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ABSTRACT 

 

2D MATERIALS FOR ENERGY APPLICATIONS 

Dequan Er 

Professor Vivek Shenoy 

Accelerated energy demands, together with unprecedented CO2 emissions, aggravate the 

global energy and climate change crises, endangering the sustainable development of 

society in a perpetuity way. The ability to find, extract, and use energy in an effective and 

clean way is pivotal to the energy paradigm shift, where a large percentage of global energy 

demand is expected to be met through sustainable energy resources. Research in materials 

science is contributing towards such a sustainable future by addressing bottleneck 

questions in energy storage and conversion, which are two main parts of energy 

sustainability. In particular, recently discovered two-dimensional (2D) materials exhibit 

extraordinary mechanical, chemical, electronic, optical, and magnetic properties that are 

promising to break through current material limitations in energy applications. The main 

goal of this thesis is to examine the possibility of using 2D materials in improving current 

energy applications, in particular, battery electrodes and hydrogen evolution reaction 

(HER) catalysts, and to elucidate the mechanisms and guiding principles in tuning 2D 

materials using combinatorial simulation techniques that bridge different length scales. 

Representative and promising 2D material systems, including graphene-like materials, 

MXenes, transition metal dichalcogenides (TMDs), layered covalent-organic framework 

(COF), and oxides are studied. To evaluate the performance of 2D materials in battery 
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electrodes, we employ the density functional theory (DFT) simulations to investigate the 

adsorption of different metal ions onto 2D MXenes and 2D graphene-like materials, and 

hence quantify the enhanced theoretical capacities and rate-performance. Moreover, we 

find the origin of such improvements and summarize guiding principles in tuning 2D 

materials for similar applications in batteries beyond lithium. We also show that 2D TMDs 

are capable of improving hydrogen production efficiency. The role of defects and 

electronic coupling between substrate and MoS2 catalysts is investigated, followed by a 

study of using the Janus asymmetry as a feasible way to activate basal plane catalytic 

activity. Finally, we present a multiscale modeling method that bridges different length 

scales, and show several successful examples in applying this method in energy 

applications. This thesis provides new understandings of 2D materials in energy 

applications. Such understandings may be used to accelerate the realization of future 

energy plan.  
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Figure 3-5 Maximum capacities for Mg absorbed onto different defective graphene and 

graphene allotropes. Error bars indicate the variation in capacity range based on the OCV 

changes. ............................................................................................................................. 57 

Figure 4-1 (a) Photograph of the electrochemical microcell. (b) Schematic of the set-up 

showing single layer of MoS2 deposited on SiO2and contacted by one gold electrode. 

Glassy carbon and Ag/AgCl electrodes are used as counter and reference electrode, 

respectively. The entire substrate is covered with poly(methylmethacrylate) PMMA, with 

the exception of a window on top of the edges of the MoS2 nanosheet. Only the MoS2 

nanosheet is in contact with the electrolyte solution (0.5 M H2SO4). Edge-exposed and 

edge-covered cells can be fabricated and tested. (c, d) Optical microscope images of the 

different types of microcells: CVD-grown single-layer MoS2 having their edge covered (c) 

or exposed (d). Such cells enable one to control precisely the quantity of MoS2 sites 

exposed and thus an accurate estimation of the number of turnovers at each active site. 62 

Figure 4-2 (a) Polarization curves measured from two MoS2 microcells with (solid line) 

and without iR correction (triangles). Polarization curves from MoS2 microcells with low 

and high contact resistance are shown in red and black, respectively. Inset: corresponding 

Nyquist plots showing that the internal resistance (ZS) ∼ 300 Ω does not vary with the 

contact resistance. The charge transfer resistance (ZCT) is strongly governed by the contact 

resistance. For the best contact resistance, ZCT ∼4,000 Ω can be measured. (b) Polarization 

curves obtained from MoS2 devices with various contact resistances from 80 MΩ mm 

down to 7 × 10−2 Ω mm. The performance of the MoS2 devices increases rapidly with 

decreasing contact resistance. (c), Evolution of the turnover frequency (TOF) with the 

overpotential. The TOF values are calculated from the polarization curves presented in a. 

The quantity of active sites has been estimated assuming that the entire surface of MoS2 

(that is, surface and edge sites) is active. The TOF values are compared to the values 

obtained from metallic 2H-phase MoS2 edges grown on gold from Ref 38 (purple region).

........................................................................................................................................... 66 

Figure 4-3 Variation of the onset potential (a), Tafel slope values (b) and current density 

(c) measured at η = 400 mV with the contact resistance (Rc). The HER activity of the MoS2 

electrodes is progressively enhanced as the contact resistance decreases. For Rc < 

10 kΩ mm, the MoS2 activity stabilizes and current density of >100 mA cm−2 at η = 

400 mV can be obtained from the MoS2 basal planes. No significant differences between 

edge-exposed and edge-covered devices have been observed from the samples, suggesting 

that both the surface and the edges of the MoS2 crystals are active. ................................ 70 

Figure 4-4 (a) STEM image of a single-layer CVD-grown MoS2 nanosheet showing 

different types of defects: single sulfur vacancy (orange circles) and double sulfur vacancy 

(yellow circles). (b) Intensity profiles along lines L1–L3. Higher contrast is obtained from 

the Mo atoms compared to one sulfur atom (∼30% of the Mo intensity) and two sulfur 

atoms (∼45% of the Mo intensity). In absence of sulfur atoms (L3), the intensity decreases 

to <10%. (c), STEM image of a large-area single-layer MoS2nanosheet. The vast majority 

of the defects are formed by single sulfur vacancies. (d) The differential hydrogen 
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adsorption energy (ΔE) in 2H-phase MoS2 decreases significantly with an increased carrier 

concentration. When the carrier concentration approaches 7 × 1014 cm−2, ΔE in 2H-phase 

MoS2 is close to that in the 1T phase. ............................................................................... 73 

Figure 5-1 (a) Schematics of the strain-free HER reaction on Janus TMDs. (b) The surface 

vacancy structure of Janus TMDs showing X and Y vacancies. (c) ΔGH versus applied 

strain for different Janus TMDs with vacancies. The catalytic window is highlighted in 

green. ................................................................................................................................. 86 

Figure 5-2 Total DOS and projected density of states (PDOS) of two representative Janus 

TMDs, (a) MoSSe and (b) WSSe. The four rows indicate pristine and defective structures 

without a hydrogen adatom, and pristine and defective structures with a hydrogen adatom, 

respectively. New states associated with the formation of vacancies are located within the 

band gap. ........................................................................................................................... 88 

Figure 5-3 Effects of Se vacancy on the electronic structure of Janus WSSe. (a) Band 

structure of pristine WSSe. (b) Band structure with the introduction of the Se vacancy. 

Three new bands (highlighted in blue) appear in the gap. (c) Band structure after H 

adsorption. The states introduced hybridize with the H orbital near the Fermi level. The 

inset illustrates the charge density difference near the vacancy. ...................................... 89 

Figure 5-4 Schematic illustrations of the crystal field and band alignment of Janus TMDs. 

(a) Conventional 2H TMD with trigonal prismatic structure, and (b) Janus structure which 

breaks the mirror symmetry along the vertical direction. ................................................. 90 

Figure 5-5 HER activity of the S and Se vacancy sites in Janus WSSe. (a) The predicted 

current density of Janus TMDs versus other HER catalysts. (b) The HER volcano curve 

including Janus WSSe....................................................................................................... 92 

Figure 6-1 Multiscale approach to compute the Mechano-Electro-Chemical coupling in 

2D materials. First, DFT simulations accurately predicts the basic material properties, 

providing parameters for later continuum level modeling. FEM and continuum mechanics 

methods are therefore connected with DFT material properties. ...................................... 96 

Figure 6-2 Illustration of the simulation steps. (a) Interaction energy of the layer A unit 

cell as a function of its position over the layer B unit cell computed from the ab-initio 

calculations. (b) Interaction energy of layer A within a Moiré unit cell is determined by 

calculating the local stacking configuration of each unit cells in layer A relative to layer B. 

(c) Numerical values of the energy (from b) are used to determine the Fourier coefficients 

using an inverse Fourier transform. (d) Interaction energy is used to compute the in- plane 

and out-of-plane forces and hence displacements fields in the bilayer using a large 

deformation elastic plate model. ....................................................................................... 99 

Figure 6-3 (a) Out-of-plane displacement (w) in the graphene monolayer due to 

interactions with the h-BN substrate for the perfectly aligned layers (θ = 0) using our 
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multiscale approach. We observe Moiré patterns with similar magnitudes as in experiments 

as shown in panel (b). (b) High-pass-filtered inverse fast Fourier transform of the Moiré 

pattern in the dashed square. Scale bar 100 nm. Reprinted from Ref. 128 with permission 

copyright 2013 Macmillan Publishers Limited............................................................... 102 

Figure 7-1 (a) Schematic depiction of the DA-COF hexagonal unit cell, (b) Schematics of 

vertically stacked face-to-face DA-COF with top and side views, and (c) reciprocal space 

BZ with notations for hexagonal symmetry.................................................................... 109 

Figure 7-2 (a) Potential energy surface of different stacking shifts along a1 and a2 direction 

with respect to a fixed monolayer. Two local minima can be found as shown in figure of 

this gamma surface.259 This plot provides a basic understanding of stacking modes problem 

in this DA-COF. (b) HOCO-LUCO plot of eclipsed AA stacking with 2.1 Å offset, which 

has the minimum energy. Less π –overlap between adjacent 2D layers has been observed.

......................................................................................................................................... 110 

Figure 7-3 (a) Band structure of monolayer COF displays a direct HOCO-LUCO gap of 

1.73 eV at the Γ point. Flat band structures of gap states indicate highly localized orbitals. 

(b) the LUCO state is located majorly on acceptors, while (c) the HOCO state is largely 
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Figure 7-4 Band structure of vertically stacked DA-COF polymer in the bulk form. A 

highly curved band structure indicates an indirect band gap from 𝛤 to A point in bulk with 

a decreased band gap value (0.25 eV) than that in the monolayer (1.73 eV). ................ 113 

Figure 7-5 Schematics of charge transfer map showing charge accumulation and depletion 

regions. The amount of charge transfer between D-A increases, respectively, from (a) 0.82 

e in monolayer to (b) 1.22 e in bilayer, and eventually to (c) 1.30 e in the bulk case. Dot 

sizes indicate the amount of charge localized on each atom and the color code illustrates 

the amount of transferred charge. (d) Schematic depiction of interlayer hopping in DA-

COF, where electrons (e-) and holes (h+) locate at D and A parts, respectively. The 

excitation leads to hopping of carriers along vertical direction. ..................................... 115 

Figure 8-1 Green-yellow spheres represent cerium, white small balls represent oxygen, 

and the red triangle shows the oxygen vacancy. (a) Local relaxation patterns near the 

oxygen vacancy, and (b) CDD charge transfer with the formation of oxygen vacancy, two 

tetravalent Ce cites are reduced to trivalent Ce sites. ..................................................... 123 

Figure 8-2 Formation energy of an oxygen vacancy varies with strain applied in the 

supercell (hydrostatic). The derivative gives the trace of averaged elastic dipole tensor 𝐺𝑖𝑗. 

The inset shows the formation energy for 1% tensile strain as a function of the oxygen 
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Figure 8-3 Chemical expansion of ceria with the predicted value from the model using 

DFT calculations and experimental values. Data from Ref. 236–238. ........................... 128 
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Chapter 1 Introduction 

 Introduction 

The utilization of energy has accompanied the development of mankind since the first lit 

of fire that brings brightness, warmth, and cooked food. The discovery and utilization of 

coal, which is a deposit of solar energy into buried plants millions or billions of years ago, 

further drive the ancient civilization. Steam engines and electricity powered by coal are 

indispensable to the industrial revolution in 18th century. Later, petroleum brings us not 

only higher density fuels to power our vehicles but also chemical products such as plastics, 

resin, rubber, and fibers. Fossil fuels including coal, oil, and nature gas are primary energy 

sources in our modern society, and their consumption is rapidly increasing, posing 

economic and environmental challenges to the society. By 2050, the global energy 

consumption will rise by 28% in total, while nonmembers of Organization for Economic 

Cooperation and Development (OECD) will increase at a speed of 41%.1,2 This is a 

significant increase in energy demand not only to countries who have the majority of world 

population, but also to the global energy landscape. Such accelerated energy consumption 

depletes fossil fuels faster and results in more emissions of green-house gas including 

oxides of carbon, nitrogen, sulfur, etc. It should be noted that the major sectors of energy 

demand increase are electric power, industry, and transportation, where new technologies 

that maximize the energy efficiency and mitigate the CO2 emission are pivotal. It is an 

imperative to systematically optimize our energy landscape by 1) increasing the efficiency 

of current devices and infrastructures to minimize the energy waste, 2) searching and 
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realizing alternative and sustainable clean resources, and 3) increasing the proportion of 

non-fossil fuels to further mitigate CO2 emissions.  

To fulfill this goal, the two keys are energy storage and energy conversion, where 

challenges for material scientists remain. First, energy storage devices are critical to 

improve the efficiency of energy applications systematically. These devices, including 

batteries, capacitors, flywheels, compressed air, fuel cells, and pumped hydro, engage 

widely in energy applications, and a large portion of energy waste occurs during the 

deposition and extraction inside these energy storage devices. Therefore, the high 

performance of energy storage devices is indispensable in 1) converting and storing 

intermittent renewable resources into current power grids, 2) transforming continuous on-

grid electricity into discrete forms for constant and stable individual and commercial use. 

Among different energy storage devices, battery is the most promising one due to its high 

energy density, portable size, safety, compatibility, and high efficiency.3 Not only the boom 

of electronics, but also recent development in electric vehicles (EVs) require higher 

capacity, lower cost, more compact, and more efficient batteries, extending the battery 

application from consumer to transportation sector. However, the bottleneck is that 

currently used electrode materials in batteries operate close to their theoretical limit.4 

Therefore, it is urgent to find next-generation material systems as promising battery 

electrodes.5 Second, it is necessary to find renewable alternatives to fossil fuels. Renewable 

energy from water splitting, wind, solar, and biomass can provide good amount of energy 
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to the grid cleanly and sustainably. Among them, hydrogen, which is a high energy density 

and a zero-emission fuel whose only byproduct is H2O after combustion, holds promise for 

use in applications such as hydrogen fuel-cell vehicles and portable electronics. It is again 

aligned with the main energy demand sectors; therefore, the low-cost, high-efficiency 

production of hydrogen is pivotal. To address the current difficulty, that is only very few 

percent of hydrogen is produced from renewable sources through water electrolysis while 

the rest of it is still derived from fossil fuels, a low-cost and high-performance catalyst for 

Figure 1-1 Energy consumptions worldwide. (a) Historical and projected fuel 

consumption of OECD and non-OECD countries. (b) energy consumption by 

sector, and (c) corresponding CO2 emissions in US. Adapted from Ref 1,2. 
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hydrogen evolution reaction (HER) is needed. Currently used alloy or noble metal catalysts 

such as platinum (Pt) are expensive and scarce. In the past decades, significant efforts have 

been made in searching for the low-cost, earth-abundant, and non-toxic alternatives of the 

Pt-group metals catalysts in various material systems such as metal alloys, chalcogenides, 

nitrides, phosphides, borides, and carbides.6–14 

Recently realized two-dimensional (2D) materials are a promising solution to the 

aforementioned energy storage and energy conversion problems, due to their unique 

morphology and tunable electrical, chemical, optical, and mechanical properties.15 The first 

realized 2D material, graphene, is promising with some properties close to theoretical 

limits such as extreme large surface-to-mass ratio, high electron mobility at room 

temperature (2.5 × 105  cm2V-1s-1), excellent mechanical behavior (Young’s modulus > 

1TPa), and very high thermal conductivity (> 3000 W mK-1).15–18 Not only do graphene 

offer us a new way to think of solving material challenges in energy applications, its 

successors in the 2D materials family present us a rich, flexible, and unprecedented 

possibility in energy applications. The expanded 2D material family includes layered 2D 

oxides, MXenes (transition metal carbides and nitrides), 2D transition metal 

dichalcogenides (TMDs), and graphene-like materials (hexagonal boron nitride h-BN, 

graphene allotropes, phosphene, germanene).19 Moreover, a much wider material portfolio 

is offered by stacking these 2D materials, forming heterostructures that are very different 

from their traditional 3D counterparts or 2D monolayers.14,19 For example, band-gap 

engineering can be achieved simply by changing the number of layers, hence enabling 

atomic-thin transistors and electronic devices.15,20 Likewise, 2D TMDs have been 
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demonstrated as a promising alternative catalyst in various forms for HER applications due 

to its unique crystal , chemical, and electronic properties.6,7,21–23 These new discovered 2D 

materials expand the current functional material scope and deserve detailed studies in the 

structure, methods of synthesis, transferring, scaling, and most importantly tailoring in 

mechanical, optical, magnetic, electronic, and chemical properties for desired energy 

applications.24 

1.1.1 Energy storage devices beyond LIBs 

Each cell of battery stores electrical energy in the form of chemical energy between two 

electrodes with the help of electrolytes, providing the ability to power external circuits.25 

In specific, a typical rechargeable electrochemical cell consists of two electrodes, the anode 

and the cathode, separated by an electrolyte as shown in Figure 1-3a. 25 The first battery 

was the Volta’s cell (1800) that has alternating discs of zinc and copper separated by 

Figure 1-2 Selected promising applications of 2D materials. Reprint from Ref. 22,263 with 

permissions.  
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cardboard and uses a brine solution as the electrolyte.3 Later, many forms of battery came 

out, including widely used lead acid battery and NiMH batteries. Lithium-ion batteries 

Figure 1-3 Overview of batteries beyond Li. (a) Schematic illustration of the first Li-

ion battery (LiCoO2/Li electrolyte/graphite). Reprinted from Ref. 25 with permission. 

(b) Cost of batteries from industrial market-leading manufactures. A desired US$150 

per kWh is essential for electric vehicles (EV) and grid storage, calling for new 2D 

materials as shown in inset. Reprint from Ref. 264,265 with permission. 
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(LIBs) have attracted most attention since their first commercialization by Sony in 1991 

(as illustrated in Figure 1-3a), because of their high energy density and wide voltage 

window.25,26 The emerge of LIBs has enabled the wireless revolution of personal 

electronics such as cell phones, laptops, digital cameras, and tablets. While the last two 

decades have seen a remarkable use of LIBs in personal electronics,27,28 nowadays 

applications of Li-ion batteries have been extended to the transportation sector,29–31 owing 

to the rapid advancement of technology and the urgency to fix our environmental issues 

partly caused by combustion vehicles.32,33 Meanwhile stationary applications of batteries 

are a new trend in integrating sustainable energy onto the current grid.  

Challenges remain for current LIBs. First, the performance of current batteries should be 

improved. Since current set-up of LIBs operate close to their material theoretical limit, it 

is urgent to find a new family of materials or a new means to tune current materials with 

low cost, enhanced capacity, power density, cyclability, high-rate performances, etc. 

Therefore, better electrodes, which are the current bottleneck in battery development, are 

needed as shown in Figure 1-3b. Second, it goes without saying that the amount of energy 

stored in Li-ion batteries for new applications such as battery electric vehicles (e.g. ~85 

kWh for Tesla Model S batteries) is more than three orders of magnitude higher than the 

energy required in traditional applications such as portable electronics (e.g. ~5 Wh for 

iPhone 5 batteries), meaning that the quantity of Li resources needed in new battery 

applications is significant. This new trend, together with the growing popularity of electric 

vehicles and the scarcity of raw Li resources for large-scale applications have worsen the 

case. Consequently, the search for suitable alternative to Li and corresponding proper 
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electrode materials is of great importance. Therefore, in Chapter 2 to Chapter 3 we show 

possible solutions using 2D materials beyond current LIBs.  

1.1.2 2D materials for Hydrogen evolution reactions 

Hydrogen is an important form of renewable energy resource as the global population and 

fossil fuel consumption continue to rise.34–37 Its combustion produces only water, during 

which a very high energy density can be utilized without undesired byproducts of burning 

traditional fossil fuels. Such a clean and efficient energy source can lessen our dependence 

on fossil fuels and reduce carbon dioxide emissions to ensure a stable global environment.  

Using the electrolysis of water to generate hydrogen is not a new idea. In 1895, a Danish 

scientist Poul la Cour utilized wind power to electrolyze water into hydrogen and stored 

them as a form of chemical energy.14 However, until recent the large-scale production of 

hydrogen is enabled by the development of catalysts. Today, hydrogen is primarily 

produced by reforming the methane in natural gas, where CO2 is produced as a byproduct. 

Harvesting hydrogen under the principles of green chemistry is highly desired. Therefore, 

water splitting is the most desired, which has the highest atom economy, less hazardous 

chemical involved, and high efficiency. In order to maximize the hydrogen revolution 

reaction (HER), electrocatalysts are typically applied to facilitate the reaction by changing 

the reaction pathways and lowering the overpotentials from the reactants to final products, 

and eventually increase the intrinsic kinetic rate.37  

Noble metals such as platinum (Pt) or its alloys are commonly used today as catalysts.22,38–

40 They provide the highest exchange current density near the zero overpotential, and hence 

result in the highest turnover frequency (TOF), which describes how many molecules are 
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generated per second per active site. Other novel metal catalysts, such as ruthenium (Ru) 

and Palladium (Pd), have relatively good HER performance but seldom have been applied 

in industry due to their high cost and scarcity. In this context, it is pivotal to find a low-

cost and earth-abundant catalyst that can achieve a HER performance comparable to that 

of Pt.11–14 In the past decades, significant efforts have been made in searching for such 

catalysts in various materials systems including metal alloys, chalcogenides, nitrides, 

phosphides, borides, and carbides.6–14  

Among these catalysts, 2D TMD system has been extensively studied as a promising 

alternative HER catalyst due to its unique open morphology that never requires 3D 

diffusion of the H atoms to the reactive sites, and its preferred chemical and electronic 

properties.6,7,21–23 Moreover, changes in band structures due to the 2D nature have been 

identified as the origin of enhanced HER significantly. The edges of 2H-phase MoS2 have 

been demonstrated to be active catalytic sites.23,38 However, a large portion of the MoS2 

monolayer is consisted of inactive basal plane sites, and one main task is to activate their 

HER catalytic activity. Further discussions of utilizing, modifying, and tailoring this 

material system will be discussed in this thesis.  

To better understand the HER, we first examine the water-splitting reaction: 

 H2O → 𝐻2 +
1

2
𝑂2 (1-1) 

where the Δ𝐺  is 237.1 kJ/mol or equivalently 1.23 V at the standard condition.41 This 

reaction can be further divided into two half reactions: the water oxidation reaction and the 

water reduction reaction. 
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Cathode: 2𝐻+ + 2𝑒− → 𝐻2 (1-2) 

Anode: 𝐻2𝑂 → 2𝐻+ +
1

2
𝑂2 + 2𝑒− (1-3) 

Above equations described the most common HER half reactions in acidic conditions, in 

which we are interested. We are interested in the mechanism of this HER reaction in acidic 

environment as shown in Figure 1-4a. There are typically three steps for the hydrogen 

production. The first one is called the Volmer process, which is the rate limiting step.  

 H+ + 𝑒− +∗ → 𝐻𝑎𝑑𝑠
∗  (1-4) 

This is the hydrogen (proton) adsorption process facilitated by surface adsorption sites (*) 

and electrons. The adsorbed hydrogen atom (𝐻𝑎𝑑𝑠
∗ ) can then participate in either the Tafel 

reaction or the Heyrovsky reaction. The first one involves the generation of hydrogen gas 

by combining two adsorbed hydrogen atoms. 

Figure 1-4 Mechanisms and activity trend of HER catalysis (a) The mechanisms of HER 

on the surface of an electrode in acidic solutions. (b) The “Volcano” plot for HER catalysts 

shows the exchange current densities plotted against the free energy of hydrogen 

adsorption. Materials at the peak of the volcano curve are preferred for HER. Reprint from 

Ref 37,38 with permission. 
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 2𝐻𝑎𝑑𝑠
∗ → 𝐻2(𝑔) + 2 ∗ (1-5) 

While the Heyrovsky reaction involves another electron and another proton. 

 𝐻𝑎𝑑𝑠
∗ + 𝑒− + H+ → 𝐻2(𝑔) +∗ (1-6) 

Given the fact that the Volmer process is the rate-limiting one, catalysts aiming to improve 

the Volmer adsorption process are highly needed. Because the near-zero Gibbs free energy 

(~ 0eV) of adsorbed atomic hydrogen corresponds to the ideal efficiency, where hydrogen 

is bonded neither too strongly (Δ𝐺𝐻 < 0) to detach from the catalyst surface, nor too 

weakly (Δ𝐺𝐻 > 0) to participate in subsequent reactions, we can take the adsorption energy 

of atomic hydrogen on the homogeneous catalyst surface as a descriptor. Therefore, it is 

an important task to theoretically predict and evaluate the HER performance of 2D 

materials in the line of efforts searching for high-performance HER catalysts. According 

to the Sabatier plot or the “volcano” curve, which is the guidance criteria for catalysts in 

HER as shown in Figure 1-4b, we are looking for the one that can provide the highest 

exchange current between H atom and the catalysts while maintaining a low overpotential. 

Our task is then to improve the performance of 2D catalysts to the peak of the volcano 

curve. In Chapter 4 and Chapter 5 we show a way to tune the HER catalytic activity in 

TMD catalysts. 

1.1.3 Modeling 2D materials is necessary but not easy  

Although great breakthroughs in 2D materials have been made and several 2D materials 

have been synthesized and identified as promising candidates for various energy 

applications, the search is still ongoing. Unlike the ease of peeling graphene from graphite 

using the “Scotch tape method”, many 2D materials are difficult to make. Neither the 
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isolation of individual 2D monolayers from 3D counterparts nor building 2D materials 

from the bottom using techniques such as chemical vapor deposition (CVD) or physical 

epitaxy growth is experimentally easy.42–45 Moreover, the prediction of novel 2D materials, 

especially those are not easy to realize experimentally so far, should accelerate the speed 

of scientific discovery and technological achievement of 2D material-based energy 

applications. Therefore, computational approaches in understanding the mechanisms in 

energy storage and conversion might further shed light on tuning the properties of current 

material systems.  

A state-of-the-art density functional theory (DFT) is capable to accurately and efficiently 

compute materials properties such as the energetics, formation energy, band gap, and 

thermal properties. This theory has been dramatically developed since its first publication 

in 1965 by Kohn and Sham, approximating the many-electron system into an effective 

single-electron system. 46,47 Later developed potentials, functionals, and computer codes 

make it possible to accurately predict the thermodynamics, mechanical properties, 

electronic properties of various bulk materials. [For details see Appendix 1] DFT can 

provide fast and accurate results in developing new materials, in which it is widely used 

for quantitative understanding of the microscopic properties that control macroscopic 

phenomena. For example, DFT calculations of voltage and diffusion kinetics have been 

widely applied in the design and optimization of lithium ion batteries (LIBs), 

demonstrating the impact of first-principles in material design.48 Another example is the 

rational and computational design of solid catalysts with deep understanding of surface 

chemical reactions and catalytic activity.49 One drawback is that DFT requires huge 
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computational power; therefore, the largest scale it can capture is less than ~100 nm or 

equivalently hundreds of atoms. There are other simulation methods such as molecular 

dynamics (MD) and Monte Carlo (MC), which can deal with larger length scale but suffer 

from the problem of empirical parameters/potentials. Also in 2D materials, the length 

scales of in-plane (up to ~µm) and out-of-plane (Å to nm) differ so dramatically that a 

multiscale method should be developed to capture such mesoscale phenomena. Therefore, 

we developed a multiscale method in Chapter 6-Chapter 8 using DFT informed 

parameters and macroscopic or mesoscopic methods such as continuum mechanics and 

finite element methods (FEM), aiming to gain a deeper understanding of 2D materials.  

 The goals of this thesis 

The main goal of this thesis is to examine the possibility of using 2D materials in improving 

current energy applications, in particular, battery electrodes and HER catalysts, and to 

elucidate the mechanisms and conclude guiding principles in tuning 2D materials using 

combinatorial simulation techniques from different length scales. Typical and promising 

2D material systems, including graphene-like materials, MXenes, TMDs, layered covalent-

organic framework (COF), and oxides are studied. A general framework of DFT-informed 

multiscale method will be introduced with several examples in the scope of the mechano-

electro-chemical coupling behavior of materials. Moreover, by comparing theoretical 

results and experimental data, we validate our method and hence make predictions in 

tailoring the mechanical, electronical, and chemical properties of 2D materials. This thesis 

focuses on three sections:  
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1.2.1 2D materials as promising electrodes beyond LIBs 

In this section, we show promising 2D material solutions as non-LIB electrodes that can 

possibly host many metal ions. The recently discovered family of 2D MXenes is discussed 

and its application is presented. MXenes can possibly host Li, Na, K, Ca ions. In Chapter 

2, the promise of a representative Ti3C2 MXene will be discussed. The predicted capacities 

of these ions are calculated. Moreover, we attribute the promising capacity to the structural 

and electronic properties. Further, a novel method in synthesizing nitride MXenes is 

presented, greatly expanding the current MXene library. The bare and terminated nitride 

MXene’s structure stability, electronic and magnetic properties will be discussed.  

Another promising solution lies in the modification of previous non-capable graphene and 

carbonous 2D networks. We will show in Chapter 3 that defective graphene and graphene 

allotropes provide a promising solution in Mg ion batteries. We will further introduce a 

guiding principle in tuning graphene-like materials for electrode applications.  

 

1.2.2 Tuning the HER catalytic activity of 2D TMDs 

In this section, we present a new TMD family of 2D materials as an alternative to the 

current HER catalysts. First, in Chapter 4 we shall see that the previous-believed non-

reactive 2H basal plane of MoS2 monolayers can be activated by improving the electrical 

coupling between the substrate and the catalyst. Moreover, we identified the efficient 

charge injection and the presence of naturally occurring vacancies are responsible to the 

observed increase in catalytic activity of the 2H basal plane.  
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In parallel, in Chapter 5 we show that the inherent structural asymmetry in the recently 

synthesized family of Janus TMDs as a new means to stimulate HER activity. We identify 

the WSSe system as a promising candidate, where the basal plane can be activated without 

large applied tensile strains and in the absence of significant density of vacancies. 

Moreover, we attribute the origin of enhanced HER catalytic activity to the introduction of 

in-gap states and a shift in the Fermi level in hydrogen adsorbed systems due to Janus 

asymmetry. 

1.2.3 Understanding 2D material properties using multiscale simulations 

In this section, the general method of DFT-informed multiscale modeling will be discussed 

in Chapter 6 followed by a validating example of the Moiré pattern. With this multiscale 

modeling method, we investigate on modifying the physical, mechanical, and chemical 

properties of material systems. 

Chapter 7 presents a theoretical study to understand the carrier mobility and 

photoconductivity on the structural and stacking sequence using DFT simulations. This 

model successfully revealed that the conduction along the vertical direction is achieved by 

electron hopping between adjacent layers along the vertical pathways. This model not only 

explains conductivity enhancement mechanisms in COFs, but also provides guidelines in 

designing highly conductive 2D polymer optoelectronic devices.  

Chapter 8 shows a multiscale model to determine the chemical expansion in non-

stoichiometric oxides. An elastic dipole tensor that describes the long-range elastic fields 

created upon formation of oxygen vacancies has been introduced to bridge different length 
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scales. Our work provides an efficient way in computing chemo-mechanical coupling in 

oxides by introducing the elastic dipoles. 

Finally for the completeness of this thesis, some additional theoretical and experimental 

details will be provided in the Appendix 



17 

Chapter 2 MXenes as a high capacity electrode material for metal ion 

batteries 

Reprinted (adapted) with permission from D. Er, J. Li, M. Naguib, Y. Gogosti, and V. B. Shenoy. 

Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca)-ion Batteries. ACS 

Applied Materials & Interfaces, 6(14): 11173-11179 June 2014, and 

P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P. Walsh, M. Zhao, V. B. Shenoy, M. 

W. Barsoum, and Y. Gogotsi. Synthesis of Two-dimensional Titanium Nitride Ti4N3 (MXene). 

Nanoscale, 8:11385-11391 May 2016 

Synopsis 

Two-dimensional (2-D) materials are capable of handling high rates of charge in batteries 

since metal ions do not need to diffuse in a 3-D lattice structure. However, graphene, which 

is the most well-studied 2-D material, is known to have no Li capacity. Here, adsorption 

of Li, as well as Na, K, and Ca, on Ti3C2, one representative MXene, is predicted by first-

principles density functional calculations. In our study, we observed that these alkali atoms 

exhibit different adsorption energies depending on the coverage. The adsorption energies 

of Na, K, and Ca decrease as coverage increases, while Li shows little sensitivity to 

variance in coverage. This observed relationship between adsorption energies and coverage 

of alkali ions on Ti3C2 can be explained by their effective ionic radii. A larger effective 

ionic radius increases interaction between alkali atoms, thus lower coverage is obtained. 

Our calculated capacities for Li, Na, K, and Ca on Ti3C2 are 447.8, 351.8, 191.8, and 319.8 

mAh/g, respectively. Compared to materials currently used in high-rate Li and Na ion 

battery anodes, MXene shows promise in increasing overall battery performance. 

Moreover, we report the synthesis of the first two-dimensional transition metal nitride, 
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Ti4N3, MXene. Density functional theory calculations of bare, non-terminated Ti4N3 and 

terminated Ti4N3Tx were performed to determine the most energetically stable form of this 

MXene. Bare and functionalized Ti4N3 are predicted to be metallic, which is beneficial for 

battery applications. Bare Ti4N3 is expected to show magnetism, which is significantly 

reduced in the presence of functional groups. 

 Introduction 

Energy storage systems have powered the world of technology. Their applications vary 

from portable electronic devices and electric vehicles, to large scale power grid systems 

that are needed to manage intermittent renewable energy. Among different energy storage 

systems, batteries have several advantages such as their compact size and their high 

efficiency.50,51 More specifically, lithium-ion batteries (LIBs) have attracted most attention 

since their first commercialization by Sony in 1991, because of their high energy density 

and wide voltage window. Most current LIBs are mounted on personal portable electronic 

devices, entertainment devices, and electric vehicles (EVs). Besides these applications, 

energy storage in large scale plays an increasing important role in high-tech manufacturing 

where it is essential to maintain uninterrupted power supply. Large-scale backup devices 

that smooth the daily power fluctuations are usually deployed in high-tech high-cost 

semiconductor industry such as chip fabs. Moreover, renewed attentions have been drawn 

to electrifying the transportation sector, especially after the success of EVs such as Tesla. 

Massive transportation and tucks that require higher amount of energy storage and power 

density call for next-generation batteries. With dramatically increasing demands on LIBs, 

concerns such as Li rarity and uneven distribution of global Li reserves, high cost, potential 

safety issue and insufficient energy density have to be answered. Unsurprisingly, the 
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current growth rate of LIB use in electric vehicles and grid-level storage systems poses 

huge problem on Li scarcity. Also Li-ion plating is problematic with dendrites formation 

that can short the cell and lead to fires. More importantly, the currently used materials in 

LIBs operate close to their theoretical limit.4 Therefore, it is pivotal to develop rechargeable 

batteries beyond LIBs with higher energy density and lower cost especially for EVs and 

stationary applications.  

 

A possible solution for overcoming the aforementioned problems would be the non-lithium 

batteries based on alternative metal ions, such as alkali metals (Na+ and K+), alkaline earth 

metals (Mg2+ and Ca2+), and group IIIA metal (Al3+). Multivalent ions, such as aluminum, 

magnesium, and calcium may offer higher energy density than monovalent Li, if two or 

three electrons can transfer per ion. At the same time, non-Li ions have the advantages of 

high abundance and low price. For example, Na-ion batteries (NIBs) can be a good 

candidate to replace LIBs in the future because of its abundance and low cost.52,53 In 

addition to NIBs, other alkaline ions such as potassium have been found promising.54 

Moreover, non-lithium metal ions do not form dendrites to the same degree as Li and are 

less problematic in air and moisture exposure. However, in most of the unconventional 

metal ion batteries described above, more improvements are still needed in order for them 

to get to real world applications. Most of the challenging questions involve in the optimum 

electrolyte for each system and finding hosting materials to work as electrodes. For 

example, Graphite, which is a successful anode material for LIBs, cannot be used in NIBs, 

because the Na-C interaction is found to be too weak to contribute to the necessary 
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Coulomb interactions.55 Finally the main challenge remains in the lack of suitable 

electrodes that can host multivalent metal ions and enable fast diffuse and kinetics. 

 

2D materials are of special interest as host materials for metal ion batteries, due to their 

unique leaf-like structures and superior properties including small weight and large 

surface-to-mass ratio, which enables fast ion diffusion and offers more ion insertion 

channels with the whole surface exposed. 2D materials provide stability, high active 

surface area, and open shortened path for ion insertion/deinsertion. There have been many 

research efforts on utilizing various forms including single-, few-, and many-layer 2D 

materials for battery electrodes. For example, modifications to pristine graphene structures 

have been shown as a possible means to enhance the capacity in LIBs.56  

 

Recently, a new family of 2-D early transition metal carbides and carbonitrides, so-called 

“MXenes”, was synthesized by selective etching of A atoms from MAX phases with 

hydrofluoric acid (HF) at room temperature.57,58 The MAX phase is a large family (+70 

phases) of ternary metal carbides with composition of Mn+1AXn, where M is an early 

transition metal, A is one of the group A elements, X is carbon and/or nitrogen, and n can 

be 1, 2, or 3.59 The M-X bond in MAX phases has a mixed covalent/metallic/ionic 

character, whereas the M-A bond is metallic,60 therefore the bonds between the MAX 

layers cannot be broken mechanically. Since M-A bonds are weaker than M-X bonds, 

selective loss of the A element can be achieved by etching the MAX phase with an aqueous 

solution containing fluoride ions, such as aqueous hydrofluoric acid (HF), 57,58 a mixture 

of lithium fluoride and hydrochloric acid,61 or with ammonium bifluoride,62 yielding 
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MXenes. To date, the following MXenes63 (Figure 2-1) have been synthesized 

experimentally: Ti3C2,
58 Ti2C, (Ti0.5Nb0.5)2C, Ta4C3, (V0.5Cr0.5)3C2, Ti3CN,57 V2C, Nb2C, 

V2C, Mo2C, (Mo2Ti)C3, Zr3C2.
64,65 Since their discovery, MXenes have attracted great 

attention and have displayed interesting properties. For example, the conductivity of 

multilayered MXenes was found comparable to that of multilayered graphene.57 

Theoretical studies regarding different properties also began soon after the experimental 

discovery of MXene systems. Shein and Ivanovskii66,67 have studied the structural features 

and relative stabilities of the MXene Tin+1Cn and Tin+1Nn (n = 1,2,3). Density functional 

theory (DFT) calculations showed that some MXenes are semiconductors with tunable 

band gap that can be controlled by changing the surface termination,58,68 but nonterminated 

MXenes are metallic and are expected to have the highest conductivity.69 Kurtoglu et al.70 

have estimated the in-plane elastic constants of MXenes, using DFT, to be more than 500 

GPa, which means that MXenes are expected to have higher stiffness than structural steel 

(400 GPa). 

MXenes have been found to be promising electrode materials for LIBs71,72 and lithium ion 

capacitors.73 Although the capacity of MXenes for Li is close to that of commercial 

graphite electrodes in LIBs (372 mAh/g), MXenes have shown an excellent capability to 

handle high cycling rates. For example, at a cycling rate of 36 C, a reversible capacity of 

110 mAh/g was obtained for additive-free terminated Ti3C2.
72 Note that graphite cannot 

handle such high cycling rates. This may be attributed to the smaller diffusion barrier for 

Li atoms on Ti3C2. Using DFT calculations, Shen et al.74 found that the diffusion barrier of 

Li atoms on Ti3C2 (0.07 eV) is smaller than that in anatase TiO2 (0.35−0.65 eV) and 

graphite. However, studies of electronic properties and applications of MXenes are needed 
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to utilize other metal ions in batteries. In this chapter, we choose Ti3C2 as the representative 

and best studied MXene and report on its performance as an electrode material for different 

metals (Li, Na, K, and Ca) ion batteries using first-principles DFT calculations.  

Moreover, nitride MXenes have several potential advantages over carbide MXenes. 

Transition metal nitrides are known to have a higher electronic conductivity than carbides, 

and the TiN is known as a promising plasmonic material.75 Based on computational results, 

it has been predicted that Ti4N3 with O, F, or OH functional groups on its surfaces has a 

higher density of states at the Fermi level, N(EF), than either Ti4C3 or Ti3C2 with the same 

terminations.69 Furthermore, N(EF) increases with increasing n in Tin+1Xn for carbides and 

nitrides covered by functional groups.69 Increased electron count due to the presence of N 

atoms may outweigh the withdrawal of electrons by surface groups, thereby preserving a 

nitride MXene’s metallic character independent of the surface termination.76 Although 

treatment in aqueous acidic solutions has been used as a common procedure for producing 

carbide and carbonitride MXenes, this method failed so far to etch out the layers of Al 

atoms and produce nitride MXene.76,77 The difficulty in producing nitride MXenes may be 

caused by two factors. Calculated cohesive energies of Tin+1Nn are less than those of 

Tin+1Cn, whereas the formation energies of Tin+1Nn from Tin+1AlNn are higher than those 

of Tin+1Cn from Tin+1AlCn.
67 Lower cohesion energy implies lower stability of the structure 

of Tin+1Nn, whereas the higher formation energy of Tin+1Nn implies that the Al atoms in 

Tin+1AlNn are more strongly bonded, therefore requiring more energy for their extraction. 

Another possibility of why nitride MXenes have previously not been produced is that the 

lower stability of Tin+1Nn caused it to dissolve in aqueous HF solution, the etchant used to 

attempt to chemically exfoliate Tin+1AlNn to produce Tin+1Nn. Therefore in this chapter, a 
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molten salt method will be reported together with DFT calculations to analyze the stability 

and the electronic and magnetic properties of this nitride Ti4N3 MXene.  

 Method 

All our calculations were performed using the Vienna ab initio simulation package 

(VASP)78 with the projector augmented wave (PAW)79,80 potentials for core electrons and 

the Perdew− Burke−Ernzerhof (PBE)81 form of the generalized gradient approximation 

(GGA) for exchange and correlation functional. An energy cutoff of 650 eV was used for 

the plane wave expansion of valence electron wave functions. The Brillouin zone was 

sampled using a Monkhorst−Pack special k-point mesh of Γ-centered 12 × 12 × 1 for the 

unit cell of Ti3C2.To simulate the adsorption of single Li, Na, K, and Ca, we used a 3 × 3 

× 1 supercell, corresponding to the adatom content x =1/ 9 in Ti3C2Mx. Higher adatom 

contents up to x = 2.0 were also investigated. To avoid interactions between simulated two- 

Figure 2-1 MXenes reported so far. Reprinted from Ref 63 with permission. 
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dimensional Ti3C2 monolayer sheet and the periodic images, a vacuum space larger than 

10 Å was used. All structures were relaxed with all atoms allowed to move until the force 

on each atom was less than 0.05 eV/Å (0.002 eV/ Å for nitride MXene calculations). In 

nitride MXene magnetic calculations, a denser k-point mesh of 24×24×1 was employed 

for the calculation of the spin-polarized partial density of states (PDOS). 

To obtain the open circuit voltage (OCV),82 we considered the reaction  

 Ti3C2 + 𝑥M → Ti3C2M𝑥 (2-1) 

where x is the number of adatoms inserted in the unit cell of Ti3C2. The electronic potential 

during this process can be written in the form of Gibbs free energy 

 V = −
Δ𝐺𝑓

𝑧𝐹
 (2-2) 

where z and F are the number of valence electrons during the adatom process and the 

Faraday constant, respectively; Δ𝐺𝑓 is the change in Gibbs free energy during the adatom 

process which is defined as 

 ΔGf = Δ𝐸𝑓 + 𝑃Δ𝑉𝑓 − 𝑇Δ𝑆𝑓 (2-3) 

𝑃Δ𝑉𝑓  is on the order of 10−5 eV and the term 𝑇Δ𝑆𝑓 is comparable to 26 meV at room 

temperature; thus, the entropy and pressure terms are negligible.82 ΔGf  is then 

approximately equal to the formation energy, ΔEf, involved in the adsorption process, 

which is defined as 

 ΔEf = 𝐸𝑇𝑖3𝐶2𝑀𝑥
− (𝑥𝐸𝑀 + 𝐸𝑇𝑖3𝐶2

) (2-4) 

where 𝐸𝑇𝑖3𝐶2𝑀𝑥
 is the total energy of the composite system with x metal atoms adsorbed in 

the unit cell of Ti3C2, 𝐸𝑀 is the total energy of a single Li, Na, or K atom in a bulk BCC 
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structure or Ca in a bulk FCC structure, and 𝐸𝑇𝑖3𝐶2
 is the total energy of an isolated Ti3C2. 

The OCV is related to the formation energy by 

 OCV =  −
Δ𝐺𝑓

𝑥
≈ −

Δ𝐸𝑓

𝑥
 (2-5) 

 Results 

2.3.1 Structure Models 

By removing the Al atom from bulk Ti3AlC2, monolayer Ti3C2 is constructed with 

quintuple layers stacked in a sequence of Ti(s)−C−Ti(c)−C−Ti(s), where Ti(s) corresponds 

to the surface Ti atoms and Ti(c) corresponds to the center Ti atoms in Ti3C2. The relaxed 

structure was found to have a lattice constant a = 3.1005 Å, which is in good agreement 

with the experimental value 3.057 Å.72 The structure can also be described as trilayer Ti-

atomic layers being interleaved with two C atomic layers forming an edge-shared TiC6 

octahedral structure as shown in Figure 2-2. The unit cell of Ti3C2 is highlighted in a 3 × 

3 × 1 supercell. Here we only consider the adsorption on the surface of Ti3C2 MXene. It is 

easy to recognize the high symmetry adatom sites A, B, and C as indicated in Figure 1 on 

the surface: The A site is at the center of a hexagon composed of carbon atoms, the B site 

is directly above the carbon atom, and the C site is directly above the Ti atom. Compared 

to the surface adsorption, the insertion of metal ions into the inner interstitial site is 

energetically less favorable. We have performed calculations of bulk interstitial adsorption 
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for Li, Na, K, and Ca. The adsorption energies are 4.40, 12.23, 15.39, and 12.21 eV, 

respectively. The disruption of structure integrity was also observed. 

 

2.3.2 Adatom Adsorption 

The binding of metal ions on Ti3C2 was studied by calculating the adsorption energy Ead 

using larger super cell with x = 1/9 in Ti3C2Mx. Because Ead = −OCV, the large positive 

OCV indicates energetically favorable adsorption. In Table 2-1, we list the calculated 

OCVs for Li, Na, K, and Ca adatoms on A, B, and C sites. For all atoms, the OCV of A is 

close to that of B whereas that of C is lower. A- and B- site OCVs are higher than that of 

the C site by about 100 meV. The OCV of each site increases with the alkali atom mass, 

suggesting stronger adsorption for heavier alkali elements. However, this tread does not 

apply for Ca due to its different valence ([Ar]4s2) electron configuration. In the following 

discussions, we focus on the adsorption of A and B sites sine the C sites are less 

energetically favored.  

Figure 2-2 Schematic diagram showing 

the crystal structure of a Ti3C2 

monolayer with (a) top and (b) side 

view. The large blue balls represent Ti 

atoms and small brown balls represent C 

atoms. The highlighted unit cell 

indicates the high symmetry A, B, and C 

adatom sites. 
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Table 2-1 Energetic and Structural Properties of Li, Na, K, and Ca Adatoms on Ti3C2 

Monolayer. OCV, Bader charge (q), and adatom height (h) of energetically favorable A, 

and B sites for Li, Na, K, and Ca on Ti3C2. 

 OCV (eV) q (e-) h(Å) 

 A B C A B A B 

Li 0.43 0.30 0.43 0.21 0.19 2.51 2.50 

Na 0.74 0.72 0.74 0.40 0.38 2.84 2.82 

K 1.90 1.81 1.90 0.47 0.36 3.27 3.25 

Ca 1.43 1.33 1.42 1.31 1.24 2.72 2.70 

 

In addition to the OCVs, the adsorption strength of adatoms on different sites is also 

reflected in the adatom height h which is defined as the vertical distance between the 

adatom and the topmost surface Ti atom. The adatom heights for A and B sites are listed 

in Table 2-1. It can be seen that for A and B sites the adatoms have very close height, 

consistent with the comparable OCVs for these two sites. With the increase of element 

mass of alkali adatoms, h increases for both sites excluding Ca. 

To gain deeper insight into the difference in adsorption for different metal atoms on Ti3C2, 

we performed the electronic structure calculations. Figure 2-3 depict the computed total 

density of states (TDOS) and projected density of states (PDOS) for the adsorption of Li, 

Na, K, and Ca, respectively. There is a significant overlap at 0.70 eV below the Fermi level 

between the Ti 3d orbital and the Li 2s orbital, indicating s-d hybridization and therefore, 

strong binding of Li atoms on the Ti3C2 surface. Similarly for Na, K, and Ca, the s−d 

hybridizations are also observed with peaks located at 0.33, 0.285, and 1.23 eV below the 

Fermi level, respectively. 
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To visualize the effect of adatom adsorption on the charge distribution, we calculated the 

bonding charge density which is obtained as the difference between the valence charge 

density before and after the bonding. Figure 2-4 shows the bonding charge density in the 

plane passing through both the adatom and the high symmetry line on the Ti3C2 monolayer. 

Red and blue colors indicate the electron accumulation and depletion, respectively. These 

bonding charge distributions clearly show the charge transfer from the adatoms to the Ti3C2 

monolayer. The amount of charge transfer was estimated quantitatively by using Bader 

charge analysis and the results are presented in Table 2-1 for Li, Na, K, and Ca at 

energetically favored A and B sites. The Bader charge analysis is qualitatively consistent 

with our PDOS calculations. The area covered by the PDOS of valence s-states for Li is 

about 0.1 electrons, which indicates a charge transfer from Li to Ti3C2. 

Figure 2-3 Total DOS and PDOS of Ti 3d, C 2p, and s orbitals of (a) Li, (b) Na, (c) K, and 

(d) Ca for the composite system of Ti3C2M1/9. The Fermi levels are set to zero and are 

indicated by the dashed lines. 
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It is well-known that the diffusion barrier is a key factor that determines the rate at which 

a battery can be charged and discharged. We have investigated the diffusion barriers for 

Li, Na, K, and Ca in the Ti3C2 monolayer using the nudged elastic band (NEB) method83 

as implemented in VASP in order to evaluate the promise of Ti3C2 as high-rate electrode 

materials. The migration pathways are selected along the high symmetry line between 

energetically favorable adsorption sites on the surface and in Figure 2-5 we depict the 

optimized pathways. The calculated diffusion barrier for Li is 0.068 eV, in close 

comparison to the previously reported value.74 For Na, K, and Ca, the diffusion barriers are 

0.096, 0.103, and 0.118 eV, respectively. Compared to commercial anode materials based 

Figure 2-4 Bonding charge density for adatoms (a) Li, (b) Na, (c) K, and (d) Ca (being 

adsorbed at the A site) in Ti3C2Mx system obtained as the charge density difference between 

the valence charge density before and after the bonding. Red and blue colors indicate the 

electron accumulation and depletion, respectively. The color scale is in the units of e/Bohr3. 
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on TiO2 polymorphs with a diffusion barrier about 0.35−0.65 eV for Li, Ti3C2 can exhibit 

faster transport and higher charge/ discharge rate for Li, and even for other alkali elements. 

Another commercial anode material, graphite, needs to overcome a diffusion barrier larger 

than 0.3 eV for Li. This suggests that Ti3C2 is a promising candidate for high rate electrode 

materials. 

Figure 2-5 Schematic representation of the top view of the energetically optimized 

migration pathways and the corresponding diffusion barrier profiles of (a) Li, (b) Na, (c) 

K, and (d) Ca on Ti3C2 MXene. 
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2.3.3 Open Circuit Voltage and Theoretical Specific Capacity 

In addition to the adsorption of single adatom on the Ti3C2 MXene, we also evaluated the 

OCVs as a function of the adatom concentration by varying x in the Ti3C2Mx system. We 

considered different x in the Ti3C2Mx system, namely, 0.11, 0.25, 0.5, 0.75, and 1, by using 

different supercells with stoichiometry (Ti3C2)9M, (Ti3C2)4M, (Ti3C2)2M, (Ti3C2)4M3 and 

Ti3C2M, respectively. Moreover, in order to determine whether adatoms can occupy other 

adsorption sites after fully covering the A sites of lowest adsorption energy, we computed 

Figure 2-6 OCV changes with adatom content for the single-side adsorption of Li, Na, K, 

and Ca on the Ti3C2 surface. x <1 corresponds to the adatom adsorption on the A site, and 

x >1 corresponds to partial coverage of B sites and full coverage of A site. The x 

corresponding to zero OCV is used to estimate the maximum adatom content and capacity. 
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the possibility of B sites adsorption by varying the number of adatoms in a 2 × 2 × 1 

supercell from 1 to 4, corresponding to the adatom content x = 1.25, 1.5, 1.75, and 2. 

In Figure 2-6, we depict the calculated OCVs as a function of the adatom concentration 

represented by x in the Ti3C2Mx system. Only the highest OCV among different 

configurations is shown for each concentration. For all alkali elements studied herein 

except Li, the OCVs decrease with increased adatom concentration, but with different 

slopes. In Figure 2-6, OCVs of Na, K, and Ca decrease as x increases, while Li shows little 

sensitivity to the variance of x in the range x ≤ 1. The OCV of Li starts to decrease when x 

> 1. Only A is shown in Figure 2-6 because the difference of OCVs between the A and B 

sites is less than 100 meV, which means one specific representation is enough for the trend. 

At low adatom content (x < 0.25), the OCVs of K, Na, Ca, and Li decrease; however, this 

trend changes at high adatom content (x > 0.8). The OCV of Li is now the highest, followed 

by Na, Ca, and K in that order. Once the OCV is zero, we reach a situation where no more 

adatoms can be adsorbed, which corresponds to the maximum x in Ti3C2Mx. Consequently, 

the capacity of each element on the Ti3C2 surface can be determined. For K and Ca, the 

estimated maximum x is approximately 0.6 and 0.5, respectively, meaning that the OCVs 

have dropped to zero before fully covering the A site. At x = 1, the OCVs of Li and Na are 

positive, indicating that additional adatoms can be adsorbed on the Ti3C2 surface where the 

A site is fully covered. For Li and Na, the maximum x is approximately 1.4 and 1.1 by 

assuming a linear relationship between two adatom contents around zero OCV. This result 

suggests that the Li and Na adatoms can seek other energetically favorable sites after fully 

covering the A site. 
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It is noted that the above discussion is based on the calculation assuming single-side 

adsorption. The fact that the charge transfer mainly occurs between the surface Ti(s) atoms 

and the adatom suggest the possibility of adsorption on double sides. In order to verify this, 

we considered a 2 × 2 × 1 supercell of Ti3C2 monolayer with increased adatom content on 

both surfaces. Our computations reveal that the 2 × 2 × 1 supercell of the Ti3C2 monolayer 

can accommodate up to 8 Li, 8 Na, 4 K, and 4 Ca adatoms, which corresponds to the 

chemical stoichiometry of Ti3C2Li2, Ti3C2Na2, Ti3C2K, and Ti3C2Ca with symmetric 

configuration of adatoms on both sides. The calculated OCVs are 0.413, 0.137, 0.128, and 

0.087 eV, respectively. Therefore, we can estimate the maximum adatom content to be 2.8, 

2.2, 1.2, and 1 for Li, Na, K, and Ca, respectively. For single-site adsorption, the maximum 

capacity CM (mAh/g) can be computed from the maximum adatom content 𝑥max as 

 𝐶𝑀 =
1

𝑀Ti3C2

[𝑥max × 𝑧 × 𝐹 × 103] (2-6) 

where z is the valence number (z = 1 for Li, Na, and K; z =2 for Ca), F is the Faraday 

constant (26.810 Ah/mol), and MTi3C2 is the atomic mass of Ti3C2 (167.62 g/mol). Based 

on the assumption of double-side adsorption, the theoretical capacities of Li, Na, K, and 

Ca on Ti3C2 MXene are calculated to be 447.8, 351.8, 191.8, and 319.8 mAh/g, 

respectively. 

2.3.4 Effective Ionic Radius 

As shown in Figure 2-6, the maximum coverage of adatoms on Ti3C2 monolayer vary with 

the alkali elements of different atomic numbers, which can be attributed to the effective 

size of the ionized adatom. For a given ion, the ionic radius is strongly dependent on the 

charge state. Therefore, an effective ionic radius RΔq can be defined as RΔq = R0 + (R1 − 

R0) Δq by assuming a linear dependence on the charge state Δq with R0 the atomic radius 
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and R1 the ionic radius of charge state +1. As shown in Table 2-2 the adsorbed Li, Na, K, 

and Ca atoms are acting as electron donors and about 0.79, 0.60, 0.53, and 0.69 |e| are 

transferred from Li, Na, K, and Ca atoms to the Ti3C2 monolayer. The corresponding RΔq 

are 0.86, 1.34, 1.81, and 1.63 Å, respectively. The effective ionic radius is closely related 

to the maximum coverage of the alkali elements. For the full coverage of energetically 

favorable A sites, the distance between two nearest adatoms is 3.10 Å which indicates a 

critical radius 1.55 Å for the ionized adatoms. The RΔq of Li is much smaller than 1.55 Å, 

which is consistent with the fact that the OCVs are not sensitive to the coverage as indicated 

in Figure 2-6. For Na, the effective ionic radius is close to 1.55 Å, the coulomb repulsion 

between ionized adatoms leads to the reduced OCVs when increasing the coverage, but a 

full coverage of A sites can still be obtained. The fact that RΔq of K is greater than 1.55 Å 

makes the maximum adatom content x ∼ 0.6. Although RΔq of Ca is smaller than that of 

K, the maximum x is only 0.5 due to the small OCV for low coverage. We found that for 

Li, Na, and K a linear relationship between the effective ionic radius and the maximum 

adatom content x in Ti3C2Mx can be established as 

 𝑥max = −1.68 × 𝑅Δ𝑞 + 4.318 (2-7) 

in which xmax is calculated by taking into account the double-side adsorption. Care must be 

exercised that this relationship does not hold for Ca because Ca has two valence electrons 

which results in stronger interactions with the Ti3C2 monolayer. Correspondingly, we can 

establish a relationship between the capacity and the effective ionic radius by combining 

Equations (2-6) and (2-7) 

 𝐶𝑀 =
1

𝑀Ti3C2

[(−1.68 × 𝑅Δ𝑞 + 4.318) × 𝑧 × 𝐹 × 103] (2-8) 
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This expression provides a simple description for the theoretical capacity of alkali metals 

in terms of the effective ionic radius of the ionized adatoms. In Figure 2-7, we plot the 

calculated maximum adatom contents and capacities of Ti3C2Mx as a function of effective 

ionic radius with Li, Na, K, and Ca adsorbed on two sides. 

 

Table 2-2 Relationship between Charge Transfer (Δq) and Effective Ionic Radius (RΔq). 

RΔq is a linear interpolation of the atomic radius (R0) and the ionic radius (R1) 

 R0 (Å) R1 (Å) Δq (e-) RΔq (Å) 

Li 1.55 0.68 (Li+) 0.79 0.86 

Na 1.90 0.97(Na+) 0.60 1.34 

K 2.35 1.33(K+) 0.53 1.81 

Ca 1.97 0.99(Ca2+) 0.69 1.63 

Figure 2-7 Relationship between (a) maximum adatom content (b) capacity and ionic 

radius for adsorption on both sides. The maximum adatom content and capacity of Li, Na, 

and K follow a linear relationship. Ca deviates from the linear expression due to its different 

valence electron structure. 
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2.3.5 Comparison to Graphene 

Our predicted high capacity of Ti3C2 MXene is in contrast to extensively studied graphene 

sheets. Although it displays various appealing properties, pristine single layered graphene 

is not a good candidate for electrode materials in LIBs.84,85 For comparison, we performed 

the electronic structure calculations for pristine graphene with Li adatoms using a 2 × 2 × 

1 supercell. Figure 2-8 shows the total DOS of graphene with a Li adatom, and the DOS 

projected onto C 2p and Li 2s orbitals. It can be seen that in the range 0− 16 eV below the 

Fermi level, the C 2p orbital contributes most to the energy states. However, no significant 

peak of the Li 2s orbital below the Fermi level was observed. The peak of the Li 2s orbital 

occurs at 0.815 eV above the Fermi level, where there is an overlap of the peak of the C 2p 

orbital and the total DOS. This peak corresponds to an s-p antibonding orbital. Therefore, 

the lack of overlapped peaks below the Fermi level indicates the absence of hybridization 

Figure 2-8 Total DOS of the pristine graphene with Li adatom and the 

PDOS onto C 2p and Li 2s orbitals. 
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of orbitals and therefore, a weaker bonding. As shown in Figure 2-3, an overlap of the Li 

2s orbital with the Ti 3d orbital in Ti3C2 MXene occurs at 0.70 eV below the Fermi level. 

A significant and broad peak of Li overlaps with several peaks of the Ti 3d orbital, which 

indicates the existence of an s−d hybridization during Li adsorption. 

2.3.6 Synthesis of Nitride MXenes 

The first successful synthesis of nitride MXenes [experimental details can be found in the 

Appendix] using a molten salt method provides another solution besides carbide MXenes. 

To study the structure and electronic properties of non-terminated Ti4N3 and terminated 

Ti4N3Tx (T = F, O, and OH) monolayers, we carried out spin-polarized DFT calculations. 

Monolayer Ti4N3 was constructed from a MAX phase with a calculated lattice parameter a 

= 2.9915 Å and a thickness of L = 7.44 Å as shown in Figure 2-9 a. We first evaluated the 

relative stability of the fully terminated Ti4N3 monolayers with different arrangements of 

surface terminations (F, O, and OH). Two energetically favorable arrangements of the 

surface terminations are considered, A and B, shown in Figure 2-9 b and c. The total 

energy differences with respect to configuration AA are listed in Table 2-3. Our 

calculations indicate that configuration AA (Figure 2-9 d) is the lowest energy for the F 

and O terminations, whereas for OH, the AB configuration (Figure 2-9 e) is more stable.  

We then evaluated the formation energies of different surface terminations in order to 

predict which surface termination is more energetically preferred. In our case: 

 𝐸form(𝑇) = [𝐸𝑡𝑜𝑡(Ti4N3Tx) − 𝐸(Ti4N3) − 𝑥𝐸(𝑇)]/𝑥 (2-9) 
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where 𝐸form(𝑇), 𝐸𝑡𝑜𝑡(Ti4N3Tx), 𝐸(Ti4N3), and 𝐸(𝑇) are the formation energies of the 

Figure 2-9 (a)Schematic illustration of the synthesis of Ti4N3Tx by molten salt treatment 

of Ti4AlN3 at 550 °C under Ar, followed by delamination of the multilayered MXene by 

TBAOH. (b) Crystal structure of Ti4N3 monolayers (top and side views). For the single-

sided terminations, two energetically favorable arrangements of the surface terminations 

are considered: (c) hollow site of surface Ti denoted by A, and (d) atop site of carbon 

denoted by B. In the case of double-sided terminations, the possible configurations of 

terminations are (e) AA-Ti4N3Tx, (f) AB-Ti4N3Tx, and (g) BB-Ti4N3Tx. 
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termination group, the total energies of the terminated Ti4N3Tx monolayers, non-terminated 

Ti4N3 monolayers, and surface termination groups (–F, –O, and –OH) calculated from 

VASP, respectively. The formation energies of single-sided and double-sided terminated 

Ti4N3Tx monolayers are listed in Table 2-3. Based on these results we conclude that O 

terminations are energetically preferred compared to F and OH functional groups, while 

the OH termination is the least favorable one (even compared to F) with an energy 

difference of more than 0.4 eV per unit cell. 

 

Table 2-3 Relative stability of functionalized Ti4N3Tx with different arrangement of 

surface terminations, where the most stable configuration is in bold font. Formation 

energies of -F, -O, and -OH surface terminations with single-side and double-side covered 

Ti4N3Tx MXene. Calculated magnetic moment per unit cell for Ti4N3Tx MXene. 

 

In order to analyze deeply the electronic properties of Ti4N3Tx, we calculated the spin-

polarized partial density of states (PDOS) of the most stable configurations considering the 

contribution of different orbitals in Figure 2-10. For the Ti4N3Tx and Ti4N3 monolayers, 

the main contribution near the Fermi level comes from the Ti 3d orbital, while a 

hybridization between Ti 3d orbital and N 2p orbital occurs from -2.0 to -8.0 eV below the 

Fermi level. The calculated total DOS at the Fermi level of bare, -F, -O, and -OH terminated 

Ti4N3	 Ti4N3Fx	 Ti4N3Ox	 Ti4N3(OH)x	

E-E0 (eV)	

AA	 0.000	 0.000	 0.000	

AB	 0.085	 0.5284	 -0.012	

BB	 0.159	 1.046	 0.010	

Eform (eV)	
Single (Ti4N3T)  N/A	 -5.804	 -7.855	 -5.332	

Double (Ti4N3T2) 	 N/A	 -5.781	 -7.773	 -5.347	

Magnetic moment per  unit cell (µB)	 7.00	 0.88	 0.37	 0.00	
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Ti4N3 monolayers are 4.62, 4.0, 3.8, and 1.9, respectively. This result indicates that the 

Ti4N3 monolayer is more metallic while the terminations lower the DOS at the Fermi level, 

similar to carbide MXenes.69 On the other hand, the low DOS at the Fermi level of the OH 

terminated Ti4N3Tx monolayer partially explains why OH is not energetically favorable. 

Note that previous studies67,69 have only discussed about the non-spin-polarized PDOS of 

F terminated Ti4N3Tx case, while we are reporting a spin-polarized study on all possible 

terminations in Ti4N3Tx (T = F, O, and OH). In Figure 2-10, a magnetic moment of 7.00 

µB per unit cell was observed in Ti4N3, which results mainly from the unoccupied 3d 

orbitals of the Ti atoms. Surface terminations such as OH can dramatically lower the 

magnetic moment to zero.  

Figure 2-10 Spin-polarized partial density of states of Ti4N3 monolayers and surface 

terminated Ti4N3Tx. The Fermi levels are set to zero and are indicated by the red line. 
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 Conclusion 

With first-principles density functional method we investigated the electronic properties of 

the adsorption of Li, Na, K and Ca atoms on Ti3C2. Our results show a linear relationship 

between the effective ion radius, maximum adatom content, and capacities for alkali 

metals. Charge transfer determines the effective radius of ions, which plays a critical role 

during the metal-ion adsorption on the surface. Larger effective ionic radius enhances 

interaction between alkali atoms, thus lowering maximum adatom content and theoretical 

capacity of the alkali metals. Our calculated capacity values for Li, Na, K and Ca on Ti3C2 

are 447.8, 351.8, 191.8, and 319.8 mAh/g, respectively. A simple expression to predict 

capacity by examining effective ionic radius is proposed here. Our results give insights for 

further experimental work in exploring and developing the potential of Ti3C2 for Li, Na, 

K, or Ca battery applications. It is noteworthy that Ti3C2 is only one member of the MXene 

family. We also simulated Ti4N3 nitride MXenes with terminations and determined the 

stability of surface functional groups. Bare, non-terminated Ti4N3 is calculated to have the 

highest density of states and good magnetic property, which may facilitate the realization 

of other energy applications. MXenes are promising electrode materials for energy storage 

applications. 
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Chapter 3 Defective Graphene and Graphene allotropes as High-

capacity Anode Materials for Mg Ion Batteries 

Reprint (adapted) with permission from D. Er, E. Detsi, H. Kumar, and V. B. Shenoy. Defective 

Graphene and Graphene Allotropes as High Capacity Anode Materials for Mg-ion Batteries. ACS 

Energy Letters, 1, 638-645 August 2016 

Synopsis 

Although rechargeable Mg ion batteries have recently received renewed interest as a 

promising alternative to Li ion batteries, the Mg metal used for anodes in state-of- the-art 

Mg ion batteries is not compatible with conventional battery electrolyte solvents. On the 

other hand, graphite electrode materials function well with common battery electrolyte 

solvents, but Mg intercalation into graphite is very difficult. In the case of two-dimensional 

(2D) carbon- based materials, pristine graphene, the most well-studied 2D material, is 

known to have no capacity for Li or Mg. Here we demonstrate the potential of defective 

2D carbon-based structures to be used as high-capacity anode materials for Mg ion 

batteries. Adsorption of divalent Mg ions on defective graphene and graphene allotropes is 

predicted by first-principles density functional theory. Our results show enhanced Mg 

adsorption on both defective graphene and graphene allotropes. Moreover, we show that 

Mg storage capacity can be improved by increasing the defect concentration or changing 

the local arrangement of carbon rings. A Mg storage capacity as high as 1042 mAh/g can 

be achieved in graphene with 25% divacancy defects. These new insights, together with 

the fact that carbon-based materials are very compatible with a wide range of battery 
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electrolyte solvents, will pave the way for developing carbon-based anode materials for 

practical Mg ion batteries. 

 Introduction 

The increasing demand for Li-ion batteries in new applications is associated with an ever-

growing concern about the non-availability of raw Li resources. As discussed in the 

previous chapter, efforts have been made to utilize Na, K, Ca-ion batteries beyond LIBs. 

Another important candidate, namely Mg, has recently received renewed interest as 

promising alternative to Li-ion batteries. Current Mg metal used as anode in state-of-the-

art Mg-ion batteries is not compatible with conventional battery electrolyte solvents. On 

the other hand, graphite electrode materials are very compatible with common battery 

electrolyte solvents, but Mg intercalation into graphite is very difficult. In the case of two-

dimensional (2D) carbon-based materials, pristine graphene, the most well-studied 2D 

material, is known to have no capacity for Li or Mg storage. In this context, we are 

interested in realizing Mg ions by searching successful 2D carbon-based material 

candidates as battery anodes.  

First, the enthusiasm for Mg-ion battery is justified by the fact that on the contrary to Li, 

Mg is non-dendritic and Mg metal is much safer than Li metal. However, the emergence 

of Mg-ion batteries is severely hampered by the absence of practical anode materials that 

can operate in common battery electrolyte solvents. While commercialized Li-ion batteries 

exploit the reversible insertion of Li between graphite layers used as anode, state-of-the-

art Mg-ion batteries exploit on the other hand the reversible plating of Mg onto Mg metal 

surfaces used as anodes.86 Unfortunately, exposure of Mg metal to conventional battery 



44 

electrolyte solvents results in the formation of reduction products at the Mg 

metal/electrolyte interface, the so-called “blocking layer”, 86 which impedes the diffusion 

of Mg ions, preventing in that way the plating Mg onto Mg metal surfaces used as anodes. 

Alternative anode materials for Mg storage that are compatible with conventional battery 

electrolyte solvents are therefore highly desirable. 

2D materials are promising for electrode applications due to their large surface-to-mass 

ratio, open morphology, and unique physical properties.66,87–90 Among the 2D materials, 

graphene has attracted much attention since its discovery in 2004; however, pristine 

graphene cannot be used as electrodes due to Li repulsion and clustering.91,92 Recent 

experiments and theoretical studies suggest that enhanced Li storage capacities can be 

achieved in carbon structures locally modified by introduction of impurities and defects. 

For example, defective graphene (i.e. porous graphene system) offers a very high specific 

capacity for Li storage, exceeding 850 mAh/g with excellent reversibility.93 Beyond Li, 

defective carbon systems can also provide a solution to MIBs. Datta et al.56,94 have 

demonstrated that the increased amount of defects in graphene can enhance the charge 

transfer between ions and the host 2D sheets, and hence can boost Li, Na, and Ca storage 

capacities more than 1200, 1450, and 2900 mAh/g, respectively.  

Defect structures beyond single vacancies can be introduced with the involvement of 

substantial rearrangements of the carbon lattice. Crespi suggested that graphene allotropes 

with zero net curvature could form two-dimensional crystals and predicted the relationship 

between accumulated defects concentration and rearrangements with the formation of 

graphene allotropes. 95 For example, a relationship between allotropes and defects was 
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established by showing that pentaheptite and Haeckelite can be theoretically constructed 

using Stone-Wales (SW) defects.96–99 In general, graphene allotropes can be created by 

using patterned defects.98,100–102 In reality, this prediction has been demonstrated 

experimentally via a cross-coupling reaction in Graphdiyne with hexagons interconnected 

by linear carbon chains with sp and sp2 hybridization.103 The synthesized Graphdiyne has 

demonstrated not only excellent semiconducting properties with a conductivity of 

2.516×104 S/m but also a promising photocatalytic performance on TiO2 substrates.103,104 

The great structural similarity between these defect-induced allotropes and graphene 

provides a promising opportunity for MIB applications (Figure 3-1). In particular, since 

carbon-based materials are compatible with a wide range of battery electrolyte solvents, 

defective graphene and graphene allotropes will be very attractive as alternative anode 

materials for practical Mg-ion batteries. Here we demonstrate the great potential of these 

2D materials as high-capacity electrode materials for Mg-ion batteries. This is done by 

scrutinizing fundamental open questions such as: (a) What are the desired defect and 

allotrope structures for Mg storage applications? (b) Why will these carbon-based 

structures allow the storage of Mg ions? (c) How can the Mg storage capacity be improved? 

To answer these questions, we have carried out a first-principles calculation based on DFT 

to study the adsorption of divalent Mg ions on defective graphene and graphene allotropes. 

We have compared adsorption of Mg ions on synthesized defective graphene and predicted 

graphene allotropes, paving the way for designing high-performance graphene allotropes 

for Mg-ion battery electrodes. We have systematically predicted the Mg storage capacity 
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of graphene with different concentrations of single vacancy (SV) and divacancy (DV) 

defects, and the storage capacity of other promising graphene allotropes.  

 Method 

All of our calculations were performed using VASP based on first-principles density 

functional theory (DFT) with the Perdew−Burke−Ernzerhof (PBE) type of generalized 

gradient approximation (GGA) for exchange and correlation functionals and the projector 

augmented wave pseudopotential (PAW) for electron−core interactions.79–81 The 

ion−electron interactions in C and Mg are described using their valence electrons, 2s22p2 

and 3s2, respectively. An energy cutoff of 580 eV was used for the plane-wave basis 

expansion. The Brillouin zone of the unit cell and the 4 × 4 × 1 supercell were sampled 

Figure 3-1 Graphene can construct different allotropes by introducing proper combination 

and manipulation of single vacancies, divacancies, and Stone-Wales defects. The 

rearrangement requires high energy. Overlay serves as eye-guidance to identify defects. 
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with a Γ-centered k-point mesh of 12 × 12 × 1 and 3 × 3 × 1, respectively. The energy 

convergence limit was set to less than 5 × 10−6 eV/atom, while the force tolerance on each 

atom was less than 0.01 eV/Å in order to obtain fully relaxed structures. To avoid the 

interaction between periodic graphene allotrope layers along the normal direction, a 

vacuum separation larger than 20 Å was used. The OCV can be estimated similarly to that 

in section 2.2, where the only difference is that the calculated cohesive energy for hcp Mg 

is 1.519 eV/atom. 

 Results 

3.3.1 Stability of allotropes from patterned defects 

Prior to investigating Mg adsorption on defective graphene and graphene allotropes, we 

first discuss their relative stability in order to search for the most stable defective structures 

that could be promising as anode materials. The simplest defect in carbon networks is the 

carbon SV. Experimentally, the SV has been observed by TEM and STM,99,105–107 showing 

a Jahn-Teller distortion of the first neighbors near the missing carbon atom. The creation 

of such defects is energetic costly with a formation energy about 7.63 eV,108,109 which is 

intuitively reasonable because of the presence of under-coordinated carbon atoms. One 

way to stabilize the structure and minimize the effect of dangling bonds is to introduce the 

DV, where a C-C dimer is removed from pristine graphene and two dangling bonds are 

connected with each other with a lowered formation energy per atom (4.04 eV/atom) that 

of SV. Therefore, DV is more thermodynamically favorable than SV, and it has been 

experimentally demonstrated that low-concentration monovacancies created by electron 

irradiation quickly convert to divacancies.99,110 When the concentration of defects (SV & 
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DV) increases, topological disorders become more energetically favorable due to the fact 

that it introduces no extra dangling bonds.111 For instance, SW defect can be formed by the 

carbon bond rotation by 90with respect to the midpoint of the C-C bond followed by local 

structure reconstruction so that four hexagons transform to two pentagons and two 

heptagons.112 It is the simplest topological defect system with the lowest formation energy 

in all graphenic systems.111 For the simplest SW(55-77) defect, it requires about 5 eV to 

create such defects in graphene.108 Due to the nature of topological defects, the structure 

has the same amount of carbon atoms as pristine graphene with a different structural 

arrangement and no dangling bonds. Therefore, larger amount of SW defects can be 

introduced in carbon networks—even it is possible to have Haeckelite that is composed of 

100% SW defects.113  

In fact, a proper combination of defects and topological disorders can generate more 

energetically favorable structures and provide ways for constructing patterned complex 

graphene allotropes that are promising for battery applications.96 For example, the rotation 

of one of the bonds in octagon in the V2(5-8-5) defect leads to a lower energy complex of 

three pentagons and three heptagons V2(555-777) followed by another step to an even 

lower energy complex of V2(5555-6-7777).114 Further evolvement spans larger region on 

the defective graphene and forms graphene allotropes, in which the reconstruction of 

vacancies and topological defects (known as nanoengineered structures) leads to lower 

equilibrium energy structures (Figure 3-1). Therefore, it is possible to construct graphene 

allotropes solely from rational manipulations of defects and polygons by nanoengineering. 

In this context, we are searching for stable graphene allotropes that are only composed of 
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carbon polygons as promising anode materials. Many structures have been predicted and 

studied to date, such as Graphdiyne (synthesized in 2010), 103,115 graphynes,97,102,116,117 

pentahexoctite,101 graphenylene,118,119 and biphenylene.120 Among these graphene 

allotropes, the C3-12 (Figure 3-2i) structure composed of triangles and dodecagons, and C4-

8 (Figure 3-2j) structures composed of tetragons and octagons are of interest because of 

their relative high stability and moderate size of pores, which are beneficial for ion mobility 

and high-rate performance. The fully relaxed allotrope structures in supercell are shown in 

Figure 3-2 (upper row) Graphene with DV defects: (a) 6.25, (b) 12.50, (c) 18.75, and (d) 

25%. (middle) Graphene with SW defects: (e) 25, (f) 50, (g) 75, and (h) 100%. Systems 

shown here are in a 2×2 supercell with highlighted unit cell. All structures are fully relaxed. 

(lower) Graphene allotrope structures of (i) cyclic network composed of C3-12 rings, and 

(j) octagonal network composed of C4-8 rings. (k) The equilibrium energy per carbon atom 

for different percentage of defects. Two horizontal guidelines represent cyclic and 

octagonal networks. 
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Figure 3-2. The lattice constant of graphene is 2.46 Å, while it expanses to 2.77 and 3.44Å 

for C3-12 and C4-8, respectively. Figure 3-2 k indicates that they are even more stable than 

the Haeckelite, which are composed of high-concentration DV or SW defects.  

In this chapter, we compared DV with four different defects concentrations (6.25, 12.50, 

18.75, and 25.00%; Figure 3-2 a-d) and SW also with four different defects concentrations 

(25, 50, 75, and 100%; Figure 3-2 e-h), concluding that the equilibrium energy per carbon 

atom increases with the amount of defects and that the SW defect is more favorable in high-

concentrations regime. 

3.3.2 Mg adsorption on defective graphene and graphene allotropes 

We first consider the single adatom adsorption on monolayer defective graphene systems 

with the lowest defect density in order to identify adsorption sites. From previous study, 

we know that adatoms tend to cluster around the defective zone; therefore, we select the 

adatom adsorption location that has the maximum defective neighbor (MDN) in the lowest 

defect density structures, that is 6.25 % DV and 25% SW defect.94 The bridge site (in the 

middle of a carbon−carbon bond) and the top site (right above a carbon atom) have been 

tested, and both of them are less energetically favorable than the hollow site, with an energy 

difference higher than 0.445 and 0.543 eV, respectively. Therefore, we consider the 

adsorption sites over defects in the following way: in the center of small rings (denoted by 

S) and in the center of large rings (denoted by L). For example, one may consider the 

pentagons in DV as S sites, while the octagons in DV as L sites (Figure 3-2a). Similarly, 

in the case of SW defects, pentagons and heptagons can be considered as S and L sites, 

respectively (Figure 3-2e). The potentials of Mg insertion at different sites are summarized 
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in Table 3-1, in which we can see that both DV and SW defects have negative OCV values 

for the lowest defect concentrations (6.25 and 25%, for DV and SW, respectively). As 

discussed above for Eq. (2-5), these negative potential values indicate that Mg storage in 

DV and SW structures with the lowest concentrations is not favorable..56 We note that the 

S site has a less negative potential than the L site, which suggests that S sites are potentially 

preferred for adsorption if the defect concentration increases. 

Likewise, we first define high symmetric adsorption sites (S and L) on two promising 

graphene allotropes, namely C3-12 and C4-8. For example, the center of the triangles in C3−12 

can be viewed as the S site, while the center of the dodecagons is the L site. Similarly, the 

S and L sites in C4-8 can be defined as at the centers of quadrangles and octagons, 

respectively. As discussed in section 3.1, these two allotropes are metastable with higher 

energy than low-concentration SW & DV graphene, whereas the equilibrium energy per 

atom is comparable to that of high-concentration SW & DV graphene allotropes. For this 

reason, the adsorption of Mg on these allotropes is equivalent to that on defective structures 

with moderate defect concentrations. Therefore, the introduction of foreign ions may 

decrease the total energy of the system to the level that the Mg potential is positive. The 

Mg potentials of these two graphene allotropes (C3-12 and C4-8) are also summarized in 

Table 3-1. The OCVs are positive, on the contrary of the negative OCVs values reported 

above for DV and SW defective graphene with low defect concentrations. Referring again 

to Eq. (2-5), these positive OCV values mean that Mg absorption on S and L sites of C3−12 

and C4−8 graphene allotropes is favorable. Although the Mg adsorption potential at the S 

site is slightly larger than that at the L site for these two graphene allotropes, as shown in 
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Table 3-1, the Mg adsorption potential on the S site is metastable and introduces large 

local curvatures to the allotropes. For this reason, the L site is selected for these graphene 

allotropes. 

Table 3-1 OCV and charge transfer from Mg to possible sites in different defective 

graphene and graphene allotropes. 

 OCV (eV) Charge transfer (e) 

 DV SW C3-12 C4-8 DV SW C3-12 C4-8 

S -0.20 -0.29 0.24 0.42 0.62 0.95 1.10 0.94 

L -0.23 -0.40 0.20 0.35 0.82 1.12 1.53 1.04 

 

To get further physical insight on the adsorption of Mg on both defective graphene and 

graphene allotropes, we calculated the amount of charge transfer between adatoms and 2D 

Figure 3-3 Adsorption and charge transfer of Mg on the most stable regions of graphene 

with single vacancy (a), DV defective graphene (b), and SW defective graphene (c). C3-12 

graphene allotropes (d), and C4-8 graphene allotropes (e). Red and blue colors indicate the 

electron accumulation and depletion, respectively. The isosurface level is set to 0.002 

e/Bohr3. 



53 

carbon sheets. Figure 3-3 illustrates the bonding charge density flowing from adatoms to 

the nearest carbon atoms in different 2D carbon networks. The red (positive values) and 

blue (negative values) colors indicate the electron accumulation and depletion, respectively. 

To quantify the amount of charge transfer, we carried the Bader charge analysis121 that 

determines the total electron charge of an atom in the enclosed Bader volume for different 

sites as shown in Table 3-1. The number of electrons transferred from Mg adatom to 

pristine graphene is 0.103, which corresponds to only 5.15% of the total charge of Mg ion. 

That number of electrons increases to 0.620 (i.e. 31.0 % of the total charge of Mg ion) and 

0.951 (i.e. 47.5 % of the total charge of Mg ion) in DV and SW defective graphene with 

low defect concentrations, respectively. We note from the data in Table 3-1 that for the 

DV and SW structures the L sites with lower OCV values (i.e., large negative OCVs) have 

higher levels of charge transferred to graphene than the S sites with relatively higher OCV 

values (i.e., less negative OCVs). On the contrary, the situation is different for C3−12 and 

C4−8 graphene allotropes; the L sites with higher OCVs values show higher levels of charge 

transfer than the S sites with relatively lower OCV values. The level of charge transfer in 

graphene allotropes reaches 1.530 (76.5% of the total charge of the Mg ion) and 1.040 

(52.0% of the total charge of the Mg ion) for C3−12 and C4−8, respectively. Larger charge 

transfer results in stronger electrostatic interactions between the adatom and the graphenic 

network, where a certain threshold of charge transfer exists (∼0.89 |e| or 44.5% of the total 

charge of the Mg ion), beyond which OCVs become positive and start to favor Mg 

adsorption. 
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3.3.3 Enhanced Mg capacity on defective graphene and graphene allotropes 

After identifying the favorable adsorption sites for a single Mg adatom on different carbon 

networks, we focused on studying the distribution of Mg adatoms with higher 

concentrations based on the initial positions. For each composition, we generated various 

configurations by randomly distributing the adatoms near high symmetry points. For each 

case, we considered 10 different possible initial positions and report the highest value of 

the OCV. We carried out DFT calculations for different concentrations of defects (DV and 

SW) and different graphene allotropes until we reached the maximum coverage of adatoms 

when the OCV changed its sign from positive to negative. Figure 3-4 summarizes the OCV 

changes for different concentrations of SW defects during Mg adsorption. Similar to the 

observation that Mg cannot be absorbed on pristine graphene, low SW defect density does 

not favor adsorption of Mg anywhere on the graphene sheet. However, with an increased 

defect concentration to 100% (haeckelite), Mg ions start to bind onto the defective 

graphene sheets. In the case of 100% SW defects, the initial potential exceeds 1.6 V and 

decreases with the increasing coverage of adatoms gradually. The OCV drops to zero near 

the coverage of 65%, which corresponds to the maximum capacity. Likewise, for DV 

defects, the lowest concentration does not favor Mg adsorption, while it is possible in 

defective graphene with higher DV concentrations (12.5, 18.75, and 25.00%). From Figure 

3-4, we conclude that in a graphene structure with 25% DVs the maximum coverage for 

the Mg adatom is about 70% of its theoretical value. All OCVs drop with increased Mg 

concentration monotonically. Moreover, the initial values of OCV increase with increased 

DV concentrations, which is reasonable because defective graphene with higher DV 
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concentration can accommodate more Mg atoms (Figure 3-4). Therefore, the Mg capacity 

in a structure with high DV concentration should be higher than that with low DV 

concentrations. We further evaluated the rate performance of 25% DV defective graphene 

by calculating the diffusion barrier, a key factor that determines the rate of charging and 

Figure 3-4 OCVs as a function of Mg adatom concentration on graphene with (a) SW and 

(b) DV defects, and on the cyclic (C3-12) and octagonal (C4-8) graphene allotropes (c). The 

zero OCV corresponds to the maximum adatom content and capacity for Mg.  
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discharging. We used the nudged elastic band (NEB) method as implemented in the Vienna 

ab initio simulation package (VASP) code to generate diffusion pathways for Mg between 

two neighboring sites and identify the diffusion barrier along the minimum-energy path.83 

Our calculations show that the diffusion barrier for Mg migration is relatively small (0.1 

eV) compared to that for other electrode materials (0.3− 1.0 eV) for MIBs.90,122,123 Hence, 

25% DV graphene is a promising candidate as a high-rate-performance anode material for 

Mg batteries. 

In two representative graphene allotropes, namely, C3−12 and C4−8, we observed a similar 

monotonically decreasing trend in OCVs, as shown in Figure 3-4. It should be noted that 

in graphene allotropes the composition is fixed; therefore, the defect concentration does 

not vary. In Figure 3-5 we evaluated the maximum adatom content and hence the 

maximum capacities (CM) for Mg on defective graphene and two graphene allotropes 

according to: 

𝐶𝑀 =
1

𝑀tot

[𝑥𝑚𝑎𝑥 × 𝑧 × 𝐹 × 103] (3-1) 

where z is the valence number of adatom (Mg=2), xmax is the maximum adatom content, 

Mtot is the sum of atomic masses of the corresponding carbon networks and Mg atoms, and 

F is the Faraday constant (26.81 Ah/mol). The factor 103 in Eq. 3-2 is associated with the 

conversion of CM from Ah/g to mAh/g. For the highest DV density of 25%, the maximum 

Mg storage capacity is as high as 1042 mAh/g, which is very promising for Mg ion battery 

applications. A significantly enhanced Mg storage capacity of ∼960 mAh/g is also 

achieved on SW structures with 100% defect concentration, that is, the haeckelite structure. 

It is worth noting that, unlike ultralight Li element (mLi = 6.9), the mass of Mg (mMg = 
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24.3) should not be neglected when evaluating the capacity of electrodes.124,125 Two 

graphene allotropes show moderate capacities for Mg storage (Figure 3-5). As noted 

earlier, the main drawback of Mg metal anodes currently used in Mg ion batteries 

corresponds to their high reactivity with conventional battery electrolyte solvents, which 

results in the formation of a “blocking layer” at the Mg metal/electrolyte interface that 

impedes the diffusion of Mg ions in the material.86 In contrast to Mg metal, carbon-based 

materials, including defective graphene and graphene allotropes, do not react with common 

battery electrolyte solvents. The high compatibility of carbon- based materials with 

standard electrolyte solvents combined with the high Mg storage capacities reported here 

in defective graphene and graphene allotropes shows much promise in the design of the 

next-generation cost-effective Mg ion battery electrodes. 

Figure 3-5 Maximum capacities for Mg absorbed onto different defective graphene and 

graphene allotropes. Error bars indicate the variation in capacity range based on the OCV 

changes. 
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 Conclusion 

In summary, first-principles calculations were performed to study Mg adsorption on 

various 2D carbon networks. The first set of material systems investigated consisted of DV 

and SW defective graphene structures with a wide range of defect concentrations, and the 

second set included two promising graphene allotropes, C3−12 and C4−8 composed of 

polygons. Although Mg cannot be stored in defect-free pristine graphene, our work shows 

that defective graphene and graphene allotropes are suitable for Mg storage; a high 

concentration of vacancies and topological defects in these structures significantly 

enhances their Mg storage capacities. Detailed analysis of both the Mg adsorption potential 

and the corresponding level of charge transfer in these structures shows that Mg adsorption 

is more favorable near the defect-rich regions. A Mg storage capacity of 1042 mAh/g was 

achieved in DV defective structures with a defect density of 25%. The two promising 

graphene allotropes provide moderate Mg capacity and possible solutions to high-rate 

performance MIBs. More importantly, our results provide physical insights into the 

mechanisms of enhancement of multivalent ion adsorption onto defective graphene and 

graphene allotropes. A straightforward application highlighted in this work is in the 

development of high-capacity anode materials for Mg ion batteries. We hope that this work 

can guide experimental work and draw more attentions to this topic in order to realize better 

multivalent electrochemical energy storage systems. 

.
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Chapter 4 Activating the 2D MoS2 nanosheet catalysts: The role of 

electronic coupling between substrate and 2D MoS2 nanosheets in 

electrocatalytic production of hydrogen  

Reprinted (adapted) with permission from D. Voiry, R. Fullon, J. Yang, C. Silva, R. Kappera, I. 

Bozkurt, D. Kaplan, M. J. Lagos, P. E. Batson, G. Gupta, A. D. Mohite, L. Dong, D. Er, V. B. 

Shenoy, T. Asefa, and M. Chhowalla. The Role of Electronic Coupling between Substrate and 2D 

MoS2 Nanosheets on Electro-Catalytic Production of Hydrogen. Nature Materials, 15, 1003–1009 

June 2016 

Synopsis 

The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution 

reaction (HER) has led to substantial efforts towards increasing the edge 

concentration. The 2H basal plane is less active for the HER because it is less 

conducting and therefore possesses less efficient charge transfer kinetics. Here 

we show that the activity of the 2H basal planes of monolayer MoS 2 nanosheets 

can be made comparable to state-of-the-art catalytic properties of metallic edges 

and the 1T phase by improving the electrical coupling between the substrate and 

the catalyst so that electron injection from the electrode and transport to the 

catalyst active site is facilitated. Phase-engineered low-resistance contacts on 

monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge 

injection in the nanosheets so that its intrinsic activity towards the HER can be 

measured. We demonstrate that onset potentials and Tafel slopes of ∼−0.1 V and 
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∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal 

plane is exposed. We show that efficient charge injection and the presence of 

naturally occurring sulfur vacancies are responsible for the observed increase in 

catalytic activity of the 2H basal plane. Our results provide new insights into the 

role of contact resistance and charge transport on the performance of two-

dimensional MoS2 nanosheet catalysts for the HER. 

 Introduction 

The development of catalysts from earth-abundant and inexpensive materials is essential 

for the implementation of clean energy technologies using hydrogen.14,126–128 Transition 

metal dichalcogenides such as MoS2 and WS2 have emerged as promising catalysts for the 

hydrogen evolution reaction (HER) in acidic media.129–131 Substantial work has been 

devoted to understanding and optimizing the catalytic properties of these materials.38,40,132–

136 Pioneering work by Jaramillo et al.38 has shown that it is the metallic edges of ultrahigh-

vacuum-grown MoS2 nanoclusters that are catalytically active whereas the less conducting 

2H basal plane remains relatively inactive. Numerous follow-up studies have demonstrated 

that increasing the concentration of exposed edges can lead to improvements in catalytic 

performance.137–140 Recent work has suggested that enhancing the conductivity of the basal 

plane by phase transformation from the semiconducting 2H phase to the metallic 1T phase 

also leads to an improvement in performance.40,134,141 In the case of 1T-phase MoS2 and 

WS2, the catalytic properties seem to be independent of the edges and primarily dependent 

on the concentration of the metallic phase.21,40 Theoretical studies have suggested that, for 

the same catalyst, it is possible to improve the catalytic performance by enhancing the 
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coupling between the substrate and the active material to decrease the energy of hydrogen 

adsorption.142 In addition, the role of electrical coupling between the substrate and catalysts 

on the cathode and resulting charge transfer kinetics has also been reported to be 

important.21,141,143,144 Thus, facilitating charge transfer through engineering better electrical 

contacts between the support and catalyst nanoparticles is an additional important variable. 

 Method 

4.2.1 Experimental set-up 

In electrocatalysis, the substrate supports the catalyst material and injects or collects charge 

carriers from the electrocatalyst. In this chapter, to estimate the contact resistance of 

individual catalyst nanosheets, the supporting substrate cannot be conducting. We used 

SiO2 on Si wafers. The gold contacts deposited on the MoS2 nanosheets are therefore the 

electrical contacts and thus act as conducting substrates. We demonstrate that the basal 

plane of the 2H phase can be as catalytically active as the edges or the 1T phase. A key 

parameter in increasing the catalytic activity of the 2H basal plane is the enhancement of 

the charge transfer from the substrate to the catalyst active sites by reducing the contact 

resistance and improving the conductivity of the catalyst. To demonstrate this, we have 

carried out a study to understand the role of edges, phases, doping and electrical coupling 

(or the contact resistance) on the catalytic properties by measuring the HER performance 

of individual monolayers of chemical vapor deposited (CVD) MoS2. We have developed 

an experimental set-up to measure the catalytic activity of individual nanosheets of MoS2, 

as shown in Figure 4-1 a,b. By using electron beam lithography patterning, we have been 

able to measure the catalytic properties of only the basal plane (while covering the edges, 
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Figure 4-1c) or only the edges (while covering the basal plane, Figure 4-1d). The devices 

in Figure 4-1 c,d are top-contacted, but bottom-contacted devices were also tested. The 

Figure 4-1 (a) Photograph of the electrochemical microcell. (b) Schematic of the set-up 

showing single layer of MoS2 deposited on SiO2and contacted by one gold electrode. 

Glassy carbon and Ag/AgCl electrodes are used as counter and reference electrode, 

respectively. The entire substrate is covered with poly(methylmethacrylate) PMMA, with 

the exception of a window on top of the edges of the MoS2 nanosheet. Only the MoS2 

nanosheet is in contact with the electrolyte solution (0.5 M H2SO4). Edge-exposed and 

edge-covered cells can be fabricated and tested. (c, d) Optical microscope images of the 

different types of microcells: CVD-grown single-layer MoS2 having their edge covered (c) 

or exposed (d). Such cells enable one to control precisely the quantity of MoS2 sites 

exposed and thus an accurate estimation of the number of turnovers at each active site.  
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electrical properties of top- and bottom-contacted devices are similar, suggesting that the 

charge injection mechanism in both cases is the same. In addition, we have been able to 

engineer the phases to compare the catalytic performance of the metallic and 

semiconducting phases. The catalytic properties of the individual monolayer MoS2 

nanosheets were measured using a three-electrode configuration, with glassy carbon as the 

counter-electrode, Ag/AgCl electrode as the reference electrode, and one gold pad 

contacting the single-layer MoS2 nanosheet as the working electrode. Everything except 

the MoS2 was covered with cured poly(methylmethacrylate) (PMMA) resist to ensure that 

the measured activity was due to the MoS2 only. 

4.2.2 Computational details 

The simulations are performed using the VASP code79 with projector augmented wave 

pseudopotentials,80 Perdew–Burke–Ernzerhof (PBE) generalized gradient 

approximations,81 and a cutoff energy of 500 eV for plane-wave expansions. A Γ-centered 

k-point mesh of 12×12×1 and 4×4×1 in the first Brillouin zone is found to yield well-

converged results for the MoS2 unit cell and the supercell, respectively, during the 

structural relaxations. A vacuum space of 25 Å thick is used to prevent any interactions 

between the adjacent periodic images of the monolayer. For the calculations of 2×2 2H–

MoS2 supercells with additional electrons, a neutralizing background charge is provided in 

the VASP code, and the total energy is corrected to exclude the unphysical 

monopole/dipole interactions between the adjacent periodic images of the monolayer along 

the surface normal. The atomic positions of the unit cells are optimized until all the 

components of the forces on each atom are reduced to values below 0.02 eV/Å. The lattice 
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parameters of pristine 2H– and 1T–MoS2 we obtain are both 3.122 Å. Different hydrogen 

absorption sites on the top of the MoS2 supercells are investigated in our calculations, and 

the energetically favorable site is identified as the one on the top of the S atom. 

The relative stability of the absorbed hydrogen atom on MoS2 can be described from the 

change in Gibbs free energy (Δ𝐺𝐻 ∗) before and after the absorption as 

 Δ𝐺𝐻 ∗ = Δ𝐸 + Δ𝐸𝑍𝑃𝐸 − 𝑇Δ𝑆 (4-1) 

where ΔE is the differential hydrogen adsorption energy, ΔEZPE is difference in the zero 

point energy between the absorbed hydrogen atom and hydrogen in the gas phase, T is the 

temperature, and ΔS is the entropy difference between the adsorbed hydrogen atom and 

hydrogen in the gas phase. ΔE is calculated as 

 Δ𝐸 = 𝐸(𝑆𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙 + 𝐻) − 𝐸(𝑆𝑢𝑝𝑒𝑟𝑐𝑒𝑙𝑙) −
1

2
𝐸(𝐻2) (4-2) 

where E(supercell+H), E(supercell), and E(H2) represent the energy of the MoS2 supercell 

plus one hydrogen adsorbed, the energy of the MoS2 supercell, and the energy of one 

hydrogen molecule in the gas phase. In Eq. (4-1), ΔEZPE and TΔS are almost the same for 

the different supercells and are much smaller compared to ΔE. As such, the change in ΔG 

at different carrier concentration is mostly due to the change in ΔE. 

 Results 

The deposition of metals such as gold directly on top of ultrathin or monolayer 

semiconducting 2H-phase MoS2 leads to Schottky contacts (energy barrier of ∼0.2 eV; refs 

145–148) that are responsible for the observed high contact resistance.145,149–152 

Furthermore, it is not possible to vary the Schottky barrier height in MoS2 by using metals 
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of different work functions owing to the Fermi level pinning effect.153 The contact 

resistance is also variable, so that values ranging from 1 to 106 kΩ mm are possible.152 

However, contact resistance values lower than 1 kΩ mm are difficult to achieve on 2H-

phase MoS2. In contrast, it is generally difficult to make high-resistance contacts on the 1T 

phase of MoS2 (Refs 39,154). Thus, the range of contact resistances we obtain for the 1T 

phase is narrower (between 10−5 and 10−2 kΩ mm) than for the 2H phase (1–106 kΩ mm). 

The lower contact resistances in the 1T-phase devices are translated into superior HER 

catalytic performance.21,40,141 

To differentiate between the contribution of the contacts and the internal resistance of the 

measurement system, impedance spectroscopy was performed on MoS2 microcells with 

varying contact resistances. In electrochemistry, the contact resistance is often subtracted 

from the measured signal in order to eliminate its influence on the electrochemical 

performance of the material being tested. This assumes that the contact resistance does not 

play a significant role in determining the measured catalytic properties. However, we 

demonstrate that in the case of basal plane of MoS2, existing catalytic sites are not active 

at high contact resistance values but can be activated by decreasing the contact resistance 

to facilitate charge injection. Here, the contact resistance is a variable that we can 

independently control in our devices, which allows us to investigate the role of charge 

injection on the catalytic performance. We have recently demonstrated that it is possible to 

locally engineer the contact resistance by phase engineering.39,154 That is, locally 

transforming the 2H phase to the metallic 1T phase and depositing the metal electrode 

directly on top of the 1T phase allows the realization of low-resistance contacts that are 
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strongly electrically coupled to the 2H phase. We have used this technique to successfully 

Figure 4-2 (a) Polarization curves measured from two MoS2 microcells with (solid line) 

and without iR correction (triangles). Polarization curves from MoS2 microcells with low 

and high contact resistance are shown in red and black, respectively. Inset: corresponding 

Nyquist plots showing that the internal resistance (ZS) ∼ 300 Ω does not vary with the 

contact resistance. The charge transfer resistance (ZCT) is strongly governed by the contact 

resistance. For the best contact resistance, ZCT ∼4,000 Ω can be measured. (b) Polarization 

curves obtained from MoS2 devices with various contact resistances from 80 MΩ mm 

down to 7 × 10−2 Ω mm. The performance of the MoS2 devices increases rapidly with 

decreasing contact resistance. (c), Evolution of the turnover frequency (TOF) with the 

overpotential. The TOF values are calculated from the polarization curves presented in a. 

The quantity of active sites has been estimated assuming that the entire surface of MoS2 

(that is, surface and edge sites) is active. The TOF values are compared to the values 

obtained from metallic 2H-phase MoS2 edges grown on gold from Ref 38 (purple region). 
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reduce the contact resistance in field-effect transistors. 39,154 Furthermore, we have shown 

that the interface between the patterned 1T phase and the 2H phase is atomically sharp. 

Typical Nyquist plots obtained from single MoS2 nanosheets with high and low contact 

resistances are presented in Figure 4-2a. The internal resistance remains relatively small 

(ZS∼300 Ω) and does not depend on the contact resistance between the MoS2 and the gold 

electrode (inset Figure 4-2a). The contribution of the internal resistance on the polarization 

curve remains low, and thus correction of the iR drop is negligible (Figure 4-2a). However, 

the influence of contact resistance can be observed from the marked decrease of the charge 

transfer resistance (ZCT) in the Nyquist plots (inset Figure 4-2a), consistent with results 

from the literature.21,141,143,144,155 For high contact resistance, the charge transfer resistance 

(ZCT), which represents the efficiency of the electron transfer between the gold pads and 

the MoS2 nanosheets, becomes virtually infinite. At low contact resistance, the ZCT reduces 

significantly and reaches ∼4,000 Ω, suggesting a large improvement in the efficiency of 

the electron transfer between gold and MoS2 (inset Figure 4-2a). 

The polarization curves of the current density for various contact resistances in 0.5 M 

H2SO4 are shown in Figure 4-2b. The measurements in Figure 4-2b are averages taken 

from the 2H and 1T phase, and from the basal plane and edges of numerous samples. It can 

be seen that the HER performance increases with a decrease in contact resistance, 

irrespective of whether the edges or basal plane are exposed. The current densities reported 

here are from flat MoS2 electrodes, and therefore slightly lower than the high-surface-area 

mesoscopic electrodes reported in the literature.139,141,155,156 Electrocatalysis from 

monolayer MoS2 allows accurate measurement of the surface exposed to the electrolyte, 
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which can be used to calculate the turnover frequency (TOF), an indicator of the activity 

of the catalytic sites. The TOF values reported in the literature remain virtually the same,140 

suggesting that the improvement of the electrodes is essentially coming from an increase 

in the number of active sites and not from an increase in the intrinsic activity of each site. 

The evolution of the TOF (in s−1) with applied potential for several contact resistances is 

shown in Figure 4-2c. As expected, the TOF values increase with overpotential. For the 

low-contact-resistance devices, we obtain TOFs of >100 s−1 and >1,000 s−1 at 

overpotentials of 200 mV and 300 mV, respectively. These values compare favorably with 

other reports based on MoS2 catalysts. For the lowest contact resistance, the activity of the 

MoS2 nanosheets is higher than directly grown MoS2 clusters on gold reported by Jaramillo 

et al.38, as shown in Figure 4-2c. 

The variation of the onset potential and the Tafel slopes with contact resistances are 

summarized in Figure 4-3a,b, respectively, while the current densities (at η= 400 mV) are 

shown in Figure 4-3. It can be seen that for low-resistance contacts, exceptionally low 

onset potential <0.15 V and Tafel slopes as low as ∼45 mV per decade can be obtained for 

the best electrodes (Figure 4-3a, b). Figure 4-3b, c also reveals that below a critical 

resistance value of ∼10–100 kΩ mm, the Tafel slope and current density essentially 

saturate at ∼60 mV per decade and 100 mA cm−2. It can also be seen from Figure 4-3b, c 

that it is possible to obtain similar HER performance in the 2H phase where the edges are 

covered and therefore do not contribute to the reaction. This shows that the basal plane of 

the 2H phase, which has been previously thought to be less catalytically active, exhibits 

HER properties that are consistent with what has been reported in the literature for edges 
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and the 1T phase21,139–141 by improving the electrical coupling (or reducing the contact 

resistance) between the substrate and the catalyst.  

It is possible to obtain low-resistance contacts in devices where the 2H basal plane is 

exposed to electrolyte. From Figure 4-3, it can be seen that for low-contact-resistance 

(∼10−2 kΩ mm) devices where only the 2H-phase MoS2 basal plane is exposed, the HER 

performance is indeed comparable to that of 1T-phase and edge-exposed devices. Thus, 

our results suggest that the catalytic activity of the basal plane and edges of CVD MoS2, 

irrespective of the phases, is comparable. This is not surprising because the structures of 

the 1T and 2H phases of MoS2 are comparable. However, in the case of 2H-phase MoS2, 

the typically high contact resistance limits the Volmer reaction: H3O
++ e−→ Hads+ H2O, 

which requires efficient charge transfer. That is, if the catalyst material is not sufficiently 

conducting, then electron transport to the active sites is limited, preventing the Volmer 
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reaction from proceeding. This is indeed demonstrated in Figure 4-3b, where the Tafel 

slope values range from ∼40 to 50 mV per decade for the lowest contact resistance and up 

to ∼120 mV per decade or higher for the highest values of contact resistance. Tafel slopes 

of ∼40 mV per decade suggest a Volmer–Heyrovsky mechanism at the surface of MoS2 

Figure 4-3 Variation of the onset potential (a), Tafel slope values (b) and current density 

(c) measured at η = 400 mV with the contact resistance (Rc). The HER activity of the MoS2 

electrodes is progressively enhanced as the contact resistance decreases. For Rc < 

10 kΩ mm, the MoS2 activity stabilizes and current density of >100 mA cm−2 at η = 

400 mV can be obtained from the MoS2 basal planes. No significant differences between 

edge-exposed and edge-covered devices have been observed from the samples, suggesting 

that both the surface and the edges of the MoS2 crystals are active. 
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with the hydrogen desorption reaction: Hads+ H3O
++ e−→ H2+ H2O as the limiting step. 

21,139–141 Our HER measurements on single MoS2 nanosheets demonstrate that the 

mechanism for hydrogen evolution is markedly influenced by the efficiency of electron 

injection from the substrate to the catalyst and its transport to the active site. Tafel slopes 

of 120 mV per decade correspond to a mechanism where the hydrogen adsorption (Volmer 

reaction) is the limiting reaction. This is the case when the energy of hydrogen adsorption 

is high, making the process inefficient. This is expected here for the high contact resistance 

values because hydrogen adsorption cannot be favorable in the absence of electrons at the 

active sites owing to the poor electrical conductance of the catalyst (Figure 4-3b). On the 

other hand, improved electrical coupling enables the hydrogen to adsorb easily on MoS2 

and the reaction process through the Volmer–Heyrovsky mechanism, as observed in the 

present study and for metallic 1T-phase MoS2 or MoS2 grown on conducting reduced 

graphene oxide.21,139–141 

The basal plane activity of 2H-phase MoS2 observed in our work is in contrast with the 

literature.38,132,139 The activity of 2H-phase MoS2 basal planes is expected to be 

significantly lower than edges owing to the lower energy of hydrogen adsorption (Δ𝐺𝐻 ∗) 

at the edge sites. To confirm the 2H-phase basal plane activity, we examined the HER 

activity from single-layer MoS2 nanosheets on glassy carbon with contact resistance 

<100 kΩ mm. We found that the basal planes are indeed active towards the evolution of 

hydrogen, with an exchange current density of 7–16 μA cm−2 and a TOF at 0 V of 0.019–

0.046 s−1, which is comparable with the previous measurements from MoS2 nanoclusters 

grown on gold. We attribute the catalytic activity of CVD MoS2 nanosheets to sulfur 



72 

vacancies. In a recent contribution, the Zheng and Norskov groups have shown that basal 

planes of 2H-phase MoS2 can be activated by increasing the number of single S vacancies 

and the application of tensile strain on the nanosheets.23 Defect densities as low as ∼3% 

were predicted to lower Δ𝐺𝐻 ∗ from 2 eV down to 0.2 eV. In the absence of strain, thermo-

neutral H adsorption on the surface of 2H-phase MoS2would require a density of S 

vacancies of ∼14% (Ref. 23). Defects in CVD-grown MoS2 have been reported by several 

groups,157–159 and are known to induce pronounced modifications of the electronic and 

optoelectronic properties. Direct observations of these defects can be achieved through 

high-angle annular dark-field scanning electron microscopy (HAADF-STEM) owing to the 

contrast obtained by the presence and the nature of the atoms under the electron beam as 

shown in Figure 4-4a,b (Ref. 158,159). STEM observations of the MoS2 nanosheets reveal 

that defects are naturally present in the samples. Several types of defects have already been 

reported—such as single S vacancies, double S vacancies, Mo vacancies and Mo–Sx 

vacancies or antisite defects—and depend strongly on the synthesis methods158,159. Careful 

analysis of the MoS2 basal plane (>500 nm2) reveals that the large majority of the defects 

consist of single S vacancies with a density of the defects of up to ∼9% (Figure 4-4c), 

which suggests that the basal plane may be activated by the presence of S vacancies. 

Assuming a density of defects of 9%, the TOF at 0 V from single-layer MoS2 reaches 0.2–

0.5 s−1, in good agreement with the values reported by Li et. al.: 0.1–0.15 s−1(Ref. 23). 
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Thus, our results suggest that low contact resistance can activate sites from the basal plane 

Figure 4-4 (a) STEM image of a single-layer CVD-grown MoS2 nanosheet showing 

different types of defects: single sulfur vacancy (orange circles) and double sulfur vacancy 

(yellow circles). (b) Intensity profiles along lines L1–L3. Higher contrast is obtained from 

the Mo atoms compared to one sulfur atom (∼30% of the Mo intensity) and two sulfur 

atoms (∼45% of the Mo intensity). In absence of sulfur atoms (L3), the intensity decreases 

to <10%. (c), STEM image of a large-area single-layer MoS2nanosheet. The vast majority 

of the defects are formed by single sulfur vacancies. (d) The differential hydrogen 

adsorption energy (ΔE) in 2H-phase MoS2 decreases significantly with an increased carrier 

concentration. When the carrier concentration approaches 7 × 1014 cm−2, ΔE in 2H-phase 

MoS2 is close to that in the 1T phase. 
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of MoS2, probably located at the sulfur vacancies. 

Dopants play two important roles in the HER. First, excess electrons lower the Schottky 

barrier at the contacts so that charge transfer kinetics between the conducting substrate and 

the MoS2 nanosheets is substantially improved. This strategy has been widely used in the 

semiconductor industry to produce ohmic contacts for state-of-the-art electronics. Second, 

the presence of additional electrons in the MoS2 lattice significantly decreases the energy 

of hydrogen adsorption, the first step in the HER, as shown by our density functional theory 

(DFT) calculations in Figure 4-4d. Sulfur vacancies in MoS2 act as n-type dopants, 

increasing the density of states at the Fermi level. Figure 4-4d shows the variation of the 

energy of hydrogen adsorption (ΔE) on the 2H phase of the MoS2 basal plane at doping 

carrier concentrations of 0, 2.8 × 1014 , 5.6 × 1014  and 8.4 × 1014 cm−2 and compared to the 

1T phase. It can be seen that ΔE decreases quasi-linearly with the carrier (electron) 

concentration, suggesting that the ability for the 2H-phase basal planes to adsorb hydrogen 

improves for a higher concentration of dopants. Using a linear interpolation in Figure 4-4d, 

we estimate that ΔE for 2H-phase MoS2 becomes lower than in the case of 1T-phase MoS2 

when the carrier concentration reaches 7.3×1014 cm−2, consistent with carrier concentrations 

calculated for 9% S vacancies  

 Conclusion 

Our work provides new insights into the role of electrical coupling between single-layer 

MoS2 nanosheet catalysts and the substrate on the HER catalytic activity. The results show 

that the basal plane of the 2H-phase MoS2, previously thought to be catalytically inactive, 

can exhibit excellent catalytic activity. That is, the basal plane of the MoS2 surface contains 
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active sites in the form of S vacancies but is rendered inactive for the HER because of the 

high contact resistance between the catalyst and the support. Our results show that lowering 

the contact resistance to facilitate charge injection from the substrate to the catalysts leads 

to realization of the intrinsic catalytic properties of the 2H basal plane. High contact 

resistance acts as a severe choke for electron injection to active sites, which limits catalytic 

activity, especially in the case of the 2H basal plane. For non-metal catalysts, contact 

resistance is an important variable because of the formation of non-ohmic contacts, which 

has been widely overlooked until now. Numerous studies have reported the catalytic 

performance of a wide range of MoS2 catalysts, but very few explicitly mention the 

resistance between the catalyst and support. The contact resistance is an essential parameter 

that must be known to compare the relative performance of different types of MoS2 

catalysts for the HER. We believe these results will provide new directions for the design 

of large-area electrodes with low contact resistance that could ultimately exploit the full 

potential of MoS2nanosheets for the evolution of hydrogen. 
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Chapter 5 Activating the 2D TMD family nanosheet catalysts by 

introducing Janus asymmetry 

Synopsis 

Significant efforts have been made in improving the hydrogen evolution reaction (HER) 

catalytic activity in transition metal dichalcogenides (TMDs), which are promising non-

precious catalysts. However, previous attempts have exploited possible solutions to 

activate the inert basal plane, with little improvement. Among them, the most successful 

modification requires a careful manipulation of vacancy concentration and strain 

simultaneously. To fully realize the promise of TMD catalysts for HER in an easier and 

more effective way, a new means in tuning the HER catalytic activity is needed. Herein, 

we propose exploiting the inherent structural asymmetry in the recently synthesized family 

of Janus TMDs as a new means to stimulate HER activity. We report a density functional 

theory (DFT) study of various Janus TMD monolayers as HER catalysts, and identify the 

WSSe system as a promising candidate, where the basal plane can be activated without 

large applied tensile strains and in the absence of significant density of vacancies. We 

predict that it is possible to realize a strain-free Janus TMD-based catalyst that can readily 

provide promising intrinsic HER catalytic performance. The calculated density of states 

and electronic structures reveal that the introduction of in-gap states and a shift in the Fermi 

level in hydrogen adsorbed systems due to Janus asymmetry is the origin of enhanced HER 

activity. Our results should pave the way to design high-performance and easy-accessible 

TMD-based HER catalysts. 
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 Introduction 

Hydrogen is an increasingly important source of renewable energy, as global population 

and fossil fuel consumption continue to rise.34–37 To maximize hydrogen production 

efficiency, alloy or noble metal catalysts such as platinum (Pt) are commonly used to 

facilitate the hydrogen evolution reaction (HER), by lowering overpotentials and 

accelerating reaction rates. In this context, it is pivotal to identify a low-cost and earth-

abundant catalyst that can achieve performance comparable to that of Pt.11–14,35 Among 

potential materials considered so far, the family of 2D TMDs has been extensively studied 

as a promising alternative catalyst for HER due to its unique crystal structures and 

electronic properties.6,7,21–23 The overall activity of 2H-phase TMD catalyst mainly 

originates from the active edge sites rather than the inert basal plane. 38,132 Therefore, efforts 

have been made either to maximally expose edge sites using various nanostructures such 

as mesoporous films, nanoparticles, defect rich films, and vertical nanoflakes,139,141,160,161 

or to improve the intrinsic catalytic activity of edge sites using chemical doping, enhanced 

defect density, and enhanced coupling between substrates and monolayers.21,22,133,142 

However, the overall catalytic performance of TMD-based catalysts is limited by the 

relatively small fraction of edge sites compared to that of basal plane bulk sites. The key 

challenge is activating the TMD basal plane by increasing the number and catalytic activity 

of basal plane sites. Phase engineering has enabled enhanced electrocatalytic activity via a 

switch from the semiconducting 2H phase to the metallic 1T phase. 21,141 Without the 

introduction of a metastable 1T phase, Li et al. reported the first viable experimental 

method to activate the basal plane of 2H-phase MoS2 by creating S-vacancies and applying 
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tensile strains.23 Specifically, using chemical vapor deposition (CVD) on a substrate with 

Au nanocones, capillarity-force induced strains were used to tune the hydrogen adsorption 

free energy (ΔGH) to the optimum value in 2H-phase MoS2 samples with S vacancies 

ranging from 9-19%. The strained 2H-phase MoS2 monolayers with S vacancies achieved 

a similar catalytic activity (0.08 eV) to that of MoS2 2H-phase edge sites (0.06 eV). 

However, this technique requires a precise control of both the strain and S vacancy 

concentration, which remains a significant experimental challenge.23 To fully realize the 

potential of TMD catalysts, a new method that can easily and effectively tune the catalytic 

properties is needed. 

Recently, strategies to synthesize a new family of so-called “Janus TMDs” have been 

reported by two independent groups.43,44 MoSSe, one such Janus monolayer TMD, has 

been synthesized via two different synthetic pathways. Lu et al. reported a thermal 

selenization on a modified CVD-grown MoS2 monolayer whose top-layer sulfur atoms are 

stripped off and replaced by H atoms, forming a structurally stable Janus MoSSe 

monolayer in which the Mo atoms are covalently bonded to underlying S and top layer Se 

atoms.44 Another approach starts from the CVD as-grown MoSe2 monolayers on a SiO2/Si 

substrate, followed by a sulfurization of the top layer Se in a controlled substitutional 

reaction with vaporized sulfur.43 Unlike the randomly alloyed MoSSe, both methods result 

in highly asymmetric Janus monolayers and provide a structure with an intrinsic strain and 

electric field within the monolayer, enabling an alternative way to tune the HER activity in 

TMD catalysts.162 
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Here, we report a theoretical study of Janus TMDs as catalysts for the HER. We 

computationally screened a set of possible Janus TMD structures to determine their 

hydrogen adsorption free energy (ΔGH) and catalytic properties and identified WSSe with 

Se vacancies as a promising strain-free catalyst for the HER. We found that the HER 

activity of strain-free WSSe is similar to or better than that of current TMD-based catalysts, 

and does not require precise control of vacancy concentration or applied strain. We further 

investigated the origin of this enhanced HER activity by studying the electronic structure 

of Janus TMD monolayers.  

 Method 

All our calculations were performed using the Vienna ab initio simulation package 

(VASP)79 with the projector augmented wave (PAW)80,163 pseudopotentials for core-

electrons and the Perdew−Burke-Ernzerhof (PBE)81 form of the generalized gradient 

approximation (GGA) for the exchange-correlation functional. A cutoff energy of 520 eV 

was applied for the plane wave expansion of valence electron wavefunctions. The unit cell 

structures of Janus monolayer TMDs were relaxed with a Γ-centered Monkhorst-Pack k-

point mesh of 12×12× 1 in the first Brillouin zone, while the total energy convergence was 

set to below 10-8 eV.164 To avoid interactions between adjacent periodic images of the 

monolayers, we inserted a vacuum region of 16 Å along the plane normal direction. The 

atomic positions of all structures were optimized until all components of the forces on each 

atom are less than 0.01 eV/Å. To correctly optimize the chemisorption energies as well as 

van der Waals interactions, we used the Bayesian error estimation exchange-correlation 

functional with van der Waals interactions (BEEF-vdW)165 as implemented in VASP. All 
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other parameters remain the same as previous configurations in ion relaxations. We denote 

the Janus TMDs as MXY, where the M stands for a transition metal, and X and Y stand 

for two different chalcogen atoms, respectively. To simulate the effect of defects on the 

HER catalytic activity in Janus TMD (MXY) monolayers, we constructed 3×3×1 and 

4×4×1 supercells with X- and Y-vacancies with a 4×4×1 and 3×3×1 k-point mesh, 

respectively. Our calculations indicate that these two types of single vacancies are 

energetically favorable sites for H adsorption. 

In order to characterize the HER catalytic activity of Janus TMDs, we calculated the 

hydrogen adsorption free energy (Δ𝐺𝐻).37,166,167 The optimal value of Δ𝐺𝐻 is ~0 eV, where 

hydrogen is bonded neither too strongly (Δ𝐺𝐻 < 0) to detach from the catalyst surface, nor 

too weakly (Δ𝐺𝐻 > 0) to participate in subsequent reactions. Δ𝐺𝐻 is given by 

 Δ𝐺𝐻 = Δ𝐸𝐻 + Δ𝐸𝑍𝑃𝐸 − 𝑇Δ𝑆 (5-1) 

where Δ𝐸𝐻, Δ𝐸𝑍𝑃𝐸, and 𝑇Δ𝑆 are the differential hydrogen adsorption energy, difference in 

zero-point energy between the adsorbed hydrogen and molecular hydrogen in the gas 

phase, and the entropy difference between adsorbed H and H2 in the gas phase, 

respectively. Eq. (4-1) is composed of three parts. First, the differential hydrogen 

adsorption energy is calculated as  

 Δ𝐸𝐻 = 𝐸Janus+H − 𝐸Janus −
1

2
𝐸𝐻2

 (5-2) 

where 𝐸Janus+H , 𝐸Janus , and 𝐸𝐻2
 represent the total energy of a Janus TMD with one 

adsorbed H atom on the surface, the total energy of the Janus TMD, and the energy of a H2 

molecule, respectively. The second part is the difference in zero-point energy between the 

adsorbed and gas phase hydrogen, which can be calculated from the vibrational frequencies 
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of the H atom at 0 K. Finally, the configurational entropy difference is calculated at 300 K 

between the adsorbed H and H2 in gas phase. In our calculations, the configurational 

entropy of the adsorbed H state is small and can be neglected. Therefore, we assume Δ𝑆 =

− 1
2⁄ Δ𝑆(𝐻2) = −65.34 J∙mol-1K-1 using the H2 molecule entropy in gas phase at the 

standard condition (1 bar, 300K, pH =0). 

 Results 

5.3.1 Structure models of Janus TMDs 

Traditional TMD monolayers are typically represented as MX2, where the transition metal 

M(Mo, W) layer is sandwiched between two identical chalcogen atom layers X(S, Se, or 

Te).20,168 By changing one layer of chalcogen atoms to a different one, the highly 

asymmetric Janus MXY is constructed. This substitutional method in constructing the 

Janus structure is consistent with the mechanism of recently reported experimental 

methods.43,44 So far only one representative Janus TMD, MoSSe, has been reported; other 

Janus systems can potentially be synthesized using similar approaches. Therefore, to guide 

experimental efforts, we first performed a systematic DFT study to predict the structural 

properties of Janus TMDs, and summarized them in Table 5-1. In general, the value of the 

lattice parameter a in Janus TMD structures (XMY) lies between the ones of its parent 

structures, namely MX2 and MY2. Our predicted a of MoSSe is 3.251 Å, which is in good 

agreement with experimental and theoretical values.44,169 The MX/MY bond length, as well 

as the thickness of the Janus monolayer, increases in Janus TMDs with heavier metal 

elements. However, the lattice constant of Janus monolayers with the same chalcogen 

elements remains almost the same regardless of the metal element, indicating chalcogen 
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atoms play a critical role in determining the structural properties. By comparing the 

difference between lattice constants of the Janus TMD and its parent structures, we see that 

effective compressive and tensile strains occur simultaneously on the lighter and the 

heavier chalcogen sides, respectively.  

Table 5-1 Structural properties of Janus TMDs. 

 

a using GGA 

(Å) 

a using 

BEEF 

(Å) 

Experiment 

value (Å) 

MX bond 

length (Å) 

MY bond 

length (Å) 

Thickness 

(Å) 

MoSSe 3.246 3.251 3.2244,3.26343 2.418 2.536 3.231 

MoSTe 3.359 3.364 N/A 2.435 2.724 3.379 

MoSeTe 3.437 3.432 N/A 2.558 2.725 3.489 

WSSe 3.246 3.248 N/A 2.421 2.538 3.242 

WSTe 3.354 3.359 N/A 2.437 2.723 3.386 

WSeTe 3.432 3.427 N/A 2.558 2.724 3.494 

 

 

5.3.2 HER with defects and intrinsic strain 

Defects and applied strain play an important role in the HER activity of TMD monolayers. 

Previous studies showed that the process of HER requires specific modifications of the 

TMD basal plane, which can be realized by applying a large amount of tensile strain to 1T-

phase WS2,
22 or by creating and straining S-vacancies simultaneously in the 2H-phase 

MoS2.
23 For example, in order to reach Δ𝐺𝐻 ≈ 0 eV, a condition of 3.12% S-vacancy and 

8% strain, or equivalently 12.5% S-vacancy and 1% strain, is required in 2H-phase MoS2.
23 
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Such large strain and defect concentrations are indispensable in activating the basal plane 

of 2H-phase MoS2 because either mechanism alone is insufficient to adequately modify 

the total energy of the system. However, it is difficult to experimentally realize such 

extreme strain and defect concentrations. Our goal is to identify an optimal Janus structure 

that has the highest HER catalytic activity and requires the least amount of applied strain, 

i.e. an ideal defect density close to the intrinsic defect concentration in as-CVD grown 

samples, and a strain close to the intrinsic strain in the Janus TMD. 

Before considering the HER activity of Janus TMDs, we first investigate the nature of 

defect structures. Both X and Y vacancies are energetically favorable at low concentrations 

(few percent). In our supercells, the defect concentration (%X/Y) is defined as the 

percentage of removed chalcogen atoms (# of X/Y vacancy / # of total X/Y atoms). Our 

supercells consist of either 9 M atoms and 18 X/Y atoms or 16 M atoms and 32 X/Y atoms 

on the surfaces. Therefore, an increment in the defect concentration of 2.43% can be 

achieved by varying the two types of supercells. In experiment, the defect concentration in 

as-grown CVD Janus structures is between 3.8%44 and 5.5 %43. Likewise, in the basal plane 

of 2H MoS2, the intrinsic carrier concentration is around 2.8 × 1014 cm-2, or equivalently 

4.9%.22 Therefore, we simulate a reasonably low defect concentration of 3.12%. With an 

increased defect concentration, the formation of chalcogen vacancies becomes 

energetically less favorable due to the screening effect between vacancies. For the range of 

vacancy concentrations we considered, no noticeable structural disruption was observed in 

the relaxed defective Janus TMDs. Notably, the introduction of defects lowers Δ𝐺𝐻. For 

example, Δ𝐺𝐻 reduces from ~1.82 eV in pristine WSSe Janus TMD to -32 meV in Janus 
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WSSe with 3.12% S-vacancy and to -15 meV with 3.12% Se-vacancy. This is in good 

agreement with previously reported trends in 2H-MoS2, where the introduction of S-

vacancies reduces Δ𝐺𝐻  from 2 eV to 0.18 eV.23 The introduced chalcogen vacancy in 

MSSe provides a better HER catalytic activity than that in MSTe and MSeTe due to the 

more optimal amount of intrinsic lattice strain. Different values of Δ𝐺𝐻 have been observed 

in various strain-free Janus TMDs, and we plot Δ𝐺𝐻 for the most promising one, namely 

WSSe, and a less preferred one, MoSTe, in Figure 5-1c.  

Next, we investigate the effect of strain on Δ𝐺𝐻  in Janus TMDs with preferred Se-

vacancies. For any fixed vacancy concentration, a larger tensile strain leads to a more 

negative Δ𝐺𝐻 , similar to the effect previously reported for 2H basal planes22 and edge 

sites.132,142 (Figure 5-1c) For the MoSTe system, both S- and Te-vacancies respond 

similarly to applied strain. In a strain-free state, Δ𝐺𝐻 approaches –100 meV, while a 2% 

compressive strain results in better performance, with Δ𝐺𝐻 around -50-70 meV. Moreover, 

in order to meet our goal, we set a catalytic window of ± 25 meV as shown in the green 

region in Figure 5-1. It is worth noting that the Δ𝐺𝐻 for Se-vacancy in the WSSe Janus 

structure can achieve a value (15 meV) that is very close to thermal neutrality, which is 

much better than that at 2H edge sites (60 meV132,142) or activated basal plane sites23. 

Compared to previously reported conventional TMD systems that require significant 

modification with either large strain (8%) or large vacancy concentration (12.5%), or 

both23, our Janus WSSe system can achieve a similar or even better catalytic activity 

without such extreme conditions. Moreover, in a ± 0.5% strain range our WSSe Janus 
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TMDs displayed a robustly high catalytic activity on both sides with low defect 

concentration, which enables a strain-free as-grown catalyst system.  

We attribute this improved HER catalytic activity to the intrinsic lattice strain within the 

Janus structure. The MSSe Janus structure has an intrinsic strain of ~4% that optimally 

alters the strain energy level and facilitates the H adsorption process, which is equivalent 

to applying external uniaxial strains. In MSTe and MSeTe Janus TMDs, a larger intrinsic 

strain (7-11%) results in a more negative Δ𝐺𝐻 and hence a very strong binding of H onto 

the Janus surface. Therefore, in this work only the MSSe Janus structures are discussed. 
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Figure 5-1 (a) Schematics of the strain-free HER reaction on Janus TMDs. (b) The surface 

vacancy structure of Janus TMDs showing X and Y vacancies. (c) ΔGH versus applied 

strain for different Janus TMDs with vacancies. The catalytic window is highlighted in 

green. 
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5.3.3 Electronic structure of Janus TMD monolayers 

To gain deeper insight into H adsorption on various surfaces, we performed electronic 

structure calculations. Figure 5-2 depicts the computed total density of states (TDOS) and 

projected density of states (PDOS) of pristine and defective Janus TMDs, showing the 

change in electronic structure during H adsorption in the vicinity of defects. As noted 

previously, we focus on MSSe Janus structures due to their preferred intrinsic strains. First, 

by comparing the first two rows in Figure 5-2, we conclude that new gap states consisting 

mostly of metal d orbitals appear after the introduction of vacancies. The sharper in-gap 

peak in the WSSe Janus TMDs suggests a higher density of states than that in the MoSSe 

Janus TMDs. Second, the Fermi level shifts up with the H adsorption. In pristine MoSSe 

the H adatom shifts the Fermi level by 1.32 eV, while in pristine WSSe the H adatom shifts 

the Fermi level by 0.88 eV. In both cases the H 1s orbital overlaps with the TDOS 

immediately below the conduction band minimum (CBM), indicating an unstable 

adsorption state in pristine Janus TMDs because of the lack of available states on the Janus 

TMD surface. Meanwhile, the introduced states associated with the formation of the 

chalcogen vacancies provide a possibility for hybridization between the H 1s orbital and 

metal 3d (4d) orbitals. The adsorption of H on WSSe with Se-vacancies shifts the Fermi 

level by 0.42 eV, aligning it with the position of degenerate dxz and dyz orbitals. The in-gap 

peak is partially filled at the Fermi level, resulting in an increased number of states at the 

Fermi level. More importantly, the H 1s orbital hybridizes with the Janus WSSe Se-
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vacancies both below and above the Fermi level, forming a stable bonding-antibonding 

adsorption state. Therefore, the WSSe with vacancies is preferred for H adsorption.  

In order to further elucidate the nature of the promising HER catalytic activity at vacancy 

sites, we calculated the band structure in WSSe Janus monolayers. Figure 5-3 shows the 

band structures of pristine WSSe, WSSe with Se-vacancy, and WSSe with Se-vacancy and 

Figure 5-2 Total DOS and projected density of states (PDOS) of two representative Janus 

TMDs, (a) MoSSe and (b) WSSe. The four rows indicate pristine and defective structures 

without a hydrogen adatom, and pristine and defective structures with a hydrogen adatom, 

respectively. New states associated with the formation of vacancies are located within the 

band gap. 
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adsorbed H adatom. When Se-vacancies are introduced, three new bands (Figure 5-3b, 

blue curves) composed of 𝑑𝑧2, dxz, and dyz states appear in the gap near the Fermi level. 

These new bands, which are freed up due to the breaking of W-Se/W-S bonds, provide 

empty orbitals for H adsorption. The 𝑑𝑧2 orbital is located slightly above the valence band 

maximum (VBM) in pristine WSSe, while two degenerate dxz, dyz orbitals are located above 

the Fermi level. When H is adsorbed, the 𝑑𝑧2 orbital shifts up to the Fermi level, and the H 

1s electron partially fills this state, forming a stable H adsorption for the Volmer process.  

We attribute this enhanced HER catalytic activity to the change of the crystal field due to 

the Janus asymmetry. Figure 5-4 schematically shows the change in crystal field, where 

the structural imbalance in MXY monolayers breaks the reflection symmetry along the out-

Figure 5-3 Effects of Se vacancy on the electronic structure of Janus WSSe. (a) Band 

structure of pristine WSSe. (b) Band structure with the introduction of the Se vacancy. 

Three new bands (highlighted in blue) appear in the gap. (c) Band structure after H 

adsorption. The states introduced hybridize with the H orbital near the Fermi level. The 

inset illustrates the charge density difference near the vacancy. 



90 

of-plane direction. Moreover, the Jahn-Teller distortion of the crystal field increases the 

energy of orbitals with a z component, especially 𝑑𝑧2, which pushes those bands closer to 

the Fermi level. The difference in electronegativities of X and Y atoms, together with the 

difference in thicknesses of Janus monolayers due to their different metal atoms, gives rise 

to different charge distributions and hence an intrinsic electric field along the vertical 

direction. We identify this intrinsic electric field as an alternative to the applied strain used 

to engineer Δ𝐺𝐻 in previous studies.23 The WSSe Janus monolayer best exemplifies the 

modification to the band structure due to the intrinsic electric field inside the monolayer. 

These results provide a possible mechanism to explain the enhanced HER catalytic activity 

in Janus TMD monolayers. 

Figure 5-4 Schematic illustrations of the crystal field and band alignment of Janus TMDs. 

(a) Conventional 2H TMD with trigonal prismatic structure, and (b) Janus structure which 

breaks the mirror symmetry along the vertical direction. 
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5.3.4 HER 

To evaluate the HER catalytic activity and compare with conventional HER catalysts, we 

calculated the polarization curve (i - E) of a representative WSSe Janus TMD with two 

types of vacancies within the catalytic window as shown in Figure 5-5. Two descriptors, 

namely the current density per geometry area at a certain potential, and the required 

potential to achieve a 10 mA cm-2 current density (E0), have been adopted for quantifying 

the HER activity. We compared these results with other materials that catalyze the HER, 

based on activity per active site. Pt (1.5 ×1015 sites/cm2) shows the highest current density 

for HER activity, while non-reactive Au shows almost zero HER activity in this 

electrocatalytic window. In between lies the pristine 2H-phase MoS2 and Janus WSSe 

monolayers, where the order of HER activities of these TMDs are WSSe with Se-vacancy 

(-158 meV) > WSSe with S-vacancy (-174 meV) > pristine WSSe (-264 meV) > pristine 

WS2/WSe2. This trend holds across all Janus TMDs, showing that the presence of single 

S-, Se-, and Te-vacancies significantly improves the binding between H and Janus TMD 

monolayers, and hence changes the inert basal plane to be catalytically active for HER. It 

is worth noting that our systems are in a strain-free condition, which eliminates the complex 

control of vacancy concentration and strain in previous studies.23  

To shed light on the catalytic activity of Janus TMDs, we have added our data to an updated 

volcano curve as shown in Figure 5-5b. The volcano plot indicates the exchange current 

density as a function of calculated Gibbs free energy of adsorbed H, where the peak of the 

volcano is the preferred catalytic region. The HER performance of our Janus WSSe system 
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surpasses that of current MoS2 TMD nanostructures and other metals. It suggests that Janus 

TMD systems with vacancies hold promise as a new type of HER catalyst.  

Figure 5-5 HER activity of the S and Se vacancy sites in Janus WSSe. (a) The predicted 

current density of Janus TMDs versus other HER catalysts. (b) The HER volcano curve 

including Janus WSSe. 
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 Conclusion 

In summary, we have theoretically predicted that 2D Janus TMD monolayers are promising 

catalysts for the HER using first-principles density functional theory calculations. Our 

results show the effect of intrinsic strain due to the Janus structure, and the role of vacancies 

in activating the inert basal plane. An optimal hydrogen adsorption free energy (Δ𝐺𝐻) close 

to thermo neutrality has been discovered in the WSSe system, where high HER catalytic 

activity can be achieved in a strain-free condition with the presence of S/Se-vacancies at 

their intrinsic concentration. With the Janus asymmetry, WSSe monolayers with Se-

vacancy can achieve a Δ𝐺𝐻  of -15 meV with 0% strain, which eliminates the need for 

complex strain-engineering techniques used in activating conventional 2H-phase TMD 

catalysts. Moreover, we attribute the enhanced HER catalytic activity to the introduction 

of Janus asymmetry that brings intrinsic strain and internal electric field. Our results 

provide a new paradigm in tuning HER activity in TMD systems, and demonstrate a means 

of activating the basal plane without the need of complex materials design.  
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Chapter 6 Overview of multiscale modeling methods in understanding 

Mechano-Electro-Chemical coupling in 2D materials 

Reprinted (adapted) with permission from H. Kumar, D. Er, L. Dong, J. Li, and V. B. Shenoy. 

Elastic Deformations in 2D van der waals Heterostructures and their Impact on Optoelectronic 

Properties: Predictions from a Multiscale Computational Approach. Scientific Reports, 5:10872 

June 2015 

 Introduction 

The size of 2D materials are typically between tens of nanometers to even hundreds of 

micrometers, where it is in between the mesoscale and nanoscale pictures. Challenge lies 

in given the properties of individual method form atomistic approaches (valid over 1-10 

nm length scale), how can the overall electrical, mechanical, chemical properties of large 

2D and 3D structures (span scales from 1 µm to 1 mm) be predicted including properties 

that are key to the success of energy applications. One approach to overcome the above 

difficulties is to employ a multiscale method using DFT informed parameters to compute 

key descriptor in larger scale models.  

We have used the DFT method in many scenarios. In this multiscale method, starting with 

a set of non-empirical DFT calculations, we characterize the features required in larger 

scale modeling. The parameters such as energies of structures, strain response, electronic 

structure, and mechanical behavior in relative small length scale can be computed using 

first principles methods. We choose differential functionals and approximations according 

to the question itself. With the parameters, we plug them into a continuum model that can 

address questions in a much larger length scale. The advantage of this method is the ability 
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to handle coupling between different physical, mechanical, chemical phenomena across 

length scale. For example, the strain dependence of electric coupling between stacked 2D 

layers become readily solved once the strain and structural alignment predicted from DFT 

is known. 

Moreover, beyond a purely 2D monolayer picture, the assembly in the 3rd dimension, 

particularly the stacking of homogeneous and heterogeneous layers offers another rich line 

of investigation. This problem requires a larger length scale in the third dimension where 

only proper multiscale methods can capture the physics. In order to predict the stacking 

sequence, physical properties, and material response to applied strain/electrical/chemical 

potential fields, one has to evaluate the interlayer interactions/forces in the stacks with 

enough accuracy. Empirical pairwise potentials are often inadequate for this task, as they 

lack transferability and neglect essential many-body effects in such interactions. Recently 

developed nonlocal parameter-free functionals such as DFT-D2 offer a much higher 

accuracy approach to evaluating these interactions. [See Appendix] Use these functionals 

in our multiscale modeling will enable an efficient and accurate prediction of stacked 2D 

materials with unique properties.  

 General Framework of multiscale modeling 

In this section, we develop a general framework to estimate the Mechano-Electro-Chemical 

coupling in 2D materials using a multiscale modeling approach. Our DFT informed 

multiscale approach involves the following steps as shown in Figure 6-1.  

(1) Determine the DFT level properties of material, including the stability, interaction 

energy, elastic constants, electronic constants, defect formation energies, etc.  
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(2) Based on the above parameters, derive a continuum level description of interested 

properties using methods such as energy method, growth model with flux, and 

continuum mechanics. 

(3) Verify the model with experimental values. 

(4) Use the model to predict other multiscale properties of materials.  

 

Figure 6-1 Multiscale approach to compute the Mechano-Electro-Chemical coupling in 2D 

materials. DFT simulations accurately predicts the basic material properties, providing 

parameters for later continuum level modeling. FEM and continuum mechanics methods 

are therefore connected with DFT material properties.  
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 The first example: compute the elastic deformations in Moiré patterned 2D 

heterostructures  

To validate our multiscale approach, we first compute the elastic deformation problem in 

a 2D heterostructure with arbitrary misorientation angles between layers. 2D materials such 

as graphene, h-BN, and TMDs have received renewed interest in stacked/heterostructure 

configurations. However, lattice mismatch and interactions between different layers can 

give rise to deformation, both in-plane and out-of-plane, that causes change in electronic 

properties. These deformations are not easy to simulate because current theoretical 

approaches such as DFT are limited in their predictive power due to the large mismatch 

between the length scales of deformations (10-100 nm). This problem is a rich avenue to 

verify our multiscale method since experimental data such as the morphology of Moiré 

pattern are widely available. Therefore, we estimate the deformations in heterostructure 

bilayers with arbitrary misorientation angle using a multiscale approach, i.e. continuum 

finite-deformation simulations informed by ab-initio calculations. To demonstrate the 

validity of our method, DFT-informed continuum models have been used to study a 

specific material system, namely graphene on h-BN, for which empirical potentials are 

available. The deformations predicted by our multiscale approach agrees excellently with 

the one from all-atom MD simulations.  

6.3.1 Computational detail 

Our DFT informed continuum approach involves the following steps (as described in 

Figure 6-2) for the case of monolayer of material A (in the present case, graphene) on top 

of a “substrate” B (in this case, h-BN).  
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(1) Determine the interaction energy of the unit cell of layer A as a function of its 

position relative to the unit cell of the substrate, layer B. 

(2) Based on the above interaction energy, derive a continuum description of the spatial 

variation (on the scale of the Moiré unit cell) of the interactions energy between the 

layer A and the substrate by inverse Fourier transformation. 

(3) Obtain in-plane and out-of-plane forces acting on layer A from the spatial variation 

of the interlayer interaction energy. 

(4) Use the forces in a non-linear elastic plate model to predict in-plane and out-of-

plane deformations in layer A. 
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Spatial variation of interaction energy of the unit cell of layer A as a function of position 

over the layer B unit cell can be written as (Step 1): 

Figure 6-2 Illustration of the simulation steps. (a) Interaction energy of the layer A unit 

cell as a function of its position over the layer B unit cell computed from the ab-initio 

calculations. (b) Interaction energy of layer A within a Moiré unit cell is determined by 

calculating the local stacking configuration of each unit cells in layer A relative to layer B. 

(c) Numerical values of the energy (from b) are used to determine the Fourier coefficients 

using an inverse Fourier transform. (d) Interaction energy is used to compute the in- plane 

and out-of-plane forces and hence displacements fields in the bilayer using a large 

deformation elastic plate model. 
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 𝑉𝐵(𝑥, 𝑦, 𝑧) = ∑ 𝑢𝑚𝑛(𝑧)𝑒𝑖𝐺⃗𝐵𝑚𝑛∙𝑥⃗

𝑚,𝑛≠0

+ 𝑢0(𝑧) (6-1) 

where, 𝐺⃗𝐵𝑚𝑛 are the 2-dimensional reciprocal lattice vectors for the B-lattice. Unknown 

Fourier coefficients 𝑢𝑚𝑛 and 𝑢0(𝑧) can be computed by calculating the energy of bilayer 

unit cell in different stacking configurations using density functional theory. For a substrate 

with triangular lattice symmetry, it is sufficient to consider reciprocal lattice vectors only 

within the first Brillouin zone. Using this information, Eq. (6-1) can be written as (Step 1): 

 

𝑉𝐵(𝑥, 𝑦, 𝑧) = 2𝑢1(𝑧) cos(𝜙(𝑧) − 𝐺1𝑦)

+ 4𝑢1(𝑧) cos (
𝐺1𝑦

2
+ 𝜙(𝑧)) cos (

√3𝐺1𝑥

2
)

+ 𝑢0(𝑧) 

(6-2) 

where 𝑢0(𝑧) is the average energy of the unit cell, 𝑢1(𝑧) is the magnitude of the energy 

modulations and 𝜙(𝑧)  gives the energy difference between AB and BA stacked 

configurations and 𝐺1 is the magnitude of the reciprocal vector for substrate primitive unit 

cell. For equilibrium separation z0 = 3.4 Å, this gives 𝑢0(𝑧) = –69.2 meV, 𝑢1(𝑧) = 2.26 

meV and φ = –50.4° according to DFT results.  

Based on this functional form of the interaction energy of the primitive cells, spatial 

variation of the interaction energy of the two layers within a Moiré cell can be computed 

by calculating the local stacking of each unit cell in layer A relative to the unit cell in layer 

B. The spatial variation of the interaction energy between two layers (see Figure 6-2) VAB 

can be written in terms of Moiré reciprocal lattice vectors 𝐺⃗𝐴𝐵
𝑚𝑛 (Step 2) 
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 𝑉𝐴𝐵(𝑥, 𝑦, 𝑧) = ∑ 𝑔𝑚𝑛(𝑧)𝑒𝑖𝐺⃗𝐴𝐵
𝑚𝑛∙𝑥⃗

𝑚,𝑛

+ 𝑢0(𝑧) (6-3) 

Next, we relate the reciprocal lattice vectors of the Moiré cell to the lattice mismatch and 

the relative rotation of the two layers. For the case of graphene on hBN (with the same 

lattice symmetry), the lattice mismatch is defined through the 𝛼BN= 𝛼c (1+ δ) and lattice 

misorientation angle is denoted by θ. With symmetry at hand, we expand Eq.(6-3) around 

the equilibrium separation z0 between the layers. 

 

𝑉𝐴𝐵(𝑥, 𝑦, 𝑧) = ∑ [𝑔𝑚(𝑧0) + 𝑔𝑚
′ (𝑧0)(𝑧 − 𝑧0)]𝑒𝑖𝐺⃗𝑚∙𝑥⃗

𝑚=0,5

+ 𝑢0(𝑧) +
1

2
𝑢0

′′(𝑧0)(𝑧 − 𝑧0)2 

(6-4) 

noting that the first derivative 𝑢0
′  is zero at z0. Here, Fourier coefficient 𝑔𝑚(𝑧0)is the 

magnitude of the energy modulation within Moiré unit cell, 𝑔𝑚
′ (𝑧0)  is the change in 

magnitude of energy modulation and 𝑢0
′′(𝑧0) acts as an effective “spring constant” between 

two layers. Derivatives of this energy give the components of the forces acting on the top 

layer due to the substrate (Step 3): 

 𝐹𝐴,𝐵
𝑥,𝑦(𝑥, 𝑦, 𝑧) = − ∑ [𝑔𝑚(𝑧0) + 𝑔𝑚

′ (𝑧0)(𝑧 − 𝑧0)]𝑒𝑖𝐺⃗𝑚∙𝑥 ∙ 𝑖𝐺𝑚
𝑥,𝑦

𝑚=0,5

 (6-5) 

 𝐹𝐴,𝐵
𝑧 (𝑥, 𝑦, 𝑧) = − ∑ 𝑔𝑚

′ (𝑧0)𝑒𝑖𝐺⃗𝑚∙𝑥 − 𝑢0
′′(𝑧0)(𝑧 − 𝑧0)

𝑚=0,5

 (6-6) 

And finally the deformation of the two sheets can be computed using the von-Karman non-

linear plat theory,170 because the length scales over which the magnitudes of the forces vary 

are large(~14 nm) compared to atomic scales. Then the out-of-plane deformation, w, is 

determined (Step 4): 
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𝐸ℎ3

12(1 − 𝜎2)
Δ2𝑤 − ℎ

𝜕

𝜕𝑥𝛽
(𝜎𝛼𝛽

𝜕𝑤

𝜕𝑥𝛼
) = 𝐹𝐴𝐵

𝑧 ,
𝜕𝜎𝛼𝛽

𝜕𝑥𝛽
= 𝐹𝐴𝐵

𝛼  (6-7) 

where h is the thickness of the plate, 𝛼, 𝛽 denote the in-plane and out-of-plane components. 

the Young’s modulus E and thickness h of graphene are estimated by equating the effective 

2D modulus Eh = Ep = 2000 eV/nm2 and flexural rigidity to the bending modulus 

𝐸ℎ3

12(1−𝜎2)
 = 1eV. Then these parameters are adequate for FEM simulations.171  

6.3.2 Comparison to experimental data 

To demonstrate the validity of our multiscale method, we focus on the formation of Moiré 

pattern. Recent experiments have measured172 the magnitudes of the out-of-plane 

displacements to be approximately ~0.3 Å, which is similar to the magnitude of the out-of-

Figure 6-3 (a) Out-of-plane 

displacement (w) in the graphene 

monolayer due to interactions with the h-

BN substrate for the perfectly aligned 

layers (θ = 0) using our multiscale 

approach. We observe Moiré patterns 

with similar magnitudes as in 

experiments as shown in panel (b). (b) 

High-pass-filtered inverse fast Fourier 

transform of the Moiré pattern in the 

dashed square. Scale bar 100 nm. 

Reprinted from Ref. 174 with permission. 
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plane displacement observed using our multiscale approach (0.23 Å) as shown in Figure 

6-3. For a graphene sheet perfectly aligned with the h-BN substrate, considering the lattice 

mismatch of 1.8%, the periodicity of Moiré pattern is ~14nm which is consistent with the 

length of the Moiré pattern observed in different experimental studies.173,174  

 Conclusions 

In this chapter, we show the general framework of our multiscale modeling approach that 

connects nanoscale and micrometer scale, expanding the predictive power of current 

simulation methods. The application of multiscale methods potentially should be able to 

address the Mechano-Electro-Chemical coupling problem occurred in 2D materials. To 

demonstrate the validity of our approach, we compute the elastic deformations in 2D 

heterostructure materials with a Moiré pattern, showing an excellent agreement between 

our approach and experimental data. In the next two chapters, more examples using this 

multiscale modeling approach will be discussed in understanding and tuning 2D materials 

for energy applications.  

 

 



104 

Chapter 7 Mechanisms for engineering highly anisotropic conductivity 

in a layered covalent-organic framework 

Reprinted (adapted) with permission from D. Er, L. Dong, and V. B. Shenoy. Mechanisms for 

Engineering Highly Anisotropic Conductivity in a Layered Covalent Organic Framework. Journal 

of Physical Chemistry C, 120(1): 174-178 December 2015 

Synopsis 

Two-dimensional (2D) covalent-organic framework (COF) materials provide a promising 

solution to the lightweight, durable, and flexible electronic applications such as organic 

photovoltaics and organic light-emitting diodes. In this paper we report a theoretical study 

based on density functional theory calculations on a recently synthesized covalent- organic 

framework that has been experimentally demonstrated to possess excellent carrier mobility 

and photoconductivity along the vertical direction. Our calculations reveal the dependence 

of the carrier mobility on the number of layers and the stacking order, and show that the 

conduction is achieved by electron hopping between adjacent layers along the vertical 

pathways that are composed of aligned donor or acceptor groups. We find that the direct 

band gap in a monolayer shifts to an indirect band gap in bulk (multiple layers), with 

decreased carrier effective masses along the vertical direction. The vertical interlayer 

interaction further enhances the in-plane charge transfer from the donor to the acceptor 

parts, and hence the probability of electron hopping between adjacent layers. Our results 

not only explain conductivity enhancement mechanism in COFs, but also provide 

guidelines in designing highly conductive 2D polymer optoelectronic devices. 
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 Introduction 

Two-dimensional polymers (2DPs) are promising for flexible electronic applications such 

as organic photovoltaic and organic light emitting diodes (OLEDs).175–177 Since their 

discovery,178 these materials have attracted a great amount of research interest due to their 

excellent mechanical properties, thermal stability, relative ease of large scale production, 

and transparency to visible light.179–185 However, the viability of 2DPs in practical 

electronic devices is hindered by one problem, namely, how to achieve a high conductivity 

while maintaining a proper bandgap.186 In fact, such a conflict exists in various kinds of 

2D electronic materials.187,188 For example, graphene can offer surprisingly high 

conductivity via its in-plane 𝜋-conjugated orbitals;16,92,186,187,189 however, the absence of a 

band gap in graphene remains as huge obstacle for most electronic applications. 190,191 On 

the other hand, many two-dimensional polymers can offer required band gap for electronic 

and optoelectronic applications.192,193 For instance, many 2DPs provide a band gap in the 

range of 1.7-4.0 eV192–194 that is suitable for photovoltaic applications according to the 

Shockley–Queisser limit.195 Their carrier mobility, however, is very low due to the flat 

band gap structure.190,196 Therefore, a manipulation of both band gap and carrier mobility 

should be considered simultaneously to realize conductive 2D polymers. 

The manipulation calls for complete understanding of both microscopic and macroscopic 

properties of 2DPs layered materials. One key question is to understand and modify the 

electronic conductivity by changing planar structures of polymers and also the stacking 

sequence and number of layers, which requires a multiscale simulation approach. To 

answer this question, one possible way to realize a conductive 2D polymer is to design a 
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ordered donor and acceptor structure.175,197,198 Recently, Feng et al. have synthesized a 

covalent organic framework (COF) that has a unique vertically stacked multi-layer 

structure with the donor (D) and acceptor (A) functional groups segregated in the basal 

plane.199 The D (and A) groups of different layers, however, stack along the vertical 

direction in a face-to-face manner, leading to a relatively high mobility (0.04 and 0.01 cm2 

V-1s-1 for electron and hole mobilities respectively) along the vertical direction under 

Xenon light excitations.199 This discovery renewed interests in conducting polymers. 

Dogru et al. improved the 2DP mobility by modifying the COF structure and proposed a 

model system for better control over the electronic properties.200  

In this chapter we report a theoretical study using density functional theory (DFT) 

calculations on the electronic properties of a COF structure, which is composed of 

triphenylene donors at the vertices and benzothiadiazole acceptors on edges. Such a COF 

is referred to as DA-COF in the rest of this chapter. Its anisotropic electronic properties 

such as the band structure and carrier effective masses are investigated with emphasis on 

their dependence on the number of layers. Our results suggest that the experimentally 

observed high conductivity in this layered DA-COF is a result of the enhanced intra-layer 

charge transfer upon increased interlayer interactions, which significantly changes the 

electronic band structure. The direct band gap in monolayer shifts to an indirect band gap 

in bulk (multiple layers), with a decreased effective mass for carriers along the vertical 

direction. The vertical interlayer interaction further enhances the in-plane charge transfer 

from the D to A parts, and hence the probability of electron hopping between adjacent 
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layers. Our study provides useful information for designing 2DPs with anisotropic 

transport property, which is desired in optoelectronic applications. 

 Method 

Our DFT calculations were performed using the Vienna Ab Initio Simulation Package 

(VASP)78,79,201,202 with the Perdew-Burke-Ernzerhof (PBE) type of generalized gradient 

approximation (GGA) for exchange and correlation functionals 81 and the projector 

augmented wave pseudopotentials (PAW)80 for electron-core interactions. An energy 

cutoff of 400 eV was used for plane wave basis expansion with a 12×12×1 Monkhorst-

Pack K-points sampling. The atomic positions in the COF multilayers were relaxed so that 

the force on each atom is less than 0.001 eV/Å and the energy of the structure is converged 

to less than 5×10-6 eV/atom. The long range van der Waals interlayer interactions are 

treated by the dispersion correction with the Tkatchenko-Scheffler (TS) method203, 

wherein the conventional DFT energy is supplemented with a pairwise interatomic vdW 

potential from non-empirical mean-field electronic structure calculations. A vacuum layer 

of more than 16 Å was placed perpendicular to the monolayers and bilayers in order to 

eliminate the interaction between periodic images.  

 Results and Discussions 

7.3.1 Structural models of the DA-COF 

DA-COF is a typical hexagonal mesoporous COF which consists of three-fold triphenylene 

vertices and two-fold benzothiadiazole edges linked by a boronate ester.178,199 Within the 

monolayer, all atoms are co-planar as shown in Figure 7-1. The relaxed structure was 

found to have a lattice parameter |𝒂𝟏| = |𝒂𝟐| = 𝑎 = 30.02 Å where a1 and a2 are the in-
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plane lattice vectors, consistent with previous results.199 Within the unit cell, an alternating 

and segregated self-ordering donor-acceptor structure is constructed, where triphenylene 

and benzothiadiazole serve as donor (D) and acceptor (A) respectively. The self-assembled 

2D polymers are composed of COF layers stacked by van der Waals interactions rather 

than covalent bonds and therefore may adopt various stacking sequences, which play an 

important role in their electronic properties. Two basic stacking sequences AA and AB are 

possible in the vertically stacked layered structure. In terms of the AA stacking, monolayers 

form a face-to-face columnar structure with A-on-A and D-on-D as shown in Figure 7-1b. 

On the other hand, a unit cell of AB stacking is obtained by offsetting the second layer with 

respect to the first layer by (
1

2
a1, 

1

2
a2) in the basal plane. The calculated total energy per AB-

stacked unit cell is 0.750 eV and 0.737 eV higher than the corresponding values of the AA 

stacking for bilayer and bulk DA-COF, respectively. Therefore, AA stacking is 

energetically preferred than AB, which agrees well with previous experimental and 

simulation results.199,204  

The AA stacking provides a macroscopic separation of the acceptor columns and the donor 

columns with broad interfaces, which enables an ambipolar transportation of electrons and 

holes, and hence a large vertical conductivity along the stacking axis.199 It is worth pointing 

out that although some stacking structures with a zigzag shift from the AA stacking can 

have an even lower total energy199 as shown in Figure 7-2, the conduction channel of 

columnar D or A parts, which is harmful for the carrier transport. In order to better 

understand the relationship between different stacking configurations and the conductivity 

(which again is the structure-property relationship), we first performed the energy 
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calculation for AB, AA, and eclipsed AA stackings. The AB stacking has a much higher 

energy compared to the other two stacking sequences, and are therefore excluded from the 

discussion below. The energy difference between AA and eclipsed AA stackings are shown 

in Figure 7-2. The potential energy surface (or gamma surface), which indicates an energy 

minimum when the top layer is shifted with respect to the bottom layer for about 2.1 Å 

along a1 and a2, respectively. This agrees well with previous publications.199 Considering 

that the energy difference between the AA stacked unit cell and that of the shifted AA 

 

Figure 7-1 (a) Schematic depiction of the DA-COF hexagonal unit cell, (b) Schematics of 

vertically stacked face-to-face DA-COF with top and side views, and (c) reciprocal space BZ with 

notations for hexagonal symmetry. 
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stacking is less than 20 meV,204 in this chapter we focus on the AA stacked structures 

because it has more desirable conduction channels orthogonal to the COF basal plane. 

Within this columnar structure, interlayer distance varies as a function of the number of 

stacked layers due to changes in the strength of the vdW interactions. The lattice parameters 

are kept as 𝑎 = 30.02 Å, and the calculated interlayer distance in a bilayer (3.57 Å) is 

larger than that in the bulk (3.40 Å).  

Figure 7-2 (a) Potential energy surface of different stacking shifts along a1 and a2 direction 

with respect to a fixed monolayer. Two local minima can be found as shown in figure of 

this gamma surface.266 This plot provides a basic understanding of stacking modes problem 

in this DA-COF. (b) HOCO-LUCO plot of eclipsed AA stacking with 2.1 Å offset, which 

has the minimum energy. Less π –overlap between adjacent 2D layers has been observed. 
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7.3.2 Band structure 

Optoelectronic properties of semiconductors are determined by their electronic band 

structure, wherein the conduction and valence band edges are essential to the 

photoluminescence spectrum and the device efficiency. The 2D monolayer displays a 

direct band gap with both the lowest unoccupied crystal orbital (LUCO) and the highest 

occupied crystal orbital (HOCO) located at the Γ point in the reciprocal space. This band 

gap, contrary to the vanishing band gap in graphene16, offers possibilities for 

photoluminescent and photoelectric applications that are in agreement with Shockley-

Queisser limit195, and can offer a higher quantum efficiency without the involvement of 

phonons. However, the in-plane carrier mobility of the monolayer is very low because of 

the relatively flat LUCO and HOCO band edges shown in Figure 7-3a, which indicate that 

these orbitals are highly localized. From the charge densities of LUCO and HOCO in 

Figure 7-3b, and c, respectively, it is easy to identify that HOCO is primarily localized at 

the triphenylene donors, while LUCO resides on benzothiadiazole acceptors.  

On the contrary, the separation between HOCO and LUCO charge densities, i.e., between 

electrons and holes, provides the foundation for a large columnar (out-of-plane) 

conductivity. As the number of stacked layers increases, HOCO and LUCO of adjacent 

layers start to overlap, allowing electron hopping from one layer to another. The band gap 

of AA-stacked multilayers keeps decreasing as the number of stacking layers increases. 

The band gap reduces from 1.73 eV in monolayer to 1.23 eV in bilayer, and eventually to 

0.25 eV in bulk, respectively. Furthermore, the direct band gap in the monolayer shifts to 

an indirect band gap in bulk. The LUCO edge in bulk DA-COF locates at the A point while 
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the HOCO edge is at the Γ point (Figure 7-4), yielding relatively high carrier mobility 

along the out-of-plane direction. The in-plane carrier mobility in bulk DA-COF, however, 

remains unchanged from the monolayer case. Therefore, a highly anisotropic conductivity 

is expected as the number of stacking layers increases.  

 

7.3.3 Effective mass and anisotropic mobility 

In order to quantify the enhanced anisotropic conductivity, carrier effective mass of 

electrons (𝑚𝑒
∗ ) at the conduction band minimum and of holes (𝑚ℎ

∗ ) at valence band 

maximum can been calculated from the band structure using  

Figure 7-3 (a) Band structure of monolayer COF displays a direct HOCO-LUCO gap of 

1.73 eV at the Γ point. Flat band structures of gap states indicate highly localized orbitals. 

(b) the LUCO state is located majorly on acceptors, while (c) the HOCO state is largely 

located on donors. 
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𝑚∗ =
ℏ2

𝜕2𝐸(𝑘)/𝜕𝑘2
 (1) 

where E(k), k, and ℏ correspond to energy, the reciprocal space vector, and reduced Plank 

constant, respectively. The calculated effective mass of electrons and holes are listed in 

Table 7-1 in the units of free electron mass (me) for monolayer and bulk DA-COF. 

Effective mass of electrons and holes are reduced systematically, particularly along the 

vertical direction when periodicity starts to form with an increased stacking number of 

monolayers. The quantum confinement changes the band structure hence the effective mass 

(m*) of carriers; on the other hand, it provides higher possibility of carrier hopping along 

z direction. Effective mass of electrons and holes are comparable in magnitude, which 

Figure 7-4 Band structure of vertically stacked DA-COF polymer in the bulk form. A highly 

curved band structure indicates an indirect band gap from 𝛤  to A point in bulk with a 

decreased band gap value (0.25 eV) than that in the monolayer (1.73 eV).  
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indicates two channels of conduction are possible. Electrons have smaller effective mass 

than holes, which is in agreement with experiments.199 A large anisotropy of conduction 

for both electrons and holes have been indicated from Table 7-1, because of the carrier 

effective mass along the stacking direction is one order of magnitude larger than that within 

the 2D basal plane. Note that the effective mass of carriers here is comparable and even 

smaller to that in traditional high performance semiconductor materials such as Si or GaAs, 

where promises in electronic devices applications are possible. It is also worth pointing out 

that the lowest energy eclipse is relatively moderate with the top layer shifted about 2.1 Å 

along a1 and a2 directions with respect to the bottom layer. In such a structure, the 

conduction is still mainly along the vertical direction as the carrier effective masses in this 

direction is significantly smaller than the in-plane ones. Also the increased effective mass 

of carriers along z direction indicates the eclipsed AA stacking is not beneficial for vertical 

conductivity. 
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Table 7-1 Effective mass of carriers in DA-COF with comparison to traditional semicon-

ductors. 

 
Monolayer 

(in-plane) 

Monolayer 

(vertical) 

Bulk 

AA 

(in-

plane) 

Bulk AA 

(vertical) 

Eclipsed-

AA(-X) 

Eclipsed-

AA 

(vertical) 

Si GaAs 

Electron 

𝑴𝒆
∗/𝒎𝒆 

 

e 

e 

0.523 N/A 0.683 0.025 

 

1.240 0.070 0.2 

 

0.067 

 Holes 

𝑴𝒉
∗ /𝒎𝒆 

 

21.225 N/A 7.701 0.024 

 

4.342 0.086 0.16 

 

0.082 

 

Figure 7-5 Schematics of charge transfer map showing charge accumulation and depletion 

regions. The amount of charge transfer between D-A increases, respectively, from (a) 0.82 

e in monolayer to (b) 1.22 e in bilayer, and eventually to (c) 1.30 e in the bulk case. Dot 

sizes indicate the amount of charge localized on each atom and the color code illustrates 

the amount of transferred charge. (d) Schematic depiction of interlayer hopping in DA-

COF, where electrons (e-) and holes (h+) locate at D and A parts, respectively. The 

excitation leads to hopping of carriers along vertical direction. 
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7.3.4 Charge transfer 

To gain a deeper understanding in the mechanism of the enhanced conductivity along z 

direction in stacked 2D polymers, we employed the Bader charge analysis121 to reveal that 

the enhanced vertical conductivity of carriers can be partially explained by charge transfer 

between the D and A parts. Within the basal plane, the D and A parts are well separated 

and the D part transfers electrons to the A part via the B-O bridges as shown in Figure 7-5. 

Red and blue colors indicate regions of electron accumulation and depletion, respectively, 

while the size of each dot proportionally depicts the amount of charge localized on each 

atom. The amount of charge transferred from D to A is a qualitative indicator of the strength 

of D-A interaction within the 2D plane, for which a stronger interaction results in a larger 

amount of transferred charge. The transferred charge in monolayer, bilayer and bulk DA-

COF is approximately 0.82 |e|, 1.22 |e|, 1.30 |e|, respectively, showing that the vertical 

interaction between the layers further enhances the in-plane charge transfer and therefore 

the probability of electron hopping between adjacent layers.  

 Conclusions 

We performed a theoretical study on a newly synthesized 2D COF structure with large 

anisotropic conductivity due to the segregated columnar arrangement of donor and acceptor 

groups. Our results show that HOCO and LUCO are located at the D and A groups, 

respectively, enabling a highly anisotropic conductivity. The calculated effective mass 

along the vertical direction is much smaller than that in the basal plane, which is beneficial 

for vertical carrier transport. The enhanced out-of-plane conductivity from monolayer to 

bulk is accompanied by a stronger charge transfer between D and A. Our result can be 
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generalized to a broad 2D COF family, in which various applications can be realized in 

𝜋 − 𝜋 stacked multilayer structures according to the numerous combination of aromatic 

building blocks. 

.
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Chapter 8 A model to determine the chemical expansion in non-

stoichiometric oxides based on the elastic force dipole 

Reprinted (adapted) with permission from D. Er, J. Li, M. Cargnello, P. Fornasiero, R. J. Gorte, 

and V. B. Shenoy. A Model to Determine the Chemical Expansion in Non-stoichiometric Oxides 

Based on the Elastic Force Dipole. Journal of the Electrochemical Society, 161 (11): F3060-

F3064 September 2014 

Synopsis 

In this chapter a novel continuum model informed by density functional theory (DFT) 

simulations is presented and used to predict the chemical expansion observed in non-

stoichiometric oxides. We introduce an elastic dipole tensor that describes the long-range 

elastic fields created upon formation of oxygen vacancies. We show that this tensor, which 

can be accurately determined through first-principle DFT calculations, can be used to 

predict the chemical expansion of ceria and in general other non-stoichiometric oxides. 

Compared to previous work where expansivity was obtained with empirical potentials, our 

work provides an efficient way of computing it directly by DFT calculations. Furthermore, 

we discuss how the elastic dipole tensor can predict the O2 partial pressure vs O/Ce ratios 

in strained systems and show that CeO2 can be reduced more easily in the presence of 

tensile strains. More generally, the elastic dipoles can be used in continuum models to 

predict the distribution of vacancies near nanocrystal surfaces, grain boundaries and 

extended defects such as dislocations and hence provide information on how these 

structures and defects influence the overall reducibility of the material. 



119 

 Introduction 

Non-stoichiometric oxides are widely used in high temperature energy applications, such 

as automotive catalysis, solid oxide fuel cells (SOFCs), oxygen permeation membranes, 

and gas conversion/reformation catalysis.205–208 Among all these oxides, cerium oxide 

(ceria), either in the pure phase or mixed or doped with other transition metals and 

lanthanides, is among the most studied non-stoichiometric oxides and has attracted 

widespread industrial interest. Ceria, typically in the form of a mixed oxide with zirconia, 

has been included in automotive emission-control catalysts for many years205,209–211 and 

has applications in solid oxide fuel cells (SOFCs), water-gas-shift 212,213 and hydrocarbon-

reforming catalysis,214 and hydrocarbon oxidation catalysis215. The reversible transition of 

ceria between Ce(IV) and Ce(III) oxidation states enables the storage and release of 

oxygen, providing many possibilities for practical applications. For example, in automotive 

three-way catalysts, ceria (as a solid solution with zirconium) acts to buffer the exhaust 

composition through its oxygen-storage capacity (OSC). In this and other catalytic 

applications, the catalytic performance depends on the oxygen non-stoichiometry.205 

Therefore, controlling reversible oxygen stoichiometry in ceria is pivotal. 

In addition to oxygen stoichiometry changes due to environment, temperature, and oxygen 

partial pressure (𝑃O2
), which result in changes in electrical properties and phase stability, 

significant mechanical stresses are also induced from changes in the lattice parameter due 

to the presence of impurities such as defects, also referred to as chemical expansion.216–221 

For example, an increase in the effective thermal expansion coefficient due to oxygen loss 

upon heating in air has been observed in a Pr-doped ceria (Pr0.1Ce0.9O2−δ ) SOFC cathode 
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222. Chemical expansion has been shown to lead to cracking of cerium oxide membranes 

under the large oxygen partial pressure (𝑃O2
) gradients found in SOFC operation.223,224 

Moreover, the increase in lattice constant is reported to decrease the elastic modulus,225 

which must be consider for safe operation of electrochemical devices. Chemical expansion 

is also involved in the large change of strain in ceria thin films at low temperature as the 

result of oxygen vacancy rearrangement,226–228 as well as a conductivity change in highly 

strained heterostructure thin films.224  

While the chemical expansion associated with electro-chemomechanical properties has 

been confirmed by many experimental measurements, the origin is not yet well 

understood.217,218,229,230 In the past, there have been several attempts at developing 

numerical models of the phase diagrams and composition of CeO2 for a wide range of 

conditions.231–233 More recently, Yildiz et al. have studied chemical expansion by 

advancing a model which considers the effects of cation radius changes and the formation 

of an oxygen vacancy using Molecular Dynamics (MD) simulations.216 It is well known 

that MD simulations are less accurate than DFT calculations for predicting defect energies 

in non-stoichiometric oxides.234 However, calculating chemical expansion with DFT 

calculations can be a time consuming task, since larger and larger unit cells have to be 

considered with decreasing concentration of the defects.  

In this chapter we report a new continuum model, informed by DFT simulations, to predict 

the chemical expansion. Unlike empirical methods, an elastic dipole tensor is here precisely 

calculated by DFT calculations. The elastic dipole tensor can link chemical expansion and 

oxygen-vacancy concentrations of using a continuum method. By introducing a chemical-
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expansion coefficient, which reflects the combination of the two competing effects, a 

simple expression can be obtained for describing non-stoichiometry with a dipole tensor 

term. This method, which is in excellent agreement with recent experimental data, allows 

for the calculation of chemical expansion and the prediction of defect properties such as 

non-stoichiometric deviation during reduction of ceria and other non-stoichiometric 

oxides. It is worth pointing out that our study of strained ceria provides information which 

may be extended to oxidation thermodynamics more generally. The dipole tensor also 

allows for calculation of the formation energy of defects in the presence of complex strain 

fields that can arise at surfaces, grain boundaries and extended defects.235 

 Method 

8.2.1 The ab initio calculation 

Ab initio density functional theory simulations are used to calculate the chemical expansion 

of bulk ceria with one oxygen vacancy in a unit cell whose size is large enough that finite 

size effects are not significant. Generally, the chemical expansion is defined as 

 𝜖𝑐 =
𝑎 − 𝑎0

𝑎0
 (8-1) 

where a is the lattice parameter for 𝐶𝑒1−2𝛿
4+ 𝐶𝑒2𝛿

3+𝑂2−𝛿, and a0 is the lattice parameter for 

stoichiometric ceria (𝛿 = 0). A test through size dependent convergence studies suggests 

that a (2 × 2 × 2) cell is large enough to eliminate the finite size effect. In the case of one 

oxygen vacancy (𝛿 = 0.03125) in a (2 × 2 × 2) cell (Ce32O63), the calculated 𝜖𝑐 is 0.0030. 

Figure 8-1 shows the position of the ions and the charge distribution around the oxygen 

vacancy as obtained from DFT calculations. Calculations of the charge density 
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difference236 (CDD) have been performed in order to determine the charge transfer upon 

the formation of an oxygen vacancy. In non-defective, fully oxidized ceria (CeO2), the 

oxygen atoms assume a tetrahedral coordination each surrounded by four Ce atoms. With 

the formation of an oxygen vacancy, the local charge redistribution between Ce and O 

results in local expansion of the lattice. The localization of the two extra electrons in the 

Ce 4f band leads to charge transfer, as shown in Figure 8-1b. Given the small 

stoichiometry deviation, charge balance can be written using Kröger-Vink notation as 

follows: 

 2[VO
∙∙] = [CeCe

′ ] (8-2) 

where CeCe
′  is a Ce(III) species located at Ce(IV) site with one negative charge, and VO

∙∙ is 

an oxygen vacancy with double positive charge. On the one hand, the formation of 

positively charged oxygen vacancies and negatively charged CeCe
′  leads to a lattice 

contraction due to electrostatic interactions, which results in a net local contraction of the 

lattice around the vacancy. On the other hand, the localization of the two extra electrons 

into Ce 4f orbitals (Ce4+ to Ce3+) leads to an increase in cationic radius from 0.97 to 1.143 

Å (using Shannon ionic radii237) and consequent lattice expansion. The result of these two 

opposite effects is chemical expansion in non-stoichiometric ceria. According to our model 

(Figure 8-1), the cations are shift away from the oxygen vacancy by approximately 0.10 

Å, whereas the anions shift by approximately 0.16 Å in the direction of the oxygen vacancy. 

This conclusion is in accordance with recent experimental and computational 

observations.216,238,239  
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Figure 8-1 Green-yellow spheres represent cerium, white small balls represent oxygen, 

and the red triangle shows the oxygen vacancy. (a) Local relaxation patterns near the 

oxygen vacancy, and (b) CDD charge transfer with the formation of oxygen vacancy, two 

tetravalent Ce cites are reduced to trivalent Ce sites. 

8.2.2 Modeling Chemical Expansion with the Elastic Dipole Tensor 

In the presence of long-range elastic interactions we introduce a continuum model with 

elastic force dipole tensor to understand the chemical expansion. Point defects introduce 

both short- and long-range lattice distortions. Short-range distortions are considered those 

affecting the immediate periphery of the created oxygen vacancy, whereas long-range ones 

affect the overall dimensions of the crystal. Long-range changes (both in terms of volume 

and shape) are conventionally characterized by the elastic dipole tensor,240 𝐺𝑖𝑗,which can 

be fully determined by an examination of stress-strain effects around a defect. To ensure 

that there are no far-fields moments in equilibrium, the dipole tensor has to be symmetric.  

To show that the oxygen vacancy can indeed be modeled as an elastic force dipole, we 

derive the elastic fields it generates based on energy arguments. The total energy of a defect 
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can be represented by the elastic strain energy in the bulk due to its strain field 𝜖𝑘𝑙 and its 

self energy. Assuming an elastic media of infinite extent an oxygen vacancy, when the 

system is subjected to strain, the total energy can be given by 

 𝑓 = ∫ 𝐺𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
𝛿(𝑥)𝑑𝑣 +

1

2
∫ 𝐶𝑖𝑗𝑘𝑙𝜖𝑖𝑗𝜖𝑘𝑙 𝑑𝑣 (8-3) 

with 𝑢𝑖, f, 𝐺𝑖𝑗, 𝐶𝑖𝑗𝑘𝑙,and 𝜖𝑖𝑗 representing the displacement field, the total energy, the elastic 

dipole tensor, the elastic stiffness tensor, and the strain tensor, respectively. Note that the 

first term is the product of the dipole tensor and strain, which corresponds to the elastic 

energy of the dipole. The variation of f with respect to u has to vanish in equilibrium: 

 
𝛿𝑓

𝛿𝑢
= 𝐺𝑖𝑗

𝜕𝛿(𝑥)

𝜕𝑥𝑗
+ 𝐶𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘

𝜕𝑥𝑙𝜕𝑥𝑗
= 0. (8-4) 

Rearranging Equation (8-4), we can obtain Fi, which is the body force applied to the system 

concentrated at the origin where the dipole is located. 

 𝐹𝑖=−𝐶𝑖𝑗𝑘𝑙
𝜕2𝑢𝑘

𝜕𝑥𝑙𝜕𝑥𝑗
= 𝐺𝑖𝑗

𝜕𝛿(𝑥)

𝜕𝑥𝑗
 (8-5) 

Using the Green’s function, ℊ𝑖𝑗(𝑥, 𝑥′), which provides the displacement in the i-th 

direction at 𝑥 due to a unit point force acting at 𝑥′ in the j-th direction, we can obtain the 

expression for the displacement field: 

 𝑢𝑖(𝑥) = ∫ ℊ𝑖𝑝(𝑥)𝐹𝑝  𝑑𝑣=∫ ℊ𝑖𝑝(𝑥) 𝐺𝑝𝑗
𝜕𝛿(𝑥)

𝜕𝑥𝑗
 𝑑𝑣 (8-6) 

Integrating equation (8-6), we obtain the expression of displacement field in the presence 

of an oxygen vacancy 

 𝑢𝑖(𝑥) = −
𝜕ℊ𝑖𝑝(𝑥−𝑥′)

𝜕𝑥𝑗
|𝑥=𝑥′  𝐺𝑝𝑗, (8-7) 
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that precisely corresponds to the field created by a dipole confirming the validity of 

expression for the total energy given in Equation (8-3). Next, we use this expression to 

compute the energy of the vacancy in the presence of an external strain. 

With the elastic dipole tensor defined, we now proceed to compute the lattice constant of 

a crystal with a given concentration of vacancies. We assume that an oxygen vacancy 

concentration is, 
𝛿

𝑉𝑐
, where 𝛿  and 𝑉𝑐 is the non-stoichiometric deviation and volume of 

supercell, respectively. The goal is to find the overall strain of the cell that will lead to 

minimization of the overall energy change,  

 Δ𝑓 =
𝛿

𝑉𝑐
𝐺̂𝑖𝑗𝜖𝑖𝑗 +

1

2
𝐶𝑖𝑗𝑘𝑙𝜖𝑖𝑗𝜖𝑘𝑙 (8-8) 

where  𝐺̂𝑖𝑗  is the elastic dipole tensor per unit volume. The first term here again is the 

product of the applied strain and the dipole density, which gives the energy that the dipole 

can gain due to lattice expansion, while the second term gives the energy cost associated 

with deformation of the bulk crystal. A competition between these two effects determines 

the chemical expansion. Again, the derivative of energy with respect to the strain gives the 

chemical expansion 

 ϵc = −
δ 𝐭𝐫(𝐂−𝟏𝐆̂)

3Vc
 (8-9) 

Consequently, the chemical expansion coefficient 𝑎𝑐 is defined as, 

 𝑎𝑐 =
𝜖𝑐

𝛿
= −

 𝐭𝐫(𝐂−𝟏𝐆̂)

3Vc
 (8-10) 
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Therefore, by knowing the elastic dipole tensor  𝐺̂𝑖𝑗 , chemical expansion and chemical 

expansion coefficient can be determined without the need for computing the optimum 

lattice constants at each concentration. 

 Result 

8.3.1 Oxygen Vacancy Formation Energy and Elastic Dipole Tensor 

In the previous section, the continuum model of elastic dipole tensor was discussed which 

emphasizes the elastic dipole tensor per unit volume as the key factor. In this section we 

present the results from DFT simulations and compare our results with other’s 

experimental and theoretical data. The essential parameter for this model, the elastic dipole 

tensor, 𝑮̂𝑖𝑗 , was determined using the formation energy under different strain states. 

Generally, the full tensor of 𝑮̂𝑖𝑗 should be calculated by applying different strain states. 

However, for ceria, the cubic symmetry ((𝜖𝑐)𝑖𝑗 = 0, 𝑖 ≠ 𝑗) requires only the measurement 

of the mean diagonal component of 𝜖𝑐. In our calculations, we introduced strains in CeO2 

by changing the lattice constants and by relaxing all the internal coordinates. Several strain 

states, such as tensile strain, shear strain, and hydrostatic strain, were applied to the 

supercell. The oxygen formation energy per unit volume is defined as: 

 𝐸𝑉0

𝑓 (𝜖) = 𝐸(𝐶𝑒𝑂2−𝛿 , 𝜖) − 𝐸(𝐶𝑒𝑂2, 𝜖) − ∑ 𝑛𝑖𝜇𝑂

𝑖

 (8-11) 

where 𝐸(𝐶𝑒𝑂2−𝛿 , 𝜖)  is the energy of non-stoichiometric ceria under strain, while 

𝐸(𝐶𝑒𝑂2, 𝜖) is the energy of pristine ceria under the same strain, ni denotes the number of 

oxygen atoms removed from the supercell and μO is the chemical potential of oxygen. The 
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change of formation energy only comes from the presence of oxygen vacancy under strain. 

Therefore, first order Taylor expansion of 𝐸𝑉0

𝑓 (𝜖) to 𝜖 gives the relation: 

 𝐸𝑉𝑂

𝑓
(𝜖𝑖𝑗) = 𝐸0 + 𝐺̂𝑖𝑗𝜖𝑖𝑗 (8-12) 

The derivative gives the elastic dipole tensor (neglecting higher order terms), 

 𝐺̂𝑖𝑗 =
𝑑𝐸𝑉𝑂

𝑓
(𝜖𝑖𝑗)

𝑑𝜖𝑖𝑗
 (8-13) 

According to Equation (8-11)-(8-13), the formation energy variation with strain is shown 

in Figure 8-2. Due to the cubic symmetry of ceria, the mean diagonal component of 𝑮̂𝑘𝑘 

is sufficient to determine the 𝜖𝑐. Therefore the orientations of off-diagonal components 

Figure 8-2 Formation energy of an oxygen vacancy varies with strain applied in the 

supercell (hydrostatic). The derivative gives the trace of averaged elastic dipole tensor 𝐺̂𝑖𝑗. 

The inset shows the formation energy for 1% tensile strain as a function of the oxygen 

chemical potential. 
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vanish and leave only the diagonal components for the elastic dipole tensor. The calculated 

elastic dipole tensor is obtained by linear fitting from Figure 8-2, 

 𝐺̂𝑖𝑗 = (
−15.43 0 0

0 −15.43 0
0 0 −15.43

)  𝑒𝑉 (8-14) 

According to experimental data of elastic tensor for ceria,241,242 C11, C12, C44 and the bulk 

modulus B with values 403.0 GPa, 105.0 GPa, 60.0 GPa, and 204.0 GPa, respectively, 𝑎𝑐 

is calculated as 0.0975. This result agrees well with the experimental data of non-

stoichiometric chemical expansion obtained by several researchers,216,243–245 which further 

Figure 8-3 Chemical expansion of ceria with the predicted value from the model using 

DFT calculations and experimental values. Data from Ref. 243–245. 
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validates our model. The predicted chemical expansion of Ce1−2δ
4+ Ce2δ

3+O2−δ as a function 

of 𝛿, is plotted in Figure 8-3, with comparison to experimental values from several authors.  

8.3.2 The Reducibility of Ceria 

Knowing the elastic dipole tensor, the oxygen formation energy, and the predicted 

chemical expansion, we now investigate the role of strain on reducibility of ceria. 

According to the Kröger-Vink notation, when reduced from CeO2 to CeO2−𝛿, Ce3+ ions 

form on Ce4+ lattice sites. It is generally agreed that these electron polarons in low 𝑃O2
 

ceria-based oxides are compensated by positively charged oxygen vacancies under 

reducing conditions. Kofstad and Hed,246 Kevane,247 and Blumenthal et al.248 had discussed 

whether these substitutional negative defects were balanced by Ce interstitial, Ce𝑖
⋯or by 

oxide ion vacancy, VO
.. . Later experimental works have confirmed that the dominant cations 

in CeO2−𝛿  are oxygen vacancies. Faber et al.249 examined the electron density distribution 

using X-ray diffraction (XRD), and concluded that Ce interstitials are less than 0.1 % of 

the total defects in CeO1.91. Also the Le Chatelier principle suggests that the VO
..  dominates 

at low oxygen concentrations. Therefore, in this work, we assume that the dominant anion 

is CeCe
′  and the dominant cation is VO

.. . Using Kröger-Vink notation, the thermal reduction 

of CeO2 can be written as: 

 2CeCe
X + OO

X → VO
∙∙ + 2CeCe

′ +
1

2
O2 (g) (8-15) 

With decreasing oxygen partial pressure (𝑃𝑂2
) or increasing temperature, oxygen vacancies 

form with charge compensation through two electrons, localized on trivalent cerium 

cations (CeCe
′ ), forming polarons. An Arrhenius type equation at equilibrium relating the 
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oxygen partial pressure to the non-stoichiometric composition according to the law of mass 

action and Gibbs free energy can be written as,  

 𝛿 =  4−
1
3𝑃𝑂2

−
1
6𝑒

Δ𝐻𝑓(𝜖)

3𝑘𝐵𝑇 𝑒
Δ𝑆

3𝐾𝐵 = 𝐴𝑃𝑂2

−
1
6𝑒

Δ𝐻𝑓(𝜖)

3𝑘𝐵𝑇  (8-16) 

Here the formation energy of oxygen vacancy incorporates the applied strain introduced to 

the non-stoichiometric ceria. The configurational entropy change with strain is negligible 

compared to the enthalpy change. With an entropy ΔS of this reaction, 62.3 J K-1 mol-1, 

taken from Ref 229,250, the coefficient 𝐴 is determined.  

Figure 8-4 Reducibility of strained ceria expressed in terms of the O/Ce ratio. The 

temperature-dependent stoichiometry of Ce𝑂2−𝛿 in air is modeled with the presence of 

strain in air at 2% compressive strain, 2% tensile strain, and 0% strain states with oxygen 

partial pressures (𝑃𝑂2
) corresponding to 0.21. 
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In Figure 8-4 we show the calculated non-stoichiometry as a function of temperature for 

2% tensile strain, 2% compressive strain, and 0% strain with oxygen partial pressure (𝑃𝑂2
) 

corresponding to atmospheric pressure. The presence of tensile strain can significantly 

increase the reducibility of ceria at a certain temperature while that of compressive strain 

acts in the opposite manner. The reducibility is expressed as the ratio of oxygen to metal 

vs the oxygen partial pressure, which is also shown in Figure 8-5. The experimental data 

lies between zero strain and 1% compressive strain. The presence of tensile strain 

significantly shifts the reducibility curve to a higher oxygen partial pressure (𝑃𝑂2
) region. 

According to Figure 8-2, tensile strain lowers the formation energy of oxygen vacancy, 

which will lead to an easier reduction of ceria. Figure 5 also suggests that the non-

stoichiometric sample is potentially under a compressive strain (less than 1%), which is 

consistent with the formation energy curve in Figure 8-2. In the experimental 

measurements, the samples were made up of large agglomerates of smaller crystallites. It 

likely that expansion of the individual crystallites upon reduction may have caused 

compressive strain in the sample. Moreover, the geometric and size effects in nanosized 

ceria can induce stress, which results in the change of the amount of oxygen vacancy. Our 

result may provide new perspectives to the previous understanding of the observed 

formation of reduced Ce(III) species in nanocrystalline CeO2 with size dependence.251,252 

It should be noted that our model relies on the assumption that the oxygen vacancies are 

the dominant polarons in the regime where the small oxygen stoichiometric deviation 

cannot lead to phase transformation. It is worth pointing out that the dominant cations and 

anions may change due to the partial pressure of oxygen, therefore adjustment may be 



132 

applied to this model for O2-rich environment. Further, Mamontov et al. showed that 

nanocrystalline powders have a different defect profile, which could be a topic for future 

work.253 

 Conclusion 

A continuum model informed by DFT simulations was developed to predict the chemical 

expansion in ceria as model system of non-stoichiometric oxides. The chemical expansion 

can be described by an elastic dipole tensor which is obtained by first principles 

calculations. The predicted chemical expansion agreed well with other simulations and 

Figure 8-5 Non-stoichiometry of Ce𝑂2−𝛿 at 1% compressive strain, 1% tensile strain, and 

0% strain states at 973K versus oxygen partial pressure (𝑃𝑂2
) compared to experiment data 

from Ref 267. 
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experimental data, which demonstrates the validity of our approach. Finally, the calculated 

strain dependence of oxygen vacancy formation energy and the elastic dipole tensor can 

also predict reducibility of strained ceria. We predict that ceria can be reduced more easily 

in the presence of tensile strain. Our model provides a new understanding of electro-

chemomechanical coupling for ceria as well as other nonstoichiometric materials. 
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Chapter 9 Concluding Remarks 

This thesis was mainly focused on examining the possibility of using 2D materials in 

improving current energy applications, in particular, battery electrodes and hydrogen 

evolution reaction (HER) catalysts, and to elucidate the mechanisms and guiding principles 

in tuning 2D materials using combinatorial simulation techniques from different length 

scales. 

First, we showed promising 2D material solutions to the electrodes in batteries beyond 

lithium that can possibly host many metal ions and enable high capacity and rate 

performances. In Chapter 2, we showed that MXenes can host Li, Na, K, Ca ions with a 

high capacity and a low diffusion barrier, enabling high-capacity electrode and high power 

density applications. The origin of such improvements is understood by carefully study the 

structural and electronic properties. Moreover, we introduced the first successful synthesis 

method of nitride MXenes, expanding the MXene library. In Chapter 3 we showed that 

defective graphene and graphene allotropes provide a promising solution in Mg ion 

batteries with a capacity as high as 1042 mAh/g. These two chapters showed the possibility 

of improving the current battery performance by using 2D materials. 

Next, we presented a new TMD family of 2D materials as an alternative to the current HER 

catalysts. In Chapter 4, we demonstrated that the previous-believed non-reactive 2H basal 

plane of MoS2 monolayers can be activated by improving the electrical coupling between 

the substrate and the catalyst. Moreover, we identified the charge injection and the presence 

of naturally occurring vacancies are responsible to the observed increase in catalytic 

activity of the 2H basal plane. Based on this understanding, we demonstrated that the 
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inherent structural asymmetry in the recently synthesized family of Janus TMDs can be a 

new means to stimulate HER activity in Chapter 5. The Janus WSSe system has been 

identified as a promising candidate, where the basal plane can be activated without large 

applied tensile strains and in the absence of significant density of vacancies. The enhanced 

HER catalytic activity is intrinsic and tunable, and we attribute it to the introduction of in-

gap states and a shift in the Fermi level in hydrogen adsorbed systems due to Janus 

asymmetry. These two chapters provide a means to tune 2D TMD materials as a HER 

catalyst. 

Finally, we generalized the method of DFT-informed multiscale modeling to several 

applications. The good agreement between experimental results and our predictions in the 

Moiré pattern in Graphene/h-BN heterostructures validated our multiscale method in 

Chapter 6. In Chapter 7 we performed a theoretical study to understand the carrier 

mobility and photoconductivity on the structural and stacking sequence of a COF using 

DFT simulations. Our model not only explained conductivity enhancement mechanisms, 

but also provided guidelines in designing highly conductive 2D polymer optoelectronic 

devices. We then extended our multiscale method to determining the chemical expansion 

in non-stoichiometric oxides in Chapter 8. An elastic dipole tensor that describes the long-

range elastic fields created upon formation of oxygen vacancies has been introduced to 

bridge different length scales. Our work provides an efficient way in computing chemo-

mechanical coupling in oxides by introducing the elastic dipole. 

In a broader context, 2D materials are emerging fast with surprising applications due to 

their unique mechanical, chemical, electronic, optical, and magnetic properties. This thesis 
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adds some new understandings to current 2D materials not only by showing promising 

applications using current realized 2D materials but also inspiring experimentalists to 

search for new 2D material systems with novel structures, properties, and applications. 

Owing to the increase in the capacity of high-performance computing in the recent years, the 

computational simulations and multiscale models developed in this thesis can be better 

integrated into future exploration of materials in energy applications.  
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APPENDIX 

A1. First principles density functional theory methods 

Many simulation methods are semi-empirical before the development of first principles. 

They are quite successful in describing questions that have larger length and time scale. 

For example, the interparticle forces are typically formulated by analytical functions, 

known as potentials or force fields, which are capable reproducing experimental data or 

very accurate calculation results in research fields such as thermodynamics, crystal 

structures, defects, dislocations, and transport. They are very accurate in relative large scale 

(through in ~nm and ~ps frame); however, questions emerged in smaller quantum scale 

level call for more accurate solutions that can capture the physics with electronic 

interactions. In 2D materials, whose thickness is single or several atomic layers, a method 

originated from solving the quantum mechanics equations are preferred. Thanks to the 

dramatically developed computational power and density functional theory in the last half 

century, the first principles approach, or ab initio, are available nowadays. The key in 

quantum mechanically understand a system is solving the wave functions, ψn, and the 

corresponding eigenvalues, 𝐸𝑛. 

A.1.1 Density functional theory 

The difficulty in connecting quantum mechanics Schrödinger equations and real materials 

lies in: 1) in solids, electrons and nuclei form a large many-body system, in which the 

precise solution of the Schrödinger equation analytically or numerically without proper 

simplifications is not possible; 2) first principles approaches are accurate but very 

computationally expansive; 3) interactions between orbitals, electrons, and particles like 



138 

lights are nonrival from the basic quantum mechanics. Therefore, first-principles especially 

density functional theory has been developed. The basic assumption that decouples 

electrons and nuclei due to their huge mass difference is the Born-Oppenheimer 

approximation 

 ℋ̂ = −
1

2
∑ ∇i

2

𝑖

− ∑ ∑
𝑍𝐼

|𝑹𝐼 − 𝒓𝑖|
𝑖𝐼

+
1

2
∑ ∑

1

|𝒓𝑖 − 𝒓𝑗|
𝑗≠𝑖𝑖

 (0-1) 

where 𝑍𝐼, 𝑹𝐼, and 𝒓𝑖 stands for the nuclear charge, nuclei positions, and electron positions. 

Because of the masses difference 𝑚𝐼  ≫ 𝑚𝑖 , nuclei are considered fixed. This 

approximation enables a manageable solution to the ψn(𝒓1, 𝒓2 … 𝒓𝑁), which is a complex 

function that depends on materials. 

In 1965, Kohn and Sham pioneered in developing the density functional theory to 

accurately and effectively calculate the energy of many-electron systems.46,47 The basic 

idea is that the ground state energy and the corresponding electron density n(r) of a many-

body system can be determined by solving an effective one-electron Schrödinger equation. 

 ℋ̂𝑒𝑓𝑓𝜓𝑖𝜎 = 𝜀𝑖𝜎𝜓𝑖𝜎 (0-2) 

where 𝑖 and 𝜎 labels are orbital and spin states due to the fact that electrons are fermion 

particles and the exchange of orbital and spin states results in Pauli repulsion.254 The 

effective Hamiltonian can be expressed as 

 ℋ̂𝑒𝑓𝑓 = −
1

2
∇2 + 𝑉𝑒𝑥𝑡(𝒓) + ∫

𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′ + 𝑉𝑥𝑐(𝒓) (0-3) 

and  

 𝑛(𝒓) = ∑|𝜓𝑖𝜎(𝒓)|2

𝑖𝜎

 (0-4) 
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where 𝑉𝑒𝑥𝑡(𝒓) denotes the external field that the electron feels and 𝑉𝑥𝑐(𝒓) is the exchange-

correlation potential defined as 𝑉𝑥𝑐(𝒓) = 𝛿𝐸𝑥𝑐(𝒓)/𝛿 𝑛(𝒓). Although this term constitutes 

a small fraction of the total energy, it is indeed the quantum mechanical version of the 

interaction energy that describing the boding between atoms and molecules. Therefore it is 

pivotal to find an accurate description of the 𝐸𝑥𝑐 , which is unknown and needs for 

approximations.  

A.1.2 Exchange-correlation functionals 

The simplest version in describing the 𝐸𝑥𝑐 is the local and semilocal functionals. The local 

density approximation (LDA) is the following: 

 𝐸𝑥𝑐
𝑎𝑝𝑝[𝑛(𝒓)] = ∫ ℰ𝑥𝑐

𝑎𝑝𝑝(𝒓)𝑛(𝒓)𝑑𝒓 (0-5) 

A uniformly distributed electron gas with density 𝑛(𝒓) is used to approximate the uniform 

part, known as local spin density (LSD). While in order to deal with the nonuniformity part 

in real materials, a semilocal approximation with the gradient of electron density ∇𝑛(𝒓) is 

applied.  

 𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝒓)] = ∫[ ℰ𝑥𝑐

𝑢𝑛𝑖𝑓(𝒓) + 𝐻(∇𝑛(𝒓))]𝑛(𝒓)𝑑𝒓 (0-6) 

The generalized gradient approximation (GGA)81 together with LDA works really well for 

equilibrium crystal systems that have slowly varying electron densities. However, these 

functionals cannot capture the long-range electronic correlations or dispersions. Therefore, 

some hybrid exchange functionals have been developed. These potentials consist of 

nonlocal Hartree-Fock (HF) term, local exchange energy, and semilocal correlations. The 

proportion of each term is determined empirically. Popular ones include: HSE255 (25% 
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HF,75% PBE), B3LYP256 (20% HF, 80% GGA+LDA), PBE0257, meta GGA258. They are 

successful in dealing with strongly correlated systems such as transition metals containing 

d and f orbitals.  

Another improvement has to be made on top of hybrid functionals in describing the long-

range interactions such as dispersion forces and van der Waals (vdW) forces. The most 

straightforward way is to add the attractive energy term similar to the 1/𝑟6 Lennard-Jones 

potential. 

 𝐸𝑑𝑖𝑠𝑝 = − ∑
𝐶𝑖𝑗

𝑟𝑖𝑗
6

𝑖,𝑗

 (0-7) 

This approximation is named DFT-D method. Refined versions such as DFT-D2,259 DFT-

D3,260 DFT-TS203 (which accounts for vdW) are indispensable tools in studying the role of 

interlayer interactions in 2D materials. Finally the exchange-correlation energy can be 

expressed as the summation of local, semilocal, and non-local terms. 

 𝐸𝑥𝑐 = 𝐸𝑐
𝐿𝐷𝐴 + 𝐸𝑥

𝐺𝐺𝐴 + 𝐸𝑐
𝑛𝑙 (0-8) 

A.1.3 Implementation in VASP 

Many softwares are available for the implementation of DFT. In this thesis, all calculations 

are performed using the Vienna Ab Initio Simulation Package (VASP).261 The workflow 

is shown in Figure A-1a. A typical VASP input requires the following input files: INCAR, 

KPOINTS, POSCAR, and POTCAR. The central input file is the INCAR file, where all 

parameters controlling what to do and how to do inside the software. A typical INCAR file 

is shown in Figure A-1b. 
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A2. Experimental details of MXene synthesis 

A.2.1 Carbide Ti3C2 MXene 

Powder of Ti3AlC2 was prepared by ball-milling Ti2AlC ( > 92 wt%, 3-ONE-2, Voorhees, 

NJ) and TiC (99%, Johnson Matthey Electronic, NY) powders in a 1:1 molar ratio for 24 

h using zirconia balls. The mixture was heated to 1350 ° C for 2 h under argon, Ar. The 

resulting loosely held compact was crushed using a mortar and pestle. Roughly 10 g of 

powders are then immersed in ≈ 100 mL of a 50% concentrated HF solution (Fisher 

Scientifi c, Fair Lawn, NJ) at room temperature for 2 h. The resulting suspension was then 

washed several times using deionized water and centrifuged to separate the powders. In 

some cases, to align the flakes and produce free-standing discs, the treated powders were 

cold pressed at a load corresponding to a stress of 1 GPa in a steel die. From Ref. 58. 

Figure A-1 (a)Work flow of VASP calculation of KS-ground-state. (b) A typical INCAR file. 

(a) (b) 
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A.2.2 Nitride Ti4N3 MXene 

MXenes have a layered hexagonal crystal structure with P63/mmc symmetry, where M 

layers are nearly closed packed and X atoms fill the octahedral sites. The precursor 

Ti4AlN3, MAX phase, was produced by mixing TiH2 (TIMET, Henderson, NV; 99.3 % -

325 mesh), AlN (Alfa Aesar, Ward Hill, MA; N 32.0 % minimum, 2.5 to 4.0 µm), and TiN 

(Alfa Aesar, Ward Hill, MA; 99.8 %, 2 to 5 µm) powders with a molar ratio of 2 : 1 : 2. 

These powders were ball milled for 14 h and hot pressed for 24 h at 1275 °C and 70 MPa. 

The resulting Ti4AlN3 block was then milled using a drill bit and sieved through a 400 

mesh, producing a powder with particles smaller than 37 µm. The fluoride salt was a 

mixture of potassium fluoride (KF), lithium fluoride (LiF) (98.5 %, -325 mesh), and 

sodium fluoride (NaF) (all Alfa Aesar, Ward Hill, MA) with a mass ratio of 0.59 : 0.29 : 

0.12, respectively, chosen because this is the eutectic composition of these salts, which 

allows for this treatment to be performed at lower temperature. The Ti4AlN3 was then 

mixed with the fluoride salt mixture in a 1 : 1 mass ratio and ball milled for 6 h. The 

mixture, a 2 g batch of Ti4AlN3 and fluoride salt, was then placed into an alumina crucible. 

Unlike in previous methods of heating MAX phases in molten salt in air, this treatment 

was performed in Ar. The treatment was performed at 550 °C for 30 min, with heating and 

cooling rates of 10 °C/min. 

After the molten salt treatment, XRD detected the several fluorides including cryolite 

(Na3AlF6) and other similar Al-containing fluorides: K2NaAlF6, K3AlF6, AlF3 and 

LiNa2AlF6. Diluted sulfuric acid (H2SO4) (Fisher Scientific, Fair Lawn, NJ; > 95 %) was 

used to remove these compounds present in the Ti4N3 product, since cryolite is soluble in 
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H2SO4. This was done by washing the nitride and salt mixture in 8M H2SO4 for 1 h with 

stirring with a magnetic Teflon coated bar in a ratio of 10 mL 8 M H2SO4 : 1 g Ti4N3-

fluoride mixture. The mixture was then rinsed with deionized (DI) water, centrifuged at 

3,500 rpm for 2 min and decanted to separate and dispose of the acid. Rinsing with DI 

water and centrifuging was repeated until the supernatant liquid in the centrifuge tube had 

a pH of at least 6. After the last decanting the sediment was then filtered on a polypropylene 

membrane (3501 Coated PP, Celgard LLC, Charlotte, NC) and will henceforth be referred 

to as multilayered Ti4N3.  

To delaminate the multilayered MXene into few-layer and monolayer flakes, the powder 

was mixed with 40 wt.% tetrabutylammonium hydroxide (TBAOH) (Acros Organics, 

Morris Plains, NJ; 40% in water) in a ratio of 10 mL TBAOH : 1 g Ti4N3 by hand-shaking 

for 5 min. This procedure has been applied to other MXene systems for this purpose. To 

separate and remove the TBAOH, the powder was then washed with DI water and 

centrifuged at 3,500 rpm for 5 min and the supernatant was decanted to remove the residual 

TBAOH. After that, DI water was added to the residue Ti4N3 powder and probe sonicated 

for 30 min. To separate the smaller delaminated Ti4N3 flakes, this suspension was 

centrifuged at 5,000 rpm for 15 min, and the supernatant suspension was filtered onto a 

polypropylene membrane to collect these flakes. Theses flakes are henceforth referred to 

as delaminated Ti4N3 From Ref. 45. 
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