, brings these advances in the

popular Coq proof assistant: the first step towards bringing the benefits of random

testing in Coq. However, there is a lot of potential for future work, both in the

context of QuickChick and more generally.

First, the automatically derived generators we presented, while very efficient

for a large class of interesting preconditions, still suffer from the standard nar-

rowing drawback: particular preconditions can force generation of variables early,

potentially leading to a lot of backtracking. This problem is compounded by our

choice to compile inductive predicates to actual generators in the host language.

206



Addressing this issue is a significant research challenge that I aim to address in the

future.

Moreover, a latent issue in this thesis is how to properly evaluate random gener-

ators. In our case we focused on two case studies, information-flow control experi-

ments and the simply typed lambda calculus, where we encountered a particularly

fortunate situation: we could systematically introduce mutations where every mu-

tant that was not discovered by our testing revealed something important about

our testing, artifact or property, completely eliminating the “equivalent mutant

problem” [71]. This problem is not unique to property-based random testing: es-

tablishing a proper way of evaluating research for testing tools and methodologies

is one of my short-term goals.

In addition, while the work described in this thesis makes significant progress

in the context of generators, there are other aspects of random testing that are still

lacking in QuickChick. In particular, a lot of manual effort is currently necessary to

translate between inductively defined predicates and executable decidability pro-

cedures that can be used to actually check whether the predicates hold, a problem

glossed over in Chapter 5. The algorithm described in that chapter should be

generalizable to derive such procedures from a given inductive predicate.

Shrinking is the other aspect of random testing that could use a more thorough

treatment. While recent work, including this one, has set the foundation of what

it means for a generator to be correct, there is no similar treatment for shrinkers.

Indeed, other than the idea that shrinking should not produce cycles to avoid non-

termination, there is, to my knowledge, no explicit correctness criterion. Moreover,

just like generate-and-test can be unacceptably inefficient for certain preconditions,

a shrink-and-test approach to shrinking data satisfying preconditions can also incur

large overheads. Even though this problem is slightly less impactful than the

generator one, attempting to derive shrinkers from the structure of a predicate is

a necessary step towards better random testing.

Finally, another interesting direction for future work is exploring the applica-

bility of probabilistic programming in random testing. The two areas share many

similarities and it should be really interesting to see how probabilistic sampling

techniques fare against custom crafted generators for complex artifacts.

207



Appendix A

Core Luck Proofs

Before we reach the other main theorems we need to prove preservation for the

narrowing semantics; to do that we first need to prove that the typing map of

constraint sets only increases when narrowing.

Lemma A.0.0.1 (Narrowing Effect on Type Environments).

e ) κ ótq κ
1
( v ñ Upκ1q|Upκq ” Upκq

Proof: By induction on the derivation.

Case N-Base: Upκq|Upκq ” Upκq by the definition of restriction.

Case N-Pair: By the inductive hypothesis we have

Upκ1q|Upκq ” Upκq and Upκ2q|Upκ1q ” Upκ1q. The result follows by transitivity.

Case N-CasePair-P: Similar to N-Pair.

Case N-CasePair-U: By the inductive hypothesis we have

Upκaq|Upκq ” Upκq and Upκ1q|Upκcq ” Upκcq. By transitivity, we only need to

show that Upκcq|Upκaq ” Upκaq. This follows by transitivity of restrict (through

Upκbq), and the specifications of fresh and unify .

Cases N-L, N-R: The induction hypothesis gives us

Upκ1q|Upκq ” Upκq, which is exactly what we want to prove.

Cases N-Case-L, N-Case-R, N-App: Similar to N-CasePair-P.

Cases N-Case-U-*: For each of the four cases derived by inlining choose, we

208



proceed exactly like N-CasePair-U.

Cases N-Narrow-*: For each of the four cases derived by inlining choose

the result follows as in N-CasePair-U, with additional uses of transitivity to

accommodate the narrowing derivations for e1 and e2.

Case N-Bang: Directly from the induction hypothesis, as in N-L.

We also need to prove a form of context invariance for unknowns: we can

substitute a typing map U with a supermap U 1 in a typing relation.

Lemma A.0.0.2 (Unknown Invariance).

Γ;U $ e : T

U 1|U ” U

+

ñ Γ;U 1 $ e : T

Proof: By induction on the typing derivation for e. The only interesting case is the

one regarding unknowns: we know for some unknown u that Upuq = T and that

U 1|U ” U and want to prove that Γ;UpU 1q $ u : T . By the T-U rule we just need

to show that U 1puq = T , which follows the definition of ” and |¨ for maps.

We can now prove preservation: if a constraint set κ is well typed and an

expression e has type T in Upκq and the empty context, then if we narrow e ) κ to

obtain κ1 ( v, κ1 will be well typed and v will also have the same type T in Upκ1q.

Theorem A.0.0.3 (Preservation).

e ) κ ótq κ
1 ( v

Upκq $ e : T

$ κ

,

/

.

/

-

ñ

#

Upκ1q $ v : T

$ κ1

Proof: Again, we proceed by induction on the narrowing derivation.

Case N-Base: Since v = e and κ1 = κ, the result follows immediately from the

hypothesis.

Case N-Pair: We have

e1 ) κ ót1q1 κ1 ( v1 and e2 ) κ1 ó
t2
q2
κ2 ( v2.

209



The inductive hypothesis for the first derivation gives us that

@T 1.
Upκq $ e1 : T 1

$ κ

+

ñ

#

Upκ1q $ v1 : T 1

$ κ1
.

Similarly, the second inductive hypothesis gives us that

@T 1.
Upκ1q $ e2 : T 1

$ κ1

+

ñ

#

Upκ2q $ v2 : T 1

$ κ2
.

The typing assumption of the theorem states that

Upκq $ pe1, e2q : T.

We want to show that

Upκ2q $ pv1, v2q : T and $ κ2.

By inversion on the typing relation for pe1, e2q we know that there exist T1, T2

such that

T = T1 ˆ T2 and Upκq $ e1 : T1 and Upκq $ e2 : T2.

We first instantiate the first inductive hypothesis on T1 which gives us Upκ1q $ v1 :

T1 and $ κ1. Then, to instantiate the second one on T2 and obtain Upκ2q $ v2 :

T2 and $ κ2, we need to show that Upκ1q $ e2 : T2, which follows by combining

Lemma A.0.0.1 and Unknown Invariance (Lemma A.0.0.2). The same combination

also gives us Upκ2q $ e1 : T1. The result follows by the T-Pair constructor.

Case N-CasePair-P: We have

e ) κ ótq κa ( pv1, v2q and e1rv1{x, v2{ys ) κa ó
t1

q1 κ1 ( v.

By the inductive hypothesis,

@T 1.
Upκq $ e : T 1

$ κ

+

ñ

#

Upκaq $ pv1, v2q : T 1

$ κa

210



and

@T 1.
Upκaq $ e1rv1{x, v2{ys : T 1

$ κa

+

ñ

#

Upκ1q $ v : T 1

$ κ1
.

The typing assumption gives us

Upκq $ case e of px, yq � e1 : T.

Inversion on this typing relation means that there exist types T1, T2 such that

Upκq $ e : T1 ˆ T2 and py ÞÑ T2, x ÞÑ T1q;Upκq $ e1 : T

We want to prove that

Upκ1q $ v : T and $ κ1.

We instantiate the first inductive hypothesis on T1 ˆ T2 and use inversion on

the resulting typing judgment for pv1, v2q, which yields

$ κa and Upκaq $ v1 : T1 and Upκaq $ v2 : T2.

By the second inductive hypothesis, we only need to show that

H;Upκaq $ e1rv1{x, v2{ys : T ^ $ κa

Applying the Substitution Lemma twice, Unknown Invariance and Lemma A.0.0.1

yields the desired result.

Case N-CasePair-U: Similarly to the previous case, we have

e ) κ ótq κa ( u and e1ru1{x, u2{ys ) κc ó
t1

q1 κ1 ( v,

where pκb, ru1, u2sq = fresh κa rT 1, T 2s

and κc = unify κb pu1, u2q u and Upκq $ e : T 1 ˆ T 2.

211



As in the previous case we have two inductive hypotheses

@T 1.
Upκq $ e : T 1

$ κ

+

ñ

#

Upκaq $ u : T 1

$ κa

and

@T 1.
Upκcq $ e1ru1{x, u2{ys : T 1

$ κc

+

ñ

#

Upκ1q $ v : T 1

$ κ1
.

The same typing assumption,

Upκq $ case e of px, yq � e1 : T,

can be inverted to introduce T1 and T2 such that

Upκq $ e : T1 ˆ T2 and py ÞÑ T2, x ÞÑ T1q;Upκq $ e1 : T.

By type uniqueness, T 1 = T1 and T 2 = T2. Once again, we want to prove that

Upκ1q $ v : T and $ κ1.

Like in the previous case, by the first inductive hypothesis instantiated on T1ˆT2

we get that κa is well typed and u has type T1 ˆ T2 in κa. By the specification of

fresh (Lemma 4.3.1.4) we get that κb is well typed and that Upκbq = Upκaq‘u1 ÞÑ

T1 ‘ u2 ÞÑ T2, where u1 and u2 do not appear in Upκaq. By the specification

of unify we know that Upκcq = Upκbq and Lemma 4.3.1.9 means that κc is well

typed. Finally, we instantiate the second inductive hypothesis on T , using the

Substitution Lemma and Unknown Invariance to prove its premise.

Cases N-L, N-R, N-Fold: Follows directly from the induction hypothesis

after inversion of the typing derivation for e.

Cases N-Case-L, N-Case-R, N-Unfold-F: Similar to N-CasePair-P.

Cases N-Unfold-U, N-Case-U-*: The unknown case for unfold as well as

the four cases derived by inlining choose are similar to N-CasePair-U.

212



Case N-App: We have

e0 ) κ ót0q0 κa ( v0, e1 ) κa ó
t1
q1
κb ( v1,

e2rv0{f, v1{xs ) κb ó
t2
q2
κ1 ( v,

as well as the corresponding inductive hypotheses, where v0 is of the form prec pf :

T1 Ñ T2q x = e2q.

The preservation typing assumption states that κ is well typed and that Upκq $

pe0 e1q : T 12. Inverting this typing relation gives us that

Upκq $ e0 : T 11 Ñ T 12 and Upκq $ e1 : T 11.

By the first inductive hypothesis,

@T 1.
Upκq $ e0 : T 1

$ κ

+

ñ

#

Upκaq $ v0 : T 1

$ κa
.

Instantiating this hypothesis on T 11 Ñ T 12 and inverting the resulting typing relation

gives us that T 11 = T1 and T 12 = T2. The remainder of the proof is similar to the

second part of N-CasePair-P.

Case N-Bang: We have

e ) κ ótq κa ( v and sampleV κa v ñ
t1

q1 κ1.

By the inductive hypothesis,

@T 1.
Upκq $ e : T 1

$ κ

+

ñ

#

Upκaq $ v : T 1

$ κa
.

The typing premise of preservation states that e has type T in Upκq, and we

can instantiate the inductive hypothesis with T . By the specification of sample,

Upκ1q = Upκq and the typing lemma for sample yields that κ1 is well typed which

concludes the proof.

213



Case N-Inst-*:

Each of the four cases derived by inlining choose are similar. The typing premise

is H;Upκq $ e Ð pe1, e2q : T, while we know that Upκq $ e : T 1 ˆ T 2. Inverting

the premise and using type uniqueness allows us to equate T with T 1 ˆ T 2 and

also gives us that e1 and e2 have type nat in κ.

We have that e ) κ ótq κa ( v and the corresponding inductive hypothesis:

@T 1.
Upκq $ e : T 1

$ κ

+

ñ

#

Upκaq $ v : T 1

$ κa
.

We instantiate it to T 1ˆT 2. Using the narrowing of types and Unknown Invariance,

we get that e1 and e2 have type nat in κa.

We proceed similarly for the derivations

e1 ) κa ó
t1
q1
κb ( v1 and e2 ) κb ó

t2
q2
κc ( v2,

propagating type information using Lemma A.0.0.1, using the induction hypothesis

and Unknown Invariance, to obtain that κc is well typed, v has type T 1 ˆ T 2, and

v1 and v2 have type nat .

Continuing with the flow of the rule,

sampleV κc v1 ñ
t11
q1
1
κd and sampleV κd v2 ñ

t12
q1
2
κe,

and the specification for sample lifted to sampleV yield

Upκeq = Upκdq = Upκcq and κe is well typed.

We can then apply the specification of fresh to the generation of the unknowns

u1 and u2,

pκ0, ru1, u2sq = fresh κe rT 1, T 2s,

which means Upκ0q = Upκeq ‘ u1 ÞÑ T 1 ‘ u2 ÞÑ T 2 and $ κ0. Therefore,

Upκ0q|Upκeq ” Upκeq and by Unknown Invariance the type of v carries over to

Upκ0q. In addition, LT 1+T 2
u1 and RT 1+T 2

u2 have the same type as v in κ0.

214



The two unifications operate on κ0,

κl = unify κ0 v pLT 1+T 2
u1q

and

κr = unify κ0 v pRT 1+T 2
u2q,

and the specification of unify applies to give us that

Upκ0q = Upκlq = Upκrq, as well as $ κl and $ κr. Thus, for both κl and κr,

v has type T 1ˆT 2. Since choose will pick one of κl or κr to return, this concludes

the proof.

With preservation for the narrowing semantics proved, we only need one very

simple lemma about the interaction between variable and valuation substitution

in expressions:

Lemma A.0.0.4 (Substitution Interaction).

σpeq = e1

σpvq = v1

+

ñ σperv{xsq = e1rv1{xs

Proof: The result follows by induction on σpeq = e1 and case splitting on whether

x is equal to any variable encountered.

Before we formally state and prove soundness, we need two technical lemmas

about unknown inclusion in domains.

Lemma A.0.0.5 (Narrow Result Domain Inclusion).

e ) κ ótq κ
1 ( v

p@u. u P eñ u P dompκqq

+

ñ @u. u P v ñ u P dompκ1q

Proof: Straightforward induction on the narrowing derivation.

Lemma A.0.0.6 (Narrow Increases Domain).

e ) κ ótq κ
1 ( v

u P dompκq

+

ñ u P dompκ1q

215



Proof: Straightforward induction on the narrowing derivation, using the specifica-

tions of fresh, unify and sample.

We also need a sort of inverse to Substitution Interaction:

Lemma A.0.0.7 (Inverse Substitution Interaction).

σpe2q = e12
σpe1re2{xsq = e21

+

ñ De11. σpe1q = e11

Proof: By induction on e1, inversion of the substitution relation and case analysis

on variable equality when necessary.

Theorem A.0.0.8 (Soundness).

e ) κ óqt κ
1 ( v

σ1pvq = vp ^ σ1 P Jκ1K
@u. u P eñ u P dompκq

,

/

.

/

-

ñ Dσ ep.

$

’

’

’

&

’

’

’

%

σ1|σ ” σ

σ P JκK
σpeq = ep

ep ó vp

Proof: By induction on the narrowing derivation.

Case N-Base: In the base case e = v and therefore the soundness witnesses

are trivially σ1 and vp.

Case N-Pair: We know that

e1 ) κ ót1q1 κ1 ( v1 and e2 ) κ1 ó
t2
q2
κ1 ( v2.

By inversion of the substitution σ1pvq we know that v = pv1, v2q, σpv1q = vp1 and

σpv2q = vp2 .

By the induction hypothesis for ep2 , we get that

σ1pv2q = vp2 ^ σ1 P Jκ1K
@u.u P e2 ñ u P dompκ1q

+

ñ Dσ1 ep2 .

$

’

’

’

&

’

’

’

%

σ1|σ1 ” σ1

σ1 P Jκ1K
ep2 ó vp2
σ1pe2q = ep2

.

216



Its only premise that is not an assumption can be discharged using the lemma

about narrowing increasing domain (Lemma A.0.0.6).

The induction hypothesis for ep1 states that

σ1pv1q = vp1 ^ σ1 P Jκ1K
@u.u P e1 ñ u P dompκq

+

ñ Dσ ep1 .

$

’

’

’

&

’

’

’

%

σ1|σ ” σ

σ P JκK
ep1 ó vp1
σpe1q = ep1

.

Proving that σ1pv1q = vp1 is where the requirement that unknowns be bound in

the input κ comes into play: since σ1 is a restriction of σ1, they assign the same

values to all unknowns that σ1 assigns a value to. Using Lemma A.0.0.5, we

can show that all unknowns in v1 are included in the domain of κ1 and therefore

σ1pv1q = σ1pv1q = vp1 .

The final witnesses for the N-Pair case are σ and pep1 , ep2q. The conclusion

follows using the transitivity of restrict and the P-Pair constructor.

Case N-CasePair-P: We know that

e ) κ ótq κa ( pv1, v2q and e2 ) κa ó
t1

q1 κ1 ( v,

where e2 = e1rv1{x, v2{ys. The inductive hypothesis for the second derivation gives

us

σ1pvq = vp ^ σ1 P Jκ1K
@u.u P e2 ñ u P dompκaq

+

ñ Dσ1 e
2
p.

$

’

’

’

&

’

’

’

%

σ1|σ1 ” σ1

σ1 P JκaK
e2p ó vp

σ1pe
2q = e2p

.

After discharging the premises using Lemma A.0.0.5 and

Lemma A.0.0.6, we can investigate the shape of the e2p witness. First note that,

because of the domain inclusions, there exist vp1 , vp2 such that σ1pv1q = vp1 and

σ1pv2q = vp2 . But then, by applying the Inverse Substitution Interaction lemma

(Lemma A.0.0.7) we know that there exists e1p such that σ1pe
1q = ep.

217



By the inductive hypothesis for e, we get that

σ1ppv1, v2qq = pvp1 , vp2q

σ1 P JκaK
@u.u P eñ u P dompκq

,

/

.

/

-

ñ Dσ ep.

$

’

’

’

&

’

’

’

%

σ1|σ ” σ

σ P JκK
ep ó pvp1 , vp2q

σpeq = ep

.

This allows us to provide witnesses for the entire case: σ and case ep of px, yq � e1p.

Using the transitivity of restrict and the P-CasePair rule, we only need to show

that e2p = e1prvp1{x, vp2{ys, which follows from two applications of the (normal)

Substitution Interaction lemma (Lemma A.0.0.4).

Case N-CasePair-U: This case is largely similar with N-CasePair-P, with

added details for dealing with fresh and unify . We have

e ) κ ótq κa ( u1 and e2 ) κc ó
t1

q1 κ1 ( v,

where

e2 = e1ru1{x, u2{ys,

pκb, ru1, u2sq = fresh κa rT 1, T 2s,

κc = unify κb pu1, u2q u
1.

By the inductive hypothesis for the second derivation, we get

σ1pvq = vp ^ σ1 P Jκ1K
@u.u P e2 ñ u P dompκcq

+

ñ Dσ1 e
2
p.

$

’

’

’

&

’

’

’

%

σ1|σ1 ” σ1

σ1 P JκcK
e2p ó vp

σ1pe
2q = e2p

.

Discharging the inclusion premise is slightly less trivial in this case, since it requires

using the specifications of fresh and unify to hand the case where u = u1 or u = u2.

Then, by the definition of κc, we know that σ1 is in the denotation of unify κb

pu1, u2q u
1. But, by the specification of unify, σ1|dompκbq P JκbK. Since fresh preserves

the domains of constraints sets, that also means that σ1|dompκaq P JκaK. In the

218



following, let σ11 = σ1|dompκaq; then, since u P dompκaq by Lemma A.0.0.5, there

exists some value vu such that σ11puq = vu.

We can now use the inductive hypothesis for the first narrowing derivation that

states that:

σ11puq = vu ^ σ11 P JκaK
@u.u P eñ u P dompκq

+

ñ Dσ ep.

$

’

’

’

&

’

’

’

%

σ11|σ ” σ

σ P JκK
ep ó vu

σpeq = ep

.

We conclude as in N-CasePair-P, with σ and case ep of px, yq � e1p as the

witnesses, where e1p is obtained as in the previous case by investigating the shape

of e2p.

Cases N-L, N-R, N-Fold: These cases follow similarly to N-Pair.

Cases N-Case-L, N-Case-R, N-Unfold-F, N-After: These cases follow

similarly to N-CasePair-P.

Cases N-Case-U, N-Unfold-U: These cases follow similarly to N-CasePair-

U.

Case N-App: We have

e0 ) κ ótq κa ( v0, e1 ) κa ó
t
q κb ( v1,

e12 ) κb ó
t1

q1 κ1 ( v,

where v0 is of the form prec pf : T1 Ñ T2q x = e2q and e12 = e2rv0{f, v1{xs.

By the inductive hypothesis for the third derivation we get that

σ1pvq = vp ^ σ1 P Jκ1K
@u.u P e12 ñ u P dompκbq

+

ñ Dσ2 e
1
p2
.

$

’

’

’

&

’

’

’

%

σ1|σ2 ” σ2

σ2 P JκbK
e1p2 ó vp

σ2pe
1
2q = e1p2

.

As in N-CasePair-P, we can prove that there exists vp0 and vp1 such that

σ2pv0q = vp0 and σ2pv1q = vp1 .

219



By the inductive hypothesis for the evaluation of the argument we get that

there exist σ1 and ep1 such that σ2|σ1 ” σ1 and σ1 P JκaK and σpe1q = ep1 and

ep1 ó vp1 .

Since σ1 is a restriction of σ2 and because of the inclusion hypotheses, σ1 also

maps the lambda to vp0 , which allows us to use the last inductive hypothesis:

σ1pv0q = vp0 ^ σ1 P JκaK
@u.u P e0 ñ u P dompκq

+

ñ Dσ ep0 .

$

’

’

’

&

’

’

’

%

σ1|σ ” σ

σ P JκK
ep0 ó vp0
σpe0q = ep0

.

By inverting the substitution for σ1 in the lambda expression, we know that

there exists ep2 , such that

vp0 = prec pf : T1 Ñ T2q x = ep2q and σ1pe2q = ep2 .

The witnesses needed for soundness are σ and pep0 ep1q. After using the transitivity

of restrict and the P-App constructor, the only goal left to prove is that:

ep2rvp0{f, vp1{xs ó vp.

Applying Substitution Interaction twice concludes the proof.

Case N-Bang: We know that

e ) κ ótq κa ( v and sampleV κa v ñ
t1

q1 κ1.

By the specification of sample, since σ1 P Jκ1K we know that σ1 P JκaK and the

result follows directly from the induction hypothesis.

Case N-Narrow: The 4 derived cases from inlining choose flow similarly, so

without loss of generality let’s assume that the first choose rule was used. We know

220



a lot of things from the narrowing derivation:

e ) κ ótq κa ( v,

e1 ) κa ó
t1
q1
κb ( v1, e2 ) κb ó

t2
q2
κc ( v2,

sampleV κc v1 ñ
t11
q1
1
κd, sampleV κd v2 ñ

t12
q1
2
κe,

natκepv1q = n1, n1 ą 0, natκepv2q = n2, n2 ą 0,

pκ0, ru1, u2sq = fresh κe rT 1, T 2s,

κl = unify κ0 v pLT 1+T 2
u1q,

κr = unify κ0 v pRT 1+T 2
u2q.

By the specification of unify for the definition of κl we know that σ1|dompκ0q P
Jκ0K. By using the specification of fresh we can obtain that σ1|dompκeq P JκeK.
Inversion of natκepv1q = n1 yields that there exists vp1 such that κerv1s = vp1 (where

we lift the κr¨s notation to values) and similarly for vp2 (using Lemma 4.3.1.7 to

preserve the first result). But that means, for all σ P JκeK (including σ1|dompκeq),
we have σpviq = vpi .

That allows us to use the inductive hypotheses for e1 and e2 yielding σ1, ep1
and ep2 such that σ1|σ1 ” σ1, σ1peiq = epi and epi ó vpi .

Finally, we use the last inductive hypothesis to obtain σ and ep as appropriate

and provide σ and ep Ð pep1 , ep2q as witnesses to the entire case. The result follows

immediately.

Theorem A.0.0.9 (Completeness).

ep ó vp

σpeq = ep

σ P JκK ^ $ κ

H;Upκq $ e : T

,

/

/

/

.

/

/

/

-

ñ

Dv κ1 σ1 q t.
$

’

&

’

%

σ1|σ ” σ ^ σ1 P Jκ1K
σ1pvq = vp

e ) κ ótq κ
1 ( v

Proof: By induction on the derivation of the predicate semantics judgment.

Case P-Val: The witnesses for completeness are v, κ, σ, 1 and ε. The result

holds trivially.

221



Case P-Pair: We have

ep1 ó vp1 and ep2 ó vp2 .

By inversion on the substitution we have two cases. In the simple case, e is some

unknown u and σpuq = pep1 , ep2q. But then ep1 and ep2 must be values, and therefore

epi = vpi . By the N-Base rule, u ) κ óε1 κ ( u and the result follows directly.

In the more interesting case, e is a pair pe1, e2q and we know that σpe1q = ep1
and σpe2q = ep2 . Inverting the typing relation gives us

Upκq $ e1 : T1 and Upκq $ e2 : T2.

The inductive hypothesis for the first predicate semantics derivation, instanti-

ated at σ, κ and T1 gives us that

σ P JκK
σpe1q = ep1
$ κ

Upκq $ e1 : T1

,

/

/

/

.

/

/

/

-

ñ

Dv1 κ1 σ1 q1 t1.
$

’

&

’

%

σ1|σ ” σ ^ σ1 P Jκ1K
e1 ) κ ót1q1 κ1 ( v1

σ1pv1q = vp1

.

Its assumptions already hold so we can obtain such witnesses. By the second

inductive hypothesis, we know that

σ1 P Jκ1K
σ1pe1q = ep1
$ κ1

Upκ1q $ e1 : T2

,

/

/

/

.

/

/

/

-

ñ

Dv2 κ2 σ2 q2 t2.
$

’

&

’

%

σ2|σ1 ” σ1 ^ σ2 P Jκ2K
e1 ) κ1 ó

t2
q2
κ2 ( v1

σ2pv1q = vp2

.

Since σ1|σ and σpe1q = ep1 , then σ1pe1q = ep1 . By preservation, we get that κ1 is well

typed. Finally, narrowing only extends the typing environment (Lemma A.0.0.1)

and then by Unknown Invariance (Lemma A.0.0.2) we can obtain the last assump-

tion Upκq $ e1 : T1 of the inductive hypothesis.

We combine the results from the two inductive hypotheses to provide witnesses

222



for the existentials:

pv1, v2q, κ2, σ2, q1 ∗ q2 and t1 ¨ t2.

By transitivity of restrict, we get that σ ” σ2|σ, while the inclusion property σ2 P

Jκ2K is satisfied by the inductive hypothesis directly. To prove that σ2ppv1, v2qq =

pvp1 , vp2q we just need to prove that σ2pv1q = vp1 , but that holds because σpe1q = ep1
and σ is a restriction of σ2. Using the N-Pair constructor completes the proof.

Case P-App: We know that

ep0 ó vp0 , ep1 ó vp1 and ep2rvp0{f, vp1{xs ó vp,

for some vp0 = prec pf : T1 Ñ T2q x = ep2q. Inversion on the substitution gives

us only one possible e, since unknowns only range over values: e = pe0 e1q, where

σpe0q = ep0 and σpe1q = ep1 . Inversion of the typing premise gives us

Upκq $ e0 : T 11 Ñ T 12 and Upκq $ e1 : T 11.

By the inductive hypothesis for the derivation of ep0 we get that

σ P JκK
σpe0q = ep0
$ κ

Upκq $ e0 : T 11 Ñ T 12

,

/

/

/

.

/

/

/

-

ñ

Dv0 κ0 σ0 q0 t0.
$

’

&

’

%

σ0|σ ” σ ^ σ0 P Jκ0K
e0 ) κ ót0q0 κ0 ( v0

σ0pv0q = vp0

.

All its assumptions hold, so we can invert the last substitution to obtain that

v0 = prec pf : T1 Ñ T2q x = e2q, where σ0pe2q = ep2 . By preservation, we know

that the type of v0 is the type of e0 in κ0 and uniqueness of typing equates T1 with

T 11 and T2 with T 12.

223



By the second inductive hypothesis, we know that

σ0 P Jκ0K
σ0pe1q = ep1
$ κ0

Upκ0q $ e1 : T1

,

/

/

/

.

/

/

/

-

ñ

Dv1 κ1 σ1 q1 t1.
$

’

&

’

%

σ1|σ0 ” σ0 ^ σ1 P Jκ1K
e1 ) κ0 ó

t1
q1
κ1 ( v1

σ1pv1q = vp1

.

As in P-Pair we can discharge all of its assumptions.

Let e12 = e2rv0{f, v1{xs and ep1
2

= ep2rvp0{f, vp1{xs. The last inductive hypothe-

sis states that

σ1 P Jκ1K
σ1pe

1
2q = ep1

2

$ κ1

Upκ1q $ e12 : T2

,

/

/

/

.

/

/

/

-

ñ

Dv12 κ
1
2 σ

1
2 q

1
2 t
1
2.

$

’

&

’

%

σ12|σ1 ” σ1 ^ σ12 P Jκ12K
e12 ) κ1 ó

t12
q1
2
κ12 ( v12

σ12pv
1
2q = v

.

The substitution premise can be discharged using the Substitution Interaction

Lemma (Lemma A.0.0.4), while the typing premise by repeated applications of the

Substitution Lemma and Unknown Invariance. The proof concludes by combining

the probabilities and traces by multiplication and concatenation respectively.

Cases P-L, P-R, P-Fold, P-After: These cases are similar to P-Pair.

Case P-CasePair: From the predicate derivations we have that

ep ó pvp1 , vp2q and e1prvp1{x, vp2{ys ó v
1
p.

Inverting the substitution premise leaves us with σpeq = ep and σpe1q = e1p, while

inverting the typing premise yields

Upκq $ e : T1 + T2 and px ÞÑ T1, y ÞÑ T2q;Upκq $ e1 : T.

224



The inductive hypothesis for ep gives us that

σ P JκK
σpeq = ep

$ κ

Upκq $ e : T1 + T2

,

/

/

/

.

/

/

/

-

ñ

Dv1 κ1 σ1 q1 t1.
$

’

&

’

%

σ1|σ ” σ ^ σ1 P Jκ1K
e ) κ ót1q1 κ1 ( v

σ1pvq = pvp1 , vp2q

.

To decide which of N-CasePair-P and N-CasePair-U we will use, we invert the

substitution relation for v. In the simple case, v = pv1, v2q and the proof flows

similarly to P-App.

The interesting case is when v is an unknown u, in which case we need to “build

up” the derivation of N-CasePair-U. Let

pκ1a, ru1, u2sq = fresh κ1 rT1, T2s,

κ1b = unify κ1a pu1, u2q u,

σ11 = σ1 ‘ u1 ÞÑ v1 ‘ u2 ÞÑ v2,

e2 = e1ru1{x, u2{ys and e2p = e1prvp1{x, vp2{ys.

The second inductive hypothesis (instantiated at σ11, κ1b) states that

σ11 P Jκ1bK
$ κ1b

Upκ1bq $ e2 : T

σ11pe
2q = e2p

,

/

/

/

.

/

/

/

-

ñ

Dv1 κ2 σ2 q2 t2.
$

’

&

’

%

σ2|σ1
1
” σ11 ^ σ2 P Jκ2K

σpv1q = v1p
e2 ) κ1b ó

t2
q2
κ2 ( v1

.

To use this inductive hypothesis we need to discharge all of its assumptions first.

To prove that σ11 P Jκ1bK we start with σ1 P Jκ1K by the first induction hy-

pothesis. By the specification of fresh, the denotation of κ1 remains unchanged,

therefore σ1 P Jκ1aK. Since u1, u2 are not in the domain of κ1a, the restriction

σ11|dompκ1aq is σ1. Therefore, by the specification of unify we just need to show that

225



σ11puq = σ11ppu1, u2qq. Indeed,

σ11puq = σ1puq = pvp1 , vp2q = pσ11pu1q, σ
1
1pu2qq

= σ11ppu1, u2qq,

which concludes the proof of the first premise.

The fact that κ1b is well typed is a direct corollary of the typing lemmas for

fresh (Lemma 4.3.1.4) and unify (Lemma 4.3.1.9).

To prove that Upκ1bq $ e2 : T we apply the Substitution Lemma twice. Then

we need to prove that

H;Upκ1bq $ ui : Ti for i = 1, 2

and px ÞÑ T1, y ÞÑ T2q;Upκ1bq $ e1 : T.

By the specification of unify we know that Upκ1bq = Upκ1aq, while from the speci-

fication of fresh we obtain

Upκ1aq = Upκ1q ‘ u1 ÞÑ T1 ‘ u2 ÞÑ T2.

This directly proves the former results for u1, u2, while Unknown Invariance (since

Upκ1bq is an extension of Upκq) proves the latter.

The final premise of the inductive hypothesis, σ11pe
2q = e2p, is easily proved by

applying the Substitution Interaction lemma (Lemma A.0.0.4) twice.

Since we have satisfied all of its premises, we can now use the result of the

second inductive hypothesis. It provides most of the witnesses to completeness (v,

κ2 and σ2), while, as usual, we combine the probabilities and traces by multiplying

and concatenating them. The result follows by transitivity of restrict and use of

the N-CasePair-U constructor.

Cases P-Case-L, P-Case-R, P-Unfold: These cases are in direct corre-

spondence with P-CasePair. The only difference is that to choose between which

choose rule to follow we case analyze on the satisfiability of the corresponding

constraint set.

226



Case P-Bang: We know that ep ó vp. By the inductive hypothesis, we im-

mediately obtain that there exists some v, σ1, κ1, q1 and t1 such that σ1pvq =

vp and σ1 P JκK and σ1|σ ” σ and that e ) κ ót1q1 κ1 ( v. By the complete-

ness requirement of sample lifted to sampleV , we know that there exists some

q2, t2 and κ2 such that sampleV κ1 v ñ
t2
q2
κ2 and σ1 P Jκ2K. The result follows

easily.

Case P-Narrow: We know that

ep ó vp, ep1 ó vp1 and ep2 ó vp2 ,

while Jvp1K ą 0 and Jvp2K ą 0. Chaining the induction hypothesis as in P-Pair,

we get that there exist v, v1, v2, σ
1, κ1, κ2, κ

1, q, q1, q2, t, t1 and t2 such that

σ1 P Jκ1K,
σ1|σ ” σ

σ1pvq = vp

σ1pviq = vpi

and

e ) κ ótq κ1 ( v

e1 ) κ1 ó
t1
q1
κ2 ( v1

e2 ) κ2 ó
t2
q2
κ3 ( v2

By the lifted completeness requirement of sample, we know that there exist

q11, q
1
2, t

1
1, t

1
2, κ4 and κ5 such that σ P Jκ5K,

sampleV κ3 v1 ñ
t11
q1
1
κ4 and sampleV κ4 v2 ñ

t12
q1
2
κ5 .

By definition, natκ5pv1q = vp1 and natκ5pv2q = vp2 .

Without loss of generality, assume that vp = L v1p for some v1p and let

σ2 = σ1 ‘ u1 ÞÑ v1p and pκ1, ru1, u2sq = fresh κ5 rT1, T2s

and

κl = unify κ1 pL u1q v and κr = unify κ1 pR u2q v.

By transitivity of restrict, σ2|σ ” σ. Moreover, σ2pvq = vp. The proof that

σ2 P JκlK is similar to the proof that σ11 P Jκ1bK in P-Pair. To conclude the proof,

we case analyze on whether κr is satisfiable or not and choosing which choose

derivation to follow accordingly.

227



Preservation is simpler than before since we only deal with a single output. We

still need a similar lemma about the effect of the matching semantics on types:

Lemma A.0.0.10 (Matching Effect on Types).

p ð e ) κ òtq vtκ
1
u ñ Upκ1q|Upκq ” Upκq

Proof: By induction on the derivation and transitivity of restrict.

Theorem A.0.0.11 (Preservation).

p ð e ) κ òtq tκ
1u

Upκq $ e : T

Upκq $ p : T

$ κ

,

/

/

/

.

/

/

/

-

ñ $ κ1

Proof:

Case M-Base: Follows directly from the typing lemma of unify (Lemma 4.3.1.9).

Case M-Pair: We know that

u1 ð e1 ) κ0 ò
t1
q1
tκ1u and u2 ð e2 ) κ1 ò

t2
q2
tκ2u,

where

pκ1, ru1, u2sq = fresh κ rT 1, T 2s,

κ0 = unify κ1 pu1, u2q p.

By inversion of the typing relation for pe1, e2q we know that

Upκq $ e1 : T 1 and Upκq $ e2 : T 2.

Based on the specification of fresh,

Upκ1q = Upκq ‘ u1 ÞÑ T 1 ‘ u2 ÞÑ T 2 and $ κ1,

228



while unify preserves all type information. Therefore, κ0 is well typed and Upκ0q $

u1 : T 1 and Upκ0q $ u2 : T 2. By Unknown Invariance (Lemma A.0.0.2) e1 and e2

are well typed in κ0 as well.

Now we can use the inductive hypothesis for the derivation of u1 which gives

us that $ κ1. To conclude the proof, we can use the other inductive hypothesis;

for that we just need to show that Upκ1q $ u2 : T 2 and Upκ1q $ e2 : T 2. However,

by the typing lemma for the matching semantics (Lemma A.0.0.10) we known that

Upκ1q|Upκ0q ” Upκ0q. Unknown Invariance completes this case.

Case M-CasePair: We know that

pu1, u2q ð e ) κa ò
t1
q1
tκbu and p ð e2 ) κb ò

t2
q2
tκ1u,

where

e2 = e1ru1{x, u2{ys,

pκa, ru1, u2sq = fresh κ rT 1, T 2s.

Like in the M-Pair case, using the definition of fresh we can obtain that

Upκ1q = Upκq ‘ u1 ÞÑ T 1 ‘ u2 ÞÑ T 2 as well as $ κa and therefore Upκaq $

pu1, u2q : T 1 ˆ TT2. We again can invert the typing relation for the entire case to

obtain that

Upκq $ e : T
1

1 ˆ T
1

2 and x ÞÑ T
1

1, y ÞÑ T
1

2;Upκq $ e1 : T ,

while type uniqueness equates T i with T
1

i. Using Unknown Invariance we can

propagate these typing relations to κa.

We can now use the inductive hypothesis on the matching derivation for e to

obtain that κb is well typed. By the typing lemma for the matching semantics and

Unknown Invariance we lift all typing relations to κb. To conclude the proof using

the second inductive hypothesis we need only prove that Upκbq $ e1ru1{x, u2{ys : T ,

which follows by consecutive applications of the Substitution Lemma.

Cases M-L-Sat, M-R-Sat, M-Fold: Follow similarly to M-Pair.

229



Case M-App: For some v0 = prec f x = e2q, we have that

e0 ) κ ót0q0 κ0 ( v0 and e1 ) κ0 ó
t1
q1
κ1 ( v1,

while

p ð e1rv0{f, v1{xs ) κ1 ò
t2
q2
tκ1u.

By inverting the typing relation for e0 e1 we get that Upκq $ e0 : T Ñ

T and Upκq $ e1 : T . Using the preservation theorem for the narrowing se-

mantics (Theorem A.0.0.3) we know that κ0 is well typed and the lambda has the

same type as e0 in κ. That means that

pf ÞÑ pT Ñ T q, x ÞÑ T q;Upκ0q $ e2 : T .

The typing lemma for the narrowing semantics (Lemma A.0.0.1) and Unknown

Invariance allow us to lift type information to κ0. We repeat this process for the

second narrowing derivation. To use the inductive hypothesis and conclude the

proof, we only need to apply the Substitution Lemma twice as in M-CasePair.

Case M-Unfold: This case follows directly from the induction hypothesis.

Case M-After: We know that

p ð e1 ) κ òt1q1 tκ1u and e2 ) κ1 ó
t2
q2
κ2 ( v.

As in M-Pair, we invert the typing relation to obtain type information for e1

and e2. We the use the inductive hypothesis on the first derivation to obtain that

κ1 is well typed. To conclude the proof, we need only apply the preservation lemma

for the narrowing semantics, and its premise that e2 is well typed is discharged as

usual using the typing lemma for the matching semantics and Unknown Invariance.

Cases M-Pair-Fail, M-CasePair-Fail, M-After-Fail, M-L-UnSat, M-

R-UnSat, M-Case-4, M-Bang-Fail, M-Narrow-Fail: These cases are

vacuously true since no constraint set is returned.

Cases M-CasePair-Fun, M-Case-L-Fun, M-Case-R-Fun: Similar to

M-App.

230



Case M-Bang: We know that

p ð e ) κ òt1q1 tκ1u,

where

sampleV κ1 pñ
t2
q2
κ1.

By the inductive hypothesis we immediately get that κ1 is well typed. The

specification of sample lifted to sampleV yields the result.

Case M-Narrow: We know that

p ð e ) κ òtq tκau

and

e1 ) κa ó
t1
q1
κb ( v1 and e2 ) κb ó

t2
q2
κc ( v2.

As in the previous cases, we use the inductive hypothesis and the preservation

lemma for the narrowing semantics to ensure all variables are appropriately typed

in κc.

Following the matching judgment, we proceed to sampleV twice resulting in a

constraint set κe; as in M-Bang, κe is well typed. We then generate two unknowns

u1 and u2 with types T 1 and T 2 to obtain a constraint set κ0, that is well typed

because of the specification of fresh. Finally, we unify the pattern p with the fresh

unknowns tagged L or R, yielding κl and κr that are both well typed because of

the specification of unify . Since all choose does is pick which of κl and κr to return,

the result follows immediately.

Cases M-Case-1, M-Case-2, M-Case-3: These cases flow similarly, using

repeated applications of the inductive hypotheses. The only case that hasn’t been

encountered in a previous rule is for M-Case-1, when both branch derivations yield

some (well-typed) constraint sets tκau and tκbu that are combined using union.

But by the typing lemma for union, its result is also well typed.

231



Theorem A.0.0.12 (Soundness).

p ð e ) κ òtq tκ
1u

σ1ppq = vp ^ σ
1 P Jκ1K

@u. pu P e_ u P pq ñ u P dompκq

,

/

.

/

-

ñ Dσ ep.

$

’

’

’

&

’

’

’

%

σ1|σ ” σ

σ P JκK
σpeq = ep

ep ó vp

Proof: By induction on the matching derivation, following very closely the structure

of proof of soundness for the narrowing semantics: we use the inductive hypothesis

for every matching derivation in reverse order, obtaining witnesses for valuations

and expressions, while concluding the proof with the specifications of constraint

set operations and transitivity.

Case M-Base: In the base case, just like in the proof for the N-Base rule, the

witnesses are σ1 and vp. The inclusion σ1 P κ is a direct result of the specification

of unify .

Case M-Pair: We know that

u1 ð e1 ) κ0 ò
t1
q1
tκ1u and u2 ð e2 ) κ1 ò

t2
q2
tκ1u,

where

pκa, ru1, u2sq = fresh κ rT 1, T 2s

and

κ0 = unify κa pu1, u2q p.

By the definition of fresh and the fact that the domain is increasing, we know

that u2 is in the domain of κ1. That means that there exists some value v1p2 such

that σ1pu2q = v1p2 . By the inductive hypothesis for σ1 and u2 we get that there exist

some σ1 and ep2 such that σ1 is a restriction of σ1 in κ1, while

σ1pe2q = ep2 and ep2 ó v
1
p2
.

Using a similar argument to obtain a v1p1 such that σ1pu1q = v1p1 , we can leverage

the inductive hypothesis again on the first derivation gives us that there exists some

232



σ and ep1 such that σ is a restriction of σ1 in κ0 and

σpe1q = ep1 and ep1 ó v
1
p1
.

Our soundness witnesses are σ and pep1 , ep2q. By the specification of unify

we know that σppq = σppu1, u2qq and decreasingness helps us conclude that vp =

pv1p1 , v
1
p2
q which concludes the proof of the pair case, along with transitivity of

valuation restriction.

Cases M-Case-1, M-Case-2, M-Case-3: The only new rules are the case

rules; however, the general structure of the proof is once again similar. For M-

Case-1, we know that:

pκ0, ru1, u2sq = fresh κ rT 1, T 2s,

pLT 1+T 2
u1q ð e ) κ0 ò

t1
q1
tκ1u,

pRT 1+T 2
u2q ð e ) κ0 ò

t2
q2
tκ2u,

p ð e1ru1{xls ) κ1 ò
t11
q1
1
κ?a and p ð e2ru2{yrs ) κ2 ò

t12
q1
2
κ?b,

while

κ? = combine κ0 κ
?
a κ

?
b.

If either of the non-union combine cases fire, the proof is simple. If κ?a = κ?b = H,

then there exists no κ1 such that the result of the derivation is tκ1u.

Let’s assume that κ?a = tκau for some κa and κ?b = H (the symmetric case

follows similarly). Then we know that σ1 P JκaK and from the inductive hypothesis

for the e1 derivation we get that there exist σ1 and ep1 such that σ P Jκ1K and

σ1pe1ru1{xlsq = ep1 . As in the narrowing soundness proof, we can leverage the

inverse substitution interaction lemma (A.0.0.4) to conclude that there exists some

e11 such that σ1pe1q = e11. An additional application of the inductive hypothesis for

the evaluation of e against the LT 1+T 2
u1 gives us σ and ep such that σ P JκK and

σpeq = ep, which are also the soundness witnesses that conclude the proof.

The more interesting case is when κ?a = tκau and κ?b = tκbu for some constraint

sets κa and κb. In that case, σ1 P JκaK or σ1 P Jrename pUpκaq-Upκ0qq κbK. The first

233



case proceeds exactly like the one for κ?b = H. For the latter, we need to push the

renaming to σ1, obtaining some σr which is an alpha-converted version of σ1 and

then proceed similarly. Since the alpha conversion only happens in the unknowns

that are not present in the original constraint set, the choice of these unknowns

doesn’t matter for the final witness.

Before we go to completeness we need an auxiliary lemma that ensures there

exists some derivation that returns a constraint set option if this requirement holds.

This is only necessary for the combining M-Case-1.

Lemma A.0.0.13 (Termination).

H;Upκq $ e : T ^ $ κ

@σ P JκK. Dv1. σpeq ó v1

+

ñ Dκ? q t. p ð e ) κ òtq κ
?

The proof of this lemma is almost identical to the completeness proof. Since it

doesn’t require or enforce particular valuation memberships of the constraint sets

involved, every case can follow with the same argument. The only rules where the

difference matters is in the case rules, where the lack of assumptions allows to pro-

vide some termination witness without guaranteeing that the resulting constraint

set is not H.

We also need another straightforward lemma regarding the completeness of

values:

Lemma A.0.0.14 (Value Completeness).

Upκq $ e : T

$ κ

σ P JκK
σpeq = vp

σppq = vp

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

ñ Dκ1 σ1 q t.

$

’

&

’

%

σ1|σ ” σ

σ1 P Jκ1K
p ð e ) κ òtq tκ

1u

Proof: By induction on e.

Case e = pq or e = u: If e was unit or an unknown, let κ1 = unify κ e p. By

234



the specification of unify σ P Jκ1K. The witnesses to conclude the case are κ1, σ, 1

and ε using the M-Base rule.

Case e = pe1, e2q: Following the M-Pair rule, let

pκ1, ru1, u2sq = fresh κ rT 1, T 2s

and

κ0 = unify κ1 pu1, u2q p.

We invert the substitution relation to obtain that σpe1q = vp1 and σpe2q = vp2 for

some vp1 , vp2 . Let σ1 = σ ‘ u1 ÞÑ vp1 ‘ u2 ÞÑ vp2 . Then since u1 and u2 are fresh,

σ1|σ ” σ and, by the specification of unify , σ1 P κ1.

By the inductive hypothesis for e1 (inverting the typing relation for the typing

premise), there exist σ1, κ1, q1 and t1 such that σ1|σ1 ” σ1 and σ1 P Jκ1K and

u1 ð e1 ) κ0 ò
t1
q1
κ1.

Using Unknown Invariance we can apply the second inductive hypothesis to get

similar σ2, κ2, q2 and t2. We conclude the case by providing the witnesses σ2 and

κ2, while combining the probabilities and traces as usual (q1 ∗ q2 and t1 ¨ t2).

Cases L, R or fold: The remaining cases are similar to the pair case, with only

one inductive hypothesis.

Finally, we will need to propagate the termination information across matching

derivations. For that we can prove the following corollary of decreasingness:

Corollary A.0.0.15. Termination Preservation

p ð e ) κ òtq κ
1

@σ P JκK. Dv. σpeq ó v

+

ñ @σ1 P Jκ1K. Dv. σ1peq ó v

Proof: By decreasingness, κ1 ď κ, which means that σ1|σ P JκK.
Then, there exists v such that σ1|σpeq ó v and the result follows.

235



Theorem A.0.0.16 (Completeness).

ep ó vp ^ σ P JκK
H;Upκq $ e : T ^ $ κ

σpeq = ep ^ σppq = vp

@σ1 P JκK. Dv1. σ1peq ó v1

,

/

/

/

.

/

/

/

-

ñ

Dκ1 σ1 q t.
$

’

&

’

%

σ1|σ ” σ

σ1 P Jκ1K
p ð e ) κ òtq tκ

1u

Proof: By induction on the predicate derivation.

Case P-Val: Follows directly from the completeness lemma for values.

Case P-Pair: We have

ep1 ó vp1 and ep2 ó vp2 .

As in the narrowing proof, we invert the substitution of e and get two cases. In

the simple case, e is some unknown u and σpuq = pep1 , ep2q. But then ep1 and ep2
must be values, and the proof follows by the value completeness lemma.

In the more interesting case, e is a pair pe1, e2q and we know that σpe1q = ep1
and σpe2q = ep2 . Inverting the typing relation gives us

Upκq $ e1 : T 1 and Upκq $ e2 : T 2.

Following the M-Pair rule, let

pκ1, ru1, u2sq = fresh κ rT 1, T 2s

and

κ0 = unify κ1 pu1, u2q p.

As in the value completeness lemma, let σ0 = σ ‘ u1 ÞÑ vp1 ‘ u2 ÞÑ vp2 . By the

236



inductive hypothesis for the derivation of ep1 ,

Upκ0q $ e1 : T 1

$ κ0 ^ σ0 P Jκ0K
σ0pe1q = ep1
σ0pu1q = vp1
@σ1 P Jκ0K. Dv1. σ1pe1q ó v1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

ñ

Dκ1 σ1 q1 t1.
$

’

&

’

%

σ1|σ0 ” σ0

σ1 P Jκ1K
u1 ð e1 ) κ0 ò

t1
q1
tκ1u

Since u1 and u2 are fresh, we get that σ0|σ ” σ as well as σ0ppu1, u2qq = σ0ppq.

But then by the specification of unify σ0 P Jκ0K. Moreover, by the ordering lemmas

for fresh and unify (Lemma 4.3.1.2 and Lemma 4.3.1.8) we know that κ0 ď κ which

means that the termination assumption for valuations in κ is preserved and we can

now use the above inductive hypothesis.

The inductive hypothesis for the derivation of ep2 yields

Upκ1q $ e2 : T 2

$ κ1 ^ σ1 P Jκ1K
σ1pe2q = ep2
σ1pu2q = vp2
@σ1 P Jκ1K. Dv1. σ1pe2q ó v1

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

ñ

Dκ2 σ2 q2 t2.
$

’

&

’

%

σ2|σ1 ” σ1

σ1 P Jκ2K
u2 ð e2 ) κ1 ò

t2
q2
tκ2u

Like in the narrowing proof, we can discharge the typing hypothesis by using

a lemma similar to Lemma A.0.0.1 (which in turn is once again a simple induc-

tion on the matching derivation) and Unknown Invariance, while the termination

assumption can be discharged using the Termination Preservation corollary.

Our final witnesses are σ2, κ2 and the standard combinations of probabilities

and traces.

Case P-App: We know that

ep0 ó vp0 , ep1 ó vp1 and ep2 ó vp,

where vp0 is of the form prec pf : T1 Ñ T2q x = ep2q

and e1p2 = ep2rvp0{f, vp1{xs. Inversion on the substitution gives us only one possible

237



e, since unknowns only range over values: e = pe0 e1q, where σpe0q = ep0 and

σpe1q = ep1 . Inversion of the typing premise gives us

Upκq $ e0 : T 11 Ñ T
1

2 and Upκq $ e1 : T
1

1.

Using preservation and type uniqueness we can equate T1 with T 11 as well as T2

with T
1

2.

We can then turn to the completeness theorem for the narrowing semantics

twice to obtain witnesses such that:

e0 ) κ ót0q0 κ0 ( prec pf : T1 Ñ T 2q x = e2q

and

e1 ) κ0 ó
t1
q1
κ1 ( v1.

Completeness also guarantees that there exists σ1 P Jκ1K such that σ1|σ ” σ, as

well as σ1pe1q ó σ
1pv1q and, through restriction to dompκ0q, σ

1pe0q ó prec pf : T1 Ñ

T 2q x = σpe2qq.

Using a Termination Preservation corollary for the narrowing semantics (that

can be proved identically to the one for the matching semantics), in addition to

Substitution Interaction as in the narrowing proof, we can use the inductive hy-

pothesis for the substituted e1 to complete the proof.

The rest of the cases follow using similar arguments, with the same overall

structure as the narrowing proof. The only cases that are interestingly different

(and where the termination assumption actually comes into play) are the ones that

necessitate use of the combining case rule M-Case-1, which are P-Case-L and

P-Case-R.

Case P-Case-L: Once again, the only interestingly different cases are the ones

for the pattern matching constructs. For P-Case-L, we know that

ep ó LT 1+T 2
vp1 and ep1rvp1{xs ó v

1
p1
.

Let pκ0, ru1, u2sq = fresh κ rT 1, T 2s and σ0 = σ ‘ u1 ÞÑ vp1 .

238



As usual, we can immediately use the inductive hypothesis for the predicate

derivation of e to obtain κ1, σ1, q1 and t1 such that

σ1|σ0 ” σ0, σ1 P Jκ1K and

LT 1+T 2
u1 ð e1 ) κ0 ò

t1
q1
tκ1u.

However, we can’t conclude that there exists a similar derivation for RT 1+T 2
u2

from some inductive hypothesis since we don’t have a corresponding derivation!

That’s where the termination assumptions comes in: by the Termination Lemma

(Lemma A.0.0.13) there exists some κ? such that RT 1+T 2
u2 ð e1 ) κ0 ò

t2
q2
κ?.

We now do case analysis on κ?. If it is equal to H, then the proof is straight-

forward following rule M-Case-3, using the inductive hypothesis for the other

predicate derivation.

If, on the other hand, κ? = tκ2u for some κ2, we face a similar problem for the

second derivation. We can obtain κa, σa, q
1
1 and t11 such that

σa|σ1 ” σ1, σa P JκaK and

p ð e1ru1{xs ) κ1 ò
t11
q1
1
tκau

by the inductive hypothesis for the derivation of ep1rvp1{xs, but we have no cor-

responding derivation for the other branch. Using the Termination Lemma once

again, we can obtain the there exists some such κ?b.

Once again we do case analysis on κ?b. If κ?b = H then the branch of combine

that fires returns tκau and the result follows directly. If κ?b = tκbu for some κb, then,

by the specification of union, σa is contained in the denotation of the combination

and the result follows.

239



Appendix B

Luck Examples

In this appendix we present the Luck programs that serve as both predicates and

generators for the small examples of §4.5.

sig sorted :: [Int] -> Bool

fun sorted l =

case l of

| (x:y:t) -> x < y && sorted (y:t)

| _ -> True

end

sig member :: Int -> [Int] -> Bool

fun member x l =

case l of

| h:t -> x == h || member x t

| _ -> False

end

240



sig distinctAux :: [Int] -> [Int] -> Bool

fun distinctAux l acc =

case l of

| [] -> True

| h:t -> not (member h acc) !h

&& distinctAux t (h:acc)

end

sig distinct :: [Int] -> Bool

fun distinct l = aux l []

In order to obtain lists of a specific size, we could skew the distribution towards

the cons case using numeric annotations on the branches, or, we can use the

conjunction of such a predicate with the following simple length predicate (which

could be greatly simplified with some syntactic sugar).

sig length :: [a] -> Int -> Bool

fun length l n =

if n == 0 then

case l of

| [] -> True

| _ -> False

end

else case l of

| h:t -> length t (n-1)

| _ -> False

end

Finally, the Luck program that generates red black trees of a specific height is:

data Color = Red | Black

data RBT a = Leaf | Node Color a (RBT a) (RBT a)

241



fun isRBT h low high c t =

if h == 0 then

case (c, t) of

| (_, Leaf) -> True

| (Black, Node Red x Leaf Leaf) ->

(low < x && x < high) !x

| _ -> False

end

else case (c, t) of

| (Red, Node Black x l r) ->

(low < x && x < high) !x

&& isRBT (h-1) low x Black l

&& isRBT (h-1) x high Black r

| (Black, Node Red x l r) ->

(x | low < x && x < high) !x

&& isRBT h low x Red l

&& isRBT h x high Red r

| (Black, Node Black x l r) ->

(x | low < x && x < high) !x

&& isRBT (h-1) low x Black l

&& isRBT (h-1) x high Black r

| _ -> False

end

242



Bibliography

[1] Sergio Antoy. A needed narrowing strategy. In Journal of the ACM, vol-
ume 47, pages 776–822. ACM Press, 2000.

[2] Thomas Arts, Laura M. Castro, and John Hughes. Testing Erlang data types
with QuviQ QuickCheck. In 7th ACM SIGPLAN Workshop on Erlang, pages
1–8. ACM, 2008.

[3] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic infor-
mation flow analysis. In Workshop on Programming Languages and Analysis
for Security (PLAS), PLAS, pages 113–124. ACM, 2009.

[4] Thomas H. Austin and Cormac Flanagan. Permissive dynamic information
flow analysis. In Proceedings of the 5th Workshop on Programming Languages
and Analysis for Security, PLAS, pages 3:1–3:12. ACM, 2010.

[5] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brum-
ley. Enhancing symbolic execution with Veritesting. In 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31
- June 07, 2014, pages 1083–1094, 2014.

[6] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine De-
mange, Cătălin Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pol-
lack, and Andrew Tolmach. A verified information-flow architecture. In
Proceedings of the 41st Symposium on Principles of Programming Languages
(POPL), POPL, pages 165–178. ACM, January 2014.

[7] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software
model checking with SLAM. Commun. ACM, 54(7):68–76, 2011.

[8] Musard Balliu, Mads Dam, and Gurvan Le Guernic. Encover: Symbolic
exploration for information flow security. In 25th IEEE Computer Security
Foundations Symposium (CSF 2012), pages 30–44. IEEE, 2012.

243



[9] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verifica-
tion using product programs. In 17th International Symposium on Formal
Methods (FM), volume 6664 of Lecture Notes in Computer Science, pages
200–214. Springer, 2011.

[10] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information
flow by self-composition. Mathematical Structures in Computer Science,
21(6):1207–1252, 2011.

[11] Nick Benton. Simple relational correctness proofs for static analyses and
program transformations. In 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 14–25. ACM, 2004.

[12] Stefan Berghofer and Tobias Nipkow. Random testing in Isabelle/HOL. In
2nd International Conference on Software Engineering and Formal Methods
(SEFM), pages 230–239. IEEE Computer Society, 2004.

[13] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer.
Generalizing permissive-upgrade in dynamic information flow analysis. In
9th Workshop on Programming Languages and Analysis for Security (PLAS),
pages 15–24. ACM, 2014.

[14] Arnar Birgisson, Daniel Hedin, and Andrei Sabelfeld. Boosting the per-
missiveness of dynamic information-flow tracking by testing. In 17th Euro-
pean Symposium on Research in Computer Security, ESORICS, pages 55–72.
Springer, 2012.

[15] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexam-
ple generator for higher-order logic based on a relational model finder. In
First International Conference on Interactive Theorem Proving (ITP), vol-
ume 6172 of Lecture Notes in Computer Science, pages 131–146. Springer,
2010.

[16] Achim D. Brucker and Burkhart Wolff. Interactive testing with HOL-
TestGen. In Proceedings of the 5th International Conference on Formal Ap-
proaches to Software Testing, FATES’05, pages 87–102, Berlin, Heidelberg,
2006. Springer-Verlag.

[17] Lukas Bulwahn. The new Quickcheck for Isabelle - random, exhaustive and
symbolic testing under one roof. In 2nd International Conference on Certified

244



Programs and Proofs (CPP), volume 7679 of Lecture Notes in Computer
Science, pages 92–108. Springer, 2012.

[18] Lukas Bulwahn. Smart testing of functional programs in Isabelle. In 18th
International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), volume 7180 of Lecture Notes in Computer Science,
pages 153–167. Springer, 2012.

[19] J. Burnim and Koushik Sen. Heuristics for scalable dynamic test genera-
tion. In 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 443–446, 2008.

[20] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs.
In 8th USENIX conference on Operating systems design and implementation,
OSDI, pages 209–224. USENIX Association, 2008.

[21] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. EXE: automatically generating inputs of death. In 13th
ACM conference on Computer and communications security, CCS ’06, pages
322–335. ACM, 2006.

[22] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu,
Koushik Sen, Nikolai Tillmann, and Willem Visser. Symbolic execution for
software testing in practice: preliminary assessment. In 33rd International
Conference on Software Engineering, ICSE ’11, pages 1066–1071. ACM, 2011.

[23] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
three decades later. Commun. ACM, 56(2):82–90, February 2013.

[24] Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. Constraint rea-
soning in FocalTest. In 5th International Conference on Software and Data
Technologies, pages 82–91. SciTePress, 2010.

[25] Arun T. Chaganty, Aditya V. Nori, and Sriram K. Rajamani. Efficiently sam-
pling probabilistic programs via program analysis. In Artificial Intelligence
and Statistics (AISTATS), April 2013.

[26] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Balancing
scalability and uniformity in SAT witness generator. In Proceedings of the
51st Annual Design Automation Conference, DAC ’14, pages 60:1–60:6, New
York, NY, USA, 2014. ACM.

245



[27] Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann, and Panagio-
tis Manolios. Integrating testing and interactive theorem proving. In 10th
International Workshop on the ACL2 Theorem Prover and its Applications,
volume 70 of EPTCS, pages 4–19, 2011.

[28] Adam Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In Proceedings of the 13th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’08, pages 143–156, New York, NY,
USA, 2008. ACM.

[29] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. MIT Press, 2013.

[30] Jan Christiansen and Sebastian Fischer. EasyCheck – test data for free. In 9th
International Symposium on Functional and Logic Programming (FLOPS),
volume 4989 of Lecture Notes in Computer Science, pages 322–336. Springer,
2008.

[31] Koen Claessen, Jonas Dureg̊ard, and Micha l H. Pa lka. Generating con-
strained random data with uniform distribution. In Functional and Logic
Programming, volume 8475 of Lecture Notes in Computer Science, pages 18–
34. Springer, 2014.

[32] Koen Claessen, Jonas Dureg̊ard, and Michal H. Palka. Generating con-
strained random data with uniform distribution. J. Funct. Program., 25,
2015.

[33] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In 5th ACM SIGPLAN International Conference
on Functional Programming (ICFP), pages 268–279. ACM, 2000.

[34] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of
Computer Security, 18(6):1157–1210, 2010.

[35] David Delahaye, Catherine Dubois, and Jean-Frédéric Étienne. Extracting
purely functional contents from logical inductive types. In 20th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs), volume
4732 of Lecture Notes in Computer Science, pages 70–85. Springer, 2007.

[36] Maxime Dénès, Cătălin Hriţcu, Leonidas Lampropoulos, Zoe
Paraskevopoulou, and Benjamin C. Pierce. QuickChick: Property-based
testing for Coq. The Coq Workshop, July 2014.

246



[37] Jonas Dureg̊ard, Patrik Jansson, and Meng Wang. Feat: Functional enu-
meration of algebraic types. In Proceedings of the 2012 Haskell Symposium,
Haskell ’12, pages 61–72, New York, NY, USA, 2012. ACM.

[38] Richard Durstenfeld. Algorithm 235: Random permutation. Commun. ACM,
7(7):420–, July 1964.

[39] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Combining testing and
proving in dependent type theory. In 16th International Conference on The-
orem Proving in Higher Order Logics (TPHOLs), volume 2758 of Lecture
Notes in Computer Science, pages 188–203. Springer, 2003.

[40] Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Verifying haskell pro-
grams by combining testing, model checking and interactive theorem proving.
Information & Software Technology, 46(15):1011–1025, 2004.

[41] Carl Eastlund. DoubleCheck your theorems. In ACL2, 2009.

[42] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147,
1974.

[43] Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and
Robert Bruce Findler. Making random judgments: Automatically generating
well-typed terms from the definition of a type-system. In 24th European Sym-
posium on Programming, volume 9032 of Lecture Notes in Computer Science,
pages 383–405. Springer, 2015.

[44] Sebastian Fischer and Herbert Kuchen. Systematic generation of glass-box
test cases for functional logic programs. In 9th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP),
pages 63–74. ACM, 2007.

[45] Jonathan Fowler and Graham Huttom. Towards a theory of reach. In
Trends in Functional Programming - 16th International Symposium, TFP
2015, Sophia Antipolis, France, June 3-5, 2015. Revised Selected Papers,
volume 9547 of Lecture Notes in Computer Science, pages 22–39. Springer,
2015.

[46] Diane Gallois-Wong. Formalising Luck: Improved probabilistic semantics for
property-based generators. Inria Internship Report, August 2016.

247



[47] Cale Gibbard, Brent Yorgey, et al. MonadRandom: Random-number gener-
ation monad. http://hackage.haskell.org/package/MonadRandom-0.4.

2.3, April 2016.

[48] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Vik-
tor Kuncak, and Darko Marinov. Test generation through programming
in UDITA. In 32nd ACM/IEEE International Conference on Software En-
gineering, pages 225–234. ACM, 2010.

[49] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed au-
tomated random testing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI, pages 213–223. ACM, 2005.

[50] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: whitebox
fuzzing for security testing. ACM Queue, 10(1):20, 2012.

[51] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. Church: a language for generative models. In
UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial
Intelligence, Helsinki, Finland, July 9-12, 2008, pages 220–229, 2008.

[52] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sri-
ram K. Rajamani. Probabilistic programming. In James D. Herbsleb and
Matthew B. Dwyer, editors, Proceedings of the on Future of Software En-
gineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, pages
167–181. ACM, 2014.

[53] Arnaud Gotlieb. Euclide: A constraint-based testing framework for critical
C programs. In ICST 2009, Second International Conference on Software
Testing Verification and Validation, 1-4 April 2009, Denver, Colorado, USA,
pages 151–160, 2009.

[54] Alex Groce, Gerard J. Holzmann, and Rajeev Joshi. Randomized differential
testing as a prelude to formal verification. In ICSE, pages 621–631. IEEE
Computer Society, 2007.

[55] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr.
Swarm testing. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2012, pages 78–88, New York, NY, USA,
2012. ACM.

248

http://hackage.haskell.org/package/MonadRandom-0.4.2.3
http://hackage.haskell.org/package/MonadRandom-0.4.2.3


[56] Katarzyna Grygiel and Pierre Lescanne. Counting and generating lambda
terms. CoRR, abs/1210.2610, 2012.

[57] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
Vilhelm Sjöberg, and David Costanzo. Certikos: An extensible architecture
for building certified concurrent OS kernels. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA,
USA, November 2-4, 2016., pages 653–669, 2016.

[58] Qiao Haiyan. Testing and Proving in Dependent Type Theory. PhD thesis,
Chalmers, 2003.

[59] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95–107, 1995.

[60] Michael Hanus. A unified computation model for functional and logic pro-
gramming. In 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 80–93. ACM Press, 1997.

[61] Haskell Libraries Team and Roman Leshchinskiy. vector: Efficient ar-
rays. http://hackage.haskell.org/package/vector-0.11.0.0, Decem-
ber 2015.

[62] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of
JavaScript. In 25th IEEE Computer Security Foundations Symposium (CSF),
CSF, pages 3–18. IEEE, 2012.

[63] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskilltm: A bayesian
skill rating system. In Advances in Neural Information Processing Systems
19, Proceedings of the Twentieth Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 4-7,
2006, pages 569–576, 2006.

[64] Cătălin Hriţcu, Michael Greenberg, Ben Karel, Benjamin C. Pierce, and
Greg Morrisett. All your IFCException are belong to us. In 34th IEEE
Symposium on Security and Privacy, pages 3–17. IEEE Computer Society
Press, May 2013.

249

http://hackage.haskell.org/package/vector-0.11.0.0


[65] Cătălin Hriţcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky,
Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and Leonidas Lampropou-
los. Testing noninterference, quickly. In 18th ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 455–468. ACM, 2013.

[66] Cătălin Hriţcu, Leonidas Lampropoulos, Antal Spector-Zabusky, Arthur
Azevedo de Amorim, Maxime Dénès, John Hughes, Benjamin C. Pierce, and
Dimitrios Vytiniotis. Testing noninterference, quickly. Journal of Functional
Programming (JFP); Special issue for ICFP 2013, 26:e4 (62 pages), April
2016. Technical Report available as arXiv:1409.0393.

[67] John Hughes. QuickCheck testing for fun and profit. In 9th International
Symposium on Practical Aspects of Declarative Languages (PADL), volume
4354 of Lecture Notes in Computer Science, pages 1–32. Springer, 2007.

[68] Daniel Jackson. Software Abstractions: Logic, Language, and Anlysis. The
MIT Press, 2011.

[69] Thomas P. Jensen. Disjunctive program analysis for algebraic data types.
ACM Trans. Program. Lang. Syst., 19(5):751–803, 1997.

[70] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput.
Surv., 41(4), 2009.

[71] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering, 37(5):649–
678, 2011.

[72] Gowtham Kaki and Suresh Jagannathan. A relational framework for higher-
order shape analysis. In Johan Jeuring and Manuel M. T. Chakravarty,
editors, Proceedings of the 19th ACM SIGPLAN international conference on
Functional programming, Gothenburg, Sweden, September 1-3, 2014, pages
311–324. ACM, 2014.

[73] Andrew J. Kennedy and Dimitrios Vytiniotis. Every bit counts: The binary
representation of typed data and programs. Journal of Functional Program-
ming, 22(4-5):529–573, 2012.

[74] Johannes Kinder. Hypertesting: The case for automated testing of hyper-
properties. 3rd Workshop on Hot Issues in Security Principles and Trust
(HotSpot), 2015.

250



[75] Casey Klein. Experience with randomized testing in programming language
metatheory. Master’s thesis, Northwestern, August 2009. http://plt.eecs.
northwestern.edu/klein-masters.pdf.

[76] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias
Felleisen, Matthew Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-
Hochstadt, and Robert Bruce Findler. Run your research: On the effective-
ness of lightweight mechanization. In Principles of Programming Languages
(POPL), 2012.

[77] Casey Klein and Robert Bruce Findler. Randomized testing in PLT Redex.
In Workshop on Scheme and Functional Programming (SFP), 2009.

[78] Casey Klein, Matthew Flatt, and RobertBruce Findler. The Racket virtual
machine and randomized testing. Higher-Order and Symbolic Computation,
pages 1–45, 2013.

[79] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Scala to the power of
Z3: integrating SMT and programming. In 23rd International Conference on
Automated Deduction, volume 6803 of Lecture Notes in Computer Science,
pages 400–406. Springer, 2011.

[80] Pieter W. M. Koopman, Peter Achten, and Rinus Plasmeijer. Model-based
shrinking for state-based testing. In 14th International Symposium on Trends
in Functional Programming (TFP), pages 107–124, 2013.

[81] Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes,
Benjamin C. Pierce, and Li-yao Xia. Beginner’s Luck: a language for
property-based generators. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 114–129, 2017.

[82] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce.
Generating good generators for inductive relations. Proc. ACM Program.
Lang., 2(POPL):45:1–45:30, December 2017.

[83] Leonidas Lampropoulos, Antal Spector-Zabusky, and Kenneth Foner. Ode on
a random urn (functional pearl). In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell, Haskell 2017, pages 26–37, New York,
NY, USA, 2017. ACM.

251

http://plt.eecs.northwestern.edu/klein-masters.pdf
http://plt.eecs.northwestern.edu/klein-masters.pdf


[84] Krzysztof  Latuszyński, Gareth O. Roberts, and Jeffrey S. Rosenthal. Adap-
tive gibbs samplers and related mcmc methods. The Annals of Applied Prob-
ability, 23(1):66–98, 02 2013.

[85] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, July 2009.

[86] Pierre Lescanne. Boltzmann samplers for random generation of lambda
terms. CoRR, abs/1404.3875, 2014.

[87] Fredrik Lindblad. Property directed generation of first-order test data. In
8th Symposium on Trends in Functional Programming, volume 8 of Trends
in Functional Programming, pages 105–123. Intellect, 2007.

[88] Alan K. Mackworth. Consistency in networks of relations. Artif. Intell.,
8(1):99–118, 1977.

[89] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In 29th in-
ternational conference on Software Engineering, ICSE, pages 416–426. IEEE
Computer Society, 2007.

[90] Vikash K. Mansinghka, Daniel M. Roy, Eric Jonas, and Joshua B. Tenen-
baum. Exact and approximate sampling by systematic stochastic search.
In Proceedings of the Twelfth International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2009, Clearwater Beach, Florida, USA, April
16-18, 2009, pages 400–407, 2009.

[91] Brian Milch, Bhaskara Marthi, Stuart J. Russell, David Sontag, Daniel L.
Ong, and Andrey Kolobov. BLOG: probabilistic models with unknown ob-
jects. In IJCAI-05, Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August
5, 2005, pages 1352–1359, 2005.

[92] Dimiter Milushev, Wim Beck, and Dave Clarke. Noninterference via symbolic
execution. In FMOODS/FORTE, volume 7273 of Lecture Notes in Computer
Science, pages 152–168. Springer, 2012.

[93] Flemming Nielson and Hanne Riis Nielson. Tensor products generalize the
relational data flow analysis method. In 4th Hungarian Computer Science
Conference, pages 211–225, 1985.

252



[94] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.

[95] Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. R2:
An efficient mcmc sampler for probabilistic programs. In AAAI Conference
on Artificial Intelligence (AAAI). AAAI, July 2014.

[96] Mart́ın Ochoa, Jorge Cuéllar, Alexander Pretschner, and Per Hallgren. Idea:
Unwinding based model-checking and testing for non-interference on EFSMs.
In 7th International Symposium on Engineering Secure Software and Systems
(ESSoS), volume 8978 of Lecture Notes in Computer Science, pages 34–42.
Springer, 2015.

[97] Chris Okasaki. Red-black trees in a functional setting. Journal of Functional
Programming, 9(4):471–477, 1999.

[98] Bryan O’Sullivan. Criterion: a Haskell microbenchmarking library. http:

//www.serpentine.com/criterion/, 2014.

[99] Sam Owre. Random testing in PVS. In Workshop on Automated Formal
Methods, 2006.

[100] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random
testing for Java. In 22nd ACM SIGPLAN Conference on Object-Oriented
Programming Systems And Applications, OOPSLA, pages 815–816. ACM,
2007.

[101] Micha l H. Pa lka. Testing an optimising compiler by generating random
lambda terms. http://www.cse.chalmers.se/~palka/testingcompiler/.

[102] Micha l H. Pa lka. Random Structured Test Data Generation for Black-Box
Testing. Doktorsavhandlingar vid Chalmers tekniska hgskola. Ny serie, no:.
Department of Computer Science and Engineering, Software Technology
(Chalmers), Chalmers University of Technology,, 2014. 168.

[103] Micha l H. Pa lka, Koen Claessen, Alejandro Russo, and John Hughes. Testing
an optimising compiler by generating random lambda terms. In Proceedings
of the 6th International Workshop on Automation of Software Test, AST ’11,
pages 91–97, New York, NY, USA, 2011. ACM.

253

http://www.serpentine.com/criterion/
http://www.serpentine.com/criterion/
http://www.cse.chalmers.se/~palka/testingcompiler/


[104] Manolis Papadakis and Konstantinos F. Sagonas. A proper integration of
types and function specifications with property-based testing. In Proceedings
of the 10th ACM SIGPLAN workshop on Erlang, Tokyo, Japan, September
23, 2011, pages 39–50, 2011.

[105] Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès, Leonidas Lampropou-
los, and Benjamin C. Pierce. Foundational property-based testing. In Chris-
tian Urban and Xingyuan Zhang, editors, 6th International Conference on
Interactive Theorem Proving (ITP), volume 9236 of Lecture Notes in Com-
puter Science, pages 325–343. Springer, 2015.

[106] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco
Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent
Yorgey. Software Foundations. Electronic textbook, Version 4.0 beta, Jan-
uary 2016.

[107] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In
Bernhard Steffen, editor, Tools and Algorithms for Construction and Anal-
ysis of Systems, 4th International Conference, TACAS ’98, Held as Part
of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume
1384 of Lecture Notes in Computer Science, pages 151–166. Springer, 1998.

[108] QuickCheck developers, Nick Smallbone, Bjrn Bringert, and Koen Claessen.
QuickCheck: Automatic testing of Haskell programs. http://hackage.

haskell.org/package/QuickCheck-2.8.2, January 2016.

[109] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case
reduction for C compiler bugs. In 33rd ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, pages 335–346. ACM, 2012.

[110] Jason S. Reich, Matthew Naylor, and Colin Runciman. Lazy generation of
canonical test programs. In 23rd International Symposium on Implementa-
tion and Application of Functional Languages, volume 7257 of Lecture Notes
in Computer Science, pages 69–84. Springer, 2011.

[111] Alexey Rodriguez Yakushev and Johan Jeuring. Enumerating well-typed
terms generically. In Ute Schmid, Emanuel Kitzelmann, and Rinus Plasmei-
jer, editors, Approaches and Applications of Inductive Programming, volume
5812 of Lecture Notes in Computer Science, pages 93–116. Springer Berlin
Heidelberg, 2010.

254

http://hackage.haskell.org/package/QuickCheck-2.8.2
http://hackage.haskell.org/package/QuickCheck-2.8.2


[112] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. SmallCheck and
Lazy SmallCheck: automatic exhaustive testing for small values. In 1st ACM
SIGPLAN Symposium on Haskell, pages 37–48. ACM, 2008.

[113] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In 23rd Computer Security Foundations Symposium (CSF),
CSF, pages 186–199. IEEE Computer Society, 2010.

[114] A. Sabelfeld and A.C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January
2003.

[115] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In Ershov
Memorial Conference, pages 352–365. Springer, 2009.

[116] Eric L. Seidel, Niki Vazou, and Ranjit Jhala. Type targeted testing. In
Programming Languages and Systems - 24th European Symposium on Pro-
gramming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, pages 812–836, 2015.

[117] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing
engine for C. In 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering, ESEC/FSE-13, pages 263–272. ACM, 2005.

[118] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flex-
ible dynamic information flow control in Haskell. In 4th Symposium on
Haskell, pages 95–106. ACM, 2011.

[119] Dominic Steinitz and James Cook. random-fu: Random number gener-
ation. http://hackage.haskell.org/package/random-fu-0.2.6.2, Jan-
uary 2015.

[120] Paul Tarau. On type-directed generation of lambda terms. In Proceedings of
the Technical Communications of the 31st International Conference on Logic
Programming (ICLP 2015), Cork, Ireland, August 31 - September 4, 2015.,
2015.

255

http://hackage.haskell.org/package/random-fu-0.2.6.2


[121] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety
problem. In 12th International Symposium on Static Analysis (SAS), volume
3672 of Lecture Notes in Computer Science, pages 352–367. Springer, 2005.

[122] Pierre-Nicolas Tollitte, David Delahaye, and Catherine Dubois. Producing
certified functional code from inductive specifications. In Second Interna-
tional Conference on Certified Programs and Proofs (CPP), volume 7679 of
Lecture Notes in Computer Science. Springer, 2012.

[123] Andrew P. Tolmach and Sergio Antoy. A monadic semantics for core Curry.
Electr. Notes Theor. Comput. Sci., 86(3):16–34, 2003.

[124] Emina Torlak and Rastislav Bod́ık. A lightweight symbolic virtual machine
for solver-aided host languages. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, page 54. ACM, 2014.

[125] Nicky Williams, Bruno Marre, and Patricia Mouy. On-the-fly generation
of K-path tests for C functions. In 19th IEEE International Conference on
Automated Software Engineering, ASE, pages 290–293. IEEE, 2004.

[126] Sean Wilson. Supporting dependently typed functional programming with
proof automation and testing. PhD thesis, The University of Edinburgh,
June 2011.

[127] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2011, San Jose, CA, USA, June 4-8, 2011, pages 283–294, 2011.

[128] Stephan A. Zdancewic. Programming Languages for Information Security.
PhD thesis, Cornell University, August 2002.

[129] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing in-
put. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[130] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static
information flow control. International Journal of Information Security, 6(2-
3):67–84, 2007.

256


	University of Pennsylvania
	ScholarlyCommons
	2018

	Random Testing For Language Design
	Leonidas Lampropoulos
	Recommended Citation

	Random Testing For Language Design
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Introduction
	Contributions

	QuickChick
	Overview
	Generators
	Randomness
	Generator Combinators

	Printers
	Shrinkers
	Checkers
	Verifying QuickChick

	Case Study: Information-Flow Control
	Stack Machine
	Abstract Machine
	Noninterference
	Operational Semantics
	Test Driven Development

	Testing
	Generation Techniques
	Strengthening the Property

	Experiences from Extending the Machine
	Decoupling of Generators and Predicates
	Debugging Generators

	Shrinking
	Takeaways

	Luck : A Language for Property-Based Generators
	Luck by example
	Semantics of Core Luck
	Syntax, Typing, and Predicate Semantics
	Constraint Sets
	Narrowing Semantics
	Matching Semantics
	Example

	Metatheory
	Constraint Set Specification
	Properties of the Narrowing Semantics
	Properties of the Matching Semantics

	Implementation
	The Luck Top Level
	Pattern Match Compiler
	Constraint Set Implementation

	Evaluation
	Small Examples
	Well-Typed Lambda Terms
	Information-Flow Control


	Generating Good Generators for Inductive Relations
	Good Generators, by Example
	Nonempty Trees
	Complete Trees
	Binary Search Trees
	Nonlinearity

	Generating Good Generators
	Input
	Unknowns and Ranges
	Overview
	Unification
	Handling Hypotheses
	Assembling the Final Result
	Putting it All Together

	Generating Correctness Proofs
	Verification Framework
	Proof Generation
	Typeclasses for Proof Generation

	Evaluation
	QuickChecking Software Foundations
	QuickChecking Noninterference
	QuickChecking STLC

	Conclusion and future work

	Implementation
	Generic Programming Framework in Coq
	Datatype Representation
	A Term-Building DSL
	A Worked Example

	Urns
	Sampling Discrete Distributions
	The Urn Data Structure
	A Weighty Matter
	Turning Over a New Leaf
	A Balancing Act
	Losing Direction
	A Value Un-urned
	Building Up To (Almost) Perfection
	Applications and Evaluation


	Related Work
	QuickChecks in Theorem Proving
	Generating Random Programs
	Dynamic IFC
	Automatically Generating Constrained Data
	Random Testing
	Enumeration-Based Testing
	Constraint Solving
	Semantics for Narrowing-Based Solvers
	Probabilistic Programming
	Inductive to Executable Specifications

	Urns
	Alternative Discrete Distribution Representations
	Balancing Binary Trees


	Conclusion and Future Work
	Core Luck Proofs
	Luck Examples

