
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2018

Somatotopic Organization Of The Mammalian
Pain System And Developmental Mechanisms
William Paul Olson
University of Pennsylvania, wio@pennmedicine.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Neuroscience and Neurobiology Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2876
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Olson, William Paul, "Somatotopic Organization Of The Mammalian Pain System And Developmental Mechanisms" (2018). Publicly
Accessible Penn Dissertations. 2876.
https://repository.upenn.edu/edissertations/2876

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2876?utm_source=repository.upenn.edu%2Fedissertations%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2876
mailto:repository@pobox.upenn.edu


Somatotopic Organization Of The Mammalian Pain System And
Developmental Mechanisms

Abstract
Commonly, different regions of sensory maps are used to meet separate functional requirements. For the
somatosensory system (which mediates sensation from the skin including touch, pain, and related
modalities), the distal limbs have special behavioral importance for exploration and object manipulation.
Accordingly, the hands and fingertips show heightened sensitivity for both touch and pain sensation in human
subjects. In contrast to the touch system, the neural mechanisms for region-specific pain sensation are poorly
understood. Despite over a century of research into the neural basis of pain, past work has not clearly defined
the functional organization of the pain system across the body (somatotopic) map. In Chapter 2, we use a
novel genetic mouse line to map the organization of one major class of mammalian pain-sensory neurons (the
Mrgprd+ non-peptidergic nociceptors) across the body map. While we find no obvious peripheral
mechanisms for high sensitivity in the distal limbs (mouse plantar paw skin has a low density of Mrgprd+
terminals, and single-cell arbor areas are comparable between paw and trunk skin), we reveal a novel region-
specific organization in the spinal cord terminal arbors of these neurons. Specifically, paw and trunk neurons
grow ‘round’ and ‘long’ arbor morphologies, respectively, such that paw neurons have a wider mediolateral
spread in the spinal cord. We show that this region-specific morphology closely correlates with increased
signal transmission for paw pain circuits. We conclude that region-specific organization of Mrgprd+ spinal
cord terminals provides a possible mechanism for the high pain sensitivity of the distal limbs. In Chapter 3, we
investigate potential developmental mechanisms for region-specific arbor morphologies. Disruption of
peripheral target innervation does not alter their central arbor morphologies, suggesting that this central
somatotopic difference develops independent of cues/processes from the periphery. However, this difference
is present from very early developmental stages, suggesting that pre-programming mechanisms might govern
this somatotopic pattern. Collectively, this work reveals that region-specific organization is a fundamental
principle for the pain system with clear implications for our understanding of pain in both normal and
pathological conditions.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Neuroscience

First Advisor
Wenqin Luo

Keywords
pain, region-specific organization, somatosensation, somatotopy

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2876

https://repository.upenn.edu/edissertations/2876?utm_source=repository.upenn.edu%2Fedissertations%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages


Subject Categories
Neuroscience and Neurobiology

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2876

https://repository.upenn.edu/edissertations/2876?utm_source=repository.upenn.edu%2Fedissertations%2F2876&utm_medium=PDF&utm_campaign=PDFCoverPages


 

SOMATOTOPIC ORGANIZATION OF THE MAMMALIAN PAIN 
SYSTEM AND DEVELOPMENTAL MECHANISMS 

 
William P. Olson 

A DISSERTATION 

in 

Neuroscience 

Presented to the Faculties of the University of Pennsylvania 

in  

Partial Fulfillment of the Requirements for the 
Degree of Doctor of Philosophy 

2018 

Supervisor of Dissertation 

 

____________________ 

Wenqin Luo, MD, PhD 
Assistant Professor Neuroscience 

Graduate Group Chairperson 

 

____________________ 

Joshua I Gold, PhD 
Professor of Neuroscience 

Dissertation Committee: 

Steven S. Scherer, MD, PhD, Professor of Neurology 
Minghong Ma, PhD, Professor of Neuroscience 
Diego Contreras, MD, PhD, Professor of Neuroscience 
Xinzhong Dong, PhD, Professor of Neuroscience, Johns Hopkins University 
 



 ii 

DEDICATION 

 
 

 

 

 

 

 

This thesis is dedicated to my parents David and Diane, my sister Anna, and my partner 

Jun.  I would not have been able to do this without them.  

 



 iii 

ACKNOWLEDGEMENT 

 
I want to first express my sincere gratitude for my mentor, Dr. Wenqin Luo, for all her 

guidance and support during my PhD training. She has been an amazing mentor and role 

model, and her knowledge, intelligence, and insight were instrumental for all of the 

research in this thesis.  

I also want to thank my thesis committee, Drs. Steven Scherer, Minghong Ma, Diego 

Contreras, and Xinzhong Dong. Their questions, comments, and suggestions played a 

major role in this thesis, and I sincerely appreciate their time serving on my committee.  

I want to thank all the past and present members of the Luo Lab: Dr. Ishmail Abdus-

Saboor, Katherine Beattie, Dr. Lian Cui, Dr. Peter Dong, Dr. Michael Fleming, Dr. 

Nathan Fried, Omar Johnson, Kim Kridsada, Suna Li, Dr. Jingwen Niu, Dr. Paclink 

Thaweerattanasinp, and Anna Vysochan. Working with such a talented, fun group of 

people has been motivating and inspiring, and I will truly miss working with all of them. 

I want to thank all of my family: my parents David and Diane, my sister Anna, my aunts 

Mary and Karen, my uncles Dennis, Beau, and Jim, all of my cousins, and my 

grandparents Paul, Dorothy, Ewald, and Doris. Their intelligence and unending support 

are the reason I have been able to reach this point, and I cannot thank them enough.  

Lastly, I want to thank my partner Jun Kang. His patience, kindness and love have meant 

everything to me during these last years of my thesis. 

 



 iv 

ABSTRACT 

 

SOMATOTOTPIC ORGANIZATION OF THE MAMMALIAN PAIN 
SYSTEM AND DEVELOPMENTAL MECHANISMS 

 
William P. Olson 

Wenqin Luo 

 

Commonly, different regions of sensory maps are used to meet separate functional 

requirements. For the somatosensory system (which mediates sensation from the skin 

including touch, pain, and related modalities), the distal limbs have special behavioral 

importance for exploration and object manipulation. Accordingly, the hands and 

fingertips show heightened sensitivity for both touch and pain sensation in human 

subjects. In contrast to the touch system, the neural mechanisms for region-specific pain 

sensation are poorly understood. Despite over a century of research into the neural basis 

of pain, past work has not clearly defined the functional organization of the pain system 

across the body (somatotopic) map. In Chapter 2, we use a novel genetic mouse line to 

map the organization of one major class of mammalian pain-sensory neurons (the 

Mrgprd+ non-peptidergic nociceptors) across the body map. While we find no obvious 

peripheral mechanisms for high sensitivity in the distal limbs (mouse plantar paw skin 

has a low density of Mrgprd+ terminals, and single-cell arbor areas are comparable 

between paw and trunk skin), we reveal a novel region-specific organization in the spinal 

cord terminal arbors of these neurons. Specifically, paw and trunk neurons grow ‘round’ 
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and ‘long’ arbor morphologies, respectively, such that paw neurons have a wider 

mediolateral spread in the spinal cord. We show that this region-specific morphology 

closely correlates with increased signal transmission for paw pain circuits. We conclude 

that region-specific organization of Mrgprd+ spinal cord terminals provides a possible 

mechanism for the high pain sensitivity of the distal limbs. In Chapter 3, we investigate 

potential developmental mechanisms for region-specific arbor morphologies. Disruption 

of peripheral target innervation does not alter their central arbor morphologies, 

suggesting that this central somatotopic difference develops independent of 

cues/processes from the periphery. However, this difference is present from very early 

developmental stages, suggesting that pre-programming mechanisms might govern this 

somatotopic pattern. Collectively, this work reveals that region-specific organization is a 

fundamental principle for the pain system with clear implications for our understanding 

of pain in both normal and pathological conditions.  
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CHAPTER 1 

 

Introduction 

 
This chapter was written by William P. Olson. Portions of this chapter have been adapted 

from:  

Olson W, Dong P, Fleming M, Luo W (2016) The specification and wiring of mammalian 

cutaneous low-threshold mechanoreceptors. Wiley Interdiscip Rev Dev Biol 5:389-404. 
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Region-specific organization in sensory and motor systems 
We interact with the world through our sensory and motor systems, and the organization 

of these neural systems reflects what we require from them for this interaction.  One 

common theme is that separate regions of sensory/motor maps are often subject to distinct 

functional requirements. For example, while the center of our visual field is adept at 

processing fine-detail stimuli to aid in object identification (i.e. reading a highway sign), 

the surrounding peripheral visual field has a much lower resolution for detail. Similarly, 

while motor circuits controlling our distal limbs carry out fine motor commands, the 

circuits controlling axial muscles are dedicated to gross movements and postural control.  

 

Since distinct information processing can be required from separate regions of sensory 

and motor maps, it is not surprising that they commonly feature region-specific circuit 

organization to meet these distinct requirements. While the details of this region-specific 

organization vary greatly between systems, they commonly feature regional specialization 

of peripheral units (either primary sensory receptors or lower motor neurons) and/or 

regional specialization of central representations. Classic work has defined many 

examples of these general principles. 

 

In the visual system, the center of the primate retina (known as the ‘fovea’) mediates 

vision from the central visual field, while the peripheral retina mediates vision from the 

peripheral visual field. The foveal retina features a different cell-type composition (e.g. a 

high concentration of cone rather than rod photoreceptors along with a different 

composition of bipolar and ganglion cells)(Ahnelt, 1998; Masland, 2001) and circuit 
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structure (a lower overall photoreceptor-to-ganglion cell convergence rate)(Kolb, 1994) 

compared to the periphery. Additionally, in the primary visual cortex, the central visual 

field is greatly over-represented (i.e. occupies more physical space per unit area of the 

visual field) than the periphery (Daniel and Whitteridge, 1961). Both the retinal 

organization and the central magnification of the fovea is thought to facilitate the 

detection of color stimuli and high spatial detail (Daniel and Whitteridge, 1961; Kolb, 

1994). The ability to detect fine spatial detail of stimuli is known as spatial acuity, and 

regions of high acuity are known as sensory fovea across sensory systems. In contrast to 

the visual fovea, the organization of the peripheral visual circuits facilitate vision in low 

light situations, especially for moving stimuli (Kolb, 1995). 

 

An analogous form of region-specific organization is found in the auditory systems of 

echolocating bats and owls. These animals feature an ‘auditory fovea’ that mediates 

sensitive detection of the frequency used for echolocation. The amount of space dedicated 

to this frequency in the peripheral (the cochlea) and central circuits is expanded 

compared to other frequencies (Pollak and Bodenhamer, 1981; Kössl and Vater, 1985; 

Vater et al., 1985; Köppl et al., 1993). Strikingly, individual bats use characteristic 

frequencies to differentiate self from non-self signals, and the fovea of their auditory 

cortex is exquisitely matched to their ‘personalized’ frequency (Suga et al., 1987). 

 

Further, recent work has identified region-specific organization in the olfactory system. 

In this organization, the primary olfactory sensory neurons (OSNs) display distinct ciliary 

structure between regions of the olfactory epithelium (Challis et al., 2015). Specifically, 
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region-specific cilia length governs regional differences in OSN sensitivity, with the 

longest cilia lengths and highest sensitivity seen in the dorsal recess of the epithelium.  

This is possibly related to the differential absorption of various odorants across the 

olfactory epithelium and could therefore facilitate detection and differentiation of 

odorants with diverse chemical properties.  

 

Lastly, the motor system shows multiple levels of region-specific organization. In the 

peripheral motor system, the lower motor neurons of the ventral spinal cord are grouped 

into separate ‘motor pools’ that innervate either distal limb or proximal muscle groups 

(Goetz et al., 2015). The fine motor commands executed by the distal limbs are thought to 

be facilitated by a cortical magnification of these regions in the primary motor cortex 

(Penfield, 1937) as well as by a specialized ipsilateral connectivity with resident spinal 

cord neurons (Goetz et al., 2015) compared to proximal motor circuits. 

 

Region-specific organization of the tactile somatosensory system 
As the largest sensory organ of our body, the skin mediates our sensation of physical 

contact with objects in our environment. Sensation in the skin is mediated through the 

somatosensory system (which also mediates our sense of body part position in space). As 

animals move through and interact with the environment, certain somatotopic regions 

(i.e. the hands and feet for humans, the distal limbs and face for quadrupedal mammals) 

are positioned to be likely sites of initial contact with these stimuli. Therefore, the 

somatosensory system requires highly sensitive discriminatory abilities in these regions.  
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Indeed, one of first identified examples of region-specific differences in sensation relates 

to regional differences in the spatial acuity of the light touch system. As was first reported 

by EH Weber in 1834 (Weber, 1834), and further studied by Weinstein in 1968 

(Weinstein, 1968), certain regions of the body (notably the fingertips, tongue and lips) 

show a much higher tactile acuity compared with the rest of the body. This has classically 

been quantified using the two-point discrimination threshold (2PD) method, in which 

two small point stimuli are repeatedly placed on the skin of a subject with the distance 

varied to find the minimal distance at which the subject can distinguish them as separate 

points. Based on various reports, the fingertips have a ~4-12X lower 2PD threshold for 

tactile stimuli compared to the upper back, indicating much higher tactile spatial acuity 

(Weber, 1834; Weinstein, 1968; Mancini et al., 2014). While cats, rodents and other 

whiskered mammals rely heavily on the whisker system for object localization and 

navigation, reports indicate that cats and mice also likely show high tactile acuity in the 

distal limbs (Brown et al., 2004; Orefice et al., 2016; Abraira et al., 2017). 

 

Light touch (tactile) stimuli are detected by low threshold mechanoreceptors 

The primary sensory neurons that detect light touch stimuli are known as low threshold 

mechanoreceptors (LTMRs). All primary somatosensory neurons, including LTMRs, 

have cell bodies in the dorsal root ganglia (DRG) along the spinal column or in the 

trigeminal ganglia (TG) at the base of the skull. They grow a single axon that bifurcates in 

the ganglion into two branches: one enters the spinal nerve (or trigeminal nerve for TG 

afferents) to innervate the periphery (skin and other tissues) while the other enters the 

dorsal route to enter the spinal cord/central nervous system (CNS). DRG neurons can be 
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classified based on their axon diameter, myelination level, and conduction velocity (CV). 

LTMRs are either Aß (large diameter, myelinated, fast CV), A∂ (intermediate diameter, 

myelinated, intermediate CV) or C (small diameter, unmyelinated, slow CV) fibers. They 

are often further classified into rapidly adapting (RA), slowly adapting (SA) or 

intermediate adapting (IA) groups based on their response properties to ‘ramp-and-hold’ 

stimulation. The various classes of LTMRs associate with characteristic end organs in the 

skin (Fleming and Luo, 2013; Olson et al., 2016). 

 

Mammals have two skin types: hairy and glabrous (non-hairy). Glabrous skin is located 

on the plantar paws (hands/feet in humans) and lips. Hairy skin covers the rest of the 

body, including the face. Glabrous and hairy skin are innervated by different classes of 

LTMRs, representing one level of regional specialization among peripheral 

somatosensory circuits (Li et al., 2011; Fleming and Luo, 2013; Olson et al., 2016). 

Glabrous skin is innervated by: (1) Meissner’s corpuscle-associated (RA type I, RAI) Aß 

and (2) Merkel cell-associated (SA type I, SAI) Aß units, along with (3) Pacinian 

corpuscle-associated (RA type II, RAII) Aß fibers. The hairy skin is innervated by (1) 

Merkel cell-associated SAI fibers along with multiple fiber types innervating hair follicles 

including (2) Aß lanceolate ending (RA) fibers, (3) Aß circumferential ending (RA) 

fibers, (4) A∂ lanceolate ending (RA) fibers, and (5) C lanceolate ending (IA) fibers.  

 

Centrally, LTMRs enter the spinal cord through the dorsal root and bifurcate in the 

dorsal funiculus (i.e. dorsal column, a white matter tract at the dorsomedial edge of the 

spinal cord), to grow a longitudinal projection that ascends to the brainstem, synapsing 
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on the dorsal column relay nuclei. LTMRs extend ‘3rd order’ projections out of this 

ascending longitudinal projection to innervate the spinal dorsal horn (DH) grey matter at 

multiple spinal levels. While the dorsal column projections are the major pathway for 

tactile signal transmission to the brain, these local 3rd order projections into the dorsal 

horn grey matter contribute to local cross-talk with multiple sensory modalities. 

 

The somatotopic map is the topographic representation of the body in the 

somatosensory pathways. In the spinal cord, this map has been determined with gross 

anatomy, retrograde tracing, and in vivo physiological recording experiments (Brown and 

Fuchs, 1975b; Brown and Koerber, 1978; Koerber and Brown, 1982; Cervero and Connell, 

1984; Swett and Woolf, 1985; Woolf and Fitzgerald, 1986; Shortland et al., 1989; Brown et 

al., 1991; Millecchia et al., 1991; Takahashi et al., 2002). In the spinal cord, segments are 

defined by the bilateral sets of dorsal and ventral roots exiting each segment to form the 

spinal nerves. Each bilateral set of spinal nerves innervates a strip of skin surrounding the 

body circumference called a dermatome. The rostrocaudal body plan is therefore 

represented in the DH by the segmental arrangement: cervical segments represent the 

neck, upper body, and forelimbs; thoracic segments represent the trunk; lumbar segments 

represent the lower body and hind limbs; sacral segments represent anogenital (and tail 

for tailed mammals) skin. Cervical and lumbar segments contain the cervical (C4-C7 in 

mice)/lumbar (L3-L5 in mice) enlargements, which are wide segments innervating the 

limbs. In the cervical/lumbar enlargements, proximodistal location along the limb is 

represented based on mediolateral position in the DH. Importantly, the proximodistal map 

is ‘flipped’ in the DH, with the most distal limb regions (digits and plantar paws/hands 
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and feet) represented in the most medial DH. In thoracic segments, mediolateral position 

corresponds to dorsoventral location in the periphery, with the medial DH representing 

ventral-most skin.  

 

Defined region-specific mechanisms could explain the ‘tactile fovea’ 

Given that the ‘tactile foveae’ of the distal limbs and face have long been appreciated, 

several underlying neural mechanisms have been defined. In the peripheral tactile system, 

two such mechanisms have been identified. The skin of the fingertips and the plantar 

distal limbs has a greatly increased density of two unit types, Meissner’s corpuscle-

associated RAI and Merkel cell complex-associated SAI units (Johansson and Vallbo, 

1979; Vallbo and Johansson, 1984). These two units are likely utilized for fine detail 

discrimination because they have small, well-defined receptive fields (RFs, the area of 

skin in which stimuli will excite a single unit)(Fleming and Luo, 2013; Olson et al., 2016). 

Furthermore, as a population, LTMRs have a smaller RF size in the distal compared to the 

proximal limb (Brown and Koerber, 1978; Brown et al., 2004). In the spinal cord, the 

distal limb representation is magnified in the DH touch circuits, which in this system has 

been estimated using a variable called ‘map scale’ (the unit of DH space dedicated to a 

unit area of space in the periphery) (Millecchia et al., 1991; Wang et al., 1997; Brown et 

al., 2004). Moreover, in the brain, the magnification of distal limb and face regions was 

revealed by Wilder Penfield and colleagues, who used focal stimulation of the cortex of 

human subjects to map the function of cortical regions, including primary somatosensory 

cortex (S1) (Penfield, 1937). They called these maps ‘homunculi’ for ‘little humans’, and 

they demonstrated the distal limbs and face occupy greatly expanded portions of the S1 
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map. It should be noted that the functional importance of distal limb magnification in the 

DH is unclear given that the major pathway for tactile signal transmission to the brain is 

through the dorsal column pathway. 

 

The increased density of LTMRs in the distal limbs, along with the central magnification 

of these regions, has been predicted to sharpen spatial representations in the CNS based 

on computational modeling (Brown et al., 2004). The magnification of distal limbs in the 

CNS has commonly been thought to follow from the increased density of LTMRs in the 

periphery (Wang et al., 1997; Brown et al., 2004). However, in addition to peripheral 

receptor density, mechanisms in downstream circuits can also differentially magnify 

sensory map regions. In one example, the extremely high spatial acuity exhibited by one 

of the facial tactile appendages (‘rays’) of the star-nosed mole does not result from an 

increased density of peripheral receptors (Catania and Kaas, 1997; Catania et al., 2011). 

Instead, individual tactile afferents from this ray expand their representation within the 

CNS, a mechanism known as afferent magnification.  

 

What is the region-specific organization of the pain somatosensory 
system? 
Nociception, which is the detection of harmful mechanical, thermal, or chemical stimuli, 

is mediated through separate peripheral and central neural pathways than light touch. 

Until recently, it has been unclear whether pain shows analogous regional differences in 

sensation like the touch system. This partly because stimuli the intense mechanical 

stimuli commonly used to activate the pain system (like a pinprick) also activate LTMRs, 
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precluding the use of standard 2PD testing paradigms to study pain circuits. Recent work, 

however, has demonstrated that the fingertips are a ‘fovea’ for pain stimuli in human 

subjects (Mancini et al., 2013; Mancini et al., 2014). This work used focal laser stimuli that 

specifically activate A∂ thermal nociceptors, and then mapped pain 2PD thresholds 

across the body. While overall spatial acuity is higher for touch compared to pain stimuli, 

pain shows regional variation in 2PD thresholds with the lowest values in the fingertips, 

hands, feet, and face.  

 

This result was surprising, since it was known that human skin biopsy staining for 

nociceptive nerve terminals (stained by antibodies against PGP9.5, see below) showed 

that fingertip skin has a lower neurite density compared to skin from the dorsal hand 

surface (Mancini et al., 2013). This indicates that pain likely does not use one of the major 

mechanisms used for the tactile fovea: the increased density of peripheral receptors. 

Moreover, this suggests that unrecognized region-specific organization may exist in the 

pain system, possibly in CNS circuits, to facilitate sensitive sensation in the ‘pain fovea’.  

 

Physiological, Anatomical, Molecular Genetic, and Functional Descriptions 
of the Mammalian Pain System 
Past work has provided detailed characterization of the pain system at both the 

population and the single-cell level. This includes analysis of both cutaneous and non-

cutaneous (muscle, viscera, etc) pain pathways in both ‘normal’ and pathological 

conditions. However, in contrast to the touch system, past work has not systematically 

characterized somatotopic differences within the pain system. Based on this, much remains 
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unclear regarding the region-specific processing of pain. The following overview covers 

past descriptions of cutaneous nociceptors under non-pathological conditions, and will 

highlight the limitations in this work for dissecting somatotopic differences in this 

system.  

 

Physiological characterizations of nociceptors 
Pain stimuli are detected by nociceptors 

Based on the discovery in the late 19th century of discrete spots in human skin sensitive to 

painful stimulation, Maximilion von Frey proposed that pain was a distinct sensory 

modality mediated by specialized nerve fibers (Norrsell et al., 1999). Charles Sherrington, 

in 1906, proposed the existence of single primary sensory neurons dedicated to the 

detection of noxious (i.e. extreme mechanical, thermal, or chemical) stimuli, which he 

termed nociceptors (Sherrington, 1906). The first clear identification of single neurons 

that could code for noxious stimuli came from in vivo cutaneous nerve recordings in the 

1950s and 60s, notably the work of Edward Perl along with Paul Richards Burgess and 

Paul Bessou (Iggo, 1959; Iggo, 1960; Burgess and Perl, 1967; Perl, 1968; Bessou and Perl, 

1969). In cutaneous nerve recordings from the cat and monkey, they found single units 

that did not respond to stimuli reported as non-painful by human subjects (low intensity 

thermal or mechanical stimuli), but did fire in response to stimuli reported to be painful 

by humans (punctate mechanical stimuli applied with >1 g, or 10 mN, of force, and 

thermal stimuli >46°C). These units conducted in either the A-fiber (~5-40 m/s) or C-

fiber (<2 m/s) range. Subsequent work from many labs have further characterized these 
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units across multiple species, and these recordings confirm that dedicated cutaneous 

populations code for stimuli with the potential to cause tissue damage.  

 

In nerve recording studies, nociceptors are classified into A- and C-fiber groups and then 

sub-classified based on the stimulus/stimuli to which they respond. A-fiber nociceptors 

are commonly classified as A∂ fibers, although the conduction velocities of these fibers 

can extend into the low Aß range (Burgess and Perl, 1967; Georgopoulos, 1976; Treede et 

al., 1998). A∂ nociceptors are thought to mediate the sharp ‘fast pain’ that is immediately 

felt after the onset of a noxious stimulus, while C nociceptors are thought to mediate the 

dull ‘slow pain’ that occurs 1-2 seconds later (Price, 1972; Torebjörk and Hallin, 1973; 

Price et al., 1977).  

 

Nociceptors often have polymodal response properties 

Importantly, many A∂ and C nociceptors have ‘polymodal’ response properties, meaning 

they respond to noxious stimuli of several modalities (mechanical, thermal, and/or 

chemical). Polymodal nociceptors have been identified in rodent (Lynn and Carpenter, 

1982; Fleischer et al., 1983; Kirchhoff et al., 1990; Liu et al., 2012), rabbit (Fitzgerald and 

Lynn, 1977), cat (Iggo, 1959; Burgess and Perl, 1967; Bessou and Perl, 1969), monkey 

(Croze et al., 1976; Georgopoulos, 1976; Georgopoulos, 1977), and human (Van Hees and 

Gybels, 1972; Torebjörk, 1974; Van Hees and Gybels, 1981; Schmidt et al., 1995) nerve 

recordings, and their physiological properties are consistent across species. These 

neurons have little to no background activity at ambient temperatures but fire in response 

to noxious heat (>45-46°), high-intensity mechanical, and often noxious chemical stimuli 
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(such as mustard oil, paint remover, or inflammatory agents). They are therefore termed 

AMH (A-mechanoheat) or CMH (C-mechanoheat) units. AMH and CMH units also 

respond to extreme cold temperatures (with cold thresholds below 12°C), but cold 

responses have been less systemically tested (Georgopoulos, 1976; Simone and Kajander, 

1996; Simone and Kajander, 1997). CMH units are by far the most prevalent among the C 

nociceptors (representing 50-80% of C units sampled in various studies), while AMH 

units may account for roughly half of A∂ units (Georgopoulos, 1976; Schmidt et al., 

1995). AMH and CMH units exhibit slow adaptation responses to ramp-and-hold 

stimuli, and show monotonic increases in firing rate with increased stimulus intensity (up 

to a saturation intensity) (Garell et al., 1996). 

 

In addition to polymodal nociceptors, some nociceptors respond to noxious mechanical 

but not thermal stimuli and are termed AM or CM units (Burgess and Perl, 1967; Bessou 

and Perl, 1969; Georgopoulos, 1976; Fitzgerald and Lynn, 1977; Leem et al., 1993; 

Schmidt et al., 1995). Further, more recent studies that used electrical rather than 

mechanical search stimuli identified so-called mechanically insensitive afferents (A-MIAs 

or C-MIAs), sometimes called ‘silent nociceptors’ (Meyer et al., 1991; Treede et al., 1998; 

Schmidt et al., 2000). Many A-MIAs and C-MIAs respond to noxious heat and/or 

chemical stimuli. They may be involved in coding intense pain caused by prolonged 

mechanical forces stronger than the saturation stimuli for AMH/CMH units (Garell et al., 

1996; Schmidt et al., 2000). Additionally, some change their response properties after 

application of chemicals and may therefore play a role in inflammatory or chronic pain 

(Meyer et al., 1991; Schmidt et al., 1995).   
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Importantly, nociceptor response properties are dramatically affected by stimulus history 

and by tissue damage/skin inflammation (Fitzgerald and Lynn, 1977; Campbell and 

Meyer, 1983; Kirchhoff et al., 1990; White et al., 1990). A large body of work has 

compared physiological response properties of units in uninjured vs. injured skin to 

understand possible mechanisms for heightened pain during injury conditions (Treede et 

al., 1992). 

 

Physiological receptive field maps provide limited information regarding nociceptor 
peripheral structure 

Single-unit nerve recordings have revealed the spatial structure of nociceptor receptive 

fields (RF, area of skin in which stimulation will excite a single neuron). Most of this 

analysis has come from mapping the RF using focal mechanical stimuli, though use of 

heat lasers allows for estimations of thermal RFs (Treede et al., 1990). The best studied are 

the CMH units. CMH RFs are described as small circular or elliptical areas. RF areas were 

estimated to be < 2 mm in diameter in the dorsal hind paw of the rat and cat (Bessou and 

Perl, 1969; Lynn and Carpenter, 1982) and somewhat larger in monkeys and humans (<3 

mm diam. in monkey hands or limbs (Croze et al., 1976; Georgopoulos, 1976), and 10 

mm diam. on average in the human dorsal foot (Schmidt et al., 1997)). A minority of 

CMH units have complex RFs, which contain 2 nearby but non-contiguous areas (Van 

Hees and Gybels, 1972; Torebjörk, 1974; Beitel and Dubner, 1976; Croze et al., 1976). 

Recordings in monkeys and humans have found 2-10 ‘hot-spots’ in CMH RFs, which are 

small points of heightened sensitivity within the RF (Torebjörk, 1974; Beitel and Dubner, 
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1976; Croze et al., 1976; Georgopoulos, 1976). While such hot-spots may be present in rat 

and cat CMH units, they may be difficult to detect due to their small size.  

 

While informative, physiological RF mapping has a few limitations: (1) While detailed 

maps of nociceptor RFs from large RFs in monkeys and humans have been reported 

(Beitel and Dubner, 1976; Schmidt et al., 1997), in general these physiological RF maps 

have low spatial resolution. (2) It is evident from these studies that the RF map is highly 

dependent on stimulus intensity and/or experimental methodology (e.g.(Treede et al., 

1990)). The best analyses of RF structure likely come from use of electrical mapping 

stimuli, though these ‘eRFs’ also have limited resolution and could change based on the 

physiological properties of the nociceptor (Meyer et al., 1991; Schmidt et al., 1997). (3) 

For methodological reasons, these past descriptions have focused on the upper and lower 

limbs and, in some cases, the face. It is therefore difficult systematically compare 

nociceptor structure across the body.  

 

Regarding point (3), these recording studies have made some observations regarding 

regional differences in nociceptor RFs. One study of human C-fiber mechanosensitive 

afferents reports significantly larger RFs in the proximal compared to distal leg (with leg 

RFs ~5 times larger than RFs in the toes)(Schmidt et al., 1997). This study included both 

nociceptive and non-nociceptive (C-fiber LTMR) units. Similarly, there are some reports 

of A-fiber nociceptive units showing smaller overall RFs in distal vs. proximal limb (Perl, 

1968; Lynn and Carpenter, 1982). It remains to be determined whether these reported 

differences are caused by regional variation in the anatomical area of units, in single-unit 
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physiological properties, or in the composition of unit types present in various skin 

regions. 

 

Anatomical and molecular characterizations of nociceptors 
Von Frey linked pain sensation to ‘free nerve terminals’ in the skin, in contrast to other 

cutaneous nerve fibers associated with various end organs which he linked to light touch 

sensation (Norrsell et al., 1999). This proposal was supported by physiological studies 

establishing that nociception was mediated by medium diameter, thinly-myelinated A∂ 

and small diameter, unmyelinated C fibers, which innervate the skin as free nerve 

terminals. However, this connection is complicated by the fact that other cutaneous 

neuronal populations conduct in the C-fiber range including efferent sympathetic 

neurons, warm- and cool-sensing thermoceptors, and some low threshold 

mechanoreceptor afferents. This issue has been clarified by studies combining 

physiological and/or molecular identification of nociceptors with anatomical studies, as 

described below. A combination of electron microscopy, light microscopy, and molecular 

genetic tracing have characterized the peripheral and central anatomy of nociceptive 

afferents. 

 

Molecular and genetic analysis identified two major mammalian nociceptor populations 

Nociceptor cell bodies, like all primary somatosensory neurons, lie in the DRGs/TGs. 

Immunostaining studies identified various molecular markers expressed by small and 

medium diameter (i.e. C and A∂ (Hoheisel and Mense, 1987)) DRG neurons in rodents. 

This work identified two classes of nociceptors based on molecular marker expression: (1) 
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‘peptidergic nociceptors’, which express the neuropeptides substance P and calcitonin 

gene-related peptide (CGRP), but do not express fluoride resistant acid-phosphatase 

(FRAP), and (2) ‘non-peptidergic nociceptors’, which have FRAP activity and bind the 

plant isolectin B4 (IB4) (Nagy and Hunt, 1982; Kruger et al., 1989; Silverman and Kruger, 

1990). Transgenic mouse lines later allowed for the genetic targeting of these classes. The 

most useful/specific of these use the Calca locus (coding for CGRP) to target peptidergic 

nociceptors(McCoy et al., 2012; McCoy et al., 2013) and the Mrgprd locus (coding for 

Mas-related gene product receptor) to target the majority (~75%) of IB4+ non-

peptidergic nociceptors(Zylka et al., 2005). Mrgprd is one of a large class of mouse G-

protein coupled receptors (GPCRs) specifically expressed in the DRG/TG of mice(Dong 

et al., 2001) (see below for information regarding Mrgprd function).  

 

Nociceptors predominantly innervate the skin as free nerve terminals 

Nociceptor peripheral branches leave the DRG to enter the spinal nerves (or the TG to 

enter the trigeminal nerve) and travel to their peripheral target (skin or deeper tissues). 

Immunostaining and genetic tracing have revealed the skin innervation of peptidergic 

and non-peptidergic nociceptor populations. Peptidergic fibers are visualized with CGRP 

immunostaining (Kruger et al., 1989; Zylka et al., 2005) and with CalcaGFP (McCoy et al., 

2012) knock in mice, while non-peptidergic fibers are visualized with staining for the 

pan-neuronal marker PGP9.5 (Kennedy, 2004) or with or MrgprdEGFPf knock-in mice 

(Zylka et al., 2005). Both fiber types form a horizontal plexus in the dermis. Peptidergic 

fibers associate with blood vessels, sebaceous glands, and form some free nerve endings in 

the dermis. Isolated peptidergic/non-peptidergic axons leave the dermal plexus to branch, 
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enter the epidermis, and terminate as intraepidermal free nerve endings. While 

peptidergic fibers form thick intraepidermal knobs terminating in the stratum spinosum, 

non-peptidergic fibers form twisted free terminals that terminate more superficially in the 

stratum granulosum. CGRP+ and Mrgprd+ endings sometimes intertwine in the 

epidermis, and Mrgprd+ fibers are the most prevalent ending type in the epidermis 

(comprising ~60% of PGP9.5+ free nerve endings).   

 

Nociceptors predominantly form free nerve endings in the skin, however recent work has 

a cutaneous nociceptor population that expresses CGRP, conducts in the A¶ range, and 

innervates hair follicles. These ‘Circ-HTMR’ fibers (Circumferential High Threshold 

Mechanoreceptor) form circumferential-type endings encircling the deep hair follicle and 

respond to noxious pulling of the hair follicle (Ghitani et al., 2017). Stainings from 

MrgprdEGFPf knock-in mice indicate that non-peptidergic fibers also form endings around 

hair follicles, though these endings have not been carefully characterized (Zylka et al., 

2005). 

 

The ultrastructure of nociceptor peripheral innervation has been described by electron 

microscopic (EM) studies. EM of DRGs identified a class of small-diameter neurons 

(termed ‘type B’ DRG neurons) with unmyelinated or thinly myelinated axons and that 

had a dark, dense Nissl staining appearance (Sommer et al., 1985). Peripherally, 

unmyelinated C-fibers and myelinated A∂ nociceptor travel in the nerve in bundled 

fascicles enclosed by collagen and a Schwan cell sheath (Cauna, 1973; Kruger et al., 1981; 
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Cauna, 2008). While A∂ fibers loose their myelin in the upper dermis, individual C and 

A∂ terminals retain their Schwann cell sheath as they penetrate the epidermal basal 

membrane and form intraepidermal endings. These endings loose this Schwann cell 

sheath in isolated spots to directly contact epidermal keratinocytes. While the axoplasm 

of nociceptor terminals in general shows few organelles, both small clear and dense core 

vesicles are seen, likely related to signaling molecules released by nociceptor terminals in 

various conditions (Mense, 2009). 

 

These studies have described the peripheral innervation patterns of nociceptor 

populations, but there are limitations in this work regarding the somatotopic 

organization of these populations. While immunostaining studies have noted differences 

between glabrous and hairy skin innervation (Kruger et al., 1989; Zylka et al., 2005), they 

cannot resolve the anatomy of single nociceptors and therefore cannot compare single 

nociceptors between regions. Further, EM studies have described of single nociceptor 

terminals, but often not in the context of entire terminal arbors, and they are not suited to 

systematic comparisons between body regions.  

 

Nociceptor central projections synapse on spinal cord circuits for integration and relay of 
pain signals 

The spinal cord grey matter is commonly categorized based on the laminar organization 

system developed by Bror Rexed in the early 1950s (Rexed, 1952, 1954). Rexed identified 

10 lamina (I-X, from dorsal to ventral) based on characteristic cytoarchitecture. Notably, 

layer II in the superficial dorsal horn corresponds to the ‘substantia gelatinosa of 
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Rolando’ which was first characterized by the Italian physician Luigi Rolando in 1824 

(Rexed, 1952). Rolando named this region based on its gelatinous appearance under light 

microscopy, which is due to a lack of myelinated fibers primary afferent fibers. 

Subsequent work showed that the substantia gelatinosa (SG) is a critical locus for the 

intake and processing of pain information in the central nervous system.  

 

Nociceptor fibers enter the spinal cord through the dorsal root, travel rostrocadually in 

Lisseur’s tract at the dorsolateral margin of the spinal cord, and then dive ventrally to 

innervate the DH. The clearest early descriptions regarding the laminar innervation of 

DRG neurons came from single-cell tracing experiments (Scheibel and Scheibel, 1968; 

Light and Perl, 1979; Sugiura et al., 1986; Sugiura et al., 1989). This was later combined 

with immunostaining (for CGRP, FRAP, IB4 and other markers) and genetic tracing 

experiments (Nagy and Hunt, 1982; Zylka et al., 2005). Nociceptors innervate either the 

superficial (layer I and II) or deep (layer V) DH. Dissection of circuits in the SG has 

divided this layer into ‘outer’ and ‘inner’ segments (layer IIo and IIi). Peptidergic fibers 

(both thinly myelinated A∂ and unmyelinated C fibers) innervate layer I/IIo and layer V. 

Non-peptidergic fibers only innervate layer II ventral to peptidergic fibers, and MrgrdEGFPf 

fibers were found to innervate a boundary between IIo and IIi (identified as IIm in this 

study (Zylka et al., 2005)). 

 

The first descriptions of nociceptor single-cell morphology in the CNS came from Golgi 

stainings (Szentagothai, 1964; Scheibel and Scheibel, 1968; Scheibel and Schiebel, 1969; 

Rethelyi, 1977). Later work combined in vivo intracellular recording of DRG cell bodies 
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with axon filling techniques (using horseradish peroxidase for A∂ nociceptors and plant 

lectins for C nociceptors) (Light and Perl, 1979; Sugiura et al., 1986; Sugiura et al., 1989). 

Based on these studies, A∂ and C nociceptors send thin axons into the DH that elaborate 

terminal axonal arbors in their appropriate layer(s). While C nociceptors will grow a 

single arbor in either layer I or layer II, A∂ nociceptors can grow arbors in both layer I 

and layer V (although some neurons will innervate only one layer). Axons in these arbors 

have en passant swellings thought to represent sites of synaptic contact (see below). In 

general, these studies proposed a model in which nociceptor arbors are flattened in the 

mediolateral axis and stretched in the rostrocaudal (sagittal) axis, so that the primary 

afferent neuropil comprises a series of ‘sagittal sheets’ contacting the DH neurons. 

 

EM studies have described the synaptic contacts of nociceptors with DH neurons (Gobel, 

1974, 1976; Duncan and Morales, 1978; Ribeiro-da-Silva and Coimbra, 1982; Ribeiro-da-

Silva, 1995). These contacts are commonly organized in an arrangement known as a 

‘synaptic glomerulus’. These glomeruli feature (1) a central terminal (C), which is the 

nociceptor primary afferent terminal, in contact with (2) dendrites and (3) axonal 

terminals. Glomeruli are separated from the surrounding neuropil by glial processes. The 

diameter of these glomeruli closely matches the diameters of en passant axonal swellings, 

supporting that these swellings are synaptic contacts. The vast majority of nociceptor 

synaptic contacts are ‘typical’ axo-dendritic synapses of C terminals onto post-synaptic 

dendritic shafts (Duncan and Morales, 1978). However, within synaptic glomeruli, 

dendro-axonic (dendritic shafts signaling to C terminals or other axons) and dendro-

dendritic (dendritic shafts signaling to each other) are seen. Moreover, axo-axonic 
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synapses (from DH interneuron or descending projections from the brainstem) provide 

pre-synaptic inhibitory control of transmitter release from C terminals. This has been 

shown to provide critical ‘gain control’ of pain signaling in various behavioral states 

(Todd, 1996; Mason, 2012). Overall, the synaptic organization of these terminals reflects 

the complex signaling that controls pain transmission.  

 

Taken together, while informative, these studies have not provided a somatotopic model 

for nociceptor primary afferent innervation of the spinal cord. Due to the technical 

difficulty of staining small diameter afferents with dye backfilling (especially for C fibers), 

only a relatively small number of nociceptor central arbors have been characterized from 

isolated somatotopic regions. Additionally, it is difficult to detangle in these studies 

whether morphological differences are related to differences between subtypes or to 

somatotopic location. EM studies provide detailed information about synaptic 

organization, but somatotopic differences have not been carefully addressed in this work.  

 

Functional and Behavioral characterizations of nociceptors 
Following from the identification of molecularly-defined nociceptor populations, recent 

work has tested the necessity of these populations for expression of mouse pain behaviors. 

One surprising result from these studies is that, while most nociceptors are polymodal in 

their physiological responses, ablation of certain populations shows selective behavioral 

deficits regarding pain modalities. This remains an intriguing question in the field.  
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Peptidergic nociceptors play a predominant role in mouse thermal pain behavior 

Peptidergic nociceptors highly co-express the thermal pain receptors Transient receptor 

potential cation channel (Trp) subfamily V1 (Trpv1), Trp subfamily A1 (Trpa1) and Trp 

subfamily M3 (Trpm3) (Vriens et al., 2011; McCoy et al., 2012; Usoskin et al., 2014; 

Vandewauw et al., 2018). Consistent with this expression, genetically labeled CGRP+ 

neurons show robust noxious thermal heat responses, and both pharmacological (high-

dose treatment with the TRPV1 agonist capsaicin) or genetic ablation of this population 

causes severe reduction in thermal pain responses (Stucky and Lewin, 1999; Cavanaugh et 

al., 2009; McCoy et al., 2012; McCoy et al., 2013). Interestingly, although many 

peptidergic neurons are polymodal in their physiological responses (Ghitani et al., 2017), 

these ablation studies did not report obvious changes in mechanical pain behavior, 

though cold pain responses were heightened. This supports that peptidergic nociceptors 

are the major mediators of thermal pain. These are likely to be the subset of CGRP+ 

neurons ending in free nerve terminals rather than follicle-innervating Circ-HTMRs, as 

the latter do not show noxious heat responses (Ghitani et al., 2017). 

 

Mrgprd+ non-peptidergic nociceptors play a role in mechanical pain and beta-alanine 
induced itch   

Studies defining the functional role of non-peptidergic fibers have used the Mrgprd locus 

to target this population in mice. Physiological characterization (using loose-patch in vivo 

recordings in MrgprdEGFPf mice) showed that Mrgprd+ neurons are both CMH 

(mechanical and heat polymodal) and CM (mechano-only) units (Rau et al., 2009). 

Genetic ablation of these neurons results in a reduction in mechanosensitivity (up to 1.4 
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g/14 mN of force) but does not cause thermal pain deficits (Cavanaugh et al., 2009). 

However, ablation of these fibers after ablation of peptidergic fibers does reveal a minor 

role for this population in thermal pain (Pogorzala et al., 2013). These findings support 

that Mrgprd+ fibers play a role in mechanical pain behavior, though it should be noted 

that the mechanosensitivity of Mrgprd-ablated animals was tested up to a relatively low 

mechanical force (1.4 g) (Cavanaugh et al., 2009).  

In addition to mechanical pain, Mrgprd+ fibers respond robustly to beat-alanine (B-AL), 

a naturally occurring amino acid that induces itch (Liu et al., 2012). Mrgprd is the 

receptor for B-AL, and Mrgprd knockout mice show no B-AL induced itch. Interestingly, 

despite the expression of Mrgprd across this population, only ~50% of these neurons 

respond to B-AL in vitro, suggesting lack of some downstream signaling molecular in half 

this population. It remains unknown how this population can differentially encode itch 

and pain sensation. In vivo recordings from Mrgprd knockouts also showed decreased 

sensitivity to all stimuli, suggesting that natural ligands for Mrgprd may set baseline 

sensitivity of these fibers (Crozier et al., 2007). Notably, Mrgprd has a human homologue 

(Mrgprd), human subjects respond to the Mrgprd ligand B-AL, and units with similar 

properties to mouse non-peptidergic nociceptors have been identified in primates(Liu et 

al., 2012; Wooten et al., 2014).  

 

Overall, knockout and neuronal ablation studies show that peptidergic fibers are the 

likely major mediators of thermal pain while non-peptidergic fibers are likely major 

mediators of mechanical pain. In general, these studies tested the necessity but not the 

sufficiency of these fiber populations for pain behavior. Molecular genetic expression of 
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optogenetic tools (as described in Chapter 2) will allow for a more complete 

understanding of the functional role of these populations.  

 

Downstream central partners/pathways of nociceptors 
The spinal cord DH contains (1) interneurons, involved in local signal processing, (2) 

ascending projection neurons, whose axons enter ascending white matter tracts to relay 

information to supraspinal sites, and (3) so-called ‘propriospinal’ projection neurons that 

send axonal projections to other rostral or caudal spinal cord segments (Brown, 1982). 

The cell bodies of ascending projection neurons for the pain pathway are located in layer 

I and layers III-VI (but are absent from the SG/layer II) (Brown, 1982). They are revealed 

by antidromic stimulation or retrograde labeling from supraspinal sites, and they 

predominantly express the Substance P receptor TACR1 (NK1R) (Lima and Coimbra, 

1988; Marshall et al., 1996). Ascending projection neurons are a minority of the neurons 

in these layers (Yu et al., 2005). The axons of these neurons grow ventrally, cross the 

midline, and enter a group of (contralateral) white matter tracts on the anterolateral edge 

of the spinal cord. They terminate in multiple locations including the thalamus 

(spinothalamic tract), parabrachial nucleus (spinoparabrachial tract), and 

periacquaductal grey (spinomesencephalic tract). Further, through multisynaptic 

pathways, they signal to sites throughout the brain including the cortex, amygdala, 

hypothalamus, and others (Lima and Coimbra, 1988; Spike et al., 2003; Braz et al., 2005).  

 

Cell types of the superficial DH were classically defined using dendritic arbor 

morphology as revealed by Golgi staining or cell filling (including work from Ramon y 
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Cajal(Ramón y Cajal, 1909)) (Scheibel and Scheibel, 1968; Grudt and Perl, 2002; Lu and 

Perl, 2003, 2005; Yu et al., 2005). While classification schemes differ between studies, 

layer I neurons are commonly divided into ‘fusiform’, ‘multipolar’ and ‘pyramidal’ 

morphological groups, and projection neurons seem to be evenly distributed between 

these types (Yu et al., 2005). Layer II neurons are commonly divided into four groups: 

‘islet’, ‘central’, ‘radial’, and ‘vertical’ (Grudt and Perl, 2002; Lu and Perl, 2003, 2005). 

More recent work has used gene expression to identify DH neuron populations and 

identified a number of molecular classes (Koch et al., 2018). For example, somatostatin 

(SOM) marks excitatory interneurons in layers IIo-III that are necessary for signal 

transmission of mechanical pain (Duan et al., 2014). In general, however, much remains 

unclear regarding DH cell identities. Morphological schemes leave some neurons 

‘unclassified’, and clear correlations between morphology and circuit function have been 

difficult to define (Grudt and Perl, 2002). Furthermore, genetic populations are often 

heterogeneous with regards to morphology, physiology, and/or connectivity. While much 

has been learned, the further dissection of DH circuits is an important subject for future 

work. 

 

Like primary afferents, DH neurons have modality response properties and peripheral 

RFs that can be determined by in vivo recording (Light et al., 1992). The majority (~60-

70% in various studies) of layer I/IIo neurons respond to nociceptive stimuli (either 

mechanical only, thermal only, or mechanical and thermal polymodal responses). Some 

will respond to innocuous mechanical or thermal stimuli, including neurons that respond 

to both innocuous and noxious stimuli (sometimes called Wide-Dynamic-Range, WDR, 
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neurons). Interestingly, ablation of peptidergic vs. non-peptidergic primary afferents was 

reported to cause modality-specific deficits in DH neuron nociceptive responses 

(peptidergic ablation causing mainly thermal deficits and non-peptidergic ablation 

causing mainly mechanical deficits) (Zhang et al., 2013). While DH neuron RFs are in 

general larger than primary afferent RFs (suggesting convergence of primary afferent 

inputs), the somatotopic map revealed by DH neuron recordings corresponds to the 

primary afferent maps.  

 

The dendritic and axonal geometry of layer I and layer II interneurons reveals a 

predominantly horizontal (intra-layer) connectivity, however dorsoventral projections 

from certain cell types provides pathways for inter-layer connectivity (Scheibel and 

Scheibel, 1968; Brown, 1982; Kosugi et al., 2013). Since peptidergic fibers project to layers 

I and V, they synapse onto both projection and non-projection neurons. Layer II-

projecting non-peptidergic fibers synapse onto interneurons but not projection neurons. 

One study that drove the light activated cation channel Channelrhopsin-2 (ChR2) in 

Mrgprd+ non-peptidergic fibers found that they provide monosynaptic input to all 

identified layer II cell types (except for inhibitory islet cells) (Wang and Zylka, 2009). 

Non-peptidergic nociceptors relay pain information by signaling to projection neurons in 

layers I or V through polysynaptic pathways (Braz et al., 2005; Lu and Perl, 2005). 

 

In addition to feeding into ascending systems, the DH interneurons perform complex 

signal integration and processing. Among these, local inhibitory neurons allow for both 

cross-modality (i.e. inhibition of pain signaling by touch input) and within-modality 
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inhibition (Lu and Perl, 2003; Kardon et al., 2014; Bourane et al., 2015; Cui et al., 2016; 

Sun et al., 2017). The latter case is the mechanism for surround inhibition in CNS pain 

circuits (Hillman and Wall, 1969; Kato et al., 2011). In surround inhibition, a CNS 

neuron will have both an excitatory RF (peripheral area in which pain stimuli will excite 

the neuron) surrounded by a much wider inhibitory RF (peripheral area in which pain 

stimuli will inhibit the neuron). This surround inhibition mechanism is thought to play a 

major role for spatial localization of stimuli by sharpening CNS spatial representations. 

 

Despite the progress gained from previous studies, the region-specific organization of DH 

pain circuitry has received comparatively little attention. Much, though not all, of the past 

research into the cell types and circuits of the DH has focused on the lumbar 

enlargement. It therefore remains unknown whether cell type compositions, 

morphologies, and/or circuits may change systematically between body regions. 

Interestingly, superficial DH neuron RF areas have been reported to vary between body 

locations, with much smaller RFs in the distal limbs compared to proximal parts of the 

body (Light et al., 1992). This could play a major role in increasing pain acuity for the 

distal limbs. The organization mechanisms underlying this difference (DH neuron 

morphology, primary afferent convergence, surround inhibitory mechanisms, etc.) are 

unknown.  

 

Development of the mammalian pain system 
The mature mammalian pain system is a product of complex developmental processes 

controlling the specification and wiring of nociceptors. These processes are controlled by 
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the interplay of trophic factor signals with transcription factors, in addition to other 

mechanisms. Despite past progress, much remains unclear. In particular, the mechanisms 

controlling the somatotopically appropriate wiring of pain circuits are largely unknown. 

The following overview summarizes what is known regarding the development of 

mammalian pain circuits.  

 

Nociceptor neurogenesis and specification  
DRG neurons are derived from neural crest progenitors that exit the cell cycle in two 

successive waves between E10.5 and E13.5 (in mice) (Lawson and Biscoe, 1979). The first 

of these neurogenic waves is controlled by expression of the transcription factor Neurog2 

and produces large diameter (mechanoreceptor and limb-position-sensing 

proprioceptor) DRG neurons. The second wave is controlled by expression of Neurog1 

and produces some large diameter and all small diameter DRG neurons (including 

nociceptors) (Ma et al., 1999). Neurog1/2 promote expression of other transcription 

factors (including Neurod1, Neurod4, Pou4f1, and Isl1), which in turn promote the 

expression of diverse sensory neuron genes (Fedtsova and Turner, 1995; Fode et al., 1998; 

Montelius et al., 2007; Sun et al., 2008; Lanier et al., 2009). Among these are the genes for 

the neurotrophic factor receptors NTRK1, NTRK2, and NTRK3 (also known as TRKA, 

TRKB, and TRKC). These receptors define three lineages producing separate populations 

of somatosensory neurons (Olson et al., 2016). 

 

Peptidergic and non-peptidergic nociceptors are part of the NTRK1+ lineage. NTRK1 is 

the receptor for NGF, and NGF-NTRK1 signaling is necessary for survival and 
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specification of nociceptors (White et al., 1996; Patel et al., 2000; Luo et al., 2007). The 

transcription factor Runx1 segregates the NTRK1 lineage; while it is initially expressed in 

almost all NTRK1+ neurons (in a NTRK1-dependent manner (Luo et al., 2007)), by E17.5 

~50% of NTRK1+ neurons have downregulated Runx1. Neurons that downregulate 

Runx1 will maintain NTRK1 into adulthood, express Calca, and become peptidergic 

nociceptors. Those that maintain Runx1 will downregulate NTRK1, express the 

neurotrophic factor receptor RET and its co-receptors, and will become non-peptidergic 

nociceptors (along with related minor populations)(Chen et al., 2006). Within the RET+ 

subset, Runx1 promotes expression of Mrgprd and the closely related Mrgpra/b/c genes 

between E16.5 and P2. While these Mrgpr genes are initially highly co-expressed, they are 

segregated into separate ‘Mrgprd’ and ‘MrgprA/B/C’ neuronal compartments postnatally. 

This segregation is also controlled by Runx1; postnatally, the MrgprA/B/C compartment 

downregulates Runx1, while maintained Runx1 in the MrgprD compartment represses 

Mrgpra/b/c genes (Liu et al., 2008). While Ret is not required for survival of the non-

peptidergic lineage, it is required for expression of Mrgpr genes (Luo et al., 2007). 

 

Wiring of nociceptor connectivity 
The initial outgrowth/wiring of DRG neuron projections occurs concomitant with the 

differentiation of various DRG populations. Beginning around E12-13, DRG neurons 

develop pseudounipolar axon morphology that extend into the periphery and the spinal 

cord (Smith, 1983; Reynolds et al., 1991; Mirnics and Koerber, 1995b). Just as large 

diameter DRG neurons are born before small diameter neurons, outgrowth and wiring of 

small diameter (including nociceptor) fibers follows the large diameter myelinated 
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afferents. Centrally, outgrowing large-diameter axons (immunostained using NEFH) 

reach the dorsal margin of the spinal cord, pause for ~1-2 days, and begin to innervate the 

DH grey matter from the medial edge ~E16.5. They are followed by the small diameter 

fibers (immunostained using NTRK1), which begin to innervate the DH just before birth 

(Reynolds et al., 1991; Mirnics and Koerber, 1995a; Jackman and Fitzgerald, 2000). 

Peripherally, large-diameter myelinated afferents begin to the proximal hindlimb ~E14. 

Skin innervation proceeds distally, reaching the distal foot and toe epidermis by E17-E18. 

Innervation by small diameter fibers (immunostained using TRKA) follows shortly after, 

penetrating the proximal hindlimb epidermis ~E15 and reaching the distal hindpaw 

epidermis around the time of birth (Mirnics and Koerber, 1995b; Jackman and Fitzgerald, 

2000).  

 

The peripheral wiring of nociceptors is dependent on trophic factor signaling. Mutant 

mice lacking Ntrk1 or Ngf (which also lack the pro-apoptotic gene Bax to bypass cell 

death) lack epidermal innervation of both peptidergic and non-peptidergic fibers (Patel et 

al., 2000). Similarly, deletion of Ret expression prevents epidermal innervation by non-

peptidergic fibers (Luo et al., 2007). However, central innervation is maintained in all 

these cases, suggesting that separate developmental mechanisms control the central and 

peripheral development of nociceptors.  

 

Topographic wiring of the somatosensory system 
Much is known regarding the developmental mechanisms for the topographic 

specification and wiring of the lower motor neurons of the ventral spinal cord (Dasen et 
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al., 2005; De Marco Garcia and Jessell, 2008; Dasen and Jessell, 2009). In this system, 

transcription factor codes specify pools of motor neurons based on their muscle target, 

and these codes direct motor neuron wiring by driving expression of guidance factors. By 

comparison, very little is understood regarding the developmental mechanisms directing 

somatotopically-appropriate wiring of somatosensory neurons. Nerve tracing 

experiments have shown that cutaneous sensory topographic innervation patterns (in 

both the periphery and the spinal cord) traced in late embryonic/early postnatal chicks 

and rodents are similar to the mature pattern, suggesting that DRG afferents form 

topographically ‘correct’ maps in their initial innervation (Smith, 1983; Mendelson et al., 

1992). Sensory neurons also innervate the correct laminar position during their initial 

growth into the DH (Ozaki and Snider, 1997). Interestingly, somatosensory cell bodies 

appear to be somatotopically segregated in embryonic DRGs (Mirnics and Koerber, 

1995b), although this segregation is less clear in adults. 

 

Based on the rough coincidence of peripheral and central target innervation, and based 

on the proximal-to-distal progression of hind limb epidermal innervation, it was 

proposed that peripheral innervation could direct topographic innervation of the spinal 

cord (Reynolds et al., 1991). However, multiple lines of evidence have since suggested that 

peripheral and central topographic innervation patterns develop independently of one 

another. First, in contrast to the proximal-to-distal progression of skin innervation, 

proximal and distal hind limb afferents innervate the DH simultaneously (Mirnics and 

Koerber, 1995a). Further, cultured spinal segments with attached DRGs taken from chick 

embryos have shown that cutaneous afferents can innervate the DH in the absence of any 
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peripheral targets (Sharma et al., 1994). Lastly, Wang and Scott (Wang and Scott, 2002) 

found that inducing DRGs to innervate a novel cutaneous target does not change the 

location of their central innervation patterns. In these experiments, shifting chick limb 

buds rostrally before DRG outgrowth results in a comparatively normal topographic 

innervation map in the new rostral location. While this work has shown that peripheral 

and central innervation patterns are likely established through independent mechanisms, 

they have not identified how these maps are directed during development. This is an 

important question for future work.  
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CHAPTER 2:  

 

 

Sparse-genetic tracing reveals region-specific organization of 
the mammalian pain system 

 

 
This chapter is adapted from: 

Olson W, Abdus-Saboor I, Cui L, Burdge J, Raabe T, Ma M, Luo W (2017) Sparse genetic 

tracing reveals regionally specific functional organization of mammalian nociceptors. 

Elife 6. 

 

  



 35 

Abstract 
The human distal limbs have a high spatial acuity for noxious stimuli but a low density of 

pain-sensing neurites. To elucidate mechanisms underlying regional differences in 

processing nociception, we sparsely traced non-peptidergic nociceptors across the body 

using a newly generated MrgprdCreERT2 mouse line. We found that mouse plantar paw skin 

also innervated by a low density of Mrgprd+ nociceptors, while individual arbors in 

different locations are comparable in size. Surprisingly, the central arbors of plantar paw 

and trunk innervating nociceptors have distinct morphologies in the spinal cord. This 

regional difference is well correlated with a heightened signal transmission for plantar 

paw circuits, as revealed by both spinal cord slice recordings and behavior assays. Taken 

together, our results reveal a novel somatotopic functional organization of the 

mammalian pain system and suggest that regional central arbor structure could facilitate 

the “enlarged representation” of plantar paw regions in the CNS. 
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Introduction 
The skin mediates physical contact with environmental mechanical, thermal, and 

chemical stimuli. As an animal moves through the world, certain parts of the skin are 

likely sites of “first contact” with these stimuli (the distal limbs, face/whiskers, and tail for 

quadrupedal mammals like mice). Therefore, these somatosensory regions require 

heightened sensitivity to fulfil behaviorally relevant functions, such as environment 

exploration.  

 

Touch and pain are the two most important somatosensory modalities for this functional 

purpose: touch allows for feature detection while pain prevents tissue damage. Indeed, 

classic work has defined important regional specialization of the nervous system for 

tactile sensation in these areas. Two mechanisms in the peripheral organization of the 

discriminative touch system facilitate high spatial acuity sensation in the primate distal 

limbs and mouse whisker pad. These are the high innervation density and smaller 

receptive field sizes of the primary light touch neurons, the Ab mechanoreceptors, in these 

regions (Weinstein, 1968; Brown and Koerber, 1978; Johansson and Vallbo, 1979, 1980; 

Rice et al., 1993; Pare et al., 2002; Brown et al., 2004). In contrast, the question of whether 

regional specialization exists in the mammalian pain system has remained elusive until 

recently. Upon stimulation using nociceptive-specific laser beams, human subjects show a 

heightened spatial acuity in the distal limbs (especially the fingertips) for pain stimuli, 

much like they do for touch stimuli (Mancini et al., 2012; Mancini et al., 2013; Mancini et 

al., 2014). This suggests that this region is also a “pain fovea” for humans. However, 

human fingertip skin has a relatively low density of pain-sensing neurites(Mancini et al., 
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2013). While this suggests that region-specific organization likely exists in pain circuits 

downstream of the periphery (i.e. central nervous system), currently the exact underlying 

neural mechanisms are unclear.  

 

Though previous work has mapped the peripheral receptive fields or traced the central 

terminals of mammalian nociceptors (Szentagothai, 1964; Bessou and Perl, 1969; 

Rethelyi, 1977; Lynn and Carpenter, 1982; Sugiura et al., 1986; Lynn and Shakhanbeh, 

1988; Sugiura et al., 1989; Treede et al., 1990; Schmidt et al., 1997; Schmidt et al., 2002), 

these studies have not established a model for the somatotopic functional organization of 

the mammalian pain system due to the limited number of neurons traced from restricted 

skin regions. Recently, the single-cell structure of defined somatosensory neurons has 

been successfully revealed using sparse genetic tracing, a technique in which genetically 

targeted neurons are labeled at low density to resolve single neuron morphology (Liu et 

al., 2007; Li et al., 2011; Wu et al., 2012).  

 

To reveal the region-specific organization of mammalian nociceptors across the entire 

body, we sought to perform sparse genetic tracing of Mrgprd+ non-peptidergic neurons. 

We chose this population because they are the most abundant type of cutaneous 

nociceptor and they likely correspond to the main type of free nerve terminals stained 

with anti-PGP9.5 antibody in previous human skin biopsy data (Zylka et al., 2005; 

Mancini et al., 2013). We generated a novel MrgprdCreERT2 mouse line and utilized this line 

to characterize the somatotopic organization of this populations.. Indeed, like the human 

skin biopsy results, we found that Mrgprd+ neurites have a comparatively low neurite 
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density in plantar paw compared to trunk skin. Retrograde tracing experiments further 

show that the number of Mrgprd+ neurons innervating plantar paw glabrous skin is 

lower compared to those innervating upper hind limb hairy skin. In addition, and in 

contrast to the Aß mechanoreceptors, sparse genetic tracing revealed that the arbor field 

sizes of individual nociceptors are comparable between different skin regions. Strikingly, 

plantar paw and trunk innervating nociceptors display distinct morphologies in their 

central terminals. Moreover, using MrgprdCreERT2; RosaChR2-EYFP mice, we specifically 

activated these nociceptors using blue laser light during in vitro spinal cord slice 

recordings and during behavior assays. We found that, while almost all layer II DH 

neurons in all locations receive direct Mrgprd+ afferent input, the optical threshold 

required to induce postsynaptic responses is much lower in plantar paw regions. This was 

paralleled by a decrease in the light intensity threshold required to elicit a withdrawal 

response in paw, compared to upper thigh, skin stimulation. Collectively, we have 

identified a previously unappreciated somatotopic difference in the central terminals of 

mammalian nociceptors. Our anatomical, physiological, and behavior data suggest that 

region-specific central arbor structure could be one important mechanism to magnify the 

representation of plantar paw nociceptors in the DH to facilitate region-specific pain 

processing.  

 

 

Generation and specificity of MrgprdCreERT2 mice  
Given that previous descriptions of nociceptor structure have not allowed for systematic 

comparisons between body regions, we sought to use sparse genetic labeling to trace 
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single nociceptor morphologies across the entire somatotopic map. We generated a 

mouse line in which a tamoxifen-inducible Cre (CreERT2) cassette is knocked into the 

coding region of Mas-related gene product receptor D (Mrgprd) (Figure 1, Figure 2A). 

Consistent with the previous finding that Mrgprd is expressed more broadly in early 

development than in adulthood(Liu et al., 2008), early embryonic (E16.5-E17.5) 

tamoxifen treatment of MrgprdCreERT2 mice labels Mrgprd expressing neurons along with 

non-peptidergic neurons expressing other Mrgpr genes, such as Mrgpra3 and Mrgprb4 

(Figure 3). In contrast, when we crossed MrgprdCreERT2 mice with a Cre-dependent 

RosaChR2-EYFP line and provided postnatal (P10-P17) tamoxifen treatment (Figure 2B), 

Mrgprd+ non-peptidergic nociceptors were specifically labeled. We examined these 

treated mice at 4 postnatal weeks or older (>4pw), a time point at which Mrgprd+ non-

peptidergic nociceptors have completely segregated from other Mrgpr+ DRG neurons 

(Liu et al., 2008). We found that ChR2-EYFP+ DRG neurons bind IB4 (a marker for non-

peptidergic DRG neurons) but do not express CGRP (a marker for peptidergic DRG 

neurons) (Zylka et al., 2005) (Figure 2C), and ChR2-EYFP+ DH terminals similarly 

overlap with IB4 but not CGRP (Figure 2G). Double in situ hybridization demonstrated 

that this strategy efficiently labels DRG neurons expressing Mrgprd (88.1 ± 1% of ChR2-

EYFP+ neurons, n = 3 animals) but not those expressing Mrgpra3 (1.4 ± 0.1%) or Mrgprb4 

(0.4 ± 0.3%) (Figure 2D-F). Almost all Mrgprd expressing neurons were labeled with 

ChR2-EYFP (92.9 ± 4.6% of Mrgprd+ neurons) by this treatment. Therefore, this newly 

generated inducible MrgprdCreERT2 line allows for the specific and efficient targeting of 

adult Mrgprd+ nociceptors. 
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We then sought to trace individual Mrgprd+ non-peptidergic nociceptors using sparse 

genetic labeling. When crossed with a Cre-dependent alkaline phosphatase reporter line 

(RosaiAP), we found that sparse recombination occurs in the absence of tamoxifen 

treatment (Figure 4A&B). This background recombination labels 3-11 neurons/DRG (5.2 

± 1.6 neurons/DRG, n = 47 DRGs from 3 animals) in 3-4 pw animals (Figure 4C), which 

represents <1% of the total Mrgprd+ nociceptor population (Molliver et al., 1997; Wright 

et al., 1997; Zylka et al., 2005). The sparsely labeled DRG neurons co-express non-

peptidergic nociceptor markers peripherin, PAP (Zylka et al., 2008), and RET (Figure 4D, 

F, H), but do not express NF200 or CGRP (Figure 4E, G). To further determine the 

specificity of this sparse recombination, we used an MrgprdEGFPf knock-in line(Zylka et al., 

2005), in which expression of EGFP mimics the dynamic expression of endogenous 

Mrgprd. We generated MrgprdCreERT2/EGFPf; RosaiAP triple mice and found that almost all AP+ 

neurons co-express MrgprdEGFPf (93. 7 ± 2.3%, n = 126 AP+ neurons from 3 animals) 

(Figure 4I) in 3 to 4pw mice. This result indicates that, although Mrgprd is broadly 

expressed during early development, this background recombination occurred 

preferentially in adult Mrgprd+ nociceptors.  

 

Genetic tracing of Mrgprd+ skin terminals reveals a relatively comparable 
somatotopic organization in the periphery 
Mrgprd+ neurons innervate both hairy and glabrous skin and are the most abundant 

class of cutaneous free nerve arbors (Zylka et al., 2005). To systematically compare the 

peripheral single-cell structure of mammalian pain neurons across the somatotopic map, 
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we performed whole mount colorimetric AP staining using untreated 3-4 pw 

MrgprdCreERT2; RosaiAP skin. 

 

We found that 98.4% (130/132 arbors, n = 4 animals) of single-cell arbors have a “bushy 

ending” morphology (Figure 5A&B, D&E, Figure 6A) (Wu et al., 2012), featuring 

thickened terminal structures in the epidermis. The distal ends of arbors in glabrous 

plantar paw skin have single, un-branched thickened neurites (Figure 5A&B), while 

arbors in the hairy skin feature both un-branched neurites as well as dense neurite 

clusters (Figure 5D&E). These dense clusters form circumferential like endings that 

innervate the necks of hair follicles (red arrowheads in Figure 5E&F, Figure 6) (Zylka et 

al., 2005). Whole mount immunostaining of MrgprdEGFPf skin shows that all three types of 

hair follicles in mouse hairy skin (guard, awl/auchenne, and zigzag(Li et al., 2011)) are 

innervated by MrgprdEGFPf fibers (Figure 6D-H). A very small minority (1.6%) of arbors in 

the hairy skin have “free endings” (Wu et al., 2012) lacking these thickened structures 

(Figure 6A-C).  

 

Mrgprd+ non-peptidergic nociceptive field sizes range from 0.08 to 0.9 mm2, with the 

smallest average field size found in the head skin between the ears and in the proximal 

limbs (Figure 5G, Table 1). Interestingly, non-peptidergic nociceptors innervating the 

distal limbs (plantar and dorsal paw skin) have average arbor sizes close the middle of this 

range, and distal limb and trunk arbors are comparable in size (Figure 5G&H, Table 1). In 

addition, consistent with human skin (Mancini et al., 2012), whole-population labeling of 

Mrgprd+ fibers using tamoxifen (0.5 mg at P11) reveals that the overall neurite density is 



 42 

similar or slightly lower in the paw glabrous skin compared to trunk hairy skin (Figure 

5C&F). We further performed a retrograde DiI labeling experiment using MrgprdEGFPf 

mice to compare the Mrgprd+ neuron innervation densities (i.e. number of neurons 

innervating a unit area of skin) between paw and upper hind limb regions (Figure 7, 

Table 2). Consistent with the overall neurite density, we found that the neuron density is 

higher in the proximal hind limb compared to plantar paw (cells/mm2 of skin: proximal 

hind limb = 97.6 ± 33.4, plantar hind paw = 21.0 ± 3.0, n = 7 injections for each, p = 0.04, 

Student’s t test) (Figure 5I). In short, in contrast to mammalian Aβ mechanoreceptors, 

plantar paw innervating mouse non-peptidergic nociceptors do not display higher density 

or smaller receptive field sizes compared to other regions.   

 

Mrgprd+ nociceptors show regionally distinct organization in their central 
arbors  
Since the peripheral organization of Mrgprd+ non-peptidergic nociceptors does not 

exhibit an obvious mechanism to facilitate heightened sensitivity in the plantar paw, we 

next used whole mount AP staining of untreated 3-4 pw MrgprdCreERT2; RosaiAP spinal 

cords to compare their central arbors between regions. Non-peptidergic nociceptor 

central branches enter the spinal cord through the dorsal root, travel rostrally or caudally 

for 0 to 3 segments, and then dive ventrally to establish arbors in layer II of the DH (Table 

3)(Zylka et al., 2005). Most Mrgprd+ central branches do not bifurcate (65.8%, n = 234 

neurons from 3 animals), and most also terminate within the segment of entry (72.6%) 

(Table 3). However, some (34.2%) bifurcate one or more times in the spinal cord, and 

some (27.3%) travel up to 3 segments from the point of entry (Table 3). For the central 



 43 

branches that bifurcate, most of their secondary/tertiary branches join other branches 

from the same neuron to co-form one axonal arbor, while some end with a second arbor 

or terminate in the spinal cord without growing an arbor (Table 3, Figure 9). The 

majority (91.9%) of labeled nociceptors have only one arbor, but a few have 2 (6.8%), or 3 

(0.9%) central arbors, and for a small number of Mrgprd+ nociceptors (0.4%), we could 

not identify any arbor (Table 3).  

 

Strikingly, Mrgprd+ non-peptidergic nociceptor central arbors display two different 

morphologies that can be distinguished by the ratio of their mediolateral width to their 

rostrocaudal height (W/H ratio) (Figure 8H). We defined arbors with W/H ratios >0.2 as 

“round” (Figure 8A-C, H, and Table 4) and arbors with W/H ratios <0.2 as “long and 

thin” (Figure 8B-F, H, and Table 4). Further, these morphological types are regionally 

segregated. Round arbors are found in DH regions known to represent the distal limbs 

(medial cervical and lumbar enlargements) as well as tail, anogenital (sacral DH), and 

head/face (descending trigeminal terminals in the upper cervical DH and medulla) skin 

(Figure 8B&C, H, J, and Figure 9) (Koerber and Brown, 1982; Molander and Grant, 

1985). Long arbors are instead located in regions corresponding to the proximal limbs 

(lateral cervical and lumbar enlargements) and trunk skin (thoracic DH) (Figure 8B-F, H, 

J) (Koerber and Brown, 1982; Cervero and Connell, 1984; Molander and Grant, 1985). 

While round and long arbors differ in morphology, they do not differ in area (Figure 8G). 

 

In the cervical and lumbar enlargements (C3-C6, L3-L6), the medial DH contains a 

curved zone of round arbors that is encircled by laterally located long arbors (Figure 8C). 
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Somatotopic mapping of the cat and rat DH indicates that this medial curved zone in the 

lumbar enlargement matches the representation of the plantar paw and digits, with the 

dorsal paw and proximal limb representations lying more laterally (Brown and Fuchs, 

1975b; Koerber and Brown, 1982; Molander and Grant, 1985; Swett and Woolf, 1985; 

Woolf and Fitzgerald, 1986; Brown et al., 1991; Takahashi et al., 2002; Takahashi et al., 

2007). We compared the number of labeled peripheral arbors in the toe and plantar paw 

skin with the number of round DH terminals in the corresponding half of the lumbar 

enlargement. This showed a very close correlation (Figure 8I), supporting that the round 

central arbors of the lumbar enlargement correspond to plantar paw and digit Mrgprd+ 

nociceptors, while nociceptors from other regions of the hindlimb (including dorsal 

hindpaw and proximal hindlimb) grow long central arbors located more laterally. 

 

In our sparse MrgprdCreERT2; RosaiAP mice,  <1% of Mrgprd+ neurons are traced. It 

therefore remains possible that this round-vs.-long central arbor regional distinction we 

identified may be an artifact of sparse labeling. For example, if both types were found 

throughout the DH but were differentially enriched between regions, sparse labeling 

might only trace the most prevalent type in each location. Using increasing dosages of 

tamoxifen, we found that these arbor types occupy mutually exclusive zones of the DH 

(Figure 10). The maintained segregation of long and round arbors in the DH despite the 

increased number of AP+ DRG neurons indicates that these arbor morphologies represent 

a true somatotopic distinction among Mrgprd+ non-peptidergic nociceptors.  
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Given the clear difference in paw and trunk Mrgprd+ central arbors, we next asked 

whether the population-level density of non-peptidergic innervation of the DH also 

shows regional differences. In MrgprdCreERT2; RosaChR2-EYFP mice (P10-P17 tamoxifen, Figure 

2), we saw comparable expression of ChR2-EYFP, as measured by native fluorescence 

intensity, in the cell bodies of thoracic (T9-T12) and hind limb-level (L3-L5) DRGs 

(Figure 11A, C, E). However, in the DH, medial lumbar enlargement (plantar paw) 

regions show a significant increase in EYFP fluorescence compared to lateral lumber or 

thoracic regions (Figure 11B, D, F). The same is true for membrane-bound EGFPf 

fluorescence in MrgprdEGFPf mice (Figure 11G-L), indicating that this is not due to 

differential trafficking of a given protein. These findings suggest an overall increase in the 

amount of Mrgprd+ afferent membrane in the spinal cord region representing the plantar 

paw compared to trunk regions.  

 

Neighboring non-peptidergic nociceptors highly overlap in the skin and 
spinal cord  
The axonal arbors of some somatosensory neurons have a non-overlapping arrangement 

between neighbors (“tiling”) in the body wall of the fly and zebrafish (Grueber et al., 2002; 

Sagasti et al., 2005). To determine if mammalian non-peptidergic nociceptive arbors tile 

in the skin, we generated double knock-in MrgprdCreERT2/EGFPf; RosatdTomato mice. After low-

dose tamoxifen treatment, sparsely labeled Mrgprd+ neurons in these mice express tdT 

while the entire population expresses EGFP. The arbor fields of individual double 

tdT+/EGFP+ neurons are always co-innervated by EGFP-only+ fibers in both hairy and 

glabrous skin (Figure 12A-D), indicating that peripheral arbors of neighboring non-
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peptidergic nociceptors do not tile but instead overlap extensively. In hairy skin, sparse 

labeled tdT+ neurites co-innervated hair follicles with EGFP-only+ fibers, indicating that 

multiple Mrgprd+ neurons can innervate a single hair follicle. This sparse labeling reveals 

that a single hairy-skin Mrgprd+ arbor can innervate both hair follicles and form free 

nerve endings in the epidermis (Figure 12A-C). This single-cell arrangement has not 

previously been demonstrated for any nociceptor population. In the DH, both round and 

long DH arbors of non-peptidergic nociceptors highly overlap with their neighbors, 

similar to the periphery (Figure 12E&F). 

 

Heightened signal transmission in the paw DH circuitry of Mrgprd+ 
neurons 
Next, given the striking somatotopic differences in the central arbor organization of 

Mrgprd+ nociceptors, we asked whether we could find regional (plantar paw vs. trunk) 

differences in the transmission of sensory information at the dorsal horn. We generated 

MrgprdCreERT2; RosaChR2-EYFP mice, which were treated with postnatal tamoxifen (>P10, 

Figure 2), to compare the synaptic transmission of these neurons between somatotopic 

regions in spinal cord slice recordings. We first used MrgprdCreERT2/+; RosaChR2-EYFP/ChR2-EYFP 

mice (mice homozygous for the RosaChR2-EYFP allele) to perform in vitro whole-cell patch-

clamp recordings of layer II interneurons located in the territory innervated by ChR2-

EYFP+ fibers in transverse spinal cord sections (Fig. 13A). Light-evoked excitatory 

postsynaptic currents (EPSCLs) in these neurons could be differentiated into 

monosynaptic or polysynaptic responses based on latency, jitter, and response failure rate 

during 0.2 Hz blue light stimulation (Figure 13B&C) (Cui et al., 2016). Almost all 
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recorded neurons in both medial and lateral lumbar DH showed EPSCLs (Figure 13D, 

Table 5), with most cells (14/17 = 82.4% in medial lumbar, 14/16 = 86.5% in lateral 

lumbar) showing monosynaptic EPSCLs in both locations. This indicates that the majority 

of DH neurons in this innervation territory receive direct Mrgprd+ input, and that the 

incidence receiving direct input is equivalent for medial lumbar and lateral lumbar DH.   

 

Given the very high level of ChR2 expression in these mice, any potential difference 

between the medial and lateral lumbar spinal cord may be masked by a “ceiling” effect. 

We therefore halved the genetic dosage of RosaChR2-EYFP by taking slices from MrgprdCreERT2; 

RosaChR2-EYFP/+ mice (heterozygous for the RosaChR2-EYFP allele). RosaChR2-EYFP hetereozygous 

DRGs have a ~40% reduction in ChR2-EYFP protein compared to RosaChR2-EYFP 

homozygous DRGs based on Western blotting (Figure 14D&E). Interestingly, we saw a 

dramatic difference when comparing the medial and lateral lumbar DH of double 

heterozygous mice. Medial lumbar DH neurons showed a much higher incidence of light 

responses than lateral lumbar neurons, with a ~9-fold higher (15/17 = 88.2% vs. 2/19 = 

10.5%) incidence of monosynaptic EPSCLs over lateral lumbar neurons (Figure 13E, 

Table 5). Similar to the lateral lumbar DH, the incidence of monosynaptic EPSCLs of layer 

II neurons in the medial and lateral thoracic region are also very low (1/11 = 9.1%) 

(Figure 13E, Table 5). Moreover, even among responsive neurons, the pulse duration 

threshold required to elicit EPSCLs was much longer in lateral lumbar and thoracic DH 

neurons compared to medial lumbar neurons (Figure 13F). These results showed a lower 

threshold for light-trigged excitatory currents in medial lumbar compared to lateral 

lumbar and thoracic DH neurons, suggesting a heightened signal transmission in plantar 
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paw circuits. We repeated these recordings in sagittal spinal cord slices and similarly 

found a higher EPSCL incidence in medial lumbar compared to lateral lumbar or thoracic 

DH (Table 5). This confirms that these differences are not caused by the different 

orientation of nociceptors in round vs. long arbor regions. Lastly, we also looked for 

Mrgprd-driven inhibitory currents by changing the holding potential of DH neurons 

during the recording in MrgprdCreERT2; RosaChR2-EYFP/+ heterozygotes. Neurons showing 

monosynaptic EPSCL also showed IPSCs triggered by Mrgrd activation (IPSCLs), and 

these were blocked by bath application of bicuculline and strychnine (blockers for 

GABAA and glycine receptors, respectively) (Figure 15A). The incidence of these IPSCLs 

showed similar regional differences to excitatory currents, with most medial lumbar 

(13/17 = 76.5%) neurons showing IPSCLs and most lateral lumbar (16/19 = 84.2%) and 

thoracic (8/11 = 72.7%) neurons showing no IPSCLs (Figure 15B, Table 5).  

 

Taken together, our results show that, while most DH neurons in the Mrgprd+ 

innervation territory receive direct Mrgprd+ input, the overall signal transmission is 

heightened in plantar paw compared to trunk nociceptive circuits. This heightened 

transmission was seen specifically at the level of nociceptor-to-DH neuron connections, 

and it correlates closely with the region-specific organization of Mrgprd+ central arbors. 

Further, we found that this heightened connectivity also translates into stronger Mrgprd+ 

driven inhibitory currents, though this result will need to be complemented with 

recording from MrgprdCreERT2; RosaChR2-EYFP/ChR2-EYFP homozygotes. This result is interesting 

as it could provide a mechanism for strengthened surround inhibition in Mrgprd+ 

circuits. 
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Plantar paw Mrgprd+ nociceptors have a lower stimulation threshold to 
induce avoidance behaviors 
Finally, we asked whether the anatomical and physiological region-specific differences we 

identified are correlated with functional differences in a freely behaving animal. To 

activate ChR2 in skin-innervating nociceptors of behaving mice, we stimulated 

MrgprdCreERT2; RosaChR2-EYFP/ChR2-EYFP (M) and RosaChR2-EYFP/ChR2-EYFP (C) mice (P10-17 tamoxifen 

treatment) at both the paw and upper-thigh leg skin (Figure 16B&E) with either 473nm 

blue light or 532nm green light as a negative control. We only used ChR2 homozygous 

mice in these behavior assays because ChR2 heterozygous mice do not show any obvious 

response to peripheral optogenetic stimulation (data not shown). High levels of ChR2-

EYFP were expressed in peripheral neurites in both plantar paw and upper leg skin 

(Figure 16A&D). Consistent with the AP labeling (Figure 5), upper leg skin shows a much 

higher density of EYFP+ neurites than the paw glabrous skin (Figure 17A-C). In addition, 

ChR2-EYFP+ neurites in paw glabrous skin terminate much farther from the surface than 

leg hairy skin neurites (Figure 17A, B, D) due to the thicker outer stratum corneum layer 

in glabrous skin.  

 

We first stimulated the paw skin of both groups of mice with green light (5mW, 10 Hz, 

sine wave) and observed no avoidance behavior such as paw withdrawal (Figure 16C). 

When we stimulated both groups of mice with 1mW of blue light (10 Hz, sine wave), 

control mice did not respond, while 12.5% of MrgprdCreERT2; RosaChR2-EYFP mice displayed 

light-induced paw withdrawal (Figure 16B&C). When stimulated with 5mW blue light 
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(10 Hz, sine wave), 100% of MrgprdCreERT2; RosaChR2-EYFP mice displayed clear light-induced 

paw withdrawal. Control mice still did not respond (Figure 16B&C, Figure 17F).  

 

Strikingly, when we activated Mrgprd+ neurites in the shaved upper-thigh skin, neither 

control nor MrgprdCreERT2; RosaChR2-EYFP mice responded to 5mW blue light (Figure 16E&F, 

Figure 17F). Rather, to observe a fully penetrant avoidance behavior response in the 

upper-thigh of MrgprdCreERT2; RosaChR2-EYFPmice, the blue light power intensity had to be 

increased to 10 or 20 mW (2-4 times higher than the requirement in the paw) (Figure 

16E-G). When taking the temporal delay of avoidance responses (Figure 16H) into 

consideration, 20mW intensity blue light is required at the leg to trigger responses 

comparable to 5mW intensity stimulation of the paw. In short, the light intensity 

threshold required to trigger an avoidance response is significantly lower in the paw 

compared to the upper-limb of MrgprdCreERT2; RosaChR2-EYFPmice.  
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Discussion 
Here, we identified a novel somatotopic organization in the central arbors of mammalian 

Mrgprd+ nociceptors, which is very well correlated with a regional increase in the 

sensitivity of paw nociceptive circuits to external stimuli. Our results suggest a model 

(Fig. 17), in which the wider mediolateral spread of plantar paw nociceptor central arbors 

could facilitate “afferent magnification” (Catania and Kaas, 1997; Catania et al., 2011) in 

downstream CNS circuits and facilitate heightened pain sensitivity of the plantar paw. 

Remarkably, two features of mouse non-peptidergic nociceptors revealed by our study, 

the peripheral neurite density distribution and the heightened sensitivity of pain 

processing in the distal limb, are consistent with findings in humans (Mancini et al., 2012; 

Mancini et al., 2013; Mancini et al., 2014). Therefore, the organizational mechanisms we 

discovered in mice are likely to be conserved in humans, which provides a possible 

explanation for the human “pain fovea”.  

 

MrgprdCreERT2 allows for specific targeting of adult Mrgprd+ nociceptors 
Adult mice have two functionally distinct DRG neuronal populations expressing Mas-

related gene product receptor (Mrgpr) genes. One expresses Mrgpra, Mrgprb, and Mrgprc 

genes and the other only expresses Mrgprd (Dong et al., 2001; Zylka et al., 2003; Liu et al., 

2007; Liu et al., 2008; Liu et al., 2009; Liu et al., 2012; Han et al., 2013). Mrgpra/b/c+ 

neurons also transiently express Mrgprd during early development (Liu et al., 2008). To 

specifically target Mrgprd+ neurons, we generated a new inducible MrgprdCreERT2 mouse 

line that allows for temporally controlled recombination. We demonstrated that postnatal 
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(P10 or later) tamoxifen treatment of MrgprdCreERT2 mice specifically targets Mrgprd+ but 

not Mrgpra/b/c+ neurons (Figure 2, 3).  

 

To our advantage, we also found that sparse recombination in untreated MrgprdCreERT2; 

RosaiAP mice is very specific for Mrgprd+ neurons (~94% AP+ neurons are Mrgprd+, 

Figure 2I). We noticed that most of this random recombination likely occurs postnatally, 

as untreated MrgprdCreERT2; RosaiAP tissue at P7 or younger shows no AP+ neurons (data 

not shown). This temporal delay of recombination, along with the fact that there are 

many more Mrgprd+ than Mrgpra/b/c+ neurons (Dong et al., 2001; Liu et al., 2007; Liu et 

al., 2008; Liu et al., 2009), likely contributes to the specificity of sparse AP labeling in 

these mice. 

 

In this chapter, data is presented using prenatal tamoxifen treatment of MrgprdCreERT2 mice 

for two experiments: increasing density labeling (Figure 10) and MrgprdCreERT2/EGFPf; 

RosatdTomato labeling to show nociceptor overlap (Figure 12). In these experiments, both 

Mrgprd+ and Mrgpra/b/c+ neurons could be targeted. For the overlap experiment, 

neurites were chosen that had both red (MrgprdCreERT2 ; RosatdTomato) and green 

(MrgprdEGFPf) fluorescence at 3pw, indicating these were Mrgprd+ neurites. For the 

increased density labeling experiment, even with high dosage (population-level) prenatal 

tamoxifen treatment of this line, Mrgpra/b/c+ neurons make up <20% of the total cells 

labeled (Figure 3). Given the nature of this experiment, we believe that our interpretation 

is not confounded by this issue.  
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Peripheral features of Mrgprd+ nociceptors show no obvious mechanism 
for heightened pain sensitivity in the paw.  
Though previous studies have traced various cutaneous somatosensory neurons, no 

systematic characterization of nociceptor morphology across the somatotopic map has 

been performed. In the periphery, sparse tracing of Pou4f1 expressing somatosensory 

neurons (which includes almost all somatosensory DRG neuron classes (Badea et al., 

2012)) in the back hairy revealed a “bushy ending” morphological type (Wu et al., 2012). 

The authors suggested these terminals might correspond to C-fiber nociceptors or 

thermoceptors. In addition, Mrgprb4+ and TH+ C fibers , which mainly mediate light 

touch but not pain, and innervate hairy skin only, have been genetically traced and 

analyzed (Liu et al., 2007; Li et al., 2011). Mrgprb4+ neurons innervate the skin in large 

patches of free terminals (Liu et al., 2007), while TH+ neurons form lanceolate endings 

around hair follicles (Li et al., 2011). To our knowledge, single-cell tracing has not 

previously been performed for any C-fiber nociceptors innervating the glabrous skin. 

 

Mrgprd+ nociceptors innervate both hairy and glabrous skin but not deep tissues (Zylka 

et al., 2005), making this population ideal for analysis of somatotopic differences. Our 

MrgprdCreERT2 tracing reveals that Mrgprd+ nociceptors display a bushy-ending 

morphology in hairy skin and thickened endings in the epidermis in the glabrous skin 

(the plantar paw and finger tips) (Figure 5). Interestingly, individual Mrgprd+ afferents in 

hairy skin innervate both the hair follicle and the interfollicular skin (Figure 5, Figure 6, 

Figure 12). Recently, a separate population of afferents that express CGRP and form 
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circumferential endings around the deep hair follicle (deeper than Mrgprd+ endings) 

were identified as mediators of pain upon hair pulling (Ghitani et al., 2017). Our single-

cell tracing suggests that a single Mrgprd+ afferent may signal both hair pulling as well as 

mechanical noxious stimuli applied to the skin surface. Further analysis would be 

required to test this possibility. Very rarely, we found “free ending” terminals that lack 

thickened epidermal ending (Figure 6). These match the morphology and size of 

Mrgprb4+ light touch neurons (Liu et al., 2007), possibly indicating very rare labeling of 

this subset. The fact that <2% of hairy skin terminals displayed this morphology further 

supports the specificity of MrgprdCreERT2 sparse recombination.  

  

We found that (1) the density of Mrgprd+ C fiber nociceptive neurites is similar or 

slightly lower in paw (including digit tips) compared to trunk skin, (2) Mrgprd+ neuron 

density is lower in the plantar paw compared to the upper hind limb skin, and (3) paw 

and trunk individual terminals are comparable in the innervation area (Figure 5). This 

last result contrasts with the work of Schmidt et al (Schmidt et al., 1997), in which single-

fiber recordings of human mechanically responsive C-fiber units showed smaller 

receptive fields in the distal leg. This discrepancy could be caused by differences between 

species, techniques (physiological vs. direct anatomic tracing), or the composition of 

neurons that were analyzed (the previous study presumably recorded from multiple 

molecular classes). In short, in our analysis of mouse Mrgprd+ nociceptors, we did not 

find any obvious peripheral mechanism that might readily explain the heightened pain 

acuity of the distal limbs seen in human subjects or the increased sensitivity of the mouse 

plantar paw to optogenetic skin stimulation (Figure 16).  
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Mrgprd+ nociceptors display region-specific organization of central 
arbors 
Classic studies have characterized the single-cell central arbors of C-fiber afferents using 

Golgi staining or backfill techniques and described them as longitudinally-oriented “thin 

sheets” that are short in the mediolateral axis and extended in the rostrocadual axis 

(Scheibel and Scheibel, 1968; Sugiura et al., 1986; Sugiura et al., 1989). This description 

corresponds well to the “long arbors” we found in DH zones representing proximal limb 

and trunk regions (Figure 4). The central terminals of Mrgprb4+ and TH+ C-fiber light 

touch neurons also match this long terminal morphology, consistent with the fact that 

these classes only innervate hairy skin (Liu et al., 2007; Li et al., 2011). Nevertheless, a 

systematic comparison of nociceptive central terminals across the entire somatotopic 

map has not been conducted.  

 

Here, we found regionally distinctive central arbor organization among Mrgprd+ 

nociceptors; those innervating the distal limbs, tail, anogenital skin, and the head/face 

display round central terminals, while those innervating the trunk hairy skin display long 

and thin central arbors (Figure 8). Given that neurons in the medulla and sacral spinal 

cord display round arbors (Figure 8 and Figure 9), this morphological difference does not 

correlate with hairy vs. glabrous skin regions but instead seems to correlate with regions 

located at the extremities. In addition, upon optogenetic activation of Mrgprd+ central 

terminals, we saw a close correlation between region-specific central arbor type (round 

vs. long) and signal transmission strength. In MrgprdCreERT2;RosaChR2-EYFP heterozygous 
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mice, lateral lumbar and thoracic circuits showed similar post-synaptic response 

incidences/stimulus duration thresholds, whereas medial lumbar circuits had a much 

higher response incidence and a lower stimulus duration threshold (Figure 13). While we 

cannot rule out a role for regional differences in the single-cell physiology of Mrgprd+ 

neurons (such activation threshold, transmitter release, etc.), this correlation suggests that 

region-specific central arbor structure could be a key contributor to the increased pain 

signal transmission of paw circuits. Taken together, we have uncovered a novel form of 

region-specific functional organization for mammalian nociceptors.  

 

Previous psychophysical studies that defined the ‘pain fovea’ in humans used heat 

nociceptive stimuli. Thermal pain in mice is primarily mediated through a separate 

population of afferents (CGRP+ peptidergic nociceptors) from the Mrgprd+ fibers that 

we studied (Cavanaugh et al., 2009; McCoy et al., 2012). This suggests that region-specific 

organization could exist in peptidergic fibers as well. However, whether they also display 

somatotopic central arbor differences like Mrgprd+ non-peptidergic nociceptors remains 

to be determined. In addition, some previous studies suggest that the third-order DH 

collaterals of Aβ mechanoreceptors are also wider (in the mediolateral axis) in the medial 

lumbar enlargement compared to other DH regions (Shortland et al., 1989; Brown et al., 

1991; Millecchia et al., 1991). However, the primary signal transmission for 

discriminative information occurs in the dorsal column nuclei but not the dorsal spinal 

cord. Thus, it is currently less clear whether this central arbor morphological difference 

contributes to differential touch sensitivity.  
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Interneurons in DH layer II are morphologically and physiologically heterogeneous, and 

several interneuron subtypes have been defined (Grudt and Perl, 2002; Lu and Perl, 2003, 

2005). Mrgprd+ fibers synapse on most identified classes of layer II interneurons (Wang 

and Zylka, 2009) and signal to pain pathway projection neurons located outside of layer II 

through polysynaptic pathways (Lu and Perl, 2005). However, past work on these circuits 

oftentimes focused on lumbar enlargement spinal cord. It is therefore unclear if there are 

systematic somatotopic differences in the subtypes or organization of DH interneuron 

circuits, and whether the different morphological central arbor types identified by our 

study may contact the same or different downstream pathways.  

 

Increased sensitivity of mouse paw pain circuits to external input 
Finally, we determined the stimulus threshold (laser power) required to trigger avoidance 

behaviors of freely behaving MrgprdCreERT2; RosaChR2-EYFP mice upon paw or upper leg skin 

light stimulation. Our experiments show a clear heightened sensitivity of plantar-paw-

innervating Mrgprd+ nociceptors to stimulation (Figure 16, Figure 17). Interestingly, our 

use of peripheral optogenetic stimulation likely bypasses the effects of some peripheral 

parameters, such as the mechanical or thermal conduction properties of the skin or the 

expression of molecular receptors, on the sensation of natural stimuli. Further, given that 

Mrgprd+ neurites terminate farther from the skin surface (Figure 17), it is unlikely that 

the laser stimulus has more ready access to Mrgprd+ terminals in plantar paw skin. 

Nevertheless, we cannot rule out the contribution of other regional differences among the 

peripheral terminals of these neurons that we did not measure.  
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Collectively, our results suggest that region-specific Mrgprd+ central arbor organization 

could magnify the representation of the plantar paw within pain circuits to contribute to 

heightened pain sensitivity (Millecchia et al., 1991) (Figure 18). This central organization 

mechanism could allow for the sensitive detection of harmful stimuli in these areas, 

despite a lower density in the periphery. This finding is relevant for pain research using 

rodent models, which has historically relied heavily on pain assays in plantar paw/medial 

lumbar circuits (Le Bars et al., 2001). Given our findings, it would be interesting to 

examine whether region-specific differences exist in the molecular and physiological 

pathways of acute and/or chronic pain models. Such work could be informative for the 

translation of preclinical models to clinical treatment.  
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Materials and Methods 

 

Mouse strains: 
Mice were raised in a barrier facility in Hill Pavilion, University of Pennsylvania. All 

procedures were conducted according to animal protocols approved by Institutional 

Animal Care and Use Committee (IACUC) of the University of Pennsylvania and 

National Institutes of Health guidelines. RosatdTomato (RRID:IMSR_JAX:007909), RosaiAP 

(RRID:IMSR_JAX:009253), RosaChR2-EYFP (RRID:IMSR_JAX:012569), and MrgprdEGFPf 

(RRID:IMSR_TAC:tf0437) lines have been described previously(Zylka et al., 2005; Badea 

et al., 2009; Madisen et al., 2010; Madisen et al., 2012).  

 

Generation of MrgprdCreERT2 mice: 
Targeting construct arms were subcloned from a C57BL/6J BAC clone (RP24-316N16) 

using BAC recombineering, and the CreERT2 coding sequence followed by a FRT-

flanked neomycin-resistance selection cassette was engineered in-frame following the 

Mrgprd starting codon by the same approach (Figure 1A). The targeting construct was 

electroporated into a C57/129 hybrid (V6.5, RRID: CVCL_C865) mouse embryonic stem 

cell line by the Penn Gene Targeting Core. V6.5 cells were provided directly from the 

group that developed the line(Eggan et al., 2001) at passage 12 and then expanded in the 

Penn targeting vector core to passage 15, which was used for MrgprdCreERT2 targeting. Cells 

were analyzed for correct morphology and chromosome number and were confirmed to 

be mycoplasma negative. ES clones were screened by PCR using primers flanking the 3’ 

insertion site (Figure 1C). Positive clones were further screened using Southern blot with 
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both internal and external probes (Figure 1B). The Penn Transgenic Core assisted in 

MrgprdCreERT2 ES clone blastocyst injection and in the generation of chimeric mice, which 

were mated to a RosaFlippase line (RRID:MMRRC_007844-UCD) to excise the Neo cassette. 

Neo cassette-negative progeny (verified via PCR of genomic DNA) were mated to C57 

(RRID:IMSR_JAX:000664 or CD1 (RRID:IMSR_CRL:22) mice to establish the line. 

 

Genetic labeling of Mrgprd+ nociceptors: 
To label Mrgprd+ nociceptors, MrgprdCreERT2 mice carrying the relevant reporter allele 

were treated with tamoxifen (Sigma, T5648) pre- or postnatally. For prenatal treatment, 

pregnant females were given tamoxifen along with estradiol (Sigma, E8875, at a 1:1000 

mass estradiol: mass tamoxifen ratio) and progesterone (Sigma, P3972, at a 1:2 mass 

progesterone: mass tamoxifen ratio) in sunflower seed oil via oral gavage at E16.5-E17.5, 

when Mrgprd is highly expressed in mouse non-peptidergic nociceptors (Chen et al., 

2006). For postnatal treatment, 0.5mg tamoxifen extracted in sunflower seed oil was given 

via i.p. injection once per day from P10-P17 (or P14-P21 for spinal cord slice recording 

experiments, Figure 13). At least one week was given to drive recombination and reporter 

gene expression.  

 

Tissue preparation and histology:  
Procedures were conducted as previously described(Fleming et al., 2012). Briefly, mice 

used for immunostaining or AP staining were euthanized with CO2 and transcardially 

perfused with 4% PFA/PBS, and dissected tissue (either skin or spinal cord and DRGs) 

was post-fixed for 2 hr in 4% PFA/PBS at 4° C. Tissue used for immunostaining was cryo-
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protected in 30% sucrose/PBS (4% overnight) before freezing. Mice used for in situ 

hybridization were euthanized and unfixed dissected tissue was frozen. Frozen glabrous 

skin and DRG/spinal cord sections (20-30 µm) were cut on a Leica CM1950 cryostat. 

Immunostaining of sectioned DRG, spinal cord, and glabrous skin tissue, whole mount 

skin immunostaining, and double fluorescence in situ hybridization was performed as 

described previously (Fleming et al., 2012; Niu et al., 2013). The following antibodies and 

dyes were used: rabbit anti-CGRP (ImmunoStar Cat# 24112, RRID:AB_572217), rat anti-

CK8 (DSHB Cat# TROMA-I, RRID:AB_531826), chicken anti-GFP (Aves Labs Cat# 

GFP-1020, RRID:AB_10000240), rabbit anti-GFP (Thermo Fisher Scientific Cat# A-

11122 also A11122, RRID:AB_221569), conjugated IB4-Alex488 (Molecular Probes Cat# 

I21411 also I21411, RRID:AB_2314662), rabbit anti-NF200 (Sigma-Aldrich Cat# N4142, 

RRID:AB_477272), chicken anti-PAP (Aves Labs PAP, RRID:AB_2313557), chicken anti-

peripherin (Aves Labs Cat# ABIN361364, RRID:AB_10785694), mouse anti-PKCγ 

(Innovative Research Cat# 13-3800, RRID:AB_86589), rabbit anti-RET (Immuno-

Biological Laboratories Cat# 18121, RRID:AB_2301042), rabbit anti-RFP (Clontech 

Laboratories, Inc. Cat# 632496, RRID:AB_10013483). Mrgprd, Mrgpra3, and Mrgprb4 in 

situ probes were previously described (Luo et al., 2007).  

 

Tissue (skin or spinal cord with attached DRGs) for whole mount AP colorimetric 

staining with BCIP/NBT substrate (Roche, 1138221001 and 11383213001) and for 

fluorescent staining with HNPP/FastRed substrate (Roche, 11758888001) was treated as 

previously described(Niu et al., 2013). Following AP colorimetric labeling, tissue was 
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either cleared in BABB for imaging or sectioned using a VT1200S vibratome (Leica 

Microsystems, Nussloch, Germany) (200 μm), followed by BABB clearing for imaging. 

Fluorescent labeled DRGs co-stained using antibodies were cleared in glycerol and for 

imaging. 

 

Retrograde DiI labeling 
DiI (1 µL, 0.2 mg/mL dissolved in DMSO then diluted 1:5 with PBS) was subcutaneously 

injected in the plantar hind paw or shaved ventral proximal hind limb of 4pw MrgprdEGFPf 

mice (each mouse received DiI at both locations on opposite sides, and side-location 

combinations were alternated between mice). 7 days after injection, mice were perfused 

and skin and L3-L5 DRGs were dissected. Skin was post-fixed and mounted in PBS for 

imaging. DRGs were post-fixed, cryoprotected and then serially cryosectioned through 

the whole ganglion, and sections were mounted and imaged for quantification.   

  

Electrophysiology  
Spinal cord slices recordings were conducted as previously described (Cui et al., 2011). 

Basically, 4-6pw MrgprdCreERT2; RosaChR2-EYFP/ChR2-EYFP or MrgprdCreERT2 ; 

RosaChR2-EYFP/+ mice were anesthetized with a ketamine/xylazine/acepromazine 

cocktail. Laminectomy was performed, and the spinal cord lumbar segments were 

removed and placed in ice-cold incubation solution consisting of (in mM) 95 NaCl, 1.8 

KCl, 1.2 KH2PO4, 0.5 CaCl2, 7 MgSO4, 26 NaHCO3, 15 glucose, and 50 sucrose, 

oxygenated with 95% O2 and 5% CO2, at a pH of 7.35–7.45 and an osmolality of 310–320 

mosM. Sagittal or transverse spinal cord slices (300-500 �m thick) were prepared using a 
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VT1200S vibratome (Leica Microsystems, Nussloch, Germany) and incubated in 34°C 

incubation solution for 30 min. 

 

The slice was transferred to the recording chamber and continuously perfused with 

recording solution at a rate of 3–4 ml/min. The recording solution consisted of (in mM) 

127 NaCl, 1.8 KCl, 1.2 KH2PO4, 2.4 CaCl2, 1.3 MgSO4, 26 NaHCO3, and 15 glucose, 

oxygenated with 95% O2 and 5% CO2, at a pH of 7.35–7.45 and an osmolality of 300–310 

mosM. Recordings were performed at RT. Spinal cord slices were visualized with an 

Olympus BX 61WI microscope (Olympus Optical, Tokyo, Japan), and the substantia 

gelatinosa (lamina II), which is a translucent band across the dorsal horn, was used as a 

landmark. Fluorescently labeled ChR2-EYFP terminals in the DH were identified by 

epifluorescence, and neurons in this innervation territory were recorded in the whole cell 

patch-clamp configuration. Glass pipettes (3–5 MΩ) were filled with internal solution 

consisting of (in mM) 120 K-gluconate, 10 KCl, 2 MgATP, 0.5 NaGTP, 20 HEPES, 0.5 

EGTA, and 10 phosphocreatine di(tris) salt at a pH of 7.29 and an osmolality of 300 

mosM. All data were acquired using an EPC-9 patch-clamp amplifier and Pulse software 

(HEKA, Freiburg, Germany). Liquid junction potentials were not corrected. The series 

resistance was between 10 and 25 MΩ.  

 

Light induced EPSCs (EPSCLs) were elicited at a frequency of 2/min by 473nm laser 

illumination (10 mW, 0.1-5ms, Blue Sky Research, Milpitas, USA). Blue light was 

delivered through a 40X water-immersion microscope objective. Mono- or polysynaptic 

EPSCLs were differentiated by 0.2 Hz light stimulation. We classified a connection as 



 64 

monosynaptic if the EPSC jitter (average standard deviation of the light-induced EPSCs 

latency from stimulation) < 1.6 ms(Doyle and Andresen, 2001; Wang and Zylka, 2009). 

 

Western blotting 
Western blotting was performed as previously described (Fleming et al., 2015). Briefly, 

L3-L5 DRG protein lysates were prepared in 600 uL RIPA buffer (50 mM Tris, 150 mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, pH = 8.0) with 

added protease inhibitors (Sigma, P8340), and mixed with equal parts 2X Sample buffer 

(0.125 M Tris, 20% glycerol, 4% SDS, 0.16% bromophenol blue, 10% 2-

mercapatoethanol) before denaturing (100°C, 10 min). 10 uL of lysate samples were run 

on duplicate 4-15% mini-Protean TGX gels (Biorad, 456-1086), and both gels were 

transferred to nitrocellulose membranes. Membranes were blotted with either rabbit anti-

GFP (1:2000) or rabbit anti-NF200 (1:2000), followed by AP-conjugated goat anti-rabbit 

secondary (1:5000, Thermo Fisher Scientific Cat# T2191, RRID:AB_11180336). AP was 

detected using CDP-Star (Thermo Scientific, T2218) and imaged with a Chemi-Blot 

System (BioRad). 

 

Optogenetic stimulation of Mrgprd+ nociceptors in paw and leg skin 
 
To induce light-evoked behavior in freely moving animals, we used P10-P17 tamoxifen 

treated MrgprdCreERT2; RosaChR2-EYFP/ChR2-EYFP mice and control littermates (RosaChR2-EYFP/ChR2-

EYFP) who were also tamoxifen treated, but lacked the Cre-driver. All tested animals were 

between 2-6 months old. An additional control was to shine 532nm green laser light 
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(Shanghai Laser and Optics Century, GL532T8-1000FC/ADR-800A) to the paw skin of 

both experimental groups. To induce light-evoked aversive behavior in Mrgprd+ neurites 

in the paw skin, 1 or 5mW of 473nm blue light laser (Shanghai Laser and Optics Century, 

BL473T8-150FC/ADR-800A) was shined directly to the paw skin through a mesh bottom 

floor, with a cutoff time of 10 seconds. We tested different light waveforms and found 

that 10Hz sine waveform pulsing gave the best behavior responses. Thus, we used this 

waveform for all our behavior tests.  

 

To induce light-evoked aversive behavior in Mrgprd+ neurites in the leg skin, first, all 

hair was removed from the leg with Nair hair remover under light 3% isoflourane 

anesthesia, and animals were given two days before being tested again. For leg 

stimulation, 1, 5, 10, or 20mW of 473nm blue light laser, with 10Hz sine waveform 

pulsing, was shined directly to the leg skin. The cutoff time for this behavior assay is 10 

seconds. For habituation to either paw or leg skin light stimulation, on the first two days, 

animals were habituated to the testing paradigm by being placed in the plexiglass testing 

chamber (11.5×11.5×16 cm) for 30 minutes each day. On the third testing day, animals 

were placed in the plexiglass testing chamber for 15 minutes prior to light stimulation. 

Green and blue light testing were performed on different days, but two weeks separated 

the paw and leg skin light stimulation. For all stimulation, the laser light was delivered via 

an FC/PC Optogenetic Patch Cable with a 200micrometer core opening (ThorLabs) and 

there was approximately 1cm of space between the cable terminal and the targeted skin 

area. Light power intensity for each experiment was measured with a Digital Power Meter 

with a 9.5mm aperture (ThorLabs). For leg skin stimulation, power intensity was only 
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slightly impeded by the thin wall (0.02cm) of the plexiglass holding chamber, as measured 

by the Digital Power Meter (Figure 17E). 

 

To gain precise spatial and temporal resolution of behavior responses, we recorded 

behaving animals at 500 frames/second with a high-speed camera (FASTCAM UX100 

800K-M-4GB - Monochrome 800K with 4GB memory) and attached lens (Nikon Zoom 

Wide Angle Telephoto 24-85mm f2.8). With a tripod with geared head for Photron 

UX100, the camera was placed at a ~45degree angle at ~1-2 feet away from the plexiglass 

holding chambers where mice performed behaviors. The camera was maximally activated 

with far-red shifted 10mW LED light that did not disturb animal behavior. All data were 

collected and annotated on a Dell laptop computer with Fastcam NI DAQ software that is 

designed to synchronize Photron slow motion cameras with the M series integrated BNC 

Data Acquisition (DAQ) units from National Instruments. 

 

Image acquisition and data analysis: 
Images were acquired either on a Leica DM5000B microscope (bright field with a Leica 

DFC 295 camera and fluorescent with a Leica 345 FX camera), on a Lecia SP5II confocal 

microscope (fluorescent), or on a Leica M205 C stereoscope with a Leica DFC 450 C 

camera (bright field). Image manipulation and figure generation were performed in Fiji 

(RRID:SCR_002285), Adobe Photoshop (RRID:SCR_014199) and Adobe Illustrator 

(RRID:SCR_014198). Cell number counting, nociceptor arbor measurements, and 

fluorescence measurements were performed in Fiji. For section histology experiments, n 

= 3-6 sections per animal from 3 animals. Central arbor height/width measurements were 
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taken to be the relevant axes of fitted ellipses. Column graphs, pie charts and scatter plots 

were generated in GraphPad Prism5. Column graphs show mean ± SEM. Statistical 

significance was analyzed using unpaired, two-tailed Student’s t-tests, one-way ANOVA 

with Tukey’s multiple comparisons, linear regression, Spearman’s rank correlation test, or 

Chi-square tests in GraphPad Prism5 (RRID:SCR_002798). For area measurements of DiI 

skin labeling, fluorescence intensity thresholds were set at 10 standard deviations above 

mean background fluorescence, and area was measured from pixel counts above 

threshold in Fiji. Densitometry quantification of Western blot bands was performed 

using Image Lab (RRID:SCR_014210). For DRG fluorescence intensity measurements, 

the average fluorescence of outlined cells was normalized to mean background 

fluorescence (Figure 11). For DH fluorescence intensity measurements, the width of the 

DH was divided into thirds, and the average intensity of the outlined medial third of the 

terminal layer was compared to the lateral-most third (Figure 11).  
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 Figures 

 
Figure 1. Generation of MrgprdCreERT2 knock-in mouse line. (A) Illustration showing the 

knock-in targeting strategy. Grey bar, 3’ UTR Southern blot probe site. P1, P2, primers 

for PCR screening. (B) Southern blot of SpeI-digested ES genomic DNA, using a probe 

against Mrgprd 3’ UTR (grey bar in A). 4.3 kb, MrgprdCreERT2 knock-in allele. 3.8 kb, 

Mrgprd wild-type allele. (C) PCR screen of electroporated ES clones, using P1, P2 

primers. The positive PCR product is about 2 kb. 
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Figure 2. MrgprdCreERT2 mice can mediate recombination specifically in adult Mrgprd+ 

non-peptidergic nociceptors. (A) Knock-in MrgprdCreERT2 allele. (B) Illustration showing 

tamoxifen treatment scheme, 0.5 mg tamoxifen / day, P10-P17 treatment of MrgprdCreERT2; 

RosaChR2-EYFP mice. (C) Triple staining of DRG section showing EYFP overlaps with IB4 

but not CGRP. (D-F) Double fluorescent in situ DRG sections showing EYFP in Mrgprd 

(D) but not Mrgpra3 (E) or Mrgprb4 (F) cells. Pie charts show overlap quantification (% 

of EYFP+ cells that co-express Mrgpr, n = 3 animals). (G) DH section showing EYFP+ 

terminal overlap with IB4 but not CGRP. Arrowheads show overlapping cells, arrows 

show non-overlapping cells. Scale bars = 50µm (C-F), 100µm (G).  
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Figure 3. Prenatal tamoxifen treatment labels Mrgprd+ along with Mrgpra3/b4+ non-

peptidergic DRG neurons. (A-D) Representative DRG sections of 3pw MrgprdCreERT2; 

RosatdTomato mice (2.5-5 mg tamoxifen at E16.5) immunostained with the indicated 

markers. tdT+ neurons are positive for non-peptidergic neuron markers peripherin (92.5 

± 4.0%) (A) and IB4 (85.6 ± 1.2%) (C), but do not express NF200 (1.2 ± 0.01%) (B) or 

CGRP (1.4 ± 0.00%) (D). (E) Representative immunostained DH section showing tdT+ 

fibers innervating layer II, ventral to CGRP+ fibers but dorsal to PKCg interneurons. (F-

H) Double fluorescent in situ shows expression of Mrgprd (75.2 ± 0.8%) (F), Mrgpra3 

(15.0 ± 0.2%) (G) and Mrgprb4 (8.6 ± 0.1%) (H) in Tdtomato expressing neurons from 

prenatally treated MrgprdCreERT2; RosatdTomato mice (5 mg tamoxifen at E17.5). (I) Model 
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showing MrgprdCreERT2 specificity based on time of tamoxifen dosage. MrgprdCreERT2 

recombination is consistent with expression of Mrgprd across development. Arrowheads 

indicate marker overlap with tdT, arrows indicate tdT+ cells that do not express indicated 

marker. Scale bars, 50µm (A-D, F-H), 100µm (E). 
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Figure 4. Sparse Mrgprd+ nociceptor labeling in untreated 3-4 pw MrgprdCreERT2; 

RosaiAP mice. (A&B) Whole mount AP DRG staining of thoracic (A) and L5 (B) DRGs. 

(C) AP+ cells / DRG for cervical (C), thoracic (T), and lumbar (L) DRGs, n = 47 DRGs 

from 3 animals. (D-H) Whole mount DRG immunostaining plus AP fluorescent staining. 

Sparse AP+ cells express non-peptidergic nociceptor markers peripherin (D), RET (F) and 

PAP (H) but not large diameter neuron maker NF200 (E) or peptidergic marker CGRP 

(G). (I) Whole mount EGFPf immunostaining plus AP fluorescence staining of untreated 

MrgprdCreERT2/EGFPf; RosaiAP DRGs. AP+ neurons are Mrgprd+ nociceptors. Quantification 

of overlap (% of AP+ cells that co-express MrgprdEGFPf, n = 126 neurons from 3 animals). 

Scale bars = 50µm.  
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Figure 5. Peripheral organization of non-peptidergic nociceptors in 3-4 pw 

MrgprdCreERT2; RosaiAP mice. (A, B, D, E) Sparse labeled non-peptidergic nociceptors show 

bushy-ending structure in the glabrous skin (A-B) and trunk hairy skin (D-E). B, E, high 

magnification images of regions boxed in A and D, respectively. (C, F) High-density 

labeled (0.5mg tamoxifen at P11) glabrous and hairy skin. Overall neurite densities are 

lower in glabrous compared to hairy skin. Red arrowheads in E&F mark neurite clumps 

that likely surround hair follicles. (G) Arbor areas in different skin regions. n = 173 

terminals from 9 animals. * = p<0.05 (one-way ANOVA with Tukey’s multiple 
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comparisons test). (H) Arbor areas in the hind limb skin vs. proximodistal distance 

(Delbow) from the elbow (point 0, terminals distal to this edge are given negative Delbow 

values). n = 52 arbors from 4 animals. No clear relationship between proximodistal 

location and size is evident (linear regression). (I) Mrgprd+ neuron density (number of 

retrogradely labeled DiI/MrgprdEGFPf double positive neurons / area of DiI labeled skin, see 

figure supplement 2) is lower in plantar hind paw compared to proximal hind limb skin. * 

= p<0.05 (Student’s t test). Scale bars = 100µm. 
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Figure 6. Mrgprd+ fiber hairy skin innervation. (A) Percentage of bushy or free ending 

type arbors labeled in untreated MrgprdCreERT2; RosaiAP mice by location. n = 132 hairy, 22 

glabrous terminals from 4 animals. (B&C) Sparse labeled free terminal-type arbor in 

trunk hairy skin. C is a high magnification view of the region boxed in B. (D-H) Whole 

mount immunostaining of hair follicle innervation in MrgprdEGFPf skin. Mrgprd+ fibers 

form circumferential like endings around the necks of all three hair follicle types found in 

mouse hairy skin: guard (identified by presence of CK8+ Merkel cells and innervation by 

NF200+ Ab mechanoreceptors) (D&E), awl/auchenne (identified by innervation by 

NF200+ fibers but no Merkel cells), and zigzag (identified by a lack of both Merkel cells 

and NF200+ fiber innervation). Mrgprd+ fibers encircle hair follicles close to the skin 

surface, more superficial than NF200+ Ab fiber circumferential or lanceolate endings 

(E&G). Arrowheads, Mrgprd+ circumferential endings. Arrows, NF200+ Ab fiber 

circumferential or lanceolate endings. Scale bars = 100µm (A-C), 20µm (D-H). 
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Figure 7. Retrograde DiI labeling of MrgprdEGFPf nociceptors. (A-D). DiI labeled skin 

areas in plantar hind paw (A) or ventral proximal hind limb (C) skin. DiI+ skin areas 

(B&D) were identified and quantified based on signal intensity threshold at 10 standard 

deviations above background fluorescence (representative background shown in dotted 

line box in A). (E&F) DiI/MrgprdEGFPf double-positive neurons were counted in serial 

sections. (G) Number of DiI/MrgprdEGFPf double-positive neurons vs. DiI+ skin area 

(Figure 3 – source data 2). Linear regressions: proximal hind limb, R2 = 0.41, plantar hind 

paw, R2 = 0.57. Scale bars = 500µm (A-D), 50µm (E&F). 
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Figure 8. Sparsely labeled MrgprdCreERT2; RosaiAP nociceptors have region-specific 

central arbor morphologies. (A-F) Round and long non-peptidergic central arbors seen 

in top-down whole mount (A, C, D, F) and transverse section (B&E) spinal cords. Round 

arbors are in the medial lumbar enlargement (B&C) while long arbors are in the lateral 

lumbar enlargement and thoracic spinal cord (B-F). Dorsal roots are outlined and labeled 

in C. Red dashed lines outline the round arbor zone. Orange arrowhead marks a round 

arbor, purple arrowheads mark long arbors. M, medial. L, lateral. R, rostral. C, caudal. (G) 

Round and long (defined by ratio in H) arbor areas are comparable for all regions. (H) 

Arbor Width/Height ratios by ganglion of origin. Round terminals: W/H > 0.2. n =368 
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arbors from 7 animals (I) Comparison of the number of labeled arbors in the hind limb 

digit and plantar paw skin with the number of ipsilateral round arbors in the dorsal horn. 

n = 4 animals, dotted line shows 1:1 relationship. r, p values from Spearman’s rank 

correlation test. (J) Illustration showing the distribution of round (orange zone) and long 

(purple zone) arbors in the spinal cord. Scale bars = 50µm (A&B, D&E), 250µm (C&F). 
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Figure 9. Central arbors of sparsely labeled non-peptidergic neurons in MrgprdCreERT2; 

RosaiAP mice. (A&B) Examples of bifurcating non-peptidergic nociceptor central 

projections from 1pw (0.05 mg tamoxifen at E16.5) (A) and 3pw (B) spinal cords. 

Bifurcated branches sometimes give rise to independent arbors (arrows in A), join other 

branches to give rise to a common arbor (arrows in B) or end without elaborating an 

arbor (arrowhead in B). (C) Round arbors in the upper cervical spinal cord and medulla, 

many of which descend from the TG non-peptidergic neurons. Scale bars, 50µm (A&B), 

250µm (C).  
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Figure 10. Non-peptidergic nociceptor labeling with increasing densities reveals 

somatotopic organization of Mrgprd+ central arbors. (A-F) AP staining of 

MrgprdCreERT2; RosaiAP thoracic (A-C) and lumbar (D-F) spinal cords that received prenatal 

0mg (A&D), 0.25mg (B&E) or 0.5mg (C&F) prenatal tamoxifen. Even with increased 

labeling densities, round and long arbors occupy exclusive zones of the DH. n = 3 animals 

per treatment. Scale bars = 250µm. 



 82 

 

Figure 11. Mrgprd+ cell bodies show no regional difference in RosaChR2-EYFP expression, 

but Mrgprd+ circuits have a higher primary afferent membrane density in medial 

lumbar DH. (A-F). Native (no immunostaining) ChR2-EYFP fluorescence of 

MrgprdCreERT2; RosaChR2-EYFP (P10-P17 tamoxifen) DRG sections (A&C) and DH sections 

(B&D). (E) T10-T12 and L4-L4 DRG cell body fluorescence frequency distributions 

overlap, indicating no regional change in ChR2-EYFP expression level. (F) DH 

fluorescence ratio (medial third over lateral third) for T9 vs. L4. n = 3 animals for E&F. * 

= p <0.05, Student’s two-tailed t-test. (G-L) Native EGFPf fluorescence in MrgprdEGFPf 

whole mount DRGs (G&I) or DH sections (H&J). Fluorescence intensity pseudocoloring 

is shown. (K) T10-T12 and L4-L5 DRG cell body fluorescence frequency distributions 

overlap (L) DH section fluorescence ratio for T9 vs. L4 levels. n = 3 animals for K&L. * = 

p <0.05, Student’s two-tailed t-test. 
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Figure 12. Neighboring non-peptidergic nociceptors overlap extensively in the skin 

and spinal cord. (A-C) Whole mount immunostaining of MrgprdCreERT2/EGFPf; RosatdTomato 

(0.5 mg tamoxifen at E16.5) hairy skin with anti-GFP and anti-RFP antibodies. The 

terminal field of one non-peptidergic nociceptor is labeled with tdT, as outlined in A. 

B&C show higher magnifications view of the regions boxed in A (solid line = B, dotted 

line = C). Innervation of hair follicles is shown in C. (D) Immunostaining of a section of 

glabrous skin. (E&F) Immunostaining of medial cervical (D) and thoracic (E) spinal cord 

sections, showing sparse labeled round terminal and long arbors. Scale bars = 100µm (A), 

20µm (B-F). 
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Figure 13. Plantar paw circuits show a heightened signal transmission in the dorsal 

horn. (A) Illustration of spinal cord slice recording from MrgprdCreERT2; RosaChR2-EYFP mice 

(P14-P21 tamoxifen) using optical stimulation. Neuron cell bodies located in the territory 

innervated by EYFP+ fibers were chosen for recording. (B&C) Monosynaptic (B) and 

polysynaptic (C) light-induced EPSC (EPSCL) traces recorded from layer II neurons 

during 0.2 Hz light stimulation (overlay of 20 traces). Light pulses indicated by blue 

arrows, scale bars shown in lower right. (D) In MrgprdCreERT2 / +; RosaChR2-EYFP/ChR2-EYFP 

homozygous slices, similar incidences of light-responsive neurons were found in medial 

and lateral lumbar regions. (E) In MrgprdCreERT2 / +; RosaChR2-EYFP/+ heterozygous slices, a 

much higher incidence of light-responsive neurons was seen in medial lumbar compared 

to lateral lumbar or medial thoracic circuits. (F) Frequency distribution of threshold light 

pulse durations required for eliciting EPSCLs among cells in E. Among responsive cells, 

postsynaptic neurons in lateral lumbar and thoracic regions require longer pulse 
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durations to be activated compared to those in medial lumbar region. Cell (n) numbers 

indicated in parentheses in x-axis labels in D&E and above bars in F. 
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Figure 14. RosaChR2-EYFP expression levels. (A) Western blot of DRG lysates from one 

negative control mouse (CD1 wildtype, NC), 3 MrgprdCreERT2; RosaChR2-EYFP/ChR2-EYFP mice 

(ChR2/ChR2, 1-3), and 3 MrgprdCreERT2; RosaChR2-EYFP/+ (ChR2/+, 4-6) mice with anti-GFP 

antibody (against ChR2-EYFP) and anti-NF200 as a loading control. (B) Quantification 

of ChR2-EYFP band intensity (normalized to upper NF200 loading control band) shows 

that ChR2 heterozygous DRGs show a ~40% reduction in ChR2-EYFP expression 

compared to homozygotes. p = 0.09 (Student’s t-test). 
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Figure 15. Paw DH regions show stronger activation of Mrgprd-driven inhibitory 

currents.  (A) Representative traces from whole cell recording of a layer II neuron in a 

MrgprdCreERT2; RosaChR2-EYFP (P14-P21 tamoxifen) spinal cord slice upon optical stimulation 

of Mrgprd+ fibers at various holding potentials (not corrected). This neuron shows 

mono-synaptic EPSCL and polysynaptic IPSCL  currents triggered by Mrgprd+ fibers. 

IPSCL  currents are blocked by bicuculline and strychnine. (B) Incidences of IPSCL  

currents in random recordings from medial lumbar, lateral lumbar, thoracic regions. 

Medial lumbar shows higher incidence of Mrgprd+ triggered inhibitory currents.   
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Figure 16. Peripheral optogenetic activation of Mrgprd+ nociceptors reveals regional 

differences in optical threshold required to elicit withdrawal responses. (A-C) Optical 

stimulation in the paw. (A) Representative whole-mount immunostaining of plantar paw 

skin in MrgprdCreERT2 / +; RosaChR2-EYFP/ChR2-EYFP mice, n=3 mice. (B) Schematic of light 

placement on paw skin, see videos. (C) Histogram showing percentage of mice displaying 

aversive responses to 5mW green light and 1 or 5mW blue light to littermate control (C) 
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and MrgprdCreERT2 / +; RosaChR2-EYFP/ChR2-EYFP (M). n = 6-10 for each genotype with 1-2 trials 

per mouse. * = p <0.001 Chi-square test. (D-F) Optical stimulation in the leg. (D) 

Representative whole-mount immunostaining of upper leg skin in MrgprdCreERT2 / +; 

RosaChR2-EYFP/ChR2-EYFP mice, n = 3 mice. Dotted lines outline hair follicles. (E) Schematic of 

light placement on hair-shaven leg skin, see videos. (F) Histogram showing percentage of 

mice displaying aversive responses to 5, 10, or 20mW blue light at the leg (see above panel 

C for genotype description and statistical analyses). (G) A lower activation threshold is 

required for paw versus leg skin nociceptors. (H) Temporal delay time (seconds) from 

light onset to the first aversive behavior with 5, 10, or 20mW blue light in paw or leg of 

MrgprdCreERT2 / +; RosaChR2-EYFP/ChR2-EYFP mice. Error bars represent SEM.  
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Figure 17. In vivo optogenetic peripheral stimulation. (A&B) MrgprdCreERT2; RosaChR2-EYFP 

sectioned upper leg hairy skin (B) and plantar paw glabrous skin (A) shows the lower 

density and farther distance from the skin surface of plantar paw neurites. Dotted lines 

indicate dermis/epidermis junction and outer skin surface. (C&D) Quantification of 
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neurites per 100µm (C) and neurite distance below the skin surface. n = 3 animals, * = p 

<0.05 (Student’s t-test). (E) Measured light power at three locations (closest side, 

midpoint, farthest side) in the behavior chamber with 5 mW, 10 mW, and 20 mW blue 

laser intensity. (F) Response rate (% of mice) showing withdrawal responses to 5 mW 

blue light stimulation at paw or upper leg. n = 6-10 mice, 1-2 trials per mouse. * = p 

<0.05, Chi-square test. Scale bars = 50 µm (A&B). 
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Figure 18. Model of the somatotopic organization of mammalian nociceptive 

circuitry. Distinct central arbor morphologies (“round versus long”) of Mrgprd+ non-

peptidergic nociceptors are observed in the medial versus lateral dorsal spinal cord, which 

correlates well with regional peripheral sensitivity and cortical representation. Scale bars 

= 50µm. 
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Tables 

 
Region n Avg area 

(mm2) 
SE Min area 

(mm2) 
Max area 

(mm2) 
Plantar hindpaw 
(glabrous) 

2
2 

0.30 0.10 0.08 0.86 

Dorsal hindpaw 2
3 

0.29 0.04 0.15 0.54 

Proximal hindlimb* 2
3 

0.17 0.03 0.14 0.32 

Dorsal forepaw 9 0.26 0.07 0.11 0.45 
Proximal forelimb* 3 0.14 0.01 0.13 0.14 
Trunk 7

6 
0.28 0.05 0.10 0.71 

Top of head* 6 0.14 0.04 0.10 0.20 
Ear 1

1 
0.47 0.11 0.22 0.93 

 
Table 1. Summary of peripheral terminals of sparsely labeled Mrgprd+ non-

peptidergic nociceptors. Data pooled from nine 3pw animals. Asterisk (*) indicates a 

significant difference (p<0.05, Student’s t-test) in average size when compared to hindpaw 

plantar (glabrous) skin arbors. 
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Animal Proximal Hindlimb Plantar Hindpaw 
 DiI+ Skin 

Area (mm2) 
DiI/GFP 

double+ DRG 
neurons 

DiI+ Skin 
Area (mm2) 

DiI/GFP 
double+ DRG 

neurons 
1 1.59 173 5.54 128 
2 0.89 49 7.20 163 
3 2.32 75 10.54 196 
4 11.26 245 4.16 149 
5 0.58 117 4.56 71 
6 0.77 182 8.46 83 
7 ** ** 12.95 274 
8 2.19 60 ** ** 

 

Table 2. Retrograde DiI+ labeling of nociceptors in MrgprdEGFPf mice. Side (right or 

left) of injection locations were alternated between animals. Asterisks (**) indicate 

missing tissue. 
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 n % of Total 
Total neurons  234  

   
Segments traveled from 
point of entry 

  

0 170 72.6 
1 54 23.1 
2 9 3.8 
3 1 0.4 
   

Direction traveled (for 
axons traveling 1-3 
segments) 

  

Caudal 46 19.7 
Rostral 18 7.7 
   

No central branch 
bifurcations 

154 65.8 

1 central branch 
bifurcation 

72 30.8 

>1 central branch 
bifurcation 

8 3.4 

   
No central terminals 1 0.4 
1 central terminals 215 91.9 
2 central terminals 16 6.8 
3 central terminals 2 0.9 

 

Table 3. Summary of central innervation patterns of sparsely labeled Mrgprd+ non-

peptidergic nociceptors. Data pooled from three 3pw animals.  
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 Round Long 
 n Height 

(µm) 
SE Width 

(µm) 
SE n Height 

(µm) 
SE Width 

(µm) 
SE 

Cervical 31 145 28 49 11 45 259 56 28 5 
Thoracic 3 155 6 37 6 81 334 61 24 4 
Lumbar 99 157 20 48 5 83 274 32 28 3 
Sacral 19 162 22 51 7 7 197 19 35 3 

 

Table 4. Summary of non-peptidergic nociceptor central terminal height and width 

measurements. Round and long terminals were defined by W/H ratios (round = W/H 

ratio >0.2, long = W/H ratio <0.2). Data pooled from seven 3pw animals. 
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MrgprdCreERT2; RosaChR2-EYFP/ChR2-EYFP (ChR2 Homozygous) 
 

 Transverse 
 n 

 
Mono 
EPSCL 

Poly  
EPSCL 

Non- 
Responsive 

Medial 
Lumbar 

15 11 
(73.3%) 

3 
(20%) 

1 
(6.7%) 

Lateral 
Lumbar 

18 16 
(88.9%) 

1 
(5.6%) 

1 
(5.6%) 

 
MrgprdCreERT2; RosaChR2-EYFP/+ (ChR2 Heterozygous) 
 

 Transverse 
 n 

 
Mono 
EPSCL 

Poly 
EPSCL 

Non-
responsive 

IPSCL No 
IPSCL 

Medial 
Lumbar 

17 15 
(88.2%) 

2 
(11.8%) 

0 
(0%) 

13 
(76.5%) 

4 
(23.5%) 

Lateral 
Lumbar 

19 2 
(10.3%) 

10 
(52.6%) 

7 
(36.8%) 

3 
(15.8%) 

16 
(84.2%) 

Thoraci
c 

11 1 
(9.1%) 

6 
(54.4%) 

4 
(36.4%) 

3 
(27.3%) 

8 
(72.7%) 

 Sagittal 
 n 

 
Mono 
EPSCL 

Poly 
EPSCL 

Non-
responsive 

Medial 
Lumbar 

13 9 
(69.2%) 

3 
(23.1%) 

1 
(7.7%) 

Lateral 
Lumbar 

16 0 
(0%) 

3 
(18.8%) 

13 
(81.3%) 

Thoraci
c 

12 1 
(8.3%) 

3 
(25.0%) 

8 
(66.7%) 

 

Table 5. Summary of incidences of light-induced postsynaptic current (EPSCL or IPSCL) 

responses recorded from layer II neurons in MrgprdCreERT2; RosaChR2-EYFP homozygous 

and heterozygous mice. Patch clamp recordings were taken from either transverse or 

sagittal DH slices, as indicated. Responses were classified as mono- or polysynaptic (see 

text). Shaded boxes show the response of the majority (>50%) of recorded cells.   
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Chapter 3:  

 

 

Region-specific nociceptor central terminal arbors develop 
independent of peripheral innervation  

 
This chapter has been adapted from: 

Olson W, Luo W (2018) Somatotopic organization of central arbors from nociceptive 

afferents develops independently of their peripheral target innervation.(Submitted) 
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Abstract 
Functionally important regions of sensory maps are overrepresented in the sensory 

pathways and cortex, but the underlying developmental mechanisms are not clear. Given 

that peripheral and central arbor formation of Mrgprd+ neurons co-occurs around the 

time of birth, we tested whether peripheral cues from different skin areas and/or 

postnatal reorganization mechanisms could instruct the somatotopic difference among 

central arbor morphologies we identified in the spinal cord DH. We found that, while 

terminal outgrowth/refinement occurs during early postnatal development in both the 

skin and the DH, postnatal refinement of central terminals precedes that of peripheral 

terminals. Further, we used single-cell ablation of Ret to genetically disrupt epidermal 

innervation of Mrgprd+ neurons and revealed that the somatotopic difference among 

their central arbors was unaffected by this manipulation. Finally, we saw that region-

specific Mrgprd+ central terminal arbors are present from the earliest postnatal stages, 

before skin terminals are evident. In summary, we find that region-specific organization 

of Mrgprd+ neuron central arbors develops independently of peripheral target 

innervation and is present shortly after initial central terminal formation. Our data 

suggest that either cell-intrinsic and/or DH local signaling are likely to establish this 

somatotopic difference.    
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Introduction 
While the somatosensory and other sensory systems use central magnification to meet 

region-specific functional requirements (Daniel and Whitteridge, 1961; Suga et al., 1987; 

Ahnelt, 1998; Challis et al., 2015), the developmental mechanisms used to differentially 

allocate circuit space in this manner have not been clearly defined. In addition to 

differences in primary neuron density in the periphery (Johansson and Vallbo, 1979; 

Brown et al., 2004), magnification at downstream circuits are likely to be involved. We 

identified region-specific central arbor morphology as a likely mechanism used by 

Mrgprd+ non-peptidergic nociceptors for ‘afferent magnification’ in DH circuits 

(Chapter 2). This indicates that Mrgprd+ neurons, which as a population show very 

similar molecular markers and anatomical features, differentially direct their central 

terminal arbor formation based on their somatotopic location during development. 

Given our ability to trace and genetically manipulate this population, this system offers a 

unique opportunity to gain insight into the mechanisms used by developing sensory 

systems to magnify important regions.    

 

The mechanisms that direct somatotopically-appropriate wiring of DRG neurons are 

largely unclear. Somatosensory circuits of the DH have a ‘flipped’ topographic map: in the 

lumbar enlargement (innervating the hindlimbs), the distal limbs (foot and toes) are 

represented in medial DH while the proximal limbs are represented in the lateral DH 

(Figure 1A) (Brown and Fuchs, 1975a; Swett and Woolf, 1985). Nerve tracing 

experiments have shown that cutaneous sensory topographic maps formed early in 

development are similar to the mature pattern (Smith, 1983; Mendelson et al., 1992). 
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Based on the rough coincidence of peripheral and central target innervation, and based 

on the proximal-to-distal progression of hind limb epidermal innervation, it was 

proposed that peripheral innervation could drive correct somatotopic map formation in 

the DH (Reynolds et al., 1991). However, subsequent studies suggested that peripheral 

and central somatotopic maps may develop independently of one another (Sharma et al., 

1994; Mirnics and Koerber, 1995a; Wang and Scott, 2002).  

 

Despite the interesting information gained from these experiments, the previous work 

could not resolve the single-cell structure of DRG neurons. Therefore, these studies could 

not examine the mechanisms for the disproportionate representation (magnification) of 

paw regions in somatosensory circuits. It remains possible that peripheral cues from 

different skin regions could instruct the formation of region-specific central arbor 

morphologies in the DH (Figure 1B). Alternatively, it is also possible that Mrgrd+ 

neurons form immature, somatotopically homogenous arbors that are postnatally 

reorganized into region-specific morphologies (Figure 1C). Lastly, DRG afferents may 

form region-specific arbor morphologies during their initial terminal formation, 

suggesting pre-patterning mechanisms (Figure 1D).  Here, we used population-level 

tracing to characterize the postnatal development of Mrgprd+ nociceptor central and 

peripheral terminal arbors. In addition, we performed single-cell ablation of Ret to 

disrupt peripheral target innervation of these neurons and analyze the effect on their 

central arbor morphology in the DH. Lastly, we performed single-cell tracing of Mrgprd+ 

neurons in early postnatal animals, right after their initial innervation of the DH.  These 

experiments show that region-specific arbors are present in early postnatal animals 
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(supporting the ‘pre-patterned’ model), and that central terminal development slightly 

precedes, and occurs independently of, peripheral terminal development/refinement. 

Taken together, our results suggest that somatotopic organization of mammalian 

nociceptor central terminal arbors is likely to be dictated through mechanisms intrinsic to 

the DRG neurons themselves and/or by mechanisms within the spinal cord.  

 

Population-level characterization of postnatal development of peripheral 
and central terminals of Mrgprd+ DRG neurons  
To investigate whether region-specific arbor development may be driven by peripheral 

and/or central mechanisms, we used MrgprdEGFPf knock-in mice (Zylka et al., 2005) to 

characterize the postnatal (P1 – 3 postnatal weeks, pw) innervation of non-peptidergic 

nociceptors in the paw glabrous skin and the lumbar spinal cord enlargement DH. 

Mrgprd is first expressed at E16.5 in mice and specifically marks the non-peptidergic 

nociceptor population (Chen et al., 2006). EGFP expression in this knock-in mouse line 

faithfully indicates expression of Mrgprd.  This genetic tool offers advantages over 

previous approaches since it specifically labels non-peptidergic fibers (unlike nerve 

filling) and avoids issues related to the dynamic expression of immunostaining markers 

(Reynolds et al., 1991; Jackman and Fitzgerald, 2000).  

 

Peripherally, mature non-peptidergic nociceptor axons travel to the skin in the cutaneous 

nerves, grow a fiber plexus parallel to the skin surface in the dermis, and send 

perpendicular terminals out of the subepidermal plexus that penetrate the epidermis 

(Zylka et al., 2005; Olson et al., 2017). Most of the paw epidermis is not innervated by 
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MrgprdEGFPf fibers at P1, except for few rudimentary terminals (Figure 2A). From P1 to 

P7, there is a rapid phase of nerve terminal growth, as indicated by a great increase in 

density of both primary (leaving the subepidermal plexus) as well as secondary/tertiary 

(branches off primary terminals) Mrgprd+ fiber branches (Figure 2A-C, K, M, N). It is 

then followed by a refinement phase, as indicated by a decrease in density from P7 to 

3pw. By 3pw, no secondary or tertiary branches are present (Figure 2G, H, L-N). This 

pattern is true when quantified as absolute terminal densities or as growth-normalized 

values (Figure 2M, N).  

 

Centrally, non-peptidergic nociceptor axons travel through the dorsal roots, grow for 0-2 

spinal segments rostrally or caudally in Lisseur’s tract at the dorsolateral margin of the 

spinal cord, and then dive ventrally to innervate layer II of the DH (Zylka et al., 2005; 

Olson et al., 2017). MrgprdEGFPf fibers have established a thick (in the dorsoventral extent) 

terminal layer by P1 in the DH (Figure 2D). This layer shows a 4-fold (absolute) decrease 

in layer thickness, reaching the mature layer thickness by P7 (Figure 2D-F, I, J). This 

decrease of layer thickness is also true when quantified by growth-normalized values 

(Figure 2O, P). In summary, while MrgprdEGFPf peripheral terminals are still undergoing 

initial outgrowth in the epidermis (the first postnatal week), their central terminals are in 

the process of refining to their mature thickness in the DH.  These results indicate that 

central terminal development of Mrgprd+ neurons precedes peripheral development in 

the postnatal period. 
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Non-peptidergic nociceptor central arbor formation is independent of 
peripheral terminal innervation 
Next, we further determined whether non-peptidergic nociceptors utilize peripheral cues 

or processes to establish region-specific central arbor morphologies with a genetic 

manipulation. Previous work has shown that, upon DRG-specific deletion of the Glial cell 

line-derived neurotrophic factor receptor Ret, non-peptidergic nociceptors fail to 

innervate their final peripheral target, the skin epidermis, while their central terminals 

remain in DH layer II (Luo et al., 2007). However, these experiments did not trace single-

cell morphology, so it remains unknown whether their central arbors are altered after this 

failure in peripheral target innervation. We ablated Ret from individual non-peptidergic 

nociceptors and quantitatively measured their regional single-cell width (mediolateral) in 

the DH. We used a mouse line in which Cre-dependent inactivation of Ret also leads to 

expression of CFP (Retf(CFP)) (Uesaka et al., 2008). In MrgprdCreERT2 /+; Retf(CFP)/ null mice (Ret 

CKO), which carry the Retf(CFP) allele along with a Ret null allele, low-dose prenatal 

tamoxifen (0.5 mg at E16.5-E17.5) generated sparse Ret-null non-peptidergic nociceptors 

that are labeled with CFP (Figure 3C). In MrgprdCreERT2 /+; Ret f(CFP)/ + littermate controls 

(Control), this same treatment sparsely labeled Ret heterozygous non-peptidergic 

neurons with CFP (Figure 3A). As expected for Ret deletion, sparsely labeled CFP+ DRG 

cell bodies were smaller in MrgprdCreERT2 /+ ; Retf(CFP)/ null mutant mice (data not shown), but 

the number of CFP+ neurons was not decreased (average CFP+ neurons/DRG: control = 

58.7 ± 10.3, n = 14 DRGs from 3 animals, mutant = 70.4 ± 24.6 n = 22 DRGs from 3 

animals) (Figure 3A, C, I). In addition, while sections of glabrous skin from control mice 

showed sparsely labeled terminals with mature epidermal endings, sections from mutant 
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skin showed axon bundles in the dermis but no mature endings in the epidermis, 

consistent with previous work (Luo et al., 2007) (Figure 3B, D). Lastly, serial sectioning of 

control and mutant thoracic (T6-T12) and lumbar (L3-L6) spinal cords showed that the 

round-vs.-long distinction in central terminal morphology was unaffected by Ret deletion 

(Figure 4E-H). We imaged through serial sections and measured the maximum 

mediolateral width of sparse-labeled neurons. The medial lumbar neurons were roughly 

twice as wide, on average, as either lateral lumbar or thoracic neurons (thoracic = 28.7 ± 

5.2 µm, lateral lumbar = 33.5 ± 6.5 µm, medial lumbar = 64.7 ± 14.2 µm, n = 287 neurons 

from 3 mice) in control mice (Figure 3E&F, J). A similar difference was also seen in 

mutant spinal cords (thoracic = 29.0 ± 7.0 µm, lateral lumbar = 33.1 ± 8.7 µm, medial 

lumbar = 68.6 ± 18.1 µm, n = 239 neurons from 3 mice (Figure 3G&H, J), indicating that 

the round-vs.-long distinction is maintained in these mutant neurons. Additionally, no 

difference in the average width of round or long terminals was observed between control 

and Ret null non-peptidergic neurons (Figure 3J), suggesting that Mrgprd+ neurons grow 

normal central terminal arbor morphologies in the absence of Ret.  

 

Sparse labeling reveals region-specific Mrgprd+ central arbors from the 
earliest stages of central innervation 
Lastly, we asked whether the region-specific central terminal arbors of non-peptidergic 

DRG neurons might be established through postnatal reorganization (Figure 1C), or 

instead are present from the earliest stages of DH innervation (Figure 1D). We performed 

sparse genetic tracing of non-peptidergic neurons at early postnatal stages by crossing 

tamoxifen-dependent MrgprdCreERT2 mice with RosaiAP alkaline phosphatase reporter mice 
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(0.25 mg of tamoxifen was given at E17.5) (Olson et al., 2017). Sparse terminals were seen 

after AP staining of skin and spinal cord tissue. Immature skin terminals could be seen at 

P3 but not P1 (Figure 4E&F), consistent with the few MrgprdEGFPf fibers in the epidermis 

at P1 (Figure 2). In addition, while their central arbors still appear immature at P1 and 

P3, region-specific arbor morphologies (the somatotopic organization of central arbors) 

are seen in both P1 and P3 spinal cords (Figure 4A-D). Like the mature DH organization 

of these afferents (Olson et al., 2017), medial lumbar enlargement (paw representation, 

outlined in Figure 4B, D) regions contain mediolaterally wide arbors while lateral lumbar 

enlargement and thoracic (proximal hindlimb, trunk) regions contain mediolaterally thin 

arbors (Figure 1A). It should be noted that the genetic targeting strategy utilized for this 

experiment may label two Mrgprd-lineage non-peptidergic DRG populations, one 

expressing Mrgprd in adulthood and the other expressing Mrgpra/b/c genes in adulthood 

(Liu et al., 2008; Olson et al., 2017). Given that the Mrgpra/b/c population only represents 

<20% of targeted neurons (Olson et al., 2017), we believe that most if not all AP+ neurons 

belong to the mature Mrgprd+ population. 
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Discussion 
In summary, we found that (1) postnatal development/refinement of central terminals 

precedes development/refinement in the periphery, (2) genetic disruption of peripheral 

terminal wiring had a negligible effect on region-specific central arbors, and (3) region-

specific arbors are present from the earliest postnatal stages. Though trophic factor 

signaling functions to control neurite arbor morphogenesis in some cell types (Xu et al., 

2000; Joo et al., 2014), here we found that deletion of the major trophic factor receptor, 

Ret, expressed by Mrgprd+ neurons (Luo et al., 2007), did not affect their DH arbor 

morphology. Earlier work indicated that spinal cord somatotopic map formation of DRG 

afferents does not rely on cues from the periphery (Sharma et al., 1994; Wang and Scott, 

2002). Our findings expand upon this work to show that region-specific arbor 

morphology development (and thereby magnification of paw regions) also occurs 

independent of peripheral innervation. 

 

While non-peptidergic central terminal arbors do show very clear postnatal layer 

thickness refinement (the dorsoventral axis) (Figure 2), and while early postnatal arbors 

have a somewhat immature morphology (Figure 4), their region-specific structure is 

apparent from the earliest stages of DH innervation. Earlier spinal nerve backfilling 

experiments indicated that DRG central projections form somatotopically appropriate 

innervation patterns from the earliest stages of innervation (Smith, 1983; Mendelson et 

al., 1992). Our work expands upon this to show that region-specific single-cell 

morphologies are also apparent shortly after the initial terminal formation (Figure 1D). 

This suggests that pre-patterning mechanisms may underlie the regional magnification of 
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paw representations in the primary afferent neuropil. While a rostrocaudal progression of 

expression for different Hox genes has been demonstrated to underlie segmental 

patterning in the spinal cord (Dasen et al., 2005), less is understood regarding 

mediolateral patterning in the spinal cord or regarding proximodistal patterning of 

somatotsensory afferents. Future work should examine what kinds of DRG cell intrinsic 

and/or DH patterning mechanisms might direct region-specific wiring of somatosensory 

afferents. 

 

While peripheral receptor density is a major contributor to central magnification for 

some sensory systems (Kossl and Vater, 1985; Stanley, 1991), afferent magnification at in 

the CNS can also magnify sensory regions (Catania and Kaas, 1997; Catania et al., 2011). 

Given that paw skin shows a low density of non-peptidergic fibers, magnification for 

peripheral nociceptor circuits likely utilizes such afferent magnification. In combination 

with earlier work, our results support a model in which somatotopic map formation 

(including both topographic innervation and region-specific magnification) in the CNS 

does not depend on peripheral mechanisms. Our results do not rule out a role for 

spontaneous activity in afferents that could have been spared by our genetic 

manipulation, which are known to play critical roles in visual map formation (Assali et 

al., 2014). It remains to be seen if centrally-driven patterning mechanisms might underlie 

region-specific afferent morphologies in other systems.  
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Materials and Methods 

Mouse strains: 
Mice were raised in a barrier facility in Hill Pavilion, University of Pennsylvania. All 

procedures were conducted according to animal protocols approved by Institutional 

Animal Care and Use Committee (IACUC) of the University of Pennsylvania and 

National Institutes of Health guidelines. MrgprdEGFPf, MrgprdCreERT2, RosaiAP, and Retf(CFP) 

mice have been previously described (Zylka et al., 2005; Uesaka et al., 2008; Badea et al., 

2009; Olson et al., 2017). Retnull allele mice were generated by crossing a conditional Ret 

line (Retf/f) (Luo et al., 2007) with a germline Cre mouse line (Sox2Cre) (Hayashi et al., 

2002). 

 

Genetic labeling of Mrgprd+ nociceptors: 
To sparsely label Mrgprd+ nociceptors, we set up timed pregnancy matings of 

MrgprdCreERT2 mice with RosaiAP or Retf(CFP) mice. Population-level labeling was achieved 

through either prenatal or postnatal tamoxifen treatment. For prenatal treatment, 

pregnant females were given tamoxifen (Sigma, T5648) along with estradiol (Sigma, 

E8875, at a 1:1000 mass estradiol: mass tamoxifen ratio) and progesterone (Sigma, P3972, 

at a 1:2 mass progesterone: mass tamoxifen ratio) in sunflower seed oil via oral gavage at 

E16.5-E17.5, when Mrgprd is highly expressed in mouse non-peptidergic nociceptors 

(Chen et al., 2006).  
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Tissue preparation and histology:  
Procedures were conducted as previously described (Fleming et al., 2012; Niu et al., 

2013). Briefly, mice were euthanized with CO2 and transcardially perfused with 4% 

PFA/PBS, and dissected tissue (skin, spinal cord, DRG) was post-fixed for 2 hr in 4% 

PFA/PBS at 4° C. Tissue used for section immunostaining was cryo-protected in 30% 

sucrose/PBS (4% overnight). Frozen glabrous skin and DRG/spinal cord sections (20-30 

µm) were cut on a Leica CM1950 cryostat. Immunostaining was performed as described 

previously. DRGs for whole mount immunostaining were treated as described directly 

after post-fixation. The following antibodies were used: chicken anti-GFP (Aves, GFP-

1020), rabbit anti-GFP (Invitrogen, A-11122). Tissue (skin or spinal cord with attached 

DRGs) for whole mount AP color reaction with BCIP/NBT substrate was treated as 

previously described. Following AP color reaction labeling, tissue was cleared in 1:2 (v:v) 

benzyl alcohol + benzyl benzoate (BABB) for imaging (Niu et al., 2013). 

 

Image acquisition and data analysis: 
Images were acquired either on a Leica DM5000B microscope (brightfield with a Leica 

DFC 295 camera and fluorescent with a Leica 345 FX camera), on a Lecia SP5II confocal 

microscope (fluorescent), or on a Leica M205 C stereoscope with a Leica DFC 450 C 

camera (brightfield). Image quantification was performed in ImageJ. Graphs and 

statistical analyses were created in GraphPad Prism5.  

 

For growth normalization of skin terminal densities (Figure 2), plantar paws (n=3 

animals for each age) were imaged and fitted ellipses were drawn over the six mouse foot 
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pads. Major axis lengths (proximodistal axis) were averaged across animals. Absolute skin 

terminal densities were multiplied by a normalization factor: Growth-normalized density 

(Age) = Absolute density (Age) X (Mean paw length (Age) / Mean paw length (3 pw)).  

 

For growth normalization of DH layer thickness (Figure 2), the maximum mediolateral 

width of the MrgprdEGFPf innervation layer was measured (n=3 sections from separate 

animals for each age). Absolute layer thickness measurements were multiplied by a 

normalization factor: Growth-normalized thickness (Age) = Absolute thickness (Age) X 

(Mean DH width (Age) / Mean DH width (3 pw)). 

 

For single-cell width measurements in sectioned DH tissue (Figure 3), serial DH sections 

were imaged, and individual arbors were identified by comparing adjacent sections. The 

DH of lumbar enlargement sections (L3-L5) were divided into thirds based on the 

maximum mediolateral width of the DH. Cells with most of their width lying in the 

medial third were classified as “Medial Lumbar”, cells were otherwise classified as “Lateral 

Lumbar”.  
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Figures 

 
Figure 1. Models of hypothesized developmental mechanisms for region-specific 

Mrgprd+ central arbors. A, Mature somatotopic organization of Mrgprd+ afferents. 

Proximal hind limb afferents (purple) grow ‘long and thin’ central arbors in the lateral 

DH, while plantar paw afferents (orange) grow ‘round and wide’ central arbors in the 

medial DH. DH is drawn as a transverse section. B, Peripheral cues model. Upon 
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innervation of the skin around birth, cues from different skin regions direct region-

specific developmental of central terminal arbors. DH is drawn from a top-down view. C, 

Central reorganization model. Afferents grow immature, somatotopically homogenous 

arbors that are postnatally reorganized into region-specific arbor morphologies. D, Pre-

patterned model. Afferents grow somatotopically distinct arbor morphologies during 

their initial innervation of the DH. 
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Figure 2. Postnatal central and peripheral terminal development of MrgprdEGFPf non-

peptidergic nociceptors. A-J, GFP immunostaining of glabrous skin (A-C, G, H) and DH 

(D-F, I, J) sections from MrgprdEGFPf mice at the indicated ages. K, L, Higher 

magnification views of peripheral terminals, indicating secondary/tertiary branches (pink 
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asterisks) growing off primary branches (white arrows) in P7 but not 3pw skin. M, N, 

Quantification of densities of absolute (M) and growth-normalized (N, see Methods) 

glabrous skin primary, secondary and tertiary branches during postnatal development. 

Skin terminals show overgrowth during the first week. O, P, Quantification of absolute 

(O) and growth-normalized (P, see Methods) DH layer thickness at the indicated ages. 

DH terminals show a refinement during the first week, at which point they remain at 

their mature thickness. n = 3 animals per stage. Scale bars = 50 µm (A-J), 20 µm (K, L). 
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Figure 3. Genetic disruption of peripheral target innervation does not affect region-

specific central arbor morphologies. A, C, Whole mount CFP immunostaining of sparse 

labeled 2-3pw MrgprdCreERT2; Ret f(CFP) / + (control, A) and MrgprdCreERT2; Ret 

f(CFP) / null (mutant, C) DRGs (0.5 mg tamoxifen at E16.5-E17.5). B, D, CFP 

immunostaining of sectioned glabrous skin shows epidermal endings in control (B) but 

not mutant (D) mice, indicating a lack of peripheral terminals in Ret null nociceptors. 

White arrows, mature epidermal endings. White arrowheads, dermal axonal bundles. E-

H, CFP immunostaining of serial DH sections from control (E&F) and mutant (G&H) 

mice shows sparse labeled terminals. I, Quantification of the number of CFP+ neurons / 

DRG. n = 14-22 DRGs from 3 animals per genotype. J, Maximal mediolateral width of 

sparse labeled neurons from control and mutant mice shows that the round-vs.-long 

distinction is still present in mutant mice. n = 239 (mutant), 287 (control) neurons from 3 

mice per genotype. Scale bars = 100 µm (A&C), 20 µm (B&D), 50 µm (E-H). 
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Figure 4. Region-specific Mrgprd+ DH arbors are evident during the earliest stages of 

innervation. A-F, AP color reaction of spinal cord (A-D) and skin (E&F) tissue from P1 

or P3 MrgprdCreERT2; RosaiAP mice (0.25 mg tamoxifen at E17.5). Sparse skin 

terminals were not seen at P1. While early postnatal nociceptors are still immature, the 

round vs. long distinction can be seen in B & D. Scale bars = 250 µm (A-D), 100 µm 

(E&F). 
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CHAPTER 4 

 

Conclusions and Future Directions 
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Region-specific mechanisms for the pain fovea: comparison with other 
sensory modalities 
Using sparse genetic tracing of mouse non-peptidergic nociceptors, we found no obvious 

peripheral mechanisms for high pain sensitivity in the distal limbs, but instead found 

major somatotopic differences in spinal cord arbor morphology that could underlie the 

pain fovea. The high sensitivity of the distal limbs for touch stimuli has long been 

recognized, and classic work has defined mechanisms. This work has suggested that an 

increase in peripheral receptor density and a decrease in RF size for distal limb regions 

are likely to be key mechanisms for the central magnification and the high sensitivity of 

these regions. Our results, consistent with previous human skin biopsy data, indicate that 

nociceptor density does not increase in the distal limbs for non-peptidergic nociceptors. 

We cannot exclude the possibility that untested peripheral mechanisms contribute to the 

high sensitivity to optogenetic stimulation we identified for paw non-peptidergic circuits. 

However, a comparison of our results to past literature suggests that pain, in contrast to 

the touch system, pain relies more on central organization mechanisms to facilitate 

region-specific sensation.  

 

Similar to our results in the pain system, past work has reported that DH arbors of 

LTMRs are also wider in the mediolateral axis for the paw region of the DH (Shortland et 

al., 1989; Brown et al., 1991; Millecchia et al., 1991), and this likely contributes to the DH 

magnification of the paw for touch somatotopic maps. The relationship of this result to 

the touch fovea is unclear for two reasons: (1) unlike pain, the second-order locus for 

central relay of touch information is the dorsal column nuclei of the brainstem, not the 
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DH(Fleming and Luo, 2013; Olson et al., 2016); (2) unlike nociceptors, individual LTMRs 

send DH projections to many segments rostral and caudal from their segment of entry 

(Fleming and Luo, 2013; Niu et al., 2013; Olson et al., 2016), meaning that many of the 

touch primary afferents in the paw region of the DH have peripheral RFs in separate 

dermatomes. Nevertheless, the finding of similar somatotopic differences in the touch 

primary afferents, along with the identification of somatotopic differences in heat pain 

spatial acuity in humans (likely mediated through peptidergic circuits) suggests that these 

are general structural principles for the somatosensory circuits of the DH. Further, given 

that these findings are collected from rodent, cat, and human data, the somatotopic 

differences we identified are likely to be conserved across species.  

 

Interestingly, in addition to the medial cervical and lumbar enlargements, we found 

‘round’ morphology terminals in the medulla (spinal trigeminal nucleus) and the sacral 

spinal cord. The DRG and trigeminal somatosensory systems feature very different 

organization in many aspects. Based on this, it is difficult to assess the extent to which our 

results from the DRG afferents may apply to the trigeminal system. Nevertheless, it is 

interesting to note that round arbor morphologies are found in all regions that are 

‘extremities’ in quadrupeds, consistent with the fact that these are likely sites of first 

contact with somatosensory stimuli. Further, the face and lips(and especially the whisker 

pads of cats and mice) are sensory foveae for both touch and pain(Mancini et al., 2014).  

 

Given our findings, we suggest that region-specific nociceptor central arbors are a 

mechanism for afferent magnification of distal limb regions. This is analogous to the 
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touch fovea of the star-nosed mole ventral ray, which similarly shows high spatial acuity 

despite a low density of peripheral receptors (Catania and Kaas, 1997; Catania et al., 

2011). Central magnification of important regions is a common feature of sensory 

systems, and peripheral receptor density is likely a major mechanism for this 

magnification in many cases (i.e. visual (Stanley, 1991), auditory (Kossl and Vater, 1985), 

and tactile (Brown et al., 2004) systems). However, single-cell tracing at multiple loci 

could identify whether afferent magnification along the sensory pathways might also be 

seen in these sensory systems. 

 

What is the function of Mrgprd+ non-peptidergic nociceptors?  
Based on classic physiological criteria (i.e. mechanical and thermal thresholds), Mrgprd+ 

neurons have been classified as CMH or CM nociceptors (Rau et al., 2009; Liu et al., 

2012). Further, neuronal ablation has shown mechanical sensation deficits (Cavanaugh et 

al., 2009), supporting a role for this population in noxious mechanosensation. Building 

on this work, use of targeted optogenetic activation allows for investigation of the 

sufficiency of these afferents for pain behavior (i.e. what sensation is evoked when they 

are activated?). Interestingly, findings from our own lab (unpublished data) and from 

another group (Beaudry et al., 2017) have called into question the role of this population 

in pain behavior. Specifically, the behavior elicited by peripheral optogenetic stimulation 

of Mrgprd+ afferents (Figure 16) is more similar to light touch than pain behavior when 

compared using high-speed imaging and multiparameter analysis (data not shown). 

Further, optogenetic activation does not induce conditioned place avoidance (data not 

shown and (Beaudry et al., 2017)). This contrasts with activation of peptidergic 
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nociceptors, which induces more ‘pain-like’ withdrawal behavior and does induce 

conditioned place avoidance (data not shown and (Beaudry et al., 2017)).  

 

Pain pathways are sometimes divided into Discriminative and Affective systems. In this 

scheme, the discriminative pain pathway will send information to the thalamus and 

primary somatosensory cortex to localized noxious stimuli, while the affective pain 

pathway will send information to many limbic system nuclei to induce negative valence 

emotional sensations. As mentioned above, peptidergic and non-peptidergic fibers have 

distinct connectivity, with non-peptidergic fibers terminating more superficially in the 

skin and peptidergic fibers innervating both cutaneous and deep targets (Zylka et al., 

2005). Given (1) our identification of somatotopic organization in non-peptidergic fibers 

that we propose to be related to pain localization, and (2) the differences between 

peptidergic vs. non-peptidergic activation with regards to induction of conditioned place 

avoidance, one fascinating question for future research is whether these afferent groups 

might differentially contribute to discriminative vs affective pain pathways. 

Hypothetically, superficial non-peptidergic fibers might provide a ‘warning’ signal to the 

discriminative pathway to localize potential noxious stimuli, whereas deep peptidergic 

fibers might signal to the affective pathway that a stimulus has already caused tissue 

damage. Such a model could both expand upon and clarify past findings regarding the 

response properties and behavior necessities of these populations. This remains a critical 

area for future work.   
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Are region-specific disease processes a component of chronic pain?  
Chronic pain conditions (which feature long-lasting, abnormal activation of the pain 

system in the absence of external damaging stimuli) are devastating disorders comprising 

a major public health problem. Though pre-clinical research has identified many 

molecules and substances that can alleviate chronic pain in animal models, very few of 

them have been successfully translated to human patients. Notably, preclinical pain 

research has historically relied very heavily on rodent models using paw withdrawal 

latency/frequency or tail flick frequency, both of which involve noxious stimuli applied to 

distal somatotopic areas (Le Bars et al., 2001). In addition, past physiological studies of 

dorsal spinal cord nociceptive circuits typically used recording from lumbar enlargement 

slices (Lu and Perl, 2003, 2005; Deng and Xu, 2012), likely the medial part of the lumbar 

enlargement. Furthermore, the most widely used animal models of chronic pain (the 

spared nerve ligation/injury model, the chronic constriction injury model, and paw 

application of Complete Freund’s Adjuvant model) all focus on nociception mediated by 

distal hindlimb/lumbar enlargement circuits (Jaggi et al., 2011).  

 

Therefore, most of the current pre-clinical research has revealed nociceptive mechanisms 

in the distal skin regions and “round terminal” spinal cord circuits. Our findings 

demonstrating region-specific functional organization of mammalian nociceptive circuits 

may explain part of the difficulty in translating animal work on chronic pain to patient 

conditions. Future work is needed to determine whether pain pharmacology, descending 

gain control, pain pathophysiology, etc. might systematically differ between somatotopic 
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regions. Such research could suggest ways in which chronic pain conditions might share 

certain etiological similarities to other conditions that are similarly localized, and might 

differ between conditions localized to other areas. This could provide insight into which 

aspects of preclinical research may or may not translate to specific clinical conditions.  
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