
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Extending Provenance For Deep Diagnosis Of
Distributed Systems
Yang Wu
University of Pennsylvania, wuyangjack1991@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2861
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Wu, Yang, "Extending Provenance For Deep Diagnosis Of Distributed Systems" (2017). Publicly Accessible Penn Dissertations. 2861.
https://repository.upenn.edu/edissertations/2861

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2861?utm_source=repository.upenn.edu%2Fedissertations%2F2861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2861
mailto:repository@pobox.upenn.edu

Extending Provenance For Deep Diagnosis Of Distributed Systems

Abstract
Diagnosing and repairing problems in complex distributed systems has always been challenging. A wide
variety of problems can happen in distributed systems: routers can be misconfigured, nodes can be hacked,
and the control software can have bugs. This is further complicated by the complexity and scale of today’s
distributed systems. Provenance is an attractive way to diagnose faults in distributed systems, because it can
track the causality from a symptom to a set of root causes. Prior work on network provenance has successfully
applied provenance to distributed systems. However, they cannot explain problems beyond the presence of
faulty events and offer limited help with finding repairs.

In this dissertation, we extend provenance to handle diagnostics problems that require deeper investigations.
We propose three different extensions: negative provenance explains not just the presence but also the
absence of events (such as missing packets); meta provenance can suggest repairs by tracking causality not
only for data but also for code (such as bugs in control plane programs); temporal provenance tracks causality
at the temporal level and aims at diagnosing timing-related faults (such as slow requests). Compared to
classical network provenance, our approach tracks richer causality at runtime and applies more sophisticated
reasoning and post-processing. We apply the above techniques to software-defined networking and the border
gateway protocol. Evaluations with real world traffic and topology show that our systems can diagnose and
repair practical problems, and that the runtime overhead as well as the query turnarounds are reasonable.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Andreas Haeberlen

Second Advisor
Jonathan M. Smith

Keywords
Debugging, Diagnostics, Distributed systems, Networks, Provenance

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2861

https://repository.upenn.edu/edissertations/2861?utm_source=repository.upenn.edu%2Fedissertations%2F2861&utm_medium=PDF&utm_campaign=PDFCoverPages

EXTENDING PROVENANCE FOR DEEP DIAGNOSIS
OF DISTRIBUTED SYSTEMS

Yang Wu

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2017

Andreas Haeberlen
Associate Professor of Computer and Information Science

Supervisor of Dissertation

Jonathan M. Smith
Olga and Alberico Pompa Professor of Computer and Information Science

Co-Supervisor of Dissertation

Lyle Ungar
Professor of Computer and Information Science

Graduate Group Chairperson

Dissertation Committee:
Boon Thau Loo, Professor of Computer and Information Science (Chair)
Zachary G. Ives, Professor of Computer and Information Science
Insup Lee, Cecilia Fitler Moore Professor of Computer and Information Science
Wenchao Zhou, Assistant Professor of Computer Science, Georgetown University

EXTENDING PROVENANCE FOR DEEP DIAGNOSIS
OF DISTRIBUTED SYSTEMS

COPYRIGHT

2017

Yang Wu

Licensed under a Creative Commons Attribution 4.0 License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

Acknowledgments

First and foremost, I thank my advisor, Andreas Haeberlen. He offered me constant

guidance and support. His selfless time and care kept me going forward. I also thank

my advisor, Jonathan M. Smith, for his continuous encouragement and wisdom over

the years. Without their mentorship, I would not be here.

Besides my advisors, I would like to thank the rest of my dissertation commit-

tee, Boon Thau Loo, Zack Ives, Insup Lee, and Wenchao Zhou, for their insightful

feedback and valuable questions.

I would like to express special appreciation to Boon and Wenchao. Their men-

torship over the years have been instrumental to my journey. My sincere thanks also

goes to Linh Thi Xuan Phan for her inspiration and support.

Most of the technical material in this dissertation has been previously published.

Negative provenance was published in SIGCOMM 2014 [134] and Meta prove-

nance in NSDI 2017 [133]. This would have not been possible without my collab-

orators. I feel fortunate to have worked with Andreas Haeberlen, Boon Thau Loo,

Wenchao Zhou, and Linh Thi Xuan Phan, as well as, fellow students Ang Chen and

Mingchen Zhao. I thank Nate Foster, Vincent Liu, Behnaz Arzani, and Alexander

J. T. Gurney for feedback on papers drafts. I thank Antonis Papadimitriou, Ar-

jun Narayan, Hanjun Xiao, Yifei Yuan, Behnaz Arzani, Steven Wu, Wenrui Meng,

Shaohui Wang, Meng Xu, Chen Chen, Yang Li, Nikos Vasilakis, Joel Hypolite, Ben

Karel, John Sonchack, Max Demoulin, Qizhen Zhang, Raja Sambasivan, and Colin

Scott for enlightening discussions.

A special thanks to my parents. Words cannot describe how much they have

loved me and taught me. Likewise, I thank my parents-in-law for their care to our

family. Last but not least, I would like express appreciation to my beloved wife,

Qingxiao Dong, who has always been there for me through good times and bad

times. I dedicate this dissertation to her.

iii

ABSTRACT

EXTENDING PROVENANCE FOR DEEP DIAGNOSIS

OF DISTRIBUTED SYSTEMS

Yang Wu

Andreas Haeberlen

Jonathan M. Smith

Diagnosing and repairing problems in complex distributed systems has always been

challenging. A wide variety of problems can happen in distributed systems: routers

can be misconfigured, nodes can be hacked, and the control software can have bugs.

This is further complicated by the complexity and scale of today’s distributed systems.

Provenance is an attractive way to diagnose faults in distributed systems, because it

can track the causality from a symptom to a set of root causes. Prior work on network

provenance has successfully applied provenance to distributed systems. However,

they cannot explain problems beyond the presence of faulty events and offer limited

help with finding repairs.

In this dissertation, we extend provenance to handle diagnostics problems that

require deeper investigations. We propose three different extensions: negative prove-

nance explains not just the presence but also the absence of events (such as missing

packets); meta provenance can suggest repairs by tracking causality not only for data

but also for code (such as bugs in control plane programs); temporal provenance

tracks causality at the temporal level and aims at diagnosing timing-related faults

(such as slow requests). Compared to classical network provenance, our approach

tracks richer causality at runtime and applies more sophisticated reasoning and post-

processing. We apply the above techniques to software-defined networking and the

border gateway protocol. Evaluations with real world traffic and topology show that

iv

our systems can diagnose and repair practical problems, and that the runtime over-

head as well as the query turnarounds are reasonable.

v

Contents

Acknowledgements iii

Abstract v

List of Tables ix

List of Figures xii

1 Introduction 1

1.1 Approach . 3

1.2 Contribution and roadmap . 4

2 Background and related work 6

2.1 Network Datalog . 6

2.2 Provenance-based diagnosis . 8

2.3 Related work . 10

3 Negative Provenance 16

3.1 Introduction . 16

vi

3.2 Overview . 18

3.3 Basic Negative Provenance . 22

3.4 Enhancing readability . 30

3.5 The Y! system . 32

3.6 Case Studies . 36

3.7 Evaluation . 40

3.8 Related Work . 54

3.9 Conclusion . 55

4 Meta Provenance 56

4.1 Introduction . 56

4.2 Overview . 58

4.3 Meta Provenance . 62

4.4 Generating repair candidates . 71

4.5 Evaluation . 77

4.6 Related Work . 88

4.7 Conclusion . 89

5 Temporal Provenance 90

5.1 Introduction . 90

5.2 Overview . 92

5.3 Background . 98

5.4 Temporal provenance . 100

5.5 Improving readability . 108

5.6 The Zeno debugger . 110

5.7 Evaluation . 112

5.8 Related Work . 121

5.9 Conclusion . 122

6 Conclusion 123

vii

7 Future work 125

Appendix A Negative Provenance 127

A.1 Formal Model . 127

A.2 Responses . 136

Appendix B Meta Provenance 143

B.1 Meta models . 143

B.2 Helper functions . 158

B.3 Properties . 159

B.4 Scenarios . 162

Appendix C Temporal Provenance 165

C.1 Formal Model . 165

viii

List of Tables

3.1 Survey of networking problems on three mailing lists. 19

3.2 Queries we used in our experiments. 41

4.1 The diagnostic queries and numbers of repair candidates for NDlog. 80

4.2 Candidate repairs and their KS-test results for Q1. 82

4.3 Numbers of repair candidates for Trema and Pyretic. 87

B.1 Procedures for deriving concrete rules from template rules. 144

B.2 A description of helper functions. 157

B.3 Candidate repairs and their KS-test results for Q2 and Q3. 163

B.4 Candidate repairs and their KS-test results for Q4 and Q5. 164

ix

List of Figures

2.1 Example NDlog rules that describe a SDN. 7

2.2 Scenario: A faulty switch forwards DNS requests to the web server. 8

2.3 Classical network provenance example. 9

3.1 Negative event scenario. 17

3.2 Graph construction algorithm. 25

3.3 Static Pyretic syntax (from [96]). 37

3.4 Self-learning switch in Pyretic (from [96]). 38

3.5 NDlog translation of the self-learning switch. 39

3.6 Answer to Q1, as returned by Y!. 42

3.7 Topology for the BGP1 scenario. 43

3.8 Answer to Q6, as returned by Y!. 45

3.9 Size of the provenance with some or all heuristics disabled. 46

3.10 Raw provenance for query Q1 before post-processing. 47

3.11 Turnaround time for the queries in Table 3.2. 48

3.12 Scalability results for the fat-tree topology. 50

3.13 Scalability results for the linear topology. 52

x

4.1 Example SDN scenario. 58

4.2 Part of an SDN controller program written in NDlog. 59

4.3 µDlog grammar. 62

4.4 Meta rules for µDlog. 63

4.5 Algorithm for extracting repair candidates. 70

4.6 Meta provenance of a missing flow entry. 72

4.7 Meta provenance of a harmful flow entry. 74

4.8 Three repair candidates for the program in Figure 4.2. 75

4.9 Time to generate the repairs for each of the scenarios in Section 4.5.3. 83

4.10 The times needed to jointly backtest the first k repairs from Q1. . . 84

4.11 Scalability of repair generation phase with network size for Q1. . . 85

4.12 Scalability of repair generation phase with program size for Q1. . . 86

5.1 An example scenario. 92

5.2 A trace tree for the delayed computing requests in Figure 5.1. . . . 94

5.3 Time-aware provenance, as in DTaP [146], for the example scenario. 95

5.4 Temporal provenance for the example scenario. 96

5.5 Example scenarios (a)-(c), illustrating the annotation algorithm. . . 103

5.6 Algorithm for computing delay annotations. 104

5.7 Example scenarios (d)-(f), illustrating the annotation algorithm. . 105

5.8 Zipkin trace tree for scenario Z1. 113

5.9 Temporal provenance for scenario Z1. 114

5.10 Size of the temporal provenance for all scenarios. 115

5.11 Sketch of the raw temporal provenance for scenario Z1. 116

5.12 Turnaround for all queries in Section 5.7.1. 118

5.13 Scalability of turnaround time for R3. 119

5.14 Scalability of provenance size for R3. 120

A.1 Answer to Q2, as returned by Y! 135

A.2 Answer to Q3, as returned by Y!. 137

xi

A.3 Answer to Q4, as returned by Y!. 138

A.4 Answer to Q5, as returned by Y!. 140

A.5 Answer to Q7, as returned by Y!. 140

A.6 Answer to Q8, as returned by Y!. 141

A.7 Answer to Q9, as returned by Y!. 142

B.1 Meta rules for NDlog [83] (part 1). 145

B.2 Meta rules for NDlog [83] (part 2). 146

B.3 Meta rules for Trema [127] (part 1). 147

B.4 Meta rules for Trema [127] (part 2). 148

B.5 Meta rules for Trema [127] (part 3). 149

B.6 Meta rules for Pyretic [96] (part 1). 152

B.7 Meta rules for Pyretic [96] (part 2). 153

B.8 Meta rules for Pyretic [96] (part 3). 154

B.9 Meta rules for Pyretic [96] (part 4). 155

B.10 Algorithm for exploring repair candidates in cost order. 160

C.1 Algorithm for constructing temporal provenance graph (part 1). . 169

C.2 Algorithm for constructing temporal provenance graph (part 2). . 170

C.3 An example temporal provenance graph. 172

C.4 Illustration for the definition of direct and transitive delay. 181

C.5 An example temporal provenance graph with annotation intervals. 183

C.6 An example NDlog program. 188

C.7 An example of “speeding up” temporal provenance. 189

C.8 An example of the “speed up” operation. 191

C.9 An example of “poorly annotated” temporal provenance. 195

C.10 An example scenario where a faster task increases the overall delay. 196

xii

1
Introduction

Finding problems in complex distributed systems is notoriously hard, as the sub-

stantial literature on diagnostic tools [39, 58, 66, 89, 68, 120, 95, 125, 10, 27, 19,

42, 29, 142, 4, 76] can attest. A wide variety of problems can happen in distributed

systems: routers can be misconfigured [129], nodes can be hacked [40], and the

control software can have bugs [118]. Diagnosing problems can be difficult because

distributed systems are often constructed from many different hardware and software

components, where problems can manifest in subtle ways that have no obvious con-

nection with the original root cause. This is further complicated by the complexity

and scale of today’s distribute systems – even a campus network can contain as many

as hundreds of thousands of routing entries and access control rules [138], commer-

cial data centers can have tens of thousands of devices [14], and the configurations

and devices can interact with each other in subtle ways [18, 118].

Furthermore, diagnosing the problem is merely the first step. Once the root

cause of a problem is known, the operator must find an effective fix that not only

solves the problem at hand, but also avoids creating new problems elsewhere in the

1

network. Given the complexity of modern control software and configuration files,

finding a good fix can be as challenging as – or perhaps even more challenging than

– diagnostics, and it often requires considerable expertise on the part of the operator.

Recent research in data provenance [17] has introduced a promising approach to

diagnostics in distributed systems. In essence, provenance tracks causality. It works

by linking each event or state to its direct causes, such as the corresponding inputs

and the operation that was performed on them. By applying this idea recursively, it

is possible to “explain” a particular result by showing its direct causes, and their own

causes, and so on, until a set of base inputs is reached. The result is a comprehensive

causal explanation of how the result came to exist: it is a tree whose vertexes repre-

sent events or states and whose edges represent direct causal relationships. This idea

originated in the database community, and it has found many uses such as diagnos-

ing queries [21, 126] and tracking unexpected results [92]. The provenance concept

itself is not database-specific: it can broadly help in diagnostic situations where an

unexpected behavior must be tracked down to a set of “root causes”. Provenance

has previously been adapted for distributed systems as network provenance, and it has

been used, e.g., in a number of debuggers and forensic tools such as ExSPAN [147],

DTaP [146], SNP [145], SPP [22], and differential provenance [24].

However, prior work has considered network provenance only in terms of data

causality between events that did occur. While this has already been useful in ex-

plaining the presence of unexpected events (or configurations), there are important

classes of problems that it cannot handle.

• Missing events: The problem is not the presence of an unexpected event, but

rather the absence of an expected event, for instance: a certain server is no

longer receiving any requests of a particular type. Classical provenance systems

cannot diagnose such problems: it is not immediately clear where to start the

investigation; the debugger does not know where the missing requests would

normally come from, or how they would be generated.

2

• Software bugs: Operators must be able to explain and repair an observed

faulty behavior even when the root cause is a bug in the program (e.g., a copy-

and-paste typo). A fundamental challenge is that prior work primarily focus

on tracking dependencies between messages or configurations and fall short of

capturing fine-grain causality within programs; this is insufficient for exposing

software bugs and for suggesting possible repairs, because it is not even clear

which elements in the program contributed to the faulty behavior.

• Timing-related faults: The problem is not the presence or absence of an event,

but rather the wrong timing of an event. For instance, suppose that an admin-

istrator observes that a virtual machine takes unusually long to boot. The rea-

son is that a misconfigured machine is overloading the storage backend. The

administrator can inspect the provenance of the booting request and identify

the bottleneck (the storage backend). However, this is only the first step. The

operator must then find the causes of the bottleneck in order to fix the prob-

lem. Provenance provides little help with the latter step – in fact, the actual

root cause (the misconfigured machine) would not even appear in it! Classi-

cal provenance only captures functional causality, that is, events which directly

contributed to the occurrence of the observed symptom, this will miss the ac-

tual root causes that contributed only in terms of timing.

For network provenance to be usable more broadly in diagnosing networks and

distributed systems, we need to build systems that can effectively and efficiently

address the three classes of problems above.

1.1 Approach

In this dissertation, we argue that extensions to classical network provenance can

support deeper diagnosis of networks and distributed systems. We demonstrate this

by developing systems that address the problems identified above.

3

First, in order to diagnose missing events, we need to use the concept of negative

provenance. The key insight is counterfactual reasoning, that is, to examine all the

ways in which a missing event could have occurred, and then show, as a “root cause”,

the reason why each of them did not come to pass.

Second, to use provenance for correcting software bugs, we must reason about

the provenance of data not only in terms of the data it was computed from, but

also in terms of the parts of the program it was computed with. In addition, the

provenance must allow us to infer how the observed symptom might be affected by

changes to the program. Our key insight is to treat the program as just another kind

of data. We called the resulting provenance as meta provenance.

Third, in order for provenance to handle timing-related faults, we need to track

not only functional causality but also temporal causality, which is any event that

has contributed to the timing of the observed symptom, regardless of whether it

is functionally-related. The key technique to track temporal causality is capturing

and analyzing event orderings on distributed nodes. We referred to the resulting

provenance as temporal provenance.

1.2 Contribution and roadmap

In chapter 2, we provide some background material on network provenance and

discuss related work on diagnosis of networks and distributed systems. We then

make the following contributions:

• In chapter 3, we present negative provenance – a network provenance extension

that is able to generate causal explanations for not only the presence of events

but also the absence of events.

We present a formal model of positive and negative provenance in distributed

systems, as well as a concrete algorithm for tracking such provenance. In addi-

tion, we developed a set of heuristics for simplifying the resulting explanations

4

and for making them more readable to a human investigator. We present the

design and implementation of Y! (pronounced “Why not?”), a system for track-

ing positive and negative provenance and for answering queries about it, as well

as two case studies in the context of software-defined networking (SDN) and

border- gateway protocols (BGP).

• In chapter 4, we present meta provenance, which extends network provenance

to both program and data.

We present a concrete algorithm that can generate meta provenance, as well

as a prototype system that can collect the necessary data in SDNs and sug-

gest repairs. We have applied our approach to three different environments,

covering both declarative and imperative SDN languages. We report our expe-

rience from diagnosing practical faults in a real-world network setting, as well

as scalability and runtime overhead results.

• In chapter 5, we propose temporal provenance – a network provenance exten-

sion that allows us to find all causes to unexpected timing, regardless of whether

it is functionally-related.

We present a concrete algorithm that generates temporal provenance as well

as postprocessing techniques that improves the readability of temporal prove-

nance. We present Zeno, a prototype debugger for collecting temporal prove-

nance in both declarative and imperative environments and for diagnosing

timing-related faults. We present results of using Zeno to explain faulty tem-

poral behaviors observed in real-world incidents.

5

2
Background and related work

For ease of exposition, we first briefly review Network Datalog [83] in Section 2.1.

We then introduce provenance-based diagnosis using an example in Section 2.2.

We conclude by discussing the literature on provenance as well as on diagnosis of

networks and distributed systems in Section 2.3.

2.1 Network Datalog

For ease of exposition, we sometimes assume that the distributed system is written

in Network Datalog (NDlog) [83] while describing our approach.Note that our

approach is not specific to NDlog, or even to declarative languages; indeed, our case

studies have applied the approach both to NDlog and to imperative environments

(such as Pyretic [96], Trema [127], and Zipkin [148]). Next we briefly review the

features of NDlog that are relevant here.

In NDlog, the state of a node (switch, controller, or server) is modeled as a set

of tables. Each table contains a number of tuples. For instance, a SDN switch might

6

r1 packet(@S',H) :- packet(@S,H),flowTable(@S,H,A,P), link(@S,S',P), A == Fwd.
r2 flowTable(@S,H,A,P) :- missHandler(@C,H,S,A,P), packet(@C,H).

Figure 2.1: Example NDlog rules that describe a SDN.

contain a table called flowTable, and each tuple in this table might represent a flow

entry, or a SDN switch might have a table called packet that contains the packets

it has received from neighboring switches. Tuples can be manually inserted, or they

can be programmatically derived from other tuples; the former are called base tuples,

and the latter are referred to as derived tuples.

Figure 2.1 shows parts of a NDlog program that describe a (simplistic version

of) SDN. The program consists of rules that describe how tuples should be derived

from each other. In an NDlog rule, the head on the left is derived when all predicates

on the right are satisfied. For instance, rule r1 says that a packet(@S',H) tuple

should be derived on switch S' whenever there is also a incoming packet(@S,H)

tuple, a matching flowTable(@S,H,A,P) tuple, and a link(@S,S',P) tuple on the

last-hop switch S. Here, S and H are variables that must be instantiated with values

when the rule is applied; a packet(@S,80) tuple would create an packet(@S',80)

tuple. The @ operator specifies the node on which the tuple resides. (NDlog supports

other operators – e.g., arithmetic or aggregation operators – as well as user-defined

functions, but we do not consider these here.) A key advantage of a declarative

formulation is that causality is very easy to see: if a tuple packet(@S2,80)was derived

using the rule above, then packet(@S2,80) exists simply because packet(@S1,80),

flowTable(@S1,80,Fwd,1), and link(@S1,S2,1) exist.

To execute a NDlog program, the runtime compiles rules into chains of relational

operators called strands: a strand takes as input inserted, derived, or received tuples

that match any table predicate (e.g., packet(@S',H) or flowTable(@S,H,A,P) in

rule r1); such tuples are pushed into a equijoin between all table predicates; matches

from the equijoin go through selection filters, which evaluate selection predicates

(e.g., A == Fwd in rule r1); aggregate operations are translated after equijoins and

7

Web
Server

DNS
Server

SDN Controller

DNS
requests

Why does the Web server
get DNS requests?

Faulty
flow entry

Internet

S1 S2 S3

Admin

Figure 2.2: Scenario: A faulty switch forwards DNS requests to the web server.

selections; finally, a projection constructs the tuple to match the head of the rule (e.g.,

packet(@S',H) in rule r1). In order to execute NDlog rules on distributed nodes,

the runtime sends tuples with remote location identifiers through the network stack

to their respective destinations.

2.2 Provenance-based diagnosis

Before discussing the literature on provenance, we use a basic example to sketch

how provenance-based diagnosis works. Figure 2.2 illustrates a example scenario.

An operator manages a small SDN that connects a DNS server, a web server, and

the Internet. DNS requests arrive at the network and are forwarded by flow en-

tries on the SDN switches (rule r1 in Figure 2.1). Flow entries are installed by the

SDN controller (rule r2 in Figure 2.1). However, a switch with a faulty flow entry

forwards all DNS requests to the port that connects to the web server. The oper-

ator observes that the web server is receiving DNS requests. This is formulated as

a provenance query, such as, “What is the provenance of the DNS query?”. Ide-

ally, the provenance-based debugger should a) explain the observed symptoms (such

as, how the DNS request was initiated and forwarded), b) reveal the corresponding

root cause (such as, a recent switch configuration change), and c) propose remedies

or repairs to the problem (such as, reverting the configuration change).

8

EXIST(t=[2s,now], S2,
flowTable(@S2, DNS, Forward, Port5))

RECEIVE(t=2s, S2¬Controller,
flowTable(@S2, DNS, Forward, Port5))

SEND(t=1.8s, Controller®S2,
flowTable(@S2, DNS, Forward, Port5))

DERIVE(t=1.8s, Controller,
flowTable(@S2, DNS, Forward, Port5))

APPEAR(t=5s, Web Server,
packet(@Web Server, DNS))

V1

RECEIVE(t=5s, S2¬S1,
packet(@S2, DNS))

V2

SEND(t=5s, S1®S2,
packet(@S1, DNS))

V3

V4

V5

V6

V7

RECEIVE (t=1.8s, Controller ¬S2,
packet(@Controller, DNS))

V8
EXIST(t=[0s,now], Controller,

missHandler(@Controller, DNS, S2, Forward, Port5))

V9

EXIST(t=[0.5s,now], S2,
link(@S2, Web Server, Port5))

V10

APPEAR(t=0.5s, S2,
link(@S2, Web Server, Port5))

V11

... ...

...

Figure 2.3: Classical network provenance example, explaining the symptom from
the scenario in Figure 2.2 (how a DNS packet made its way to the web server).

As we have discussed in Section 2.1, provenance models the distributed system

as a giant database: the state of each node are stored in tables, and the programs are

modeled as declarative rules. The provenance of a tuple (or packet, or data item)

consists of the tuples from which it was directly derived. By applying this idea re-

cursively, it is possible to trace the provenance of a tuple in the output of a query

all the way to the “base tuples” in the underlying databases. The result is a prove-

nance graph – a comprehensive causal explanation of how the tuple came to exist. In

provenance graphs, vertexes represent events and edges indicate a direct causal rela-

tionships. Figure 2.3 shows an example that explains why the DNS request from the

scenario in Figure 2.2 appeared at the web server at time t = 5 (V1). The web server

had received the packet from switch S2, which in turn had received it from S1, and

ultimately from the Internet (V2–V3); the switch was connected to the web server

via port #5 (V10–V11) and had a flow entry that directed DNS packets to that port

(V4). The flow entry had been installed at t = 2 (V5–V7) because the switch had

9

forwarded an earlier DNS packet to the controller (V8), which had generated the

flow entry based on its configuration (V9).

2.3 Related work

2.3.1 Provenance

Provenance originated in the database community [17], which is defined as the de-

scription of the origins of data and the process by which it arrived at the database.

There are several common notions of database provenance [28]. Why provenance

explains why a tuple in the query result was produced; it collects “witnesses” from

input records, which are input tuples that are sufficient to ensure the existence of the

output tuple. How provenance explains how an output tuple was computed step by

step; for instance, provenance semirings [52] represent the derivation process using a

polynomial, where operators represent transformations and variables represent input

tuples or intermediate results. Where provenance describes the relationship between

source and output locations, where a location is a column of a tuple.

Provenance has found many interesting uses, such as estimating data qual-

ity [63], building replication recipes [43], diagnosing query answers [21], data

integration [53], managing probalistic data [111, 131], and reverse data manage-

ment [93, 94, 62]. For instance, Why-Not [21] provide query-based explanations

for SQL queries, which reveal over-constrained conditions in the queries and suggest

modifications to them; Meliou et al. [94] focuses on instance-based explanations for

missing answers, that is, how to obtain the missing answers by making modifications

to the value of base instances (tuples).

The provenance concept itself is not specific to databases: it can potentially help

in any situation where a system has shown some unexpected or suspicious behavior

that must now be investigated. For instance, provenance has been used for diagnos-

tics and forensics in operating systems [11, 59, 98, 44, 32].

10

2.3.2 Network provenance

Recently, there has been a line of work on network provenance, which adapt the

concept of provenance for diagnostics and forensics in distributed systems. These

systems sometime exhibit unexpected behaviors such as usual routes or dropped

packets, which may have happened due to configurations errors [129], software

bugs [118], or worse intentional attacks [40].

To adapt provenance for distributed systems, network provenance has dealt with

a number of challenges. ExSPAN [147] adapts provenance to the distributed nature

of networks; it partitions and distributes the provenance such that each node main-

tains only a portion of the information; diagnostic queries are evaluated via run-

ning distributed queries. DTaP [146] adds a temporal dimension to provenance;

this is useful because network states tends to be short-lived; to answer diagnostic

queries, the provenance must also maintain past states; however, this massively in-

creases the amount of provenance information that must be kept; therefore, DTaP

optimizes the overhead by exploiting trade-offs between maintenance overhead and

query latency. SNP [145] adapts provenance for forensics. In adversarial settings,

provenance components are prone to attacks. A hacked node can fabricate its local

provenance records or can lie to other nodes. To address this, SNP guarantees that

each piece of provenance information attributes to a single node, and use crypto-

graphic primitives to validate such information. SPP [22] considers the problem of

providing secured provenance information of high-speed network traffic. In such en-

vironments, cryptographic operations (that are used for securing provenance) cause

enormous overhead. To address this challenge, SPP uses a lightweight security pro-

tocol. Differential provenance [24], given a symptom event, find its root cause by

reasoning about the differences between its provenance and the provenance of a sim-

ilar “reference” event. Chen et al. [26] compresses provenance data in distributed

environments for storage savings. This dissertation generalizes network provenance

to addresses several open challenges, as explained in Section 1.2.

11

2.3.3 Verification and testing

Verification techniques have been used to ensure the correctness of networks and

distributed systems. Some systems statically analyze protocols or configurations

and check for correctness violations, as in ConfigChecker [6], FlowChecker [5],

Batfish [41], Header Space Analysis [68], NetPlumber [67], Anteater [89], Veri-

Flow [69], Libra [139], rcc [38], Cocoon [113], VMN [107], Delta-Net [61], and

Minesweeper [12]. There are also domain-specific languages for writing distributed

systems with verifiable guarantees [100, 71, 7, 96, 85, 75].

Testing is another effective approach to diagnostics. Hubble [66] uses probing to

find AS-level reachability problems. ATPG [138] generates test packets for ensuring

the liveness, reachability, and performance of a network. NICE [18] uses model

checking to test whether a given SDN program has specific correctness properties.

MCS [118] and DEMi [117] can extract a minimal execution trace that triggers a

faulty behavior. Buzz [37] uses symbolic execution to generate test packets.

These systems pro-actively find and eliminate certain types of bugs before actual

deployment. Consequently, operators can entirely avoid post-facto diagnosis of cov-

ered bugs. In comparison, provenance focuses on diagnosing unforeseen problems

at runtime. Furthermore, verification is a powerful technique and provides strong

guarantees, but it usually cannot handle dynamic or stateful interactions like the

ones where provenance is targeted at. For example, Header Space Analysis [68] can

find erroneous properties in a network by verifying its configurations. However, it

cannot handle a dynamic node whose behavior depends on past traffic.

2.3.4 Program analysis

Program analysis has been used to ensure the correctness of programs. The software

engineering community has used genetic programming [79] and symbolic execu-

tion [102] to fix programs. ClearView [109] mines invariants in programs, corre-

lates violations with failures, and generates fixes at runtime; ConfDiagnoser [140]

12

compares correct and undesired executions to find suspicious predicates in the pro-

gram; and Sidiroglou et al. [119] runs attack vectors on instrumented applications

and then generates fixes automatically. Given a specification of the output, program

slicing [3, 130, 108] captures relevant parts of the program by generating a reduced

program, which is obtained by eliminating statements from the original program.

These systems work well in explaining bugs or generating specific kinds of fixes

for programs. Network provenance focuses on diagnosing and repairing faults in

distributed systems, which is an orthogonal problem. Furthermore, these systems

primarily rely on heuristics, whereas our proposed approach uses provenance to track

causality. In comparison, tracking causality can incur higher cost at runtime, but

provenance can pinpoint concrete root causes, and therefore using provenance is

usually more precise than relying on heuristics.

2.3.5 Program synthesis

Recent work has applied program synthesis to distributed systems: NetEgg [137]

synthesizes SDN programs from example scenarios; Condor [116] synthesizes net-

work topologies; McClurg et al. [90], Genesis [122], Hojjat et at. [60], and Net-

Gen [114] synthesize network updates and configurations to satisfy invariants.

These systems often aim to derive a complete configuration of the network, and

thus require a full test suite or a formal specification, which are not easily available in

distributed systems. Network provenance is less ambitious: the goal is to explain and

sometimes repair a specific problem in the network. Consequently, network prove-

nance does not burden the operator with providing a comprehensive description of

her intent. Indeed, a simple description of the faulty event is sufficient. Further-

more, provenance handles more dynamic executions. For instance, both Hojjat et

at. [60] and NetGen [114] fix problems on the data plane, i.e., a snapshot of the

network configuration at a particular time; where as meta provenance repairs con-

trol programs and considers dynamic network configuration changes triggered by

13

network traffic. At the same time, program synthesis do usually provide stronger

guarantees: both Hojjat et at. [60] and NetGen [114] are proven to find the optimal

change to the data plane.

2.3.6 Tracing and profiling

These systems can handle complex and dynamic interactions, usually by using tools

such as statistical analysis, data mining, or custom heuristics. Distributed tracing

systems track the path of individual requests, and then explain the execution step by

step. Some of these systems infer causal relationships, usually from log messages and

configurations [29, 142, 129, 65, 8, 2, 39], or from external annotations [4, 76].

This has the advantage of being minimally intrusive to the runtime system. For in-

stance, the mystery machine [29] relies on “big data” techniques: it generates a large

number of potential hypotheses about program behavior and then rejects those that

are contradicted by empirical observations. CPI [141] learns normal and anoma-

lous behaviors by aggregating data from similar tasks and use statistical correlation

to identify culprits. These systems tend to work well when there is abundant training

data, but its power is limited when diagnosing rare anomalies or occasional glitches,

which are often the trickiest and most time-consuming problems to debug. X-ray [9]

can infer which root causes are most costly during an entire application execution;

it record costs of low-level operations at runtime and rely on dynamic information

flow analysis to associate these costs with potential root causes. Diagnosis can also be

done by comparing “good” and “bad” instances [104, 112, 99, 115] and analyzing

their differences. This tends to work well when both types of instances are available,

but this is not always the case.

In comparison, provenance is a white-box approach that explicitly records causal

relationships rather than inferring or mining them; this helps us avoid false posi-

tives (e.g., when events are correlated but not causally related) and false negatives

(e.g., in the case of sporadic problems for which the system does not have enough

14

data to mine). This approach is similar to tracing systems that rely on instrumen-

tation [120, 1, 95, 125, 10, 27, 19, 123, 135, 42, 58, 57, 121, 64]. For example,

Dapper [120] produces trace tress which describes RPCs triggered by a request and

the causal dependencies between them; Canopy [64] annotates traces with perfor-

mance data (such as, counters or stack traces), which enables engineers to perform

performance diagnosis. However, tracing systems usually rely on ad-hoc or protocol-

specific ways of capturing causality whereas provenance systematically tracks the full

detail of the execution and is generally applicable to distributed systems.

15

3
Negative Provenance

3.1 Introduction

Provenance can be a useful tool for debugging complex interactions, but there are

cases that it cannot handle. For instance, suppose that the administrator observes

that a certain server is no longer receiving any requests of a particular type. The key

difference to the earlier scenario is that the observed symptom is not a positive event,

such as the arrival of a packet, that could serve as a “lead” and point the administrator

towards the root cause. Rather, the observed symptom is a negative event: the absence

of packets of a certain type. Negative events can be difficult to debug: provenance

does not help, and even a manual investigation can be difficult if the administrator

does not know where the missing packets would normally come from, or how they

would be generated.

Nevertheless, it is possible to construct an explanation for negative events, using

the concept of negative provenance [62]. The key insight is to use counterfactual

reasoning, that is, to examine all possible causes that could have produced the missing

16

SDN Controller
Why is the HTTP server
not getting any requests?Faulty

flow entry

DNS and HTTP
requests

S1 S2 S3

DNS Server HTTP ServerInternet Admin

Figure 3.1: Negative event scenario: Web requests from the Internet are no longer
reaching the web server because a faulty program on the controller has installed an
overly general flow entry in the switch in the middle (S2).

effect. For instance, it might be the case that the missing packets could only have

reached the server through one of two upstream switches, and that one of them is

missing a flow entry that would match the packets. Based on the controller program,

we might then establish that the missing entry could only have been installed if a

certain condition had been satisfied, and so on, until we either reach a positive event

(such as the installation of a conflicting flow entry with higher priority) that can be

traced with normal provenance, or a negative root cause (such as a missing entry in

a configuration file).

Negative provenance could be a useful debugging tool for networks and dis-

tributed systems in general, but so far it has not been explored very much. A small

number of papers from the database community [62, 94, 21] have used negative

provenance to explain why a given database query did not return a certain tuple, but

we are not aware of any previous applications in the networking domain.

In Section 3.2, we provide an overview of positive and negative provenance. We

then make the following contributions:

• A formal model of positive and negative provenance in distributed systems, as

well as a concrete algorithm for tracking such provenance (Section 3.3);

17

• A set of heuristics for simplifying the resulting provenance graphs and for mak-

ing them more readable to a human investigator (Section 3.4);

• The design of Y! (pronounced “Why not?”), a system for tracking positive and

negative provenance and for answering queries about it (Section 3.5);

• Two case studies of Y!, in the context of software-defined networks and BGP

(Section 3.6); and

• An experimental evaluation of an Y! prototype, based on Mininet, Trema [127]

and RapidNet [84] (Section 3.7).

We discuss related work in Section 3.8 and conclude this chapter in Section 3.9.

3.2 Overview

In this section, we take a closer look at negative provenance, and we discuss some of

the key challenges. To distinguish classical provenance 2.3.2 from negative prove-

nance, we will refer to it as positive provenance.

3.2.1 Scenario: Network debugging

Figure 3.1 shows a simple example scenario that illustrates the problem we are fo-

cusing on. A network administrator manages a small network that includes a DNS

server, a web server, and a connection to the Internet. At some point, the administra-

tor notices that the web server is no longer receiving any requests from the Internet.

The administrator strongly suspects that the network is somehow misconfigured, but

the only observable symptom is a negative event (the absence of web requests at the

server), so there is no obvious starting point for an investigation.

Today, the only way to resolve such a situation is to manually inspect the network

until some positive symptom (such as requests arriving at the wrong server) is found.

In the very simple scenario in Figure 3.1, this is not too difficult, but in a data center

or large corporate network, it can be a considerable challenge. It seems preferable

18

Mailing list
Posts related Initial symptoms
to diagnostics Positive Negative

NANOG-user 29/144 14 (48%) 15 (52%)
floodlight-dev 19/154 5 (26%) 14 (74%)
Outages [105] 46/60 8 (17%) 38 (83%)

Table 3.1: Survey of networking problems and their symptoms, as discussed on three
mailing lists over a two-month period, starting on November 22, 2013.

for the administrator to directly ask the network for an explanation of the negative

event, similar to a “backtrace” in a conventional debugger. This is the capability we

seek to provide.

3.2.2 Case study: Broken flow entry

In the scenario from Figure 3.1, one possible reason for this situation is that the

administrator has configured the controller to produce a generic, low-priority flow

entry for DNS traffic and a specific, high-priority flow entry for HTTP traffic. If

both entries are installed, the system works as expected, but if the low-priority en-

try is installed first, it matches HTTP packets as well; thus, these packets are not

forwarded to the controller and cannot trigger the installation of the high-priority

entry. This subtle race condition might manifest only at runtime, e.g., when both

entries expire simultaneously during an occasional lull in traffic; thus, it could be

quite difficult to find.

Positive provenance is not helpful here because, as long as requests are still ar-

riving at the HTTP server, their provenance contains only the high-priority entry,

and when the requests stop arriving, there is no longer anything to generate the

provenance of !

3.2.3 How common are negative symptoms?

To get a sense of how common this situation is, we surveyed diagnostics-related posts

on three mailing lists that covers a mix of different diagnostic situations: NANOG-

19

user and Outages [105] (for faults and misconfigurations), and floodlight-dev (for

software bugs). To get a good sample size, we examined a two-month period for each

list, starting on November 22, 2013. In each post, we looked for the description of

the initial symptoms and classified them as either positive (something bad happened)

or negative (something good failed to happen).

Table 3.1 shows our results. While the proportion of positive and negative symp-

toms varies somewhat between lists, we find that the negative symptoms are consis-

tently in the majority – that is, it seems more common for problems to initially

manifest as the absence of something (e.g., a route, or a response to a probe packet)

than as the presence of something (e.g., high latencies on a path, or a DDoS attack).

Many of the problems we surveyed were eventually diagnosed, but we observe

that the process seems comparatively harder: there were significantly more (and

lengthier) email threads where negative symptoms resulted in inconclusive identifi-

cation of root causes. Moreover, troubleshooting negative symptoms often required

exploratory “guesswork” by the mailing list participants. Since this trial-and-error

approach requires lots of time and effort, it seems useful to develop better tool sup-

port for this class of problems.

3.2.4 Negative provenance

Our approach towards such a tool is to extend provenance to negative events. Al-

though these cannot be explained directly with positive provenance, there is a way

to construct a similar “backtrace” for negative events: instead of explaining how an

actual event did occur, as with positive provenance, we can simply find all the ways

in which a missing event could have occurred, and then show, as a “root cause”, the

reason why each of them did not come to pass.

Intuitively, we can use a kind of counterfactual reasoning to recursively generate

the explanations, not unlike positive provenance: for a web request to arrive at the

web server, a request would have had to appear at the rightmost switch (S3), which

20

did not happen. Such a request could only have come from the switch in the middle

(S2), and, eventually, from the switch on the left (S1). But S2 would only have sent

the request if there had been 1) an actual request, 2) a matching flow entry with a

forward action to S3, and 3) no matching higher-priority flow entry. Conditions 1)

and 2) were satisfied, but condition 3) was not (because of the DNS server’s flow

entry). We can then ask where the higher-priority flow entry came from, which can

be answered with positive provenance. We refer to such a counterfactual explanation

as negative provenance.

3.2.5 Challenges

To explain the key challenges, we consider two strawman solutions. First, it may

seem that there is a simpler way to investigate the missing HTTP requests from

Section 3.2.2: why not simply compare the system state before and after the requests

stopped arriving, and return any differences as the likely cause? This approach may

indeed work in some cases, but in general, there are way too many changes happening

in a typical system: even if we could precisely pinpoint the time where the problem

appeared, chances are that most of the state changes at that time would be unrelated.

Moreover, if the problem was caused by a chain of events, this method would return

only the last step in the chain. To identify the relevant events reliably, and to trace

them back to the root cause, we must have a way to track causality, which is, in

essence, what provenance represents.

Second, it may seem that, in order to track negative provenance, we can simply

take an existing provenance system, like ExSPAN or SNP, and associate each positive

provenance vertex with a negative “twin”. However, the apparent similarity between

positive and negative provenance does not go very deep. While positive provenance

considers only one specific chain of events that led to an observed event, negative

provenance must consider all possible chains of events that could have caused the

observed event. This disparity between existential and universal quantifiers has pro-

21

found consequences: for instance, negative provenance graphs are often infinite and

cannot be materialized, and responses to negative queries tend to be a lot more com-

plex, and thus need more sophisticated post-processing before they can be shown to

a human user. These are some of the challenges we address in Y!.

3.3 Basic Negative Provenance

In this section, we show how to derive a simple provenance graph for both positive

and negative events. For ease of exposition, we will assume that the distributed

system is written in Network Datalog (NDlog) [83], since this representation makes

provenance particularly easy to see. However, our approach is not specific to NDlog,

or even to declarative languages; indeed, our case studies in Section 3.6.1 apply it to

Pyretic [96], an existing imperative programming language for SDNs, as well as to

BGP debugging.

3.3.1 Goals

Before we define our provenance graph, we first state, somewhat informally, the

properties we would like to achieve. One way to describe what “actually happened”

in an execution of the system is by means of a trace: a sequence of message trans-

missions and arrivals, as well as base tuple insertions and deletions. (Other events,

such as derivations, follow deterministically from these.) Following [146], we can

then think of the provenance G(e,E) of an event e in a trace E as describing a series

of trace properties, which, in combination, cause e to appear – or, in the case of a

negative event, prevent e from appearing. We demand the following properties:

• Soundness: G(e,E) must be consistent with E ;

• Completeness: There must not be another execution E ′ that is also consistent

with G(e,E) but does not contain the event e; and

22

• Minimality: There must not be a subset of G(e,E) that is also sound and

complete.

Informally, soundness means that G(e,E) must describe events that actually hap-

pened in E – we cannot explain the absence of a tuple with the presence of a message

that was never actually sent. Completeness means that G(e,E) must be sufficient to

explain e, and minimality means that all events in G(e,E) must actually be relevant

(though there could be more than one provenance that is minimal in this sense). We

will state these properties formally in Section 3.3.7.

3.3.2 The provenance graph

Provenance can be represented as a DAG in which the vertices are events and the

edges indicate direct causal relationships. Thanks to NDlog’s simplicity, it is possible

to define a very simple provenance graph for it, with only ten types of event vertices

(based on [145]):

• EXIST([t1, t2],N,τ): Tuple τ existed on node N from time t1 to t2;

• INSERT(t,N,τ): Base tuple τ was inserted on node N at time t;

• DELETE(t,N,τ): Base tuple τ was deleted on node N at time t;

• DERIVE(t,N,τ): Derived tuple τ acquired support on N at time t;

• UNDERIVE(t,N,τ): Derived tuple τ lost support on N at time t;

• APPEAR(t,N,τ): Tuple τ appeared on node N at time t;

• DISAPPEAR(t,N,τ): Tuple τ disappeared on node N at time t;

• SEND(t,N→N′,±τ): ±τ was sent by node N to/from N′ at t;

• RECEIVE(t,N←N′,±τ): ±τ was received by node N to/from N′ at t; and

• DELAY(t,N→N′,±τ,d): ±τ, sent from N to N′ at t, took time d to arrive at N′.

23

The edges between the vertices correspond to their intuitive causal connections: tu-

ples can appear on a node because they a) were inserted as base tuples, b) were derived

from other tuples, or c) were received in a message from another node (for cross-node

rules). Messages are received because they were sent, and tuples exist because they

appeared. Note that vertices are annotated with the node on which they occur, as

well as with the relevant time; the latter will be important for negative provenance

because we will often need to reason about past events.

This model can be extended to support negative provenance by associating each

vertex with a negative “twin”:

• NEXIST([t1, t2],N,τ): Tuple τ never existed on node N in time interval [t1, t2];

• NINSERT([t1, t2],N,τ): Tuple τ was never inserted on N in [t1, t2];

• NDELETE([t1, t2],N,τ): Tuple τ was never removed on N in [t1, t2];

• NDERIVE([t1, t2],N,τ): τ was never derived on N in [t1, t2];

• NUNDERIVE([t1, t2],N,τ): τ was never underived on N in [t1, t2];

• NAPPEAR([t1,t2],N,τ): Tuple τ never appeared on N in [t1, t2];

• NDISAPPEAR([t1,t2],N,τ): Tuple τ never disappeared on N in [t1, t2];

• NSEND([t1, t2],N,τ): τ was never sent by node N in [t1, t2];

• NRECEIVE([t1, t2],N,τ): τ was never received by node N in [t1, t2]; and

• NARRIVE([t1, t2],N1→N2, t3,τ): τ was sent from N1 to N2 at t3 but did not arrive

within [t1, t2].

Again, the causal connections are the intuitive ones: tuples never existed because

they never appeared, they never appeared because they were never inserted, derived,

or received, etc. However, note that, unlike their positive counterparts, all negative

vertices are annotated with time intervals: unlike positive provenance, which can

24

function query(exist([t1, t2],N,τ))
S← /0
for each (+τ,N,t,r,c) ∈ Log: t1≤ t≤ t2

S← S ∪ { appear(t,N,τ,r,c) }
for each (−τ,N,t,r,c) ∈ Log: t1≤ t≤ t2

S← S ∪ { disappear(t,N,τ,r,c) }
return S

function query(appear(t,N,τ,r,c))
if BaseTuple(τ) then

return { insert(t,N,τ) }
else if LocalTuple(N,τ) then

return { derive(t,N,τ,r) }
else return{receive(t,N←r.N,τ)}

function query(insert(t,N,τ))
return /0

function query(derive(t,N,τ,τ:-τ1,τ2...))
S← /0
for each τi: if (+τi,N,t,r,c) ∈ Log:

S← S ∪ { appear(t,N,τi,c) }
else

tx ← max t ′< t: (+τ,N,t ′,r,1) ∈ Log
S← S ∪ { exist([tx,t],N,τi,c) }

return S
function query(nreceive([t1,t2],N,+τ))

S← /0, t0 ← t1−∆max
for each N′ ∈ senders(τ,N):

X←{t0≤ t≤ t2|(+τ,N′,t,r,1)∈Log}
tx ← t0
for (i=0; i< |X |; i++)

S←S∪{nsend((tx,Xi),N′,+τ),
narrive((t1,t2),N′→N,Xi,+τ)}

tx ← Xi
S← S ∪ { nsend([tx,t2],N′,+τ) }

return S

function query(receive(t,N1←N2,+τ))
ts ← max t ′< t: (+τ,N2,t ′,r,1) ∈ Log
return { send(ts,N1→ N2,+τ),

delay(ts,N2→N1,+τ,t− ts) }
function query(send(t,N→ N′,+τ))

find (+τ,N,t,r,c) ∈ Log
return { appear(t,N,τ,r) }

function query(nexist([t1,t2],N,τ))
if ∃t < t1 : (-τ,N,t,r,1) ∈ Log then

tx ← max t< t1: (-τ,N,t,r,1) ∈ Log
return { disappear(tx,N,τ),

nappear((tx,t2],N,τ) }
else return { nappear([0,t2],N,τ) }

function query(nderive([t1,t2],N,τ,r))
S← /0
for (τi, Ii) ∈ partition([t1,t2],N,τ,r)

S← S ∪ { nexist(Ii,N,τi) }
return S

function query(nsend([t1,t2],N,+τ))
if ∃t1< t< t2 : (-τ,N,t,r,1) ∈ Log then

return { exist([t1,t],N,τ),
nappear((t,t2],N,τ) }

else return { nappear([t1,t2],N,τ) }
function query(nappear([t1,t2],N,τ))

if BaseTuple(τ) then
return { ninsert([t1,t2],N,τ) }

else if LocalTuple(N,τ) then
return ∪

r∈Rules(N):Head(r)=τ
{ nderive([t1,t2],N,τ,r) }

else return {nreceive([t1,t2],N,+τ)}
function q(narrive([t1,t2],N1→N2,t0,+τ))

find (+τ,N2,t3,(N1,t0),1) ∈ Log
return { send(t0,N1→N2,+τ),

delay(t0,N1→N2,+τ,t3− t0) }

Figure 3.2: Graph construction algorithm. Some rules have been omitted; for
instance, the handling of +τ and −τ messages is analogous, and the rules for
insert/delete, appear/disappear, and derive/underive are symmetric.

25

refer to specific events at specific times, negative provenance must explain the absence

of events in certain intervals.

3.3.3 Handling multiple explanations

Sometimes the absence of an event can have more than one cause. For instance,

suppose there is a rule A:-B,C,D and, at some time t, none of the tuples B, C, or D

exist. How should we explain the absence of A in this case? One possible approach

would be to include the absence of all three tuples; this would be useful, for instance,

if our goal was recovery – i.e., if we wanted to find a way make A appear. However,

for diagnostic purposes, the resulting provenance is somewhat verbose, since the

absence of each individual tuple is already sufficient to explain the absence of A. For

this reason, we opt to include only a sufficient reason in our provenance trees.

In cases where there is more than one sufficient reason, the question arises which

one we should choose. Since we aim for compact provenance trees, we try to find

the reason that can be explained with the fewest vertices. For instance, if B and D are

derived tuples whose absence is due to a complex sequence of events on several other

nodes, whereas C is a base tuple that simply was never inserted, we would choose

the explanation that is based on C, which only requires a single NINSERT vertex.

In practice, it is not always easy to see which explanation is simplest (at least not

without fully expanding the corresponding subtree), but we can use heuristics to

find a good approximation, e.g., based on a look-ahead of a few levels down the tree.

3.3.4 Graph construction

Provenance systems like ExSPAN [147] rely on a materialized provenance graph:

while the distributed system is executing, they build some representation of the ver-

tices and edges in the graph, and they respond to queries by projecting out the rel-

evant subtree. This approach does not work for negative provenance because the

provenance graph is typically infinite: for instance, it contains NEXIST vertices for

26

every tuple that could potentially exist, and, for each vertex with that contains a time

interval I, it also contains vertices with intervals I′ ⊆ I.

For this reason, we adopt a top-down procedure for constructing the provenance

of a given (positive or negative) event “on demand”, without materializing the en-

tire graph. We define a function query(v) that, when called on a vertex v in the

provenance graph, returns the immediate children of v. Thus, the provenance of a

negative event e can be found by constructing a vertex ve that describes e (e.g., a

NEXIST vertex for an absent tuple) and then calling query recursively on ve until

leaf vertices are reached. The interval in ve can simply be some interval in which e

was observed; it does not need to cover the entire duration of e, and it does not need

to contain the root cause(s).

query needs access to a log of the system’s execution to date. We assume that the

log is a sequence of tuples (±τ,N, t,r,c), which indicate that τ was derived (+τ) or

underived (−τ) on node N at time t via rule r. Since some tuples can be derived in

more than one way, we include a derivation counter c, which is 1 when a tuple first

appears, and is increased by one for each further derivation. For tuples that node N

received from node N′, we set r = N′, and for base tuples, we set r =⊥ and c = 1.

Figure 3.2 shows part of the algorithm we use to construct positive and nega-

tive provenance. There are several points worth noting. First, the algorithm uses

functions BaseTuple(τ) and LocalTuple(N,τ) to decide whether a missing tuple τ

is a base tuple that was not inserted, a local tuple on node N that was not derived,

or a remote tuple that was not received. The necessary information is a byproduct

of the compilation of any NDlog program and is thus easily obtained. Second, to

account for propagation delays, the algorithm uses a constant ∆max that denotes

the maximum time a message can spend in the network and still be accepted by the

recipient; this is used to narrow down the time interval during which a missing mes-

sage could have been sent. Third, the algorithm can produce the same vertex more

than once, or semantically identical vertices with adjacent or overlapping intervals;

27

in these cases, it is necessary to coalesce the vertices using the union of their intervals

in order to preserve minimality. Finally, the algorithm uses two functions partition

and senders, which we explain next.

3.3.5 Explaining nonderivation

The partition function encodes a heuristic for choosing among several possible ex-

planations of a missing derivation. When explaining why a rule with multiple pre-

conditions did not derive a certain tuple, we must consider a potentially complex

parameter space. For instance, if A(@X,p):-B(@X,p,q,r),C(@X,p,q) did not derive

A(@X,10), we can explain this with the absence of B(@X,10,q,r), C(@X,10,q,r), or

a combination of both – e.g., by dividing the possible q and r values between the two

preconditions. Different choices can result in explanations of dramatically different

sizes once the preconditions themselves have been explained; hence, we would prefer

a partition of the parameter space (here, Q×R) that results in an explanation that

is as small as possible. In general, finding the optimal partition is at least as hard

as the SetCover problem, which is NP-hard; hence the need for a heuristic. In our

experiments, we use a simple greedy heuristic that always picks the largest available

subspace; if there are multiple subspaces of the same size, it explores both for a few

steps and then picks the one with the simplest subgraph.

3.3.6 Missing messages

The senders(±τ,N) function is used to narrow down the set of nodes that could

have sent a specific missing message ±τ to node N. One valid choice is to simply

return the set of all nodes in the system that have a rule for deriving τ; however, the

resulting provenance can be complex, since it must explain why each of these nodes

did not send ±τ. Hence, it is useful to enhance senders with other information that

may be available. For instance, in a routing protocol, communication is restricted

by the network topology, and messages can come only from direct neighbors.

28

In some cases, further nodes can be ruled out based on the specific message that

is missing: for instance, a BGP message whose AS path starts with 7 should come

from a router in AS 7. We do not pursue this approach here, but we hypothesize

that static analysis of the NDlog program could be used for inferences of this type.

3.3.7 Formal properties

We now briefly present the key definitions from our formal model (see Ap-

pendix A.1). An event d@n = (m,r, t,c,m′) represents that rule r was triggered

by message m and generated a set of (local or remote) messages m′ at time t, given

the precondition c (a set of tuples that existed on node n at time t). Specifically,

we write d@nrecv = (m@nsend ,−, t,1,m@nrecv) to denote a message m (from nsend is

delivered at nrecv at t). A trace E of a system execution is an ordered sequence of

events from an initial state S0, S0
d1@n1−−−−→S1

d2@n2−−−−→ ...
dx@nx−−−→Sx. We say a trace E is

valid, if (a) for all τk ∈ ci, τk ∈Si−1, and (b) for all di@ni = (mi,ri, ti,ci,m′i), either mi

is a base message from an external source, or there exists d j@n j = (m j,r j, t j,c j,m′j)

that precedes di@ni and mi ∈m′j. We say that E ′ is a subtrace of E (written as E ′ ⊆ E)

if E ′ consists of a subset of the events in E in the same order. In particular, we write

E |n to denote the subtrace that consists of all the events on node n in E . We say that

E ′ and E are equivalent (written as E ′ ∼ E) if, for all n, E ′|n = E |n.

To properly define minimality, we use the concept of a reduction: given negative

provenance G(e,E), if there exist vertices v1,v2 ∈ V (G), where the time interval of

v1 and v2 (t(v1) and t(v2) respectively) are adjacent, and v1 and v2 have the same

dependencies, then G can be reduced to G′ by combining v1 and v2 into v ∈ V (G′),

where t(v) = t(v1)∪ t(v2). Given two negative provenance G(e,E) and G′(e,E), we

say G′ is simpler than G (written as G′ < G), if any of the following three hold: (1) G′

is a subgraph of G; (2) G′ is reduced from G (by combining v1 and v2); or (3) there

exists G′′, such that G′ < G′′ and G′′ < G.

29

Using these definitions, we can formally state the three properties from Sec-

tion 3.3.1 as follows:

Property (Soundness): Negative provenance G(e,E) is sound iff (a) it is possible to

extract a valid subtrace Esub ⊆ E ′, such that E ′ ∼ E and (b) for all vertices in G(e,E),

their corresponding predicates hold in E .

Property (Completeness): Negative provenance G(e,E) is complete iff no trace E ′

exists such that a) E ′ assumes the same external inputs as G(e,E), and b) e exists in E ′.

Property (Minimality): Negative provenance G(e,E) is minimal, if no G′<G is sound

and complete.

We have proven that our provenance graph has all three properties. The proofs are

available in Appendix A.1.

3.4 Enhancing readability

So far, we have explained how to generate a “raw” provenance graph. This represen-

tation is correct and complete, but it is also extremely detailed: for instance, simple

and common events, such as message exchanges between nodes, are represented with

many different vertices. This “clutter” can make the provenance difficult to read.

Next, we describe a post-processing technique that can often simplify the prove-

nance considerably, by pruning unhelpful branches, and by summarizing common

patterns into higher-level vertices.

3.4.1 Pruning unhelpful branches

Logical inconsistencies: Some explanations contain logical inconsistencies: for in-

stance, the absence of a tuple τ1 with parameter space S1 might be explained by the

absence of a tuple τ2 with parameter space S2 ⊆ S1. If we can recognize such incon-

sistencies early, there is no need to continue generating the provenance until a set of

30

base tuples is reached – the precondition is clearly unsatisfiable. Thus, we can safely

truncate the corresponding branch of the provenance tree.

Failed assertions: Some branches explain the absence of events that the programmer

has already ruled out. For instance, if a branch contains a vertex nexist([t1, t2],N,P(5))

and it is known that P can only contain values between 0 and 4, the subtree below this

vertex is redundant and can be removed. We use programmer-specified assertions to

recognize situations of this type. The assertions do not have to be provenance-specific

– they can be the ones that a good programmer would write anyway.

Branch coalescing: A naïve execution of the algorithm in Figure 3.2 would result in

a provenance tree, but this tree would contain many duplicate vertices because many

events have more than one effect. To avoid redundancy, we combine redundant

vertices whenever possible, which turns the provenance tree into a DAG. If two

vertices have overlapping time intervals but are otherwise identical, we use the union

of the two intervals. (Note that a smart implementation of partition could take the

multiplicity of shared subtrees into account.)

Application-specific invariants: Some explanations may be irrelevant for the par-

ticular SDN that is being debugged. For instance, certain data – such as constants,

topology information, or state from a configuration file – changes rarely or never, so

the absence of changes, or the presence of a specific value, do not usually need to be

explained. One simple way to identify constant tables is by the absence of derivation

rules in which the table appears at the head. Optionally, the programmer can use a

special keyword to designate additional tables as constant.

3.4.2 Different levels of detail

Another way to make negative provenance graphs more useful for the human in-

vestigator is to display the provenance at different levels of detail. For instance, if a

message fails to appear at node N1 but could only have originated at node N2 several

hops away, the basic provenance tree would show, for each node on the path from

31

N1 to N2, that the message was not sent from there, because it failed to appear there,

because it was not received from the next-hop node, etc. We can improve readability

by summarizing these (thematically related) vertices into a single super-vertex. When

the graph is first shown to the human investigator, we include as many super-vertices

as possible, but the human investigator has the option to expand each super-vertex

into the corresponding fine-grained vertices if necessary.1

We have identified three situations where this summarization can be applied.

The first is a chain of transient events that originates at one node and terminates

at another, as in the above example; we replace such chains by a single super-vertex.

The second is the (common) sequence NEXIST([t1, t2],N,τ)←NAPPEAR([t1, t2],N,τ)

← NDERIVE([t1, t2],N,τ), which basically says that a tuple was never derived; we

replace this with a single ABSENCE([t1, t2],N,τ) super-vertex; its positive counterpart

EXISTENCE([t1, t2],N,τ) is used to replace a positive sequence. The third situation

is a derivation that depends on a small set of triggers – e.g., flow entries can only be

generated when a packet p is forwarded to the controller C. In this case, the basic

provenance will contain a long series of NAPPEAR([ti, ti+1],C, p) vertices that explain

the common case where the trigger packet p does not exist; we replace these with a

single super-vertex ONLY-EXIST({t1, t2, . . .} in [tstart, tend],C, p) that initially focuses

attention on the rare cases where the trigger does exist.

3.5 The Y! system

In this section, we describe the design of Y! (for “Why not?”), a system for capturing,

storing, and querying both positive and negative provenance.
1More generally, visualization and interactive exploration are useful strategies for working with

large provenance graphs [87].

32

3.5.1 Overview

Like any debugger, Y! is meant to be used in conjunction with some other appli-

cation that the user wishes to diagnose; we refer to this as the target application. Y!

consists of four main components: The provenance extractor (Section 3.5.2) moni-

tors the target application and extracts relevant events, such as state changes or mes-

sage transmissions. These events are passed to the provenance storage (Section 3.5.3),

which appends them to an event log and also maintains a pair of indices to enable

efficient lookups of negative events. When the user issues a provenance query, the

query processor uses the stored information to construct the relevant subtree of the

provenance graph, simplifies the subtree using the heuristics from Section 3.4, and

then sends the result to the frontend, so that the user can view, and interactively

explore, the provenance. We now explain some key components in more detail.

3.5.2 Provenance extractor

Recall from Section 3.3 that the input to the graph construction algorithm is a se-

quence of entries (±τ,N, t,r,c), which indicate that the c.th derivation of tuple τ ap-

peared or disappeared on node N at time t, and that the reason was r, i.e., a derivation

rule or an incoming message. The purpose of the provenance extractor is to capture

this information from the target application. This functionality is needed for all

provenance systems (not just for negative provenance), and it should be possible to

use any of the several approaches that have been described in the literature. For

instance, the target application can be annotated with calls to a special library when-

ever a relevant event occurs [97], the runtime that executes the target application

(e.g., an NDlog engine or a virtual machine) can report the relevant events [147], or

a special proxy can reconstruct the events from the sequence of messages that each

node sends and receives [145]. Note that the latter two approaches can be applied

even to legacy software and unmodified binaries.

33

3.5.3 Provenance storage

The provenance storage records the extracted events in an append-only log and makes

this log available to the query processor. A key challenge is efficiency: with positive

provenance, it is possible to annotate each event with pointers to the events that di-

rectly caused it, and, since there is a fairly direct correspondence between events and

positive vertices in the provenance graph, these pointers can then be used to quickly

navigate the graph. With negative provenance, however, it is frequently necessary to

evaluate range queries over the time domain (“Did tuple τ ever exist during interval

[τ1,τ2]”). Moreover, our partition heuristic requires range queries over other do-

mains, e.g., particular subspaces of a given table (“Are there any X(a,b,c) tuples on

this node with 5≤ b≤ 20?”) to decide which of several possible explanations might

be the simplest. If Y! evaluated such range queries by scanning the relevant part of

the log, performance would suffer greatly.

Instead, Y! uses R-trees [55] to efficiently access the log. R-trees are tree data

structures for indexing multi-dimensional data; briefly, the key idea is to group

nearby objects and to represent each group by its minimum bounding rectangle

at the next-higher level of the tree. Their key advantage in our setting is that they

can efficiently support multidimensional range queries.

On each node, Y! maintains two different R-trees for each table on that node.

The first, the current tree, contains the tuples that currently exist in the table; when

tuples appear or disappear, they are also added or removed from the current tree.

The second, the historical tree, contains the tuples that have existed in the past. State

tuples are added to the historical tree when they are removed from the current tree;

event tuples, which appear only for an instant, are added to the historical tree.

The reason for having two separate trees is efficiency. It is known that the per-

formance of R-trees degrades when elements are frequently inserted and removed

because the bounding rectangles will no longer be optimal and will increasingly over-

lap. By separating the historical tuples (where deletions can no longer happen) from

34

the current tuples, we can obtain a more compact tree for the former and confine

fragmentation to the latter, whose tree is much smaller. As an additional benefit,

since tuples are appended to the historical tree in timestamp order, splits in that tree

will typically occur along the time dimension; this creates a kind of “time index”

that works very well for our queries.

3.5.4 Pruning the historical tree

Since the historical tree is append-only, it would eventually consume all available

storage. To avoid this, Y! can reclaim storage by deleting the oldest tuples from the

tree. For instance, Y! can maintain a cut-off time Tcut ; whenever the tree exceeds

a certain pre-defined size limit, Y! can slowly advance the cut-off time and keep

removing any tuples that existed before that time until enough space has been freed.

To enable the user to distinguish between tuples that were absent at runtime and

tuples that have been deleted from the tree, the graph construction algorithm can,

whenever it accesses information beyond Tcut , annotate the corresponding vertex as

potentially incomplete.

3.5.5 Limitations

Like other provenance systems, Y!’s explanations are limited by the information that

is available in the provenance graph. For instance, Y! could trace a misconfigura-

tion to the relevant setting, but not to the person who changed the setting (unless

that information were added to the provenance graph). Y! also has no notion of a

program’s intended semantics: for instance, if a program has a concurrency bug that

causes a negative event, a query for that event will yield a detailed explanation of

how the given program produced that event. Only the operator can determine that

the program was supposed to do something different.

35

3.6 Case Studies

In this section, we describe how we have applied Y! to two application domains:

software-defined networks (SDN) and BGP routing. We chose these domains partly

because they yield interesting debugging challenges, and partly because they do not

already involve declarative code (applying Y! to NDlog applications is straightfor-

ward!). We illustrate two different implementation strategies: automatically extract-

ing declarative rules from existing code (for SDN) and writing a declarative descrip-

tion of an existing implementation (for BGP). We report results from several specific

debugging scenarios in Section 3.7.

3.6.1 SDN debugging

Our first case study is SDN debugging: as others [57] have pointed out, better de-

bugging support for SDNs is urgently needed. This scenario is challenging for Y! be-

cause SDNs can have almost arbitrary control programs, and because these programs

are typically written in non-declarative languages. Provenance can be extracted di-

rectly from imperative programs [97], but switching to a different programming

model would require some adjustments to our provenance graph. Hence, we use

automated transformation to extract declarative rules from existing SDN programs.

Language: Pyretic We chose to focus on the Pyretic language [96]. We begin by

briefly reviewing some key features of Pyretic that are relevant here. For details,

please see [96].

Pyretic programs can define a mix of static policies, which are immutable, and

dynamic policies, which can change at runtime based on system events. Figure 3.3

shows a summary of the relevant syntax. A static policy consists of actions, e.g.,

for forwarding packets to a specific port (fwd(port)), and predicates that restrict

these actions to certain types of packets, e.g., to packets with certain header values

(match(h=v)). Two policies a and b can be combined through parallel composition

36

Primitive actions:
A ::= drop | passthrough | fwd(port) | flood |

push(h=v) | pop(h) | move(h1=h2)
Predicates:
P ::= all_packets | no_packets | match(h=v) |

ingress | egress | P & P | (P | P) | ∼P
Query policies:
Q ::= packets(limit,[h]) | counts(every,[h])
Policies:
C ::= A | Q | P[C] | (C|C) | C>>C | if_(P,C,C)

Figure 3.3: Static Pyretic syntax (from [96]).

(a|b), meaning that a and b should be applied to separate copies of each packet,

and/or through sequential composition (a>>b), meaning that a should be applied to

incoming first, and b should then be applied to any packet(s) that a may produce.

For instance, match(inport=1)>>(fwd(2)|fwd(3)) says that packets that arrive on

port 1 should be forwarded to both ports 2 and 3.

Dynamic policies are based on queries. A query describes packets or statistics of

interest – for instance, packets for which no policy has been defined yet. When a

query returns new data, a callback function is invoked that can modify the policy.

Figure 3.4 (taken from [96]) shows a simple self-learning switch that queries for

packets with unknown MAC addresses; when a packet with a new source MAC m is

observed on port p, the policy is updated to forward future packets with destination

MAC m to port p.

Pyretic has other features besides these, and providing comprehensive support

for them is beyond the scope of our case study. Here, our goal is to support an

interesting subset, to demonstrate that our approach is feasible.

Translation to NDlog: Our Pyretic frontend transforms all static policies into a

“normal form” that consists of groups of parallel “atoms” (with a sequence of matches

and a single action) that are arranged sequentially. This form easily translates to

OpenFlow wildcard entries: we can give the highest priority to the atoms in the first

37

def learn(self):
def update(pkt):
self.P = if_(match(dstmac=pkt['srcmac']),
switch=pkt['switch']),
fwd(pkt['inport']), self.P)

q = packets(1,['srcmac','switch'])
q.when(update)
self.P = flood | q

def main():
return dynamic(learn)()

Figure 3.4: Self-learning switch in Pyretic (from [96]).

group, and assign further priorities to the following groups in descending order. To

match Pyretic’s behavior, we do not install the wildcard entries in the switch directly,

but rather keep them as base tuples in a special MacroRule table in the controller.

A second stage then matches incoming packets from the switches against this table,

and generates the corresponding microflow entries (without wildcards), which are

then sent to the switch.

For each query policy, the frontend creates a separate table and a rule that sends

incoming packets to this table if they match the query. The trigger is evaluated

using NDlog aggregations; for instance, waiting for a certain number of packets is

implemented with NDlog’s count<> operator.

Our frontend supports dynamic policies that append new logic in response to ex-

ternal events. These are essentially translated to a single NDlog rule that is triggered

by the relevant external event (specified as a query policy) and computes and installs

the new entry. The self-learning switch from Figure 3.4 is an example of such a pol-

icy; Figure 3.5 shows the rule that it is translated to. The rule directly corresponds

to the if-then part in Figure 3.4, which forwards packets to newly observed MAC

addresses to the correct port, and otherwise (in the else branch) falls back on the

existing policy. With such translation, it is easy to see the provenance of a dynamic

policy change: it is simply the packet that triggered the change.

38

MacroRule(@C,sw,inPort0,dstMAC0,act,Prio0) :-
UpdateEvent(@C,sw,srcMac), HighestP(@C,Prio),
PktIn(@sw,inPort1,srcMAC,dstMAC1), inPort0=*,
dstMAC0=srcMAC, act=fwd(inPort1), Prio0=Prio1+10

Figure 3.5: NDlog translation of the self-learning switch.

3.6.2 BGP debugging

Our second case study focuses on BGP. There is a rich literature on BGP root-cause

analysis, and a variety of complex real-world problems have been documented. Here,

we focus exclusively on the question whether Y! can be used to diagnose BGP prob-

lems with negative symptoms, and we ignore many other interesting questions, e.g.,

about incentives and incremental deployment. (Briefly, we believe that the required

infrastructure and the privacy implications would be roughly comparable to those

of [124]; in a partial deployment, some queries would return partial answers that are

truncated at the first vertex from a network outside the deployment.)

To apply Y!, we follow the approach from [145] and write a simple declarative

program that describes how the BGP control plane makes routing decisions. Our

implementation is based on an NDlog encoding of a general path vector protocol

provided by the authors of [128]; since this code was generic and contained no

specific policies, we extended it by adding simple routing policies that respect the

Gao-Rexford guidelines and import/export filters that implements the valley-free

constraint. This yielded essentially a declarative specification of an ISP’s routing

behavior. With this, we could capture BGP message traces from unmodified routers,

as described in [145], and infer the provenance of the routing decisions by replaying

the messages to our program.

39

3.7 Evaluation

In this section, we report results from our experimental evaluation of Y! in the context

of SDNs and BGP. Our experiments are designed to answer two high-level questions:

1) is negative provenance useful for debugging realistic problems? and 2) what is the

cost for maintaining and querying negative provenance?

We ran our experiments on a Dell OptiPlex 9020 workstation, which has a 8-

core 3.40 GHz Intel i7-4770 CPU with 16 GB of RAM. The OS was Ubuntu 13.04,

and the kernel version was 3.8.0.

3.7.1 Prototype implementation

For our experiments, we built a prototype of Y! based on the RapidNet declarative

networking engine [84]. We instrumented RapidNet to capture provenance for the

NDlog programs it executes, and we added provenance storage based on the R-

tree implementation from [56]. To experiment with SDNs, we set up networks

in Mininet [78]. Since NDlog is not among the supported controllers, we wrote a

simple proxy for Trema [127] that translates controller messages to NDlog tuples and

vice versa. To capture the provenance of packets flowing through the network, we set

up port mirroring on the virtual switches and used libpcap to record packet traces

on the mirrored ports. Since Y!’s provenance graphs only use the packet headers, we

capture only the first 96 bytes of header and its timestamp.

To demonstrate that our approach does not substantially affect throughput and

latency, we also built a special Trema extension that can capture the provenance di-

rectly, without involving RapidNet. This extension was used for some of experiments

in Section 3.7.5, as noted there. Other than that, we focused more on functionality

and complexity than on optimizing performance; others have already shown that

provenance can be captured at scale [82], and the information Y! records is not sub-

stantially different from theirs – Y! merely uses it in a different way.

40

Q1 SDN1 NAPPEAR([t1,t2],packet(@D,PROTO=HTTP))
Q2 SDN2 NAPPEAR([t1,t2],packet(@D,PROTO=ICMP))
Q3 SDN3 NAPPEAR([t1,t2],packet(@D,PROTO=SQL))
Q4 SDN2 APPEAR (t3,packet(@D,PROTO=ICMP))
Q5 SDN3 APPEAR (t3,packet(@D,PROTO=SQL))
Q6 BGP1 NAPPEAR([t1,t2],bestroute(@AS2,TO=AS7))
Q7 BGP2 NAPPEAR([t1,t2],packet(@AS7,SRC=AS2))
Q8 BGP3 NAPPEAR([t1,t2],bestroute(@AS2,TO=AS7))
Q9 BGP4 NAPPEAR([t1,t2],bestroute(@AS2,TO=AS7))

Table 3.2: Queries we used in our experiments.

3.7.2 Usability: SDN debugging

For our SDN experiments, we used Mininet to create the following three represen-

tative SDN scenarios:

• SDN1: Broken flow entry. A server receives no requests because an overly

general flow entry redirects them to a different server (Section 3.2.2).

• SDN2: MAC spoofing. A host, which is connected to the self-learning switch

from Figure 3.4, receives no responses to its DNS lookups because another

machine has spoofed its MAC address.

• SDN3: Incorrect ACL. A firewall, intended to allow Internet users to access a

web server W and internal users a database D, is misconfigured: Internet users

can access only D, and internal users only W .

Each scenario consists of four hosts and three switches. For all three scenarios, we

use Pyretic programs that have been translated to NDlog rules (Section 3.6.1) and

are executed on RapidNet; however, we verified that each problem also occurs with

the original Pyretic runtime. Note that, in all three scenarios, positive provenance

cannot be used to diagnose the problem because there is no state whose provenance

could be queried.

The first three queries we ask are the natural ones in these scenarios: in SDN1,

we ask why the web server is not receiving any requests (Q1); in SDN2, we ask

41

ABSENCE(t=[15s,185s], HTTP Server,
packet(@HTTP Server, HTTP))

V1

ABSENCE(t=[1s,185s], S2,
flowTable(@S2, HTTP, Forward, Port1))

V2

EXISTENCE(t={81s,82s,83s} in [15s,185s], S1,
packet(@S1, HTTP))

V3-­‐a

EXISTENCE(t=[81s,now], S1,
flowTable(@S1, Ingress HTTP,Forward,Port1))

V3-­‐b

EXISTENCE(t={81s,85s,86s}, S2,
flowTable(@S2, HTTP, Forward, Port2))

V4

EXISTENCE(t=[81s], Controller,
packetIn(@Controller, HTTP))

V5-­‐a

ABSENCE(t=[1,80s], S2,
flowTable(@S2, HTTP,*,*))

V5-­‐b

ABSENCE(t=[1,80s], S1,
packet(@S1, HTTP))

V5-­‐c

EXISTENCE(t=[81s], Controller,
policy(@Controller, Inport=1,Forward,Port2)

V6-­‐a

EXISTENCE(t=[63s], Controller,
packetIn(@Controller, DNS))

V6-­‐b

EXISTENCE(t=[62s], S1,
packet(@S1, DNS))

V6-­‐c

EXISTENCE(t=[61s,now], S1,
flowTable(@S1, Ingress DNS,Forward,Port1))

V6-­‐d

ABSENCE(t=[1,61s], S1,
flowTable(@S1, DNS,*,*))

V6-­‐e

ABSENCE(t=[1,61s], S1,
packet(@S1, DNS))

V6-­‐f

AND

AND

AND
AND

AND

The server did not get any HTTP request
since t=15s because the flow entry was

missing at an upstream switch.

The flow entry could only has been
inserted in response to a HTTP packet.
Such packets only arrived at t=81s, 82s, 83s.

But that HTTP packet was handled by an
existing flow entry at that switch, and was

therefore not sent to the controller.

The existing flow entry was derived from
a policy which was triggered by a DNS

packet at t=62s. ...

...

Figure 3.6: Answer to Q1, as returned by Y!.

why there are no responses to the DNS lookups (Q2); and in SDN3, we ask why

the internal users cannot get responses from the database (Q3). To exercise Y!’s

support for positive provenance, we also ask two positive queries: why a host in

SDN2 did receive a certain ICMP packet (Q4), and why the internal database is

receiving connections from the Internet (Q5). To get a sense of how useful negative

provenance would be for debugging realistic problems in SDNs, we ran diagnostic

queries in our three scenarios and examined the resulting provenance. The first five

rows in Table 3.2 show the queries we used. The full responses are in Appendix A.2;

here, we focus on Q1 from scenario SDN1, which asks why HTTP requests are no

longer appearing at the web server.

42

AS 5 AS 6 AS 7AS 4AS 3

AS 1

AS 8 AS 9

AS 2

Figure 3.7: Topology for the BGP1 scenario.

Figure 3.6 shows the provenance generated by Y! for Q1. The explanation reads

as follows: HTTP requests did not arrive at the HTTP server (V1) because there

was no suitable flow entry at the switch (V2). Such an entry could only have been

installed if a HTTP packet had arrived (V3a+b) and caused a table miss, but the

latter did not happen because there already was an entry – the low-priority entry

(V4) – that was forwarding HTTP packets to a different port (V5a-c), and that

entry had been installed in response to an earlier DNS packet (V6a-f). We believe

that “backtraces” of this kind would be useful in debugging complex problems.

3.7.3 Usability: BGP debugging

For our BGP experiments, we picked four real BGP failure scenarios from our survey

(Section 3.2.3):

• BGP1: Off-path change. In the topology from Figure 3.7, AS 2 initially has

a route to AS 7 via AS 1,3,4,5,6, but loses that route when a new link is added

between AS 8 and AS 9 (neither of which is on the path). This is a variant of

a scenario from [124].

• BGP2: Black hole. A router advertises a spurious /32 route to a certain host,

creating a “black hole” and preventing that host from responding to queries.

• BGP3: Link failure. An ISP temporarily loses connectivity, due to a link

failure at one of its upstream ASes.

43

• BGP4: Bogon list. A network cannot reach a number of local and federal

government sites from its newly acquired IP prefix because that prefix was on

the bogon list earlier.

We set up small BGP topologies, using between 4 and 18 simulated routers, to

recreate each scenario. In each scenario, we then asked one query: why AS 2 in

scenario BGP1 has no route to AS 7 (Q6), why a host in scenario BGP2 cannot reach

the black-holed host (Q7), why the ISP in scenario BGP3 cannot reach a certain AS

(Q8), and why the network in scenario BGP4 cannot connect to a particular site

(Q9). Table 3.2 shows the specific queries. As expected, Y! generated the correct

response in all four scenarios; here, we focus on one specific query (Q6/BGP1) due to

lack of space. The other results (available in Appendix A.2) are qualitatively similar.

Figure 3.8 shows the provenance generated by Y! for query Q6. The explanation

reads as follows: AS 2 has no route to AS 7 (V1-a) because its previous route expired

(V1-b) and it has not received any new advertisements from its provider AS 1 (V1-

c). This is because AS 1 itself has no suitable route: its peer AS 3 stopped advertising

routes to AS 7 (V2a-c) because AS 3 only advertises customer routes to AS 7 due

to the valley-free constraint (V3-a). AS 3 previously had a customer route but it

disappeared (V3-b). Although AS 3 continues to receive the customer route from

AS 4 (V3-c), the peer route through AS 8 (V4) is preferred because it has a shorter

AS path (V3-d). The provenance of the peer route could be further explored by

following the graph beyond V4.

3.7.4 Complexity

Recall from Section 3.4 that Y! uses a number of heuristics to simplify the provenance

before it is shown to the user. To quantify how well these heuristics work, we re-

ran the queries in Table 3.2 with different subsets of the heuristics disabled, and we

measured the size of the corresponding provenance graphs.

44

ABSENCE(t=[55s,65s], AS2, bestRoute(@AS2,
Prefix=AS7, Type=Any, Cost=Any, Next=Any))

TIMEOUT(t=[39s], AS2, bestRoute(@AS2,
Prefix=AS7, Type=Provider , Cost=6, Next=AS1)) ABSENCE(t=[39s,65s], AS2, advertisement(@AS2,

Prefix=AS7, Cost=Any, Next=Any))
ABSENCE(t=[39s,65s], AS1, bestRoute(@AS1,
Prefix=AS7, Type=Any, Cost=Any, Next=Any))

TIMEOUT(t=[37s], AS1, bestRoute(@AS1,
Prefix=AS7, Type=Peer, Cost=5, Next=AS3))

ABSENCE(t=[37s,65s], AS1, advertisement(@AS1,
Prefix=AS7, Cost=Any, Next=Any))

ABSENCE(t=[37s,65s], AS3, bestRoute(@AS3
Prefix=AS7, Type=Customer, Cost=Any, Next=Any))

DELETE(t=[37s], AS3, bestRoute(@AS3,
Prefix=AS7, Type=Customer, Cost=4, Next=AS4))

EXISTENCE(t=[38s,40s, …, 64s], AS3,
advertisement(@AS3, Prefix=AS7, Cost=4, Next=AS4)) EXISTENCE(t=[37s,65s], AS3, bestRoute(@AS3,

Prefix=AS7, Type=Peer, Cost=3, Next=AS8)) ...
EXISTENCE(t=[37s], AS3, advertisement(@AS3,

Prefix=AS7, Cost=3, Next=AS8))

AND

AND

AND

AND

V1-­‐a

V1-­‐b
V1-­‐c

V2-­‐a

V2-­‐c

V2-­‐b

V3-­‐a

V3-­‐b

V3-­‐c
V3-­‐d

V4

AS2’s previous route to AS7 expired at
t=39s, and after that, AS2 never received
any advertisement from its provider (AS1).

AS1 stopped advertising route to AS2 because its
own route to AS7 expired at t=37s, and since then,
its peer (AS3) has sent no more advertisements.

AS3 would only advertise customer routes to AS1.
At t=37s, its route to AS7 got updated to a peer route.
Although after t=37s, AS3 continued to receive customer
routes from AS4, its best route remains the peer route
because it is shorter.

At t=37s, AS3 received the
peer route to AS7 from AS8. ...

Figure 3.8: Answer to Q6, as returned by Y!.

Figure 3.9 shows our results. Without heuristics, the provenance contained be-

tween 55 and 386 vertices, which would be difficult for a human user to interpret.

The pruning heuristics from Section 3.4.1 generally remove about half the vertices,

but the size of the provenance remains substantial. However, the super-vertices from

Section 3.4.2 are able to shrink the provenance considerably, to between 4 and 24

vertices, which should be much easier to interpret.

To explain where the large reduction comes from, we show the raw provenance

tree (without the heuristics) for Q1 in Figure 3.10. The structure of this tree is

typical of the ones we have generated: a “skeleton” of long causal chains, which

typically correspond to messages and events propagating across several nodes, and a

45

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

V
e

rt
ic

e
s
 i
n

 r
e

s
p

o
n

s
e

Query

Without heuristics
Pruning only

Pruning + Super-vertices

Figure 3.9: Size of the provenance with some or all heuristics disabled.

large number of small branches. The pruning heuristics remove most of the smaller

branches, while the super-vertices “collapse” the long chains in the skeleton. In

combination, this yields the much-simplified tree from Figure 3.6.

3.7.5 Run-time overhead

Disk storage: Y! maintains two data structures on disk: the packet traces and the

historical R-tree. The size of the former depends on the number of captured packets;

each packet consumes 120 bytes of storage. To estimate the size of the latter, we ran

a program that randomly inserted and removed flowEntry tuples, and we measured

the number of bytes per update. We found that, for trees with 103 to 106 updates,

each update consumed about 450 byte of storage on average.

These numbers allow us to estimate the storage requirements in a production

network. We assume that there are 400 switches that each handle 45 packets per

second, and that the SDN controller generates 1,200 flow entries per second. Under

these assumptions, a commodity hard disk with 1TB capacity could easily hold the

provenance for the most recent 36 hours. If necessary, the storage cost could easily

be reduced further, e.g., by compressing the data, by storing only a subset of the

46

root

V1

V3-a

V3-a V3-a

V3-b

V2

V4

V6-a

V5-a

...

...

...

Materialized Vertices
Intermediate Vertices
Inconsistent/Repeated Vertices

V# Labels in Summarized Tree

More Vertices...

Figure 3.10: Raw provenance for query Q1 before post-processing.

header fields, and/or by removing redundant copies of the headers in each flow.

Latency and throughput: Maintaining provenance requires some additional pro-

cessing on the SDN controller, which increases the latency of responses and decreases

throughput. We first measured this effect in our prototype by using Cbench to send

streams of PacketIn messages, which is a current standard in evaluating OpenFlow

controllers [35]. We found that the 95th percentile latency increased by 29%, from

48.38 ms to 62.63 ms, when Y! was enabled; throughput dropped by 14%, from

56.0 to 48.4 requests per second.

However, these results are difficult to generalize because RapidNet’s performance

as an SDN controller is not competitive with state-of-the-art controllers, even with-

out Y!. We therefore repeated the experiment with our Y! extension for native Trema

(Section 3.7.1); here, adding Y! increased the average latency by only 1.6%, to 33

microseconds, and decreased the average throughput by 8.9%, to 100,540 Pack-

47

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

T
im

e
 (

s
e

c
o

n
d

s
)

Query

Graph construction
R-Tree lookups

Packet recorder lookups
Postprocessing

Figure 3.11: Turnaround time for the queries in Table 3.2.

etIn messages per second. We note that this comparison is slightly unfair because

we manually instrumented a specific Trema program to work with our extension,

whereas the RapidNet prototype can work with any program. However, adding in-

strumentation to Trema programs is not difficult and could be automated. More

generally, our results suggest that capturing provenance is not inherently expensive,

and that an optimized RapidNet could potentially do a lot better.

3.7.6 Query processing speed

When the user issues a provenance query, Y! must recursively construct the response

using the process from Section 3.3.4 and then post-process it using the heuristics

from Section 3.4. Since debugging is an interactive process, a quick response is im-

portant. To see whether Y! can meet this requirement, we measured the turnaround

time for the queries in Table 3.2, as well as the fraction of time consumed by Y!’s

major components.

Figure 3.11 shows our results. We make two high-level observations. First, the

turnaround time is dominated by R-tree and packet recorder lookups. This is ex-

pected because the graph construction algorithm itself is not very complex. Second,

48

although the queries vary in complexity and thus their turnaround times are diffi-

cult to compare, we observe that none of them took more than one second; the most

expensive query was Q9, which took 0.33 seconds to complete.

3.7.7 Scalability

We do not yet have experience with Y!, or negative provenance, in a large-scale de-

ployment. However, we have done a number of experiments to get an initial im-

pression of its scalability.

Complexity: In our first experiment, we tested whether the complexity of the prove-

nance increases with the number of possible traffic sources. We simulated a four-

layer fat-tree topology with 15 switches, and we placed the client and the server on

different leaves, to vary the hop distance between them from 2 to 6. Our results

for running the learning-switch query (Q1) are shown in Figure 3.12(a) (the bars

are analogous to Figure 3.9). As expected, the size of the raw provenance for Q1

grew substantially – from 250 to 386 vertices – because 1) there number of pos-

sible sources for the missing traffic increased, because each additional hop brings

additional branches on the backtrace path and 2) each additional hop required extra

vertices to be represented in the provenance. But the first effect was mitigated by

our pruning heuristics, since the extra sources were inconsistent with the network

state, and the second effect was addressed by the summarization, which merged the

vertices along the propagation path into a single super-vertex. Once these heuristics

had been applied, the size of the provenance was 16 vertices, independent of the

number of hops.

Storage: In our second experiment, we simulated three-layer fat-tree topologies of

different sizes (i.e., with different node degrees); each edge switch was connected to

a fixed number of active hosts that were constantly sending HTTP requests to the

server. Figure 3.12(b) shows how Y!’s storage requirements grew with the number of

switches in the network. As expected, the size of both the pcap trace and the R-tree

49

 0

 100

 200

 300

 400

 500

 600

2 4 6

V
e

rt
ic

e
s
 i
n

 r
e

s
p

o
n

s
e

Hop distance between client and server

Without heuristics
Pruning only
Pruning+Super-vertices

(a) Size of query results

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 10 20 30 40 50 60

T
o

ta
l
s
to

ra
g

e
 (

M
B

)

Number of switches

R-tree
Pcap trace

(b) Use of storage space

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 19 28 37 46 55

T
im

e
 (

s
e

c
o

n
d

s
)

Number of switches

Graph construction
R-Tree lookups
Packet recorder lookups
Postprocessing

(c) Query turnaround time

Figure 3.12: Scalability results for the fat-tree topology.

50

was roughly proportional to the size of the network; this is expected because a) each

new switch added a fixed number of hosts, and b) the depth of the tree, and thus

the hop count between the server and its clients, remained constant. Generally, the

storage requirement depends on the rate at which events of interest (packet trans-

missions, routing changes, etc.) are captured, as well as on the time for which these

records are retained.

Query speed: Our third experiment is analogous to the second, except that we

issued a query at the end and measured its turn-around time. Figure 3.12(c) shows

our results. The dominant cost was the time it took to find packets in the pcap

trace; the R-tree lookups were much faster, and the time needed to construct and

post-process the graph was so small that it is difficult to see in the figure. Overall,

the lookup time was below one second even for the largest network we tried.

So far, we have discussed the result on fat-tree topologies, where the network

diameter is bounded by tree height. To get a sense of how Y! scales in networks

with even larger diameters, we focused on a linear topology. In each experiment,

we changed the number of hops between the HTTP server and client. The other

settings remain the same. For example, the number of packets sent through the

network is stable.

Complexity: We tested whether the complexity of the provenance (number of ver-

tices) increases with the hop count between the server and the client. Our results are

shown in Figure 3.13(a). As expected, the size of the raw provenance for Q1 grew

substantially from 363 to 820 vertices. However once all the heuristics had been

applied, the size of the provenance was 16 vertices, independent of the hop count.

The reason is similar to what we described in Section 3.7.7.

Storage: Figure 3.13(b) shows how Y!’s storage requirements grew with the number

of switches in the network. As expected, the size of both the pcap trace and the R-tree

was roughly proportional to the size of the network. The pcap trace grows because

when network grows, each packet will traverse more switches, and each switch will

51

 0

 200

 400

 600

 800

 1000

 1200

10 16 22 28 34

V
e

rt
ic

e
s
 i
n

 r
e

s
p

o
n

s
e

Hop distance between client and server

Without heuristics
Pruning only
Pruning+Super-vertices.

(a) Size of query results

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35

T
o

ta
l
s
to

ra
g

e
 (

M
B

)

Number of switches

R-tree
Pcap trace

(b) Use of storage space

 0

 0.2

 0.4

 0.6

 0.8

 1

4 10 16 22 28 34

T
im

e
 (

s
e

c
o

n
d

s
)

Number of switches

Graph construction
R-Tree lookups
Packet recorder lookups
Postprocessing

(c) Query turnaround time

Figure 3.13: Scalability results for the linear topology.

52

append the event to its trace. The R-tree grows because handling packets at each

additional switch will generate state changes, which are recorded in R-trees.

Query speed: We issued a query Q2 at the end and measured its turn-around time.

Figure 3.13(c) shows our results: the query speed scales linearly with the number of

switches. The dominant cost was the time it took to find packets in the pcap trace;

the R-tree lookups were much faster, and the time needed to construct and post-

process the graph was so small that it is difficult to see in the figure. This is expected

because the pcap trace query is not optimized. As we mentioned in Section 3.7.7,

an additional time index should reduce the time significantly.

In all our experiments, the complexity of explanation is reduced considerably by

Y!’s post-processing heuristics, which reduced the number of vertices by more than

an order of magnitude. Y!’s main run-time cost is the storage it needs to maintain a

history of the Y!’s past states.

Possible optimizations: Since our implementation has not been optimized, some

of the costs could grow quickly in a large-scale deployment. For instance, in a data

center with 400 switches that handle 1 Gbps of traffic each, our simple approach of

recording pcap traces at each switch would consume approximately 30 GB of storage

per second for the date center, or about 75 MB for each switch. Packet recorder

lookups, which compromise a major portion of query latency, in such a large trace

would be limited by disk read throughput, and could take minutes. However, we

note that there are several ways to reduce these costs; for instance, techniques from

the database literature – e.g., a simple time index – could be used to speed up the

lookups, and the storage cost could be reduced by applying filters.

3.7.8 Summary

Our results show that Y! – and, more generally, negative provenance – can be a useful

tool for diagnosing problems in networks: the provenance of the issues we looked

at was compact and readable, and Y! was able to find it in less than a second in each

53

case. Our results also show that the readability is aided considerably by Y!’s post-

processing heuristics, which reduced the number of vertices by more than an order

of magnitude. Y!’s main run-time cost is the storage it needs to maintain a history of

the system’s past states, but a commodity hard-drive should be more than sufficient

to keep this history for more than a day.

3.8 Related Work

We have discussed the literature on provenance and network debugging in Chap-

ter 2. Next, we briefly expand on papers that have considered negative provenance.

In the database literature, Huang et al. [62] and Tiresias [94] focus on instance-

based explanations for missing answers, that is, how to obtain the missing answers

by making modifications to the value of base instances (tuples); Why-Not [21] and

ConQueR [126] provide query-based explanations for SQL queries, which reveal

over-constrained conditions in the queries and suggest modifications to them. Note

that databases typically consider multiple query plans to efficiently execute a SQL

query, whereas, in our setting, the programs are always executed using one partic-

ular “query plan”. Thus, finding negative provenance for general databases is more

challenging because it needs to account for all possible query plans. For example,

Why-Not [21] requires as input a specific query plan to find culprit conditions; Tire-

sias [94] is agnostic of query plans but can exhibit substantial query turnaround.

To the best of our knowledge, Y! is the first to adapt negative provenance to

distributed environments and networks. Networks do perform careful planning to

efficiently and faithfully execute specifications from operators. For example, ND-

log [83] exploits the commutativity of join and selection when executing rules.

However, the search space of implementing common operations in networks is usu-

ally more restrictive compared to that in databases. For example, OpenFlow [91]

processes packets using a pipeline of flow entries, P4 [15] compiles programs to

match+action stages in series or in parallel, and NDlog [83] uses a sequence of rela-

54

tional operators to implement rules (Section 2.1). This limits the space of possible

explanations and makes it easier for Y! to construct negative provenance efficiently

and concisely.

3.9 Conclusion

In this chapter, we have argued that debuggers for distributed systems should not

only be able to explain why an unexpected event did occur, but also why an expected

event did not occur. We have shown how this can be accomplished with the concept

of negative provenance, which so far has received relatively little attention. We have

defined a formal model of negative provenance, we have presented an algorithm

generating such provenance, and we have introduced Y!, a practical system that can

maintain both positive and negative provenance in a distributed system and answer

queries about it. Our evaluation in the context of software-defined networks and

BGP suggests that negative provenance can be a useful tool for diagnosing complex

problems in distributed systems.

55

4
Meta Provenance

4.1 Introduction

Debugging networks is notoriously hard. The advent of software-defined network-

ing (SDN) has added a new dimension to the problem: networks can now be con-

trolled by programs, and, like all other programs, these programs can have bugs.

There is a substantial literature on network debugging and root cause analysis

(Section 2.3). However, in practice, diagnosing the problem is only the first step.

Once the root cause of a problem is known, the operator must find an effective fix

that not only solves the problem at hand, but also avoids creating new problems

elsewhere in the network. Given the complexity of modern controller programs and

configuration files, finding a good fix can be as challenging as – or perhaps even more

challenging than – diagnostics, and it often requires considerable expertise. Current

tools offer far less help with this second step than with the first.

In this chapter, we present a step towards automated bug fixing in SDN appli-

cations. Ideally, we would like to provide a “Fix it!” button that automatically finds

56

and fixes the root cause of an observed problem. However, removing the human

operator from the loop entirely seems risky, since an automated tool cannot know

the operator’s intent. Therefore we opt for a slightly less ambitious goal, which is to

provide the operator with a list of suggested repairs.

Our approach is to leverage and enhance the concept of network provenance

(Section 2.3.2). So far this work has considered provenance only in terms of packets and

configuration data – the SDN controller program was assumed to be immutable. This is

sufficient for diagnosis, but not for repair: we must also be able to infer which parts

of the controller program were responsible for an observed event, and how the event

might be affected by changes to that program.

In this chapter, we take the next step and extend network provenance to both

programs and data. At a high level, we accomplish this with a combination of two

ideas. First, we treat programs as just another kind of data; this allows us to reason

about the provenance of data not only in terms of the data it was computed from,

but also in terms of the parts of the program it was computed with. Second, we

use counterfactual reasoning to enable a form of negative provenance (Chapter 3),

so that operators can ask why some condition did not hold (Example: “Why didn’t

any DNS requests arrive at the DNS server?”). This is a natural way to phrase a

diagnostic query, and the resulting meta provenance is, in essence, a tree of changes

(to the program and/or to configuration data) that could make the condition true.

Our approach presents three key challenges. First, there are infinitely many pos-

sible repairs to a given program (including, e.g., a complete rewrite), and not all of

them will make the condition hold. To address this challenge, we show how to find

suitable repairs efficiently using properties of the provenance itself. Second, even if

we consider only suitable changes, there are still infinitely many possibilities. We

leverage the fact that most bugs affect only a small part of the program, and that

programmers tend to make certain errors more often than others [70, 106]. This

allows us to rank the possible changes according to plausibility, and to explore only

57

SDN
Controller

Off-loading
HTTP

S3 S2

HTTP
Server (H2)

HTTP
Server (H1)

DNS
Server

S1 HTTP and
DNS traffic

Q: Why does H2 not
get any requests?

Faulty
program

1 2
2

1 2

Figure 4.1: Example scenario. The primary web server (H1) is too busy, so the
network offloads some traffic to a backup server (H2). The offloaded requests are
never received because of a bug in the controller program.

the most plausible ones. Finally, even a small change that fixes the problem at hand

might still cause problems elsewhere in the network. To avoid such fixes, we backtest

them using historical information that was collected in the network. In combina-

tion, this approach enables us to produce a list of suggested repairs that 1) are small

and plausible, 2) fix the problem at hand, and 3) are unlikely to affect unrelated

parts of the network.

We present a concrete algorithm that can generate meta provenance for arbitrary

controller programs, as well as a prototype system that can collect the necessary

data in SDNs and suggest repairs. We have applied our approach to three different

controller languages, and we report results from several case studies; our results show

that our system can generate high-quality repairs for realistic bugs, typically in less

than one minute.

4.2 Overview

We illustrate the problem with a simple scenario (Figure 4.1). A network operator

manages an SDN that connects two web servers and a DNS server to the Internet.

To balance the load, incoming web requests are forwarded to different servers based

58

r1 FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), WebLoadBalancer(@C,Hdr,Prt), Swi == 1.
r2 FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 1, Hdr == 53, Prt := 2.
r3 FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 1, Hdr != 53, Prt := -1.
r4 FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 1, Hdr != 80, Prt := -1.
r5 FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 2, Hdr == 80, Prt := 1.
r6 FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 2, Hdr == 53, Prt := 2.
r7 FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 2, Hdr == 80, Prt := 2.

Figure 4.2: Part of an SDN controller program written in NDlog: Switch S1 load-
balances HTTP requests across S2 and S3 (rule r1), forwards DNS requests to S3
(rule r2); and drops all other traffic (rules r3–r4). S2 and S3 forward the traffic
to the correct server based on the destination port (rules r5–r7). The bug from
Section 4.2.2 is underlined.

on their source IP. At some point, the operator notices that web server H2 is not

receiving any requests from the Internet.

Our goal is to build a debugger that accepts a simple specification of the observed

problem (such as “H2 is not receiving any traffic on TCP port 80”) and returns a)

a detailed causal explanation of the problem, and b) a ranked list of suggested fixes.

We consider a suggested fix to be useful if it a) fixes the specified problem and b) has

few or no side-effects on the rest of the network.

4.2.1 Classical provenance

Since our approach involves tracking causal dependencies, we will explain it using

a declarative language, specifically network datalog (NDlog) [83] (briefly discussed

in Section 2.1), which makes these dependencies obvious. However, these depen-

dencies are fundamental, and they exist in all the other languages that are used to

program SDNs. To demonstrate this, we have applied our approach to three differ-

ent languages, of which only one is declarative; for details, please see Section 4.5.9.

In NDlog, it is easy to see why a given tuple exists: if the tuple was derived us-

ing some rule r (e.g., A(@X,5)), then it must be the case that all the predicates in r

were true (e.g., B(@X,10)), and all the constraints in r were satisfied (e.g., 10=2*5.).

This concept can be applied recursively (e.g., to explain the existence of B(@X,10))

until a set of base tuples is reached that cannot be explained further (e.g., configu-

59

ration data or packets at border routers). The result is as a provenance tree, in which

each vertex represents a tuple and edges represent direct causality; the root tuple is

the one that is being explained, and the base tuples are the leaves. Using negative

provenance (Chapter 3), we can also explain why a tuple does not exist, by reasoning

counterfactually about how the tuple could have been derived.

4.2.2 Case study: Faulty program

We now return to the scenario in Figure 4.1. One possible reason for this situation

is that the operator has made a copy-and-paste error when writing the program.

Figure 4.2 shows part of the (buggy) controller program: when the operator added

the second web server H2, she had to update the rules for switch S3 to forward

HTTP requests to H2. Perhaps she saw that rule r5, which is used for sending

HTTP requests from S2 to H1, seemed to do something similar, so she copied it to

another rule r7 and changed the forwarding port, but forgot to change the condition

Swi==2 to check for S3 instead of S2.

When the operator notices that no requests are arriving at H2, she can use a

provenance-based debugger to get a causal explanation. Provenance trees are more

useful than large packet traces or the system-wide configuration files because they

only contain information that is causally related to the observed problem. But the

operator is still largely on her own when interpreting the provenance information

and fixing the bug.

4.2.3 Meta provenance

Classical provenance is inherently unable to generate fixes because it reasons about

the provenance of data that was generated by a given program. To find a fix, we also

need the ability to reason about program changes.

We propose to add this capability, in essence, by treating the program as just another

kind of data. Thus, the provenance of a tuple that was derived via a certain rule r does

60

not only consist of the tuples that triggered r, but also of the syntactic components

of r itself. For instance, when generating the provenance that explains why, in the

scenario from Figure 4.1, no HTTP requests are arriving at H2, we eventually reach a

point where we must explain the absence of a flow table entry in switch S3 that would

send HTTP packets to port #2 on that switch. At this point, we can observe that

rule r7 would almost have generated such a flow entry, were it not for the predicate

Swi==2, which did not hold. We can then, analogous to negative provenance, use

counterfactual reasoning to determine that the rule would have the desired behavior

if the constant were 3 instead of 2. Thus, the fact that the constant in the predicate

is 2 and not 3 should become part of the missing flow entry’s meta provenance.

4.2.4 Challenges

An obvious challenge with this approach is that there are infinitely many possible

changes to a given program: constants, predicates, and entire rules can be changed,

added, or deleted. However, only a tiny subset of these changes is actually relevant.

Observe that, at any point in the provenance tree, we know exactly what we need

to explain – e.g., the absence of a particular flow entry for HTTP traffic. Thus, we

need not consider changes to the destination port in the header (Hdr) in r7 (because

that predicate is already true) or to unrelated rules that do not generate flow entries.

Of course, the number of relevant changes, and thus the size of any meta prove-

nance graph, is still infinite. This does mean that we can never fully draw or mate-

rialize it – but there is also no need for that. Studies have shown that “real” bugs

are often small [106], such as off-by-one errors or missing predicates. Thus, it seems

useful to define a cost metric for changes (perhaps based on the number of syntactic

elements they touch), and to explore only the “cheapest” changes.

Third, it is not always obvious what to change in order to achieve a desired effect.

For instance, when changing Swi==2 in the above example, why did we change the

constant to 3 and not, say, 4? Fortunately, we can use existing tools, such as SMT

solvers, that can enumerate possibilities quickly for the more difficult cases.

61

program ← rule | rule program
rule ← id func ":-" funcs "," sels "," assigns "."
id ← (0-9a-zA-Z)+
funcs ← func | func func
func ← table "(" location "," arg "," arg ")"
table ← (a-zA-Z)+
assigns ← assign | assign assigns
assign ← arg ":=" expr
sels ← sel "," sel
sel ← expr opr expr
opr ← == | < | > | !=
expr ← integer | arg

Figure 4.3: µDlog grammar.

Finally, even if a change fixes the problem at hand, we cannot be sure that it

will not cause new problems elsewhere. Such side-effects are difficult to capture in

the meta provenance itself, but we show that they can be estimated in another way,

namely by backtesting changes with historical information from the network.

4.3 Meta Provenance

In this section, we show how to derive a simple meta provenance graph for both

positive and negative events. We begin with a basic provenance graph for declarative

programs, and then extend it to obtain meta provenance.

For ease of exposition, we explain our approach using a toy language, which we

call µDlog. In essence, µDlog is a heavily simplified variant of NDlog: all tables

have exactly two columns; all rules have one or two predicates and exactly two se-

lection predicates, all selection predicates must use one of four operators (<, >, !=,

==), and there are no data types other than integers. The grammar of this simple

language is shown in Figure 4.3. The controller program from our running example

(in Figure 4.2) happens to already be a valid µDlog program.

62

h1 Tuple(@C,Tab,Val1,Val2) :- Base(@C,Tab,Val1,Val2).
h2 Tuple(@L,Tab,Val1,Val2) :-

HeadFunc(@C,Rul,Tab,Loc,Arg1,Arg2), HeadVal(@C,Rul,JID,Loc,L), Val == True,
HeadVal(@C,Rul,JID1,Arg1,Val1), HeadVal(@C,Rul,JID2,Arg2,Val2), Sel(@C,Rul,JID,SID,Val),
Val' == True, Sel(@C,Rul,JID,SID',Val'), True == f_match(JID1,JID), True == f_match(JID2,JID),
SID != SID'.

p1 TuplePred(@C,Rul,Tab,Arg1,Arg2,Val1,Val2) :-
Tuple(@C,Tab,Val1,Val2), PredFunc(@C,Rul,Tab,Arg1,Arg2).

p2 PredFuncCount(@C,Rul,Count<N>) :- PredFunc(@C,Rul,Tab,Arg1,Arg2).
j1 Join4(@C,Rul,JID,Arg1,Arg2,Arg3,Arg4,Val1,Val2,Val3,Val4) :-

TuplePred(@C,Rul,Tab,Arg1,Arg2,Val1,Val2), TuplePred(@C,Rul,Tab',Arg3,Arg4,Val3,Val4),
PredFuncCount(@C,Rul,N), N==2, Tab != Tab', JID := f_unique().

j2 Join2(@C,Rul,JID,Arg1,Arg2,Val1,Val2) :-
TuplePred(@C,Rul,Tab,Arg1,Arg2,Val1,Val2), PredFuncCount(@C,Rul,N),
N == 1, JID := f_unique().

e1 Expr(@C,Rul,JID,ID,Val) :- Const(@C,Rul,ID,Val), JID := *.
e2 Expr(@C,Rul,JID,Arg1,Val1) :- Join2(@C,Rul,JID,Arg1,Arg2,Val1,Val2).
e3-e7 // analogous to e2 for Arg2/Val2 (Join2) and Arg1..4/Val1..4 (Join4)
a1 HeadVal(@C,Rul,JID,Arg,Val) :- Assign(@C,Rul,Arg,ID), Expr(@C,Rul,JID,ID,Val).
s1 Sel(@C,Rul,JID,SID,Val) :- Oper(@C,Rul,SID,ID',ID'',Opr), Expr(@C,Rul,JID',ID',Val'),

Expr(@C,Rul,JID'',ID'',Val''), True == f_match(JID',JID''), JID := f_join(JID',JID''),
Val := (Val' Opr Val''), ID' != ID''.

Figure 4.4: Meta rules for µDlog.

4.3.1 The basic provenance graph

Recall from Section 4.2.1 that provenance can be represented as a DAG in which

the vertices are events and the edges indicate direct causal relationships. Since ND-

log’s declarative syntax directly encodes dependencies, we can define relatively simple

provenance graphs for it. For convenience, we adopt a graph from negative prove-

nance (Chapter 3), which contains the following positive vertexes:

• EXIST([t1, t2],N,τ): Tuple τ existed on node N from time t1 to t2;

• INSERT(t,N,τ): Base tuple τ was inserted on node N at time t;

• DELETE(t,N,τ): Base tuple τ was deleted on node N at time t;

• DERIVE(t,N,τ): Derived tuple τ acquired support on N at time t;

• UNDERIVE(t,N,τ): Derived tuple τ lost support on N at time t;

• APPEAR(t,N,τ): Tuple τ appeared on node N at time t;

• DISAPPEAR(t,N,τ): Tuple τ disappeared on node N at time t;

• SEND(t,N→N′,±τ): ±τ was sent by node N to/from N′ at t; and

• RECEIVE(t,N←N′,±τ): ±τ was received by node N to/from N′ at t.

63

Conceptually, the system builds the provenance graph incrementally at runtime:

whenever a new base tuple is inserted, the system adds an INSERT vertex, and when-

ever a rule is triggered and generates a new derived tuple, the system adds a DERIVE

vertex. The APPEAR and EXIST vertexes are generated whenever a tuple is added to

the database (after an insertion or derivation), and the interval in the EXIST vertex

is updated once the tuple is deleted again. The rules for DELETE, UNDERIVE, and

DISAPPEAR are analogous. The SEND and RECEIVE vertexes are used when a rule

on one node has a tuple τ on another node as a precondition; in this case, the system

sends a message from the latter to the former whenever τ appears (+τ) or disappears

(-τ), and the two vertexes are generated when this message is sent and received, re-

spectively. Notice that – at least conceptually – vertexes are never deleted; thus, the

operator can inspect the provenance of past events.

The system inserts an edge (v1,v2) between two vertexes v1 and v2 whenever the

event represented by v1 is a direct cause of the event represented by v2. Derivations

are caused by the appearance (if local) or reception (if remote) of the tuple that

satisfies the last precondition of the corresponding rule, as well as by the existence of

any other tuples that appear in preconditions; appearances are caused by derivations

or insertions, message transmissions by appearances, and message arrivals by message

transmissions. The rules for underivations and disappearances are analogous. Base

tuple insertions are external events that have no cause within the system.

So far, we have described only the vertexes for positive provenance. The full graph

also supports negative events (Chapter 3) by introducing a negative “twin” for each

vertex. For instance, the counterpart to APPEAR is NAPPEAR, which represents the

fact that a certain tuple failed to appear. For a more detailed discussion of negative

provenance, please see (Chapter 3).

64

4.3.2 The meta provenance graph

The above provenance graph can only represent causality between data. We now

extend the graph to track provenance of programs by introducing two elements:

meta tuples, which represent the syntactic elements of the program itself (such as

conditions and predicates) and meta rules, which describe the operational semantics

of the language. For clarity, we describe the meta model for µDlog here; our meta

model for the full NDlog language is more complex but follows the same approach.

Meta tuples: We distinguish between two kinds of meta tuples: program-based tu-

ples and runtime-based tuples. Program-based tuples are the syntactic elements that

are visible to the programmer: rule heads (HeadFunc), predicates (PredFunc), assign-

ments (Assign), constants (Const), and operators (Oper). Runtime-based tuples de-

scribe data structures inside the NDlog runtime: base tuple insertions (Base), tuples

(Tuple), satisfied predicates (TuplePred), evaluated expressions (Expr), joins (Join),

selections (Sel) and values in rule heads (HeadVal). Although concrete implementa-

tions may maintain additional data structures (e.g., for optimizations), these tuples

are sufficient to describe the operational semantics.

Meta rules: Figure 4.4 shows the full set of meta rules for µDlog. Notice that these

rules are written in NDlog, not in µDlog itself. We explain each meta rule below.

Tuples can exist for two reasons: they can be inserted as base tuples (h1) or derived

via rules (h2). Recall that, in µDlog’s simplified syntax, each rule joins at most two

tables and has exactly two selection predicates to select tuples from these tables. A

rule “fires” and produces a tuple T(a,b) iff there is an assignment of values to a, and

b that satisfies both predicates. (Notice that the selection predicates are distinguished

by a unique selection ID, or SID.) We will return to this rule again shortly.

The next four meta rules compute the actual joins. First, whenever a (syntac-

tic) tuple appears as in a rule definition, each concrete tuple that exists at runtime

65

generates one variable assignment for that tuple (p1). For instance, if a rule r con-

tains Foo(A,B), where A and B are variables, and at runtime there is a concrete tuple

Foo(5,7), meta rule p1would generate a TuplePred(@C,r,Foo,A,B,5,7)meta tuple

to indicate that 5 and 7 are assignments for A and B.

Depending on the number of tuples in the rule body (calcuated in rule p2), meta

rule j1 or j2 will be triggered: When it contains two tuples from different tables,

meta rule j1 computes a Join4 tuple for each pair of tuples from these tables. Note

that this is a full cross-product, from which another meta rule (s1) will then select

the tuples that match the selection predicates in the rule. For this purpose, each

tuple in the join is given a unique join ID (JID), so that the values of the selection

predicates can later be matched up with the correct tuples. If a rule contains only a

tuple from one table, we compute a Join2 tuple instead (j2).

The next seven meta rules evaluate expressions. Expressions can appear in two

different places – in a rule head and in a selection predicate – but since the evaluation

logic is the same, we use a single set of meta rules for both cases. Values can come

from integer constants (e1) or from any element of a Join2 or Join4 meta tuple

(e2–e7). Notice that most of these values are specific to the join on which they

were evaluated, so each Expr tuple contains a specific JID; the only exception are the

constants, which are valid for all joins. To capture this, we use a special JID wildcard

(*), and we test for JID equality using a special function f_ match(JID1,JID2) that

returns true iff JID1==JID2 or if either of them is *.

The last two meta rules handle assignments (a1) and selections (s1). An assign-

ment simply sets a variable in a rule head to the value of an expression. The s1

rule determines, for each selection predicate in a rule (identified by SID) and for

each join state (identified by JID) whether the check succeeds or fails. Function

f_ join(JID1, JID2) is introduced to handle JID wildcard: it returns JID1 if JID2

is *, or JID2 otherwise. The result is recorded in a Sel meta tuple, which is used in

h2 to decide whether a head tuple is derived.

66

µDlog requires only 13 meta tuples and 15 meta rules; the full meta model for

NDlog contains 23 meta tuples and 23 meta rules. We omit the details here; they

are included in Appendix B.1.

4.3.3 Meta provenance forests

So far, we have essentially transformed the original NDlog program into a new “meta

program”. In principle, we could now generate meta provenance graphs by applying

a normal provenance graph generation algorithm on the meta program – e.g., the

one from negative provenance (Chapter 3). However, this is not sufficient for our

purposes. Because there are cases where the same effect can be achieved in multiple

ways. For instance, suppose that we are explaining the absence of an X tuple, and

that there are two different rules, r1 and r2, that could derive X. If our goal was

to explain why X was absent, we would need to include explanations for both r1’s

and r2’s failure to fire. However, our goal is instead to make X appear, which can be

achieved by causing either r1 or r2 to fire. If we included both in the provenance tree,

we would generate only repairs that cause both rules to fire, which is unnecessary

and sometimes even impossible.

Our solution is to replace the meta provenance tree with a meta provenance forest.

Whenever our algorithm encounters a situation with k possible choices that are each

individually sufficient for repair, it replaces the current tree with k copies of itself and

continues to explore only one choice in each tree.

4.3.4 From explanations to repairs

The above problem occurs in the context of disjunctions; next, we consider its “twin”,

which occurs in the context of conjunctions. Sometimes, the meta provenance must

explain why a rule with multiple preconditions did not derive a certain tuple. For

diagnostic purposes, the absence of one missing precondition is already sufficient to

explain the absence of the tuple. However, meta provenance is intended for repair,

67

i.e., it must allow us to find a way to make the missing tuple appear. Thus, it is not

enough to find a way to make a single precondition true, or even ways to make each

precondition true individually. What we need is a way to satisfy all the preconditions

at the same time!

For concreteness, consider the following simple example, which involves a meta

rule A(x,y):-B(x), C(x,y),x+y>1,x>0. Suppose that the operator would like to

find out why there is no A(x,y) with y==2. In this case, it would be sufficient to

show that there is no C(x,y) with y==2 and x>0; cross-predicate constraints, such

as x+y>1, can be ignored. However, if we want to actually make a suitable A(x,y)

appear, we need to jointly consider the absence of both B(x) and C(x,y), and ensure

that all branches of the provenance tree respect the cross-predicate constraints. In

other words, we cannot explore the two branches separately; we must make sure that

their contents “match”.

To accomplish this, our algorithm automatically generates a constraint pool for

each tree. It encodes the attributes of tuples as variables, and it formulates constraints

over these variables. For instance, given the missing tuple A0, we add two variables

A0.x and A0.y. To initialize the constraint pool, the root of the meta provenance

graph must satisfy the operator’s requirement: A0.y == 2. While expanding any

missing tuple, the algorithm adds constraints as necessary for a successful derivation.

In this example, three constraints are needed: first, the predicates must join together,

i.e., B0.x == C0.x. Second, the predicates must satisfy the constraints, i.e., B0.x>0

and C0.x+C0.y>1. Third, the predicates must derive the head, i.e., A0.x==C0.x and

A0.y==C0.y. In addition, tuples must satisfy primary key constraints. For instance,

suppose deriving B(x) requires D0(9,1) while deriving C(x,y) requires D1(9,2). If

x is the only primary key of table D(x,y), D0(9,1) and D1(9,2) cannot co-exist at

the same time. Therefore, the explanation is inconsistent for generating repairs. To

address such cases, we encode additional constraints: D.x == D0.x implies D.y ==

1 and D.x == D1.x implies D.y == 2.

68

4.3.5 Generating meta provenance

In general, meta provenance forests may consist of infinitely many trees, each with

infinitely many vertexes. Thus, we cannot hope to materialize the entire forest. In-

stead, we adopt a variant of the approach from negative provenane (Chapter 3) and

use a step-by-step procedure that constructs the trees incrementally. We define a

function query(v) that, when called on a vertex v from any (partial) tree in the meta

provenance forest, returns the immediate children of v and/or “forks” the tree as de-

scribed above. By calling this function repeatedly on the leaves of the trees, we can

explore the trees incrementally.

The two key differences to negative provenance are the procedures for expanding

nappear and nderive vertices: the former must now “fork” the tree when there are

multiple children that are each individually sufficient to make the missing tuple ap-

pear (Section 4.3.3), and the latter must now explore a join across all preconditions

of a missing derivation, while collecting any relevant constraints (Section 4.3.4).

To explore an infinite forest with finite memory, our algorithm maintains a set of

partial trees. Initially, this set contains a single “tree” that consists of just one vertex –

the vertex that describes the symptom that the operator has observed. Then, in each

step, the algorithm picks one of the partial trees, randomly picks a vertex within that

tree that does not have any children yet, and then invokes query on this vertex to

find the children, which are then added to that tree. As discussed before, this step

can cause the tree to fork, adding multiple copies to the set that differ only in the

newly added children. Another possible outcome is that the chosen partial tree is

completed, which yields a repair candidate.

Each tree – completed or partial – is associated with a cost, which intuitively

represents the implausibility of the repair that the tree represents. (Lower-cost trees

are more plausible.) Initially, the cost is zero. Whenever a base tuple is added that

represents a program change, we increase the total cost of the corresponding tree by

the cost of that change. In each step, our algorithm picks the partial tree with the

69

function GenerateRepairCandidates(P)
R← /0, τr ← RootTuple(P)
if MissingTuple(τr) then

C ← ConstraintPool(P)
A← SatAssignment(C)
for (τi) ∈ BaseTuples(P)

if MissingTuple(τi) then
R← R ∪ ChangeTuple(τi,A)

else if ExistingTuple(τr) then
for (Ti) ∈ BaseTupleCombinations(P)

Rci ← /0, Rdi ← /0
Ci ← SymbolicPropagate(P,Ti)
Ai ← UnsatAssignment(Ci)
for (τi) ∈ Ti

Rci ← Rci ∪ ChangeTuple(τi,Ai)
Rdi ← Rdi ∪ DeleteTuple(τi)

R← R ∪ Rci ∪ Rdi

return R

Figure 4.5: Algorithm for extracting repair candidates from the meta provenance
graph. For a description of the helper functions, please see Appendix B.2.

lowest cost; if there are multiple trees with the same cost, our algorithm picks the

one with the smallest number of unexpanded vertexes. Repair candidates are output

only once there are no trees with a lower cost. Thus, repair candidates are found

in cost order, and the first one is optimal with respect to the chosen cost metric; if

the algorithm runs long enough, it eventually finds a working repair. (For a more

detailed discussion, please see Appendix B.3.) In practice, the algorithm runs until

some reasonable cut-off cost is reached, or until the operator’s patience runs out.

The question remains how to assign costs to program changes. We assign a low

cost to common errors (such as changing a constant by one or changing a == to a !=)

and a high cost to unlikely errors (such as writing an entirely new rule, or defining a

new table). Thus, we can prioritize the search of fixes to software bugs that are more

commonly observed in actual programming, and thus increase the chances that a

working fix will be found.

70

4.3.6 Limitations

The above approach is likely to find simple problems, such as incorrect constraints

or copy-and-paste errors, but it is not likely to discover fundamental flaws in the

program logic that require repairs in many different places and/or several new rules.

However, software engineering studies have consistently shown that simple errors,

such as copy-and-paste bugs, are very common: simple typos already account for

9.4–-9.8% of all semantic bugs [81], and 70–90% of bugs can be fixed by changing

only existing syntactic elements [106]. Because of this, we believe that an approach

that can automatically fix “low-cost” bugs can still be useful in practice.

Our approach focuses exclusively on incorrect computations; there are classes

of bugs, such as concurrency bugs or performance bugs, that it cannot repair. We

speculate that such bugs can be found with a richer meta model, but this is beyond

the scope of the present chapter.

4.4 Generating repair candidates

As discussed in Section 4.3.5, our algorithm explores the meta provenance forest in

cost order, adding vertexes one by one by invoking query on a leaf of an existing

partial tree. Thus, the algorithm slowly generates more and more trees; at the same

time, some existing trees are eventually completed because none of their leaves can

be further expanded (i.e., query returns /0 on them). Once a tree is completed, we

invoke the algorithm in Figure 4.5 to extract a candidate repair.

The algorithm has two cases: one for trees that have an existing tuple at the root

(e.g., a packet that reached a host it should not have reached), and one for trees that

have a missing tuple at the root (e.g., a packet failed to reach its destination). We

discuss each in turn. Furthermore, we note that the ensuing analysis is performed on

themeta program, which is independent from the language that the original program

is written in.

71

...

...

EXIST[Sel(Rul="r7", JID=8538,
SID="Hdr == 80", Val=True) @C]

NEXIST[Tuple(L=S3, Tab="FlowTable",
Val1=80, Val2=2) @C]

NEXIST[Expr(Rul="r7", JID=8538 or *,
ID="2", Val=3) @C]

NEXIST[Const(Rul="r7",
ID="2", Val=3) @C]

NEXIST[Oper(Rul="r7", SID="Swi == 2",
ID'="Swi", ID''="2", Opr='>') @C]

Fix: change constant
"Swi == 2" => "Swi == 3"

FIX: change constant value
"Swi == 2" => "Swi > 2"

A B

... ...

NEXIST[Sel(Rul="r7", JID=8538,
SID=?/*, Val=True) @C] ...

Figure 4.6: Meta provenance of a missing flow entry. It consists of two trees (white
+ yellow, white + blue), each of which can generate a repair candidate.

4.4.1 Handling negative symptoms

If the root of the tree is a missing tuple, its leaves will contain either missing tuples or

missing meta tuples, which can be then created by inserting the corresponding tuples

or program elements. However, some of these tuples may still contain variables –

for instance, the tree might indicate that an A(x) tuple is missing, but without a

concrete value for x. Hence, the algorithm first looks for a satisfying assignment

of the tree’s constraint pool (Section 4.3.4). If such an assignment is found, it will

supply concrete values for all remaining variables; if not, the tree cannot produce a

working repair and is discarded.

As an example, Figure 4.6 shows part of the meta provenance of a missing event.

It contains two meta provenance trees, which have some vertices in common (colored

white), but do not share other vertices (colored yellow and blue). The constraint pool

includes Const0.Val = 3, Const0.Rul = r7, and Const0.ID = 2. That is, the repair

requires the existence of a constant of value 3 in rule r7. Therefore, we can change

value of the original constant (identified by identical primary keys Rul and ID) to 3.

72

4.4.2 Handling positive symptoms

Meta provenance can also help with debugging scenarios with positive symptoms.

Figure 4.7 shows the meta provenance graph of a tuple that exists, but should not

exist. We can make this tuple disappear by deleting (or changing in the proper way)

any of the base tuples or meta tuples on which the derivation is based.

However, neither base tuples nor meta tuples are always safe to change. In the

case of meta tuples, we must ensure that the change does not violate the syntax of the

underlying language (in this case, µDlog). For instance, it would be safe to delete a

PredFunc tuple to remove a predicate, but it may not be safe to delete a Const meta

tuple, since this might result in an incomplete expression, such as Swi >.

In the case of changes to base tuples, the problem is to find changes that a) will

make the current derivation disappear, and that b) will not cause an alternate deriva-

tion of the same tuple via different meta rules. To handle the first problem, we do

not directly replace elements of a tuple with a different value. Rather, we initially

replace the elements with symbolic constants and then re-execute the derivation of

meta rules symbolically while collecting constraints over the symbolic constants that

must hold for the derivation to happen. Finally, we can negate these constraints and

use a constraint solver to find a satisfying assignment for the negation. If successful,

this will yield concrete values we can substitute for the symbolic constant that will

make the derivation disappear.

For concreteness, we consider the green repair in Figure 4.7. We initially replace

Const('r1',1,1) with Const('r1',1,Z) and then reexecute the derivation to col-

lect constraints – in this case, 1==Z. Since Z=2 does not satisfy the constraints, we

can make the tuple at the top disappear by changing Z to 2 (which corresponds to

changing Swi==1 to Swi==2 in the program).

This leaves the second problem from above: even if we make a change that dis-

ables one particular derivation of an undesired tuple, that very change could enable

some other derivation that causes the undesired tuple to reappear. For instance,

73

EXIST[Const(Rul="r1",
ID="1", Val=Z) @C, t1]

Fix: change constant
"Swi == 1" => "Swi == 2"

EXIST[Expr(Rul="r1", JID=3767,
ID="Swi", Val=1) @C]

EXIST[Expr(Rul="r1", JID=3767
or *, ID="1", Val=Z) @C]

Discarded fix: delete predicate
"WebLoadBalancer"

EXIST[Sel(Rul="r1", JID=3767,
SID=?/*, Val=(1 == Z)) @C]

EXIST[Oper(Rul="r1", SID="Swi == 1",
ID'="Swi", ID''="1", Opr='==') @C]

...

...

EXIST[Tuple(L=S3, Tab="FlowTable",
Val1=80, Val2=2) @C]

EXIST[Join4(Rul="r1", JID=3767 or *,
Arg1="Swi", Arg2="Hdr", ...) @C]

EXIST[PredFunc(Rul="r1",
Tab="WebLoadBalancer", ...) @C]

...

EXIST[TuplePred(Rul="r1",
Tab="WebLoadBalancer", ...) @C]

Figure 4.7: Meta provenance of a harmful flow entry. All repairs (e.g., green and
red) prevent this derivation, but the red one rederives the tuple via other meta rules.

suppose we delete the tuple PredFunc('r1','WebLoadBalancer', ...), which cor-

responds to deleting the WebLoadBalancer predicate from the µDlog rule r1 (shaded

red in Figure 4.7). This deletion will cause the Join4 tuple to disappear, and it will

change the value of PredFuncCount from 2 to 1. As a result, the derivation through

meta rule j1 will duly disappear; however, this will instead trigger meta rule j2,

which leads to another derivation of the same flow entry.

Solving this for arbitrary programs is equivalent to solving the halting problem,

which is NP-hard. However, we do not need a perfect solution because this case is

rare, and because we can either use heuristics to track certain rederivations or we can

easily eliminate the corresponding repair candidates during backtesting.

4.4.3 Backtesting a single repair candidate

Although the generated repairs will (usually) solve the problem immediately at hand,

by making the desired tuple appear or the undesired tuple disappear, each repair can

also have a broader effect on the network as a whole. For instance, if the problem is

74

r7(v1) FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 3, Hdr == 80, Prt := 2.

r7(v2) FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi > 2, Hdr == 80, Prt := 2.

r7(v3) FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi != 2, Hdr == 80, Prt := 2.

(a)

r6(v1,v2,v3) FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 2, Hdr == 53, Prt := 2.
r7(v1,v2,v3) FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 3, Hdr == 80, Prt := 2.
r7(v2,v3) FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi > 3, Hdr == 80, Prt := 2.
r7(v3) FlowTable(@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi < 2, Hdr == 80, Prt := 2.

(b)

Figure 4.8: (a) Three repair candidates, all of which can generate forwarding flow
entries for switch S2 by fixing r7 in the original program in Figure 4.2; other parts of
the program are unchanged. (b) Backtesting program that evaluates all three repair
candidates simultaneously while running shared computations only once.

that a switch forwarded a packet to the wrong host, one possible “repair” is to disable

the rule that generates flow entries for that switch. However, this would also prevent

all other packets from being forwarded, which is probably too restrictive.

To mitigate this, we adopt the maxim of “primum non nocere” [54] and assess

the global impact of a repair candidate before suggesting it. Specifically, we backtest

the repair candidates in simulation, using historical information from the network.

We can approximate past control-plane states from the diagnostic information we

already record for the provenance; to generate a plausible workload, we can use a

Netflow trace or a sample of packets. We then collect some key statistics, such as the

number of packets delivered to each host. Since the problems we are aiming to repair

are typically subtle (total network failures are comparatively easy to diagnose!), they

should affect only a small fraction of the traffic. Hence, a “good” candidate repair

should have little or no impact on metrics that are not related to the problem.

In essence, the metrics play the role of the test suite that is commonly used in the

wider literature on automated program fixing. While the simple metric from above

should serve as a good starting point, operators could easily add metrics of their

own, e.g., to encode performance goals (load balancing, link utilization) or security

restrictions (traffic from X should never reach Y). However, recall that, in contrast

to much of the earlier work on program fixing, we do not rely on this “test suite”

75

to find candidate repairs (we use the meta provenance for that); the metrics simply

serve as a sanity check to weed out repairs with serious side effects. That a repair

passed the backtesting stage is not a guarantee that no side effects will occur.

As an additional benefit, the metrics can be used to rank the repairs, and to give

preference to the candidates that have the smallest impact on the overall network.

4.4.4 Backtesting multiple repair candidates

It is important for the backtesting to be fast: the less time it takes, the more candidate

repairs we can afford to consider. Fortunately, we can leverage another concept from

the database literature to speed up this process considerably. Recall that each backtest

simulates the behavior of the network with the repaired program. Thus, we are

effectively running many very similar “queries” (the repaired programs, which differ

only in the fixes that were applied) over the same “database” (the historical network

data), where we expect significant overlaps among the query computations. This

is a classical instance of multi-query optimization, for which powerful solutions are

available in the literature [88, 45].

Multi-query optimization exploits the fact that almost all computation is shared

by almost all repair candidates, and thus has to be performed only once. We accom-

plish this by transforming the original program into a backtesting program as follows.

First, we associate each tuple with a set of tags, we extend all relations to have a new

field for storing the tags, and we update all the rules such that the tag of the head is

the intersection of the tags in the body. Then, for each repair candidate, we create

a new tag and add copies of all the rules the repair candidate modifies, but we re-

strict them to this particular tag. Finally, we add rules that evaluate the metrics from

Section 4.4.3, separately for each tag.

The effect is that data flows through the program as usual, but, at each point

where a repair candidate has modified something, the flow forks off a subflow that has

the tag of that particular candidate. Thus, the later in the program the modification

76

occurs, the fewer computations have to be duplicated for that candidate. Overall,

the backtesting program correctly computes the metrics for each candidate, but runs

considerably faster than computing each of the metrics round after round.

As an example, Figure 4.8(a) shows three repair candidates (v1, v2, and v3) for

the buggy program in Figure 4.2. Each of them alters the rule r7 in a different way:

v1 changes a constant, v2 and v3 change an operator. (Other rules are unchanged.)

In some cases, it is possible to determine, through static analysis, that rules with

different tags produce overlapping output. For instance, in the above example, the

three repairs all modify the same predicate, and some of the predicates are implied

by others; thus, the output for switch 3 is the same for all three tags, and the output

for switches above 3 is the same for tags v2 and v3. By coalescing the corresponding

rules, we can further reduce the computation cost. Finding all opportunities for

coalescing would be difficult, but recall that this is merely an optimization: even if

we find none at all, the program will still be correct, albeit somewhat slower.

4.5 Evaluation

In this section, we report results from our experimental evaluation, which aim to

answer five high-level questions: 1) Can meta provenance generate reasonable repair

candidates? 2) What is the runtime overhead of meta provenance? 3) How fast can

we process diagnostic queries? 4) Does meta provenance scale well with the network

size? And 5) how well does meta provenance work across different SDN frameworks?

4.5.1 Prototype implementation

We have built a prototype based on declarative and imperative SDN environments

as well as Mininet [78]. It generates and further backtests repair candidates, such

that the operator can inspect the suggested repairs and decide whether and which

to apply. Our prototype consists of around 30,000 lines of code, including the

following three main components.

77

Controllers: We validate meta provenance using three types of SDN environments.

The first is a declarative controller based on RapidNet [84]; it includes a proxy that

interposes between the RapidNet engine and the Mininet network and that translates

NDlog tuples into OpenFlow messages and vice versa. The other two are existing

environments: the Trema framework [127] and the Pyretic language [96]. (Notice

that neither of the latter two is declarative: Trema is based on Ruby, an imperative

language, and Pyretic is an imperative domain-specific language for SDNs that is

embedded in Python.)

At runtime, the controller and the network each record relevant control-plane

messages and packets to a log, which can be used to answer diagnostic queries later.

The information we require from runtime is not substantially different from existing

provenance systems [82, 134, 147, 24], which have shown that provenance can be

captured at scale and for SDNs.

Tuple generators: For each of the above languages, we have built a meta tuple

generator that automatically generates meta tuples from the controller program and

from the log. The program-based meta tuples (e.g., constants, operators, edges)

only need to be generated once for each program; the log-based meta tuples (e.g.,

messages, constraints, expressions) are generated by replaying the logged control-

plane messages through automatically-instrumented controller programs.

Tree constructor: This component constructs meta provenance trees from the meta

tuples upon a query. As we discussed in Section 4.3.4, this requires checking the con-

sistency of repair candidates. Our constructor has an interface to the Z3 solver [31]

for this purpose. However, since many of the constraint sets we generate are trivial,

we have built our own “mini-solver” that can quickly solve the trivial instances on

its own; the nontrivial ones are handed over to Z3. The mini-solver also serves as

an optimizer for handling cross-table meta tuple joins. Using a naïve nested loop

join that considers all combinations of different meta tuples would be inefficient;

instead, we solve simple constraints (e.g., equivalence, ranges) first. This allows us

78

to filter the meta tuples before joining them, and use more efficient join paradigms,

such as hash joins. Our cost metric is based on a study of common bug fix patters

(Pan et al. [106]).

4.5.2 Experimental setup

To obtain a representative experimental environment, we set up the Stanford campus

network from ATPG [138] in Mininet [78], with 16 Operational Zone and back-

bone routers. Moreover, we augmented the topology with edge networks, each of

which is connected to the main network by at least one core router; we also set up 1

to 15 end hosts per edge network. In most experiments, the core network is either

proactively configured using forwarding entries from the Stanford campus network;

the edge networks run a mix of reactive and proactive applications. In Section 4.5.8,

we include an experiment where the controller reactively installs core routing poli-

cies. Overall, our smallest topology across all scenarios consisted of 19 routers and

259 hosts, and our largest topology consisted of 169 routers and 549 hosts. In ad-

dition, we created realistic background traffic using two traffic traces obtained in a

similar campus network setting [14]; 1 to 16 of the end hosts replayed the traces

continuously during the course of our experiments. Moreover, we generated a mix

of ICMP ping traffic and HTTP traffic on the remaining hosts. Overall, 4.6–309.4

million packets were sent through the network. We ran experiments on a Dell Op-

tiPlex 9020 workstation, which has a 8-core 3.40 GHz Intel i7-4770 CPU with 16

GB of RAM and a 128 GB OCZ Vector SSD. The OS was Ubuntu 13.10, and the

kernel version was 3.8.0.

4.5.3 Usability: Diagnosing SDNs

A natural first question to ask is whether meta provenance can repair real problems.

To avoid distorting our results by picking our own toy problems to debug, we have

chosen four diagnostic scenarios from four different networking chapters that have

79

Query description Result
Q1 H20 is not receiving HTTP requests from H2 9/2
Q2 H17 is not receiving DNS queries from H1 12/3
Q3 H20 is not receiving HTTP requests from H1 11/3
Q4 First HTTP packet from H2 to H20 is not received 13/3
Q5 H2’s MAC address is not learned by the controller 9/3

Table 4.1: The diagnostic queries, the number of repair candidates generated by
meta provenance, and the number of remaining candidates after backtesting.

appeared at CoNEXT [138, 33], NSDI [18], and HotSDN [13], plus one common

class of bugs from an OSDI chapter [80]. We focused on scenarios where the root

cause of the problem was a bug in the controller program. We recreated each scenario

in the lab, based on its published description. The five scenarios were:

• Q1: Copy-and-paste error [80]. A server received no requests because the

operator made a copy-and-paste error when modifying the controller program.

The scenario is analogous to the one in Figure 4.1, but with larger topology

and more realistic traffic.

• Q2: Forwarding error [138]. A server could not receive queries from certain

clients because the operator made a error when specifying the action of the

forwarding rule.

• Q3: Uncoordinated policy update [33]. A firewall controller app configured

white-list rules for web servers. A load-balancing controller app updated the

policy on an ingress point, without coordinating with the firewall app; this

caused some traffic to shift, and then to be blocked by the firewall.

• Q4: Forgotten packets [18]. A controller app correctly installed flow entries

in response to new flows; however, it forgot to instruct the switches to forward

the first incoming packet in each flow.

• Q5: Incorrect MAC learning [13]. A MAC learning app should have

matched packets based on their source IP, incoming port, and destination

80

IP; however, the program only matched on the latter two fields. As a result,

some switches never learned about the existence of certain hosts.

To get a sense of how useful meta provenance would be for repairing the problems,

we ran diagnostic queries in our five scenarios as shown in Table 4.1, and examined

the generated candidate repairs. In each of the scenarios, we bounded the cost and

asked the repair generator to produce all repair candidates. Table 4.2 shows the

repair candidates returned for Q1; the others are included in Appendix B.4.

Our backtesting confirmed that each of the proposed candidates was effective, in

the sense that it caused the backup web server to receive at least some HTTP traffic.

This phase also weeded out the candidates that caused problems for the rest of the

network. To quantify the side effects, we replayed historical packets in the original

network and in each repaired network. We then computed the traffic distribution

at end hosts for each of these networks. We used the Two-Sample Kolmogorov-

Smirnov test with significance level 0.05 to compare the distributions before and

after each repair. A repair candidate was rejected if it significantly distorted the

original traffic distribution; the statistics and the decisions are shown in Table 4.2.

For instance, repair candidate G deleted Swi==2 and Dpt==53 in rule r6. This causes

the controller to generate a flow entry that forwards HTTP requests at S3; however,

the modified r6 also causes HTTP requests to be forwarded to the DNS server.

After backtesting, the remaining candidates are presented to the operator in com-

plexity order, i.e., the simplest candidate is shown first. In this example, the second

candidate on the list (B) is also the one that most human operators would intuitively

have chosen – it fixes the copy-and-paste bug by changing the switch ID in the faulty

predicate from Swi==2 to Swi==3.

Table 4.1 summarizes the quality of repairs our prototype generated for all sce-

narios for the RapidNet controller. Each scenario resulted in two or three repair

suggestions. In the first stage, meta provenance produced between 9 and 13 repair

candidates for each query, for a total of 54 repair candidates. Note that these num-

81

Repair candidate (Accepted?) KS-test
A Manually installing a flow entry (3) 0.00007
B Changing Swi==2 in r7 to Swi==3 (3) 0.00007
C Changing Swi==2 in r7 to Swi!=2 (5) 0.00865
D Changing Swi==2 in r7 to Swi>=2 (5) 0.00826
E Changing Swi==2 in r7 to Swi>2 (5) 0.00826
F Deleting Swi==2 in r7 (5) 0.00867
G Deleting Swi==2 and Dpt==53 in r6 (5) 0.05287
H Deleting Swi==2 and Dpt==80 in r7 (5) 0.00999
I Changing Swi==2 and Act=output-1 in r5 to

Swi==3 and Act=output-2 (5)
0.05286

Table 4.2: Candidate repairs generated by meta provenance for Q1, which are then
filtered by a KS-test.

bers do not count expensive repair candidates that were discarded by the ranking

heuristic (Section 4.3.5). The backtesting stage then confirmed that 48 of these

candidates were effective, i.e., they fixed the problem at hand (e.g., the repair caused

the server to receive at least a few packets). However, 34 of the effective candidates

caused nontrivial side effects, and thus were discarded.

We note that the final set of candidates included a few non-intuitive repairs – for

instance, one candidate fixed the problem in Q1 by manually installing a new flow

entry. However, these repairs were nevertheless effective and had few side effects,

so they should suffice as an initial fix. If desired, a human operator could always

refactor the program later on.

4.5.4 Runtime overhead

Latency and throughput: To measure the latency and throughput overhead in-

curred by maintaining meta provenance, we used a standard approach of stress-

testing OpenFlow controllers [36] which involves streaming incoming packets

through the Trema controller using Cbench. Latency is defined as the time taken to

process each packet within the controller. We observe that provenance maintenance

resulted in a latency increase of 4.2% to 54ms, and a throughput reduction of 9.8%

to 45,423 packets per second.

82

 0

 5

 10

 15

 20

 25

 30

Q1 Q2 Q3 Q4 Q5

Tu
rn

ar
ou

nd
 ti

m
e

(s
)

Scenario

History lookups
Constraint solving

Patch generation
Replay

Figure 4.9: Time to generate the repairs for each of the scenarios in Section 4.5.3.

Disk storage: To evaluate the storage overhead, we streamed the two traffic traces

obtained from [14] through our SDN scenario in Q1. For each packet in the trace,

we recorded a 120-byte log entry that contains the packet header and the times-

tamp. The logging rates for the two traces are 20.2 MB/s and 11.4 MB/s per switch,

respectively, which are only a fraction of the sequential write rate of commodity

SSDs. Note that this data need not be kept forever: most diagnostic queries are

about problems that currently exist or have appeared recently. Thus, is should be

sufficient to store the most recent entries, perhaps an hour’s worth.

4.5.5 Time to generate repairs

Diagnostic queries does not always demand a real-time response; however, operators

would presumably prefer a quick turnaround. Figure 4.9 shows the turnaround time

for constructing the meta provenance data structure and for generating repair candi-

dates, including a breakdown by category. In general, scenarios with more complex

control-plane state (Q1, Q4, and Q5) required more time to query the time index

and to look up historical data; the latter can involve loop-joining multiple meta

tables, particularly for the more complicated meta rules with over ten predicates.

Other scenarios (Q2 and Q3) forked larger meta-provenance forests and thus spent

more time on generating repairs and on solving constraints. However, we observe

83

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

Tu
rn

ar
ou

nd
 ti

m
e

(s
)

Repair candidates tested

Sequential
With multi-query optimization

Figure 4.10: The times needed to jointly backtest the first k repairs from Q1.

that, even when run on a single machine, the entire process took less than 25 sec-

onds in all scenarios, which does not seem unreasonable. This time could be further

reduced by parallelization, since different machines could work on different parts of

the meta-provenance forest in parallel.

4.5.6 Backtesting speed

Next, we evaluate the backtesting speed using the repair candidates listed in Ta-

ble 4.2. For each candidate, we sampled packet traces at the network ingresses from

the log, and replayed them for backtesting. The top line in Figure 4.10 shows the

time needed to backtest all the candidates sequentially; testing all nine of them took

about two minutes, which already seems reasonably fast. However, the less time

backtesting takes, the more repair candidates we can afford to consider. The lower

line in Figure 4.10 shows the time needed to jointly backtest the first k candidates us-

ing the multi-query optimization technique from Section 4.4.4, which merges the

candidates into a single “backtesting program”. With this, testing all nine candi-

dates took about 40 seconds. This large speedup is expected because the repairs are

small and fairly similar (since they are all intended to fix the same problem); hence,

there is a substantial amount of overlap between the individual backtests, which the

multi-query technique can then eliminate.

84

 0

 10

 20

 30

 40

 50

 60

19 49 79 109 139 169

La
te

nc
y

(s
)

Number of switches in the network

History lookups
Constraint solving
Patch generation

Replay

Figure 4.11: Scalability of repair generation phase with network size for Q1.

4.5.7 Scalability: Network size

To evaluate the scalability of meta provenance with regard to the network size, we

tested the turnaround time of query Q1 on larger networks which contained up to

169 routers and 549 hosts. We obtained these networks by adding more routers and

hosts to the basic Stanford campus network. Moreover, we increased the number

of hosts that replay traffic traces [14] to up to 16. We generated synthetic traffic on

the remaining hosts, and used higher traffic rates in larger networks to emulate more

hosts. As we can see from Figure 4.11, the turnaround time increased linearly with

the network size, but it was within 50 seconds for all cases. As the breakdown shows,

the increase mainly comes from the latency increase of the historical lookups and of

the replay. This is because the additional nodes and traffic caused the size of the

controller state to increase. This in turn resulted in a longer time to search through

the controller state, and to replay the messages. Repair generation and constraint

solving time only see minor increases. This is expected because the meta provenance

forest is generated from only relevant parts of the log, the size of which is relatively

stable when the affected flows are given.

85

 0

 50

 100

 150

 200

100 300 500 700 900

La
te

nc
y

(s
)

Number of lines in the program

History lookups
Constraint solving
Patch generation

Replay

Figure 4.12: Scalability of repair generation phase with program size for Q1.

4.5.8 Scalability: Program size

The controller programs from the scenarios in Section 4.5.3 have between 19 and

120 lines of code. To evaluate the scalability of meta provenance with regard to

program size, we tested the engine on larger programs which contained from 100 to

900 lines of code. We obtained these programs by augmenting the Trema controller

program in Q1 with various numbers of policies of an operational zone switch in

the Stanford campus network. As we can see from Figure 4.12, the turnaround time

increases linearly with the program size. The increase is uniform in all components:

first, we need to replay more controller traffic because more policies are enforced

reactively; second, history lookups took longer because the size of controller state

is larger; last, the time spent on constraint solving and patch generation increases

because larger programs contain more syntactic elements to consider for repair and

therefore incur larger provenance forests. However, despite the increase in program

size, the number of repairs are stable across the experiment. Although the additional

code causes the provenance forest to grow initially, most of the trees quickly become

too costly and are not explored further. Instead, meta provenance focuses on relevant

parts of the program.

86

Q1 Q2 Q3 Q4 Q5
Trema (Ruby) 7/2 10/2 11/2 10/2 14/3

Pyretic (DSL + Python) 4/2 11/2 9/2 - 14/3

Table 4.3: Results for Trema and Pyretic. For each scenario from Section 4.5.3, we
show how many repair candidates are generated, and how many passed backtesting.

4.5.9 Applicability to other languages

To see how well meta provenance works for languages other than NDlog, we devel-

oped meta models for Trema [127] and Pyretic [96]. This required only a moderate

effort (16 person-hours). Our Trema model contains 42 meta rules and 32 meta tu-

ples; it covers basic control flow (e.g., functional calls, conditional jumps) and data

flow semantics (e.g., constants, expressions, variables, and objects) of Ruby. The

Pyretic model contains 53 meta rules and 41 meta tuples; it describes a set of imper-

ative features of Python, similar to that of Ruby. It also encodes the Pyretic NetCore

syntax (from Figure 4 in [96]). We omit the full models here; they are included in

Appendix B.1. Developing such a model is a one-time investment – once rules for

a new language are available, they can be applied to any program in that language.

To verify that these models generate effective fixes, we recreated the scenarios

in Section 4.5.3 for Trema and Pyretic. We could not reproduce Q4 in Pyretic

because the Pyretic abstraction and its runtime already prevents such problems from

happening. Table 4.3 shows our results. Overall, the number of repairs that were

generated and passed backtesting are relatively stable across the different languages.

For Q1, we found fewer repair candidates for Pyretic than for RapidNet and Trema;

this is because an implementation of the same logic in different languages can provide

different “degrees of freedom” for possible repairs. (For instance, an equality check

Swi==2 in RapidNet would be match(switch = 2) in Pyretic; a fix that changes the

operator to > is possible in the former but disallowed in the latter because of the

syntax of match.) In all cases, meta provenance produced at least one repair that

passed the backtesting phase.

87

4.6 Related Work

We have discussed related work in Chapter 2. In this section, we expland on auto-

mated tools for repairing programs.

The software engineering community has used genetic programming [79], sym-

bolic execution [102], and program synthesis [20] to fix programs; they usually rely

on a test suite or a formal specification to find fixes and sometimes propose only

specific kinds of fixes. In the systems community, ClearView [109] mines invari-

ants in programs, correlates violations with failures, and generates fixes at runtime;

ConfDiagnoser [140] compares correct and undesired executions to find suspicious

predicates in the program; and Sidiroglou et al. [119] runs attack vectors on in-

strumented applications and then generates fixes automatically. In databases, Con-

QueR [126] can refine a SQL query to make certain tuples appear in, or disappear

from, the output; however, it is restricted to SPJA queries and cannot handle gen-

eral controller programs. These systems primarily rely on heuristics, whereas our

proposed approach uses provenance to track causality and can thus pinpoint specific

root causes more precisely.

In the networking domain specifically, the closest solutions are NetGen [114]

and Hojjat et at. [60], which synthesize changes to an existing network to satisfy a

desired property or to remove incorrect configurations, which are specified as regular

expressions or Horn clauses. While these tools can generate optimal changes, e.g.,

the smallest number of next-hop routing changes, they are designed for repairing

the data plane, i.e., a snapshot of the network configuration at a particular time; our

approach repairs control programs and considers dynamic network configuration

changes triggered by network traffic.

88

4.7 Conclusion

Network diagnostics is almost a routine for today’s operators. However, most de-

buggers can only find bugs, but not suggest a fix. In this chapter, we have taken a

step towards better tool support for network repair, using a novel data structure that

we call meta provenance. Like classic provenance, meta provenance tracks causal-

ity; but it goes beyond data causality and treats the program as just another kind of

data. Thus, it can be used to reason about program changes that prevent undesirable

events or create desirable events. While meta provenance falls short of our (slightly

idealistic) goal of an automatic “Fix it!” button for SDNs, we believe that it does

represent a step in the right direction. As our case studies show, meta provenance

can generate high-quality repairs for realistic network problems in one minute, with

no help from the human operator.

89

5
Temporal Provenance

5.1 Introduction

Debugging networked systems is already difficult for functional problems, such as

requests that are processed incorrectly, and this has given rise to a rich literature on

sophisticated debugging tools. Diagnosing timing-related problems, such as requests

that incur a high delay, adds another layer of complexity: delays are often nondeter-

ministic and can arise from subtle interactions between different components.

However, in practice, locating a bottleneck is only the first step. The operator

must then find the causes of the bottleneck in order to fix the problem. Existing

tools offer far less help with this step. For instance, consider the following scenario:

a misconfigured machine is sending a large number of RPCs to a storage backend,

which becomes overloaded and delays requests from other clients. When the oper-

ator receives complaints from one of the clients about the delayed requests, she can

inspect the trace tree or the provenance and identify the bottleneck (in this case, the

storage backend). However, neither of these data structures explains why the bottle-

90

neck exists – in fact, the actual root cause (in this case, the misconfigured machine)

would not even appear in either of them!

The reason why existing approaches fall short in this scenario is that they focus

exclusively on functional causality – they explain why a given computation had some

particular result. This kind of explanation looks only at the direct inputs of the

computation: for instance, if we want to explain the existence of a cup of coffee, we

can focus on the source of the coffee beans, the source of the cup, and the barista’s

actions. In contrast, temporal causality may also involve other, seemingly unrelated

computations: for instance, the reason why it took too so long to get the cup of coffee

might be the many customers that were waiting in front of us. At the same time,

some functional dependencies may turn out to be irrelevant when explaining delays:

for instance, even though the coffee beans were needed to make the coffee, they may

not have contributed the delay because they were already available in the store.

The above example illustrates that reasoning about temporal causality requires a

very different process than reasoning about functional causality. This is not a super-

ficial difference: as we will show, temporal causality requires some additional infor-

mation (about event ordering) that existing tracing systems do not capture. Thus,

although systems like Dapper or DTaP do record timestamps and thus may appear

to be capable of reasoning about time, they are in fact limited to functional causality

and use the timestamps merely as an annotation.

In this chapter, we propose a way to reason about temporal causality, and we show

how it can be integrated with an existing diagnostic technique – specifically, network

provenance. The result is a technique we call temporal provenance that can reason

about both functional and temporal causality. We present a concrete algorithm that

can generate temporal provenance for distributed systems, and we describe Zeno, a

prototype debugger that implements this algorithm. We have applied Zeno to four

scenarios with high delay that are based on real incident reports from Google Cloud

Engine. Our evaluation shows that, in each case, the resulting temporal provenance

91

Queuing
delay! …

S3
S4

S2

Storage
Backend (B)

Computing
Service (C)

Maintenance
Service (M)S1

Why is the request taking
so long to complete?

Computing Request

Victim Storage RPC

Misbehaving Storage RPCs

Figure 5.1: Scenario: The misconfigured maintenance service is overloading the
storage backend and is causing requests from the computing service to be delayed.

clearly identifies the root cause of the delay; we also show that the runtime overhead

is comparable to that of existing tools, such as Zipkin framework [148], which is

based on Google Dapper [120]. In summary, our contributions are:

• The concept of temporal provenance (Section 5.2);

• an algorithm that generates temporal provenance (Section 5.4);

• a postprocessing technique that improves the readability of timing provenance

graphs (Section 5.5);

• Zeno, a debugger that generates temporal provenance (Section 5.6); and

• an experimental evaluation of Zeno (Section 5.7).

In the following two sections, we begin with an overview of timing diagnostics and

its key challenges.

5.2 Overview

Figure 5.1 illustrates the example scenario we have already sketched above. An oper-

ator manages a small network that connects a maintenance service M, a computing

service C, and a storage backend B. Both M and C communicate with the backend

92

using RPCs. A job on M is misconfigured and is sending an excessive number of

RPCs (red) to the storage backend. This is causing queuing at the backend, which is

delaying RPCs from the computing service (green). The operator notices the delays

on C, but is unaware of the misconfiguration on M.

We refer to this situation as a timing fault : the RPCs from C are being handled

correctly, but not quickly enough. A particularly challenging aspect of this scenario

is that the root cause of the delays that C’s requests are experiencing (the misconfig-

uration on M) is not on the path from C to B; we call this an off-path root cause.

Timing faults are quite common in practice. To illustrate this, we surveyed in-

cidents disclosed by Google Cloud Platform [50], which occur across a variety of

different cloud services and directly impact cloud tenants. We examined 95 inci-

dents that happened from Jan 2014 until May 2016; all incident reports describe

both the symptom and the root cause. We find that more than a third (34.7%) of

these incidents were timing faults.

5.2.1 Prior work: Trace trees

Today, a common way to diagnose such a situation is to track the execution of the

request and to identify the bottleneck – that is, components that are contributing

unusual delays. For instance, a distributed tracing system would produce a “trace

tree” [120]. Figure 5.2 shows an example tree for one of the delayed responses from

the computing service C in Figure 5.1. The yellow bars represent basic units of

work, which are usually referred to as spans, and the up/down arrows indicate causal

relationships between a span and its parent span. A span is also associated with a

simple log of timestamped records that encode events within the span.

Trace trees are helpful because they show the steps that were involved in executing

the request: the computation was started at t0 and issued an RPC to the storage

backend at t1; the backend received the RPC at t2, started processing it at t3, and sent

a response at t4, which the client received at t5; the computation ended at t6. This

93

Bottleneck!
Root cause?

t1 t2 t3 t4 t5

Server
Recv

Server
Send

Start
Job

Client
Recv

Client
Send

Computing Request span id: 1, parent id: none

Storage RPC span id: 2, parent id: 1
t0 t6

Start End

(time)

Figure 5.2: A trace tree for the delayed computing requests in Figure 5.1. B received
the storage RPC at t2 but only started processing it at t3, after a long queuing delay.

data structure helps the operator to find abnormal delays: for instance, the operator

will notice that the RPC waited unusually long (t2 . . . t3) before it was processed by

the storage backend.

However, the operator also must understand what caused the unusual delay, and

trace trees offer far less help with this step. In our scenario, the root cause – the

misbehaving maintenance service – never even appears in any span! The reason is

that trace trees include only the spans that are on the execution path of the request that

is being examined. In practice, off-path causes are very common: when we further

investigated the 33 timing faults in our survey from above, we found that, in over

60% of the cases, the real problem was not on the execution path of the original

request, so it would not have appeared in the corresponding trace tree.

5.2.2 Prior work: Provenance

Another approach that has been explored recently [134, 24, 133, 146, 147, 145] is

to use provenance [17] as a diagnostic tool. Provenance is a way to obtain causal ex-

planations of an event; a provenance system maintains, for each (recent) event in the

network, a bit of metadata that keeps track of the event’s direct causes. Thus, when

the operator requests an explanation for some event of interest (say, the arrival of a

packet), the system can produce a recursive explanation that links the event to a set

of root causes (such as the original transmission of the packet and the relevant rout-

94

Bottleneck!
Root cause?

Computing Rsp
generated at C at 95s

Computing Req
received by C at 80s

Storage RPC Req
sent by C at 81s

Storage RPC Req
received by B at 81s

Storage RPC Rsp
sent by B at 93s

Storage RPC Rsp
received by C at 93s

Storage Type
was remote during [0s,∞)

V1

V2

Storage Block
was ... during [0s,93s)

(Q) How was the computing response generated?

Figure 5.3: Time-aware provenance, as in DTaP [146], for the example scenario
from Figure 5.1.

ing state). The explanation can be represented as a DAG, whose vertexes represent

events and whose edges represent direct causality.

Figure 5.3 shows the tree that a provenance system like DTaP [146] would gener-

ate for our example scenario. (We picked DTaP because it proposed a “time-aware”

variant of provenance, which already considers a notion of time.) This data structure

is considerably more detailed than a trace tree; for instance, it not only shows the

path from the original request (V2) to the final response (V1), but also the data and

the configuration state that were involved in processing the request along the way.

However, the actual root cause from the scenario (the misconfigured maintenance

service) is still absent from the data structure. The reason is that DTaP’s provenance

is “time-aware” only in the sense that it can remember the provenance of past system

states. It does annotate each event with a timestamp, as shown in the figure, but it

95

Computing Req
received by C at 80s

Storage RPC Req
sent by C at 81s

Storage RPC Req
received by B at 81s

Storage Type
was remote during [0s,∞)

V2

Storage Block
was ... during [0s,93s)

(Q) Why did the computing response take 14 seconds?

1s
(A) 1 second spent
on issuing RPC.

11s

Maintenance Req
received by M at ...,79s

Storage RPC Req
sent by M at ...,80s

Storage RPC Req
received by B at ...,80s

(B) 11 seconds spent on
queuing for other RPCs.

Root
cause!

Storage RPC Rsp
sent by B at ...,92s

(C) The remaining
2 seconds spent
on processing the
RPC and sending
back response.

14s
Computing Rsp

generated at C at 95s

Storage RPC Rsp
sent by B at 93s

Storage RPC Rsp
received by C at 93s

V1

Figure 5.4: Temporal provenance, as proposed in this chapter, for the example sce-
nario from Figure 5.1.

does not reason about temporal causality. Thus, it actually does not offer very much

extra help compared to trace trees: like the latter, it can be used to find bottlenecks,

such as the high response times in the backend, but it is not able to explain them.

5.2.3 Our approach

We propose to solve this problem with a combination of three insights. The first

is that temporal causality critically depends on a type of information that existing

tracing techniques tend not to capture: the sequence in which the system has pro-

cessed requests, whether the requests are related or not. By looking only at functional

dependencies, these techniques simply consider each request in isolation, and thus

cannot make the connection between the slow storage RPC and the requests from

the maintenance service that are delaying it. With provenance, we can fix this by

96

including a second kind of edge e1→ e2 that connects each event e1 to the event e2

that was processed on the same node and immediately after e1. We refer to these

edges as sequencing edges (Section 5.4.1).

Our next insight is a connection between temporal reasoning and the critical

path analysis from scheduling theory. When scheduling a set of parallel tasks with

dependencies, the critical path is the dependency chain with the longest accumula-

tive execution time, and it determines the overall completion time. We extend this

concept to our more fine-grained setting, and we turn it into a method that recur-

sively allocates delay to the various branches of the provenance tree (Section 5.4.3).

The result is a data structure we call temporal provenance.

Our third insight has to do with readability. At first glance, temporal provenance

is considerably more complex than classical provenance because it considers not only

functionally related events, but also events that may have contributed only delay (of

which there can be many). However, in practice, many of these events do not actually

contribute any delay, e.g., because they are not on the critical path; the ones that

do are often structurally similar, such as the maintenance requests in our example

scenario, and can thus be aggregated. Thus, it is usually possible to extract a compact

representation that can be easily understood by the human operator (Section 5.5).

Figure 5.4 shows the temporal provenance for a random computing request in

our example scenario. Starting at the root, the provenance forks into two branches;

the thin branch shows that one second was spent on issuing the RPC itself (A); and

the thick branch shows that the majority of the delay (11 seconds) was caused by

RPCs from the maintenance service (B). This tree has all the properties we motivated

earlier: it provides a quantitative explanation of the delay, and it includes the actual

root cause (the maintenance service), even though it does not appear on the path the

request has taken.

97

5.3 Background

Since temporal provenance is a generalization of network provenance, we begin with

a brief description of the latter, and refer interested readers to [145] for more detail.

5.3.1 System model

If our goal was classical data provenance, the description of NDlog in Section 2.1

would already be sufficient. However, since we are particularly interested in timing,

we need to also consider some details of the NDlog runtime. The runtime execu-

tion consists of insertions and deletions of tuples, which we refer to as updates. For

instance, in a network that is modeled in NDlog, the updates could include packet

arrivals or configuration changes. The tuple can then trigger additional updates,

which may in turn cause more updates, etc., until the state stabilizes again.

One important question that arises is what should happen when an update trig-

gers more than one update – specifically, in what order these updates should be

processed. Here, we will assume that the execution follows pipelined semi-naïve eval-

uation (PSN) [83], which is a good fit for networks and services with FIFO queues.

In PSN, each node maintains an update queue in which it buffers all updates whose

effects have not yet been applied to the tables. The node picks an update from the

queue according to FIFO policy, applies it to the tables, and then computes whether

any additional updates have been triggered. If so, local updates are added to the local

queue; remote updates are sent to the remote node.

5.3.2 Classical provenance

In order to be able to answer provenance queries, a system must collect some addi-

tional metadata at runtime. Conceptually, this can be done by maintaining a large

DAG, the provenance graph, that contains a vertex for every event that has occurred

in the system, and in which there is an edge (a,b) between two vertexes if event a was

98

a direct cause of event b. (A practical implementation would typically not maintain

this graph explicitly, and instead collect only enough information to reconstruct a

recent subgraph when necessary; however, we will use this concept for now because

it is easier to explain.) If the system later receives a provenance query prov(e) for

some event e, it can find the answer by locating the vertex that corresponds to e

and then projecting out the subgraph that is rooted at e. This subgraph will be the

provenance of e.

For concreteness, we will use a provenance graph with six types of vertexes, which

is loosely based on [146]:

• INS([ts, te],N,τ): Base tuple τ was inserted on node N during [ts, te];

• DEL([ts, te],N,τ): Base tuple τ was deleted on node N during [ts, te];

• DRV([ts, te],N,τ): Derived tuple τ acquired support on N during [ts, te];

• UDRV([ts, te],N,τ): Derived tuple τ lost support on N during [ts, te];

• SND([ts, te],N→N′,±τ): ±τ was sent by N to (from) N′ during [ts, te]; and

• RCV([ts, te],N←N′, ±τ): ±τ was received by N to (from) N′ during [ts, te].

Note that each vertex is annotated with the node on which it occurred, as well as

with a time interval that indicates when the node processed that event. For instance,

when a switch makes a forwarding decision for a packet, it derives a new tuple that

specifies the next hop, and the time [ts, te] that was spent on this decision is indicated

in the corresponding DRV vertex. This will be useful (but not yet sufficient) for

temporal provenance later on.

The edges between the vertexes represent their causal relationships. A SND vertex

has an edge from an INS or a DRV that produced the tuple that is being sent; a RCV

has an edge from the SND vertex for the received message; and a DRV vertex for

a rule A:-B,C,D has an edge from each precondition (B, C, and D) that leads to

the vertex that produced the corresponding tuple. An INS vertex corresponds to the

insertion of a base tuple, which cannot be explained further; thus, it has no incoming

99

edges. The edges for the negative “twins” of these vertexes – UDRV and DEL – are

analogous to their positive counterparts.

5.3.3 Desirable properties

Before we go on, we briefly reflect on some key properties of this existing notion of

provenance. First, provenance is recursive: the provenance of an event e includes, as

subgraphs, the provenances of all the events that contributed to e. This is useful to an

operator because she can start at the root and “drill down” into the explanation until

she identifies a root cause. Second, there is a single data structure – the provenance

graph – that can be maintained at runtime, without knowing a priori what kinds of

queries will be asked later on.

Besides this, there are some key properties (formulated, e.g., in [146]) that we

would expect the provenance to have. These include validity (the provenance de-

scribes a correct execution of the system’s program), soundness (the provenance re-

spects happens-before relationships), completeness (the provenance fully explains

the event of interest), and minimality (the provenance contains no more vertexes

than necessary). These properties are clearly important for the provenance to “make

sense”, so we should expect a generalization to preserve them.

5.4 Temporal provenance

In this section, we generalize the basic provenance model from Section 5.3 to reason

about the timing of events.

5.4.1 Sequencing edges

The provenance model we have introduced so far would produce provenance that

looks like the tree in Figure 5.3: it would explain why the event at the top occurred,

but it would not explain why the event occurred at that particular time. The fact that

100

the vertexes are annotated with timestamps, as in prior work [146], does not change

that fact: the operator would be able to see, for instance, that the storage service took

a long time to respond to a request, but the underlying reason (the requests from

another node that were queued in front of it) is not shown; in fact, it does not even

appear in the graph!

To rectify this, we need to capture some additional information – namely the se-

quence in which events were processed by a given node. Thus, we introduce a second

type of edge that we call sequencing edge. A sequencing edge (v1,v2) exists between

two vertexes a and b iff either a) the corresponding events happened on the same

node, and a was the event that immediately preceded b, or b) a is an snd vertex and

b is the corresponding rcv vertex. We refer to the first type of edge as a local sequenc-

ing edge, and to the second type as a remote sequencing edge. In the illustrations, we

will render the sequencing edges with green, dotted lines to distinguish them from

the causal edges that are already part of classical provenance. Notice that these edges

essentially capture the well-known happens-before relation [77].

Although causal edges and sequencing edges often coincide, they are in fact or-

thogonal. For instance, consider the scenario in Figure 5.5(a). Here, a node X has

two rules, B:-A and C:-A; in the concrete execution (shown on the timeline), A is

inserted at time 0, which triggers both rules, but B is derived first, and then C. In

the provenance graph (shown at the bottom), ins(A) is connected to drv(B) by both

a causal and a sequencing edge, since the two events happened back-to-back and B’s

derivation was directly caused by A’s insertion. But drv(B) is connected to drv(C)

only by a sequencing edge, since the former did precede the latter but was not a

direct cause; in contrast, ins(A) is connected to drv(C) only by a causal edge, since

A’s insertion did cause C’s derivation, but the latter was delayed by another event.

101

5.4.2 Queries

Next, we turn to the question what a query for temporal provenance should look

like, and what it should return. Unlike a classical provenance query query(e), which

aims to explain a specific event e, a temporal provenance query aims to explain a delay

between a pair of events e1 and e2. For instance, in the scenario from Figure 5.1, the

operator wanted to know why his request had taken so long to complete, which is, in

essence, a question about the delay between the request itself (e1) and the resulting

response (e2). Hence, the primitive we provide is a query t-query(e1,e2), which asks

about delay between e1 and e2. Our only requirement is that the events are causally

related – i.e., that there is a causal path from e1 to e2.

As a first approximation, we can answer t-query(e1,e2) as follows. We first query

the classical provenance P :=query(e2). Due to the above requirement, P will include

a vertex for e1. We then identify all pairs of vertexes (v1,v2) in P that are connected

by a causal edge but not by a sequencing edge. We note that, a) in each such pair, v2

must have been delayed by some other intervening event, and b) v1 is nevertheless

connected to v2 via a multi-hop path along the sequencing edges. (The reason is

simply that v1 was one of v2’s causes and must therefore have happened before it.)

Thus, we can augment the causal provenance by adding these sequencing paths, as

well as the provenance of any events along such a path. The resulting provenance P′

contains all the events that have somehow contributed to the delay between e1 and

e2. We can then return P′ as the answer to t-query(e1,e2).

5.4.3 Delay annotations

As defined so far, the temporal provenance still lacks a way for the operator to tell

how much each subtree has contributed to the overall delay. As discussed in Sec-

tion 5.3.3, this is important for usability: the operator should have a way to “drill

down” into the graph to look for the most important causes of delay. To facilitate

102

A@X :- B@X
B@X :- C@X
C@X :- Z@X

X
Y

0 1 2 3 4 5 6 7 8

C B A
INS(Z)

5s

4s

2s

DRV(A)

DRV(B)

DRV(C)

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X

C B A

E

INS(Z)

7s

4s

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E) 2s

DRV(C)

1.5s

1.5s

(b) (c)

B@X :- A@X
C@X :- A@X

X
0 1 2 3 4 5 6 7 8

B C
INS(A)

DRV(B) DRV(C)

INS(A)

(a)

2s

Figure 5.5: Example scenarios (a)-(c), with NDlog rules at the top, the timing of
a concrete execution in the middle, and the resulting temporal provenance at the
bottom. The query is t-query(INS(Z), DRV(A)) in all scenarios; the start and end
vertexes are marked in bold. Vertex names have been shortened and some fields
have been omitted for clarity.

this, we additionally annotate the vertexes with the delay that they (and the subtrees

below them) have contributed.

Computing these annotations is surprisingly nontrivial and involves some inter-

esting design decisions. Our algorithm is shown in Figure 5.6; we explain it below

in several refinements, using the simple examples in Figures 5.5(b)–(c) and in Fig-

ures 5.7(d)–(f). The examples are shown in the same format as in Figure 5.5(a): each

shows a set of simple NDlog rules, the timing of events during the actual execution,

and the resulting temporal provenance, with the delay annotations in red. The query

is always the same: t-query(INS(Z),DRV(A)); that is, we want to explain the delay

between the insertion of Z and the derivation of A. One difference to Figure 5.5(a)

is that some of the examples require two nodes, X and Y. To make the connections

103

1: // the subtree rooted at v is responsible for the delay during [ts, te]
2: function annotate(v, [ts, te])
3: assert(te == tend (v))
4: if [ts, te] = /0 then
5: return
6:
7: // weight v by the amount of delay it contributes
8: set-weight(v, te − ts)
9:

10: // recursive calls for functional children in order of appearance
11: C← functional-children(v)
12: T← ts
13: while C ̸= /0 do
14: v′ ← c ∈C with min tend (c)
15: C← C \{v′}
16: if tend (v

′)≥ T then
17: annotate(v′, [T, tend (v′)])
18: T ← tend (v

′)

19:
20: // recursive calls for sequencing children
21: s← sequencing-child(v)
22: E← tstart (v)
23: while T < E do
24: annotate(s, [max(T, tstart (s)),E])
25: E ← tstart (s)
26: s← sequencing-child(s)

Figure 5.6: Algorithm for computing delay annotations (explained in Sec-
tions 5.4.3–5.4.5).

more visible, we show the vertexes that belong to Y in orange, and the ones that

belong to X in green, as in Figure 5.5(a). If a vertex did not contribute to the delay

at all, we omit its annotation.

Our algorithm computes the delay annotations recursively. A function annotate

is called on the root of the provenance; the function then invokes itself on (some of)

the children to compute the annotations on the subgraphs. As a first approximation,

this works as follows:

Rule #1: Annotate the top vertex with the overall delay T , and then recursively

annotate each (causal) child with T − t, where t is the parent’s execution time.

104

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- F@Y
C@X :- Z@X

A@X :- B@X
B@X :- Z@X
H@X :- I@X

I@X :- J@X
K@X :- L@X
L@X :- M@X

X
Y

0 1 2 3 4 5 6 7 8

AC B

E

INS(Z) INS(F)

X
Y

-3 -2 -1 0 1 2 3 4 5

L B

INS(M) INS(Z,J)

I K H

6

A

8s

2s

DRV(A)

DRV(B)

DRV(E)

INS(F)

SND(+E)

RCV(+E) 3s

2.5s

2.5s
DRV(C)

INS(Z)

4s

1s

DRV(A)

DRV(B)

INS(Z)

DRV(H)

DRV(I)

INS(J)

DRV(K)

DRV(L)

INS(M)

6s

2s

1s

1s

1s

(d) (e) (f)

X
Y

0 1 2 3 4 5 6 7 8

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X
F@Y :- G@Y

C B A

E

INS(Z)

7s

2s

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E) 2s

DRV(C)

1.5s
1.5s

F

INS(G)

DRV(F)4s

INS(G)

Figure 5.7: Example scenarios (d)-(f), with NDlog rules at the top, the timing of
a concrete execution in the middle, and the resulting temporal provenance at the
bottom. The query is t-query(INS(Z), DRV(A)) in all scenarios; the start and end
vertexes are marked in bold. Vertex names have been shortened and some fields
have been omitted for clarity.

In our algorithm, this corresponds to line 8, which sets the weight for the current

vertex, and the recursive call in line 17; lines 4–5 contain the base case, where the

delay is zero.

5.4.4 Handling multiple preconditions

This approach works well for linear provenance, such as the one in Figure 5.5(b):

deriving A from Z took 5s because it took 1s to compute A itself, and 4s to derive

A’s precondition, B; deriving B from Z took 4s because 2s were spent on B itself and

another 2s on C. However, it does not work well for rules with multiple precondi-

tions. Consider the scenario in Figure 5.5(c): A now has two preconditions, B and

E, so the question is how much of the overall delay should be attributed to each.

105

Two answers immediately suggest themselves: 1) since B finished its derivation

after 4s, we can attribute 4s to B and the remaining 2s to E, which finished later,

or 2) we can attribute the entire 6s to E, because it was the last to finish. The latter

is somewhat similar to the choice made in critical path analysis [29, 136]; however,

the theorems in Section 5.4.6 actually require the former: if we find a way to speed

up E (or cause F to be inserted sooner), this can only reduce the end-to-end delay

by 3s. Any further reductions would have to come from speeding up B. This leads

to the following refinement:

Refinement #2: Like rule #1, except that the remaining delay is allocated among

the preconditions in the order in which they were satisfied.

This refinement is implemented in lines 13–15 and 18 of our algorithm, which iter-

ate through the preconditions in the order of their appearance (that is, local deriva-

tion or arrival from another node) and allocate to each the interval between its own

appearance and the appearance of its predecessor.

Notice that this approach deviates from critical-path analysis in an interest-

ing way. Consider the scenario in Figure 5.7(d): here, the provenance has two

“branches”, one connected to the insertion of Z and the other to the insertion of F,

but there is no causal path from Z to F. (We call such a branch an off-path branch,

and any other branch an on-path branch.) This raises the question whether any delay

should be apportioned to off-path branches, and if so, how much. Critical path

analysis has no guidance to offer for this case because it only considers tasks that are

transitively connected to the start task.

At first glance, it may seem that F’s branch should not get any delay at all; for

instance, F could be a configuration entry that is causally unrelated to Z and thus did

not obviously contribute to a delay from Z to A. However, notice that all the “on-

path” derivations (in Z’s branch) finished at t = 4s, but A’s derivation was nevertheless

delayed until t = 7s because E was not yet available. Thus, it seems appropriate that

the remaining 3s should be apportioned to the other branch.

106

5.4.5 Handling sequencing delays

The one question that remains is what to do if there is further delay after the last

precondition is satisfied. This occurs in the scenario in Figure 5.7(e): although B is

derived immediately after Z is inserted at t = 0, A’s derivation is delayed by another

3s due to some causally unrelated derivations (I, K, and H). Here, the sequencing

edges come into play: we can attribute the remaining delay to the predecessor along

the local sequencing edge (here, drv(H), which will subtract its own computation

time and pass on any remaining delay to its own predecessor, etc. This brings us to

the final rule:

Final rule: Like #2, except that, if any delay remains after the last precondition,

that delay is attributed to the predecessors along the local sequencing edge.

This is implemented in lines 20–26.

So far, we have focused on the rule for drv vertexes, which is the most complex

one. snd vertexes are easy because they only have one (causal) child; rcv vertexes are

even easier because they cannot be delayed by sequencing at all; and ins vertexes are

trivial because they have no causal children.

5.4.6 Properties

Our generalization preserves all of the four key properties of provenance from [146]:

the result of t-query(e1,e2) is valid, sound, complete, and minimal. Formal state-

ments of these properties, as well as the corresponding proofs, is in Appendix C.1.

Temporal provenance also satisfies almost all of the requirements we have de-

scribed in Section 5.3.3: it is recursive – that is, it allows the operator to “zoom in”

on the root cause of a problem by following a path from the root – and it is inde-

pendent of a particular query, which means that the provenance can be recorded at

runtime without knowing what queries will asked later on. Our only sacrifice is that

the delay annotations are query-specific and must be computed during query pro-

107

cessing; however, as we will show in Section 5.7.4, this takes only a few milliseconds,

so the cost should not be significant.

We have also formally modeled the properties of the delay annotations that our

algorithm creates. We again omit the details for lack of space (they are in the ap-

pendix), but we briefly summarize our key findings. Our model first carefully defines

what it means for a derivation τ :−c1,c2, . . . to be directly “delayed” by one of its pre-

conditions, and then recursively extends this definition to transitive delays (that is,

one of the ci was itself delayed by one of its own preconditions, etc.). Our first the-

orem (Section C.1.5) states that each vertex is labeled with the amount of (direct

or transitive) delay that is contributed by the subtree that is rooted at that vertex.

Our second theorem (Section C.1.6) essentially states that, if there is a vertex v in a

temporal provenance tree that is annotated with T and the sum of the annotations

on its children and immediate predecessors is S < T , then it is possible to construct

another valid (but hypothetical) execution in which v’s execution time is reduced by

(T −S) and in which the derivation finishes (T −S) units of time earlier. Thus, the

annotations really do correspond to the “potential for speedup” that we intuitively

associate with the concept of delay.

5.5 Improving readability

As defined in the previous section, temporal provenance is already useful for diag-

nostics because it can explain the reasons for a delay between two events. However,

the provenance can be somewhat verbose and hard to read for a human operator.

There are two reasons for this. The first is that the temporal provenance for [e1,e2]

contains the entire classical provenance of e2 as a subgraph, even though some of

the functional causes did not actually contribute to the delay and are thus irrele-

vant if the delay is the only thing the operator is interested in. The second reason

is that sequencing delay is often the result of many similar events (such as other

packets queued in front of the packet of interest) that each contribute a relatively

108

small amount of delay. Including the full provenance of each such event results in a

somewhat cluttered graph that makes it difficult to see the “big picture”.

To make the graph more usable for operators, we perform two post-processing

steps, which we describe next.

5.5.1 Pruning zero-delay subgraphs

Our first step hides any vertexes that are annotated with zero (or not annotated at

all) by the annotate function. The only exception is that we keep vertexes that are

connected via a causal path (i.e., a path with only causal edges) to a vertex that is

annotated with a positive delay. For instance, in the samples from Figure 5.5 and

Figure 5.7, the original ins(z) vertex – which is the starting point of the interval –

would be preserved, even though the insertion itself did not contribute any delay.

To illustrate the effect of this step we consider the example in Figure 5.7(f), which

is almost identical to the one in Figure 5.5(c), except that an additional, unrelated

derivation (F) occurred before the derivation of E. Here, the ins(G) and the drv(F)

would be hidden because they do not contribute to the overall delay.

5.5.2 Provenance aggregation

Our second post-processing step aggregates subgraphs that are structurally simi-

lar [115]. This helps with cases where there are many events that each contribute

only a very small amount of delay. For instance, in our scenario from Figure 5.1,

the delay is caused by a large number of RPCs from the maintenance service that

are queued in front of the RPC whose delay is being explained. The “raw” tempo-

ral provenance contains a subtree for each such RPC. During postprocessing, these

nearly identical subtrees would be aggregated into a single subtree whose weight is

the sum of the weights of the individual trees, as shown in Figure 5.4.

There are two key challenges with this approach. The first is to decompose the

temporal provenance into smaller subgraphs that can potentially be aggregated. At

109

first glance, there are exponentially many decompositions, so the problem seems

intractable. However, we observe that (1) aggregation is most likely to be possible for

sequencing delays, which are often due to similar kinds of events (network packets,

RPCs) that have a similar provenance; and that (2) the corresponding subtrees can

easily be identified in the temporal provenance because they are laterally connected

to the functional provenance through a chain of sequencing edges. Thus, we can

extract candidates simply by following such lateral sequencing edges and by taking

the subgraphs below any vertexes we encounter.

The second challenge is that the candidate subgraphs are often similar but rarely

identical. Thus, we need to define an equivalence relation that controls which ver-

texes can be considered “similar” and are thus safe to aggregate. We use a simple

heuristic that considers two vertexes to be similar for aggregation purposes if they

share a tuple name and have been derived on the same node. To aggregate two

subgraphs, we start at their root vertexes; if the vertexes are similar, we merge them,

annotate them with the sum of their individual annotations, and recursively attempt

to merge pairs of their children. If the vertexes are not similar, we stop aggregation

at that point and connect the two remaining subgraphs directly to the last vertex

that was successfully aggregated.

The aggregation procedure is commutative and associative; thus, rather than at-

tempting aggregation for all pairs of subgraphs, we can simply try to aggregate each

new subgraph with all existing aggregates. In our experience, the O(N2) complexity

is not a problem in practice because N is often relatively small and/or most of the

subgraphs are similar, so there are very few aggregates.

5.6 The Zeno debugger

We have built a debugger called Zeno that can generate temporal provenance using

the algorithm described above. Zeno can be configured to run with RapidNet [84],

a declarative networking engine, as well as Zipkin [148], a distributed tracing frame-

110

work. Our Zeno prototype is written in 16,960 lines of code in C++, and it includes

three main components.

Runtime: To demonstrate that Zeno can work with different languages and plat-

forms, we built two different front-ends. The first is integrated with RapidNet [84]

and enables Zeno to generate temporal provenance for NDlog programs. The sec-

ond is integrated with the Zipkin [148] framework – a cross-language and cross-

framework distributed tracing library that is based on Google Dapper [120] and

can run a network of microservices written in Node.js [103] (JavaScript) and Pyra-

mid [110] (Python). Both front-ends share the same back-end for reasoning about

temporal provenance. In our evaluation, we use the first front-end for SDN appli-

cations and the second for native Zipkin services.

Provenance recorder: At runtime, our debugger must record enough metadata to

be able to answer provenance queries later on. Previous work [147, 82, 134] has

already shown that provenance can be captured at scale; this is typically done either

(1) by explicitly recording all events and their direct causes, or (2) by recording only

nondeterministic inputs at runtime, and by later replaying the execution with addi-

tional instrumentation to extract events and causes if and when a query is actually

asked [146]. The Zipkin front-end follows the first approach, because Zipkin al-

ready has well-defined interfaces to capture both base events and intermediate events

(such as RPC invocations and completions) in a distributed system, which yields a

complete trace tree for each request. Therefore, Zeno merely adds a post-processing

engine that converts the trace trees to functional provenance and that infers the

sequencing edges from the recorded sequence of events across all trace trees. The

NDlog front-end uses the second approach and is based on the record and replay

engine from DTaP [146].

Obtaining sequencing edges is not always straightforward, especially at the

network switches. Fortunately, we can leverage the in-band network telemetry

(INT) capability [72] in emerging switches [15] to obtain sequencing edges [101].

111

INT-capable switches can stamp into a packet’s header the queue depths and the

ingress/egress timestamps at each hop, which is exactly what we need in order to

obtain sequencing edges. We have implemented an extension in our prototype to

approximate this capability. Although we have implemented INT in software, an

INT-capable switch can perform these operations in hardware, at line speed.

Query processor: The third and final component accepts queries t-query(e1,e2)

from the operator, as defined in Section 5.4.2, and it answers each query by first

executing the algorithm from Section 5.4 to generate the raw temporal provenance

and then applying the post-processing steps from Section 5.5 to improve readability.

The resulting graph is then displayed to the operator.

5.7 Evaluation

In this section, we report results from an experimental evaluation of our debugger.

We have designed our experiments to answer four high-level questions: 1) Is tempo-

ral provenance useful for debugging realistic timing faults? 2) What is the cost for

maintaining temporal provenance? 3) How fast can our debugger process diagnostic

queries? And 4) Does temporal provenance scale well with the network size?

We ran our experiments on a Dell OptiPlex 7010 workstation, which has a 4-

core 3.20 GHz Intel i5-3470 CPU with 16 GB of RAM. The OS was Ubuntu 13.10,

and the kernel version was 3.11.0.

5.7.1 Diagnostic scenarios

For our experiments, we reproduced the following four representative scenarios that

we sampled from incidents reported by Google Cloud Engine [50]:

• R1, Z1: Misbehaving maintenance task [47]. Clients of the Compute En-

gine API experienced delays of up to two minutes because a scheduled main-

tenance task caused queuing within the compute service. This is the scenario

from Section 5.2.

112

Frontend (F) span id: 1, parent id: none

0s
(time)

Compute (C) span id: 2, parent id: 1

Billing (B) ...

Storage (S) span id: 4, parent id: 2

30s10s 20s 40s 50s

Figure 5.8: Zipkin trace tree for scenario Z1. The tree clearly shows that the RPC
to the storage service is the bottleneck, but the actual root cause (the RPCs from the
maintenance service) is off-path and thus is absent.

• R2, Z2: Elevated API latency [46]. A failure caused the URL Fetch API

infrastructure to migrate to a remote site. This increased the latency, which in

turn caused clients to retry, worsening the latency. Latencies remained high

for more than 3 hours.

• R3: Slow deployments after release [48]. A new release of App Engine caused

the underlying pub/sub infrastructure to send an update to each existing in-

stance. This additional load slowed down the delivery of deployment messages;

thus, the creation of new instances remained slow for more than an hour.

• R4: Network traffic changes [49]. Rapid changes in external traffic patterns

caused the networking infrastructure to reconfigure itself repeatedly, which

created a substantial queue of modifications. Since the network registration

of new instances had to wait on events in this queue, the deployment of new

instances was slowed down for 90 minutes.

We reproduced all scenarios in RapidNet (R1–R4) and the first two additionally in

the microservice environment (Z1–Z2). The first two scenarios are relatively small;

the NDlog versions use four switches, one controller, and three servers, while the

microservice versions used 8 and 6 servers, respectively. (We do not model switches

in the microservice scenarios.) For the last two scenarios, we used 4 switches and

one controller but a larger number of servers: 115 for R3, and 95 for R4.

113

78 Storage Req
sent by M at 1.05s,...,0.75s

78 Storage Reqs
received S at 1.20s,..,0.90s

Root
cause!

78 Storage Rsps
sent by S at 50.70s,...,11.41s

(1) The compute response took
50.63 seconds to generate after
the frontend received the request.
Because the compute node took
50.62s to process the request.

Compute Rsp
send by C at 51.36s

Billing Rsp
received by C at 11.34s

Billing Rsp
sent by B at 11.29s

Compute Rsp
received by F at 51.37s

Billing Req
sent by C at 1.01s

Storage Rsp
received by C at 51.36s

Storage Rsp
sent by S at 51.21s

Storage Req
received by S at 1.20s

Storage Req
sent by C at 1.05s

(2) The compute node processing
depended on two other RPC
responses, in which the storage
RPC finished last.

(3) The storage response was
triggered around 50 seconds
ago. The majority of this delay
was due to 78 other RPCs that
arrived earlier, which were all
from the maintenance service.

50.63s

50.62s

40.02s

39.86s

39.37s

(Q) Why did the compute request took 50.63 seconds to generate a response?

0.01s...

Compute Req
received by F at 0.74s

Compute Req
received by C at 0.90s

10.44s
0.15s

9.90s...

...0.04s 10.30s

0.30s

...0.14s

...0.15s

0.15s

Billing Req
received by B at 1.19s

Figure 5.9: Temporal provenance for scenario Z1. In contrast to the trace tree in
Figure 5.8, the off-path root cause (the requests from the maintenance service) does
appear and can easily be found by starting at the root and by following the vertexes
with the highest delay.

5.7.2 Identifying off-path causes

A key motivator for this work is the fact that off-path root causes for a delay are

often not even visible with an existing debugger. To test whether Zeno addresses

this, we generated trace trees (using Zipkin) and classic provenance (using DTaP),

and compared their ability to identify off-path root causes with temporal provenance.

Figure 5.8 shows a Zipkin trace tree for Z1. A human operator can clearly see

that the API call to the frontend took 50 seconds, and that the compute RPC and the

storage RPC both took almost as long. The latter may seem suspicious, but the trace

114

 0

 500

 1000

 1500

 2000

 2500

 3000

R1 R2 R3 R4 Z1 Z2

V
e

rt
ic

e
s
 i
n

 r
e

s
p

o
n

s
e

Query

Raw
w/ annotation (w>0)
w/ annotation (w=0)

w/ pruning (w>0)
w/ pruning (w=0)

w/ aggregation (w>0)
w/ aggregation (w=0)

Figure 5.10: Size of the temporal provenance for all scenarios, with different com-
binations of postprocessing steps.

tree contains no further explanation. Similarly, the classic provenance tree for Z1,

which are essentially the yellow vertexes in Figure 5.9, offers a more comprehensive

explanation compared to the trace tree; however, it still misses the actual off-path

root cause. This problem happened in all scenarios with Zipkin and DTaP.

Figure 5.9 shows the temporal provenance for the Z1. Again, the provenance

shows clearly that the API call took 50 seconds (1), and that this was caused by a

delayed response from the storage service (2); however, unlike the trace tree or classic

provenance, the temporal provenance also shows that most of this delay was caused

by requests from the maintenance service M (3). This cause can be found simply by

starting at the root and following the chain of vertexes that are annotated with the

highest delay. This information would make it much easier for the operator to find

the root cause.

5.7.3 Complexity

Including the actual root cause is not enough for the provenance to be useful; it

also has to be simple enough for the operator to make sense of it. Recall from Sec-

115

...

...

...

...

...

...

...

...

...
...

...

...

...

...
...

...

...

...

...

...

...

...

......

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

...

......

...

...
...

...

...

...

...

...

...
...

...

...

...

...

...
Compute
response

Compute
request

Root
causes!

(A1)

(A2)

(P1)

(P2)

......
... ...

Figure 5.11: Sketch of the raw temporal provenance for scenario Z1. The post-
processing steps from Section 5.5 would reduce this to the provenance shown in
Figure 5.9.

tion 5.5 that, before showing the provenance graph to administrators, our debugger

(1) prunes vertexes that do not contribute to the overall delay, and (2) aggregates

subgraphs that are structurally similar. To quantify how well these techniques work,

and whether they do indeed lead to a readable explanation, we re-ran the diagnos-

tic queries in Section 5.7.1 with different subsets of these steps disabled, and we

measured the size of the corresponding provenance graphs.

Figure 5.10 shows our results. The leftmost bars show the size of the raw temporal

provenance, which ranged from 800 to 2,564 vertexes. A graph of this size would be

far too complex for most operators to interpret. However, not all of these vertexes

actually contribute to the overall delay. The second set of bars shows the number

116

of vertexes that the algorithm from Section 5.4.3 would annotate with a nonzero

delay (w > 0) and a zero delay (w = 0), respectively. These results show that only

7.2–47.5% of all vertexes actually contributed any delays. However, the subgraphs

with nonzero delays nevertheless remain too large for an operator to read effectively.

Our first postprocessing step (Section 5.5.1) prunes vertexes and subtrees that are

annotated with zero delay and also do not make a causal contribution. As the third

set of bars shows, this reduces the size of the graph considerably, by more than 30%

in all scenarios except R2. In R2, both extended network transmission delays and

heavy server loads contribute delays and therefore few events are actually pruned.

The second and final postprocessing step (Section 5.5.2) coalesces structurally

similar subtrees and aggregates their delays. As the rightmost set of bars shows, this

is extremely effective and shrinks the graph to between 13 and 129 vertexes; the

number of vertexes that actually contribute delay is between 11 and 35. (Recall

that vertexes with a causal contribution are preserved even if they do not contribute

delay.) A provenance graph of this size should be relatively easy to interpret.

To explain where the large reduction comes from, we sketch the raw provenance

tree – without postprocessing – for scenario Z1 in Figure 5.11. The structure of

this tree is typical for the ones we have generated. First, there is a relatively small

“backbone” (shown in yellow) that functionally explains the result and roughly cor-

responds to classical provenance. Second, there is a large number of small branches

(shown in red) along long sequencing chains (shown in green) that describe the

sources of any delay; these are collapsed into a much smaller number of branches,

or even a single branch. Third, there are further branches (shown in white) that are

connected via sequencing edges but do not contribute any delay; these are pruned

entirely. The last two categories typically contain the vast majority of vertexes, and

our postprocessing steps can shrink them very effectively, which in this case yields

the much simpler tree from Figure 5.9.

117

 0

 5

 10

 15

 20

R1 R2 R3 R4 Z1 Z2

T
im

e
 (

s
e
c
o
n
d
s
)

Query

Replay
Storage lookups

Graph construction
Annotation+Aggregation

Figure 5.12: Turnaround for all queries in Section 5.7.1.

5.7.4 Runtime overhead

Next, we quantified the overhead of collecting the necessary metadata for temporal

provenance at runtime. Our experiments focused on RapidNet instead of Zipkin.

This is because the latter is closely based on Dapper, which is proven to introduce

low overhead in production systems [120]; temporal provenance simply uses the

data Zipkin collects, but does not modify its collection system. We ran a fixed work-

load of 1,000 requests in all scenarios, and we measured the overall latency and the

storage needed to maintain provenance. Maintaining classical provenance alone re-

sulted in a latency increase of 0.3–1.2% and a storage overhead of 145–168 bytes

per input event. Maintaining temporal provenance causes an additional latency in-

crease 0.4–1.5% overall and a storage overhead of 49 bytes per event. Notice that,

for temporal provenance, it is not enough to merely record input events, since this

would not necessarily reproduce the timing of events or their sequence. To limit the

additional overhead, Zeno can remember temporal information only for recent ex-

ecutions. This is sufficient as older executions would have not contributed to recent

delays (Section 5.4.3).

118

 0

 50

 100

 150

 200

 250

100 300 500 700

T
im

e
 (

s
e
c
o
n
d
s
)

Network size

Replay
Storage lookups

Graph construction
Annotation+Aggregation

Figure 5.13: Scalability of turnaround time for R3.

5.7.5 Query processing speed

When the operator queries the temporal provenance, our debugger must execute

the algorithm from Section 5.4 and apply the postprocessing steps from Section 5.5.

Since debugging is an interactive process, a quick response is important. To see

whether our debugger can meet this requirement, we measured the turnaround time

for the queries in Section 5.7.1, as well as the fraction of time consumed by each of

the major components.

Figure 5.12 shows our results. We make two high-level observations. First,

for scenarios where provenance is captured using deterministic replay (R1–R4), the

turnaround time is dominated by the replay and by the storage lookups that would

be needed even for classical provenance. This is expected because neither our annota-

tion algorithm nor the postprocessing steps are computationally expensive. Second,

although the queries vary in complexity and thus their turnaround times are difficult

to compare, we observe that none of them took more than 13 seconds, which should

be fast enough for interactive use. This delay is incurred only once per query; the

operator can then explore the resulting temporal provenance without further delays.

119

 0

 5000

 10000

 15000

 20000

100 300 500 700

V
e
rt

ic
e
s
 i
n
 r

e
s
p
o
n
s
e

Network size

Raw
w/ anno. (w>0)
w/ anno. (w=0)
w/ prun. (w>0)
w/ prun. (w=0)
w/ aggr. (w>0)
w/ aggr. (w=0)

Figure 5.14: Scalability of provenance size for R3.

5.7.6 Scalability

To evaluate the scalability of temporal provenance with regard to the network size,

we tested the turnaround time and provenance size of query R3 on larger networks

which different number of servers (up to 700).

Turnaround time: As we can see from the left part of Figure 5.13, the turnaround

time increased linearly with the network size, but it was within 120 seconds for all

cases. As the breakdown shows, the increase mainly comes from the latency increase

of the historical lookups and of the replay. This is because the additional nodes and

traffic caused the size of the logs to increase. This in turn resulted in a longer time

to replay the logs, and to search through the events.

Complexity: The right part of Figure 5.14 shows how the size of the provenance

grows with the network size. As expected, the size of the raw provenance grew lin-

early to the network size – by 7x from 2,123 to 15,348 vertexes – because traffic from

additional servers caused additional delays, which required extra vertexes to be rep-

resented in the provenance. With the annotation and aggregation heuristics applied,

the number of vertexes that actually contribute delay still grew, because more hops

were congested due to busier networks. However, the increase – 1.6x, from 28 to 43

– is much less than 7x, which suggests that the heuristic scales well.

120

5.8 Related Work

We have covered the literature on provenance and diagnosis of systems in Chapter 2.

As discussed in Section 5.2.2, none of the provenance systems we are aware of reason

about temporal causality, which is essential for diagnosing problems such as the one

in Figure 5.1. This is true even for DTaP [146] and its predecessor TAP [144], which

are “time-aware” only in a limited sense that they remember the provenance of past

events. Furthermore, to the best of our knowledge, all prior diagnostic systems that

reason about the causes of delays infer causality. Our approach is the first to explicitly

record temporal causality (in the form of sequencing edges) and thus also the first to

offer precise reasoning about the causes of timing behavior. Next, we briefly discuss

research on temporal behaviors from other communities.

Timing faults: Our approach is potentially useful for diagnosing timing faults in

real-time systems, where tasks have “hard” or “soft” deadlines [25]. Researchers have

proposed solutions to control program timing, but they either require specialized

hardware [34] or incur significant runtime overhead [23]. Worst-case execution

time (WCET) analysis [132] can predict program timing, but it only gives an upper

bound and does not reason about the causes of any delays.

Queuing theory: Queuing theory [73, 74, 16] has been used to model, analyze,

and optimize the worst-case or average timing performance of distributed systems

during the design process. This approach, however, relies on a certain distribution or

arrival patterns of the input workloads, which does not always hold in practice, and

it does not automatically identify the causes of a performance violation. In contrast,

temporal provenance can help diagnosing problems that arise at runtime, without

any assumption on the input model.

121

5.9 Conclusion

In this chapter, we have proposed temporal provenance, an approach to performance

diagnosis. Temporal provenance produces a comprehensive explanation by tracking

temporal causality: causes that affect not the result of a computation but its tim-

ing. This makes it possible to find the root causes of performance problems, even

when they do not appear on the path that a delayed request has taken. We have pre-

sented a concrete algorithm for tracking temporal provenance, as well as a prototype

debugger Zeno that implements this algorithm. Our experimental evaluation with

Zeno shows that temporal provenance can provide helpful explanations for temporal

behavior, and that it can be generated at a reasonable cost.

122

6
Conclusion

In this dissertation, the goal is to extend provenance to handle diagnostics prob-

lems that require deeper investigations: explaining the absence of events, repairing

controller programs, and handling timing-related faults. Overall, the above three

chapters have shown extensions to network provenance address the proposed prob-

lems. In retrospect, three steps are proven to be crucial in extending provenance to

handle diagnostics problems that require deeper investigations.

First, deeper investigations require additional collections of runtime information.

This is not unexpected as a provenance-based debugger can only be as good as the

causality that it collects. Sequencing edges enable temporal provenance to capture

temporal causality. Meta models expose to meta provenance the causality between

inputs/outputs and syntactic elements of programs. Tracking such additional infor-

mation incurs runtime costs. Fortunately, the results in the above chapters suggest

that the additional runtime overhead is minimal and sometimes can be eliminated

when the information can be reconstructed via deterministic replay.

Second, deeper investigations often require more sophisticated reasoning. This

123

can happen due to updates to the provenance model. For instance, negative prove-

nance introduces negative vertexes. To construct such vertexes, it relies on counter-

factual reasoning, which is substantially different from the procedures that build

positive vertexes. Furthermore, materializing the provenance graph is often merely

the first step in the diagnosis pipeline. Customized postprocessing is necessary to

diagnose the problem. For example, in order to determine how much delay each

vertex contributes, temporal provenance relies on delay annotations.

Last but not least, improving the readability of provenance is imperative to en-

abling deeper investigations. Provenance captures causality and thus can weed out

irrelevant factors in diagnosis. This is already sufficient for some diagnostic tasks.

However, as discussed above, deeper investigations often require analysis of informa-

tion from multiple dimensions and reasoning of greater sophistication. The prove-

nance graphs are inevitably larger. For example, the temporal provenance graph of a

single RPC can involve vertexes that represent hundreds, if not thousands, of other

RPCs that contributed delays. Such “raw” provenance graphs, unless careful pruned

or summarized, would not be useful for human investigators.

124

7
Future work

Next, we discuss the limitations of the three extensions and possible future work.

First, capturing fine-grain causalities of all events in the system can be expensive.

In practice, techniques such as gradually expiring old provenance or reconstructing

provenance via replay have addressed this limitation to some extent. However, these

techniques are not always applicable. For instance, in order to construct temporal

provenance via replay for general distributed systems, the replay engine must repro-

duce the temporal characteristics of the original execution precisely. A potential fu-

ture direction is to leverage techniques such as timing-deterministic replay [23, 34] to

achieve this. Another interesting approach, which is commonly used by distributed

tracing systems to reduce runtime overhead [120, 29], is sampling: enabling diag-

nosis for only a fraction of all requests. A possible direction forward is to adapt

sampling techniques to build light-weight provenance tracking. For example, one

can selectively track provenance for a set of “targeted” requests such that only these

requests themselves and other causally related requests (as well as configurations)

are recorded. This will reduce the runtime overhead by tracking less requests and

125

meanwhile preserve the ability to diagnose “targeted” requests.

Second, most provenance-based debuggers, including those proposed in this dis-

sertation, can only explain the faulty behavior of a single tuple (i.e., one misrouted

packet or one corrupted configuration entry). This is sufficient in many practical

cases, as we have shown in the above chapters. Nonetheless, it maybe preferable for

future debuggers to have the ability to explain a collection of faulty tuples, for two

reasons: (a) Operators sometimes observe multiple faulty tuples in an outage (e.g.,

all RPCs between 4pm and 5pm are slow). It is infeasible for the operator to di-

agnose all faulty tuples one by one, and it is not always clear how the operator can

choose which specific tuple to diagnose first. (b) By correlating the provenance of

multiple faulty tuples in the same incident, the debugger maybe able to pinpoint

the root cause more precisely. For example, there maybe thousands of slow RPCs,

the explanation for each of which seems random. However, the debugger may find

a common culprit which contributed significant delays in almost all instances.

Third, existing provenance systems assume that the needed provenance data is al-

ways complete. This is reasonable for many scenarios, such as data center networks.

However, there are cases where the provenance data maybe incomplete: (a) blackbox

components cannot report provenance due to privacy restrictions or legacy software;

(b) the provenance tracking system itself maybe unreliable (e.g., when a network ac-

cident partitions the tracking component and the storage component). Some efforts

have addressed this limitation to some extent. For example, SNP uses external an-

notations to extract provenance from Quagga [145], but this does not address all

cases. One future direction maybe developing debuggers that can tolerate incom-

plete provenance data. Probabilistic databases can answer queries even when parts

of the database are unknown [30]. Perhaps a future provenance-based debugger can

generate a (small) number of possible explanations such that each is consistent with

the incomplete input data. This may still be helpful as it reduces the number of

explanations (and the number of root causes) that the operator has to consider.

126

A
Negative Provenance

We have sketched the properties of negative provenance – soundness, completeness,

and minimality – in Section 3.3.7. The full formal model, including the definitions

and proofs of the three properties, is in Appendix A.1. In Section 3.7.2 and Sec-

tion 3.7.3, we only provided the responses of Y! for scenarios Q1 and Q6. The full

responses for all remaining scenarios are in Appendix A.2.

A.1 Formal Model

A.1.1 Background: Execution Traces

To set stage for the discussion, we introduce some necessary definitions of system ex-

ecution. The execution of an NDlog program can be characterized by the sequence

of events that take place; we refer to this sequence as an execution trace. More for-

mally, an execution trace is defined as follows.

127

Definition 1. (Event): An event d@n=(m,r, t,c,m′) represents that rule r was triggered

by message m and generated a set of (local or remote) messages m′ at time t, given the

precondition c. The precondition c is a set of tuples that existed on n at time t.

Definition 2. (Trace): A trace E of a system execution is an ordered sequence of events

from an initial state S0, S0
d1@n1−−−−→S1

d2@n2−−−−→ ...
dk@nk−−−→Sk.

Definition 3. (Subtrace): We say that E ′ is a subtrace of E (written as E ′ ⊆ E) if E ′

consists of a subset of the events in E in the same order. In particular, we write E |n to

denote the subtrace that consists of all the events on node n in E .

Definition 4. (Equivalence): We say that two traces E ′ and E are equivalent (written

as E ′ ∼ E), if, for all n, E ′|n = E |n.

A.1.2 Properties

Given the negative provenance of G(e,E) of the absence of an event e in execution

trace E , we formally define the following properties.

Definition 5. (Validity): We say a trace E is valid, if (a) for all τk ∈ ci, τk ∈ Si−1, and

(b) for all di@ni = (mi,ri, ti,ci,m′i), either mi is a base message from an external source,

or there exists d j@n j = (m j,r j, t j,c j,m′j) that proceeds di@ni and mi ∈ m′j.

Property (Soundness): Negative provenance G(e,E) is sound iff (a) it is possible to

extract a valid subtrace Esub ⊆ E ′, such that E ′ ∼ E , and (b) for all vertices in G(e,E),

their corresponding predicates hold in E .

Property (Completeness): Negative provenance G(e,E) is complete iff there ex-

ists no trace E ′ such that a) E ′ assumes same external inputs as G(e,E), that is,

(∆τ@n,−, t,−,−) ∈ E iff insert/delete(τ,n, t) ∈V (G), and b) e exists in the E ′.

Definition 6. (Reduction): Given negative provenance G(e,E), if there exists v1,v2 ∈

V (G), where the time interval of v1 and v2 (t(v1) and t(v2) respectively) are adjacent,

and v1 and v2 have the same dependencies, then G can be reduced to G′ by combining v1

and v2 into v ∈V (G′), where t(v) = t(v1)∪ t(v2).

128

Algorithm 1 Extracting traces from provenance
1: proc ExtractTrace(G = (V,E))
2: // calculate the out-degree of all vertices in G
3: for ∀ e = (v,v′) ∈ E do degree(v)++
4: // generate the subtrace based on topological sort
5: NodeToProcess =V
6: while NodeToProcess ̸= ϕ do
7: select v ∈ NodeToProcess : degree(v) = 0, and ̸ ∃v′ that is located on the same node and has a

larger timestamp
8: NodeToProcess.remove(v)
9: if typeo f (v) = derive or underive then

10: f ind e = (v,v′) ∈ E, out put← v′

11: for ∀ e = (v′,v) ∈ E do
12: if typeo f (v′) = insert or delete then
13: trigger = v′ // v′ is the triggering event
14: else
15: condition.add(v′) // v′ is a condition
16: ruleName← v.ruleName, time← v.time
17: event← (trigger,ruleName, time,condition,out put)
18: trace.push_ f ront(event)
19: else if typeo f (v) = receive then
20: f ind e = (v′,v) ∈ E // v′ must be a send vertex
21: event← (v′,−,v.time,1,v)
22: trace.push_ f ont(event)
23: f ind e = (v′,v) ∈ E, degree(v′)← degree(v′)−1
24: return trace

Definition 7. (Simplicity): Given two negative provenance G(e,E) and G′(e,E), we

say G′ is simpler than G (written as G′ < G), if any of the following three hold:

(1) G′ is a subgraph of G;

(2) G′ is reduced from G (by combining v1 and v2);

(3) There exists G′′, such that G′ < G′′ and G′′ < G.

Property (Minimality): Negative provenance G(e,E) is minimal, if no G′<G is sound

and complete.

A.1.3 Proofs

Definition 8. (Trace Extraction): Given a negative provenance G(e,E), the trace is

extracted by running Algorithm 1 based on topological sort.

129

Algorithm 1 converts positive vertices in the provenance graph to events and thus

uses a topological ordering to assemble the events into a trace. In particular, Line

9-19 implements the construction of one individual event, where the information of

a rule evaluation (such as triggering event, conditions, and action) is extracted from

the corresponding vertices in G(e,E)

Lemma 1. For any vertex v ∈V (G), v’s corresponding predicate pv holds in E .

Proof. By construction (see Figure 3.2), any positive vertex v ∈ V (G) is generated

only if the corresponding event entry exists in the log (which is deterministically de-

termined by E . Therefore, predicate pv naturally holds in E . Similarly, the predicate

pw (for negative vertex w) also hold in E . □

Lemma 2. The extracted trace Esub is a valid trace.

Proof. We need to show that in the generated trace S0
d1@n1−−−−→S1

d2@n2−−−−→ ...
dk@nk−−−→

Sk, (a) for all τ ∈ ci, τ ∈ Si−1, and (b) for all di@ni = (mi,ri, ti,ci,m′i), either mi is a

base message from an external source, or there exists d j@n j = (m j,r j, t j,c j,m′j) that

precedes di@ni and mi ∈ m′j.

It has been shown in [146] that, for a positive event e′ in E , the extraction algo-

rithm yields a valid trace for the provenance of e′ (which is the subgraph G′ of G that is

rooted by e′). Note that executing Algorithm 1 on G can be considered as combining

traces generated from multiple such G′s, {di,1@ni,1},{di,2@ni,2}, ...,{di,k@ni,k}, where

each trace {di,p@ni,p} is valid.

Condition a. We know that, for any event di,p@ni,p, the conditions for the event

ci,p hold (i.e., the corresponding tuples exist when the rule is triggered). It can be

shown that, in the combined trace, any event d@n that contributes to ci,p precedes

di,p@ni,p; this is because d@n has to be a (transitive) children of di,p@ni,p in G, and,

therefore, should also be in trace p. We can then conclude that, in the combined

trace di@ni, the conditions for the event ci hold when the event is triggered (i.e.,

condition b holds).

130

Condition b. Because any trace {di,p@ni,p} is valid, we know that, for any event

di,p@ni,p = (mi,p,ri,p, ti,p,ci,p,m′i,p), the trigger event mi,p was indeed generated by a

preceding event d j,p@n j,p. This also holds in the combined trace (i.e., condition a

holds), as the topological relationship between di,p@ni,p and d j,p@n j,p remains. □

Lemma 3. The extracted trace Esub ⊆ E ′, where E ′ ∼ E .

Proof. We need to show that a) all the events in Esub also appear in E (and thus in

any E ′ ∼ E), and b) the local event ordering pertains on each node.

Condition a. An event di@ni is generated and included in Esub for each DERIVE

(or UNDERIVE) vertex (and its direct parent and children) in G(∆τ,E). On the

other hand, by construction (Figure 3.2), each DERIVE (or UNDERIVE) vertex v

corresponds to an event d j@n j, and it is not difficult to see that di@ni is identical to

d j@n j. Therefore, all the events in Esub do appear in E as well.

Condition b. According to Algorithm 1 (specifically, Line 7), d1@n precedes d2@n,

iff d2@n has a larger timestamp than d1@n (that is, d1@n precedes d2@n in the ac-

tually execution E . Note that events on different nodes may be reordered, but this

is captured by the equivalence (∼) relation. □

Theorem 4. Negative provenance G(∆τ,E) is sound.

Proof. Directly from Lemma 1, 2, 3. □

Theorem 5. Negative provenance G(∆τ,E) is complete.

Proof. We prove the completeness property by induction on the depth of the prove-

nance graph.

Base case. In the base case, the negative provenance G(e,E) is a single-vertex graph

(i.e., NINSERT([t1, t2],N,τ) or NDELETE([t1, t2],N,τ)). In this case, e is an update

of a base tuple τ, and it is obvious that there exists no trace E ′ that has the same

external input and contains ∆τ.

131

Induction case. Suppose there exists E ′, such that E ′ assumes the same external

input as G(e,E), and e exists in E ′. We perform a case analysis by considering the

type of the root vertex of G(e,E).

• NEXIST([t1, t2],N,τ). Suppose τ existed (partly) between [t1′, t2′] in E ′, where

[t1, t2]∩[t1′, t2′] = [t3, t4] ̸= ϕ . By construction (in Figure 3.2), NAPPEAR([t0, t2],N,τ)

is in G, where t0 ≤ t1. We can conclude, based on induction hypothesis, that

there is no execution that assumes same external input as G but has τ appeared

between [t0, t2]. This contradicts the existence of τ in E ′.

• NAPPEAR([t1, t2],N,τ). Suppose τ appeared at t ∈ [t1, t2] in E ′. τ cannot

be a base tuple, otherwise, G and E ′ would have conflicting external inputs.

If τ is a locally derived tuple, τ was derived by some rule execution in E ′,

however, for any rule r that might derive τ, NDERIVE([t1, t2],N,τ,r) is in G;

a contradiction is reached by applying the induction hypothesis. If τ is re-

ceived from communication, message +τ was received at time t in E ′, whereas

NRECEIVE([t1, t2],N,+τ) is in G; a contradiction is reached by applying the

induction hypothesis.

• NDERIVE([t1, t2],N,τ,r). Suppose τ was derived at t ∈ [t1, t2] by rule r in E ′. It

must be the case that all the condition held at time t (that is, their correspond-

ing tuples c1...ck existed at t). On the other hand, for each rule (including rule

r) that might derive τ, the graph construction algorithm considers the parame-

ter space in which τ would not be derived, and includes a set of negative events

that cover the whole parameter space.

Since G contains the cover set, there exists ci such that NEXIST([t1′, t2′],N,ci)

exists in G, where t ∈ [t1′, t2′]. Based on induction hypothesis, there is no ex-

ecution that assumes same external input as G but has ci existed time t. This

contradicts the rule evaluation that derived τ at time t in E ′.

132

• NSEND([t1, t2],N,∆τ). Suppose ∆τ was sent at t ∈ [t1, t2] in E ′. It must be the

case that τ appeared (or disappeared) at time t in E ′. However, by construction,

NAPPEAR([t1, t2],N,τ) (or NDISAPPEAR([t1, t2],N,τ)) is in G, which, based on

induction hypothesis, indicates that there is no execution that assumes same

external input as G but has τ appeared (or disappeared) between [t1, t2]. This

contradicts the appearance (or disappearance) of τ in E ′.

• NRECEIVE([t1, t2],N,∆τ). Suppose message ∆τ was received at time t ∈ [t1, t2]

in E ′. It must be the case that ∆τ was sent by some node M at time tsend,

and arrived N at time trecv ∈ [t1, t2]. On the other hand, the graph construc-

tion algorithm considers all nodes (including M) that could have sent ∆τ to

N. Specifically, for node M, NSEND([s, t],M,∆τ) is constructed for any time

interval [s, t] in which M did not send ∆τ in E.

If tsend ∈ [s, t], a contradiction is reached by applying the induction hypothesis.

Otherwise (M did send ∆τ at tsend in E), NARRIVE([t1, t2],M→N, tsend,∆τ) is in

G. Based on the induction hypothesis, there exists no execution that assumes

same external input as G but has ∆τ received at N between [t1, t2].

• NARRIVE([t1, t2],N1→N2, t0,∆τ). Since execution trace E ′ agrees with G on all

external inputs (including how the network affects the message delivery), they

must agree on the delivery time t of message event (∆τ@N1,−, t,1,∆τ@N2).

Therefore, message ∆τ could not arrive within [t1, t2] in E ′ but not in E .

The case analysis of vertices NDISAPPEAR and NUNDERIVE is analogous to the

those of NAPPEAR and NDERIVE respectively; the case analysis for positive vertices

have been shown in [146]. □

Theorem 6. Negative provenance G(e,E) is minimal.

Proof. By construction, G(e,E) should not be further reducible; this is because the

graph construction algorithm (described in Section 3.3.4) considers semantically

133

identical vertices with adjacent or overlapping interval, and coalesces these vertices

(i.e., apply reduction on G). We next prove, by induction on the depth of G(e,E),

that there is no strict subgraph of G(e,E) that is sound and complete.

Base case. In the base case, the negative provenance G(e,E) is a single-vertex graph

(i.e., NINSERT([t1, t2],N,τ) or NDELETE([t1, t2],N,τ)). In this case, a strict sub-

graph of G (an empty graph) is not complete.

Induction case. Assume the root vertex v of G(e,E) has children vertices v1,v2, ...,vk.

We write Gvi to denote the subgraphs rooted by children vertex vi. Based on the

induction hypothesis, any strict subgraph of Gvi is either not sound or not complete.

Therefore, any sound and complete provenance that contains vi must contain the

complete Gvi. We perform a case analysis by considering the type of v.

• NEXIST([t1, t2],N,τ). NEXIST has children vertices NAPPEAR and (poten-

tially) DISAPPEAR (if τ existed previously and disappeared at time t < t1).

NAPPEAR([t, t2],N,τ) is essential for the completeness of G; otherwise, an ex-

ecution E ′ in which τ appeared in [t, t2] would have τ existed during this

time interval (that is, the subgraph without NAPPEAR is not complete). The

DISAPPEAR vertex is also essential; this is because τ could have already existed

before t1, in which case, τ would still exist in time interval [t1, t2] though it did

not appear again.

• NAPPEAR([t1, t2],N,τ). If τ is a base tuple, NAPPEAR has child vertex

NINSERT, which is essential for the completeness of G; otherwise, execution

E ′ can have τ inserted, and therefore appear, at t ∈ [t1, t2]. Similarly, tuples

that are locally derived or received from network, we can also show NAPPEAR’s

child vertex NDERIVE (or NRECEIVE) are essential for the completeness.

• NDERIVE([t1, t2],N,τ). NDERIVE has a set of NEXIST as its children vertices.

These NEXIST vertices consist of a cover set S for the parameter space in which

134

ABSENCE(t=[55s,185s], DNS Client,
packet(@DNS Client, ICMP))

V1

ABSENCE(t=[1s,185s], S2,
flowTable(@S2, ICMP, Forward, Port1))

EXISTENCE(t={12s,13s,14s,15s,16s} in [1s,185s], S2,
packet(@DNS Server, ICMP))

EXISTENCE(t=[12s,13s,14s,15s,16s], S2,
flowTable(@S2, ICMP, Forward, Port3))

EXISTENCE(t=[12], Controller,
packetIn(@Controller, ICMP))

ABSENCE(t=[1s,11s], S2,
flowTable(@S2, ICMP, *, *))

ABSENCE(t=[1s,11s], S2,
packetIn(@S2, ICMP))

ABSENCE(t=[1s,11s], DNS Server,
packet(@DNS Server, ICMP))

EXISTENCE(t=[12s], Controller,
learnt(@Controller, DNS Client, Port3)

EXISTENCE(t=[7s], Controller,
packetIn(@Controller, DNS Client)

EXISTENCE(t=[7s], Malicious Host,
packet(@Malicious Host, ICMP)

ABSENCE(t=[1s,6s], S2,
flowTable(@S2, ICMP, *, *))

ABSENCE(t=[1s,6s], S2,
packetIn(@S2, ICMP))

ABSENCE(t=[1s,6s], Malicious Host,
packet(@Malicious Host, ICMP))

AND

AND

AND

V2

V3 V4

V5-a

V5-b

V5-c

V5-d

V6-a

V6-b

V6-c V6-d

V6-e

V6-f

The DNS client couldn’t receive ICMP
replies from DNS server because the
flow entry was missing at an upstream
switch. The flow entry could only have been

inserted in response to ICMP replies.
Such packets only came at t=12s,
13s,14s,15s,16s.

But the ICMP replies were handled by
an existing flow entry at the switch,
and therefore sent to another port.

The existing flow entry was derived
from a entry in MAC learning table.

The entry was caused by a previous
ICMP packet from a malicious host
who spoof the MAC address of DNS
client.

Figure A.1: Answer to Q2, as returned by Y!

τ would not be derived. Recall from Section 3.3.5 that the partition algorithm

that generates S ensures the minimality of S, that is, any strict subset of S is not a

cover set. Therefore, each of the NEXIST vertices is essential for completeness.

• NSEND([t1, t2],N,+τ). NSEND has children vertices NAPPEAR and (poten-

tially) EXIST (if τ existed partly in [t1, t2] and disappeared at time t ∈ [t1, t2]).

NAPPEAR([t, t2],N,τ) is essential for the completeness of G; otherwise, an ex-

ecution E ′ in which τ appeared in [t, t2] would have sent +τ during this time

interval. The EXIST([t1, t],N,τ) vertex is also essential; this is because there ex-

ists execution E ′ in which +τ was derived in [t1, t], which could have resulted

in a state change, and, therefore, a message sent from N (it didn’t, in E , only

because τ was already existed).

135

• NRECEIVE([t1, t2],N,∆τ). NRECEIVE has children vertices NSEND and

NARRIVE, both of which are essential for completeness; this is because there

exists execution E ′ in which some node N′ has sent ∆τ that arrived at node N

within [t1, t2].

• NARRIVE([t1, t2],N1→ N2, t0,∆τ). NARRIVE has children vertices SEND and

DELAY, both of which are necessary for the completeness of G; otherwise,

there exists an execution E ′ in which ∆τ was never sent by N1 or ∆τ has been

delivered to N2 between [t1, t2].

The case analysis of vertices NDISAPPEAR and NUNDERIVE is analogous to the

those of NAPPEAR and NDERIVE respectively. □

A.2 Responses

Q2. Q2 from scenario SDN2 asks why a host cannot receive ICMP relies from the

DNS server. Figure A.1 shows the provenance generated by Y!. The explanation is:

ICMP replies did not return to the DNS client (V1) because a suitable flow entry was

missing at an upstream switch (V2). The flow entry could only have been triggered

by a ICMP reply packet, which did arrive several times (V3). But these replies were

handled by an existing flow entry which forwarded the replies to another port (V4).

This flow entry was derived from the MAC learning table (V6a) when packetIn

arrived (V5a-d). The false MAC learning table was there because a malicious host

with spoofed MAC address sent an ICMP packet earlier (V6c).

Q3. Q3 from scenario SDN3 asks why an internal user cannot access the database.

As shown in Figure A.2, Y! explains the problem (V1) by showing that an existing

flow entry (V3a-e) had been dropping internal database requests (V2).

Q4. Q4 from scenario SDN2 focuses on the situation when a false MAC learning

table entry caused a host to receive ICMP relies without issuing ICMP requests.

136

ABSENCE(t=[15s,185s], DB,
packet(@DB, Internal Request))

EXISTENCE(t={67s,68s,70s,74s} in [15s,185s], S1,
packet(@S2, Internal Request))

AND

EXISTENCE(t=[67s,68s,70s,74s], S2,
flowTable(@S2, Internal Request, Drop, -))

EXISTENCE(t=[66s], Controller,
packetIn(@Controller, Internal Request))

ABSENCE(t=[1s,66s], S2,
flowTable(@S2, Internal Request, *, *))

ABSENCE(t=[1s,66s], S2,
packetIn(@S2, Internal Request))

ABSENCE(t=[1s,66s], S2,
packet(@S2, Internal Request))

V3-b

V3-c

V3-d

V3-e

V3-a V2

V1

No internal connection request reached
internal database because a mis-configured
flow entry dropped these packets.

Figure A.2: Answer to Q3, as returned by Y!.

Figure A.3 depicts how this had happened: The false MAC-port binding (V1) was

learned from a previous packetIn (V2), which in turn was triggered because the host

send a packet with spoofed MAC address (V3), and there had been no matching

flow entry for this packet (V4a-d).

Q5. Q5 from scenario SND3 asks why Internet requests made it to a internal

database. The problem is explained in Figure A.4: An Internet request were seen at

the internal database (V1) because such a request did arrive (V2), and there was a

misconfigured flow entry (V3a-e) that allowed this packet to pass.

Q7. Q7 from scenario BGP2 asks why a host cannot reach the black-holed host.

The problem is explained in Figure A.5: When the packet was sent (V2), it was

handled by an existing route at AS 1 (V3). That route was advertised by AS 4 (V4),

who had no connectivity to the destination of the packet.

Q8. Q8 from scenario BGP3 asks why why the ISP cannot reach a certain AS. As

shown in Figure A.6, the route timeout at AS 4 (V1-b) and since then the provider

137

EXISTENCE(t=[94s], S2,
tableMAC(@S2, Mac=2, Port3))

EXISTENCE(t=[64s], Malicious Host,
packet(@Malicious Host, ICMP, Source Mac=2))

AND

ABSENCE(t=[1s,63s], S2,
flowTable(@S2,ICMP & Source Mac=2,*,*))

ABSENCE(t=[1s,63s], Controller,
packetIn(@Controller, ICMP & Source Mac=2))

V4-a
V3

V1

The MAC learning table is caused
by a previous packetIn message.

EXISTENCE(t=[64s], Controller,
packetIn(@S2, ICMP, Source MAC=2))

ABSENCE(t=[1s,63s], Malicious Host,
packet(@Malicious Host, ICMP, Source Mac=2))

V2

V4-b

V4-c
ABSENCE(t=[1s,63s], DNS Client,

packet(@DNS Client, ICMP, Source Mac=2))

V4-d

AND

Figure A.3: Answer to Q4, as returned by Y!.

AS 1 never sent any advertisements (V1-c). AS 1 did not sent advertisements because

it lost its own route (V2-b) and its peer AS 2 stopped advertising routes (V2-c). AS 2

stopped advertising because AS 2 itself lost its route (V3-b). And the route was never

recovered because its customer AS 5 never sent the route again (V3-c). AS 5 never

sent advertisements again because the route at AS 5 timeout (V4-b) and AS 5 never

receive any advertisements since then (V4-c). AS 6 could have sent advertisements

to AS 5. It did not because its link to AS 7, where the route could have come from,

was down since t=38s (V7).

Q9. Q9 from scenario BGP4 asks why the network cannot connect to a particular

site. Figure A.7 shows the provance for Q9. The explanation goes as follows: the

route timeout at AS 4 (V1-b) and since then the provider AS 1 never sent any ad-

vertisements (V1-c). AS 1 did not sent advertisements because it lost its own route

(V2-b) and its peer AS 2 stopped advertising routes (V2-c). AS 2 stopped adver-

tising because AS 2 itself lost its route (V3-b). And the route was never recovered

because its customer AS 5 never sent the route again (V3-c). AS 5 never sent ad-

138

vertisements again because the route at AS 5 timeout (V4-b) and AS 5 never receive

any advertisements since then (V4-c). AS 6 could have sent advertisements to AS 5,

but it did not. Because although it kept receiving advertisements from AS 7 (V6-c),

there was an updated entry in the BOGON list which caused AS 6 to ignore the

advertisements (V6-d).

139

EXISTENCE(t=[72s], DB,
packet(@DB, Internet Request))

AND

EXISTENCE(t=[72s], S2,
packet(@S2, Internet Request))

EXISTENCE(t=[72s], S2,
flowTable(@S2, Internet Request, Forward, Port3))

EXISTENCE(t=[72s], Controller,
packetIn(@Controller, Internet Request))

ABSENCE(t=[1s,71s], S2,
flowTable(@S2, Internet Request, *, *))

ABSENCE(t=[1s,71s], S2,
packetIn(@S2, Internet Request))

ABSENCE(t=[1s,71s], S2,
packet(@S2, Internet Request))

V1

V2 V3-a

V3-b

V3-c

V3-d

V3-e

An Internet connection request reached
internal database because a mis-configured
flow entry existed.

Figure A.4: Answer to Q5, as returned by Y!.

ABSENCE(t=[13s,55s], AS9, packet(@AS9,
Src=AS1, Dst=AS66))

V1

EXISTENCE(t=[27s], AS1, packet(@AS1,
Src=AS1, Dst=AS66))

V2

AND

...

EXISTENCE(t=[7s, 55s], AS1, bestRoute(@AS1,
Prefix=AS9, Type=Peer, Cost=2, Next=AS3))

EXISTENCE(t=[7s], AS4, advertisement(@AS1,
Prefix=AS9, Cost=2, Len=32, Next=AS77))

V3

V4

...

AS9 never received the packet from AS1
because the packet was forwarded by a

faulty route at AS1.

AS1 received that route from AS4, who
actually had no connectivity to AS66.

Figure A.5: Answer to Q7, as returned by Y!.

140

ABSENCE(t=[51s, 51s], AS4, bestRoute(@AS4,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[48s], AS4, bestRoute(@AS4,
Prefix=AS66, Type=Provider , Cost=6, Next=AS1))

ABSENCE(t=[48s,51s], AS1, advertisement(
@AS4, Prefix=AS66, Cost=Any, Next=Any))

ABSENCE(t=[48s,51s], AS1, bestRoute(@AS1,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[46s], AS1, bestRoute(@AS1,
Prefix=AS66, Type=Peer, Cost=5, Next=AS2))

ABSENCE(t=[46s,51s], AS2, advertisement(
@AS1, Prefix=AS66, Cost=Any, Next=Any))

AND

AND

V1-a

V1-b
V1-c

V2-a

V2-b

V2-c

ABSENCE(t=[46s,51s], AS2, bestRoute(@AS2,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[44s], AS2, bestRoute(@AS2,
Prefix=AS66, Type=Customer, Cost=4, Next=AS5))

ABSENCE(t=[44s, 51s], AS5, advertisement(
@AS2, Prefix=AS66, Cost=Any, Next=Any))

AND

V3-a

V3-b

V3-c

ABSENCE(t=[42s, 51s], AS6, bestRoute(@AS6,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[40s], AS6, bestRoute(@AS6,
Prefix=AS66, Type=Customer, Cost=2, Next=AS7))

ABSENCE(t=[40s, 51s], AS7, advertisement(
@AS6, Prefix=AS66, Cost=Any, Next=Any))

AND

V5-a

V5-b

V5-c

ABSENCE(t=[44s, 51s], AS5, bestRoute(@AS5,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[42s], AS5, bestRoute(@AS5,
Prefix=AS66, Type=Customer, Cost=3, Next=AS6)) ABSENCE(t=[42s, 51s], AS6, advertisement(

@AS5, Prefix=AS66, Cost=Any, Next=Any))

AND

V4-a

V4-b
V4-c

ABSENCE(t=[38s, 51s], AS9, link(@AS9,
Neighbor=AS7, Type=Provider)

V6

AS4’s previous route to AS66 expired at
t=48s and after that AS4 never received
any advertisement from its provider (AS1).

AS1 lost it own route to AS9 at t=46s and since then it
received no more advertisements from its peer (AS2).

AS2 lost it route at t=44s and
it never got any advertisements
from its customer (AS5) after that.

At AS5, the route to AS66 timeout at 42s,
and since then its customer (AS6) never
sent any advertisement..

AS6 lost it route at t=40s.
After that, its customer (AS7)
sent no more advertisements.

AS6 never received advertisements
from AS7 because the link between

them was down since t=38s.

Figure A.6: Answer to Q8, as returned by Y!.

141

ABSENCE(t=[61s,61s], AS4, bestRoute(@AS4,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[47s], AS4, bestRoute(@AS4,
Prefix=AS66, Type=Provider , Cost=6, Next=AS1))

ABSENCE(t=[47s,61s], AS1, advertisement(
@AS4, Prefix=AS66, Cost=Any, Next=Any))

ABSENCE(t=[47s,61s], AS1, bestRoute(@AS1,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[45s], AS1, bestRoute(@AS1,
Prefix=AS66, Type=Peer, Cost=5, Next=AS2))

ABSENCE(t=[45s,61s], AS2, advertisement(
@AS1, Prefix=AS66, Cost=Any, Next=Any))

AND

AND

V1-a

V1-b

V1-c

V2-a

V2-b

V2-c

ABSENCE(t=[45s,61s], AS2, bestRoute(@AS2,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[43s], AS2, bestRoute(@AS2,
Prefix=AS66, Type=Customer, Cost=4, Next=AS5)) ABSENCE(t=[43s, 61s], AS5, advertisement(

@AS2, Prefix=AS66, Cost=Any, Next=Any))

AND

V3-a

V3-b
V3-c

ABSENCE(t=[41s, 61s], AS6, bestRoute(@AS6,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[39s], AS6, bestRoute(@AS6,
Prefix=AS66, Type=Customer, Cost=2, Next=AS7))

ABSENCE(t=[39s, 61s], AS7, advertisement(
@AS6, Prefix=AS66, Cost=Any, Next=Any))

AND

V5-a

V5-b

V5-c

ABSENCE(t=[43s, 61s], AS5, bestRoute(@AS5,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

DISAPPEAR(t=[41s], AS5, bestRoute(@AS5,
Prefix=AS66, Type=Customer, Cost=3, Next=AS6))

ABSENCE(t=[41s, 61s], AS6, advertisement(@AS5,
Prefix=AS66, Cost=Any, Next=Any))

AND

V4-a

V4-b

V4-c

ABSENCE(t=[39s, 61s], AS7, bestRoute(@AS7,
Prefix=AS66, Type=Any, Cost=Any, Next=Any))

V6-a

EXISTENCE(t=[38s, 40s, …, 60], AS9,
advertisement(@AS7, Prefix=AS66, Cost=1, Next=AS9)) ...

V6-c

AND

EXISTENCE(t=[36s, 61s], AS7,
importFilter(@AS7, Prefix=AS66))

V6-d

...

AS4’s previous route to AS66 expired at
t=47s and after that AS4 never received
any advertisement from its provider (AS1).

AS1 lost it own route to AS9 at t=45s
and since then it received no more
advertisements from its peer (AS2).

AS2 lost it route at t=43s and
it never got any advertisements
from its customer (AS5) after that.

At AS5, the route to AS66 timeout at 41s, and
since then its customer (AS6) never sent any
advertisement..

AS6 lost it route at t=39s.
After that, its customer (AS7)
sent no more advertisements.

AS7 lost its route to AS66 at t=37s. After
t=37s, AS7 did receive advertisements

from AS9. But it did not import the route.
Because it was filtered by the updated

BOGON list.

AND DISAPPEAR(t=[37s], AS6, bestRoute(@AS6,
Prefix=AS66, Type=Customer, Cost=2, Next=AS7))

V6-b

Figure A.7: Answer to Q9, as returned by Y!.

142

B
Meta Provenance

Appendix B.1 presents full meta models for all languages to which we applied meta

provenance. We describe all helpful functions in Appendix B.2. Resuming our

discussion in Section 4.3.5, we expand on the properties of the generated repairs

in Appendix B.3. In Section 4.5.3, we only provided the repair candidates for Q1.

Appendix B.4 includes results for all remaining scenarios.

B.1 Meta models

In this section, we present meta models for NDlog [83], Trema [127], and Pyretic [96].

The meta models are all written in NDlog. Unlike in the heavily-simplified µDlog,

instances of the same syntactic element can have different arities in real-world lan-

guages. For instance, considering a NDlog rule r with three selection predicates.

The meta rule h2 from Figure 4.4 can only encode rules with exactly two selection

predicates and a different meta rule is required to encode r. Writing all possible

meta rules is repetitive. For compactness, we present them using template rules. For

143

Procedure Template rule. →
Concrete rule with arity two (k = 2).

Replace (k) with k. A(@X):=B(@X,Z),Z==(k). →
A(@X):=B(@X,Z),Z==2.

Replace Z[k] with Z1, ..., Zk. A(@X):=B(k)(@X,Z[k]). →
A(@X):=B2(@X,Z1,Z2).

Replace B(@X,Z{k}) with B(@X,Z1), ..., B(@X,Zk). A(@X):=B(@X,Z{k}). →
A(@X):=B(@X,Z1),B(@X,Z2).

Replace B(@X,Z{k},Z{k'}) with
..., B(@X,Zi,Zj), ... where i, j ∈ 1..k, i < j

A(@X):=B(@X,Z{k}),Z{k}>Z{k'}.
→ A(@X):=B(@X,Z1,Z2),Z1>Z2.

Replace B(@X,Z{k},Z{k''}) with
..., B(@X,Zi,Zj), ... where i, j ∈ 1..k, i ̸= j

A(@X):=B(@X,Z{k}),Z{k}>Z{k''}.
→ A(@X):=B(@X,Z1,Z2),Z1>Z2.

Table B.1: Procedures for deriving concrete rules from template rules. Each template
rule has one or more arity specifiers (e.g., k). Each template rule expands into a set of
concrete rules with different arities (e.g., k=1 until k=99). Rules with multiple arity
specifiers are expanded recursively.

instance, the meta model uses Base(k)(@C,Tab,Vals[k]) to represent a base table

with k columns. Table B.1 summarizes the procedures for expanding template rules

into concrete rules.

B.1.1 NDlog

Figure B.1 and Figure B.2 show the full set of meta rules for NDlog. We briefly

explain each meta rule below.

Two types of tuples exist in the NDlog runtime: State represents materialized

states, Message represents transient messages. Tuples can exist for two reasons: they

can be inserted as base tuples (h1–h2) or derived via rules (h3–h4). A rule “fires”

and derives a tuple when a) there is an assignment of values in the head and b) all

constraint predicates are satisfied (h5–h7).

The next seven meta rules compute joins. First, whenever a (syntactic) tuple

appears as in a rule definition, each concrete tuple that exists at runtime generates

one variable assignment for that tuple (p1–p2). Depending on the number of tuples

in the rule body (calculated in rules j1–j2), a different meta rule is triggered to

compute a cross-product of all values in a combination of tuple predicates (j3–j5).

144

/* Tuple derivation */
h1 Message(k)(@C,Tab,Key,TID,Vals[k],Typs[k]) :- Base(k)(@C,Tab,Vals[k]),

Schema(k)(@C,Tab,Keys[k],Timeout,Typs[k]), Timeout == 0, Key := f_primary(Keys,Vals),
TID := f_unique().

h2 State(k)(@C,Tab,Key,Vals[k],Typs[k]) :- Base(k)(@C,Tab,Vals[k]),
Schema(k)(@C,Tab,Keys[k],Timeout,Typs[k]), Timeout == 1, Key := f_primary(Keys,Vals).

h3 Message(k)(@C,Tab,Key,TID,Vals[k],Typs[k]) :-
Head(k)(@C,Rul,Tab,Key,Vals[k],Timeout,Typs[k]), Timeout == 0, TID := f_unique().

h4 State(k)(@C,Tab,Key,Vals[k],Typs[k]) :-
Head(k)(@C,Rul,Tab,Key,Vals[k],Timeout,Typs[k]), Timeout == 1.

h5 Head(k)(@C,Rul,Tab,Key,Val[k],Timeout,Typ[k]) :-
HeadMeta(k)(@C,Rul,Tab,Arg[k]), Schema(k)(@C,Tab,Key[k],Timeout,Typ[k]),
Key := f_primary(Key[k],Val[k]), HeadValue(@C,Rul,JID,Arg{k},Val{k},Typ{k}),
Arg{k} != Arg{k''}, ConstraintMatch(@C,Rul,JID).

h6 ConstraintMatch(@C,Rul,JID) :- ConstraintCount(@C,Rul,N), N == 0.
h7 ConstraintMatch(@C,Rul,JID) :-

ConstraintCount(@C,Rul,N), Constraint(@C,Rul,JID,CID{k},Val{k}), N == (k), Val{k} == 1,
CID{k} > CID{k'}.

/* Predicate derivation */
p1 MessagePredicate(k)(@C,Rul,Tab,Key,TID,Args[k],Vals[k],Typs[k]) :-

Message(k)(@C,Tab,Key,TID,Vals[k],Typs[k]), PredicateMeta(k)(@C,Rul,Tab,Args[k]).
p2 StatePredicate(k)(@C,Rul,Tab,Key,Args[k],Vals[k],Typs[k]) :-

State(k)(@C,Tab,Key,Vals[k],Typs[k]), PredicateMeta(k)(@C,Rul,Tab,Args[k]).

/* Joining predicates */
j1 MessagePredicateCount(@C,Rul,a_count<Tab>) :- PredicateMeta(k)(@C,Rul,Tab,Args[k]).
j2 StatePredicateCount(@C,Rul,a_count<Tab>) :- PredicateMeta(k)(@C,Rul,Tab,Args[k]).
j3 Join(∑n

i=1 pi)(@C,Rul,JID,TID,Args''{n}_[pi],Vals''{n}_[pi],Typs''{n}_[pi]) :- JID := f_unique(),
StatePredicate(pi)(@C,Rul,Tab''{n},Key''{n},Args''{n}_[pi],Vals''{n}_[pi],Typs''{n}_[pi]),
StatePredicateCount(@C,Rul,N'), MessagePredicateCount(@C,Rul,N), N' == (n), N == 0,
TID := f_unique().

j4 Join(∑m
i=1 ki)(@C,Rul,JID,TID,Args'{m}_[ki],Vals'{m}_[ki],Typs'{m}_[ki]) :- JID := f_unique(),

MessagePredicate(ki)(@C,Rul,Tab'{m},Key'{m},TID,Args'{m}_[ki],Vals'{m}_[ki],Typs'{m}_[ki]){m},
MessagePredicateCount(@C,Rul,N), N == (m), StatePredicateCount(@C,Rul,N'), N' == 0.

j5 Join(∑n
i=1 pi +∑m

i=1 ki)(@C,Rul,JID,TID,Args'{m}_[ki],Args''{n}_[pi],Vals'{m}_[ki],Vals''{n}_[pi],
Typs'{m}_[ki],Typs''{n}_[pi]) :- MessagePredicate(ki)(@C,Rul,Tab'{m},Key'{m},TID,Args'{m}_[ki],
Vals'{m}_[ki],Typs'{m}_[ki]){m}, MessagePredicateCount(@C,Rul,N), StatePredicate(pi)(@C,Rul,
Tab''{n},Key''{n},Args''{n}_[pi],Vals''{n}_[pi],Typs''{n}_[pi]), StatePredicateCount(@C,Rul,N'),
N == (m), N' == (n), JID := f_unique().

/* Expression */
e1 Expression(@C,Rul,JID,Arg(q),Val(q),Typ(q)) :- Join(k)(@C,Rul,JID,TID,Arg[k],Val[k],Typ[k]).
e2 Expression(@C,Rul,JID,ID,Val,Typ) :- Constant(@C,Rul,ID,Val), JID := *.
e3 Expression(@C,Rul,JID,ID''',Val,Typ) :-

Operator(@C,Rul,ID''',Opr), LeftEdge(@C,Rul,ID',ID'''), RightEdge(@C,Rul,ID'',ID'''),
Expression(@C,Rul,JID,ID',Val',Typ'), Expression(@C,Rul,JID,ID'',Val'',Typ''),
Val := Val' Opr Val'', ID' != ID'', f_match(Typ',Typ''), Typ := f_type(Typ',Typ'').

/* Assignments */
a1 HeadValue(@C,Rul,JID,Arg,Val,Typ) :-

Assignment(@C,Rul,Arg,ID,Typ), Expression(@C,Rul,JID,ID,Val,Typ'), f_match(Typ,Typ').

/* Constraint */
c1 ConstraintCount(@C,Rul,a_count<ID>) :- IsConstraint(@C,Rul,ID).
c2 Constraint(@C,Rul,JID,ID,Val) :-

Expression(@C,Rul,JID,ID,Val,Typ), IsConstraint(@C,Rul,ID), Typ == Bool.

Figure B.1: Meta rules for NDlog [83] (part 1).

145

/* Aggregation */
g1 Match(@C,Rul,TID,JID) :- Join(k)(@C,Rul,JID,TID,Args[k],Vals[k],Typs[k]), ConstraintCount(@C,Rul,N),

IsAggWrap(@C,Rul), Constraint(@C,Rul,JID,ID{p},Val{p}), Val{p} == 1, ID{k} > ID{k'}, N == (k).
g2 Count(@C,Rul,TID,a_count<JID>) :- Match(@C,Rul,TID,JID).
g3 MessagePredicate(k)(@C,Rul,Tab,Key,TID',Args[k],Arg,Vals[k],N) :- Count(@C,Rul,TID,N),

MessagePredicate(k)(@C,Rul,Tab,Key,TID,Args[k],Vals[k]), Arg := 'count', TID' := f_unique().

Figure B.2: Meta rules for NDlog [83] (part 2).

The next six meta rules evaluate expressions. Expressions can appear in two dif-

ferent places – in a rule head and in a constraint predicate – but since the evaluation

logic is the same, we use a single set of meta rules for both cases. Expressions can

come from integer constants (e1), composition of sub-expressions (e2), or any value

of a Join meta tuple (e3). Values in the head tuple are assigned from expressions

(a1). Constraint predicates are defined over boolean expressions (c1–c2).

The final three meta rules describe an aggregation syntax in NDlog called “Ag-

gWrap”, which counts the number of derivations triggered by a message via itself.

Note that, each message is associated with an unique trigger ID, or TID (generated

in h1 and h3). A derivation is triggered when all constraints match (g1). The aggre-

gation rule counts all such derivations caused by a unique message (g2–g3).

B.1.2 Trema

Figures B.3–B.5 show the full set of meta rules for Trema [127]. Unlike ND-

log, Trema is based on Ruby and mostly imperative. To capture the impera-

tive control flow of Ruby, the meta model remembers which lines have been

executed using a table called ExecLine(@P,B,SID,Ln). For example, the tuple

ExecLine(@P,F,97,10) says that function F executed its 10th line during its 97th

invocation. To model the imperative data flow of Ruby, the meta model main-

tains a table called Value(@P,Adr,B,SID,Ln,Arg,Val,Typ), which tracks which

variables are visible at each line and what their values are. For instance, the tuple

Value(@P,0x8A,F,99,10,a,2,int) says that an int variable a had a value of 2when

function executed its 10th line during its 99th invocation. Next, we briefly explain

each meta rule below.

146

/* Processing PacketIn */
// Entering the "packet_in" handler
pi1 ExecLine(@P,B,SID,Ln) :- packetIn(k)(@C,Swi,SID,Fld[k],Val[k],Typ[k]),

EntryLine(@P,B,Ln), FuncCall(k)(@P,B',Ln,B,EID[k]), B == packet_in.
// Creating the "packet" object
pi2 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

packetIn(k)(@C,Swi,SID,Fld[k],Val[k],Typ[k]), EntryLine(@P,B,Ln), FuncCall(k)(@P,B',Ln,B,EID[k]),
B == packet_in, EID := EID2, Adr := f_new(), Val := f_new(), Typ := Class.

// Creating attributes of the "packet" object
pi3 Value(@P,Adr',B,SID,Ln,Arg',Val',Typ'), ClassMap(@P,Val,Attr,Adr') :-

packetIn(k)(@C,Swi,SID,Fld[k],Val[k],Typ[k]), EntryLine(@P,B,Ln), FuncCall(k)(@P,B',Ln,B,EID[k]),
Adr' := f_new(), Arg := Fld(k), Attr := Fld(k), Val' := Val(k), Typ' := Typ(k),
B == packet_in, Expression(@P,B,SID,Ln,EID,Adr,Val,Typ).

// Creating the "switch" variable
pi4 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

packetIn(k)(@C,Swi,SID,Fld[k],Val[k],Typ[k]), EntryLine(@P,B,Ln), FuncCall(k)(@P,B',Ln,B,EID[k]),
B == packet_in, EID := EID1, Adr := f_new(), Val := Swi, Typ := Fixnum.

/* Installing flow entries */
// Installing a "micro" flow entry
fe1 flowEntryMicro(@P,Swi,SID,Prt) :-

FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]), B' == send_flow_mod_add,
Expression(@P,B,SID,Ln,EID1,Adr1,Val1,Typ1), Typ1 == Fixnum, Swi := Val1,
Expression(@P,B,SID,Ln,EID2,Adr2,Val2,Typ2), Typ2 == Fixnum, Prt := Val2.

fe2 flowEntry(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k],Prt) :- flowEntryMicro(@P,Swi,SID,Prt),
packetIn(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k]).

// Installing a "macro" flow entry
fe3 flowEntry(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k],Prt) :-

FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg[k]), B' == send_flow_mod_wildcard,
Expression(@P,B,SID,Ln,EID{k},Adr{k},Val{k},Typ{k}), Prt := Val9.

// Sending a PacketOut message to handle the cached packet on the switch
fe4 packetOutMicro(@P,Swi,SID,Prt) :-

FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]), B' == send_packet_out,
Expression(@P,B,SID,Ln,EID1,Adr1,Val1,Typ1), Typ1 == Fixnum, Swi := Val1,
Expression(@P,B,SID,Ln,EID2,Adr2,Val2,Typ2), Typ2 == Fixnum, Prt := Val2.

fe5 packetOut(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k],Prt) :- packetOutMicro(@P,Swi,SID,Prt),
packetIn(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k]).

/* If clauses */
// Executing a if clause when its predicate is satisfied
cj1 ExecLine(@P,B,SID,Tln) :-

IfClause(@P,B,Ln,EID,Tln,Fln), Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Val == 1, Typ := TrueClass.
cj2 Value(@P,Adr',B,SID,Tln,Arg',Val',Typ') :- Value(@P,Adr',B,SID,Ln,Arg',Val',Typ'),

IfClause(@P,B,Ln,EID,Tln,Fln), Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Val == 1, Typ := TrueClass.
// Skipping a if clause when its predicate is not satisfied
cj3 ExecLine(@P,B,SID,Fln) :-

IfClause(@P,B,Ln,EID,Tln,Fln), Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Val == 0, Typ := FalseClass.
cj4 Value(@P,Adr',B,SID,Fln,Arg',Val',Typ') :- Value(@P,Adr',B,SID,Ln,Arg',Val',Typ'),

IfClause(@P,B,Ln,EID,Tln,Fln), Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Val == 0, Typ := FalseClass.

Figure B.3: Meta rules for Trema [127] (part 1).

147

/* Expression */
// A constant derives an expression
e1 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

ExecLine(@P,B,SID,Ln), Constant(@P,B,Ln,CID,Val,Typ), f_hash(EID), Adr := f_new().
// A local variables derives an expression
e2 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

ExecLine(@P,B,SID,Ln), VarName(@P,B,Ln,Arg), Value(@P,Adr,B,SID,Ln,Arg,Val,Typ), EID := Arg,
f_arg(Arg,0).

// An object attribute derives an expressions
e3 Expression(@P,B,SID,Ln,Arg,Adr',Val',Typ') :- Expression(@P,B,SID,Ln,EID,Adr,Val,Typ),

AttributeOf(@P,B,Ln,EID,Attr), f_concat(Arg,EID,.,Attr), Value(@P,Adr',B,SID,Ln,Arg,Val',Typ'),
Typ == Class, ClassMap(@P,Val,Attr,Adr'), f_arg(EID,0), f_arg(Attr,0).

// Compositions of sub-expressions
e4 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

Operator(@P,B,Ln,Opr,EID1,EID2), Expression(@P,B,SID,Ln,EID1,Adr1,Val1,Typ1),
Expression(@P,B,SID,Ln,EID2,Adr2,Val2,Typ2), EID1 != EID2, Val := Val1 Opr Val2,
f_hash(EID), Adr := f_new(), f_match(Typ1, Typ2), Typ := f_type(Typ1, Typ2).

// Checking or retrieving a hash table entry derive expressions
e5 HashTableCount(@P,B,SID,Ln,Arg,Key,a_count<Val>) :-

HashTableCheck(@P,B,SID,Ln,Arg,KID), Expression(@P,B,SID,Ln,KID,Adr',Val',Typ'),
HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ), Key == Val'.

e6 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :- HashTableCount(@P,B,SID,Ln,Arg,Key,N),
N > 0, f_concat(EID,Key,in,Arg), Adr := f_new(), Val := True, Typ := TrueClass.

e7 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :- HashTableCount(@P,B,SID,Ln,Arg,Key,N),
N == 0, f_concat(EID,Key,in,Arg), Adr := f_new(), Val := False, Typ := FalseClass.

e8 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-
HashTableGet(@P,B,Ln,Arg,KID), Expression(@P,B,SID,Ln,KID,Adr',Val',Typ'),
HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ), Key == Val',
Adr = f_new(), f_concat(EID,Arg,#,Key).

/* Function call */
// Triggering a function call
fc1 FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]) :-

ExecLine(@P,B,SID,Ln), FuncDecl(k)(@P,B',Arg'[k],Ln'), FuncCall(k)(@P,B,Ln,B',EID[k]).
// Copying arguments to the callee
fc2 Value(@P,Adr',B',SID,Ln',Arg',Val,Typ) :- FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]),

Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), EID == EID(k), Adr' := f_new(), Arg' := Arg'(k).
// Copying attributes of object arguments to the callee
fc3 Value(@P,Adr'',B',SID,Ln',Arg'',Val'',Typ'') :- FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]),

Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), EID == EID(k), ClassMap(@P,Val,Attr,Adr''),
Typ == Class, f_concat(Arg'',Arg'(k),.,Attr), Value(@P,Adr'',B,SID,Ln,Arg'',Val'',Typ'').

// Executing the function body
fc4 ExecLine(@P,B',SID,Ln') :- FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]).

/* Function return */
// Triggering a function return
fr1 FuncRet(@P,B',SID,Ln',EID') :- ExecLine(@P,B',SID,Ln'), Return(@P,B',Ln',EID').
// Copying the return value to the caller
fr2 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

FuncRet(@P,B',SID,Ln',EID'), FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]), Adr := f_new(),
Expression(@P,B',SID,Ln',EID',Adr',Val',Typ'), Ln' > 0, EID := EID', Val := Val', Typ := Typ'.

// Returning to the caller
fr3 ExecLine(@P,B,SID,Ln'') :- FuncRet(@P,B',SID,Ln',EID'),

FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]), NextLine(@P,B,Ln,Ln''), Ln != Ln''.

Figure B.4: Meta rules for Trema [127] (part 2).

148

/* Objects */
// Calling the constructor
of1 FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini) :-

ExecLine(@P,B,SID,Ln), ObjectNew(@P,B,Ln,Typ,B',Ln',EID[k]), Adr := f_new(), Val := f_new(),
Ini := True. // Allocating attributes

of2 Value(@P,Adr',B',SID,Ln',Arg',Val',Typ'), ClassMap(@P,Val,Attr,Adr') :-
FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini), ObjectDecl(@P,Typ,Attrs,Typs),
Adr' := f_new(), Arg' := Attr, Val' := Null, Typ' := Typs(k), Attr := Attrs(k), Ini == True.

// Allocating the object itself
of3 Value(@P,Adr',B',SID,Ln',Arg',Val',Typ'), ClassMap(@P,Val,Attr,Adr') :-

FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini), Adr' := f_new(), Ln' := 1,
Arg' := 'self', Val' := Adr, Typ' := Ref, Ini == True.

// Calling a member function
of4 FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini) :-

Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), FunctionOf(@P,B,Ln,EID,B',Ln',EID[k]), Typ == Ref,
Ini := False.

// Copying attributes to a member function call and starting its execution
of5 Value(@P,Adr',B',SID,Ln',Arg',Val',Typ') :-

FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini), ObjectDecl(@P,Typ,Attrs,Typs),
Value(@P,Adr,B,SID,Ln,Arg,Val,Typ), ClassMap(@P,Val,Attr,Adr), Adr' := Adr, Arg' := Attr,
Val' := Val, Typ' := Typ, Attr == Attrs(k), Ini == False.

of6 FuncCall(k)(@P,B,Ln,B',EID[k]) :- FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini).

/* Assignment */
// Assigning value to a variable
a1 Value(@P,Adr,B,SID,Ln',Arg,Val',Typ), ExecLine(@P,B,SID,Ln') :-

Expression(@P,B,SID,Ln,Arg,Adr,Val,Typ), f_arg(Arg,1), Assignment(@P,B,Ln,Arg,EID),
Expression(@P,B,SID,Ln,EID,Adr',Val',Typ), NextLine(@P,B,Ln,Ln'), Ln != Ln'.

// Propagating unchanged values
a2 AssignmentCount(@P,B,Ln,Arg,a_count<EID>) :- Assignment(@P,B,Ln,Arg,EID).
a3 NoAssignment(@P,B,Ln,Arg) :- AssignmentCount(@P,B,Ln,Arg,N), N == 0.
a4 Value(@P,Adr,B,SID,Ln',Arg,Val,Typ) :- Value(@P,Adr,B,SID,Ln,Arg,Val,Typ),

NoAssignment(@P,B,Ln,Arg), NextLine(@P,B,Ln,Ln'), Ln != Ln', f_arg(Arg,1).

/* Hash table */
// Modifying a hash table entry
ht1 HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ), ExecLine(@P,B,SID,Ln') :-

HashTableSet(@P,B,Ln,Arg,KID,VID), Expression(@P,B,SID,Ln,KID,Adr',Val',Typ'),
Expression(@P,B,SID,Ln,VID,Adr'',Val'',Typ''), Key := Val', Val := Val'',Typ := Typ'',
NextLine(@P,B,Ln,Ln'), Ln != Ln'.

// Propagating unchanged values
ht2 HashTableCount(@P,B,Ln,Arg,a_count<KID>) :- HashTableSet(@P,B,Ln,Arg,KID,VID).
ht3 NoHashTableSet(@P,B,SID,Ln,Arg,Key) :- HashTableCount(@P,B,Ln,Arg,N), N == 0.
ht4 HashTableEntry(@P,B,SID,Ln',Arg,Key,Val,Typ) :- HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ),

NoHashTableSet(@P,B,Ln,Arg,Key), NextLine(@P,B,Ln,Ln'').

Figure B.5: Meta rules for Trema [127] (part 3).

149

The first nine meta rules describe inputs and outputs of a Trema program. The

program reactively installs flow entries. When a switch does not know how to handle

a flow, it caches and encapsulates its first packet in a PacketIn message to the con-

troller. A Trema controller invokes a handler function called packet_in with two

arguments switch and packet (pi1–pi4). The former identifies the switch which

sent the PacketIn. The latter stores header fields of the encapsulated packet. A net-

work operator specifies the policy by implementing the packet_in function. The

function install flow entries by calling the built-in send_flow_mod_add function.

Depending on the provided arguments, Trema may install either a “micro” flow en-

try that exactly match one flow or a “macro” flow entry that can control multiple

flows using wildcard matches (fe1–fe3). In addition, the programmer can instruct

the switch to handle the cached packet by calling send_packet_out (fe4–fe5).

The next four meta rules evaluate if clauses. An if clause performs two actions

when its predicate is satisfied: a) it updates ExecLine to execute the first line in the

if body, and b) it propagates variables in the current context to the if body by

changing the line number of Value tuples (cj1–cj2). Otherwise, the clause skips

the if body and executes the following line (cj3–cj4).

The next seven meta rules evaluate expressions. Expressions can come from

constants (e1), local variables (e2), object attributes (e3), compositions of sub-

expressions (e4), checking the existence of a hash table entry (e5–e7), or retrieving

a hash table entry (e8).

The next seven meta rules execute functions. When a function is called (fc1), the

program: a) copies the arguments in order for them to become visible to the callee

(fc2); b) copies attributes of object arguments (fc3); and c) updates ExecLine to

execute the first line in the function body (fc4). When the function returns (fr1),

the returned value (if any) is copied to the caller and the following line in the caller

executes (fr2–fr3).

150

The next six meta rules describe objects. When the program creates an object,

it allocates the object and calls the constructor for the class (of1–of3). When the

object calls its member function, the program copies attributes of the object to the

callee and executes the first line of the function body (of4–of6).

The final nine meta rules assign values. The program can assign values to a vari-

able (a1), or to a hash table entry (ht1). Depending on whether the variable has

been updated, its new or old value propagates to the next line to execute (a2–a4).

Hash table entries propagate in a similar fashion (ht2–ht4).

B.1.3 Pyretic

Pyretic [96] is a domain-specific language for programming software-defined net-

works. It is embedded in Python. Its meta model describes a subset of the imperative

features of Python, similar to that of Ruby. The meta rules in Figures B.6–B.8 are

analogous to rules in the Trema model, therefore we do not discuss them in detail.

We focus on the NetCore syntax [96], which are encoded by rules in Figure B.9.

NetCore supports several types of static policies: a primitive action forwards,

drops, floods, or modifies all incoming traffic; a restricted policy P[C] applies the

policy C to a flow if it satisfies the predicate P; a sequential policy C1 >> C2 first

process the flow using C1, directs the immediate result through C2, and return the

final output; a parallel policy C1 | C2 applies C1 and C2 simultaneously to a flow and

returns the union of the outputs. Note that programmers can recursively compose

policies from sub-policies to specify complex packet processing pipelines.

The model represents policy with the table Policy(@P,B,Typ,Ln,Sub[],Act[]).

Each policy has a type of Typ, resides in the function B, and has a unique ID Ln. A

policy may be composed from sub-policies, whose unique IDs are Sub[]. After a

policy is executed, all its sub- policies are invoked. In addition, Policy maintains

the IDs of all primitive actions from which it is recursively composed (Act[]). (We

will come back to this shortly when discussing sequential policies.)

151

/* Processing PacketIn */
// Entering the "packet_in" handler
pi1 ExecLine(@P,B,SID,Ln) :-

packetIn(k)(@C,Swi,SID,Fld[k],Val[k],Typ[k]), EntryLine(@P,B,Ln), B == packet_in.
// Creating the "packet" object
pi2 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

packetIn(k)(@C,Swi,SID,Fld[k],Val[k],Typ[k]), EntryLine(@P,B,Ln), B == packet_in, EID := packet,
Adr := f_new(), Val := f_new(), Typ := Class.

// Creating attributes of the "packet" object
pi3 Value(@P,Adr',B,SID,Ln,Arg',Val',Typ'), ClassMap(@P,Val,Attr,Adr') :-

packetIn(k)(@C,Swi,SID,Fld[k],Val[k],Typ[k]), EntryLine(@P,B,Ln), Adr' := f_new(), Arg := Fld[k],
Attr := Fld(k), Val' := Val(k), Typ' := Typ(k), B == packet_in,
Expression(@P,B,SID,Ln,EID,Adr,Val,Typ).

/* Installing flow entries */
// Installing a "micro" flow entry
fe1 flowEntryMicro(@P,SID,Prt) :-

ExecLine(@P,B,SID,Ln'), Policy(@P,B,Typ,Ln,Sub[i],Act[j]), Value(@P,Adr,B,SID,Ln,Arg,Val,Typ'),
Ln < 0, Arg == packet.@action, Prt := Val, Typ == Prim, Typ' == Fixnum..

fe2 flowEntry(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k],Prt) :- flowEntryMicro(@P,SID,Prt),
packetIn(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k]).

// Installing a "macro" flow entry
fe3 flowEntry(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k],Prt) :-

FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg[k]), B' == wildcard_helper,
Expression(@P,B,SID,Ln,EID{k},Adr{k},Val{k},Typ{k}), Swi := Val1, Prt := Val9.

// Sending a PacketOut message to handle the cached packet on the switch
fe4 packetOutMicro(@P,SID,Prt) :-

ExecLine(@P,B,SID,Ln'), Policy(@P,B,Typ,Ln,Sub[i],Act[j]), Value(@P,Adr,B,SID,Ln,Arg,Val,Typ'),
Ln < 0, Arg == packet.@action, Prt := Val, Typ == Prim, Typ' == Fixnum..

fe5 packetOutMicro(@P,SID,Prt) :-
FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg[k]), B' == wildcard_helper,
Expression(@P,B,SID,Ln,EID{k},Adr{k},Val{k},Typ{k}), Prt := Val9.

fe6 packetOut(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k],Prt) :- packetOutMicro(@P,SID,Prt),
packetIn(k)(@P,Swi,SID,Fld[k],Val[k],Typ[k]).

/* If clauses */
// Executing a if clause when its predicate is satisfied
cj1 ExecLine(@P,B,SID,Tln) :-

IfClause(@P,B,Ln,EID,Tln,Fln), Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Val == 1,
Typ := TrueClass.

cj2 Value(@P,Adr',B,SID,Tln,Arg',Val',Typ') :-
Value(@P,Adr',B,SID,Ln,Arg',Val',Typ'), IfClause(@P,B,Ln,EID,Tln,Fln), Val == 1,
Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Typ := TrueClass.

// Skipping a if clause when its predicate is not satisfied
cj3 ExecLine(@P,B,SID,Fln) :-

IfClause(@P,B,Ln,EID,Tln,Fln), Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Val == 0,
Typ := FalseClass.

cj4 Value(@P,Adr',B,SID,Fln,Arg',Val',Typ') :-
Value(@P,Adr',B,SID,Ln,Arg',Val',Typ'), IfClause(@P,B,Ln,EID,Tln,Fln), Val == 0,
Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), Typ := FalseClass.

Figure B.6: Meta rules for Pyretic [96] (part 1).

152

/* Expression */
// A constant derives an expression
e1 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

ExecLine(@P,B,SID,Ln), Constant(@P,B,Ln,CID,Val,Typ), f_hash(EID), Adr := f_new().
// A local variables derives an expression
e2 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

ExecLine(@P,B,SID,Ln), VarName(@P,B,Ln,Arg), Value(@P,Adr,B,SID,Ln,Arg,Val,Typ), EID := Arg,
f_arg(Arg,0).

// An object attribute derives an expressions
e3 Expression(@P,B,SID,Ln,Arg,Adr',Val',Typ') :- Expression(@P,B,SID,Ln,EID,Adr,Val,Typ),

AttributeOf(@P,B,Ln,EID,Attr), f_concat(Arg,EID,.,Attr), Value(@P,Adr',B,SID,Ln,Arg,Val',Typ'),
Typ == Class, ClassMap(@P,Val,Attr,Adr'), f_arg(EID,0), f_arg(Attr,0).

// Compositions of sub-expressions
e4 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

Operator(@P,B,Ln,Opr,EID1,EID2), Expression(@P,B,SID,Ln,EID1,Adr1,Val1,Typ1),
Expression(@P,B,SID,Ln,EID2,Adr2,Val2,Typ2), EID1 != EID2, Val := Val1 Opr Val2, f_hash(EID),
Adr := f_new(), f_match(Typ1, Typ2), Typ := f_type(Typ1, Typ2).

// Checking or retrieving a hash table entry derive expressions
e5 HashTableCount(@P,B,SID,Ln,Arg,Key,a_count<Val>) :-

HashTableCheck(@P,B,SID,Ln,Arg,KID), Expression(@P,B,SID,Ln,KID,Adr',Val',Typ'),
HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ), Key == Val'.

e6 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :- HashTableCount(@P,B,SID,Ln,Arg,Key,N),
N > 0, f_concat(EID,Key,in,Arg), Adr := f_new(), Val := True, Typ := TrueClass.

e7 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :- HashTableCount(@P,B,SID,Ln,Arg,Key,N),
N == 0, f_concat(EID,Key,in,Arg), Adr := f_new(), Val := False, Typ := FalseClass.

e8 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-
HashTableGet(@P,B,Ln,Arg,KID), Expression(@P,B,SID,Ln,KID,Adr',Val',Typ'),
HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ), Key == Val', Adr = f_new(),
f_concat(EID,Arg,#,Key).

/* Function call */
// Triggering a function call
fc1 FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]) :-

ExecLine(@P,B,SID,Ln), FuncDecl(k)(@P,B',Arg'[k],Ln'), FuncCall(k)(@P,B,Ln,B',EID[k]).
// Copying arguments to the callee
fc2 Value(@P,Adr',B',SID,Ln',Arg',Val,Typ) :- FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]),

Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), EID == EID(k), Adr' := f_new(), Arg' := Arg'(k).
// Copying attributes of object arguments to the callee
fc3 Value(@P,Adr'',B',SID,Ln',Arg'',Val'',Typ'') :- FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]),

Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), EID == EID(k), ClassMap(@P,Val,Attr,Adr''),
Typ == Class, f_concat(Arg'',Arg'(k),.,Attr), Value(@P,Adr'',B,SID,Ln,Arg'',Val'',Typ'').

// Executing the function body
fc4 ExecLine(@P,B',SID,Ln') :- FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]).

/* Function return */
// Triggering a function return
fr1 FuncRet(@P,B',SID,Ln',EID') :- ExecLine(@P,B',SID,Ln'), Return(@P,B',Ln',EID').
// Copying the return value to the caller
fr2 Expression(@P,B,SID,Ln,EID,Adr,Val,Typ) :-

FuncRet(@P,B',SID,Ln',EID'), FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]), Adr := f_new(),
Expression(@P,B',SID,Ln',EID',Adr',Val',Typ'), Ln' > 0, EID := EID', Val := Val', Typ := Typ'.

// Returning to the caller
fr3 ExecLine(@P,B,SID,Ln'') :- FuncRet(@P,B',SID,Ln',EID'),

FuncExec(k)(@P,B,SID,Ln,EID[k],B',Ln',Arg'[k]), NextLine(@P,B,Ln,Ln''), Ln != Ln''.

Figure B.7: Meta rules for Pyretic [96] (part 2).

153

/* Objects */
// Calling the constructor
of1 FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini) :-

ExecLine(@P,B,SID,Ln), ObjectNew(@P,B,Ln,Typ,B',Ln',EID[k]), Adr := f_new(), Val := f_new(),
Ini := True.

// Allocating attributes
of2 Value(@P,Adr',B',SID,Ln',Arg',Val',Typ'), ClassMap(@P,Val,Attr,Adr') :-

FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini), ObjectDecl(@P,Typ,Attrs,Typs),
Adr' := f_new(), Arg' := Attr, Val' := Null, Typ' := Typs(k), Attr := Attrs(k), Ini == True.

// Allocating the object itself
of3 Value(@P,Adr',B',SID,Ln',Arg',Val',Typ'), ClassMap(@P,Val,Attr,Adr') :-

FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini), Adr' := f_new(), Ln' := 1,
Arg' := 'self', Val' := Adr, Typ' := Ref, Ini == True.

// Calling a member function
of4 FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini) :-

Expression(@P,B,SID,Ln,EID,Adr,Val,Typ), FunctionOf(@P,B,Ln,EID,B',Ln',EID[k]), Typ == Ref,
Ini := False.

// Copying attributes to a member function call and starting its execution
of5 Value(@P,Adr',B',SID,Ln',Arg',Val',Typ') :-

FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini), ObjectDecl(@P,Typ,Attrs,Typs),
Value(@P,Adr,B,SID,Ln,Arg,Val,Typ), ClassMap(@P,Val,Attr,Adr), Adr' := Adr, Arg' := Attr,
Val' := Val, Typ' := Typ, Attr == Attrs(k), Ini == False.

of6 FuncCall(k)(@P,B,Ln,B',EID[k]) :- FuncCallObject(@P,B,SID,Ln,B',Ln',EID[k],Adr,Val,Typ,Ini).

/* Assignment */
// Assigning value to a variable
a1 Value(@P,Adr,B,SID,Ln',Arg,Val',Typ), ExecLine(@P,B,SID,Ln') :-

Expression(@P,B,SID,Ln,Arg,Adr,Val,Typ), f_arg(Arg,1), Assignment(@P,B,Ln,Arg,EID),
Expression(@P,B,SID,Ln,EID,Adr',Val',Typ), NextLine(@P,B,Ln,Ln'), Ln != Ln'.

// Propagating unchanged values
a2 AssignmentCount(@P,B,Ln,Arg,a_count<EID>) :- Assignment(@P,B,Ln,Arg,EID).
a3 NoAssignment(@P,B,Ln,Arg) :- AssignmentCount(@P,B,Ln,Arg,N), N == 0.
a4 Value(@P,Adr,B,SID,Ln',Arg,Val,Typ) :- Value(@P,Adr,B,SID,Ln,Arg,Val,Typ),

NoAssignment(@P,B,Ln,Arg), NextLine(@P,B,Ln,Ln'), Ln != Ln', f_arg(Arg,1).

/* Hash table */
// Modifying a hash table entry
ht1 HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ), ExecLine(@P,B,SID,Ln') :-

HashTableSet(@P,B,Ln,Arg,KID,VID), Expression(@P,B,SID,Ln,KID,Adr',Val',Typ'),
Expression(@P,B,SID,Ln,VID,Adr'',Val'',Typ''), Key := Val', Val := Val'',Typ := Typ'',
NextLine(@P,B,Ln,Ln'), Ln != Ln'.

// Propagating unchanged values
ht2 HashTableCount(@P,B,Ln,Arg,a_count<KID>) :- HashTableSet(@P,B,Ln,Arg,KID,VID).
ht3 NoHashTableSet(@P,B,SID,Ln,Arg,Key) :- HashTableCount(@P,B,Ln,Arg,N), N == 0.
ht4 HashTableEntry(@P,B,SID,Ln',Arg,Key,Val,Typ) :- HashTableEntry(@P,B,SID,Ln,Arg,Key,Val,Typ),

NoHashTableSet(@P,B,Ln,Arg,Key), NextLine(@P,B,Ln,Ln'').

Figure B.8: Meta rules for Pyretic [96] (part 3).

154

/* Primitive actions */
a1 Value(@P,Adr',B,SID,Ln',Arg,Val',Typ') :- ExecLine(@P,B,SID,Ln), Ln' := Sub(i),

Policy(@P,B,Typ,Ln,Sub[i],Act[j]), Expression(@P,B,SID,Ln,EID,Adr',Val',Typ'), Typ == Prim,
ConstantAction(@P,B,Ln,EID), Arg == packet.@action.

a2 Value(@P,Adr',B,SID,Ln',Arg,Val',Typ') :- ExecLine(@P,B,SID,Ln), Ln' := Sub(i),
Policy(@P,B,Typ,Ln,Sub[i],Act[j]), Expression(@P,B,SID,Ln,EID,Adr',Val',Typ'), Typ == Prim,
ModifyAction(@P,B,Fld,Ln,EID), Value(@P,Adr,B,SID,Ln,Arg,Val,Typ'), f_concat(Arg,packet,.,Fld).

a3 ExecLine(@P,B,SID,Sub) :- ExecLine(@P,B,SID,Ln), Policy(@P,B,Typ,Ln,Sub,Act), Typ == Prim.
a4 Value(@P,Adr,B,SID,Ln',Arg,Val,Typ) :- Value(@P,Adr,B,SID,Ln,Arg,Val,Typ),

NoAssignment(@P,B,Ln,Arg), Policy(@P,B,Typ,Ln,Sub[i],Act[j]), Ln' := Sub(i).

/* Restricted policies */
r1 PredicateValue(@P,B,SID,Ln,Val) :-

FieldPredicate(@P,B,Ln,Fld,VID), Value(@P,Adr',B,SID,Ln,Arg,Val',Typ'),
f_concat(Arg,packet,.,Fld), Expression(@P,B,SID,Ln,VID,Adr'',Val'',Typ''), f_match(Typ', Typ''),
Val := Val' == Val''.

r2 PredicateValue(@P,B,SID,Ln,Val) :- ExecLine(@P,B,SID,Ln), ConstantPredicate(@P,B,Ln,Typ,Val).
r3 ExecLine(@P,B,SID,Ln') :- ExecLine(@P,B,SID,Ln), Ln' := Sub(i),

Policy(@P,B,Typ,Ln,Sub[i],Act[j]), PredicateValue(@P,B,SID,Ln,Val), Val == true, Typ == Rest.

/* Parallel composition */
p1 Policy(@P,B,Typ,Ln,Sub[2],Act'[k'],Act''[k'']) :- Parallel(@P,B,Ln,Ln',Ln''), Typ := Para,

Policy(@P,B,Typ',Ln',Sub'[k'],Act'[k']), Policy(@P,B,Typ'',Ln'',Sub''[k''],Act''[k'']),
Sub[1] := Ln', Sub[2] := Ln''.

p2 ExecLine(@P,B,SID,Ln') :-
ExecLine(@P,B,SID,Ln), Policy(@P,B,Typ,Ln,Sub[i],Act[j]), Ln' := Sub(i), Typ == Para.

/* Sequential composition */
s1 Policy(k)(@P,B,Typ,Ln',Sub'[k'],Act''[k'']) :- Sequential(@P,B,Ln',Ln''), Typ := Sequ,

Policy(@P,B,Typ',Ln',Sub'[k'],Act'[k']), Policy(@P,B,Typ'',Ln'',Sub''[k''],Act''[k'']).
s2 Policy(@P,B,Typ,Ln,Sub,Ln'') :- Sequential(@P,B,Ln',Ln''),

Policy(@P,B,Typ,Ln,Sub,Act), Typ == Prim, Policy(@P,B,Typ',Ln',Sub'[k'],Act'[k']), Ln == Act'(k').

Figure B.9: Meta rules for Pyretic [96] (part 4).

155

Consider a policy P1 that forwards all HTTP traffic from the host 1.2.3.4 to-

wards two ports: match(dstport=80)[match(srcip=1.2.3.4) [fwd(1)|fwd(2)]].

Note that P1 is a restricted policy composed from a predicate that matches HTTP

traffic and a sub-policy P2. P2 is in turn composed from a predicate that matches

the traffic source to 1.2.3.4 and a sequential composition of two primitive ac-

tions fwd(1) and fwd(2) (denoted as P3 and P4). P1 will generate a meta tuple

Policy(@P,B,Rest,P1,[P2],[P3,P4]). Next, we explain each meta rule below.

The first four rules evaluate primitive actions. Depending on the associated ac-

tion, the policy can change the output port or modify a header field of incoming

flows (a1–a2). The flow is then forwarded to sub-policies or compiles to flow entries

on the switch if no sub-policies exist (a3–a4).

The next three rules evaluate restricted policies. Each restricted policy filters in-

coming traffic with a predicate. A predicate can restrict the value of a header field

or apply a constant filter such as “no packets” (r1–r2). Note that a restricted policy

does not redirect or modify any incoming flow itself. Instead, it applies sub-policies

on flows that satisfy the predicate (r3).

The final four rules describe compositions. A parallel policy derives form two

sub-policies and a parallel operator (p1). For instance, consider P3 | P4 from the pre-

vious example. The parallel policy P' is Policy(@P,B,Para,P',[P3,P4],[P3,P4]).

Note that when P' is invoked, P3 and P4 will execute in parallel (p2). A sequential

operator chains two sub-policies into a sequential policy (s1). Instead of generating

flow entries after evaluating the first policy, the program applies the second pol-

icy to the processed flow (s1). Note that in order to support this, the meta model

maintains all primitive actions in each policy (Act[]). For example, suppose the

programmer writes P3 >> P4. Before the composition, P3 will compile a flow entry

that forwards packets to port 1 (P3=Policy(@P,B,Prim,P3,-1,P3)). The sequential

operator causes P4 to become a sub-policy of P3, such that P4 will process the output

of P3 (P3=Policy(@P,B,Prim,P3,P4,P3)).

156

Function Input Description

BaseTupleCombs A provenance graph P.

Return all combinations of base events
in P such that the total costs of each
combination is less than a cutoff. The
returned combinations are sorted in cost
order.

BaseTuples A provenance graph P. Return all base events in P.

ChangeTuple A set of assignments A. A
base event τ.

Change τ to τ ′ by replacing all vari-
ables in τ with their concrete values in
A. If the syntax remains valid after the
change, return τ → τ ′. Return /0 other-
wise.

ConstraintPool A provenance graph P. Return the set of constraints associated
with P.

DeleteTuple A base event τ. If the syntax remains valid after deleting
τ, return −τ. Return /0 otherwise.

ExistingTuple An event τ. Return true iff the event type of τ and is
positive.

ForkWithRule
A provenance graph P.
An event τ in P. A
derivation rule r that can
derive τ.

Expand event τ in P. Fork a provenance
graph for each possible derivation. Re-
turn all forked provenance graphs. More
detailed explanation in Appendix B.2.

MissingTuple An event τ. Return true iff the event type of τ and is
negative.

RootTuple A provenance graph P. Return the root of P.
Rules An event τ. All meta rules that can derive τ.

SatAssignment A set of constraints C. Solve C. Return a valid assignment of all
variables.

SymbolicPropagate
A positive provenance
graph P. A combination
of base events Ti.

Change each base event in Ti symboli-
cally. Propagate the changes bottom-up
in P. Collect all constraints that is re-
quired for a) the derivations in P to hold
and b) the root of P to satisfy the opera-
tor’s query. Return the set of constraints
collected. More detailed explanation in
Appendix B.2.

UnsatAssignment A set of constraints C. Solve !C. Return a valid assignment of
all variables.

Table B.2: A description of helper functions used in the algorithms from Figure 4.5
and Figure B.10.

157

B.2 Helper functions

Table B.2 describes all helper functions used in the algorithms from Figure 4.5 and

Figure B.10. We also briefly explain the more complicated helper functions below.

In the repair extraction algorithm from Figure 4.5, SymbolicPropagate changes

a subset of base events in a provenance graph of τ and return all constraints such

that the derivation of τ still holds. The procedure: a) replaces attributes in base

events with symbolic variables, b) copies the symbolic variables to the head if the

replaced attribute also appears in the head tuple, c) collects constraints such that

the derivation still holds, and d) recursively perform this process bottom-up until

reaching the root. For instance, suppose the algorithm must remove a faulty flow

entry, which was generated via a µDlog rule r7 with a selection predicate Swi ==

2. The repair extracting algorithm will attempt to change the constant 2 as one

possible repair. At this point, SymbolicPropagate is invoked: a) the procedure re-

places the constant with a symbolic value, such that Const(@C,r7,0x9,2) becomes

Const(@C,r7,0x9,V); b) the constant derived, via meta rule e1, an expression, which

becomes Expr(@C,r7,*,0x9,V); c) the expression derived, via meta rule s1, a selec-

tion predicate, which becomes Sel(@C,r7,3,0x9,V == 2); d) the selection predicate

derived the flow entry via meta rule h2, and in order for it to trigger, the constraint

(V == 2) == True must hold; note that we collect this constraint from the Val ==

True predicate of the meta rule h2.

In the repair exploration algorithm from Figure B.10, ForkWithRule attempts

to derive an event τ by expanding it to child vertexes. It accepts a derivation rule

r and fork a provenance graph for each possible way of expanding τ using r. For

instance, suppose the algorithm needs to make a selection predicate Swi == 2 hold

in a µDlog program. At this point, the algorithm invokes ForkWithRule to derive

the corresponding Sel meta tuple using the meta rule s1 (from Figure 4.4). A naïve

way is to recursively derive all its predicates. However, an optimization can produce

158

a repair with a smaller search space: the procedure checks whether a subset of pre-

conditions already hold during the original execution and only attempts to derive

the missing predicates. Note that meta provenance tends to make small changes to

the program, therefore syntactic elements or states are likely to be preserved in an

re-execution. In our example, the procedure checks when an operator and its right-

hand expression existed but a matching left-hand expression was missing. At some

point during the original execution, there existed a == operator and a Expr derived

from the constant 2; as a result, we add two existing tuples Oper and Expr as children

of Sel; however, the Swi expression did not have a value of 2; therefore, a missing

child vertex Expr is added for later exploration. ForkWithRule enumerates all such

cases and forks one provenance graph for each.

B.3 Properties

In this section, we discuss properties of repairs generated using meta provenance for

NDlog. Figure B.10 shows the algorithm. The operator specifies a symptom event τ,

and the algorithm returns a list of repairs R. When the symptom event τ is positive,

repairs in R make τ disappear: Lines 25 builds a positive meta provenance tree of

τ, using the graph construction algorithm from negative provenance (Chapter 3);

Line 26 extracts repairs from the positive tree (using the function from Figure 4.5).

When the symptom τ is a missing event, repairs in R make τ appear. The algorithm

stores negative meta provenance trees in a priority queue Q, where the top tree has

the lowest cost. This allows the algorithm to explore and output repair candidates in

cost order (Section 4.3.5): Lines 13-20 fork a partial tree, expand a vertex v in the

forked tree (increase its cost if v is a program change), and push all expanded trees

into Q; Lines 10-11 accept a completed tree from Q and extract a repair candidate

that makes τ appear.

The algorithm may keep expanding vertexes in a partial tree without ever making

a program change. Such a tree stays at the top of Q. As a result, the algorithm cannot

159

1: function FindRepairs(τ)
2: if MissingTuple(τ) then
3: // use a priority queue Q to store meta provenance trees
4: Q← τ, R← /0
5: while Q ̸= /0 do
6: // check the lowest-cost meta provenance trees
7: P← Q.Top()
8: Q.Remove(P)
9: if P.Todos= /0 then

10: // extract a repair from a completed tree and output
11: R← R ∪ GenerateRepairCandidates(P)
12: else
13: // choose one vertex τe in the paritial tree
14: τe ← P.Todos.First()
15: P.Todos.Remove(v)
16: // iterate all meta rules that can derive τe

17: for ∀ r ∈ Rules(τe) do
18: // fork the tree by expanding τe with meta rule r
19: for ∀ Pi ∈ ForkWithRule(P,τe,r) do
20: Q.Push(Pi)
21: // return repairs to make τ appear
22: return R
23: else if ExistingTuple(τ) then
24: // query the positive meta provenance tree of τ
25: P← Query(τ)
26: // extract repairs to make τ disappear
27: return GenerateRepairCandidates(P)

Figure B.10: Algorithm for exploring repair candidates in cost order. For a descrip-
tion of the helper functions, please see Table B.2.

extract repairs from complete (but more expensive) trees in Q. To handle this, we

can add a (possibly very small) cost to expanding each vertex, even if it does not

represent a program change. This ensures that any viable repair with a finite cost

will be output eventually.

The prototype does not have the completeness property. Because it does not

actually output the type of repairs mentioned in the ensuing proof. Such repairs are

too restrictive and are unlikely to be useful in practice. The algorithm in Figure 4.5

can be easily extended to support this case.

160

Property (Optimality): Repair candidates are generated in cost order. Consider a list

of repairs R← FindRepairs(τ), R[i].cost ≤ R[j].cost when i < j.

Proof. We consider two cases: a) the symptom τ is an existing event, and b) the

symptom τ is a missing event.

Case a. Lines 24-27 are executed. Note that the algorithm generates a single meta

provenance tree. The result is optimal as long as GenerateRepairCandidates returns

a sorted list of repairs. This is guaranteed because BaseTupleCombinations returns

base tuple combinations in cost order (Table B.2).

Case b. Lines 3-22 are executed. The result is optimal by construction: the algo-

rithm only extracts a repair R[i] when R[i] is the top of Q; any remaining provenance

tree Pr in Q has a cost that is no less than R[i]; a future repair R[j] must be extracted

from a complete Pr or a tree expanded from a partial Pr; therefore, the cost of R[j] is

the cost of Pr plus what additional program changes cost (if any); the sum is no less

than the cost of R[i]. □

Property (Completeness): Given a symptom τ, the algorithm finds at least one work-

ing repair.

Proof. We consider two cases: a) the symptom τ is an existing event, and b) the

symptom τ is a missing event.

Case a. The algorithm can eventually look at all the rules that are being used to

derive τ in the current execution, and add a condition that prevents τ, and only

τ, from being derived without causing any other changes1. For example, to re-

move a positive event Bar(@3,5), the rule Bar(@A,B):-Foo(@A,B),A>2 becomes

Bar(@A,B):-Foo(@A,B),A>2,A!=3 || B!=5.

There is a concern that a repair may disable one particular derivation of an unde-

sired tuple while enabling an alternative derivation of the same tuple. For instance,

deleting a X(5) tuple that is being used to derive τ could trigger some other rule, per-

haps one with condition !X(5), that now also derives a τ. However, notice that the

161

repair in the above argument only removes an derivation of τ, and makes no other

changes. If the absence of τ would trigger a cascade of rules that made it reappear,

the system as a whole would oscillate, since that rule would effectively depend on a

negation of its own rule head.

Case b. The algorithm will eventually add a rule that derives exactly τ without

causing any other changes. For example, to derive a tuple Bar(@A,B), one repair

will add a rule Bar(@A,B):-Foo(@X),X==1,A:=2,B:=3, where Foo(@1) is an event

that happened during that time. If no such event exist in the original execution, the

algorithm will insert a base event.

Note that the algorithm can eventually generate the above repair. Suppose that

Bar is a state and Foo is a message. To make Bar(@2,3) appear, the algorithm, at some

point, adds the rule head Bar(@A,B) (using meta rules h4-h5 from Figure B.1); while

recursively expanding the HeadValue predicates of h5, assignments A:=2 and B:=3

are created (a1 and e2); while recursively expanding the ConstraintMatch predicate

of h5, the selection predicate X==1 is created (h6-h7); finally, the algorithm adds the

predicate Foo(@X) while expanding the X expression in X==1 (e1, j4, and p1). □

B.4 Scenarios

Table B.3 and Table B.4 show the repair candidates returned for Q2-Q5. In Q2,

a forwarding policy was too restrictive and dropped packets from one host. All

repair candidates are effective as they cause packets from the blocked client to go

through, but candidates D-L are too general and misroute flows that were handled

correctly by the original program. In Q3, the operator updated the load-balancer

program and offloaded a few clients to a backup route, but a stale firewall policy on

that route dropped all such requests. All repair candidates are effective as the fixed

firewall always allow at least of some of the offloaded requests. Some candidates

have undesirable side effects: the firewall becomes too permissive (C, F, G, I, J,

K); all hosts connected to a certain port receive additional traffic (E, F); legitimate

162

Repair candidate (Accepted?) KS-test
A Manually installing a flow entry (3) 0.00086
B Changing Sip<6 in r1 to Sip<7 (3) 0.00086
C Changing Sip<6 in r1 to Sip<=6 (3) 0.00086
D Changing Prt:=16 in r2 to Prt:=17 (5) 0.00257
E Changing Sip<6 in r1 to Sip<99 (5) 0.00257
F Changing Sip<6 in r1 to Sip<16 (5) 0.00257
G Changing Sip<6 in r1 to Sip<2009 (5) 0.00257
H Deleting Sip<6 in r1 (5) 0.00257
I Deleting Sip<6 and Ipt<16 in r1 (5) 0.00257
J Changing Sip<6 in r1 to Dpt<6 (5) 0.00257
K Changing Sip<6 in r1 to Spt<6 (5) 0.00257
L Changing Sip<6 in r1 to Tmt<6 (5) 0.00257

(a) Q2

Repair candidate (Accepted?) KS-test
A Manually installing a flow entry (3) 0.00085
B Changing Sip>3 in r5 to Sip>1 (3) 0.00085
C Changing Sip>3 in r5 to Sip>0 (5) 0.00171
D Changing Sip>3 in r5 to Sip>2 (3) 0.00085
E Deleting Dip==1 and Swi==2001 in e1h1 (5) 0.01886
F Deleting Sip>3 and Swi==2003 in r5 (5) 0.00213
G Deleting Sip>3 in r5 (5) 0.00171
H Changing Sip>3 in r5 to Sip<3 (5) 0.00689
I Changing Sip>3 in r5 to Swi>3 (5) 0.00171
J Changing Sip>3 in r5 to Dip>3 (5) 0.00171
K Changing Sip>3 in r5 to Dmc>3 (5) 0.00171

(b) Q3

Table B.3: Candidate repairs generated by meta provenance for scenarios Q2 and
Q3, which are then filtered by a KS-test.

traffic are blocked (H). In Q4, the controller program failed to instruct a switch to

forward the first packet in each incoming flow. All repair candidates cause the switch

to forward the first packet, but some cause side effects such as significant increases

of controller traffic (C, D, E, G) or additional flows at endhosts (D, G, H, I, K,

M). In Q5, a switch never learned about the existence of certain hosts because the

MAC learning program only match packets based on the incoming port and the

destination IP. Some repair candidates did not fix the problem (B, C, D, E, F, H).

Candidate I manually configures an entry in the learning table on the controller.

Candidates A and G fix the problem by adding a matching field on source IP or

source MAC, which are probably the repairs which an operator would have chosen.

163

Repair candidate (Accepted?) KS-test
A Manually sending a packetOut message (3) 0.02693
B Changing the head of e2po to packetOut(...,Sip,Dip,Spt,Dpt,...) (5) 0.34439
C Changing the head of r5 to packetOut(...,Dip,Sip,Spt,Dpt,...) (5) 0.38886
D Changing the head of e2 to packetOut(...,Sip,Dip,Spt,Dpt,...) (5) 0.38886
E Changing the head of r5 to packetOut(...,Dip,Sip,Dpt,Spt,...) (5) 0.38886
F Changing the head of e2po to packetOut(...,Sip,Dip,Dpt,Spt,...) (5) 0.34439
G Changing the head of e2 to packetOut(...,Sip,Dip,Dpt,Spt,...) (5) 0.38886
H Copying e2 and replacing head with packetOut(...,Sip,Dip,Dpt,Spt,...)

(5)
0.20223

I Copying e2po and replacing head with packetOut(...,Sip,Dip,Dpt,Spt,...)
(5)

0.20223

J Copying r5 and replacing head with packetOut(...,Dip,Sip,Dpt,Spt,...)
(3)

0.02693

K Copying e2 and replacing head with packetOut(...,Sip,Dip,Spt,Dpt,...)
(5)

0.20223

L Copying r5 and replacing head with packetOut(...,Dip,Sip,Spt,Dpt,...)
(3)

0.02693

M Copying e2po and replacing head with packetOut(...,Sip,Dip,Spt,Dpt,...)
(5)

0.20223

(a) Q4

Repair candidate (Accepted?) KS-test
A Changing Sip':=* in f2 to Sip':=Sip (3) 0.00007
B Changing Sip':=* in f2 to Sip':=Dip (5) 0.00009
C Changing Dip':=* in f2 to Dip':=Sip (5) 0.00009
D Changing Dmc':=Dmc in f2 to Dmc':=Smc (5) 0.00009
E Changing Ipt':=Ipt in f2 to Ipt':=Prt (5) 0.00009
F Changing Smc':=* in f2 to Smc':=Dmc (5) 0.00009
G Changing Smc':=* in f2 to Smc':=Smc (3) 0.00007
H Changing Smc':=* in f2 to Smc':=Dmc'' (5) 0.00009
I Manually installing a learning table entry (3) 0.00007

(b) Q5

Table B.4: Candidate repairs generated by meta provenance for scenarios Q4 and
Q5, which are then filtered by a KS-test.

164

C
Temporal Provenance

We discussed properties of temporal provenance in Section 5.4.6. We provide the

formal statements of the properties and their proofs in Appendix C.1.

C.1 Formal Model

Temporal provenance preserves all properties of classical provenance (validity,

soundness, completeness, and minimality). We have obtained the correspond-

ing proofs by extending the formal model from TAP/DTaP [143]. Although there

are some parts of the proof from [143] that require few or no changes (e.g., because

they only relate to functional provenance and not to sequencing), we present the

full formal model here for completeness. Our extensions include the following:

• Temporal provenance has a different set of vertex types (Section 5.3.2) and

contains sequencing edges (Section 5.4.1); consequently, temporal provenance

graphs are constructed differently (Section C.1.2).

165

• The validity property, in addition to its prior requirements from TAP, requires

that the temporal provenance include all the events necessary to reproduce the

execution temporally (Section C.1.3).

• The proofs follow the same structure as in TAP, but are adjusted to handle

the different graph structure and the stronger validity property of temporal

provenance (Section C.1.4).

We have also formally modeled the properties of the delay annotations that our

algorithm creates (and that were not part of [143]):

• Definitions of direct delay and transitive delay; and a theorem states that each

vertex is labeled with the amount of delay that is contributed by the subtree

that is rooted at that vertex (Section C.1.5).

• A theorem states that the annotations do correspond to the “potential for

speedup” that we intuitively associate with the concept of delay (Section C.1.6).

C.1.1 Background: Execution Traces

To set stage for the discussion, we introduce some necessary concepts for reasoning

about the execution of the system in our temporal provenance model.

An execution trace of an NDlog program can be characterized by a sequence of

events that take place in the system, starting from the initial system state. Each event

on a node captures the execution of a particular rule r that is triggered by a certain

tuple τ, under the existence of some other tuples on the node, and that results in a

new tuple being derived or an existing tuple being underived (i.e., lost). We formally

define them below.

Definition 9. (Event): An event d@n is represented by d@n = (τ,r, ts, te,c,±τ ′), where

• n is the node on which the event happened,

• τ is the tuple that triggers the event,

166

• r is the derivation rule that is being triggered,

• ts is the time at which r is triggered (called start timestamp),

• te is the time at which r finishes its execution (called end timestamp),

• c is the set of tuples that are preconditions of the event, which must exist on n at

time ts, and

• τ ′ is the tuple that is derived (+) or underived (−) as a result of the derivation.

Definition 10. (Trace): A trace E is a sequence of events ⟨d1@n1,d2@n2, . . . ,dk@nk⟩

that reflects an execution of the system from the initial state S0, i.e.,

S0
d1@n1−−−−→S1

d2@n2−−−−→ ·· · dk@nk−−−→Sk.

To quantify the timing behaviors of the system, it is necessary to reason about the

order among events. Ideally, we would like to have a total ordering among all events

in all nodes in the system; however, due to the lack of fully synchronized clocks, this is

difficult to achieve in distributed systems. To address this, we introduce the concept

of trace equivalence that preserves the total ordering of events on each node, without

imposing a total ordering among events across nodes. Intuitively, two traces E and

E ′ are considered equivalent if the subsequence of events that every node observes

in E is the same as that is observed in E ′.

Definition 11. (Subtrace): E ′ is a subtrace of E (written as E ′ ⊆ E) iff E ′ is a subse-

quence of E . We denote by E |n the subtrace of E that consists of all and only the events

of E that take place on node n.

Definition 12. (Equivalence): Two traces E and E ′ are equivalent (written as E ∼ E ′)

iff for all nodes n, E |n = E ′|n.

By definition, the equivalence relation is transitive: E ∼ E ′,E ′ ∼ E ′′⇒ E ∼ E ′′.

Example: As an example, consider the following traces:

E1 = ⟨d1@n1,d2@n2,d3@n1,d4@n2⟩,

167

E2 = ⟨d1@n1,d2@n2,d4@n2,d3@n1⟩,

E3 = ⟨d1@n1,d2@n2,d3@n1⟩.

It is easy to observe that E1 and E2 are equivalent, since E1|n1 =E2|n1 = ⟨d1@n1,d3@n1⟩

and E1|n2 = E2|n2 = ⟨d2@n2,d4@n2⟩. In contrast, E3 is a subtrace of E1, but it is not

equivalent to E1 (since E3|n2 ̸= E1|n2).

C.1.2 Graph construction

We now describe our algorithm for constructing the temporal provenance that ex-

plains the reasons for a delay between two events. As discussed in Section 5.4.6,

temporal provenance is recursive – the temporal provenance for [e′,e] includes, as

subgraphs, the temporal provenances of all events that contributed to both e and the

delay from e′ to e. Leveraging this property, we can construct the temporal prove-

nance of a pair of events “on demand” using a top-down procedure, without the

need to materialize the entire provenance graph.

Towards this, we first define a function rawquery that, when called on a vertex v in

the temporal provenance graph, returns two sets of immediate children of v: the first

consists of vertexes that are connected to v via causal edges, and the second consists

of vertexes that are connected to v via sequencing edges. Given an execution trace E

of the system, the temporal provenance for a diagnostic query t-query(e′,e) can be

obtained by first constructing a vertex ve that describes e (i.e., a DRV/UDRV/RCV

vertex for e), and then calling rawquery recursively on the vertexes starting from ve

until reaching the leaf vertexes (lines 1-15); note that a vertex returned by a rawquery

call is connected to its parent vertex via either a causal edge and/or a sequencing edge,

depending on the set(s) it belongs to (lines 11-14). The resulting graph, denoted by

G(e′,e,E), includes all necessary events to explain both e and the delay from e′ to

e. However, as it requires delay annotation (Sections 5.4.3–5.4.5) to be useful for

diagnostics, we refer to it as the “raw” temporal provenance of t-query(e′,e).

168

1: function construct-graph(ve)
2: G←{ve} // the “raw” temporal provenance graph
3: NodeToProcess←{ve} // a queue of vertexes that need explanation
4: while NodeToProcess ̸= /0 do
5: v← NodeToProcess.pop()
6: S,S′← rawquery(v)
7: for v′ ∈ {S∪S′} do
8: if v′ ̸∈ G then
9: G← G∪ v′ // add vertexes

10: NodeToProcess.push(v′)
11: for v′ ∈ S do
12: G← G∪ (v′,v)causal // add causal edges
13: for v′ ∈ S′ do
14: G← G∪ (v′,v)sequencing // add sequencing edges
15: return G
16: function rawquery(drv([ts, te],N,τ, τ:- τ1,τ2, . . . ,τm))
17: S← /0
18: tmax

e ← 0 // the last precondition was satisfied at tmax
e

19: for τi ∈ {τ1,τ2, . . . ,τm} do
20: Find di@N = (τ ′, r, t ′s, t ′e, {c1,c2, . . . ,ck}, ±τi) ∈ E : t ′e≤ ts and t ′e is maximized
21: tmax

e ← max(tmax
e , t ′e)

22: if r = rins then
23: S← S ∪ ins([t ′s, t ′e],N,τi)
24: else if r = rrcv then
25: S← S ∪ rcv([t ′s, t ′e],N←r.N,±τi)
26: else
27: S← S ∪ drv([t ′s, t ′e],N,τi, τi:-τ ′,c1,c2, . . . ,ck)
28: // include all preceding events that happened after the last
29: // precondition was satified and before the derivation of τ
30: return

(
S; prev-vertex([tmax

e , ts],N)
)

31: function rawquery(ins([ts, te],N,τ))
32: return (/0; /0)
33: function rawquery(snd([ts, te],N→N′,±τ))
34: Find d@N = (τ ′, r, t ′s, t ′e, {c1,c2, . . . ,ck},±τ) ∈ E : t ′e≤ ts and r ̸= rrcv and t ′e is maximized.
35: if r = rins/del then
36: return

(
ins/del([t ′s, t ′e],N,τ); prev-vertex([t ′e, ts],N)

)
37: else
38: return

(
drv/udrv([t ′s, t ′e],N,τ, τ:- τ ′,c1,c2, . . .); prev-vertex([t ′e, ts],N)

)
Figure C.1: Algorithm for constructing temporal provenance graph for a given ex-
ecution trace E (part 1). The trace E consists of events (Definition 9), which are
recorded at runtime or reconstructed via replay. The function rawquery(v), when
called on a vertex v, returns two sets of immediate children of v, which are connected
to v via causal edges and sequencing edges, respectively. It calls prev-vertex([t ′, t],N)
as a subprocedure, which finds a chain of vertexes connected via sequencing edges
that immediately precedes v during [t ′, t].

169

39: function rawquery(rcv([ts, te],N←N′,±τ))
40: Find d@N′=(τ ′,r,t ′s,t ′e,±τ) ∈ E : t ′e≤ ts and r = rsnd and t ′e is maximized
41: v← snd([t ′s, t ′e],N′→N,±τ)
42: // a remote sequencing edge exists from the snd vertex
43: return

(
v; v

)
44: function prev-vertex([t ′, t],N)
45: // add a sequencing edge from an immediate preceding event, if one exists
46: if t ′ < t and ∃ d@N=(τ ′,r,ts,te,{c1,c2, ...},±τ): te= t then
47: v← null
48: if r = rsnd then
49: v← snd([ts, te],N→r.N,±τ)
50: else if r = rrcv then
51: v← rcv([ts, te],N←r.N,±τ)
52: else if r = rins/del then
53: v← ins/del([ts, te],N,τ)
54: else
55: v← drv/udrv([ts, te],N,τ,τ:-τ ′,c1,c2,...)
56: v′ = prev-vertex([t ′, ts],N)
57: if v′! = null then
58: // recusively add preceding events until the entire [t ′, t] interval is explained
59: G← G∪ (v′,v)sequencing

60: return v
61: return null
62: function rawquery(udrv([ts, te],N,τ, τ:- τ1,τ2, . . . ,τm))
63: S← /0
64: tmax

e ← 0 // the last precondition was satisfied at tmax
e

65: for τi ∈ {τ1,τ2, . . . ,τm} do
66: Find di@N = (τ ′, r, t ′s, t ′e, {c1,c2, . . . ,ck}, ±τi) ∈ E : t ′e≤ ts and t ′e is maximized
67: tmax

e ← max(tmax
e , t ′e)

68: if r = rins/del then
69: S← S ∪ ins/del([t ′s, t ′e],N,τi)
70: else if r = rrcv then
71: S← S ∪ rcv([t ′s, t ′e],N←r.N,±τi)
72: else
73: S← S ∪ drv/udrv([t ′s, t ′e],N,τi, τi:-τ ′,c1,c2, . . . ,ck)
74: return

(
S; prev-vertex([tmax

e , ts],N)
)

75: function rawquery(del([ts, te],N,τ))
76: return (/0; /0)

Figure C.2: Algorithm for constructing temporal provenance graph for a given ex-
ecution trace E (part 2). The trace E consists of events (Definition 9), which are
recorded at runtime or reconstructed via replay. The function rawquery(v), when
called on a vertex v, returns two sets of immediate children of v, which are connected
to v via causal edges and sequencing edges, respectively. It calls prev-vertex([t ′, t],N)
as a subprocedure, which finds a chain of vertexes connected via sequencing edges
that immediately precedes v during [t ′, t].

170

The rawquery(v) procedures rely on a helper function called prev-vertex to find

vertexes that are connected to v via sequencing edges. For ease of exposition, we first

explain the pseudo-code of prev-vertex in Figures C.1-C.2: given an interval [t ′, t]

and a node N (supplied by rawquery calls), prev-vertex finds the chain of preceding

events that happened on N during [t ′, t]; it first locates the last event v whose execu-

tion ends at t and constructs a corresponding vertex (lines 46-55); it then shortens

the interval to until the starting timestamp of v and recursively find prior events

on N (line 56); it stops until the interval is exhausted or if no event can be found

(line 61); finally, it recursively connects this chain of events using sequencing edges

and returns the last event in the chain to its caller (line 59-60). For example, con-

sider the provenance graph from Figure C.3: a prev-vertex([2.5s,3.5s],Y) call will

first find the DRV(F) event, which ends at exactly t = 3.5s; it constructs a vertex and

shortens the interval to [2.5s,2.5s], by excluding the execution time of DRV(F); this

interval is passed into a recursive call – prev-vertex([2.5s,2.5s],Y) – that finds the

event of and constructs a vertex for INS(G); the recursion then stops because the

interval becomes empty (because INS(G) takes a positive amount of time); the two

constructed vertexes are connected via sequencing edges and the last event in the

chain – DRV(F) – is returned to the caller.

Figures C.1-C.2 show the pseudo-code for the function rawquery(v) depending

on the type of v (DRV, UDRV, SND, RCV, INS and DEL). Note that each DRV

or UDRV vertex is also associated with the corresponding derivation rule. Next, we

explained the pseudo-code of rawquery(v) for each vertex type in more detail. We

use the provenance graph from Figure C.3 as an example:

• To explain a SND vertex, we find the most recent event in the original trace that

produced (or deleted) the tuple that is being sent (line 34), construct an INS

(or DEL) or a DRV (or UDRV) vertex for the found event, and add an incoming

causal edge from the constructed vertex (lines 35-38); in addition, a SND ver-

tex has an incoming sequencing edge from the chain of preceding events that

171

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X
F@Y :- G@Y

X
Y

0 1 2 3 4 5 6 7 8

C B A

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)F

INS(G)

DRV(F)

INS(G)

Figure C.3: An example scenario, with NDlog rules at the top left, the timing of
a concrete execution in the bottom left, and the temporal provenance graph at the
right. The query is t-query(INS(Z), DRV(A)); the start and end vertexes are marked
in bold. Vertex names are shortened and some fields are omitted for clarity.

happened after the message was produced or deleted (the prev-vertex calls in

lines 36 and line 38). For example, in the temporal provenance graph from Fig-

ure C.3, the snd(+C) vertex has a causal edge from the drv(C) vertex, because

drv(C) functionally triggered snd(+C); in addition, a prev-vertex([2s,2s],X) call

adds a sequencing edge from drv(C) to snd(+C), as the former event directly

precedes the latter event.

• A RCV has an incoming causal edge and an incoming remote sequencing edge

from the SND vertex for the received message (lines 39-43). This is the case

for rcv(+E) and rcv(+C) in Figure C.3.

• A DRV vertex for a rule A:-B,C,D has an incoming causal edge for each precon-

dition (B, C, and D) that leads to the vertex that produced the corresponding

tuple (line 19); this can be an INS, a RCV, or another DRV (lines 22-27); in

addition, a DRV vertex has an incoming sequencing edge from the chain of

preceding events that happened after the last precondition was satisfied (the

prev-vertex call in line 30). For example, in the provenance from Figure C.3,

drv(F) has a causal edge from its (only) precondition ins(G); in addition, a

prev-vertex([2.5s,3.5s],Y) finds the preceding event rcv(+C) that occurred be-

tween ins(G) ended and drv(F) started.

172

• An INS vertex corresponds to the insertion of a base tuple, which cannot be

explained further; thus, it has no incoming edges (line 32). This is true for

ins(Z) and ins(G) in Figure C.3.

• The edges for the negative “twins” of these vertexes – UDRV and DEL – are

analogous to their positive counterparts.

C.1.3 Properties

Given the “raw” temporal provenance G(e′,e,E) of a diagnostic query t-query(e′,e)

in an execution trace E , we say that G(e′,e,E) is correct if it is possible to extract

a subtrace from G that has the properties of validity, soundness, completeness, and

minimality. We first describe our algorithm for extracting such a subtrace, and then

formally define these properties and their proofs.

Definition 13. (Trace Extraction): Given a temporal provenance G(e′,e,E), the

trace A(e′,e,E) is extracted by running Algorithm 2 based on topological sort.

Algorithm 2 converts the vertexes in the provenance graph to events and then uses

a topological ordering and timestamps to assemble the events into a trace. In par-

ticular, Line 12-29 implements the construction of one individual event, where the

information of a rule evaluation (such as triggering event, conditions, and action) is

extracted from vertexes in G(e′,e,E): a DRV/UDRV/SND vertex and their children;

a pair of RCV and SND vertexes; or a INS/DEL vertex. In the algorithm, type(v),

tuple(v), rule(v), startTime(v) and endTime(v) denote the vertex type, the tuple, the

derivation rule, the start timestamp, and the end timestamp of the vertex v, respec-

tively. For example, Algorithm 2 extracts the following trace from the provenance

graph in Figure C.3: ⟨ins(Z)@X , drv(C)@X , snd(+C)@X , ins(G)@Y , drv(B)@X ,

rcv(+C)@Y , drv(F)@Y , drv(E)@Y , snd(+E)@Y , rcv(+E)@X , drv(A)@X⟩.

We will show that the extracted trace A (e′,e,E) obtained from Algorithm 2 sat-

isfies the following four properties.

173

Algorithm 2 Extracting traces from provenance
1: // this algorithm extracts the trace A (e′,e,E) from the “raw” temporal provenance G(e′,e,E); for

ease of explanation, we rewrite G as (V,E), where V represents vertexes and E represent edges
2: function extract-trace()(G = (V,E))
3: // calculate the out-degree of every vertex in G
4: for all v ∈V do degree(v)← 0
5: for all e = (v,v′) ∈ E do degree(v)++
6: trace← /0
7: NodeToProcess←V
8: while NodeToProcess ̸= /0 do
9: // select the next event based on topological ordering and timestamps

10: select v ∈ NodeToProcess : degree(v) = 0 and ̸ ∃v′
that is located on the same node and has a larger end timestamp

11: NodeToProcess.remove(v)
12: if type(v) = drv or udrv or snd then
13: preconditions← /0
14: for ∀ (v′,v) ∈ E s.t. (v′,v) is a causal edge do
15: preconditions.add(tuple(v′)) // tuple(v′) is a precondition
16: // find the trigger from the preconditions
17: trigger ← τ ′ ∈ preconditions: (a) τ ′ is a message, or (b) τ ′ is a state and

̸ ∃τ ′′ ∈ preconditions that has a larger end timestamp
18: preconditions.delete(trigger)
19: event ← (trigger, rule(v),startTime(v),endTime(v),preconditions, tuple(v))
20: trace.push_ f ront(event)
21: if type(v) = rcv then
22: out put← tuple(v)
23: trigger← tuple(v′): (v′,v) ∈ E s.t. type(v′) = snd
24: event ← (trigger, rule(v),startTime(v),endTime(v), /0, tuple(v))
25: trace.push_ f ront(event)
26: if type(v) = ins or del then
27: out put← tuple(v)
28: event ← (/0, rule(v),startTime(v),endTime(v), /0, tuple(v))
29: trace.push_ f ront(event)
30: for all (v′,v) ∈ E, degree(v′)← degree(v′)−1
31: return trace

174

Definition 14. (Soundness): A subtrace A extracted from G(e′,e,E) is sound if and

only if it is a subtrace of some trace E ′ that is equivalent to E , i.e., A ⊆ E ′ ∼ E .

Intuitively, the soundness property means that A (e′,e,E) must preserve all the

happens-before relationships among events and the exact timestamps of events in

the original execution trace obtained from running the NDlog program. Ideally,

we would like A (e′,e,E) to be a subtrace of E , but without synchronized clocks, we

cannot always order concurrent events on different nodes. However, for practical

purposes E and E0 are indistinguishable: each node observes the same sequence of

events in the same order and at the same times.

Definition 15. (Completeness): A subtrace A extracted from G(e′,e,E) is complete

if and only if it ends with the event e and e happens at the same time as in E .

Intuitively, completeness means that A (e′,e,E) must include all events necessary

to reproduce e both functionally and temporally. Note that the validity property

already requires that any event that is needed for e be included in A (e′,e,E); hence,

we can simply verify the completeness property of a valid trace by checking whether

it ends with e.

Definition 16. (Validity): A subtrace A extracted from G(e′,e,E) is valid if and only

if, given the initial state S0, for every event di@Ni = (τi,ri, ti, t ′i ,ci,±τ ′i) ∈A :

(a) there exists d j@N j =(τ j,r j, t j, t ′j,c j,±τ ′j) that precedes di@Ni inA such that τi = τ ′j;

(b) for all τk ∈ ci, we have τk ∈ Si−1, where S0
d1@n1−−−−→S1

d2@n2−−−−→ ·· · di−1@ni−1−−−−−−→Si−1;

(c) based on the conditions (a) and (b), consider the set of all events Pi such that

dk@Nk ∈ Pi generates τk ∈ (ci∪τi); denote d j@N j as the latest event in Pi; if N j = Ni

and t ′j < ti, there must exist a set of events {d1
p@Ni, ...,dn

p@Ni} ∈ A such that:

t ′j = t1
p; t ′mp = tm+1

p ,1≤ m < n; and t ′np = ti.

Intuitively, the validity property means that A (e′,e,E) must correspond to a correct

execution of the NDlog program both in terms of functionality and timing. Condi-

tion (a) states that any event that triggers a rule evaluation must be generated before

175

the rule is evaluated. Condition (b) states that the preconditions of the rule evalu-

ation must hold at the time of the rule evaluation. Finally, condition (c) requires

that the evaluation is “work-conserving”: the node cannot be idle when it is ready

to compute a derivation.

Definition 17. (Minimality): A subtrace A extracted from G(e′,e,E) is minimal iff

there exists no trace E ′ such that: (a) there ∃di@Ni where di@Ni ∈ A and di@Ni ̸∈ E ′;

(b) E ′ is valid, sound, and complete.

Intuitively, minimality means that A (e′,e,E) should not contain any events that are

not necessary to reproduce e. If this property were omitted, A (e′,e,E) could trivially

output the complete trace E .

C.1.4 Proofs

Lemma 7. For any execution E , and a temporal provenance query t-query(e′,e), the

provenance graph G(e′,e,E) is acyclic.

Proof. We first show that if there exists a cycle in G(e′,e,E), the cycle cannot include

two vertexes located on different nodes. Suppose there exists a cycle that contains

two vertexes v1 and v2 located on N1 and N2 respectively. Then the cycle must contain

a least one pair of SND and RCV vertexes in both the path from v1 to v2, and the

path from v2 and v1. Each SND and RCV corresponds to a message communication

which takes a positive amount of time. Therefore, traversing from v1 along the cycle

back to v1 results in an absolute increment in the timestamp. This is a contradiction.

If all the vertexes in the cycle are located on the same node, then we can order

the vertexes according to their associated timestamps (now all the timestamps are

with respect to the same local clock). Such order corresponds to the precedence of

events in the execution. As time always progresses forward, such cycle cannot exist

in G(e′,e,E). □

176

Theorem 8. A(e′,e,E) is sound.

Proof. We show that a) all the events in A (e′,e,E) also appear in E at the same time

(and thus in any E0 ∼ E), and b) the local event ordering pertains on each node, that

is, for any two events d1@Ni and d2@Ni in A (e′,e,E) that are located on the same

node Ni, d1@Ni precedes d2@Ni in A (e′,e,E) iff d1@Ni precedes d2@Ni in E .

Condition a. We perform a case analysis by considering the type of the root vertex

of G(e′,e,E):

• DRV. According to Algorithm 2 (lines 12-20), an event di@Ni is generated and

included in A (e′,e,E) for each DRV vertex (and its children) in the provenance

graph G(e′,e,E). However, by construction, each DRV vertex v corresponds to

an rule evaluation in E . In our model, the rule evaluation is modeled as an

event d j@N j = (τ j,r j, t j, t ′j,{c1
j , ...,c

p
j },±τ ′j), where τ j is the trigger event, r j and

[t j, t ′j] are the rule used in and the time interval of the rule evaluation, ck
j rep-

resents preconditions, and ±τ ′j is the generated update. We need to show that

di@Ni is identical to d j@N j. This follows straightforwardly from the construc-

tion of G(e′,e,E): The rawquery(v) procedures generate a DRV vertex v by: (a)

find a derivation event d j@N j from E , (b) add incoming edges from the trig-

ger event (a vertex for τ j), and (c) add incoming edges from the preconditions

(vertexes for {c1
j , ...,c

p
j }). Algorithm 2 reverses this process and generates event

di@Ni from these information, which is extracted from d j@N j, and therefore

di@Ni = d j@N j.

• RCV/INS/DEL/UDRV/SND Following the same argument for the DRV case

above, we can prove that condition (a) holds.

Condition b. According to Algorithm 2 (specifically, Line 10), d1@Ni precedes

d2@Ni in A (e′,e,E), iff d2@Ni has a larger timestamp than d1@Ni. However, d2@Ni is

assigned a larger timestamp iff d1@Ni precedes d2@Ni in the actual execution E . Note

177

that events on different nodes may be reordered in A (e′,e,E), but this is captured

by the equivalence (∼) relation. □

Theorem 9. A(e′,e,E) is complete.

Proof. We need to show that a) A (e′,e,E) contains an event di@Ni that generates e

at the same time as in E , and b) di@Ni is the last event in A (e′,e,E).

Condition a. By construction, the vertex for e has incoming edges from vertexes

representing the triggering event τ and all preconditions c1, ...,cp (if any). Algo-

rithm 2 (specifically, Lines 12-25) construct an event (τ,r, t, t ′,c,±e), where r and

[t, t ′] are the rule name and time interval encoded in the vertex. Note that the tuple

τ as well as the timestamps t and t ′ are exactly the ones that are extracted from E

(Figures C.1-C.2).

Condition b. We have proved that some event di@Ni that generates e must exist in

A (e′,e,E), we next show that di@Ni is the last event in A (e′,e,E). The provenance

graph G(e′,e,E) is rooted by a vertex that corresponds to e. Since all other vertexes

in G(e′,e,E) have a directed path to the root vertex, the corresponding events must

all be ordered before di@Ni, so di@Ni must be the last event in the subtrace. □

Theorem 10. A(e′,e,E) is valid.

Proof. Lemma 7 shows that any provenance graph G(e′,e,E) is acyclic, and thus

G(e′,e,E) has a well-defined height: the length of the longest path from any leaf

to e. We prove validity using structural induction on the height of the provenance

graph G(e′,e,E).

Base case: The height of G(e′,e,E) is one. In this case, e must be an insertion or

deletion of a base tuple; G(e′,e,E) contains a single INS (or DEL) vertex that cor-

responds to the update of the base tuple. Therefore, A (e′,e,E) consists of a single

event and is trivially valid, because the event has neither a trigger nor any precondi-

tion (Algorithm 2 lines 26–29).

178

Induction case: Suppose the validity of the extracted trace A (e′,e,E) holds for any

provenance graph with height less than k (k ≥ 1). Consider a provenance graph

G(e′,e,E) with height k+ 1. We perform a case analysis by considering the type of

the root vertex of G(e′,e,E). For every event di@Ni = (τi,ri, ti, t ′i ,ci,±τ ′i)∈A (e′,e,E),

we prove that the three conditions in Definition 16 hold.

• DRV. We know that, by construction, the DRV vertex has an incoming

edge from vertexes representing the triggering event τ and all preconditions

c1, ...,cp. By the induction hypothesis, Algorithm 2 outputs a valid trace

d1@N1, ...,d j@N j for the subgraph for the trigger event τ, where d j@N j corre-

sponds to the generation of τ (following the completeness property proved in

Theorem 9). Because of the nature of Algorithm 2 (which is based on topolog-

ical sort), d j@N j must be ordered before di@Ni, which satisfies condition (a)

in the definition of validity. For example, in the provenance graph from Fig-

ure C.3, the trigger event ins(G) must precede the derived event drv(F) in the

extracted trace, because a causal edge exists from the former to the latter. Sim-

ilarly, valid traces are generated for the updates that support the preconditions

c1, ...,cp, which satisfies conditions (b). Condition (c) holds by construc-

tion: the original execution trace E is valid and must include a set of events

{d1
p@Ni, ...,dn

p@Ni} that satisfies condition (c); the prev-vertex call in Fig-

ures C.1-C.2 finds all these events because the call recursively find such events

from E until the interval between the end of d j@N j and the start of di@Ni

is fully exhausted (line 46); therefore, all events in {d1
p@Ni, ...,dn

p@Ni} will be

represented by vertexes in the temporal provenance; the extraction algorithm

merely reverses this process and reconstructs each of {d1
p@Ni, ...,dn

p@Ni}, while

preserving their ordering and timestamps (following the soundness property

proved in Theorem 8). Therefore, the extracted trace A (e′,e,E) is valid. For

example, consider the drv(F) event in the provenance from Figure C.3: there

is a gap of [2.5s,3.5s] between when its last precondition ins(G) completed and

179

when its own derivation started; in the original execution, node Y must be

busy during the gap, because it is work-conserving; in this case, Y was busy

with handling rcv(+C); while constructing the vertex for drv(F), the rawquery

procedure calls prev-vertex([2.5s,3.5s],Y), which finds the rcv(+C) event from

the original trace and added a vertex to G; Algorithm 2 extracts events from

G based on topological ordering, therefore, rcv(+C) will present in A , after

ins(G) and before drv(F).

• RCV. We know that, by construction, the RCV vertex has an incoming edge

from a SND vertex with the same tuple τ. By the induction hypothesis, Algo-

rithm 2 outputs a valid trace d1@N1, ...,d j@N j for the subgraph rooted at the

SND vertex, where d j@N j corresponds to the generation of τ (following the

completeness property proved in Theorem 9). Because of the nature of Algo-

rithm 2 (which is based on topological sort), d j@N j must be ordered before

di@Ni, which satisfies condition (a) in the definition of validity. A SND ver-

tex have no preconditions, consequently, conditions (b) holds trivially. di@Ni

and d j@N j happened on different nodes, which satisfies condition (c) trivially.

Therefore, the extracted trace A (e′,e,E) is valid.

• UDRV/SND. Following the same argument for the DRV case above, we can

prove that the extracted trace A (e′,e,E) is valid.

• INS/DEL. This case cannot occur because INS and DEL have no preconditions,

so the tree would have to have a height of one.

□

Theorem 11. A(e′,e,E) is minimal.

Proof. We prove the minimality property by induction on the syntactic structure

of A (e′,e,E): we show that an event di@Ni ∈A (e′,e,E) cannot be removed because

it is necessary for some event d j@N j appeared later in the trace. For presentation

purposes, we suppose A (e′,e,E) = d1@N1, ...,dm@Nm.

180

c1

c2

c3

c4

a

delayed by c3 c2 c4

g

g a

t0 t5t4t3

in interval

t1 t2

Figure C.4: Illustration for the definition of direct and transitive delay. Shaded
boxes represent intervals where a tuple was being derived, and solid boxes represent
intervals where the tuple existed. The derivation is α :−c1,c2,c3,c4, and the interval
in question is [t0, t5]; γ is an unrelated tuple whose derivation just happened to be
sequenced before that of α.

Base case. According to the completeness property (Theorem 9), the last event

dm@Nm in A (e′,e,E) generates e. Therefore the base case trivially holds, as the re-

moval of dm@Nm breaks the completeness property.

Induction case. Suppose the last k events dm−k+1@Nm−k+1, ...,dm@Nm(K >= 1) can-

not be remove. We show that event dm−k@Nm−k cannot be removed as well: Ac-

cording to Algorithm 2, dm−k@Nm−k is constructed from a vertex v. v must have an

outgoing edge to some other vertex in G(e′,e,E). Otherwise, v would not be in-

cluded in G(e′,e,E) which is a subgraph rooted by e. Consider u as the first vertex

on the path from v to the root of G(e′,e,E). According to Algorithm 2, an event

d j@N j is constructed from u and its children (if any). Given the edge from v to u,

we know that d j@N j depends on dm−k@Nm−k, and that dm−k@Nm−k precedes d j@N j.

By applying the induction hypothesis (d j@N j cannot be removed from A (e′,e,E)),

we can conclude that dm−k@Nm−k also cannot be removed. □

181

C.1.5 Delay annotations

In this section, we show that each vertex is annotated with the delay that it con-

tributed. We first define what it means for a derivation to be directly “delayed” by

one of its preconditions (Definition 18), and then recursively extends this definition

to transitive delays (Definition 19). We continue by discussing several properties of

the annotations computed by the algorithm from Figure 5.6 (Definition 20, Lem-

mas 12-15). This allows us to further prove the first theorem which states that the

algorithm from Figure 5.6 labels each vertex with the amount of delay that is con-

tributed by the subtree that is rooted at that vertex (Theorem 16).

Definition 18. (Direct delay): Consider a derivation α :−c1,c2, . . . ,ck and an inter-

val [t0, t5], such that α begins its derivation at t4 < t5 and finishes it at time t5. We say

that a precondition ci directly delays the derivation of α during an interval [tx, ty], t0≤tx,

ty≤ t4, iff

• (a) ci became true at ty and remain true until t4 (and was false before ty); and

• (b) there either was some c j, i ̸= j, that delayed the derivation of α during some

interval [x, tx); or there was no such c j, and tx = t0.

For convenience, we say that α itself delays its own derivation during [t4, t5] . Find the

time t3≤ t4 such that t3 is the earliest time when all preconditions were true (and remained

true until t4). If a tuple γ resides on the same node as α and the derivation of γ happened

during [tx, ty]⊆ [t3, t4], we also say that γ directly delays the derivation of α.

Figure C.4 contains a brief illustration. c3 directly delays the derivation of α during

the interval [t0, t1], because: (a) c3 became true at t1 and remained true until t4; (b)

t0 was the start of the interval in question (the second case of condition (b)). c2

directly delays the derivation of α during the interval [t1, t2], because: (a) c2 became

true at t2 and remained true until t4; (b) c3 delayed the derivation of α during [t0, t1]

(the first case of condition (b)). Similarly, c4 delays the derivation of α during the

182

A@X :- B@X,C@X
B@X :- D@X
C@X :- D@X
D@X :- Z@X

X
Y

0 1 2 3 4 5 6 7 8

C B A
INS(Z)

[0s,6s]

DRV(A)

DRV(B)DRV(C)

DRV(D)

[3s,5s][0s,3s]

D

INS(Z)

[0s,1s]

Figure C.5: An example scenario, with NDlog rules at the top left, the timing of a
concrete execution in the bottom left, and the resulting temporal provenance at the
right. The query is t-query(INS(Z), DRV(A)); the start and end vertexes are marked
in bold. Vertex names have been shortened and some fields have been omitted for
clarity. Each vertex is annotated with its annotation interval (Definition 20).

interval [t2, t3]. γ delays the derivation of α during the interval [t3, t4] because, during

that interval, all preconditions were true and γ was derived on the same node as

α. Finally, α delays the derivation of itself during [t4, t5]. We can now expand this

definition to other derivations:

Definition 19. (Transitive delay): Consider two derivations α : −c1,c2, . . . ,ck and

β : −d1,d2, . . . ,dm, and suppose β (directly or transitively) delays the derivation of α

during an interval [t0, t3]. Then we say that di transitively delays the derivation of α

during an interval [t1, t2], t0 ≤ t1, t2 ≤ t3, iff di directly delays the derivation of β during

the interval [t1, t2].

We can think of the definition of transitive delay as recursively partitioning the inter-

val [t0, t5] into smaller intervals that are each associated with some lower-level deriva-

tion that caused delay to the top-level derivation of α.

Definition 20. (Annotation interval): We associate a vertex v in the temporal

provenance graph G with an annotation interval Iα
v = [ts, te] for each call of the

annotate(v, [ts, te]) procedure in the algorithm from Figure 5.6.

Figure C.5 shows how the algorithm in Figure 5.6 would have assigned annota-

tion intervals to an example temporal provenance graph. Before presenting the main

theorem, we discuss a few properties of annotation intervals.

183

Lemma 12. In the algorithm in Figure 5.6, each invocation of the annotate(v, [ts, te])

procedure assigns a set of annotation intervals {Iα
vi } to vertexes {vi} such that ∩i Iα

vi = /0.

Proof. This holds by construction. When v has no child, {Iα
vi }= /0 and the condition

holds trivially. When v has children: the first while loop in the annotate procedure

subdivides the interval between ts and the end timestamp of the last precondition

into annotation intervals for functional children (in lines 10–18); the second while

loop subdivides the interval between the end timestamp of the last precondition and

ts(v) into annotation intervals for sequencing vertexes (in lines 20–26); note that if

a functional precondition v′ is also connected via a sequencing edge to v, it is only

handled by the first while loop, because T = tend (v′) = tstart(v) = E after the first while

loop finishes and the second while loop will not execute; therefore, all the generated

annotation intervals within an annotate call are non-overlapping. □

This lemma states that the annotation intervals generated by recursive calls within

the same annotate invocation do not overlap. For example, in Figure C.5, the an-

notation intervals of the drv(C) and drv(B) vertexes are both assigned by a recursive

call on the drv(A) vertex and thus do not overlap.

Lemma 13. An annotation interval Iα
v of vertex v always ends at te(v), where te(v) is

when the execution of v finishes or the end timestamp of v (Section 5.3.2).

Proof. This holds by construction of the algorithm in Figure 5.6. In the first while

loop in the annotate procedure (in lines 10–18), the annotation interval associ-

ated with v always ends with te(v). In the second while loop (in lines 20–26), the

annotation interval of the current vertex is E = ts(s), which is the start timestamp

of the previous vertex connected via a sequencing edge; E is also the end times-

tamp of the current vertex, which follows from the construction of sequencing edges

(prev-vertex calls in the algorithm in Figures C.1-C.2). □

This lemma states that the annotation interval ends when the actual execution

finishes. For example, this holds for all annotation intervals in Figure C.5.

184

Lemma 14. Given a vertex v associated with an annotation interval Iα
v , there exists a

chain of ancestor vertexes v→a1→a2→ ...→e (→ represents an edge in G, and e is the

root of G) such each ai (including e) is associated with an annotation interval Iα
ai
that

satisfies Iα
v ⊆ Iα

ai
.

Proof. This holds by construction of the algorithm in Figure 5.6. It follows from

the recursive nature of annotate calls that the annotation interval of each vertex v is

a subinterval of one annotation interval of one of its parents: in the first while loop

(in lines 10–18), the annotate is called with an interval of [T, tend (v′)], ts ≤ T and

tend (v′)≤ tend (v) because v′ is a child of v; in the second while loop (in lines 20–26),

the annotate is called with an interval of [max(T, tstart(s)),E], ts ≤ T ≤ max(T, tstart(s))

and E ≤ tstart(v)≤ te (Lemma 13). We can simply find the specified chain by following

such parents recursively until reaching the root vertex e. As the annotation interval

is initially Iα
v and is gradually extended as we climb the chain, Iα

v ⊆ Iα
ai
. □

For instance, consider the provenance from Figure C.5, suppose [0s,1s]@drv(D)

represents that the drv(D) vertex is associated with an annotation interval of [0s,1s] ;

the ancestor chain of [0s,1s]@drv(D) would be [0s,1s]@drv(D)→ [0s,3s]@drv(C)→

[0s,6s]@drv(A).

Lemma 15. Each vertex v in G is associated with at most one annotation interval Iα
v ,

that is, each vertex v is annotated at most once by the algorithm in Figure 5.6.

Proof. We prove by contradiction. Without loss of generality, suppose a vertex v

is associated with two annotation intervals Iα
v and Iα

v
′. There must exist two corre-

sponding ancestor chains (Lemma 14). We make two observation about the chains:

(a) they cannot be identical, because an ancestor chain represents a unique stack of

recursive annotate calls; by the nature of a single-rooted DAG, there cannot exist

two stacks of recursive calls that visit the exact same sequence of vertexes; (b) the two

chains must share a common suffix, this holds trivially because both of the chains

end at the root of G. Based on these observations, we can represent the two an-

cestor chains as v→ ...→ ai→ a j→ ... and v→ ...→ a′i→ a j→ ..., where ai ̸= a′i. It

185

follows from Lemma 14 that Iα
v ⊆ Iα

ai
and Iα

v
′ ⊆ Iα

a′i
. It follows from Lemma 13 that

[te(v)− ε, te(v)] ⊆ Iα
v and [te(v)− ε, te(v)] ⊆ Iα

v
′, where ε is a small value. Therefore,

Iα
ai

and Iα
a′i

overlap. This contradicts with Lemma 12, because Iα
ai

and Iα
a′i

and divided

from Iα
a j

in the same annotate call and cannot overlap. □

These lemmas allow us to formulate our main claim:

Theorem 16. Suppose G(e′,e,E) is the output of t-query(e′,e) in some execution E ,

and suppose a vertex v in G is annotated with a value T by the algorithm in Figure 5.6.

Then T > 0 iff v directly or transitively delayed the derivation of e during an interval

[t1, t2]⊆ [start(e′),finish(e)] and T = t2− t1, and T = 0 otherwise.

Proof. We begin by observing that the algorithm in Figure 5.6 labels each vertex at

most once (Lemma 15). Therefore, we only need to show that any single invocation

of the annotate procedure in the algorithm from Figure 5.6 correctly labels vertexes

with respect to Definition 18.

Next, we observe that the annotate procedure in Figure 5.6 partitions the interval

to explain into annotation intervals of other vertexes in exactly the same way that

the definition requires. Therefore, Iα
v is exactly the direct or transitive delay of v. We

discuss the partition logic of the annotate procedure in more detail below.

The children of a drv vertex in the provenance graph would be drv, ins, or rcv

vertexes for its preconditions, and lines 10–18 iterate over these vertexes in the order

of their end times. (The original trace only records the preconditions of an event at

the point when its derivation starts; thus, if a precondition had temporarily become

true and then false again, the corresponding drv vertex would not appear as children

here.) The loop calls annotate on vertex v′. with a subinterval of [ts, te] that ends at

the point where the precondition is fully derived, and starts either at ts itself or the

end of the previous interval. This subinterval is the annotation interval Iα
v′ for v′ (Def-

inition 20). Preconditions that were already true at ts and remained true during the

entire interval do not enter the if block and thus do not generate a recursive call. The

186

first while loop exits with T set to the end time of the last precondition; the while

loop that follows it (in lines 20–26) subdivides any non-empty interval between the

last satisfied precondition and the start of the derivation of v, just as the definition

requires. Again, here each of the divided intervals is the annotation interval Iα
v′ for

another vertex v′ (Definition 20). In particular, noticed that recursive calls happen

only for vertexes that directly delayed v (and, hence, directly or transitively delayed

the vertex in the original query).

Finally, we observe that each vertex v gets labeled with the length of Iα
v in line 8.

The labeled value is also the amount of direct or transitive delay that v contributes,

because we have proved above that the Iα
v is exactly the direct or transitive delay of

v. For example, the intervals annotated beside vertexes in Figure C.5 are also their

direct or transitive delay. □

C.1.6 Semantics of delay annotations

Although the definitions from Section C.1.5 do capture the intuitive notion of “de-

lay”, we want to reinforce this by formalizing another aspect of this concept: if a

vertex v really did delay a derivation by some time Tv, then it should be possible to

“speed up” the derivation by T (i.e., cause it to happen Tv units of time sooner) by re-

ducing the duration of v by Tv. In other words, we should be able to construct a valid

(hypothetical) trace that differs from the actual trace in that v takes less time, such

that the hypothetical trace finishes Tv units of time earlier. Note that the hypotheti-

cal trace might not be “realistic” in a practical sense because: (a) some of the events

in it may take zero time, and thus be instantaneous; (b) the trace only includes all

events that are present in the original temporal provenance, whose vertexes represent

a valid and complete subtrace of the original execution (Section C.1.3). The goal is

merely to demonstrate that v is really “responsible for” Tv units of delay. For exam-

ple, Figures C.7 shows the steps of “speeding up” vertexes based on their annotations

187

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X

Figure C.6: An example NDlog program.

((a) → ... → (g)). This procedure shortens the overall (hypothetical) execution at

each step and eventually eliminates any delay.

For this discussion, the annotation intervals that are computed by the algorithm

in Figure 5.6 are not directly useful, because they describe the delay that was caused

by an entire subgraph of the provenance. Hence, we first describe how we have

derived a more fine-grain form of annotation, which describes the delay that is con-

tributed by a vertex itself (Definition 21). We then discuss two properties of the

derived annotation (Lemmas 17-18). We continue by defining the procedure of

“speeding up” an execution based on derived annotations (Definitions 22-23). We

conclude by presenting the main theorem which states that if there is a vertex v in

a temporal provenance tree with a (derived) annotation of T , then it is possible to

construct another valid (but hypothetical) execution in which v’s finished time is re-

duced by T and in which the derivation finishes T units of time earlier (Definition 24

and Theorem 19).

Definition 21. (Speedup interval): The speed interval Iδ
v = [ts, te] of vertex v is the

difference between v’s annotation interval, as computed by the algorithm from Figure 5.6,

and the union of the annotation intervals of the vertexes directly annotated by v (via the

recursive calls in the annotate procedure).

Intuitively, Iδ
v represents the interval during which the execution of v itself delays

e. For example, in the provenance from Figure C.7(a), red intervals represent anno-

tation intervals and blue intervals represent speedup intervals. The speed up interval

of drv(A) is [6s,7s], which is the difference from its annotation interval ([0s,7s]), and

the union of the annotations intervals of drv(B) and rcv(+E) ([0s,4s]
∪
[4s,6s]). Speed

up intervals have the following two properties:

188

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B A

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,7s]

[0s,4s]

[4s,6s]

[4s,5.5s]

[4s,5.5s]

[0s,2s]

[6s,7s]

[5.5s,6s]

[4s,5.5s]

[2s,4s]

[0s,2s]

speed up
DRV(A)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,6s]

[0s,4s]

[4s,6s]

[4s,5.5s]

[4s,5.5s]

[0s,2s]

[6s,6s]

[5.5s,6s]

[4s,5.5s]

[2s,4s]

[0s,2s]

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,5.5s]

[0s,4s]

[4s,5.5s]

[4s,5.5s]

[4s,5.5s]

[0s,2s]

[5.5s,5.5s]

[5.5s,5.5s]

[4s,5.5s]

[2s,4s]

[0s,2s]

TEs

speed up
DRV(E)

speed up
RCV(+E)

TEs

X
Y

0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,4s]

[0s,4s]

[4s,4s]

[4s,4s]

[4s,4s]

[0s,2s]

[4s,4s]
]

[4s,4s]

[4s,4s]

[2s,4s]

[0s,2s]

TEs

X
Y

0 1 2 3 4 5 6 7 8

C

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,2s]

[0s,2s]

[0s,2s]

[2s,2s]
]

[2s,2s]

[0s,2s]

TEs

speed up
DRV(C)

X
Y

0 1 2 3 4 5 6 7 8

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

[0s,0s]

TEs

speed up
DRV(B)

(a) (b) (c)

(d)(e)(f)

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

Figure C.7: An example of “speeding up” temporal provenance using a series of
transformations (Definition 23). The NDlog rules are in Figure C.6. Each sub-figure
shows a step of the transformation ((a)→ ... → (g)). In each sub-figure, the execution
trace is at the top, and the resulting temporal provenance at the bottom. The query
is t-query(INS(Z), DRV(A)) in all sub-figures; the start and end vertexes are marked
in bold. Vertex names have been shortened and some fields have been omitted for
clarity. Each vertex is associated with its annotation interval (red, Definition 20) and
speed up interval (blue, Definition 21). Crossed intervals represent that the interval
becomes empty but the annotation is preserved. White vertexes are terminal events.

189

Lemma 17. The speedup interval Iδ
v of vertex v always ends at te(v), where te(v) is when

the execution of v finishes or the end timestamp of v (Section 5.3.2).

Proof. The annotation interval of v always ends at te(v) (Lemma 13). We prove that

that Iδ
v ends at the same moment when Iα

v ends. If v has no child, Iδ
v = Iα

v ; if v has

children, the two while loops in the algorithm in Figure 5.6 distribute the interval

between ts and ts(v) to other vertexes via recursive annotate calls, and the remaining

interval in [ts, te] is the speedup interval; in either case, Iδ
v ends when Iα

v ends, and

therefore, Iδ
v ends at te(v). □

Lemma 18. Given the timing provenance that explains t-query(e′,e), consider the set

of all speedup intervals {Iδ
vi}: (a)

∩
i Iδ

vi = /0; (b) ∪i Iδ
vi = Iα

e .

Proof. In a timing provenance graph, vertexes with annotation intervals form a tree,

because vertex v is annotated at most once (Lemma 15) by a parent of v. Conse-

quently, vertexes with speedup intervals form a tree (Definition 21). We prove by

structural induction on the height of the tree.

Base case: The height of the tree is one. Denote the root vertex as v. The set of

speedup intervals has one element ({Iδ
vi}= Iδ

v), condition (a) holds. Iδ
v = Iα

v because

v has no child (Definition 21), condition (b) holds.

Induction case: Suppose the conditions hold for trees (of vertexes with annotation

or speedup intervals) with height less than k (k≥ 1). Consider a tree with depth k+1,

rooted at vertex v. Without loss of generality, denote T (v1) and T (v2) as subtrees of

v that have annotation intervals. Note that the speedup intervals of vertexes in T (v)

must be a subinterval of the annotation interval of v, because: the speedup interval

is simply the difference of the annotation interval of v and the annotation intervals

of the children of v (Definition 21); the annotation interval of v is a subinterval of

the annotation interval of its parent in the tree (Lemma 14).

It follows from Definition 21 that the speedup interval of v and that of T (v1) (or

T (v2)) cannot overlap. It follows from Lemma 12 that the speedup intervals of T (v1)

190

X
Y
0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,4s]

[0s,4s]

[4s,4s]

[4s,4s]

[4s,4s]

[0s,2s]

[4s,4s]
]

[4s,4s]

[4s,4s]

[2s,4s]

[0s,2s]

``barrier``

(a) tb = 4s

X
Y
0 1 2 3 4 5 6 7 8

C B

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,3.5s]

[0s,3.5s] [3.5s,3.5s]

[3.5s,3.5s]

[0s,2s]

[3.5s,3.5s]
]

[3.5s,3.5s]

[3.5s,3.5s]

[2s,3.5s]

[0s,2s]

``barrier``

(b) tb = 3.5s

[3.5s,3.5s]

X
Y
0 1 2 3 4 5 6 7 8

C

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,2s]

[0s,2s]

[0s,2s]

[2s,2s]
]

[2s,2s]

[0s,2s]

``barrier``

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

[2s,2s]

(c) tb = 2s

Figure C.8: An example of “speeding up” temporal provenance using an annotated
vertex drv(B) (Definition 23). The NDlog rules are in Figure C.6. In each sub-
figure, the execution trace is at the top, and the resulting temporal provenance at
the bottom. The query is t-query(INS(Z), DRV(A)) in all sub-figures; the start and
end vertexes are marked in bold. Vertex names have been shortened and some fields
have been omitted for clarity. Each vertex is associated with its annotation interval
(red, Definition 20) and speed up interval (blue, Definition 21). Crossed intervals
represent that the interval becomes empty but the annotation is preserved. White
vertexes are terminal events.

and T (v2) cannot overlap. It follow from the induction hypothesis that the speedup

intervals within T (v1) (or T (v2)) cannot overlap. Therefore, condition (a) holds. It

follows from Definition 21 that condition (b) holds. □

Intuitively, the above two lemmas states that, given a timing provenance that

explains t-query(e′,e), the overall delayed interval – that is, [ts(e′), te(e)] – can be

subdivided into a sequence of all speedup intervals {Iδ
vi
}. In the example prove-

nance from Figure C.7(a), such a sequence of speedup intervals is [0s,2s]@drv(C),

[2s,4s]@drv(B), [4s,5.5s]@drv(E), [5.5s,6s]@rcv(+E), and [6s,7s]@drv(A).

Definition 22. (Terminal event): A vertex v is a terminal event if any of the following

conditions holds:

191

• (a) if v is annotated, v ends at te(e), and Iδ
v = /0 (a vertex is annoated if it is

associated with an annotation interval in the original G); and

• (b) if v is not annotated, on any path in G from v to e, select u as the first annotated

vertex, Iα
u = /0.

Intuitively, terminal events represent executions that no longer contribute any de-

lay (in a hypothetical execution). Condition (a) describes an event that finishes at the

end of the entire execution and that no longer contributes any delay. For example,

rcv(+E) in Figure C.7(c) is a terminal event: it was annotated in the original prove-

nance (Figure C.7(a)); it ends at t = 5.5s, which is the end timestamp of drv(A); and

its speedup interval is empty. Condition (b) describes an event that only belongs to

subgraphs that no longer contribute any delay. For example, rcv(C) in Figure C.7(e)

is a terminal event: it was not annotated in the original provenance (Figure C.7(a));

on its (only) path to drv(A), the first annotated vertex is drv(E), whose annotation

interval is already empty ([4s,4s]). Next, we describe steps to transform the original

execution to hypothetical executions.

Definition 23. (Speed up): Given a vertex v in G(e′,e,E), where te(v) = te(e) and

Iδ
v > 0, v speeds up G by Iδ

v using the following procedure. Consider a “barrier” tb that

moves on the timeline; it starts from the right boundary of Iδ
v and moves leftwards (and

thus tb becomes smaller); it stops when it reaches the left boundary of Iδ
v . For ease of

exposition, we say that the “barrier” pushes a timestamp t when we set t to min(t, tb).

During its move, if the “barrier” encounters a vertex vi that is either v or a terminal

event, it transforms vi by pushing these timestamps: (a) the starting timestamp (or the

ending timestamp) of vi, (b) the left boundary (or the right boundary) of Iα
vi
(if any); and

(c) the left boundary (or the right boundary) of Iδ
vi
(if any).

Intuitively, the “speed up” operation represents a transformation step that essen-

tially “squeezes” a set of vertexes to the left. Note that, while v speeds up G, only v

itself and terminal events – vertexes that no longer contribute any delay – are pushed

192

leftwards. For example, Figure C.8 shows the process of speeding up the provenance

using drv(B): the “barrier” starts from the right boundary of Iδ
drv(A) (Figure C.8(a));

while it moves, the “barrier” pushes drv(B) as well as terminal events drv(E) and

rcv(C) leftwards (Figure C.8(b) shows the snapshot of tb = 3.5s); the “barrier” stops

at the left boundary of Iδ
drv(A) (Figure C.8(c)).

Figure C.7 shows the process of speeding up an entire provenance graph until it

becomes instantaneous. Next, we describe the sequence of “speed up” operations:

• (a)→ (b), drv(A) speeds up G by Iδ
drv(A) = [6s,7s]: the execution is shortened

to [0s,6s], drv(A) becomes a terminal event;

• (b)→ (c), rcv(+E) speeds up G by Iδ
rcv(+E) = [5.5s,6s]: the execution is short-

ened to [0s,5.5s], rcv(+E) and snd(+E) become terminal events;

• (c)→ (d), drv(E) speeds up G by Iδ
drv(E) = [4s,5.5s]: the execution is shortened

to [0s,4s], drv(E) and rcv(+C) become terminal events;

• (d)→ (e), drv(B) speeds up G by Iδ
drv(B) = [2,4s]: the execution trace is short-

ened to [0s,2s], drv(B) becomes terminal events;

• (e)→ (f), drv(C) speeds up G by Iδ
drv(C) = [0,2s]: the execution trace is short-

ened to [0s,0s], all events are now terminal events.

Definition 24. (Well-annotated): Consider an annotated temporal provenance graph

G(e′,e,E). G is well-annotated iff either (a) ts(e′) = te(e), that is, the entire execution is

instantaneous; (b) we can transform G into another valid and well-annotated temporal

provenance graph G′ by locating an unique vertex v, where te(v) = te(e) and Iδ
v > 0, and

speeding up G by v (Definition 23).

Theorem 19. Temporal provenance is well-annotated.

Proof. Consider the speedup intervals {Iδ
vi
} of G. It follows from Lemma 18 that

{Iδ
vi
} do not overlap and unions to [ts(e′), te(e)]. Therefore, we can sort intervals

in {Iδ
vi
} by descending (ending) timestamp. At the ith step, we speed up G by vi.

193

We need to prove that: (a) each “speed up” operation pushes the timestamps of all

events that ends during Iδ
vi
; (b) the length of the execution [ts(e′), te(e)] is reduced by

the length of Iδ
vi
; (c) the temporal provenance remains valid.

To prove condition (a), given any vertex v′i whose execution ends during Iδ
vi
, we

perform a case analysis on v′i:

• v′i=vi: the timestamps of v′i=vi is pushed, by the construction of Definition 23.

• v′i ̸= vi and v′i is annotated in the original provenance: v′i must be a terminal

event, and therefore, its timestamps is pushed. Because Iδ
v′i

ends when v′i ends

(Lemma 17); consequently, Iδ
v′i

must end during Iδ
vi
; if Iδ

v′i
is not empty, Iδ

v′i
will

overlap with Iδ
vi
, which contradicts with Lemma 18.

• v′i ̸=vi and v′i is not annotated in the original provenance: v′i must be a terminal

event, and therefore, its timestamps is pushed. Because, given any path from

v′i to e, consider the first annotated ancestor u and its child on the path w;

if we assume that Iα
u is not empty when the “barrier” reaches the end of w,

then Iα
u must start before the end of w; by construction of the algorithm from

Figure 5.6, w must be annotated by u, which contradicts the fact that w is not

annotated in the original provenance.

Condition (b) follows directly from the statement above: the execution is short-

ened by the length of Iδ
vi
, because all events that end during Iδ

vi
are pushed leftwards

until the left boundary of Iδ
vi
.

Condition (c) holds because the “speed up” operation does not invert causality:

if an event a caused another event b, it does not alter the ordering of a and b; nor

does it delete any event. □

Note that Definition 24 weeds out some annotation approaches. For example,

Figure C.9 shows how a straw-man approach that associates the entire delay with the

last precondition would have annotate the same provenance graph in Figure C.7.

The result is not well annotated: while drv(E) speeds up G ((d) → (e)), another

194

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B A

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,7s]

[0s,6s]

[0s,5.5s]
[0s,5.5s]

[6s,7s]

[5.5s,6s]

[2.5s,5.5s]

speed up
DRV(A)

speed up
SND(+E)

speed up
RCV(+E)

speed up
DRV(E)

(a)

(d)

[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,6s]

[0s,6s]

[0s,5.5s]
[0s,5.5s]

[6s,6s]

[5.5s,6s]

[2.5s,5.5s]

(b)

[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs
INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,5.5s]

[0s,5.5s]

[0s,5.5s]
[0s,5.5s]

[5.5s,5.5s]

[5.5s,5.5s]

[2.5s,5.5s]

(c)

[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

E

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,5.5s]

[0s,5.5s]

[0s,5.5s]
[0s,5.5s]

[5.5s,5.5s]

[5.5s,5.5s]

[2.5s,5.5s]
[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs

(e)

INS(Z)

X
Y

0 1 2 3 4 5 6 7 8

C B

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)

[0s,2.5s]

[0s,2.5s]

[0s,2.5s]
[0s,2.5s]

[2.5s,2.5s]

[2.5s,2.5s]

[2.5s,2.5s]
[0s,2.5s]

[0s,2s]

[0s,2s]

[2s,2.5s]

[0s,2s]

TEs

Figure C.9: An example of “poorly annotated” temporal provenance. The NDlog
rules are in Figure C.6. Each sub-figure shows a step of the transformation ((a) →
... → (g)). In each sub-figure, the execution trace is at the top, and the resulting
temporal provenance at the bottom. The query is t-query(INS(Z), DRV(A)) in all
sub-figures; the start and end vertexes are marked in bold. Vertex names have been
shortened and some fields have been omitted for clarity. Each vertex is associated
with its annotation interval (red, Definition 20) and speed up interval (blue, Def-
inition 21). Crossed intervals represent that the interval becomes empty but the
annotation is preserved. White vertexes are terminal events.

195

A@X :- B@X
B@X :- C@X
D@X :- E@X

X
Y

0 1 2 3 4 5 6 7 8

C B

INS(E)

D X
Y

0 1 2 3 4 5 6 7 8

B

INS(E)

D

(a) Original execution. (b) After speeding up DRV(C).

A A

Figure C.10: An example scenario where speeding up a single event delays the com-
pletion of another event. The NDlog rules are at the left and the timing of concrete
executions are in the right. Speeding up drv(C) changes the ordering of events and
delays the completion of drv(D). Note that the (pending) insertion of tuple E enters
the update queue at t = 0.5s (Section 5.3.1).

vertex drv(B) becomes the bottleneck; however, drv(B) cannot be pushed leftwards,

because it is not a terminal event, that is, it has not been “sped up”.

Theorem 19 demonstrates that the annotations on temporal provenance are in-

tuitive: if one follows the annotations {Iδ
vi
} and speed up events {vi} one by one,

the overall delay of the (hypothetical) execution is reduced by the length of Iδ
vi

at

the i-th step and eventually becomes instantaneous. However, note that if one only

speeds up a single event vi by Iδ
vi

(and all other events take same amounts of time),

the overall delay is not guaranteed to decrease. Such anomalies – where speeding up

an event can sometimes increase the overall delay – is well-known in scheduling the-

ory [51, 86]. Figure C.10 shows an example of such anomalies: speeding up drv(C)

advances drv(B) and reverses the ordering of drv(B) and ins(E); consequently, the

ordering of their dependent computations – drv(A) and drv(D) – is reversed; as a

result, drv(D) is delayed. Our definition is different: instead of speeding up a single

event, the procedure in Theorem 19 speeds up a sequence of events in reverse order

of occurrence (i.e., {vi} such that {Iδ
vi
} have descending timestamps); each step of

the process preserves the ordering of all events in the temporal provenance and the

aforementioned anomaly cannot happen in each of the (hypothetical) executions.

Theorem 19 suggests that the annotations on temporal provenance do correspond

to the “potential for speedup” that one may intuitively associate with the concept

196

of delay. This is useful, because, while the temporal provenance maybe gigantic and

complex, operators can focus on vertexes with annotations and gain a comprehensive

understanding of the end-to-end delay, including potential operations to speed up.

197

Bibliography

[1] K. Agarwal, E. Rozner, C. Dixon, and J. Carter. SDN traceroute: Tracing SDN forwarding

without changing network behavior. InWorkshop onHot Topics in Software Defined Networking

(HotSDN), 2014. [Cited on page 15.]

[2] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and G. M. Voelker.

NetPrints: Diagnosing home network misconfigurations using shared knowledge. InUSENIX

Symposium on Networked Systems Design and Implementation (NSDI), 2009. [Cited on page

14.]

[3] H. Agrawal and J. R. Horgan. Dynamic program slicing. In ACM Conference on Programming

Language Design and Implementation (PLDI), 1990. [Cited on page 13.]

[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthitacharoen. Performance

debugging for distributed systems of black boxes. In ACM Symposium on Operating Systems

Principles (SOSP), 2003. [Cited on pages 1 and 14.]

[5] E. Al-Shaer and S. Al-Haj. FlowChecker: Configuration analysis and verification of federated

OpenFlow infrastructures. In ACM workshop on Assurable and Usable Security Configuration,

2010. [Cited on page 12.]

[6] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi. Network configuration in a box:

Towards end-to-end verification of network reachability and security. In IEEE International

Conference on Network Protocols (ICNP), 2009. [Cited on page 12.]

198

[7] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and D. Walker.

NetKAT: Semantic foundations for networks. InACMSymposium on Principles of Programming

Languages (POPL), 2014. [Cited on page 12.]

[8] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking the blame game out of

data centers operations with NetPoirot. In ACM Conference of the Special Interest Group on

Data Communication (SIGCOMM), 2016. [Cited on page 14.]

[9] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause diagnosis of performance

anomalies in production software. In USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2012. [Cited on page 14.]

[10] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for request extraction and

workload modelling. In USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2004. [Cited on pages 1 and 15.]

[11] A. Bates, D. Tian, K. R. Butler, and T. Moyer. Trustworthy whole-system provenance for the

Linux kernel. In USENIX Security Symposium, 2015. [Cited on page 10.]

[12] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to network configu-

ration verification. In ACM Conference of the Special Interest Group on Data Communication

(SIGCOMM), 2017. [Cited on page 12.]

[13] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker. An assertion language

for debugging SDN applications. In Workshop on Hot Topics in Software Defined Networking

(HotSDN), 2014. [Cited on page 80.]

[14] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the

wild. InThe Internet Measurement Conference (IMC), 2010. [Cited on pages 1, 79, 83, and 85.]

[15] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-independent packet

processors. ACM SIGCOMM Computer Communication Review (CCR), 2014. [Cited on

pages 54 and 111.]

[16] J.-Y. L. Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queuing Systems

for the Internet, volume LNCS 2050. Springer, 2001. [Cited on page 121.]

199

[17] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data prove-

nance. In International Conference on Database Theory (ICDT), 2001. [Cited on pages 2, 10,

and 94.]

[18] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford. A NICE way to test OpenFlow

applications. InUSENIX Symposium onNetworked Systems Design and Implementation (NSDI),

2012. [Cited on pages 1, 12, and 80.]

[19] A. Chanda, A. L. Cox, and W. Zwaenepoel. Whodunit: Transactional profiling for multi-tier

applications. In ACM Symposium on Operating Systems Principles (SOSP), 2007. [Cited on

pages 1 and 15.]

[20] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging. In International Con-

ference on Software Engineering (ICSE), 2011. [Cited on page 88.]

[21] A. Chapman and H. Jagadish. Why not? In ACM International Conference on Management of

Data (SIGMOD), 2009. [Cited on pages 2, 10, 17, and 54.]

[22] A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. One primitive to diagnose them all: Archi-

tectural support for internet diagnostics. In ACM European Conference on Computer Systems

(EuroSys), 2017. [Cited on pages 2 and 11.]

[23] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan, M. Sherr, and W. Zhou.

Detecting covert timing channels with time-deterministic replay. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2014. [Cited on pages 121 and 125.]

[24] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. The Good, the Bad, and the Dif-

ferences: Better Network Diagnostics with Differential Provenance. In ACM Conference of the

Special Interest Group on Data Communication (SIGCOMM), 2016. [Cited on pages 2, 11,

78, and 94.]

[25] A. Chen, H. Xiao, L. T. X. Phan, and A. Haeberlen. Fault tolerance and the five-second rule.

In Workshop on Hot Topics in Operating Systems (HotOS), 2015. [Cited on page 121.]

[26] C. Chen, H. T. Lehri, L. K. Loh, L. Jia, B. T. Loo, W. Zhou, and A. Alur. Distributed prove-

nance compression. In ACM International Conference on Management of Data (SIGMOD),

2017. [Cited on page 11.]

200

[27] Y.-Y. M. Chen, A. Accardi, E. Kiciman, D. A. Patterson, A. Fox, and E. A. Brewer. Path-based

failure and evolution management. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2004. [Cited on pages 1 and 15.]

[28] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in databases: Why, how, and where.

Foundations and Trends in Databases, 2009. [Cited on page 10.]

[29] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The mystery machine: end-to-

end performance analysis of large-scale internet services. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2014. [Cited on pages 1, 14, 106, and 125.]

[30] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt. Communications

of the ACM, 2009. [Cited on page 126.]

[31] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings of the Theory and

practice of software, 14th international conference on Tools and algorithms for the construction and

analysis of systems, 2008. [Cited on page 78.]

[32] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire: Lightweight provenance

for smart phone operating systems. In USENIX Security Symposium, 2011. [Cited on page

10.]

[33] R. Durairajan, J. Sommers, and P. Barford. Controller-agnostic SDN debugging. In ACM

Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2014. [Cited on

page 80.]

[34] S. A. Edwards and E. A. Lee. The case for the precision timed (PRET) machine. In ACM

Design Automation Conference (DAC), 2007. [Cited on pages 121 and 125.]

[35] D. Erickson. The Beacon OpenFlow controller. In Workshop on Hot Topics in Software Defined

Networking (HotSDN), 2013. [Cited on page 47.]

[36] D. Erickson. The Beacon OpenFlow controller. In Workshop on Hot Topics in Software Defined

Networking (HotSDN), 2013. [Cited on page 82.]

[37] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar. BUZZ: Testing context-dependent

policies in stateul networks. In USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2016. [Cited on page 12.]

201

[38] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults with static analysis. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2005. [Cited

on page 12.]

[39] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs. Locating Internet routing

instabilities. In ACM Conference of the Special Interest Group on Data Communication (SIG-

COMM), 2004. [Cited on pages 1 and 14.]

[40] FireEye. Recent Zero-Day Exploits, 2016. https://www.fireeye.com/current-threats/

recent-zero-day-attacks.html. [Cited on pages 1 and 11.]

[41] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and T. Mill-

stein. A general approach to network configuration analysis. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2015. [Cited on page 12.]

[42] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: A pervasive network

tracing framework. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2007. [Cited on pages 1 and 15.]

[43] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. The virtual data grid: A new model and

architecture for data-intensive collaboration. InConference on Innovative Data Systems Research

(CIDR), 2003. [Cited on page 10.]

[44] A. Gehani and D. Tariq. SPADE: Support for provenance auditing in distributed environ-

ments. In International Middleware Conference (Middleware), 2012. [Cited on page 10.]

[45] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: Killing one thousand queries with

one stone. In International Conference on Very Large Databases (VLDB), 2012. [Cited on page

76.]

[46] Google. Google Compute App Incident 14005, 2014. https://status.cloud.google.com/

incident/appengine/14005. [Cited on page 113.]

[47] Google. Google Compute Engine Incident 15039, 2014. https://status.cloud.google.

com/incident/compute/15039. [Cited on page 112.]

[48] Google. Google Compute App Incident 15005, 2015. https://status.cloud.google.com/

incident/appengine/15005. [Cited on page 113.]

202

https://www.fireeye.com/current-threats/recent-zero-day-attacks.html
https://www.fireeye.com/current-threats/recent-zero-day-attacks.html
https://status.cloud.google.com/incident/appengine/14005
https://status.cloud.google.com/incident/appengine/14005
https://status.cloud.google.com/incident/compute/15039
https://status.cloud.google.com/incident/compute/15039
https://status.cloud.google.com/incident/appengine/15005
https://status.cloud.google.com/incident/appengine/15005

[49] Google. Google Compute Engine Incident 15057, 2015. https://status.cloud.google.

com/incident/compute/15057. [Cited on page 113.]

[50] Google. Google Cloud Platform Dashboard, 2016. https://status.cloud.google.com/

summary. [Cited on pages 93 and 112.]

[51] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal on Applied Math-

ematics, 17(2):416–429, 1969. [Cited on page 196.]

[52] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In Principles of Database

Systems (PODS), 2007. [Cited on page 10.]

[53] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and V. Tannen. ORCHES-

TRA: Facilitating collaborative data sharing. In ACM International Conference on Management

of Data (SIGMOD), 2007. [Cited on page 10.]

[54] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan, M. Musuvathi,

Z. Zhang, and L. Zhou. Failure recovery: When the cure is worse than the disease. In

Workshop on Hot Topics in Operating Systems (HotOS), 2013. [Cited on page 75.]

[55] A. Guttman. R-trees: A dynamic index structure for spatial searching. In ACM International

Conference on Management of Data (SIGMOD), 1984. [Cited on page 34.]

[56] M. Hadjieleftheriou. libspatialindex, 2014. https://libspatialindex.github.io/. [Cited

on page 40.]

[57] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown. Where is the debugger

for my software-defined network? In Workshop on Hot Topics in Software Defined Networking

(HotSDN), 2012. [Cited on pages 15 and 36.]

[58] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown. I know what your

packet did last hop: Using packet histories to troubleshoot networks. In USENIX Symposium

on Networked Systems Design and Implementation (NSDI), 2014. [Cited on pages 1 and 15.]

[59] R. Hasan, R. Sion, and M. Winslett. The case of the fake picasso: Preventing history forgery

with secure provenance. InUSENIX Conference on File and Storage Technologies (FAST), 2009.

[Cited on page 10.]

203

https://status.cloud.google.com/incident/compute/15057
https://status.cloud.google.com/incident/compute/15057
https://status.cloud.google.com/summary
https://status.cloud.google.com/summary
https://libspatialindex.github.io/

[60] H. Hojjat, P. Reummer, J. McClurgh, P. Cerny, and N. Foster. Optimizing Horn solvers for

network repair. In Formal Methods in Computer-Aided Design (FMCAD), 2016. [Cited on

pages 13, 14, and 88.]

[61] A. Horn, A. Kheradmand, and M. R. Prasad. Delta-net: Real-time network verification using

atoms. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2017. [Cited on page 12.]

[62] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of non-answers to

queries over extracted data. International Conference on Very Large Databases (VLDB), 1(1),

2008. [Cited on pages 10, 16, 17, and 54.]

[63] H. Jagadish and F. Olken. Database management for life sciences research. ACM SIGMOD

Record, 2004. [Cited on page 10.]

[64] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W. Ong, B. Schaller,

P. Shan, B. Viscomi, et al. Canopy: An end-to-end performance tracing and analysis system.

In ACM Symposium on Operating Systems Principles (SOSP), 2017. [Cited on page 15.]

[65] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl. Detailed diagnosis in

enterprise networks. In ACM Conference of the Special Interest Group on Data Communication

(SIGCOMM), 2009. [Cited on page 14.]

[66] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy, D. Wetherall, and T. An-

derson. Studying black holes in the Internet with Hubble. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), 2008. [Cited on pages 1 and 12.]

[67] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte. Real time

network policy checking using header space analysis. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2013. [Cited on page 12.]

[68] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: static checking for

networks. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2012. [Cited on pages 1 and 12.]

[69] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow: Verifying network-

wide invariants in real time. In USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2013. [Cited on page 12.]

204

[70] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from human-

written patches. In International Conference on Software Engineering (ICSE), 2013. [Cited on

page 57.]

[71] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark. Kinetic: Verifiable

dynamic network control. In USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2015. [Cited on page 12.]

[72] Kim, Changhoon and Bhide, Parag and Doe, Ed and Holbrook, Hugh and Ghanwani, Anoop

and Daly, Dan and Hira, Mukesh and Davie, Bruce. In-band network telemetry, 2016. http:

//p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf. [Cited on page 111.]

[73] L. Kleinrock. Queueing Systems, Volume 1: Theory. Wiley-Interscience, 1975. [Cited on page

121.]

[74] L. Kleinrock. Queueing Systems, Volume 2: Computer Applications. Wiley-Interscience, 1976.

[Cited on page 121.]

[75] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton, I. Ganichev, J. Gross,

P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff,

R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and

R. Zhang. Network virtualization in multi-tenant datacenters. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2014. [Cited on page 12.]

[76] E. Koskinen and J. Jannotti. Borderpatrol: isolating events for black-box tracing. In ACM

European Conference on Computer Systems (EuroSys), 2008. [Cited on pages 1 and 14.]

[77] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications

of the ACM, 1978. [Cited on page 101.]

[78] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for software-

defined networks. In Workshop on Hot Topics in Networks (HotNets), 2010. [Cited on pages

40, 77, and 79.]

[79] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of automated

program repair: Fixing 55 out of 105 bugs for $8 each. In International Conference on Software

Engineering (ICSE), 2012. [Cited on pages 12 and 88.]

205

http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf

[80] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste and re-

lated bugs in operating system code. In USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2004. [Cited on page 80.]

[81] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things changed now?: An empirical

study of bug characteristics in modern open source software. In Workshop on Architectural and

system support for improving software dependability, 2006. [Cited on page 71.]

[82] D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for debugging DISC analysis.

Technical Report CSE2012-0990, UCSD, 2012. [Cited on pages 40, 78, and 111.]

[83] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakr-

ishnan, T. Roscoe, and I. Stoica. Declarative networking. Communications of the ACM, 2009.

[Cited on pages xii, 6, 22, 54, 59, 98, 143, 145, and 146.]

[84] B. T. Loo, S. C. Muthukumar, X. Li, L. Changbin, J. B. Kopena, M. Oprea, T. Tao, and

W. Zhou. RapidNet, 2009. http://netdb.cis.upenn.edu/rapidnet/. [Cited on pages 18,

40, 78, 110, and 111.]

[85] N. P. Lopes, N. Bjørner, P. Godefroid, and K. Jayaraman. Checking beliefs in dynamic

networks. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2015. [Cited on page 12.]

[86] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled microprocessors.

In IEEE Real-Time Systems Symposium (RTSS), 1999. [Cited on page 196.]

[87] P. Macko and M. Seltzer. Provenance Map Orbiter: Interactive exploration of large provenance

graphs. In USENIX Workshop on the Theory and Practice of Provenance (TaPP), 2011. [Cited

on page 32.]

[88] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous

queries over streams. In ACM International Conference on Management of Data (SIGMOD),

2002. [Cited on page 76.]

[89] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King. Debugging the

data plane with Anteater. In ACM Conference of the Special Interest Group on Data Communi-

cation (SIGCOMM), 2011. [Cited on pages 1 and 12.]

206

http://netdb.cis.upenn.edu/rapidnet/

[90] J. McClurg, H. Hojjat, P. Černý, and N. Foster. Efficient synthesis of network updates. In

ACM Conference on Programming Language Design and Implementation (PLDI), 2015. [Cited

on page 13.]

[91] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. Openflow: enabling innovation in campus networks. ACM SIGCOMM Com-

puter Communication Review (CCR), 2008. [Cited on page 54.]

[92] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing data errors with view-conditioned

causality. In ACM International Conference on Management of Data (SIGMOD), 2011. [Cited

on page 2.]

[93] A. Meliou and D. Suciu. Tiresias: The database oracle for how-to queries. In ACM Interna-

tional Conference on Management of Data (SIGMOD), 2012. [Cited on page 10.]

[94] A. Meliou and D. Suciu. Tiresias: the database oracle for how-to queries. InACM International

Conference on Management of Data (SIGMOD), 2012. [Cited on pages 10, 17, and 54.]

[95] B. P. Miller. Dpm: A measurement system for distributed programs. IEEE Transactions on

Computers, 37(2):243–248, 1988. [Cited on pages 1 and 15.]

[96] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing software-defined

networks. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2013. [Cited on pages x, xii, 6, 12, 22, 36, 37, 38, 78, 87, 143, 151, 152, 153, 154, and 155.]

[97] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance-aware stor-

age systems. In USENIX Annual Technical Conference (ATC), 2006. [Cited on pages 33

and 36.]

[98] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer. Provenance-aware

storage systems. In USENIX Annual Technical Conference (ATC), 2006. [Cited on page 10.]

[99] K. Nagaraj, C. Killian, and J. Neville. Structured comparative analysis of systems logs to

diagnose performance problems. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2012. [Cited on page 14.]

[100] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi. Tierless programming and

reasoning for software-defined networks. In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2014. [Cited on page 12.]

207

[101] B. Networks. Barefoot Kitsilano project, 2017. Private communication. [Cited on page 111.]

[102] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix: Program repair via

semantic analysis. In International Conference on Software Engineering (ICSE), 2013. [Cited

on pages 12 and 88.]

[103] Node.js, 2017. https://nodejs.org/. [Cited on page 111.]

[104] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini. Deepdive: Transparently

identifying and managing performance interference in virtualized environments. In USENIX

Annual Technical Conference (ATC), 2013. [Cited on page 14.]

[105] outages.org. Outages Mailing List, 2014. http://wiki.outages.org/index.php/Main_

Page. [Cited on pages 19 and 20.]

[106] K. Pan, S. Kim, and E. J. Whitehead Jr. Toward an understanding of bug fix patterns. Empirical

Software Engineering, 14(3):286–315, 2009. [Cited on pages 57, 61, 71, and 79.]

[107] A. Panda, O. Lahav, K. J. Argyraki, M. Sagiv, and S. Shenker. Verifying reachability in net-

works with mutable datapaths. In USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI), 2017. [Cited on page 12.]

[108] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs that explain their work.

In ACM International Conference on Functional Programming (ICFP), 2012. [Cited on page

13.]

[109] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco, F. Sher-

wood, S. Sidiroglou, G. Sullivan, et al. Automatically patching errors in deployed software. In

ACM Symposium on Operating Systems Principles (SOSP), 2009. [Cited on pages 12 and 88.]

[110] Pyramid, 2017. https://trypyramid.com/. [Cited on page 111.]

[111] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In

International Conference on Data Engineering (ICDE), 2007. [Cited on page 10.]

[112] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat. Pip:

Detecting the unexpected in distributed systems. InUSENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2006. [Cited on page 14.]

208

https://nodejs.org/
http://wiki.outages.org/index.php/Main_Page
http://wiki.outages.org/index.php/Main_Page
https://trypyramid.com/

[113] L. Ryzhyk, N. Bjørner, M. Canini, J.-B. Jeannin, C. Schlesinger, D. B. Terry, and G. Vargh-

ese. Correct by construction networks using stepwise refinement. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2017. [Cited on page 12.]

[114] S. Saha, S. Prabhu, and P. Madhusudan. NetGen: Synthesizing data-plane configurations for

network policies. In ACM Symposium on SDN Research (SOSR), 2015. [Cited on pages 13,

14, and 88.]

[115] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman, M. Stroucken, W. Wang,

L. Xu, and G. R. Ganger. Diagnosing performance changes by comparing request flows. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2011. [Cited

on pages 14 and 109.]

[116] B. Schlinker, R. N. Mysore, S. Smith, J. C. Mogul, A. Vahdat, M. Yu, E. Katz-Bassett, and

M. Rubin. Condor: Better topologies through declarative design. In ACM Conference of the

Special Interest Group on Data Communication (SIGCOMM), 2015. [Cited on page 13.]

[117] C. Scott, A. Panda, V. Brajkovic, G. Necula, A. Krishnamurthy, and S. Shenker. Minimizing

faulty executions of distributed systems. In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2016. [Cited on page 12.]

[118] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang, Z. Liu, A. El-Hassany,

S. Whitlock, H. Acharya, K. Zarifis, and S. Shenker. Troubleshooting blackbox SDN control

software with minimal causal sequences. In ACM Conference of the Special Interest Group on

Data Communication (SIGCOMM), 2014. [Cited on pages 1, 11, and 12.]

[119] S. Sidiroglou and A. D. Keromytis. Countering network worms through automatic patch

generation. In IEEE Symposium on Security and Privacy, 2005. [Cited on pages 13 and 88.]

[120] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan,

and C. Shanbhag. Dapper, a large-scale distributed systems tracing infrastructure. In Google

Technical Report, 2010. [Cited on pages 1, 15, 92, 93, 111, 118, and 125.]

[121] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Using queries for distributed monitoring

and forensics. In ACM European Conference on Computer Systems (EuroSys), Apr. 2006. [Cited

on page 15.]

209

[122] K. Subramanian, L. D’Antoni, and A. Akella. Genesis: Synthesizing forwarding tables in

multi-tenant networks. In ACM Symposium on Principles of Programming Languages (POPL),

2017. [Cited on page 13.]

[123] P. Tammana, R. Agarwal, and M. Lee. Cherrypick: Tracing packet trajectory in software-

defined datacenter networks. In ACM Symposium on SDN Research (SOSR), 2015. [Cited on

page 15.]

[124] R. Teixeira and J. Rexford. A measurement framework for pin-pointing routing changes. In

Workship on Network troubleshooting (NetTS), 2004. [Cited on pages 39 and 43.]

[125] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter. The netlogger

methodology for high performance distributed systems performance analysis. In ACM Sym-

posium on High-Performance Parallel and Distributed Computing (HPDC), 1998. [Cited on

pages 1 and 15.]

[126] Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In ACM International

Conference on Management of Data (SIGMOD), 2010. [Cited on pages 2, 54, and 88.]

[127] Trema. Trema, 2014. http://trema.github.io/trema/. [Cited on pages xii, 6, 18, 40, 78,

87, 143, 146, 147, 148, and 149.]

[128] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A. Scedrov, and C. L.

Talcott. FSR: Formal analysis and implementation toolkit for safe inter-domain routing.

IEEE/ACM ToN, 20(6):1814–1827, Dec. 2012. [Cited on page 39.]

[129] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic misconfiguration

troubleshooting with PeerPressure. In USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2004. [Cited on pages 1, 11, and 14.]

[130] M. Weiser. Program slicing. In International Conference on Software Engineering (ICSE), 1981.

[Cited on page 13.]

[131] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. In

Conference on Innovative Data Systems Research (CIDR), 2005. [Cited on page 10.]

[132] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Fer-

dinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-

ström. The worst-case execution-time problem. ACM Transactions on Embedded Computing

Systems, 2008. [Cited on page 121.]

210

http://trema.github.io/trema/

[133] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. Automated bug removal for software-

defined networks. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2017. [Cited on pages iii and 94.]

[134] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing missing events in

distributed systems negative provenance. In ACM Conference of the Special Interest Group on

Data Communication (SIGCOMM), 2014. [Cited on pages iii, 78, 94, and 111.]

[135] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind: Enabling record and

replay troubleshooting for networks. In USENIX Annual Technical Conference (ATC), 2011.

[Cited on page 15.]

[136] C. Yang and B. P. Miller. Critical path analysis for the execution of parallel and distributed

programs. In IEEE International Conference on Distributed Computing Systems (DCS), 1988.

[Cited on page 106.]

[137] Y. Yuan, D. Lin, R. Alur, and B. T. Loo. Scenario-based programming for SDN policies.

In ACM Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2015.

[Cited on page 13.]

[138] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic test packet generation.

In ACM Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2012.

[Cited on pages 1, 12, 79, and 80.]

[139] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown, and A. Vahdat. Libra:

Divide and conquer to verify forwarding tables in huge networks. In USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2014. [Cited on page 12.]

[140] S. Zhang and M. D. Ernst. Automated diagnosis of software configuration errors. In Interna-

tional Conference on Software Engineering (ICSE), 2013. [Cited on pages 12 and 88.]

[141] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes. CPI 2: Cpu per-

formance isolation for shared compute clusters. In ACM European Conference on Computer

Systems (EuroSys), 2013. [Cited on page 14.]

[142] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan, and M. Stumm. lprof: A non-

intrusive request flow profiler for distributed systems. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2014. [Cited on pages 1 and 14.]

211

[143] W. Zhou. Secure Time-Aware Provenance For Distributed Systems. PhD thesis, University of

Pennsylvania, 2012. [Cited on pages 165 and 166.]

[144] W. Zhou, L. Ding, A. Haeberlen, Z. Ives, and B. T. Loo. TAP: Time-aware provenance for

distributed systems. In USENIX Workshop on the Theory and Practice of Provenance (TaPP),

2011. [Cited on page 121.]

[145] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure network prove-

nance. In ACM Symposium on Operating Systems Principles (SOSP), 2011. [Cited on pages 2,

11, 23, 33, 39, 94, 98, and 126.]

[146] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo, and M. Sherr. Distributed

time-aware provenance. In International Conference on Very Large Databases (VLDB), 2013.

[Cited on pages xi, 2, 11, 22, 94, 95, 99, 100, 101, 107, 111, 121, 130, and 133.]

[147] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and maintenance

of network provenance at Internet-scale. In ACM International Conference on Management of

Data (SIGMOD), 2010. [Cited on pages 2, 11, 26, 33, 78, 94, and 111.]

[148] Zipkin, 2017. http://zipkin.io/. [Cited on pages 6, 92, 110, and 111.]

212

http://zipkin.io/

	University of Pennsylvania
	ScholarlyCommons
	2017

	Extending Provenance For Deep Diagnosis Of Distributed Systems
	Yang Wu
	Recommended Citation

	Extending Provenance For Deep Diagnosis Of Distributed Systems
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Approach
	Contribution and roadmap

	Background and related work
	Network Datalog
	Provenance-based diagnosis
	Related work

	Negative Provenance
	Introduction
	Overview
	Basic Negative Provenance
	Enhancing readability
	The Y! system
	Case Studies
	Evaluation
	Related Work
	Conclusion

	Meta Provenance
	Introduction
	Overview
	Meta Provenance
	Generating repair candidates
	Evaluation
	Related Work
	Conclusion

	Temporal Provenance
	Introduction
	Overview
	Background
	Temporal provenance
	Improving readability
	The Zeno debugger
	Evaluation
	Related Work
	Conclusion

	Conclusion
	Future work
	Appendix Negative Provenance
	Formal Model
	Responses

	Appendix Meta Provenance
	Meta models
	Helper functions
	Properties
	Scenarios

	Appendix Temporal Provenance
	Formal Model

