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Development Of A Methodology For Fast Optimization Of Building
Retrofit And Decision Making Support

Abstract
The condition of current building stock in the United States raises the question of whether the energy
performance of existing buildings can ever be environmentally sustainable. In the United States, buildings
accounted for 39% of total energy consumption and 72% of total electricity consumption (USEPA 2009). In
addition, current building energy use is projected to increase by 1.7% annually until 2025 ( J.D. Ryan 2004).
The great potential for energy reduction in existing buildings has created opportunities in building energy
retrofit projects (Noris et al. 2013). A building renovation project must not only be affordable, taking into
account factors such as investor budgets, payback period, economic risks and uncertainties, but also create a
thermally comfortable indoor environment and is sustainable through its lifetime. The research objective of
this dissertation is to develop a novel method to optimize the performance of buildings during their post-
retrofit period in the future climate. The dissertation is organized in three sections:

a) Develop a data-driven method for the hourly projection of energy use in the coming years, taking into
account global climate change (GCC). Using machine learning algorithms, a validated data-driven model is
used to predict the building’s future hourly energy use based on simulation results generated by future
extreme year weather data and it is demonstrated that GCC will change the optimal solution of future energy
conservation measure (ECM) combination.

b) Develop a simplified building performance simulation tool based on a dynamic hourly simulation
algorithm taking into account the thermal flux among zones. The tool named SimBldPy is tested on
EnergyPlus models with DOE reference buildings. Its performance and fidelity in simulating hourly energy
use with different heating and cooling set points in each zone, under various climate conditions, and with
multiple ECMs being applied to the building, has been validated. This tool and modeling method could be
used for rapid modeling and assessment of building energy for a variety of ECM options.

c) Use a non-dominated sorting technique to complete the multi-objective optimization task and design a
schema to visualize optimization results and support the decision-making process after obtaining the multi-
objective optimization results. By introducing the simplified hourly simulation model and the random forest
(RF) models as a substitute for traditional energy simulation tools in objective function assessment, certain
deep retrofit problem can be quickly optimized. Generated non-dominated solutions are rendered and
displayed by a layered schema using agglomerative hierarchical clustering technique. The optimization
method is then implemented on a Penn campus building for case study, and twenty out of a thousand retrofit
plans can be recommended using the proposed decision-making method. The proposed decision making
support framework is demonstrated by its robustness to the problem of deep retrofit optimization and is able
to provide support for brainstorming and enumerate various possibilities during the process of making the
decision.
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ABSTRACT 

DEVELOPMENT OF A METHODOLOGY FOR FAST OPTIMIZATION OF BUILDING 

RETROFIT AND DECISION MAKING SUPPORT 

Pengyuan Shen 

William W. Braham 

The condition of current building stock in the United States raises the question of whether 

the energy performance of existing buildings can ever be environmentally sustainable. In the 

United States, buildings accounted for 39% of total energy consumption and 72% of total 

electricity consumption (USEPA 2009). In addition, current building energy use is projected to 

increase by 1.7% annually until 2025 (J.D. Ryan 2004). The great potential for energy reduction 

in existing buildings has created opportunities in building energy retrofit projects (Noris et al. 

2013). A building renovation project must not only be affordable, taking into account factors such 

as investor budgets, payback period, economic risks and uncertainties, but also create a thermally 

comfortable indoor environment and is sustainable through its lifetime. The research objective of 

this dissertation is to develop a novel method to optimize the performance of buildings during 

their post-retrofit period in the future climate. The dissertation is organized in three sections:  

a) Develop a data-driven method for the hourly projection of energy use in the coming 

years,  taking into account global climate change (GCC). Using machine learning algorithms, a 

validated data-driven model is used to predict the building’s future hourly energy use based on 

simulation results generated by future extreme year weather data and it is demonstrated that GCC 

will change the optimal solution of future energy conservation measure (ECM) combination. 
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b) Develop a simplified building performance simulation tool based on a dynamic hourly 

simulation algorithm taking into account the thermal flux among zones. The tool named 

SimBldPy is tested on EnergyPlus models with DOE reference buildings. Its performance and 

fidelity in simulating hourly energy use with different heating and cooling set points in each zone, 

under various climate conditions, and with multiple ECMs being applied to the building, has been 

validated. This tool and modeling method could be used for rapid modeling and assessment of 

building energy for a variety of ECM options. 

c) Use a non-dominated sorting technique to complete the multi-objective optimization 

task and design a schema to visualize optimization results and support the decision-making 

process after obtaining the multi-objective optimization results. By introducing the simplified 

hourly simulation model and the random forest (RF) models as a substitute for traditional energy 

simulation tools in objective function assessment, certain deep retrofit problem can be quickly 

optimized. Generated non-dominated solutions are rendered and displayed by a layered schema 

using agglomerative hierarchical clustering technique. The optimization method is then 

implemented on a Penn campus building for case study, and twenty out of a thousand retrofit 

plans can be recommended using the proposed decision-making method. The proposed decision 

making support framework is demonstrated by its robustness to the problem of deep retrofit 

optimization and is able to provide support for brainstorming and enumerate various possibilities 

during the process of making the decision. 
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1. Introduction and Statement of the Problem 

Buildings consume a vast amount of resources in constructing, operating, maintaining, 

and demolishing. This process requires huge amounts of high quality resources, and human needs 

are steadily increasing with a higher standard of living. Buildings are the most essential and 

fundamental element in the formation of a city, the place where people gather and share their 

thoughts, beliefs, interests, and affections of their inhabitants. The networks of buildings create a 

multidimensional space that is essential for interpersonal relationships. Buildings have always 

been so important to us. However, they are also important to the functioning of the environmental 

system because the land we use, the trees we cut, the concrete and steel we produce, all come 

from the ecosystem around us. The contribution of buildings to society’s collective environmental 

footprint is partly measurable and at the same time, unmeasurable—partly measurable because of 

the rapid development of engineering techniques for calculation and building performance 

simulation, which allows us to quantitatively assess the amounts of energy and resources used in 

their environmental footprint; while it is unmeasurable because a building’s environmental 

performance system is so complex and involves so many social and cultural factors.   

For the measurable or quantifiable dimension, it is reported that in the United States, 

buildings consume 39% of the energy and 72% of the electricity, and they generate 38% of the 

carbon dioxide, 49% of the sulfur dioxide and 25% of the nitrogen oxides found in the air (Ravi 

S. Srinivasan et al. 2012). Contemporary buildings cannot function without the energy provided 

by fossil fuels, while pollutants from fossils fuels pose risks to the local and global environment 

with the growing needs of the development of human civilization. For decades, much research 

attention has been paid to the energy efficiency of building, as existing buildings play an 

important role in building sector’s energy consumption and carbon footprint. The method to find 

the best ECM combinations for existing building retrofit has been studied and debated over years. 
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Architects and engineers are concerned by the energy consumption and carbon emission 

associated with existing buildings. The energy performance of buildings deteriorates as it ages in 

an ever-changing outdoor environment. Global climate change (GCC), aging equipment and 

building systems, technology progress and adoption, among other factors, are challenges and 

opportunities for existing buildings. According to previous research by Aktas and Bilec, the 

average life of residential building in the United States is currently 61 years and has a linearly 

increasing trend (Aktas and Bilec 2011). For commercial buildings, the EIA estimates that the 

median service life of commercial buildings varies from 65 to 80 years depending on the type of 

building, based on data analysis from Commercial Building Energy Consumption Survey 

(CBECS) ((EIA) 2009). Approximately half of all commercial buildings were built before 1980 

according to CBECS, as shown in Fig. 1, and Table 1 shows the distribution of lifetimes in 

different types of commercial buildings in the United States according to EIA annual energy 

outlook in 2011 ((EIA) 2011). 

 

Fig. 1 Year in which commercial buildings were constructed  ((EIA) 2009) 
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Table 1 Commercial building median lifetime in years ((EIA) 2011) 

Building Type Median 66% Survival (*) 33% Survival (*) 

Assembly 55 40 75 

Education 62 45 86 

Food Sales 55 41 74 

Food Service 50 35 71 

Health Care 55 42 73 

Large Office 65 46 92 

Mercantile & Service 50 36 69 

Small Office 58 41 82 

Warehouse 58 41 82 

Lodging 53 38 74 

Other 60 44 81 

 

Note: Number of years after which the building survives. For example, a third of the large office 

building constructed today will survive 92 years later. 

As a matter of fact, an estimated 14 billion m2 of existing buildings (about 50% of the 

total building stock) are expected to be renovated in the next 30 years in the United States (Zhai, 

Bendewald, and Hammer 2011). In 2003, only 26% of the commercial buildings in the United 

States were built in the last ten years (EIACBECS 2003). Approximately 86% of current building 

construction expenditures are spent on renovating existing buildings and the rest on new 

construction (Levine et al. 2014). With the low newly constructed building number and the trend 

in recent years, many of the existing buildings in the United States will be renovated if energy 

consumption and carbon emissions are expected to be significantly reduced in the future.  

Regarding building retrofit, one of the most important things is to evaluate the building 

energy use (BEU) with different combinations of energy conservation measures (ECM). This has 

been done by many studies in the past under the current climatic conditions (Asadi et al. 2012a, b, 

Asadi et al. 2014, Chuah, Raghunathan, and Jha 2013, Lee et al. 2015, Levine et al. 2014, 
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Rysanek and Choudhary 2013, Yalcintas 2008). However, finding a computationally efficient 

way of assessing the different energy performance provided by different ECM combination in 

future climatic condition has not yet been fully developed. In this chapter, the background of the 

research subject, discussion of the state of the art, and its challenges and limitations will be 

discussed. 

 

1.1 Challenges for Building Retrofit Optimization 

The building retrofit process can be complicated, involving the efforts of different parties 

including property owners, building clients, architects, and engineers. One of the most important 

issues facing building owners and clients is finding the best ECM combination for the existing 

building. This is a problem that the building energy research community has been facing for over 

thirty years. Asked from different perspectives, this question also means differently by saying the 

“best” or the “bests” because various emphasis is often put on the renovation of buildings: 

sometimes, it could simply be economic benefits brought by the renovation, or the enhancement 

of the building indoor environment and quality, or the reduction of BEU and greenhouse gases 

(GHGs). Thus, the optimization function is generally multi-objective and multi-constrained 

(Asadi et al. 2012a, b, Asadi et al. 2014, Sun, Huang, and Huang 2015, Wang, Xia, and Zhang 

2014, Lu et al. 2015).  In this dissertation, the most imminent problem --- how to optimize the 

retrofit project in a computationally affordable manner will be addressed when decision-making 

factors such as indoor environment and quality, investment value, economic uncertainties are 

taken into account. 

In recent years, the rapid development of computer technology and building energy 

simulation (BES) software has become a powerful tool for answering the question of how to 

integrate optimization approach with simulation results, which does not only give an estimation 
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of BEU of different ECM combinations but also its environmental impacts and building wellness. 

Simulation becomes a powerful tool to achieve the goal — that is, to critically assess, refute and 

further propose new direction of future high performance building design. It also makes it 

possible to study the performance of independent subsystem and their interactive behavior 

between them, notably by using object-oriented simulation tools. Existing BES tools like 

EnergyPlus, eQuest, TRNSYS, ESP-r, etc. (LBNL 2015, Hirsch 2016, Klein and al. 2010), can 

model and analyze building energy performance in terms of thermal dynamic features, day 

lighting, and human behavioral factors. Thus, various retrofit measures can be applied to virtually 

to buildings and simulated results inform us about the decision-making process in selecting 

ECMs.  In general, computer-based simulation tools allow us to test different combinations of 

ECMs for a particular building in a relatively efficient and cost-effective way given a calibrated 

and accurate baseline model. However, the use of BES for optimizing ECM building 

combinations with parametric case studies presents several challenges: 

a) First, the use of BES to evaluate building performance for the huge combinatorial 

problem when dealing with multiple ECMs brings an overwhelming computational cost. In a 

retrofit optimization problem, each ECM and its parameter are considered as a vector of design 

variable. Due to the non-linear nature of optimizing building retrofit problem, it is hard to 

construct an objective function with derivative using method of gradient descent or ascent 

(Wetter and Wright 2004, Michael and Jonathan 2003, Chidiac et al. 2011a). In order to find the 

interactions between different variables and their parameters, a huge combinatorial problem will 

be formed. The introduction of an additional ECM into a retrofit project will result in an 

exponential increase in simulation cases. Thus, using current optimization techniques to find 

solutions to the optimization problem would be infeasible, even with parallel computing 

technology. The application of gradient-free and non-derivative optimization algorithms such as 

pattern search and genetic algorithm can be useful in solving the combinatorial optimization 
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problem, but without a computationally efficient method for evaluating future year’s building 

energy use, it is difficult to obtain optimal ECM combinations in the future.  

b) Secondly, simplified and static simulation methods are unwieldy and non-

generalizable because of the lack of availability of the tools developed by these methods. There 

are simplified BES modeling methods, such as gray models like R-C (resistance & capacitance) 

models and static simulation method like degree-day approach, which have been applied to 

building retrofit analysis. For example, Asadi et al. developed a multi-objective mathematical 

model to help stakeholders make decisions by seeking ECM that minimizes energy in a cost-

effective manner (Asadi et al. 2012a). They used an R-C model to simultaneously evaluate the 

effectiveness of all available combinations of retrofit actions. Murray et al. developed a static 

simulation modeling process using a degree-day methodology to evaluate the gross building 

energy use (Murray, Rocher, and O'Sullivan 2012). The large monthly time step of these methods 

makes high-resolution analysis impossible, such as demand response and real-time pricing, the 

production of onsite renewable energy supply systems and the effect of cooling and heating 

setback during unoccupied hours. Hillebrand et al. developed and designed a simplified method 

to evaluate ECMs for office buildings in Europe by adopting a retrofit matrix method that takes 

into account ecological and economic efficiency (Hillebrand et al. 2014). The basis of this 

method is mainly predicated on standardized building types. However, each building is different 

from another. While the use of an established database of prototypical building to guide typical 

building types could assist in the preliminary phase of retrofit planning, it can not provide a 

detailed, reproducible and generalizable tool that addresses individual building. Moreover, each 

building model needs parameter optimization, model testing and calibration, and only then can a 

model be adopted for the prediction of energy load with different ECMs being applied. This is not 

easy for existing buildings where many complexities reside and where multiple zones exist. As a 

result, existing simplified model is generally better when applied to small-scale individual 
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building or individual zone, such as a single-zone building model with single occupancy schedule 

being applied to the building after the parameters and configurations of the model for this 

building are calibrated. But the modeling and calibration can be difficult and time-consuming 

when it is implemented on more complex building types, such as mixed-use buildings, various 

schedules of room temperature set point, occupancy and equipment. The advantages of the gray 

model are the lesser amount of inputs needed and the uncertainties of the input data are well 

controlled. However, the disadvantage of the existing simplified method is also salient for the 

purpose in this study: compared to the white models like EnergyPlus, a simulation tool based on 

simplified gray model that has the flexibility, the generalizability, and the reproducibility in 

modeling the building thermophysics including building geometry, solar heat gains and 

infiltration (e.g. opening, blinds, shadings) are not available and need to be developed.  

c) The huge computational cost in generating a training database for the data-driven 

model. Data-driven method can be used to significantly reduce computational cost in solving the 

building retrofit optimization problems because it can be used to predict BEU of each ECM 

combination applied to the target building with potentially high reliability if data samples are 

sufficient and the model is properly trained. In a research that uses data-driven method to learn 

how different ECMs and their parameters will change the BEU, a huge database shall be 

established and used as the training database for the optimization problem (Eisenhower et al. 

2012). Nevertheless, if EnergyPlus is used to simulate the BEU of different combinations of 

ECMs under current climatic conditions, the enormous calculation cost is expected as mentioned 

in point a) and also mentioned by Rysanek and Choudhary (Rysanek and Choudhary 2013), not to 

mention running each case for the next 30 years with hourly weather data from each year 

generated by the future climate scenario. In fact, without the help of data driven model, it is rather 

impossible to perform the optimization process in this study. However, the problem of how to 
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judiciously reduce the size of the training database and save computing power in database 

generation as well as in the training and forecasting process needs to be resolved. 

 

1.2 Optimization Approach and Objectives 

Table 2 Literature review on building retrofit optimization  

Literature Objectives Objective 
Function 

Evaluation 

Energy Use 
Evaluation 

Optimization 
Algorithm 

(Wang and 
Xia 2015) 

Aggregated energy saving, 
internal rate of return 

Weighted sum 
multi-objective 

Model 
predictive 
control 

Differential evolution 

(Wang, Xia, 
and Zhang 

2014) 

Energy saving, lifecycle net 
present value (NPV), 
discounted payback period 

Weighted sum 
multi-objective 

Estimation Differential evolution 

(Jafari and 
Valentin 

2017) 

Total lifecycle cost (LCC) Single 
objective 
optimization 

eQuest & 
static 
modeling 

Genetic algorithm 

(Shao, Geyer, 
and Lang 

2014) 

Initial investment cost,  
energy consumption, global 
warming potential 

Multi-objective 
Pareto front  

DIN V 18599 
assessment 
method 

NSGA-II 

(Asadi et al. 
2012b) 

Retrofit cost, energy saving 
in kWh, thermal comfort 

Weighted 
Tchebycheff 
metric  

TRNSYS Tchebycheff 
programming 

(Rysanek and 
Choudhary 

2012b) 

Greenhouse gas emission 
reduction 

Single 
objective 

TRNSYS & 
Matlab 

Brute-force 

(Eisenhower 
et al. 2012) 

Thermal comfort, annual 
energy consumption 

Weighted sum 
multi-objective 

EnergyPlus Repeated sampling 
and feature reduction 

(Mauro et al. 
2015) 

Energy demand, thermal 
comfort, global cost 

Multi-stage 
analysis 
method 

EnergyPlus 
& Matlab 

Feature reduction and 
brute-force  

(Chidiac et al. 
2011b) 

Payback period Single 
objective  

Archetype 
modeling in 
EnergyPlus 

Non-linear regression 

(Asadi et al. 
2012a) 

Retrofit cost, energy saving 
in kWh 

Weighted sum 
multi-objective 

ISO 13790 
RC model 
(monthly) 

Tchebycheff 
programming 

(Siddharth et 
al. 2011) 

Electricity use, natural gas 
use 

Weighted sum 
multi-objective 

DOE 2.2 Genetic algorithm 

(Roberti et al. 
2017) 

Energy use, thermal 
comfort, conservation 
compatibility for historic 
building 

Multi-objective 
Pareto front 

EnergyPlus NSGA-II 
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Literature Objectives Objective 
Function 

Evaluation 

Energy Use 
Evaluation 

Optimization 
Algorithm 

(Tadeu et al. 
2015) 

Global cost, primary energy 
use 

Multi-objective 
Pareto front 

EnergyPlus Brute-force 

(Son and Kim 
2016) 

Energy consumption, CO2 
emissions, retrofit costs, 
and thermal comfort 

Multi-objective 
Pareto front 

EnergyPlus NSGA-III 

(Wu et al. 
2017) 

Annualized costs and life 
cycle GHGs emissions 

Single 
obejective & 
Multi-objective 
Pareto front 

EnergyPlus Epsilon-constraint 
method 

(Asadi et al. 
2014) 

Energy consumption, 
retrofit cost, thermal 
comfort 

Single 
objective and 
Multi-objective 
Pareto front 

TRNSYS Latin-hypercube 
sampling, artificial 
neural network, 
MOGA (Multi-
Objective Genetic 
Algorithm) 

(Rysanek and 
Choudhary 

2013) 

Marginal abatement cost vs. 
GHGs emissions saved; 
discounted payback period 
vs. required capital 

Primary and 
secondary 
objectives 

TRNSYS & 
Matlab 

Brute-force 

(Chantrelle et 
al. 2011) 

EnergyConsumption, 
investment, thermal comfort 

Multi-objective 
Pareto front  

TRNSYS NSGA-II 

(Pombo et al. 
2016) 

Lifecycle financial saving, 
energy saving 

Multi-objective 
Pareto front 

EnergyPlus Brute-force 

 

Table 2 lists research related to building retrofit optimization and methods. These studies 

dealt with different objectives and different methods for forming optimization problems. The 

most often used objectives in the optimization are the energy use or consumption, the economic 

metrics taking into account lifecycle analysis and thermal comfort. For the BES tools used in 

those research, EnergyPlus (LBNL 2015) is mostly used, and others include TRNSYS (Klein and 

al. 2010), eQuest, which uses the DOE simulation engine (Hirsch 2016). Most popular 

optimization algorithm is evolutionary algorithm including genetic algorithm (GA), multi-

objective genetic algorithm (MOGA), non-dominated sorting genetic algorithm (NSGA). The 

advantages of GA are that unlike brute force, it does not exhaust the entire design space of the 

ECM variables included in a retrofit project. After generations of evolution, GA is able to provide 

an optimal solution to the given objective function, although global optima are not guaranteed. It 

has been very widely used in researches concerning building retrofit optimization. However, the 
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use of GA is usually coupled with BES tools to evaluate the energy use under different ECM 

bundles since energy performance always plays an indispensable role, directly or indirectly, in the 

objective function. As discussed, EnergyPlus is one of the most popular tools that are used 

together with evolutionary algorithms. White box modeling tools like EnergyPlus that involve a 

lot of input information and manipulate dynamic functions in building energy modeling can be 

time consuming to model and simulate, especially when it is faced with exponentially increasing 

simulations that are required in such a combinatorial optimization problem for the retrofit. How 

to facilitate the evaluation of objective function during optimization that may involve various 

factors such as building energy performance, indoor thermal comfort, investment and returns 

could be Limitation One of this research problem.  

Limitation Two would be the difficulty of generalizing the result of all the ECMs to the 

same type of building by means of an archetypical building study (Chidiac et al. 2011b) and 

providing clients with better decision-making support regarding the optimization results. As we 

discussed in the beginning of the dissertation, it is not reasonable to treat an individual building as 

its archetypical representative, because modern buildings are different in terms of geometric 

shape, use of materials, building systems, etc. even if it is classified as the same use type. For 

example, the lab buildings on the University of Pennsylvania campus are so diversified in their 

win-wall ratio, use schedule, equipment type, and thermal capacity, even within the same type of 

use (laboratory), making the variance of energy use intensity large. Therefore, for the purpose of 

deep energy retrofitting, it would be important to develop a broadly applicable methodology for 

the rapid optimization of individual building retrofitting planning.. 

In addition, two mechanisms for optimizing the building retrofit are mainly used in the 

reviewed research: the deterministic method (weighted sum method is often used) and the non-

dominated method (Pareto front). Limitation Three is that not enough support are provided for 
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user’s decision-making in both methods. Most building retrofit optimization problems involve 

several objectives, making them multi-objective problems. Although giving different weights to 

each sub-objectives before optimization takes place would reduce the complexity of the problem 

by converting the multi-objective problem into a single objective one, the “a priori” nature of this 

method requires preferential information to solve the problem. It would be difficult for users or 

clients to define appropriate weight values in the final objective function, with little knowledge 

about how the optimization results will look like. Moreover, when implementing this 

deterministic method, each sub-objective function should be transformed and normalized into a 

uniform scale to achieve dimensionless comparison among each other. This process also requires 

the intervention from client or decision maker to determine the labeling criteria and transform the 

output of each sub-objective function into the same scale. Compared to the disadvantage of 

deterministic method in decision-making process, non-dominated method is able to visualize the 

trade-offs in retrofit planning, but the drawback could be that the optimized Pareto front curve is 

so widespread that it will be difficult to have an idea of where to start and which range on the 

Pareto curve might be interesting to look at.  

Limitation Four is that it should be noted that LCA is necessary for a retrofit project 

because clients tend not to do retrofit too frequently in a short period of time, while the most 

reviewed research do not take into account future climate uncertainties. Certainly, it will not be so 

difficult to simulate future years’ hourly energy use by using hourly downscaled future weather 

data (Shen , Xu et al. 2012, Chan 2011, Belcher, Hacker, and Powell 2005), but a thirty-year 

lifespan of hourly energy simulation by using tools like EnergyPlus for the objective function 

evaluation could be rather unprocurable given the immense scale in computation. A method to 

circumvent the huge computational cost engendered by simulation runs should be found and 

tested.  
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1.3 Future Building Energy Use 

The level of greenhouse gases (GHGs) under different scenarios projected by the 

Intergovernmental Panel on Climate Change (IPCC) demonstrates a dramatic increase of GHGs 

in the future (IPCC 2007). The status quo of GCC is also updated due to changing trends in 

GHGs emission levels and human activities. The IPCC is continuously paying attention to the 

ever-changing status of GCC and the carbon emission scenarios since they were first put forward 

in the year of 2000. In the recently released IPCC Fifth Assessment Report (AR5), common facts 

and basics have been achieved and updated. It is stated that “human influence on the climate 

system is clear, and the atmospheric concentrations of carbon dioxide, methane, and nitrous oxide 

have increased to levels unprecedented in at least the last 800,000 years” (IPCC 2013). Fig. 2 

shows the history of surface temperature change on both land and ocean over the last century. 

 

Fig. 2 Observed annually averaged combined land and ocean surface temperature anomaly 1850 – 2012 

(IPCC 2013) (Top panel: annual mean values. Bottom panel: decadal mean values including the estimate of 

uncertainty for one dataset (black). Anomalies are relative to the mean of 1961−1990) 
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Many studies have shown that GCC brings great influences to BEU around the world. In 

Australia, Wang et al. evaluated the heating and cooling energy requirements and the 

corresponding carbon emissions of residential houses under different future climatic 

conditions(Wang, Chen, and Ren 2011), and  found that the carbon emission of a 5-star house 

was projected to have an average increase of 30% in Darwin, 15% in Alice Springs and 19% in 

Sydney. Hassan Radhi assessed the potential impact of GCC on residential buildings in the 

United Arab Emirates with regard to CO2 emissions (Radhi 2009). In this research, the design of 

building envelope and fenestrations in the future is given highlight in combating the increase of 

building energy consumption as well as CO2 emission. Researchers in China have also evaluated 

the GCC’s impact on the regional renewable energy (RE) system and found that the extreme 

events (such as rainstorms, frost, etc.) and the variation of climatic elements will have substantial 

impacts on RE systems in different province of China including Guangdong, Gansu, and Tibet 

will be most vulnerable to GCC in terms of installing RE system (Wang et al. 2014). Shen stated 

that in four representative cities in the United States, the annual energy use is expected to change 

from -1.64% to 14.07% for residential buildings and from -3.27% to -0.12% for office buildings 

under A2 scenario (a carbon emission scenarios defined by IPCC) in different regions during 

2040 to 2069 (Shen 2017). Two recent studies also reveal that GCC will affect the efficiency of 

building onsite renewable systems: one claims that GCC will bring down the energy efficiency of 

the GSHP system in residential applications in the United States using TRNSYS and eQuest 

modeling technique as the warmer ground in the future will result in an average rise of about 2–

3 °C in the inlet and outlet water temperatures of GSHP during the cooling season (Shen and 

Lukes 2015), while the other research indicates that for all the existing net zero energy buildings 

located in the ten climate zone in the United States, the proportion of decreased annual PV output 

is 5 out of 20, while that of wind turbines is 12 out of 20, indicating the comparatively lower 

stability of the renewable energy system prioritized to wind turbines than to PV prioritized RE 
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system (Shen and Lior 2016). The impacts of GCC on energy use in different types of buildings 

in the future are expected and analyzed in various research. Given the fact that the retrofitted 

building will last for a certain period of time during post-retrofit stage, it is essential that during 

the decision-making process, the situation of the possible change in building energy performance 

introduced by climate change as well as the retrofit measures should be studied.  Therefore, it is 

necessary that GCC’s implication to building performance should be studied since building 

energy retrofit will be made for the “future” building instead of buildings in current situation.  

Most research on existing building retrofit evaluation and optimization method does not 

take into account the impacts of GCC. Meanwhile, the research on GCC's impact is generally 

focused on the energy performance of existing buildings. Little work has been done on the 

ongoing energy performance of existing buildings during the post-retrofit stage and the long-term 

performance of renewable energy system under climate change conditions. Recent research by 

Chow et al. studied the effectiveness of retrofitting existing public buildings in the face of GCC 

in the “hot summer and cold winter” climate region in China (Chow, Li, and Darkwa 2013). The 

study focuses mainly on existing buildings in Zhejiang Province. It uses the HadCM3 global 

climate model results to estimate the future building energy use by running the new weather file 

in DOE2 simulation engine. Only two retrofit measures are considered in the context of this 

research: a) improving the U-Values of the building enclosure; and (b) improving the domestic 

hot-water system by replacing the electric boiler with an air-source heat pump. Another research 

in 2016 by Swedish and Swiss researchers showed a research closely related to building energy 

retrofit measures and theirs robustness to future climate change in terms of mainly heating energy 

consumption using a simplified model (Nik, Mata, and Sasic Kalagasidis 2015). The research 

focuses on a residential stock in Stockholm to 2100 for five climate scenarios. The simulation is 

carried out using a lumped system in Simulink involving all 153 residential buildings. Again, 

only two retrofit measures are considered here: a) assuming reduction of the lighting power of the 
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building stock by 50%, by installing more efficient lighting equipment; b) upgrading the building 

envelope by adding thermal insulation. Limitations still exist in related studies, including very 

few ECM options, limitation of regional application, large simulation time step, and lack of an 

inclusive methodology that can be applied to any building type in various climate zones.  

 

2. Development of Data-driven Model for Future Energy Projection 

2.1 Parametric Study Tool 

The purpose of this chapter is to look for a data driven method to replace energy 

simulation method to predict hourly energy use in future years. We use EnergyPlus as the 

baseline simulation engine for the validation of the developed data-driven method. EnergyPlus is 

a widely used BES model in both academic and commercial studies, which is developed by the 

Department of Energy (DOE). Its precedent versions are BLAST and DOE-2 and it inherited the 

features and strengths of both programs. EnergyPlus is able to model the whole building energy 

performance and has undergone numerous reliability tests (DOE 2014). One of the characters of 

EnergyPlus is that it uses ASCII text based weather data, building input, and simulation output 

files and is able to handle design and engineering alterations by modifying the textual information 

in the input file. This important feature allows user to process inputs and transform the user inputs 

into text based information for EnergyPlus to override the baseline building model. In this way, 

different retrofit scenarios of implementing various ECM combination for the existing building 

can be realized in EnergyPlus model. The text based outputs generated by EnergyPlus can be 

collected and analyzed later. In this study, Python is used as the packaging tool for feeding 

EnergyPlus with retrofit inputs by user defined retrofit options. Python is good for text file 
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processing, and has strong support and capability in data processing. It is chosen to program the 

main console and tool that helps ECM information injection and EnergyPlus output handling. 

Building ECMs mainly fall into three major categories: passive, active, and renewables as 

shown in Fig. 3: 1) Passive retrofit is mainly about reducing the heating and cooling load of a 

building, including building envelope insulation, fenestration system retrofit, and natural 

ventilation.  Passive retrofit ECMs aim to curb the heating and cooling load of the building when 

the building is supposed to maintain at a certain thermally comfortable condition for occupants; 

2) Active retrofit refers to system efficiency, including HVAC system efficiency (heat source, 

pump, fan, valves, and etc.), lighting system efficiency, building control system. Active retrofit 

ECMs are applied to these building systems that are used to meet the energy demand caused by 

load as described in point 1 with decent efficiency; 3) Renewables refers primarily to the onsite 

renewable energy system, which provides additional or major portion of the required energy for 

the building in place of traditional fossil fuel energy source in order to reduce GHGs emission 

and total energy consumption. Renewables energies have attracted a great deal of interest in 

recent years, with the onsite renewable energy systems providing cleaner and less carbon-

intensive energy supply alternatives. 
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Fig. 3 Categories of building retrofit ECMs 

In this study, we included eleven ECMs, but the retrofit options and their parameters are 

not limited to these ECMs in practice for different retrofit projects. In addition, new emerging 

ECMs can be added to the Python retrofit tool. The eleven pioneer ECMs and their parameters 

are presented in Table 3. 

  

Retrofit 
ECMs

Passive (Load):

focuses on load reduction

Window retrofit

Building Envelope

Green roof

Natural ventilation

Sun shading

Daylighting

Occupant behavior, etc

Renewables (Supply)

focuses on onsite 
renewable energy source

PV system

Wind resource

Geothermal resource

Biomass

Solar thermal system

Gray water system

Active (Efficiency)

focuses on system 
efficiency

HVAC system

Lighting upgrade

Control system upgrade

Efficient chiller and boiler

Heat recovery

Thermal storage
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Table 3 ECMs and parameters  

Number ECM Parameter Range 

1 Window SHGC 0.3 0.5 0.8 

2 Window U-value (W/m2-K) 0.4 1 2 

3 Window shading N/A Internal Blind External Blind 

4 Wall Insulation (m2K/W) N/A 2 4 

5 Air infiltration rate for residential (h-

1) 

N/A 0.5 1 

Air infiltration rate for office (h-1) N/A 1 2 

6 Roof Insulation (m2K/W) N/A 3 6 

7 Heating efficiency N/A 0.9 

8 Cooling COP N/A 4.5 

9 Cooling supply air temperature (°C) N/A 15 

10 Lighting efficiency improvement N/A 40% (compared with current 

condition) 

11 Daylighting control and dimming N/A Applied 

Note: N/A: ECM not applied to the building; SHGC: solar heat gain coefficient. 

 

2.2 Future Local Hourly Weather Data 

In this research, the global climate model (GCM) --- HadCM3, developed at the Hadley 

Center in the United Kingdom, is adopted to generate future weather file. HadCM3 (Hadley 

Center Coupled Model Version 3), like other GCMs, is a grid point model with large grid cells 

(2.5o in latitude and 3.75o in longitude over land areas, which gives 96 * 73 grid points on the 

scalar grid) (Pope et al. 2000). The outputs of the HadCM3 model are monthly averages for each 

climatic variables of the chosen future period. This model has been used in some building energy 

research (Gaterell and McEvoy 2005) (Chan 2011). It is assumed that the building retrofit will 

last about 35 years in this research. A recent run of HadCM3 model’s outputs is used (IPCC Fifth 

Assessment Report (AR5)). For each GCM, the simulations were performed with prescribed CO2 
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concentrations reaching 421 ppm (RCP2.6), 538 ppm (RCP4.5), 670 ppm (RCP6.0), and 936 ppm 

(RCP 8.5) by the year 2100 (IPCC 2013). These scenarios are described in the IPCC Fifth 

Assessment Report (AR5) and are named representative concentration pathways (RCPs). In this 

dissertation, the RCP6.0 scenario is selected to predict future climate condition for the building 

retrofit. In RCP6.0, emissions peak around 2080, then decline. The different RCPs are plotted in 

Fig. 4: 

 

Fig. 4 All forcing agents' atmospheric CO2-equivalent concentrations (in parts-per-million-by-

volume (ppmv)) according to four RCPs (IPCC 2013) 

Due to the fact that GCM operates on a coarse global grid to model and predict the future 

GCC scenarios using a numerical solution to Navier-Stokes equations to save the computational 

resources, GCC outputs can not be directly used as EnergyPlus weather data. The outputs need to 



 

20 

 

be “downscaled” to the local geographic location with finer granularity and mapped to hourly 

step. Thanks to the times series based morphing downscaling method proposed by Belcher et al. 

(Belcher, Hacker, and Powell 2005), it is computationally efficient to obtain local hourly weather 

data in the future. The detailed morphing algorithm and its results in 10 climate zones in the 

United States are conducted and obtained in (Shen and Lior 2016). In this study, San Francisco 

and Philadelphia are chosen to be experimented with the proposed optimization approach. The 

reason for choosing these two cities for this study is because San Francisco has stable temperature 

spread over a year with lowest temperature at 10  in January and high temperature at around 

27  in summer while the variance of outdoor dry bulb temperature in Philadelphia is high 

throughout the year (humid subtropical climate zone that has hot summer and cold winter) 

(NOAA 2016), making comparison for prioritizing different ECMs for buildings in the two 

climate zones interesting. 

 

2.3 Feature selection for ECMs 

For the eleven proposed ECMs in Table 3, if all of their combinations are considered in 

the building retrofit optimization, then there will be 23328 EnergyPlus simulation cases in total, 

not to mention the exponential growth of simulation cases when new ECMs are added in practice. 

In fact, for a specific existing building, there will be ECMs that are not so effective in reducing 

BEU. For example, we performed the 23328 simulations for a residential building and an office 

building in San Francisco (see the detailed description of the model in section 3.1) respectively 

and found that the effects of cooling supply air temperature adjustment in residential building as 

well as improving the heating efficiency in office building are not obvious to BEU, while the 

impacts of improved wall insulation in the residential building and the improved air infiltration 
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rate in office building are rather significant to BEU (Fig. 5) (or any other objective function 

depending on the different needs of the research; other criteria may also be used, such as financial 

payback period, environmental impacts of greenhouse gas emission, etc.). This brings about a 

question: is running the combinations of all suggested ECMs required? Because it is not hard to 

think of the situation that some ECM’s benefits for the existing building is trivial from the 

perspective of BEU saving. This purveys a possible way to circumvent the large combinatorial 

search space by fist finding the most influential ECMs to the BEU --- before starting to spend 

great amount of computational resources to simulate the BEU of all the possible combinations. 
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Residential Office 

Fig. 5 Different ECM’s impact to building annual energy use simulated by EnergyPlus 

In this research, a feature selection algorithm based on information theory is used to 

search the most influential ECMs to an existing building in terms of the criterion for reducing 

energy use. The method is called Joint Mutual Information Maximization (JMIM), which uses 

joint mutual information and the “maximum of the minimum” approach that chooses the most 

relevant and influential features to the BEU. The algorithm is able to avoid overestimating the 
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importance of the features compared with conventional joint mutual information (JMI) method 

(Bennasar, Hicks, and Setchi 2015). To have an idea of the method, let’s first start with the 

concept of entropy in information theory (Shannon 1948): 

Equation 1:        

In Equation 1, H(X) is the entropy of the distribution of variable X, which concerns about 

the uncertainty level for its distribution and the average amount of information required to 

describe the random variable. For discrete variables, p(x) can be calculated by the proportion of 

the number of instants with value x in the total number of instants (N). Then we can calculate the 

conditional entropy H(X|Y) of two distributions as: 

Equation 2：      

Conditional entropy basically tells the amount of uncertainty left in X after Y is seen. 

Then mutual information I(X;Y) between X and Y is defined as: 

Equation 3：             

Equation 4:       

The first term explains the uncertainty before Y is known, while the second term 

represents the uncertainty after Y is known. Mutual information can be thought of the amount of 

uncertainty in X that is removed by knowing Y. Then conditional mutual information can be 

defined as: 

Equation 5：   

where I(X;Y|Z)  is the joint mutual information. 
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Lemma 1 basically says that for a feature , if the m-joint mutual information is larger 

than that of all other features	 , where  and	 	 	 , then it is the most relevant 

feature to the target in the context of the subset of S. Here F is the full set of features, and let S be 

the subset of features that are selected already. JMIM employs joint mutual information and the 

‘maximum of the minimum’ approach, which should choose the most relevant features according 

to Lemma 1 and is given by (Shannon 1948): 

Equation 6: arg 	 	 	 	 	 	 , ; 	   

where , ; ; ; / . 

With the help of the JMIM algorithm, it is possible to find the most effective ECMs in an 

ECM combination.  However, it is undoubted that the most effective ECM can be identified by 

the ranking of the features when JMIM is run on the complete annual BEU database of all 

possible ECM combinations, but what we need is to use fewer samples of simulation results to 

find out what these ECMs are.  Therefore, we used Latin-hypercube sampling (LHS) technique to 

sample the combinatorial design space. Since LHS works only with continuous design space, the 

discrete retrofit design space is converted to continuous variable space, with each ECM parameter 

mapped to a uniform distribution. We then experimented with different sample sizes to find the 

minimum sample size that is sufficient to obtain a rough ranking of the feature importance. The 

results of the LHS sampling and random sampling are compared in this research when the method 

is applied to test case buildings, which will be presented in section 3.2.  

 

2.4 Random Forest Algorithm 

According to the challenge introduced in section 1.1, the BEU simulation in future years 

of each ECM combination by any simulation-based optimization would be implausible due to the 
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overwhelming computational cost. In this research, a data-driven method is used to predict the 

future years’ BEU for each ECM combination after that the most significant ECMs are selected 

using the feature selection method proposed in section 2.3.  

The Random forest (RF) algorithm is used as a data mining method in this study. It is an 

ensemble learning method based on a non-parametric supervised learning method called a 

decision tree algorithm that uses a graph or tree model to learn and predict the schema of the best 

routes or rules. When applying the decision tree algorithm, the features of the independent 

variables can be either categorical or continuous. For a single decision tree, the simplest 

consistent explanation is the best, and such bias is called inductive bias. It is the set of 

assumptions that the learner uses to predict outputs given inputs that it has not encountered 

(Mitchell 1980). The basic algorithm for top-down induction of decision trees (ID3, C4.5 by 

Quinlan) is as follows (Quinlan 1986): 

1. A, which is the “best” decision attribute for the next node. 

2. Assign A as decision attribute for node. 

3. For each value of A, create a new descendent of node. 

4. Sort training examples to leaf nodes. 

5. If training examples are perfectly classified, stop. Else, repeat over new leaf nodes. 

 
In choosing the “best” attribute, the concept of entropy in Equation 1 is also used in 

decision tree algorithm. Another important notion is Information Gain: 

Equation 7:     

Where, 

 H(S) - Entropy of set S 

 T - The subsets created from splitting set S by attribute A  

 p(t) - The proportion of the number of elements in t to the number of elements in set S 

 H(t) - Entropy of subset t 



 

26 

 

Furthermore, if the attribute has many values, information gain will select it. Hence, in 

order to evade such node as date time like node, Gain Ratio should be used to evaluate the “best” 

attribute. 

Equation 8:    

Equation 9:     

where, Xv is a subset of X for which A has value v. Using this node division criterion 

when choosing the next division in the node, a tree-type model will be constructed. The more the 

tree develops in depth, the more complex the decision rules or routes and the fitter the model will 

be adapted to the training data. However, a single decision tree will be biased because it will 

overfit the training data, which means that if the hypothesis space has many dimensions (large 

number of attributes), meaningless regularity in the data that is irrelevant to the true, important, 

distinguishing features will be established. For example, a single decision tree will be sensitive to 

data outliers, making it fit the outliers and decreasing its predictive power, or if there is too little 

training data, even a reasonable hypothesis space will overfit. To settle this problem, RF is 

constructed by a set of decision trees in the training process and produces the rule that is the mean 

prediction of the individual trees. This corrects the overfitting behavior of a single decision tree. 

For RF, each tree in the ensemble is built from a sample drawn with replacement of the training 

set. When dividing a node during the construction of the tree, the chosen division is no longer the 

best split among all features. Instead, the split that is picked is the best split among a random 

subset of the features. Using RF instead of a single decision tree will effectively lower the 

variance of the model and handle the overfit problem.  
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In this study, RF is trained by the BEU database containing the hourly simulation results 

of selected influential ECM combinations based on future extreme year’s hourly weather data 

constructed as described in section 3.3. The features of the database include the weather variables 

including temperature, relative humidity, solar irradiation, wind speed, and building occupancy 

reported by EnergyPlus. Two different models are trained for electricity use and gas use of the 

building (if the building uses gas) for each building under certain future climate scenario 

(RCP6.0). Each retrofit plan will have its respective RF model for the prediction of future hourly 

BEU. The results and validity of the model will be discussed in section 3.3.  

 

3. Test of the Data-driven Method and Discussions 

3.1 Test residential and office building 

In this research, we use two reference EnergyPlus building models in the United States 

that are compliant with American Society of Heating, Refrigerating, and Air-Conditioning 

Engineers (ASHRAE) 90.1’s 2004 building code and International Energy Conservation Code 

(IECC) 2006 as the baseline case. San Francisco and Philadelphia are two climate zones where 

we apply and validate the proposed data-driven workflow and methods. It is assumed that the 

building retrofit lasts 35 years from the year of 2020 to 2055. Detailed descriptions of the 

building physical and thermal characteristics are shown in Table 4.  The occupancy behavior, 

lighting and equipment intensity, and system schedule are shared for two types of buildings in 

San Francisco and Philadelphia respectively. 
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Table 4 Major model parameter for the two buildings in San Francisco and Philadelphia 

 San Francisco Philadelphia 

 Residential Office Residential Office 

Building Area (m2) 335 4982.2 335 4982.2 

Gross Wall Area (m2) 235.1 1977.7 235.1 1977.7 

Window Area (m2) 33.2 652.6 33.2 652.6 

Window U-value (W/m2-K) 3.695 4.913 2.273 3.045 

Window SHGC 0.398 0.365 0.394 0.428 

Wall U-value (W/m2-K) 0.535 0.787 0.535 0.787 

Roof U-value (W/m2-K) 2.481 0.376 2.481 0.358 

Air Infiltration rate (h-1) 1.5 1.5 1.5 1.5 

Cooling Capacity (W) 7177.5 326921.42 14450.6 786467.1 

Cooling COP 3.19 3.23 3.37 3 

Heating Capacity (W) 12277.37 648888.26 22629.8 1170823.31 

Heating Efficiency 0.78 0.8 0.78 0.8 

Lighting (W/m2) 2.28 10.76 2.28 10.76 

Service Water Power Input (W) 11137.8 29307.11 11137.8 29307.11 

Service Water Heating Efficiency 0.81 0.81 0.80 0.81 

 

3.2 Feature selection for training database size reduction 

The proposed feature selection algorithm is applied both types of building in two climate 

zones and we try to find the best sampling size with a decent chance to get the most influential 

ECMs for the target building without exhausting the whole combinatorial search space. To 

illustrate the validity of using the portion of the entire combinatorial space to obtain these ECMs, 

we validate the method in the following steps: 

1) A “fold” concept is introduced here to describe the sample size by defining one “fold” 

of sample size as the number of all the ECM parameters considered in a retrofit, which 

means that, in this study, one fold of sampling size is thirty one samples because there 

are a total 31 parameters from all the ECMs.  
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2) LHS sampling is used to generate different number of sampling folds ranging from one 

to forty for the continuous design space of eleven dimensions, which has been mapped 

from the discrete space containing the ECM by uniform distribution between 0 and 1. 

We performed 200 times of feature selection for each number of folds and calculate the 

average accuracy of the feature importance rankings and compare it with the true 

feature importance rankings generated by the entire database with 23328 cases. 

3) The same process in step 2 is performed with random sampling to compare the feature 

selection accuracy of LHS. 
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Residential Building in PHL w/ 6 chosen 

ECMs 

Residential Building in PHL w/ 7 chosen 

ECMs 

Residential Building in PHL w/ 8 chosen 

ECMs 

  

Residential Building in SF w/ 6 chosen 

ECMs 

Residential Building in SF w/ 7 chosen ECMs Residential Building in SF w/ 8 chosen ECMs 
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Office Building in PHL w/ 6 chosen ECMs Office Building in PHL w/ 7 chosen ECMs Office Building in PHL w/ 8 chosen ECMs 
 

 

Office Building in SF w/ 6 chosen ECMs Office Building in SF w/ 7 chosen ECMs Office Building in SF w/ 8 chosen ECMs 

Fig. 6 Average feature selection accuracy with different folds by using LHS and random sampling  
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The results of the feature selection test are illustrated in Fig. 6. The blue line and the red 

line in the figure corresponds to the latin-hypercube random sampling and uniform random 

sampling, respectively. For all the building types and climate zones, the use of LHS for feature 

selection has a great advantage over random sampling. Most importantly, it appears that using 30 

folds of sample size can be sufficient to find the true feature importance ranking and the most 

influential ECMs can be thus obtained from the proposed eleven ECMs in Table 4. Thirty folds,  

868 simulation cases, represents approximately 3.7% of the total combinatorial search space. The 

proposed method of “LHS feature selection with 30 folds sampling size” makes it possible to 

focus on the most important ECMs that affects BEU, and reduce the computational cost greatly in 

the simulation based parametric study. 

To reduce the training database size and run simulations containing only the most 

important ECM combinations in EnergyPlus, the feature selection method is applied to both 

building types and the seven most influential ECMs are selected according to their feature 

importance. The ranking of the selected ECMs for each building is shown in Table 5. The 

objective function for feature selection here refers to the simulated annual energy use based on 

future “extreme year” hourly weather data. The reason, justification and method to generate the 

“extreme year” weather data will be introduced in section 3.3. 
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Table 5 Rankings of ECM importance for each building 

Residential building in 

PHL 

Office building in 

PHL 

Residential building in 

SF 

Office building in SF 

Air infiltration rate (h-1) Air infiltration rate (h-1) Air infiltration rate (h-1) Air infiltration rate (h-1) 

Wall Insulation 

(m2K/W) 

Cooling COP Wall Insulation 

(m2K/W) 

Lighting efficiency 

improvement 

Window U-value 

(W/m2-K) 

Window U-value 

(W/m2-K) 

Heating efficiency Window shading 

Heating efficiency Lighting efficiency 

improvement 

Window shading Cooling supply air 

temperature (°C) 

Window SHGC Wall Insulation 

(m2K/W) 

Window U-value 

(W/m2-K) 

Daylighting control and 

dimming 

Window shading Window shading Window SHGC Window SHGC 

Lighting efficiency 

improvement 

Window SHGC Lighting efficiency 

improvement 

Cooling COP 

 

 

3.3 Validation of the data-driven model 

As described in section 2.4, RF model is trained by the hourly BEU data generated by 

EnergyPlus. The features involved in the model training are: temperature, relative humidity (rh), 

solar irradiation, wind speed, and the building occupancy reported by EnergyPlus. Two models 

are generated to predict the hourly electricity use and gas use respectively. Then randomly 

sampled ECM combination is selected to validate the prediction results.  We used TMY weather 

data to train the model, but it turned out that the prediction of the future BEU data is biased 

against the EnergyPlus simulation results in the place as shown in Fig. 7. 
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Residential Building in PHL Office Building in PHL 

window SHGC: 0.3, window U-value: 0.4 W/m2K, 

internal shading, wall insulation: 4 m2K/W, air 

infiltration: 0.5 h-1, roof insulation: 4 m2K/W, cooling air 

supply temperature: 15 °C 

window SHGC: 0.8, window U-value: 1.0 W/m2K, 

external shading, wall insulation: 4 m2K/W, cooling air 

supply temperature: 15 °C 

Fig. 7 Biased prediction results of the model for random ECM combination by using TMY 

weather data for model training 

The predictive bias of the model is mainly due to the reason that the weather condition of 

the coming years are different from those of today. If one tries to predict the future BEU based on 

the model trained by TMY weather data, the results will be biased. Thus, in order to improve the 

model prediction for future BEU, we try to construct a year of hourly weather data that contains 

the extreme weather conditions in the coming years and use that weather data to train the model. 

Then, EnergyPlus is used to simulate the hourly BEU based on the constructed weather file, and 

RF is then trained by the database with various ECM combinations. The end of this approach is to 

allow the regression model to better understand the variance in the future hourly weather 

conditions so that it can predict future hourly BEU more accurately.  

Since temperature and building occupancy are the main driving forces of BEU for most 

types of building and the latter one is assumed not to change much in the future given that 
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building occupancy schedule stays stable in future building operations, an “extreme year” 

weather data is constructed in terms of the extreme temperature in the future years. By means of 

concatenating half of each future weather data in the year with the most extreme winter (with the 

lowest temperature in 35 years) and the year of the most extreme summer (with the highest 

temperature in 35 years), the extreme year weather data is constructed.  The construction process 

for Philadelphia is show in Fig. 8, where half year of the weather data in the year that has the 

hottest summer and the year that has the coldest winter has been concatenated to form a “pseudo 

year” hourly weather data. Due to that the constructed data represents a “pseudo year”, the time 

frame may not be continuous.  

 

Fig. 8 The construction process of the extreme year hourly weather data (Philadelphia) 

The constructed extreme year hourly temperature in Philadelphia and San Francisco are 

shown in Fig. 9, where the blue line is TMY weather data and the orange line is the constructed 

extreme year weather data. 
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Philadelphia 
 

 
 

San Francisco 

Fig. 9 The constructed hourly temperature profile for extreme weather year  

Twenty cases are randomly selected among all the ECM combinations for each building 

to validate the prediction results by comparing the predictions with the EnergyPlus simulation 

results in the future years. The validation results of annual BEU during the year of 2020 to 2055 

are shown in Table 6. The root mean squared error (RMSE) and coefficient of variation (CV) of 

the model are used to evaluate the predictive power of the model. RMSE is frequently used to 
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measure the difference between model predicted value and actually observed value, which can be 

taken as the residuals of the model, while CV is a description of the fitting of the model in terms 

of relative sizes of the residuals and outcome values. When CV gets lower, the smaller the 

residual is compared to the predicted values.  

Equation 10:  RMSE
∑

    

Equation 11  
∑

/ ̅    

where  and  is the true and forecasted value, ̅ is the average of true values. 

In addition, we randomly selected three ECM combinations out of the twenty from Table 

5 for each building to illustrate the validation of annual BEU for each building and the results are 

shown in Fig. 10.  According to the results in Table 6, the model trained by future extreme 

weather data is performing well in predicting future annual BEU. The highest CV for the annual 

BEU among all the cases in Table 6 is less than 3%, showing good reliability in BEU prediction.  
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Table 6 Future years’ annual BEU validation of twenty randomly chosen ECM combinations for 

each building 

Residential building 

(PHL) Office building (PHL) 

Residential building 

(SF) Office building (SF) 

BEU_RMS

E (J) 

BEU_CV 

(%) 

BEU_RMS

E (J) 

BEU_CV 

(%) 

BEU_RMS

E (J) 

BEU_CV 

(%) 

BEU_RMS

E (J) 

BEU_CV 

(%) 

1.18E+09 1.00% 7.45E+10 0.95% 1.06E+09 1.61% 5.57E+10 1.49% 

1.40E+09 1.19% 6.40E+10 1.06% 8.73E+08 1.15% 9.07E+09 0.34% 

1.25E+09 1.01% 4.57E+10 0.94% 5.07E+08 0.68% 4.47E+10 1.12% 

1.23E+09 1.24% 8.66E+10 1.07% 1.04E+09 1.16% 1.35E+10 0.56% 

1.14E+09 1.09% 6.87E+10 0.84% 1.01E+09 1.24% 3.42E+10 0.89% 

1.32E+09 1.29% 8.06E+10 1.60% 1.86E+09 2.12% 5.71E+10 1.48% 

1.52E+09 1.07% 7.34E+10 1.52% 9.89E+08 1.58% 5.37E+10 1.72% 

1.76E+09 1.28% 6.75E+10 1.08% 1.16E+09 1.79% 3.56E+10 1.43% 

1.46E+09 1.01% 6.59E+10 1.11% 5.83E+08 0.94% 8.30E+10 2.05% 

1.40E+09 1.07% 5.35E+10 1.11% 4.26E+08 0.64% 6.70E+10 2.75% 

1.23E+09 1.37% 7.84E+10 0.93% 5.42E+08 0.72% 8.34E+10 2.81% 

1.95E+09 1.20% 6.52E+10 0.84% 1.01E+09 1.35% 8.00E+09 0.28% 

1.48E+09 1.00% 8.31E+10 1.03% 1.04E+09 1.37% 6.25E+10 1.78% 

1.88E+09 1.58% 7.88E+10 1.26% 1.41E+09 1.55% 4.75E+10 1.55% 

1.39E+09 1.03% 5.29E+10 1.15% 1.40E+09 1.89% 5.30E+10 1.87% 

1.42E+09 1.27% 8.31E+10 1.06% 1.08E+09 1.70% 5.89E+10 1.99% 

1.72E+09 1.10% 5.10E+10 0.99% 7.80E+08 1.01% 4.01E+10 1.72% 

1.88E+09 1.23% 4.34E+10 0.87% 6.01E+08 0.95% 7.23E+10 2.34% 

1.18E+09 0.97% 9.08E+10 1.15% 8.12E+08 1.25% 6.25E+10 2.33% 

1.35E+09 1.25% 6.17E+10 1.28% 9.49E+08 1.28% 6.65E+10 2.05% 

Note: each row’s results represent the prediction accuracy of the randomly chosen ECM 

combination in 2020 to 2055; it should also be noted that the twenty random ECM combinations for each 

building differ from each other because they are randomly chosen for each building respectively. 
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3.4 Discussion of future ECM selection 

By applying the proposed method to the two typical building types in Philadelphia and 

San Francisco, important ECMs are selected for each building before the generation of the 

complete database by running the EnergyPlus simulation using the LHS feature selection with 30 

folds sample size, and the future hourly BEU for the year of 2020 to 2055 of each selected ECM 

combination is projected by RF model. Since the proposed method is validated in section 3.2 and 

section 3.3, final results are generated and analyzed for each building. 

 

3.4.1 ECM selections for each building 

Seven important ECMs are selected using the LHS feature selection with a 30-fold 

sampling size for each building. The results of selected ECMs shown in Table 5 make sense for 

each type of the building. The proposed JMIM feature selection method works well in identifying 

the most important ECMs for a particular building and can be applied in future related research. 

In order to better illustrate the results shown in Table 5, the end use break down of BEU for each 

building is plotted in Fig. 11. It should be noted that the reason why heating energy use is taking 

most of the percentages in total BEU is that the heating site energy source is gas for both types of 

buildings and gas has a lower site to source energy conversion factor compared to electricity. 

Usually, the site to source energy conversion factor of electricity is three times higher than gas in 

the United States (DOE 2014). 
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Residential Building in PHL 
window SHGC: 0.3, window U-value: 1 

W/m2K, internal shading, wall insulation: 4 
m2K/W 

window SHGC: 0.5, window U-value: 0.4 
W/m2K, external shading, wall insulation: 4 

m2K/W, heating efficiency: 0.9 

window SHGC: 0.8, window U-value: 2 
W/m2K, wall insulation: 4 m2K/W, air 

infiltration: 0.5 h-1,  heating efficiency: 0.9 

 
Office Building in PHL 

window SHGC: 0.3, window U-value: 0.4 
W/m2K, cooling COP: 4.5, lighting: 40% 

window SHGC: 0.5, window U-value: 2 W/m2K, 
wall insulation: 4 m2K/W, air infiltration: 1.5 h-1, 

lighting: 40% 

window SHGC: 0.8, window U-value: 1 
W/m2K, internal shading, wall insulation: 2 

m2K/W, air lighting: 40% 
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Residential Building in SF 

window SHGC: 0.3, window U-value: 1 
W/m2K, wall insulation: 4 m2K/W, air 

infiltration: 0.5 h-1 

window SHGC: 0.5, window U-value: 1 W/m2K, 
internal shading, wall insulation: 4 m2K/W, air 

infiltration: 0.5 h-1, heating efficiency: 0.9 

window SHGC: 0.8, window U-value: 2 
W/m2K, wall insulation: 4 m2K/W, air 

infiltration: 0.5 h-1,  

Office Building in SF 
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window SHGC: 0.3, window U-value: 1 
W/m2K, air infiltration: 2 h-1, lighting: 40%, 

implemented daylighting control 

window SHGC: 0.5, window U-value: 1 W/m2K, 
internal shading, air infiltration: 2 h-1, cooling 

COP: 4.5, cooling air supply temperature: 15 °C, 
lighting: 40% 

window SHGC: 0.8, window U-value: 1 
W/m2K, external shading, air infiltration: 1 h-

1, cooling air supply temperature: 15 °C, 
lighting: 40%,  implemented daylighting 

control 

Fig. 10 Validation of annual BEU prediction of three random ECM for each building 
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Table 7 Rankings of top ten ECM combinations from year of 2020 to 2055 

Residential building in PHL 

SHGC win_U (W/m2K) shading wall_insulation (m2K/W) airInfl (h-1) heat_efficiency lightings (%) Elec (J) Gas (J) Total (J) 

0.8 0.4 2 4 0.5 0.9 40% 1.29E+12 1.96E+12 3.24E+12 

0.8 0.4 2 4 0.5 0.9 0 1.45E+12 1.9E+12 3.34E+12 

0.8 0.4 2 2 0.5 0.9 40% 1.31E+12 2.05E+12 3.36E+12 

0.5 0.4 2 4 0.5 0.9 40% 1.28E+12 2.11E+12 3.39E+12 

0.8 1 2 4 0.5 0.9 40% 1.3E+12 2.15E+12 3.45E+12 

0.8 0.4 2 2 0.5 0.9 0 1.47E+12 1.99E+12 3.45E+12 

0.5 0.4 2 4 0.5 0.9 0 1.43E+12 2.04E+12 3.48E+12 

0.8 0.4 2 4 0.5 0 40% 1.29E+12 2.21E+12 3.5E+12 

0.3 0.4 2 4 0.5 0.9 40% 1.27E+12 2.24E+12 3.51E+12 

0.5 0.4 2 2 0.5 0.9 40% 1.3E+12 2.22E+12 3.52E+12 

Office building in PHL 

SHGC win_U (W/m2K) shading wall_insulation (m2K/W) airInfl (h-1) cool_ efficiency lightings (%) Elec (J) Gas (J) Total (J) 

0.8 0.4 2 4 1 4.5 40% 1.62E+14 2.17E+13 1.83E+14 

0.8 0.4 2 2 1 4.5 40% 1.62E+14 2.13E+13 1.83E+14 

0.8 0.4 0 4 1 4.5 40% 1.68E+14 1.74E+13 1.86E+14 

0.8 1 2 4 1 4.5 40% 1.66E+14 2.14E+13 1.87E+14 

0.8 0.4 0 2 1 4.5 40% 1.69E+14 1.77E+13 1.87E+14 

0.8 1 2 2 1 4.5 40% 1.66E+14 2.08E+13 1.87E+14 

0.5 0.4 0 4 1 4.5 40% 1.68E+14 1.98E+13 1.87E+14 

0.8 0.4 2 4 1 0 40% 1.66E+14 2.15E+13 1.88E+14 

SHGC win_U (W/m2K) shading wall_insulation (m2K/W) airInfl (h-1) heat_efficiency lightings (%) Elec (J) Gas (J) Total (J) 
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0.5 0.4 2 4 1 4.5 40% 1.66E+14 2.11E+13 1.88E+14 

0.8 0.4 1 4 1 4.5 40% 1.7E+14 1.79E+13 1.88E+14 

Residential building in SF 

SHGC win_U (W/m2K) shading wall_insulation (m2K/W) airInfl (h-1) heat_efficiency lightings (%) Elec (J) Gas (J) Total (J) 

0.8 0.4 2 2 0.5 0.9 40% 1.23E+12 9.78E+11 2.2E+12 

0.8 0.4 2 4 0.5 0.9 40% 1.22E+12 9.96E+11 2.21E+12 

0.3 0.4 2 4 0.5 0.9 40% 1.2E+12 1.02E+12 2.22E+12 

0.5 0.4 2 4 0.5 0.9 40% 1.21E+12 1.01E+12 2.22E+12 

0.5 0.4 2 2 0.5 0.9 40% 1.21E+12 1.02E+12 2.23E+12 

0.3 0.4 2 2 0.5 0.9 40% 1.21E+12 1.03E+12 2.23E+12 

0.8 1 2 4 0.5 0.9 40% 1.22E+12 1.04E+12 2.25E+12 

0.3 1 2 4 0.5 0.9 40% 1.19E+12 1.07E+12 2.26E+12 

0.5 1 2 4 0.5 0.9 40% 1.2E+12 1.06E+12 2.27E+12 

0.5 1 2 2 0.5 0.9 40% 1.21E+12 1.06E+12 2.27E+12 

Office building in SF 

SHGC shading airInfl (h-1) cool_efficiency 

cooling air 

temperature 

(°C) lightings (%) daylight control Elec (J) Gas (J) Total (J) 

0.8 2 1 4.5 0 40% 1 7.86E+13 3.94E+12 8.26E+13 

0.8 2 1 0 0 40% 1 8.04E+13 3.92E+12 8.43E+13 

0.3 2 1 4.5 0 40% 1 8.04E+13 3.91E+12 8.43E+13 

0.8 0 1 4.5 0 40% 1 8.14E+13 3.07E+12 8.44E+13 
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SHGC shading airInfl (h-1) cool_efficiency 

cooling air 

temperature 

(°C) lightings (%) daylight control Elec (J) Gas (J) Total (J) 

0.5 2 1 4.5 0 40% 1 8.1E+13 3.89E+12 8.49E+13 

0.8 2 1 4.5 0 40% 0 8.12E+13 3.96E+12 8.52E+13 

0.5 2 1 0 0 40% 1 8.13E+13 3.91E+12 8.52E+13 

0.5 0 1 4.5 0 40% 1 8.24E+13 3.15E+12 8.55E+13 

0.3 0 1 4.5 0 40% 1 8.22E+13 3.77E+12 8.6E+13 

0.3 2 1 4.5 0 40% 0 8.22E+13 3.95E+12 8.62E+13 
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As per the results, air infiltration is the most influential factor that determines the amount 

of BEU, regardless of building type, indicating that a well-controlled air leakage level can greatly 

influence BEU performance. For residential building, wall insulation and heating efficiency are 

important, which implies that the reduction of heating energy use in residential building is vital. It 

can also be told from Fig. 11 that heating energy use in residential buildings has a higher 

proportion in total BEU than office buildings, which is logical due to that BEU in residential 

building is more vulnerable to heat loss than heat gains and that office buildings are more 

influenced by higher thermal capacity, greater intensity of equipment use and occupant activity. 

This is also validated by the fact that the improvement of cooling COP is among the top 7 for the 

two office buildings in Table 5.  

For both types of buildings, the improvement of lighting efficiency and the control 

strategy of natural lighting are more important in office buildings than in residential buildings 

because lighting energy use in office building has a higher proportion in the end use breakdown. 

Window SHGC is a factor that can never be underestimated in impacting BEU for both 

types of building, and the same thing happens for window shading because it is known that the 

heat transfer through the window is always decisive for the building heating and cooling energy 

use. In this study, window shading is achieved by installing blinds inside or outside the window 

and both installations are considered and analyzed. In addition, the heating efficiency of 

residential building should receive more attention than cooling, while improving the cooling 

efficiency of office buildings should be emphasized. 
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Residential building in PHL Office building in PHL 

Residential building in SF Office building in SF 

  

Fig. 11 End use breakdown of BEU for the four buildings 

 

3.4.2 Future years’ ranking of ECM combination 

As described in section 3.3, eight RF models are trained in total, two for each building 

being trained by electricity use and gas use as predictands, whereas future extreme year weather 

data and ECM parameters as predictors. The hourly BEU for each combination of selected ECMs 

is projected from 2020 to 2055. Ranking by their total site energy use during the year of 2020 to 

2055, the top ten ECM combinations that save the most energy in the future 35 years are 

presented in Table 7.  
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Based on the results in Table 7, the best controlled air infiltration rate (0.5 h-1) saves the 

most energy for residential buildings in both Philadelphia and San Francisco during the next 35 

years. For office buildings, better airtightness is required in San Francisco and Philadelphia (1 h-

1). In addition, whether in residential or office, buildings with external blind shading are always 

among the top listed ECMs regarding energy saving rankings. The window shading system in this 

research is set to work when the indoor environment is subject to high cooling load, and it is 

usually not turned on in heating season, so sun light can enter during most of the time in winter. 

This measure significantly reduces cooling load during cooling season as GCC may create 

extreme outdoor weather conditions during the summer over the next 35 years.  

For the four buildings in Philadelphia, SHGC with a value of 0.8 dominates all other 

SHGC values in top-level ECM combinations. This is beyond the common expectation that 

buildings in Philadelphia should have a low SHGC value for the window, especially in future 

conditions. Even for the office building in Philadelphia that has a higher internal heat gain than 

the residential building, high SHGC value still saves the most energy. Low window U-value 

retains heating energy during the cold winter in Philadelphia, and even with the impact of, this 

situation is not going to change over the next 35 years.  

For buildings in San Francisco, it is quite difficult to define which SHGC value is the 

most dominant over others for both residential and office buildings. The decision-making of the 

best SHGC can be clearer when other factors such as economic analysis are introduced. Low 

window U-value in residential building is always welcome in the future climate scenario, 

especially for buildings in Philadelphia.  

When it comes to the renovation of building envelope, better wall insulation will save 

energy for buildings in Philadelphia due to its cold winter, while the renovating of wall insulation 

will not be among the most selected ECMs for the office building in San Francisco. The results 
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indicate that residential buildings in both climate regions should pay attention to wall insulation 

even though GCC will reduce future heating energy use for both cities. 

 

3.4.3 Ranking change of ECMs in the future 

Analyzing future top ECM combinations is not sufficient to know the impacts of GCC on 

the decision-making process for building retrofit.  We also compared the ranking changes of each 

ECM combination in future 35 years against in TMY. We used EnergyPlus to run the selected 

ECM combinations under the TMY and compare its rankings with the results of rankings in 

future years for the four buildings and listed the ranking changes in Table 8. The ranking changes 

in the table are calculated by the following function: 

Equation 12:  
∑ , 	 	 ,    

where,  is the rank change of ECM with certain parameter value P; n is the total 

number of ECM combinations that have the ECM parameter P; , 	is the ranking of the ith 

ECM combinations that has parameter P by total BEU in the future; ,  is the ranking of the 

ith ECM combinations that has parameter P by total BEU in single TMY year. 
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Table 8 Ranking changes of ECM combinations for four buildings compared with TMY scenario 

  San Francisco Philadelphia 

ECM Parameter Residential Office Residential Office 

Window SHGC 0.3 12.5 2.82 -5.77 -2.48 

 0.5 11.47 -0.34 -8.02 -1.46 

 0.8 -23.96 -2.48 13.8 3.94 

Window U-value 0.4 0.47 - -2.45 4.98 

 1 2.04 - -0.7 0.85 

 2 -2.5 - 3.15 -5.84 

Window shading N/A -23.03 -2.06 8.65 -1.88 

 Internal Blind -5.76 0.33 3.66 1.53 

 External Blind 28.79 1.72 -12.3 0.35 

Wall insulation N/A -20.85 - 5.9 2.85 

 2 9.91 - -5.54 1.3 

 4 10.94 - -0.35 -4.15 

Air infiltration for residential N/A 58.22 - -33.2 - 

 0.5 -30.51 - 5.3 - 

 1 -27.71 - 27.9 - 

Air infiltration for office N/A - 0.22 - 0 

 1 - -0.88 - -0.01 

 2 - 0.65 - -0.01 

Roof insulation  N/A - - - - 

 3 - - - - 

 6 - - - - 

Heating efficiency N/A -8.23 - 0.21 - 

 0.9 8.23 - -0.21 - 

Cooling COP N/A - - - 1.83 

 4.5 - - - -1.83 

Cooling air temperature N/A - 2.67 - - 

 15 - -2.67 - - 

Lighting efficiency N/A -20.4 -0.37 -4.15 5.84 

 40% 20.42 0.37 4.15 -5.84 

Daylighting control N/A - -0.43 - - 

 Applied - 0.43 - - 

Note: “-” means that the ECM is not selected by JMIM feature selection procedure or does not 

apply to the specific building type 
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Philadelphia 

 

San Francisco 

 

Fig. 12 Downscaled monthly mean temperature, daily maximum and minimum temperature under different 

RCPs (2015 to 2069) and TMY in Philadelphia and San Francisco  

It is not difficult to see that residential buildings are more vulnerable to climate change 

since their ECM ranking changes are relatively larger than office buildings. For residential 

buildings in Philadelphia, a higher SHGC is more preferable in future years as shown in Fig. 12, 

which is due to the fact that GCC not only raises the outdoor temperature in summer, but also 

creates more extreme winter conditions. Thus, the decrease in heating energy due to the increase 

of SGHC could possibly offset the increase in cooling energy in summer. A higher window U-

value also provides better insulation for the building in winter and reduces heating energy use. 

For the same reason, less shading and wall insulation are needed in future climate for  the 

residential building in Philadelphia. The residential building does not need to be so airtight 

relative to the TMY scenario but needs to be retrofitted to maintain an air infiltration rate at 1 h-1.  
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For the office building in Philadelphia, lower window U-value is preferred in the future 

than today. Better wall insulation is not so important compared to the current climate. Rankings 

of retrofits that involve increasing cooling COP and lighting efficiency are slightly decreasing, 

but according to Table 7, they are still very important in high-ranking ECM combinations 

because only the relative changes are reflected in the table in future climate condition.   

For buildings in San Francisco, the most important finding is the big change in air 

infiltration rate rankings. Given that the air infiltration rate is the most important factor 

influencing the BEU as indicated by feature importance analysis, the magnitude in its ranking 

changes could alter the picture of future retrofit decision-making. As shown in Table 8, both 

residential and office building tend to be less air tightened in the future than in TMY condition, 

mainly because of the rise in outdoor temperature under future climate condition, as shown in 

Fig. 12. Moreover, windows with low SHGC is more preferred in the future compared to TMY 

condition in San Francisco and the building is needed to gain less heat from the sun. This can also 

be reflected by the fact that the exterior shading is also the most valued parameter in San 

Francisco’s future climate, as it is able to best reduce solar heat gain during period of high 

cooling load. In the meantime, a lower U-value and better wall insulation are preferable to better 

insulate the building to reduce the heating energy use for residential buildings, while insulation is 

not an important factor in impacting the BEU in office building in San Francisco as they are not 

chosen by feature selection. Daylighting control and improvement in lighting efficiency are 

slightly more preferable in the future climate.  

In conclusion, the change of preference for ECM parameters in building retrofit in San 

Francisco in the future against current climate condition is to make the building less airtight, to 

reduce the solar heat gain, and to improve thermal insulation, while for buildings in Philadelphia, 

more solar heat gain, less thermal insulation will be more effective to save BEU.  
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4. Development of Simplified Building Modeling Tool 

Building energy simulation (BES) can be used to study how the building will perform 

under different design and engineering scenarios, such as different building thermal properties 

(Hillary et al. 2017), occupancy behavior (Monteiro, Fernández, and Freire 2016), changing 

weather conditions (Spandagos and Ng 2017), energy supply systems (Shen and Lior 2016) as 

well as the short-term predictive control method of the building system (Kwak and Huh 2016, Li, 

Wen, and Bai 2016), and etc. Most BES tools require very detailed inputs for the model because 

of the nature of the building performance, which usually involves many driving factors and 

uncertainties. Tools like EnergyPlus, TRNSYS, BLAST uses a transient method to simulate 

building heating and cooling loads by dynamically integrating all heat flows into calculation 

without simplification, making the modeling and simulation with good reliability and detailed yet 

complicated and heavy to use and in the meantime requiring abundant professional knowledge 

and modeling experience.  

Another important issue is that when it comes to the computational complexity of BES 

tools using transient heat transfer calculation method, the tools would be expensive in terms of 

computation to tackle problems such as retrofit optimization. For comparative research regarding 

different scenarios of active and passive building systems instead of looking for very specific 

operational parameters of building systems, these tools can over qualify and waste unnecessary 

computing resources. Especially in parametric studies, for example, which aim to find the optimal 

combination of energy conservation measures (ECM) for an existing building, the potential 

combinatorial nature of the problem can have these tools consume an unaffordable time in finding 

the solutions (Rysanek and Choudhary 2012a). Recently, data-driven models have been used by 
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researchers to circumvent this problem by training models using machine learning algorithm and 

verifying the accuracy of data-driven methods (Eisenhower et al. 2012). However, for this 

method, a major challenge in huge consumption of computational resources lays in generating the 

training database by results of transient simulation. The same problem exists when using heuristic 

optimization method in finding the optimum of the objective function specified in relation to 

building energy use, thermal comfort level, and economic benefits. The process of evaluating the 

objective function usually involves transient BES tools, making the optimization process 

computationally expensive and unreliable since an insufficient population size and iteration steps 

can deteriorate the final optimum of the heuristic search and the convergence of the solution. 

Research has been conducted to find lighter modeling methods in providing answers that 

are sufficient for comparative study in building heating and cooling load and energy use. One of 

them uses electrical analogue to model the thermal behavior of the building, which is better 

known as RC (resistance & capacitance) model. People used RC method to model the thermal 

reaction of the building under the synergy of indoor and outdoor conditions. Berthoua et al.’s 

work tried four gray box models of different complexity that have been tested and evaluated to 

simulate the cooling and heating needs of a multi-zone office building. The simulation results 

show that the two-order 6R2C semi-physical model offers the best compromise between all tested 

models. It is able to predict thermal needs and indoor air temperature during heating and cooling 

periods with an accuracy above 84% (Berthoua et al. 2014). In Terés-Zubiaga et al.’s work, a 

sophisticated RC gray model is developed for the dwelling using monitoring data. First, the 

thermal performance of an empty social housing dwelling had been monitored for 3 months. 

Afterwards, a gray box model development was carried out using obtained monitoring data. 

Model development as well as some general model results are presented and evaluated later 

(Terés-Zubiaga et al. 2015). Asadi et al. developed a multi-objective mathematical model to assist 

stakeholders make decisions on searching for energy-minimizing ECMs in a cost effective 
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manner (Asadi et al. 2012a). They developed an R-C model to simultaneously evaluate the 

effectiveness of all available combinations of retrofit actions. Liao and Dexter have developed a 

second-order gray physical model to simulate the dynamic behavior of the existing heating 

system of a multi-zone residential building (Liao and Dexter 2004). Researchers at Tongji 

University used 3R2C modeling method with an additional parallel structure that replaces the 

original serial model to describe the building internal mass. Under the help of sub metering data 

and starting from simplest 3R2C, a more complex RC model was formed and validated to have 

good prediction performance for a commercial building in Shanghai (Ji et al. 2016).  In 

conclusion, simple low-order RC model had been verified to have a good performance in 

modeling the heating and cooling need of a simple building that usually has one zone or single 

use.  

The complex RC model with high order is able to handle more sophisticated buildings 

with multi zones but requires more computations compared with the lower-order RC model since 

the root search process will be more complicated when the order of the RC model grows. Another 

problem is that most research using RC modeling method have not developed a simulation 

interface that makes the simulations of different buildings easy and feasible. The generalization of 

RC method to different buildings and a simple tool to use the method are undertapped.  

ISO 13790 provides a monthly method and a simplified hourly method that uses 5R1C 

modeling method to calculate heating and cooling needs for buildings (ISO 2008). The method 

can be called a normative method because it adopts normative values for certain model variables 

and characteristics that are regressively obtained from buildings in Europe. The method was 

adopted to model campus building and campus level energy use by researchers at Georgia 

Institute of Technology (GIT) (Lee, Zhao, and Augenbroe 2013). An Excel based calculation tool 

was also developed by the research team in GIT (Lee, Zhao, and Augenbroe 2013), which is 
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called Energy Performance Standard Calculation Toolkit (EPSCT) where the monthly and 

simplified hourly method described in the standard are implemented. The simplified methods of 

ISO 13790 have been verified in many research for its performance in modeling the monthly and 

annual building energy use (Kokogiannakis, Strachan, and Clarke 2008, Kalema et al. 2008, 

Hasan 2007, Kokogiannakis 2007, Jokisalo and Kurnitski 2007). The conclusion for the monthly 

method is that it is generally able to give accurate results in calculating the annual energy use 

while the normalized gain utilization factor may lead to the failure in model accuracy for certain 

types of building (like light-weight building).  In the research of (Kokogiannakis, Strachan, and 

Clarke 2008) and (Kokogiannakis 2007), the authors also used the simplified hourly method and 

compared the results of different parametric combinations with those of ESP-r and Energyplus, 

and found that the results of hourly method generally agree on the annual energy use with the 

reference models but in some cases they vary significantly. In reference (Hasan 2007), simplified 

hourly method was also tested for the modeling accuracy, which resulted in up to 25% 

underestimation and up to 30% overestimation from the reference results by IDA-ICE building 

energy software. Burhenne and Jacob (Burhenne 2008) tested the simplified hourly method to fit 

the model to actual measured heating energy use as well as indoor temperature. The results show 

that simplified hourly method is capable of modeling the annual sum of heating energy, but its 

performance in fitting to hourly energy use is limited (R2 of 0.67). More importantly, the 

simplified hourly method in most of the research as well as in the implementation in EPSCT is 

merely tested for buildings that have a constant heating and cooling set point or a single zone and 

zone thermal interaction was not considered, which makes the application of simplified hourly 

method in simulating mixed-use buildings constrained. Without zone thermal coupling, the 

performance of the method in hourly scale will be weakened as there are buildings that have 

multi-purpose of use, and evaluating the adoptions of energy or cost saving measures like demand 

response, or onsite renewable energy systems that require certain accuracy in hourly load will not 
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be viable. The possibility of including the zone thermal coupling method should be explored and 

discussed. 

It is also worth noting that an updated version of ISO 13790 --- ISO 52016, has been 

released in 2017, June, which uses the same RC model as the core for simplified hourly 

calculation of sensible energy use for heating and cooling and a new method for calculation of 

latent energy use for (de)humidification was added. However, it does not affect the test for zone 

thermal coupling process in this research. Other additional applications in the new standard 

include (ISO 2017): 

–– calculation of internal temperatures, e.g. under summer conditions without cooling or 

winter conditions without heating; 

–– calculation of design heating or cooling load. 

Another difference is that the building elements are not aggregated to a few lumped 

parameters, but kept separate in the model, just as shown in Fig. 13 (Dick van Dijk 2016): 
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Fig. 13 Improved hourly method in EN ISO 52016-1 (b) compared to simplified method in EN 

ISO 13790:2008 (a). 

Although the major revision in ISO 52016 is a more transparent modeling method for 

each component of the building envelopes instead of lumping different walls or windows 

respectively into a single resistor, it also create more complexity in the building information input 

and to the weight of the model in view of that different boundary conditions for each modeled 

part should be given and taken into account during simulation. Therefore, considering that the 

purpose of this research is to find a comparative parametric study tool that is simple to model and 

light in calculation, the modeling method in ISO 13790 is kept and used here. 
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In this chapter, a Python based simulation tool that provides modeling and calculation of 

building energy use based on ISO 13790 simplified hourly method in which zone thermal 

coupling is applied is proposed. The development of the tool aims to give researchers and 

professionals a platform to implement simplified, dynamic hourly method using a 5R1C thermal 

modeling method for modeling different buildings where multi-zones exist and various purpose 

of use and thermal set points are applied.  

 

4.1 Modeling Methods 

The core of the modeling tool is programmed in Python (shown in upper part of Fig. 14). 

The method adapts electric analogy to simulate the dynamic characteristics of the building 

thermal behavior. The thermal circuit follows Kirchhoff’s law and is able to provide solutions for 

the heat flux and the temperature of each time step at three nodes. 
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Fig. 14 5R1C model used for the simplified hourly method from non zone thermal coupling 

(upper) to zone thermal coupling (lower) 

The main variables in the modeling method where zone thermal coupling is not 

considered, are Cm (internal thermal capacity per building area of the considered building, in J/K-

m2), Htr,op (transmission heat transfer coefficient of the opaque building elements like walls, and 

roofs, in W/m2K), Htr,w (transmission heat transfer coefficient of windows and glazed walls in 

W/m2K), Htr,em, Htr,ms (transmission heat transfer coefficient of the internal structure and external 

structure, respectively, in W/m2K), Htr,ve, Htr,is (transmission heat transfer coefficient of ventilated 

air, and that between the air in the building and internal structures, respectively, in W/m2K). Htr,em 

is calculated by Htr,op and Htr,ms in the following way:  

Equation 13:  ,
, ,
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The heat flux sourced from solar, building heating and cooling are Φ ,Φ , , and 

those to the internal air node, to the central node, and to the internal mass node are named as 

Φ ,Φ ,Φ , respectively, in W. The temperature variables for the model are , , ,  

,	 , , , , 	, standing for outdoor temperature, internal air temperature, building thermal 

mass temperature, mean instantaneous temperature of internal surfaces that are in contact with 

internal air, supply air temperature, heating set point temperature, and cooling set point 

temperature, respectively, in .   

The three important nodes of the model are internal air node, central node, and internal 

mass node. For the internal air node, it is governed by the heat balance of heating and cooling 

load input, the heat flow from the internal air that is affected only by internal heat gain Φ , and 

the heat flow from ventilated air  *Hve. The thermal electric balance equation is as follows: 

Equation 14:  , , 	 	Φ Φ     

For the central node, the heat flow is made up of the sum of internal mass heat flow, heat 

flow from internal load and solar gain, heat flow from external structure, and the combined heat 

flow from internal air node, which can be described by:   

Equation 15: 

, Φ ,
,

∗ , ,

,

	    

For the internal mass node, it is balanced by the heat flow from external structure, from 

the internal mass capacitance, from the internal mass, and the combined heat flow from central 

node and internal air node, which can be described by the following equation: 
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Equation 16: 

C
,
,

,
,

, Φ ,

,
,

,

,
,

,
,

Φ ,
,

   

Equation 13 to Equation 16 describe the thermal flow balance of the model without zone 

coupling. When zone thermal coupling is considered, the 5R1C circuit turns out to be the lower 

one that is presented in Fig. 14.  ,  and ,  are introduced to represent the transmission 

heat transfer coefficient of the internal wall and internal floor, in W/m2K. It should be noted that 

the m2 in the unit refers to per condition floor area of the zone, instead of per area of the material 

of the contact surface. Internal wall heat transfer coefficient is coupled with window heat transfer 

coefficient, while internal floor transfer coefficient is couple with the heat transfer coefficient of 

the external structure. Instead of using  (outdoor air temperature), the coupled part of the circuit 

will be using an equivalent temperature that reflects the thermal condition on the other side of the 

coupled surface. For the coupled part of internal wall and window, the equivalent temperature   

would be: 

Equation 17:  , ∑ , ,

, ∑ ,
        

Then the equivalent temperature  of the coupled part of internal floor and external structure 

would be: 

Equation 18: , ∑ , ,

, ∑ ,
        



 

63 

 

where i represents the ith adjacent zone that has contact with the current zone, and ,  

stands for the ith zone’s internal air temperature. 

The coupling process will not change the heat flow balance of the internal air node, but 

that for central node and internal mass node will be affected. After coupling internal wall and 

internal floor into the model, Equation 15 and Equation 16 then turn out to be: 

Equation 19: 

, Φ , ∑ , ,
,

∗

, , ∑ ,
,

	             

Equation 20:   

C
,
,

,
,

, ∑ , Φ , ∑ , ,

,
, , ∑ ,

,
,

, ∑ ,
,

Φ , ∑ , ,
,

   

In this coupling method, only heat transmission between zones are considered, the 

coupling of infiltration or air flow between zones are not considered in this model. 

In this modeling method, a concept of free floating air temperature , 	will be used 

to describe the indoor air temperature of the zone when heating and cooling are not provided, and 

the heating and cooling need of the zone space is assumed to be always satisfied, which leads to 

the following three situations: 
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1) When cooling is needed ( , , ), HVAC system will provide enough cooling 

energy to make ,  

2) When heating and cooling energy is not needed ( , ,  & , , ), 

the zone indoor air temperature will be the free floating air temperature ,  

3) When space heating is needed ( , , ), HVAC system will provide enough 

heating energy to make ,  

The assumption that the indoor air temperature will always be met by the HVAC system 

implies maximum flexibility in HVAC system control and no dynamic factor will be taken into 

account in the HVAC control, which will make the HVAC system work in an ideal state. With 

regard to the primary energy consumption of heating and cooling, a performance curve method 

will be adopted in this tool. The user will be asked to provide the energy efficiency of the heating 

and cooling source at 20%, 40%, 60%, 80%, 100% partial load conditions. This measure is to 

simulate the energy performance of the heating and cooling system under different partial load 

conditions. After having the inputs of energy efficiency at each stage of the partial load, a linear 

interpolation will be made to emulate a performance curve of the system, and this processing is 

intended to simplify model inputs. The pump system model in this tool assumes that the pumps 

operate in a constant flow state, and its mass flow rate is calculated by the flow rate required for 

peak heating and cooling load. Thus, if ECMs that reduce the building heating or cooling load are 

adopted for a building, the pump energy use will also be saved if upgrading pumps are chosen as 

one of the ECMs. 
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4.2 Structure of the Tool 

 

Fig. 15 Flow chart of the simulation tool 

Fig. 15 shows the flowchart of how the tool is organized for detailed building simulation 

using simplified hourly method. The weather file reader and processor will read the designated 

weather file (.epw). After having useful weather variables, pre-calculations for hourly direct 

radiation, diffuse radiation, reflected radiation, and global insolation will be carried out for each 

orientation of the building. These values and other variables such as outdoor temperature, relative 

humidity, calculated solar azimuth and altitude degree will be used later to calculate heat gain of 

the building. The solar heat gain calculation will be performed in the simulator according to ISO 

13790.  

The building input file is text based, which ends with the extension of “.sim”. The 

hierarchy of how the inputs are organized is described in Fig. 16: 
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Fig. 16 Hierarchy of the building inputs information 

The inputs in the circles will be read by the program as objects and these modules can be 

taken by other objects. For example, window material properties includes U-value, solar, 

absorptivity, emissivity, and the window module will be considered as an object that can be 

applied to the envelope setting. Then, the envelope setting containing the information including 

the properties of the windows, walls, roofs, and floors will be integrated into zones. Building 

level inputs include energy sources, renewable energy systems, building energy management 

(BEM) system, domestic hot water (DHW) system, pumps, and some basic information about the 

building.  

The SimBldPy simulation results are easy to read and analyze. The hourly simulation 

results will be exported to a comma separated values (csv) file, including date and time, lighting 

energy use, equipment energy use, solar heat gain from window and opaque parts, cooling and 
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heating need and their energy use, DHW energy use, pump energy use, fan energy use, as well as 

energy production from the onsite renewable energy systems such as PV and solar water heater 

(SWH) system. 

 

4.3 Built-in Parallelized Model Calibration 

In building energy modeling, calibration has always been an important process in tuning 

the key model parameters that best fit the target energy use of a building.  Previous research has 

validated certain methods such as Bayesian approach (Heo, Choudhary, and Augenbroe 2012), 

sensitivity analysis (Lomas and Eppel 1992, Tian 2013, Li et al. 2014, Enríquez, Jiménez, and 

Heras 2017), evolutionary algorithms (Ramos Ruiz et al. 2016), is qualified to be used in 

calibrating building energy model. In this tool, a differential evolution (DE) algorithm is used as a 

method of calibrating model parameters. This method is chosen here because that it is capable of 

handling non-differentiable and nonlinear cost function. In this research, the cost function of the 

model parameters is evaluated by running the SimBldPy simulation, which is non-differentiable 

and nonlinear in nature. Moreover, DE has the advantage of being parallelizable, easy to use and 

has good convergence properties (Storn and Price 1997). Unlike traditional genetic algorithm 

(GA), DE is able to deal with real number vectors as design space, which allows to handle both 

continuous and integer design variables (the model parameters to be calibrated here).   

The mechanism of DE has been described in (Storn and Price 1997) and will not be 

rephrased here. The uniform crossover operator with a crossover rate of 0.9, and the Gaussian 

mutation operator with a mutation rate of 0.01 are used in the optimization. As a single objective 

optimization problem, a fitness-proportion selection method is used. The selection procedure 
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stochastically chooses individuals from the population with probability proportional to their 

fitness, which is often referred to as "roulette wheel" selection (Mitchell 1998).  

The non-optional model parameters that must be calibrated for the simplified hourly 

model include Cm (thermal capacity of the building mass per building area), At (area of all 

surfaces facing the building zone per building area), Am (area of internal structure per building 

area), and infiltration rate. Other optional calibration parameters include the U-value of exterior 

and interior wall, floor, and roof, solar absorptivity and emissivity of exterior wall and roof, 

window solar heat gain coefficient. These variables are important for the simplified hourly model 

and some of them such as Cm, Am, At, and infiltration rate are not easy to be captured and are 

therefore always counted as calibration parameters. Users can choose other optional parameters to 

involve in the calibration process.  Range of the parameters is determined by a linear space with 

certain assigned intervals. For example, the range of parameter Cm can be from 40kJ/K-m2 to 

100kJ/K-m2 with an interval of 5kJ/K-m2, and this range will be mapped into a normalized space 

between 0 and 1 as one input variable for the DE algorithm. 

The objective function of the calibration is the sum of root mean square error (RMSE) of 

building heating and cooling energy use. The calculation of RMSE is defined in Equation 10. 

DE will be used to minimize the objective function and choose the best combination of 

model parameters after iterations of 50 generations, and the total population size of each iteration 

is set as 20 times of the calibration parameters number.  

Another important feature of the calibration process is the parallelization of the objective 

function evaluation. The DE algorithm is adapted for parallel computing by simultaneously using 

all the threads of computer cores to evaluate the objective function of each individual within a 

generation, which means a great acceleration of the optimization. For example, in this research, a 
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16-core Intel Xeon v4 workstation with 32 available threads is used for parallel computing for the 

DE, which is 32 times faster than unparalleled algorithm. Using a simplified building model 

together with parallelized DE can greatly improve the computational performance of the 

calibration process.  

 

5. Calibration and Validation of Simplified Modeling Tool 

5.1 Reference Buildings 

In this chapter, the SimBldPy tool is adopted to model two DOE reference buildings 

based on IECC 2006 (residential) and ASHRAE 90.1 2004 (commercial) standard. One is a 

residential building, and the other is a medium-sized office building. Both buildings are located in 

Philadelphia, PA. Typical Meteorological Year (TMY3) weather data will be used for the BES. 

EnergyPlus 8.5 is adopted as the reference modeling engine in this research to verify the 

performance of the SimBldPy model. EnergyPlus is a universally acknowledged building 

simulation engine that provides the most detailed modeling procedure for the transient thermal 

dynamics behavior of buildings (LBNL 2015), which has been validated to be accurate and 

reliable. The DOE (Deru 2011) and Pacific Northwest National Laboratory (Goel S 2014) carried 

out numerous studies in calibrating and verifying EnergyPlus models against field data and 

proved that it is a reliable building simulation tool. The two test buildings are illustrated in Fig. 

17: 
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two-storey residential building three-story office building with three plenum 

zones 

 Fig. 17 Building model of the two reference buildings in EnergyPlus  

Table 9 Thermal properties and system configuration of the two buildings 

 Residential Office 

Building Area (m2) 223 4982.2 

Gross Wall Area (m2) 221.2 1977.7 

Window Area (m2) 33.2 652.6 

Window U-factor (W/m2-K) 2.273 3.045 

Window SHGC 0.394 0.428 

Wall U-factor (W/m2-K) 0.535 0.7 

Roof U-factor (W/m2-K) 3.0 0.358 

Air Infiltration rate (h-1) 1 1 

HVAC type Packaged Terminal Packaged Terminal 

Nominal Cooling COP 4 4 

Cooling Source Energy Type Electricity Electricity 

Nominal Heating Efficiency 0.8 0.8 

Heating Source Energy Type Gas Gas 

Lighting (W/m2) 2.5 10.76 

Service Water Heating Efficiency 0.8 0.8 
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Table 10 Building occupancy schedule and use schedule 

Residential Building 

time of day wd_occ we_occ wd_app we_app wd_light we_light 

From 0 To 7 1.00 1.00 0.56 0.56 0.10 0.10 

From 7 To 8 0.88 0.88 0.72 0.72 0.43 0.43 

From 8 To 9 0.41 0.41 0.61 0.61 0.19 0.19 

From 9 To 16 0.24 0.24 0.53 0.53 0.13 0.13 

From 16 To 17 0.29 0.29 0.71 0.71 0.48 0.48 

From 17 To 18 0.55 0.55 0.86 0.86 0.67 0.67 

From 18 To 22 0.90 0.90 1.00 1.00 1.00 1.00 

From 22 To 24 1.00 1.00 0.85 0.85 0.30 0.30 

Office Building 

time of day wd_occ we_occ wd_app we_app wd_light we_light 

From 0 To 5 0 0 0.4 0.3 0.05 0.05 

From 5 To 6 0 0 0.4 0.3 0.1 0.05 

From 6 To 7 0.1 0.1 0.4 0.4 0.1 0.1 

From 7 To 8 0.2 0.1 0.4 0.4 0.3 0.1 

From 8 To 12 0.95 0.3 0.9 0.5 0.9 0.3 

From 12 To 13 0.5 0.1 0.8 0.35 0.9 0.15 

From 13 To 17 0.95 0.1 0.9 0.35 0.9 0.15 

From 17 To 18 0.3 0.05 0.5 0.3 0.5 0.05 

From 18 To 19 0.1 0.05 0.4 0.3 0.3 0.05 

From 19 To 20 0.1 0 0.4 0.3 0.3 0.05 

From 20 To 22 0.1 0 0.4 0.3 0.2 0.05 

From 22 To 24 0.05 0 0.4 0.3 0.05 0.05 

Note: “wd”, weekday; “we”, weekend; “occ”, occupancy schedule; “app”, appliances use schedule; “light”, 

lighting schedule 
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Table 11 Building indoor air temperature set point schedule 

Office Building 

time of day wd_Tset_heat we_Tset_heat wd_Tset_cool we_Tset_cool 

From 0 To 6 13 16 32 28 

From 6 To 7 18 16 32 28 

From 7 To 21 23 16 24 28 

From 21 To 24 16 16 32 28 

Residential Building 

time of day wd_Tset_heat we_Tset_heat wd_Tset_cool we_Tset_cool 

From 0 To 24 22.22 22.22 23.88 23.88 

 Note: “wd”, weekday; “we”, weekend; “Tset_heat”, heating set point; “Tset_cool”, cooling set 

point 

Table 9 shows some of the most important modeling parameters for SimBldPy and the 

referenced EnergyPlus model (will be called “sim model” and “ep model” in the rest of this 

chapter). For the residential building, both ep and sim model the building’s two floors as two 

thermal zones. For the office building, for ep model, each floor is divided into five zones (four 

perimeter zones and one core zone) while for the sim model, each floor is divided into two zones 

(one perimeter zone and one core zone). This is in order to simplify the modeling process in 

SimBldPy, and it will be shown later when simulation results are compared, simplifying the 

perimeter zones in SimBldPy will not cause much difference in the results compared with 

EnergyPlus. In addition, for the office building in EnergyPlus model, there are three 1.22m high 

plenum zones between each floors and on the top of the third floor where the roof is attached to, 

and they are all unconditioned. These plenum spaces are modeled as unconditioned space in 

SimBldPy and further added uncertainties as to achieve good results from SimBldPy modeling 

tool since these unconditioned space can be more volatile regarding indoor air temperature 

because they are influenced by the synergy of heat flux from the outdoor environment and from 

the upper and lower zone.  
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Table 10 and Table 11 show the building occupancy schedule, operation schedules and 

indoor temperature set point schedules. The reason for showing these schedules in Table 10 and 

Table 11 is that these values are very important in both modeling methods and will be referenced 

later when different temperature set point schedules are applied to certain zones of the buildings. 

 

5.2 Model Calibration Results 

The sim models of the two buildings are calibrated using the parallelized DE algorithm 

described in section 4.3. The parameters that are tuned include Cm, Am, At, U-values of the 

interior wall, interior floor, and ground floor. For this residential building, there is no internal 

wall, so it will not be considered in the calibration. The objective function of the DE algorithm is 

the sum of RMSE of the hourly heating gas and cooling electricity from the ep model simulation 

results. The calibration process takes about 1079 seconds and 2145 seconds for the residential 

building and the office buildings using parallel computing of 32 threads, respectively. The 

calibration results are shown in Table 12. 

Table 12 Calibrated model parameters for the sim model 

Building 

type 

Cm (J/K-

m2) 

Am 

(m2/m2) 

At 

(m2/m2) 

Ground floor U-

value (W/m2-K) 

Interior wall U-

value (W/m2-K) 

Interior floor U-

value (W/m2-K) 

Residential 60000 2.1 4.2 1.8 N/A 1.6 

Office 155000 1.1 3.4 2.0 4.0 1.8 
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5.3 Indoor Air Temperature 

The calibrated SimBldPy residential building model using zone thermal coupling method 

is compared with the simplified hourly method without zone thermal coupling to show how 

different the internal temperature of sim model could be from ep model. The sim model and the 

ep model are both modified to disabled the HVAC system in this case. Thus, the indoor air 

temperature of the two zones in the residential building becomes free floating air temperature. 

The end of this is to see if the indoor air temperature of the sim models (with and without zone 

thermal coupling) is in agreement with the ep model when the room temperature is not controlled 

by the HVAC system. 

a winter week w/o thermal coupling a summer week w/o thermal coupling 

a winter week w/ thermal coupling a summer week w/ thermal coupling 

Fig. 18 Indoor air temperature of the residential building with and without zone thermal coupling 
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According to the indoor air temperature shown in Fig. 18, the use of zone thermal 

coupling will improve model accuracy because when HVAC system is not operating, the contact 

surface of two zones are usually assumed to have no heat flow in the model without thermal 

coupling, which makes the zones more susceptible to outdoor environment. This causes the 

model to predict the zone air temperature in the winter lower and higher in the summer. When the 

HVAC system in the zone is working, if the indoor air temperature set points of adjacent zones 

are similar, then the heat flow between them would be minimal, but a higher heat flow could be 

observed when the thermostat set points are distinct, causing a difference in heating and cooling 

loads prediction in these zones compared to the model without thermal coupling. 

 

5.4 Heating and Cooling Load 

In this research, it is important that if the sim model’s heating and cooling load 

predictions are consistent with the reference ep model. The calibrated energy use in sim model is 

found to be a good predictor for the heating and cooling loads, which corresponds well with ep 

model’s load predictions. The validation results of sim model have been shown in Fig. 19 and 

Fig. 20.  

The simulation results shown in Fig. 19 and Fig. 20 indicate that the heating and cooling 

load prediction of the sim model agrees well with the trend and pattern of ep model results. The 

calculated R2 values for heating and cooling load predictions are 0.9937, 0.9914 for the 

residential building, and 0.9873, 0.9893 for the office building, respectively. 

In order to showcase the validation of the sim model when different temperature set 

points are applied to certain zones in the two buildings, we first compare the heating and cooling 

load of the ep model and sim model by applying the same temperature set points schedules shown 
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in Table 11 to all the zones in the two building. In order to validate the performance of the sim 

model when temperature set points are switched for certain zones as discussed in section 5.3, 

another test of the ep and sim model is performed by applying the set point schedule of the office 

building to the first floor in the residential building and the constant set point schedule of the 

residential building to all the core zones in the office building to see if the thermal coupled is 

going to give a consistent simulation results referenced to ep model. 
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hourly heating load of a winter week hourly cooling load of the summer week 

hourly heating load of a week in swing season 

heating load prediction accuracy w/o set point 
switching 

cooling load prediction accuracy w/o set point switching 

Fig. 19 Heating and cooling load comparison between ep and sim model for the residential 

building (line with apostrophe is the case with different indoor air temperature set points) 
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hourly heating load of a winter week hourly cooling load of the summer week 

hourly heating load of a week in swing season 

heating load prediction accuracy w/o set point 
switching 

cooling load prediction accuracy w/o set point 
switching 

Fig. 20 Heating and cooling load comparison between ep and sim model for the office building 

(line with apostrophe is the case with different indoor air temperature set points) 
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For the residential building, after switching the temperature set point schedule in the first 

floor to that of the office building, the heating load during night time falls below the baseline 

scenario. The heating load of the set point switching scenario also has a higher peak because the 

heating load will be higher when the temperature is raised from 18  to 23  as the office set 

point schedule states. The residential building does not need much cooling during the night, so 

switching the set point does not affect the cooling load pattern too much.  

For the office building, on weekdays, the heating load is lower after applying the constant 

set point to the core zones of the office building in winter, while on weekends, due to that the 

office building heating set point is only 16 , the higher residential set point in core zones raises 

the heating load. The same reason also applies to cooling load in summer. A lower heating load 

peak of the set point switching scenario makes sense because a constant set point in the core 

zones makes the office building more thermally “stable”. The results show that the sim model has 

good performance in simulating heating and cooling load when different temperature set point 

schedules are used in different zones. 

 

5.5 Performance of Model under Various Climates and Various Retrofit Combinations  

One of the main objectives of developing the SimBldPy tool is to facilitate the parametric 

study of building retrofit ECM options. Since dynamic and transient BES engines are usually 

more computationally intensive, the development of this lightweight modeling tool provides 

alternatives for assessing relative impacts of ECM combinations on building load and energy use. 

The simulation time of sim model is about 1/30 times of the ep model, meaning 30 times faster 

due to the simplification. Therefore, the validity of the sim model under various weather 

conditions and ECM options should be guaranteed. In this chapter, the results of the sim model 
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will be used to compare with those of the reference model (ep model) under different climates 

and retrofit options to verify its performance in handling the various needs in building 

performance study.  

 

5.5.1 Validation under different climate conditions 

One of the concerns for the sim model is that if it is able to function well in different 

climate conditions for the same buildings because the sim model is calibrated with ep model 

results under current weather condition and the performance of the same model in various climate 

conditions should also be validated. We run the sim model and the ep model in five different 

climate zones in the United States: San Francisco in California (CA), Phoenix in Arizona (AZ), 

Houston in Texas (TX), Memphis in Tennessee (TN), and Burlington in Vermont (VT), located 

in 2A, 2B, 3A, 3C, and 6A climate zones, respectively. The annual summary of the heating and 

cooling energy use is presented in Table 13, where normalized root mean squared error (NRMSE) 

and R-square (R2) are used as an indicator of the accuracy of the sim model’s hourly prediction 

compared with the referenced ep model. NRMSE and R2 are calculated in this way: 

Equation 21：  NRMSE 	
∑

       

Equation 22：  
∑ ̅ ̅

∑ ̅ 	 ∑ 	
      

where  is the true value and  is the model predicted value; ̅, ̅,  	and 	are 

the average of true and predicted value, and the maximum and minimum of true values, 

respectively. 
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Table 13 Sim model performance in energy use prediction in different climate conditions (unit: 

GJ) 

Residential Building 

City 

heating 

energy ep 

heating 

energy sim 

cooling 

energy ep 

cooling 

energy sim 

heating 

energy 

NRMSE 

cooling 

energy 

NRMSE 

heating 

energy R2 

cooling 

energy R2 

Memphis 117.029 123.366 21.942 19.862 2.7% 3.8% 0.992 0.990 

Phoenix 44.550 46.705 42.974 43.606 5.1% 3.3% 0.985 0.994 

Houston 64.537 68.853 27.710 25.248 2.5% 3.5% 0.992 0.988 

SF 114.826 121.231 4.691 4.780 3.2% 2.1% 0.990 0.987 

Burlington 278.832 277.279 6.175 6.462 2.6% 1.9% 0.996 0.988 

Office Building 

City 

heating 

energy ep 

heating 

energy sim 

cooling 

energy ep 

cooling 

energy sim 

heating 

energy 

NRMSE 

cooling 

energy 

NRMSE 

heating 

energy R2 

cooling 

energy R2 

Memphis 470.208 460.225 319.897 307.896 1.6% 3.5% 0.989 0.988 

Phoenix 81.202 87.467 556.582 568.304 1.5% 4.2% 0.976 0.987 

Houston 167.295 161.408 408.805 398.682 1.2% 4.1% 0.984 0.988 

SF 214.869 211.745 108.777 112.861 1.5% 3.9% 0.984 0.986 

Burlington 1625.397 1582.362 119.930 125.549 2.1% 2.2% 0.991 0.988 

 

Table 13 shows that the sim model is able to accurately predict the cooling and heating 

energy for both test buildings. For the residential building, the highest NRMSE is 5.1% for hourly 

heating energy in Phoenix and 3.8% for hourly cooling energy in Memphis. The highest NRMSE 

for the office building is 2.1% for heating and 4.2% for cooling. The R2 value, which indicates the 

correlation between the results of the sim model and the ep model, clearly shows that the 

performance of the sim model is good compared to the reference model for both buildings in 

energy use simulation.  

In addition, one week of results in winter, summer, and swing season, is selected 

respectively to demonstrate the validity of heating and cooling load prediction for both buildings 

and is shown in Fig. 21. Three cities: Houston, San Francisco, and Burlington, are chosen in Fig. 

21 to represent distinct weather conditions where the building will be located. The predictive 
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power of the sim model is comparable with that of the ep model in these cases, which shows that 

the sim model is able to simulate the heating and cooling load and energy use in various weather 

conditions.  
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Burlington 

Fig. 21 Hourly heating and cooling load validation of the buildings in other climate zones 
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5.5.2 Validation with ECMs 

To better understand the performance of the sim models with different ECMs, an ECM 

parametric study function has been added to the SimBldPy tool. The ECMs currently involved in 

the tool are change to window U-value and SHGC (window change), wall U-value improvement 

(adding insulation), roof U-value improvement (adding insulation), blinds shading, air infiltration 

improvement, heating efficiency improvement, cooling efficiency improvement, and lighting load 

reduction(lighting system upgrade). The ECM parameters are listed in Table 14. It should be 

noted that the value 0 ((0, 0) for window retrofit) for each ECM’s parameter means the retrofit 

option is not applied to the building in an ECM combination. 

Table 14 ECMs and parameters 

window 

(SHGC, m2-

K/W) 

wall_insulation (R-

value) 

(m2-K/W) 

roof_insulation (R-

value) 

(m2-K/W) 

window  

shading 

air_infl  

(h-1) 

heating 

efficienc

y 

cooling 

efficienc

y 

lighting

s 

 

(0.0, 0.0) 0 0 0 0 0 0 0 

(0.80, 3.6) 1.25 1.519757 internal 

0.4 

(0.3) 0.95 4.2 0.3 

(0.75, 2.8) 1.610306 1.968504 external 0.6  4.5 0.4 

(0.62, 1.6) 1.968504 2.421308  0.8    

(0.44, 1.6) 2.331002 2.873563      

(0.288, 1.05) 2.688172 3.322259      

(0.585, 0.52) 3.04878 3.773585      

(0.28, 0.33) 3.412969       

(0.63, 0.48) 3.773585       

(0.25, 0.26)        

Note: the number in () for air infiltration is the value used for office building; the lighting system 

upgrade coefficient in the table means how much lighting load will remain after retrofit compared with the 

current lighting system. 
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The modeling of wall and roof insulation in SimBldPy is achieved by adding an 

additional thermal resistance to the opaque material resistance of the building. The window 

shading is modeled by assigning a solar reduction factor (SRF) to the solar heat gain through the 

windows in each time step. In SimBldPy, the SRF for the exterior shading is assigned to 0.3, 

while that of interior shading is 0.7. Shading will be enabled once high zone cooling energy is 

observed and the same control strategy is adopted in the window shading in ep model. In 

SimBldPy, the activation and deactivation of window shading is determined by the cooling load 

of the previous time step, which is the same as the ep model. 

A function programmed in the SimBldPy tool called “SimParaValidate” is designed to 

take any combination of ECMs from the above list as an input argument and run the simulation 

for both sim model and ep model with the designated ECMs. For the parametric analysis of 

EnergyPlus, a Python script is programmed to modify the text based EnergyPlus input file and 

perform parametric simulations of different ECMs. The “SimParaValidate” function is then 

executed in parallel to test different ECM combinations for sim and ep models. For the ECMs 

considered in Table 14, there could be 136,080 cases of different ECM combinations. Testing all 

the cases would be impossible, so we randomly pick 100 samples from all cases using latin-

hypercube sampling to ensure reasonably distributed samples in the huge combinatorial design 

space. The statistics of model accuracy for the 100 randomly chosen samples with various ECM 

combinations for the residential building and office building are shown in Appendix I and 

Appendix II.  

The average NRMSEs for office building heating load, cooling load, heating energy, and 

cooling energy, are 1.95%, 3.26%, 2.29%, and 3.98%, respectively. The R2 values for them are 

0.988, 0.99, 0.983, 0.983, respectively. For the residential building, the average NRMSEs for 
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heating load, cooling load, heating energy, and cooling energy, are 2.7%, 3.61%, 2.76%, and 

4.9%, respectively, while R2 are 0.994, 0.989, 0.993, 0.979, respectively. It is proven that the sim 

model is efficient and accurate in simulating the hourly heating and cooling load and energy use. 

For each building, the heating and cooling energy use of four random ECM combinations 

is plotted in Fig. 22. In the figure, the order of the ECMs shown at the top of each plot is defined 

as follows: window retrofit, shading position, wall insulation R-value, air infiltration level, roof 

insulation R-value, heating system efficiency, cooling system efficiency, and lighting load 

improvement. 

Fig. 22 shows that the sim model is able to predict hourly heating and cooling energy use 

with different ECM combinations. Although in some cases, the hourly results may differ from ep 

model results, particularly for the peak load prediction, the overall performance of the sim model 

is reliable when SimBldPy is used as a comparative parametric study tool to learn the impact of 

different ECM combinations on the heating and cooling performance of the building. Sensitivity 

analysis and regression analysis could be used to study the optimization and evaluation of 

building retrofit policy by modeling buildings in SimBldPy.  
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Residential Building 
(0.0, 0.0), 1.0, 3.78, 0.4, 1.97, 0.0, 4.5, 0.0 

(0.28, 0.33), 0.0, 2.33, 0.6, 1.97, 0.95, 4.5, 0.4 
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(0.62, 1.6), 2.0, 0.0, 0.0, 0.0, 0.0, 4.5, 0.3 

(0.585, 0.52), 1.0, 1.25, 0.8, 3.32, 0.0, 0.0, 0.0 

Office Building
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(0.0, 0.0), 2.0, 3.049, 0.8, 3.78, 0.95, 0.0. 0.0 

(0.8, 3.6), 1.0, 1.25, 0.0, 3.78, 0.95, 4.2, 0.3 

(0.75, 2.8), 2.0, 2.69, 0.0, 0.0, 0.0, 4.5, 0.3 
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(0.288, 1.05), 1.0, 0.0, 0.8, 1.52, 0.0, 4.2, 0.4 

Fig. 22 Heating and cooling energy use of the two buildings when different ECM combinations are applied 
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The annual sums of heating and cooling load of the 100 randomly chosen ECM 

combination samples are plotted in Fig. 23 to visualize the comparison between the sim model 

and the ep model. To further study the model performance in simulating whole building energy 

use including pumps, fans, equipment and lighting energy use, the annual energy use of these 

systems are also shown in Fig. 23. A close correlation with the sim model and ep model in terms 

of annual heating and cooling calculation, which has an important application in ECM selection 

and screening at the preliminary stage of building retrofit. As shown in Fig. 23, the sim model is 

also able to simulate the energy use for different end use systems as well as the heating and 

cooling energy use with high reliability on an annual base with various ECMs being installed.



 

 

 

94
 

94
 

Validation of heating and cooling energy use of the buildings 

 
Residential Building Office Building 

End use validation 

 
Residential Building Office Building 
Fig. 23 Annual heating, cooling energy use, and end use of the two buildings under different ECM combinations 
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5.6 Summary of SimBldPy and EnergyPlus Performance 

Table 15 Comparison of computational cost and bias between EnergyPlus and SimBldPy 

 E+ 
(residential) 

SimBldPy 
(residential) 

E+ 
(office) 

SimBldPy 
(office) 

Computational time (16 cores 
CPU) 

39.6 hr 1.05 hr 60.1 hr 1.97 hr 

Averaged accuracy of BEU 
(NRMSE) 

/ 4.2% / 6.3% 

PMV calculation √ √ √ √ 

 

Table 15 shows the comparison of the EnergyPlus and SimBldPy regarding their 

computational performance and modeling bias. The average computational time used for 

EnergyPlus to simulate the residential buildings and office building out of approximately 13000 

retrofit options (sampled from the entire combinatorial space, about 10% of the total design 

space) are 39.6 hours and 60.1 hours,  respectively, while SimBldPy only uses about 1/30 to 1/40 

computation time compared with EnergyPlus. The tradeoff here is the bias in simulation results, 

which are about 4.2% and 6.3% for residential and office building, respectively.  

The results show that with affordable loss of model confidence, the developed 

lightweight building energy simulation tool which is dedicated for comparative parametric 

analysis, or for fast modeling and building energy performance evaluation, is able to greatly 

reduce computational complexity by about thirty to forty times. Moreover, the PMV estimation is 

also enabled while using SimBldPy for indoor thermal comfort analysis. The PMV calculation 

code is adapted from Chris Mackey’s “comfort_model” Python script1, and is optimized for 

                                                      
 

1 https://github.com/CenterForTheBuiltEnvironment/comfort_tool/blob/master/contrib/comfort_models.py 
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computational efficiency by vectorizing all the variables used in PMV calculation and has been 

integrated with SimBldPy code. 

In this chapter, it is shown that the SimBldPy can potentially be used for the calculation 

of BEU during the optimization procedure where BEU is an important part of the multi-

objectives. In the forthcoming chapter where the optimization method is developed and where a 

case study will be tested with, SimBldPy will replace EnergyPlus in hourly BEU simulation 

based on weather data of future extreme year, which is constructed in the way described in 

section 3.3. The simulation results will then be used to train the RF model for future hourly BEU 

predictions during the post-retrofit phase.  

 

6. Optimization Approach  

It was introduced in the last chapter that a Python building simulation tool is developed 

based on ISO 13790 standard’s simplified hourly method. The simulation tool is able to read the 

text based input file describing the physics of a building, including building shape and zoning, 

construction materials and physical materials, occupancy schedules, HVAC system type and 

efficiency, and etc. It will be used as the most important tool to evaluate the objective function in 

the optimization. The optimization work flow is shown in Fig. 24. The SimBldPy model will be 

calibrated based on the metered energy use. Then, a building retrofitting module will be in charge 

of reading ECM options entry and their respective parameters, the utility cost information in each 

year during the lifecycle period, as well as the information of the calibrated building model. After 

optimization information collection, the evolutionary optimizer will generate simulation tasks to 

the SimBldPy engine. This time, in order to assess the impact of climate change on building 

energy use (BEU) in the future years, a predictive model based RF is developed in this research 
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and it will make projections on the future hourly energy use. The optimizer will iterate to improve 

the objective function and at the mean time turn to SimBldPy to conduct energy simulation and 

evaluate the objective function. When the solution converges, the optimization results are 

exported and forwarded to a post-processor for decision-making. It is worth noting that 

throughout the process, parallel computation is used in the model calibration and in the 

evolutionary optimizer, which speeds up the entire process.  

 

Fig. 24 Work flow of optimization approach 

 

6.1 Decision Variables 

The decision variables in this research involves various ECM options, and all the variable 

parameters will be normalized and scaled from 0 to 1. The ECMs will include building wall 

insulation, window U value and SHGC (solar heat gain coefficient), roof insulation, natural 

ventilation, air infiltration level, heating and cooling system efficiency, renewable energy 
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systems, and etc. If an ECM is not considered in the retrofit, its value will be 0. The 

normalization rules for different types of decision variables are as follows: 

 

6.1.1 Discrete variable scaling 

A discrete variable can be assigned to an ECM. In a non-idealized application of 

optimization problem in real practice, values such as the U-factor, solar transmittance, should be 

a specific number depending on the properties of the material for walls or windows, or, whether 

to adopt solar shading device for a building can be a categorical type of values including only 0 

and 1. The solution of scaling such discrete variable is to map them into a continuous space 

between 0 and 1. The implementation will project the discrete variables into a uniformly 

distributed space between a specified range. Using uniform distribution here rather than other 

distribution is to ensure the equal chance for the selection of each parameter. For example, in a 

range of 0 to 1, the variable extracted between [0, 0,5) means adopting solar shading system 

while variable extracted between [0.5, 1) means not adopting the shading system.   

 

6.1.2  Continuous variable scaling 

For continuous variables, the scaling method works in a similar way with discrete 

variables. Instead of assigning a discrete value to a random number generated by uniform 

distribution, the continuous space is mapped into a continuous space between 0 and 1 

corresponding to the designed parameter range. To simply illustrate the scaling of continuous 

variable, the example of air infiltration rate is used. If the design space of air infiltration is set 

between 0.5 h-1 to 3 h-1, then a uniform distribution is assigned to the design space with a 
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sampling variable range of 0 to 1. For example, if the air infiltration is 0.8475, the projected value 

in the sampling space would be 
. .

	 	 .
	0.139 in the space of [0, 1).  

 

6.1.3  User defined scaling 

In the application of different ECM parameters, there can be both discrete and continuous 

variables as well as user-defined variables such as window U-factors of 0.5 W/m2-K, 1 W/m2-K, 4 

W/m2-K, and 10 W/m2-K for the window retrofitting. By applying the mapping method described 

in section 6.1.1 and 6.1.2, all ECMs and their parameters will be projected into a uniform 

distributed sampling space between [0, 1). 

 

6.2 Objective Functions 

The objective functions in this research will include four parts: energy saving in Joule, 

energy saving in dollars, retrofit investment (including maintenance cost) and thermal comfort.  

 

6.2.1 Building energy simulation 

One of the most important parts of the objective functions is the evaluation of the energy 

performance of the building under different retrofit packages. We implemented the 5R1C 

modeling method using Python programming and created a simulation tool called SimBldPy as 

introduced in Chapter 4. The input file format is text based, similar to EnergyPlus and DOE2 

engines and easy to manipulate by users or clients. The modified 5R1C modeling method is 

presented in Fig. 14.  
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The hourly energy use of a building with same type of utility, E, will be calculated as: 

Equation 23: 

, , , , , , 		  

		  

Where, , , ,  represent hourly energy use of a same utility type, energy 

use of pump, energy production from solar panels, and solar water heaters, respectively, and 

, , , , , , , , , , ,  is energy use of heating, cooling, domestic hot water 

(DHW), lighting, and equipment, respectively for ith HVAC zone, in Joule. 	is the total 

hourly energy use of all utility types and Fu is the primary energy factor for a certain type of 

utility. Among them,  is electricity production from solar panel and its value of each time step 

can not exceed total electricity use.  is the thermal energy production, and its value of each 

time step can not exceed DHW thermal demand, in Joule. It should be noted that this equation is 

only for aggregating the same type of utility. If multiple utility types (electricity, gas, oil, and 

etc.) are used in a building, then total energy will be the primary energy in J that are transformed 

by primary energy factor for each type of utility.  

 

6.2.2 Future year energy projection under climate change 

In order to understand how climate change is going to affect the optimization of building 

retrofit, it is necessary to calculate building energy performance in future years. Using the 

morphing method developed by Belcher et al., future local hourly weather data can be 

downscaled from the global climate model (GCM) (Belcher, Hacker, and Powell 2005). The 



 

101 

 

detailed morphing algorithm and its results in 10 climate zones in the United States are obtained 

and presented in (Shen and Lior 2016). 

After obtaining hourly weather data in the coming years, it will still be computationally 

heavy to calculate the hourly energy use of each year by SimBldPy. For each retrofit package 

(including the baseline case) in the optimization process, a data-driven RF model developed in 

Chapter 2 is trained by the dataset constructed by extreme year hourly weather data and the 

corresponding SimBldPy simulation results of each package, and the predictions of the RF model 

will serve as the basis for calculating energy saving in Joule and dollar . 

Finally, the total energy saving in Joule of the lifespan can be simply calculated by: 

Equation 24:  ∑ , , 			  

 Equation 25:  	 ∑ ∗ 			  

Where ,  and ,  is k year’s annual energy use without retrofit (baseline case) 

and energy use after k years of retrofit for a particular type of utility, in Joule. F is the primary 

energy transforming factor. The total energy saving in Joules, , can be calculated by 

aggregating the use of different types of energy sources. 

In addition, after the retrofit measures are applied to the building, the ageing of the ECMs 

will have an impact on the future performance of the building. In this research, by introducing 

retrofit maintenance during the post-retrofit period every five years which includes testing and 

maintaining the applied ECMs to ensure that their performance are as good as supposed to be, the 

ageing factor of ECMs in the future is assumed to be excluded in this research (Jaggs and Palmer 

2000, Chidiac et al. 2011b, Rysanek and Choudhary 2013). The calculation of the maintenance 

cost will be explained in 6.2.4. 
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6.2.3 Thermal comfort 

As an important part of the objective functions, the thermal comfort calculation is also 

introduced into the simulation process by assuming a constant metabolic rate at 1.1 met, a 

constant air velocity of 1 m/s. The objective function is defined by aggregating the absolute PMV 

values in all zones in each time step, making it possible to sum the thermal dissatisfaction in all 

overheated and underheated hours. Moreover, the future PMV values during the lifecycle will 

also be projected by the proposed RF model, forming the final objective function as the sum of 

the absolute PMV values in each zone throughout predetermined lifecycle in order to compare the 

results of different design vectors. 

 

6.2.4 Financial modeling 

In addition to energy saving in Joule, the objective functions also include energy saving 

in dollars, and retrofit investment. For the calculation of these last two sub-objectives, an LCA 

method is used taking into account the future increase in cost and the discount rate. 

 Calculation of retrofit investment: 

Equation 26: 

, ∗ , , ∗ , , ∗ , ,

∗ , ∗ 		 $  

Where, , , , , , , ,  is the area (m2) of building wall, roof, and 

windows where ith wall insulation, jth roof insulation, lth window material, nth shading material 
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with certain cost ($), respectively.  is the total floor area where infiltration level was 

improved, which has a cost of  ($/m2). Other costs include installing onsite renewable energy 

sources, upgrading building lightings, and etc. 

It is assumed that all ECMs that have an initial investment will be maintained every five 

years, which will result in a periodic maintenance fee. Thus, the total retrofit investment can be 

obtained in the following equation: 

1 ∗
1

,			 	%	5 0	

0，	

			 $  

Where,  (%) is the cost increase in maintenance fee of each year,  is the discount rate 

(%),and  is assumed to be proportional to the initial investment of kth ECM.  

The introduction of maintenance fees every five years is to intended to ensure that the 

applied ECM will operate as well as in the beginning of its life. Though the maintenance cost 

occurs every five years, the cost increase  and discount rate  will always be taken account into 

account in the calculation on an annual basis. For the case study in Chapter 8, the proportion of 

the maintenance cost of the initial investment is assumed to be 12% and is calculated every five 

years. 

 Calculation of energy saving in dollars: 

The utility cost for each different type of energy source will be assumed to increase 

annually, and the total energy saving in dollars in the lifecycle would be: 

Equation 27:  	 ∑
∗ 	 , , 			 $ 		

Equation 28:  	 ∑ 			 $  
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Where,  ($) is the total saving for type of energy source u,  (%) is the cost 

increase for type of energy source u, and 	 , , ,  is the energy cost of type u during post-

retrofit phase for the building with and without retrofit. Finally,  can be obtained by 

aggregating the energy saving in dollars of each utility type. 

 

6.2.5 Formulation of the optimization problem 

After declaring the decision variables, and each sub-objective function, the multi-

objective combinatorial optimization problem is then formed as follows: 

min 		

min   

min   

min   

 where, , , , , , … 	   

S.T. 

∈ 0,1    

This optimization problem is a multi-objective combinatorial problem, and the possible 

design space could be huge.  In section 6.2.6, the evolutionary algorithm that is used to solve the 

problem by finding the Pareto front in the solution space is described.  

The reason of considering both energy saving in Joule and in dollar as sub-objectives is 

that the utility costs of different energy source are different and different energy source contribute 
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to energy use in the building incurred by different end use. For example, one ECM combination 

may provide propensity in reducing heating energy more than reducing cooling energy, such as 

sealing up the building and decrease infiltration rate while not using solar shading options during 

cooling season. Usually, electricity is used for cooling and gas or steam will be used for heating. 

Then the energy saving in Joule will not have a linear relationship with energy saving in dollars 

in this case. The inclusion of the two objectives is to ensure that tradeoffs incurred by such 

situation can be observed and analyzed in the optimization and decision-making process. 

The inclusion of the sub-objective --- retrofit investment, in lieu of merging the 

investment and energy saving in dollar and thus taking net present value (NPV) as the objective 

function is that by doing this, the decision maker will be given a chance to see the total cost of 

each ECM combination because even though high investment can sometimes result in high 

returns and high net present value (NPV), the affordability of the retrofit early in the retrofit life 

will still be greatly favored by building owner or investor as there would be economic 

uncertainties in the future. 

 The adoption of summed PMV values as one of the objectives is to make sure that 

indoor thermal comfort can be taken into account as some retrofit options seem to be able to save 

a lot of energy, but at the same time, they can bring thermal comfort problems to the building, 

such as cooling and heating set point change and natural ventilation. The minimization of the 

PMV sub-objectives will prevent the retrofit packages that overheat and overcool the building too 

much from being selected. One of the concerns is that the adoption of this metric will create more 

complexity and tradeoffs to the multi-objective optimization problem and make the decision-

making process more complicated.  

In summary, other objectives can also be considered in the optimization such as 

greenhouse gas emission, indoor air quality (by assessing the necessary amount of fresh air 
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needed by a healthy indoor environment). The purpose of this dissertation is to provide a 

methodology in the optimization procedure, methods, and decision-making support framework. 

The selection of objectives in different retrofit project depends greatly on the conditions of each 

retrofit and can be subjective to change. In this research, the selection of the four objectives 

suffices for the discussion of the optimization, decision-making tradeoffs, and the need of the 

case study that will be introduced in Chapter 8. 

 

6.2.6 Optimization algorithm 

Traditionally a non-dominated genetic algorithm (NSGA-II) will be used to solve the 

problem in finding Pareto fronts (Deb et al. 2002). This non-dominated sorting algorithm has 

been proved to be efficient and effective in finding non-dominated solutions for multi-objective 

optimization problems (Chantrelle et al. 2011, Hamdy, Hasan, and Siren 2013, Shao, Geyer, and 

Lang 2014). However, unlike a normal optimization problem that NSGA-II confronts, the 

decision variables in this research have all been normalized in a continuous space between 0 and 

1, so instead of GA, the differential evolution (DE) algorithm is used in handling the decision 

variables and the evolution for finding optimal solutions (Storn and Price 1997). The advantage 

of DE is that it is faster and more robust in convergence on the search for numerical optimization 

solution and is more likely to find the global optimum. Thus, the evolutionary algorithm is called 

non-dominate sorting differential evolution (NSDE) (Abbass, Sarker, and Newton 2001), where 

the same mutation and the same crossover strategy of DE are used while the selection criterion is 

adjusted by using elite non-dominated sorting as used in NSGA-II. The pseudo code for NSDE is 

shown in Table 16.  
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Table 16 Algorithm: non-dominate sorting differential evolution 

Initialize population:  
for i in (1, NP): 
 for j in (1, D): 
  Xi,j = random_gaussian[0, 1) 
 end for 
end for 
Do mutation, crossover, selection, and objective evaluation: 
gen = 0 
while (gen < Max_gen): 
 for i in (1, NP):   
  do a = random_gaussian[0, 1)*NP while a==i 
  do b = random_gaussian[0, 1)*NP while b==i || b==a 
  do c = random_gaussian[0, 1)*NP while c==i || c==a 
  Perform mutation and binomial crossover for Xi and create trial vectors, Xt,jrand:  
  jrand = rand*D 
  for k in (1, D): 
   if (rand[0,1) < CR) or k == D): 
    Xt,jrand = Xc,i + F(Xa,i - Xb,i) 
   else: 
    Xt,jrand = Xi,j 
   jrand = (jrand+1)%D (get next parameter) 
  end for 
  Perform non-dominated sorting selection and evaluation: 
  if (Xt,jrand dominats Xi): 
   add Xt to the pool Pgen 
  else: 
   add Xi to the pool Pgen 
 end for 
 F = [] (Pareto fronts) 
 Perform non-dominated sorting selection and evaluation: 
 for p in Pgen: 
  for q in Pgen: 
   Initialize np = 0, which is the number of individuals that dominate p 
   Suppose Sp = ∅ which contains all the individuals being dominated by p 
   if p dominates q: 
    add q to the set Sp 
   else: 
    np += 1 
  end for 
  append p to Fnp and calculate its crowding distance  
 end for 
 Then Sort all vectors in F by each vector's rank and crowding distance 
After sorting, go through each front and add all the vectors to next generation’s population pool Pgen+1 until doing so 

would make len(Pgen+1) > NP 
 m = 0 
 while m <= NP: 
  for p in sorted F: 
   append p to Pgen+1 
  m += 1 
 end while 
 gen += 1 
end while 
 
Note: NP: the population size; D: problem dimension; CR: crossover constant; F: learning rate; Max_gen: maximum 
generations. 
 

 Generator 
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A generator is used to create the initial set of candidate solutions needed by the 

evolutionary computation. It is important for the convergence speed of the optimization process 

and the possibility of finding the global optimum. The generator in this research is using Latin 

hypercube sampling of Gaussian random fields that is good at generating a relatively small set of 

map realizations that captures most of the variability of the spatial inputs (Pebesma and 

Heuvelink 1999).  

 Selector 

The selector decides how to choose the individuals in the population who will create the 

offspring for the next generation. Selection has to be balanced with variation in crossover and 

mutation. The selector usually used for the non-dominate sorting genetic algorithm --- the 

tournament selection, is used in this research. The tournament selection is similar to the rank 

selection in terms of selection pressure, but it is more computationally efficient and more 

amenable to parallel implementation (Mitchell 1998). Two individuals are chosen at random from 

the population. A random number r is then chosen between 0 and 1. If r < k (where k is a 

parameter ranging from 0 to 1, and 0.9 is used in this research), the fitter of the two individuals is 

selected to be a parent; otherwise the less fit individual is selected. Both two are then returned to 

the original population and can be selected again. 

 Crossover 

The main distinguishing feature of genetic algorithm is the use of crossover, and different 

crossover operator can result in different performance of the optimization (Mitchell 1998). Three 

different crossover operators are to be used and be compared in terms of their performance by the 

case study in Chapter 8. They are single point crossover, two point crossover, and uniform 

crossover. 
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For the single crossover, only one crossover position is chosen at random and the parts of 

two parents after the crossover position are exchanged to form two offspring. In single point 

crossover, the head and tail of a chromosome break up, and if both head and tail have good 

genetic material, then none of the offspring will get the both good features directly. 

For the two point crossover, two positions are chosen at random and the segments 

between them are exchanged. Two point crossover is less likely to disrupt schemas with large 

defining lengths and can combine more schemas than single point crossover. This will allow the 

head and tail section of a chromosome to be accepted together in the offspring. 

For the uniform crossover, each gene in offspring is created by copying it from the parent 

chosen according to the corresponding bit in the binary crossover mask of same length as the 

length of the parent chromosomes. For each element of the parents, a biased coin is flipped to 

determine whether the first offspring gets the “mom” or the “dad” element. In this research, the 

“biased coin” is set to have the same chance to adopt the element from the parents. Thus, the 

offspring will have a mixture of genes from both the parents. 

A crossover rate of 0.8 is used in this research, which means around 80% of the offspring 

will be generated by crossover. 

 Mutation 

Mutation is basically a measure of the likeness that random elements of your 

chromosome will be flipped into something else. The existence of the mutation operator is to 

ensure the population against permanent fixation at any particular locus and thus playing more of 

a background role. Usually, a mutation rate between 0.005 and 0.01 is adopted (Mitchell 1998). 

The Gaussian mutation with a mutation rate of 0.01 is used in this research. Gaussian mutation 

adds a random number from a Gaussian distribution with mean zero and one as the standard 
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deviation to each vector entry of an individual and can be applied to float genes like the 

individual’s genes in this research. The Gaussian distribution will be mapped to the each vector’s 

bounding condition, which is 0 to 1 here.  

 Population size 

 Population size defines how many chromosomes are in one generation. In this research, 

the population size is set to be 20 times the sum of all parameters listed in Table 20 to Table 22 

for each generation. A maximum of 100 generations is used as the stopping criterion for the 

evolution process. 

 

7. Decision Making Support Method 

In this research, a decision-making support method is developed for the optimization 

results and its visualization. Traditionally, Pareto fronts archived through the optimization will be 

treated directly as a deliverable to the clients for decision-making (Shao, Geyer, and Lang 2014) 

(Roberti et al. 2017) (Tadeu et al. 2015) (Son and Kim 2016). However, the fronts could cover a wide 

range of solution sets in the design space, and it would still be hard for the user to target at 

solutions that they might be interested in by a predetermined preference, criterion, or state of 

mind. This situation could be aggravated with a high dimensional design space where more than 

three objectives are considered. Hence, a decision-making support scheme is developed here 

based on an unsupervised learning method --- hierarchical clustering (Johnson 1967).  

A clustering problem can usually be described as follows (Hansen and Jaumard 1997): 

min ∑ ∑   
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S.T. 

∑ 1				∀   

 ∑  

					∀ ,   

0	 	1			∀ , 		  

Where m is the designated number of clusters;  is the dissimilarity between object i 

and j;  measures if object i is assigned to certain cluster j, and it is a binary variable. The 

resolution to a clustering problem can be described as searching the best set of medians, which 

are able to assign all the points to and meanwhile minimizes the sum of the distances from all 

points to their respective cluster median, and one point should and only should belong to one 

cluster.  

In this study, the hierarchical clustering technique will be used to find the group for each 

Pareto frontal points to which they belong. It is one of the most popular ways to assign data 

observations to clusters. It has been used to analyze market entry strategies (Robles 1994), design 

group technology manufacturing cells (Kamrani, Parsaei, and Chaudhry 1993), define 

employment sub centers in Los Angeles region (Giuliano and Small 1991), and most importantly, 

it can be used to visualize high dimensional data as other clustering techniques do (Agrawal et al. 

1998, Kriegel, Kröger, and Zimek 2009, Parsons, Haque, and Liu 2004, Tadesse, Sha, and 

Vannucci 2005). The hierarchical clustering technique used in this research is based on 

agglomerative method, which starts with a cluster number of all the data points in the database. 

Basically, the number of all the Pareto fronts, n, is the initial clustering number. Then the 

algorithm will gradually merge the two most similar points into one cluster, and reduce the 
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number of clusters to n-1. By repeating the step, all the Pareto fronts will be agglomerated into 

one cluster that contains all the points, and the whole agglomeration process can be pictured by a 

dendrogram following a tree-like path.  

The decision rule that is used to merge the clusters and form the similarity-dissimilarity 

matrix will be the major difference between those agglomerative methods. The decision rule that 

is used here is called the linkage method. The clustering method will calculate the similarity-

dissimilarity matrix so as to compute the relationship between the new clusters and the remaining 

entities in terms of the linkage method (Blashfield 1976). There are several different linkage 

methods, but all of these methods can be described in the following equation to show how they 

compute this relationship (Müllner 2011): 

 Equation 29:  , 	 , , , | , , | 

where  function is the squared Euclidean distance between different entities; i and j are 

two clusters joined into a new cluster k = i ∪ j; h is the remaining entity. How , , ,  are 

determined is based on different linkage method. For example, for single linkage clustering, the 

parameters are set as 0.5, 0, 0.5 (Sneath 1957). In this study, the ward 

linkage is used as proposed by Ward in 1963, which is also called the “minimum variance 

method” (Ward Jr 1963). The parameters used in this method are: 

;	 ;	 ;	 0 

where , ,  is defined as the number of points in cluster i, j, h, respectively.  

With hierarchical clustering, a layered clustering scheme is developed to better group and 

visualize the Pareto fronts for decision-making support. Clustering is performed at each layer, 

allowing users to “zoom in” on the sub clusters of interest to them and then performing further 
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clustering on the sub clusters until the Pareto fronts in the cluster are retrieved and compared. For 

hierarchical clustering, this procedure can be simply conducted by examining the dendrogram and 

applying the linkage similarity-dissimilarity matrix to the clustering algorithm to find the certain 

sub clusters of the parent cluster.  

However, there is still a problem: even with hierarchical clustering, the question of how 

many clusters to choose at each layer still exists, as other clustering techniques do (Guha, 

Rastogi, and Shim 1998, Halkidi, Batistakis, and Vazirgiannis 2001). Here we adopt an “elbow” 

method (Thorndike 1953), which attempts to find the clustering step where the biggest leap of 

distance growth happens in order to determine the number of clusters. That is to say, the location 

of a “knee” in the distance plotting for each step of agglomeration is generally considered as an 

indicator of the appropriate number of clusters. In this research, the proper cluster number will be 

determined at each layer according to the “elbow” method with a minimum number of cluster of 

three. This ensures that the process of layered clustering is fast (not too few clusters) and in the 

meantime remains visible to the users.  

The process illustrated in Fig. 25 describes how the hierarchical clustering works in a 

layered framework to find the clusters of ECM combinations that are interesting to the decision 

maker. First, the “elbow” method described above will find the best distance of dissimilarity to 

determine the number of clusters in the first layer (step 1). Next, the dataset shown in Fig. 25 will 

be classified into three clusters (step 2). Next, choose the cluster that has the preferred sub-

objective performance (step 3). Then repeat choosing the number of clusters using “elbow” 

method and find the sub clusters of the first layer cluster chosen in step 3 (the sub clusters are 

shown in step 4). Then repeat step 3 and choose the preferred sub cluster.  This process can be 

iterated multiple times until the clusters with good overall performance are zoomed in and a 
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limited number of ECM combinations in the clusters are selected. It is worth noting that multiple 

clusters in the same layer can be chosen in the same time. 

 

Step 1 

 

Step 2 

 

Step 3 
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Step 4 

 

Step 5 

 

Fig. 25 Example of hierarchical clustering of a dataset in a layered framework 
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8. Case study and Results Discussion 

8.1 Building Description and Model Calibration 

The method developed in this research is implemented on one of the campus buildings at 

the University of Pennsylvania—the Towne building, which is designed in the manner of the 

English classicism of the seventeenth century. The building has 4 floors (with one basement 

floor) and is mainly composed of classroom and offices. The total floor area of the building is 

about 13000 m2.  

The simulation input for the building is collected in a text based file format including 

building geometric information, operation schedule, building systems, building envelopes, and 

etc., and then being fed to SimBldPy simulation tool. We adopted a classic “perimeter-core” 

modeling method to model this building. For each floor, including the basement floor, a core and 

a perimeter zone are modeled to make the SimBldPy model stay simple. The building envelopes 

are also modeled for each zone. The brief information on the building envelope is reported in 

Table 17.  

Table 17 Towne building envelope in each orientation 

Orientation Opaque (m2) Window (m2) Below Grade Opaque (m2) 

S 1787.6 406.8 259.0 

SE 0.0 0.0 0.0 

E 948.4 187.3 155.7 

NE 0.0 0.0 0.0 

N 1127.9 256.9 218.2 

NW 0.0 0.0 0.0 

W 1028.9 246.5 147.3 

SW 0.0 0.0 0.0 

Roof 3995.9 0.0 0.0 
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The model is calibrated with its actual energy performance in 2015 by metered hourly 

and monthly energy use data, which are stored and maintained by Penn Facilities and Real Estate 

Services (FRES). The heating and cooling set point of the building is constant, which is 21.8  

for cooling and 22.5  for heating, respectively. In Table 19, the operation schedule of Towne is 

calibrated based on its electricity use pattern because cooling and heating energy use are 

separated from electricity use. The building wall section consists of outside air film, face brick, 

air cavity, CMU (concrete masonry unit), air cavity, veneer plaster, and inside air film. The 

calibrated thermophysical properties of the building envelope used in building simulation are 

shown in Table 18. All the campus building uses district cooling and heating source in the form 

of chilled water and steam. Thus, the building simulation model is calibrated with the metered 

chilled water and steam usage so as to get prepared for the following retrofit optimization and 

ensure the optimization have practical significance. The simulation results of the calibrated 

building model are shown in Fig. 26. The dotted line is the simulated result and the solid line is 

the actual use. Possible reasons for the deviation from the actual and simulated energy use of the 

building may be the real time use schedule, local microclimate condition, HVAC system control 

strategy, system fault, impact of occupant behavior, and etc.   
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Table 18 Calibrated thermo physical properties of building envelopes 

Envelope U-value (W/m2 °C) Absorption coefficient (SHGC for window) 
Wall 1.1 0.8 
Roof 0.92 0.78 

Below-grade 2.95 0.81 
Window 4.16 0.69 

 

Table 19 Towne building operation schedule 

time of day wd_occ we_occ wd_app we_app wd_light we_light 

From 0 To 7 0 0 0.72 0.51 0.72 0.51 

From 7 To 8 0 0 0.73 0.55 0.73 0.55 

From 8 To 9 0.3 0.4 0.78 0.58 0.78 0.58 

From 9 To 16 0.5 0.5 0.82 0.62 0.82 0.62 

From 16 To 17 0.95 0.5 0.82 0.62 0.82 0.62 

From 17 To 18 0.7 0.5 0.83 0.63 0.83 0.63 

From 18 To 22 0.95 0.5 0.84 0.64 0.84 0.64 

From 22 To 24 0.7 0.3 0.75 0.65 0.75 0.65 

 

 winter week hourly heating summer week hourly cooling monthly heating & cooling 

Fig. 26 Building model calibration 

In order to show how the simulation results of SimBldPy model compare to the metered 

data, the scatter plot depicting outdoor air temperature versus cooling and heating energy use of 

meters, SimBldPy model and a data-driven RF model are drawn respectively in Fig. 27. The plot 
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shows the “signature” of the building performance in terms of heating and cooling energy use. 

The RF model is trained on the real measured weather data in 2015 and the occupancy schedule 

used in SimBldPy model. The original purpose for training this RF is to provide a self-

benchmarking tool that examines how the building is performing in the years after 2015.  

 Cooling Energy Heating Energy 
 
 
 
 
 
 

Meter 
Data 

 
 
 
 
 
 

SimBldPy 

 
 
 
 
 
 

Random 
Forest 
Model 
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Fig. 27 “Signature” plot of cooling and heating energy from meters, SimBldPy model, and RF 

model for Towne Building  

The difference between SimBldPy model and the metered data is mainly due to the fact 

that the simplified hourly model assumes that the building’s heating and cooling system is 

performing ideally just as described in section 4.1, while in practice, in a building like Towne, the 

HVAC system may suffer from degradation and ageing, which can possibly result in overheating 

or overcooling due to system faults or failure. Thus, the actual operation state can deviate from 

what the system is supposed to perform. Other reasons for the difference between the model and 

metered data could be attributed to the difference in actual occupancy and use, as well as the 

actual operation and management of the building system. It is should be noted that the “elbow” in 

the plots, where a watershed of different slopes of temperature versus energy use occur, reflects 

the different operation mode of the building system concerning heating and cooling. It is 

generally at that point that the building switches its system operation between cooling and 

heating. These points are also called “change point” (Paulus, Claridge, and Culp 2015).  

The downscaled future hourly weather data is also an important input for the optimization 

model and is obtained by using the morphing method described in (Shen and Lior 2016). Fig. 28 

and Fig. 29 show the trends of monthly mean dry bulb temperature and downwelling shortwave 

radiation from the year of 2017 to 2069 under different RCPs scenarios, respectively. In the 

following study concerning building retrofit and its optimization, RCP6.0 scenario will be used as 

the future climate scenario. The full set of downscaled climatic variables includes dry bulb air 

temperature, relative humidity, solar irradiation, and wind speed. 
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Fig. 28 Monthly mean air temperature, daily maximum and minimum temperature in different 

RCPs and TMY in Philadelphia 

 

Fig. 29 Monthly mean downwelling shortwave radiation in different RCPs and TMY in 

Philadelphia 

 

8.2 ECM Options and Costs 

The following ECMs are considered in the retrofit: window replacement, wall insulation, 

roof insulation, window shading, air infiltration improvement, cooling supply air temperature, 

heating supply air temperature, lighting efficiency, daylighting control, natural ventilation, 
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cooling set point, heating set point, unoccupied hour setback, PV panels, and solar water heater 

(SWH). The retrofit lifecycle is assumed to be twenty years, namely, from year 2018 to 2038. 

The parameter and cost of all ECMs are listed in Table 20 to Table 22 (Shao, Geyer, and 

Lang 2014, Wang, Xia, and Zhang 2014, Asadi et al. 2012a). For PV and SWH system, different 

inclination angles are also considered in the optimization. PV system is assumed to be multi 

crystalline silicone cell with an efficiency of 0.13kW/m2 (Yoza et al. 2014), and the optimization 

parameter is the amount of available roof area used for solar power generation, while the 

optimization parameter of the SWH system is that if the rest of the roof area is used to install 

SWH collectors. The SWH system is assumed to have an overall efficiency of 50% (Yoza et al. 

2014). The cost of the PV panel and the SWH is $274.7/m2 and $213.4/m2, respectively. In 

addition, setting the inclination angle of both PV and SWH system to non-zero will incur a frame 

support installation fee of $30/m2. 

Table 20 Window replacement properties and cost 

window  

(SHGC, U-value (W/m2 °C)) $/m2 type 

(0.0, 0.0) 0.00 N/A 

(0.80, 3.6) 47.0 Single glazing 

(0.75, 2.8) 53.2 2bl glazing Without thermal break 

(0.62, 1.6) 75.2 2bl glazing low-e window 

(0.44, 1.6) 92.9 2bl glazing Window air-filled metallic frame 

(0.288, 1.05) 79.2 SGSILVER 

(0.585, 0.52) 98.1 SGCLIMATOP 

(0.28, 0.33) 113.4 3050 SH 7/16 inch glass low-e 

(0.63, 0.48) 131.7 3050 SH 7/16 inch glass 

(0.25, 0.26) 183.0 3050 DH 3-7/16 insulated glass low-e krypton filled triple pane 
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Table 21 ECM parameters and costs (w/cost) 

wall insulation 

(m2 °C/W) $/wall m2 

roof 

insulation 

(m2 °C/W) 

$/roof 

m2 

window 

shading 

$/window 

m2 

air 

infiltration 

(h-1) 

$/floor 

m2 

lighting 

efficiency 

improvement 

$/floor 

m2 

daylight 

control 

$/floor 

m2 

N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 

1.25 11.4 1.52 12.5 1 28.7 0.3 25.5 30% 3 Applied 3 

1.61 12.5 1.97 16.4 2 37.2 0.5 20.2 40% 1.9   

1.97 13.5 2.42 20.1   0.7 14.4     

2.33 14.6 2.87 22.9   0.9 9.3     

2.69 15.7 3.32 26.8     

3.05 16.7 3.77 30.3         

3.41 18.5           

3.77 20.5           
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Table 22 ECM parameters and costs (w/o cost) 

cooling supply  

air temperature ( ) 

heating supply  

air temperature ( ) 

natural ventilated 

window ratio cooling setpoint ( ) heating setpoint ( ) unoccupied hour setback 

N/A N/A N/A N/A N/A N/A 

11 52 10% 22 18 Applied 

12 51 20% 23 19  

13 50 30% 24 20  

14 49 40% 25 21  

 48 50% 26 22  

  60% 27 23  

  70%  24  

  80%  25  

  90%    

  100%    
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8.3 Preliminary Run with Single ECM 

Before the building retrofit being optimized using the procedure described in Chapter 6, a 

preliminary study to find how the building acts under single ECM described in Table 20, Table 

21, and Table 22 is conducted. This is to find how single ECM is going to influence the building 

energy performance and economic return performance during the life span of post-retrofit period 

before the interactions and tradeoffs among ECMs are considered into the study when multiple 

ECMs are applied to the building simultaneously. This is conducted by looping through the 

parameters of each ECM while keeping other ECMs not applied to the building. Then, the 

parameter for each ECM with the best performance as well as its according simulation results of 

energy and economic performance will be recorded. As shown in Fig. 30, the simulation results 

are presented in a marginal abatement cost curve (MACC), which is a straightforward way to 

show the best effect of each single ECM to the building in terms of the NPV.  

 

Fig. 30 Marginal abatement cost curve for Towne Building 
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The results shown above are obtained from an economic model with a lifespan of 20 

years and 3% discount rate. The y-axis in the figure is the NPV of each ECM divided by energy 

saving in gigajoule (GJ) and the radius of the blue circle represents the energy saving in divided 

number of years in the life span. The results show that ECMs with high energy savings do not 

necessarily lead to a high economic return, which can be caused by high initial and maintenance 

costs. ECMs that are assumed to be “free” in this study (those shown in Table 22) usually show 

great potential in economic benefit since there is no investment involved. The best ECMs with 

high NPV are lighting retrofits, natural ventilation, cooling set point change. Air infiltration is a 

major contributor to energy saving, but the economic return is not as good as unoccupied hour set 

point setback because of its high test cost and retrofit investment.  

This section aims to show how each single ECM is going to perform using life cycle cost 

analysis. When multiple ECMs are applied to the building, the situation will be more 

complicated. For example, when lighting power is reduced in a retrofit to save electricity, heating 

load will at the same time be higher and more heating energy will be consumed. In addition, 

utility cost for electricity and heating energy source (in this case district steam) are different, the 

tradeoffs and complexity of the problem will make it difficult in fathoming the optimal choice for 

retrofit. 

 

8.4 Optimization Results 

The optimization process takes about 23 hours for the building retrofit using parallel 

computation with 32 threads, which has a population size of 20 times the sum of all parameters 

listed in Table 20 to Table 22 for each generation. For each generation, the current non-

dominated solutions will be archived and compared with last generation’s archive of solutions. 
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The difference between the current and last generation’s archived non-dominated solution will be 

the “newcomers” to the archive, and those “newcomers” will be used to evaluate the convergence 

of the solution. The reason of using this convergence-examine rule instead of using the total 

number of non-dominate solutions in each generation is to make sure that even with the same 

total number of Pareto fronts, there would be no new fronts that replace the older ones in the 

archive. The growth in the number of newly generated Pareto fronts in each generation are shown 

in Fig. 31 for the three crossover operators described in Chapter 7.  

As per Fig. 31, uniform crossover outperforms the other two crossover operators. It has a 

better convergence performance in the problem, which can be caused by the fact that uniform 

crossover has no positional bias and any schemas contained at different positions in the parents 

can potentially be recombined in the offspring. The number of newcomers becomes stable and les 

than 10 for each generation. Indeed, there may be more newcomers being generated and going 

into the archived non-dominated solutions, but maximum generation number of one hundred is 

sufficient to find most of the Pareto fronts as shown in the result of convergence. 

The populated Pareto fronts are displayed in Fig. 32. More than one thousand Pareto 

fronts are found during the optimization. The simulation time for a single year with extreme 

weather for each ECM combination in SimBldPy is about 1/30 to 1/40 of EnergyPlus model that 

has the same modeling complexity, and with the help of RF, it becomes possible for a moderate 

server to complete certain deep retrofit optimization task that takes into account future hourly 

energy projection under climate change in a fast manner. 
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Fig. 31 Convergence of the optimization results 

   

energy_saving ($) vs PMV energy_saving ($) vs retrofit_cost ($) energy_saving (GJ) vs energy_saving ($) 

   

energy_saving (GJ) vs PMV energy_saving (GJ) vs retrofit_cost ($) retrofit_cost ($) vs PMV 

Fig. 32 2-D projection of Pareto fronts with all combinations of objective functions 
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As discussed in Chapter 7, it is difficult for the clients or users to fathom the optimization 

results with a high dimensional data structure. With the information provided in Fig. 32, it would 

still be difficult to make decision and have a general idea of which retrofit options to choose 

from. For a deep retrofit project, many ECM options as well as objective functions will be 

concerned as in this case study. The generation of about 1500 Pareto fronts in this example shows 

the difficulty in presenting the results. Thus, in the next section, the decision-making support 

method based on the layered hierarchical clustering proposed in Chapter 7 will be implemented to 

the optimization results of this project. 

 

8.5 Implementation of Decision Making Support Method 

The archived Pareto fronts dataset are first normalized by their means and standard 

deviations before being clustered. After applying the agglomerative hierarchical clustering 

method to the generated Pareto fronts at the first layer, the data is clustered into three different 

classes, as indicated by the suggested “elbow” method and the clustered data is shown in Fig. 33. 
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Fig. 33 3-D projections and dimensionality reduction visualization (t-sne & PCA) of the clustered 

Pareto fronts 

According to the 3D projections on different combinations of objectives, it is shown that 

the hierarchical clustering in the first layer is doing a good work in classifying the data to the 
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right group in an unsupervised manner. For the cluster colored in blue, some data points are off 

the cluster, and according to the first and third plot in Fig. 32, it is inferred that the existence of 

these Pareto fronts could be due to their good performance in thermal comfort since some ECM 

combinations have the characters of low cost and high thermal comfort performance. For 

example, thermostat set point setback during unoccupied hours can reduce energy use and have a 

limited impact to indoor thermal comfort during the occupied time, while the energy use of ECM 

combinations having set point setback is not as much as others containing window replacement, 

but they will still be counted as non-dominated fronts.  

The low dimension visualization in Fig. 33 further proves that the clustering result is a 

good representation for the nature of the data structure. With the recent development in machine 

learning algorithms and computational efficiency, high dimensional data can be visualized in 

more versatile and powerful ways. Principal component analysis (PCA) is a statistical procedure 

that uses an orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal components, 

making it possible to linearly project the inherent structure of the data into low dimensional 

(Pearson 1901). Moreover, since non-linearity may exist in the dataset of Pareto fronts and a 

linear projection method such as PCA is not as sensitive to non-linearity, one of the low 

dimension embedding methods, also called manifold learning method, is adopted to show the 2D 

projection of the data points too. T-distributed stochastic neighbor embedding (t-sne) is a machine 

learning method that is able to reduce the dimensionality of the data to two or three in the way 

that similar objects are modeled by nearby points and dissimilar objects are modeled by distant 

points. The affinities in the original space are represented by Gaussian joint probabilities and the 

affinities in the embedded space are represented by Student’s t-distributions (Maaten and Hinton 

2008). The advantage of this algorithm is that it is able to scale each feature with different unit 

and dimension into one plot while avoid conglomerating them together. In both t-sne and PCA 
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plots in Fig. 33, it is indicated in both linear and non-linear perspectives that the chosen clusters 

are well-suited for this clustering problem.   

When implementing the suggested clustering based decision-making support framework, 

the first layer clustering is extremely important because many decision vectors can be eliminated 

in this first stage of decision-making. Thus, it is important to visualize the data in a more intuitive 

way for the decision makers or users. The parallel coordinates plot together with suggestive heat 

map will be used as a support technique to visualize the clusters for decision-making. They are 

plotted in Fig. 34 and Fig. 35 (parallel coordinates figure and heat map will also be plotted at each 

subsequent layer for decision-making, but will not be redundantly shown here): 

Fig. 34 Plotting of sub-objectives in the first layer clustering   
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Fig. 35 Heat map of the first layer clustering 

By plotting the clustered Pareto fronts in parallel coordinates, the decision-making 

process will become more visible as the tradeoffs among objectives can be illustrated in a 

straightforward way. Combined with heat map showing the average of both decision variables 

and objectives in one graph, it becomes intuitive for the decision makers to see what happens to 

the clusters. In Fig. 35, each row in the heat map represents a cluster, and each column provides a 

comparison of the means of each decision variables and each objectives among clusters. The 

clusters (rows) in the heat map are sorted by the retrofit investment of each cluster. The white-

colored (or zero-valued) ECM in the heat map indicates that some ECMs are not adopted and 

applied in that cluster. 
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As analyzed at the end of section 6.2.4, including both energy savings in Joule and in 

dollar makes sense for the optimization problem because the visualized results in Fig. 34 show 

that the energy saving in Joule does not go linearly correlated with energy saving in dollar as a 

whole. There are ECM combinations that have both positive and negative slope rates between the 

two objectives, and the magnitudes of the slopes also differ from each other.  

According to the parallel coordinates plot in Fig. 34, the thermal comfort levels of Pareto 

fronts in the three clusters are quite scattered, making it barely easy to decide which cluster to 

choose from, but it can be clearly said that the cluster colored in red (Cluster 3) is the most 

interesting cluster to look at since the unit investment produces better amount of unit energy 

saving. Integrated with the information provided in the heat map, the color of each ECM grows 

darker in Cluster 2, meaning that the certain kind of ECM is being selected more in that cluster. 

In addition, in this case study, ECM combinations with renewable options such as PV and SWH 

all belong to Cluster 2 and also have the highest investment rate, implying that renewable energy 

systems are major contributors to investment growth in retrofit project. In Cluster 3, with an 

average of 32% of the highest investment value among the Pareto fronts, about 85% of energy 

savings can be harvested without harming the thermal comfort on average. Therefore, retrofit 

options in Cluster 3 will be chosen and enter the next layer’s decision-making in this case study. 

It should also be understood that eliminating Cluster 3 will abandon all renewable energy options 

thanks to the visualization provided in the heat map. 
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8.6 Decision Making Pathway 

 

Fig. 36 Layered decision-making pathway 

By repeating the process in the 1st layer clustering as described in Chapter 7, a pathway 

can be plotted in Fig. 36. In Fig. 36, on top of each parallel coordinates plot, the distance of each 

clustering step and its first-order differential curve in that layer are attached to show how the 

elbow method works and determines the number of clusters for each layer. For the Pareto fronts 

generated by the optimization process in this case study, the following clusters and sub clusters 

are selected as shown in Fig. 36.  

The pathway clearly shows how each decision is made at each layer and what clusters are 

selected and zoomed. Eventually, three 4th layer clusters are chosen as the final target clusters. In 

this case study, the criterion in choosing the each layer’s cluster is based on the principle of lower 

cost, higher energy saving return, and better thermal comfort level. After picking retrofit 

packages with a cost lower than $810,000 and sorting them by their NPV in twenty years (2018 - 

2038), top twenty ECM combinations from the three chosen clusters are listed in Table 23, from 

which the most suitable combination that is tailor-made for the current building can be chosen. 
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Since renewable options have already been crossed out during the 1st layer’s decision-making, 

they will not be shown in Table 23. 

It should be noted that the final results derived from the decision-making framework and 

presented in this section can be subject to change depending on different criteria. For example, if 

the building owner or client does not care much about the initial cost and maintenance cost, it is 

possible that Cluster 2 would be chosen in the first layer as this cluster produces the most energy 

saving either in dollars and Joules and renewable options will also be included in the final results.  

As already discussed in Limitation Two in the section 1.2, subjectivity will always be 

part of the decision-making process whereas the difference in this proposed decision-making 

framework is that choices are provided with increasing information to the decision maker for all 

possible optimized results as the layered hierarchical clustering unfolds on its pathways.  

Different from the use of weighted sum or product method that requires hard-to-decide 

and whimsical weighting factors before the solution space is generated and visualized, this 

framework offers options and layered reasoning that leads to the final results; and different from 

traditional processing and visualization of the Pareto fronts, how the inherent structure of these 

high dimensional solutions are rendered, and how important it is to visualize the structure and 

trade-offs among a possibly large amount of Pareto fronts in a deep building retrofit project 

where many ECMs involved are discussed. As the case study shows, the proposed decision-

making support framework is manifested to show robustness in handling deep retrofit 

optimization problem and is able to provide support for brainstorming and enumerating various 

possibilities during decision-making process. 
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Table 23 Top 20 selected ECM combinations using the suggested hierarchical clustering-based decision-making support framework 

No. SHGC window_U shading 

wall 

insu infl 

roof 

insu cool_air_temp lights daylight heat_air_temp 

natural 

vent 

cooling 

stpt 

heating 

stpt 

unocc 

setback cost ($) ES (GJ) ES ($) PMV 

1 0.62 1.6 2 1.97 0.3 1.97 11 0.3 1 51 30% 25 24 1 806442 -853102 -8157555 85102 

2 0 0 2 1.97 0.3 2.42 11 0.3 1 51 50% 25 24 1 729747 -838175 -8039577 99441 

3 0 0 1 2.69 0.3 2.42 11 0.3 1 50 50% 25 24 0 802589 -834331 -8069318 88409 

4 0.75 2.8 2 1.61 0.3 1.97 11 0.3 1 51 50% 25 24 1 779231 -842379 -8039496 99160 

5 0 0 2 2.33 0.3 2.42 0 0.3 1 52 40% 25 24 1 736379 -834730 -7994319 98740 

6 0 0 2 3.05 0.3 2.42 11 0.3 1 50 10% 25 24 1 749549 -841017 -8003161 97708 

7 0 0 2 0 0.3 1.52 11 0.3 1 48 50% 25 24 0 606774 -803426 -7856490 110277 

8 0 0 1 0 0.3 1.52 11 0.3 1 50 80% 25 24 1 606774 -809337 -7854209 125219 

9 0.75 2.8 1 2.33 0.3 1.97 11 0.3 1 48 20% 25 24 1 792308 -847454 -8034243 97600 

10 0 0 1 2.69 0.3 1.52 0 0.3 1 52 50% 25 24 0 704289 -820412 -7930031 99152 

11 0 0 0 1.97 0.3 2.87 0 0.3 1 52 60% 25 24 1 744252 -829474 -7968637 95068 

12 0.29 1.05 0 0 0.3 3.77 11 0.3 1 0 60% 25 24 0 807954 -825286 -8017933 83148 

13 0 0 0 1.97 0.7 1.97 11 0.3 1 50 50% 25 23 0 513410 -767228 -7720925 168888 

14 0 0 0 2.33 0.3 2.87 11 0.3 1 50 60% 25 24 1 750884 -823025 -7957244 84418 

15 0 0 0 1.97 0.7 3.77 11 0.3 1 52 100% 25 23 1 583642 -780945 -7785804 171453 

16 0.8 3.6 0 1.25 0.3 1.97 11 0.3 1 0 50% 25 24 0 764012 -825351 -7964434 92416 

17 0 0 0 2.33 0.3 3.32 11 0.3 1 49 60% 25 23 1 770427 -823478 -7958761 81261 

18 0.75 2.8 0 2.69 0.3 1.97 12 0.3 1 50 10% 25 24 1 798847 -838250 -7986575 87339 

19 0 0 0 1.97 0.7 2.87 11 0.3 1 49 50% 25 23 1 546388 -768497 -7727967 158759 

20 0.62 1.6 0 1.61 0.3 1.97 11 0.3 1 51 70% 25 24 0 809997 -830025 -7971569 85822 
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8.7 Summary 

In this chapter, the multi-objective optimization problem usually encountered in existing 

building deep retrofit project is provided with an optimization scheme and a method of decision-

making support. It is described how the method in resolving the optimization problem in a rapid 

manner by means of applying non-dominated sorting differential evolution algorithm (NSDE) to 

a campus building. By introducing the SimBldPy modeling tool and random forest (RF) models 

as the replacer for traditional energy simulation tools in the objective function evaluation, certain 

deep retrofit problem can be quickly optimized. Moreover, the generated non-dominated 

solutions, or so called Pareto fronts, are rendered and displayed in a layered way using 

agglomerative hierarchical clustering technique in order to make it more intuitive and sense 

making in the decision-making process as well as to be better presented to the clients and decision 

maker. 

The strength of the developed optimization procedure lies in its adaptability and 

generalizability to different existing buildings and retrofit problems. The use of simplified hourly 

calculation method in building energy simulation not only reduces the time and computation cost 

for objective function evaluation during optimization, but also saves time and resources for the 

earlier-stage building modeling and calibration. With affordable simulation bias introduced by the 

SimBldPy model as described in Table 15, the method still suffices for achieving the goal of 

comparative parametric study in building retrofit problems. 

Moreover, the optimization process introduced in 6.2.6 can be used to find optimal 

solution for single objective problems but its major application would be in multi-objective 

problems that involve linearly independent sub-objectives. It is also found that the uniform 

crossover operator works best in finding the optimal ECM combinations in building retrofit 
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problem compared with the traditionally used one point or two-point crossover operator mainly 

because it has no positional bias and any schemas contained at different positions in the parents 

can potentially be recombined in the offspring during the evolutionary optimization process. 

The developed layered hierarchical clustering technique for decision-making support is a 

novel attempt to implement unsupervised machine learning algorithm to visualize and provide 

information for high dimensional data structure of the optimization results. This method unveils 

the chance of making decision on complicated Pareto fronts space using a pathway-like procedure 

that zooms into clusters at each layer and progressively finding a limited amount of ECM 

combinations with a specific decision-making logic. As subjectivity and preference do influence 

decision-making, the developed method offers a tool for screening undesirable solutions with 

rationale and appropriate visualization, which is very important in multi-objective optimization 

problems because traditional methods such as weighted sum or product method force the user to 

arbitrarily give weights or decision strategies to sub-objectives of various dimensions, scales, and 

decision-making values, in which priori bias to the multi-objective optimization problem may 

already have been introduced.    

 

9. Conclusions 

The objective of this research is to develop a novel and generalized method to optimize 

the selection of building retrofits. The dissertation is organized in three procedures: 1. evaluate 

the feasibility and importance of taking into account global climate change (GCC) in building 

retrofit planning; 2. develop a simplified simulation tool for building performance assessment 

based on a dynamic hourly simulation algorithm taking into account the zone thermal flux and 

coupling, and validating the modeling method; and 3. develop an optimization approach that uses 
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a non-dominated sorting technique to perform the optimization task and design a scheme for 

visualizing the optimization results and providing support for the decision-making process after 

obtaining the multi-objective optimization results. 

For the first procedure, a Python script was developed to perform the parametric study by 

running EnergyPlus for different retrofit scenarios for existing buildings. Using a latin-hypercube 

sample (LHS) method and a Joint Mutual Information Maximization (JMIM)-based feature 

selection method, the most energy efficient ECMs for a target building can be selected, greatly 

reducing the computational cost of model training and prediction when attempting to assess the 

impact of GCC on building retrofit. Then random forest (RF) model is trained with the 

EnergyPlus hourly building energy use (BEU) results simulated with future extreme year weather 

data, which is able to predict the hourly BEU in future years during the post-retrofit phase. The 

same procedure applies to the simulation results of hourly energy use obtained by SimBldPy for 

the data-driven model training in the case study. It is found that GCC does influence ECM 

performance in the future, and its influence varies from building to building, and location to 

location. Moreover, the optimal retrofit strategy for selecting the best ECM combinations under 

current climate condition will be subject to change in future climate condition. 

For the second procedure, a light-weight BES tool --- SimBldPy programmed in Python, 

is proposed and developed. The modified simplified hourly method used in this dissertation adds 

additional thermal resistances of the zone internal floor and internal walls as well as to adjacent 

zone temperature for each contact surface among zones to the original 5R1C modeling method 

described in ISO 13790. The built-in calibration module in SimBldPy adopts a differential 

evolution (DE) algorithm for the optimization of major modeling parameters with computational 

performance boost with the aid of parallel computation. Two DOE reference buildings (one 

residential and one office) located in Philadelphia and San Francisco were used to verify the 
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validity of the tool. The simulation results of the models have been compared with that of the 

EnergyPlus models of the four buildings, and it is found that given the calibrated model inputs, 

the proposed model has good fidelity in predicting hourly energy use with different heating and 

cooling set points in each zone, under various climate conditions, and with multiple ECMs being 

applied to the building. The tool aims to provide a rapid solution for parametric study of building 

energy, and the results in this study show that the computational performance and precision of the 

simplified model compare well with EnergyPlus. 

The third procedure was to develop a method for resolving the optimization problem in a 

fast manner by using a non-dominated sorting differential evolution algorithm (NSDE). After 

introducing the simplified hourly simulation model and RF models as the replacer for traditional 

energy simulation tools for objective function evaluation, the deep retrofit multi-objective 

optimization problem can be optimized in 24 hours using a moderate server. Moreover, the 

generated non-dominated solutions are processed and rendered by a developed schema that uses 

the agglomerative hierarchical clustering technique in a layered manner to provide intuitive 

support for the decision-making process as well as to better present the optimization results to the 

clients.  

The suggested optimization method is applied to a retrofit project for a campus building 

at the University of Pennsylvania with various ECM options and costs. SimBldPy is used to 

model the building’s energy performance, and the model is then calibrated to the metered energy 

use. Using the future downscaled hourly weather data and the RF model trained on extreme year 

weather and energy use simulated by SimBldPy, the future hourly energy use data from year 2018 

to 2038 can be projected for each combination of retrofits. The optimization is run in parallel with 

32 threads, and the number of generated Pareto fronts converges in about 23 hours. More than 

one thousand Pareto fronts are generated and analyzed according to the decision-making 
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framework. Twenty ECM combinations are eventually selected from those fronts using specified 

decision-making criterion, while the application of the framework could be versatile since 

different decision-making criterion can lead to various solutions. 

The suggested layered hierarchical clustering method is robust in dealing with the high 

dimension optimization results, helping to structure and visualize the decision-making process by 

choosing clusters of Pareto fronts that are of interest at each layer. The method provides the 

opportunity to explore various solutions and enhance decision-making with more information as 

the process unfolds. It is very difficult to determine optimized results ahead of time or to decide 

which decision-making strategy should be used, especially for multi-objective optimization 

problems with many sub-objectives. Building retrofitting is a complex process involving different 

aspects and goals, so this decision method gives designers and clients a tool to help them make 

better design decisions. 

 

 

 

 

 

 

 



 

 

 

14
3 

APPENDIX 

Appendix I Heating and cooling load simulation accuracy of the SimBldPy model for the residential building (unit of load: GJ) 

(Window_SHGC 

& Window_U) 

Shading 

position 

Wall_Ins

ulation 

Air 

Insulati

on 

Roof 

Insulatio

n 

Heating 

Efficiency 

Coolin

g COP 

Lighting Load 

Reduction 

Heating 

Load EP 

Heating 

Load sim 

Cooling 

Load EP 

Cooling 

Load sim 

Heating 

Load 

NRMSE 

Cooling 

Load 

NRMSE 

Heating 

Load R2 

Cooling 

Load R2 

(0.25, 0.26)  2  1.610  0.8  1.520  0.95  4.2  0.3  57.721  60.026  19.688  17.156  0.023  0.050  0.996  0.989 

(0.62, 1.6)  0  1.250  0.8  3.774  0.95  4.5  0.3  55.043  56.478  31.315  32.040  0.027  0.035  0.994  0.990 

(0.585, 0.52)  1  3.049  0.6  3.774  0.95  4.5  0.4  32.864  32.512  22.786  23.997  0.033  0.050  0.990  0.989 

(0.8, 3.6)  2  3.413  0  2.421  0.95  4.5  0.3  78.467  78.448  18.676  17.215  0.022  0.043  0.996  0.978 

(0.44, 1.6)  0  2.331  0.4  1.520  0  0  0.3  38.716  42.259  28.797  27.149  0.033  0.029  0.994  0.992 

(0.28, 0.33)  1  0.000  0.6  3.322  0  4.5  0.3  50.445  51.912  20.021  18.979  0.026  0.031  0.995  0.988 

(0.288, 1.05)  0  0.000  0  3.322  0  4.2  0.4  81.635  80.528  20.956  21.665  0.020  0.029  0.996  0.990 

(0.62, 1.6)  0  0.000  0.8  1.969  0.95  0  0.4  69.117  69.917  34.325  34.325  0.020  0.026  0.996  0.993 

(0.0, 0.0)  0  2.688  0  3.322  0.95  4.2  0.4  76.280  74.644  21.860  23.239  0.020  0.028  0.997  0.994 

(0.62, 1.6)  0  1.250  0  1.520  0.95  4.2  0  71.786  73.190  37.146  34.994  0.022  0.027  0.996  0.993 

(0.8, 3.6)  2  3.049  0.6  1.969  0  4.2  0  54.533  56.842  20.697  18.247  0.029  0.052  0.993  0.976 

(0.25, 0.26)  2  2.331  0.6  3.322  0  4.5  0.3  38.334  39.527  14.729  12.668  0.026  0.042  0.995  0.989 

(0.75, 2.8)  1  0.000  0  2.421  0  0  0.4  86.714  86.645  26.882  31.134  0.019  0.040  0.997  0.990 

(0.585, 0.52)  1  2.688  0.8  2.874  0  4.5  0  44.823  43.780  24.886  27.243  0.027  0.038  0.993  0.991 

(0.25, 0.26)  2  3.413  0.6  1.520  0  4.5  0.4  42.244  44.026  18.950  14.485  0.023  0.053  0.996  0.988 

(0.44, 1.6)  0  1.250  0  3.322  0  4.2  0  70.882  70.398  25.285  26.505  0.023  0.033  0.995  0.992 

(0.28, 0.33)  0  3.049  0.6  2.421  0  4.2  0  36.890  38.120  22.984  21.628  0.023  0.027  0.996  0.993 

(0.62, 1.6)  1  3.413  0.8  1.520  0  4.5  0.4  58.156  58.336  27.214  27.740  0.021  0.022  0.996  0.995 

(0.8, 3.6)  0  1.610  0.8  0.000  0  0  0  124.794  130.613  53.207  53.897  0.028  0.026  0.993  0.991 
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& Window_U) 
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Insulatio
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Efficiency 
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Reduction 

Heating 

Load EP 

Heating 

Load sim 

Cooling 

Load EP 

Cooling 

Load sim 

Heating 

Load 

NRMSE 

Cooling 

Load 

NRMSE 

Heating 

Load R2 

Cooling 

Load R2 

(0.0, 0.0)  2  3.774  0.6  0.000  0  0  0  109.896  113.452  32.485  32.411  0.025  0.017  0.994  0.994 

(0.28, 0.33)  1  1.969  0.4  1.969  0  0  0.3  29.911  33.520  23.147  18.771  0.040  0.046  0.993  0.989 

(0.75, 2.8)  2  3.049  0.4  2.874  0  0  0.4  37.613  39.566  17.582  16.066  0.037  0.057  0.990  0.967 

(0.63, 0.48)  1  3.413  0.8  3.322  0.95  4.5  0.3  43.790  42.311  23.764  26.845  0.029  0.042  0.992  0.991 

(0.585, 0.52)  1  2.688  0  0.000  0.95  0  0.4  121.663  122.663  39.236  42.848  0.024  0.025  0.995  0.994 

(0.44, 1.6)  0  1.610  0.6  0.000  0.95  0  0  106.733  111.766  40.101  43.234  0.027  0.027  0.994  0.993 

(0.0, 0.0)  1  1.250  0.8  3.774  0.95  4.5  0  64.196  64.998  20.350  21.331  0.024  0.034  0.995  0.989 

(0.288, 1.05)  0  0.000  0  2.874  0.95  4.5  0  80.648  79.597  22.523  22.934  0.020  0.027  0.997  0.991 

(0.63, 0.48)  0  2.331  0.4  1.969  0  4.5  0  23.746  26.233  40.124  38.190  0.039  0.038  0.990  0.988 

(0.288, 1.05)  1  2.331  0.6  3.774  0  4.2  0.3  43.185  44.535  18.466  17.104  0.024  0.027  0.995  0.992 

(0.75, 2.8)  2  3.049  0  0.000  0.95  4.5  0.4  133.618  136.107  33.621  34.476  0.024  0.019  0.995  0.993 

(0.62, 1.6)  0  1.969  0.4  0.000  0  0  0.3  91.735  98.364  45.931  48.488  0.033  0.029  0.992  0.991 

(0.63, 0.48)  2  3.774  0  3.774  0.95  0  0  53.237  49.886  16.959  16.337  0.029  0.046  0.993  0.976 

(0.0, 0.0)  1  3.413  0  3.322  0.95  4.2  0.3  75.988  73.670  18.631  19.769  0.020  0.024  0.997  0.995 

(0.63, 0.48)  0  1.969  0.4  1.520  0  4.2  0.3  27.964  31.404  40.267  37.000  0.041  0.038  0.991  0.988 

(0.63, 0.48)  0  2.331  0.4  1.520  0  4.2  0.3  27.394  30.497  40.174  36.980  0.039  0.038  0.992  0.989 

(0.28, 0.33)  0  2.331  0.6  1.969  0.95  4.5  0  39.384  41.504  24.512  22.268  0.026  0.030  0.995  0.992 

(0.585, 0.52)  2  3.774  0.6  3.322  0.95  4.2  0.4  33.326  32.356  16.199  14.988  0.034  0.055  0.989  0.971 

(0.288, 1.05)  2  2.331  0.8  2.421  0.95  0  0  56.452  56.908  17.744  15.924  0.019  0.042  0.997  0.990 

(0.0, 0.0)  0  1.250  0.6  1.969  0  0  0  55.227  58.493  26.519  25.931  0.028  0.028  0.995  0.992 

(0.75, 2.8)  0  2.331  0  1.520  0.95  0  0.4  77.146  78.668  41.275  37.648  0.021  0.032  0.996  0.991 

(0.62, 1.6)  1  0.000  0  1.969  0  4.5  0.3  82.399  81.630  26.385  28.589  0.019  0.032  0.997  0.990 

(0.8, 3.6)  1  1.610  0  0.000  0.95  0  0.4  139.464  143.967  41.245  46.555  0.025  0.030  0.994  0.993 

(0.585, 0.52)  0  3.413  0.6  2.421  0.95  0  0.4  34.206  34.793  32.762  32.873  0.027  0.034  0.993  0.991 
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(0.44, 1.6)  2  0.000  0.4  1.969  0.95  0  0.4  48.818  51.601  19.511  16.752  0.028  0.055  0.995  0.973 

(0.8, 3.6)  1  1.610  0.4  2.874  0.95  4.5  0  42.393  46.435  27.164  32.142  0.040  0.057  0.990  0.987 

(0.25, 0.26)  0  2.688  0.8  2.874  0.95  4.5  0  48.826  48.791  20.837  20.117  0.020  0.024  0.996  0.994 

(0.25, 0.26)  1  3.413  0.4  1.969  0  0  0  26.278  28.621  23.182  19.091  0.032  0.047  0.994  0.989 

(0.0, 0.0)  0  0.000  0.8  2.421  0  0  0.3  78.649  79.001  24.034  25.326  0.020  0.030  0.996  0.991 

(0.63, 0.48)  1  1.969  0.4  2.874  0  0  0.3  24.289  26.002  26.436  28.704  0.045  0.047  0.985  0.988 

(0.288, 1.05)  0  1.250  0.4  3.774  0.95  4.2  0  31.319  34.970  22.090  21.533  0.042  0.038  0.992  0.988 

(0.63, 0.48)  2  1.250  0.8  3.774  0  4.2  0.4  46.920  47.170  17.230  16.022  0.032  0.051  0.991  0.971 

(0.8, 3.6)  1  1.250  0  2.421  0  4.2  0  79.656  81.607  27.865  31.992  0.023  0.042  0.995  0.991 

(0.62, 1.6)  2  2.688  0.8  3.774  0.95  0  0.3  53.368  52.481  16.059  15.048  0.026  0.046  0.994  0.976 

(0.44, 1.6)  2  2.331  0.8  2.421  0.95  4.5  0  58.261  57.978  18.624  15.925  0.022  0.044  0.995  0.987 

(0.8, 3.6)  0  1.969  0.4  3.322  0  0  0  39.791  44.176  42.808  40.190  0.039  0.042  0.991  0.985 

(0.288, 1.05)  1  2.688  0.6  1.520  0.95  0  0.4  48.501  51.101  23.628  19.287  0.024  0.043  0.996  0.991 

(0.44, 1.6)  2  1.610  0.6  1.969  0  0  0.3  50.574  52.886  19.072  17.336  0.028  0.052  0.994  0.985 

(0.25, 0.26)  0  3.774  0.4  2.874  0  4.5  0.4  24.690  26.552  20.124  19.259  0.032  0.028  0.994  0.992 

(0.0, 0.0)  2  1.969  0  0.000  0  4.2  0.3  139.586  142.015  32.750  32.552  0.023  0.016  0.995  0.995 

(0.8, 3.6)  2  3.774  0.6  0.000  0.95  4.5  0  110.733  115.705  33.750  34.684  0.029  0.020  0.993  0.992 

(0.44, 1.6)  0  3.774  0.4  1.520  0  4.2  0.3  37.067  39.655  28.354  26.901  0.029  0.028  0.995  0.992 

(0.585, 0.52)  2  2.688  0  0.000  0.95  0  0.3  122.089  123.184  33.136  33.948  0.024  0.018  0.995  0.993 

(0.28, 0.33)  0  0.000  0.8  1.969  0.95  4.5  0  64.386  65.289  24.656  23.665  0.021  0.028  0.996  0.991 

(0.28, 0.33)  2  2.331  0.8  2.874  0.95  4.2  0.4  51.196  51.357  15.804  13.550  0.021  0.040  0.996  0.989 

(0.288, 1.05)  2  1.610  0.6  3.774  0  0  0  42.870  44.658  16.234  14.116  0.028  0.041  0.994  0.988 

(0.0, 0.0)  1  1.610  0.4  3.774  0  0  0.3  40.164  43.185  18.949  19.854  0.036  0.039  0.993  0.987 

(0.25, 0.26)  1  1.610  0  2.874  0  4.2  0.3  65.605  65.480  19.779  17.380  0.020  0.030  0.996  0.992 
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(Window_SHGC 

& Window_U) 

Shading 

position 

Wall_Ins

ulation 

Air 
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on 
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Heating 

Efficiency 

Coolin
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Lighting Load 

Reduction 

Heating 

Load EP 

Heating 

Load sim 

Cooling 

Load EP 

Cooling 

Load sim 

Heating 

Load 

NRMSE 

Cooling 

Load 

NRMSE 

Heating 

Load R2 

Cooling 

Load R2 

(0.585, 0.52)  1  1.969  0.6  0.000  0.95  4.2  0.3  97.801  102.278  39.343  42.824  0.029  0.027  0.993  0.993 

(0.75, 2.8)  1  3.774  0.4  3.774  0.95  4.2  0.4  35.111  36.515  23.931  29.432  0.036  0.062  0.990  0.988 

(0.25, 0.26)  0  2.688  0.8  1.520  0  4.5  0.3  55.526  56.926  23.496  20.452  0.020  0.033  0.997  0.992 

(0.75, 2.8)  2  1.250  0.6  1.520  0.95  4.5  0.3  56.644  60.915  22.261  18.380  0.033  0.054  0.993  0.977 

(0.25, 0.26)  1  1.969  0.8  2.874  0  4.2  0.4  51.797  52.484  19.700  17.229  0.021  0.032  0.996  0.992 

(0.8, 3.6)  2  1.969  0.8  2.874  0  4.2  0.4  66.879  68.793  18.327  17.097  0.026  0.046  0.994  0.974 

(0.75, 2.8)  0  0.000  0  3.322  0.95  4.5  0  82.552  82.336  38.036  38.237  0.019  0.025  0.997  0.993 

(0.28, 0.33)  2  2.331  0  2.421  0  4.5  0.3  65.219  64.479  16.668  14.068  0.019  0.040  0.997  0.990 

(0.585, 0.52)  2  1.610  0.6  3.774  0.95  4.5  0.4  35.555  36.277  16.749  15.391  0.036  0.054  0.989  0.970 

(0.44, 1.6)  2  3.413  0.4  2.874  0  4.2  0  31.572  32.694  17.451  15.019  0.031  0.053  0.993  0.982 

(0.63, 0.48)  1  3.413  0.6  0.000  0.95  4.5  0  93.192  96.461  40.950  44.945  0.028  0.027  0.993  0.993 

(0.0, 0.0)  0  3.774  0.4  2.421  0.95  0  0.4  39.047  41.157  23.365  23.833  0.027  0.029  0.995  0.993 

(0.63, 0.48)  1  1.610  0  2.421  0  4.5  0.4  60.116  59.497  26.167  27.862  0.025  0.033  0.994  0.992 

(0.8, 3.6)  0  2.688  0  3.322  0.95  4.2  0  74.134  74.794  39.835  38.268  0.021  0.032  0.996  0.990 

(0.28, 0.33)  2  3.049  0.4  0.000  0.95  4.2  0.3  87.593  93.311  31.016  30.948  0.031  0.017  0.993  0.994 

(0.0, 0.0)  1  3.774  0.6  1.520  0.95  0  0.3  55.572  57.162  22.894  21.313  0.021  0.024  0.997  0.994 

(0.28, 0.33)  2  1.250  0.8  2.421  0  4.2  0.4  54.587  56.367  17.468  15.447  0.025  0.044  0.995  0.988 

(0.63, 0.48)  0  0.000  0.4  2.421  0  4.2  0  33.583  35.931  37.620  38.056  0.031  0.035  0.993  0.990 

(0.62, 1.6)  2  2.688  0  3.322  0.95  4.2  0  64.256  62.185  17.841  16.684  0.024  0.042  0.995  0.981 

(0.28, 0.33)  2  1.250  0.8  1.969  0  4.2  0.4  56.063  58.244  18.654  16.965  0.025  0.047  0.995  0.988 

(0.585, 0.52)  1  3.413  0.8  2.421  0.95  0  0.4  46.659  45.475  24.399  26.242  0.026  0.032  0.994  0.993 

(0.25, 0.26)  2  1.969  0.4  3.774  0.95  4.2  0.4  26.010  28.465  14.828  12.714  0.041  0.047  0.992  0.986 

(0.288, 1.05)  2  2.688  0.6  2.421  0.95  0  0.4  45.052  46.577  16.523  14.559  0.023  0.047  0.996  0.989 

(0.44, 1.6)  1  1.969  0.6  3.774  0  4.5  0.3  45.700  46.678  19.626  21.002  0.028  0.037  0.994  0.989 
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Heating 

Load R2 

Cooling 

Load R2 

(0.75, 2.8)  1  3.049  0.8  1.520  0  4.2  0.3  65.171  66.595  28.630  30.537  0.023  0.026  0.995  0.994 

(0.288, 1.05)  1  2.688  0.8  2.874  0.95  4.5  0.4  56.394  56.535  19.572  17.736  0.019  0.027  0.997  0.994 

(0.44, 1.6)  1  3.774  0  0.000  0  4.5  0.4  131.718  132.235  36.331  38.755  0.022  0.021  0.996  0.995 

(0.585, 0.52)  2  3.049  0  1.969  0.95  0  0.3  61.330  59.403  19.158  18.529  0.023  0.049  0.995  0.982 

(0.288, 1.05)  1  3.413  0.4  3.322  0.95  4.5  0.3  30.164  32.093  18.852  17.141  0.030  0.031  0.995  0.992 

(0.75, 2.8)  0  3.049  0.8  2.874  0.95  4.5  0.3  59.419  60.536  37.645  36.219  0.023  0.033  0.995  0.990 

(0.62, 1.6)  1  3.774  0.4  1.969  0  4.2  0.4  32.362  33.895  26.037  27.710  0.033  0.031  0.992  0.993 

(0.75, 2.8)  1  3.049  0.6  1.520  0  0  0  51.542  53.740  30.059  32.029  0.028  0.028  0.994  0.994 

(0.62, 1.6)  0  3.049  0.4  3.322  0  4.5  0  27.442  29.315  34.477  34.941  0.035  0.040  0.992  0.989 
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Appendix II Heating and cooling load simulation accuracy of the SimBldPy model for the office building (unit of load: GJ) 

 

(Window_SHGC 

& Window_U) 

Shading 

position 

Wall_Ins

ulation 

Air 

Insulati

on 

Roof 

Insulati

on 

Heating 

Efficiency 

Coolin

g COP 

Lighting Load 

Reduction 

Heating 

Load EP 

Heating 

Load sim 

Cooling 

Load EP 

Cooling 

Load C 

sim 

Heating 

Load 

NRMSE 

Cooling 

Load 

NRMSE 

Heating 

Load R2 

Cooling 

Load R2 

(0.585, 0.52)  1  1.610  0.8  1.520  0.95  0  0  228.30  227.01  789.52  755.43  0.019  0.032  0.986  0.992 

(0.25, 0.26)  2  2.688  0.8  3.322  0.95  4.5  0.4  334.06  356.49  404.93  388.36  0.022  0.026  0.992  0.993 

(0.25, 0.26)  0  3.049  0.3  3.322  0  4.5  0  37.19  46.94  875.99  816.25  0.023  0.037  0.973  0.991 

(0.585, 0.52)  0  2.331  0.8  2.421  0.95  4.2  0  195.49  211.51  931.15  848.93  0.020  0.037  0.986  0.989 

(0.44, 1.6)  0  3.774  0  1.520  0.95  4.5  0  419.51  424.80  695.96  670.33  0.016  0.029  0.992  0.992 

(0.0, 0.0)  2  1.610  0.6  0.000  0.95  4.2  0.4  444.44  446.42  423.95  407.87  0.015  0.026  0.994  0.993 

(0.28, 0.33)  1  3.049  0.3  1.969  0  4.2  0.3  86.48  101.86  631.59  530.92  0.028  0.043  0.981  0.989 

(0.63, 0.48)  2  3.413  0.3  3.774  0  4.2  0.3  78.31  68.39  521.46  529.13  0.029  0.044  0.952  0.982 

(0.62, 1.6)  1  1.969  0.3  2.874  0.95  0  0  86.69  85.19  906.59  877.57  0.018  0.034  0.978  0.991 

(0.28, 0.33)  2  0.000  0.3  0.000  0  4.5  0.4  172.50  181.45  461.03  476.21  0.026  0.030  0.982  0.992 

(0.62, 1.6)  2  1.250  0  1.969  0  0  0.4  505.58  511.13  434.51  411.94  0.016  0.033  0.993  0.988 

(0.28, 0.33)  1  3.049  0.3  3.774  0  4.5  0  40.14  47.52  887.42  785.97  0.021  0.039  0.974  0.991 

(0.63, 0.48)  1  1.969  0.3  3.322  0.95  4.5  0.4  64.60  67.16  793.87  753.02  0.022  0.038  0.975  0.988 

(0.0, 0.0)  1  2.688  0.6  1.520  0  4.2  0.4  401.91  417.86  532.50  499.23  0.016  0.025  0.994  0.994 

(0.63, 0.48)  2  2.331  0  3.774  0.95  4.5  0  312.91  294.88  572.35  578.32  0.020  0.035  0.986  0.988 

(0.75, 2.8)  2  1.969  0.3  3.322  0  4.5  0.4  194.11  192.81  509.53  487.43  0.022  0.040  0.983  0.985 

(0.288, 1.05)  1  2.688  0.8  3.774  0.95  4.5  0  300.63  317.43  641.81  593.86  0.017  0.026  0.992  0.994 

(0.288, 1.05)  2  2.688  0.8  3.774  0  0  0.3  413.52  436.33  376.82  357.28  0.020  0.025  0.993  0.993 

(0.75, 2.8)  1  0.000  0.6  2.421  0  4.2  0.3  414.66  430.51  583.31  579.07  0.016  0.026  0.993  0.993 

(0.28, 0.33)  0  1.610  0.6  2.421  0  0  0  153.37  178.65  759.45  699.22  0.024  0.033  0.985  0.992 

(0.44, 1.6)  1  3.049  0.8  2.874  0  4.2  0  323.19  322.55  656.65  643.53  0.016  0.028  0.991  0.993 

(0.0, 0.0)  2  1.610  0.6  3.774  0.95  4.2  0.3  421.64  445.30  412.83  378.20  0.018  0.031  0.993  0.991 
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Cooling 

Load EP 

Cooling 

Load C 

sim 

Heating 

Load 
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Cooling 

Load 

NRMSE 

Heating 

Load R2 

Cooling 

Load R2 

(0.44, 1.6)  1  0.000  0.8  1.520  0  0  0.3  503.50  529.40  484.79  470.19  0.017  0.025  0.994  0.993 

(0.288, 1.05)  1  2.688  0.3  2.421  0  4.5  0.3  135.04  153.78  574.74  496.86  0.026  0.037  0.986  0.991 

(0.8, 3.6)  2  2.688  0  2.874  0.95  4.5  0.3  624.91  635.75  399.89  384.87  0.015  0.032  0.994  0.988 

(0.25, 0.26)  1  2.688  0.6  3.774  0.95  0  0.3  227.17  257.91  502.48  442.48  0.027  0.032  0.990  0.992 

(0.75, 2.8)  1  1.250  0  1.969  0.95  4.5  0.3  582.14  599.09  550.91  536.44  0.014  0.022  0.995  0.995 

(0.585, 0.52)  0  2.331  0.6  0.000  0.95  0  0  138.53  141.53  970.17  916.70  0.017  0.035  0.985  0.991 

(0.8, 3.6)  0  3.413  0.3  0.000  0.95  4.2  0  166.44  172.04 

1175.2

8  993.51  0.015  0.050  0.988  0.987 

(0.0, 0.0)  1  0.000  0.6  1.520  0  0  0.3  490.66  518.94  503.25  480.95  0.017  0.024  0.994  0.994 

(0.585, 0.52)  2  0.000  0.3  2.421  0.95  4.2  0.3  140.55  142.09  500.20  499.06  0.029  0.040  0.972  0.985 

(0.63, 0.48)  1  3.413  0.6  1.969  0  4.2  0.4  179.41  177.83  676.12  650.11  0.021  0.033  0.986  0.991 

(0.28, 0.33)  0  2.688  0  3.774  0  4.5  0.4  427.78  466.24  484.31  461.20  0.020  0.025  0.993  0.994 

(0.8, 3.6)  1  1.969  0  1.969  0.95  4.5  0  521.82  520.07  711.84  704.71  0.014  0.023  0.993  0.995 

(0.288, 1.05)  1  2.688  0.8  2.421  0  4.2  0.4  390.50  420.20  490.26  438.09  0.019  0.027  0.993  0.994 

(0.28, 0.33)  1  2.331  0.6  0.000  0.95  4.5  0  180.12  182.90  712.01  664.31  0.018  0.027  0.988  0.994 

(0.28, 0.33)  2  3.774  0  1.969  0.95  4.2  0.3  462.49  482.71  374.30  353.70  0.019  0.026  0.994  0.993 

(0.288, 1.05)  0  0.000  0  1.969  0.95  4.2  0  478.38  509.92  623.29  606.11  0.017  0.026  0.992  0.994 

(0.75, 2.8)  1  1.969  0.3  1.520  0.95  4.2  0.3  203.35  205.50  676.43  639.06  0.018  0.030  0.989  0.992 

(0.62, 1.6)  2  0.000  0.3  3.322  0.95  4.5  0.4  192.05  193.53  498.64  495.25  0.024  0.037  0.981  0.987 

(0.63, 0.48)  2  1.250  0.8  3.322  0.95  0  0.4  300.82  301.59  456.72  450.33  0.022  0.036  0.987  0.987 

(0.44, 1.6)  2  1.610  0.6  2.421  0  4.2  0  242.01  243.70  613.02  577.55  0.019  0.033  0.987  0.990 

(0.288, 1.05)  1  1.250  0  1.520  0  0  0.3  543.37  586.39  464.14  403.52  0.018  0.029  0.994  0.994 

(0.25, 0.26)  2  1.610  0.3  1.969  0.95  0  0.3  104.38  119.79  494.88  449.56  0.030  0.036  0.978  0.990 

(0.25, 0.26)  0  2.331  0.3  1.520  0.95  4.2  0  43.75  55.85  888.68  808.52  0.023  0.039  0.972  0.990 
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Heating 
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NRMSE 

Heating 

Load R2 

Cooling 

Load R2 

(0.25, 0.26)  0  2.331  0.8  1.520  0  4.5  0.4  325.77  365.88  513.84  472.15  0.024  0.028  0.991  0.993 

(0.585, 0.52)  2  1.969  0  3.322  0.95  0  0.3  423.97  422.56  401.99  398.53  0.019  0.031  0.992  0.989 

(0.0, 0.0)  1  3.049  0.3  3.774  0.95  4.5  0  166.52  168.79  761.75  733.18  0.017  0.030  0.987  0.993 

(0.62, 1.6)  1  1.250  0.8  2.874  0.95  0  0.3  396.78  412.48  547.96  534.71  0.017  0.027  0.994  0.993 

(0.63, 0.48)  0  1.969  0  2.874  0.95  4.5  0.4  344.07  384.29  745.88  661.94  0.021  0.037  0.992  0.989 

(0.8, 3.6)  2  3.774  0.3  0.000  0.95  0  0.3  269.64  254.50  446.99  453.63  0.020  0.036  0.987  0.986 

(0.0, 0.0)  2  3.413  0.6  1.969  0  4.5  0.3  414.25  428.70  416.78  378.33  0.017  0.032  0.994  0.991 

(0.63, 0.48)  1  1.969  0.6  2.874  0.95  4.5  0  130.37  127.58  872.91  840.04  0.020  0.034  0.980  0.991 

(0.75, 2.8)  2  3.049  0.8  0.000  0  0  0.3  494.76  475.99  397.65  406.19  0.016  0.031  0.993  0.988 

(0.44, 1.6)  1  3.774  0  1.520  0  0  0.4  525.26  531.94  484.27  467.62  0.015  0.023  0.995  0.994 

(0.62, 1.6)  2  3.774  0.6  2.874  0.95  4.5  0.4  272.22  261.63  455.29  447.46  0.021  0.035  0.986  0.987 

(0.8, 3.6)  0  3.413  0  2.874  0  0  0  469.30  499.22  981.04  802.45  0.016  0.045  0.991  0.989 

(0.62, 1.6)  1  1.969  0  3.774  0  0  0.4  482.03  488.83  533.19  535.52  0.015  0.026  0.994  0.994 

(0.25, 0.26)  2  3.049  0.8  0.000  0.95  4.5  0.3  384.50  387.94  366.49  371.41  0.020  0.022  0.992  0.994 

(0.62, 1.6)  0  3.774  0.3  2.421  0  4.5  0.3  108.31  123.91  867.59  793.39  0.023  0.047  0.985  0.986 

(0.288, 1.05)  2  3.413  0.8  1.969  0  0  0.4  397.65  415.87  409.99  381.45  0.019  0.027  0.993  0.993 

(0.288, 1.05)  1  3.413  0.3  0.000  0  4.2  0.4  151.17  152.29  565.77  531.39  0.020  0.028  0.986  0.993 

(0.0, 0.0)  2  3.774  0.6  3.322  0.95  0  0.3  408.74  421.33  404.39  376.44  0.017  0.029  0.993  0.992 

(0.585, 0.52)  0  3.049  0.8  1.520  0  4.2  0  195.07  208.06  938.79  851.67  0.020  0.037  0.986  0.990 

(0.8, 3.6)  1  3.774  0.8  2.421  0  4.5  0.3  502.00  508.39  552.80  550.32  0.014  0.023  0.994  0.995 

(0.8, 3.6)  0  2.331  0  0.000  0.95  4.2  0.3  608.69  646.04  780.39  631.60  0.016  0.044  0.993  0.989 

(0.62, 1.6)  0  3.774  0.6  1.969  0.95  0  0.3  245.45  272.82  754.28  654.00  0.021  0.040  0.990  0.988 

(0.585, 0.52)  1  1.610  0.6  0.000  0  4.5  0  165.78  152.87  806.80  812.60  0.019  0.033  0.983  0.992 

(0.0, 0.0)  0  2.688  0  3.774  0  0  0.4  620.45  646.27  552.10  512.90  0.015  0.026  0.995  0.993 
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Load R2 

(0.288, 1.05)  0  2.331  0.8  2.421  0  4.2  0.4  387.99  424.02  505.85  470.34  0.020  0.027  0.993  0.993 

(0.585, 0.52)  0  3.049  0  1.969  0.95  4.2  0  283.00  297.62  871.42  802.86  0.018  0.035  0.989  0.990 

(0.0, 0.0)  0  1.250  0.3  1.520  0  4.2  0  177.17  195.91  900.38  796.73  0.019  0.038  0.986  0.990 

(0.75, 2.8)  0  3.413  0.3  1.520  0  0  0  112.57  123.24 

1218.8

8  1160.17  0.018  0.053  0.985  0.987 

(0.28, 0.33)  2  1.250  0.8  3.774  0  4.5  0.3  361.00  395.39  393.78  370.76  0.023  0.027  0.992  0.993 

(0.75, 2.8)  1  3.774  0.3  2.421  0  4.2  0  131.25  122.29  892.07  873.10  0.017  0.031  0.982  0.993 

(0.585, 0.52)  0  1.250  0.3  3.322  0  0  0.3  63.41  86.99  915.03  887.88  0.031  0.049  0.979  0.984 

(0.75, 2.8)  0  1.250  0  2.874  0.95  0  0.3  535.91  593.79  771.78  623.65  0.019  0.045  0.992  0.988 

(0.8, 3.6)  1  1.610  0  3.322  0  0  0.4  611.59  626.31  558.28  556.74  0.014  0.022  0.995  0.995 

(0.44, 1.6)  1  3.049  0.6  2.421  0.95  0  0.4  297.59  306.64  533.41  511.84  0.018  0.028  0.992  0.993 

(0.75, 2.8)  2  3.413  0.8  3.322  0  4.2  0.4  442.00  439.48  429.76  421.90  0.017  0.033  0.992  0.987 

(0.44, 1.6)  0  2.331  0.6  2.874  0  4.2  0  216.51  228.34  781.73  744.14  0.018  0.033  0.988  0.991 

(0.62, 1.6)  1  1.610  0.6  0.000  0.95  4.5  0.4  305.52  296.51  584.05  595.54  0.017  0.029  0.991  0.993 

(0.28, 0.33)  0  0.000  0.8  0.000  0  4.5  0.4  419.37  453.10  493.74  495.78  0.020  0.023  0.993  0.995 

(0.25, 0.26)  2  2.331  0.8  1.969  0.95  0  0.3  356.04  383.54  394.76  377.10  0.023  0.028  0.992  0.992 

(0.62, 1.6)  2  1.969  0  3.322  0.95  4.2  0.4  494.58  493.00  417.59  408.83  0.016  0.031  0.993  0.989 

(0.63, 0.48)  1  0.000  0.3  2.874  0.95  0  0.3  115.64  127.73  713.46  686.59  0.025  0.039  0.981  0.988 

(0.8, 3.6)  0  1.250  0.6  2.421  0.95  4.5  0.4  351.67  407.12  920.72  801.23  0.022  0.057  0.989  0.985 

(0.25, 0.26)  2  3.049  0.6  0.000  0  4.2  0  186.19  178.65  578.85  589.93  0.020  0.029  0.985  0.993 

(0.63, 0.48)  0  2.688  0.6  2.421  0  4.5  0  105.52  118.86 

1081.9

5  956.33  0.021  0.043  0.982  0.988 

(0.63, 0.48)  2  3.413  0  2.874  0.95  4.2  0.4  387.87  375.84  424.76  428.76  0.020  0.034  0.990  0.987 

(0.44, 1.6)  0  3.413  0  2.874  0.95  4.5  0  416.68  423.04  683.62  668.47  0.016  0.029  0.993  0.992 

(0.44, 1.6)  0  2.688  0  1.969  0.95  0  0.3  533.62  558.58  519.65  493.72  0.016  0.027  0.994  0.992 
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(0.8, 3.6)  2  0.000  0.8  3.774  0  0  0.3  581.63  601.10  408.23  404.34  0.017  0.032  0.993  0.987 

(0.44, 1.6)  2  3.774  0.6  1.520  0  4.5  0  233.28  225.65  613.38  580.07  0.018  0.034  0.987  0.990 

(0.0, 0.0)  1  1.610  0.3  2.874  0  4.2  0.4  239.34  255.72  585.73  545.15  0.019  0.029  0.991  0.992 

(0.25, 0.26)  0  2.331  0.8  3.322  0  4.2  0  239.94  264.42  664.54  635.44  0.021  0.029  0.989  0.993 

(0.288, 1.05)  0  0.000  0.8  3.322  0.95  4.5  0  363.12  397.00  643.15  629.46  0.019  0.027  0.991  0.994 

(0.28, 0.33)  0  1.610  0.6  1.520  0.95  0  0.4  221.05  262.51  582.33  518.92  0.028  0.033  0.988  0.991 

(0.585, 0.52)  2  1.250  0  2.421  0.95  4.2  0.4  418.02  421.23  437.15  423.74  0.019  0.032  0.991  0.988 

(0.75, 2.8)  0  1.969  0.8  3.774  0  4.2  0.4  399.88  446.27  825.86  771.12  0.020  0.047  0.992  0.987 
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