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ABSTRACT 
CENP-A AND FRIENDS: A COLLABORATIVE MODEL FOR THE  
EPIGENETIC TRANSMISSION OF CENTROMERE IDENTITY  
Lucie Guo 

Ben Black 

 

 The accurate segregation of chromosomes during mitosis is essential for the 

survival and development of all eukaryotes, and this process requires the 

attachment of mitotic spindle microtubules to the kinetochore, which is assembled 

on the chromosomal centromere. Defections in centromere or kinetochore function 

can lead to the loss of genetic material during cell division, which can result in 

development defects or disease. Therefore, elucidating how the centromere is stably 

and accurately propagated across cell and organismal generations is crucial to our 

understanding of how genetic information is accurately inherited. Centromere 

location is specified epigenetically by the histone H3 variant termed centromere 

protein A (CENP-A). CENP-A molecules at the centromere are known to possess a 

remarkably stability, exhibiting almost no detectable turnover. This stability is 

crucial for maintenance of centromere identity, but the molecular basis for this 

stability is unclear. Additionally, new CENP-A molecules must be assembled onto 

centromeric chromatin at every cell cycle, or else this epigenetic mark will be 

diluted and inevitably lost over time. The process of CENP-A assembly is exquisitely 

regulated, but is poorly understood. In this thesis, we identified the role of an 

essential centromeric protein, CENP-C, in not only binding to CENP-A nucleosomes, 

but also reshaping and stabilizing it at centromeres. We then pinpoint the 

mechanism by which CENP-C stabilizes CENP-A nucleosomes through a critical 

arginine anchor, which drives the structural transition of the CENP-A nucleosome. 

We then assemble a core centromeric nucleosome complex (CCNC) containing the 

CENP-A nucleosome bound to the nucleosome-binding domains of both CENP-C and 

another centromeric protein, CENP-N, and provide the first biophysical insight into 

how both proteins collaborate to rigidify CENP-A nucleosomes in vitro. Additionally, 

using gene-editing and rapid protein degradation approaches, we demonstrate that 
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CENP-C and CENP-N are both crucial in the maintenance of CENP-A nucleosomes in 

cells. And finally, we report the landscape of Cdk regulation on the CENP-A-specific 

chaperone, HJURP, which provide insight into the mechanism of nascent CENP-A 

assembly. Taken together, these findings advance our understanding in how 

centromere location is specified and maintained to ensure faithful inheritance of 

genetic information across cell divisions.  



x 

LIST OF TABLES 
 

Table 1. G1/Mitotic Ratios of HJURP and CENP-A phosphopeptides are 

reproducible. .............................................................................................................................. 119 

Table 2. List of the 3 successful gRNAs that cuts the CENP-A C-terminus. ....... 132 

Table 3. Oligos used to generate each section of the repair template. ............... 135 

Table 4. Example for setting up HiFi Assembly . ......................................................... 136 

Table 5. Example of timecourse for HXMS, with two samples, 5 timepoints 

performed in triplicate. .......................................................................................................... 156 

 

  



xi 

LIST OF FIGURES 
 

Figure 1. Schematic of the centromere in cell division. ................................................... 2 

Figure 2. Drawing of mitosis by Walther Flemming in 1882 ........................................ 4 

Figure 3. Unique physical properties of the mammalian CENP-A-containing 

nucleosome. .................................................................................................................................... 10 

Figure 4. Summary of the known functions of each domain of the CENP-C protein at 

the outset of the projects described in this thesis. .......................................................... 12 

Figure 5. The arginine anchor motif. .................................................................................... 14 

Figure 6. Summary of the players in the assembly of nascent CENP-A nucleosomes 

at the centromere. ........................................................................................................................ 21 

Figure 7. Model of CENP-A-containing chromatin throughout the cell cycle....... 22 

Figure 8. CENP-A nucleosomes have a conventional shape only upon CENP-CCD 

binding. ............................................................................................................................................. 28 

Figure 9. CENP-CCD rigidifies CENP-A nucleosomes. ..................................................... 30 

Figure 10. CENP-CCD binding induces additional protection from HX at multiple 

regions .............................................................................................................................................. 31 

Figure 11. Regions on the surface of the nucleosome that exhibit additional 

protection from HX upon CENP-CCD binding. ..................................................................... 33 

Figure 12. Mapping HX protection in the interior of the nucleosome when CENP-CCD 

binds to the surface of CENP-A nucleosomes. ................................................................... 34 

Figure 13. HXMS of peptides spanning the β-sheet at the interface in H4 (A) and 

H2A (B). ............................................................................................................................................ 37 

Figure 14. Faithful detection of 1-4 deuteron differences in HXMS of CENP-A 

nucleosomes with and without CENP-CCD bound............................................................. 37 

Figure 15. Comparison of HX behavior of canonical nucleosomes to CENP-A 

nucleosomes ................................................................................................................................... 38 

Figure 16. Alterations in the nucleosome terminal DNA upon CENP-CCD  

binding. ............................................................................................................................................. 40 

Figure 17. Depletion of CENP-C reduces the high stability of CENP-A at 

centromeres. ................................................................................................................................... 43 

Figure 18. CENP-C knockdown effects on retention and assembly of CENP-A at the 

centromere. ..................................................................................................................................... 44 

Figure 19. The reduction of CENP-A retention upon CENP-C knockdown is 

independent of new CENP-A chromatin assembly. ......................................................... 45 

Figure 20. Summary model for collaboration of CENP-C with CENP-A nucleosomes 

in specifying centromere location. ......................................................................................... 46 

Figure 21. CENP-CCD is the only nucleosome binding domain of CENP-C required for 

retention of CENP-A nucleosomes. ........................................................................................ 67 



xii 

Figure 22. Compromised retention of centromeric CENP-A nucleosomes upon rapid 

auxin-induced degradation of CENP-C. ................................................................................ 69 

Figure 23. CENP-CCD(W530A) fails to bind to CENP-A nucleosomes. ..................... 73 

Figure 24. The arginine anchor of CENP-CCD is critical for the CENP-A nucleosome 

structural transition. ................................................................................................................... 75 

Figure 25. The arginine anchor of CENP-CCD is required for CENP-A nucleosome 

stability at centromeres. ............................................................................................................ 77 

Figure 26. CENP-NNT crossbridges CENP-A to DNA. ...................................................... 79 

Figure 27. CENP-N(1-240) is sufficient to bind to the CENP-A nucleosome. ....... 80 

Figure 28. CENP-L/NCT binds CENP-C235-352, and CENP-NNT binds the CENP-A 

nucleosome surface bulge. ........................................................................................................ 83 

Figure 29. CENP-NNT undergoes global stabilization upon binding to the CENP-A 

nucleosome. .................................................................................................................................... 85 

Figure 30. The N-terminal 205 amino acids of CENP-N constitute its minimal 

nucleosome-binding domain. ................................................................................................... 87 

Figure 31. CENP-CCD and CENP-NNT simultaneously bind to the same CENP-A NCP 

and generate internal and surface stability. ....................................................................... 89 

Figure 32. CENP-A NCPs in complex with both CENP-NNT and CENP-CCD experience 

additive HX protection. ............................................................................................................... 91 

Figure 33. CENP-CCD lacks detectable secondary structure and binds the histone 

surface of CENP-A nucleosomes with residues ~515-537. .......................................... 93 

Figure 34. The HXMS behavior of CENP-NNT in the presence and absence of CENP-

CCD. ...................................................................................................................................................... 94 

Figure 35. CENP-C and CENP-N collaborate to maintain CENP-A nucleosomes at 

centromeres. ................................................................................................................................... 96 

Figure 36. Effect of CENP-N depletion on centromeric CENP-C and CENP-T levels.

 .............................................................................................................................................................. 97 

Figure 37. Model of the physical basis for the stability of CENP-A nucleosomes 

within the CCNC............................................................................................................................. 98 

Figure 38. HJURP and is dephosphorylated upon mitotic exit. ............................... 114 

Figure 39. Strategy for SILAC experiment with Roscovitine-induced  

mitotic exit. .................................................................................................................................... 116 

Figure 40. Representative chromatograms and spectra of HJURP and CENP-A 

phosphopeptides in SILAC ...................................................................................................... 118 

Figure 41. List of gRNAs as generated for CENP-A-SNAP .......................................... 131 

Figure 42. Alignment of gRNAs with CENP-A sequence ............................................. 132 

Figure 43. Plasmid map of repair template. .................................................................... 135 

Figure 44. Example of diagnostic digest to screen for correct assembly of repair 

template .......................................................................................................................................... 137 



xiii 

Figure 45. Western blot of clones from CRISPR/Cas-mediated gene editing in DLD-1 

cells to insert SNAP-tag at the C-terminus of CENP-A. ................................................. 139 

Figure 46. Schematic for TMR*-labeling experiment as described in this protocol.

 ............................................................................................................................................................ 139 

Figure 47. Expression of CENP-NNT in pLysS cells. ....................................................... 147 

Figure 48. SDS-PAGE gel of final product of CENP-NNT purification. ..................... 149 

Figure 49. CENP-A nucleosomes assembled 147bp Bunick DNA, with and without 

thermal shifting. .......................................................................................................................... 151 

Figure 50. Peptide pool showing CENP-A/H4/H2A/H2B from several iterative ND 

runs. ................................................................................................................................................. 166 

Figure 51. Peptide pool showing CENP-NNT, from several iterative ND runs. ... 167 

Figure 52. Example FracDeut analysis of a fully deuterated (FD) histone mix 

sample. ............................................................................................................................................ 170 

 



1  
 

 

CHAPTER 1: THE EPIGENETIC BASIS FOR 

CENTROMERE IDENTITY 

 

1.1. INTRODUCTION 

All eukaryotes require a highly regulated machinery to faithfully propagate 

genetic material during cell division. The centromere is a specialized region on each 

chromosome that provides the locus for forming a protein complex known as the 

kinetochore. During mitosis, the kinetochore connects chromosomes to spindle 

microtubules, which segregate chromosomes between daughter cells (Figure 1). 

Maintaining centromere identity is crucial for the survival and well-being of all 

organisms. Loss of a single centromere causes loss of that chromosome in one 

daughter cell and an extra copy in the other. On the other hand, presence of multiple 

functional centromeres on a single chromosome will render that chromosome 

vulnerable to breakage by opposing forces of spindle microtubules. Centromere 

defects during meiotic divisions cause aneuploidy (defined as gain or loss in 

chromosome number) in the gametes, which leads to spontaneous abortion or 

developmental defects in the embryo (Hassold and Hunt, 2001). Also, aneuploidy 

has been consistently observed in virtually all human cancers (Kops et al., 2005; 

Rajagopalan and Lengauer, 2004), and has been proposed to contribute to 

carcinogenesis by causing genomic instability (Sheltzer et al., 2011; Solomon et al., 

2011). 
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Figure 1. Schematic of the centromere in cell division. 
(Adapted from http://www.nig.ac.jp) 
 

In this chapter, I begin with a historical overview of the centromere and its 

epigenetic nature of inheritance. I then hone in on the epigenetic marker of 

centromere location, centromere protein A (CENP-A), and summarize its initial 

discovery and its unique structural features that play a role in specifying 

centromere identity. Then, since CENP-A does not exist in isolation at the 

centromere, but rather bound to a host of constitutively associated centromere 

proteins, I summarize these "friends of CENP-A" at the centromere, and our current 

understanding of their roles in eukaryotic centromere architecture. Lastly, I explain 

the key players and regulatory mechanisms ensuring the nascent assembly of CENP-

A with each new cell divisions. Therefore, with this chapter, I aim to set the 

historical context for the two main focuses of my graduate work: elucidating the 

contributions from CENP-A's closest binding partners at the centromere, CENP-C 

and CENP-N, in endowing CENP-A with its remarkable ability to be stably retained 

at existing centromeres without any detectable turnover (Chapters 2 and 3), and 

regulation of the CENP-A-specific histone chaperone, HJURP, in the assembly of 

nascent CENP-A molecules at the centromere (Chapter 4). 
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1.2. CHROMOSOMES AND CENTROMERES 

Our understanding of heredity first stems from work by Darwin, whose 

seminal 1859 book On the Origin of Species set forth the theory of evolution, which 

eventually became the unifying theory for all of the life sciences. But at the time of 

its publication, despite its compelling evidence for evolution, one of its major 

problems was lack of an underlying mechanism for heredity. During the 18th 

century, some scientists, including Dutch microbiologist Antonie van Leeuwenhoek, 

were influenced by prior thoughts in preformationism— the idea that living being 

exist as miniature versions of themselves prior to their development— and 

speculated the existence of a “homunculus” (little man) inside each sperm. Of 

course, our understanding of how inherited traits are transmitted from across 

generations stems from principles first proposed by Gregor Mendel, whose studies 

in peas were published in 1866 as “Experiments in Plant Hybridisation” which 

postulated what eventually became known as the Mendelian laws of inheritance, 

which included the principles of independent assortment (in which specific traits 

operate independently) and independence segregation (in which each pair of alleles 

segregate in germ cells and recombine during reproduction). And in 1882, Walther 

Flemming, a German anatomist, studied cell division in the fins and gills of 

salamanders, and discovered a structure that strongly stained with aniline dyes, 

which he named “chromatin”. He saw that during cell division, chromatin separates 

into threadlike strings, which were later named “chromosomes” (mean “colored 

bodies”)(Figure 2). Then, in the early 1900s, Sutton and Boveri independently 

postulated that genetic information is carried by chromosomes. Sutton examined 

the Brachystola magna (a grasshopper), and showed that there exist matched pairs 

of maternal and paternal chromosomes that separate during meiosis (Sutton, 1902, 

1903). Boveri studied sea urchins and showed that proper embryonic development 

required the presence of all chromosomes. With that, the work by Sutton and 

Boveri, which was collectively called the chromosome theory of inheritance, became 

the fundamental unifying theory of genetics, and finally provided the underlying 

mechanism for the laws of Mendelian inheritance.  
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Figure 2. Drawing of mitosis by Walther Flemming in 1882  
(O’Connor and Miko, 2008) 
 

The architecture of chromatin remained elusive for many decades. Some 

proposed that each chromosome was a bundle of various strands of DNA wound 

around each other, and it wasn’t until 1984 when Schwartz and Cantor separated 

intact chromosomal DNA by a pulsed-field gradient gel, that it was shown that each 

chromosome is one linear DNA molecule (Schwartz and Cantor, 1984). In 1936, the 

site where chromosomes associate with the spindle during cell division was given 

the name “centromere” (Darlington, 1936). Centromeres were originally define as 

regions of suppressed meiotic recombination (Beadle, 1932), and later recognized 

by cytogenetic techniques as the most constricted region of mitotic chromosomes, 

often residing within dark-staining heterochromatin by C-banding. The centromere 

was first cloned in S. cerevisiae (budding yeast) in 1980 by Clarke and Carbon, who 

identified the genes that persistently segregated with the centromere of 

chromosome III, and showed these DNA sequences were sufficient to direct 
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segregation of exogenous DNA (Clarke and Carbon, 1980). The centromere in 

budding yeast contains a small stretch of DNA spanning 125 bp that is sufficient for 

directing accurate chromosome segregation and contains three DNA elements: 

CDEI, CDEII, and CDEIII that are common to all chromosomes, a feature that is not 

present in higher eukaryotes (Bloom and Carbon, 1982; Saunders et al., 1988). Since 

budding yeast centromeres are small and possess a single microtubule attachment 

per chromosome, which is now known as “point centromeres”. In contrast to the 

“point centromere” of the budding yeast, fission yeast and higher eukaryotes 

possess “regional centromeres” that span kilo- to mega-bases of highly repetitive 

DNA organized into hierarchy arrays of satellite repeats. The notable exception is C. 

elegans and other nematodes, as well as some insects and plants, which do not 

possess point nor regional centromeres, but rather holocentric centromeres, which 

diffusely span the entire length of the chromosome (Guerra et al., 2010; Hughes-

Schrader and Ris, 1941). 

1.3. CENP-A AS THE EPIGENETIC MARKER OF CENTROMERE 

LOCATION 

Even though the budding yeast centromere relies on DNA for specifying its 

location, in all other eukaryotic species, there is a growing consensus that the 

location of the centromere is specified “epigenetically” by the protein that associate 

with centromeric DNA, particularly by centromeric protein A (CENP-A), which is 

known as Cse4 in S. cerevisiae (Stoler et al., 1995), HCP-3 in C. elegans (Buchwitz et 

al., 1999), Cnp1 in S. pombe (Takahashi et al., 2000), and CID in Drosophila (Henikoff 

et al., 2000). The first report of centromeric proteins came from an examination of 

serum samples from a patient with scleroderma, with a syndrome consisting of 

calcinosis, Raynaud’s phenomenon, esophageal dismotility, sclerodactyly and 

telangiectasia (thus “CREST syndrome), who developed anti-centromere proteins as 

recognized by immunofluorescence (Earnshaw and Rothfield, 1985). These proteins 

were designated as CENP (CENtromere Protein)-A, B, and C, in order of smallest to 
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largest molecular weight as they appeared on the gel. And the first glimpse that 

centromeres could be specified not by any specific DNA sequences, but rather by the 

proteins, came from a study involving patient samples, in which the authors 

observed that on the inactive centromere of a dicentric chromosome, while the 

centromere DNA structures remained intact (as seen by traditional banding), CENP-

A, B, and C were all undetectable (Earnshaw and Migeon, 1985). Using sera from 

CREST patients, the CENP-A protein was crudely extracted from nuclei of HeLa cells 

and shown to elute from a cation exchange column under denaturing conditions at 

nearly the identical NaCl concentration as H3 and H4; with these limited data, 

Palmer et al. boldly speculated that "CENP-A functions as a centromere-specific core 

histone, possibly substituting for H3 or H4” (Palmer et al., 1987). A few years later, 

taking advantage of the fact that CENP-A is quantitatively retained in bull 

spermatozoa (unlike the canonical histones), Palmer et al. purified CENP-A and 

obtained limited sequencing data suggesting that it contained regions of high 

similarity to histone H3, and some regions that are dissimilar, which they again 

precociously proposed to be “involved in loading CENP-A to centromeric DNA or in 

centromere-specific functions of CENP-A”(Palmer et al., 1991). CENP-A was cloned 

for the first time in 1994, and it was shown that CENP-A shares ~60% homology 

with histone H3, and the expression of epitope-tagged derivative of CENP-A was 

sufficient for targeting to centromeres (Sullivan et al., 1994). From these collective 

lines of evidence, there emerged the provocative finding that what makes the 

centromere unique from the rest of the chromatin is “at the most fundamental level 

of chromatin structure, the nucleosome” (Sullivan et al., 1994). 

There exist multiple compelling lines of evidence that the presence of 

endogenous centromeric repeats is neither necessary nor sufficient for centromere 

identity. In S. pombe, plasmids containing minimal centromeric DNA can 

stochastically establish functional centromeres, albeit inefficiently, but can be 

faithfully propagated if the centromere becomes functional (Steiner and Clarke, 

1994). Additionally in S. pombe, if the centromere were conditionally deleted, the 

survivors will gain centromeres at other novel chromosomal locations (Ishii et al., 

2008). Indeed, one of most striking pieces of evidence that human centromeres are 
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inherited epigenetically came from the discovery of neocentromeres, which is a new 

centromere that forms on a normally non-centromeric region of chromatin, usually 

following the disruption of the natural centromere. The best-characterized 

neocentromere is on a chromosome 10 fragment, called mar del(10), which is 

mitotically stable and lacks detectable α-satellite sequences, which are the major 

repeat sequences underlying all human natural centromeres (Voullaire et al., 1993). 

Additionally, in pseudodicentric chromosomes, which contain two regions with α-

satellite sequence (arisen from DNA translocation or duplication), only one of the 

two α-satellite regions remains an active centromere. Neocentromeres and active 

centromeres of pseudodicenteric chromosomes, despite being dissimilar in their 

underlying DNA sequence, maintain their ability to recruit CENP-A (Bassett et al., 

2010; Lo et al., 2001; Voullaire et al., 1993). Furthermore, it has been shown that 

artificial targeting of Drosophila CENP-A (a.k.a. CID) fused to LacI to a stably 

integrated lac operator is able to generate a ectopic centromere that assembles a 

functional kinetochore be stably transmitted for several cell generations, even after 

the CID-LacI fusion protein is eliminated (Mendiburo et al., 2011). Novel centromere 

formation by artificial targeting proteins has also succeeded in human cells, by 

targeting fusion proteins of LacI with CENP-A (Logsdon et al., 2015) or the CENP-A-

specific chaperone, HJURP (Barnhart et al., 2011). Taken together, there is growing 

consensus in the field that it is CENP-A nucleosomes, and not the underlying 

sequence, that specifies centromere location in higher eukaryotes. 

1.4. STRUCTURAL FEATURES OF CENP-A NUCLEOSOMES 

CENP-A nucleosomes have distinct structural properties compared to 

canonical H3 nucleosomes (summarized in Figure 3). Experiments in hydrogen-

deuterium exchange coupled to mass spectrometry showed that the centromere-

targeting domain (CATD) of CENP-A confers a unique structural rigidity, resulting in 

tetramers with H4 that are more conformationally rigid than the H3/H4 tetramer 

(Black et al., 2004). And when CENP-A/H4 tetramers are assembled into 

nucleosomes, despite the conformational constraints required for nucleosome 
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formation, nucleosomes assembled with CENP-A are still conformationally rigid 

than nucleosomes assembled with canonical histone H3 (Black et al., 2007a). 

 Crystal structure of the CENP-A/H4 tetramer revealed that the interface 

between the CENP-A molecules on either side of the nucleosome are rotated 

compared to the H3-H3 interface, as well as unique patches of hydrophobic residues 

on the CENP-A α2 helix and Loop1 (so called “hydrophobic stitches”) that mediate 

the conformational rigidity that CENP-A confers to nucleosomes (Sekulic et al., 

2010). Additionally, CENP-A possesses a bulged loop L1 containing side chains that 

generate a positive surface charge, in contrast to the negative surface charge at this 

location on canonical nucleosomes (Luger et al., 1997; Sekulic and Black, 2012; 

Sekulic et al., 2010).  

The crystal structure of the CENP-A nucleosome claimed that the CENP-

A/CENP-A interface to be rotated to a conventional degree, so that the (CENP-

A/H4)2 tetramer and the nucleosome maintain a shape similar to that of canonical 

H3 nucleosomes (Tachiwana et al., 2011). However, since a crystal structure is a 

snapshot of the nucleosome shape most conducible to crystallization, it remained a 

possibility that the CENP-A nucleosome could sample multiple conformations in 

solution, and that as the (CENP-A/H4)2 tetramer is assembled into a nucleosome, 

the unique rotation at the CENP-A/CENP-A interface would generate a smaller 

radius of curvature of DNA wrapping near the dyad of the nucleosome, as well as 

wider spacing of the H2A/H2B heterodimers (Sekulic and Black, 2012). Indeed, in-

solution FRET studies (which are further described in this thesis) have revealed that 

the H2B distances for CENP-A nucleosomes are ~5Å farther apart than expected 

from the crystal structure of the CENP-A nucleosome, whereas H2B distances in 

canonical nucleosomes are shorter and match the prediction from their crystal 

structure (Falk et al., 2015). Specifically, this nucleosome shape change directed by 

CENP-A is dominated by lateral passing of the two DNA gyres (Falk et al., 2016). 

Additionally, careful overlay of the structures of the (CENP-A/H4)2 tetramer, the 

CENP-A nucleosome and the canonical H3 nucleosome reveal that the CENP-A 

nucleosome crystal structure has a CENP-A–CENP-A interface that exhibits rotation 
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but not compaction, and therefore is an intermediate structure between the (CENP-

A/H4)2 tetramer and the H3 nucleosome (Falk et al., 2016). 

 Another important distinguishing feature of CENP-A nucleosomes, which has 

emerged from multiple lines of evidence, is the unwrapping of its terminal DNA. 

Early reconstitutions of CENP-A and H3 nucleosomes and comparison of their 

electrophoretic mobility revealed that CENP-A nucleosomes exhibit unwrapping at 

the entry-exit site relative to canonical nucleosomes, which hinders the binding of 

the linker histone H1 (Conde e Silva et al., 2007). The αN helix, which would 

stabilize DNA interactions at the termini, is seen to be shorter in the crystal 

structure of the CENP-A nucleosome compared to that of the H3 nucleosome 

(Tachiwana et al., 2011). Hydrogen-deuterium exchange coupled to mass 

spectrometry (HXMS) of CENP-A vs. H3 polynucleosomes arrays has revealed that 

the αN helix of CENP-A is less protected than that of H3 upon folding of the 

nucleosome arrays (Panchenko et al., 2011). Chip-Seq experiments examining 

CENP-A at human centromeres and neocentromeres have also revealed that CENP-A 

nucleosome possess looser DNA termini than that of conventional H3 nucleosomes 

(Hasson et al., 2013). Recent experiments with electron cryomicroscopy (ECM) have 

again confirmed that CENP-A nucleosomal ends exhibit a high degree of flexibility, 

and that the αN helix of H3 plays a role in stabilizing the termini DNA in the 

conventional nucleosome (Roulland et al., 2016).  

 



10 

 

Figure 3. Unique physical properties of the mammalian CENP-A-containing 
nucleosome. 
Distinguished physical properties of CENP-A nucleosome are highlighted in black 
circles. Clockwise from the top left, these include transient unwrapping/flexibility of 
the final helical turn of DNA at each nucleosome terminus; hydrophobic stitches that 
rigidify the CENP-A/H4 interface; a bulged loop L1 that is of opposite charge as on 
H3 in the conventional nucleosome; and the unstructured C-terminus that mediates 
recognition of CENP-A nucleosomes by CENP-C. Reproduced from (Sekulic and 
Black, 2012) 
 

There has been some proposals that CENP-A resides in strange 

conformations, such as tetrasomes (Williams et al., 2009), hexasomes (Mizuguchi et 

al., 2007), and especially hemisomes with right-handed DNA wrapping (Bui et al., 

2012; Furuyama et al., 2013; Shivaraju et al., 2012). However, the recent growing 

consensus in the field is that CENP-A nucleosomes exist as an octamer in vivo with 

conventional left-handed DNA wrapping (Bassett et al., 2012; Hasson et al., 2013; 

Padeganeh et al., 2013; Sekulic et al., 2010; Tachiwana et al., 2011), similar to the 

conventional H3 nucleosome. 
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1.5. RECOGNITION OF CENP-A NUCLEOSOMES BY 

CENTROMERE PROTEINS 

The key function of the centromere is to recruit the kinetochore, which then 

mediates the attachment of sister chromatids to spindle microtubules. At the 

centromere, CENP-A is bound to a large complex of inner kinetochore proteins 

collectively referred to as the constitutive centromere-associated network (CCAN).  

To date, the CCAN is a group of 16 proteins that are known to form individually sub-

complexes: CENP-C (Carroll et al., 2009; Kato et al., 2013), the CENP-L/N complex 

(Carroll et al., 2009; Fang et al., 2015; McKinley et al., 2015), the CENP-H/I/K/M 

complex (Basilico et al., 2014; Klare et al., 2015a; McKinley and Cheeseman, 2016), 

the CENP-O/P/Q/U/R complex, ,and the CENP-T/W/S/X complex (Nishino et al., 

2012), and there are multivalent interactions between many members of the CCAN. 

Additionally, CENP-B is known to specifically bind to mammalian centromeric DNA, 

and recent evidence suggest that CENP-B could directly interact with CENP-A 

(Fachinetti et al., 2013). Many of these proteins had been identified in the CENP-A 

interactome (Foltz et al., 2006; Izuta et al., 2006). In this section, I summarize the 

literature on each of the sub-complexes within the CCAN, and the extensive network 

of known interactions between these sub-complexes. 

1.5.1 CENP-C 

1.5.1.1 CENP-C AS THE PLATFORM FOR KINETOCHORE 

ASSEMBLY 

CENP-C was the first protein to be identified as a component of the human 

kinetochore plate (Saitoh et al., 1992). Among members of the CCAN, CENP-C has 

emerged as a key “founder” of kinetochore assembly. Human CENP-C is 943 amino 

acids in length, and sequence analysis predicts CENP-C to be almost entirely 

disordered (Westermann and Schleiffer, 2013), with the exception of a cupin fold at 

the C-terminus known to be required for dimerization (Cohen et al., 2008; Sugimoto 
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et al., 1997; Trazzi et al., 2009; Westermann and Schleiffer, 2013).  CENP-C likely 

acts as a linear platform, with distinct modules that attach to downstream 

components (summarized in Figure 4).  A fragment encompassing a.a. 200-400 on 

CENP-C has been shown to interact with CENP-H/K of the CENP-H/I/K/M 

subcomplex (Klare et al., 2015a). At its N-terminus, CENP-C contains a binding site 

for the Mis12 subcomplex of the KMN network (Przewloka et al., 2011; Screpanti et 

al., 2011), thus CENP-C functions as a primary link between the inner and outer 

kinetochore. While some studies have proposed two parallel and non-redundant 

pathways of kinetochore recruitment driven CENP-C and CENP-T (see “Section 1.5.3 

The CENP-T/W/S/X and CENP-H/I/K/M subcomplex”), there is growing evidence 

that is actually a single pathway of kinetochore assembly, involving CENP-C as the 

founder, with CENP-H/I/K/M and CENP-T/W as followers that are dependent on 

CENP-C (Basilico et al., 2014; Carroll et al., 2010; Gascoigne et al., 2011a; Logsdon et 

al., 2015; Milks et al., 2009). 

 

Figure 4. Summary of the known functions of each domain of the CENP-C protein at 
the outset of the projects described in this thesis.  

1.5.1.2 NUCLEOSOME RECOGNITION BY CENP-C 
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For binding to the nucleosome, CENP-C contains two putative nucleosome-

binding domains:  the central domain [CENP-CCD a.a. 426-537](Carroll et al., 2010) 

and the CENP-C motif [CENP-CCM a.a. 736-758](Kato et al., 2013), which are 

proposed to engage the CENP-A nucleosome through similar histone contact points. 

CENP-CCD is conserved in mammals (Kato et al., 2013), was mapped initially as the 

primary CENP-A nucleosome contact site, and has high specificity for CENP-A 

nucleosomes versus its counterparts with canonical H3 (Carroll et al., 2010). CENP-

CCM, on the other hand, is conserved from yeast to humans, and represents the only 

identified nucleosome-binding domain in species lacking a conserved CENP-CCD 

(Kato et al., 2013). There currently exists an NMR model of the CENP-CCD bound to a 

canonical nucleosome in which the 6 a.a. C-terminal tail of CENP-A replaces the 

corresponding region of histone H3, as well as a crystal structure of CENP-CCM 

bound to this nucleosome (Kato et al., 2013). These structural information suggest 

that both CENP-C domains could interact with CENP-A nucleosomes in a similar 

manner, using multiple contact points, specifically the 6 amino-acid C-terminal tail 

(“LEEGLG”) tail of CENP-A, the acidic patch of H2A, and the  α2 helix of histone H4 

(Kato et al., 2013). Both CENP-CCD and CENP-CCM, across multiple species, possess 

hydrophobic residues (WW or YW) that are proposed to interact with the “LEEGLG” 

tail, as well as a critical arginine residue (R522 in humans or R742 in Xenopus) that 

is proposed to interact with the acidic patch of H2A. This mechanism of nucleosome 

recognition by a critical arginine residue is a shared feature of a diverse set of 

nucleosome binding proteins studied to date (Armache et al., 2011; Barbera et al., 

2006; Makde et al., 2010; McGinty et al., 2014; Morgan et al., 2016), and has been 

called the “arginine anchor” as an emerging paradigm for nucleosome recognition 

(Figure 5)(McGinty and Tan, 2016). 
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Figure 5. The arginine anchor motif.  
Side chains of arginine anchor residues from RCC1, Sir3, PRC1 (Ring1B), LANA, and 
CENP-C shown in surface representation with side chains from acid triad of H2A in 
stick representation. Nucleosomal DNA shown as sticks. Reproduced from (McGinty 
and Tan, 2016) 
 

Prior reports have suggested that either or both of the nucleosome binding 

domains of CENP-C could be important for its own localization to centromeres 

(Carroll et al., 2010; Kato et al., 2013; Lanini and McKeon, 1995; Milks et al., 2009; 

Trazzi et al., 2002; Yang et al., 1996). At the outset of this thesis, it had been unclear 

whether one or both of these domains are required for CENP-A nucleosome 

recognition.  

1.5.2 THE CENP-L/N SUBCOMPLEX 

1.5.2.1 NUCLEOSOME RECOGNITION BY CENP-N 

Other than CENP-C, the only other member of the CCAN known to directly 

bind to CENP-A is the CENP-N subunit of the CENP-L/N subcomplex. CENP-N was 

first identified as a “reader” of epigenetic marks in CENP-A-containing chromatin, 

reported to directly bind the centromere targeting domain (CATD) of CENP-A, and 

also play a role in nascent CENP-A assembly (Carroll et al., 2009). The CATD 

provides exposed side-chains within its Loop 1 that are specific to the CENP-A 

nucleosome, which was predicted to be the sites for recognition by CENP-N (Sekulic 

and Black, 2009), and was shown to be important for the initial recruitment of 

CENP-N (Logsdon et al., 2015). Indeed, two residues on the Loop1 of CENP-A (R80 

and G81, termed the “RG loop”) was shown to be the key residues for recognizing 

CENP-N, since mononucleosomes assembled with CENP-AR80A,G81A no longer binds to 

the N-terminal domain of CENP-A (Fang et al., 2015). For CENP-N, its nucleosome-
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binding region was narrowed down to its N-terminal domain (a.a. 1-289), while 

deletion of its more conserved C-terminal domain (a.a. 290-339) did not affect 

nucleosome binding but is required for its partner CENP-L (Carroll et al., 2009). It is 

not known which exact CENP-N residues are required for the interaction interface 

between CENP-N and the CENP-A nucleosome. Mutation of two residues far apart in 

primary sequence (CENP-NR11A and CENP-NR196A) resulted in reduced CENP-A 

nucleosome binding, indicating that both residues in CENP-N contribute to 

recognition of CENP-A nucleosomes (Carroll et al., 2009). Furthermore, the 

recombinant CENP-L/N subcomplex has shown to be capable of directly binding 

CENP-C (McKinley et al., 2015; Nagpal et al., 2015), specifically via a.a. 235-509 of 

CENP-C (McKinley et al., 2015).  

Even though CENP-N and CENP-C are both known to directly bind to CENP-A 

nucleosomes, at the outset of the projects described in this thesis, it had not been 

clearly shown with recombinant components whether CENP-N and CENP-C can bind 

to the same or different CENP-A nucleosomes. It was first proposed that CENP-C and 

CENP-N can bind to distinct sites on the same nucleosome, since it was reported that 

[35S]methionine-labeled CENP-N could still bind to reconstituted nucleosomes 

incubated with CENP-CCD from rabbit reticulocytes, but the band on the native gel 

that was indicated to be the complex was not further isolated to confirm that both 

binding partners are present (Carroll et al., 2010).  

1.5.2.2 CELL-CYCLE DEPENDENCE OF CENP-N RECRUITMENT 

It has been proposed that CENP-N recruitment to CENP-A chromatin is cell-

cycle dependent. The centromeric localization of CENP-N has been shown to be 

increased at early S phase, peaking at middle/late S and G2 phase, and decreased 

during mitosis and G1 phase (Fang et al., 2015; Hellwig et al., 2011). Furthermore, 

recombinant CENP-N(1-289) binds more weakly to CENP-A polynucleosomes in the 

presence of MgCl2, suggesting that chromatin compaction prevents CENP-N 

recruitment, possibly due to decreased accessibility of the RG loop (Fang et al., 

2015).  
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1.5.3 THE CENP-T/W/S/X AND CENP-H/I/K/M 

SUBCOMPLEXES 

CENP-T/W/S/X and CENP-H/I/K/M are both important heterotetramers 

within the CCAN. CENP-T-W and CENP-S-X each possess histone folds, and co-

assemble to form a CENP-T/W/S/X heterotetramer that resembles a centromeric 

nucleosome-like structure, which binds to and induces positive supercoils within 

the DNA (Nishino et al., 2012; Takeuchi et al., 2014). CENP-H/I/K/M binds to the 

PEST-rich region (a.a. 200-400) of CENP-C (Klare et al., 2015a), and also directly 

interacts with CENP-T/W/S/X (Basilico et al., 2014). CENP-M resembles a small 

GTPase (structurally and evolutionarily), but cannot perform GTP-binding and 

conformational switching (Basilico et al., 2014). CENP-H/I has been reported to play 

a role in nascent CENP-A deposition (Okada et al., 2006).  

It has been suggested that CENP-C and CENP-T form parallel but non-

redundant pathways that recruit the outer kinetochore: targeting CENP-C and 

CENP-T independently to an ectopic chromosome locus revealed that CENP-C 

interacts with KNL1 and the Mis12 complex, whereas CENP-T directly interacts with 

Ndc80 (which in turn promotes recruitment of KNL1/Mis12), suggesting that these 

two pathways are not duplications, but rather distinct mechanisms (Rago et al., 

2015). These two pathways have been reported to be susceptible to distinct modes 

of regulation, with Aurora B promoting KMN recruitment to CENP-C and Cdk 

promoting KMN recruitment to CENP-T (Rago et al., 2015). Furthermore, the 

targeting of CENP-T or CENP-C to ectopic chromosomal loci can result in CENP-A-

independent kinetochore assembly (Gascoigne et al., 2011a; Hori et al., 2013). 

However, this model of CENP-T/W as a founder of an independent axis of 

kinetochore assembly has been called to question by various lines of evidence. 

Recruitment of CENP-T to ectopic centromeres during initial centromere 

establishment has been shown to require CENP-C, CENP-N, as well as the N-terminal 

tail of CENP-A (Logsdon et al., 2015). Furthermore, A point mutant affecting the 

interaction between CENP-M and CENP-I prevents kinetochore recruitment of the 

CENP-T/W complex (Basilico et al., 2014). 
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1.5.4 CENP-B 

CENP-B is known to bind specifically to a 17bp DNA sequence known as the 

“CENP-B” box (Masumoto et al., 1989).  CENP-B knockout mice are viable and 

largely developmentally and reproductively normal, with a few phenotypic defects: 

CENP-B-null mice have normal weight at birth, but subsequently lag behind. 

Additionally, the testes of  CENP-null mice have significantly decreased weight and 

sperm content (Hudson et al., 1998; Perez-Castro et al., 1998). This is in stark 

contrast to the essential protein members of the CCAN, and is still perplexing to this 

field. However, CENP-B could play a role in centromere formation, since the de novo 

formation of human artificial chromosomes requires presence of a-satellite DNA 

containing CENP-B boxes (Okada et al., 2007), but paradoxically, human 

neocentromeres can exist in the absence of CENP-B (Voullaire et al., 1993), and the 

human Y chromosome does not contain CENP-B boxes (Masumoto et al., 1989). 

Nonetheless, the presence of CENP-B has been reported to help protect against 

chromosome missegregation: chromosomes without CENP-B (i.e., neocentromeres, 

the Y chromosome) are shown to mis-segregate at greater frequency (Fachinetti et 

al., 2015), and this dependence on CENP-B is heightened upon artificially reduced 

CENP-C levels at the centromere (Fachinetti et al., 2015). So perhaps, the functions 

of CENP-B have been made largely redundant by the multitude of players at the 

mammalian centromere. 

Nonetheless, there is growing evidence that the presence of CENP-B on the 

CENP-B boxes can influence nearby nucleosomes. The crystal structure of the 

complex of CENP-B bound to DNA showed that the DNA-binding domain of CENP-B 

induces a 60° kink in the CENP-B box DNA (Tanaka et al., 2001) and induces 

translational positioning of nucleosomes (Tanaka et al., 2005; Yoda et al., 1998). 

Recently, ChiP-seq analyses of CENP-A-containing particles from human 

centromeres on a-sat DNA and naturally occurring neocentromeres has suggested 

that CENP-B plays a role in CENP-A-nucleosome phasing, and suggests that CENP-B 
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binding to the CENP-B box promotes asymmetric unwrapping of CENP-A-

nucleosome terminal DNA (Hasson et al., 2013). Also, CENP-B may directly interact 

with CENP-A via the amino-terminal tail of CENP-A (Fachinetti et al., 2015). 

 

1.6. PROPAGATION OF CENTROMERE LOCATION 

Maintenance of genomic integrity requires accurate propagation of 

centromere number and position with each cell cycle. Failure to accurately 

propagate the centromere would cause the chromosome to be unable to attach to 

the mitotic spindle, leading to catastrophic consequences for cell division. 

Therefore, the machinery to ensure accurate inheritance of the epigenetic 

centromere marker, CENP-A, is of utmost importance for preserving genomic 

stability across cell and organismal generations. 

Central to the accurate propagation of CENP-A is the extraordinary stability 

of the CENP-A molecule, which does not exchange upon assembly into a centromere 

(further explained in Chapter 2 and 3 of this thesis)(Bodor et al., 2013; Falk et al., 

2015). Indeed, this stability has been measured out through the entire fertile 

lifespan of female mice (>1 year): the pool of CENP-A nucleosomes assembled 

before birth in the mouse oocyte is stably transmitted to embryos (Smoak et al., 

2016). The CENP-A nucleosome itself contains multiple unique physical features 

(see “Section 1.4. Structural features of CENP-A nucleosomes”) that likely contribute 

to its extraordinary stability. In addition to the “intrinsic” features of CENP-A 

nucleosomes, there are “extrinsic” factors, specifically its binding partners at the 

centromere, that play a key role in ensuring the stability of the CENP-A nucleosome. 

Chapters 2 and 3 describe in detail our efforts to attribute key roles to CENP-C and 

CENP-N in maintaining centromere identity. 

Beyond the stable maintenance of existing CENP-A molecules at the 

centromere, the deposition of newly synthesized CENP-A molecules into 

centromeric chromatin, which occurs once in each cell cycle, is a crucial event for 

the propagation of centromere location. This chapter summarizes the machinery 
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responsible for depositing CENP-A, as well as the intricate regulatory mechanisms 

to ensure accurate deposition. 

1.6.1 THE MACHINERY FOR DEPOSITING CENP-A 

Whereas canonical H3.1-containing nucleosomes is assembled by chromatin 

assembly factor-1 (CAF-1), CENP-A assembly uses a CENP-A-selective histone 

chaperone, the Holliday junction recognition protein (HJURP), which was first 

identified from isolation of the soluble, yet-to-be loaded pool of CENP-A/H4 (the 

“prenucleosomal pool”); HJURP directly interacts with CENP/H4 in the pre-

nucleosomal pool, and deposits CENP-A/H4 into centromeric nucleosomes in a cell 

cycle-dependent manner (Dunleavy et al., 2009; Foltz et al., 2009). HJURP is 

sufficient for assembling CENP-A nucleosomes onto plasmid DNA in vitro (Barnhart 

et al., 2011). HJURP is related to the yeast centromeric protein Scm3, which 

assembles Cse4 (the yeast CENP-A homologue) into centromeric chromatin 

(Camahort et al., 2007; Cho and Harrison, 2011; Mizuguchi et al., 2007; Stoler et al., 

2007). A stretch of approximately 80 amino acids at the N-terminus of HJURP, a 

region that shares the most homology with the yeast Scm3 protein, is necessary and 

sufficient for binding CENP-A, and is called the CENP-A binding domain (CBD) 

(Shuaib et al., 2010). Specifically, HJURP interacts with the CENP-A targeting domain 

(Foltz et al., 2009). A crystal structure of HJURP CBD with CENP-A/H4 revealed that 

the C-terminal β-sheet domain of HJURP CBD caps the DNA-binding region of CENP-

A/H4 and prevents it from spontaneous association with DNA (Hu et al., 2011). 

Furthermore, while the surface-exposed residues within the CATD determine 

specificity for HJURP recognition, and upon binding to HJURP, the contact points 

adjacent to the CATD serve to transmit stability throughout the histone fold 

domains of CENP-A and H4, suggesting that HJURP not only acts to shield CENP-

A/H4 from nonspecific aggregation with nucleic acids prior to deposition, but also 

stabilizes the folded state of CENP-A/H4 (Bassett et al., 2012). Upon CENP-A 

assembly, HJURP forms an octameric CENP-A nucleosome from individual CENP-

A/H4 heterodimers, and it has been reported that HJURP exists as a homodimer 
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through its C-terminal domain in the soluble prenucleosomal complex, as well as at 

chromatin as new CENP-A is assembled, thus providing a mechanism for how the 

assembly machinery assembles an octameric CENP-A nucleosome (Zasadzińska et 

al., 2013). 

In addition to the CENP-A chaperone, HJURP, deposition of CENP-A in 

vertebrates requires Mis18 proteins. Whereas S. pombe has one Mis18 protein, 

vertebrates have two Mis18 paralogues, Mis18α and Mis18β, and additionally, 

humans possess the Mis18 binding protein (called Mis18BP1, also KNL2), which is 

required for recruiting Mis18 to centromeres (Fujita et al., 2007; Maddox et al., 

2007). Mis18 has been suggested to alter histone modifications and the methylation 

status of centromeric chromatin to “prime” the centromere for CENP-A recruitment 

(Fujita et al., 2007; Kim et al., 2012). Mis18 is known to be required for the 

recruitment of HJURP to centromeres for CENP-A assembly (Moree et al., 2011; 

Perpelescu et al., 2015). Specifically, the Mis18α and β form a heterotetramer 

through their C-terminal coiled-coil domains, and these domains interact with 

HJURP directly to recruit it to centromeres; as HJURP binds, it disrupts the Mis18α-β 

heterotetramer and removes Mis18α from centromeres, which likely removes 

Mis18 from centromeres (Nardi et al., 2016). Therefore, Mis18 and HJURP work in a 

concerted fashion to assemble CENP-A at the centromere (summarized in Figure 6). 

In order for centromere location to be accurately propagated from one cell 

division to the next, assembly of new CENP-A nucleosomes must occur at locations 

of existing CENP-A nucleosomes on the chromatin. It has been reported that Mis18 

plays a direct role in specifying the location of nascent CENP-A assembly, by directly 

associating with the critical member of the CCAN, CENP-C (Dambacher et al., 2012; 

Moree et al., 2011). Specifically, the Mis18 complex contains two CENP-C binding 

domains, one on Mis18β and one on Mis18BP1, which are combinatorially required 

to generate robust centromeric localization of the Mis18 complex (Stellfox et al., 

2016). 
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Figure 6. Summary of the players in the assembly of nascent CENP-A nucleosomes 
at the centromere. 
HJURP exist as a dimer with the CENP-A/H4 heterotetramer in the “prenucleosomal 
complex”, and the Mis18 complex recruits HJURP to centromeres and also directly 
binds to CENP-C. 

1.6.2 REGULATION OF CENP-A ASSEMBLY 

 Unlike canonical H3.1, whose assembly is coupled to DNA replication in S 

phase, replication of centromeric chromatin is uncoupled from centromeric DNA 

replication, and in metazoans is restricted to mitosis/early G1 phase (Jansen et al., 

2007; Shelby et al., 2000) (Summarized in Figure 7). CENP-A assembly depends on 

passage through mitosis (Jansen et al., 2007). This cell-cycle coupled assembly of 

CENP-A is regulated by cyclin-dependent kinase (Cdk) activity: inhibiting Cdk1/2 in 

any phase of the cell cycle is sufficient to induce precocious CENP-A assembly (Silva 

et al., 2012). Specifically, CENP-A assembly machinery is present and poised for 

CENP-A assembly prior to mitosis, but sequestered away from centromeric 

chromatin until mitotic exit, and only allowed to assemble CENP-A upon decline of 

Cdk1/2 activity in telophase/G1 phase (Silva et al., 2012). The targets of Cdk 

regulation within the CENP-A assembly machinery includes the Mis18 complex, 
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since upon mutating all 24 of the putative Cdk consensus sites with Mis18BP1, 

Mis18BP1 is targeted prematurely to centromeres (Silva et al., 2012). However, 

CENP-A is not assembled prematurely with this Mis18BP1 mutant, indicating that 

there are likely additional targets of Cdk regulation among the CENP-A assembly 

machinery.  Indeed, it has been reported that three putative Cdk consensus sites 

within the centromere-targeting domain of HJURP are susceptible to Cdk regulation 

(Müller et al., 2014; Wang et al., 2014), and mutation of all three sites to alanine 

results in premature CENP-A assembly, but only in a minority of cells (Müller et al., 

2014). Therefore, it is likely that the full set of Cdk targets on the CENP-A assembly 

machinery has not been uncovered, and Chapter 4 of this thesis centers on using a 

quantitative phosphoproteomics approach to comprehensive map the landscape of 

Cdk regulation on the CENP-A-specific chaperone, HJURP. 

 

 

Figure 7. Model of CENP-A-containing chromatin throughout the cell cycle. 
Centromeric CENP-A levels fluctuate with the cell cycle. Prior to S phase, CENP-A is 
fully loaded at the centromere, but upon replication, the number of CENP-A 
molecules present on each daughter strand are reduced to half per centromere, 
since no new CENP-A is added. During G2, new CENP-A is synthesized and 
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assembles in a soluble prenucleosomal complex with its binding partner H4 and its 
chaperone HJURP, but is not loaded onto centromeres until G1. Therefore, cells 
progress with half-loaded centromeres through mitosis, until late 
anaphase/telophase when CENP-A is deposited by HJURP to restore CENP-A levels. 
Reproduced from (Falk and Black, 2012) 
 

 In addition to temporal regulation by Cdk1/2, initiation of CENP-A assembly 

has also been shown to depend on polo-like kinase 1 (Plk1), which acts as a 

licensing kinase to bind to and phosphorylate Mis18, and thereby promotes its 

centromeric localization (McKinley and Cheeseman, 2014). Plk1 activity is required 

for CENP-A assembly, more specifically for the localization of Mis18 to G1 

centromeres (McKinley and Cheeseman, 2014). Therefore, regulation of CENP-A 

assembly by Cdk1/2 and Plk1 constitute a two-step paradigm.  

 Although it has been convincingly shown by multiple lines of evidence that 

CENP-A assembly is temporally restricted to the telophase/G1 phase of the cell 

cycle, it is still unclear why such regulation is necessary—in other words, what (if 

any) consequences there are for the cell if CENP-A assembly were to be forced to 

occur outside of telophase/G1. Even though one report claimed that CENP-A 

assembly could be forced to occur precociously, in G2 (Müller et al., 2014), it offered 

no insight into the mitotic consequences for those cells. Another report 

constitutively tethered the Mis18α subunit to the centromere by fusing it to the C-

terminal domain of CENP-C, thereby bypassing both the Cdk regulation of the Mis18 

complex and Plk1 licensing, and found that this resulted in severe mitotic defects, 

including misaligned chromosomes and multipolar spindles (McKinley and 

Cheeseman, 2014). However, it is unclear whether the severe mitotic defects could 

be derived from another outcome of the constitutive centromeric presence of the 

CENP-C-Mis18α fusion protein. 

 Since new CENP-A nucleosomes are not deposited until telophase/G1, 

centromeric chromatin could contain “gaps” after DNA replication has occurred, but 

before the full complement of CENP-A nucleosomes are re-acquired at the next 

telophase/G1. It has been proposed with evidence from stretched chromatin fibers 

and labeled H3.3 that H3.3 could be deposited in those "gaps", thus acting as a 
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"placeholder" after the dilution of CENP-A in S phase (Dunleavy et al., 2011). Indeed, 

there exists a crystal structure of a heterotypic nucleosome, containing one copy of 

CENP-A and one copy of H3.3, which still maintains CENP-C binding on only the 

CENP-A side of the nucleosome (Arimura et al., 2014). It is still unclear whether the 

loss of CENP-C from one side of the CENP-A/H3.3 heterotypic nucleosome could be 

relevant for S phase, and furthermore, it is unknown how H3.3 could be evicted 

from centromeric chromatin upon deposition of CENP-A in the next telophase/G1 

phase. 

 Furthermore, CENP-A assembly is not only temporally restricted by the 

aforementioned mechanisms, but could also be susceptible to mechanisms of spatial 

restriction. The typical human centromere contains ~400 molecules of CENP-A, 

which is only ~4% of all centromeric nucleosomes (Bodor et al., 2014). Even this 

low concentration of centromeric CENP-A at physiologic centromeres is likely to be 

in excess of what is necessary for chromosome segregation, since  cells with as little 

as 1% of endogenous CENP-A levels can still partially recruit kinetochore proteins 

and direct chromosome segregation, and disruption of kinetochore nucleation 

requires almost complete loss of CENP-A (Fachinetti et al., 2013). Therefore, the 

CENP-A nucleosomes present at the centromere is likely an ample pool, of which 

only a subset is required to nucleate centromere and kinetochore complexes (Bodor 

et al., 2014). There are likely regulatory mechanisms in place to limit the total 

protein level of CENP-A, since exogenous CENP-A expression in human cells often 

leads to downregulation of endogenous CENP-A (Falk et al., 2015; Jansen et al., 

2007). A massive overexpression of CENP-A can result in ectopic deposition of 

CENP-A into chromosome arms (Falk et al., 2015; Gascoigne et al., 2011a; Van 

Hooser et al., 2001), possibly through a DAXX-mediated mechanism (Lacoste et al., 

2014). Additionally, overexpression of HJURP in DT40 chicken cells results in 

centromere expansion surround natural centromeres, and ectopic HJURP 

localization onto artificial centromeres also results in centromere expansion 

(Perpelescu et al., 2015). Therefore, there may exist mechanisms to tightly tune the 

total protein levels of CENP-A and its chaperone, HJURP, to prevent ectopic CENP-A 

deposition to non-centromeric regions of chromatin.  
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1.7. SUMMARY 

 Kinetochores are assembled upon chromatin defined by the presence of 

CENP-A-containing nucleosomes, which are the epigenetic hallmark of centromere 

location. Understanding the mechanism by which CENP-A specifies centromere 

identity is paramount to the accurate propagation of genetic material over cell and 

organisms generations. Much has been learned since centromeres were first 

isolated in budding yeast in 1980, but there are crucial gaps in our understanding of 

the centromere. For example, although it is known that CENP-A molecules are 

remarkably stable, a characteristic that is critical for the stable transmission of 

centromere location, it is unknown how such stability is achieved. Chapter 2 focuses 

on the role of CENP-C, an essential centromeric protein and binding partner of 

CENP-A, in ensuring centromere stability by modulating physical properties of the 

CENP-A nucleosome. Chapter 3 builds upon the insights from Chapter 3, and focuses 

on our efforts in building a core centromeric nucleosome complex (CCNC) and 

uncovering its biophysical properties, and through doing so, unveils a definitive 

model for the stability of centromeric CENP-A nucleosome.  
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CHAPTER 2: CENP-C RESHAPES AND STABILIZES 

CENP-A NUCLEOSOMES AT THE CENTROMERE 
 

Chapter 2 is based on the following publication: 

Falk, S.J.*, Guo, L.Y.*, Sekulic, N.*, Smoak, E.M.*, Mani, T., Logsdon, G.A., Gupta, 

K., Jansen, L.E.T., Van Duyne, G.D., Vinogradov, S.A., Lampson, M.A., and Black, 

B.E. (2015). CENP-C reshapes and stabilizes CENP-A nucleosomes at the 

centromere. Science 348, 699–704. 

  *Co-first authors 

 

2.1. ABSTRACT 
Inheritance of each chromosome depends upon its centromere. A histone H3 

variant, centromere protein A (CENP-A), is essential for epigenetically marking 

centromere location.We find that CENP-A is quantitatively retained at the 

centromere upon which it is initially assembled. CENP-C binds to CENP-A 

nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using 

purified components, we find that CENP-C reshapes the octameric histone core of 

CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and 

modulates terminal DNA to match the loose wrap that is found on native CENP-A 

nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome 

shape and dynamics in a manner analogous to allosteric regulation of enzymes. 

CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating 

their collaboration in maintaining centromere identity. 

2.2. INTRODUCTION 
Centromeres direct chromosome inheritance at cell division, and 

nucleosomes containing a histone H3 variant, centromere protein A (CENP-A), are 

central to current models of an epigenetic program for specifying centromere 

location (Black and Cleveland, 2011). The centromere inheritance model in 
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metazoans suggests that the high local concentration of preexisting CENP-A 

nucleosomes at the centromere guides the assembly of nascent CENP-A, which 

occurs once per cell cycle after mitotic exit. This model predicts that after initial 

assembly into centromeric chromatin, CENP-A must be stably retained at that 

centromere; otherwise, centromere identity would be lost before the next 

opportunity for new loading in the next cell cycle. Here, we use biochemical 

reconstitution to measure the shape and physical properties of CENP-A 

nucleosomes with and without its close binding partner, CENP-C, and combine these 

studies with functional tests that reveal the mechanisms underlying the high 

stability of centromeric chromatin. 

2.3. RESULTS 

 

2.3.1 CENP-C BINDING ALTERS THE SHAPE OF THE CENP-A 

NUCLEOSOME 
CENP-C recognizes CENP-A nucleosomes via a region termed its central 

domain (amino acids 426 to 537; CENP-CCD)(Carroll et al., 2010; Kato et al., 2013). 

We first considered how CENP-CCD may affect the overall shape of the CENP-A–

containing nucleosome using an intranucleosomal fluorescence resonance energy 

transfer (FRET)–based approach. We designed an experiment to measure FRET 

efficiency, ΦFRET, between two fluorophores on defined positions on the H2B 

subunits of CENP-A nucleosomes in the absence or presence of CENP-CCD and then 

used these measurements to calculate intranucleosomal distances (Figure 8, and 

Fig. S1 in Falk et al., 2015). The H2B distances for CENP-A nucleosomes in the 

absence of CENP-CCD are ~5 Å farther apart than expected from their crystal 

structure (PDB ID 3AN2)(Tachiwana et al., 2011), indicating that CENP-A–

containing nucleosomes in solution prefer a histone octamer configuration not 

captured in the crystal structure. It is likely that CENP-A nucleosomes sample both 

conformations in solution, with crystal contacts stabilizing the form that was 

reported (Tachiwana et al., 2011). In contrast to CENP-A nucleosomes, conventional 
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nucleosomes have smaller H2B distances in solution (Figure 8) that are consistent 

with their crystal structure (Luger et al., 1997). Separation of H2A/H2B dimers from 

each other is consistent with a nucleosome model based on rotation of the CENP-

A/CENP-A′ interface in (CENP-A/H4)2 heterotetramers (Sekulic et al., 2010). Upon 

binding of CENP-CCD, with the known stoichiometry of two CENP-CCD molecules per 

nucleosome (Kato et al., 2013), the H2A/H2B distances shorten to ones that are 

nearly identical to those in conventional nucleosomes (Figure 8). The differences 

we observed between H3 nucleosomes, CENP-A nucleosomes, and CENP-A 

nucleosomes in a complex with CENP-CCD are found using either the human α-

satellite DNA sequence that corresponds to the most heavily occupied site at 

centromeres (Hasson et al., 2013) or the completely synthetic “601” nucleosome 

positioning sequence (Lowary and Widom, 1998) (Figure 8). 

 

 

Figure 8. CENP-A nucleosomes have a conventional shape only upon CENP-CCD 

binding. 
Calculated FRET efficiencies (ΦFRET) and distances between donor and acceptor 
fluorophores on H2B S123C for the indicated nucleosomes on either α-satellite or 
Widom 601 DNA. Data are shown as the mean ± SEM of three independent 
nucleosome reconstitutions. 

2.3.2 CENP-C BINDING RIGIDIFIES SECONDARY STRUCTURE AT 

THE INTERIOR OF THE CENP-A NUCLEOSOME 

The shape change that we measure within the nucleosome upon CENP-CCD binding 
most likely occurs through rotation at the four-helix bundles between histone dimer 
pairs within the octameric core, with interhistone contacts being stabilized or 
destabilized depending on the preference for rotational state. We tested this 
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prediction using hydrogen/deuterium exchange-mass spectrometry (HXMS). Strong 
protection of CENP-A nucleosomes (Figure 9,  
Figure 10D, and Figure 11) is conferred by CENP-CCD  binding on peptides 

spanning helices that are predicted (Kato et al., 2013) to contact it (i.e., the α3 helix 

and C-terminal residues of CENP-A, the α2 helices of both H4 and H2A, and regions 

of H2A encompassing its acidic patch residues). In addition to the surface changes 

induced by CENP-CCD, there are internal changes to the nucleosome that we 

measure by HX (Figure 9A,B, and movie S1 in Falk et al., 2015) that are consistent 

with the change in nucleosome shape that we observed by FRET (Figure 8). The 

separation of H2A/H2B dimers in CENP-A nucleosomes lacking CENP-CCD (Figure 

8) is predicted to weaken an internal, intermolecular β sheet that serves as the 

physical connection between the H2A subunit on one face of the nucleosome and the 

H4 subunit on the opposite face. When CENP-CCD binds to the CENP-A nucleosome, 

peptides spanning the corresponding β-sheet residues of both H2A and H4 exhibit 

extra protection from HX by 1 to 2 deuterons, where the same level of HX takes 5 to 

10 times as long to occur than in CENP-A nucleosomes lacking CENP-CCD (Figure 9, 

Figure 12, Figure 13) 
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Figure 9. CENP-CCD rigidifies CENP-A nucleosomes. 
(A) HXMS of all histone subunits of the CENP-A nucleosome from a single time point 
(104 s; see all time points in  
Figure 10). Each horizontal bar represents an individual peptide, and peptides are 
placed beneath schematics of secondary structural elements. (B) Regions showing 
substantial protection from HX mapped onto the structure of the CENP-A 
nucleosome (PDB ID 3AN2). (C and D) Comparison of representative peptides 
spanning the β-sheet region in histone H4 and histone H2A over the time course. 
The maximum number of deuterons possible to measure by HXMS for each peptide 
is shown by the dotted line. (E) The internal H4/H2A interface mapped (see Figure 
12) onto the canonical nucleosome crystal structure (PDB ID 1KX5).  
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Figure 10. CENP-CCD binding induces additional protection from HX at multiple 
regions within the CENP-A nucleosome. 
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(A,B) Experimental scheme for HXMS. HXMS is an approach that measures the 
exchange of 
amide protons along the polypeptide backbone of the histones with deuterons from 
heavy water (D2O) in the exchange buffer (Englander, 2006). Amide protons 
engaged in hydrogen bonds inside α-helices and the interior of β-sheets are 
protected from HX, exchanging only upon transient unfolding of structure, and thus 
this technique detects stabilization/destabilization of these structures. (C) CENP-A 
nucleosome alone and in complex with CENP-CCD as assessed by native gel stained 
with ethidium bromide (i) or Coomassie Blue (ii). Bands from native gel were 
excised and assessed by SDS-PAGE (iii). (D) Regions of CENP-A nucleosomes where 
CENP-CCD binding leads to additional protection from HX. The level of protection 
added by the presence of CENP-CCD is determined by subtracting the level of HX of 
the CENP-A nucleosome alone from that of CENP-A nucleosomes bound by CENP-
CCD. Each horizontal bar represents an individual peptide, placed beneath 
schematics of secondary structural elements of the CENP-A nucleosome. Peptides 
that exhibit additional protection from HX upon CENP-CCD binding are colored in 
blue, with shading according to the legend. It is notable that prior to nucleosome 
assembly, CENPA/H4 is protected from HX by HJURP (Bassett et al., 2012), and after 
chromatin assembly CENP-A/H4, as well as the nucleosome subunit, H2A, is 
protected from HX by CENP-CCD (this study). HJURP is thought to protect CENP-
A/H4 during the long cell cycle window between when CENP-A is expressed in late 
S-phase (Shelby et al., 2000) to when it is assembled at centromeres in the 
subsequent G1 (Jansen et al., 2007). Our studies strongly suggest that CENP-C is 
important for stabilizing CENP-A nucleosomes at the centromere to maintain 
centromere identity. 
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Figure 11. Regions on the surface of the nucleosome that exhibit additional 
protection from HX upon CENP-CCD binding. 
(A) CENP-A 130-140, (B) H4 52-60, and (C) H2A 63-93, mapped in black onto the 
structure of the CENP-A nucleosome (PDB 3AN2). Horizontal blocks represent 
peptides from CENP-A containing nucleosomes, placed beneath schematics showing 
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locations of α-helices and β-sheets of each histone. Multiple charge states were 
detected for a subset of peptides, each represented by its own block. Representative 
peptides from these regions exhibiting protection or from flanking regions 
exhibiting no extra protection are plotted as the number of deuterons exchanged at 
each time point. The maximum number of deuterons for each peptide possible to 
measure by HXMS is shown by the dotted line. Residues highlighted in yellow are 
those that exhibited methyl chemical shift perturbation in the NMR model of H31-

132LEEGLG nucleosome bound to CENP-CCD (Kato et al., 2013). The glutamate 
residues in pink on H2A are acidic patch residues. Note that PDB 3AN2 does not 
contain CENP-A residues 136-140, thus only 130-135 are colored. 
 

 
Figure 12. Mapping HX protection in the interior of the nucleosome when CENP-CCD 

binds to the surface of CENP-A nucleosomes. 
(A) All peptides encompassing the β-sheet interface between H4 and H2A (the 104 s 
time point is shown) from which the minimal regions that exhibit protection is 
deduced to be H4 92-100 and H2A 99-108 based on partially overlapping peptide 
HX data. Note that protection of H2A residues encompassing the β-sheet can be 
distinguished from those of surface contacts (i.e., acidic patch residues marked with 
asterisks). Underlined residues contain the backbone amide hydrogens that engage 
in hydrogen bonding within the β-sheet. The first two residues of each peptide and 
prolines are boxed in dashed black lines because exchange of the first two backbone 
amide protons cannot be measured (42) and prolines lack amide protons. (B) These 
minimal regions are colored in black in the nucleosome structure (PDB 1KX5) and 
are shown in various orientations. The H2A/H4 β-sheet is buried in the interior of 
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the nucleosome and is inaccessible to CENP-CCD at the surface of the nucleosome 
(Figure 9B, Figure 11, and movie S1 in Falk et al., 2015), so we conclude that it is 
stabilized concomitantly with the shape change that brings H2A/H2B dimers 
together. 
 



36 

 



37 

Figure 13. HXMS of peptides spanning the β-sheet at the interface in H4 (A) and 
H2A (B). 
In each panel, the peptide is shown from a CENP-A nucleosome (left) and a CENP-A 
nucleosome when in complex with CENP-CCD (right). Dotted blue lines serve as 
guideposts to highlight the differences in m/z shifts between the two samples. A 
blue asterisk denotes the centroid location of each peptide envelope, and the 
numerical value in blue indicates the centroid mass of the peptide envelope as 
determined by the ExMS data analysis software (Kan et al., 2011). 
 
 
 
 

 
 
Figure 14. Faithful detection of 1-4 deuteron differences in HXMS of CENP-A 
nucleosomes with and without CENP-CCD bound. 
The indicated peptides are compared between two replicate datasets (set 1 and 2), 
which represent two independent CENP-CCD purifications and two entirely 
independent nucleosome reconstitutions. Changes of 1-2 deuterons are well within 
the resolution of HXMS (Englander, 2006). The star symbol in the H2B diagram 
indicates the position of fluorophores used in FRET experiments. 
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Figure 15. Comparison of HX behavior of canonical nucleosomes to CENP-A 
nucleosomes 
bound by CENP-CCD. 
HXMS data with H3 nucleosomes at the 104 s time point showing the three histone 
subunits (H4, H2A, and H2B) common to the two types of nucleosomes. This is the 
same time point shown for CENP-A nucleosome comparisons in Figure 9A. Peptides 
spanning the H4/H2A interface show protection in CENP-A nucleosomes bound to 
CENP-CCD as compared to H3 nucleosomes, but the protection is less pronounced 
than the additional HX protection to CENP-A nucleosomes conferred upon binding 
CENP-CCD (see Figure 9A). 
 

2.3.3 CENP-C ALTERS NUCLEOSOME TERMINAL DNA 

Because CENP-C might also affect the extent that DNA wraps the 

nucleosomes, we reconstituted CENP-A nucleosomes using a 195–base pair (bp) 

DNA sequence from α-satellite DNA (Harp et al., 1996) that contains a contiguous 

sequence spanning the major binding site it occupies on human centromeres 

(Hasson et al., 2013) (Figure 16A). We first overdigested CENP-A nucleosomes and 

found very strong protection of 100 bp (Fig. S9 in Falk et al., 2015). Using a 

subsequent restriction digest of the 100-bp digestion product, we found that they 

were uniquely positioned, with their dyad precisely where the same-sized fragment 

previously mapped with native centromeric particles (Hasson et al., 2013)(Fig. S9 in 

Falk et al., 2015). CENP-A–containing nucleosomes have many discrete intermediate 

digestion products before the strongly protected 100-bp fragment is generated 

(Figure 16A,B, and Fig. S10 in Falk et al., 2015). When CENP-CCD is bound, digestion 

products larger than a nucleosome core particle [e.g., >145 bp, where DNA strands 

could cross at ~165 bp for conventional nucleosomes (Kornberg, 1977)] are missing 
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at early time points (Figure 16B). This suggests that when CENP-CCD binds to the 

nucleosome, the DNA above the dyad rarely crosses, as it would normally cross for 

conventional nucleosomes. Second, digestion to the 100-bp final fragment proceeds 

more quickly (Figure 16B). Thus, transient unwrapping of two helical turns (i.e., 

~20 bp) from each terminus of the nucleosome is enhanced when CENP-CCD is 

bound. 

To determine whether CENP-CCD binding leads to a steady-state structural 

change of nucleosomal DNA, we used small-angle neutron scattering (SANS) with 

contrast variation. When CENP-CCD binds to CENP-A nucleosome core particles, the 

distance distribution profiles reflecting the shape in solution substantially 

redistribute for both the protein- and DNA-dominated measurements (Figure 16C, 

Fig. S11 and Table S3 in Falk et al., 2015). The increase in larger interatomic vectors 

for the protein component is expected to accompany an additional component 

(CENP-CCD). The pronounced redistribution of vectors to both smaller and larger 

distances in DNA-dominated scattering when CENP-CCD is bound is attributed to 

compaction of the nucleosome core (smaller vectors) and opening of the 

nucleosome terminal DNA when CENP-CCD is bound (larger vectors). 



40 

 

Figure 16. Alterations in the nucleosome terminal DNA upon CENP-CCD binding. 
(A) Major micrococcal nuclease (MNase)–digested DNA fragments observed for 
CENP-A nucleosomes assembled on its native centromere sequence. (B) MNase 
digestion profiles of CENP-A nucleosomes in the absence (red) and presence (black) 
of CENP-CCD. The black arrow (0.5 min) points to the 165-bp peak (DNA crossed at 
the dyad). The asterisk (4 min) denotes the final 100-bp peak. (C) Scheme of SANS 
contrast variation experiment together with paired distance distribution curves for 
CENP-A nucleosomes alone (red) and bound by CENP-CCD (black) in the indicated 
SANS contrast variation conditions. 

2.3.4 CENP-C STABILIZES CENP-A AT CENTROMERES 

We took two complementary approaches in cells to determine whether 

CENP-A is stably retained at the centromere upon which it is initially deposited (see 

the legend for Fig. S12 from Falk et al., 2015 that describes the motivation for these 

experiments). First, we used cell cycle–synchronized fluorescence pulse labeling of 
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CENP-A in “donor” cells and subsequent cell fusion with an “acceptor” cell line. The 

donor cells express SNAP-tagged CENP-A that has been pulse labeled with 

tetramethylrhodamine-Star (TMR*) to irreversibly label CENP-A (Jansen et al., 

2007) before cell fusion. The acceptor cells express yellow fluorescent protein 

(YFP)–tagged CENP-A that is loaded at all centromeres, continuing even after fusion. 

At time points through the subsequent cell cycle (Fig. S12 in Falk et al., 2015) until 

the second mitosis (Figure 17A), we observed no detectable exchange of the TMR*-

labeled donor CENP-A to the acceptor centromeres in a shared nucleoplasm. 

Quantitation of the fluorescence at each centromere in these heterokaryons yields a 

bimodal distribution. The donor centromere group with high TMR* and low YFP 

(Figure 17B, “x” symbols) has an average TMR* signal of 0.538 ± 0.005 (normalized 

arbitrary units where the maximal measured TMR* signal in each heterokaryon 

equals 1) (Figure 17C), whereas the acceptor centromere group with high YFP and 

low TMR* (Figure 17B, triangle symbols) has an average TMR* signal of 0.055 ± 

0.005 (Figure 17C). These data indicate that once assembled at a centromere, an 

individual CENP-A molecule is stably maintained at that particular centromere. 

As a complementary approach to test CENP-A stability at individual 

centromeres, we used a photoactivatable version of CENP-A (CENP-A-PAGFP). We 

induced expression of CENP-A to the extent that it is present at locations throughout 

the nucleus, but with clear enrichment at centromeres, and then activated a defined 

region of each cell nucleus (Figure 17D, 0 hours postphotoactivation). CENP-A-

PAGFP signal is quantitatively retained at the activated centromeres and does not 

accumulate at unactivated centromeres (Figure 17D,E), indicating that there is 

negligible exchange between centromeres, consistent with our cell fusion results. In 

contrast, CENP-A-PAGFP signal in bulk chromatin decays, with about half of the 

protein removed by 8 hours after photoactivation. 

To investigate whether CENP-C stabilizes CENP-A at centromeres, we 

combined SNAP labeling of CENP-A with CENP-C depletion (Figure 17), for which 

we generated a cell line with a chromosomally integrated, doxycycline-inducible 

CENP-C short hairpin RNA cassette. In our SNAP system, CENP-C depletion leads to 

a dramatic decrease in the retention over 24 hours of the existing pool of CENP-A at 
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centromeres (Figure 17G,H). Without CENP-C depletion, the average retention of 

CENP-A is slightly >100% (112% ± 63% SD), an increase that is explained by having 

a small pool of prenucleosomal CENP-A in the cell population that is labeled by the 

TMR* pulse and subsequently incorporated into centromeres. Nascent CENP-A 

deposition is also decreased when CENP-C is depleted (fig. Figure 18C)—consistent 

with its proposed role in the CENP-A assembly reaction (Erhardt et al., 2008; Moree 

et al., 2011)—but this would only affect incorporation of the small prenucleosomal 

pool in the CENP-A retention measurements (Figure 17G,H). Thus, our findings 

implicate CENP-C in stabilizing CENP-A nucleosomes at centromeres. We cannot 

rule out the possibility that removal of CENP-C in turn removes another centromere 

component that stabilizes CENP-A nucleosomes, but we favor the idea that CENP-C 

is the key molecule for stabilizing CENP-A nucleosomes based on its direct binding 

to it. 
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Figure 17. Depletion of CENP-C reduces the high stability of CENP-A at 
centromeres. 
(A to C) Cells expressing SNAP-tagged CENP-A were pulse-labeled with TMR*, then 
fused with cells expressing YFP-tagged CENP-A. Representative images (A) show a 
cell in the second mitosis after fusion; insets show 3x magnification. X-means 
clustering was used to classify YFP only (triangles) or YFP and TMR* (“x” marks) 
centromeres (B), and mean (± SEM) TMR* intensity was calculated for each group 
(C). (D and E) Cells expressing high levels of CENP-A-PAGFP were photoactivated in 
bulk (box) and centromeric (circle) chromatin. Representative images (D) show a 
subset of centromeres in a single z section. Fluorescence intensity was quantified at 
0 and 8 hours after photoactivation [(E), mean ± SEM]. (F) CENP-C knockdown 
begins causing cell death 4 days post-induction (mean ± SD). (G and H) Cells with (+ 
Dox) and without (– Dox) CENP-C depletion were pulse-labeled with TMR* (day 2), 
and the relative CENP-A-SNAP signals were analyzed (day 3). Quantification shows 
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CENP-A-SNAP signal retained at day 3 (>2500 centromeres plotted with mean ± SD). 
Scale bars, 5 μm. 
 

 
Figure 18. CENP-C knockdown effects on retention and assembly of CENP-A at the 
centromere. 
(A) Immunoblot of CENP-C levels in inducible CENP-C knockdown cells at indicated 
timepoints after Dox addition, compared to the cells without Dox. Whole cell lysate 
dilutions from parental cells were used to measure the extent of CENP-C 
knockdown. α-tubulin levels were used as a loading control. CENP-C depletion 
requires several days prior to when cell death occurs (Figure 17F) following 
mitotic kinetochore failure (Fukagawa and Brown, 1997), so there is an 
experimental window of time in which we can test if CENP-A nucleosome retention 
persists after the majority of CENP-C protein has been depleted (Figure 17F,G). 
SNAP labeling of the existing pool of CENP-A (Figure 17G [Day 2]) combined with 
monitoring cell number allows one to account for the entire pool of CENP-A in the 
dividing cell population during the course of the experiment (Bodor et al., 2013). 
This approach also overcomes the limitation of the CENP-A-PAGFP approach 
(Figure 17D) where measurements beyond ~8 hr become problematic due to cell 
divisions. (B) Immunoblot of CENP-A levels in parental and CENP-A-SNAP cell lines. 
Asterisk denotes non-specific band. (C) We performed a quench-chase-pulse 
experiment where cells were synchronized using a double-thymidine block, pre-
existing CENP-A was quenched with a non-fluorescent label, and the nascent pool of 
CENP-A was pulse-labeled with TMR* 6.5 hours post-release just prior to loading. 
Left, representative maximum projected immunofluorescence images of CENP-
ASNAP csells. Right, representative images of CENP-A-SNAP + CENP-C knockdown 
cells. Insets are a 3x magnification of selected representative centromeres. Scale bar 
= 5 μm. 
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Figure 19. The reduction of CENP-A retention upon CENP-C knockdown is 
independent of new CENP-A chromatin assembly. 
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To determine whether CENP-C knockdown could reduce centromeric CENP-A levels 
in the absence of new CENP-A assembly, we quantified CENP-A retention upon co-
depletion of CENP-C and HJURP. (A) Schematic of pulse-chase experiment to track 
CENP-A levels, combined with knockdown of both CENP-C and HJURP. Cells with (+ 
Dox) and without (-Dox) CENP-C depletion were co-transfected with shRNA-
encoding plasmid targeting nucleotides 1288-1306 of HJURP (pSRP-HJURP) (Foltz 
et al., 2009) or the control plasmid (pSRP). A plasmid encoding GFP was co-
transfected at a 9:1 (shRNA:GFP) ratio to mark transfected cells. The cells were 
pulse-labeled with TMR* (Day 2) and the CENP-A-SNAP signals were analyzed at 
day 2 and 3. (B) Quantification of CENP-A-SNAP signal retained at day 3. For each 
condition, >700 centromeres in GFP-positive cells were quantitated using the 
Centromere Recognition and Quantitation macro (Bodor et al., 2012) in ImageJ, and 
each TMR* value at day 3 was divided by its average TMR* value at day 2, then 
normalized to the - Dox, mock-transfected condition and plotted as mean ± s.d. (C) 
Representative images of GFP positive cells. CENP-C knockdown upon dox 
treatment was confirmed separately. Insets are 3x magnification. (D) We performed 
a quenchchase-pulse experiment on the same transfected cells used for panels A-C 
to assess whether or not the HJURP knockdown compromised new CENP-A 
assembly. By quenching pre-existing CENP-A with a non-fluorescent substrate and 
performing the TMR* labeling after 24 hours, we exclusively examine the pool of 
CENP-A-SNAP that had been newly synthesized and loaded onto centromeres. We 
TMR* labeled immediately after quenching and confirmed the lack of detectable 
TMR* signal in all conditions. (E) Representative images showing that transfection 
of HJURP shRNA abolishes new CENP-A loading. Note the assembly of CENP-A in the 
untransfected cells (GFP negative) adjacent to those that received HJURP shRNAs 
(GFP positive). Scale bars = 5 μm. 
 

 
Figure 20. Summary model for collaboration of CENP-C with CENP-A nucleosomes 
in specifying centromere location. 
At the centromere, there is a high local concentration of CENP-A, which results in a 
high local concentration of CENP-C. Together, CENP-A and CENP-C collaborate to 
form a stable complex that maintains the epigenetic mark of the centromere. In the 
chromatin arms, CENP-A levels do not reach a sufficient threshold to recruit CENP-C 
and CENP-A is quickly turned over. Our experiments support the idea that CENP-A-
containing nucleosomes prefer an atypical shape in the absence of CENP-C, but 



47 

adopt a conventional overall histone octamer shape when CENP-C binds. In 
addition, our reconstitutions on native centromere DNA of octameric CENP-A 
nucleosomes very closely match the DNA wrapping properties of CENP-A 
nucleosomes isolated from functional human centromeres (Hasson et al., 2013), 
especially when CENP-C is bound (Figure 16B). This is in stark contrast to half-
nucleosomes (termed hemisomes; i.e. one copy each of CENP-A, H4, H2A, and H2B) 
that wrap 65 bp of DNA (Furuyama et al., 2013) and have been proposed by others 
to be the major form at centromeres (Bui et al., 2012; Henikoff et al., 2014). 
Importantly, until now CENP-C has been considered primarily as a protein that 
recognizes CENP-A and bridges centromeric chromatin to other proteins important 
for centromere and kinetochore function (Carroll et al., 2010; Erhardt et al., 2008; 
Guse et al., 2011; Kato et al., 2013; Przewloka et al., 2011; Screpanti et al., 2011; 
Tomkiel et al., 1994) and helping target new CENP-A chromatin assembly at the 
centromere each cell cycle (Erhardt et al., 2008; Moree et al., 2011), but our findings 
that its binding directs changes to the shape and dynamics of the nucleosome 
suggest that it could also play a role in the special stability of CENP-A at 
centromeres in a manner analogous to allosteric regulation of enzymes. This has 
potential implications for chromatin regulation at diverse chromosome locations, as 
such a feature has not been reported for some other non-catalytic nucleosome 
binding proteins studied to date, like RCC1 and Sir3 (Armache et al., 2011; Makde et 
al., 2010), but now is worth considering for these and other nucleosome binding 
proteins. Directing a structural change upon binding of one component to a 
macromolecular complex to alter its behavior is a general strategy in biology, and 
our work with CENP-C importantly illustrates that a nucleosome—in this case, the 
special type at the centromere—is no exception. 

2.4. DISCUSSION 
 

CENP-A nucleosomes are highly stable at the centromeres upon which they 

are initially assembled. This stability is possible through collaboration with CENP-C. 

Along with the intranucleosomal rigidity of CENP-A and histone H4, where the key 

interfacial amino acids are important for accumulation at centromeres (Bassett et 

al., 2012; Black et al., 2004; Sekulic et al., 2010), the physical changes imposed by 

CENP-C combine to make CENP-A nucleosomes at centromeres very long-lived 

(Figure 20). Our data support a model of a steady-state octameric histone core 

where H2A/H2B dimers can exchange from either terminus of the CENP-A 

nucleosome. At the center, there is an essentially immobile (CENP-A/H4)2 

heterotetramer (Bodor et al., 2013)(Figure 17 and Figs. S12 to S14 in Falk et al., 

2015). Thus, the physical properties related to CENP-A nucleosome stability at 
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centromeres are tied to the intrinsic properties of the (CENP-A/H4)2 

heterotetramer (Bassett et al., 2012; Black et al., 2004; Sekulic et al., 2010) and the 

extrinsic properties imposed by CENP-C (Figure 8, Figure 9, Figure 16, Figure 20). 

2.5. METHODS 

2.5.1. FRET EXPERIMENTS (BY SAMANTHA FALK) 
Recombinant human H2B was mutated using QuikChange (Stratagene) to 

contain a single cysteine (K120C or S123C) and then purified as described for the 

wildtype H2B (Sekulic et al., 2010). Lyophilized protein was dissolved in unfolding 

buffer (6 M Gnd-HCl, 10 mM Tris-HCl pH 7.5 at 20ºC, 0.4 mM TCEP) for 1 hr at RT 

and a 30-molar excess of either maleimido coumarin 343 (C343) or maleimido 

rhodamine B (RhB) dissolved in DMF was added dropwise to the protein. The 

reaction proceeded overnight shielded from light and was quenched with 10 mM 

DTT and run over a PD-10 column (GE Healthcare) to separate out free dye. Labeled 

H2B was then mixed with equimolar amounts of H2A for dimer reconstitution and 

purification using previously established methods (Dyer et al., 2004; Sekulic et al., 

2010). Labeling efficiencies, E, ranged from 45-90% and were calculated by 

spectroscopy using the Beer-Lambert law using the following equation (Lakowicz, 

2006):  E = [(A280 – (CF Amax)/εproteinl]/(Amax/εfluorophorel) (1) where A280 is the 

absorbance of protein at 280 nm, Amax is the absorbance of fluorophore at its 

maximum wavelength, εprotein and εfluorophore are the molar extinction 

coefficients for protein and fluorophore, respectively, l is the pathlength, and CF is 

the correction factor for contribution to the protein A280 from the fluorophore. 

Labeling efficiency was further confirmed by SDS-PAGE (Coomassie Blue staining) 

and mass spectrometry (Figs. S1 and S2 in Falk et al., 2015). α-satellite DNA derived 

from a sequence described by Harp, et al. (Harp et al., 1996) or the 601 DNA 

sequence described by Lowary and Widom (Lowary and Widom, 1998) were used 

in nucleosome assembly reactions. Briefly, a 145 bp region derived from a human α-

satellite sequence with 25 bp of flanking DNA on each side was cloned into the 

pUC19 plasmid using EcoRI and XbaI restriction sites. The α-satellite DNA monomer 
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was then amplified from the plasmid by PCR using primers specific to the flanking 

DNA regions. The complete α-satellite sequence is: 5’-

CGTATCGCCTCCCTCGCGCCATCAGATCAATATCCACCTGCAGATTCTACCAAAAGTGTA

TTTGGAAACTGCTCCATCAAAAGGCATGTTCAGCTCTGTGAGTGAAACTCCATCATCACA

AAGAATATTCTGAGAATGCTTCCGTTTGCCTTTTATATGAACTTCCTGATCTGAGCGGGC

TGGCAAGGCGCATAG- 3’, with the 145 bp α-satellite region underlined. Typically, 

DNA from multiple 96-well PCR reactions were pooled, ethanol precipitated, 

resuspended in TE buffer and purified by anion- exchange chromatography. Widom 

601 DNA was purified as described (Hasson et al., 2013). Nucleosomes were 

assembled on either DNA sequence and uniquely positioned using the gradual salt 

dialysis method followed by thermal shifting for 2 hr at 55°C (Dyer et al., 2004). 

Assembly was assessed by native PAGE (ethidium bromide and Coomassie Blue 

staining) and by SDS-PAGE (Coomassie Blue staining). As mentioned above, the 

fluorophores for FRET measurements were C343, serving asan energy donor (D), 

and RhB, serving as an acceptor (A). C343 and RhB were selected because their 

calculated R0 (Förster radius; distance at which energy transfer efficiency is 50%) is 

58 Å, which is within the range of predicted dimer distances where energy transfer 

would be most sensitive to changes in FRET efficiency. For synthesis of 

fluorophores, all solvents and reagents were obtained from standard commercial 

sources and used as received. Selecto silica gel (Fisher Scientific, particle size 32-63 

µm) was used for column chromatography. 1H NMR spectra were recorded on a 

Varian Unity 400 MHz spectrometer. Mass spectra were obtained on a MALDI- TOF 

MS Microflex LRF instrument (Bruker Daltonics), using α-cyano-4-hydroxycinnamic 

acid as a matrix. The compound maleimido C343 was synthesized by a CDMT-

assisted peptide coupling of C343 and 1-(2-Aminoethyl)pyrrol-2,5-dione. 1-(2-

Aminoethyl)pyrrol-2,5-dione was synthesized as described (Richter et al., 2012). 

C343 was dissolved in DMF at 0°C, 2-chloro-4,6-dimethoxy- 1,3,5-triazine and N-

methylmorpholine (NMM) were added, and the mixture was stirred for 1 hr. 1-(2-

Aminoethyl)pyrrol-2,5-dione and NMM were dissolved separately in DMF and 

added dropwise to the C343 mixture. The reaction was stirred at 0°C for 2 hr and 

then warmed to room temperature and stirred for 12 hr. The solvent was removed 
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under vacuum and the residue was purified by column chromatography (silica gel, 

DCM). The fraction containing maleimido C343 was collected, the solvent was 

evaporated, and the product was dried under vacuum. 1H NMR (CDCl3, δ): 8.94 (s, 

1H), 8.57 (s, 1H), 6.99 (d, 2H, 3J = 3.5 Hz), 6.70 (s, 2H), 3.80 (t, 1H, 3J = 5.8 Hz), 3.65 

(m, 2H), 3.34 (m, 4H), 2.88 (t, 2H, 3J = 6.3 Hz), 2.77 (t, 2H, 3J = 6.1 Hz), 1.97 (m, 4H). 

For MALDI-TOF, the m/z (mass-to-charge ratio) calculated for C22H21N3O5 was 

407.15; the following species were found; 407.102 [M]+ and 429.767 [M+Na]+. 

Maleimido RhB was synthesized by a HBTU-assisted peptide coupling of RhB 

piperazine amide (Nguyen and Francis, 2003) and N- maleimidoglycine (Kassianidis 

et al., 2006). 1H NMR (CDCl3, δ): 7.78-7.72 (m, 3H), 7.53-7.51 (m, 1H), 7.29 (m, 2H), 

7.10-7.05 (br s, 2H), 6.72 (s, 2H), 6.70 (s, 2H), 4.38 (s, 2H), 3.66-3.55 (m, 8H), 3.49-

3.41 (m, 8H) 1.33 (t, 12H, 3J = 7 Hz). For MALDI-TOF, the m/z calculated for 

C38H42N5O5+ was 648.32; the following species were found; 648.358. Steady-state 

emission measurements were performed on a FS900 spectrofluorometer 

(Edinburgh Instruments), equipped with a photon-counting R2658P PMT 

(Hamamatsu). Samples were excited at 450 nm, the wavelength at which the 

absorbance of an equimolar mixture of C343 and RhB is dominated by C343 

(>99%), and measurements were performed using dilute solutions (ODmax< 0.1) in 

a Spectrosil quartz cuvette (1 cm optical path length, Starna Cells). As a result, only 

negligible RhB emission is observed under these conditions in the absence of FRET. 

Emission spectra were corrected by the detector quantum yield and normalized by 

the incident light intensity at the excitation wavelength. The final emission spectra 

used in quantum yield calculations (see below) are expressed in counts (photons) 

per second (CPS). Absorbance measurements were performed using a LAMBDA 35 

UV/Vis spectrophotometer (PerkinElmer). FRET efficiency was calculated based on 

donor quenching in the presence of an acceptor fluorophore (Forster, 1946; Lorenz 

et al., 1999; Stryer and Haugland, 1967)). The quantum yield of fluorescence was 

calculated using the following equation (Crosby and Demas, 1971): ΦS = 

ΦR[(AR(λR)/AS(λS)][nS2/nR2][DS/DR] (2) where Φ is quantum yield, A(λ) is the 

absorbance value at the designated excitation wavelength, n is the refractive index 

of the solution (nS = 1.333 and nR = 1.361), and D is the integrated emission 
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spectrum. The subscripts S and R refer to the sample and reference solutions, 

respectively. Rhodamine 6G in 100% ethanol was used as a reference actinometer 

(ΦR= 0.95) (Kubin and Fletcher, 1982). 

Because of the nature of nucleosome reconstitutions, nucleosomes 

reconstituted with both C343- and RhB-labeled dimers (i.e. our FRET samples) 

contain some percentage of C343-only nucleosomes. Both C343- and RhB-labeled 

dimers exhibited ~90% labeling efficiency, meaning that ~10% of the dimers used 

in a reconstitution reaction are unlabeled. This leads to a mixture of nucleosomes 

characterized by the following equation: 

UU + DU + DD + DA + AA + AU = 1 (3) where UU represents the subset of 

nucleosomes that contain two unlabeled dimers, DU represents the subset of 

nucleosomes that contain one C343-labeled dimer and one unlabeled dimer, DD 

represents the subset of nucleosomes with two C343-labeled dimers, DA represents 

the subset of nucleosomes with one C343-labeled dimer and one RhB-labeled dimer, 

AA represents the subset of nucleosomes with two RhB-labeled dimers, and AU 

represents the subset of nucleosomes with one RhB-labeled dimer and one 

unlabeled dimer. Because we are using donor quenching to calculate FRET 

efficiency, we only consider C343-containing species, so equation 3 is simplified to 

the following equation: a + b = 1 (4) where a represents the normalized population 

of DU and DD nucleosomes and b represents the normalized population of DA 

nucleosomes in the FRET sample. Both a and b can be calculated using the known 

labeling efficiencies of both donor-labeled and acceptor-labeled dimers determined 

from spectroscopy and mass spectrometry analysis. 

In order to account for the subset of DU and DD nucleosomes present in our 

FRET samples when measuring donor quenching, a separate control sample of 

C343-only nucleosomes are reconstituted and measured alongside every 

experimental sample. The following equation is then used to calculate the quantum 

yield of C343 in nucleosomes containing both C343 and RhB dimers: ΦDA = [ΦT - 

a(ΦDD)]/b (5), where ΦDA is the quantum yield of C343-RhB nucleosomes (DA), 

ΦT is the total quantum yield of all C343-containing nucleosomes (DU + DD + DA), 

ΦDD is the quantum yield of C343-only nucleosomes (DU + DD), and a and b 
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represent the fraction of C343-only nucleosomes and C343-Rhb nucleosomes in a 

sample, respectively, determined as described above. ΦT and ΦDD are calculated 

from the FRET sample and the C343-only sample, respectively, using equation 2 

above.  

FRET efficiency, ΦFRET, is then determined based on the following equation 

(Lakowicz, 2006): ΦFRET = 1-(ΦDA/ΦDD) (6). The distance, r, between the two 

fluorophores is then calculated using the following equation (Lakowicz, 2006): r = 

R0[(1/ΦFRET)-1]1/6 (7) where R0 is the Förster radius. For the C343/RhB pair, the 

R0 was calculated to be 58 Å, using the following equation (Lakowicz, 2006): R0 = 

9790(Jκ2ΦDDn-4)1/6 Å (8) where J is the spectral overlap integral for C343/RhB 

pair, ΦDD is the quantum yield of C343, n is the refractive index of the solvent 

(n=1.333), and κ2=2/3 is the orientation factor for freely rotating fluorophores 

(Lakowicz, 2006). Our assumption of orientational averaging as in the case of freely 

rotating transition dipole moments was confirmed by our anisotropy measurements 

(see below). The measured anisotropy for the fluorophore pair was found to be less 

than 0.2 (fig. S1 and Table S1 in Falk et al., 2015), confirming that usage of formula 

(7) was appropriate for estimation of interchromophoric distances. Steady-state 

fluorescence anisotropy measurements were performed on a QuantaMaster 

spectrophotometer (PTI). Samples were diluted to 0.5-1.0 µM in 150 mM NaCl, 20 

mM Tris-HCl pH 7.5 at 4°C, 1 mM EDTA, 1 mM DTT and excited at 450 nm for C343 

and 567 nm for RhB. Anisotropy, r, was calculated in FeliX32 software using the 

following equation (Lakowicz, 2006): r = (IVV – G IVH)/(IVV + 2G IVH) (9) where 

IVV is the parallel polarized fluorescence intensity, IVH is the perpendicular 

polarized fluorescence intensity, and G is the correction factor for the setup. 

Lifetime measurements, τ, were performed using a FluoroLog fluorometer (Horiba 

Scientific). The excitation source was an LED (NanoLED), lmax=441 nm with an 

average repetition rate of 1 MHz. Samples were in 150 mM NaCl, 20 mM Tris-HCl pH 

7.5 at 4°C, 1 mM EDTA, 1 mM DTT at 0.5-1.0 µM. Emission was measured at 491 nm 

using a bandpass filter (5 nm). Lifetimes were fitted exponentially using DAS6 

software (Horiba Scientific). 
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2.5.2. HXMS 
CENP-A mononucleosomes were reconstituted with the same 195 bp α-

satellite DNA described above in the FRET studies and concentrated to 0.9 mg/ml 

with Centricon concentrators (Millipore, Billerica, MA). Recombinant human CENP-

CCD consisting of the central domain only (a.a. 426-537, the plasmid for recombinant 

human CENP-CCD expression was a generous gift from A. Straight, Stanford, USA) 

was GST-tagged and purified over a GST column followed by PreScission protease 

cleavage (GE Healthcare) and ion-exchange chromatography and prepared in a 

buffer containing 20 mM Tris pH 7.5, 200 mM NaCl, 0.5 mM EDTA, 1 mM DTT. To 

form complexes with CENP-CCD, 2.2 moles of recombinant CENP-CCD were added per 

mole of CENP-A nucleosomes. To the nucleosome-only sample the buffer used for 

CENP-CCD preparation was added so that the chemical composition of the buffers 

were identical in all cases. Deuterium on-exchange was carried out by adding 5 µL of 

each sample (containing approximately 4 µg of nucleosomes or complex) to 15 µL of 

deuterium on-exchange buffer (10 mM Tris, pD 7.5, 0.5 mM EDTA, in D2O) so that 

the final D2O content was 75%. Reactions were quenched at the indicated time 

points by withdrawing 20 µL of the reaction volume, mixing in 30 µL ice cold quench 

buffer (2.5 M GdHCl, 0.8% formic acid, 10% glycerol), and rapidly freezing in liquid 

nitrogen prior to proteolysis and LC-MS steps. HX samples were individually melted 

at 0°C then injected (50 µl) and pumped through an immobilized pepsin (Sigma) 

column at initial flow rate of 50 µl/min for 2 min followed by 150 µl/min for 

another 2 min. Pepsin was immobilized by coupling to Poros 20 AL support (Applied 

Biosystems) and packed into column housings of 2 mm x 2 cm (64 µL) (Upchurch). 

Protease-generated fragments were collected onto a C18 HPLC trap column (800 

µm x 2 mm, Dionex) and eluted through an analytical C18 HPLC column (0.3 x 75 

mm, Agilent) by a linear 12-55% buffer B gradient at 6 µl/min (Buffer A: 0.1% 

formic acid; Buffer B: 0.1% formic acid, 99.9% acetonitrile). The effluent was 

electrosprayed into the mass spectrometer (LTQ Orbitrap XL, Thermo Fisher 

Scientific). The SEQUEST (Bioworks) software program was used to identify the 

likely sequence of parent peptides using nondeuterated samples via tandem MS. 
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MATLAB based MS data analysis tool, ExMS, was used for data processing (Kan et al., 

2011). 

2.5.3. MNASE DIGESTIONS (BY NIKOLINA SEKULIC) 
Nucleosomes were assembled using the same 195 bp α-satellite DNA 

sequence used in FRET studies using the same assembly approach described above. 

Nucleosomes were digested for various times with 2 U/µg of MNase (Roche) at 

room temperature (22°C). Reactions were terminated with the addition of 

guanidine thiocyanate and EGTA. The DNA was isolated using a MinElute PCR 

purification kit (Qiagen) and analyzed on an Agilent 2100 Bioanalyzer. 

2.5.4. SANS (BY NIKOLINA SEKULIC) 
Nucleosome core particles were assembled on the α-satellite 145 bp 

sequence described above. The sequence was cloned in tandem copies separated by 

EcoRV sites in pUC57. The 145 bp fragments were released by EcoRV digestion and 

purified away from the backbone by anion exchange chromatography. Following 

nucleosome reconstitutions, performed as described above, the nucleosomes were 

purified by preparative electrophoresis (Prep Cell, BioRad) using a 5% native gel to 

separate free DNA and any other non-nucleosomal species (Dyer et al., 2004). SANS 

experiments were performed at the National Institutes of Standards and Technology 

Center for Neutron Research NG-3. Samples were prepared by dialysis at 4°C against 

matching buffers containing 20% or 80% D2O for a minimum of 3 hr using a 6-8 

kDa cutoff D-tube dialyzer (Novagen). Samples were centrifuged at 10,000 X g for 5 

min at 4°C and then loaded into Hellma quartz cylindrical cells (outside diameter of 

22 mm) with 1 mm path lengths and maintained at 6ºC during the experiment. 

Sample concentrations were determined by Bradford analysis and optical 

absorbance at 260 nm. Scattered neutrons were detected with a 64 cm × 64 cm two-

dimensional position-sensitive detector with 128 × 128 pixels at a resolution of 0.5 

cm/pixel. Data reduction was performed using the NCNR Igor Pro macro package 

(Kline, 2006). Raw counts were normalized to a common monitor count and 
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corrected for empty cell counts, ambient room background counts and non-uniform 

detector response. Data were placed on an absolute scale by normalizing the 

scattered intensity to the incident beam flux. Finally, the data were radially-

averaged to produce scattered intensity, I(q), versus q curves. The scattered 

intensities from the samples were further corrected for buffer scattering and 

incoherent scattering from hydrogen in the samples. Data collection times varied 

from 0.5-2 hr, depending on the instrument configuration, sample concentration 

and buffer conditions. Sample-to-detector distances of 11 m (q-range 0.006-0.043 Å-

1, where q = 4πsin(θ)/λ, where λ is the neutron wavelength and 2θ is the scattering 

angle), 5 m (q-range 0.011–0.094 Å−1), and 1.5 m (detector offset by 20.00 cm, q-

range 0.03–0.4 Å−1) at a wavelength of 6 Å and a wavelength spread of 0.15 were 

collected for each contrast point. We observed good agreement between Rg and I(0) 

values determined from either inverse Fourier analysis using GNOM or from Guinier 

analysis. The program MuLCH (Whitten et al., 2008) was used to calculate 

theoretical contrast and to analyze contrast variation data. Distance distribution 

curves were normalized for total molecular mass for the complex.  

2.5.5. SNAP LABELING EXPERIMENTS AND CELL FUSIONS (BY 

EVAN SMOAK AND SAMANTHA FALK) 
CENP-A-SNAP HeLa cells for fusion experiments were labeled with TMR* 

(NEB) as described previously and subjected to a double thymidine block with a 

final thymidine concentration of 2 mM (Bodor et al., 2013; Jansen et al., 2007). YFP-

CENP-A HeLa cells (Black et al., 2007b), CENP-A-SNAP Hela cells (Jansen et al., 

2007), and SNAP-tagged core histone (H3.1, H3.3, H4, and H2B)-expressing HeLa 

cells (Black et al., 2007b; Bodor et al., 2013) are all established lines. After labeling 

with TMR*, CENP- A-SNAP HeLa cells were trypsinized, counted, and co-seeded onto 

poly-D-lysine (Sigma-Aldrich) treated coverslips along with an equivalent number 

of HeLa cells constitutively expressing YFP-CENP-A. Cells were arrested in growth 

medium (DMEM supplemented with 10% fetal bovine serum (FBS), 100 U/mL 

penicillin, and 100 µg/mL streptomycin) containing 2 mM thymidine for 17 hr. Cells 
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were then washed 3x with PBS, fused with 50% PEG-1500 (Roche) for 30 s and 

subsequently washed in PBS and placed in media containing 24 µM deoxycytidine to 

release from thymidine block. After 9 hr, cells were blocked again with media 

containing thymidine for 17 hr. Cells were released from thymidine with DMEM 

media containing 24 µM deoxycytidine and nocodazole was added 7 hr post-release 

at a final concentration of 400 ng/mL. Coverslips were fixed and processed for 

immunofluorescence at the timepoints outlined in Fig. S12A in Falk et al, 2015. 

HeLa-based cell lines for inducible CENP-A-SNAP with and without shRNAs, and 

constitutive CENP-A-SNAP with inducible shRNAs directed against CENP-C were 

generated by recombinase-mediated cassette exchange (RMCE) using the HILO 

RMCE system (a generous gift from E.V. Makeyev, Nanyang Technological 

University, Singapore (Khandelia et al., 2011)). pEM784 was used to express 

nuclear-localized Cre recombinase. pEM791 was modified for inducible expression 

of CENP-A-SNAP-HA3, CENP-A-SNAP-HA3 plus 2 shRNAs against CENP-C (5’-

tgctgttgactttctaccttgaaggagttttggccgctgactgactccttcaatagaaagtcaa-3’ and 5’-

tgctgacaagtttgttcttggactcagttttggccactgactgactgagtccaaacaaacttgt-3’), constitutive 

CENP- A-SNAP-HA3 driven by the EF1α promoter plus 2 shRNAs against CENP-C, 

and CENP-A- PAGFP respectively. CENP-C knockdown was induced in constitutive 

CENP-A-SNAP cell lines by treating for 48 hr with 2 µg/mL doxycycline prior to 

TMR* labeling for pulse-chase experiments to measure the retention of CENP-A 

protein at centromeres. Cells were fixed either immediately after labeling or again 

24 hr later. Cell number was also determined at these time points, so that the total 

level of CENP-A turnover could be calculated, as described (Bodor et al., 2013). For 

experiments to measure the amount of new CENP-A assembly with or without 

CENP-C knockdown, cells were treated with 50 ng/mL of doxycycline during a 

double thymidine block procedure that spanned 48 hr. Following release from the 

double thymidine block, CENP-A- SNAP was quenched with SNAP-Cell Block (NEB) 

then released for 6.5 hr to allow for new synthesis of CENP-A-SNAP protein. The 

nascent pool of CENP-A-SNAP protein was then pulse-labeled with TMR*, and the 

cells were cultured for an additional 17.5 hr prior to fixation and processing for 

immunofluorescence. A separate sample was labeled with TMR* immediately after 
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the quench step to confirm successful quenching of ‘old’ CENP-A. For 

immunofluorescence, cells were fixed in 4% formaldehyde for 10 min at room 

temperature followed by permeabilization using PBS + 0.5% Triton X-100. Samples 

were stained with DAPI before mounting with Vectashield medium (Vector 

laboratories). The following primary antibodies were used: mouse mAb anti-CENP-

A (1:1000 Enzo), rabbit pAb anti-CENP-C (1:2000) (Bassett et al., 2010), and mouse 

mAb anti-HA.II antibody (1:1000, Covance). AlexaFluor488- and AlexaFluor647-

conjugated secondary antibodies were obtained from Invitrogen and were used at 

1:1000. Images were captured at 23°C using software (LAF; Leica) by a charge-

coupled device camera (ORCA AG; Hamamatsu Photonics) mounted on an inverted 

microscope (DMI6000B; Leica) with a 100x 1.4 NA objective. For each sample, 

images were collected at either 0.2 µm z- sections (Figure 17A, Figure 19, and S12-

15 in Falk et al., 2015) or 0.49 µm z-sections (Figure 17D,G and Fig. S16 in Falk et al., 

2015) that were subsequently deconvolved using identical parameters. The z-stacks 

were projected as single two- dimensional images and assembled using PhotoShop 

(version 13.0; Adobe), ImageJ (1.48v) (Schneider et al., 2012), and Illustrator 

(version 16.0; Adobe). To quantify fluorescence intensity in cell fusions, individual 

centromeres from non-deconvolved maximum projections were selected and the 

intensity of both TMR* and YFP signal were determined after subtracting the 

background fluorescence measured from adjacent regions of the cell using ImageJ. 

For each unique fusion, the levels of fluorescence for both channels were 

normalized to the highest measured value in that channel, leading to normalized 

values for YFP intensity and TMR* intensity for each centromere in the fused cell. 

Thus, each centromere is a data point that has an associated TMR* and YFP value 

assigned to it, which were then run through the machine learning x-means 

clustering algorithm of Weka (Hall et al., 2009; Pelleg and Moore, 2000), which 

partitions the data points into n clusters based on their closeness to an assigned 

mean value. This generated the two groups of data points (YFP only and YFP + 

TMR*) in the plot seen in Figure 17B. To quantify fluorescence intensity in 

experiments with CENP-C knockdown, the Centromere Recognition and 

Quantification (CRaQ) macro (Bodor et al., 2012) was run in ImageJ with standard 
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settings using a reference channel and DAPI. Total CENP-A staining was used as the 

reference channel to define ROIs for quantification of TMR* intensity. CENP-A 

fluorescence intensity values at the final time point were normalized to reflect the 

total pool of labeled CENP-A by accounting for the increase in cell number in the 

dividing cell populations following TMR* pulse. 2800-4200 centromeres from >70 

cells were analyzed for each time point.  

2.5.6. PAGFP EXPERIMENTS (BY EVAN SMOAK) 
CENP-A-PAGFP cells were generated with the RMCE system (Khandelia et al., 

2011), as described above, and expression was induced with 1 µg/mL doxycycline 2 

days prior to photoactivation and continued for the duration of the experiment. 

Cells were cultured in growth medium at 37°C in a humidified atmosphere with 5% 

CO2. For live imaging, cells were plated on 22 x 22 mm glass coverslips (#1.5; 

Thermo Fisher Scientific) coated with poly-D-lysine (Sigma-Aldrich). Coverslips 

were mounted in magnetic chambers (Chamlide CM-S22-1, LCI) using growth 

medium without phenol red (Invitrogen). Temperature was maintained at 37°C with 

5% CO2 using an environmental chamber (Incubator BL; PeCon GmbH). 

Evaporation of media was prevented by applying a thin layer of mineral oil over the 

media within the magnetic chamber. Prior to photoactivation, a single plane image 

of the unactivated nucleus was acquired to be used for background subtraction. 

Cells were subsequently photoactivated by defining an ROI surrounding ~half of the 

nucleus and then activated using a pointable 405 nm laser (CrystaLaser) set to 10% 

power and one repetition using iLAS2 software run through MetaMorph, followed 

by acquisition of an image of a single z-plane. Cells were then followed by DIC for 8 

hr, at which point a final single plane image was acquired. Images were acquired 

with a confocal microscope (DM4000; Leica) with a 100x 1.4 NA objective lens, an 

XY Piezo-Z stage (Applied Scientific Instrumentation), a spinning disk (Yokogawa 

Corporation of America), an electron multiplier charge-coupled device camera 

(ImageEM; Hamamatsu Photonics), and a laser merge module equipped with 488 

nm and 593 nm lasers (LMM5; Spectral Applied Research) controlled by MetaMorph 
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software (Molecular Devices). To quantify the retention of CENP-A-PAGFP in bulk 

chromatin, a 25 x 25 pixel region-of-interest (ROI) was drawn in ImageJ on a region 

of photoactivated bulk chromatin and the average fluorescence was recorded. 

Recorded fluorescence measurements were corrected for background by 

subtracting the fluorescence value of the pre-photoactivated ROI. This corrected 

average fluorescence of the ROI was then multiplied by the area of the ROI in order 

to calculate the average fluorescence of the area. These area fluorescence 

measurements of the bulk chromatin ROI for each cell were averaged to generate 

the final numbers for comparison. Upon overexpression, CENP-A initially assembles 

into nucleosomes at centromeres and at locations throughout the genome (Heun et 

al., 2006; Lacoste et al., 2014). Functional centromeres do not spread throughout 

chromosomes under these conditions. We note that there is a small soluble pool of 

CENP-A in bulk chromatin that is mobile throughout the nucleus, but this does not 

significantly contribute to quantification and does not diffuse to the unactivated 

portion of the nucleus in earlier time points. To quantify the retention of CENP-A- 

PAGFP in centromeric chromatin, single planes were thresholded to create ROIs 

around all visibly photoactivated centromeres and the average fluorescence as well 

as the total centromeric area were both recorded. Fluorescence measurements were 

corrected for background by subtracting the fluorescence value of the pre-

photoactivated ROIs. This corrected average fluorescence of the ROI was then 

multiplied by the area of the ROIs in order to calculate the average fluorescence of 

the area. These area fluorescence measurements of the centromeric chromatin ROIs 

for each cell were averaged to generate the final numbers for comparison.  

 

 

2.5.7. CELL LETHALITY ASSAY 
Constitutive CENP-A-SNAP HeLa cells with doxycycline-inducible shRNAs 

directed against CENP-C were seeded in 6-well plates in triplicate at 8.4 x 104 cells 
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per well and with daily introduction of 2 µg/mL dox. Cells were collected and 

stained with 0.4% Trypan Blue (CellGro) and counted on a hemocytometer to 

calculate the percentage of cell death based on trypan blue uptake. 

2.5.8. IMMUNOBLOTTING 
Samples derived from whole cell lysates were separated by SDS-PAGE and 

transferred to a nitrocellulose membrane for immunoblotting. Blots were probed 

using the following antibodies: human ACA (2 µg/mL, Antibodies Incorporated), 

rabbit anti-CENP-C (1.7 µg/mL) and mouse mAb anti-α-tubulin (1:4000, Sigma-

Aldrich). Antibodies were detected using a horseradish peroxidase-conjugated 

secondary antibody at 1:10,000 (human) and 1:2000 (rabbit or mouse) (Jackson 

ImmunoResearch Laboratories) and enhanced chemiluminescence (Thermo 

Scientific).   
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CHAPTER 3: CENTROMERES ARE MAINTAINED BY 

FASTENING CENP-A TO DNA AND DIRECTING AN 

ARGININE ANCHOR-DEPENDENT NUCLEOSOME 

TRANSITION 
 

Chapter 3 is based on the following publication: 

Guo, L.Y., Allu P.K., Zandarashvili, L., McKinley, K.L., Sekulic, N., Fachinetti, D., 

Logsdon G.A., Jamiolkowski, R.M., Cleveland, D.W., Cheeseman, I.M., and 

Black, B.E. Centromeres are maintained by fastening CENP-A to DNA and 

directing an arginine anchor-dependent nucleosome transition. Nature 

Communications, 8, 15775 doi: 10.1038/ncomms15775 (2017). 

Chapter 3 also includes my contribution in the following manuscript, which is 

shown in Figure 27 in this chapter: 

McKinley, K.L., Sekulic, N., Guo, L.Y., Tsinman, T., Black, B.E., and Cheeseman, 

I.M. (2015). The CENP-L-N complex forms a critical node in an integrated 

meshwork of interactions at the centromere-kinetochore interface. Molecular 

Cell 2015 Dec 17;60(6):886-98. 

3.1. ABSTRACT 

Maintaining centromere identity relies upon the persistence of the epigenetic 

mark provided by the histone H3 variant, CENP-A, but the molecular mechanisms 

that underlie its remarkable stability remain unclear. Here, we define the 

contributions of each of the three candidate CENP-A nucleosome-binding domains 

(two on CENP-C and one on CENP-N) to CENP-A stability using gene replacement 

and rapid protein degradation. Surprisingly, the most conserved domain, the CENP-

C motif, is dispensable. Instead, the stability is conferred by the unfolded central 

domain of CENP-C and the folded N-terminal domain of CENP-N that becomes 

rigidified 1000-fold upon crossbridging CENP-A and its adjacent nucleosomal DNA. 

Disrupting the ‘arginine anchor’ on CENP-C for the nucleosomal acidic patch 

disrupts the CENP-A nucleosome structural transition and removes CENP-A 
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nucleosomes from centromeres. CENP-A nucleosome retention at centromeres 

requires a core centromeric nucleosome complex where CENP-C clamps down a 

stable nucleosome conformation and CENP-N fastens CENP-A to the DNA.  

3.2. INTRODUCTION 

The centromere is the specialized region of chromatin that directs accurate 

chromosome segregation in cell division (McKinley and Cheeseman, 2016; 

Westhorpe and Straight, 2015). The centromere recruits the proteinaceous 

kinetochore, which attaches to spindle microtubules during mitosis or meiosis. A 

model for the epigenetic specification of centromere identity has emerged wherein 

preexisting nucleosomes with a histone H3 variant named centromere protein A 

(CENP-A)(Earnshaw and Rothfield, 1985; Palmer and Margolis, 1985) direct the 

local assembly of newly synthesized CENP-A (Black and Cleveland, 2011; Fachinetti 

et al., 2013), with CENP-A deposition occurring once per cell cycle following 

completion of mitosis (Jansen et al., 2007; Schuh et al., 2007). Critically, this model 

relies on the stable maintenance of CENP-A nucleosomes at a single site on each 

chromosome throughout the remainder of the cell cycle.  

Indeed, relative to the other H3 variants (i.e. H3.1 and H3.3) that turnover in 

chromatin (Bodor et al., 2013; Falk et al., 2015; Nashun et al., 2015), CENP-A 

experiences essentially no detectable turnover once assembled at a centromere 

(Bodor et al., 2013; Fachinetti et al., 2013; Falk et al., 2015; Jansen et al., 2007), and 

the stability has been measured out to >1 year where it preserves centromere 

identity in oocytes that are arrested in a prophase-like state during the entire fertile 

lifespan of female mice (Smoak et al., 2016). Particularly in the female germline or 

any somatic cell types that do not undergo very rapid divisions, maintaining 

centromere identity between rounds of CENP-A nucleosome assembly is critical for 

faithful chromosome inheritance. Thus, defining the molecular processes that confer 

the extraordinary stability of CENP-A nucleosomes is of outstanding interest in 

chromosome biology.  
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To date, both intrinsic features (i.e. those encoded in the sequence of CENP-A, 

itself) and extrinsic factors (i.e. constitutive centromere components that bind 

directly to CENP-A nucleosomes) have been considered as candidates that 

contribute to this distinctive stability. Residues that rigidify the interface between 

CENP-A and its partner histone, H4, are necessary but not sufficient for this stability 

(Bassett et al., 2012; Black et al., 2004; Falk et al., 2015; Sekulic et al., 2010), so 

extrinsic factors must be considered. The only two proteins of the constitutive 

centromere associated network (CCAN) known to make specific contacts with 

CENP-A nucleosomes on all functional mammalian centromeres are CENP-C and the 

CENP-N subunit of the CENP-L-N complex (Carroll et al., 2009, 2010; Kato et al., 

2013; McKinley et al., 2015). Between these components of the CCAN, there are a 

total of three nucleosome-binding domains: two on CENP-C (the central domain 

[CENP-CCD a.a. 426-537](Carroll et al., 2010) and the CENP-C motif [CENP-CCM a.a. 

736-758](Kato et al., 2013)) and one comprised of the N-terminal portion of CENP-

N (CENP-NNT a.a. 1-240)(Carroll et al., 2009; McKinley et al., 2015).  

For the two nucleosome binding domains of CENP-C, CENP-CCD and CENP-CCM 

each are proposed to engage the CENP-A nucleosome through similar histone 

contact points and without any local secondary structure of their own (Kato et al., 

2013). CENP-CCD is conserved in mammals (Kato et al., 2013), was mapped initially 

as the primary CENP-A nucleosome contact site, and has high specificity for CENP-A 

nucleosomes versus its counterparts with canonical H3 (Carroll et al., 2010). CENP-

CCD also directs a structural transition of the CENP-A nucleosome that changes the 

shape of the octameric histone core, slides the gyres of the nucleosomal DNA past 

one another, and generates both surface and internal rigidity to the histone subunits 

(Falk et al., 2015, 2016). CENP-CCM, on the other hand, is conserved from yeast to 

humans, and represents the only identified nucleosome-binding domain in species 

lacking a conserved CENP-CCD (Carroll et al., 2010). CENP-CCM is the only CENP-A 

nucleosome binding domain for which there exists atomic-level structural 

information, with a crystal structure of it bound to a canonical nucleosome in which 
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the 6 a.a. C-terminal tail of CENP-A replaces the corresponding region of histone H3 

(Kato et al., 2013). This structure revealed that CENP-CCM uses a so-called ‘arginine 

anchor’ to recognize the acidic patch on the H2A-H2B dimer (Kato et al., 2013). An 

arginine anchor is the shared feature of a diverse set of nucleosome binding 

proteins studied to date (Armache et al., 2011; Barbera et al., 2006; Makde et al., 

2010; McGinty et al., 2014; Morgan et al., 2016), establishing an emerging paradigm 

for nucleosome recognition (McGinty and Tan, 2016).  

Prior reports have suggested that either or both of the nucleosome binding 

domains of CENP-C could be important for its own localization to centromeres 

(Carroll et al., 2010; Kato et al., 2013; Lanini and McKeon, 1995; Milks et al., 2009; 

Trazzi et al., 2002; Yang et al., 1996). CENP-NNT recognizes the CENP-A nucleosome 

via the CENP-A Targeting Domain (CATD(Black et al., 2004))(Carroll et al., 2009; 

Fang et al., 2015; McKinley et al., 2015), but it is not known whether its binding site 

on the nucleosome extends to other histones in a similar manner as the CENP-C 

nucleosome binding domains (Kato et al., 2013). While a prior study using labeled 

CENP-N and CENP-C expressed in reticulocyte extracts suggested that they can co-

exist on the same nucleosome, there existed a need to use purified components to 

resolve proposals for CENP-C and CENP-N to bind to the same (Carroll et al., 2010) 

or different (Fang et al., 2015; Nagpal et al., 2015) CENP-A nucleosomes, and to 

study the nature of such a combined complex. Depletion of CENP-C reduces CENP-A 

nucleosome stability (Falk et al., 2015), but this finding does not delineate between 

a role for CENP-CCD or CENP-CCM. Also, CENP-C depletion leads to partial removal of 

the CENP-L-N complex (McKinley et al., 2015), so it remains possible that CENP-NNT 

is responsible for CENP-A nucleosome retention. Thus, it is currently unclear which 

of the CENP-C or CENP-N domains is important for maintaining centromere identity 

and the extent to which they may cooperate to stabilize centromeric chromatin.  

Here, we define the contributions of each of the three nucleosome binding 

domains present within the CCAN for maintaining centromere identity. To do this, 

we use a combination of gene editing, rapid inducible degradation of centromere 
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components, biochemical reconstitution, hydroxyl radical footprinting, and 

hydrogen/deuterium exchange coupled to mass spectrometry (HXMS). Our data 

establish an essential Core Centromeric Nucleosome Complex (CCNC) that is critical 

for CENP-A stability and maintenance of centromere integrity. 

 

3.3. RESULTS 

 

3.3.1 CENP-CCD CONFERS STABILITY TO CENP-A 

NUCLEOSOMES 

Upon embarking on our effort to define the molecular processes that confer 

stability to CENP-A nucleosomes, we first turned our attention to CENP-C. We 

reasoned that if either or both of the nucleosome binding domains of CENP-C were 

indeed required for its localization to centromeres (Carroll et al., 2010; Kato et al., 

2013; Lanini and McKeon, 1995; Milks et al., 2009; Trazzi et al., 2002; Yang et al., 

1996), then we could not accurately define which of the domains may confer 

stability to CENP-A. To define the requirements for these domains in the absence of 

endogenous CENP-C, we employed a human DLD-1 cell line in which both alleles of 

CENP-C are tagged with an auxin-inducible degron (AID)(Holland et al., 2012; 

Nishimura et al., 2009) and EYFP tags (Fachinetti et al., 2015) (Figure 21a). In this 

background, we introduced untagged versions of either wild type or mutant CENP-C 

proteins, constitutively expressed from a unique genomic locus (Figure 21b). The 

AID-EYFP-tagged CENP-C with an otherwise wildtype protein coding sequence is 

degraded to below the level of detection within 30 min of addition of the synthetic 

auxin, indole-3-acetic acid (IAA)(Figure 22a-d). This allowed us to exclusively 

detect the rescue constructs with an antibody directed against CENP-C (Figure 21c-

e). Since all constructs are expressed at roughly equal levels as the AID-EYFP-tagged 

version prior to IAA treatment, there is an expected drop in the amount that is 
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detectable at centromeres after IAA treatment even with the wildtype full-length 

version [CENP-C(FL); Figure 21d,e, and Figure 22e,f]. The removal of the CD led to 

partially diminished CENP-C localization, whereas removal of the CM had little 

effect, even when removed in combination with the CD (Figure 21d,e). Thus, the CD 

and CM are not strictly necessary for CENP-C localization, consistent with the fact 

that CENP-C makes multiple other direct contacts within the meshwork of the CCAN 

(Klare et al., 2015b; McKinley et al., 2015; Nagpal et al., 2015).  

Previously, we found that slow reduction of CENP-C (via shRNA treatment) 

causes a marked decrease in the retention of SNAP-tagged and 

tetramethylrhodamine-Star (TMR*) pulse-labeled CENP-A at centromeres (Falk et 

al., 2015). This strategy allows us to monitor the pool of CENP-A nucleosomes 

existing prior to the pulse labeling (Bodor et al., 2013; Falk et al., 2015; Jansen et al., 

2007), so that any effects of CENP-C depletion on nascent CENP-A assembly (Carroll 

et al., 2010; Erhardt et al., 2008; Moree et al., 2011) do not complicate our analysis. 

Therefore, we next tested whether these domains of CENP-C are required for the 

retention of CENP-A at centromeres. We first added the SNAP tag to endogenous 

CENP-A using CRISPR-Cas9-mediated genome editing (Figure 21f, and Figure 22g-

j), and confirmed that rapid removal of CENP-C-AID-EYFP with no rescue causes a 

dramatic decrease over 24 h of the existing pool of CENP-A at centromeres (Figure 

22k-m). CENP-C(FL) rescued CENP-A retention, whereas replacement with CENP-

C(∆CD) resulted in a marked decrease in CENP-A retention (Figure 21g-i). In 

contrast, CENP-C(∆CM) did not diminish CENP-A retention (Figure 21g-i). 

Therefore, CENP-CCD is required for the retention of CENP-A at centromeres. 
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Figure 21. CENP-CCD is the only nucleosome binding domain of CENP-C required for 
retention of CENP-A nucleosomes.  
(a) Schematic of CENP-CAID-EYFP/AID-EYFP cells.  (b) Rescue constructs constitutively 
expressed at unique FRT site.  FL=full length. (c) Immunoblot of CENP-CAID-EYFP/AID-

EYFP cells (with and without 4 h of auxin-induced CENP-C depletion), using an 
antibody generated against CENP-C (a.a. 1-198).  (d) Representative images, in 
which the loss of YFP signal verifies depletion of CENP-C-AID-EYFP after 24 h of IAA, 
and CENP-C antibody then exclusively detects rescue constructs.  (e) Quantitation of 
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d.  (f) Schematic for SNAP-tagging CENP-A at its endogenous locus.  (g) Schematic 
for pulse-chase experiment in which CENP-CAID-EYFP/AID-EYFP cells expressing rescue 
constructs of either CENP-C(FL) or CENP-C domain deletion mutants were pulse-
labeled with TMR* and assessed for retention of the existing pool of CENP-A 
molecules.  (h) Representative images from experiment diagrammed in g.  (i) 
Quantitation of h.  See also Figure 22k-m. All graphs are shown as mean ±95% 
confidence interval (n>2000 centromeres in all cases). 
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Figure 22. Compromised retention of centromeric CENP-A nucleosomes upon rapid 
auxin-induced degradation of CENP-C. 
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(a) Schematic of CENP-CAID-EYFP/AID-EYFP cells. (b) Timecourse of CENP-C-AID-EYFP 
signal after various lengths of IAA treatment. (c) Quantitation of b. Mean ± 95% 
confidence interval (n>2000 centromeres in all cases). (d) Immunoblot of CENP-
CAID-EYFP/AID-EYFP cells using anti-CENP-C and anti-α-tubulin after various lengths of 
IAA treatment.  (e) CENP-CAID-EYFP/AID-EYFP cells expressing full-length, untagged 
CENP-C rescue construct at the unique FRT site. Prior to IAA treatment, anti-CENP-C 
antibody detects both the rescue construct and the CENP-C-AID-EYFP at the 
endogenous gene locus. After IAA treatment, the AID-tagged CENP-C is depleted (as 
verified by the loss of YFP signal), and anti-CENP-C antibody exclusively detects the 
rescue construct. (f) Quantitation of e. Since both CENP-C-AID-EYFP and the rescue 
construct are present in the cell prior to IAA addition, there is an expected drop 
(~2-fold) in centromeric CENP-C signal upon rapid removal of the AID-tagged 
CENP-C. Mean ± 95% confidence interval (n>2000 centromeres in all cases). (g) 
Schematic for SNAP-tagging CENP-A at its endogenous locus by CRISPR/Cas, in 
CENP-CAID-EYFP/AID-EYFP cells. (h) Schematic for screening clones by genomic PCR. 
Incorporation of the repair template containing SNAP is expected to result in a 2.2 
kb PCR product. (i) PCR with genomic DNA extracted from parental cells and a 
heterozygous clone in which one allele in which CENP-A is SNAP-tagged by CRISPR. 
(j) Verification of presence of SNAP-tagged CENP-A by immunoblot with anti-
centromere antibodies (ACA). In addition to CENP-A, ACA also recognizes CENP-B, 
which here serves as a loading control. The heterozygous clone has both 
endogenous CENP-A as well as SNAP-tagged CENP-A. (k) Schematic of the clone 
used for all TMR* experiments in this study (CENP-CAID-EYFP/AID-EYFP cells with CENP-
A that is SNAP-tagged at its endogenous locus), and schematic of pulse-chase 
experiment to measure CENP-A retention at the centromere after complete 
depletion of CENP-C. (l) Representative images from experiment diagrammed in k. 
(m) Left: Quantitation of panel l, shown with all datapoints (n>2000 centromeres in 
all cases), and displayed as in our prior study (Falk et al., 2015). Right: Plotting these 
same data as a bar graph showing mean ± 95% confidence interval (Cumming et al., 
2007). For TMR* experiments with CENP-C rescue constructs (Figure 21g-i, Figure 
25d,e, and Figure 35d-f), the value of the -IAA condition is normalized as 100%, 
and the value of the +IAA condition is normalized as 0%. 

 

3.3.2 THE ARGININE ANCHOR OF CENP-CCD STABILIZES 

CENP-A 

We next determined whether or not the stability CENP-CCD imparts to CENP-

A nucleosomes is attributable to the CENP-A nucleosome structural transition (Falk 

et al., 2015, 2016). We reasoned that by reducing the contact points of the CENP-CCD 

with the H2A-H2B dimer (Kato et al., 2013) that we could generate a version of 
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CENP-C that could bind to CENP-A nucleosomes but not drive the nucleosome 

structural transition (Falk et al., 2015, 2016) that we predicted would be central to 

stabilizing CENP-A at centromeres. We chose two adjacent arginines (R521 and 

R522) within the CENP-CCD that are proposed to contact an acidic patch of the 

nucleosome on the surface of the H2A-H2B dimer (Kato et al., 2013), and performed 

quantitative binding studies on CENP-A nucleosomes in which one histone subunit 

(H2B) is fluorescently labeled at a site (at the position corresponding to K120) distal 

to the binding surface of CENP-CCD (Figure 23a) We reasoned it was likely that 

existing isothermal calorimetry data (Kato et al., 2013) (that used canonical 

nucleosomes with the C-terminal 6 a.a. of CENP-A appended to conventional H3) 

does not clearly distinguish altered binding from a complete loss of binding; since the 

complex binding surface for CENP-CCD on the nucleosome involves 3 different 

histone subunits and a nucleosome structural transition for bona fide CENP-A 

nucleosomes (Falk et al., 2015, 2016), complicating the interpretation of 

thermodynamic measurements. Instead, our native PAGE analyses would clearly 

distinguish unbound, bound, and higher-order aggregates that can form with the 

WT protein at very high concentrations. We find that while the binding affinity of 

CENP-CCD R521A is close to that of WT CENP-CCD, CENP-CCD R522A exhibits a 2 to 3-

fold decrease in binding affinity (Figure 24a,b). The discrete mobility on native 

PAGE of the CENP-A nucleosome core particle (NCP)-CENP-CCD complex is lost in 

R522A, but preserved in R521As (Figure 24a,c). Therefore, both mutations 

preserve the ability to bind to the NCP, but that the R522A may perturb the highly 

ordered nature of the complex that CENP-CCD forms with the NCP. Meanwhile, 

mutation of one of the hydrophobic residues (W530) proposed to contact the 

hydrophobic tail of CENP-A abolishes binding to CENP-A nucleosomes (Figure 23b-

e).  

We then measured the effects of these mutations using HXMS, an approach 

that revealed HX protection that maps unambiguously to the buried center of the 

nucleosome to a region encapsulating a -sheet that forms between H2A and H4, 



72 

coinciding with the CENP-A nucleosome structural transition conferred by WT 

CENP-CCD (Falk et al., 2015). HX measures the rate of amide proton exchange along 

the polypeptide backbone of proteins, and protection occurs through stabilization of 

H-bonds within secondary structure (Englander, 2006) (i.e., within histone -helices 

or between the -strands that form with loop L1/L2 contacts between histone pairs 

like CENP-A and H4 (Black et al., 2004; Falk et al., 2015)) or via direct backbone 

interactions (Englander, 2006). Reconstitution of complexes at the concentrations 

and high nucleosome saturation required for the clear interpretation of HXMS 

experiments (see Methods) were achieved with WT, R521A, and R522A versions of 

CENP-CCD (Figure 24c). HXMS analysis revealed that CENP-CCD(R521A) forms a 

similar complex as wildtype CENP-CCD, with protection of the surface helices of the 

CENP-A NCP as well as the interior H2A-H4 interface (Figure 24d)(Falk et al., 

2015). On the other hand, although CENP-CCD(R522A) still binds to CENP-A NCPs 

(Figure 24a-c), its mode of binding is grossly perturbed: it still contacts and 

stabilizes the H4 α2 helix on the surface of the NCP, but the HX protection is reduced 

at the other surface helices (one each on CENP-A and H2A)(Figure 24d). We 

interpret these results to mean that the reduced HX protection on the surface of 

H2A is directly due to the removal of the CENP-CCD arginine anchor. The altered 

dynamics in HX are extended to reduce protection at a contact site with CENP-A 

(near CENP-C a.a. 530) that lies between the CENP-CCD N-terminal (CENP-C a.a. 522) 

nucleosome contact point (on H2A) and its C-terminal (near CENP-C a.a. 535) 

contact point (on H4)(Kato et al., 2013) (Figure 24d-f, h). Most importantly, 

removal of the arginine anchor by the R522A mutation leads to loss of HX protection 

at the H2A-H4 interface at the interior of the nucleosome (Figure 24d, g, i). Since 

CENP-C(R522A) binding fails to stabilize the internal H4/H2A interface similar to 

CENP-C(∆519-533), which is missing the entire region required for binding to 

CENP-A nucleosomes, we predicted that both mutants would also fail to confer 

CENP-A stability. After generating the respective cell lines (Figure 25a), and adding 

IAA to remove CENP-C-AID-YFP, all mutants localize to centromeres to a level 
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equivalent to the wild type protein (Figure 25b,c). We measured retention of 

TMR*-labeled CENP-A, and found that both CENP-C(∆519-533) and CENP-C(R522A) 

were markedly reduced in their ability to retain CENP-A at centromeres, whereas 

the CENP-C(R521A) mutation had no effect (Figure 25d,e). The R522A result is 

particularly striking, indicating that R522 is the key arginine anchor of CENP-CCD 

and providing a prime example of how an arginine anchor on a nucleosome binding 

protein can be a lynchpin for a central biological process such as maintaining 

centromere identity. Together with our HXMS results, these data strongly indicate 

that stabilization of the interior of the CENP-A nucleosome requires the H2A-H2B 

contacts via R522 of CENP-C and that the stability of CENP-A nucleosomes due to 

CENP-C at functional centromeres can be attributed exclusively to the CENP-CCD. 

 

 
 

Figure 23. CENP-CCD(W530A) fails to bind to CENP-A nucleosomes. 
(a) Schematic for labeling H2B K120C with Cy5, subsequent refolding with H2A to 
form histone dimers, and reconstitution into nucleosomes. (b) SDS-PAGE gels 
stained with Coomassie Blue of CENP-CCD WT and mutant proteins used for binding 
assays shown in this figure and Figure 24. (c) Representative native PAGE analysis 
of CENP-A NCPs harboring Cy5-labeled histone H2B that have been incubated with 
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the indicated concentrations of CENP-CCD(W530A).  Only low level of binding to the 
nucleosome was observed for the W530A mutant. (d) Quantitation of three 
independent experiments (values shown are mean ± SD) performed as in panel c. 
Note that for some data points, the error bars are too small to be visible in the 
graph. The apparent Kd for W530A was not determined (ND) because of insufficient 
binding. (e) The W530A mutant does not assemble with CENP-A nucleosomes to an 
extent that would make an HXMS experiment useful or interpretable. CENP-CCD 
mutants incubated with CENP-A nucleosomes containing Cy5-H2B. CENP-CCD 
(R522A) can form a complex with CENP-A nucleosomes (under the same conditions 
as those used to assemble nucleosomes for the HXMS experiments in Figure 24), 
while at this concentration, CENP-CCD (W530A) displays very little binding to CENP-
A nucleosomes (note that the majority of the nucleosomes in the presence of W530A 
are unbound from the mutant CENP-C protein). The high proportion of unbound 
nucleosomes would dominate the HXMS experiment and would not be capable for 
making a useful comparison to wild type or R522A versions of CENP-C. 
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Figure 24. The arginine anchor of CENP-CCD is critical for the CENP-A nucleosome 
structural transition. 
(a) Representative native PAGE analysis of CENP-A NCPs harboring Cy5-labeled 
histone H2B that have been incubated with the indicated concentrations of CENP-
CCD (WT or the indicated mutants). Each reaction contains 200 nM nucleosomes. Cy5 
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fluorescence was detected on a Typhoon Phosphorimager, and CENP-C binding 
retards the mobility. Both WT and R521A show crisp shifts to bands with 1 or 2 
copies of CENP-C bound to the nucleosome. R522A exhibits a more smeary 
appearance when bound to the CENP-A nucleosome (see also panel c), and the 
species with a single molecule of CENP-CCD(R522A) was not clearly resolved. Listed 
on the graphs are apparent Kd values for these binding experiments (values shown 
are mean ± SD; n = 3). (b) Quantitation of three independent experiments (values 
shown are mean ± SD) performed as in panel a. Note that for some data points, the 
error bars are too small to be visible in the graph. (c) CENP-A NCPs in complex with 
WT or mutant CENP-CCD, as assessed by native PAGE stained with ethidium bromide 
(EtBr) and then Coomassie Blue. (d) HXMS of all histone subunits of the CENP-A 
NCP from a single timepoint (104 s), showing regions that exhibit additional 
protection from HX upon binding of CENP-CCD(R521A) or CENP-CCD(R522A). Each 
horizontal bar represents an individual peptide, placed beneath schematics of 
secondary structural elements of the CENP-A nucleosome. When available, we 
present the data from all measurable charge states of each of the unique peptides 
(here and in the similarly formatted plots in the experiments presented in Figure 
29 and Figure 32). (e-i) Representative peptides from various histone regions, 
comparing protection from exchange when the nucleosome is bound to CENP-CCD 
R521A versus R522A, showing faithful detection of differences between the two 
mutants across multiple replicate experiments (plotted as the mean ± SD; n = 3). 
Asterisks denotes differences that are statistically significant (p<0.05; Student’s t-
test). 
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Figure 25. The arginine anchor of CENP-CCD is required for CENP-A nucleosome 
stability at centromeres. 
(a) Rescue constructs constitutively expressed at the unique FRT site in CENP-CAID-

EYFP/AID-EYFP cells. FL=full length. (b) Representative images showing localization of 
CENP-C rescue constructs in CENP-CAID-EYFP/AID-EYFP cells after 24 h of IAA treatment. 
Scale bar indicates 10 µm.   (c) Quantitation of b. (d) Representative images 
showing CENP-A retention as measured by TMR* assay in cells, similar to schematic 
in Figure 21g. Scale bar indicates 10 µm.  (e) Quantitation of d. All graphs are 
shown as mean ± 95% confidence interval (n>2000 centromeres in all cases). 

3.3.3 CENP-NNT FASTENS CENP-A TO NUCLEOSOMAL DNA  
Although a substantial component (~50%) of CENP-A retention at 

centromeres is attributable to the CENP-A nucleosome structural transition 

conferred by CENP-CCD (Figure 25d,e), complete removal of CENP-C leads to a more 

pronounced defect (Figure 25d,e, and Figure 22k-m), implying that an interacting 

partner outside of the CENP-CCD also contributes to CENP-A retention. We next 

considered the CENP-L-N complex because CENP-NNT directly contacts the CENP-A 

nucleosome (Carroll et al., 2009; McKinley et al., 2015), but additionally requires 
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CENP-C for its centromere localization (McKinley et al., 2015). Prior work found that 

the interaction of CENP-L-N with CENP-C occurs in a region (CENP-C a.a. 235-

509)(McKinley et al., 2015) overlapping with the CD (CENP-C a.a. 426-537) but 

outside of the histone contact residues (CENP-C a.a. 519-533). We found that CENP-

C235-425 binds to CENP-L-N at similar levels to CENP-C235-509 (Figure 26a), and that 

CENP-C235-352 was sufficient for this interaction (Figure 28a). Consistent with this, 

CENP-C(∆519-533) almost completely rescues CENP-L-N localization (Figure 26b,c 

and Figure 28b,c). Taken together, our findings suggest that CENP-C and CENP-N 

bind to each other with interaction interfaces that are distinct from their 

nucleosome interaction interfaces. Thus, in principle, CENP-NNT and CENP-CCD could 

both contribute to the stability of CENP-A nucleosomes at human centromeres. 

CENP-N was previously known to directly bind to the CENP-A nucleosome 

through its N-terminal domain (a.a. 1-289) (Carroll et al., 2009), and we further 

narrowed down the minimal interaction down to a.a. 1-240, and CENP-N(1-240) is 

heretofore referred to as CENP-NNT (Figure 27)(McKinley et al., 2015). 

Prior work found that the interaction of CENP-L/N with CENP-C occurs in a 

region (a.a. 235-509)(McKinley et al., 2015) overlapping with the CD (a.a. 426-537) 

but outside of the histone contact residues (a.a. 519-533). We found that CENP-C235-

425 binds to CENP-L/N at similar levels to CENP-C235-509 (Figure 26a), and that 

CENP-C235-352 was sufficient for this interaction (Figure 28a). Consistent with this, 

CENP-C(∆519-533) almost completely rescues CENP-L/N localization (Figure 

26b,c, and Figure 28b,c). Taken together, our findings suggest that CENP-C and 

CENP-N bind to each other with interaction interfaces that are distinct from their 

nucleosome interaction interfaces. Thus, in principle, CENP-NNT and CENP-CCD could 

both contribute to the stability of CENP-A nucleosomes at human centromeres. 
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Figure 26. CENP-NNT crossbridges CENP-A to DNA. 
(a) Coomassie Blue-stained SDS-PAGE of co-purification with described 
protocol(McKinley et al., 2015) of CENP-L/His-CENP-NCT with GST-CENP-C235-509 and 
GST-CENP-C235-425 by glutathione-agarose (Glut) or Nickel-NTA-agarose (Ni). (b) 
Localization of CENP-L-N in CENP-CAID-EYFP/AID-EYFP cells before and after 24 Eh of IAA 
treatment, assessed using anti-CENP-L(McKinley et al., 2015) (See Supplementary 
Fig. 3b for images). (c) Localization of CENP-L-N in CENP-CAID-EYFP/AID-EYFP cells 
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constitutively expressing the rescue constructs CENP-C(FL), CENP-C(∆CD), or CENP-
C(∆519-533), after 24 h of IAA treatment. (See Supplementary Fig. 3c for images) All 
graphs are shown as mean ± 95% confidence interval (n>2000 centromeres in all 
cases). (d) HXMS of all histone subunits of the CENP-A NCP from a single timepoint 
(102 s), showing protection at CENP-A(79-83) upon binding to CENP-NNT. The first 
two residues of each peptide are boxed in dashed black lines because exchange of 
the first two backbone amide protons cannot be measured(Bai et al., 1993). (e,f) 
Representative peptides spanning the CENP-A surface bulge over the time course. 
The maximum number of deuterons possible to measure by HXMS for each peptide 
is shown by the dotted line.  All peptides are plotted at every timepoint as mean ± 
SD from triplicate experiments. Note that for some data points, the error bars are 
too small to be visible in the graph. (g) Schematic of the 5'-fluorescently labeled 147 
bp α-satellite DNA sequence used in footprinting experiments. (h) Representative 
hydroxyl radical footprinting experiment of CENP-A nucleosomes vs. CENP-A 
nucleosomes in complex with CENP-NNT, with inset showing magnification of 
positions -17 to -23. (i) Quantitation of band intensities from 3 independent 
experiments, shown as mean ± SD normalized to DNA position -19 (this position 
was chosen because it was expected to be very exposed for hydroxyl radical-
mediated cleavage with and without CENP-NNT). Asterisks denotes differences that 
are statistically significant (p<0.05; Student’s t-test). (j) A molecular model of the 
CENP-A nucleosome (PDB 3AN2)(Tachiwana et al., 2011) in which the DNA 
sequence was modified(Falk et al., 2016) to that used in the footprinting 
experiment: CENP-A a.a. 79-83 is labeled in green, and DNA positions -21 and -22 
are labeled in red. 
 

 
Figure 27. CENP-N(1-240) is sufficient to bind to the CENP-A nucleosome.  
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 (a) Native gel showing binding of CENP-N(1-240)-His (referred to as CENP-NNT) to 
CENP-A nucleosomes (b) 2-dimensional gel analysis of binding of CENP-NNT to 
CENP-A nucleosomes. Left: native gel of CENP- A nucleosomes with increasing 
amounts of CENP-NNT. The bands marked 1 and 2 were excised and run on an SDS-
PAGE gel (right) to confirm the species (histones and/or CENP-NNT) in the native gel 
band. 
[This figure consists of my contribution to McKinley et al., 2015] 
 
 To measure the location and magnitude of the stability conferred by CENP-

NNT to the CENP-A NCP, we performed HXMS on the assembled complex (Figure 

26d, and Figure 28d). The only region on the entire NCP where we detected 

additional protection from HX in the presence of CENP-NNT is within the CENP-A 

targeting domain (CATD)(Black et al., 2004), at a discrete portion that spans the C-

terminal region of the 1 helix and the N-terminal portion of L1 (Figure 26d-g, and 

Figure 28e-j). This location corresponds to a major surface structural feature 

unique to CENP-A nucleosomes: a bulge of opposite charge as the same site of 

canonical nucleosomes containing H3 (Figure 26e)(Luger et al., 1997; Sekulic et al., 

2010; Tachiwana et al., 2011). The HXMS results are consistent with previous work 

demonstrating that CENP-N recognizes the CATD (Carroll et al., 2009; McKinley et 

al., 2015). The region of HX protection is centered around residues Arg80 and Gly81 

on CENP-A (Figure 26d, inset), where mutations disrupt CENP-N binding (Fang et 

al., 2015).  

 We next considered how CENP-N specifically recognizes CENP-A when it is in 

a histone complex wrapped with DNA and how this might contribute to its function 

at centromere. We employed a well-established approach for nucleosomes (Hayes et 

al., 1990; Syed et al., 2010; Tullius, 1988), recently extended to CENP-A nucleosomes 

assembled with a synthetic positioning sequence (Roulland et al., 2016) that 

employs hydroxyl radical mediated cleavage of DNA. We used the same natural 

CENP-A nucleosome positioning sequence from human centromeres (Falk et al., 

2015; Hasson et al., 2013) used in our HXMS experiments, but where it is end-

labeled (Falk et al., 2016) for hydroxyl radical footprinting (Figure 26g). CENP-A 

nucleosome positioning is strong enough to readily detect the expected ~10 bp 

periodicity of protection from hydroxyl radical cleavage caused by each superhelical 
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turn of the DNA on the surface of the histone octamer (Figure 26h). CENP-NNT 

binding does not alter the phasing, but there is very strong added protection at -21 

and -22 nt from the dyad axis of the nucleosome (Figure 26h,i). This location is 

immediately adjacent to the bulged L1 of CENP-A that is protected from HX (Figure 

26j). Thus, we envision a continuous binding surface that spans and crossbridges 

CENP-A and nucleosomal DNA. 

 This raised the questions of whether the nucleosome binding surface of 

CENP-NNT is an extended, unstructured segment, as in CENP-CCD, or a well-folded 

domain. Fortunately, our HXMS experiments on the CENP-A nucleosome complex 

with CENP-NNT yielded near complete coverage of both the histone fold domains of 

each nucleosome subunit (Figure 26d) and CENP-NNT, itself (Figure 29), for which 

there is little or nothing known regarding its structure and dynamics. For CENP-NNT, 

we found substantial HX protection for the CENP-NNT molecule alone (Figure 29), 

suggesting it is a folded domain. This protection was markedly increased—taking 

100-1000 times as long to reach the same level of HX—upon binding to CENP-A 

NCPs (Figure 29). The dramatic protection from HX on CENP-NNT upon binding to 

the CENP-A NCP extended through its entire N-terminal ~200 a.a (Figure 29, and 

Figure 30a-g). Residues ~209-240 were disordered both before and after binding 

to CENP-A NCPs (Figure 29a and Figure 30h-i), indicating that this region is 

unlikely to be involved in binding. Indeed, a further truncation of CENP-N1-205 

retained the ability to bind to CENP-A nucleosomes (Figure 30j). Since there are key 

residues for this interaction (R11 and R196)(Carroll et al., 2009) at each end of this 

domain, it is likely that the folded nature of the CENP-NNT brings together key 

residues that form the binding surface with CENP-A NCPs. Indeed, important 

residues for CENP-A nucleosome binding are found at various locations across this 

region of CENP-N (Carroll et al., 2009). 
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Figure 28. CENP-L/NCT binds CENP-C235-352, and CENP-NNT binds the CENP-A 
nucleosome surface bulge.  
(a) SDS-PAGE showing co-purification performed as described(McKinley et al., 
2015) of fragments of GST-CENP-C with CENP-L/His-CENP-NCT, demonstrating that 
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CENP-C235-352 is sufficient for the interaction with CENP-L/NCT. (b) Representative 
images showing localization of CENP-L/N in CENP-CAID-EYFP/AID-EYFP cells before and 
after 24 h of IAA treatment, assessed using anti-CENP-L(McKinley et al., 2015). See 
quantitation in Fig. 4b. (c) Representative images showing localization of CENP-L/N 
in CENP-CAID-EYFP/AID-EYFP cells constitutively expressing the rescue constructs CENP-
C(FL), CENP-C(∆CD), or CENP-C(∆519-533), after 24 h of IAA treatment, assessed 
using anti-CENP-L(McKinley et al., 2015) . See quantitation in Figure 26c. (d) CENP-
A NCPs alone and in complex with CENP-NNT as assessed by native PAGE stained 
with EtBr or Coomassie Blue, and schematic for HXMS experiment. (e) Evidence that 
our HXMS experiments have minimal back-exchange. Cumulative distribution curve 
of a representative fully deuterated (FD) sample (see the Methods for a description 
of how FD samples are prepared), showing the extent of deuteration of all peptides 
compared to the theoretical maximum amount of deuteration of each peptide (i.e., if 
every amide proton were exchanged for a deuteron). The median deuteration was 
~88% for the FD sample, therefore the back-exchange after the quench step was 
only ~12%, which is well within the optimal range (better than most published 
HXMS experiments(Walters et al., 2012)). (f-i) Representative peptides spanning 
the α2 helix of CENP-A. We note that our data do not exclude that the binding site 
might extend to adjacent surface residues on the N-terminal portion of α2 
helix(Sekulic and Black, 2009; Tachiwana et al., 2011) that also lies within the CATD. 
Even prior to CENP-NNT binding, this particular region (CENP-A a.a. ~85-111) of the 
α2 helix of CENP-A undergoes HX too slowly (>12 days(Black et al., 2007a)) for us to 
detect. All peptides are plotted at every time point as mean ± SD from triplicate 
experiments. At every other location of the folded core of the octameric CENP-A 
nucleosome, however, HX is fast enough that we could have measured changes if 
imparted by CENP-NNT, but none were observed (See Fig. 4d). Note that for some 
data points, the error bars are too small to be visible in the graph. (j) A peptide of 
H2A a.a. 40-50, showing mild protection upon binding to CENP-N. 
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Figure 29. CENP-NNT undergoes global stabilization upon binding to the CENP-A 
nucleosome. 
(a) HXMS of CENP-NNT from a single timepoint (104 s), showing substantial 
protection from HX spanning the ~200 a.a. domain upon binding to CENP-A NCP. 
(b-e) Representative peptides spanning CENP-NNT over the timecourse. All peptides 
are plotted at every timepoint as mean ± SD from triplicate experiments. Note that 
for some data points, the error bars are too small to be visible in the graph. 
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Figure 30. The N-terminal 205 amino acids of CENP-N constitute its minimal 
nucleosome-binding domain. 
(a-i) Representative peptides spanning various regions of CENP-NNT. CENP-NNT 
experiences substantial protection from HX across its entire first ~200 amino acids 
(a-g), indicating that it consists of a folded domain that becomes globally rigidified 
upon binding to CENP-A NCPs. The residues 206-230 (h,i) reach full deuteration 
even at the earliest timepoint, and show no difference upon binding to CENP-A 
NCPs, which indicates that this is a disordered region potentially dispensable for 
binding to CENP-A NCPs. The maximum number of deuterons possible to measure 
by HXMS for each peptide is shown by the dotted line. All peptides are plotted at 
every time point as mean ± SD from triplicate experiments. Note that for some data 
points, the error bars are too small to be visible in the graph. 
(j) Guided by HXMS data (a-i), we further truncated CENP-NNT into just its first 205 
amino acids. Native PAGE shows CENP-A NCPs with increasing molar ratios of 
CENP-N1-205, stained either with EtBr or Coomassie Blue. As expected, CENP-N1-205 is 
sufficient for binding to CENP-A NCPs, supporting the notion that this is the minimal 
nucleosome-binding domain on CENP-N. 

3.3.4 THE CORE CENTROMERIC NUCLEOSOME COMPLEX 

(CCNC) 

Since the HX protection on CENP-A NCPs from CENP-NNT is discrete (Figure 

26d) at a nucleosomal surface contact point that remains accessible after CENP-CCD 

binding (Falk et al., 2015; Kato et al., 2013), it seemed reasonable to reconstitute 

nucleosome complexes with both domains bound simultaneously. Using established 

conditions that generate a complex with one copy of CENP-CCD bound to each face of 

the nucleosome (Falk et al., 2015; Kato et al., 2013), we added increasing amounts of 

CENP-NNT (Figure 31a). We observed a concentration-dependent and stepwise 

formation of complexes where one and two copies of CENP-NNT bound to the CENP-

A NCP complex containing two copies of CENP-CCD (Figure 31a,b). The complexes 

were stable through native PAGE analysis, and the dominant species contained 

equimolar amounts (i.e. two copies each) of each core histone (CENP-A, H4, H2A, 

and H2B), CENP-CCD, and CENP-NNT (Figure 31b). We term this complex the Core 

Centromeric Nucleosome Complex (CCNC)(Figure 31c, Figure 32a,c). The complex 

was purified by preparative native PAGE (Figure 32c) and is also stable through 
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sucrose gradient (Figure 32d,e), indicating that the CCNC is stable throughout the 

lengthy (several hours) separation, even with no gel matrices involved whatsoever. 

CENP-A nucleosomes within the CCNC experience protection from HX at 

multiple sites (Figure 31e,f, and Figure 32b,f-i) corresponding to the additive 

contributions of CENP-CCD (Falk et al., 2015) and CENP-NNT (Figure 31d-f). 

Furthermore, the rigidity conferred to CENP-N is measured out to 100,000 s of 

exchange, and exhibits clear EX2 behavior at all timepoints—without any evidence 

of bimodal peaks or any other fast exchanging species that could have corresponded 

to a substantially populated unbound, unprotected state—thus providing 

unambiguous evidence that the complex is stable in solution even on timescales of 

~28 h (Figure 31d). The CCNC exhibits surface protection on CENP-A, H4, and H2A 

and protection at the internal interhistone H2A-H4 β-sheet that are all conferred by 

CENP-CCD (Falk et al., 2015), as well as the surface bulge protection at the 1-helix 

and L1 conferred by CENP-NNT (Figure 31e,f and Figure 32g-i). The discrete HX 

protection pattern emphasizes the specific nature of CCNC assembly in solution. 

CENP-CCD, itself, undergoes rapid HX, consistent with CENP-CCD existing as a 

primarily linear polypeptide lacking defined secondary structure(Kato et al., 2013), 

although there is reduced HX at the earliest timepoints within ~a.a. 515-537 when 

bound to CENP-A nucleosomes (Figure 33). Within the CCNC, CENP-NNT still 

experiences massive slowing of HX across most of its folded nucleosome-binding 

domain, with exception of its a.a. 99-122 region, suggesting that its mode of 

nucleosome binding could be altered at that specific location by the co-presence of 

CENP-CCD (Figure 34). Thus, in the context of the CCNC, each non-histone subunit 

acts in a complementary way to stabilize the particle: CENP-CCD binding directs a 

structural transition of the nucleosome that stabilizes the interior of the octameric 

histone core and stabilizes surfaces helices on three of the histone subunits (Figure 

31e,f), whereas CENP-NNT stabilizes the CENP-A surface bulge on the nucleosome 

surface (Figure 31e,f) and crossbridges it to the adjacent DNA (Figure 31g-i). 
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Figure 31. CENP-CCD and CENP-NNT simultaneously bind to the same CENP-A NCP 
and generate internal and surface stability.   
(a) Coomassie Blue-stained native PAGE of binding reactions with CENP-NNT and 
CENP-CCD and CENP-A NCPs. (b) Indicated bands from native PAGE excised and run 
on SDS-PAGE.  (c) Schematic of formation of the core centromeric nucleosome 
complex (CCNC). (d) A representative peptide of CENP-NNT (a.a. 9-21) that shows 
substantial protection upon binding to CENP-A nucleosomes. The peptide is shown 
from CENP-NNT alone (left) vs. as part of the core centromeric nucleosome complex 
(CCNC) (right). Dotted red lines serve as guideposts to highlight the differences in 
m/z shifts between the two samples. A red asterisk denotes the centroid location of 
each peptide envelope, and the numerical value in blue indicates the centroid mass 
of the peptide envelope. It is important to note that this peptide exhibits clear EX2 
behavior at all timepoints when part of the CCNC (without any evidence of bimodal 
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peaks), indicating that this complex is stable in solution even on timescales of 
100,000 s (~28 hr). (e) HXMS of all histone subunits of the CENP-A NCP from a 
single timepoint (104 s). (f) Regions showing substantial protection from HX 
mapped onto the structure of the CENP-A NCP (PDB ID 3AN2).  Left: the exposed 
CENP-A bulge, to which CENP-N binds.  Middle: the surface helices to which CENP-C 
binds.  Right: internal histone-histone contacts that undergo stability upon CENP-C 
binding. 
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Figure 32. CENP-A NCPs in complex with both CENP-NNT and CENP-CCD experience 
additive HX protection.   
(a,b) Experimental scheme for HXMS of the CENP-A NCP in complex with both 
CENP-NNT and CENP-CCD. (c) Purification of the complex of CENP-A nucleosomes 
bound to CENP-CCD and CENP-NNT (the CCNC) by preparative native PAGE (“Prep 
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Cell”). Fractions are collected as they are eluted out of the bottom of the gel. The 
native PAGE is stained both by ethidium bromide (For DNA) and Coomassie Blue 
(for protein). (d) Sucrose gradient elution profiles of CENP-A nucleosomes, CENP-A 
nucleosomes in complex with CENP-CCD and CENP-NNT, and the CENP-CCD and CENP-
NNT proteins alone. Complexes were subject to a linear 5-30 % sucrose gradient with 
centrifugation at 35,000 rpm for 13 hr at 4°C. The samples were fractionated from 
top to bottom, and each fraction was analyzed for absorbance at 280 nm (for 
nucleosome and complex) or 260 nm (for CENP-C and CENP-N proteins alone). The 
absorbance values are plotted, with the highest value in each run normalized to 1.0. 
(e) SDS-PAGE gels stained with Coomassie-Blue, showing input and peak fractions 
of CENP-A nucleosomes bound to CENP-CCD and CENP-NNT (the CCNC). (f-i) 
Representative peptides within the CCNC. (f) A histone peptide that shows no 
difference between CENP-A nucleosomes vs. the CCNC. (g-i) Histone peptides 
spanning the CENP-A surface bulge (g), and the β-sheet region between histone H4 
and H2A (h,i) over the timecourse. The maximum number of deuterons possible to 
measure by HXMS for each peptide is shown by the dotted line. All peptides are 
plotted at every time point as mean ± SD from triplicate experiments. Note that for 
some data points, the error bars are too small to be visible in the graph. 
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Figure 33. CENP-CCD lacks detectable secondary structure and binds the histone 
surface of CENP-A nucleosomes with residues ~515-537.  
(a) CENP-CCD peptides alone vs. when in complex with CENP-A nucleosomes, at the 
101 s, 4°C timepoint (which is the earliest timepoint we can test, and is equivalent to 
100 s at room temperature [RT]). This shows that CENP-CCD, when alone, is 
disordered and is mostly completely exchanged even at this earliest timepoint. 
CENP-CCD when in complex with CENP-A nucleosomes shows some mild protection 
in the a.a. 513-537 region, which encompasses the region that contacts CENP-A 
nucleosomes (~a.a. 519-533). Each horizontal bar represents an individual peptide 
from CENP-CCD alone or in complex with CENP-A nucleosomes and is color-coded 
for percent deuteration. (b) CENP-CCD peptides alone versus when in complex with 
CENP-A nucleosomes versus when part of the CCNC, at the 101 s (RT) timepoint. 
Again, some mild protection is seen in the a.a. 513-537 region when CENP-CCD is 
bound to CENP-A nucleosomes or part of the CCNC, but CENP-CCD still overall lacks 
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secondary structure in three instances. Thus, because protection is so minor at such 
an early timepoint (10 s), the presence of CENP-N does not cause the gain of 
secondary structure or any other change that would otherwise lead to strong 
protection from HX. 

 

Figure 34. The HXMS behavior of CENP-NNT in the presence and absence of CENP-
CCD.  
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(a-l) Representative peptides of CENP-NNT across the timecourse, either unbound or 
bound to CENP-A NCPs (in the presence or absence of CENP-CCD). The maximum 
number of deuterons possible to measure by HXMS for each peptide is shown by the 
dotted line. All peptides are plotted at every time point as mean ± SD from triplicate 
experiments. Note that for some data points, the error bars are too small to be 
visible in the graph. Across most of the folded nucleosome-binding domain of CENP-
NNT, the massive slowing of HX is similar in the presence or absence of CENP-CCD (a-
c, g-k). Within a region that maps unambiguously to a.a. 99-122, however, CENP-N 
only exhibits substantial HX protection when bound alone to the CENP-A NCP (d-f). 
This suggests that a very local region (i.e. between a.a. 99-122) has a structural 
change in the presence of CENP-C that leads to the change in HX behavior we 
observe. The region C-terminal of a.a. 206 is disordered regardless of whether 
CENP-NNT is bound to the NCP (l, also see Figure 30). 

3.3.5 CENP-A NUCLEOSOME STABILITY REQUIRES BOTH 

CENP-C AND CENP-N 
The finding that a stable CCNC can be assembled from its component parts 

(Figure 31) supports the notion that CENP-N provides stability to centromeric 

chromatin that cannot be attributed to CENP-CCD. To test this notion, we focused our 

analysis back on our cell lines where the levels of the two components can be 

modulated. CENP-C and CENP-N display partially interdependent localization to 

centromeres in human cells (McKinley et al., 2015), complicating the analysis of 

their interactions with CENP-A. During the 24 h timescale in which we measure 

CENP-A retention at centromeres, CENP-C removal also leads to loss of most but not 

all CENP-L-N (Figure 26b, and Figure 28b). CENP-N removal, using a similar AID-

tagging approach of both CENP-N alleles(McKinley et al., 2015), reduces CENP-C 

levels at centromeres by ~half (Figure 36a-c). Interestingly, CENP-N-AID removal 

produces a pronounced defect in CENP-A retention (Figure 35a-c), suggesting a 

direct role of CENP-N in CENP-A retention, since reducing CENP-C levels by half is 

unlikely to be responsible for the full magnitude of this effect. Importantly, 

combined removal of CENP-N (by siRNA treatment) and CENP-C (by IAA treatment) 

had an additive effect, severely compromising CENP-A retention (Figure 35d-f, and 

Figure 36d,e). This indicates that the low level of CENP-L-N remaining after 24 h of 

CENP-C depletion (Figure 26b, and Figure 28b) accounts for the residual stability 
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to CENP-A nucleosomes not accounted for by the CENP-CCD alone (Figure 24d,e). 

More importantly, this supports a model wherein CENP-C and CENP-N are roughly 

equal partners necessary to form the CCNC and maintain CENP-A nucleosome levels 

at centromeres (Figure 37). 

 

Figure 35. CENP-C and CENP-N collaborate to maintain CENP-A nucleosomes at 
centromeres.  
(a) Schematic for experiment in which CENP-NAID-EGFP/AID-EGFP cells expressing CENP-
A-SNAP at a unique FRT site were pulse-labeled with TMR* and assessed for 
retention of the existing pool of CENP-A molecules. (b) Representative images from 
experiment diagrammed in a. Scale bar indicates 10 µm.  (c) Quantitation of b. (d) 
Schematic of experiment, in which CENP-CAID-EYFP/AID-EYFP cells were treated with 
siCENP-N or siGAPDH and pulse-labeled with TMR*, and the relative CENP-A-SNAP 
signals were analyzed after 24 h (with or without CENP-C depletion by IAA 
treatment).  (e) Representative images from experiment described in d. Scale bar 
indicates 10 µm.   (f) Quantitation of e. The value of the “siGAPDH, -IAA” condition is 
normalized as 100%, and the value of the “siCENP-N, +IAA” condition is normalized 
as 0%. All graphs are shown as mean ± 95% confidence interval (n>2000 
centromeres in all cases).  
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Figure 36. Effect of CENP-N depletion on centromeric CENP-C and CENP-T levels. 
(a) AID-tagged CENP-N was depleted by 24 h of IAA in CENP-NAID-EGFP/AID-EGFP cells, 
then assessed for centromeric CENP-C localization, and disappearance of CENP-N-
AID-EGFP. (b) Quantitation of centromeric CENP-C intensity before and after 24 h 
IAA treatment. Mean ± 95% confidence interval (n>2000 centromeres in all cases). 
(c) Quantitation of centromeric CENP-N-AID-EGFP intensity before and after 24 h 
IAA treatment. Mean ± 95% confidence interval (n>2000 centromeres in all cases). 
(d) CENP-CAID-EYFP/AID-EYFP cells were subject to CENP-N depletion via siRNA, as in 
Figure 35d, and assessed for centromeric CENP-T localization.  (e) Quantitation of 
centromeric CENP-T intensity. As expected, CENP-T levels are markedly reduced in 
the presence of CENP-N depletion (Logsdon et al., 2015; McKinley et al., 2015; 
Samejima et al., 2015), which indicates the expected impact of substantial CENP-N 
depletion by the siRNA approach used here and in the experiment in Figure 35d-f. 
Mean ± 95% confidence interval (n>2000 centromeres in all cases). 
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Figure 37. Model of the physical basis for the stability of CENP-A nucleosomes 
within the CCNC. 
See text for the details of our model of centromere maintenance. We note that CENP-
CCD is shown as an elongated oval that represents a structured loop that has no 
conventional secondary structure, despite having been historically called a 
“domain”. Also, a flexible linker is shown between CENP-CCD and the CENP-C contact 
point with the CENP-L-N complex, in line with proposals that CENP-C largely exists 
as an extended and unfolded protein that may span >100 nm at mitotic kinetochores 
(Screpanti et al., 2011; Wan et al., 2009; Ye et al., 2016). Additionally, it is also not 
known if there is a fixed or variable distance at centromeres from the CENP-C-L-N 
contact point to the CENP-A nucleosome. It is also unclear if this contact point on 
CENP-C with CENP-L-N is a folded domain or if it contacts one or both subunits of 
CENP-L-N. 

3.4. DISCUSSION 

Our physical studies of CENP-A nucleosome complexes combined with gene 

replacement and rapid depletion of the non-histone CCAN proteins, CENP-C and 

CENP-N, provide the molecular basis for the extraordinary stability of CENP-A 

nucleosomes that is at the heart of the epigenetic mechanism that maintains the 

identity of centromere location on every chromosome. At steady-state, we envision 

that the relevant nucleosome required to maintain centromere identity has ~147 bp 

of DNA wrapped around an octameric histone core containing two copies each of 

CENP-A, H4, H2A, H2B, and two copies each of CENP-C and CENP-N. CENP-C binding 
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confers the most pronounced physical changes in the CENP-A nucleosome structural 

transition that alters nucleosome shape, enhances the tendency of CENP-A 

nucleosomes to sample states with 20 bp of DNA unwrapping at each nucleosome 

terminus, and confers internal and surface rigidity to the histone core(Falk et al., 

2015, 2016). CENP-N, while having a more discrete impact on the histone core of the 

NCP (Figure 26), has a binding site that crossbridges a key DNA contact point on 

the NCP to the (CENP-A/H4)2 heterotetramer (Figure 26g-j). We expect that 

normally these are the direct chromatin contacts at the interface with the 

kinetochore, including those recently reconstituted with purified components (Weir 

et al., 2016). Though, since contacts between CENP-A and the other CCNC 

components can be bypassed in mitosis (Hoffmann et al., 2016), CCNC function may 

be more relevant to maintaining centromere identity during the remainder of the 

cell cycle.  

Independent recognition of a single nucleosome by two different chromatin 

components, as we find occurs within the CCNC, has not been well studied in any 

chromatin context. The small but growing list of physical studies of nucleosome 

recognition proteins (Armache et al., 2011; Barbera et al., 2006; Makde et al., 2010; 

McGinty et al., 2014; Morgan et al., 2016) uniformly involves a key contact point 

between an arginine anchor with the nucleosomal acidic patch (McGinty and Tan, 

2016).  Three previous studies had claimed that mutation of R522 (or its 

corresponding position in Xenopus CENP-C) disrupts centromere targeting of CENP-

C, but none provided a definitive answer for mammalian CENP-C: one study was 

done in Xenopus extracts (Carroll et al., 2010), and the two studies in human cells 

used truncated CENP-C transgenes that were overexpressed (Kato et al., 2013; Song 

et al., 2002). Our study advances the field in part because it interrogates the 

nucleosome-binding domains of CENP-C in a gene replacement system, using one in 

which the endogenous CENP-C is rapidly and completely removed, and the 

replacement CENP-C constructs are untagged, full-length, and expressed at near 

endogenous levels (Figure 21c). More broadly, our findings show a remarkable role 
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for an arginine anchor beyond their established role in nucleosome recognition 

(McGinty and Tan, 2016) to a role in altering nucleosome shape and function. R522A 

preserves the ability of CENP-C to bind to CENP-A nucleosomes (Figure 24a-c) and 

accumulate at centromeres (Figure 26b,c), but we pinpoint a role for R522 for 

CENP-A maintenance at the centromere (Figure 26d,e), driving the nucleosome 

structural transition that stabilizes the interior of the CENP-A nucleosome (Figure 

24d,e). It is possible that mutation of another residue within CENP-CCD could also 

retain binding while compromising the CENP-A nucleosome structural transition, 

but disruption of the R522 arginine anchor in our gene replacement systems 

indicates that this common feature in diverse nucleosome binding proteins can play 

an important functional role, beyond the role of molecular recognition.  

CENP-CCD is particularly remarkable because its high specificity for CENP-A 

nucleosomes is mediated by a very small feature (the 6 a.a. C-terminal tail)(Carroll 

et al., 2009), but its binding confers stabilization that spreads throughout much of 

the octameric core of the nucleosome as well as to the position of the DNA gyres 

(Falk et al., 2015, 2016). Remarkably, CENP-CCD does this without having any 

defined secondary structure of its own.  

Most aspects of the mechanism used by CENP-NNT contrast starkly with that 

used by CENP-CCD. The only notable similarity is that CENP-NNT uses a small feature 

on the surface of the CENP-A nucleosome to achieve its high specificity of binding to 

CENP-A nucleosomes. In contrast to the widespread HX protection conferred to the 

NCP by CENP-CCD, the only HX protection we observed with CENP-NNT maps to loop 

L1 (Figure 26d-f). Our findings provide clear biophysical evidence that CENP-NNT 

recognizes NCPs without accessing the acidic patch on H2A-H2B at all, making it 

unique relative to other nucleosome recognition domains studied to date (Armache 

et al., 2011; Barbera et al., 2006; Makde et al., 2010; McGinty et al., 2014; Morgan et 

al., 2016) and leaving open that site on the NCP for CENP-CCD to bind. CENP-NNT 

itself is a folded domain (again, in contrast to CENP-CCD) even prior to engaging the 

CENP-A NCP (Figure 29, Figure 30, Figure 34). Its discrete contact points on Loop 
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1 of CENP-A and the adjacent nucleosomal DNA 21-22 bp from the dyad axis of 

symmetry stabilizes its own secondary structure (Figure 26, Figure 30, Figure 34). 

Therefore, the combination of previous work (Carroll et al., 2009, 2010, Falk et al., 

2015, 2016; Fang et al., 2015; Kato et al., 2013) and the work presented here shows 

that CENP-CCD and CENP-NNT defy expectations in that the unfolded one (CENP-CCD) 

generates substantial structural changes in the NCP (Figure 31e-f and (Falk et al., 

2015; Kato et al., 2013)), whereas the folded one (CENP-NNT) changes core histone 

dynamics only very locally at the points of contact with CENP-A and its adjacent 

nucleosomal DNA (Figure 26d-j). Furthermore, our combined HXMS and hydroxyl 

radical footprinting shows that CENP-N fastens CENP-A to its adjacent DNA, 

providing an example of a crossbridging mechanism for maintaining nucleosome-

encoded epigenetic information that perhaps represent a more general mode for 

maintaining nucleosome-encoded epigenetic information involving other histone 

variants (or post-translationally modified canonical histones).  

A steady-state CCNC complex required to faithfully maintain CENP-A 

retention at centromeres does not necessitate that all components exhibit matched 

turnover rates, themselves. H2A-H2B dimers can come on and off through partial 

disassembly of nucleosomes, as with canonical nucleosomes. CENP-C and CENP-N 

could similarly exchange, and indeed both proteins display dynamic behaviors at 

centromeres (Hellwig et al., 2011; Hemmerich et al., 2008; Smoak et al., 2016), with 

CENP-N varying in quantity at the centromere depending on the cell cycle stage 

(Fang et al., 2015; Hellwig et al., 2011; McKinley et al., 2015). We note that H2A-H2B 

are not nearly as stable at centromeres as CENP-A and H4 (Bodor et al., 2013; Falk 

et al., 2015). The binding mode for CENP-NNT suggests an explanation for this: CENP-

CCD binding protects all of the core histones from dissociating from DNA, but CENP-

NNT would only protect CENP-A and H4. The hydrophobic stitches between CENP-A 

and H4 themselves provide yet another required feature to rigidify the particle and 

maintain it at centromeres (Bassett et al., 2012; Black et al., 2004; Sekulic et al., 

2010).  
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In conclusion, our findings demonstrate that the individual CENP-CCD and 

CENP-NNT subunits independently bind to the nucleosome with non-overlapping 

effects on the stability and/or shape of the nucleosome (Figure 37). When both 

proteins are present, they impart additive effects on the physical properties of 

CENP-A nucleosomes. At any given time, there are multiple molecules of CENP-C and 

CENP-N present at the centromere—both directly bound to the CENP-A 

nucleosomes and directly bound to each other—in a manner that locks in 

centromere location. By tying faithful inheritance of chromosomes to an epigenetic 

mark in which the CCNC acts as the fundamental repeating unit, mammals have 

evolved a remarkably resilient form of chromatin. 

3.5. METHODS 

3.5.1. GENERATION OF CELL LINES 

Using DLD-1 Flp-In T-Rex cells stably expressing Tir1(Holland et al., 2012) with 

CENP-CAID-EYFP/AID-EYFP (Hoffmann et al., 2016) as a starting point, endogenous CENP-

A was tagged with C-terminal SNAP using CRISPR/Cas9-mediated genome 

engineering. The sgRNA was designed to target the 3’UTR of CENP-A. The 

oligonucleotides (5'-CACCGCTGACAGAAACACTGGGTGC-3' and 5'-

AAACGCACCCAGTGTTTCTGTCAGC-3') were annealed and inserted into pX330 

which already contains Cas9 (Ran et al., 2013). To generate the repair template, the 

SNAP-3xHA sequence (Jansen et al., 2007) followed by a viral 2A peptide (Kim et al., 

2011) and the neomycin resistance gene was synthesized as a gBlock (Integrated 

DNA Technologies), and 5’ and 3’ homology arms of ~800 bp each were amplified 

from DLD-1 genomic DNA by PCR. All three pieces were inserted into a pUC19 

backbone using HiFi DNA Assembly (NEB). The repair template and pX330 were co-

transfected with Lipofectamine 2000 (Invitrogen) in 9:1 ratio, and selected after 5 

days using 750 µg/ml G418. To isolate monoclonal cell lines, cells were subject to 

limiting dilution after G418 selection. To screen clones, PCR of genomic DNA was 

performed for every clone (using primers 5'-CCTTCCCCACTCCTTCACAGGC-3' and 



103 

5'-CCTGTGAAAGAGGATGAGCTTACC-3'); insertion of the SNAP tag results in a PCR 

product of 2243 bp (whereas the PCR product is 614 bp if the allele is unmodified). 

Clones containing SNAP-tagged CENP-A were further validated by immunoblotting 

and TMR* visualization. Stable cell lines constitutively expressing CENP-C rescue 

constructs were generated by Flp/FRT recombination. Domain deletions and point 

mutants of CENP-C were generated by PCR site-directed mutagenesis, and the 

sequences of all constructs (WT and mutant versions) were validated by DNA 

sequencing. CENP-C constructs were inserted into a pcDNA5/FRT vector and co-

transfected with pOG44 (Invitrogen), a plasmid expressing the Flp recombinase, 

into cells with Lipofectamine 2000 (Invitrogen) according to manufacturer’s 

instructions. Following selection in 400 µg/ml Hygromycin B, colonies were pooled 

into polyclonal cell lines. CENP-NAID-EGFP/AID-EGFP cells expressing CENP-A-SNAP were 

also generated by Flp/FRT recombination: CENP-A-SNAP was inserted into a 

pcDNA5/FRT vector and co-transfected with pOG44 into CENP-NAID-EGFP/AID-EGFP cells 

(McKinley et al., 2015) and selected with Hygromycin B as described above. 

3.5.2. CELL CULTURE 

The indicated DLD-1 derivatives described above were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS), 100 U ml-1 penicillin and 100 µg ml-1 streptomycin. All cell lines were 

maintained with 2 µg ml-1 puromycin (Sigma). Cell lines in which CENP-A is SNAP-

tagged by CRISPR/Cas9-mediated genome editing were maintained with 750 µg ml-1 

G418. Cell lines containing CENP-C rescue constructs introduced by Flp/FRT 

recombination were maintained with 400 µg ml-1 Hygromycin B. CENP-NAID-EGFP/AID-

EGFP cells with CENP-A-SNAP at the FRT site were maintained in 300 µg ml-1 G418 

and 400 µg ml-1 Hygromycin B. To induce degradation of AID-tagged CENP-C or 

CENP-N, indole-3-acetic acid (IAA; Sigma) was prepared in water and added to cells 

at 500 µM for the indicated amounts of time.   
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3.5.3. IMMUNOBLOTTING 

Samples derived from whole cell lysates were separated by SDS-PAGE and 

transferred to a nitrocellulose membrane for immunoblotting. Blots were probed 

using the following primary antibodies: rabbit anti-CENP-C (1.7 µg ml-1)(Bassett et 

al., 2010), mouse mAb anti-α-tubulin (1:4000, Sigma-Aldrich #T9026), or human 

Anti-Centromere Antibodies (ACA) (2 µg ml-1, Antibodies Incorporated #15-235). 

The blots were subsequently probed using the following HRP-conjugated secondary 

antibodies: Donkey Anti-Human IgG (1:10,000, Jackson ImmunoResearch 

Laboratories #709-035-149), Amersham ECL Mouse IgG (1:2,000, GE Life Sciences 

#NA931), Amersham ECL Rabbit IgG (1:2,000, GE Life Sciences #NA934V). 

Antibodies were detected by enhanced chemiluminescence (Thermo Scientific).  

3.5.4. SNAP LABELING EXPERIMENTS 

DLD-1 cells were pulse-labeled with 2 µM TMR* (NEB) in complete medium for 15 

min at 37°C, washed with PBS and incubated in the culture medium for 2 h to allow 

excess TMR* to diffuse out of cells. Cells were then either fixed immediately (for the 

“0 h” timepoint), or cultured for another 24 h in the presence or absence of 500 µM 

IAA to induce degradation of the AID-tagged CCAN protein (for the “24 h” 

timepoints). Cell number was also determined at these timepoints using a 

hemocytometer, so that the total level of CENP-A turnover could be calculated, as 

described(Bodor et al., 2013; Falk et al., 2015): CENP-A turnover was calculated as 

[(TMR* intensity at 24 h)/(Avg TMR* intensity at 0 h)]*(Change in cell number). 

SiRNA knockdown of CENP-N was performed as described(Logsdon et al., 2015). 

Briefly, cells were treated with 20 µM CENP-N siRNAs (siGENOME SMARTpool; 

Dharmacon, GE Life Sciences #M-015872-02-0005), or GAPDH siRNAs (ON-

TARGETplus GAPD Control; Dharmacon, GE Life Sciences #D-001830-01-05).  

3.5.5. IMMUNOFLUORESCENCE AND MICROSCOPY 
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For experiments involving CENP-A, CENP-C, or CENP-T immunofluorescence, 

DLD-1 cells were fixed in 4% formaldehyde for 10 min at room temperature and 

quenched with 100 mM Tris (pH 7.5) for 5 min, followed by permeabilization using 

PBS containing 0.1% Triton X-100. For experiments involving CENP-L 

immunofluorescence, DLD-1 cells were pre-extracted with PBS containing 0.1% 

Triton X-100 for 30 s, fixed with 4% formaldehyde for 10 min and quenched with 

100 mM Tris (pH 7.5) for 5 min. All coverslips were then blocked in PBS 

supplemented with 2% FBS, 2% BSA, and 0.1% Tween prior to antibody 

incubations. The following primary antibodies were used: mouse mAb anti-CENP-A 

(1:1000, Enzo Life Sciences #ADI-KAM-CC006-E), rabbit pAb anti-CENP-C (1.7 µg 

ml-1)(Bassett et al., 2010), rabbit pAb anti-CENP-T (1 µg ml-1)(Gascoigne et al., 

2011b), and rabbit pAb anti-CENP-L (1:1000)(McKinley et al., 2015). Secondary 

antibodies conjugated to fluorophores were used: Cy3 Goat anti-Rabbit (1:200, 

Jackson ImmunoResearch Laboratories #111-165-144) and Cy5 Donkey anti-Mouse 

(1:200, Jackson ImmunoResearch Laboratories #715-175-151). Samples were 

stained with DAPI before mounting with VectaShield medium (Vector Laboratories). 

Images were captured at room temperature on an inverted fluorescence microscope 

(DMI6000 B; Leica) equipped with a charge-coupled device camera (ORCA AG; 

Hamamatsu Photonics) and a 40x oil immersion objective. Images were collected at 

0.59 µm z-sections and subsequently deconvolved using identical parameters. To 

display as figures, the z stacks were projected as single two-dimensional images and 

assembled using ImageJ (NIH). To quantify fluorescence intensity of centromeres, 

the CraQ macro(Bodor et al., 2012) was run in ImageJ with standard settings using 

DAPI and total CENP-A staining as the reference channel to define ROIs for 

quantification of TMR* intensity. One representative experiment is displayed from 2 

or more independent experiments. At least 2000 centromeres were analyzed for 

each timepoint.  

3.5.6. RECOMBINANT PROTEIN PURIFICATION 
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Human histones and CENP-A were prepared as described (Sekulic and Black, 

2016a; Sekulic et al., 2010). Briefly, histones H2A and H2B are expressed as 

monomers in inclusion bodies and purified under denaturing conditions, then 

refolded into H2A-H2B dimers. (CENP-A/H4)2 is expressed off of a bicistronic 

construct as a soluble heterotetramer and purified by hydroxyapatite column 

followed by cation exchange. Recombinant human CENP-CCD consisting of the 

central domain (a.a. 426-537) was expressed from a plasmid kindly provided by A. 

Straight (Stanford)(Carroll et al., 2010; Falk et al., 2015). CENP-C is expressed as a 

GST fusion protein and affinity-purified on a glutathione column. GST is then cleaved 

by PreScission protease and separated from CENP-C by cation exchange(Carroll et 

al., 2010; Falk et al., 2015; Sekulic and Black, 2016a). sPCR site-directed 

mutagenesis was performed to generate CENP-CCD(R521A) and CENP-CCD(R522A), 

and they were expressed and purified using the same protocol as wildtype CENP-

CCD. Recombinant human CENP-NNT-His was purified with a protocol adapted from a 

previous study(McKinley et al., 2015): CENP-NNT-His was grown in BL21(DE3)pLysS 

cells for 6 h at 18°C, and purified on a 1 ml HisTrap FF column (GE Healthcare) via 

FPLC, with elution buffer of 50 mM sodium phosphate pH 8.0, 500 mM NaCl, 250 

mM imidazole, 1 mM βME, and 50% glycerol. PCR-directed mutagenesis was 

performed to generate the further truncated construct, CENP-N1-205-His, and it was 

purified with the same protocol as CENP-NNT-His. Sequential purifications of 

complexes co-expressing GST- and His-tagged subunits were performed as 

described(McKinley et al., 2015). Briefly, complexes were first purified on Ni-

agarose, and the elution was bound to glutathione agarose, washed three times, and 

eluted. 

3.5.7. ASSEMBLY OF NCPS AND COMPLEXES 

Six identical repeats of a 147 bp DNA sequence derived from an α-satellite 

sequence from the human X chromosome (Yang et al., 1982) was cloned into a 

pUC57 backbone, with each repeat separated by an EcoRV site. The sequence of 

each repeat is 5’-
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ATCAAATATCCACCTGCAGATTCTACCAAAAGTGTATTTGGAAACTGCTCCATCAAAAGG

CATGTTCAGCTCTGTGAGTGAAACTCCATCATCACAAAGAATATTCTGAGAATGCTTCCG

TTTGCCTTTTATATGAACTTCCTCGAT-3’. This sequence corresponds to the major 

binding site that the CENP-A nucleosome occupies on human centromeres (Hasson 

et al., 2013). Preparation of DNA for NCP assembly was performed as described 

(Sekulic and Black, 2016a). Briefly, the plasmid described above was grown, 

isolated, and subjected to EcoRV digestion followed by separation of plasmid and 

insert by anion chromatography using Source 15Q resin (GE Healthcare). With the 

purified DNA, CENP-A NCPs were assembled and uniquely positioned using gradual 

salt dialysis followed by thermal shifting for 2 hr at 55°C (Dyer et al., 2004; Sekulic 

and Black, 2016b). Formation of complexes with CENP-CCD was performed as 

described (Falk et al., 2015), in which 2.2 moles of CENP-CCD were added per mole of 

CENP-A NCPs. To form the complex with CENP-NNT, 4 moles of recombinant CENP-

NNT-His were added per mole of CENP-A NCPs. To form the complex with both 

CENP-NNT and CENP-CCD, 4 moles of CENP-NNT-His and 2.2 moles of CENP-CCD were 

added per mole of CENP-A NCPs. Complexes were analyzed by 5% native PAGE, 

stained with ethidium bromide to visualize DNA and Coomassie Brilliant Blue to 

visualize protein components. Following formation of complexes (or NCPs, in the 

case of the nucleosome-alone sample), samples were purified by preparative 

electrophoresis (Prep Cell, BioRad) using a 5% native gel to isolate the relevant 

complex from other species, such as free DNA (Dyer et al., 2004). 

3.5.8. BINDING ASSAYS (WITH PRAVEEN KUMAR ALLU) 

Recombinant human H2B K120C was  purified as described for wildtype H2B (Falk 

et al., 2015) from inclusion bodies. Lyophilized protein was dissolved in unfolding 

buffer (7 M urea, 10 mM Tris-HCl pH 7.5 at 20°C, 0.4 mM TCEP) for 1 hr at RT and a 

15-fold molar excess of sulfo-Cy5-maleimide (Lumiprobe) was dissolved in DMSO 

and added dropwise to the protein. The reaction proceeded overnight shielded from 

light and was quenched with 5 mM sodium 2-sulfanylethanesulfonate (MESNA) and 

run over a PD-10 column (GE Healthcare) to separate out free dye. Labeled H2B was 
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then mixed with equimolar amounts of H2A for dimer reconstitution and 

purification using established methods (Dyer et al., 2004; Sekulic et al., 2010), but 

using SDS-PAGE gels to determine concentrations of H2A and labeled-H2B 

monomers for refolding. Three independent assays were performed for calculating 

apparent Kd values for CENP-C WT and mutant proteins using CENP-A nucleosomes 

with labelled Cy5-H2B prepared on 147 bp DNA by gradient dialysis. Briefly, 200 nM 

of nucleosomes were incubated with increasing concentration of CENP-C WT or 

CENP-C mutants in TCS buffer (20 mM Tris-Cl pH 7.5, 1 mM EDTA, and 1 mM DTT) 

and incubated on ice for 1 hr before separating by 5 % native PAGE.  After 

electrophoresis, gels were analyzed in a Typhoon 9200 imager (GE Healthcare), and 

the percentage of unbound vs. unbound nucleosomes were quantified using ImageJ. 

The apparent Kd values were calculated from the binding curve fitted from three 

independent experiments. 

3.5.9. HXMS 

Deuterium on-exchange was carried out by adding 5 µL of each sample (containing 

approximately 4 µg of NCPs or the indicated complex) to 15 µL of deuterium on-

exchange buffer (10 mM Tris, pD 7.5, 0.5 mM EDTA, in D2O) so that the final D2O 

content was 75%. Reactions were quenched at the indicated timepoints by 

withdrawing 20 µL of the reaction volume, mixing in 30 µL ice cold quench buffer 

(2.5 M GdHCl, 0.8% formic acid, 10% glycerol), and rapidly freezing in liquid 

nitrogen prior to proteolysis and LC-MS steps. HX samples were individually melted 

at 0°C then injected (50 µl) and pumped through an immobilized pepsin (Sigma) 

column at initial flow rate of 50 µl min-1 for 2 min followed by 150 µl min-1 for 

another 2 min. Pepsin was immobilized by coupling to Poros 20 AL support (Applied 

Biosystems) and packed into column housings of 2 mm x 2 cm (64 µL) (Upchurch). 

Protease-generated fragments were collected onto a TARGA C8 5 µm Piccolo HPLC 

column (1.0 x 5.0 mm, Higgins Analytical) and eluted through an analytical C18 

HPLC column (0.3 x 75 mm, Agilent) by a linear 12-55% buffer B gradient at 6 µl 

min-1 (Buffer A: 0.1% formic acid; Buffer B: 0.1% formic acid, 99.9% acetonitrile). 
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The effluent was electrosprayed into the mass spectrometer (LTQ Orbitrap XL, 

Thermo Fisher Scientific). 

3.5.10. HXMS DATA ANALYSIS 

The SEQUEST (Bioworks) software program was used to identify the likely 

sequence of parent peptides using non-deuterated samples via tandem MS. 

MATLAB-based MS data analysis tool, ExMS, was used for data processing (Kan et 

al., 2011). For all peptides found by SEQUEST, ExMS first analyses the non-

deuterated sample to identify the peptide envelope centroid values as well as the 

chromatographic elution time ranges of each parental non-deuterated peptide. 

ExMS then uses the information from the non-deuterated analyses to identify 

deuterated peptides in each sample of the HXMS timecourse. Each individual 

deuterated peptide is corrected for loss of deuterium label during HXMS data 

collection (i.e., back exchange after quench) by normalizing to the maximal 

deuteration level of that peptide, which we measure in a “fully deuterated” (FD) 

reference sample. The FD sample are prepared in 75% deuterium just as is done in 

the on-exchange experiment, but under acidic denaturing conditions (0.5% formic 

acid), and incubated overnight so that each amide proton undergoes full exchange. 

The extent of back-exchange is calculated by comparing the extent of full 

deuteration as measured in the FD sample to the theoretical maximal deuteration 

(i.e., if no back-exchange occurs), which takes into account the 75% deuterium 

content of the samples. The median extent of back-exchange in our datasets is 

~12% (Figure 28e), which is within the range for the lowest amount of deuterium 

loss ever reported for bottom-up HXMS (10% ± 5%)(Walters et al., 2012). For 

comparing two different HXMS datasets, we can plot the percent difference of each 

peptide, which is calculated by subtracting the percent deuteration of one sample 

from that of another, and plotted according to the color legend in 10% increments 

(as in Figure 24d, Figure 26d, Figure 29a, Figure 31e). We can also calculate the 

number of deuterons within each peptide that are exchanged at each timepoint, and 

plotted as in Figure 26e-f, Figure 29b-e, and Figure 28f-j, Figure 30a-i, Figure 
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32f-i, and Figure 34. These plots include data from 3 separate exchange reactions, 

with each data point shown as mean ± SD.  

3.5.10. HYDROXYL RADICAL FOOTPRINTING  

(BY PRAVEEN KUMAR ALLU) 

CENP-A nucleosomes assembled with HEX-labeled 147 bp α-satellite DNA (Falk et 

al., 2016) were reconstituted and then purified using a sucrose gradient. 4 µg of 

HEX-labeled CENP-A nucleosomes alone or complexed to CENP-NNT were used in 

each reaction. The hydroxyl radical cleavage reaction was initiated by addition of 5 

µl of 40 mM FeAmSO4/80 mM EDTA, 2 M ascorbate, and 2.4% H2O2 to a 30 µl 

reaction mixture. Each reaction was carried out for 5min at room temperature, and 

terminated with 200 µl of stop solution (0.1% SDS, 25 mM EDTA, 1% glycerol, and 

100 mM Tris, pH 7.4). Further phenol/chloroform extraction and ethanol 

precipitation was carried out to extract DNA fragments. Samples were separated by 

denaturing PAGE (10% polyacrylamide, 7 M urea, 88 mM Tris–borate, and 2 mM 

EDTA, pH 8.3)(Falk et al., 2016). Gels were imaged on a Typhoon 9200 imager (GE 

Healthcare). Band intensities were quantified from ImageJ from three independent 

experiments.  

3.5.11. SUCROSE GRADIENT SEDIMENTATION  

(BY PRAVEEN KUMAR ALLU) 

100 µg of CENP-A nucleosomes or the CCNC complex were subjected to 5-30% 

sucrose gradient centrifugation at 165,000g on a SW60 rotor (Beckman Coulter) for 

13 h at 4°C. The samples were fractionated from top to bottom, and each fraction 

was analyzed for absorbance at 260 nm (for nucleosome and complex) or 280 nm 

(for CENP-C and CENP-N proteins alone).   
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CHAPTER 4: IDENTIFICATION OF CDK-DEPENDENT 

HJURP PHOSPHOSITES 
 

Chapter 4 consists of my contributions to the following manuscript, and is the result 

of our collaboration with the Ben Garcia lab at the University of Pennsylvania (with 

postdoctoral researcher Xing-Jun Cao):  

Stankovic, A., Guo, L.Y., Bodor, D.L., Mata, J.F., Cao, X., Bailey, A.O., Shabanowitz, J., 

Hunt, D.F., Garcia, B.A., Black, B.E., and Jansen, L.E.T. A dual inhibitory mechanism 

restricts centromeric chromatin assembly to G1 phase. Molecular Cell, 2017 Jan 

19;65(2):231-246. 

4.1. ABSTRACT 
Maintenance of genomic stability requires accurate propagation of 

centromere location with every cell division.  Replication of centromeric DNA in S 

phase must be followed by loading of new CENP-A molecules into centromeric 

chromatin, to prevent loss of CENP-A nucleosomes from successive dilutions.  But 

unlike canonical histones, CENP-A loading is not coupled to DNA replication, but 

rather occurs exclusively after mitotic exit.  This unique timing is controlled by 

cyclin-dependent kinases 1 and 2 (Cdk1/2), whose activity prevents CENP-A loading 

until the decline of Cdk1/2 activity in telophase/G1, but the targets of Cdk 

regulation are unknown.  By combining the powerful methods of stable isotope 

labeling by amino acids in cell culture (SILAC), affinity-purification of the CENP-A-

containing chromatin assembly complex with HJURP and its partner histone H4, 

titanium dioxide enrichment of phosphopeptides, as well as high-resolution mass 

spectrometry, we quantitatively measured the changes of multiple phosphorylation 

sites on CENP-A-containing complexes upon Cdk inhibition. We will present the 

results of these experiments, including findings that putative Cdk sites on HJURP are 

heavily phosphorylated in early mitosis, and are rapidly dephosphorylated upon 

Cdk inhibition. In contrast, putative Cdk sites on the CENP-A N-terminal tail remain 

phosphorylated even after Cdk inhibition.  All of these post-translational 
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modifications are strong candidates to participate in the regulation of the CENP-A 

chromatin assembly pathway. 

4.2. INTRODUCTION 
Centromere location is specified epigenetically by the histone H3 variant 

termed centromere-protein A (CENP-A).  Epigenetic inheritance of centromere 

location requires newly expressed CENP-A to be loaded into centromeric chromatin 

at each cell cycle.  Contrary to canonical histones, CENP-A loading does not occur at 

the same time as DNA replication, but instead occurs following mitotic exit (Jansen 

et al., 2007).  This unique loading mechanism is driven by cyclin-dependent kinases, 

whose activity during S, G2, and M phases sequesters CENP-A in a “prenucleosomal 

complex” where it is bound to its chaperone HJURP and its histone partner H4, and 

this inhibition is relieved as Cdk activity declines during mitotic exit (Silva et al., 

2012).  We sought to identify the Cdk targets that control this unique timing of 

CENP-A. 

Stable isotope labeling with amino acids in cell culture (SILAC) is a robust 

tool of quantitative phosphoproteomics. SILAC entails in vivo metabolic 

incorporation of "heavy" 13C- or 15N-labeled amino acids into proteins during 

normal cell growth and division.  Light and heavy peptides can be distinguished by 

predictable mass differences.  Since there is no chemical difference (other than 

isotopic composition) between light and heavy amino acids, comparative cell 

populations exhibit identical biochemical and cellular properties (Mann, 2006). 

4.3. RESULTS 

 

4.3.1 IDENTIFICATION OF CDK-DEPENDENT 

PHOSPHORYLATION SITES ON THE CENP-A CHROMATIN 

ASSEMBLY COMPLEX BY QUANTITATIVE PHOSPHOPROTEOMICS 
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HJURP, the CENP-A specific chaperone is a phospho-protein and features 

several putative Cdk sites, making it a prime candidate for cell cycle control of 

CENP-A assembly. To precisely determine which residues are phosphorylated in the 

relevant cell cycle window, we used stable isotope labeling by amino acids in cell 

culture (SILAC) coupled to mass spectrometry. The SILAC approach allows for direct 

and accurate quantitation of changes in phosphorylation levels of residues.  We 

grew two parallel cultures of cells stably expressing CENP-A-GFP (Bailey et al., 

2013), one in normal media (“light”) and one in media in which the essential amino 

acids lysine and arginine are replaced with their heavy isotopes (“heavy”). Both 

cultures were arrested in mitosis, one of which was subsequently released into early 

G1 phase by Roscovitine treatment (Figure 38, left, and  

 

Figure 39). We harvested and combined equal numbers of the heavy/light cells 

after 30 min of Roscovitine (or DMSO only) treatment. At this stage HJURP is 

partially dephosphorylated (based on shift in SDS-PAGE mobility of the 

phosphorylated HJURP pool) ( 

 

Figure 39b,c), but has not completed centromere chromatin assembly (Jansen et al., 

2007; Silva et al., 2012). We then isolated GFP-tagged CENP-A from the soluble 

fraction, which co-purified the relevant endogenous pool of HJURP. We detected 6 

phosphorylated residues corresponding to putative Cdk consensus sites within 

HJURP, all of which were dephosphorylated to varying degrees upon mitotic exit, 

ranging from 25-70% decrease relative to mitotic values (Figure 38b, right,  

 

Figure 39, and Table 1). In contrast, unphosphorylated peptides and previously 

reported phospho-sites on the CENP-A N-terminal tail (Bailey et al., 2013), which 

reside within Cdk consensus motifs, remain unaffected by forced mitotic exit, 

indicating that protein levels of CENP-A and HJURP remain unaffected and that 

HJURP is specifically targeted for dephosphorylation upon G1 entry. Three of the 

identified residues correspond to recently reported phospho-sites (Müller et al., 
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2014; Wang et al., 2014), and our analysis shows that these (S412, S448, S473) are 

neither the sole nor the most responsive sites to the silencing of mitotic Cdk activity. 

 

 

Figure 38. HJURP and is dephosphorylated upon mitotic exit.  
(a) (Top) Schematic representation of HJURP protein, along with previously 
recognized domains (CENP-A binding domain (Scm3), conserved domain (CD), 
HJURP C-terminal domain 1 and 2 (HCTD1 and 2)) and the position of identified 
phospho-sites by SILAC in b. Amino acid sequences flanking phospho-sites are 
annotated. (b) Schematics of SILAC experiment. Cells stably expressing GFP-CENP-A 
were grown to equilibrium in either light or heavy medium and arrested in mitosis 
by STLC treatment. The light cells were released into G1 by Roscovitine treatment 
for 30 min. At this stage HJURP is partially dephosphorylated (based on shift in SDS-
PAGE mobility of the phosphorylated HJURP pool) ( 
 
Figure 39b,c), but has not completed centromere chromatin assembly. Heavy and 
light cells were combined in equal numbers, followed by GFP-pull down of the 
prenucleosomal CENP-A complex containing the relevant endogenous HJURP pool, 
trypsin digestion, phosphopeptide enrichment and analysis by LC-MS/MS. (See 
more detailed schematic in  
 
Figure 39a). (c) Phosphorylated Cdk sites are listed. The L/H ratio of a 
representative non-phosphorylated peptide is shown as internal control, (d) L/H 
ratios of Cdk consensus sites within the N-terminal tail of CENP-A. (See Table 1 for 
data from two additional replicate experiments) 
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Figure 39. Strategy for SILAC experiment with Roscovitine-induced mitotic exit. 
(a) Schematic of SILAC experiment. (b) Western blots for the mitotic marker 
H3pS10 indicating cell cycle position of HeLa S3 cells. Cell were arrested in mitosis 
with the Eg5 inhibitor STLC followed by treatment with DMSO control or 
Roscovitine (light cells) to force mitotic exit caused by Cdk inhibition. (c) Western 
blots for HJURP (isolated from soluble fraction) showing dephosphorylation (as 
seen by shift in SDS-PAGE mobility of phosphorylated HJURP) upon Roscovitine 
treatment of "light" cells. Based on this, we harvested cells after 30 minutes of 
Roscovitine (or DMSO) treatment, balancing between HJURP dephosphorylation and 
completion of HJURP-mediated centromeric chromatin assembly. 
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Figure 40. Representative chromatograms and spectra of HJURP and CENP-A 
phosphopeptides in SILAC  
Extracted ion chromatograms of all phosphopeptides from Figure 38, showing co-
elution of phosphopeptide pairs (left panels), and representative mass spectra 
showing isotopic envelopes of light vs. heavy peptides (right panels). 
Phosphopeptides from “light” (Roscovitine-treated) cells are colored in pink, while 
the phosphopeptides from “heavy” (mock-treated) cells are colored in dark red. 
Each peptide pair is separated by a predictable mass difference (calculated from the 
number of lysines and arginines in the peptide), which is labeled with dotted lines 
between the monoisotopic peaks of light and heavy peptides. (a) A representative 
unphosphorylated HJURP peptide as internal control. (b-g) HJURP 
phosphopeptides. (h-i) CENP-A phosphopeptides. 
 

  (Roscovitine-treated)/(Mock-treated) 
Ratio 

Phospho-
site(s) 
covered 

Phosphopeptide 

Experimen
t #1 

(Forward 
labeling) 

Experimen
t #2 

(Reverse 
labeling) 

Experimen
t #3 

(Reverse 
labeling) 

HJURP 
pS185 

VTPLPSLApSPAVPAPGYCSR 0.32 nd 0.30 

HJURP 
pS412 

WLIpSPVK 0.72 nd 0.62 

HJURP 
pS448 

EYCLpSPR 0.53 nd nd 

HJURP 
pS473 

GGPApSPGGLQGLETR 0.48 0.37 0.42 

HJURP 
pS595 

pSPGQMTVPLCIGVSTDK 0.23 nd 0.25 

YCLKpSPGQMTVPLCIGVSTD
K 

0.28 nd 0.30 

HJURP 
pS642 

LPSpSPLGCR 0.46 0.48 0.39 

CENP-A 
pS16+pS1
8 

pSPpSPTPTPGPSR nd 0.93 nd 

RpSPpSPTPTPGPSR nd 1.01 nd 

RRpSPpSPTPTPGPSR 0.87 0.98 nd 



119 

CENP-A 
pS16 

RRpSPSPTPTPGPSR 0.94 1.13 nd 

 
Table 1. G1/Mitotic Ratios of HJURP and CENP-A phosphopeptides are 
reproducible. 
Data from three independent SILAC experiments (the data described in Figure 38,  
 
Figure 39, and  
 
Figure 40 are displayed in the column labeled “Experiment #1”). For the forward 
labeling experiment, the “light” cells are treated with Roscovitine while the “heavy” 
cells are mock-treated. For reverse labeling experiments, the “light” cells are mock-
treated while the “heavy” cells are treated with Roscovitine. Red residues are the 
sites where phosphate groups were unambiguously mapped.  Bolded residues are 
the Cdk consensus motifs in each peptide. (nd=no data) 

4.4. DISCUSSION 
Maintenance of genomic stability requires accurate propagation of 

centromere location across cell divisions.  Cyclin-dependent kinases (Cdks) are a 

critical controller of the unique, exquisitely regulated mechanism of CENP-A 

replenishment at the centromere.   Our SILAC effort enables us to quantitatively 

map the landscape of Cdk-regulation on the CENP-A prenucleosomal complex, 

including the endogenous HJURP protein.  We detected 6 Cdk consensus sites within 

HJURP, all of which declined in the level of phosphorylation after Cdk inhibition, to 

varying degrees.  In contrast, Cdk consensus sites on the CENP-A N-terminal tail that 

are known to be heavily phosphorylated4 remain phosphorylated even after Cdk 

inhibition.  Total protein levels of both HJURP and CENP-A were nearly identical 

between the light and heavy cells, since their unphosphorylated peptides had 

light/heavy ratios of approximately one.  These results are consistent with recent 

reports that the three HJURP phosphosites within its HCTD1 are Cdk targets (Müller 

et al., 2014; Wang et al., 2014) but our present data reveal that those particular sites 

are not the sole targets of Cdk regulation of HJURP, nor are they the most responsive 

to the silencing of Cdk1 and Cdk2 that recapitulates what occurs during mitotic exit. 
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4.5. METHODS 

4.5.1. SILAC AND AFFINITY PURIFICATION OF 

PRENUCLEOSOMAL HJURP/CENP-A/H4 COMPLEX 
SILAC labelling medium (MEM Eagle Joklik Modification) deficient in lysine 

and arginine was reconstituted according to manufacturer's instructions (Sigma-

Aldrich), and supplemented with normal lysine and arginine (Sigma-Aldrich) for 

“light” medium, and 50 mg/ L 13C6,15N2-lysine and 50 mg/L 13C6, 15N4-arginine 

(Silantes) for “heavy” medium. Both media were supplemented with 10% dialyzed 

FBS (Gemini), GlutaMax (Gibco), 1 mM HEPES, 1% Pen/Strep, MEM non-essential 

amino acids (Gibco), and 120 mg/L proline to prevent arginine-to-proline 

conversion. Two parallel cultures of previously characterized HeLaS3 cells stably 

expressing localization and purification (LAP)-tagged CENP-A (Bailey et al., 2013) 

were cultured in spinner flasks for at least 6 cell doublings to allow full 

incorporation of the stable isotope-containing amino acids.  Heavy isotope labeling 

efficiency of ~98% was confirmed by mass spectrometry after trypsin digestion of 

proteins extracted from heavy-labeled cells. To enrich for mitotic cells, both cultures 

were treated with 50 µM S-trityl-L-cysteine for 17 h. Subsequently, the "light" cells 

were treated with 100µM R-Roscovitine (AdipoGen) for 30 min while the "heavy" 

cells were mock-treated with DMSO. Cell cycle status and HJURP phospho-status 

was monitored by immunoblotting for H3pS10 (Upstate) and an anti-HJURP 

antibody generated against a C-terminal fragment (1 µg/ml)(Bassett et al., 2012), 

respectively. Cell pellets from 1.4 x 109 of "light" and "heavy" cells were combined in 

1:1 ratio. Affinity purification of the prenucleosomal HJURP/CENP-A/H4 complex 

was performed as previously described (Bailey et al., 2013) except that protein 

elution was performed with 2% SDS and heating at 95°C.  

4.5.2. MASS SPECTROMETRY AND DATA ANALYSIS 
Purified CENP-A and associated proteins were precipitated using pre-chilled 

acetone (4 X volume) followed by successive washing.  Dried protein pellets were 
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reconstituted with 0.1% RapiGest SF Surfactant (Waters) in 100 mM NH4HCO3, pH 

8.0.  Resuspended proteins were reduced using DTT, alkylated with iodoacetamide, 

and digested using trypsin. Since trypsin cleaves only after lysines and arginines, 

this ensures that every resulting peptide will contain at least one lysine or arginine, 

so that the all heavy peptides are distinguishable from their corresponding light 

peptides by predictable mass differences.  Rapidgest was removed by adding 0.5% 

TFA and incubation for 30min at 37°C.  The sample was thenThe peptides were 

desalted with StageTips (Thermo), followed by phosphoenrichment 

phosphopeptide enrichment by TiO2 prior to analysis by Q-Exactive Hybrid 

Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific).  The pFind 

search engine was used to search the UniProt human protein database to identify 

peptides (Wang et al., 2007).  Quantification was done using extracted-ion 

chromatograms (XICs) of each light and heavy peptide pair, and L/H ratio 

represents the ratio of total area under each elution peak. 
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CHAPTER 5: CONCLUSION 

5.1. SUMMARY 

The centromere is a critical region in chromatin upon which assembles the 

proteinaceous kinetochore complex, and it is known that the histone variant H3 is 

the epigenetic marker of centromere location. How centromere identity is 

propagated across cell and organismal generations is a crucial question for biology, 

since any loss or spurious duplication of centromere location can have disastrous 

consequences for the cell. CENP-A is known to be remarkably stable at the 

centromere, and the underlying mechanism for its stability had been poorly 

understood. In Chapter 2, we identify the role of an essential binding partner, CENP-

C, in reshaping CENP-A nucleosomes and stabilizing it at the centromere. We show 

by multiple structural methods that CENP-C not only binds to CENP-A nucleosomes, 

but also alters its physical properties. Not only is this a breakthrough for the 

centromere field that attributes the extraordinary stability of CENP-A to its essential 

binding partner, but it presented the first example of how a non-catalytic 

nucleosome binding protein can alter nucleosome conformation. 

Although Chapter 2 contains exciting findings, we did not rule out the 

possibility that the effect of CENP-C on CENP-A stability is indirect, and does not 

depend on its direct binding to CENP-A nucleosome—since after all, the depletion of 

CENP-C is a bit of a “sledgehammer approach” that removes many other proteins 

from the centromere. To show this directly, we would need to take a more surgical 

approach, to make perturbations in the interaction between CENP-A and CENP-C 

without derailing the entire CCAN network. Therefore, in Chapter 3, we pinpointed a 

mechanism by which CENP-C drives such a structural transition in the CENP-A 

nucleosome via a critical arginine anchor, and we use gene-editing approaches to 

confirm this mechanism in a CENP-A maintenance assay. By making point mutations 

in this gene replacement system, we conducted the cleanest set of CENP-C structure-

function studies to date, sand correlate the loss of the biophysical structural 

transition to the decrease of CENP-A retention in cells. We also show that another 

“friend” of CENP-A at the centromere, CENP-N, also plays a role in stabilizing CENP-
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A nucleosomes. We assemble a core centromeric nucleosome complex with the 

nucleosome-binding domains of CENP-C as well as CENP-N, another critical binding 

partner of CENP-A at the centromere. We demonstrate that CENP-C and CENP-N can 

simultaneously engage and rigidify the CENP-A nucleosome at the centromere, and 

that they both play a role in stabilizing the CENP-A nucleosome in cells.  

In Chapter 4, we shed insight into the exquisitely regulated mechanism of 

nascent CENP-A assembly, which is restricted to a specific phase of the cell cycle. 

Using the powerful, quantitative SILAC approach, we identify multiple Cdk-

dependent phosphorylation sites on the CENP-A chaperone, HJURP, and we measure 

their exact G1/mitotic ratios. These sites are likely candidates for the regulation of 

CENP-A assembly.  

5.2. FUTURE DIRECTIONS FOR CHAPTERS 2 AND 3 
In Chapters 2 and 3, we have elucidated the role of two critical binding 

partners, CENP-C and CENP-N, in stabilizing CENP-A at the centromere in cells, and 

we have also reconstituted and examined biophysically the core centromeric 

nucleosome complex, consisting of the CENP-A nucleosome bound to CENP-CCD and 

CENP-NNT. Our work opens up many new questions that are just waiting to be 

investigated. 

5.2.1. TOWARD A STRUCTURE FOR THE CCNC 

Our finding that as CENP-NNT binds to the CENP-A nucleosome, it makes only 

a small footprint on CENP-A (at its exposed Loop1) by HXMS, but almost the entire 

CENP-N N-terminal domain (~200 amino acids) is globally and dramatically 

stabilized upon binding to the CENP-A nucleosome. We are first to show that CENP-

NNT, even before binding to the nucleosome, is a folded domain. And upon engaging 

with the CENP-A nucleosome, it experiences this striking stabilization of its 

secondary structure throughout the already-folded domain. For a long time in the 

field, CENP-N has been notoriously difficult to work with biochemically, since it is 

known to have low solubility in solution and a tendency to form aggregates. While 
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we have improved purification of CENP-NNT which greatly extended its “shelf life”, 

our finding provides an explanation for why CENP-NNT tends to be better behaved 

when in complex with CENP-A nucleosomes: the complex stays stable for weeks in 

solution, whereas CENP-N on its own (in the absence of glycerol) will precipitate out 

of solution in a matter of days. Since the complex is well-behaved, obtaining a 

structural model of the CCNC, either by crystallography or by cryoelectron 

microscopy (cryo-EM), would obviously be large leaps for the centromere field. Our 

HXMS indicate that CENP-CCD and CENP-NNT bind simultaneously to different 

regions on the CENP-A nucleosome, that CENP-CCD is linear and disordered while 

CENP-N has inherent secondary structure (e.g., helices and sheets). A structure of 

the CCNC will likely unveil the secondary structure of CENP-N, and provide a 

valuable model for how both proteins engage with the CENP-A nucleosome. 

5.2.2. STRUCTURE-FUNCTION STUDIES OF CENP-N 

 We have shown that rapid auxin-induced degradation of the CENP-N protein 

results in a decrease in CENP-A stability, and that the domain of CENP-N responsible 

for this stability is likely its N-terminal domain, which directly interacts with the 

CENP-A nucleosome. Although previous reports have proposed R11 and R196 of 

CENP-N as critical residues for this interaction (Carroll et al., 2009), this is unlikely 

to be the complete picture, since CENP-N likely makes multiple contacts with the 

nucleosome. We cannot use our HXMS to pinpoint the crucial residues in CENP-N, 

since the entire N-terminal domain undergoes dramatic stabilization in secondary 

structure. 

 The first strategy for structure-function studies might be to make smaller 

domain deletions with the N-terminal domain of full-length CENP-N. Our HXMS data 

shows that CENP-N 205-240 are disordered before and after binding to the CENP-A 

nucleosome, so that is unlikely to be a region involved in the interaction with the 

CENP-A nucleosome. Within CENP-N 1-205, the a.a. 87-98 region also seems more 

disordered than its surrounding regions, suggesting that it is possible that CENP-NNT 

exists as two folded domains (e.g., a.a. 8-86 and a.a. 99-193), with a.a 87-98 as a 
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flexible linker between the two domains. (However, it is also possible that this 

region is simply a long loop). One strategy would be to start with CENP-N(∆8-86) 

and CENP-N(∆99-193) to test in a CENP-A-SNAP assay, to see whether one or both 

of these sub-domains are required for stabilizing CENP-A at the centromere, and 

then hone in on point mutants. It would then be interesting to test the 

phenotypically interesting CENP-N mutants as recombinant proteins, by first testing 

whether they can still make complexes with CENP-A nucleosomes, and if so, testing 

such complexes in HXMS to examine the effects of these mutants on the protection 

of CENP-A, as well as the protection of the CENP-N protein itself. 

5.2.3. TOWARD BIOPHYSICAL ELUCIDATION OF A LARGER 

CCNC 

 In our study, we reconstituted the minimal CCNC that includes the CENP-A 

nucleosome bound to CENP-C(426-537) and CENP-N(1-240). An obvious extension 

of this study would be to attempt to reconstitute and biophysically characterize a 

larger complex. In Figure 37, we summarize that not only does CENP-C and CENP-N 

individually bind the same CENP-A nucleosome, CENP-C also interacts with the 

CENP-L/N subcomplex (via CENP-C a.a. 235-352, which we mapped in Figure 28). A 

recent study assembled a seven-submit CCAN subcomplex (Weir et al., 2016), but 

there is much structural insight yet to be learned about the these subunits work 

together to establish and maintain centromeric chromatin. 

5.2.4. CELL CYCLE DEPENDENCE OF THE ROLES OF CENP-C 

AND CENP-N IN STABILIZING THE CENP-A NUCLEOSOME 
 We have shown that CENP-C and CENP-N both serve critical roles in 

stabilizing the CENP-A nucleosome at centromeres, but it is still unknown whether 

their protective roles are most crucial in a specific phase of the cell cycle, or if they 

are providing stability to CENP-A nucleosome throughout the entire cell cycle. S-

phase is especially intriguing, since the CENP-A nucleosome could be especially 

vulnerable in S phase, since chromatin undergoes some disruption and subsequent 
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restoration as it passes through the replication fork (Probst et al., 2009). For CENP-

A to be stably transmitted in each cell division, CENP-A nucleosomes need to 

correctly reassembled behind the replication fork. This process is a crucial, yet 

poorly understood aspect of centromere inheritance, and it is possible that its 

binding partners at the centromere are important at the step. While the proteins of 

the CCAN are constitutively present at the centromere, their localization is dynamic 

(Fang et al., 2015; Hellwig et al., 2011; Hemmerich et al., 2008). CENP-N exchanges 

quickly throughout the cell cycle but slows down during late S-phase, at which time 

its levels at the centromere is increased, and CENP-N is loaded into centromeric 

chromatin in late S phase (Fang et al., 2015; Hellwig et al., 2011; Hemmerich et al., 

2008). CENP-C, on the other hand, is known to be dynamically exchanging across 

most of the cell cycle, but relatively more stably bound during S phase (Hemmerich 

et al., 2008).  

 Therefore, based on the literature, and from our own data, we speculate that 

CENP-N may play a role for stabilizing (possibly through reassembling) CENP-A 

nucleosomes after they are disrupted by the replication fork. As CENP-N levels rise 

in late S-phase, it could mark the centromeres that have completed replication 

(Stellfox et al., 2013), and lock CENP-A onto the adjacent DNA (by binding to both 

DNA as well as CENP-A). 

5.2.5 SINGLE MOLECULE FRET ANALYSES OF THE CCNC 
 Past FRET experiments have shown that CENP-C locks the CENP-A 

nucleosome into a more compact conformation (Falk et al., 2015, 2016). However, 

we do not yet have dynamic information about nucleosome fluctuations: i.e., 

whether the CENP-A nucleosome stably resides in one state (without fluctuating), or 

whether they fluctuate between two or more discrete states. It is already known 

that CENP-A nucleosomes are less compact than H3 nucleosomes (Falk et al., 2015, 

2016), but it would be interesting to test whether fluctuations (if they exist) differ 

between CENP-A nucleosomes vs. H3 nucleosomes. Could both types of 

nucleosomes exist in open vs. closed states, but just that CENP-A spends more time 
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occupying the open state?  (Or is it that only CENP-A nucleosomes can access this 

open state?) We already expect CENP-C to affect CENP-A nucleosome 

conformation.  But does it do so through dynamics? And of course, how does CENP-C 

affect CENP-A nucleosome dynamics? If nucleosomes indeed fluctuate between two 

or more discrete states, CENP-C could change the nucleosome in two possible ways: 

either a) CENP-C binding drives the equilibrium and partition of those states 

towards the closed state, or b) CENP-C preferentially binds the closed state and 

blocks fluctuations back to the open state (like a ratchet). Or, if nucleosomes stably 

reside in an open state (without fluctuating) until being bound by CENP-C, we would 

expect it to change the conformation to a closed state that is also stable. And of 

course, does CENP-N change dynamics of the CENP-A nucleosome? 

5.3. FUTURE DIRECTIONS FOR CHAPTER 4 

In Chapter 4, we identified the Cdk-dependent phosphorylation sites on the 

CENP-A chaperone, HJURP, using a quantitative phosphoproteomics approach.  

These sites could be critical sites of the regulation of CENP-A assembly. Previous 

attempts to characterize HJURP mutants in cells have involved massively 

overexpressing HJURP, which complicates the analyses, especially for claims for 

gain-of-function HJURP mutants (Müller et al., 2014). Instead, we will examine 

HJURP phosphomutants by HJURP replacement in diploid cells, to aim to arrive at 

unambiguous answers for whether (and how) HJURP phosphomutants affect HJURP 

function. One method is by adding AID tags onto HJURP in our DLD-1 Flp-In TRex 

cells, which would allow us to rapidly deplete HJURP protein, a method that was 

successful for CENP-C (in Chapters 2 and 3). We can subsequently introduce 

exogenous HJURP rescue mutants into the unique FRT site, which can be either 

constitutive or inducible (if containing a Tet operator). If the rescue construct is 

made inducible, we can modulate the level of expression by varying the amount of 

doxycycline to add to the culture media, which would allow us to arrive at near-

endogenous levels of HJURP expression. Additionally, generation of phospho-

specific HJURP antibodies would be helpful in characterizing the phosphomutants. 



128 

5.4. FINAL THOUGHTS 

 In the human body, about one hundred billion cells divide over the course of 

a single day. The process that ensures faithful transmission of genetic material 

across cell and organismal generations is an exquisitely regulated process, and is 

undoubtedly one of the most important processes in all of eukaryotic life. Our work 

has shed insight into the epigenetic maintenance of centromere identity, which is 

fundamental in ensuring accurate segregation of chromosomes during cell division. 

The location of the centromere, encoded by CENP-A, is a crucial piece of information 

for each chromosome—if that information is lost or duplicated, it can result in 

chromosome breakage, aneuploidy, and cell death.  

 The inheritance of CENP-A can be viewed as one of the purest examples of 

“epigenetics”, a term first coined by the English embryologist Conrad Waddington in 

the 1940s to mean “above genetics”. Ever since the human genome was sequenced, 

“epigenetics” has come to mean heritable changes that are not caused by alteration 

of the genetic code itself—in other words, the hope that human beings are more 

than just the sum of our genes. It is quite an astonishing result of evolution— that 

this crucial task of long-term inheritance of centromeric location has fallen on the 

shoulders not of any DNA sequence, but rather a histone variant. It makes sense, 

then, that the centromere is quite a sacred place in the chromosome, built with 

multiple mechanisms for protecting the robustness of this epigenetic mark. The 

faithful perpetuation of centromere identity relies on the extraordinary long-term 

stability of the CENP-A molecule, and this thesis provides evidence that CENP-A 

does not do it alone, but rather with the help of friends at the centromere.  
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APPENDIX A: PROTOCOLS FOR CHAPTERS 2 AND 3 

A1. GENE-EDITING OF DLD-1 CELLS BY CRISPR/CAS 

A1A.  EXTRACTING GENOMIC DNA 
 

Day 1: 

1. Make 1ml DNA extraction buffer:  

Recipe Stock Amount to add from 
stock 

100mM Tris HCl pH 7.4 1M Tris HCl pH 7.5 at 4C 100µl (1:10) 

200mM NaCl 5M NaCl 40µl (1:25) 

5mM EDTA 0.5M EDTA 10µl (1:100) 

0.2% SDS 20% SDS 10µl (1:100) 

1mg/ml Proteinase K 2.5mg/ml stock 400µl 

 ddH2O 440µl 

  Total: 1ml 

 

2. Lyse pellet in 600µl DNA extraction buffer  

- I've tried either lysing cells directly off of a dish after PBS wash, using a 

cell scraper to collect cells, or trypsinizing the cells and washing the pellet 

before adding the DNA extraction buffer-- either should work.  

- Also, you can adjust the volume of buffer based on how many cells you 

are lysing: I've used 600ul for a 10cm dish which works fine if the cells 

aren't too confluent. I've also used ~150-200ul for a well for a 12-well 

plate. 

3. Incubate for 30min at 37C (Note: had increased from 0.1mg/ml, which is for 

doing an overnight incubation at 55C).  Lysate should be goopy after 

incubation. 

4. In Eppendorf tube, add equal volume phenol:chloroform:isoamyl alcohol 

(25:24:1) vortex to mix. (Remember to dispose of phenol waste in special 

container) 
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5. Centrifuge 14,000rpm for 5min at RT. 

6. Prepare a fresh tube with 0.1V of 3M sodium acetate, pH 5.5 (or 4M 

ammonium acetate) 

7. Transfer upper phase to the fresh tube (should see a white layer between 

upper and lower phases). 

8. Add 2V ice cold 100% EtOH. DNA will become visible.  

9. Vortex to mix.  Leave overnight at -20C. 

 

Day 2: 

1. Centrifuge 14,000rpm for 15min at 4C to pellet DNA.  Aspirate 

supernatant. 

2. Wash pellet with 70% ice cold EtOH to remove excess salt. 

3. Centrifuge 14,000rpm, 15min at 4C to pellet DNA.  Aspirate supernatant. 

4. Allow pellet to air-dry. 

5. Resuspend pellet in 10mM Tris-HCl, pH 8.0.  

6. Measure concentration by Nanodrop. 

A1B. DESIGNING GRNAS FOR CRISPR 
The protocol described below uses the CENP-A C-terminus as an example, and is 

adapted from Ran et al, 2013. 

1. Obtain genomic sequence for gene of interest (CENP-A, in my case) from the 

public domain. Use this sequence to design primers for genomic DNA 

extraction from the specific cell lines to be used for targeting (DLD-1 cells, in 

my case), to PCR up a region of <900bp (which is the limit at the sequencing 

core) that spans the location of desired double-stranded break. In this case, 

the desired location of the double-stranded break would be at the end of the 

exon 4 (…LEEGLG), right before the TGA stop codon. Alternatively, one could 

just use the genomic sequence from the public domain to design the gRNAs. 

However, if there were polymorphisms between that sequence and the cell 



131 

lines to be used that result in a sequence mismatch within the bases to which 

the gRNA is expected to bind, then the gRNAs may not work. 

2. Perform genomic DNA extraction on the cell lines (see “Protocol for genomic 

DNA extraction”), and genomic PCR with the aforementioned primers. Send 

for sequencing. 

3. Using http://crispr.mit.edu, paste 200 bp of sequence (~100bp upstream 

and downstream of the site of desired DSB) into the window. The site will 

generate a list of possible gRNAs, each with a “quality score”, which 

represents the inverse likelihood of off-target binding (see Figure 41). 

a. Locate each gRNA on the sequence of the gene and determine the 

location of the DSB (see Figure 42). To maximize efficiency of 

cleavage, choose gRNAs that would cleave within ~30bp of ideal DSB 

site. The shorter this distance, the better. If this distance is >100bp, 

the gRNA is unlikely to work. 

b. Among the gRNAs with a distance from ideal site of DSB of <30bp, 

choose the gRNAs with the highest quality scores. I usually try 3 

gRNAs concurrently, and continue with the one that is most efficient. 

4. The pX330 plasmid (containing Cas9) contains BbsI sites for insertion of the 

gRNA. If using this plasmid, order each gRNA as a pair of 20 bp oligos with 

BbsI site appended (see Table 2). 

 

  

Figure 41. List of gRNAs as generated for CENP-A-SNAP  
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CRISPR List of possible gRNAs generated by http://crispr.mit.edu, including the 

quality score (inverse likelihood of off-target binding). 

 
 

 
Figure 42. Alignment of gRNAs with CENP-A sequence  

Snapshot from SnapGene Viewer showing the locations of the gRNAs (labeled  
by their oligo number) and their associated protospacer adjacent motif (PAM). Each 
double-stranded break will be directed to 3 base pairs away from the PAM, and is 
indicated by a cleavage arrow. 
 

Location 
of DSB 

Sequence of oligo Oligo 
number 

Distance 
from ideal 
site of DSB 

Quality 
score  

CENP-A 
3’ UTR 

CACCGCTGACAGAAACACTGGGTGC LG-045  
12 bp 58 

AAACGCACCCAGTGTTTCTGTCAGC LG-046 

CENP-A 
Exon 4 

CACCGCAACTGGCCCGGAGGATCCG LG-033 
25 bp 85 

AAACCGGATCCTCCGGGCCAGTTGC LG-034 

CENP-A 
Exon 4 

CACCGCCGGAGGATCCGGGGCCTTG LG-035 

17 bp 62 
AAACCAAGGCCCCGGATCCTCCGGC LG-036 

Table 2. List of the 3 successful gRNAs that cuts the CENP-A C-terminus.  

Within the sequence of each oligo, the 20 bp sequence that anneals to the DNA are 
bolded (and the unbolded, blue sequence are the BbsI site appended onto each oligo, 
including an extra guanine). 

 

5. Anneal each pair of oligos, using a protocol such as the one below: 

a. Combine 1µl of oligo 1 (100µM), 1µl of oligo 2 (100µM), 1µl of NEB 

Buffer 2.1, and 7µl of ddH2O. 

http://crispr.mit.edu/
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b. Run annealing program on thermocycler: start with 95°C for 1min, 

then decrease by 5°C every minute, until temperature reaches room 

temperature (i.e., 95°C for 1min, 90°C for 1min, 85°C for 1min… until 

22°C) 

6. Linearize pX330 backbone with BbsI 

a. Important note: we have had poor experience with BbsI from NEB.  

Instead, FastDigest BpiI (ThermoFisher #FD1014) is an isoschizomer 

is a much more reliable alternate. 

b. Protocol: Combine 2µg of pX330 with 2µl of BpiI, 4µl of 10X 

FastDigest Buffer, and 26µl of ddH2O. Incubate at 37°C for 1hr. Verify 

on agarose gel that backbone has been successfully linearized. Then 

gel-extract (e.g., using QIAquick Gel Extraction Kit, from Qiagen). 

7. Ligation: insert gRNA into pX330 backbone: 

a. For each reaction, use 50ng of backbone (Bpil-cleaved pX330), and 

calculate amount of insert to add: 

50ng backbone × (
length of insert

length of backbone
) ×5=amount of insert to use (ng) 

 

b. Set up ligation reactions (including backbone-only control). 

 Backbone-only 
control 

Backbone + insert 

pX330 (BpiI-cut, gel-
extracted) 

50ng 50ng 

Insert (annealed 
oligos, diluted 1:100 in 
ddH2O) 

0 Amount calculated 
from previous 
section 

TaKaRa Solution I 5µl 5µl 

ddH2O Add to 10µl total Add to 10µl total 
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c. Incubate reactions at 14°C for 1hr. Then transform 1µl of each 

reaction into competent cells. Grow up cultures and extract DNA by 

Qiagen Miniprep kit.  

d. Verify sequences by sequencing, using a sequencing primer that binds 

to the U6 promoter (LG-053: GAGGGCCTATTTCCCATGATTCC). 

A1C. DESIGNING REPAIR TEMPLATES FOR CRISPR 
 (using example of adding SNAP-NeoR to the CENP-A C-terminus) 

 

1. Our repair templates have been designed in a pUC19 backbone, containing 

the synthetic region for insertion flanked by ~800bp of homology on either 

side (Figure 43). The repair template is thus put together by HiFi Assembly 

(NEB) using 4 pieces: the linearized pUC19 backbone (by XbaI, in this case), 

the 3’ and 5’ homology arms, and the synthetic region for insertion. For 

SNAP-NeoR, the region for insertion was synthesized as a gBlock (IDT), while 

the homology asrms were derived from PCR of genomic DNA from DLD-1 

cells (see “Protocol for genomic DNA extraction”). The primers used for 

amplifying each region are listed below (Table 3).  I try to have overlapping 

ends of 20-30 bp for every fragment. 
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Figure 43. Plasmid map of repair template. 

 

Section of repair 
template 

 Sequence of oligos used for PCR Number of 
oligo 

For 5’ homology 
arm from DLD-1 
genomic DNA 

F GTGAATTCGAGCTCGGTACCCGGGGATCC
TCTAGAGGAACTCTCTCGTTTGTCCAC 

LG-054 

R CCTCGAGAAGGCCGAGTCCCTCCTCAAG LG-055 

For synthetic 
gBlock (containing 
SNAP-NeoR) 

F GCCTTGAGGAGGGACTCGG LG-056 

R AAGACTGACAGAAACACTGGGTG LG-057 

R ACGCCAAGCTTGCATGCCTGCAGGTCGAC
TAGTGCCTTTTCTCCCATACCACAG LG-059 

Table 3. Oligos used to generate each section of the repair template. 

2. Set up reaction for HiFi Assembly (NEB), using NEBuilder (online tool) to 

calculate amount of each DNA piece to add. I have had most success if all 4 
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pieces for the HiFi Assembly are all gel-extracted (using QiaQuick kit). See 

Table 4 as example for setting up reaction. Add ddH2O to 10µl, and add 10ul 

of NEBuilder HiFi DNA Assembly Master Mix (NEB). Incubate reaction at 

50°C for 1hr. Then transform 2µl of this reaction into 50µl competent cells, 

and plate the entire mix onto LB plates with appropriate antibiotic(s). 

Gel-extracted DNA 
fragment 

bp moles (for 1:1 
ratio) 

ng to add 

pUC19 XbaI-cut 2686bp 0.100 pmol 166 ng 

5’ arm 846bp 0.100 pmol 52.28 ng 

SNAP-NeoR 1682bp 0.100 pmol 104.0 ng 

3’arm  884bp 0.100 pmol 54.63 ng 

Table 4. Example for setting up HiFi Assembly . 

 

3. Grow up a few clones and obtain DNA by Miniprep. Screen clones by 

diagnostic digest (500ng DNA is sufficient). 

a. Expected sizes of fragments from NdeI + HindIII diagnostic digest of a 

successful HiFi Assembly: 2423bp, 1824bp, 1070bp, 647bp.  (See 

Figure 44 for diagnostic digest of 8 clones, 6 of which were correct). 
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Figure 44. Example of diagnostic 
digest to screen for correct 
assembly of repair template 

Digest with NdeI and HindIII for 8 
different clones obtained from 
NEB HiFi Assembly. Clones 3-8 
matched the predicted sizes of 
fragments, indicating correct 
assembly. 

 

4. Verify by sequencing (note: need multiple primers to sequence the entire 

region of interest spanning both homology arms and the synthetic region for 

insertion). 

5. Important! Make sure to mutagenize the repair template so that the gRNA 

will not cut it. The easiest way would be to mutate the PAM sequence (i.e., 

mutate one of both of the Gs in NGG), if the PAM is in a non-coding region or 

if the mutation can occur at a wobble base.  If this is not possible, then mutate 

~4 bases in the 20bp gRNA sequence. 

 

A1D. TRANSFECTION AND SELECTION FOR CLONES 

1. Transfect DLD-1 cells using Lipofectamine 2000 according to manufacturer’s 

instructions. I transfect DLD-1 cells in 6-well plates at 80-90% confluency. 

For each well, I have optimized to use 100ng of gRNA plasmid and 900ng of 

repair template, with 10.5µl of Lipofectamine 2000. 

2. Homology-directed repair will occur exclusively in S-phase.  I usually wait ~5 

days after transfection before beginning selection for clones (by G418 
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selection, this case, or by FACS if the repair template contains a fluorescent 

protein). 

3. Before beginning selection, verify that the CRISPR was successful in the 

transfected cells. In this case, I performed immunofluorescence with anti-HA 

antibody and looked for HA signal at centromeres. All three gRNAs that I 

attempted (see Table 2) yielded HA-positive cells, with LG-045/046 having 

had the highest efficiency (~1%).  

4. Carry out selection for clones. In this case, I treated with 750µg/ml G418 

(determined from G418 kill-curve in DLD-1 cells) for 7 days, combined the 

surviving cells, and performed limiting dilution in 96-well plates (1 cell per 

2-3 wells). 

5. Expand clones that grow out of the 96-well plates. Once they get to the 12-

well stage, can begin extracting DNA to screen by genomic PCR. I have found 

that DNA from half of a confluent 12-well is sufficient for genomic DNA 

extraction. 

6. Perform genomic PCR on clones. 

a. In this case, I used two primers (SF59: CCTTCCCCACTCCTTCACAGGC 

and SF60: CCTGTGAAAGAGGATGAGCTTACC) that span the location of 

the DSB and insertion.  

7. Validate clones by immunofluorescence and western blot. 

a. In this case, I obtained both homozygous and heterozygous clones, 

and this was evident by genomic PCR as well as by western blot 

(Figure 45). 
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Figure 45. Western blot of 
clones from CRISPR/Cas-
mediated gene editing in DLD-
1 cells to insert SNAP-tag at 
the C-terminus of CENP-A.  

ACA is used as primary 
antibody. From this blot, it can 
be determined that Clone #2 
is tagged on one allele 
(heterozygous), while Clones 
#54 and #63 are tagged on 
both alleles (homozygous). 

A2. PULSE-CHASE SNAP EXPERIMENTS TO ASSESS CENP-A 

MAINTENANCE 

This protocol was adapted for DLD-1 cells from the methods used in Falk, Guo, 

Sekulic, Smoak et al 2015. Specifically, it was used for the CENP-CAID-EYFP/AID-EYFP and 

CENP-NAID-EGFP/AID-EGFP cells, to measure CENP-A-SNAP retention after 24 hours of 

IAA treatment. This protocol can be adapted to assess additional cell lines (e.g., cell 

lines with CENP-C rescue constructs at the FRT site), and also for different lengths of 

IAA treatment. 

 

Figure 46. Schematic for TMR*-labeling experiment 
as described in this protocol. 

Day 1: 

1. Seed DLD-1 cells expressing CENP-A SNAP. 

a. Seed 1 well in a 24-well plate (labeled “0 hr”), and another 2 wells in a 

second 24-well plate (labeled “24 hr”). Each well should contain a 

circular 13mm polylysine-coated coverslip. Seed these wells at 1 x 105 
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cells/well, with ~500µl of media in each well, containing no 

antibiotics. 

b. Seed 1 well in a 6-well plate (labeled “0 hr”), and another 2 wells in a 

second 6-well plate (labeled “24 hr”). These wells will be used only for 

cell counting, therefore do not need coverslips in the wells. Seed these 

wells at 5 x 105 cells/well, with ~2.5ml of media in each well, 

containing no antibiotics (because the surface area of a well in a 6-

well plate is approximately 5 times that of a well in a 24-well plate). 

c. Note: I have found it easier to seed the 0hr and 24hr cells on separate 

plates (as described above), instead of seeding them on a same plate.  

This way, I can directly fix the 0hr coverslip by adding 4% 

formaldehyde directly to the well (followed by quench, and storage in 

PBS) then store the entire plate at 4°C overnight (see detailed 

protocol on immunofluorescence, on Day 3). I have found that this is 

less stressful than trying to transfer the small 13mm coverslips out of 

the plate prior to fixation, especially when working with multiple cell 

lines in parallel. 

Day 2 

1. Pulse label cells with 2µM TMR* for 15min. Remember to turn off light in the 

tissue culture hood when working with TMR*, since it is light-sensitive.  

a. To reconstitute SNAP-Cell® TMR* (NEB S9105S), add 30µl tissue 

culture-grade DMSO to the 30nmol of lyophilized TMR*. Rotate at 

room temperature, in the dark, for 30min to mix. 

b. Make TMR* solution in media: 

i. Dilute TMR* 1:500 in media, and prepare to use 250µl of this 

for each well in 24-well plate. Make a master mix to be used for 

all the wells. Pipet up and down ~10 times after TMR* addition 

to mix well. Then, spin clarify and transfer to new tube. Keep 

this warm and in the dark until ready to add to cells. 
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ii. Similarly, treat the 6-wells (for cell counting) similarly, but do 

NOT need to TMR*-label these wells (since TMR* is expensive). 

Instead, just dilute tissue-culture grade DMSO 1:500 in media, 

and prepare to use 800µl for each well in 6-well plate. Keep 

this warm and in the dark until ready to add to cells. 

c. From the 24-well and 6-well plates, aspirate existing media out of 

wells. 

d. Wash each well carefully 2x with 1x PBS.  

i. For this and all subsequent steps for handling cells, add 

solutions to wells by aiming toward the sides of wells for 

pipetting (instead of directly on top of cells), and letting the 

solution slowly drip into the bottom of each well. This is surely 

gentler on the cells. 

ii. Note: others in the lab have noticed problems with cells 

sloughing off the coverslips, and have found that using media 

instead of PBS for washes can prevent this. But I have not 

noticed a problem, so I have consistently stuck with using PBS 

for washes. 

e. Add 250µl of TMR* (1:500 mix) to each well in 24-well plate. 

(Similarly, add 800µl of DMSO (1:500 mix) to each well in 6-well 

plate). Put plates back in the incubators. Incubate for 15min exactly.  

2. After 15min incubation, aspirate solutions out of wells, and carefully wash 2x 

with PBS. 

3. Add media into each well (500µl for 24-well plates, 2.5ml for 6-well plates), 

with no antibiotics or drugs, and put plates back in incubators. Incubate for 2 

hours. 

a. This is a critical step, which serves to allow any unbound TMR* diffuse 

out of cells. Without this step, the background TMR* signal would be 

too high in the 0 hr timepoints, which would make analysis difficult.  

Previously in HeLa cells (as in Falk*, Guo*, Sekulic*, Smoak* et al. 

2015), this step had been only 30 min, but I have found that the TMR* 
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background at the 0hr timepoint in DLD-1 cells is still too high after 

30 min, and that extending this to 2hr greatly reduced this 

background. 

4. After the 2 hour incubation, the different plates will be treated differently: 

a. For 24-well plates: 

i. The “0 hr” coverslip:  

1. Aspirate out the media 

2. Add in 500µl of 4% formaldehyde (right into the well). 

Incubate for 10min. Remember to keep plate in the 

dark. 

3. Remove formaldehyde, and quench with 500µl of 

100mM Tris. Incubate for 5min. 

4. Wash 2x with 1X PBS. For last wash, use large volume 

(e.g., 1ml), and leave in the well. Wrap the entire plate 

in foil and store at 4°C until tomorrow. Tomorrow, 

resume immunofluorescence of this plate along with the 

“24 hr” timepoints. 

ii. The “24 hr” coverslips: 

1. Aspirate out the media. 

2. Carefully add in fresh media (500µl per well), 

remembering to add 500µM IAA into the wells 

designated for IAA treatment. 

a. Write down the time of IAA addition, since this is 

the beginning of the 24-hr IAA treatment period. 

b. For 6-well plates: 

i. The “0 hr” well: 

1. Aspirate out media 

2. Wash well 1x with 1X PBS 

3. Add 500µl of trypsin, let cells detach from well. Then 

add 500µl of media. 
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4. Carefully transfer the entire 1ml into an Eppendorf 

tube, making sure to monodisperse cells as best as 

possible. Then count the cells. (Note: it is OK to not 

count cells immediately, in order to align the “24 hr” 

wells as best as possible, so that the time of IAA 

addition is the same between the 24-well and the 6-well 

plates. But if cells are not counted immediately, do plate 

the tube on ice so that cells do not keep growing, and 

count within ~1hr). 

5. To count cells, carefully invert tube to mix wells (and/or 

mix carefully with a transfer pipet), and load 10µl onto 

the hemocytometer. The hemocytometer has 9 equally 

sized squares. For my experiments, I always count 5 

squares, calculate the average, then load a second time, 

and count another 5 squares. If the averages between 

the two loads differ by more than 15%, I count a third 

load. 

a. To calculate the number of total cells:  

i. (Avg number of cells per square)*10000 = 

Number of cells per ml. 

b. Note: the hemocytometer is only considered 

accurate if the number of cells per square is 

between ~50 and ~200. Therefore, for this 

protocol, in which I am seeding 5E5 cells per 

well, I always add 500µl trypsin with 500µl 

media so that I get between 50-100 cells per 

square (which equals 5E5 to 1E6 cells total). 

c. The cell counting is undoubtedly the most 

tedious aspect of the entire protocol, but getting 

accurate cell counts is absolutely crucial to make 

the results interpretable. I have attempted to 
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automate this process with the Countess 

automated cell counter from ThermoFisher, but I 

have found this unhelpful. (I got a large degree of 

variability between loads, especially since DLD-1 

cells are not as perfectly circular as the 

fluorescent beads that they use for demo. 

Therefore, it did not save me time to use the 

Countess). 

ii. The “24 hr” well: 

1. Aspirate out the media. 

2. Carefully add in fresh media (2.5ml per well), 

remembering to add 500µM IAA into the wells 

designated for IAA treatment. Try to do this step as 

close in time as possible to the IAA addition in the 24-

well plate.  

Day 3 

1. After 24 hours of IAA addition: 

a. For the “24 hr” timepoints in the 24-well plate: 

i. Aspirate out media 

ii. Fix by adding 500µl 4% formaldehyde for 10min. 

iii. Remove formaldehyde and quench with 500µl 100mM Tris. 

iv. Wash 2X with 1x PBS. At this point, pull the foil-wrapped 24-

well plate containing the “0 hr” timepoint coverslip out of the 

4°C, and add this coverslip to all subsequent steps. 

v. Remove 1x PBS and permeabilize coverslips with 500µl of 

0.1% Triton in PBS. Incubate for 5min. 

vi. Wash 2X with 1x PBS. 

vii. Carefully transfer coverslips into a humidified chamber. For 

me, I use a 15cm tissue culture dish, and place a piece of 

parafilm on the bottom of the plate, upon which I place my 



145 

coverslips (face up). I then place a few rolled-up sheets of wet 

Kimwipes inside the plate to keep the chamber humidified. 

viii. Add 75µl of IF Block (PBS supplemented with 2% FBS, 2% BSA, 

and 0.1% Tween) to each coverslip, making sure the IF Block 

spreads across the entire coverslip. Incubate for 20min at 

room temperature. During incubation step, cover the dish with 

foil. 

ix. Wash coverslips 2X with 1x PBS. 

x. Add 75µl of primary antibody mix to each coverslip. Incubate 

for 1hr at room temperature. During incubation step, cover the 

dish with foil. 

1. For this protocol, my primary antibody mix is mouse 

mAb anti-CENP-A (Enzo), diluted 1:1000 in IF Block. 

xi. Wash coverslips 2X with 1x PBS. 

xii. Add 75µl of secondary antibody mix to each coverslip. Incubate 

for 1hr at room temperature. During incubation step, cover the 

dish with foil. 

1. For this protocol, my secondary antibody mix is Cy5 

Donkey anti-Mouse (Jackson Labs), diluted 1:200 in IF 

Block. 

xiii. Wash coverslips 2X with 1x PBS. 

xiv. Add 75µl of DAPI (Diluted 1:10,000 in PBST) to coverslips. 

Incubate for 10min. 

xv. Wash coverslips 2X with 2x PBST. 

xvi. Mount coverslips to slides with 3.5µl of VectaShield. 

xvii. Store slides in the dark at 4°C until ready to be imaged. 

b. For the “24 hr” timepoints in the 6-well plate: 

i. Count cells as described for Day 2. 

Notes about imaging and analysis: 
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1. Capture images at room temperature on an inverted fluorescence 

microscope (DMI6000 B; Leica) equipped with a charge-coupled device 

camera (ORCA AG; Hamamatsu Photonics) and a 40x oil immersion objective. 

Use 0.59 µm z-sections (which I found to be sufficient for asynchronous 

cells). 

a. Note: I have tried this experiment with both 40x objective as well as 

the 100x objective, and have gotten the same results. Using the default 

parameters, CraQ will pick up more centromeres per cell in the 100x 

images (~20 centromeres/cell for 100x, and ~9 centromeres per cell 

for 40x). But because 40x images will contain many more cells per 

field, I still obtain a greater n with 40x compared to 100x, so I have 

stuck with imaging in 40x for these SNAP experiments. 

2. I perform analysis on deconvolved images, since the deconvolved images will 

be ultimately used for making figures. But I have found that using non-

deconvolved images for quantitation does NOT change the trends of the 

results.  

3. To quantify fluorescence intensity of centromeres, run the CraQ macro on 

ImageJ (Bodor et al., 2012) with standard settings using DAPI and total 

CENP-A staining as reference channels to define ROIs for quantification of 

TMR* intensity. 

4. To calculate CENP-A turnover: 

 

CENP-A turnover = 
 (TMR ∗  intensity at 24hr) − (Avg TMR ∗  intensity at 0hr)

(Cell number at 24hr)/(Cell number at 0hr)
 

5. The CENP-A turnover for untreated cells should be equal to 100%.  

A3. PURIFICATION OF CENP-NNT-HIS 
Protocol is adapted from McKinley et al., Mol Cell 2015. 

 

Expression: 
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1. Transform construct into pLysS and grow overnight at 37°C. 

2. Grow starter culture overnight at 37°C. 

3. Inoculate large flasks of LB + antibiotics with overnight culture.  

4. Grow to OD 0.7-1 at 37°C. 

5. Turn temperature down to 18°C, induce with 1mM IPTG, and grow for 6 

hours. See Figure 47 for induction bands. 

6. Freeze in lysis buffer at -80°C 

a. Lysis buffer: 50mM Na phosphate pH 8.0, 300mM NaCl, 10mM 

imidazole, 0.1% Tween, 1mM PMSF 

 

 

 

 

 

 

Figure 47. Expression of 
CENP-NNT in pLysS cells. 

Lysis: 

1. Thaw pellet in 37°C water bath and place on ice. Add PMSF, aprotinin, and 

leupeptin/pepstatin. Incubate 15 minutes with occasional stirring. 

2. Dounce with 10 plunges using the manual homogenizer. 

3. Sonicate: 30 pulses on at 80%, keep on ice for 3min. Repeat for a total of 3 

times. 

4. Spin at 14700rpm at 4°C in SS-34 rotor for 30min. Take the supernatant, and 

spin for another 30min. 

a. Note: My experience has been that spinning at 30min just once still 

leaves the lysate very viscous (which can result in clogging the 

column). Adding another spin (or alternatively, making the spin 

longer, such as 50min) has been helpful to reduce viscosity.  
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Purification with 1ml HiTrap HP column (max pressure 0.3 MPa) 

1. Make buffers.  

a. Lysis buffer: 50mM Na phosphate pH 8.0, 300mM NaCl, 10mM 

imidazole, 0.1% Tween  

b. Wash buffer: 50 mM Na phosphate pH 8.0, 500 mM NaCl, 40 mM 

imidazole, 0.1% Tween, BME, 20% glycerol 

c. Elution buffer: 50 mM Na phosphate pH 8.0, 500 mM NaCl, 250 mM 

imidazole, BME , 50% glycerol. Make sure to adjust pH to 8.0 

2. Load clarified lysate (from ~2L of cells) onto column, no faster than 1 

ml/min.  Once loaded, start wash with Wash Buffer at 2 ml/min. Then elute 

with Elution Buffer at 1 ml/min.  

3. Note: Storage of CENP-N protein in 50% glycerol is crucial for long-term 

stability. I have found that the fractions containing CENP-N are usually so 

concentrated (~4mg/ml) that further concentration is not necessary. By 

directly eluting in buffer containing 50% glycerol, further dilution is not 

necessary.  See Figure 48 for an example gel of final product of the CENP-N 

purification. It is beneficial to perform an additional gel filtration step, which 

gets rid of minor contaminants (Figure 48). 
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Figure 48. SDS-PAGE gel of final 
product of CENP-NNT purification. 

The gel includes samples from 
before and after the additional gel 
filtration step. 

 

A4. RECONSTITUTION OF CENP-A NUCLEOSOMES AND 

ASSEMBLY OF THE CORE CENTROMERIC NUCLEOSOME 

COMPLEX (CCNC) 
 

This protocol of assembling CENP-A nucleosomes by stepwise dialysis is similar to 

protocols prior described (Dyer et al., 2004; Luger et al., 1999; Sekulic and Black, 

2016a), with a few modifications throughout. 

1. First, measure concentrations of (CENP-A/H4)2 heterotetramer, H2A/H2B 

heterodimer, and DNA.  

2. Calculate volumes to add for each of the aforementioned components, so that 

histones are present at 1 heterotetramer:2 heterodimers molar ratio.  

Components should be concentrated enough that the final concentration of 

DNA in the dialyzer can be ~0.7mg/ml. And calculate how much KCl stock to 

add so that the starting reconstitution mix can be 2M KCl (to match the KCl 

concentration of the Rb-High buffer). 

3. Make buffers for reconstitution. Make sure all buffers are pre-cooled. 

a. “RB-High” (high salt buffer): 10 mM Tris–HCl pH 7.5 at 4°C, 2M KCl, 1 

mM EDTA, 1 mM DTT. Make 500ml of this. 

b. “RB-Low” (low salt buffer): 10 mM Tris–HCl pH 7.5 at 4°C, 0.25M KCl, 

1 mM EDTA, 1 mM DTT. Make 2L of this. 
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c. “TCS-0” (buffer with no salt): 10 mM Tris–HCl pH 7.5 at 4°C, 1 mM 

EDTA, 1 mM DTT. Make 1.5L of this. 

d. Note: In the Rb-High and Rb-Low buffers, NaCl can be substituted for 

KCl. 

4. Assemble the reconstitution mixture by adding components in this order: 

DNA, 4M KCl, CENP-A/H4, H2A/H2B, and Rb-High buffer.  

5. Incubate mixture on ice for 30min and transfer to dialyzer of appropriate 

size (after pre-wetting the dialyzer in Rb-High buffer) 

6. Begin dialysis with flow rate of 1.6ml/min overnight (~16hr) using a two-

channel peristaltic pump  as described (Dyer et al., 2004; Luger et al., 1999; 

Sekulic and Black, 2016a). 

7. After 16 hr of dialysis, there should be ~500ml of Rb-Low still left.  Move the 

dialyzer into a fresh beaker containing the ~500ml of Rb-Low. If precipitate 

is visible, take reaction out of the dialyzer and spin-clarify, then transfer to 

fresh dialyzer. Dialyze for a few hours in Rb-Low.  

8. Dialyze in TCS-0 buffer, 500ml each (x3, a few hours each, the last dialysis 

usually goes overnight). 

9. Check nucleosome quality with native PAGE. 

a. Pour 5% native gel (with 1.5mm combs) with BioRad Mini protean 

tetra cell casting module. Use ~10ml per gel: 

 10ml 20ml 

40% acrylamide 1.25 ml  2.5 ml 

2% Bis 0.416 ml 0.832 ml 

5x TBE 0.8 ml 1.6 ml 

H2O 7.87 ml 15.74 ml 

TEMED 5 ul 10 ul 

APS 50 ul 100 ul 

b. Pre-run native gel at 150V for 1hr, at 4°C. Use 0.2X TBE as running 

buffer. 

c. Prepare gel samples. Each sample should contain no more than 1-3 µg 

of nucleosomes (as measured by DNA concentration). Loading 1µg 
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will result in a very crisp band. If planning to excise the band from the 

native gel to resolve on denaturing SDS-PAGE, then load 3µg per lane, 

to allow for more protein per band. Loading more than 3µg will more 

easily result in smeary bands. Add equal volume 10% sucrose. Load 

no more than 10µl of volume per lane, otherwise bands are likely to 

be smeary (because the native gel has no stacking layer, unlike SDS-

PAGE gels). But loading less than ~5µl is also suboptimal since the 

solution may not spread evenly within the well.  So loading 5µl-10µl is 

optimal. 

d. After gel is finished running, stain with EtBr, then with Coomassie 

Blue (see Figure 49 for example native gel). 

10. If the nucleosome prep results in multiple bands (as is common for many α-

satellite sequences), perform thermal shifting of nucleosomes, as described 

(Dyer et al., 2004; Luger et al., 1999; Sekulic and Black, 2016a), to allow 

histone octamer to slide along the DNA to the most favorable position on 

DNA. Heat-shift nucleosomes by incubating them at 55°C f or 2hr, then 

running a native PAGE to verify successful heat-shifting (Figure 49).  

 

 
 
 
 
 
Figure 49. CENP-A nucleosomes 
assembled 147bp Bunick DNA, 
with and without thermal shifting. 

The gel is stained with EtBr as 
well as with Coomassie Blue. 
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11. To determine protein components within a band on the native gel, it is 

helpful to excise the band from the native gel and resolve its components on 

denaturing SDS-PAGE gel (i.e., 2D gel): 

a. It is imperative to run the denaturing gel (or, at least make the gel 

samples) as soon as possible after the native gel has destained. 

b. Place the native gel (Coomassie-stained and destained) on a piece of 

Saran wrap. Use a clean razorblade to cut out the bands of interest. 

c. If the native gel is 1.5mm (as opposed to 1.0mm), it is necessary to cut 

the band further to fit it within the wells of the 1.5mm SDS-PAGE gel. 

To do so, I find it easiest to bisect the band along its coronal axis, then 

placing the two identical pieces vertically in the well of the SDS-PAGE 

gel, then pipetting in ~20µl of SDS sample buffer into the lane. 

For examples 2D gels, see  
d. Figure 10 and Figure 31 

12. To assemble complexes of CENP-A nucleosome with CENP-CCD and/or CENP-

NNT, incubate with 2.2 molecules of CENP-C for each molecule of CENP-A 

nucleosome, and incubate with 4 molecules of CENP-N for each molecule of 

CENP-A nucleosomes.  See Figure 31 for example of these complexes run on 

native gel. Complexes can be purified by preparative native PAGE as 

described (Dyer et al., 2004; Luger et al., 1999; Sekulic and Black, 2016a).  

13. For making HXMS reactions from these complexes (i.e., comparing 

nucleosome alone vs. nucleosome bound to protein), it is imperative to add 

equal volume of Blank buffer to the nucleosome-alone sample, so that the 

final buffer content can be identical between the two samples to be 

compared. 

A5. HXMS OF NUCLEOSOME AND COMPLEXES 

A5A. MAKING BUFFERS FOR HXMS REACTIONS 
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Keep in mind that pD = pH + 0.4 

Make stocks: 

- 1M Tris in 10ml D2O 

o (0.010mol)(121.14g/mol)=1.21g of Trizma Base 

o pH to ~7.1 at room temp with NaOD (so that pD ~7.5) 

- 0.25M EDTA in 10ml D2O 

o (0.0025mol)(372.24g/mol)=0.93g of EDTA 

o pH to ~7.6 at room temp with DCl (so that pD ~8). Note: EDTA will 

not dissolve until pD approaches ~8. 

 

On-exchange Buffer for timecourse (10mM Tris, pD ~7.5 at RT; 0.5mM EDTA, pD ~8 

at RT): 

- In 10ml of D2O, add: 

o 100ul of 1M Tris in D2O (pD ~7.5 at RT) 

o 20ul of 0.25M EDTA  in D2O (pD ~8 at RT) 

o No need to further pH 

 

On-exchange Buffer for Fully Deuterated (FD) samples (0.s5% formic acid in D2O):  

- In 10ml D2O, add 57ul of 88% formic acid 

 

Quench Buffer for timecourse (2.5M GdHCl, 0.8% formic acid, 10% glycerol): 

- 2.388g of GdHCl 

- 91ul of 88% formic acid  

- 1ml of 100% glycerol 

- Add to 10ml with autoclaved milliQ water 

- Sterile-filter through 0.22um filter. 

- Adjusting pH of this quench buffer is very important. See below for 

instructions. 

 

Quench Buffer for fully deuterated (FD) samples (2.5M GdHCl, 0.5% formic acid, 

10% glycerol): 
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- 2.388g of GdHCl 

- 57ul of 88% formic acid 

- 1ml of 100% glycerol 

- Add to 10ml with autoclaved milliQ water 

- Adjusting pH of this quench buffer is very important. See below for 

instructions. 

 

Steps for adjusting pH of Quench Buffers: 

1. Objective is to make sure that the pH of our quench buffer + on exchange 

buffer will be 2.4-2.5. This is the pH at which back-exchange will be 

minimized). 

2. Make all buffers. 

3. Then, make separate “test reactions” of 600µl total (since that is the 

minimum volume required by the pH meter): 

- 60ul TCS buffer 

- 180ul exchange buffer 

- 360ul quench buffer 

- (Thus all components are proportional to each actual reaction, which 

would contain  5ul TCS buffer with sample + 15ul on-exchange buffer + 

30ul quench = 50µl total) 

- (Note: for the FD buffers, make sure to use the FD Quench Buffer + On-

exchange buffer for FD samples) 

a. Measure pH of the “test reaction”.  Then adjust pH of Quench Buffer, 

and make another 600µl of “test” reaction to measure pH, and 

continue adjusting the pH of quench buffer until the “test” reaction 

reaches pH 2.4-2.5.  

Store all buffers at 4°C in the dark, and make sure to wrap any solutions with D2O 

with parafilm. 

A5B. SET UP HXMS REACTIONS 
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Non-deuterated (ND) samples 

- These samples are used for collecting a peptide pool, and also for the all-

H control at the beginning of each data collection day. 

- For each reaction: 

o 5µl of sample at ~1mg/ml (if samples are nucleosomes or 

complex, use DNA concentration) 

o 15µl of buffer (e.g., TCS-0 buffer) 

- For each reaction, pipet 20µl of this reaction into 30µl of cold Quench 

Buffer, then flash freeze in liquid nitrogen. 

- Note: For nucleosome samples, it is OK to use a histone mix instead of 

nucleosomes to make the non-deuterated samples (e.g., 1:1 mix of CENP-

A/H4 and H2A/H2B), if the peptides in the histone mix have the same 

retention times as the peptides in nucleosomes (this can be verified 

empirically).  

- In general, I make >20 ND samples for each timecourse. 

Fully-deuterated (FD) samples 

- Set up a tube containing multiple reactions (I generally make >10 FD 

samples for each timecourse) of 5µl of sample (at ~1mg/ml) with 15µl of 

FD On-exchange Buffer. Wrap this in parafilm and foil during incubation. 

- When starting to work with a new protein, it is necessary to try various 

temperatures and incubation times (e.g., 24hr at RT, 24hr at 37°C, 48hr at 

RT…) and determine which condition allows for the fullest exchange. (See 

section on “Quality checking FD sample” 

On-exchange timecourse samples: 

- Prepare tubes by adding 30µl of cold Quench Buffer to each tube, and 

labeling them exactly according to the planned timecourse (see example 

timecourse in Table 5). Keep all tubes on ice. 

- Prepare samples for on-exchange: 



156 

o As in example timecourse, prepare 6 tubes total, 3 of which will 

contain CENP-A nucleosomes (CA-A, CA-B, and CA-C), and 3 of 

which will contain CENP-A nucleosomes + CENP-C (CAC-A, CAC-B, 

CAC-C). 

o Add 27.5µl of sample (at ~1mg/ml) to each tube. (Since each 

reaction will require 5µl of sample, this calculates for 5.5 

reactions). 

- To begin the exchange: 

o Pipet 82.5µl of On-Exchange Buffer to each tube (containing 27.5µl 

of sample). Then immediately start the timer (counting up). At 

each timepoint, pipet 20µl from the on-exchange reaction into the 

appropriate tube containing 30µl of cold Quench Buffer. Pipet up 

and down quickly (especially to mix the glycerol) and drop into 

liquid nitrogen. 

o Store all HXMS samples at -80°C until ready to run on mass spec. 

 

Time CENP-A nucs CENP-A nucs + CENP-C 

101s (10 sec) CA-A1 CA-B1 CA-C1 CAC-A1 CAC-B1 CAC-C1 

102s (1min 40s) CA-A2 CA-B2 CA-C2 CAC-A2 CAC-B2 CAC-C2 

103s (16min 40s) CA-A3 CA-B3 CA-C3 CAC-A3 CAC-B3 CAC-C3 

104 (2hr 46min 40s) CA-A4 CA-B4 CA-C4 CAC-A4 CAC-B4 CAC-C4 

105s (27hr 46min 40s) CA-A5 CA-B5 CA-C5 CAC-A5 CAC-B5 CAC-C5 

Table 5. Example of timecourse for HXMS, with two samples, 5 timepoints 
performed in triplicate. 

A5C. CROSSLINKING PEPSIN TO POROS RESIN 

 

Make buffers  

- Buffer A (500ml): 50mM sodium citrate, pH 4.4. Filter. 

- Buffer B (25ml): 1.5M sodium sulphate, pH 4.4. Filter 
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o Note: A previous protocol says: the sodium sulphate should be 

dissolved in hot (>80C) water in a volume close to the final buffer 

volume (~5.35g in 25ml).  Allow solution to slowly cool at room 

temperature.  When temp is close to 30C, adjust pH to 4.4 (with 

concentrated HCl) using as little volume as possible to prevent buffer 

from cooling too rapidly.   Allow buffer to cool to 25-30C before use. 

However, we have found so far that the high temperature is not 

necessary for dissolving sodium sulphate. 

- Buffer C (1ml) 

o 100mM sodium phosphate 

o 0.1M ethanolamine (6.26µl of 16.6M stock) 

o 5µl of 1M sodium cyanoborohydride 

 This must be hydrated fresh with milliQ water and used 

immediately.  Beware that this reducing agents very toxic, 

so wear mask, goggles, and lab coat when weighing 

out.  The dry powder should be kept on a desiccator. 

o Note: the pH will be ~9 after ethanolamine addition. This is above 

pH 4.4-4.5, But the volume added is small relative to the total 

volume, so do not need to adjust pH. 

- Buffer D (50ml): 50mM sodium citrate, 1M NaCl, pH 4.4. Filter 

- Buffer E (500ml): 0.1% formic acid. Filter and de-gas. 

Important note: Buffers A, B, D need to be at pH 4.4-4.5, where proteases have low 

activity.  At pH 6 and above the protease is irreversibly inactivated. 

 

Day 1 (makes enough for 2-3 columns (UpChurch, C-130B) 

1. Crack open a PD-10 column (GE, 8.3ml bed volume, 5cm bed length) and 

pour out storage buffer.  (Cut open the ridge with razorblade, place needle at 

the end of column).  Equilibrate with 25ml of Buffer A 

2. Dissolve protease at 100mg/ml (50mg in 0.5ml of Buffer A) 

- Pepsin: Sigma P6887 
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- Fungal protease: Sigma P2143 

3. Load protease onto column, and chase with 500µl of Buffer A, then 2ml of 

Buffer A.  Collect flowthrough in 500µl gractions (thus we have collected 5 

flowthrough fractions). 

4. Add 200µl of Buffer A at a time, collecting 200µl fractions.  Repeat 15-20 

times.  Then plug the column and Ponceau-stain the fractions to see where 

the protein is (using 2µl of sample per dot on membrane).  Combine the 

fractions that contain protease in a 15ml conical. 

5. Calculate “x” which is just a scaling factor: 

 (total µl of eluted protease)/285=x 

6. To the eluted protease, add: 

50(x)µl of 1M sodium cyanoborohydride 

For example, if x=5, then add 250µl 

7. Slowly add 160(x)µl of Buffer B 

8. Weigh out 100mg of POROS-20AL dry resin (Applied Biosystems #1-6028-

02) into an Eppendorf tube.  Add enough of the protease mixture to dissolve 

the resin, and transfer the suspension to the 15ml conical.  Gently agitate to 

form a homogenous solution. 

9. Add 330(x)µl of Buffer B over 2 hours (by adding the same amount every 5 

minutes.  Keep the solution homogenous by intermittent swirling. 

- For example, if the total volume is 1.62ml, we can add 67.5µl every 5 

minutes, for 24 times total. 

10. Tumble gently overnight at RT.  

 

Day 2 

1. Next morning, quench the reaction with 75µl of Buffer 

2. Tumble gently for 5 more hours at room temperature 

3. Using a fine sintered glass funnel, wash the resin with: 6ml Buffer A, then 5ml 

Buffer D, then 6ml Buffer A 

4. Gently use spatula to scrape resin from funnel and place in 15ml conical 

5. Resuspend resin with Buffer A to make 50:50 solution 
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6. Store in a 15ml conical at 4°C 

Note: unused cross-linked proteases usually last several months.  Can still be 

used after 6 months, but may lose some efficiency. 

A5D. SETTING UP AND CALIBRATING THE ORBITRAP 

Preparing system to run samples 

1. Prepare “Pre-injection Mix” of 3:2 Quench Buffer: milliQ water. This will be at 

1M GdHCl, and is the solution to be used for all washes. 

2. Turn on the power switch at the bottom of the cart. 

3. Connect the HXMS Box to start cooling. Make sure the arrow points toward 

the blue dot (otherwise the box will be heated instead). Place a temperature 

probe inside the box, and monitor temperature of the box throughout the 

day. 

4. Turn on the Waters pump. 

5. Take knobs off of the tubing in the Box. 

6. Connect the tubing to the Waters pump, but do so under flow: set Waters 

pump to 0.050ml/min and press “Run”. 

7. Flip on the air switch for the Eksigent (on the wall), and turn on the Eksigent 

(the switch is on the side of the box). The green light should come on on the 

other side. 

8. On the computer, open XCalibur software. Wait for “Eksigent LC Channel 1” 

to say “Ready to Download”. 

9. Open Eksigent software on computer. Go to “System”  “Direct Control”. Set 

to 12%, at 6µl/min. Then click Start. 

10. Now connect the tubing from the Eksigent to the HXMS Box. 

11. Open ThermoTunePlus on the computer. Then open “LMtune.LTQtune.” 

12. Begin calibration 

a. Load the syringe attached to the Orbitrap with Calibration Mix 

(CalMix). Press the Pump button on the Orbi and wait for masses to 
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appear on the computer. Check to make sure they are relatively stable. 

The NL should be in the 10^7 range. 

b. In ThermoTunePlus, go to “Control”  “Calibrate” 

c. First check to see if Orbi is already calibrated. Go to the “Check” tab, 

and check “Mass Calibration” under “Positive Ion Mode”. Document 

the Universal and Low RMSD values in the Excel spreadsheet on the 

desktop. If values are >1.5, then calibrate. Otherwise, can proceed 

without calibration. 

d. To perform the actual calibration, go to the “Semi-Automatic” tab, and 

check “Mass Calibration” under “Positive Ion Mode”.  

e. After calibration, perform another check: Go to the “Check” tab, and 

check “Mass Calibration” under “Positive Ion Mode”. Document the 

Universal and Low RMSD values in the Excel spreadsheet on the 

desktop.  

13. After calibration, make sure to connect the tubing from the Orbi to the HXMS 

Box (instead of to the syringe for CalMix). 

14. Now ready to start the day of runs. Start with a pre-clean run. 

a. Choose a name for the run.  Specify Path and Inst Method in 

XCaliber.  For pre-clean and washes in between runs, Inst Meth should 

be “C:\Xcalibur\methods\Lucie\3-29-11 yeast cleanup_tp”. 

b. Check the method.  Right click → “Open File” to make sure everything 

is correct, especially the pre-flush times. 

c. Click “Run Sample” (not Run Sequence), and do NOT click “OK” yet. 

d. Make sure both valves are in P1.   

e. Draw up 50ul of Pre-Injection Mix into the Hamilton 

syringe.  Inject.  Then quickly change V1 to P2, and click “OK” on the 

computer to start running the method.  Prepare to change the water 

pump from 0.050ml/min to 0.150ml/min, but do NOT click “Menu” 

yet. 

f. After 2min, click “Menu” to change the water pump to 0.150ml/min 
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g. After another 2min (4 min total), flip V2 to P2.  Then change water 

pump back to 0.050ml/min. 

h. Wait for 15min clean-up method to finish. 

15. After the pre-clean run is finished: 

a. Set both valves to P1 

b. Make sure the water pump is on 0.050 ml/min 

c. Check temperature probe in the box.  Temperature should be close to 

0C. 

d. Wait for pressures stabilize.  

e. Rinse the syringe and tubing: 

1. Rinse the Hamilton syringe 3 times with 1% formic acid + TFA 

pH 2.20 (the buffer for the waters pump).   

2. Rinse the injection tubing: With V1 in P1, fill up the Hamilton 

syringe with 1% formic acid + TFA pH 2.20 and inject into 

V1.  There should be liquid oozing out of the bypass 

tubing.  Catch with Kim wipes to prevent a puddle. 

A5E. RUNNING ND SAMPLES FOR GENERATING PEPTIDE POOL 

1. Keep all HXMS samples on dry ice before injecting into the system. 

2. After the pre-clean (see previous section), start an ND run. 

3. For ND runs, specify 

“C:\Xcalibur\methods\Lucie\20111205_forNDs_4minpreflush” for Inst 

Meth. 

a. The method consists of a linear 12-55% buffer B gradient at 6 µl/min 

(Buffer A: 0.1% formic acid; Buffer B: 0.1% formic acid, 99.9% 

acetonitrile). The method for ND will collect MS/MS data. 

4. Click “Run Sample” (not Run Sequence), and do NOT click “OK” yet. 

5. Make sure both valves are in P1. Take sample out from dry ice and let thaw 

slowly at 0°C. Draw sample (50ul) into the Hamilton syringe.  Inject.  Then 

quickly change V1 to P2, and click “OK” on the computer to start running the 
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method.  Prepare to change the water pump from 0.050ml/min to 

0.150ml/min, but do NOT click “Menu” yet. 

6. After 2min, click “Menu” to change the water pump to 0.150ml/min 

7. After another 2min (4 min total), Change V2 to P2.  Then change water pump 

back to 0.050ml/min.  Then wait for the 25min run to finish. 

8. In between each run, perform a wash step.  

9. After the ND run (and after each subsequent run), do a wash run (same 

method as the pre-clean). 

10. To continue building the peptide pool: 

a. Use SEQUEST to generate a list of peptides from this ND run. Then use 

ExMS to generate an exclusion list with these peptides, and load this 

exclusion list into the Method file of the next ND run. See section “A5g. 

Generating exclusion list and final peptide pool” for more details. 

b. For the 3rd ND run, generate an exclusion list containing peptides from 

both of the first two runs, and load that into the Method file. 

c. You should see that the number of peptides within the Ppep threshold 

(e.g., <0.90) will decrease with every iterative ND run. Depending on 

the length of your protein, usually after ~4 runs, we start getting 

diminishing returns.  

A5F. PROTEIN SEQUENCES 

CENP-A/H4/H2A/H2B histone mix 

Histone CENP-A (MS index 1-140): 

MGPRRRSRKPEAPRRRSPSPTPTPGPSRRGPSLGASSHQHSRRRQGWLKE

IRKLQKSTHLLIRKLPFSRLAREICVKFTRGVDFNWQAQALLALQEAAEAF

LVHLFEDAYLLTLHAGRVTLFPKDVQLARRIRGLEEGLG 

Histone H4 (MS index 141-243): 
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MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLI

YEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYG

FGG 

Histone H2A (with N-terminal GPLG tag remnant) (MS index 244-377): 

GPLGMSGRGKQGGKARAKAKSRSSRAGLQFPVGRVHRLLRKGNYAERVG

AGAPVYMAAVLEYLTAEILELAGNAARDNKKTRIIPRHLQLAIRNDEELN

KLLGKVTIAQGGVLPNIQAVLLPKKTESHHKAKGK 

Histone H2B (MS index 378-503): 

MPEPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSVYVYKVLKQV

HPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRL

LLPGELAKHAVSEGTKAVTKYTSSK 

CENP-CCD 

MAKPAEEQLDVGQSKDENIHTSHITQDEFQRNSDRNMEEHEEMGNDCVSKKQM

PPVGSKKSSTRKDKEESKKKRFSSESKNKLVPEEVTSTVTKSRRISRRPSDWWVV

KSEE 

CENP-NNT-His 

MDETVAEFIKRTILKIPMNELTTILKAWDFLSENQLQTVNFRQRKESVVQHLIHLC

EEKRASISDAALLDIIYMQFHQHQKVWDVFQMSKGPGEDVDLFDMKQFKNSFKK

ILQRALKNVTVSFRETEENAVWIRIAWGTQYTKPNQYKPTYVVYYSQTPYAFTSSS

MLRRNTPLLGQALTIASKHHQIVKMDLRSRYLDSLKAIVFKQYNQTFETHNSTTP

LQERSLGLDINMDSRIIHEGSSHHHHHHH 

A5G. GENERATING EXCLUSION LIST AND FINAL PEPTIDE POOL 

- Summary: Depending on protein length, running ~4 NDs should provide a 

complete peptide pool. Following the first run, use ExMS to generate an 
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exclusion list from the SEQUEST results. For the next run, upload the 

exclusion list into the Xcalibur method file. 

- To create FASTA database: 

o The database should include the sequences of the proteins in the 

sample (see protein sequences of my samples, in previous section). 

o Also, make sure to include ALL the proteins used by the lab as well as 

the protease (pepsin or fungal protease) used. Human keratins, MS 

standards, and the proteome of the organism of expression are also 

good ideas. You can also include the reverse protein sequences. 

- To generate Excel file of SEQUEST results from RAW file: 

o Open Bioworks Browser software 

o Drag the run (.RAW file) into the window 

o Go to Actions → SEQUEST Search (to match against a database) 

o Specify .params file (with appropriate FASTA database) 

o Use peptide tolerance of 8 ppm (default is 4 ppm), fragment tolerance 

of 0.1 (LM) AMU 

o Right click → Display → Peptides → make sure Retention times is 

checked (not Scan) 

o Right click → Export → Excel 

o This will generate an excel file containing all the peptides found in the 

run, including their Ppep scores. 

- Generating an exclusion list in ExMS: 

o Select 5: MS/MS related utilities 

o Select 2: To make MS/MS exclusion (reject) list 

o Select 1. Thermo Bioworks/SEQUEST (the result table saved as .xls 

file) 

o Designate P score (I use 0.90) 

o Xcorr score: [1,1,1,1,1] 

o Number of MS/MS experiments: 1 on first run, 2 on second, etc. 

o RT range of MS/MS experiments: [0 25] for a 25 minute run 

o RT window for exclusion list: 1 s 
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o This should generate a .txt file. In the next run, import this exclusion 

list into the Method file of the run. 

- To generate peptide pool in ExMS from several iterative ND runs: 

o To begin analyzing ND sample (which will ask to generate a peptide 

pool as the first step), start ExMS and choose 1: Start auto-processing 

HX MS dataset 

 Alternatively, to just generate the pool without analyzing a run, 

choose 5: MS/MS related utilities  1: To make 

experimental/theory peptide pools 

o Input name of protein and sequence. For my sequences, see “A5f. 

Protein sequences”. 

o Choose 1: Thermo Bioworks/SEQUEST (the result table saved as .xls 

file) 

o Input the score system to be used (1=XCorr; 2=Ppep): Ppep. 

o Input Ppep score threshold for filtering peptides: 90 

o How many MS/MS experiments (result tables of peptide search) to 

establish the "peptidesPool"?: Enter how many ND runs from which to 

build the peptide pool. 

o Then, choose each .xls file to be analyzed. 

o ExMS will then generate the peptide pool file (“ExMS_preload”) with 

an accompanying .fig file (see examples in Figure 50 and Figure 51). 
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Figure 50. Peptide pool showing CENP-A/H4/H2A/H2B from several iterative ND 
runs. 

See “A5f. Protein sequences” for how the residue number lines up with each protein.  
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Figure 51. Peptide pool showing CENP-NNT, from several iterative ND runs. 

A5H. RUNNING THE DEUTERATED TIMECOURSE SAMPLES 

1. Keep all HXMS samples on dry ice before injecting into the system. 

Remember to let each sample thaw slowly at 0°C on ice. 

2. Start with a pre-clean,,then start the day with an All-H run (with an ND 

sample). See “A5e. Running ND samples for generating peptide pool” for 

protocol and method file. Then make sure that the retention times of the 

peptides in this run align well (within ~half a minute) to those in the peptide 

pool. 

3. I usually run the FD sample as the second run of the day. For the FD run (and 

for all deuterated runs), specify “Deuterium_run_MS1_12to55_tp” as the 

Method file. Just like the file for the ND runs, this file consists of a linear 12-

55% buffer B gradient at 6 µl/min (Buffer A: 0.1% formic acid; Buffer B: 0.1% 

formic acid, 99.9% acetonitrile). But it does not collect MS/MS data. 

1. After the FD, start running timecourse samples, with a wash run between 

each run. For my first dataset with CENP-A nucleosomes +/- CENP-C, I also 

ran an empty gradient (a 25min run, but without injecting sample) after each 

wash, to make sure that no peptides have been carried over from the 
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previous run. I never saw any carryover of peptides, and when I repeated the 

dataset, I saw no difference in the results. So for subsequent datasets, I no 

longer did the empty gradients.   

4. At the end of day, before disconnecting the system, remember to store the 

analytical C18 HPLC column in 90% acetonitrile: bump up to 90% Buffer B 

stepwise (e..g., start with 20%, then up to 30%, then up to 40%... to 90%).  

Notes: 

- I usually run the same timepoint of two samples back-to-back, to minimize 

the variability in data collection between the two samples (and randomly 

select which one to run first).  For example, for the timecourse shown in 

Table 5, I can run CA-A1, then CAC-A1, then CAC-A3, then CA-A3). 

- I have found by experience that the data looks tighter if the entire timecourse 

is run over a single day, or over two consecutive days. (Note: if doing runs 

continuously, make sure to re-calibrate the Orbi every 12 hours).  

- Make sure that all plumbing is running  well before starting the timecourse, 

because changing any component of the plumbing (especially the C18 

analytical column) can dramatically alter the retention times of peptides, 

which will make analysis very problematic. 

A5I. ANALYSIS OF DEUTERATED SAMPLES BY EXMS 

1. Convert RAW files to mzXML files (to be used by ExMS) 

a. Open TPP Web Tools (purple flower icon). Username: guest.  Then 

password should auto-fill (should also be guest) 

b. On the desktop there is a link to “TPP data 

directory”.  (C:\Inetpub\wwwroot\ISB\data).  Draw .RAW files into 

this folder 

c. Then on the web interface: Analysis Pipeline  

i. Specify RAW Input File(s) to convert to mzXML (select our 

files) 
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ii. Conversion Options: check “Profile” (not Centroid) 

iii. Convert 

d. Now you should see .mzXML files appearing in the TPP data directory 

folder.  Remove them from this public folder immediately after 

transferring the files. 

2. Use ExMS to auto-process the mzXML files by selecting “1: Start auto-

processing HX MS dataset”, and following the steps as asked by the program. 

After preprocessing, ExMS will generate an “ExMS_wholeResults” file. 

a. We can perform auto-check of the results by selecting “2: Check auto-

processed results or re-check” and selecting “1: To just use this auto-

determined good peptide set (Will need no manual check)”. This will 

generate an “ExMS_wholeResults_afterCheck” file. 

3. Quality check the fully deuterated (FD) sample 

a. To check whether the FD sample will serve as an adequate control for 

full deuteration, run the FracDeut script (written by J. Dawicki-

McKenna). The code requires the “ExMS_wholeResults_afterCheck” 

files for both the ND and the FD. The code will calculate the theoretical 

full deuteration of each peptide and compare it to the experimental 

degree of deuteration, then plot a histogram of fractional deuteration 

for all peptides (Figure 52). For my FD samples of histone mixes, I 

usually get a median fractional deuteration of >85%.  



170 

 

 
 
Figure 52. Example 
FracDeut analysis of a 
fully deuterated (FD) 
histone mix sample. 

 

 

4. Manually check peptides 

a. After letting ExMS perform autocheck of the data, you can manually 

check each peptide or selected peptides. To perform manual checking, 

select “2: Check auto-processed results or re-check”. Then, you can 

manually check every peptide by choosing “3: To check all peptides no 

matter auto-determined good or not (Maximum manual check)”, or 

just check the peptides that ExMS could not confidently identify by 

choosing “2: To check those peptides outside the good set (Partial 

manual check)”. For guidelines on how to perform manual checking, 

see published literature (Kan et al., 2011). 

5. Plotting data 

a. Data can be plotted into figures by using Matlab scripts written by T. 

Panchenko and M. Salman. This code first prompts the user for input, 

then performs necessary calculations and creates HDX Ribbon plots, 

Difference plots where applicable as well as XY plots for all data sets. 
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APPENDIX B: PROTOCOLS FOR CHAPTER 4 

 

B1. SILAC EXPERIMENTS 

B1A. MAKING MEDIA FOR SILAC 
 

Overview: this protocol makes 4L of SILAC media, which emulates the Joklik formula 

(from Sigma). My SILAC experiments were always 2L light + 2L heavy, since this was 

determined to be the minimum scale needed to detect the phosphosites of interest. 

This media is made completely from scratch, by adding nutrient powder into milliQ 

water. Lysine and Arginine are added later. 

1. First measure out 3L milliQ water in a 4L flask, keep this stirring at room 

temperature. 

2. Weigh out each individual component in table below. Note that many of these 

components require some time to dissolve, so for best results, keep the water 

stirring as the components are added. 

1. Note: for vitamins, since so little quantity is required, I found it 

easiest to weigh out the smallest quantity that can be comfortably 

measured and then dissolve that in 1ml ddH2O. Then, add the 

volume that would correspond to the appropriate final quantity. 

Component mg/L For 4L 

Salts and sugars 

Magnesium chloride x 6H2O (Sigma M9272) 200 800 

Potassium chloride (Fisher BP366) 400 1600 

Sodium chloride (Sigma S9888) 6500 26000 

Sodium dihydrogen phosphate x H2O (Sigma S9638) 1327 5308 

D(+)-Glucose anhydrous (Sigma D9434) 2000 8000 
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Amino acids (NOT including Lys, Arg, and Pro, which are to be added later) 

L-Cystine (Sigma C7352) 24 96 

L-Histidine base (Sigma H6034) 31 124 

L-Isoleucine (I7403) 52 208 

L-Leucine (Sigma L8912) 52 208 

L-Methionine (Sigma M5308) 15 60 

L-Phenylalanine (Sigma P5482) 32 128 

L-Threonine (Sigma T8441) 48 192 

L-Tryptophan (Sigma T8941) 10 40 

L-Tyrosine (Sigma T8566) 32.6 130.4 

L-Valine (Sigma V0513) 46 184 

Vitamins 

D-Calcium pantothenate (Sigma P5155, stored at 4°C) 1 4 

Choline chloride (Sigma C7527) 1 4 

Folic acid (Sigma F8758) 1 4 

Myo-inositol (Sigma I7508) 2 8 

Nicotinamide (Sigma N0636) 1 4 

Pyridoxal-HCl (Sigma P6155, stored at -20°C) 1 4 

Riboflavin (Sigma R4500) 0.1 0.4 

Thiamine-HCl (Sigma T1270) 1 4 

 

3. After adding all components, wait to make sure there are no precipitates. 

4. Then add phenol red to media (10mg/L, so add 40mg for 4L) 
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5. At this point, the media will look yellow (acidic). Add NaOH until it looks 

more red. 

6. Measure pH, and add more NaOH until pH reaches ~7. 

7. Add 8g of sodium bicarbonate (Sigma S9638) 

8. Pour in water to ~3.6L. 

9. Measure pH again. Adjust pH to ~7.2-7.3. 

10. Sterile-filter into 1L bottles using 0.22µm filter, 900ml per bottle (thus 

leaving 100ml for adding serum). This is now a master stock of Joklik media, 

and can be stored at 4°C for several weeks.  Note: the media should go 

through the 0.22µm filter easily. If it is failing to go through easily, it might 

indicate that there is precipitation in the media, and that it is unable to be 

used since it could be missing key nutrients. 

11. When beginning a SILAC experiment, make light and heavy media separately, 

from this master stock. 

12. Make separate stocks of lysine, arginine, and proline to be added individually. 

Store these hydrated stocks at -20°C until ready to use. Can refreeze and 

thaw as many times as needed. 

a. For lysine (make 50mg/ml stock in ddH2O, which Is 1000x) 

1. Light: L-Lysine (Sigma L5501) 

2. Heavy: 13C15N labeled Lysine-HCl, 100mg (Silantes 211603902) 

b. For arginine  (make 50mg/ml stock in ddH2O, which Is 1000x) 

1. Light: L-Arginine (Sigma L5006) 

2. Heavy: 13C15N labeled Arginine-HCl, 100mg (Silantes 

201603902) 

c. For proline (Sigma P0380), make 120mg/ml stock in ddH2O, which is 

1000x 

13. To make 500ml of light (or heavy) media: 

a. Add 450ml of Joklik media (from master stock) 

b. 50ml of dialyzed FBS (Gemini # 100108). It is important to use 

dialyzed FBS, since normal FBS contain trace amounts of lysine and 

arginine. 
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c. 5ml of GlutaMax (Gibco 35050-061, which is at 100X). I find this 

easier to work with compared to L-Glutamine, especially since this 

stock is stored at room temperature. 

d. 5ml of Pen/Strep 

e. 5ml of 1M HEPES 

f. 5ml of 100X MEM Non-Essential Amino Acids Solution (Gibco 11140-

050, containing Gly, Ala, Asn, Asp, Glu, Pro, and Ser).  

g. 500µl of 1000x Lysine (50mg/ml) – light or heavy 

h. 500µl of 1000x Arginine (50mg/ml) – light or heavy 

i. 500µl of 1000x Proline (120mg/ml)  

B2B. GROWING HELAS3 SPINNER CELLS IN SILAC MEDIA 

1. Make sure spinner flasks are autoclaved, once in ddH2O, and once dry. 

2. HeLaS3 cells expressing CENP-A-LAP (Bailey et al., 2013) are frozen in liquid 

nitrogen at 2 x 107 cells/vial. 

3. Make sure to pre-warm media in 37°C water bath prior to use. 

4. Combine two vials into some volume of normal media (e.g., 50ml), then split 

into two equal 50ml conicals (e.g., 25ml each). Then spin down gently 

(800rpm, 3min), and carefully remove the media. Then, to one cell pellet, add 

50ml of Light media. To the other conical, add 50ml of Heavy media. 

Carefully and thoroughly mix each tube of cells using a transfer pipet. 

Monodispersing the cells is crucial for optimal growth, since clumped cells do 

not grow as well.  

a. Thus, both the Light and Heavy flasks are starting from equivalent 

cells, and the starting concentration of cells in each flask is ~4x105 

cells/ml. 

5. Gently pour each conical of cells into a pre-warmed 100ml spinner flask. 

Make sure to label which flask is Light, and which is Heavy. 

6. Check cell density and viability daily. Do not let the cells overgrow (>1x106 

cells/ml), and do not split them to lower than ~3x105 cells/ml. If cells are 



175 

doubly daily, and percent of dead cells is <10%, then they are growing well.  

Every day, add more pre-warmed media (light or heavy, according to which 

flask). 

7. Once the capacity of the flask is maxed out, transfer to the next biggest size of 

spinner flask (and make sure it is autoclaved twice-- first in water and next in 

dry-- and pre-warmed to 37C).  
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APPENDIX C: LIST OF PLASMIDS 
 
Plasmids containing guide RNAs (gRNA), for transfection in mammalian cells (for 
CRISPR/Cas-mediated gene editing). [All are in the pX330 (BB901) backbone] 

BB # Description Vector Cloning notes 

957 pX330 with gRNA to 
CENP-A C-terminus 
(LG-033 + LG-034) 

pX330 
(BB901) 

Annealed oligos LG-035 and LG-036 
and ligated with pX330 (BB901) that 
had been digested with FastDigest 
BpiI (Thermo). 

958 pX330 with gRNA to 
CENP-A C-terminus 
(LG-035 + LG-036 

pX330 
(BB901) 

Annealed oligos LG-035 and LG-036 
and ligated with pX330 (BB901) that 
had been digested with FastDigest 
BpiI (Thermo). 

963 pX330 with gRNA to 
CENP-A C-terminus 
(LG-045 + LG-046) 

pX330 
(BB901) 

Annealed oligos LG-045 and LG-046 
and ligated with pX330 (BB901) that 
had been digested with FastDigest 
BpiI (Thermo). 

 
Plasmids containing repair templates, for transfection in mammalian cells (for 
CRISPR/Cas-mediated gene editing): 

BB # Description Vector Notes on cloning, source, or usage 

965 SNAP-P2A-NeoR pUC19 Repair template for CENP-A-SNAP 
CRISPR, containing ~800bp 
homology arms on either end of the 
exogenous gene 

 
Plasmids for transfection in mammalian DLD-1 Flp-In T-Rex cells, to insert construct 
into unique FRT site by Flp/FRT recombination: 

BB # Description Vector Notes on cloning, source, or usage 

959 Flp recombinase  This is a commercial plasmid from 
Invitrogen (pOG44).  

961 pcDNA5/FRT with 
CENP-A-SNAP 

pcDNA/FR
T (BB955) 

PCR’ed up BB921 with LG-037 and 
LG-038 (used KAPA HiFi with GC-
rich buffer!); inserted into BB955 
backbone by KpnI and PspXI digest. 
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962 pcDNA5/FRT-CENP-
C (untagged, full-
length) 

pcDNA/FR
T (BB955) 

PCR’ed up BB891 with LG-039 and 
LG-040; inserted into BB955 
backbone by NheI and PspXI digest. 

1007 pcDNA5-FRT-CENP-
C(∆426-537) 

pcDNA/FR
T (BB955) 

PCR BB892 with LG-039 and LG-040.  
Ligation with BB962 after NheI + 
PspXI digestion. 

1008 pcDNA5-FRT-CENP-
C(∆736-758) 

pcDNA/FR
T (BB955) 

PCR BB903 with LG-039 and LG-040.  
Ligation with BB962 after NheI + 
PspXI digestion. 

1009 pcDNA5-FRT-CENP-
C(∆426-537 + ∆736-
758) 

pcDNA/FR
T (BB955) 

PCR BB904 with LG-039 and LG-040.  
Ligation with BB962 after NheI + 
PspXI digestion. 

1135 pcDNA5-FRT-CENP-
C(∆519-533) 

pcDNA/FR
T (BB955) 

Mutagenesis of BB962 with LG 104 
and LG 105 

1136 pcDNA-FRT-CENP-
C(R521A) 

pcDNA/FR
T (BB955) 

Mutagenesis of BB962 with LG 106 
and LG 107 

1137 pcDNA-FRT-CENP-
C(R522A) 

pcDNA/FR
T (BB955) 

Mutagenesis of BB962 with LG 108 
and LG 109 

 
Plasmids for expression in bacterial cells: 

BB # Description Vector Notes on cloning, source, or usage 

675 pGEX-GST-CENP-
C(426-537) 

pGEX Gift from Aaron Straight (used in 
Carroll et al., 2010, and Falk et al., 
2015) 

1015 CENP-N(1-240)-HIS  His-tagged CENP-N(1-240). Made by 
Kara McKinley (first used in 
McKinley et al., 2015) 

1072 CENP-N(1-205)-His  His-tagged CENP-N(1-205) 

1145 GST-CENP-C(R521A) pGEX CENP-CCD, R521A 

1086 GST-CENP-C(R522A) pGEX CENP-CCD, R522A 
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APPENDIX D: LIST OF OLIGOS 
 

LG# Sequence Purpose Notes 

LG-033 
CACCGCAACTGGCCCGGAG
GATCCG CENP-A-SNAP CRISPR: gRNA #1 

 

LG-034 
AAACCGGATCCTCCGGGCC
AGTTGC CENP-A-SNAP CRISPR: gRNA #1  

 

LG-035 
CACCGCCGGAGGATCCGGG
GCCTTG CENP-A-SNAP CRISPR: gRNA #2  

 

LG-036 
AAACCAAGGCCCCGGATCC
TCCGGC CENP-A-SNAP CRISPR: gRNA #2  

 

LG-037 

GACTGGTACCGACGTCACC
GGTCCGGCCGGATCTATGG
G 

To insert CENP-A-SNAP from 
BB921 into pcDNA/FRT (N-
terminal KpnI-AgeI sites) 

Tm=59C; 
71% GC; 
17bp 
annealed 

LG-038 

GATCATGCTCGAGTCTCAA
GCGTAATCTGGAACGTCAT
ATG 

To insert CENP-A-SNAP from 
BB921 into pcDNA/FRT (C-
terminal PspXI site) 

Tm=60C; 
43% GC; 
28bp 
annealed 

LG-039 
GACTGCTAGCATGGCTGCG
TCCGGTCTG 

To insert CENP-C from BB891 into 
pcDNA/FRT (N-terminal NheI site 
and ATG) 

Tm=60-
61C, 75% 
GC; 16 
annealed 
bases 

LG-040 
CCCTCTAGACTCGAGTCAT
CTTTTTATCTG 

To insert CENP-C from BB891 into 
pcDNA/FRT (already has C-
terminal PspXI; keeping the stop 
codon) 

Tm=59C; 
43% GC; 
30bp 
annealed 

LG-045 
CACCGCTGACAGAAACACT
GGGTGC CENP-A-SNAP CRISPR: gRNA #3 

 

LG-046 
AAACGCACCCAGTGTTTCT
GTCAGC CENP-A-SNAP CRISPR: gRNA #3 

 

LG-049 
CCGGGGCCTTGAAGAGGGA
CTCGGC 

F mutagenesis primer for repair 
template for gRNA #035-036 (for 
both BB956 and with NeoR) Tm=67C 

LG-050 
GCCGAGTCCCTCTTCAAGG
CCCCGG 

R mutagenesis primer for repair 
template for gRNA #035-036 (for 
both BB956 and with NeoR) Tm=67C 

LG-051 
AGATTACGCTTGAGCTCTT
GCACCCAGTGTTTCTG 

F mutagenesis primer for repair 
template for gRNA #045-046 (for Tm=66C 
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BB956 ONLY) 

LG-052 
CAGAAACACTGGGTGCAAG
AGCTCAAGCGTAATCT 

R mutagenesis primer for repair 
template for gRNA #045-046 (for 
BB956 ONLY) Tm=64C 

LG-053 
GAGGGCCTATTTCCCATGA
TTCC 

U6 F promoter (Recommended by 
Ran et al 2013) for sequencing 
gRNAs in pX330 

Tm=58C, 
52% GC 

LG-054 

GTGAATTCGAGCTCGGTAC
CCGGGGATCCTCTAGAGGA
ACTCTCTCGTTTGTCCAC 

CENP-A-SNAP CRISPR (with 
NeoR): F for 5' homology arm 
gPCR 

Tm=57C, 
52% GC 

LG-055 
CCTCGAGAAGGCCGAGTCC
CTCCTCAAG 

CENP-A-SNAP CRISPR (with 
NeoR): R for 5' homology arm 
gPCR 

Tm=58C, 
67% GC 

LG-056 GCCTTGAGGAGGGACTCGG 
CENP-A-SNAP CRISPR (with 
NeoR): F for gBlock 

Tm=60C, 
68% GC 

LG-057 
AAGACTGACAGAAACACTG
GGTG 

CENP-A-SNAP CRISPR (with 
NeoR): R for gBlock 

Tm=58C, 
48% GC 

LG-058 
ATGACTCGAGGCTCCTGCA
CCCAGTGTT 

CENP-A-SNAP CRISPR (with 
NeoR): F for 3' homology arm 
gPCR 

Tm=59C, 
61% GC 

LG-059 

ACGCCAAGCTTGCATGCCT
GCAGGTCGACTAGTGCCTT
TTCTCCCATACCACAG 

CENP-A-SNAP CRISPR (with 
NeoR): R for 3' homology arm 
gPCR 

Tm=57C, 
52% GC 

LG-060 
GTGCAACTGGCCCGAAGAA
TTCGCGGCCTTGAGGAGGG 

F mutagenesis primer for repair 
template for gRNA #033-034  

Tm=63C, 
63% GC 

LG-061 
CCCTCCTCAAGGCCGCGAA
TTCTTCGGGCCAGTTGCAC 

R mutagenesis primer for repair 
template for gRNA #033-034  

Tm=67C, 
63% GC 

LG-076 
GTTATGACTCGAGGCTCTT
GCACCCAGTGTTTCTG 

F mutagenesis primer for repair 
template for gRNA #045-046 (for 
the one with NeoR ONLY) 

Tm=65C, 
annealed 
34bp (51% 
GC) 

LG-077 
CAGAAACACTGGGTGCAAG
AGCCTCGAGTCATAAC 

R mutagenesis primer for repair 
template for gRNA #045-046 (for 
the one with NeoR ONLY) 

Tm=64C, 
annealed 
34bp (51% 
GC) 

LG-080 
GCTACCTGCCCATTCGACC
ACCAAGCG 

F mutagenesis for L-->F in CRISPR 
repair template with SNAP-NeoR Tm-64C 

LG-081 
CGCTTGGTGGTCGAATGGG
CAGGTAGC 

R mutagenesis for L-->F in CRISPR 
repair template with SNAP-NeoR Tm-64C 

LG-104 
GTGACTTCAACTGTCACGA
AATCAGAGGAGAGTCCT 

CENP-C CD mutagenesis: F d519-
533 Tm=52C 
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LG-105 
AGGACTCTCCTCTGATTTC
GTGACAGTTGAAGTCAC 

CENP-C CD mutagenesis: R d519-
533 Tm=55C 

LG-106 

AGAAGTGACTTCAACTGTC
ACGAAAAGTGCCAGAATTT
CCAGGCGT CENP-C CD mutagenesis: F R521A Tm=63C 

LG-107 

ACGCCTGGAAATTCTGGCA
CTTTTCGTGACAGTTGAAG
TCACTTCT CENP-C CD mutagenesis: R R521A Tm=63C 

LG-108 

TCAACTGTCACGAAAAGTC
GAGCCATTTCCAGGCGTCC
ATCTGAT CENP-C CD mutagenesis: F R522A Tm=63C 

LG-109 

ATCAGATGGACGCCTGGAA
ATGGCTCGACTTTTCGTGA
CAGTTGA CENP-C CD mutagenesis: R R522A Tm=63C 

LG-116 CGAGGTCGACGGTATCG 
For sequencing (this is the 
common "KS primer") 

Tm=55C, 
65% GC 

LG-117 
GCGTAATCTGGAACGTCAT
ATGG 

For sequencing (R primer that 
anneals to "HA") 

Tm=57C, 
48% GC 

LG-191 
GGAGATATACATATGGATG
AGACTGTTG 

F primer for CENP-N(205)-His 
gBlock 

Tm=55C, 28 
annealed 
bases, 39% 
GC 

LG-192 
CCAAGCTTAGATCTGGATC
CTC 

R primer for CENP-N(205)-His 
gBlock 

Tm=55C, 22 
annealed 
bases, 50% 
GC 
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