
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2018

Automatic Verification Of Linear Controller
Software
Junkil Park
University of Pennsylvania, park11@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2849
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Park, Junkil, "Automatic Verification Of Linear Controller Software" (2018). Publicly Accessible Penn Dissertations. 2849.
https://repository.upenn.edu/edissertations/2849

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/219379387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2849?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2849
mailto:repository@pobox.upenn.edu

Automatic Verification Of Linear Controller Software

Abstract
Many safety-critical cyber-physical systems have a software-based controller at their core. Since the system
behavior relies on the operation of the controller, it is imperative to ensure the correctness of the controller to
have a high assurance for such systems. Nowadays, controllers are developed in a model-based fashion.
Controller models are designed, and their performances are analyzed first at the model level. Once the control
design is complete, software implementation is automatically generated from the mathematical model of the
controller by a code generator.

To assure the correctness of the controller implementation, it is necessary to check that the code generation is
correctly done. Commercial code generators are complex black-box software that are generally not formally
verified. Subtle bugs have been found in commercially available code generators that consequently generate
incorrect code. In the absence of verified code generators, it is desirable to verify instances of implementations
against their original models. Such verification is desired to be performed from the input-output perspective
because correct implementations may have different state representations to each other for several possible
reasons (e.g., code generator's choice of state representation, optimization used in code generator and code
transformation).

In this dissertation, we propose several methods to verify a given controller implementation against its given
model from the input-output perspective. First of all, we propose a method to derive assertions from the
controller model, and check if the assertions are invariant to the controller implementation via a proposed
toolchain based on a popular deductive program verification framework. Moreover, we propose an alternative
more scalable method that extracts a model from the controller implementation using the symbolic execution
technique, and compare the extracted model to the original controller model using state-of-the-art constraint
solvers. Lastly, we extend our latter method to correctly account for the rounding errors in the floating-point
computation of the controller implementation. We demonstrate the scalability of our proposed approaches
through evaluation with randomly generated controller specifications of realistic size.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Insup Lee

Second Advisor
Oleg Sokolsky

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2849

https://repository.upenn.edu/edissertations/2849?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages

Keywords
Controller software verification, Cyber-Physical Systems, Model-based development

Subject Categories
Computer Engineering | Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2849

https://repository.upenn.edu/edissertations/2849?utm_source=repository.upenn.edu%2Fedissertations%2F2849&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATIC VERIFICATION OF LINEAR CONTROLLER

SOFTWARE

Junkil Park

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2018

Supervisor of Dissertation Co-Supervisor of Dissertation

Insup Lee Oleg Sokolsky
Cecilia Fitler Moore Professor Research Professor
Computer and Information Science Computer and Information Science

Graduate Group Chairperson

Lyle Ungar
Professor
Computer and Information Science

Dissertation Committee:

Rajeev Alur, Zisman Family Professor, Computer and Information Science

Mayur Naik, Associate Professor, Computer and Information Science

James Weimer, Research Assistant Professor, Computer and Information Science

Miroslav Pajic, Assistant Professor, Electrical and Computer Engineering, Duke University

AUTOMATIC VERIFICATION OF LINEAR CONTROLLER

SOFTWARE

COPYRIGHT

2018

Junkil Park

Soli Deo gloria

iii

Acknowledgements

First, I would like to thank and acknowledge my advisor, Prof. Insup Lee.

Through his generous support, expert guidance and unwavering encourage-

ment, I was able to complete my doctoral research and this dissertation. He

always encouraged me to collaborate with my colleagues and helped me to

grow as an independent and proactive researcher. I am also thankful for his

helping and guiding me to find my research topic and direction and help to

write good research papers.

I am also deeply thankful to Prof. Oleg Sokolsky, my co-advisor, for

helping and supporting me throughout my Ph.D. studies. I am thankful for

our many discussions and the good advice and ideas that he gave. His door

was always open and he always listened and counseled me.

I would also like to thank the members of my committee, Prof. Rajeev

Alur, my committee chair, Prof. Mayur Naik, Prof. James Weimer, and Prof.

Miroslav Pajic for their insightful feedback for improving my dissertation. I

am thankful for the time that they gave for my proposal and defense and for

their support to help me finish.

I would like to say a special thanks to Prof. Miroslav Pajic. During his

years at PRECISE lab at Penn, he worked with me and helped me to find

my research topic and worked together to write and publish several papers.

iv

Without his continual guidance, discussions and help with my research, I

would not have been able to complete this dissertation.

I would like to mention those who I had the pleasure to work with and

learned from in PRECISE lab. I want to express my deep thanks to Prof.

Nicola Bezzo, Dr. Radoslav Ivanov, Wenrui Meng, Sangdon Park and many

others. I am also thankful to have been able to discuss online and receive

much help from Dr. Nicky Williams, Dr. Alexey Solovyev, Prof. Matthieu

Martel and Dr. Nasrine Damouche.

I want to thank my church, Philadelphia UBF, for their prayer support

during my Ph.D. studies. They gave me strength and encouragement when

things were difficult. I am thankful for their spiritual direction and prayers

that I received that helped me to finish this marathon.

Personally, I would like to thank my family who was there for me through-

out all my years of my Ph.D. studies. I want to thank my parents, Kiyoung

Park and Youngnim Kim, and my sister, Jinsin Park, for their constant sup-

port and love. I want to thank my in-laws, Dr. Henry and Pauline Park,

and John and Helen Ross, who were my family in America and supported

me and my family whenever we needed help.

Last but not least, I want to thank my precious family, my wife, Pauline,

and my kids, Joshua and Jenna, who were both born during my Ph.D. studies

and brought me increasing joy and motivation throughout my past years. I

am sincerely thankful for Pauline, who is my best friend and most suitable

helper. Accompanying me through anxious days and sleepless nights, her

loving care and unwavering support made this journey possible. I am deeply

indebted to her, and I dedicate this dissertation to her.

v

ABSTRACT

AUTOMATIC VERIFICATION OF LINEAR CONTROLLER

SOFTWARE

Junkil Park

Insup Lee

Oleg Sokolsky

Many safety-critical cyber-physical systems have a software-based controller

at their core. Since the system behavior relies on the operation of the con-

troller, it is imperative to ensure the correctness of the controller to have a

high assurance for such systems. Nowadays, controllers are developed in a

model-based fashion. Controller models are designed, and their performances

are analyzed first at the model level. Once the control design is complete,

software implementation is automatically generated from the mathematical

model of the controller by a code generator.

To assure the correctness of the controller implementation, it is necessary

to check that the code generation is correctly done. Commercial code gener-

ators are complex black-box software that are generally not formally verified.

Subtle bugs have been found in commercially available code generators that

consequently generate incorrect code. In the absence of verified code gen-

erators, it is desirable to verify instances of implementations against their

original models. Such verification is desired to be performed from the input-

output perspective because correct implementations may have different state

representations to each other for several possible reasons (e.g., code genera-

tor’s choice of state representation, optimization used in code generator and

vi

code transformation).

In this dissertation, we propose several methods to verify a given con-

troller implementation against its given model from the input-output per-

spective. First of all, we propose a method to derive assertions from the

controller model, and check if the assertions are invariant to the controller

implementation via a proposed toolchain based on a popular deductive pro-

gram verification framework. Moreover, we propose an alternative more scal-

able method that extracts a model from the controller implementation using

the symbolic execution technique, and compare the extracted model to the

original controller model using state-of-the-art constraint solvers. Lastly, we

extend our latter method to correctly account for the rounding errors in

the floating-point computation of the controller implementation. We demon-

strate the scalability of our proposed approaches through evaluation with

randomly generated controller specifications of realistic size.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Formulation . 3

1.3 Contributions . 4

1.4 Related Work . 8

1.5 Outline of the Dissertation . 9

2 Preliminaries 11

2.1 Notation and Definitions . 11

2.2 Linear Feedback Controller . 12

2.3 Motivating Examples . 14

2.3.1 A Scalar Linear Integrator 14

2.3.2 Multiple-Input-Multiple-Output Controllers 15

2.4 Software Verification Techniques 17

2.4.1 Deductive Verification 17

2.4.2 Symbolic Execution . 18

2.4.3 Model Extraction . 20

viii

3 Invariant Checking-based Verification Approach 22

3.1 Defining Invariants for Linear Controllers 24

3.1.1 Input-Output Invariants 24

3.1.2 Annotating Controller Invariants in C Code 26

3.1.3 Annotating Input-Output and State Invariants 27

3.1.4 Annotating Input-Output Only Invariants 27

3.1.5 Inexact Controller Implementations 31

3.2 Instantiation-based Input-Output Invariants for LTI Controllers 34

3.2.1 Defining Instantiation-Based Invariants as Code Anno-

tation . 39

3.2.2 Instantiation-Based Invariants for Inexact Controller

Implementations . 42

3.3 Framework for Automatic Verification 43

3.3.1 Evaluation . 46

4 Similarity Checking-based Verification Approach 51

4.1 Model Extraction from Linear Controller Implementation . . . 52

4.1.1 Symbolic Execution of Step Function 52

4.1.2 Linear Time-Invariant System Model Extraction 55

4.2 Input-Output Equivalence Checking between Linear Controller

Models . 58

4.2.1 Satisfiability Problem Formulation 59

4.2.2 Convex Optimization Problem Formulation 61

4.3 Evaluation . 63

4.3.1 Verification Toolchain 63

4.3.2 Scalability Evaluation 64

ix

5 Verification of Finite-Precision Controller Software 68

5.1 Extracting Model from Floating-Point Controller Implemen-

tation . 69

5.1.1 Quantized Controller Model 70

5.1.2 Symbolic Execution of Floating-Point Controller Im-

plementation . 71

5.1.3 Quantization Error Analysis and Model Extraction . . 73

5.2 Approximate Input-Output Equivalence Checking 78

5.2.1 Approximate Input-Output Equivalence 78

5.2.2 Satisfiability Problem Formulation 80

5.2.3 Convex Optimization Formulation 81

5.3 Evaluation . 82

5.3.1 Toolchain . 82

5.3.2 Scalability Analysis . 83

6 Linear Controller Verifier 86

6.1 Verification Flow of Linear Controller Verifier 87

6.2 Evaluation . 91

6.2.1 Case Study . 91

6.2.2 Scalability . 95

7 Conclusion 96

7.1 Summary of this Dissertation 96

7.2 Future Research Direction . 98

A Step function example 100

x

B LCV output examples 105

xi

List of Tables

3.1 Percentage of time used by each tool in the verification frame-

work for verification of controllers of size n = 10 with inexact

implementations. 50

3.2 Percentage of time used by each tool in the verification frame-

work for verification of controllers of size n = 18 with exact

implementations. 50

xii

List of Illustrations

1.1 Our extended proposed process for linear controller verification 5

3.1 The verification toolchain of the invariant checking-based ap-

proach. 43

3.2 Z3 running times for LTI controller verification using five dif-

ferent types of controller invariants. 47

3.3 Z3 running times for verification of LTI controllers using ‘in-

exact’ invariants for all five different types of controller invari-

ants. Note that in this case, verification of TF invariants does

not scale well because controllers with the size greater than

two can not be verified. 48

4.1 The verification toolchain for the similarity checking-based ap-

proach. 63

4.2 The average running time of the front-ends of both SC-based

and IC-based approaches (with the log-scaled y-axis) 66

4.3 The average running time of the back-ends of both SC-based

and IC-based approaches (with the log-scaled y-axis) 67

5.1 The verification toolchain . 82

xiii

5.2 The running time of both the front-end and the back-end of

our approach . 84

5.3 The overhead in both the front-end and the back-end of our

approach . 85

6.1 The verification flow of LCV. 86

6.2 The simulink block diagram for checking the additivity of the

controller . 88

6.3 The block diagram of the PID controller. 92

6.4 Our quadrotor platform (Left). The quadrotor controller block

diagram (Right). 94

6.5 The running time of LCV for verifying controllers with dimen-

sion n. 95

xiv

Chapter 1

Introduction

1.1 Motivation

Most safety- and life-critical embedded and cyber-physical systems have a

software-based controller at their core. The safety of these systems rely

on the correct operation of the controller. Thus, in order to have a high

assurance for such systems, it is imperative to ensure that controller software

is correctly implemented.

Nowadays, controller software is developed in a model-based fashion, us-

ing industry-standard tools such as Simulink [73] and Stateflow [77]. In this

development process, first of all, the controller model is designed and an-

alyzed. Controller design is performed using a mathematical model of the

control system that captures both the dynamics of the “plant”, the entity

to be controlled, and the controller itself. With this model, analysis is per-

formed to conclude whether the plant model adequately describes the system

to be controlled, and whether the controller achieves the desired goals of the

1

control system. Once the control engineer is satisfied with the design, a

software implementation is automatically produced by code generation from

the mathematical model of the controller. Code generation tools such as

Embedded Coder [72] and Simulink Coder [74] are widely used. The gener-

ated controller implementation is either used as it is in the control system, or

sometimes transformed into another code before used for various reasons such

as numerical accuracy improvement [23, 24] and code protection [18, 15, 11].

For simplicity’s sake, we will call code generation even when code generation

is potentially followed by code transformation.

To assure the correctness of the controller implementation, it is necessary

to check that code generation is correctly done. Ideally, we would like to

have verified tools for code generation. In this case, no verification of the

controller implementation would be needed because the tools would guaran-

tee that any produced controller correctly implements its model. In practice,

however, commercial code generators are complex black-box software that

are generally not amenable to formal verification. Subtle bugs have been

found in commercially available code generators that consequently generate

incorrect code [71]. Unverified code transformers may introduce unintended

bugs in the output code.

In the absence of verified code generators, it is desirable to verify instances

of implementations against their original models. Therefore, the goal of this

work is to develop an automatic method to perform such instance verification

for a given controller model and software implementation.

2

1.2 Problem Formulation

This work considers the problem of verifying software implementations of

controllers against controller models as mathematical specifications. We as-

sume that control design activities have been performed, achieving the ac-

ceptable degree of assurance for the control design. Thus, the mathematical

model of the controller is correct with respect to any higher-level require-

ments and can be used as the specification for a software implementation of

the controller.

Controllers are generally specified as a function that, given the current

state of the controller and a set of input sensor values, computes control

output that is sent to the system actuators and the new state of the controller.

We refer to this function as the state-space representation of the controller. In

this work, we focus on linear-time invariant (LTI) controllers, since these are

the most commonly used controllers in control systems. In LTI controllers,

the relationships between the controller input and current state values, and

the computed control output and updated state values are both linear.

In software, controllers are implemented as a subroutine (or a function

in the C language). This function is known as the step function. The step

function is invoked by the control system periodically, or upon arrival of new

sensor data (i.e., measurements).

To properly address this verification problem, the following challenges

should be considered: First of all, such verification should be performed

from the input-output perspective (i.e., input-output conformance). Cor-

rect implementations may have different state representations to each other

for several possible reasons (e.g., code generator’s choice of state represen-

3

tation, optimization used in the code generation process). In other words,

the original controller model and a correct implementation of the model may

be different from each other in state representation, while being functionally

equivalent from the input-output perspective. Thus, it is necessary to develop

the verification technique that is not sensitive to the state representation of

the controller.

Moreover, there is an inherent discrepancy between controller models and

their implementations. The controller software for embedded systems uses a

finite precision arithmetic (e.g., floating-point arithmetic) which introduces

rounding errors in the computation. The effect of these rounding errors needs

to be considered in the verification process. In addition to these rounding

errors, the implementations may be inexact in the numeric representation

of controller parameters due to the potential rounding errors in the code

generation/optimization process. Thus, it is reasonable to allow a tolerance

in the conformance verification as long as the implementation has the same

desired property to the model’s.

Finally, such verification is desired to be automatic and scalable because

verification needs to be followed by each instance of code generation. In the

next section, we describe the contributions of our proposed methods that

address this problem.

1.3 Contributions

At a high level, the goal of this work is to ensure the correctness of controller

implementation instances with respect to their original models in the ab-

4

Controller
Implementation (Step

function C Code)

Linear Controller Model
(State-space

representation, or
Simulink block diagram)

Linear
Controller

Verifier

Verification
result

(yes/no)
Code Generation

Physical System Model

Control Design

Tolerance
threshold !

Existing Process

Extended Process

artifact

existing process

extended process

Robustness Analysis

Figure 1.1: Our extended proposed process for linear controller verification

sence of verified code generators. Thus, as shown in Figure 1.1, we propose

an extended process building upon the existing model-based development

process. The main new entity in the extended proposed process is Linear

Controller Verifier (LCV), an automatic tool to verify a step function C code

(i.e., controller implementation) against an LTI controller model from the

input-output perspective with tolerance up to a given threshold value ε.1 To

develop LCV, we explore two alternative approaches in this dissertation: one

is based on invariant checking while another is based on similarity checking.

The more specific contributions that this dissertation make are as follows:

First of all, we propose an invariant checking-based verification method [58].

Given a controller model, this method derives assertions to be satisfied by

1We assume that a threshold value ε is given by a control engineer as a result of
robustness analysis that guarantees the desired properties of the control system in the
presence of uncertain disturbances.

5

correct step functions. These assertions exactly capture the specification of

the controller, thus the problem of verifying step function is reduced to the

problem of checking whether these assertions are invariant to the step func-

tion or not. These assertions enable the verification of the input-output only

conformance, because they are stated over the input and output variables

only, and no state variables appear in the assertions. In order to do this,

we rely on a different specification of the controller that is insensitive to the

representation of control state. This representation, based on the transfer

function of the controller, relates the current control output to the series

of past control inputs. Moreover, given a tolerance threshold by a control

engineer, we provide a way to relax the invariants (i.e., assertions) of the

controller code in order to tolerate inexact controller parameters up to the

threshold. We demonstrate how the generated control code can be auto-

matically verified with respect to a given transfer function using the popular

deductive software verification framework Frama-C [22], Why3 platform [13],

and the SMT solver Z3 [26].

Secondly, we propose a similarity checking-based verification method [60].

This approach is based on extracting a model from the controller code and

establishing equivalence between the original and the extracted models. This

similarity checking-based method significantly improves the scalability of ver-

ification compared to the invariant checking-based method. The main reason

is that the similarity checking-based method symbolically executes the given

controller code only one time, thus avoiding the loop/execution unrolling that

the invariant checking-based method involves. The first step of the similar-

ity checking-based verification is to extract a model from the given controller

6

code using the symbolic execution technique. The symbolic expressions iden-

tified as the result of symbolic execution are used to reconstruct the model

of the controller. Next, the reconstructed model is checked for input-output

equivalence against the given original model, using the well-known neces-

sary and sufficient condition for the equivalence of two minimal LTI models.

We account for the numerical errors of the inexact controller parameters by

allowing for a bounded discrepancy between the models in the equivalence

checking. We provide two ways to automatically check the equivalence based

on an SMT problem formulation and a convex optimization formulation re-

spectively.

Thirdly, building on the work of the similarity checking-based method,

we propose an extended verification approach that correctly accounts for

the floating-point calculation of controller implementation. In this extended

method, we newly introduce error terms into the representation of the ex-

tracted model that characterize the effects of floating-point rounding errors.

We use an optimization formulation to perform approximate equivalence

checking. We demonstrate that this extended approach suffers only min-

imal degradation in performance while offering a higher assurance of the

floating-point controller implementation.

Lastly, we develop LCV, the prototype tool in Figure 1.1 that implements

our verification approaches. The tool accepts a subset of Simulink block

diagrams (i.e., LTI) as input and performs conformance checking against the

given implementations. We demonstrate that the tool are able to detect some

known reproduced bugs of the code generator Embedded Coder [72], and an

unknown bug of the code optimizer Salsa [24].

7

1.4 Related Work

This section provides a brief summary of related work, and argues the rea-

son why the current techniques are insufficient in coping with the proposed

problem in this thesis. To ensure the correctness of controller implemen-

tation against the controller model, a typically used method in practice is

equivalence testing (or back-to-back testing) [70, 19, 20] which compares the

outputs of executable model and code for the common input sequence. The

limitation of this testing-based method is that it does not provide a thorough

verification.

Static analysis-based approaches [12, 34, 39] have been used to analyze

the finite-precision numerical controller code, but focuses on checking com-

mon properties such as numerical stability, the absence of buffer overflow or

arithmetic exceptions rather than verifying the code against the model.

The work of [65, 52] proposes translation validation techniques for Simulink

diagrams and the generated codes. The verification relies on the structure of

the block diagram and the code, thus being sensitive to the controller state

while our method verifies code against the model from the input-output per-

spective, not being sensitive to the controller state. Due to optimization and

transformation during a code generation process, a generated code which is

correct may have different state representation than the models. In this case,

our method can verify that the code is correct with respect to the model, but

the state-sensitive methods [65, 52] cannot.

[35, 42, 81, 80] present a control software verification approach based on

the concept of proof-carrying code. In their approach, the code annotation

based on the Lyapunov function and its proof are produced at the time of

8

code generation. The annotation asserts control theory related properties

such as stability and convergence, but not equivalence between controller

specifications and the implementations. In addition, their approach requires

the control of code generator, and may not be applicable to the off-the-shelf

black-box code generators.

There is a line of work that has focused on robust implementations of em-

bedded controllers. For instance, in [66] the authors present a model-based

simulation platform that can be used to analyze controller robustness against

different implementation issues, including sampling, quantization, and fixed-

point arithmetic. [5, 53] present methods for design of robust fixed-point

controllers that guarantee stability and minimize implementation errors, re-

spectively. In [51], the authors introduce a robustness analysis tool that

computes the maximum deviation of the plant states due to measurement

uncertainties. The use of SMT solvers for synthesis of fixed-point embedded

software has been addressed in [25, 33].

Firnally, the authors in [6] present a method for verification of Simulink

models by translating them to Why3 [13] models. Yet, the verification is

again performed only on the model level and not on the code level.

1.5 Outline of the Dissertation

The rest of this dissertation is organized as follows:

Chapter 2 provides a background of this dissertation including LTI sys-

tems with motivating examples, and an overview of software verification tech-

niques used in this work.

9

Chapter 3 describes an invariant checking-based approach to verify soft-

ware implementations of LTI controllers with respect to their mathematical

specifications by transfer functions. This chapter describe a toolchain de-

veloped to perform such verification, and demonstrate the scalability of the

approach using a set of randomly generated controllers of varying sizes.

Chapter 4 presents a similarity checking-based approach to verify con-

troller implementations by extracting models from the implementations and

comparing the extracted models against the original models. This chapter

also demonstrate the scalability of the prototype tool of this approach.

Chapter 5 presents a method that extends the similarity checking-based

approach of Chapter 4. This extended method correctly accounts for the

rounding errors that would occur in the floating-point computation of the

controller implementation. We demonstrate the scalability of our proposed

approaches through evaluation with randomly generated controller specifica-

tions of realistic size.

Chapter 6 describes LCV, the prototype tool that implements our veri-

fication approaches. This chapter also evaluates the tool LCV through the

case study and the scalability analysis.

Chapter 7 concludes the dissertation and discuss future research oppor-

tunities.

10

Chapter 2

Preliminaries

This chapter presents preliminaries on LTI controllers and their software

implementations. We also introduce two real-world examples that motivate

the problem considered in this thesis, as well as the problem statement.

2.1 Notation and Definitions

We use R to denote the set of reals, while matrix In denotes the n×n identity

matrix. The ith element of vector xk is denoted by xk,i.
1 For vector x, we use

to denote by |x| the vector whose elements are absolute values of the initial

vector. Also, a square matrix A is called nonsingular if its determinant is

not equal to zero.

A discrete system takes a discrete-time signal uk, k ≥ 0, as input and

generates a discrete-time signal yk as output in response to the input. The

system may have a hidden internal state. In this case, the output signal yk

1Note that we use bold letters to denote matrices and vectors (i.e., non-scalars).

11

is influenced by not only the input signal uk but also the internal state of

the system at time k. The change of the internal state is influenced by the

input signal uk and the current internal state. A discrete system is said to

be linear if αyk + βŷk is the output of the system in response to the input

αuk + βûk for any scalars α and β when yk and ŷk are the outputs of the

systems in response to the input uk and ûk respectively. Moreover, a system

is said to be time-invariant if yk−k0 is the output of the system in response

to the input uk−k0 for any k0 when yk is the output of the system in response

to the input uk.

Finally, for discrete-time signal xk, k ≥ 0, the z-transform is a function of

a complex variable defined as X(z) =
∑∞

k=0 xkz
−k. For the signal xk in the

time domain, this z-transform produces a new presentation X(z) in the z-

domain. The z-transform is considered as the discrete analogue of the Laplace

transform [64]. Rational functions are functions that can be represented by

an algebraic fraction where both the numerator and the denominator are

polynomial functions.

2.2 Linear Feedback Controller

The goal of feedback controllers is to ensure that the closed-loop systems have

certain desired behaviors. In general, these controllers derive suitable control

inputs to the plants (i.e., systems to control) based on previously obtained

measurements of the plant outputs. In this thesis, we consider a general class

of feedback controllers that can be specified as linear time-invariant (LTI)

12

controllers in the standard state-space representation form:

zk+1 = Azk + Buk

yk = Czk + Duk.
(2.1)

where uk ∈ Rp, yk ∈ Rm and zk ∈ Rn are the input vector, the output

vector and the state vector at time k respectively. The matrices A ∈ Rn×n,

B ∈ Rn×p, C ∈ Rm×n and D ∈ Rm×p together with the initial controller state

z0 completely specify an LTI controller. Thus, we use Σ(A,B,C,D, z0) to

denote an LTI controller, or just use Σ(A,B,C,D) when the initial controller

state z0 is zero.

During the control-design phase, controller Σ(A,B,C,D, z0) is derived

to guarantee the desired closed-loop performance, while taking into account

available computation and communication resources (e.g., finite-precision

arithmetic logic units). This model (i.e., controller specification) is then usu-

ally ‘mapped’ into a software implementation of a step function that: (1)

maintains the state of the controller, and updates it every time new sen-

sor measurements are available (i.e., when it’s invoked); and (2) computes

control outputs (i.e., inputs applied to the plant) from the the current con-

troller’s state and incoming sensor measurements. In most embedded control

systems, the step function is periodically invoked, or whenever new sensor

measurements arrive. In this thesis, we assume that data is exchanged with

the step function through global variables.2 In other words, the input, output

and state variables are declared in the global scope, and the step function

2This convention is used by Embedded Coder, a code generation toolbox for Mat-
lab/Simulink.

13

reads both input and state variables, and updates both output and state

variables as the effect of its execution. It is worth noting however that this

assumption does not critically limit our approach because it can be easily

extended to support a different code interface for the step function.

2.3 Motivating Examples

To motivate our work, we introduce two examples, which illustrate limita-

tions of the standard verification techniques that directly utilize the mathe-

matical model from (6.1), in cases when controller software is generated by a

code generator whose optimizations potentially violate the model while still

ensuring the desired control functionality.

2.3.1 A Scalar Linear Integrator

Consider a simple controller that computes control input yk as a scaled sum

of all previous sensor data ui ∈ R, i = 0, ..., k − 1 – i.e.,

yk =
k−1∑
i=0

αui, k > 1, and, y0 = 0. (2.2)

Now, if we use the Simulink Integrator block with Forward Euler in-

tegration to implement this controller, the resulting controller model will

be Σ(1, α, 1, 0), – i.e., zk+1 = zk + αuk, yk = zk. On the other hand, a real-

ization Σ̂(1, 1, α, 0) – i.e., zk+1 = zk + uk, yk = αzk, of the controller would

introduce a reduced computational error when finite precision arithmetics is

used [25]. Thus, controller specification (3.7) may result in two different soft-

14

ware implementations due to the use of different code generation tools. Still,

it is important to highlight that these two implementations would have iden-

tical input-output behavior – the only difference is whether they maintain a

scaled or unscaled sum of the previous sensor measurements.

2.3.2 Multiple-Input-Multiple-Output Controllers

Now, consider a more general Multiple-Input-Multiple-Output (MIMO) con-

troller with two inputs and two outputs which maintains five states

zk+1 =



−0.500311 0.16751 0.028029 −0.395599 −0.652079

0.850942 0.181639 −0.29276 0.481277 0.638183

−0.458583 −0.002389 −0.154281 −0.578708 −0.769495

1.01855 0.638926 −0.668256 −0.258506 0.119959

0.100383 −0.432501 0.122727 0.82634 0.892296


︸ ︷︷ ︸

A

zk+

+



1.1149 0.164423

−1.56592 0.634384

1.04856 −0.196914

1.96066 3.11571

−3.02046 −1.96087


︸ ︷︷ ︸

B

uk (2.3)

yk =

 0.283441 0.032612 −0.75658 0.085468 0.161088

−0.528786 0.050734 −0.681773 −0.432334 −1.17988


︸ ︷︷ ︸

C

zk

(2.4)

15

The controller has to perform 25 + 10 = 35 multiplications as part of the

state z update in every invocation of the step function. On the other hand,

the following controller requires only 5 + 10 = 15 multiplications for state

update.

ẑk+1 =



0.87224 0 0 0 0

0 0.366378 0 0 0

0 0 −0.540795 0 0

0 0 0 −0.332664 0

0 0 0 0 −0.204322


︸ ︷︷ ︸

Â

ẑk+

+



0.822174 −0.438008

−0.278536 −0.824313

0.874484 0.858857

−0.117628 −0.506362

−0.955459 −0.622498


︸ ︷︷ ︸

B̂

uk, (2.5)

yk =

 −0.793176 0.154365 −0.377883 −0.360608 −0.142123

0.503767 −0.573538 0.170245 −0.583312 −0.56603


︸ ︷︷ ︸

Ĉ

ẑk

(2.6)

The above controllers Σ and Σ̂ are similar, which means that the same

input sequences yk delivered to both controllers, would result in identical

outputs of the controllers. Note that the controller’s states will likely dif-

16

fer. Consequently, the ‘diagonalized’ controller Σ̂ results in the same control

performance and thus provides the same control functionality as Σ, while

violating the state evolution model of the initial controller Σ. The moti-

vation for the use of the diagonalized controller comes from a significantly

reduced computational cost that allow for the utilization of resource con-

strained embedded platforms. In general, any controller (6.1), would require

n2 + np = n(n + p) multiplications to update its state. This can be sig-

nificantly reduced when matrix A in (6.1) is diagonal – in this case only

n+ np = n(p+ 1) multiplications are needed.

2.4 Software Verification Techniques

This section briefly overviews the software verification techniques such as

deductive verification, symbolic execution and model extraction.

2.4.1 Deductive Verification

Deductive verification [36] is a deductive approach to verify a program, which

normally consists of two steps: (1) turning the correctness of a program into

a mathematical statement (also known as verification condition), and then

(2) proving the statement. The correctness of a program is defined by a

specification of the program. A specification can be given using the concept

of Hoare triple [43]. A Hoare triple is the form {P}s{Q} where P is a pre-

condition, s is a program statement, and Q is a postcondition. A program

statement s is said to be correct with respect to some given precondition P

and postcondition Q when the Hoare triple {P}s{Q} is valid. The Hoare

17

triple {P}s{Q} is valid if the execution of s starting from any state that

satisfies P finishes in a state that satisfies Q. Note that if s is not termi-

nating, it is correct for any P and Q. In this regard, the validity of a Hoare

triple asserts the partial correctness of a program. An additional require-

ment for s to be terminating defines total correctness. One can establish

the validity of a Hoare triple using the Hoare rules with providing proper

intermediate assertions. However, this typically requires much manual effort

in practice. Thus, most modern verification condition generators use the

weakest precondition calculation which computes the weakest precondition

wp(s,Q) for some given program statement s and postcondition Q such that

{wp(s,Q)}s{Q}. Consequently, the validity of the Hoare triple {P}s{Q}

is equivalent to P =⇒ wp(s,Q). Generated verification conditions can

be discharged by the support of tools such as SMT solvers (e.g., Z3 [26],

CVC4 [8]) and interactive theorem provers (e.g., Coq [7], PVS [57]), possibly

being coordinated by a multi-prover deductive verification framework [37].

Finally, Frama-C [22] and ACSL [10] have been widely used for software

verification. For example, for verification of a subset of the standard C

library [16], safety-critical software in the railway domain [41], and the Xen

kernel [63]). In addition, [28, 48] present methods for dynamic analysis in

Frama-C, and in [42] the authors present the use of Frama-C for verification

of control software.

2.4.2 Symbolic Execution

Symbolic execution [47] [17] is a program analysis technique which executes a

program in a symbolic manner to explore multiple different execution paths.

18

Symbolic execution contrasts with concrete execution. Concrete execution

for program analysis can be said to be program testing, which process is as

follows: concrete values are given as an input to a program under test. The

program is executed for the concrete inputs, and the observable behavior

(e.g., output) of the execution is inspected to see if it is expected or not.

In this process, a concrete execution yields a single execution path. In most

cases, concrete executions only cover a small subset of the whole input space,

and thus may miss the program executions which actually lead to errors.

On the other hand, symbolic execution allows a program to take as in-

put symbolic values instead of concrete values. A symbolic value (e.g., α,

β) denotes an arbitrary concrete value. For a given symbolic input, a sym-

bolic execution engine explores the control flow paths of the program while

maintaining (1) a symbolic program state which maps variables to symbolic

expressions, and (2) a path condition which is a constraint on the symbolic

input values and characterizes the path currently being explored. In other

words, a path condition is the conjunction of the conditions of the branches

taken along the path. During a symbolic execution, branch statements up-

date the path condition, while assignment statements update the symbolic

program state.

Symbolic execution can be used in program analysis in many different

ways. First of all, symbolic execution can be used to generate test cases that

covers certain execution paths. Suppose that there is an execution path with

path condition C. The feasibility of the path is reduced to the satisfiability

of the path condition C. Constraint solvers (e.g., Z3 [26] and CVC4 [8]) are

used to automatically find an assignment which satisfies C, which can serve

19

as a concrete input (i.e., test case) that covers the path. Moreover, symbolic

execution can be used to verify assertions in programs. Suppose that the path

with the path condition C reaches an assertion statement which asserts the

predicate P . If (C =⇒ P) is valid, it is guaranteed that all concrete input

values that lead to the path (i.e., satisfies C) are not violating the assertion

P . Checking the validity of the formula can also be done automatically

by constraint solvers. If the formula is not valid, the solvers also provide

a concrete assignment (i.e., concrete input value) that causes the assertion

violation.

2.4.3 Model Extraction

The model extraction technique has been used in software verification [78,

21, 45, 46, 54, 79, 62, 67]. There is a line of work that has focused on

using the model extraction technique for software model checking [78, 21,

45, 46, 54]. From a given source program, these model extraction tools

automatically extract a verification model in the input language of several

existing model checkers such as SPIN [44], SMV [55], SAL [27] and Zing [4].

Bandera [21] takes Java programs, and extracts models from the programs

in a certain intermediate representation which are further translated into the

input languages of existing model checkers such as SPIN, SMV and SAL.

Modex [45, 46] extract the control-flow skeleton of a given C program in

the Promela language [44] to verify the message passing operations of the

program using the SPIN model checker. The work [54] focuses on extracting

verification models from C programs of Windows kernel drivers to facilitate

software model checking using the Zing model checker.

20

There is also much work on extracting high-level state machine models

from source programs [49, 69, 79, 67]. These approaches reconstruct a state

machine model from a given program for the use of program testing and

code review (i.e., visualizing the state machine model for a programmer to

understand the high-level perspective of the behavior of the legacy program).

For model extraction, the symbolic execution technique is used in [49, 79, 67]

while the work [69] analyze the structure of the abstract syntax tree of the

program.

Finally, the work [62] applies the symbolic execution technique to im-

plemented source code to extract mathematical functional models. The ap-

proach only considers a restricted set of programs that can be represented as

pure mathematical functions (i.e., without having states), thus being unable

to account for persistent static variables such as global variables which are

essential to represent the state of controllers in controller implementations.

21

Chapter 3

Invariant Checking-based

Verification Approach

This chapter describe an invariant checking-based verification method [58].

Given a controller model, this method derives assertions to be satisfied by

correct step functions. These assertions exactly capture the specification of

the controller, thus the step function verification problem is reduced to the

problem of checking whether these assertions are invariant to the step func-

tion or not. In order to derive invariants that assert the input-output only

conformance of code against model, we rely on a different specification of the

controller that is insensitive to the representation of control state. This repre-

sentation, based on the transfer function of the controller, relates the current

control output to the series of past control inputs. The number of past inputs

needed to capture the transfer function is known as the degree of the con-

troller. It is well known that every state-space representation of a controller

can be transformed into a transfer function, and that equivalent (i.e., simi-

22

lar) state-space representations will have the same transfer function [64]. In

this chapter, we demonstrate how the generated control code can be auto-

matically verified with respect to a given transfer function using the popular

software verification framework Frama-C [22], Why3 platform [13], and the

SMT solver Z3 [26].

Verification is currently performed in the domain of real numbers, disre-

garding numerical errors due to floating point calculations in the software.

We are planning to address the floating point domain in our future work.

As the first step towards the full treatment of the problem, we consider im-

precise implementations of the controller and allow coefficients of its transfer

function to deviate from the specification, up to a fixed bound. We show

that, while these bounded-error specifications can be handled using the same

tool chain as exact specifications, they yield SMT problems with a differ-

ent structure, which adversely affect scalability of the solution. We then

propose an alternative, equivalent specification for the controller, which we

call an instantiation-based specification. We show that by slightly increasing

the size of the specification, we can dramatically improve the scalability of

verification.

This chapter is organized as follows: Section 3.1 introduces invariants

for linear controllers and methods for code annotation, for both exact and

inexact controller implementations. In Sec. 3.2, we define instantiation-based

invariants for linear controllers. Finally, in Sec. 3.3, we present the developed

framework for automatic control code verification and evaluation results.

23

3.1 Defining Invariants for Linear Controllers

In this section, we introduce invariants for linear controllers that can be used

to verify both state and input-output conformance of the obtained code or

only input-output conformance of the code. By the input-output conformance

we refer to the requirement that in response to provided inputs the code

provides outputs equal to the outputs provided by the model in (6.1) for the

same input signals. Additionally, by state and input-output conformance we

refer to the requirement that in response to provided inputs the code fully

conforms to the initial model in (6.1) – i.e., not only in output but also in

the internal state of the controller.

Accordingly, for verification of state and input-output (IO) conformance,

invariants can be directly obtained from the model in (6.1). On the other

hand, as illustrated in the previous section, there is a need to provide a

method to capture input-output (IO) only invariants for linear controllers.

These invariants cannot utilize any assertions on the controller’s state, be-

cause controller implementations may be equivalent from the input-output

perspective and yet rely on different state representations.

3.1.1 Input-Output Invariants

We consider a controller defined as Σ = (A,B,C,D). The controller’s trans-

fer function G(z), defined as G(z) = Y(z)
U(z)

where U(z) and Y(z) denote the

z-transforms of the signals uk and yk respectively, is a convenient way to

capture the dependency between the controller’s input and output signals.

24

For the controller Σ we have that

G(z) = C(zIn −A)−1B + D. (3.1)

In general, G(z) is a m × p matrix with each element Gi,j(z) being a ra-

tional function of the complex variable z. To simplify the notation, unless

otherwise noted, we will assume that the considered controller is a Single-

Input-Single-Output (SISO) controller, meaning that the transfer function

G(z) is a (single, not a matrix) rational function of z. The introduced in-

variants can be easily extended to Multiple-Input-Multiple-Output (MIMO)

controllers.

From (3.1), in the general case G(z) takes the form

G(z) =
β0 + β1z

−1 + · · ·+ βnz
−n

1 + α1z−1 + · · ·+ αnz−n
, (3.2)

where n is the size of the initial controller model, and we will also refer to n

as the degree of the transfer function. In addition, β0, ..., βn, α1, ..., αn ∈ R

and can be obtained as in (3.1), from the parameters of the initial controller

specification (6.1). Therefore, the transfer function is fully described by

the vectors α, β ∈ Rn+1 that are defined as α = [1, α1, ..., αn] and β =

[β0, β1, ..., βn].

From the properties of the z-transforms such as linearity and time-invariance,

the above equation implies that the controller’s input and output signals sat-

isfy the following difference equation [64]:

yk =
n∑
i=0

βiuk−i −
n∑
i=1

αiyk−i, (3.3)

25

with yk = 0, k < 0, because z0 = 0 and uk = 0, for k < 0. The coefficients

α and β of this equation come from (3.2). Thus, for any controller Σ it

is possible to obtain a linear invariant of the form in (3.3) that specifies

the relationship between controller inputs and outputs. In addition, since

transfer functions are invariant to similarity transformations [64], besides the

controller Σ, the linear invariant in (3.3) is also satisfied by any controller

Σ̂ obtained from the initial controller model Σ using a similarity transform

with a nonsingular matrix T.

3.1.2 Annotating Controller Invariants in C Code

The linear conditions in (6.1) and (3.3) respectively capture the expected

state and input-output, and input-output only invariants for LTI controllers.

The next challenge is to find a suitable method to express them as C code

annotations, compatible with existing verification tools. To achieve this goal,

we exploit ANSI/ISO C Specification Language (ACSL) [10] that enables

users to specify desired properties of C code within the program’s comments.

ACSL is integrated in the Frama-C platform [22] that supports tools for

reasoning about correctness of C code and incorporated ACSL annotations.

To illustrate the use of ACSL to capture C code invariants, as a running

example we use the following Σ(A,B,C,0) controller

A =

0.8147 1.1534

2.6413 3.6411

 ,B =

3.1019

2.1432

 ,C =
[
1.7121 0.1351

]
(3.4)

G(z) =
5.60030931z−1 − 14.233777166248z−2

1− 4.4558z−1 − 0.08007125z−2
(3.5)

26

For completeness, we first introduce annotations that capture both IO and

state conformance, before introducing IO only annotations.

3.1.3 Annotating Input-Output and State Invariants

To capture the input-output and state requirements for a C function, we ex-

ploit the ACSL’s notion of the function contract, which is effectively a Hoare

triple [43, 30] for the entire function. ACSL utilizes the keywords requires

and ensures to specify the preconditions and postconditions; the verification

goal is to prove that postconditions are satisfied upon return if preconditions

were satisfied when the function call occurred. The precondition for the con-

troller’s step function is that all pointers to memory locations are valid –

for example, valid pointers to state vectors and matrix coefficients if the co-

efficients are not directly instantiated. This requirement is supported by the

predicate valid that is part of ACSL.

On the other hand, the specified postconditions follow directly from the

linear invariants (i.e., the model) of the controller step function in (6.1).

To capture them and properly annotate the code, we exploit the built-in

ACSL predicate old that denotes the values of a variable before the code

is executed. For instance, for the considered controller defined in (3.4), the

controller code with the annotations is presented in Listing 1.

3.1.4 Annotating Input-Output Only Invariants

Unlike the state and IO invariants, the IO only controller invariants from (3.3)

cannot be specified using pre- and post-conditions for every execution of the

step function. This is caused by the fact that constraint (3.3) effectively

27

double x[2], u, y;

/*@ requires \valid(x+(0..1));

@ ensures x[0] == 0.8147*\old(x[0]) +

@ 1.1534*\old(x[1]) + 3.10191*\old(u);

@ ensures x[1] == 2.6413*\old(x[0]) +

@ 3.6411*\old(x[1]) + 2.1432*\old(u);

@ ensures y == 1.7121*\old(x[0]) +

@ 0.1351*\old(x[1]) + 0*\old(u);

*/

void step() {

double t1, t2;

y = 1.7121*x[0] + 0.1351*x[1];

t1 = 0.8147*x[0] + 1.1534*x[1] + 3.1019*u;

t2 = 2.6413*x[0] + 3.6411*x[1] + 2.1432*u;

x[0] = t1;

x[1] = t2;

}

Listing 1: Verified code for the Σ controller from (3.4) annotated by the state
and input-output invariant

28

relates the last n+1 executions of the step function. Therefore, to verify IO

conformance of the controller code we have to perform execution unrolling of

the step function a certain number of times. To achieve this, we construct

the function verif driver that invokes the step function exactly n+1 times.

It is important to note here that the number of times the code needs to be

unrolled is equal to the size of the initial controller model (i.e., the degree of

transfer function) increased by 1. Finally, by using a separate label for every

step function execution, we can then exploit the built-in ACSL keyword at

to capture the values of input and output variables at each point of time

(i.e., execution of the ‘unrolled’ function).

ACSL supports assertions at the end of any C code block using the assert

keyword, where assert p specifies that p has to hold in the current state

(i.e., at the place where the assertion occurs) [10]. Thus, the invariant (3.3)

can be specified as1

/*@ assert \at(y,kn) + α1*\at(y,kn−1)+...

@ αn*\at(y,k0) == β0*\at(u,kn) +...

@ βn*\at(u,k0) */

(3.6)

For instance, for controller Σ specified as in (3.4), Listing 2 presents the

verif driver function with the corresponding annotations.

1If the step function could change the input variables, we would have to introduce
separate labels for inputs and outputs (instead of a single set of k0 to kn points). However,
to simplify the notation (and since we verify that the step function does not modify input
variables) we use a single set of labels.

29

extern double input();

void verif_driver() {

u = input(); step();

k0:;

u = input(); step();

k1:;

u = input(); step();

k2:;

/*@assert \at(y,k2) - 4.4558*\at(y, k1)

@ - 0.08007125*\at(y, k0)

@ == 5.60030931*\at(u, k1)

@ - 14.233777166248*\at(u, k0);

@ */

}

Listing 2: Annotated code for verification of the IO only conformance of the
Σ controller from (3.4)

30

3.1.5 Inexact Controller Implementations

Let us revisit the example controller with the initial model defined in (3.4).

We obtained a computationally more efficient controller Σ̂(Â, B̂, Ĉ,0) via a

similarity transformation from the initial controller Σ; this was done in Mat-

lab using the function canon for the modal type of decomposition, resulting

in controller Σ̂:

Â =

−0.0179 0

0 4.474

 , B̂ =

−1.051

−1.055

 , Ĉ =
[
−3.037 −2.283

]
(3.7)

ˆG(z) =
5.600452z−1 − 14.2373891245z−2

1− 4.4561z−1 − 0.0800846z−2
(3.8)

There exists a discrepancy between transfer functions G(z) in (3.5) and

Ĝ(z) in (3.8), which implies that that the previously introduced input-output

invariant from (3.3) will not be satisfied by the control code implementing

controller Σ̂. Although a similarity transform results in a new controller

with the same transfer function, due to finite-precision computation of the

code generator performing controller optimization (in this case Matlab), it is

possible (and expected) that the transfer function of the produced controller

slightly differs from the transfer function of the initial controller.

Consequently, there is a need to extend our input-output invariants for

the case with imprecise specification of the transfer functions. Specifically,

we extend (3.2) by assuming that the transfer function could take the form

as

G(z) =
β̂0 + β̂1z

−1 + · · ·+ β̂nz
−n

1 + α̂1z−1 + · · ·+ α̂nz−n
, (3.9)

31

such that for i = 0, 1, ..., n

βi − εβ ≤ β̂i ≤ βi + εβ, αi − εα ≤ α̂i ≤ αi + εα. (3.10)

Here, εβ and εα denote the bounds on the errors of the transfer function

coefficients. We assume that these are inputs to our verification procedure;

suitable error bounds that guarantee the desired control performance can be

extracted using methods from robust control theory [31].

Yet, these inaccuracies also affect the input-output controller invariants

that now need to be (re)stated. We start by noting that from (3.9) it holds

that

∃∆βi,∆αi ∈ R, i = 0, ..., n, |∆βi| ≤ εβ ∧ |∆αi| ≤ εα∧

yk =
n∑
i=0

(βi + ∆βi)uk−i −
n∑
i=1

(αi + ∆αi)yk−i.
(3.11)

However, the above condition is not linear, but rather bilinear, as it con-

tains products ∆βiuk−i and ∆αiyk−i. Hence, we introduce additional vari-

ables ũk−i = ∆βiuk−i and ỹk−i = ∆αiyk−i and restate (3.11) as follows

∃ũk−i, ỹk−i ∈ R, i = 0, 1, ..., n,

|ũk−i| ≤ εβ|uk−i| ∧ |ỹk−i| ≤ εα|yk−i| ∧

yk =
n∑
i=0

(βiuk−i + ũk−i)−
n∑
i=1

(αiyk−i + ỹk−i)

(3.12)

Since εα ≥ 0, the condition |ỹi| ≤ εα|ui| is equivalent to

((−εαyi ≤ ỹi ≤ εαyi) ∧ (yi ≥ 0)) ∨ ((εαyi ≤ ỹi ≤ −εαyi) ∧ (yi ≤ 0)).

32

A similar term can be obtained for |ũi| ≤ εβ|ui|. Thus, we introduce a pred-

icate error bound(a,b,c) as

#define error bound(a,b,c) (((b)>=0 && -(b)*(c) <= (a) <= (b)*(c))

|| ((b)<0 && (b)*(c) <= (a) <= -(b)*(c)))

With the above notation, and using the ACSL keyword exists for the

existential quantifier, the input-output invariant (3.12) can be annotated in

code as follows:

/*@ assert \exists real ỹ0, ..., ỹn−1, ũ0, ..., ũn

@ error bound(ỹ0,\at(y,k0),εα) && ... &&

@ error bound(ỹn−1,\at(y,kn−1),εα) &&

@ error bound(ũ0,\at(u,k0),εβ) && ... &&

@ error bound(ũn,\at(u,kn),εβ) &&

@ (\at(y,kn)+α1*\at(y,kn−1)+ỹn−1+...+αn*\at(y,k0)+ỹ0

@ == β0*\at(u,kn)+ũn+...+βn*\at(u,k0)+ũ0) */

(3.13)

For example, for the controller Σ specified (3.4), Listing 3 illustrates the

verif driver function with the input-output invariant annotations that al-

low for transfer function inaccuracies.

It is important to highlight that the IO invariant in (3.12) and the corre-

sponding code annotation in (3.13) exploit a mixture of both universal and

existential quantifiers. Existential quantifiers are used to specify tolerance

variables ỹ and ũ, while universal quantifiers are employed since (3.12) has

to hold for all values of uk at points k0, ... kn and yk at k0, ... kn−1 (where

label k0 does not have to correspond to any time-step k). Note that the use

33

of formulas with both universal and existential quantifiers usually presents

a challenge for SMT solvers (e.g., Z3), which, as we will illustrate in the

evaluation section later (Section 3.3.1), significantly limits scalability of the

approach and degrees of controllers that can be verified using the invariant.

We address this problem in the next section as we provide another approach

to derive input-output invariants for LTI controllers.

3.2 Instantiation-based Input-Output Invari-

ants for LTI Controllers

In this section, we present an alternative method to specify linear invariants

that are equivalent to the IO invariant introduced in (3.3), (3.12) and (3.13).

As we will show, the method is better suited to capture robust invariants

that allow for slightly inexact controller implementations, as in cases when

there exists a small discrepancy between the transfer function of the initial

controller and the one implemented by the provided code.

Initially, we consider the exact input-output invariants from (3.3), and we

start by logically ‘unrolling’ the condition (3.3) N times – by summarizing N

executions of the controller from (3.3) using the matrices introduced below.

Definition. Consider controller Σ. For the controller’s inputs and outputs

uk and yk at time steps k = 0, 1, ..., n + N − 1, we define the matrix DN =

34

extern double input();

void verif_driver() {

u = input(); step();

k0:;

u = input(); step();

k1:;

u = input(); step();

k2:;

/*@assert \exists real yt0, yt1, ut0, ut1;

@ error_bound(yt0, \at(y, k0), 0.01) &&

@ error_bound(yt1, \at(y, k1), 0.01) &&

@ error_bound(ut0, \at(u, k0), 0.01) &&

@ error_bound(ut1, \at(u, k1), 0.01) &&

@ \at(y,k2)

@ - 4.4558*\at(y, k1) + yt1

@ - 0.08007125*\at(y, k0) + yt0

@ == 5.60030931*\at(u, k1) + ut1

@ - 14.233777166248*\at(u, k0) + ut0;

@ */

}

Listing 3: Annotated code for verification of the IO conformance within the
tolerance limit for the example controller from (3.4); Note that ỹ and ũ
from (3.13) are denoted by yt and ut

35

[
Dy
N Du

N

]
where

Dy
N =


yn yn−1 ... y1 y0

yn+1 yn ... y2 y1
...

...
. . .

...
...

yn+N−1 yn+N−1 ... yN yN−1

 (3.14)

Du
N =


un un−1 ... u1 u0

un+1 un ... u2 u1
...

...
. . .

...
...

un+N−1 un+N−2 ... uN uN−1

 (3.15)

Consequently, from (3.3) and the above definition it follows that

DN · θ = 0, (3.16)

where θ =
[
1 α1 ... αn β0 β1 ... βn

]T
=
[
αT βT

]T
captures all of

the parameters of the controller’s transfer function.

The following proposition shows that under certain conditions, linear

equalities from (3.16) are equivalent to the invariant in (3.3) obtained from

the controller’s transfer function.

Proposition 1. Consider LTI controller Σ of size n. Then the rank of any

matrix DN cannot be larger than 2n+ 1. Furthermore, when the rank of DN

is 2n + 1, then linear conditions from (3.16) are satisfied if and only if the

condition (3.3) is satisfied for all k.

Proof. From Definition 3.2, rank(DN) ≤ 2n+ 2, for any N ≥ 1, because the

36

matrix has 2n+ 2 columns. Note that the matrix cannot have rank 2n+ 2 as

that would imply that the columns of DN are linearly independent and thus

their linear combination Dy
N · θ could be equal to the zero vector only if all

elements of θ are zero (i.e., θ = 0). This is clearly not possible since 1 is the

first element of θ.

Now suppose that rank(DN) = 2n + 1. As we argued before, from (3.3)

and Definition 3.2 we have that (3.16) is satisfied. Thus, let’s consider the

other direction.

We start by assuming that (3.16) holds for a vector θ obtained from some

vectors α and β. Since Σ is an LTI controller of size n then, as presented in

Section 3.1, there exist vectors α̂, β̂, and θ̂ =
[
α̂T β̂T

]T
for which (3.3) is

satisfied for each k. Therefore, since DN captures inputs and outputs of the

system (from its definition), we have that

DN · θ̂ = 0 = DN · θ ⇒ DN · (θ − θ̂) = 0. (3.17)

Note that since the first element of θ−θ̂ is zero, DN ·(θ−θ̂) presents linear

combination of all columns of DN except the first one. Thus, from (3.17), if

θ 6= θ̂ it follows that the remaining 2n + 1 columns of DN (i.e., without the

first column) are linearly dependent. On the other hand, the first column of

DN presents a linear combination of other columns with coefficients from θ̂.

Thus, since the rank of DN is 2n + 1, we have that the remaining 2n + 1

columns are linearly independent, which contradicts are previous conclusion.

Thus, we have that θ = θ̂, meaning that if (3.16) holds so does (3.3), which

concludes the proof.

37

The specific structure of matrix DN (the matrices with structure such

as Dy
N and Du

N are called Toeplitz matrices) makes it suitable to obtain the

rank of DN equal to 2n + 1 with exactly N = 2n + 1 rows. To generate

matrix D2n+1 with rank 2n+ 1, we start by assigning yk = 0 and uk = 0 for

all k = 0, ..., n − 1, and then un = 1. After this, the only assignments are

done on uk, k > n, as the values for yk, k > n are derived from the initial

controller model (i.e., specification). Specifically, after assigning un = 1, we

set the next n− 1 inputs to zero. Since n is the size of the initial controller

(which is minimal by our assumption), the corresponding first n rows of both

Dy and Du will be linearly independent. Finally, the last n+1 inputs uk, k =

2n, ..., 3n, are assigned in a way that ensures that each newly introduced row

is linearly independent of the previous ones – this is easy to achieve due to

the fact that inputs uk, k = n+ 1, ..., 2n− 1 were all zero.

The above proposition allows us to specify a set of 2n+1 linear invariants,

which if satisfied would verify input-output conformance of the considered

controller code – i.e., the invariant in (3.3). At first glance, the benefits of

using the invariant with 2n+ 1 linear conditions might be unclear, when an

invariant with a single linear condition can be used. However, as we discussed

at the end of the previous section, the invariant in (3.3) and its corresponding

ACSL annotation (3.6) require that for all values of u at points k0 ... kn and y

at k0 ... kn−1, the value of y at kn is equal to the specified linear combination

of uk’s and yk’s. On the other hand, the invariant (3.16) does not use the

universal quantifier; rather, it specifies that if values of uk at 3n + 1 points

are equal to the corresponding values from Du
2n+1 and the values of yk at

the first n points are equal to the corresponding values from Dy
2n+1, then the

38

values of yk at the remaining 2n+ 1 points have to be equal to the remaining

values from the matrix Dy
2n+1.

Finally, the above method for deriving a set of linear invariants exploits

a similar approach as the ones used in testing for system identification. By

creating a suitable matrix D2n+1 we effectively provide a set of controller

inputs at consecutive executions of the step function and verify whether

the controller outputs conform to the prespecified input-output behavior of

the controller. Hence, we refer to the linear invariants specified in (3.16) as

instantiation-based invariants.

3.2.1 Defining Instantiation-Based Invariants as Code

Annotation

Similarly to the IO controller invariants from (3.3), to introduce instantiation-

based invariants as code annotations we have to perform execution unrolling

of the step function within a newly defined verif driver function. Due

to the fact that the matrix D2n+1 contains controller inputs and outputs

for steps 0 to 3n, we need to unroll the function exactly 3n + 1 times and

introduce a separate label ki, i = 0, ..., 3n for each step function execu-

tion, as previously presented in Listing 3. With this notation, the invariant

from (3.16) can be captured as the code annotation from (3.18), where ui and

yi, i = 0, 1, ..., 3n, specify the corresponding elements of the matrix D2n+1 as

stated in Definition 3.2.

Another approach to define instantiation-based invariants is to directly

perform input variables assignments in verif driver code, as presented in

Listing 4. This effectively reduces the complexity of the assert statement,

39

/*@ assert ((\at(y,k0)==y0)&&...&&(\at(y,kn−1)==yn−1) &&

@ (\at(u,k0)==u0)&&...&&(\at(u,k3n)==u3n))
@ ⇒ ((\at(y,kn) == yn) && ... && (\at(y,k3n)==y3n)) */

(3.18)

/*@ assert ((\at(y,k0)==y0)&&...&&(\at(y,kn−1)==yn−1)) ⇒
@ ((\at(y,kn)==yn)&&...&&(\at(y,k3n)==y3n)) */

(3.19)

whose form is shown in (3.19). In Section 3.3.1, we will compare efficiency

of these approaches.

Remark. The above annotations can be significantly simplified if we know

the variables in the code used to maintain the controller’s state (for example,

this can be determined with the use of static analysis tools). As previously

described, the matrix D2n+1 is designed in a way that uk = 0 and yk = 0 for

k = 0, ..., n − 1. For linear systems with minimal realizations (which means

that they are controllable and observable [64]) this would also imply that the

state of the controller at time n − 1 would have to be zero (i.e., zn−1 = 0).

Thus, in this case, we would need to unroll code execution only 2n+1 times

(and introduce only 2n + 1 points/labels) by either specifying zn−1 == 0 as

part of the assert statement similar to what is done in (3.18), or introduce

an additional assignment zn−1 = 0 in the verify driver function with an

assert statement similar to the one in (3.19).

40

extern double input();

void verif_driver() {

u = u_0; step();

k0:;

u = u_1; step();

k1:;

.

.

u = u_3n; step();

k3n:;

/*@assert ... (from (24)) @ */

}

Listing 4: One structure of the code annotations for verification of the IO
only conformance using the Instantiation-based Invariants from (3.16); Note
that u t denotes ut from the matrix D2n+1

41

3.2.2 Instantiation-Based Invariants for Inexact Con-

troller Implementations

The invariant introduced in (3.16) can be especially important for verifica-

tion of inexact controller implementations that allow for small errors in the

coefficients of the implemented controllers’ transfer functions. To elaborate

on this, let’s use the same notation as in Section 3.1.5 and let’s assume that

transfer function can be specified using the vector θ̂ =
[
α̂T β̂T

]T
, where

α̂, β̂ satisfy (3.10). Thus, from (3.16) we have that D2n+1 · θ̂ = 0 which is (as

in Proposition 1) equivalent to the invariant in (3.11).

Now, by introducing ∆θ = θ̂ − θ, we have that

D2n+1 · θ + D2n+1 ·∆θ = 0. (3.20)

Since the matrix D2n+1 and the initial transfer function vectors α and β are

known, from the initial controller model, we can compute

v = −Dy
2n+1α−Du

2n+1β.

Using the vector v, we can state the following invariant

∃∆βi,∆αi ∈ R, i = 0, ..., n, |∆βi| ≤ εβ ∧ |∆αi| ≤ εα ∧

Dy
2n+1∆α + Du

2n+1∆β = v ∧

yn+i =Dy
2n+1(n+ i), i = 0, ..., 2n,

(3.21)

where Dy
2n+1(k) denotes the entry in the matrix Dy

2n+1 on the position corre-

sponding to yk as defined in (3.14) (for the exact controller specification).

42

/*@ assert \exists real a0, ..., an−1, b0, ..., bn

@ (a0 ≤ εα)&&(a0 ≥ −εα)&&...&&(an−1 ≤ εα)&&(an−1 ≥ −εα)&&
@ (b0 ≤ εβ)&&(b0 ≥ −εβ)&&...&&(bn ≤ εβ)&&(bn ≥ −εβ) &&

@ ((\at(y,k0)==y0) &&...&& (\at(y,kn−1)==yn−1) &&

@ (\at(u,k0) ==u0) &&...&& (\at(u,k3n)==u3n))
@ ⇒ ((\at(y,kn) == yn) &&...&& (\at(y,k3n)==y3n) &&

@ vector equal((lin comb(Dy, 1, a0, ..., an−1) +

@ lin comb(Du, b0, ..., bn)),v)) */

(3.22)

Figure 3.1: The verification toolchain of the invariant checking-based ap-
proach.

The above invariant is linear and utilizes only the existential quantifier.

Again, as in the case for the exact IO invariant, we can define two types

of instantiation-based invariants for inexact controller implementations. For

instance, the assert statement similar to the one in (3.18), for exact controller

implementations, is introduced in (3.22). Here, a and b are used to represent

∆αi and ∆βi, and we introduced a predicate vector equal(x,y) that com-

pares vectors x,y and operator lin comb(D,a1,...,an) that presents the

linear combination of n columns of D with weights a1,...,an.

3.3 Framework for Automatic Verification

In this section, we present the developed automatic verification framework

based on the previously described invariants for LTI controllers (see Fig. 5.1).

43

To automatically verify C code annotated with ACSL specification [10], we

employ the popular software verification platform Frama-C [22]. We also

exploit WP [9], a plugin of Frama-C that enables deductive verification of C

code with ACSL annotations. Given annotated C code, Frama-C/WP parses

the code and performs the weakest precondition calculations to analyze the

validity of the annotations in the code. For each annotation, Frama-C/WP

generate a set of proof obligations to establish that the C code satisfies the

annotated specification.

Frama-C/WP supports generation of proof obligations in the intermedi-

ate specification language WhyML [1]. The generated proof obligations in

WhyML can be submitted to various theorem provers via the Why3 plat-

form [13], both automatic theorem provers (e.g., Z3 [26]) or interactive theo-

rem provers (e.g., Coq [7]). To automate the verification process, we employ

the automatic theorem prover Z3 to discharge the proof obligations. Z3 is

an SMT solver that checks satisfiability of a given formula modulo a certain

theory, and to check the validity of the proof goal of a proof obligation, we

used Why3 to generate an SMT instance for Z3.

While transforming annotated C code to an SMT instance along the

toolchain in Fig. 5.1, we observed that WP and Why3 tend to generate

the declarations for some extra theories in their outputs; these are not nec-

essary to prove the proof goal, but could adversely affect the performance of

the SMT solving with Z3. In addition, some of the generated declarations

in the intermediate specifications are not directly relevant to the proof goal,

while others are redundant since they have been already incorporated in Z3.

Therefore, to improve the performance at the SMT solving stage, we created

44

an automated Python script to intervene in the transformation and remove

unnecessary theory declarations from the intermediate specifications such as

the proof obligations in WhyML and SMT instances.

In the deductive verification of the verif driver function, which as de-

scribed in Sections 3.1 and 3.2 by construction invokes the step function a

certain number of times, the function contract (i.e., pre- and post-condition)

of the step function would be required for the deduction rule for the function

calls. However, it is very difficult to specify the function contract of the step

function without knowing its input-output and state invariant (and which

we in the general case do not know). Thus, to avoid writing the step func-

tion specification, we preprocess the code performing the function inlining

for the step function (i.e., inserting the body of the step function wherever

the function is called in the code). Moreover, the step function may contain

loops. Note that it is challenging to automate the deductive verification of C

code with loops when no loop invariants are provided. To avoid synthesizing

the invariants of the loops in the step function, we transform the code by

unrolling the loops in it. This is possible when the loops have some constant

upper bounds. We note that the size of the controller for embedded system is

statically fixed in many cases, and the upper bound of the loops are normally

bounded in terms of the size of the controller.

Finally, Frama-C/WP supports two different models for floating-point

arithmetic operations of C code: float model and real model. In the float

model, when deriving the weakest precondition WP performs floating-point

operations as defined in the IEEE 754 floating-point standard. This re-

sults in generated proof obligations that are too complex to be handled by

45

existing automatic theorem provers. On the other hand, the real model

transforms floating-point operations to operations on reals, thus enabling

the SMT solvers that support arithmetic theory of reals to discharge the

generated proof obligations. As previously stated, in this work we employ

the real model, considering the problem of the bounded error specifications as

the first step toward the full treatment of the problem. Addressing floating-

point computations is an avenue for future work.

3.3.1 Evaluation

To evaluate the developed verification framework, we first considered the

controller specification (i.e., model) from (3.4). We first verified that the

step function from Listing 1 satisfies the state and IO invariants for the

Σ(A,B,C,0) model (3.4). In addition, we verified that the controller Σ sat-

isfies the IO only invariants annotated in the verif driver function from

Listing 2. Using the IO invariants that allow for inexact controller imple-

mentations, as specified in the verif driver function from Listing 3, we

verified the correctness of the step function implementing computationally

more efficient controller Σ̃ from (3.7), with transfer function (3.8). Finally,

we exploited both types of assert statements from (3.18) and (3.19) to spec-

ify instantiation based invariants; we verified IO conformance of the example

controller Σ from (3.4) and the inexact controller Σ̃ from (3.7) using the

invariant (3.22).

Furthermore, we verified randomly generated controllers of varying size

and analyzed how different types of the introduced invariants affect scala-

bility of the verification approach. We also illustrated the use of the devel-

46

Figure 3.2: Z3 running times for LTI controller verification using five different
types of controller invariants.

oped framework on verification of LTI controllers automatically generated by

Simulink Coder from both discrete-time State-Space and LTI System library

blocks. Note that, although these blocks can be used to specify the same

mathematical model, the structures of the actual code generated from these

blocks are significantly different.

We evaluated verification performance for both ‘exact’ and ‘inexact’ input-

output invariants. We considered five different types of invariants: (a) IO and

state invariants (denoted by SS invariants) introduced in (6.1); (b) IO only

invariants based on the transfer function (denoted by TF), defined in (3.3)

and (3.6), (c) Instantiation-based IO invariants defined in (3.16) and (3.18)

(referred to as IB′3n+1), (d) Instantiation-based IO invariants defined in (3.16)

and (3.19) (referred to as IB′′3n+1), (e) Instantiation based IO invariants for

only 2n + 1 points when the state variable is known, as described in Re-

mark 3.2.1 on (3.18) – referred to as IB′2n+1, (f) Instantiation-based IO in-

47

Figure 3.3: Z3 running times for verification of LTI controllers using ‘inexact’
invariants for all five different types of controller invariants. Note that in this
case, verification of TF invariants does not scale well because controllers with
the size greater than two can not be verified.

variants for only 2n + 1 points when the state variable is known and based,

as described in Remark 3.2.1, on (3.19) – referred to as IB′2n+1. Except the

SS invariants, all other types of invariants were evaluated for both exact and

inexact controller implementations.

Fig. 3.2 presents measured Z3 running times for verification of random

controller implementations that exactly implement specified transfer func-

tions. Note that for each considered controller size n, we randomly generated

50 controllers. Fig. 3.2 presents the average running times (along with the

ranges of running times) for different controller size n and different type of

invariants. As expected, the use of SS invariants scales best. However, note

that SS invariants can be used only when we know the implemented state-

space model of the controller. On the other hand, the use of TF invariants

48

also scales well when the exact transfer function of the implemented con-

troller is known. Finally, due to the size of the generated proof obligations

for both IB′3n+1 and IB′′3n+1 invariants, verification using these invariants

takes the most time.

To evaluate verification performance with inexact controller implemen-

tations, for each of the different controller sizes n we generated 50 random

controller models. Then, for each model we would try to verify an imple-

mentation of a controller similar to the initial controller (i.e., with the same

transfer function), in order to obtain controllers with inexact implementa-

tions. Since we could not know the state invariants for these controllers, we

were not able to test the use of SS invariants. The results of our experi-

ments are presented in Fig. 3.3. Our first observation is that with inexact

implementations, the TF-invariants based verification scales very poorly; we

were not able to verify the TF invariants for controllers with more than two

states. The reason for this is that TF invariants employ both universal and

existential quantifiers, as we have discussed in Section 3.1. On the other

hand, as expected (due to the use of only existential quantifiers) verification

of instantiation-based invariants scales reasonably well (both IB′3n+1 and

IB′′3n+1).

Finally, we analyzed the amount of time used by each tool in the verifica-

tion framework. As shown in Tables 3.2 and 3.1 most of the verification time

is used by Frama-C generating proof obligations in WhyML. Interestingly,

running times for Z3 (shown in Fig. 3.2 and Fig. 3.3) present less than 5%

of the overall verification times.

49

SS TF IB′2n+1 IB′′2n+1 IB′3n+1 IB′′3n+1

Frama-C 76.6% 61.2% 51.8% 54.4% 49.8% 51.7%
Why3 20.5% 37.3% 47.7% 45.1% 49.6% 47.7%

Z3 2.8% 1.5% 0.5% 0.5% 0.6% 0.6%
Total time 0.3(s) 0.8(s) 2.1(s) 2.2(s) 4.6(s) 4.8(s)

Table 3.1: Percentage of time used by each tool in the verification framework
for verification of controllers of size n = 10 with inexact implementations.

SS TF IB′2n+1 IB′′2n+1 IB′3n+1 IB′′3n+1

Frama-C 77.6% 66.5% 55.2% 57.9% 56.0% 58.5%
Why3 20.2% 32.9% 44.7% 42.0% 43.7% 41.2%

Z3 2.2% 0.6% 0.1% 0.1% 0.3% 0.3%
Total time 0.4(s) 6.0(s) 27.4(s) 29.2(s) 56.7(s) 60.1(s)

Table 3.2: Percentage of time used by each tool in the verification framework
for verification of controllers of size n = 18 with exact implementations.

50

Chapter 4

Similarity Checking-based

Verification Approach

This chapter presents a similarity checking-based verification method [60].

This approach is based on extracting a model from the controller code and

establishing equivalence between the original and the extracted models. Our

technical approach relies on symbolic execution of the generated code. Sym-

bolic expressions for state and output variables of the control function are

used to reconstruct the model of the controller. The reconstructed model is

then checked for input-output equivalence between the original and recon-

structed model, using the well-known necessary and sufficient condition for

the equivalence of two minimal LTI models. Verification is performed us-

ing real arithmetic. We account for some numerical errors by allowing for a

bounded discrepancy between the models. We compare two approaches for

checking the equivalence; one reduces the equivalence problem to an SMT

problem, while the other uses a convex optimization formulation. We com-

51

pare equivalence checking to an alternative verification approach introduced

in Chapter 3, which converts the original LTI model into input-output based

code annotations for verification at the code level.

This chapter is organized as follows: Section 4.1 presents model extraction

from code, followed by the equivalence checking in Section 4.2. Section 4.3

evaluates the performance of the approaches.

4.1 Model Extraction from Linear Controller

Implementation

In order to verify a linear controller implementation against its specification,

we first extract an LTI model from the implementation (i.e., step function),

and then compare it to the specification (i.e., the initial model). To obtain

an LTI model from the step function, it is first necessary to identify the

computation of the step function based on the program semantics. By the

computation of a program, we mean how the execution of the program affects

the global state.1 This is also known as the big-step transition relation of a

program, which is the relation between states before and after the execution

of the program. In the next subsection, we explain how to identify the big-

step transition relation of the step function via symbolic execution.

4.1.1 Symbolic Execution of Step Function

According to the symbolic execution semantics [47, 17, 14], we symbolically

execute the step function with symbolic inputs and symbolic controller state.

1Note that we assume that data is exchanged with the step function via global variables.

52

When the execution is finished, we examine the effect of the step function

on the global state where output and new controller state are produced as

symbolic formulas.

Model extraction via symbolic execution may not be applicable to any ar-

bitrary program (e.g., non-terminating program, file/network IO program).

However, we argue that it is feasible when focusing on the linear controller

implementations which are self-contained (i.e., no dependencies on external

functions) and have simple control flows (e.g., for the sake of deterministic

real-time behaviors). During symbolic execution, we check if each step of the

execution satisfies certain rules (i.e., restrictions), otherwise it is rejected.

The rules are as follows: first of all, the conditions of conditional branches

should be always evaluated to concrete boolean values. We argue that the

step functions of linear controllers are unlikely necessary to branch over sym-

bolic values such as symbolic inputs or symbolic controller states. Moreover,

in many cases, the upper bound of the loops of step functions are statically

fixed based on the size of the controllers, so the loop condition can be eval-

uated to concrete values as well. This rule results in yielding the finite and

deterministic symbolic execution path of the step function. The second rule

is that it is not allowed to use symbolic arguments when calling the standard

mathematical functions (e.g., sin, cos, log, exp) because the use of such

non-linear functions may result in non-linear input-output relation of the

step function. Moreover, it is also not allowed to call external libraries (e.g.,

file/network IO APIs, functions without definitions provided). This rule re-

stricts the step function to be self-contained and to avoid using non-linear

mathematical functions. Lastly, dereferencing a symbolic memory address

53

is not allowed because the non-deterministic behavior of memory access is

undesirable for controller implementations and may result in unintended in-

formation flow.

As the result of the symbolic execution of the step function, the global

variables are updated with symbolic formulas. By collecting the updated

variables and their new values (i.e., symbolic formulas), the big-step transi-

tion relation of the step function can be represented as a system of equations;

each equation is in the following form

v(new) = f(v1, v2, . . . , vt)

where t is the number of variables used in the symbolic formula f , v, vi are

the global variables, v(new) denotes that the variable v is updated with the

symbolic formula on the right-hand side of the equation, the variable without

the superscript “(new)” denotes the initial symbolic value of the variable (i.e.,

from the initial state before symbolic execution of the step function). We call

this equation transition equation.

For example, we consider symbolic execution for the step function in

Listing 5 in Appendix A, obtained from the model (2.5), (2.6); we illustrate

the transition equations of the step function as follows, replacing the original

variable names with new shortened names for presentation purpose only, such

54

as x for LTIS DW.Internal DSTATE, u for LTIS U.u, and y for LTIS Y.y:

x[0](new) = ((0.87224 · x[0]) + ((0.822174 · u[0]) + (−0.438008 · u[1])))

x[1](new) = ((0.366377 · x[1]) + ((−0.278536 · u[0]) + (−0.824312 · u[1])))

x[2](new) = ((−0.540795 · x[2]) + ((0.874484 · u[0]) + (0.858857 · u[1])))

x[3](new) = ((−0.332664 · x[3]) + ((−0.117628 · u[0]) + (−0.506362 · u[1])))

x[4](new) = ((−0.204322 · x[4]) + ((−0.955459 · u[0]) + (−0.622498 · u[1])))

y[0](new) = (((((−0.793176 · x[0]) + (0.154365 · x[1])) + (−0.377883 · x[2]))

+(−0.360608 · x[3])) + (−0.142123 · x[4]))

y[1](new) = (((((0.503767 · x[0]) + (−0.573538 ∗ ·x[1])) + (0.170245 · x[2]))

+(−0.583312 · x[3])) + (−0.56603 · x[4])).

(4.1)

4.1.2 Linear Time-Invariant System Model Extraction

To extract an LTI model from the obtained transition equations, we first

determine which variables are used to store the controller state. To do this,

we examine the data flow among the variables which appear in the equations.

Let Vused be the set of used variables which appears on the right-hand side of

the transition equations. Let Vupdated be the set of updated variables which

appears on the left-hand side of the transition equations. As the interface of

the step function, we assume that the sets of input and output variables are

given, which are denoted by Vinput and Voutput, respectively. We define the

set of state variables Vstate as

Vstate = (Vupdated \ Voutput) ∪ (Vused \ Vinput).

55

For example, from the transition equations (4.1), x[0], x[1], x[2], x[3] and

x[4] are identified as controller state variables as given the input variables

u[0] and u[1], and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.

We fully expand the expressions on the right-hand side of the transition equa-

tions using the distributive law. The resulting expressions are represented

in the form of the sum of products without containing any parentheses. We

check if the expressions equations are linear (i.e., each product term should

be the multiplication of a constant and a single variable), and otherwise, it

is rejected. Finally, each transition equation is represented as the following

canonical form

v(new) = c1v1 + c2v2 + · · ·+ ctvt

where t is the number of product terms, v ∈ Vupdated is the updated variable,

vi ∈ Vused are the used variables, and ci ∈ R are the coefficients. When

converting the transition equations into canonical form, we regard floating-

point arithmetic expressions as real arithmetic expressions. The analysis of

the discrepancy between them is left for future work. Instead, in the next

section, the discrepancy issue between two LTI models due to numerical

errors of floating-point arithmetic is addressed as the first step toward the

full treatment of the problem.

Since the transition equations in canonical form are a system of linear

equations, we finally rewrite the transition equations as matrix equations.

In order to do this, we first define the input variable vector u = vec(Vinput),

the output variable vector y = vec(Voutput) and the state variable vector

x = vec(Vstate) where vec(V) denotes the vectorization of the set V (e.g.,

56

vec({v1, v2, v3}) = [v1, v2, v3]
T). This allows for rewriting each transition

equation in terms of the state variable vector x and the input variable vector

u as

v(new) = [c1, c2, . . . , cn]x + [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input

variable vector and ci, di ∈ R are constants. Finally, we rewrite the transition

equations as two matrix equations as follows

x(new) = Âx + B̂u

y(new) = Ĉx + D̂u

where Â ∈ Rn×n, B̂ ∈ Rn×p, Ĉ ∈ Rm×n, D̂ ∈ Rm×p, and for any vector

v = [v1, . . . vt]
T, we define v(new) = [v

(new)
1 , . . . , v

(new)
t]T.

For example, consider the transition equation about y[0](new) in (4.1),

which is represented in canonical form, and then rewritten as a vector equa-

tion (i.e., equation in terms of the state and the input variable vectors) as

follows

y[0](new) = (((((−0.793176 · x[0]) + (0.154365 · x[1])) + (−0.377883 · x[2]))

+(−0.360608 · x[3])) + (−0.142123 · x[4]))

= −0.793176 · x[0] + 0.154365 · x[1] +−0.377883 · x[2]

+− 0.360608 · x[3] +−0.142123 · x[4]

= [−0.793176, 0.154365,−0.377883,−0.360608,−0.142123] · x + [0, 0] · u

where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each

57

transition equation (4.1) into the corresponding vector equation, we finally

reconstruct the LTI model (i.e., same as (2.5) (2.6)) from the step function

of Listing 5 in Appendix A.

Remark. In general, the size of the extracted model Σ̂ may not be equal to the

size of the initial controller model Σ from (6.1) (i.e., n). As we assume that

Σ is minimal, if the obtained model has the size less than n it would clearly

have to violate input-output (IO) requirements of the controller. However,

if the size of Σ̂ is larger than n, we consider a controllable and observable

subsystem computed via Kalman decomposition [64] from the extracted model,

as the Σ̂(Â, B̂, Ĉ, D̂) model extracted from the code. Note that Σ̂ is minimal

in this case, and thus its size has to be equal to n to provide IO conformance

with the initial model.

4.2 Input-Output Equivalence Checking be-

tween Linear Controller Models

In order to verify a linear controller implementation against an LTI specifica-

tion, in the previous section we described how to extract an LTI model from

the implementation. This section introduces a method to check input-output

(IO) equivalence between two linear controller models: (1) the original LTI

specification and (2) the LTI model extracted from the implementation.

To check the IO equivalence between two LTI models, we exploit the fact

that two minimal LTI models with the same size are IO equivalent if and

only if they are similar to each other. Two LTI models Σ(A,B,C,D) and

Σ̂(Â, B̂, Ĉ, D̂) are said to be similar if there exists a non-singular matrix T

58

such that

Â = TAT−1, B̂ = TB, Ĉ = CT−1, and D̂ = D (4.2)

where T is referred to as the similarity transformation matrix [64]. Thus,

given two minimal LTI models, the problem of equivalence checking between

the models is reduced to the problem of finding a similarity transformation

matrix for the models. The rest of this section explains how to formulate

this problem as a satisfiability problem and a convex optimization problem.

4.2.1 Satisfiability Problem Formulation

We start by describing an approach to formulate the problem of finding sim-

ilarity transformation matrices as the satisfiability problem instance when

two LTI models Σ(A,B,C,D) and Σ̂(Â, B̂, Ĉ, D̂) are given. Since exist-

ing SMT solvers hardly support matrices and linear algebra operations, we

encode the similarity transformation matrix T as a set of scalar variables

{Ti,j | 1 ≤ i, j ≤ n} where Ti,j is the variable to represent the element in

the i-th row and j-th column of the matrix T. The following constraints

rephrase the equations of (4.2) in an element-wise manner

∧
1≤i≤n

∧
1≤j≤n

(∑
1≤k≤n

Âi,kTk,j =
∑

1≤k≤n

Ti,kAk,j

)
∧
∧

1≤i≤n

∧
1≤j≤n

(
B̂i,j =

∑
1≤k≤n

Ti,kBk,j

)
∧

1≤i≤n

∧
1≤j≤n

(∑
1≤k≤n

Ĉi,kTk,j = Ci,j

)
∧
∧

1≤i≤n

∧
1≤j≤n

D̂i,j = Di,j

(4.3)

59

It is important to highlight that although a similarity transform always

results in an IO equivalent new controller, due to finite-precision computation

of the code generator performing controller optimization, it is expected that

the produced controller will slightly differ from a controller that is similar

to the initial controller. Consequently, there is a need to extend our input-

output invariants for the case with imprecise specification of the similarity

transform. To achieve this, given error bound ε, the following constraints

extends (4.3) to tolerate errors up to error bound ε

∧
1≤i≤n

∧
1≤j≤n

−ε ≤

(∑
1≤k≤n

Âi,kTk,j

)
−

(∑
1≤k≤n

Ti,kAk,j

)
≤ ε

∧
1≤i≤n

∧
1≤j≤n

−ε ≤ B̂i,j −

(∑
1≤k≤n

Ti,kBk,j

)
≤ ε

∧
1≤i≤n

∧
1≤j≤n

−ε ≤

(∑
1≤k≤n

Ĉi,kTk,j

)
− Ci,j ≤ ε

∧
1≤i≤n

∧
1≤j≤n

−ε ≤ D̂i,j −Di,j ≤ ε

(4.4)

For example, suppose that the original LTI model Σ(A,B,C,D) from

(2.3)(2.4), the reconstructed model from the implementation Σ̂(Â, B̂, Ĉ, D̂)

from (2.5)(2.6) and the error bound ε = 10−6 are given. Having the problem

instance formulated as (4.4), the similarity transformation matrix T for those

models can be found using an SMT solver which supports the quantifier-free

linear real arithmetic, QF LRA for short. Due to the lack of space, only the

first row of T is shown here

60

T1,1 = −445681907965836469807842159338

818667375305282643804030465563
(≈ −0.544399156750667)

T1,2 = −135442022883031921128620509482

818667375305282643804030465563
(≈ −0.165442059801384)

T1,3 =
198172776374831449251211655628

818667375305282643804030465563
(≈ 0.242067461044165)

T1,4 = −351256050550998919211978953100

818667375305282643804030465563
(≈ −0.429058064513855)

T1,5 = −476345345040634696989970420590

818667375305282643804030465563
(≈ −0.581854284748456)

Since, for the theory of real numbers, SMT solvers use the arbitrary-

precision arithmetic when calculating answers, each element of T is given

as a fractional number of numerous digits. For instance, although it is not

displayed here, T5,4 in this example is a fraction whose numerator and de-

nominator are numbers with more than one hundred digits. Thus, due to the

infinite precision arithmetic used by SMT solvers, the scalability of the SMT

formulation-based approach is questionable. This illustrates the need for a

more efficient approach for similarity checking, and in the next subsection we

will present a convex optimization-based approach as an alternative method.

4.2.2 Convex Optimization Problem Formulation

The idea behind a convex optimization based approach is to use convex opti-

mization to minimize the difference between the initial model and the model

obtained via a similarity transformation from the model extracted from the

code. Specifically, we formulate the equivalence checking for imprecise spec-

61

ifications as a convex optimization problem defined as

variables e ∈ R,T ∈ Rn×n

minimize e

subject to ε ≤ e,∥∥∥ÂT−TA
∥∥∥
∞
≤ e,

∥∥∥B̂−TB
∥∥∥
∞
≤ e,∥∥∥ĈT−C

∥∥∥
∞
≤ e,

∥∥∥D̂−D
∥∥∥
∞
≤ e

(4.5)

For example, given two LTI models Σ(A,B,C,D) from (2.3)(2.4) and

Σ̂(Â, B̂, Ĉ, D̂) from (2.5)(2.6) and the error bound ε = 10−6, by (5.16), the

similarity transformation matrix T can be found using the convex optimiza-

tion solver CVX as follows

T =



−0.5443990427 −0.1654425774 0.2420672805 −0.4290576934 −0.5818538874

−0.4440654044 −0.7588435418 0.1765807738 0.2799578419 0.5647456751

−0.588433439 −0.2004321431 0.6773771193 0.4815317446 0.1449186163

0.9314576739 −0.0459172638 0.6095691172 0.3808322795 0.8653864392

−0.2372386619 0.5190687755 0.8165534522 −0.1493619803 0.1461696487



In addition, the original similarity transformation matrix Tori used in the

actual transformation from Σ to Σ̂ is

Tori =



−0.5443991568 −0.1654420598 0.242067461 −0.4290580645 −0.5818542847

−0.4440652236 −0.7588431653 0.1765807449 0.279957637 0.564745456

−0.5884339121 −0.2004321022 0.677376781 0.4815316264 0.144918173

0.9314574825 −0.0459170889 0.6095698017 0.3808324602 0.8653867983

−0.2372380836 0.5190691678 0.816552622 −0.1493625727 0.1461689364



62

C	code
(the	step	
function)

Specification
(LTI	model)

Symbolic	
executor

(PathCrawler)

Transition	
equations

Model	
extractor

Extracted	
LTI	model

IO	equivalence	
checker

(using	either	
CVC4	or	CVX)

Verification	
result
(yes/no)

Tolerance	
threshold

Figure 4.1: The verification toolchain for the similarity checking-based ap-
proach.

resulting in the difference between two matrices equal to

|T−Tori| =



0.000000114 0.0000005176 0.0000001806 0.0000003711 0.0000003973

0.0000001809 0.0000003766 0.000000029 0.0000002049 0.0000002191

0.0000004731 0.0000000408 0.0000003384 0.0000001182 0.0000004433

0.0000001914 0.0000001749 0.0000006844 0.0000001807 0.0000003591

0.0000005783 0.0000003923 0.0000008302 0.0000005924 0.0000007123


.

4.3 Evaluation

To evaluate our verification approach described in Section 4.1 and Section 4.2,

we compared it to our earlier work based on invariant checking in Chapter 3.

4.3.1 Verification Toolchain

We implemented an automatic verification framework (presented in Fig. 5.1)

based on the proposed approach described in Section 4.1 and Section 4.2.

63

We refer to this approach as similarity checking (SC)-based approach. Given

a step function (i.e., C code), we employ the off-the-shelf symbolic execution

tool PathCrawler [83] to symbolically execute the step function and generate

a set of transition equations. The model extractor which implements the

method in Section 4.1.2 extracts an LTI model from the transition equa-

tions. Finally, the equivalence checker based on the method in Section 4.2

decides the similarity between the extracted LTI model and the given specifi-

cation (i.e., LTI model), and produces the verification result. The equivalence

checker uses either the SMT solver CVC4 [8]2 or the convex optimization

solver CVX [40] depending on the formulation employed, which is described

in Section 4.2.

For the invariant checking (IC)-based approach described in Chapter 3,

we use the toolchain Frama-C/Why3/Z3 to verify C code with annotated

controller invariants, as described in Chapter 3. The step function is anno-

tated with the invariants as described in Chapter 3. Given annotated C code,

Frama-C/Why3 [22, 13] generates proof obligations as SMT instances. The

SMT solver Z3 [26]3 solves the proof obligations and produces the verification

result (see Chapter 3 for more details).

4.3.2 Scalability Evaluation

To evaluate the SC-based approach compared to the IC-based approach, we

randomly generate stable linear controller specifications (i.e., the elements

2CVC4 was chosen among other SMT solvers because it showed the best performance
for our QF LRA SMT instances.

3Z3 was chosen among other SMT solvers because it showed the best performance for
the generated proof obligations in our experiment.

64

of Σ(A,B,C,D)). Since we observed that the controller dimension n dom-

inates the performance (i.e., running time) of both approaches, we vary n

from 2 to 14, and generate three controller specifications for each n. For each

controller specification, we employ the code generator Embedded Coder to

generate the step function in C. Since we use the LTI system block of Simulink

for code generation, the structure of generated C code is not straightforward,

having multiple loops and pointer arithmetic operations as illustrated in the

step function [59]. This negatively affects the performance of the IC-based

approach for reasons to be described later in this subsection. For a compara-

tive evaluation, we use both SC-based and IC-based approaches to verify the

generated step function C code against its specification. For each generated

controller, we checked that IC-based and SC-based approaches give the same

verification result, as long as both complete normally.

To thoroughly compare both approaches, we measure the running time of

the front-end and the back-end of each approach separately. By the front-end,

we refer to the process from parsing C code to generating proof obligations

to be input for constraint solvers. The front-end of the SC-based approach

includes the symbolic execution by PathCrawler and the model extraction,

while the front-end of the IC-based approach is processing annotated code

and generating proof obligations by Frama-C/Why3. On the other hand,

by the back-end, we refer to the process of constraint solving. While the

back-end of the SC-based approach is the IO equivalence checking based

on either SMT solving using CVC4 or convex optimization solving using

CVX, the back-end of the IC-based approach is proving the generated proof

obligations using Z3.

65

2 3 4 5 6 7 8 9 10 11 12 13 14
n

10-1

100

101

102

103

104
tim

e(
s)

 (l
og

-s
ca

le
d)

The average running time of the front-ends of both approaches
SC-based
IC-based (IB'2n+1)
IC-based (IB''2n+1)
IC-based (IB'3n+1)
IC-based (IB''3n+1)

Figure 4.2: The average running time of the front-ends of both SC-based and
IC-based approaches (with the log-scaled y-axis)

We first evaluate the frond-end of both approaches (i.e., the whole verifi-

cation process until constraint solving). Fig. 4.2 shows that the average run-

ning time of the front-ends of both approaches, where missing bars indicate no

data due to the lack of scalability of the utilized verification approach (e.g.,

the tool’s abnormal termination or no termination for a prolonged time).

Here, IB ′2n+1, IB ′′3n+1, IB ′′3n+1 and IB ′2n+1 denote the variations of annotating

methods as described in Chapter 3. We observe that the running time of

the IC-based approaches exponentially increase as the controller dimension

n increases, while the SC-based approach remains scalable. The main reason

for this is that the IC-based approach requires the preprocessing of code (as

described in Chapter 3), which is unrolling the execution of the step function

multiple times (e.g., 2n + 1 or 3n + 1 times) as well as unrolling each loop

in the step function (n+ 1) times. Therefore, in contrast with the SC-based

approach, the IC-based approach needs to handle the significantly increased

lines of code due to unrolling, so it does not scale up.

66

2 3 4 5 6 7 8 9 10 11 12 13 14
n

10-2

100

102

104

106
tim

e(
s)

 (l
og

-s
ca

le
d)

The average running time of the back-ends of both approaches
SC-based (CVC4)
SC-based (CVX)
IC-based (IB'2n+1)
IC-based (IB''2n+1)
IC-based (IB'3n+1)
IC-based (IB''3n+1)

Figure 4.3: The average running time of the back-ends of both SC-based and
IC-based approaches (with the log-scaled y-axis)

Next, we evaluate the back-end of both approaches (i.e., constraint solv-

ing). Fig. 4.3 shows the average running time of the back-ends of both

approaches, where missing bars result from the lack of scalability of either

the constraint solver used at this stage or the front-end tools. “SC-based

(CVC4)” denotes the SMT-based formulation while “SC-based (CVX)” de-

notes the convex optimization-based formulation. Recall that the SC-based

approach using CVC4 and the IC-based approaches employ the SMT solvers

for constraint solving, which uses the arbitrary-precision arithmetic. We

observe that the running time of the back-ends of those approaches expo-

nentially increase as the controller dimension n increases because of the cost

of the bignum arithmetic, while the SC-based approach using CVX remains

scalable.

67

Chapter 5

Verification of Finite-Precision

Controller Software

This chapter describes an extended method [61] that builds on the similar-

ity checking-based method in Chapter 4 in order to verify finite-precision

controller software considering the effect of floating-point arithmetic. In

Chapter 3 and Chapter 4, we explored several approaches to the verification

of implementations of linear time invariant (LTI) controllers. In LTI con-

trollers, the relationships between the values of inputs and state variables,

and between state variables and outputs, are captured as linear functions,

and coefficients of these functions are constant (i.e., time-invariant). The

main limitation in all of these approaches is the assumption that the cal-

culations are performed using real numbers. Of course, real numbers are

a mathematical abstraction. In practice, software performs calculations us-

ing a limited-precision representation of numbers, such as the floating-point

representation. The use of floating-point numbers introduces errors into the

68

computation, which have to be accounted for in the verification process.

In this chapter, we build on the work of Chapter 4, which follows an

equivalence checking approach. We apply symbolic execution to the gen-

erated code, which calculates symbolic expressions for the values of state

and output variables in the code at the completion of the invocation of the

controller. We use these symbolic values to reconstruct a mathematical rep-

resentation of the control function. We introduce error terms into this rep-

resentation that characterize the effects of numerical errors. The verification

step then tries to establish the approximate equivalence between the speci-

fication of the control function and the reconstructed representation. In the

last chapter (Chapter 4), we considered two promising alternatives for as-

sessing the equivalence: one based on SMT solving and the other one based

on convex optimization. Somewhat surprisingly, when the error terms that

account for floating-point calculations are added, the SMT-solving approach

becomes impractical, while the optimization-based approach suffers minimal

degradation in performance.

The chapter is organized as follows: Section 5.1 describes how to extract

a model from the controller code. Section 5.2 presents the approximate

equivalence checking. Section 5.3 evaluates the scalability of our approach.

5.1 Extracting Model from Floating-Point Con-

troller Implementation

Our approach to the verification of a controller implementation against its

mathematical model takes two steps: we first extract a model from the finite

69

precision implementation (i.e., step function using floating-point arithmetic),

and then compare it with the original model. This approach is an extension

of the method in Chapter 4 to consider the quantization error in the finite-

precision implementation. To obtain a model from the step function, we

employ the symbolic execution technique [17, 47], which allows us to identify

the computation of the step function (i.e., the big-step transition relation

on global states between before and after the execution of the step func-

tion). From the transition relation, we extract a mathematical model for

the controller implementation. Since the implementation has floating-point

quantization (i.e., roundoff) errors, the representation of the extracted model

includes roundoff error terms, thus being different from the representation of

the initial LTI model (6.1). We will describe the representation of extracted

models in the next subsection.

5.1.1 Quantized Controller Model

A finite precision computation (e.g., floating-point arithmetic) involves round-

ing errors, which makes the computation result slightly deviated from the

exact value that might be computed with the infinite precision computation.

The floating-point rounding error can be modeled with the notions of both

absolute error and relative error. The absolute error is defined as the differ-

ence between an exact number and its rounded number. The relative error

defines such difference relative to the exact number. To model quantized

controller implementations, we extend the representation of LTI model (6.1)

with the new terms of absolute errors and relative errors, and obtain the

70

following representation of quantized controller model:

ẑk+1 = (Â + EA)ẑk + (B̂ + EB)uk + ez

yk = (Ĉ + EC)ẑk + (D̂ + ED)uk + ey.
(5.1)

where Â, B̂, Ĉ and D̂ are controller parameters. EA, EB, EC and ED are

the relative errors regarding the state and input variables which are bounded

by the relative error bound brel such that ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ brel

where ‖·‖ is the L∞ norm operator. In addition, ez and ey are the abso-

lute errors which are bounded by the absolute error bound babs such that

‖ex‖ , ‖ey‖ ≤ babs. In the rest of this section, we explain how to extract

a quantized controller model (Â, B̂, Ĉ, D̂, brel, babs) from the floating-point

controller implementation via symbolic execution and floating-point error

analysis techniques.

5.1.2 Symbolic Execution of Floating-Point Controller

Implementation

In our approach, the symbolic execution technique [17, 47] is employed to

analyze the step function C code. We symbolically execute the step function

with symbolic values such as symbolic inputs and symbolic controller states,

and examine the change of the program’s global state where the output and

new controller state are updated with symbolic expressions in terms of the

symbolic values. The goal of the symbolic execution in our approach is to find

symbolic formulas that concisely represent the computation of the step func-

tion C code that originally has loops and pointer arithmetic operations. The

71

idea behind this symbolic execution process is that the linear controller im-

plementations that we consider in this work have simple control flows for the

sake of deterministic real-time behaviors (e.g., fixed upper bound of loops),

thus being amenable to our symbolic execution process. Consequently, the

symbolic execution of linear controller implementations yield finite and de-

terministic symbolic execution paths (as described in Chapter 4).

However, unlike the approach in Chapter 4, this work herein newly con-

siders the effect of floating-point rounding errors in the step function. Thus it

is necessary to pay special attention (e.g., normalization [14]) to the floating-

point computation in symbolic execution. When symbolic expressions are

constructed with floating-point operators in the course of symbolic execu-

tion, the evaluation order of floating-point operations should be preserved

according to the floating-point program semantics, because floating-point

arithmetic does not hold basic algebraic properties such as associativity and

distributivity in general.

Once the symbolic execution is completed, symbolic formulas are pro-

duced. The symbolic formulas represent the computation of the step function

in a concise way (i.e., in the arithmetic expression form without loops, func-

tion calls and side effects). The produced symbolic formula has the following

form, which we call transition equation:

v(new) = f(v1, v2, . . . , vt) (5.2)

where v(new) is a global variable which is updated with the symbolic expres-

sion, vi are the initial symbolic values of the corresponding variables before

the symbolic execution of the step function. f(v1, v2, . . . , vt) is the symbolic

72

expression that consists of floating-point operations where t is the number

of variables used in f . This expression should preserve the correct order of

evaluation according to the floating-point semantics of the step function C

code.

For example, consider the step function in [59] , which is generated by

Embedded Coder (the code generator of MATLAB/Simulink) for the LTI

controller models (2.5)(2.6). We illustrate one of the transition equations

obtained from the symbolic execution of the step function as follows:

y[1](new) = (((((0.503767⊗ x[0])⊕ (−0.573538⊗ x[1]))⊕ (0.170245⊗ x[2]))

⊕(−0.583312⊗ x[3]))⊕ (−0.56603⊗ x[4])).

(5.3)

where x is the shortened name for LTIS DW.Internal DSTATE, and y is the

shortened name for LTIS Y.y for presentation purposes only, and ⊕, 	 and

⊗ are floating-point operators corresponding to +, − and × respectively. In

the next subsection, we explain how to extract the quantized model (5.11)

from the symbolic expressions.

5.1.3 Quantization Error Analysis and Model Extrac-

tion

This subsection explains how to extract the quantized controller model (5.11)

from a set of symbolic expressions (5.2) obtained from the step function.

The symbolic expression consists of floating-point operations of symbolic

values and numeric constants. We first describe how to analyze the floating-

point quantization (i.e., roundoff) error in the symbolic expression evaluation.

73

Since we only consider linear controller implementations rejecting nonlinear

cases in the symbolic execution phase, the symbolic expression f obtained

from the step function has the the following syntax, thus guaranteeing the

linearity:

f := v | f ⊕ f | f 	 f | f ~ fc | fc ~ f

fc := c | fc ~ fc

where v is a variable (i.e., the initial symbolic value of the variable), c is

a constant, and ~ ∈ {⊕,	,⊗}. fc is a sub-expression which contains no

variable, thus being evaluated to a constant, while f contains at least one

variable. The multiplication operation ⊗ appears only when at least one

operand is a constant-expression fc, thus preventing the expression from

being nonlinear (i.e., the product of two symbolic values).

In order to simplify a certain program analysis problem, a common as-

sumption is often made in the literature [35, 60] that the floating-point oper-

ations (e.g., ⊕, 	 and ⊗) behave the same way as the real operations (e.g., +,

− and ×) with no rounding. Under this assumption, the equation (5.2) can

be represented in the following canonical form presented earlier in Chapter 4:

v(new) =
t∑
i=1

civi (5.4)

where t is the number of product terms, v,vi are variables, and ci is the

coefficient. In reality, however, floating-point numbers have limited precision,

and the floating-point operations involve rounding errors. In this work, we

consider the effect of such floating-point rounding errors in the verification.

74

The IEEE 754 standard [2] views a finite precision floating-point opera-

tion as the corresponding real operation followed by a rounding operation:

x1 ~ x2 = rnd(x1 ∗ x2) (5.5)

where ~ ∈ {⊕,	,⊗} and ∗ is the corresponding real arithmetic operation

to ~. A rounding operator rnd is a function that takes a real number as

input and returns as output a floating-point number that is closest to the

input real number, thus causes a quantization error (i.e., rounding error) in

the floating-point operation. There are multiple common rounding operators

(e.g. round to the nearest, ties to even) defined in the IEEE 754 standard [2].

A rounding operator can be modeled as follows [38]:

rnd(x) = x(1 + e) + d (5.6)

for some e and d where e is a relative error, d is an absolute error, and

|e| ≤ ε and |d| ≤ δ. ε and δ can be determined according to the rounding

mode and the precision (i.e., the number of bits) of the system. For example,

ε = 2−53 and δ = 2−1075 for the double precision (i.e., 64 bits) rounding to

the nearest [68]. Combining the two equations (5.5) and (5.6), we have the

following model for the floating-point operations:

x1 ~ x2 = (x1 ∗ x2)(1 + e) + d (5.7)

After rewriting the symbolic expression of the transition equation (5.2) ap-

plying the equation (5.7), suppose that we have the following equation form:

75

v(new) =
∑

civi + errrel + errabs (5.8)

where
∑
civi is the exact expression as (5.4), and errabs is the absolute error

term bounded by babs such that |errabs| ≤ babs. errrel is the relative error

term which is related to the variables {vi} (i.e., symbolic values). We rewrite

errrel as
∑
errivi where erri is the relative error term specific to the variable

vi, and bi is the upper bound for erri such that |erri| ≤ bi. We relax the

equation by over-approximating each erri as follows:

v(new) =
∑

civi +
∑

errivi + errabs

=
∑

civi + err
∑

vi + errabs (5.9)

where err is bounded by brel such that |err| ≤ brel where brel is defined as

brel = max{bi}.

We now rearrange and group the product terms by variable names such

as the state variables and the input variables. We assume that the names of

input and output variables are given as the interface of the step function. The

state variables can be identified as the variables appearing in the transition

equations which are not input variables nor output variables. In addition to

the rearrangement, by transforming the sum of products into a form of scalar

product of vectors, we have:

v(new) =[c1, c2, ..., cn]x + [err, err, ..., err]x (5.10)

+ [c′1, c
′
2, ..., c

′
p]u + [err, err, ..., err]u + errabs

76

where x is the vector of state variables, and u is the vector of input variables.

Finally, we rewrite the transition equations as two matrix equations as

follows:

x(new) = (Â + EA)x + (B̂ + EB)u + ex

y(new) = (Ĉ + EC)x + (D̂ + ED)u + ey.
(5.11)

where Â ∈ Rn×n, B̂ ∈ Rn×p, Ĉ ∈ Rm×n and D̂ ∈ Rm×p. The matrices for the

relative errors are bounded by b∗rel such that ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤

b∗rel. The absolute error vectors ex and ey are bounded by b∗abs such that

‖ex‖ , ‖ey‖ ≤ b∗abs. Note that b∗rel and b∗abs can be easily determined using brel

and babs obtained from the floating-point error analysis for each transition

equation.

For example, consider the transition equation (5.3), from which via the

floating-point error analysis, we have:

y[1](new) = (((((0.503767⊗ x[0])⊕ (−0.573538⊗ x[1]))⊕ (0.170245⊗ x[2]))

⊕(−0.583312⊗ x[3]))⊕ (−0.56603⊗ x[4]))

= 0.503767 · x[0] +−0.573538 · x[1] + 0.170245 · x[2]

+− 0.583312 · x[3] +−0.56603 · x[4] + errrel + errabs

= 0.503767 · x[0] +−0.573538 · x[1] + 0.170245 · x[2]

+− 0.583312 · x[3] +−0.56603 · x[4]

+err(x[0] + x[1] + x[2] + x[3] + x[4]) + errabs
(5.12)

where |err| ≤ 988331
250000

ε ÷ (1 − 4ε) = brel, and |errabs| ≤ 4 · (1 + ε)4 · δ = babs.

For the double precision (i.e., 64 bits) rounding to nearest (i.e., ε = 2−53 and

77

δ = 2−1075), brel ≈ 4.389071× 10−16 and babs ≈ 1.235164× 10−323.

5.2 Approximate Input-Output Equivalence

Checking

In order to verify a finite precision implementation of the linear controller,

the previous section described how to extract the quantized controller model

from the implementation. In this section, we introduce how to compare the

extracted model (5.11) and the initial model (6.1) with a notion of approxi-

mate input-output (IO) equivalence.

5.2.1 Approximate Input-Output Equivalence

This subsection defines an approximate IO equivalence relation, inspired by

the similarity transformation of LTI systems [64]. In order for two LTI sys-

tems to be IO equivalent to each other, there must exist an invertible linear

mapping T from one system’s state z to another system’s state ẑ such that

z = Tẑ and ẑ = T−1z. The matrix T is referred to as the similarity trans-

formation matrix [64]. Assuming that a proper T is given, we substitute zk

by Tẑ in the initial LTI model (6.1), thus having:

Tẑk+1 = ATẑk + Buk, yk = CTẑk + Duk.

or

ẑk+1 = (T−1AT)ẑk + (T−1B)uk, yk = (CT)ẑk + Duk. (5.13)

78

By the similarity transformation, two LTI systems (6.1) and (5.13) are simi-

lar, meaning that they are IO equivalent. We now compare the transformed

initial LTI model (5.13) and the quantized controller model (5.11) that is

extracted from the step function. Equating the corresponding coefficient

matrices of the two models (5.13) and (5.11), we have:

T−1AT = Â + EA, T−1B = B̂ + EB, CT = Ĉ + EC, D = D̂ + ED

or

AT = TÂ + TEA, B = TB̂ + TEB, CT = Ĉ + EC, D = D̂ + ED

(5.14)

However, the equality of the exact equivalence condition (5.14) will never

hold because of the floating-point error terms (e.g., EA) and the numerical

errors in the implementation’s controller parameters (e.g., Â) due to the

optimization of the code generator. To overcome this problem, we define and

use an approximate equivalence relation ≈ρ on matrices such that M ≈ρ M̂

if and only if
∥∥∥M− M̂

∥∥∥ ≤ ρ where ρ is a given precision (i.e., threshold for

approximate equivalence). Note that the approximate equivalence relation

≈ρ is not transitive, thus not an equivalence relation unless ρ = 0. With ≈ρ
for a precision ρ, the equations (5.14) are relaxed as follows:

AT ≈ρ TÂ + TEA, B ≈ρ TB̂ + TEB, CT ≈ρ Ĉ + EC, D ≈ρ D̂ + ED

(5.15)

Finally, we say that the initial LTI model (6.1) and the quantized model (5.11)

extracted from the implementation are approximately IO equivalent with pre-

79

cision ρ if there exists a similarity transformation matrix T which satisfies

(5.15), and the absolute errors of the floating-point computations are neg-

ligible (i.e., ez ≈ρ 0 and ey ≈ρ 0). Note that the problem of checking the

approximate IO equivalence is the problem of finding a proper similarity

transformation matrix. In the rest of this section, we explain how to find the

similarity transformation matrix using a satisfiability problem formulation

and a convex optimization problem formulation.

5.2.2 Satisfiability Problem Formulation

This section discusses the satisfiability problem formulation for the approxi-

mate IO equivalence checking. To find the similarity transformation matrix

using existing SMT solvers, the problem can be formulated roughly as fol-

lows:

∃T : ∀EA,EB,EC,ED : ‖EA‖ , ‖EB‖ , ‖EC‖ , ‖ED‖ ≤ brel =⇒ (5.15) holds

In this formulation, the variable T and the relative error variables (e.g., EA)

are quantified alternately, thus requiring exists/forall (EF) problem solving.

Moreover, the formula involves the non-linear real arithmetic (NRA) due to

the terms TEA and TEB in (5.15). For these reasons, the scalability of

this SMT formulation-based approach is questionable because the current

SMT solvers rarely supports EF-NRA problem solving with scalability. In

the next subsection, we describe a more efficient approach based on convex

optimization as an alternative method.

80

5.2.3 Convex Optimization Formulation

This subsection describes the convex optimization-based approach to the ap-

proximate IO equivalence checking. Since the relative error variables EA

make the condition (5.15) inappropriate to be formulated as a convex opti-

mization problem, our approach is to derive a sufficient condition for (5.15).

By over-approximating the error terms and removing the error variables, we

derive such a sufficient condition for (5.15) which is formulated as a convex

optimization problem as follows:

variables e ∈ R,T ∈ Rn×n

minimize e

subject to
∥∥∥ÂT−TA

∥∥∥
∞

+ n2 ‖T‖∞ brel ≤ e∥∥∥B̂−TB
∥∥∥
∞

+ n2 ‖T‖∞ brel ≤ e∥∥∥ĈT−C
∥∥∥
∞

+ n · brel ≤ e,
∥∥∥D̂−D

∥∥∥
∞

+ n · brel ≤ e

(5.16)

The idea behind this formulation is to use convex optimization to find the

minimum precision e and then check whether e ≤ ρ where ρ is the given

precision.

Remark. Our verification method is sound (i.e., no false positive) but not

complete. Due to the relaxations both in the floating-point error approxima-

tion and the approximate IO equivalence checking, there might be a case with

a model and a correct implementation where our method remains indecisive

in the equivalence decision. This can be potentially improved by tightening the

relaxations in future work. In addition, a larger ρ can make the approximate

equivalence decision positive, which is not with a smaller ρ. The IO equiv-

81

C code
(the step
function)

Specification
(LTI model)

Symbolic
executor

(PathCrawler)

Transition
equations

Model extractor
(using floating-

point error
analyzer PolyFP)

Extracted model
(quantized model)

Approximate
IO equivalence

checker
(using CVX)

Verification
result

(yes/no)

Tolerance
threshold

Figure 5.1: The verification toolchain

alence with a large ρ may not guarantee the controller’s well-behavedness.

Relating the approximate equivalence precision ρ and the performance of the

controller (e.g., robustness) is an avenue of future work.

5.3 Evaluation

This section presents our toolchain for the verification of finite precision

controller implementations, and evaluates its scalability. We also evaluate

computational overhead (i.e., running time) over our own earlier work in

Chapter 4 which assumes that the computations of controller implementa-

tions have no rounding errors.

5.3.1 Toolchain

This subsection presents the verification toolchain (shown in Fig. 5.1) that we

implemented based on our method described in this chapter. The toolchain is

an extension of the tool presented in Chapter 4 to consider the floating-point

82

error of step function in verification. The toolchain takes as input a step

function C code and an LTI model specification. We use the off-the-shelf

symbolic execution tool PathCrawler [83] to symbolically execute the step

function and produce the transition equations for the step function. From

the transition equations, the model extractor based on Section 5.1.3 extracts

the quantized controller model using the floating-point error analysis tool

PolyFP [3]. Finally, the extracted quantized model is compared with the

given specification (i.e., LTI model) based on the approximate IO relation

defined in Section 5.2. The approximate IO equivalence checker uses the

convex optimization solver CVX [40] to solve the formulas in Section 5.2.3.

5.3.2 Scalability Analysis

This subsection evaluates the scalability of our approach/toolchain presented

in this chapter. To evaluate, we use the Matlab function drss to randomly

generate discrete stable linear controller specifications (i.e., the elements of

Σ(A,B,C,D)) varying the controller dimension n from 2 to 14. To ob-

tain an IO equivalent implementation, we perform an arbitrary similarity

transformation on Σ, and yield the transformed model Σ̂. We use an LTI

system block of Simulink to allow the Embedded Coder (i.e., code generator

of Matlab/Simulink) to generate a floating-point implementation (i.e., step

function in C) for Σ̂. Note that the generated step function has multiple

loops and pointer arithmetic operations as illustrated in the step function

in [59]. We employ our toolchain to verify that the generated step function

correctly implements the original controller model. We pick the precision ρ

to be 10−6 to tolerate both numerical errors in the similarity transformation

83

The running time of our approach

2 3 4 5 6 7 8 9 10 11 12 13 14
controller dimension n

0

2

4

6

8

tim
e(

s)

Front-end
Back-end

Figure 5.2: The running time of both the front-end and the back-end of our
approach

and the floating-point controller implementation.

We now evaluate the scalability of our approach running our toolchain

with the random controller specifications and their implementations gener-

ated. We measure the running time of the front-end and the back-end of

our approach separately. The front-end refers to the process of symbolic ex-

ecution of the step function (using PathCrawler) and model extraction using

the floating-point analysis (using PolyFP). The back-end refers to the ap-

proximate IO equivalence checking using convex optimization problem solv-

ing (using CVX). The scalability analysis result is shown in Fig. 5.2, which

demonstrates that our approach is scalable for the realistic size of controller

dimension.

We now evaluate the overhead of our approach compared to the previous

work described in Chapter 4 where the verification problem is simpler than

our verification problem herein because the previous work in Chapter 4 as-

sumes that the computation of step function C code is exact without having

any roundoff error. Our approach herein provides a higher assurance for the

84

The overhead in our approach

2 3 4 5 6 7 8 9 10 11 12 13 14
controller dimension n

0

0.1

0.2

0.3

0.4

0.5

0.6

tim
e(

s)
Front-end
Back-end

Figure 5.3: The overhead in both the front-end and the back-end of our
approach

finite precision controller implementations considering the rounding errors in

computation. Fig. 5.3 shows the computational overhead (i.e., the increase

of running time) in our approach as a result of considering the floating-point

roundoff error in controller implementation verification. We observe that

the overhead of the floating-point error analysis in the front-end is marginal.

The running time of the back-end increases because the convex optimization

problem formulation for approximate IO equivalence requires more compu-

tations to solve. Finally, the total running time only increases marginally

from 0.4% to 7.5% over the previous work in Chapter 4 at a cost of providing

higher assurance for the correctness of the finite precision computations of

controller implementations.

85

Chapter 6

Linear Controller Verifier

This chapter describes LCV (Linear Controller Verifier), the prototype tool

that implements our verification approaches in this dissertation. This chap-

ter also evaluates the tool LCV through the case study and the scalability

analysis.

Simulink Block Diagram
(Controller Model)

C Code (Controller
Implementation)

Tolerance
Threshold

LTI Representation
for Model

LTI Representation
for Implementation

Verification Result
(Yes/No)

Model
Conversion

Model
Extraction

Input-Output
Equivalence

Checking

Figure 6.1: The verification flow of LCV.

86

6.1 Verification Flow of Linear Controller Ver-

ifier

This section describes the verification flow (shown in Fig. 6.1) and the im-

plementation details of LCV. LCV takes as input a Simulink block diagram

(i.e., controller model) and a C code (i.e., controller implementation). LCV

assumes that the name of the step function (i.e., controller’s entry function)

is also given, and the step function interfaces through given global variables.

In other words, the input(output) variables are declared in the global scope,

and are written(read) before(after) the execution of the step function.1

LCV can handle any C program that has a deterministic and finite exe-

cution path for a symbolic input, which is often found to be true for many

embedded linear controllers. Moreover, we observe that a Simulink block

diagram of a LTI controller can be converted into a state-space represen-

tation form, thus being amenable to our verification methods. Thus, LCV

can handle any Simulink block diagram which results in an LTI system (i.e.,

satisfying the superposition property). The block diagram may include basic

blocks (e.g., constant block, gain block, sum block), subsystem blocks (i.e.,

hierarchy) and series/parallel/feedback connections of those blocks. Extend-

ing LCV to verify a broader class of controllers is an avenue for future work.

As the first step of the verification, the Simulink block diagram is con-

verted into a state space representation of an LTI system, which is defined

1This convention is used by Embedded Coder, a code generation toolbox for Mat-
lab/Simulink

87

11

0

2

In Out

controller_wrapper

In Out

controller_wrapper1

In Out

controller_wrapper2

Figure 6.2: The simulink block diagram for checking the additivity of the
controller

as follows:

zk+1 = Azk +Buk

yk = Czk +Duk.
(6.1)

where uk, yk and zk are the input vector, the output vector and the state

vector at time k respectively. The matrices A, B, C and D are controller

parameters. Matlab function linearize is used to obtain the LTI model

from the Simulink block diagram. This step assumes that the block diagram

represents a linear controller model. A systematic procedure can remove this

assumption: one can check whether a given Simulink block diagram is linear

(i.e., both additive and homogeneous) using Simulink Design Verifier [75],

a model checker for Simulink. For example, to check if a controller block

in Simulink is additive or not, as shown in Figure 6.2, one can create two

additional duplicates of the controller block, generate two different input se-

quences, and check if the output of the controller in response to the sum of

two inputs is equal to the sum of two outputs of the controllers in response

the two inputs respectively. In Figure 6.2, controller wrapper wraps the

actual controller under test, and internally performs multiplexing and de-

88

multiplexing to handle the multiple inputs and outputs of the controller.

Simulink Design Verifier serves checking if this holds for all possible input

sequences. However, a limitation of the current version of Simulink Design

Verifier is that it does not support all Simulink blocks and does not properly

handle non-linear cases. In these cases, alternatively, one can validate the

linearity of controllers using simulation-based tests instead of model check-

ing, which can be systematically done by Simulink Test [76]. This method

is not limited by any types of Simulink blocks, and can effectively disprove

the linearity of controllers for non-linear cases. However, this alternative

method may not be as rigorous as the model-checking based method because

the simulation-based test does not consider all possible input cases.

The next step is extracting the LTI model from the controller implemen-

tation C code. To do this, LCV uses the symbolic execution technique which

allows us to identify the computation of the step function (i.e., C function

which implements the controller). By the computation, we mean the big-step

transition relation on global states between before and after the execution

of the step function. The big-step transition relation is represented as sym-

bolic formulas that describe how global variables for the controller’s state

and output are updated in terms of the old values of the global variables

as the effect of the step function execution. From the transition relation,

an LTI model for the controller implementation is extracted as explained in

Chapter 4 and Chapter 5. LCV employs the off-the-shelf symbolic execution

tool PathCrawler [83], which outputs in an XML format the symbolic execu-

tion paths and the path conditions of a given C program. The idea behind

this symbolic execution step is that linear controller codes used for embed-

89

ded systems generally have simple control flows for the sake of deterministic

real-time behaviors (e.g., fixed upper bound of loops).

Finally, LCV performs the input-output equivalence checking between the

LTI model obtained from the block diagram and the LTI model extracted

from the C code implementation. We assume that a proper tolerance thresh-

old is given by a control engineer as a result of robustness analysis. To do the

input-output equivalence checking, we employ the notion of similarity trans-

formation [64], which implies that two minimal LTI models are input-output

equivalent if and only if they are similar to each other (i.e., there exists a sim-

ilarity transformation matrix T that satisfies certain conditions). Thus, we

first minimize both the extracted model and the original model via Kalman

Decomposition [64] (Matlab function minreal). The input-output equiva-

lence checking problem is reduced to the problem of finding the existence of

T (i.e., similarity checking problem). LCV formulates the similarity checking

problem as a convex optimization problem [60], and employs CVX [40] to find

T . In the formulation, the equality relation is relaxed to tolerate the numer-

ical errors that come from multiple sources (e.g., the controller parameters,

the computation of the implementation, the verification process) so that any

two quantities which are closer than a given ε are considered to be equal. ε is

chosen to be 10−5 for the case study that we performed in the next section.

The output of LCV is as follows: First of all, when LCV fails to extract

an LTI model from code, it tells the reason (e.g., non-deterministic execu-

tion paths for a symbolic input due to branching over a symbolic expression

condition, non-linear arithmetic computation due to the use of trigonometric

functions). Moreover, for the case of non-equivalent model and code, LCV

90

provides the LTI models obtained from the Simulink block diagram model

and the C code respectively, so that the user can simulate both of the models

and easily find an input sequence that leads to a discrepancy between their

output behaviors. Finally, for the case of equivalent model and code, LCV

additionally provides a similarity transformation matrix between the two

LTI models, which is the key evidence to prove the input-output equivalence

between the model and code.

6.2 Evaluation

We evaluate LCV through conducting a case study using a standard PID

controller and a controller used in a quadrotor. We also evaluate the scala-

bility of LCV in the subsequent subsection. The instruction and software of

LCV are available online for evaluation2, which contains all of the files used

for the evaluation of the tool in this section (i.e., Simulink block diagram and

C code implementation).

6.2.1 Case Study

PID Controller

In our case study, we first consider a proportional-integral-derivative (PID)

controller, which is a closed-loop feedback controller commonly used in var-

ious control systems (e.g., industrial control systems, robotics, automotive).

A PID controller attempts to minimize the error value et over time which is

defined as the difference between a reference point rt (i.e., desired value) and

a measurement value yt (i.e., et = rt − yt). To do this, the PID controller

2http://cis.upenn.edu/~park11/lcv.html

91

http://cis.upenn.edu/~park11/lcv.html

Sum

kp

Proportional Gain

ki

Integral Gain

kd

Derivative Gain

K Ts

z-1

Integrator

(z-1)
Ts z

Differentiator

Sum2

1

r

2

y

1

u

Figure 6.3: The block diagram of the PID controller.

adjusts a control input ut computing the sum of the proportion term kpet,

integral term kiT
∑t

i=1 et and derivative term kd
et−et−1

T
so that

ut = kpet + kiT

t∑
i=1

et + kd
et − et−1

T
. (6.2)

where kp, ki and kd are gain constants for the corresponding term, and T

is the sampling time. Fig. 6.3 shows the Simulink block diagram for the

PID controller, where the gain constants are defined as kp = 9.4514, ki =

0.69006, kd = 2.8454, and the sampling period is 0.2 s.

For the PID controller model, we check four different versions of imple-

mentations such as PID1, PID2, PID3 and PID3’. PID1 is obtained by code

generation from the model using Embedded Coder. PID2 is obtained from

PID1 by a manual transformation to improve the numerical accuracy (using

the first transformation technique presented in [23]). In a similar way, PID3

is obtained by the transformation from PID1 for an even better numerical

accuracy (following the optimization procedure and the output pseudo code

92

of Listing 3 in [23]). However, the output code has an unintended bug by

mistake that has been confirmed by the authors of the paper (i.e., variable

s is not computed correctly, and the integral term is redundantly added to

the output), which makes PID3 incorrect. PID3’ is an implementation that

corrects PID3. Using LCV, we can verify that PID1, PID2 and PID3’ are

correct implementations, but PID3 is not (see Listing 6 in Appendix B).

Moreover, we check yet another version of implementation PID4. PID4 is

obtained by injecting a known bug of Embedded Coder into the implemen-

tation PID1. The bug with ID of 1658667 [71] that exists in the Embedded

Coder version from 2015a through 2017b (7 consecutive versions) causes the

generated code to have state variable declarations in a wrong scope. The

state variables which are affected by the bug are mistakenly declared as local

variables inside the step function instead of being declared as global vari-

ables. Thus, those state variables affected by the bug are unable to preserve

their values throughout the consecutive step function executions. LCV can

successfully detect the injected bug by identifying that the extracted model

from the controller code does not match with the original controller model.

Quadrotor Controller

The second and more complex application in our case study is a controller

of the quadrotor called Erle-Copter. The quadrotor controller controls the

quadrotor to be in certain desired angles in roll, yaw and pitch. The quadro-

tor uses the controller software from the open source project Ardupilot3.

Inspired by the controller software, we obtained the Simulink block diagram

3http://ardupilot.org/

93

http://ardupilot.org/

PID(z)
Ref

pitch_rate_PID

PID(z)
Ref

yaw_rate_PID

PID(z)
Ref

roll_PID

PID(z)
Ref

yaw_PID

PI(z)
Ref

pitch_PID

PID(z)
Ref

roll_rate_PID

3

roll_y

6

pitch_y

2

roll_d

9

yaw_y

4

roll_rate_y

7

pitch_rate_y

10

yaw_rate_y

5

pitch_d

8

yaw_d

2

roll_rate_u

3

pitch_rate_u

4

yaw_rate_u

1

thrust_d

1

thrust_u

Figure 6.4: Our quadrotor platform (Left). The quadrotor controller block
diagram (Right).

shown in Fig. 6.4. In the names of the inport blocks, the suffix d indicates

the desired angle, y, the measured angle, and rate y, the angular speed.

Each component of the coordinate of the quadrotor is separately controlled

by its own cascade PID controller [56]. A cascade of PID controller is a

sequential connection of two PID controllers such that one PID controller

controls the reference point of another. In Fig. 6.4, there are three cascade

controllers for the controls of roll, pitch and yaw. For example, for the roll

control, roll pid controls the angle of roll, while roll rate PID controls

the rate of roll using the output of roll PID as the reference point. The

sampling time T of each PID controller is 2.5 ms. This model uses the built-

in PID controller block of Simulink to enable the PID auto-tuning software

in Matlab (i.e, pidtune()). The required physical quantities for controlling

roll and pitch are identified by physical experiments [29]. We use Embedded

Coder to generate the controller code for the model, and verify that the gen-

erated controller code correctly implements the controller model using LCV

94

The running time of LCV

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
controller dimension n

0

20

40

60

80

100

120

140

160

tim
e(

s)

Figure 6.5: The running time of LCV for verifying controllers with dimension
n.

(see Listing 7 in Appendix B).

6.2.2 Scalability

To evaluate the scalability of LCV with a larger range of controller dimension

than what has been done in the previous chapters, we measure the running

time of LCV verifying the controllers of different dimensions (i.e., the size of

the LTI model) up to 50. We randomly generate LTI controller models using

Matlab function drss varying the controller dimension n from 2 to 50. The

range of controller sizes was chosen based on our observation of controller

systems in practice. We construct Simulink models with LTI system blocks

that contain the generated LTI models, and use Embedded Coder to generate

the implementations for the controllers. The running time of LCV for veri-

fying the controllers with different dimensions is presented in Fig. 6.5, which

shows that LCV is scalable for the realistic size of controller dimension.

95

Chapter 7

Conclusion

7.1 Summary of this Dissertation

In conclusion, this dissertation addressed the problem of verifying linear con-

troller software against its mathematical model in the absence of verified code

generator in the model-based development. We developed an automatic ver-

ification tool to ensure the conformance between a step function C code and

an LTI controller model from the input-output perspective with tolerance

up to a given threshold. To develop LCV, we explored and proposed the

approaches presented in Chapter 3 through Chapter 6.

In Chapter 3, we proposed to use invariants based on transfer functions, a

well-known concept in the linear systems theory, since it allows us to accom-

modate optimizations in the state representation that could be applied by

the code generator. We have demonstrated the feasibility of performing auto-

matic verification of such invariants on controllers with a realistic number of

states. We have studied both exact and inexact controller implementations;

96

the latter may result from numerical manipulations within the code genera-

tor. For inexact implementations, the invariant incorporates error bounds on

the level of deviation from the transfer function. We evaluated our approach

on controller implementations, generated by Matlab for randomly generated

transfer functions. The evaluation also showed that scalability of verifica-

tion can be improved by using an alternative representation of the transfer

function.

In Chapter 4, we have proposed to use the symbolic execution technique to

reconstruct mathematical models from linear time-invariant controller imple-

mentations. We have presented a method to check input-output equivalence

between the specification model and the extracted model using the SMT for-

mulation and the convex optimization formulation. Through the evaluation

using randomly generated specification and code by Matlab, we showed that

the scalability of our new approach has significantly improved compared to

our own earlier work presented in Chapter 3.

In Chapter 5, we have presented an approach for the verification of finite

precision implementations of linear controllers against mathematical specifi-

cations. We have proposed to use a combination of techniques such as sym-

bolic execution and floating point error analysis in order to extract the quan-

tized controller model from finite precision linear controller implementations.

We have defined an approximate input-output equivalence relation between

the specification model (i.e., linear time-invariant model) and the extracted

model (i.e., quantized controller model), and presented a method to check the

approximate equivalence relation using the convex optimization formulation.

We have evaluated our approach using randomly generated controller specifi-

97

cations and implementations by MATLAB/Simulink/Embedded Coder. The

evaluation result shows that our approach is scalable for the realistic con-

troller size, and the computational overhead to analyze the effect of floating-

point error is negligible compared to our own earlier work presented in Chap-

ter 4.

In Chapter 6, we have presented our tool LCV which verifies the equiva-

lence between a given Simulink block diagram and a given C implementation

from the input-output perspective. Through an evaluation, we have demon-

strated that LCV is applicable to the verification of a real-world system’s

controller and scalable for the realistic controller size. We also demonstrated

that LCV successfully detected certain known and unknown bugs of Embed-

ded Coder and Salsa which are unverified code generation and transformation

tools respectively which are used in the model-based development.

7.2 Future Research Direction

This dissertation has focused on linear controllers. A potential avenue of

future work is extending the method/tool of this dissertation for non-linear

controllers. This is motivated by the fact that Simuilnk provides a rich mod-

eling language which is capable to specify many different types of non-LTI

controllers. Although the class of LTI controllers are most commonly used

in control systems, there are far more controller classes which are not LTI.

However, we note that verification of certain types of non-linear controllers

may not be decidable. Thus, an interesting extension of our verification ap-

proaches to a class of non-LTI controllers may be considering switched LTI

98

controllers [50]. A switched LTI controller consists of multiple sub-controllers

which are all LTI. These sub-controllers operate in parallel for the same in-

put signal, but only one sub-controller’s output is selected to be the actual

control output to the actuator of the system. The selection of output sig-

nal is dome by a separate component called ‘supervisor’ (or decision maker).

This class of controllers is a natural and interesting extension of LTI con-

trollers that can model certain adaptive controllers. In the verification of

this types of controllers implementations, we should be able to handle the

‘Switch’ block in the Simuilnk models and the conditional statement in the C

language as well as the supervisor components which are potentially defined

as state machines.

Another avenue of future work is finding the tolerance threshold values

from robustness analysis. There is an inherent discrepancy between controller

models and their implementation because not only do the implementations

use finite-precision arithmetic, but they also may be inexact due to the po-

tential rounding errors in the code generation/optimization process. Thus,

it is reasonable to allow a tolerance in the conformance verification as long

as the implementation has the same desired property to the model’s. In

our verification approaches presented in this thesis, we assumed that such a

tolerance threshold value (e.g., approximate equivalence tolerance) is given

by the control engineer as a result of robustness analysis. Thus, immediate

future work may include the development of a technique to obtain a proper

tolerance threshold value for the verification of a given controller building

upon the existing robust control analysis techniques [32, 5, 82].

99

Appendix A

Step function example

typedef double real_T;

typedef int int_T;

typedef char char_T;

typedef struct tag_RTM_LTIS_T RT_MODEL_LTIS_T;

typedef struct {

real_T Internal_DSTATE[5];

} DW_LTIS_T;

typedef struct {

real_T Internal_C[10];

} ConstP_LTIS_T;

typedef struct {

100

real_T u[2];

} ExtU_LTIS_T;

typedef struct {

real_T y[2];

} ExtY_LTIS_T;

struct tag_RTM_LTIS_T {

const char_T * volatile errorStatus;

};

extern DW_LTIS_T LTIS_DW;

extern ExtU_LTIS_T LTIS_U;

extern ExtY_LTIS_T LTIS_Y;

extern const ConstP_LTIS_T LTIS_ConstP;

extern void LTIS_initialize(void);

extern void LTIS_step(void);

extern void LTIS_terminate(void);

extern RT_MODEL_LTIS_T *const LTIS_M;

const ConstP_LTIS_T LTIS_ConstP = {

{ -0.793176, 0.154365, -0.377883, -0.360608, -0.142123,

0.503767, -0.573538, 0.170245, -0.583312, -0.56603 }

};

101

DW_LTIS_T LTIS_DW;

ExtU_LTIS_T LTIS_U;

ExtY_LTIS_T LTIS_Y;

RT_MODEL_LTIS_T LTIS_M_;

RT_MODEL_LTIS_T *const LTIS_M = <IS_M_;

void LTIS_step(void)

{

{

{

static const int_T colCidxRow0[5] = { 0, 1, 2, 3, 4 };

const int_T *pCidx = &colCidxRow0[0];

const real_T *pC0 = LTIS_ConstP.Internal_C;

const real_T *xd = <IS_DW.Internal_DSTATE[0];

real_T *y0 = <IS_Y.y[0];

int_T numNonZero = 4;

*y0 = (*pC0++) * xd[*pCidx++];

while (numNonZero--) {

*y0 += (*pC0++) * xd[*pCidx++];

}

}

{

102

static const int_T colCidxRow1[5] = { 0, 1, 2, 3, 4 };

const int_T *pCidx = &colCidxRow1[0];

const real_T *pC5 = <IS_ConstP.Internal_C[5];

const real_T *xd = <IS_DW.Internal_DSTATE[0];

real_T *y1 = <IS_Y.y[1];

int_T numNonZero = 4;

*y1 = (*pC5++) * xd[*pCidx++];

while (numNonZero--) {

*y1 += (*pC5++) * xd[*pCidx++];

}

}

}

{

real_T xnew[5];

int_T i;

xnew[0] = (0.87224)*LTIS_DW.Internal_DSTATE[0];

xnew[0] += (0.822174)*LTIS_U.u[0]+(-0.438008)*LTIS_U.u[1];

xnew[1] = (0.366378)*LTIS_DW.Internal_DSTATE[1];

xnew[1] += (-0.278536)*LTIS_U.u[0]+(-0.824313)*LTIS_U.u[1];

xnew[2] = (-0.540795)*LTIS_DW.Internal_DSTATE[2];

xnew[2] += (0.874484)*LTIS_U.u[0]+(0.858857)*LTIS_U.u[1];

xnew[3] = (-0.332664)*LTIS_DW.Internal_DSTATE[3];

xnew[3] += (-0.117628)*LTIS_U.u[0]+(-0.506362)*LTIS_U.u[1];

103

xnew[4] = (-0.204322)*LTIS_DW.Internal_DSTATE[4];

xnew[4] += (-0.955459)*LTIS_U.u[0]+(-0.622498)*LTIS_U.u[1];

for(i=0; i<5; i++)

LTIS_DW.Internal_DSTATE[i] = xnew[i];

}

}

Listing 5: Step function example

104

Appendix B

LCV output examples

Verification parameters:

Simulink model: dpid

Simulink block: dpid/dpid

C files:

'dpid0.c'

Step function: dpid0_step

Input variables:

'dpid0_U.r' 'dpid0_U.y'

Output variables:

'dpid0_Y.u'

Precision(epsilon): 1e-05

Verification started.

Obtaining M1(A1,B1,C1,D1), a LTI model from the Simulink block diagram ...

A1

1 0

105

0 0

B1

0.138012000000000 -0.138012000000000

14.226999999999999 -14.226999999999999

C1

1 -1

D1

23.816411999999996 -23.816411999999996

Extracting M2(A2,B2,C2,D2), a LTI model from the C code ...

A2

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

B2

1.000000000000000 -1.000000000000000

0 0

0 0

0 0

1.000000000000000 -1.000000000000000

14.227000000000000 -14.227000000000000

0 0

C2

Columns 1 through 5

14.227000000000000 14.227000000000000 14.227000000000000 14.227000000000000 -0.138012000000000

Columns 6 through 7

106

1.000000000000000 14.227000000000000

D2

38.043411999999996 -38.043411999999996

Checking the input-output equivalence ...

Minimizing M1 as M1'(A1',B1',C1',D1') ...

Minimizing M2 as M2'(A2',B2',C2',D2') ...

2 states removed.

Minimized models:

A1'

1 0

0 0

B1'

0.138012000000000 -0.138012000000000

14.226999999999999 -14.226999999999999

C1'

1 -1

D1'

23.816411999999996 -23.816411999999996

A2'

0.000000000000000 -0.000000000000000 0.000000000000000 0.707106781186547 0.000000000000000

1.000000000000000 0.000000000000000 -0.000000000000000 -0.000000000000000 0.000000000000000

0.000000000000000 1.000000000000000 0.000000000000000 0.000000000000000 -0.000000000000000

0.000000000000000 -0.000000000000000 0.000000000000000 0.000000000000000 -0.000000000000000

0.000000000000000 -0.000000000000000 -0.000000000000000 -0.000000000000000 1.000000000000000

B2'

0.000000000000000 -0.000000000000000

-0.000000000000000 0.000000000000000

0.000000000000000 -0.000000000000000

1.414213562373095 -1.414213562373095

14.227000000000000 -14.227000000000000

107

C2'

14.227000000000000 14.227000000000000 14.227000000000000 9.962418954855893 1.000000000000000

D2'

38.043411999999996 -38.043411999999996

Not equivalent (different dimension of minimized models) (2 ~= 5).

Elapsed time is 9.272016 seconds.

Verification finished.

Listing 6: Output of LCV for the PID3 example

108

Verification parameters:

Simulink model: erle_copter

Simulink block: erle_copter/erle_copter_controller

C files:

'erle_copter_controller.c'

Step function: erle_copter_controller_step

Input variables:

Columns 1 through 2

'erle_copter_controller_U.thrust_d' 'erle_copter_controller_U.roll_d'

Columns 3 through 4

'erle_copter_controller_U.roll_y' 'erle_copter_controller_U.roll_rate_y'

Columns 5 through 6

'erle_copter_controller_U.pitch_d' 'erle_copter_controller_U.pitch_y'

Columns 7 through 8

'erle_copter_controller_U.pitch_rate_y' 'erle_copter_controller_U.yaw_d'

Columns 9 through 10

'erle_copter_controller_U.yaw_y' 'erle_copter_controller_U.yaw_rate_y'

Output variables:

Columns 1 through 2

'erle_copter_controller_Y.thrust_u' 'erle_copter_controller_Y.roll_rate_u'

Columns 3 through 4

'erle_copter_controller_Y.pitch_rate_u' 'erle_copter_controller_Y.yaw_rate_u'

109

Precision(epsilon): 1e-05

Verification started.

Obtaining M1(A1,B1,C1,D1), a LTI model from the Simulink block diagram ...

A1

1.0e+02 *

Columns 1 through 5

0.010000000000000 0 0 0 0

0 0 0 0 0

0.000000542625838 -0.000000542625838 0.010000000000000 0 0

4.162826684542279 -4.162826684542278 0 0 0

0 0 0 0 0.010000000000000

0 0 0 0 0.000000259717051

0 0 0 0 4.160560411533799

Columns 6 through 7

0 0

0 0

0 0

0 0

0 0

0.010000000000000 0

0 0

B1

1.0e+05 *

Columns 1 through 5

0 0.000000171758370 -0.000000171758370 0 0

0 0.006759018592030 -0.006759018592030 0 0

0 0.000000380868793 -0.000000380868793 -0.000000000542626 0

110

0 2.921885886942280 -2.921885886942280 -0.004162826684542 0

0 0 0 0 0.000000000166662

0 0 0 0 0.000000000302153

0 0 0 0 0.004840360825814

Columns 6 through 10

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-0.000000000166662 0 0 0 0

-0.000000000302153 -0.000000000259717 0 0 0

-0.004840360825814 -0.004160560411534 0 0 0

C1

1.0e+02 *

Columns 1 through 5

0 0 0 0 0

4.177534754781552 -4.177534754781552 0.010000000000000 -0.010000000000000 0

0 0 0 0 4.170735794301745

0 0 0 0 0

Columns 6 through 7

0 0

0 0

0.010000000000000 -0.010000000000000

0 0

D1

1.0e+05 *

Columns 1 through 5

0.000010000000000 0 0 0 0

111

0 2.932209473801149 -2.932209473801149 -0.004177534754782 0

0 0 0 0 0.004852198780144

0 0 0 0 0

Columns 6 through 10

0 0 0 0 0

0 0 0 0 0

-0.004852198780144 -0.004170735794302 0 0 0

0 0 0.000010000000000 -0.000010000000000 -0.000010000000000

Extracting M2(A2,B2,C2,D2), a LTI model from the C code ...

A2

1.0e+02 *

Columns 1 through 5

0 0 0 0 0

0 0.010000000000000 0 0 0

-4.162826680000000 4.162826680000000 0 0 0

-0.000000540000000 0.000000540000000 0 0.010000000000000 0

0 0 0 0 0.010000000000000

0 0 0 0 4.160560410000000

0 0 0 0 0.000000260000000

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Columns 6 through 10

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0.010000000000000 0 0 0

112

0 0 0 0 0

0 0 0 0.010000000000000 0

0 0 0 0 0

0 0 0 0 0

Column 11

0

0

0

0

0

0

0

0

0

0

0.010000000000000

B2

1.0e+05 *

Columns 1 through 5

0 0.006759018590000 -0.006759018590000 0 0

0 0.000000171760000 -0.000000171760000 0 0

0 2.921885886960000 -2.921885886960000 -0.004162826680000 0

0 0.000000380870000 -0.000000380870000 -0.000000000540000 0

0 0 0 0 0.000000000170000

0 0 0 0 0.004840360830000

0 0 0 0 0.000000000300000

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Columns 6 through 10

113

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-0.000000000170000 0 0 0 0

-0.004840360830000 -0.004160560410000 0 0 0

-0.000000000300000 -0.000000000260000 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C2

1.0e+02 *

Columns 1 through 5

0 0 0 0 0

-4.177534750000000 4.177534750000000 -0.010000000000000 0.010000000000000 0

0 0 0 0 4.170735790000000

0 0 0 0 0

Columns 6 through 10

0 0 0 0 0

0 0 0 0 0

-0.010000000000000 0.010000000000000 0 0 0

0 0 -0.010000000000000 0.010000000000000 -0.010000000000000

Column 11

0

0

0

0.010000000000000

D2

1.0e+05 *

114

Columns 1 through 5

0.000010000000000 0 0 0 0

0 2.932209473820000 -2.932209473820000 -0.004177534750000 0

0 0 0 0 0.004852198780000

0 0 0 0 0

Columns 6 through 10

0 0 0 0 0

0 0 0 0 0

-0.004852198780000 -0.004170735790000 0 0 0

0 0 0.000010000000000 -0.000010000000000 -0.000010000000000

Checking the input-output equivalence ...

Minimizing M1 as M1'(A1',B1',C1',D1') ...

4 states removed.

Minimizing M2 as M2'(A2',B2',C2',D2') ...

8 states removed.

Minimized models:

A1'

1.0e+02 *

0.000000553104392 0.000000000000110 -0.000000000000072

-0.053294848472191 -0.000000010572831 0.000000006946340

4.162485496370146 0.000000825769400 -0.000000542529747

B1'

1.0e+05 *

Columns 1 through 5

0 -0.006758630368344 0.006758630368344 -0.000000000553104 -0.000000000952093

0 -0.037407627962002 0.037407627962002 0.000053294848714 0.004839964128421

0 2.921646421271873 -2.921646421271873 -0.004162485515247 0.000061969021889

Columns 6 through 10

115

0.000000000952093 0.000000000818377 0 0 0

-0.004839964128421 -0.004160219427973 0 0 0

-0.000061969021889 -0.000053265834612 0 0 0

C1'

1.0e+02 *

0 0 0

4.177534734505039 0.000128854363016 -0.009999723626231

0.000000001966988 -0.009999180438304 -0.000128025624779

0 0 0

D1'

1.0e+05 *

Columns 1 through 5

0.000010000000000 0 0 0 0

0 2.932209473801149 -2.932209473801149 -0.004177534754782 0

0 0 0 0 0.004852198780144

0 0 0 0 0

Columns 6 through 10

0 0 0 0 0

0 0 0 0 0

-0.004852198780144 -0.004170735794302 0 0 0

0 0 0.000010000000000 -0.000010000000000 -0.000010000000000

A2'

1.0e+02 *

0.000000000033993 0.000446804329864 0.000000000057955

-0.000000000000041 -0.000000539991988 -0.000000000000070

0.000000315643503 4.162826637142502 0.000000539959925

B2'

116

1.0e+05 *

Columns 1 through 5

0 0.000313611216248 -0.000313611216248 -0.000000446804332 0.004840360802119

0 -0.006759397610099 0.006759397610099 0.000000000539992 -0.000000000366950

0 2.921885869253011 -2.921885869253011 -0.004162826656022 -0.000000519525398

Columns 6 through 10

-0.004840360802119 -0.004160560386035 0 0 0

0.000000000366950 0.000000000315414 0 0 0

0.000000519525398 0.000000446561089 0 0 0

C2'

1.0e+02 *

0 0 0

-0.000000756560691 4.177534732347563 -0.009999456777501

-0.009999999942204 0.000000000758104 0.000001073319564

0 0 0

D2'

1.0e+05 *

Columns 1 through 5

0.000010000000000 0 0 0 0

0 2.932209473820000 -2.932209473820000 -0.004177534750000 0

0 0 0 0 0.004852198780000

0 0 0 0 0

Columns 6 through 10

0 0 0 0 0

0 0 0 0 0

-0.004852198780000 -0.004170735790000 0 0 0

0 0 0.000010000000000 -0.000010000000000 -0.000010000000000

117

M1' and M2' are input-output equivalent.

Similarity transformation matrix T found with error bound 4.2483e-06:

-0.000000120860229 0.999999999995001 0.000000262597397

0.999916663315123 0.000000118167540 -0.012909885578054

0.012909885557525 0.000000213285385 0.999916665046047

Elapsed time is 14.326160 seconds.

Verification finished.

Listing 7: Output of LCV for the Erle Copter example

118

Bibliography

[1] The WhyML Programming Language, http://why3.lri.fr/doc-
0.80/manual004.html.

[2] IEEE standard for floating-point arithmetic. IEEE Std 754-2008 pp.
1–70, 2008.

[3] PolyFP. https://github.com/monadius/poly fp, accessed 2016.

[4] Tony Andrews, Shaz Qadeer, Sriram Rajamani, Jakob Rehof, and
Yichen Xie. Zing: A model checker for concurrent software. In Computer
Aided Verification, pages 28–32. Springer, 2004.

[5] Adolfo Anta, Rupak Majumdar, Indranil Saha, and Paulo Tabuada. Au-
tomatic verification of control system implementations. In Proc. 10th
ACM International Conference on Embedded Software, EMSOFT’10,
pages 9–18, 2010.

[6] Dejanira Araiza-Illan, Kerstin Eder, and Arthur Richards. Formal
verification of control systems’ properties with theorem proving. In
UKACC International Conference on Control (CONTROL), pages 244–
249, 2014.

[7] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-
Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet,
et al. The Coq proof assistant reference manual: Version 6.1. 1997.

[8] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.
Cvc4. In Computer aided verification, pages 171–177. Springer, 2011.

[9] Patrick Baudin, Franois Bobot, Loc Correnson, and Zaynah Dargaye.
WP 0.8 manual - Frama-C. Technical report, CEA LIST, 2014.

119

[10] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliatre, Claude Marche,
Benjamin Monate, Yannick Moy, and Virgile Prevosto. ACSL:
ANSI/ISO C Specification Language, Version 1.4. Technical report,
CEA LIST and INRIA, 2010.

[11] Chandan Kumar Behera and D Lalitha Bhaskari. Different obfuscation
techniques for code protection. Procedia Computer Science, 70:757–763,
2015.

[12] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In ACM SIGPLAN Notices,
volume 38, pages 196–207. ACM, 2003.

[13] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011: First
International Workshop on Intermediate Verification Languages, pages
53–64, 2011.

[14] Bernard Botella, Arnaud Gotlieb, and Claude Michel. Symbolic execu-
tion of floating-point computations. Software Testing, Verification and
Reliability, 16(2):97–121, 2006.

[15] Jan Cappaert. Code obfuscation techniques for software protection.
Katholieke Universiteit Leuven, pages 1–112, 2012.

[16] Nuno Carvalho, Cristiano da Silva Sousa, Jorge Sousa Pinto, and Aaron
Tomb. Formal Verification of kLIBC with the WP Frama-C Plug-in. In
NASA Formal Methods, pages 343–358. Springer, 2014.

[17] Lori Clarke. A system to generate test data and symbolically execute
programs. Software Engineering, IEEE Transactions on, (3):215–222,
1976.

[18] Christian Collberg, Clark Thomborson, and Douglas Low. A taxon-
omy of obfuscating transformations. Technical report, Department of
Computer Science, The University of Auckland, New Zealand, 1997.

[19] Mirko Conrad. Testing-based translation validation of generated code in
the context of iec 61508. Formal Methods in System Design, 35(3):389–
401, 2009.

120

[20] Mirko Conrad. Verification and validation according to iso 26262: A
workflow to facilitate the development of high-integrity software. Em-
bedded Real Time Software and Systems (ERTS2 2012), 2012.

[21] James C Corbett, Matthew B Dwyer, John Hatcliff, Shawn Laubach,
Corina S Păsăreanu, Ro Bby, and Hongjun Zheng. Bandera: Extracting
finite-state models from java source code. In Software Engineering, 2000.
Proceedings of the 2000 International Conference on, pages 439–448.
IEEE, 2000.

[22] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-c. In Software Engi-
neering and Formal Methods, pages 233–247. 2012.

[23] Nasrine Damouche, Matthieu Martel, and Alexandre Chapoutot. Trans-
formation of a pid controller for numerical accuracy. Electronic Notes
in Theoretical Computer Science, 317:47–54, 2015.

[24] Nasrine Damouche, Matthieu Martel, and Alexandre Chapoutot. Im-
proving the numerical accuracy of programs by automatic transforma-
tion. International Journal on Software Tools for Technology Transfer,
pages 1–22, 2016.

[25] Eva Darulova, Viktor Kuncak, Rupak Majumdar, and Indranil Saha.
Synthesis of fixed-point programs. In Proc. 11th ACM International
Conference on Embedded Software, EMSOFT’13, pages 22:1–22:10,
2013.

[26] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. 2008.

[27] Leonardo De Moura, Sam Owre, Harald Rueß, John Rushby, Natara-
jan Shankar, Maria Sorea, and Ashish Tiwari. Sal 2. In International
Conference on Computer Aided Verification, pages 496–500. Springer,
2004.

[28] Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. Common
specification language for static and dynamic analysis of C programs.
In Proc. 28th Annual ACM Symposium on Applied Computing, pages
1230–1235, 2013.

121

[29] L Derafa, T Madani, and A Benallegue. Dynamic modelling and ex-
perimental identification of four rotors helicopter parameters. In 2006
IEEE International Conference on Industrial Technology, 2006.

[30] Edsger Wybe Dijkstra. A discipline of programming. Prentice-Hall En-
glewood Cliffs, 1976.

[31] Geir Dullerud and Fernando Paganini. Course in Robust Control Theory.
Springer-Verlag New York, 2000.

[32] Geir E Dullerud and Fernando Paganini. A course in robust control
theory: a convex approach, volume 36. Springer Science & Business
Media, 2013.

[33] Hassan Eldib and Chao Wang. An SMT based method for optimizing
arithmetic computations in embedded software code. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
33(11):1611–1622, 2014.

[34] Jérôme Feret. Static analysis of digital filters. In European Symposium
on Programming, pages 33–48. Springer, 2004.

[35] Eric Feron. From control systems to control software. Control Systems,
IEEE, 30(6):50–71, 2010.

[36] Jean-Christophe Filliâtre. Deductive software verification. International
Journal on Software Tools for Technology Transfer (STTT), 13(5):397–
403, 2011.

[37] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification
of C programs. In ICFEM, volume 3308, pages 15–29. Springer, 2004.

[38] Frédéric Goualard. How do you compute the midpoint of an interval?
ACM Transactions on Mathematical Software (TOMS), 40(2):11, 2014.

[39] Eric Goubault and Sylvie Putot. Static analysis of finite precision com-
putations. In International Workshop on Verification, Model Checking,
and Abstract Interpretation, pages 232–247. Springer, 2011.

[40] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1. http://cvxr.com/cvx, March 2014.

122

http://cvxr.com/cvx

[41] Kerstin Hartig, Jens Gerlach, Juan Soto, and Jürgen Busse. Formal
Specification and Automated Verification of Safety-Critical Require-
ments of a Railway Vehicle with Frama-C/Jessie. In FORMS/FORMAT
2010, pages 145–153. 2011.

[42] Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre, Pierre-Löıc
Garoche, Eric Feron, Gilberto Perez, and Pablo Ascariz. PVS linear al-
gebra libraries for verification of control software algorithms in C/ACSL.
In NASA Formal Methods, pages 147–161. 2012.

[43] Charles Antony Richard Hoare. An axiomatic basis for computer pro-
gramming. Comm. of the ACM, 12(10):576–580, 1969.

[44] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
software engineering, 23(5):279–295, 1997.

[45] Gerard J Holzmann and Margaret H Smith. Software model checking:
extracting verification models from source code. Software Testing, Ver-
ification and Reliability, 11(2):65–79, 2001.

[46] Gerard J Holzmann and Margaret H Smith. An automated verifica-
tion method for distributed systems software based on model extraction.
Software Engineering, IEEE Transactions on, 28(4):364–377, 2002.

[47] James C King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394, 1976.

[48] Nikolai Kosmatov and Julien Signoles. A lesson on runtime assertion
checking with Frama-C. In Runtime Verification, pages 386–399, 2013.

[49] David Kung, Nimish Suchak, Jerry Gao, Pei Hsia, Yasufumi Toyoshima,
and Chris Chen. On object state testing. In Computer Software and
Applications Conference, 1994. COMPSAC 94. Proceedings., Eighteenth
Annual International, pages 222–227. IEEE, 1994.

[50] Daniel Liberzon and A Stephen Morse. Basic problems in stability and
design of switched systems. IEEE Control systems, 19(5):59–70, 1999.

[51] Rupak Majumdar, Indranil Saha, KC Shashidhar, and Zilong Wang.
CLSE: Closed-loop symbolic execution. In NASA Formal Methods, pages
356–370. 2012.

123

[52] Rupak Majumdar, Indranil Saha, Koichi Ueda, and Hakan Yazarel.
Compositional equivalence checking for models and code of control
systems. In 52nd Annual IEEE Conference on Decision and Control
(CDC), pages 1564–1571, 2013.

[53] Rupak Majumdar, Indranil Saha, and Majid Zamani. Synthesis of
minimal-error control software. In Proc. 10th ACM International Con-
ference on Embedded Software, EMSOFT’12, pages 123–132, 2012.

[54] Tomas Matousek and Filip Zavoral. Extracting Zing models from C
source code. SOFSEM 2007: Theory and Practice of Computer Science,
pages 900–910, 2007.

[55] Kenneth L McMillan. Symbolic model checking. In Symbolic Model
Checking, pages 25–60. Springer, 1993.

[56] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar.
The grasp multiple micro-uav test bed. IEEE Robotics & Automation
Magazine, 17(3):56–65, 2010.

[57] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype
verification system. In International Conference on Automated Deduc-
tion, pages 748–752. Springer, 1992.

[58] Miroslav Pajic, Junkil Park, Insup Lee, George J Pappas, and Oleg
Sokolsky. Automatic verification of linear controller software. In 12th
International Conference on Embedded Software (EMSOFT), pages 217–
226. IEEE Press, 2015.

[59] Junkil Park. Step function example.

[60] Junkil Park, Miroslav Pajic, Insup Lee, and Oleg Sokolsky. Scalable
verification of linear controller software. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 662–679. Springer, 2016.

[61] Junkil Park, Miroslav Pajic, Oleg Sokolsky, and Insup Lee. Automatic
verification of finite precision implementations of linear controllers. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 153–169. Springer, 2017.

124

[62] Josef Pichler. Specification extraction by symbolic execution. In Reverse
Engineering (WCRE), 2013 20th Working Conference on, pages 462–
466. IEEE, 2013.

[63] Armand Puccetti. Static Analysis of the XEN Kernel using Frama-C.
Journal of Universal Computer Science, 16(4):543–553, 2010.

[64] Wilson J Rugh. Linear system theory. Prentice Hall, 1996.

[65] Michael Ryabtsev and Ofer Strichman. Translation validation: From
simulink to c. In Computer Aided Verification, pages 696–701. Springer,
2009.

[66] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded sys-
tem design for automotive applications. IEEE Computer, (10):42–51,
2007.

[67] Tamal Sen and Rajib Mall. Extracting finite state representation of Java
programs. Software & Systems Modeling, 15(2):497–511, 2016.

[68] Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh
Gopalakrishnan. Rigorous estimation of floating-point round-off errors
with symbolic taylor expansions. In International Symposium on Formal
Methods, pages 532–550. Springer, 2015.

[69] Stéphane S Somé and Timothy C Lethbridge. Enhancing program com-
prehension with recovered state models. In Program Comprehension,
2002. Proceedings. 10th International Workshop on, pages 85–93. IEEE,
2002.

[70] Ingo Stuermer, Mirko Conrad, Heiko Doerr, and Peter Pepper. Sys-
tematic testing of model-based code generators. IEEE Transactions on
Software Engineering, 33(9):622–634, 2007.

[71] The Mathworks, Inc. Bug Reports for Incorrect Code Genera-
tion. http://www.mathworks.com/support/bugreports/?product=

ALL&release=R2015b&keyword=Incorrect+Code+Generation.

[72] The Mathworks, Inc. Embedded coder. https://www.mathworks.com/
products/embedded-coder.html, September 2017.

125

http://www.mathworks.com/support/bugreports/?product=ALL&release=R2015b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2015b&keyword=Incorrect+Code+Generation
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/products/embedded-coder.html

[73] The Mathworks, Inc. Simulink. https://www.mathworks.com/

products/simulink.html, September 2017.

[74] The Mathworks, Inc. Simulink coder. https://www.mathworks.com/

products/simulink-coder.html, September 2017.

[75] The Mathworks, Inc. Simulink design verifier. https://www.

mathworks.com/products/sldesignverifier.html, September 2017.

[76] The Mathworks, Inc. Simulink test. https://www.mathworks.com/

products/simulink-test.html, September 2017.

[77] The Mathworks, Inc. Stateflow. https://www.mathworks.com/

products/stateflow.html, September 2017.

[78] Sean Thompson. A survey on model checking Java programs. Technical
report, Technical Report CSRG-407. Department of Computer Science,
University of Toronto, 2000.

[79] Shaohui Wang, Srinivasan Dwarakanathan, Oleg Sokolsky, and In-
sup Lee. High-level model extraction via symbolic execution.
Technical Reports (CIS) Paper 967, University of Pennsylvania,
http://repository.upenn.edu/cis reports/967, 2012.

[80] Timothy Wang, Romain Jobredeaux, Heber Herencia, Pierre-Loic
Garoche, Arnaud Dieumegard, Eric Feron, and Marc Pantel. From de-
sign to implementation: an automated, credible autocoding chain for
control systems. arXiv preprint arXiv:1307.2641, 2013.

[81] Timothy E Wang, Alireza Esna Ashari, Romain J Jobredeaux, and
Eric M Feron. Credible autocoding of fault detection observers. In
American Control Conference (ACC), pages 672–677, 2014.

[82] Timothy E Wang, Pierre-Löıc Garoche, Pierre Roux, Romain Jobre-
deaux, and Éric Féron. Formal analysis of robustness at model and
code level. In Proceedings of the 19th International Conference on Hy-
brid Systems: Computation and Control, pages 125–134. ACM, 2016.

[83] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger.
Pathcrawler: Automatic generation of path tests by combining static
and dynamic analysis. In Dependable Computing-EDCC 5, pages 281–
292. Springer, 2005.

126

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/products/sldesignverifier.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/simulink-test.html
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html

	University of Pennsylvania
	ScholarlyCommons
	2018

	Automatic Verification Of Linear Controller Software
	Junkil Park
	Recommended Citation

	Automatic Verification Of Linear Controller Software
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	Introduction
	Motivation
	Problem Formulation
	Contributions
	Related Work
	Outline of the Dissertation

	Preliminaries
	Notation and Definitions
	Linear Feedback Controller
	Motivating Examples
	A Scalar Linear Integrator
	Multiple-Input-Multiple-Output Controllers

	Software Verification Techniques
	Deductive Verification
	Symbolic Execution
	Model Extraction

	Invariant Checking-based Verification Approach
	Defining Invariants for Linear Controllers
	Input-Output Invariants
	Annotating Controller Invariants in C Code
	Annotating Input-Output and State Invariants
	Annotating Input-Output Only Invariants
	Inexact Controller Implementations

	Instantiation-based Input-Output Invariants for LTI Controllers
	Defining Instantiation-Based Invariants as Code Annotation
	Instantiation-Based Invariants for Inexact Controller Implementations

	Framework for Automatic Verification
	Evaluation

	Similarity Checking-based Verification Approach
	Model Extraction from Linear Controller Implementation
	Symbolic Execution of Step Function
	Linear Time-Invariant System Model Extraction

	Input-Output Equivalence Checking between Linear Controller Models
	Satisfiability Problem Formulation
	Convex Optimization Problem Formulation

	Evaluation
	Verification Toolchain
	Scalability Evaluation

	Verification of Finite-Precision Controller Software
	Extracting Model from Floating-Point Controller Implementation
	Quantized Controller Model
	Symbolic Execution of Floating-Point Controller Implementation
	Quantization Error Analysis and Model Extraction

	Approximate Input-Output Equivalence Checking
	Approximate Input-Output Equivalence
	Satisfiability Problem Formulation
	Convex Optimization Formulation

	Evaluation
	Toolchain
	Scalability Analysis

	Linear Controller Verifier
	Verification Flow of Linear Controller Verifier
	Evaluation
	Case Study
	Scalability

	Conclusion
	Summary of this Dissertation
	Future Research Direction

	Step function example
	LCV output examples

