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ABSTRACT 
 

INSIGHTS INTO SLEEP HOMEOSTASIS FROM A DROSOPHILA GENETIC SCREEN 

FOR SLEEP REBOUND MUTANTS  

Christine Dubowy 

Amita Sehgal 

Sleep rebound – the increase in sleep that follows sleep deprivation (SD) – is a hallmark 

of homeostatic sleep regulation that is conserved across the animal kingdom. However, 

both the mechanisms that underlie sleep rebound and its relationship to other forms of 

homeostatic sleep regulation remain unclear. To identify mechanisms important for sleep 

rebound, we developed a novel method of inducing SD in Drosophila by 

thermogenetically activating wake-promoting neurons. We then used this method to 

conduct a large-scale genetic screen to identify Drosophila mutants with reduced sleep 

rebound. In Chapter 1, we discuss the use of Drosophila melanogaster as a model 

organism in sleep research. In Chapter 2, we discuss results of the genetic screen, 

where we find that sleep rebound and habitual sleep amount are controlled by separate 

genetic factors. In Chapter 3, we present data suggesting that mutants with reduced 

sleep rebound experience a milder wake-promoting stimulus during the sleep deprivation 

period compared to control flies, and that this difference in the strength of the wake-

promoting stimulus is likely responsible for the reduced rebound phenotype. In Chapter 

4, we discuss the implications of these data, and future directions to explore a model 

where homeostatic plasticity in the neural circuit used to produce sleep loss is 

responsible for subsequent rebound. These findings have important implications for our 

understanding of sleep and provide a model for homeostatic sleep regulation that could 

apply to mammalian systems. 
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CHAPTER 1: Sleep in Drosophila melanogaster 

This chapter is an excerpt from “Circadian rhythms and sleep in Drosophila 

melanogaster” published in Genetics (2017) DOI:10.1534/genetics.115.185157 
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Introduction 

Sleep research in Drosophila melanogaster originated with two studies published in at 

the turn of the millennium (Hendricks et al. 2000; Shaw et al. 2000). In these studies, it 

was found that Drosophila periodically enter a state of quiescence that meets a series of 

criteria for sleep: (1) This quiescent state is characterized by an increased arousal 

threshold (decreased responsiveness to sensory stimuli), but (2) it can be distinguished 

from coma or anesthesia by its rapid reversibility with a stimulus that is sufficiently 

strong. (3) The timing of sleep is regulated by the circadian clock, although these two 

processes can also be separated; flies with mutations in the core clock genes have 

fragmented sleep across the day, but can have normal overall sleep amounts (Hendricks 

et al. 2003) (Figure 1-1), and flies with mutations that result in very low total sleep 

amounts can still show robust circadian activity rhythms. (4) Sleep is also 

homeostatically regulated, such that when flies are deprived of sleep using a mechanical 

stimulus, they compensate with longer and deeper sleep the following day. This suggests 

that sleep serves an important restorative function rather than simply reflecting 

ecologically advantageous periods of inactivity. (5) Flies experience broad changes in 

neuronal activity during sleep. Although rhythmic neuronal activity, like that observed 

with the EEG in mammals, has not been observed in flies, local field potential recordings 

of the protocerebral area and imaging with the optical calcium indicator GCaMP in the 

mushroom body show that sleep is a state of reduced neuronal activity and blunted 

neuronal responses to sensory stimuli (Nitz et al. 2002; Bushey et al. 2015). Importantly, 

many genetic and molecular regulators of sleep are conserved across species (Crocker 

and Sehgal 2010). Thus, sleep in flies closely resembles sleep in other organisms, and 
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researchers can take advantage of the benefits of this small, genetically tractable model 

organism to advance our understanding of the molecular neuroscience of sleep.  

At the center of much sleep research is the enigmatic question: what is the function of 

sleep? We know that in flies as well as in mammals, important brain processes like 

learning and memory suffer when animals are sleep deprived, and can be recovered by 

allowing sleep to occur. However we do not yet know what, at a molecular level, is being 

depleted and restored. A related line of thought presumes that if we can understand the 

regulatory factors that underlie the sleep homeostasis, this will lead to a better 

understanding of sleep function. Gene expression studies have revealed interesting 

molecular signatures of sleep across the animal kingdom (Mackiewicz et al. 2009), and 

this has led to a number of interesting hypotheses about sleep function: that it is a time 

for particular synaptic plasticity processes (Tononi and Cirelli 2006), or specific 

metabolic activities (Mackiewicz et al. 2007), but evidence supporting these hypotheses 

is mixed (Scharf et al. 2008; Tononi and Cirelli 2014; Frank and Cantera 2014). An 

additional physiological correlate of sleep in mammals is greater influx of cerebral spinal 

fluid into the brain, which may also have a functional role, but has not been directly 

connected to behavior (Xie et al. 2013). Likewise, research in mammalian systems has 

uncovered at least some of the relevant neural circuitry for sleep regulation, and a flip-

flop switch model for how sleep and wake states are stabilized (Saper et al. 2010; Weber 

and Dan 2016), but has not revealed satisfying mechanisms to explain what forces cause 

this switch to flip.  
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Small model organisms have great potential to reveal single genes and molecules with 

large impacts on sleep regulation or function, potentially providing answers to these big 

questions. However, work in model organisms over the past 16 years has also revealed 

the complexity of even evolutionarily early sleep states. Circadian and homeostatic 

regulation of sleep were important for establishing similarities between Drosophila sleep 

and sleep in mammals, but in addition to regulation by the circadian clock and 

homeostatic system, sleep in Drosophila can be modulated by diverse environmental 

factors (Zimmerman et al. 2012), such as social experience (Ganguly-Fitzgerald et al. 

2006; Bushey et al. 2011; Chi et al. 2014; Liu et al. 2015; Lone et al. 2016), mating 

(Isaac et al. 2009), light (Shang et al. 2008), temperature (Parisky et al. 2016), feeding 

(Keene et al. 2010; Thimgan et al. 2010), age (Koh et al. 2006; Seugnet et al. 2011a; 

Metaxakis et al. 2014; Kayser et al. 2014), infection (Kuo et al. 2010; Kuo and Williams 

2014), and stress (Lenz et al. 2015). Some of these environmental factors act on the 

circadian and homeostatic circuitry, but many of these environmental modulators also 

employ independent mechanisms that do not seem to interfere with circadian 

timekeeping, sleep amount when animals are undisturbed, or the homeostatic response to 

sleep loss. In C. elegans, two different sleep-like states have been described that meet 

nearly all the criteria above, but instead of regulation by the circadian clock, these sleep 

states are induced by either the molting phase of worm development or by stress (Raizen 

et al. 2008; Hill et al. 2014). Thus, complex regulation of sleep by diverse environmental 

factors is likely a general principal of sleep that can be extracted from evolutionarily 

primitive organisms like insects and nematodes. The picture that emerges from this work, 

then, is not of a uniform state with simple regulatory mechanisms, but rather of a state 
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that is subject to regulation by a variety of external and internal forces, which may serve 

different molecular functions in different neuronal or environmental contexts.  

Measuring Sleep 

Based on initial studies of arousal threshold, sleep in Drosophila is commonly defined as 

a period of inactivity lasting five minutes or longer (Shaw et al. 2000; Huber et al. 2004; 

Andretic and Shaw 2005). Sleep is typically monitored through the same Drosophila 

Activity Monitoring System (DAMS) used to analyze circadian behavior. This system 

relies on an active fly crossing the center of the locomotor tube to break the infrared 

beam passed across the middle, but this system is generally sufficient to differentiate 

sleep from activity in young, healthy flies, where activity levels are high enough that it is 

unlikely that a 5-minute or greater period of inactivity would be recorded by chance.  

In old or sick flies with reduced overall activity, it may be useful to use a more sensitive 

method of evaluating sleep behavior. There is also the possibility that extended feeding 

behavior, in which a fly would dwell at the end of the tube with food and fail to cross the 

center beam, could be misconstrued as sleep (Cavanaugh et al. 2016). There are two 

alternatives to traditional single-beam DAMS monitors that can be used to address these 

concerns. Multi-beam DAMS monitors, where 17 infrared beams along the length of a 

locomotor tube are used to monitor activity, provide a similar environment to the 

traditional locomotor tube set up but offer increased sensitivity (Garbe et al. 2015). Video 

monitoring systems have also been set up to monitor the activity of individual flies 

(Zimmerman et al. 2008; Gilestro 2012; Donelson et al. 2012; Faville et al. 2015; Garbe 

et al. 2015). Video monitoring systems, while potentially offering increased sensitivity, 
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also present a difficulty in that no standard for the sensitivity to motion for these systems 

has been agreed upon. A very sensitive system may detect leg twitches or imaging 

artifacts during sleep and inappropriately read these as activity. Video monitoring could 

also introduce another potential confounding factor if it uses small arenas instead of the 

typical locomotor tube, as this can result in differences in behavior (Garbe et al. 2015). 

Thus, while different results can sometimes be observed between video systems and 

traditional DAMS monitors, these results should be interpreted with caution.  

When observing a fly with reduced or elevated overall levels of sleep, it can be 

conceptually useful to determine how sleep bout architecture is changed (Andretic and 

Shaw 2005). For example, short-sleeping mutants may initiate fewer bouts of sleep, or 

may be unable to maintain sleep over long bouts, which implies different mechanisms of 

action for these genes. Most software used for automated analysis of sleep behavior 

allows for study of sleep bout architecture in addition to total sleep time. 

Sleep depth is an additional dimension of sleep that DAMS monitoring alone does not 

detect, although automated systems to probe sleep depth have been developed (Faville et 

al. 2015). While initial characterizations of sleep depth suggested that sensory 

unresponsiveness plateaus after five minutes of inactivity, subsequent studies have 

demonstrated that sleep depth varies predictably over longer bouts of sleep as well. 

Troughs in arousability have been observed after fifteen minutes and thirty minutes of 

sleep, and protocerebral local field potential recordings show variation in neuronal 

activity based on length of sleep bouts, in some ways resembling the changes in sleep 

depth (“sleep stages”) that occur during bouts of sleep in mammals (van Alphen et al. 
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2013). Depth of sleep also differs between day and night, such that daytime “siesta” sleep 

in flies is generally a lighter sleep state. Increased sleep depth is also a component of the 

homeostatic response to sleep deprivation (Huber et al. 2004; van Alphen et al. 2013; 

Dubowy et al. 2016), and mutations can affect sleep depth in ways that would not be 

predicted by changes in sleep amount (Faville et al. 2015).  

Genetic Tools for Sleep Research 

Sleep research in Drosophila, like a lot of molecular neuroscience in this model 

organism, has drawn heavily on both the study of mutations that lead to aberrant sleep 

behavior as well as the use of a genetic toolkit for manipulating neuronal activity. One 

successful strategy for identifying novel regulators of sleep is to conduct forward genetic 

screens for mutants with very extreme phenotypes. Another strategy is manipulation of 

different neuroanatomic loci, labeled by Gal4 drivers, by activating or suppressing 

neuronal firing. Researchers can use a variety genetic tools to manipulate neuronal 

activity. The bacterial sodium channel NaChBac (Luan et al. 2006; Nitabach et al. 2006) 

and the potassium channel Kir2.1 (Baines et al. 2001) can be driven either throughout fly 

development or in a time-restricted manner using inducible binary expression systems to 

activate or silence cells, respectively. Thermogenetic tools, such as the heat-activated 

depolarizing channel TrpA1 (Hamada et al. 2008; Parisky et al. 2008) or the temperature-

sensitive dominant negative allele of shibire used to block synaptic transmission  

(Kitamoto 2001), as well as optogenetic tools, such as the light-activated depolarizing 

CsChrimson channel (Klapoetke et al. 2014) are also frequently used for conditional 

manipulation of neurons.  
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In many cases, gene- and circuit-based approaches intersect. Many, though not all, genes 

that regulate sleep have been shown to function in specific neuroanatomic loci, in some 

cases identifying novel sleep regulating areas of the fly brain. Important advances have 

also come from studying interactions between genes that regulate sleep, as well as 

studying genes that produce sleep phenotypes and have unknown or unappreciated roles 

in controlling neuronal activity. Studying sleep in Drosophila then not only leads to 

insight into sleep-regulatory mechanisms that may extend to mammals, but also identifies 

novel regulators of neuronal function and provides new insight into brain signaling and 

metabolism. In this review, we present a thorough discussion of the genetics and 

neuroanatomy of sleep, with an emphasis on how sleep regulating genes act in the 

context of sleep-regulating brain regions and how different sleep regulating genes and 

brain areas interact with each other. 

Sleep regulation through global modulation of neuronal activity 

The Shaker potassium channel (Cirelli et al. 2005; Bushey et al. 2007) and its modulator 

sleepless (Koh et al. 2008) were two early hits with extreme short-sleeping phenotypes 

from large-scale genetic screens. Both genes are expressed throughout the fly brain (Wu 

et al. 2009), and neither of these phenotypes has been fully mapped to specific 

neuroanatomic loci, suggesting that they exert widespread effects on brain activity or 

metabolism that feed back onto sleep regulation. Shaker is a voltage-gated potassium 

channel involved in membrane repolarization. Sleepless is a Ly6 neurotoxin-like 

molecule that, in the years since its discovery as a sleep regulator, has been found to 

promote Shaker expression and activity and inhibit nicotinic acetylcholine (nAChR) 
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function, such that loss of sleepless might lead to increased neuronal activity through 

multiple mechanisms (Wu et al. 2009; Shi et al. 2014; Wu et al. 2014). The molecular 

functions of these genes therefore suggest a mechanism of sleep regulation where 

wakefulness is produced by broadly increasing neuronal excitability. Indeed, broadly 

inhibiting cholinergic transmission partially suppresses both the Shaker and sleepless 

phenotypes, and RNAi knockdown of the nAChRα3 subunit suppresses the sleepless 

phenotype (Wu et al. 2014). However, recent work has revealed a more complicated role 

for these genes. Although it has typically been assumed that the Shaker phenotype results 

from increased neuronal activity of wake-promoting cells, a recent study found that 

knocking down Shaker in sleep-promoting cells actually lengthens the inter-spike interval 

and reduces neuronal activity in these populations to favor wake (Pimentel et al. 2016). 

Another study found that, in contrast with the generally wake-promoting effects of 

cholinergic neurotransmission in the fly brain (Wu et al. 2014; Seidner et al. 2015), a 

specific nAChR subunit, redeye, is strongly sleep-promoting (Shi et al. 2014). Genetic 

evidence suggests that sleepless also interacts with the redeye subunit, in this case acting 

as a wake-promoting rather than sleep-promoting molecule, consistent with sleepless 

inhibiting nAChRs regardless of subunit composition. Recent studies of sleepless have 

also suggested that it in part regulates sleep by non-cell autonomously promoting 

metabolism of GABA in glia, perhaps also through its effect on neural activity (Chen et 

al. 2014; Maguire et al. 2015). Shaker and sleepless thus both seem to interact in a non-

straightforward way with sleep-regulatory genes and cells in the nervous system, and 

work with sleepless suggests a potential connection between neuronal activity and 

metabolism of neurotransmitters, although the details of this connection remain unclear.  
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The Mushroom Body 

The mushroom body is the center of olfactory memory in the fly brain and as a result of 

years of intense research, there is detailed anatomic and functional data available for 

mushroom body circuits (Guven-Ozkan and Davis 2014; Owald and Waddell 2015). The 

mushroom body consists primarily of ~2000 Kenyon cells, most of which receives input 

from an average of 6 stochastically connected projection neurons, with each projection 

neuron encoding input from a single type of odorant receptor neuron. Each Kenyon cell 

projects axons to a subset of lobes of the mushroom body, forming three classes: those 

that project to the α and β lobes, the α’ and β’ lobes, or the γ lobe. Within each lobe there 

exist several compartments, defined by the dendrites of different mushroom body output 

neurons (MBONs) and axonal projections of different dopaminergic neurons, which 

respond to aversive or appetitive unconditioned stimuli like electric shock or sugar. At 

least some MBONs have an inherent valence, which is correlated with neurotransmitter 

expression; flies will act to avoid optogenetic activation of aversive glutamtergic 

MBONs, and act to prolong activation of attractive MBONs, which can be cholinergic or 

GABAergic (Aso et al. 2014b). A simple model of learning and memory in the 

mushroom body posits that within a mushroom body compartment, the strength of the 

synapses between Kenyon cells, which encode odor, and MBONs, which encode valence, 

is modulated by dopaminergic neurons in response to pairing of an odor with an aversive 

or appetitive stimulus (Owald and Waddell 2015). MBONs project to largely 

uncharacterized protocerebral areas of the fly brain (Aso et al. 2014a). In addition to the 

neurons described above, mushroom bodies also receive octopaminergic input and are 

innervated by the dorsal paired medial (DPM), anterior paired lateral (APL), and dorsal 
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anterior lateral (DAL) pairs of neurons (Guven-Ozkan and Davis 2014). These neurons 

may serve functions in memory consolidation or in fine-tuning olfactory coding. 

The mushroom body was also the first neuroanatomic structure identified as a regulator 

of sleep in Drosophila (Joiner et al. 2006; Pitman et al. 2006). Conditional approaches 

were used to block synaptic transmission, perturb PKA signaling, or manipulate 

excitability of mushroom body neurons primarily using the relatively broad Gal4 drivers 

that were available at the time, but also taking advantage of methods that could target the 

mushroom body specifically. These approaches suggested that the mushroom body 

contains both sleep-promoting and wake-promoting cells: for example, flies slept less 

when hydroxyurea was used to ablate α/β and α’/β’ mushroom body lobes, suggesting a 

sleep-promoting role for these cells, but slept more when a relatively restricted 

mushroom body GeneSwitch line was used to silence specific cells in adulthood. 

Later work using more restricted split-Gal4 lines identified specific mushroom body 

circuits that underlie both wake- and sleep-promoting effects (Aso et al. 2014b; 

Sitaraman et al. 2015a). Several MBONs are capable of regulating sleep behavior, and 

interestingly these same MBONs are also necessary for certain types of learning and 

memory (Aso et al. 2014b). The sleep- and wake-promoting characteristics of MBONs 

seem to correlate with their aversive or appetitive nature, such that the two identified 

wake-promoting groups of MBONs are aversive and glutamatergic, whereas two 

identified sleep-promoting MBONs are appetitive and cholinergic or GABAergic; an 

unusual MBON with dendritic projections in the calyx and no identified neurotransmitter 

or valence is also sleep-promoting (Aso et al. 2014b). Wake- and sleep-promoting 
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characteristics of different Kenyon cell populations then seem to reflect which of the 

sleep-controlling MBONs the Kenyon cells in question target most prominently 

(Sitaraman et al. 2015a). For example, neural epistasis experiments suggest that the 

wake-promoting glutamatergic MBONs (γ5β’2a/ β’2mp’/ β’2mp_bilateral) are 

downstream of a wake-promoting α’β’ KC driver and a broad wake-promoting KC driver 

that encompasses γ-dorsal, γ-main, and α/β KCs (γ-dorsal KCs are sleep-promoting on 

their own, but γ-main KCs are wake-promoting). On the other hand, blocking the sleep-

promoting cholinergic γ2α’1 MBONs makes the wake-promoting effects of the broad KC 

driver that encompasses γ-dorsal, γ-main, and α/β KCs even stronger, suggesting that 

γ2α’1 MBONs receive sleep-promoting input from these cells, even if the net effect of 

the KC driver conferred by other downstream MBONs is wake-promoting. Likewise, the 

DPM neurons, which are proposed to provide inhibitory input to α’β’ KCs via GABA 

and/or serotonin, are strongly sleep-promoting when activated, consistent with an overall 

wake-promoting effect of α’β’ KCs (Haynes et al. 2015). Loss of the d5-HT1 serotonin 

receptor in mushroom bodies also produces a weak short-sleep phenotype, which can be 

rescued with expression driven by the MB-GeneSwitch driver (Yuan et al. 2006). This 

finding is consistent with serotonin released from DPMs acting to inhibit wake-

promoting α’β’ KCs. 

Dopamine and the Dorsal Fan-Shaped Body 

Perhaps the strongest parallel between mammalian and Drosophila sleep regulation 

identified so far is the strong wake-promoting effects of the monoamine 

neurotransmitters dopamine and octopamine (the insect homolog of norepinephrine, 
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discussed in the next section). fumin, one of the first short-sleeping mutants identified, is 

a mutation in a dopamine transporter that presumably results in elevated dopamine levels 

throughout the fly brain (Kume et al. 2005) and dopaminergic neurons are strongly wake-

promoting when activated (Shang et al. 2011; Liu et al. 2012). Conversely, mutants 

deficient for the CNS-specific isoform of the tyrosine hydroxylase (TH), the rate-limiting 

enzyme for dopamine synthesis, have increased sleep throughout the day (Riemensperger 

et al. 2011).  

One site of dopaminergic action is the central complex, an area of the brain that has been 

hypothesized to serve a basal ganglia-like function in action selection based in part on the 

input it receives from protocerebral areas and its functional role in motor output 

(Strausfeld and Hirth 2013). Thermogenetic activation of the ExFl2 neurons in the dorsal 

fan-shaped body, a region of the central complex, is strongly sleep-promoting (Donlea et 

al. 2011). Sleep deprivation changes the electrophysiologic properties of these neurons to 

favor activity, suggesting they may play a role in output of homeostatic sleep signals 

(Donlea et al. 2014). Dopamine provides a wake-promoting stimulus by silencing these 

neurons, although there is some disagreement regarding the relevant cluster of 

dopaminergic neurons as well as the relevant D1-like dopamine receptor. A MARCM 

approach to target single dopaminergic neurons indicated that individual PPM3s with 

projections to the fan-shaped body exert small but significant effects on sleep behavior, 

while a separate study comparing expression of wake-promoting and non-wake-

promoting Gal4 drivers suggested that PPL1s with projections to the fan-shaped body 

provide wake-promoting input (Ueno et al. 2012; Liu et al. 2012). It is possible that both 

groups of cells provide wake-promoting dopaminergic input to this brain area. Likewise, 
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it was initially thought that Dop1R1 was the relevant receptor for wake-promoting 

dopaminergic signaling in the brain. Dop1R1 mutations suppress the fumin phenotype 

and unlike wild-type flies, Dop1R1 mutants do not experience severe sleep reduction 

when fed L-DOPA (Ueno et al. 2012; Liu et al. 2012). These effects can be rescued with 

Dop1R1 expression driven by the relatively specific fan-shaped body driver 104y-Gal4. 

However, more recent work shows that RNAi knockdown of the related receptor Dop1R2 

in the dorsal fan-shaped body ExFl2 neurons is sufficient to prevent both short-term 

hyperpolarization and longer-term silencing of these cells by dopamine, and this 

manipulation also produces a long-sleep phenotype (Pimentel et al. 2016).  

Dopaminergic neurons with projections to the mushroom body also have wake-promoting 

effects (Sitaraman et al. 2015b; Nall et al. 2016). Neurons of the PAM cluster, as well as 

a subset of neurons of the PPL1 cluster distinct from those that project to the fan-shaped 

body, project to specific compartments of the mushroom body (MB). Recent work has 

suggested that MB-PAM neurons and MB-PPL1 neurons can be wake-promoting when 

thermogenetically activated. The wake-promoting effects of caffeine are also mediated by 

the PAM cluster of neurons (Nall et al. 2016). However, although Split-Gal4 drivers have 

been used to elegantly identify specific mushroom body circuits that control sleep, the 

PAM and PPL1 neurons that promote wake do not seem to neatly correspond to these 

circuits (Sitaraman et al. 2015b). It is possible that diffusion of dopamine or functional 

interconnectivity between dopaminergic neurons (Cohn et al. 2015) contributes to these 

results. 
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Genetic knock-outs and experiments silencing dopaminergic neurons show that 

endogenous dopamine plays an important role in daily sleep regulation; however it is 

interesting that increases in global dopamine levels can be compensated with loss of the 

Dop1R1 receptor to achieve approximately normal amounts of daily sleep (Ueno et al. 

2012). Thermogenetic activation of dopaminergic neurons produces a sleep rebound once 

activation is stopped, suggesting that these wake-promoting neurons are upstream of 

neuronal machinery capable of producing homeostatic responses to extended wakefulness 

(Seidner et al. 2015; Dubowy et al. 2016). Alterations in dopamine signaling are also 

implicated in sleep regulation by developmental or environmental cues; the increased 

sleep amounts that young flies experience have been attributed to decreased 

dopaminergic input to the dFSB, and dopamine has also been proposed to play a role in 

the adaptation of sleep amount to changing social environments (Ganguly-Fitzgerald et 

al. 2006; Kayser et al. 2014). In addition to inhibitory, wake-promoting input from 

dopamine, the dFSB may also receive input from unidentified sleep-promoting neurons 

labeled by the 201y-Gal4 driver (Cavanaugh et al. 2016). Thus, the dorsal fan-shaped 

body is well-positioned to act as an integrator and output for many sleep-regulatory 

signals. 

In addition to fumin, other short-sleeping mutants also appear to depend on dopamine or 

the fan-shaped body for their mechanisms of action. The Rho-GAP crossveinless-c is a 

sleep-promoting molecule that disrupts the physiological membrane properties of the 

ExFl2 neurons when mutated, resulting in reduced sleep (Donlea et al. 2014). The 2-pore 

potassium channel Sandman is necessary for dopamine-mediated silencing of these 

neurons and knockdown of this channel in these neurons also produces a short sleep 
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phenotype (Pimentel et al. 2016). The spatial requirements for the sleep-promoting 

ubiquitin ligase component Cullin-3 and its interacting BTB adaptor insomniac have not 

been established (Stavropoulos and Young 2011), but pharmacologically blocking 

dopamine synthesis blocks the short-sleeping phenotypes of these mutants, suggesting 

that Cullin 3-mediated protein turnover and dopamine signaling may interact to regulate 

sleep (Pfeiffenberger and Allada 2012). 

Octopamine, the Pars Intercerebralis, and the Pars Lateralis 

Octopamine, the insect homolog of norepinephrine, is another wake-promoting 

monoaminergic neurotransmitter (Crocker and Sehgal 2008). Mutating the enzymes 

responsible for octopamine synthesis or silencing octopaminergic neurons increases daily 

sleep amount, while activating octopaminergic neurons or feeding flies octopamine 

decreases sleep (Crocker and Sehgal 2008; Seidner et al. 2015). Although octopamine 

provides input to the mushroom body, the wake-promoting effects of octopamine do not 

appear to be mediated by this structure. Instead, a MARCM approach identified the 

octopaminergic ASM neurons, which project to the pars intercerebralis (PI), as sufficient 

to drive increased wake when chronically activated, and the PI insulin-like peptide (ILP)-

secreting neurons as downstream mediators of octopamine signaling (Crocker et al. 

2010). The effect sizes observed when ASM or ILP-secreting neurons are manipulated 

are somewhat smaller than those observed with manipulation of all octopaminergic 

neurons, so it is possible that other neurons important for the wake-promoting effects of 

octopamine have not yet been found. Unlike dopaminergic neurons, activating 

octopaminergic neurons produces strong sleep loss without an apparent rebound the next 
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day, suggesting that octopaminergic neurons provide a wake-promoting stimulus that is 

able to circumvent sleep homeostasis (Seidner et al. 2015). This work suggests that 

octopaminergic neurons may be a neural substrate for environmental factors that promote 

wake without any apparent homeostatic compensation. 

In addition to the ILP-expressing neurons, distinct sets of neurons in the PI expressing 

EGFR ligands and SIFamide are also sleep-promoting (Foltenyi et al. 2007; Park et al. 

2014). rhomboid (rho), an enzyme necessary for the production of EGFR ligands, is 

expressed prominently in the PI, and manipulating its activity using Gal4 drivers with 

expression in the PI produces sleep when rho is overexpressed, and wake when rho is 

knocked down (Foltenyi et al. 2007). SIFamide is a sleep-promoting insect neuropeptide 

expressed in four PI neurons; ablation of these neurons or knockdown of the peptide with 

RNAi decreases sleep (Park et al. 2014). Both rho and the SIFamide receptor (SIFaR) are 

required in c767-Gal4 labeled neurons for normal sleep amounts, suggesting that 

SIFamide acts through inter-PI signaling, and implicating EGFR ligands as a possible 

output from this circuit (Foltenyi et al. 2007; Park et al. 2014). However, c767-Gal4 also 

drives expression outside the PI, and so a function of these molecules outside the PI 

cannot be excluded. EGFR signaling in clock neurons may mediate the effects of social 

enrichment on sleep, although it is not clear if this is functionally related to the release of 

EGFR ligand from the PI (Donlea et al. 2009).  

A separate, but related neuroendocrine structure, the pars lateralis (de Velasco et al. 

2007), was recently identified as a site of action for cell cycle regulators that modulate 

sleep in adult post-mitotic neurons. Two cell cycle regulators, Rca1 (Regulator of Cyclin 
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A) and taranis (tara, a Trip-Br family transcriptional co-regulator), were independently 

identified in genetic screens for short-sleeping mutants, and following the identification 

of Rca1 it was found that knocking down Cyclin A (CycA) itself in neurons produces an 

equally strong short-sleeping phenotype (Rogulja and Young 2012; Afonso et al. 2015). 

CycA and tara genetically interact, and TARA binds to and post-transcriptionally 

promotes stable expression of Cyclin A in PL neurons (Afonso et al. 2015). Post-mitotic 

expression of Cyclin A is relatively restricted in the fly brain but includes ~14 

neuroendocrine cells in the pars lateralis, and knocking down tara in this structure 

partially recapitulates the short sleeping phenotype of tara mutants. Experimentally 

activating and silencing these neurons supports a wake-promoting role. No mechanism 

has yet been identified for the involvement of these cell cycle regulators in neuronal 

activity or sleep, but this will be an interesting area of future research. 

Clock Regulation of Sleep 

The circadian clock is essential for restricting sleep to environmentally advantageous 

times of day. A role for the circadian clock has been established in flies in both putting 

flies to sleep at night once the dark period has begun and waking them up in advance of 

dawn (Liu et al. 2014; Kunst et al. 2014). Interestingly, these pathways seem to 

mechanistically diverge, suggesting that circadian regulation of sleep is not driven by 

continuous oscillation of a single sleep- or wake-promoting factor, but is rather driven by 

time-of-day specific modulation of distinct sleep- and wake-promoting mechanisms. 

Clock cells also have broader non-circadian roles in sleep regulation as mediators of the 
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effects of temperature and social enrichment on sleep (Donlea et al. 2009; Parisky et al. 

2016).  

One particularly well-studied mechanism of circadian sleep regulation regulates sleep 

around the time of lights-off and is driven by cyclic expression of a gene that regulates 

responsiveness to neuronal signals in a specific set of clock neurons. The large ventral 

lateral neurons (lLNvs) are a wake-promoting population of neurons with neuronal 

activity that fluctuates over the course of the day such, that firing frequency is reduced 

around the time of lights-off as well as later in the night in an LD cycle (Sheeba et al. 

2008b; Cao and Nitabach 2008; Sheeba et al. 2008a; Parisky et al. 2008; Shang et al. 

2008; Liu et al. 2014). Manipulations of lLNv activity produce broad effects on sleep and 

wake throughout the day, but effects are particularly pronounced at night, with clear 

effects on length to sleep onset (sleep latency) after lights-off. Genetic and 

pharmacological studies suggest that the silencing of these neurons during this time is 

mediated by GABA-A receptor Rdl, and indeed, broadly silencing GABAergic neurons 

in the brain substantially lengthens the sleep latency after lights-off in flies (Agosto et al. 

2008; Parisky et al. 2008; Chung et al. 2009). The positive and negative arms of the 

molecular clock also oppositely regulate sleep latency such that Clock and cyc mutants 

have increased sleep latency after lights-off, while per and tim mutants have shortened 

sleep latency after lights-off (Liu et al. 2014). Thus, changes in activity in this circuit 

seem to drive sleep in response to time of day around the transition to darkness.  

A key molecular mediator of these changes in activity was initially discovered in a 

genetic screen for short-sleeping mutants. Although wide awake (wake) mutant flies were 
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found to have reduced sleep across the day and night, which may be due to activity of 

wake in other neuroanatomic loci, the increased latency to sleep in wake mutants could be 

anatomically mapped to the lLNvs (Liu et al. 2014). Transcription of wake was found to 

cycle in the lLNvs, with increased transcription and protein levels at dusk, and WAKE 

physically and genetically interacts with the Rdl GABA-A receptor. Crucially, wake 

mutants did not display rhythms in lLNv firing frequency, and GABA-induced inhibitory 

currents in lLNvs were dampened. Thus, clock-driven expression of wake in lLNvs 

appears to be the key time-of-day driven regulator that induces sleep after lights-off.  

A distinct mechanism in a different set of clock neurons is invoked to promote wake at 

the end of the night, just before lights-on. Diuretic Hormone 31 (DH31) is a wake-

promoting neuropeptide expressed in the DN1 clock neurons, and manipulating its 

expression in these cells produces sleep phenotypes specifically from ZT21-24: 

knockdown of the peptide in DN1s increases sleep during this time period, while 

overexpression of the peptide in these cells decreases it (Kunst et al. 2014). Expressing a 

tethered PDF peptide in the DN1s, which should produce PDFR activation in these cells, 

also reduces sleep specifically during late night, as does pan-neuronal expression of 

tethered DH31. The time-specific effects of DH31 might therefore be gated both by time-

specific PDF responsiveness in DN1s and by time-specific DH31 responsiveness in 

downstream neurons. 

However, DN1s are sleep-promoting at other times of day; optogenetically or 

thermogenetically activating these cells increases daytime sleep, suppressing the normal 

“evening” peak of activity, while silencing them decreases sleep during early night (Guo 
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et al. 2016). The sleep-promoting effects of DN1s during the day can be blocked with 

RNAi targeting mGluR in “E” cells, suggesting “E” cells might also have a role in sleep 

regulation. The role of sleep-promoting signals from DN1s in normal daily sleep 

regulation remains unclear, although the authors propose that variations in activity of 

DN1s may explain sexually dimorphic sleep patterns and regulation of sleep by high 

temperature.  

Metabolic Regulation of Sleep 

Food availability is a potent environmental regulator of sleep in fruit flies. Starvation 

strongly suppresses sleep, perhaps so that flies can devote more time to foraging for food 

(Keene et al. 2010; Thimgan et al. 2010). Mechanisms that regulate sleep at baseline and 

in response to food availability have some overlap with pathways that regulate metabolic 

energy storage, but these pathways are ultimately separable, such that sleep phenotypes 

do not depend on differences in metabolic stores (Erion et al. 2012; Masek et al. 2014; 

Murakami et al. 2016). Pharmacological evidence suggests that the suppression of sleep 

in response to starvation can be mimicked by feeding flies a glycolysis inhibitor, but not 

an inhibitor of fatty acid β-oxidation, suggesting that the suppression of sleep with 

starvation is related to reduced metabolic mobilization of glucose, not the taste of sugars 

or to lipid metabolism (Murakami et al. 2016). 

An essential molecular mediator for these effects was recently identified in the nucleotide 

binding protein translin (Murakami et al. 2016). Translin is highly upregulated upon 

starvation, and translin knockdown completely prevents starvation-induced sleep loss in 

flies. However, other sleep and starvation-related behaviors, such as sleep at baseline and 
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after sleep deprivation, preference for sucrose or yeast after starvation, and the proboscis 

extension reflex following starvation are completely unaffected, and there is no evidence 

that translin knockdown alters energy stores. The effects of this molecular mediator were 

mapped to neurons expressing the neuropeptide leucokinin. Like translin knockdown, 

silencing leucokinin neurons prevented sleep suppression in response to starvation.   

Although pharmacology suggests that sleep suppression in response to starvation is 

related to glucose metabolism, and is mechanistically distinct from the response to 

mechanical sleep deprivation, which induces a homeostatic response, a separate body of 

work suggests that genes involved in lipid metabolism can specifically modulate the 

rebound response to mechanical sleep deprivation (Thimgan et al. 2010; 2015). However, 

a mechanism through which lipid metabolism modulates sleep following sleep 

deprivation, or neuronal substrates of this process, remain unknown, and it is still unclear 

whether lipid metabolic stores are directly related to these phenotypes, or whether lipid 

metabolism and sleep homeostasis share common pathways.  

Homeostatic Response to Sleep Deprivation 

Sleep homeostasis ensures that flies sleep the proper amount by recovering lost sleep 

after periods of extended wakefulness. Sleep homeostasis is often conceptualized as a 

continuous build-up of sleep need over periods of wakefulness and dissipation over 

periods of sleep, such that the same mechanisms should be invoked both when flies are 

spontaneously waking and during periods of forced wakefulness (sleep deprivation). 

However, recent work in Drosophila has called this view into question.  
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A disconnect between regulation of sleep following spontaneous wakefulness and sleep 

following sleep deprivation is supported by a number of observations. While it is true that 

many short-sleeping mutants have impaired sleep rebound, these phenotypes may arise 

from the general inability to initiate or maintain sleep in these flies, such that even high 

sleep pressure cannot overcome these deficits; it is also difficult to interpret rebound data 

from short-sleeping flies because their habitual short sleep means they have less sleep to 

lose. Indeed, the converse relationship does not seem to hold: a number of genetic 

perturbations have been identified that specifically affect sleep after sleep deprivation 

with little to no effect on baseline sleep, suggesting that sleep following sleep deprivation 

is produced by an independent mechanism (Seugnet et al. 2011b; Thimgan et al. 2015; 

Seidner et al. 2015; Dubowy et al. 2016; Liu et al. 2016).  

Likewise, it seems that the nature of sleep deprivation matters for the homeostatic 

response. Activating different populations of wake-promoting neurons in the fly brain 

produces varying amounts of rebound the following day, ranging from no rebound 

response at all, as is seen with activation of octopaminergic neurons, to a rebound that in 

some cases far exceeds the amount of sleep lost (Seidner et al. 2015; Dubowy et al. 

2016). Different environmental stimuli used to keep flies awake can also produce the 

varying effects. Particularly strikingly, one group has reported that starving flies produces 

equivalent amounts of sleep loss as mechanical sleep deprivation without producing any 

observable sleep rebound (Thimgan et al. 2010). It is possible that even different 

mechanical sleep deprivation approaches invoke different neural pathways to keep flies 

awake, which may explain why so few mutants with impaired sleep rebound have been 

validated across labs.  
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Despite these challenges, there is a picture emerging about the relevant circuitry for sleep 

homeostasis. Groups of wake-promoting cells that do produce sleep rebound after 

activation include dopaminergic neurons as well as at least one restricted set of 

cholinergic cells, which produce a particularly strong rebound with even short periods of 

activation (Seidner et al. 2015; Dubowy et al. 2016). In addition, electrophysiology 

suggests that the sleep-promoting dorsal fan-shaped body neurons have reduced input 

resistance and reduced membrane time constants, suggesting greater activity following 

sleep deprivation (Donlea et al. 2014); as discussed previously, this brain area is well-

positioned to act as an integrator or output for multiple sleep regulatory signals, 

including, it seems, the response to sleep deprivation. It has also been suggested that 

silencing MBON-γ2α’1 neurons can block sleep rebound, although the data do not 

exclude the possibility that this is due to a general wake-promoting effect of silencing 

MBON-γ2α’1 neurons during the early day when rebound occurs (Sitaraman et al. 

2015a). 

A recently identified element of sleep-regulatory circuitry with an apparently specific 

role in sleep homeostasis is the ellipsoid body R2 neurons (Liu et al. 2016). These 

neurons were initially of interest because they produce a persistent sleep-promoting 

signal when thermogenetically activated; while no changes in sleep are reported at the 

time of activation, which can be as short as 30 minutes, a dramatic rebound-like increase 

in sleep is observed for the next 12 hours. Structural plasticity in the R2 neurons seems to 

underlie the phenotype, as circuit-specific analysis of bruchpilot expression showed 

greater synapse number and size for R2 neurons after sleep deprivation, and genetic 

manipulations that block this plasticity partially block sleep rebound. A neuronal epistasis 
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experiment suggests that these cells are upstream (although not necessarily directly 

connected to) the dorsal fan-shaped body. The manipulations of R2 neurons that affect 

sleep rebound have no effect on sleep at baseline, however, again supporting the idea that 

regulation of the homeostatic response to sleep deprivation is mechanistically different 

from the regulation of baseline sleep. 

Function of Sleep 

Sleep affects neurobehavioral performance across the animal kingdom, and flies are no 

exception. Sleep has a bidirectional relationship with learning and memory; sleep 

deprivation in adult flies has been shown to interfere with both short and long term 

memory, while inducing sleep allows memories to form in contexts where an experience 

would ordinarily be forgotten (Ganguly-Fitzgerald et al. 2006; Seugnet et al. 2008; 

Donlea et al. 2011; Dissel et al. 2015; Berry et al. 2015). Sleep loss also has 

consequences for social behavior in flies; in adult flies, acute sleep loss results in 

impaired aggressive behavior (Kayser et al. 2015). There also appears to be a critical 

window during development where sleep loss produces long-lasting deficits in courtship 

behavior and short-term memory that persist into adulthood (Seugnet et al. 2011a; Kayser 

et al. 2014). Precisely how these deficits arise, however, remains an outstanding question 

in the field. 

One general line of thought supposes that there are brain-wide molecular pathways that 

are different during sleep and wake, and perturbed by sleep loss, that underlie these 

behavioral changes. Indeed, molecular characterization comparing sleeping, 

spontaneously waking, and sleep-deprived brains have found widespread differences in 
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gene expression between different behavioral states (Zimmerman et al. 2006; Cirelli 

2006; Williams et al. 2007). The types of changes observed appear to be conserved 

across organisms: broadly, genes involved in synaptic plasticity/function, cellular stress, 

and metabolism are affected by sleep and wake across species studied (Mackiewicz et al. 

2009). 

One hypothesis based on this data, put forth by Tononi and Cirelli, proposes that global 

synaptic downscaling occurs during sleep to counteract overpotentiation that might occur 

during wake (Tononi and Cirelli 2006). Work from these authors shows evidence that, 

broadly and within specific circuits of the adult fly brain, synaptic markers increase after 

wake or sleep deprivation and decrease following sleep, suggesting changes in the 

number or size of synapses (Gilestro et al. 2009; Bushey et al. 2011). Several shared 

regulators of learning, synaptic plasticity, and sleep have been identified, but a direct link 

between synaptic plasticity and either sleep regulation or neurobehavioral performance 

has been difficult to establish (Bushey et al. 2009; Bai and Sehgal 2015; Robinson et al. 

2016). In some cases it seems that the effects of sleep and synaptic plasticity can in fact 

be separated; for example, in the learning-impaired mutant dunce, inducing sleep 

improves learning, even though the global changes in synaptic markers typically 

associated with sleep are not observed (Dissel et al. 2015).  

Another hypothesis states that sleep is a time where metabolic functions such as 

macromolecule biosynthesis can be carried out in the brain in the absence of the more 

urgent metabolic demands of waking. This may also explain why extended sleep loss 

results in induction of cellular stress genes. As with learning and synaptic plasticity, 
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shared regulators of metabolic or cellular stress and sleep regulation or function have 

been identified (Shaw et al. 2002; Naidoo et al. 2007; Thimgan et al. 2010; 2015; 

Maguire et al. 2015), and flies increase sleep following a heat pulse that induces a 

cellular stress response (Lenz et al. 2015), but a direct link that would establish cellular 

metabolism as an essential function of sleep has not yet been shown. 

Some progress in understanding neurobehavioral changes with sleep comes from 

examining specific neurotransmitter systems or circuits that are perturbed by sleep loss. 

In the case of learning deficits with sleep loss, performance can be restored by 

overexpressing Dop1R1 or pharmacologically promoting dopamine signaling (Seugnet et 

al. 2008). In the case of loss of aggression after sleep loss, feeding flies the dopamine 

precursor L-DOPA does not improve behavior, but instead an octopamine agonist is 

effective at restoring aggression (Kayser et al. 2015). Studying the mechanisms that 

allow increased sleep to promote memory have also yielded insights; in particular, recent 

work suggests that inducing sleep may promote the formation of an aversive olfactory 

memory by suppressing a dopamine-dependent “active forgetting” process that occurs 

when flies are awake and moving (Berry et al. 2015). Whether these changes in 

neurotransmitter pathways are downstream of global metabolic or plasticity pathways 

that are altered during sleep will be an interesting area of future research. 

Conclusions 

The study of sleep in Drosophila has allowed us to harness the power of forward genetics 

to make significant advances in the study of sleep and neuroscience more broadly. The 

neuroanatomy of sleep in Drosophila, while not comprehensive, has identified a diverse 
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set of neurons in the fly brain that can regulate sleep (Figure 1-2). We are also moving 

towards a better understanding of how these circuits interact with each other, which will 

enable us to build models for how sleep regulation works that can be applied to 

mammalian brains. The neuroanatomy and neurochemistry of sleep in Drosophila 

includes many parallels between flies and mammals. Disruptions of potassium channel 

function have profound effects on sleep in flies and are also linked to human sleep 

phenotypes (Cornelius et al. 2011; Allebrandt et al. 2011). The wake-promoting effects 

of catecholamines and the sleep-regulatory roles of hypothalamus-like structures are 

strong parallels between flies and mammals, and the direction of sleep regulation for 

most neurotransmitters is preserved across evolution (Crocker and Sehgal 2010). The 

insect mushroom body and the central complex, on the other hand, have less clear 

parallels to mammalian sleep-regulatory neuroanatomy, but may still share functional 

homology to mammalian sleep-regulatory circuits. A better understanding of 

protocerebral areas of the fly brain, many of which are relatively unexplored but have 

connections to both the mushroom body and the central complex, may also lend insights 

into sleep function and regulation.  

An important lesson already apparent from studying Drosophila is that sleep regulation is 

orchestrated by a complex set of genes, neurons, and environmental conditions. Although 

there is a tendency in the field to reduce sleep regulation to a homeostatic and a circadian 

component, this thinking has not been sufficient to understand sleep regulation in flies, 

and perhaps also in other systems. Instead, there appear to be different sets of genes and 

cells that regulate basal sleep drive, sleep in response to environmental cues, as well as 

sleep in response to forced wakefulness. Likewise, the circadian component is comprised 
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of different cell groups and different circadian output molecules regulating sleep and 

wake at specific times of day, not a single oscillating signal.  

Sleep also has profound affects on waking behavior in Drosophila, making flies suitable 

model organisms to study the function of sleep. Excitingly, we are learning more and 

more about how complex behaviors are orchestrated in flies, providing more power to 

examine specifically how sleep and wake impinges on these processes. As we enter an 

era where identifying more precise mechanisms for the effects of sleep on biological 

functions is possible, we can begin finding commonalities across different behaviors and 

processes influenced by sleep, and use these findings to make general statements about 

what sleep does to make it necessary across the animal kingdom.  
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Figure 1-1: Drosophila sleep behavior in light:dark and dark:dark cycles  

(A) Sleep behavior for a group of wild-type (WT) female flies in a 12:12 hr light:dark 

cycle. Flies have short bouts of siesta sleep in the middle of the day (more pronounced in 

males) and a relatively consolidated period of sleep at night. (B) Sleep behavior for WT 

and per01 male flies in constant darkness (DD). per01 flies, which do not display 

circadian rhythms of activity, spend approximately the same amount of time in sleep, but 

have sleep that is fragmented across the day. Data appear slightly noisier as fewer flies 

are represented compared to (A).  
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Figure 1-2: Neuroanatomy of Sleep in Drosophila 
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Figure 1-2: Neuroanatomy of Sleep in Drosophila melanogaster (A) Schematic of 

sleep promoting (red), and sleep-inhibiting (blue), neurons in the fly brain. Sleep-

regulating neurons are identified by neurotransmitter, neuropeptide, or molecular  marker 

expression, and/or neuroanatomic location. Dopaminergic neurons: PAM, protocerebral 

anterior lateral; PPL1, protocerebral posterior lateral; and PPM3, protocerebral posterior 

medial. Mushroom body neurons: KC, Kenyon cells; MBON, mushroom body output 

neurons. Central complex, dFSB; dorsal fan-shaped body; EB, ellipsoid body. Pars 

intercerebralis (PI): SIFamideR, SIFamide Receptor; Rho, rhomboid; and dILP, 

Drosophila insulin-like peptide. Octopaminergic neurons: ASM, anterior superior medial. 

Pars lateralis: CycA, CyclinA. Clock cells: DN, dorsal neurons, lLNvs, large ventral 

lateral neurons. (B) Location of sleep-regulating neurons in the fly brain.  
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Introduction 
 

Sleep is a fundamental biological phenomenon important for both survival and proper 

brain function; however, we are just beginning to identify its molecular underpinnings.1 

A physiological model of sleep regulation proposes that sleep is regulated by two 

independent processes: a circadian process, which regulates sleep based on time of day, 

and a homeostatic process, which regulates sleep based on accumulated sleep need.2, 3 

The molecules that drive the circadian process were first identified in Drosophila with 

forward genetic screens,4, 5 and conserved mechanisms were subsequently found in 

mammals.6, 7 The genes identified in these screens exhibit cycles in expression and 

activity over the course of the day and their cycling drives a diverse set of circadian 

behaviors and physiological processes.8 However, identifying equivalent molecules that 

can fully explain homeostatic sleep regulation has been challenging.  

Homeostatic sleep regulation is reflected both in the normal build-up of sleep pressure 

during spontaneous wakefulness, and in the further increase or “rebound” sleep after 

sleep deprivation (SD). The widely acknowledged two-process model proposed by 

Borbély and Daan and colleagues predicts that the same mechanisms should drive sleep 

pressure under both conditions.2, 3 Indeed, electroencephalogram (EEG) slow wave 

activity (SWA), a widely used marker of sleep need, builds up with similar dynamics 

during undisturbed wake and acute SD conditions, supporting this idea.9 However, the 

relevance of SWA remains unclear,10–13 and there are conflicting accounts regarding the 

increase in SWA and sleep amount under conditions of chronic sleep restriction or 

deprivation10,14–19 Different types of SD producing equivalent sleep loss have also been 
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shown to result in differential homeostatic responses in mice, as evidenced by different 

responses in multiple sleep latency tests despite equivalent SWA responses during 

recovery sleep.20 Neurobehavioral performance after SD can also be described by the 

two-process model,21 but as with sleep regulation, unexpected results have also emerged 

from chronic sleep restriction studies.21–23  

Attempts to identify molecular substrates of sleep homeostasis in mammals have not yet 

provided a mechanistic account of sleep drive.24 Adenosine, as well as its upstream 

activators prostaglandin D and nitrous oxide, growth hormone-releasing factor, tumor 

necrosis factor, and interleukin-1β, meet the minimal criteria of a sleep homeostasis 

substrate: these molecules increase during SD, and are sufficient to drive sleep when 

infused into the brains of mammals.25,26 However, the effects of knocking down the 

receptors for these molecules or pharmacologically inhibiting these pathways tend to be 

either subtle or restricted to specific aspects of sleep homeostasis, i.e., EEG parameters or 

sleep following SD, suggesting that none of these alone can account for the entire 

homeostatic component of the two-process model.27–35 This raises the possibility that 

there exist multiple mechanisms of homeostatic sleep regulation,36 which account for 

different aspects of the proposed homeostatic process.  

Unbiased genetic studies in Drosophila have identified mutants with extremely low 

habitual sleep amounts.37–44 Many of these mutants have reduced rebound, although these 

results can be difficult to interpret because extreme short sleepers have less sleep to lose 

during SD.38–43 Moreover, for at least some short sleepers there is evidence that sleep 

drive remains high: many of these mutants have an increased number of sleep bouts and 
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upregulated biomarkers of sleep need.37,39,41,42,45 Thus, the deficit seems to be in the 

ability to maintain sleep rather than the ability to sense prior wakefulness. Studying sleep 

rebound in Drosophila may be a more direct way to probe the genetics that underlie the 

build-up of sleep need.  

To date, there is little information on mutants from unbiased screens based on SD, and so 

the mutations with the most extreme sleep rebound phenotypes following SD have likely 

not yet been found. Moreover, the relationship between sleep at baseline and sleep during 

recovery has not been well characterized for either wild-type or mutant Drosophila. Thus, 

it is unclear whether baseline sleep and rebound sleep are closely related across different 

genotypes or if these two phenomena are largely independent.   

In this study we develop a thermogenetic tool for SD in Drosophila that enables high-

throughput screening to identify lines with reduced sleep rebound. This method produces 

a strong and consistent sleep rebound compared with other thermogenetic methods, and 

results in less within-genotype variance compared to sleep rebound following mechanical 

and caffeine-induced SD. In the course of developing this tool, we find that activation of 

some populations of neurons produces strong sleep loss with no apparent homeostatic 

compensation the following day. We used thermogenetic stimulation of a population of 

neurons that does produce a homeostatic response to perform a screen on a collection of 

mutant insertion lines generated by the Genome Disruption Project46,47 and identify two 

lines with low rebound, reflected by a blunted increase in both sleep amount and depth 

after SD compared to a control line. Neither line shows evidence of a decrease in the 

duration, consolidation, or depth of sleep at baseline. Furthermore, statistical analysis 
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shows that across our screen data set, genotype can explain much of the variance in 

recovery sleep that is not explained by linear relationships with baseline sleep 

parameters. Taken together, these findings suggest that regulation of sleep amount under 

baseline and recovery conditions can be controlled by independent genetic mechanisms.  

Results		
	

Development of a Novel Thermogenetic Method to Induce SD in Drosophila 
 
We tested thermogenetic methods of SD to identify an approach that could be used as an 

efficient screening tool (Figure 2-1A). For the thermogenetic methods, we selected 

candidate Gal4 drivers thought to express in wake-promoting neurons and used these to 

drive expression of the heat-sensitive cation channel TrpA1. Candidate Gal4 drivers were 

selected based on data generated in a recent Gal4 screen for circadian output neurons,50 in 

which TrpA1 was used to drive depolarization of Gal4-labeled neurons for 5 days in 

constant darkness. To assess induced wakefulness and subsequent recovery in these same 

lines, we employed conditions typically used to study sleep and sleep rebound – 12:12 

light:dark cycles (LD) with a single day of deprivation. We crossed candidate lines with 

Gal4 drivers on chromosomes II or III to lines with a UAS-TrpA1 transgene on the same 

chromosome. Progeny from these crosses were subjected to a baseline day at 21°C, at 

which there is no TrpA1 activation,51 followed by a day at the TrpA1 activation 

temperature of 28°C, and a subsequent recovery day at 21°C. Sleep loss and sleep 

rebound were assessed by comparing the 24-h TrpA1 activation and recovery periods 

with the baseline day.  
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There is a wide range of effectiveness and consistency in thermogenetically induced 

wakefulness across Gal4 drivers (Figure 2-1A). Moreover, drivers that produced 

equivalent amounts of sleep loss can produce highly divergent amounts of rebound the 

following day. In particular, c584-Gal4, 104906-Gal4, MJ63-Gal4, and c453-Gal4 all 

produce substantial sleep loss, but whereas c584-Gal4 and 104906-Gal4 produce 

significant rebound, MJ63-Gal4 and c453-Gal4 display little to no evidence of a rebound, 

suggesting that these drivers produce wakefulness via a mechanism that circumvents or 

counteracts sleep homeostasis.   

The Wake-Promoting c584-Gal4 Driver is Expressed in Brain Regions Implicated in 
Drosophila Sleep 
 
We used c584-Gal4 in subsequent experiments to thermogenetically induce SD because it 

produces a consistent rebound and has relatively restricted expression in the fly brain 

(Figure 2-1B). We were unable to determine a precise genomic insertion site for the 

c584-Gal4 P-element due to the repetitive nature of DNA sequences surrounding the 

insertion site (data not shown). However, coupling c584-Gal4 with a UAS-nuclear green 

fluorescent protein (nGFP) reporter reveals that c584-Gal4 drives expression in the pars 

intercerebralis (PI) and in neurons with projections to the fan-shaped body (Figure 2-1B); 

in addition, previous work has shown that c584-Gal4 labels neurons expressing short 

neuropeptide F (sNPF).52, 53 All of these regions have been previously implicated in sleep 

control, although the reported roles for the PI and sNPF include both sleep promoting and 

wake-promoting functions.43, 50, 54–56 Previous work identified wake-promoting neurons 

with projections to the fan-shaped body in the dopaminergic PPM3 and PPL1 clusters,57, 

58 so we performed experiments to determine whether c584-Gal4 co-localizes with 
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tyrosine hydroxylase (TH), a marker of dopaminergic neurons. Co-staining brains of 

c584-Gal4 > UAS-nGFP animals with the TH antibody reveals overlap between c584 

neurons and a subset of dopaminergic neurons in the PPM3 cluster, and close proximity 

between c584 neurons and dopaminergic neurons of the PPL1 cluster (Figure 2-1B). 

104906-Gal4, although more widespread than c584-Gal4 with staining that appears to 

includes Kenyon cells, also labels the PPM3 and PPL1 clusters, making those 

dopaminergic clusters good candidates for the wake-promoting effects of these drivers 

(Supplemental Figure 2-1). To facilitate screening, we generated a c584-Gal4, UAS-

TrpA1 stock with both transgenes on the same chromosome, into which we could cross 

transposon insertion mutations generated by the Gene Disruption Project.46, 47  

Thermogenetic SD Produces a More Consistent Sleep Rebound With Less Within-
Genotype Variance Compared to Caffeine or Mechanical SD 
 
Following development of a thermogenetic method of inducing SD, pilot screens were 

conducted using caffeine, mechanical SD, and the c584-Gal4 driven thermogenetic 

approach to compare suitability for screening. For the caffeine pilot screen, flies were fed 

caffeine at a concentration previously shown to produce sleep loss59 for 24 h from ZT0-

ZT24, then returned to regular food to assess rebound. For the mechanical SD screen, 

flies were sleep deprived by shaking on an adapted vortex for 6 h from ZT18-ZT24. Both 

SD protocols were applied to homozygous MiMIC stocks ordered from the Bloomington 

stock center. The thermogenetic screening protocol is described in the next paragraph 

(Figure 2-2A). For the thermogenetic pilot screen, lethal or second chromosome MiMIC 

insertions were tested in the heterozygous condition by crossing the MiMIC stock to the 

c584-Gal4, UAS-TrpA1 stock. Importantly, although our c584-Gal4, UAS-TrpA1 line 
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was backcrossed to an isogenic background, transposon insertion lines generated by the 

Gene Disruption Project are not generated in isogenic backgrounds, so there may be 

multiple genetic differences between stocks. Caffeine and mechanical SD pilot screens 

also allowed for any recessive differences between stocks to be revealed, so the genetic 

diversity of animals tested in these screens should be greater than the genetic diversity of 

the heterozygous animals tested in the thermogenetic pilot screen. Despite this, genotype 

is a stronger determinant of recovery sleep in the thermogenetic pilot screen than either 

the mechanical SD screen or the caffeine screen (Table 2-1). Moreover, the remaining 

Root Mean Square Error (RMSE) not explained by genotype is smaller in the 

thermogenetic screen than the pilot screens with caffeine or mechanical SD. This 

suggests that rebound following thermogenetic SD presents a more consistent behavior, 

suitable for genetic screening. 

Screen For Mutants With Reduced Sleep Rebound  
 
To ensure that the sleep rebound we measured in our screen was the result of 

accumulated sleep loss and not an acute response to the retraction of the wake-promoting 

stimulus, we chose a protocol for screening where SD takes place within the first 9 h of 

the night (ZT12–ZT21), allowing recovery from the temperature shift to begin 3 h before 

lights-on (Figure 2-2A).  Rebound is defined as the difference in the duration of sleep 

between the recovery period and the baseline period during the 15 h following SD 

(ZT21–ZT12), but because most flies sleep through the last 3 h of the night under 

baseline conditions, a substantial increase in the duration of sleep typically does not occur 

until the daytime period following SD (ZT0–ZT12). Thus, our protocol favors 

quantification of residual sleep need that can be attributed to the net sleep loss in sleep 
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deprived flies. In addition to changes in sleep amount following SD, changes in sleep 

bout architecture can also be observed; however, these changes are less consistent, with 

significant heterogeneity across flies (Supplemental Figure 2-2).  

The overall screen schematic is presented in Figure 2-2B. We obtained previously 

mapped in-gene transposon element insertion lines from the MI and KG collections 

generated by the Genome Disruption Project.46,47 Both types of transposons are predicted 

to act as loss-of-function mutations by knocking down gene expression at the site of their 

insertion. In the primary screen, we tested 1,741 transposon insertion lines, homozygous 

when possible and heterozygous when the insertion was lethal or on the second 

chromosome. We focused on lines with reduced rebound as these results were easier to 

interpret; although we do observe outliers with increased rebound in the screen, these 

lines tend to have low baseline daytime sleep, creating a greater opportunity to rebound 

compared to a fly with a more prominent siesta. To identify lines with reduced rebound, 

we excluded the lines that had high baseline daytime sleep, which created a ceiling effect 

resulting in lower rebound, and lines in which thermogenetic stimulation did not produce 

significant sleep loss. Of 1,539 lines that remained, we rescreened lines that fell into the 

lowest 2.5 percentile in terms of their rebound sleep, approximately 50 min or less 

(Figure 2-2C). There were two lines, both tested as heterozygotes, for which we were 

able to recapitulate low rebound below the 10th percentile (~100 min) in four 

independent experiments: MI00323/+ and MI00393/+ (Figure 2-2D-E).   
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Lines with Reduced Sleep Rebound Have Normal Baseline Sleep  
 
MiMIC insertions in the two mutant lines, MI00323 and MI00393, were previously 

mapped to Pka-R1, the regulatory subunit of protein kinase A (PKA), and N-Cadherin,46 

respectively. It should be noted that the PKA pathway has previously been implicated in 

sleep maintenance in Drosophila.60 However, preliminary genetic mapping experiments 

suggest that the sleep rebound phenotype does not map to the MIMIC insertions 

suggesting a contribution of other unknown genetic variations in each of these lines.  

If there exists a single homeostatic mechanism that governs sleep need in both 

undisturbed conditions and after a perturbation, animals with a reduced rebound might be 

expected to have reduced sleep at baseline as well as after SD. However, this does not 

appear to be true for the top hits in our screen. During the primary screen in which we 

observed reduction in sleep rebound with both MI00323/+ and MI00393/+, overall 

baseline sleep duration appears to be similar to all other heterozygous MiMIC insertion 

lines tested (Supplemental Figure 2-3).  

In order to confirm this observation, we measured the baseline sleep parameters for 

MI00323/+ and MI00393/+ alongside MI00386/+, a control MiMIC insertion that 

exhibited average amount of rebound in the primary screen. Although baseline sleep is 

inconsistent across experiments, we do not observe an overall decrease in baseline sleep 

for MI00323/+ and MI00393/+ compared to MI00386/+ (Figure 2-3A). For MI00323/+, 

in most experiments there is an increase in daytime sleep amount relative to MI00386/+ 

that is accompanied by an increase in daytime sleep consolidation, with fewer bouts of 

greater length (Figure 2-3B). In MI00393/+, there is a shift in the timing of sleep 



53 

compared to MI00386/+, with shorter daytime sleep and longer nighttime sleep 

accompanied by greater nighttime sleep consolidation. Overall, these findings do not 

suggest an overall reduction in sleep amount or consolidation at baseline for lines with 

reduced rebound sleep; rather, baseline sleep appears to be unchanged or increased for 

these lines relative to the control.  

Because daytime sleep amount was sometimes higher in MI00323/+, we wondered if the 

reduced rebound in this line could be explained by a ceiling effect, wherein this line is 

unable to recover sleep because baseline daytime sleep is already very high. However, 

even when compared to the distribution of recovery sleep for all screened heterozygous 

MiMIC insertion lines with daytime sleep above 300 min, MI00323/+ would still be 

classified as an outlier (Supplemental Figure 2-4).   

Another possible explanation for reduced rebound in our hits is that instead of recovering 

lost sleep by sleeping longer, these lines recover lost sleep with deeper sleep immediately 

after SD. To test this hypothesis, we performed an arousal threshold assay at ZT23 for 

undeprived flies and for flies 2 h following thermogenetic SD. For undeprived flies, there 

are no significant differences in arousability between MI00323/+, MI00393/+, and the 

control MI00386/+ (Figure 2-4A). After SD, arousal threshold is increased in all three 

lines, but this increase is blunted for MI00323/+ and MI00393/+, such that more animals 

respond to the arousing stimulus. This suggests that sleep depth, like sleep amount, 

increases less in our hits compared to our control line following SD. 
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Lines With Reduced Rebound with Thermogenetic SD Do Not Exhibit Reduced 
Rebound With Mechanical SD 
 
To determine whether the lines identified as hits in our screen exhibit reduced rebound 

with mechanical SD as well as thermogenetic SD, we subjected heterozygous flies to 

mechanical SD for 6 h from ZT18–ZT24, as done previously in our pilot screen. In 

contrast with our findings with thermogenetic SD, we find that sleep rebound is not 

reduced in these lines following mechanical SD (Figure 2-4B).    

Baseline Sleep and Recovery Sleep are Genetically Separable 
 
The data we obtained from the screen for baseline and recovery sleep in ~1,750 lines 

allowed us to probe the relationships between genotype, recovery sleep, and baseline 

sleep not just for our hits with the most extreme phenotypes, but also more broadly across 

the entire screening dataset. We first used a nested ANOVA model with experimental run 

as a blocking variable to assess the magnitude of the effect of genotype on recovery sleep 

in our screen. To avoid confounding our subsequent analyses, we used total sleep through 

the recovery period (not “rebound” as defined to select hits) as the dependent variable in 

these models. We find in the nested ANOVA that genotype has a significant effect on 

recovery sleep, with an increase in R2 of 0.35 when genotype is added (“Reduced Model” 

in Table 2-2, Figure 2-5).  

We next explored the relationship between baseline sleep and recovery sleep in our 

screen. Most conceptual frameworks for sleep homeostasis predict that baseline sleep and 

the amount of sleep loss should affect the amount of sleep during recovery, and indeed, 

there are significant relationships between baseline sleep, sleep loss, and recovery sleep 

in our data. The relationships between baseline sleep variables and sleep through the 
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recovery period are adequately described by linear relationships, with both daytime and 

nighttime baseline sleep positively correlated with recovery sleep (Table 2-3, 

Supplemental Figure 2-5). Sleep through the thermogenetic SD period is, as expected, 

negatively correlated with recovery sleep. A square root transformation of the sleep 

during thermogenetic deprivation variable produces a better fit than the untransformed 

variable, so this transformation is used in this and subsequent models.  

A model including all three of these variables (daytime baseline sleep, nighttime baseline 

sleep, and sleep through SD) has an R2 value of 0.255, indicating modest predictive 

value. Adding variables reflecting sleep episode length and number at baseline do not 

significantly improve the fit of the model, suggesting that these are not meaningful 

determinants of recovery sleep in Drosophila when sleep amount has already been taken 

into account.    

Given these relationships between baseline sleep and recovery sleep, two different ways 

that genotype might contribute to sleep rebound can be distinguished: (1) by altering the 

amount of baseline sleep or sleep loss, secondarily affecting rebound sleep, or (2) by 

specifically affecting recovery sleep in a way that is independent from effects on baseline 

sleep or sleep loss. As noted previously, baseline sleep for hits MI00323/+ and 

MI00393/+ is only minimally different from the control line MI00386/+, and these lines 

have near- complete sleep loss, supporting the second possibility. To address whether this 

finding in our hits would extend to the entire set of screening data, we constructed a 

hierarchical multiple linear regression model that includes predictor variables reflecting 

baseline sleep and the amount of sleep through the thermogenetic stimulation (as well as 



56 

the potential confounding factor of experimental run, included in the reduced 

model/nested ANOVA) and asked whether the effect of genotype persists even when 

these variables have been accounted for.  

Predictor variables were added to the multiple linear regression model sequentially in the 

order listed (Table 2-2). Without genotype, the model with the predictor variables 

(baseline sleep, sleep during deprivation and experimental run) has a total R2 value of 

0.308, suggesting these variables could account for a substantial amount of variance in 

the data. Most of this effect is due to the correlations with baseline sleep parameters 

discussed above, although experimental run also has a significant effect. 

When genotype is added to the model that includes baseline sleep and sleep through the 

thermogenetic stimulus, the R2 value increases by 0.24. Compared to 0.35, the change in 

R2 when genotype is added to the reduced model, this is a somewhat smaller effect (Table 

2-2, Figure 2-5). This suggests that some of the effect of genotype on recovery sleep can 

be thought of as secondary to effects of genotype on baseline sleep or sleep through the 

thermogenetic stimulus. Nonetheless, the larger part of the effect of genotype on recovery 

sleep persists in the full model. Thus, to the extent that the linear modeling reflects the 

true relationship between baseline sleep and recovery sleep in Drosophila, our data 

support the idea that much of the effect of genotype on recovery sleep is direct and 

cannot be explained by indirect effects from relationships with baseline sleep or sleep 

loss. 

To ensure that the effect of genotype is not due to broad differences in genetic 

background resulting from the different collections we screened, but rather to specific 
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differences between individual lines within a collection of insertions, we applied the 

same modeling approach separately to each type of insertion we screened 

(Supplementary Tables 2-1, 2-2, and 2-3). Although the relative contributions of baseline 

sleep and sleep loss vary among the different collections, in all collections the effect of 

genotype on recovery sleep persists even when variables reflecting baseline sleep and 

sleep through thermogenetic SD are included in the model.  

Discussion 
 
Sleep homeostasis is often described as a single process that regulates sleep both when 

animals are left undisturbed and when animals are kept awake for extended periods.61 

Disparate molecules have been implicated in regulating sleep amount and intensity, but 

this work has not yet yielded a coherent mechanism to explain all aspects of the proposed 

homeostatic “Process S”.24 A growing body of evidence suggests that responses to SD, 

sleep restriction, or disruption expose mechanisms regulating sleep homeostasis that are 

not observed under undisturbed conditions, and conversely there are manipulations that 

substantially affect daily sleep amount without producing a subsequent homeostatic 

response. This may explain why attempts to identify a unified molecular mechanism for 

sleep homeostasis have thus far not been fruitful. 

Here, we have developed a thermogenetic method of inducing SD that produces a more 

uniform response and is more subject to influences from genotype than mechanical or 

caffeine-based approaches. In the course of developing a thermogenetic method to induce 

SD, we find that manipulations of some neuronal populations produce strong reductions 

in sleep followed by a strong rebound, whereas other populations of neurons produce 
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strong sleep loss without any rebound the next day (Figure 2-1A). This finding is 

reminiscent of the observation that certain environmental factors are able to provoke 

changes in habitual sleep amount in organisms without apparent homeostatic 

compensation. Although these findings have been somewhat controversial, food 

availability, mating status, light, and seasonal migration have all been reported to 

suppress sleep without a subsequent rebound.62–66 Our work suggests that there are neural 

substrates for wake-promoting mechanisms that are able to bypass or counteract the 

accumulation of sleep need, which may explain how environmental factors are able to 

provoke changes in sleep that appear to circumvent a homeostatic response. 

We also describe genetic manipulations that specifically affect sleep during recovery 

from SD but have little apparent effect on sleep at baseline. Our unbiased screen yielded 

two lines that show no evidence of reduced total baseline sleep, despite having little to no 

sleep rebound and a blunted increase in sleep depth after SD (Figures 2-2, 2-3, and 2-4). 

Multiple linear regression analysis of our data suggests that these observations can be 

generalized to our entire screening data set: although we do observe positive correlations 

between baseline and recovery sleep, genotype has a strong effect on sleep after SD that 

is not explained by baseline sleep parameters (Tables 2-2 and 2-3, Figure 2-5).  

Despite a robust phenotype with thermogenetic SD, our hits do not show reduced 

rebound with mechanical SD (Figure 2-4B). Given our results showing that the response 

to mechanical SD is less susceptible to genetic perturbation (Table 2-1), this is not 

necessarily surprising. It is possible that mechanical SD invokes multiple neural circuits 

to produce sleep rebound, whereas our thermogenetic approach invokes a specific 
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neuronal mechanism. Similar findings have been observed in other organisms; recent 

work in Caenorhabditis elegans shows that distinct genetic mechanisms regulate sleep 

after strong disruptions compared to microhomeostatic regulation of quiescent bouts 

under undisturbed or “low-noise” conditions.67 Taken together, these studies implicate 

sleep rebound as a phenomenon that is mechanistically distinct from sleep at baseline, 

and suggest that there are multiple mechanisms that calibrate sleep to different types of 

environmental conditions and perturbations.  

The findings presented here highlight the potential of the model organism Drosophila to 

elucidate mechanisms that underlie sleep and other behaviors. The ability to identify 

mutants with highly extreme phenotypes in large genetic screens allowed us to identify 

two lines with little to no sleep rebound following thermogenetic SD that nonetheless 

exhibit normal sleep at baseline. It is currently unclear whether the phenotypes will map 

to single genes. Further work will be important to determine whether these animals are 

sensitive to other behavioral consequences of SD – for example, whether learning and 

memory is affected in the absence of sleep rebound – or if they are truly resilient. 

Nonetheless, the lines identified in our unbiased genetic screen demonstrate that extreme 

phenotypes specific to SD can result from genetic differences between animals, and 

provide the field with valuable tools for identifying mechanisms that underlie the 

response to SD.  
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Figure 2-1: Development of a novel thermogenetic tool to induce sleep deprivation 
(SD) and rebound in Drosophila 
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Figure 2-1. Development of a novel thermogenetic tool to induce sleep deprivation 

(SD) and rebound in Drosophila (A) Gal4 lines were screened to identify drivers that 

produce strong sleep loss and subsequent rebound when coupled with the heat-activated 

cation channel TrpA1. Each candidate Gal4 driver was paired with a UAS-TrpA1 

transgene on the same chromosome as the Gal4 driver. A full day of baseline data were 

collected at 21°C, followed by 24 h of TrpA1 activation at 28°C (ZT0-ZT24) and a 

subsequent recovery day where flies were returned to 21°C. Error bars represent standard 

deviation. Significance was assessed with a one-sample Student t-test with a Bonferroni 

correction for multiple testing. n = 11-52 per genotype. (B) GFP expression in c584-

Gal4/UAS-nGFP flies shows relatively sparse expression in the brain driven by c584-

Gal4. Immunohistochemistry with anti-TH and anti-GFP antibodies reveals clustering 

and costaining of c584-expressing neurons with dopaminergic neurons. GFP expression 

in c584-Gal4/UAS-nGFP flies includes non-dopaminergic neurons around the 

dopaminergic PPL1 cluster and co-staining with TH in 2-3 neurons of the PPM3 cluster. 

Scale bar = 100 µm. 
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Figure 2-2: Thermogenetic screen for mutants with reduced sleep rebound 
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Figure 2-2. Thermogenetic screen for mutants with reduced sleep rebound. (A) 

Screen protocol: Insertion lines were crossed into the c584-Gal4, UAS-TrpA1 stock and 

the flies were entrained at 21°C. Sleep deprivation (SD) was induced for 9 h (ZT12-

ZT21) at 29°C, after which the flies were allowed to recover at 21°C. The PySolo sleep 

profile presented is average sleep of all flies from a representative group of lines run in 

the screen. Y-axis represents fraction of time asleep in a 30-min bin. (B) Overall screen 

schematic: Flow chart describing the number of insertion lines selected at each screening 

stage. (C) Histogram showing rebound sleep (sleep amount on the recovery day 

subtracted from sleep amount on the baseline day Zeitgeber time (ZT)21-ZT12) for all 

the lines tested in the screen. Candidates for rescreening (<2.5 percentile) are boxed. (D) 

Sleep rebound hits: After rescreening, two lines, MI00323/+ and MI00393/+, show 

reduced rebound after SD. Plotted are sleep loss (SL) and sleep recovered (SR) from four 

independent experiments for MI00323/+ and MI00393/+ compared to all MiMIC 

insertions tested as heterozygotes in the screen. Error bars represent standard deviation. 

(E) Sleep profile for MI00323/+ and MI00393/+ during the thermogenetic SD protocol in 

a representative experiment.  
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Figure 2-3: Baseline sleep is not reduced in lines with reduced rebound 
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Figure 2-3: Baseline sleep is not reduced in lines with reduced rebound. (A) Sleep 

rebound following thermogenetic SD and baseline sleep amount (±standard error of the 

mean) and (B) sleep episode data for a representative experiment are shown for 

MI00323/+ and MI00393/+ (lines with reduced rebound) compared to MI00386/+, which 

had an average amount of rebound sleep following sleep deprivation (SD) in the primary 

screen. For MI00323/+, rebound was significantly reduced in four of four experiments 

with n = 28-32 per genotype. Increase in baseline daytime (DT) sleep episode (SE) length 

was significant in five of seven experiments, and increase in baseline DT sleep amount, 

and decrease in baseline DT SE number were significant in four of seven experiments. 

For MI00393/+, rebound was significantly reduced in three of three experiments. 

Increase in baseline nighttime (NT) SE length and decrease in baseline NT SE number 

was significant in four of six experiments, and increase in baseline NT sleep amount and 

decrease in baseline DT sleep amount (not significant in the representative experiment 

shown) were significant in three of six experiments. Significance for sleep rebound and 

sleep amount data was assessed with Welch t-test, P < 0.05. Significance for sleep 

episode data was assessed with Wilcoxon rank-sum test, P < 0.05. n = 28-32 per 

genotype in each experiment.  
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Figure 2-4: Reduction in sleep rebound following thermogenetic sleep deprivation 
(SD) extends to sleep depth/arousal threshold but is not observed following 
mechanical SD  
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Figure 2-4. Reduction in sleep rebound following thermogenetic sleep deprivation 

(SD) extends to sleep depth/arousal threshold but is not observed following 

mechanical SD (A) Arousal threshold for the control MI00386/+ and lines with low 

sleep rebound, MI00323/+ and MI00393/+, under undeprived (UD) conditions or after 

thermogenetic SD. Mechanical stimulus was applied at Zeitgeber time (ZT)23, 2 h after 

the temperature was returned to 21°C for the sleep deprived groups. Flies that were 

asleep at the time the stimulus was applied were marked as responding if they showed 

movement within 2 min following stimulus. Plotted data are the mean and range of 

fraction of flies awoken in four independent experiments (n = 12-32 sleeping flies in each 

experiment). A two-way analysis of variance with experimental run as an additional 

blocking variable indicates main effects of SD and genotype on arousal threshold as well 

as a significant interaction between SD and genotype, P < 0.05. Tukey honest significant 

difference test is used for individual comparisons between groups in post hoc analysis. 

(B) Sleep rebound following mechanical SD for the lines identified as hits from the 

thermogenetic SD screen, with comparison to MI00386/+ as a control. Data are plotted ± 

standard error of the mean from three combined experiments, n = 24-32 per genotype in 

each experiment. No significant reduction of sleep rebound is observed for either 

MI00323/+ or MI00393/+ in three of three experiments assessed by Welch t-test, P < 

0.05. 
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Figure 2-5: Δ R2 in hierarchical multiple linear regression models shows 
contribution of genotype cannot be explained by effect of genotype on baseline sleep 
 

 

 

The Δ R2 is plotted for each variable from both the reduced model and the full model, 

described in Table 2-2. Variables were added hierarchically to the models in the order 

depicted (left to right). DT = daytime; NT = nighttime; SD = sleep deprivation. 
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Table 2-1: Comparison of mechanical, caffeine-induced, and thermogenetic sleep 
deprivation in pilot screens 
 

 

Sleep 
loss 
(min) 

Sleep 
reb-

ound 
(min) 

RMSE 
(min) R2 

Adj. 
R2 

Mech.  
328.3 ± 
44.96 

219.5 ± 
137.29 130.2 0.216 0.100 

Caff. 
199.3 ± 
262.2 

255.5 ± 
180.75 159.0 0.331 0.226 

Therm
. SD 

387.4 ± 
96.47 

173.6 ± 
153.05 125.3 0.413 0.330 

 

Pilot screens were conducted with mechanical, caffeine-induced and thermogenetic sleep 

deprivation (SD). Sleep loss and sleep rebound (mean ± standard deviation) for all flies in 

each pilot screen are reported. The contribution of genotype to sleep rebound was 

assessed for each screen with a one-way analysis of variance, and root mean square error 

(RMSE), R2, and adjusted R2 values for each pilot screen are reported. In all cases, the 

effect of genotype was significant at P < 0.05. R2 is greatest and residual RMSE is least 

with thermogenetic SD, indicating that the thermogenetic approach produces less within-

genotype variance compared to the other two approaches and is well suited for genetic 

screening. Caff. = caffeine induced; mech. = mechanical; therm. = thermogenetic. 
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Table 2-2: Variance in recovery sleep explained by predictor variables in a 
hierarchical multiple linear regression model  
 

 

 

a Square root transformation.  

Two models were used to describe the variance in recovery sleep that could be explained 

by genotype. The reduced model describes the variance in recovery sleep explained by 

genotype, correcting for the potential confounding factor of experimental run, but 

regardless of whether this relationship could be explained if relationships between 

genotype and other sleep parameters are taken into account. The full model describes the 

variance in recovery sleep attributed to genotype that cannot be explained by baseline 

sleep parameters, baseline daytime (DT) sleep or baseline nighttime (NT) sleep, or sleep 

through the thermogenetic stimulus (sleep through SD). There was evidence for a 

Model Variable 
RMSE 
(min) R2 

Adj. 
R2 

Reduce
d model 

Intercept 163.0 - - 

Experimenta
l run 156.0 0.087 0.084 

Genotype 130.4 0.444 0.360 

Full 
model 

Intercept 163.0 - - 

Baseline DT 
sleep 147.0 0.186 0.186 

Baseline NT 
sleep 144.0 0.220 0.220 

Sleep 
through SD a 140.7 0.255 0.255 

Experimenta
l run 135.8 0.308 0.305 

Genotype 117.9 0.546 0.477 



71 

nonlinear relationship between sleep through SD and recovery sleep, so a square root 

transformation of sleep through SD was used. For both the reduced model and the full 

model, variables were added hierarchically in the order listed based on expected 

biological relationships. The total root mean square error (RMSE), R2, and adjusted R2 

for the models after the addition of each variable are reported. Genotype has a substantial 

effect on recovery sleep in both the reduced and full models. All reported variables 

significantly improved the model with P < 0.001 (variance ratio test).  
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Table 2-3: Regression of recovery sleep against daytime and nighttime baseline sleep 
and sleep through thermogenetic sleep deprivation   
 

Variable 
β Coeff. 
estimate 

β Coeff. 
std. error P 

Intercept  
569.3 
min 1.22 <0.001 

Baseline DT 
sleep (min) 0.52 0.001 <0.001 

Baseline NT 
sleep (min) 0.43 0.014 <0.001 

Sleep 
through SD a 

(min0.5) 
-5.06 
min0.5 0.202 <0.001 

 
a Square root transformation. 

 

Baseline daytime (DT) sleep, baseline nighttime (NT) sleep, and sleep through the 

thermogenetic stimulation (sleep through sleep deprivation, SD) were regressed on 

recovery sleep in a multiple linear regression model. β coefficients and standard error are 

reported in the table. Positive linear relationships were observed between the amount of 

baseline sleep and the amount of recovery sleep. A negative relationship between the 

amount of sleep through SD and the amount of recovery sleep was observed. 

Relationships are plotted in Supplemental Figure 2-3. There was evidence for a non-

linear relationship between sleep through SD and recovery sleep, so a square root 

transformation of sleep through SD was used.  
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Supplemental Figure 2-1: Coexpression of 104906-Gal4 with dopaminergic cells 

 

104906-Gal4>UAS-nGFP brains exhibit widespread GFP expression. Costaining with an 

anti-TH antibody reveals coexpression of GFP and TH in the PPL1 and PPM3 clusters. 

Scale bar = 100 µm. 
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Supplemental Figure 2-2: Changes in sleep parameters after thermogenetic sleep 
deprivation (SD)  
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Supplemental Figure 2-2. Changes in sleep parameters after thermogenetic sleep 

deprivation (SD). (A-D) Histograms showing change in sleep amount for individual flies 

in the primary screen. An increase in sleep amount (rebound) relative to baseline is 

observed from Zeitgeber time (ZT)0-12 (A) and over the 15-h period from ZT21-12 in 

almost all flies (B). Net rebound sleep during the 3 h immediately following SD (ZT21-

24) (C) and the first full night following SD (ZT12-24) (D) can also be observed, but are 

less consistent, with many flies showing the opposite trend. (E-H) Histograms showing 

change in sleep bout architecture for individual flies in primary screen. During the day, 

flies tend to have longer (E) and a greater number (F) of sleep bouts following SD. 

During the following night, sleep becomes more consolidated, with longer bouts (G) and 

fewer of them (H). As with some of the sleep amount parameters discussed here, these 

trends are observed for the data set as a whole, but are not consistent across individual 

flies, with many flies exhibiting the opposite relationship.  
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Supplemental Figure 2-3: Baseline sleep is not reduced in hits with reduced rebound 
compared to other MiMIC lines tested in the screen  

 

 (A-D) Histograms depicting values for (A) sleep recovered (Zeitgeber time 21-12) (B) 

total baseline sleep amount, (C) baseline daytime (DT) and (D) baseline nighttime (NT) 

sleep for all MiMIC lines run as heterozygotes in the screen. Arrows depict baseline sleep 

for MI00323/+ and MI00393/+ in the first four independent experiments for each of these 

lines, run in parallel with the primary screen. Overall baseline sleep values for 

MI00323/+ and MI00393/+ are within the normal range compared to other lines tested in 

the screen. We do observe a shift in the timing of sleep for MI00323/+ toward greater DT 

sleep, which we discuss in more detail later. Although in this data set we observe a 

reduction in baseline NT sleep for MI00323/+, we do not see significant differences in 

baseline NT sleep between this line and a control line discussed in Figure 2-4.  
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Supplemental Figure 2-4: Histogram of rebound sleep for all heterozygous MiMIC 
lines that displayed high daytime baseline sleep (>300 min) 
 

 

In the primary screen MI00323/+ did not have daytime sleep above 300 min but would 

have still been an outlier for recovery sleep when compared with other MiMIC insertions 

with high daytime baseline sleep. 
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Supplemental Figure 2-5: Relationships of recovery sleep with baseline sleep and 
sleep through thermogenetic sleep deprivation (SD) 

 

(A-C) Smoothed scatter plots depict relationships between sleep during the recovery 

period and (A) baseline daytime (DT) sleep (B) baseline nighttime (NT) sleep and (C) 

square root transformation (see Table 2-3) of sleep through the thermogenetic stimulation 

(sleep through SD) in primary screen.  
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Methods 
 
Fly Stocks and Crosses 

Fly stocks and crosses were maintained at room temperature or 18°C on standard 

cornmeal-molasses medium. Mutant lines carrying MI{MiC} (“MI”) and P{SUPor-P} 

(“KG”) insertions generated by the Gene Disruption Project were obtained from 

Bloomington Stock Center at Indiana University. Lines with transposon insertion sites 

within the body of genes expressed in the central nervous system were selected for 

screening (Flybase.org). UAS-TrpA1 and MJ63-Gal4 were a gift from L. Griffith. 53b-

Gal4 line was a gift from R. Greenspan. c305-Gal4 was a gift from S. Waddell. 36y-Gal4 

and NPF-Gal4 were gifts from P. Taghert. c584-Gal4, c739-Gal4, and Ddc-Gal4 were 

ordered from the Bloomington Stock Center. 103808-Gal4 and 104906-Gal4 lines were 

ordered from the Drosophila Genetic Resource Center. The c584 and UAS-TrpA1 stocks 

were each outcrossed into an isogenic background, and a c584-Gal4, UAS-TrpA1 stock 

was made from these outcrossed lines by allowing meiotic recombination in c584-

Gal4/UAS-TrpA1 parents. Progeny carrying a recombined chromosome with both 

transgenes were identified by polymerase chain reaction and then crossed to a balancer 

stock to generate a stable line. 

Sleep Assays 

Sleep was monitored using the Drosophila Activity Monitoring (DAM) System 

(TriKinetics, Waltham, MA) in glass locomotor tubes containing 5% sucrose / 2% 

agarose food. Activity data were collected in 1-min bins. All behavioral experiments 

were conducted in a 12 h:12 h light-dark (LD) cycle. To test potential thermogenetic 
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methods of SD, flies were raised at 18°C until they were 1 to 9 days of age. To test the 

effects of thermogenetic neuronal stimulation, flies were loaded into the DAM system 

and placed at 21°C, entrained for 2 to 4 days, then subjected to a full day at 28°C starting 

at Zeitgeber time (ZT)0. For caffeine-induced SD, flies were raised to 3 to 6 days old at 

25°C, then loaded into the DAM system and flipped to food containing 0.5 mg/mL of 

caffeine for 24 h starting at ZT0 on day 5. For the pilot mechanical SD screen and 

subsequent mechanical SD experiments, flies were raised to 4 to 7 days old at 25°C, then 

loaded into the DAM system and sleep deprived from ZT18–24 on day 4 or day 5 by 

shaking on an adapted vortex (TriKinetics, Waltham, MA) for 2 sec every 20 sec. In the 

primary thermogenetic screen and in subsequent experiments with the c584-Gal4, UAS-

TrpA1 thermogenetic method of SD, transposon insertion lines were crossed into the 

c584-Gal4, UAS-TrpA1 background. For heterozygous insertions, progeny of the cross 

between the insertion stock and the c584-Gal4, UAS-TrpA1 stock were tested. For 

homozygous insertions, balancers were used to track the insertion in two- to three-

generation crossing schemes. For testing responses to thermogenetic SD, flies were raised 

at 18°C to 7 to 13 days old, loaded into DAMS tubes, and entrained for 4 days at 21°C. 

SD was induced by raising the temperature to 29°C from ZT12–ZT21 on day five. Five 

to eight female flies per genotype were tested in the primary screen. Total sleep times 

were obtained from DAMS data using PySolo,48 and sleep consolidation data was 

obtained using either PySolo or Excel Macros generated by the Allada laboratory.49   

Arousal Threshold Assays 
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For arousal threshold assays, female flies were raised as described previously for the 

thermogenetic screen and loaded into DAMS monitors. Arousability was assessed at 

ZT23 for both undisturbed flies, kept at constant 21°C, and SD flies, subjected to 9 h of 

thermogenetic SD from ZT12-ZT21. The stimulus was generated by dropping a 12 oz. 

rubber weight from a 4.5-inch height onto the rack supporting DAMS monitors. Sleeping 

flies, with no activity in the 5 min prior to the stimulus, were counted as aroused if they 

exhibited beam crossings in the 2 min following the stimulus.  

Immunohistochemistry 

Fly heads were opened and fixed in 4% paraformaldehyde (in phosphate buffered saline, 

PBS) for 15–20 min before brains were dissected. All dissection, washing, and 

immunostaining was done in PBS with 0.1% Triton-X100 (PBS-T). Following dissection, 

brains were washed three times, incubated 30 min in blocking buffer (5% normal goat 

serum) and incubated overnight at 4°C in primary antibody solution of 1:300 rabbit anti-

tyrosine hydroxylase (TH) AB152 (Millipore, Darmstadt, Germany) and 1:500 chicken 

anti-green fluorescent protein (GFP) GFP-1020 (Aves Labs, Tigard, OR) in blocking 

buffer. The following day brains were washed three times, incubated 90 min in secondary 

antibody solution of 1:400 Alexa Fluor 488 goat anti-chicken and 1:400 Alexa Fluor 680 

goat anti-rabbit (Life Technologies, Carlsbad, CA) or 1:400 Cy5 goat anti-rabbit 

(Rockland Immunochemicals, Pottstown, PA) in blocking buffer, washed three times, 

then mounted in Vectashield. Brains were imaged on a Leica TCS SP5 confocal 

microscope (Leica Microsystems, Wetzlar, Germany).  

Statistics 
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Statistics were performed using the base package in R version 3.1.2 (R Foundation for 

Statistical Computing, Vienna, Austria). For multiple linear regression, variables were 

added to the model hierarchically in a predetermined order based on expected biological 

relationships. The analysis of variance (anova) function was used to perform a variance 

ratio test comparing each new model to the previous model to assess the significance of 

the new variables.  
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Chapter 3: Reduced levels of the wake-promoting stimulus during sleep 
loss reduces sleep rebound after thermogenetic sleep deprivation 
 
This chapter is not yet published. 
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Introduction 
 
Sleep rebound, the increased duration and depth of sleep after sleep deprivation (SD), is a 

common behavior across the animal kingdom, but the molecular mechanisms that 

produce it are still not understood. There is evidence that sleep rebound is 

mechanistically distinct from baseline sleep and that different types of SD produce 

different magnitudes of sleep rebound (Kalinchuk et al. 2008; Halassa et al. 2009; 

Seugnet et al. 2011; Suzuki et al. 2013; Driver et al. 2013; Nagy et al. 2014; Thimgan et 

al. 2015; Seidner et al. 2015; Dubowy et al. 2016; Liu et al. 2016), and a number of 

genes and pathways, discussed below, have been implicated in this behavior. However, a 

unified mechanism for sleep rebound remains elusive.   

In mammals, mechanistic studies of sleep rebound have historically focused on the role 

of potential somnogens – neurochemicals that increase globally during wake and are 

capable of inducing sleep. While several neurochemicals, including adenosine, tumor 

necrosis factor-α, and prostaglandin D, meet these criteria, genetic studies related to these 

chemicals produce only mild phenotypes (Mizoguchi et al. 2001; Deboer et al. 2002; 

Stenberg et al. 2003; Huang et al. 2005; Bjorness et al. 2009). In Drosophila, sleep 

rebound is often studied using mechanical SD, which shares features with other sleep-

inducing stress response pathways (Toda and Sehgal, unpublished). Several categories of 

genes have been implicated in sleep rebound – in particular, mutations that affect cellular 

stress or lipid metabolism modulate sleep rebound after mechanical SD (Shaw et al. 

2002; Naidoo et al. 2007; Thimgan et al. 2010; 2015). There is also evidence that 

changes in synaptic strength in the ellipsoid body R2 neurons may be important for the 

response to mechanical SD, although the relevance of these neurons to other sleep 
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behaviors and connections to other sleep regulatory centers are unclear (Liu et al. 2016). 

Finally, in both Drosophila and in mammals, glia may play an important regulatory role 

in responses to sleep loss (Halassa et al. 2009; Seugnet et al. 2011; Dissel et al. 2015). 

Each of these findings provides compelling clues about the nature of sleep rebound 

following mechanical SD, but the connections between these findings, and whether the 

same molecular mechanisms are invoked when sleep loss is produced by other means, 

both remain unanswered questions. 

While these studies focused on mechanical SD, in Chapter 2, I developed a lower 

variance method of SD that uses the heat-activated cation channel TrpA1 to 

thermogenetically activate wake-promoting neurons labeled with the c584-Gal4 driver 

(Dubowy et al. 2016). This Gal4 driver labels the wake-promoting dopaminergic PPM3 

neurons, among other cells, which are thought to inhibit the sleep-promoting ExFl2 

dorsal fan-shaped body cells to produce wake (Ueno et al. 2012). Thermogenetically 

activating c584-labeled cells produces strong sleep loss, followed by a robust rebound the 

following day. I conducted an unbiased genetic screen using this method of SD and 

identified two mutant Drosophila melanogaster lines that exhibit normal baseline sleep 

and sleep loss but little to no sleep rebound. 

In this chapter, I follow up on one of the identified hits from the screen and identify a 

molecular mechanism responsible for the phenotype. Traditional genetic mapping 

experiments did not reveal a single locus responsible for the phenotype, suggesting that 

the phenotype is multigenic. However, gene expression studies show that this mutant line 

has reduced expression of the enzyme Dopa decarboxylase (Ddc), an enzyme necessary 
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for dopamine synthesis, and hypomorphic alleles of Ddc partially phenocopy the mutant. 

The mutant line also has reduced Gal4-driven expression of TrpA1. Genetic 

manipulations that similarly reduce Gal4-driven TrpA1 expression via Gal4 dilution 

completely abolish sleep rebound with comparatively modest effects on sleep loss. Taken 

together, these two findings suggest that the strength of the wake-promoting stimulus is a 

determinant of subsequent sleep rebound even when the amount of sleep loss is largely 

unaffected.  

Results 
 

MI00393 Phenotype Maps to Chromosome II But Not to the Transposon Insertion 
 
The initial genetic screen was conducted using lines from the Gene Disruption Project 

with known transposon insertions that had been mapped by inverse Polymerase Chain 

Reaction (PCR) to precise locations in the genome (Bellen et al. 2011; Venken et al. 

2011). However, these lines carry other mutations. This is in part because creation of 

these lines involved a series of crosses using several different non-isogenized genetic 

backgrounds (H. Bellen, personal communication), but also because transposon 

mutagenesis often involves multiple insertion and excision events, which can leave a 

small insertion or deletion undetectable by inverse PCR (Metaxakis et al. 2005). Indeed, 

lines generated by the Gene Disruption Project are known to carry second site mutations 

that produce other phenotypes, such as recessive lethality (Venken et al. 2011). Thus, 

mapping is still necessary to determine if the phenotype is caused by the transposon 

insertion.  
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Initial mapping experiments with the two hits identified in Chapter 2 were conducted to 

determine whether the phenotypes map to the chromosome carrying the transposon 

insertion (Figure 3-1). Fly stocks were created with the chromosome carrying the 

insertion from the original Gene Disruption Project stock and all other major 

chromosomes from our wild-type iso31 background. For MI00323/+, the phenotype does 

not map to the chromosome on which the MiMIC construct is inserted (data not shown). 

However, the MI00393/+ phenotype does partially map to the chromosome carrying the 

insertion, chromosome II. Indeed, the line with chromosome II isolated in an otherwise 

iso31 background demonstrates the same principles observed the original screen – 

baseline sleep for this line is nearly identical to baseline sleep of the iso31 wild-type 

controls, but rebound sleep after thermogenetic SD is greatly reduced. The similarities in 

baseline sleep between chromosome II-isolated MI00393/+ line and the wild-type iso31 

line made it easier to link any observed molecular changes to the reduced rebound 

phenotype, so this line, hereafter referred to as “MI00393/+ (II),” is used in further work, 

with the wild-type iso31 stock serving as a control. 

Although the MI00393/+ phenotype can be mapped to chromosome II, the transposon 

insertion itself is dispensable for the phenotype (Figure 3-2). To determine the effect of 

the transposon insertion, a fly line with a precise excision of MI00393 was created and 

compared to a control that had undergone the same series of crosses but retained the 

MiMIC insertion. Excision and control lines were generated by crossing the MI00393 

Gene Disruption Project line to a line with a heat shock-driven Minos transposase and 

exposing the progeny of this cross to heat shock during gametogenesis to induce 

transposase expression (Metaxakis et al. 2005). As was done to map the MI00393 



94 

phenotype to chromosome II, the excision and control lines went through a series of 

crosses to create a line where chromosome II originated from transposase-exposed 

MI00393 flies and the other major chromosomes originated from iso31. Response to 

thermogenetic sleep deprivation for these lines was then assessed. The control and 

precise excision lines both have similarly reduced rebound sleep after thermogenetic 

sleep deprivation, demonstrating that the transposon insertion is not necessary for the 

phenotype. 

Transcriptional Profiling of MI00393/+ and Wild-type Flies Before and After Sleep 
Deprivation using RNA-Seq 
 
Gene expression profiling using RNA-Seq was undertaken with two goals: first, to 

compare SD-induced gene expression changes in flies that do and do not experience sleep 

rebound, and second, to identify molecular lesions – point mutations or gene expression 

differences – that might be causally responsible for the MI00393/+ mutant phenotype. 

Gene expression profiling was done on brains of wild-type iso31 and MI00393/+ (II) flies 

with c584-Gal4 and UAS-TrpA1 with or without exposure to 11.5 hours of heat to 

produce thermogenetic SD (Figure 3-3). Brains were dissected at ZT0, 30 minutes after 

thermogenetic SD ceased for the SD group. Importantly, at the time of dissection, there 

was no difference in sleep/wake history between sleep-deprived flies of the two 

genotypes, although differences in sleep/wake behavior would have been immediately 

apparent had the flies been left undisturbed. Therefore, any differences in transcript 

expression are the result of differences in response to SD or differences in sleep pressure, 

not differences in behavioral state. 
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There were many gene expression changes with SD in wild-type flies (Figure 3-3, Table 

3-1), most falling into similar categories previously shown to change after SD (Table 3-

2): genes involved in synaptic function, second messenger signaling pathways, RNA and 

protein metabolism, and cellular stress (Cirelli et al. 2005; Zimmerman et al. 2006; 

Williams et al. 2007; Mackiewicz et al. 2009). While the gene expression profiles in 

some ways resemble those of sleeping flies – in the upregulation of genes involved in 

macromolecule metabolism – the upregulation of cellular stress response genes resembles 

gene expression changes in waking or sleep deprived flies. These mixed results are likely 

the result of the behavioral state at the time these experiments: flies were taken for 

dissection 30 minutes into the rebound period after 11.5 hours of thermogenetic sleep 

deprivation. Thus, it is perhaps unsurprising that the expression profile would reflect both 

sleeping and waking states. Note that while many genes fall into functional categories 

previously observed to change with sleep or sleep deprivation, we cannot exclude a role 

for temperature in the observed gene expression changes. 

The vast majority (91%) of the 2109 genes that change with SD in wild-type flies also 

change in MI00393/+ (II) flies, with only 183 genes that change exclusively in wild-type 

flies (Figure 3-3, Table 3-3). Interestingly, however, there is a large set of genes – 907 

total – with expression that is significantly changed with SD in MI00393/+ (II) flies but 

not in wild-type flies (Figure 3-3, Table 3-4). Most of these genes are upregulated with 

sleep deprivation and many fall in functional categories related to mitochondrial function, 

including metabolic activities associated with mitochondria but also including 

mitochondrial ribosomal proteins and inner and outer membrane mitochondrial 

transporters (Table 3-5). However, follow up experiments did not indicate a role for 
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mitochondrial biogenesis in sleep regulation, so the functional significance of these 

changes remains unclear. 

The Illumina sequencing data revealed many genomic polymorphisms that differed 

between the wild-type iso31 and MI00393/+ (II) lines, with 24,776 total variants 

mapping to chromosome II. The large number of variants prevented identification of 

genome-level changes responsible for the phenotype, and recombination mapping 

likewise failed to identify a single genomic locus that produced the reduced rebound 

phenotype (data not shown). However, there are relatively few gene expression 

differences between these genotypes that reached statistical significance in the 

undeprived groups, even with a liberal False Discovery Rate of 0.40 (Table 3-3, Figure 3-

4). Among these baseline gene expression changes, Dopa decarboxylase (Ddc), an 

enzyme necessary for dopamine and serotonin synthesis, is notable given that dopamine 

is likely responsible for the wake-promoting effects of thermogenetic sleep deprivation 

with c584-Gal4. TrpA1 expression is lower in MI00393/+ (II) flies; however, with a q-

value of 0.42 this missed the criteria for significance, and it was not clear whether this 

change in expression level reflected endogenous TrpA1 or Gal4-driven TrpA1. To address 

both these questions, c584-Gal4 was used to drive GFP expression and quantitative PCR 

(qPCR) was used to assess GFP transcript levels in MI00393/+ (II) flies and controls. 

GFP cannot be confused for an endogenous transcript and thus provides a direct measure 

of Gal4-driven expression (Figure 3-4B). This experiment demonstrated that GFP levels 

are lower in MI00393/+ (II) flies compared to control, indicating that Gal4-driven 

expression is lower in MI00393/+ (II) flies. 
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Sleep Rebound after Thermogenetic Sleep Deprivation is Modulated by the Strength 
of the Thermogenetic Stimulus 
 
Based on the gene expression experiments, I hypothesized that reduced levels of Ddc 

might be responsible for the phenotype of MI00393/+ mutants. To directly test the effects 

of Ddc on sleep rebound after thermogenetic sleep deprivation, null (Ddc27) and 

hypomorphic (Ddclo) alleles of Ddc were obtained (Wright et al. 1982) and both alleles 

were backcrossed into the wild-type iso31 background. Both Ddc27/+ and Ddclo/+ have 

reduced rebound after thermogenetic sleep deprivation (Figure 3-5), although the 

phenotype is less extreme than the MI00393/+ (II) phenotype. Since Ddc is necessary for 

dopamine synthesis, this finding provides a link between the wake-promoting stimulus 

used to produce sleep loss and subsequent sleep rebound. However, sleep loss is not 

reduced in these mutants, suggesting that while the reduction of Ddc activity is 

substantial enough to affect sleep rebound it is below the threshold that would be 

necessary to reduce sleep loss. 

In attempting to confirm the Ddc phenotype and localize the effect to c584-labeled 

neurons, a UAS-Ddc-RNAi construct was identified that has a modest effect on sleep loss 

but completely abolishes sleep rebound after thermogenetic sleep deprivation; 

unexpectedly, however, a UAS-GFP control made using the same VALIUM vector 

(Perkins et al. 2015) produces a similar phenotype (Figure 3-6). Our earlier observation 

that Gal4-driven expression is reduced in MI00393/+ (II) flies raised the possibility that 

the effect of the VALIUM UAS constructs on sleep rebound might be due to Gal4 

dilution; that is, that competition between UAS-TrpA1 and the additional UAS construct 

for a limited amount of Gal4 results in less driven TrpA1 expression, which might 
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produced the reduced rebound phenotype. Indeed, qPCR confirms that TrpA1 expression 

in c584-Gal4/+, UAS-TrpA1/+ flies is much lower in flies with UAS-RNAi or UAS-GFP 

compared to flies without the additional UAS. Although unexpected, this finding 

provides additional evidence that the strength of the wake-promoting stimulus is 

important for subsequent sleep rebound, and like the findings with the Ddc alleles, this 

result suggests that a reduction in the wake-promoting stimulus can produce a substantial 

effect on sleep rebound that is disproportionate to the effect on sleep loss. 

Discussion 

Dopa decarboxylase and TrpA1 link sleep rebound to the neurochemical 
mechanisms of sleep loss 
 
In this work, I follow up on a previous finding that MI00393/+ flies have reduced sleep 

rebound after thermogenetic sleep deprivation. I find that the transposon insertion in this 

line is dispensable for the phenotype, indicating a contribution of second site mutations. 

Although a specific mutation in MI00393/+ flies that produces the reduced rebound 

phenotype could not be located, gene expression profiling using RNA-Seq allowed for 

the identification of two gene expression changes – reduced levels of Dopa 

decarboxylase (Ddc) and reduced levels of Gal4-driven TrpA1 – that appear to be 

responsible for the reduced sleep rebound of this line. Mutations that reduce levels of 

Ddc, an enzyme necessary for dopamine and serotonin synthesis, specifically reduce 

sleep rebound following thermogenetic sleep deprivation. Likewise, reduced Gal4-driven 

expression of TrpA1 abolishes sleep rebound with comparatively mild effects on sleep 

loss. 
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These results support a model where wake-promoting neurotransmitters serve not only to 

produce sleep loss, but also act as a signal that contributes to the accumulation of sleep 

need and promotes sleep rebound. One way this might occur is if elevated levels of the 

wake-promoting neurotransmitter used to produce SD trigger homeostatic plasticity 

within the sleep-regulating circuit. Indeed, homeostatic plasticity at synapses is a wide 

spread phenomenon (reviewed in Turrigiano 2012), and thus it would not be unexpected 

if it occurred in sleep circuits. With the likely dopamine-mediated method of sleep 

deprivation used here, homeostatic plasticity could take the form of reduced dopamine 

release, reduced postsynaptic sensitivity to dopamine, or altered intrinsic electrical 

properties in downstream neurons; in fact, all of these changes have been observed in 

mammalian circuits in response to perturbations of dopamine signaling (Zigmond 1997; 

Jones et al. 1998; Bezard et al. 2003; Perez et al. 2008; Azdad et al. 2009; Bergstrom et 

al. 2011; Friedman et al. 2014; Fieblinger et al. 2014).  

Although the findings regarding Ddc and Gal4-driven TrpA1 expression together support 

a model where dopamine is important both for sleep loss and for subsequent sleep 

rebound, it is important to note that we cannot exclude a role of serotonin, which is also 

synthesized by Ddc, or c584-driven expression of TrpA1 outside dopaminergic cells in 

mediating the observed phenotypes. Further work will be conducted to localize the 

effects specifically to dopaminergic neurons, including work with more restricted Gal4 

drivers that express specifically in the relevant dopaminergic cells. 
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Dopaminergic signaling and mitochondria 
 
Increased expression of mitochondrial genes with sleep deprivation in MI00393/+ (II) 

flies seems to suggest an increase in mitochondrial biogenesis. There are many 

connections between dopamine, dopamine signaling, and mitochondrial regulation and 

function. However, follow-up experiments to directly test the effects of mitochondrial 

biogenesis on sleep behavior did not reveal any differences in sleep in flies with 

upregulated mitochondrial biogenesis. Thus, it remains unclear if mitochondrial 

biogenesis has any functional consequences for sleep rebound, or if it is a secondary 

result of perturbed dopamine signaling that does not influence sleep behavior. 

The relationship between dopamine and mitochondria is multi-faceted. Monoamine 

oxidase, a gene necessary for the catabolism of dopamine, is located on the mitochondrial 

outer membrane, and dopamine and its metabolites dose-dependently inhibit electron 

transfer chain function (Przedborski et al. 1993; Ben Shachar et al. 1995; Cohen et al. 

1997; Berman and Hastings 1999; Cohen and Kesler 1999; Khan et al. 2005; Gautam and 

Zeevalk 2011). Mitochondria have also been implicated in the pathogenesis of genetic 

parkinsonism, a neurodegenerative disorder of dopamine neurons (reviewed in Cookson 

2012). The parkinsonism-related genes PINK1 and Parkin act in the same pathway to 

limit mitochondrial fusion (Clark et al. 2006; Park et al. 2006; Poole et al. 2008; Yang et 

al. 2008; Deng et al. 2008), and promote mitophagy (Narendra et al. 2008; Vives-Bauza 

et al. 2010; Narendra et al. 2010; Vincow et al. 2013). It has been suggested that the 

reason parkinsonism selectively affects dopamine neurons is because the metabolic 

byproducts present a form of toxicity, in part via oxidative stress, which may increase the 
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need for efficient mitochondrial turnover (reviewed in Cookson 2012; Goldstein et al. 

2014).  

Dopamine also appears to have non-cell-autonomous effects on mitochondrial function 

through dopamine receptor signaling. Recent work in Drosophila suggests that a dramatic 

increase in energy metabolism in mushroom body neurons is necessary to support long-

term olfactory memory in flies (Plaçais et al. 2017). Both this increase in energy 

metabolism and consolidation of olfactory memory are dependent on signaling from the 

Dop1R2 dopamine receptor. A role for Dop1R2 in mitochondrial regulation is also 

supported by the finding that Dop1R2 signaling modulates sensitivity to paraquat, a 

chemical source of oxidative stress (Cassar et al. 2015). 

The data discussed above all seem to suggest that flies with greater dopamine synthesis 

would also have greater need for mitochondrial synthesis or turnover; however, in our 

data it is the mutant flies with reduced levels of Ddc and thus likely reduced dopamine 

signaling that have apparently increased mitochondrial biogenesis after sleep deprivation. 

This suggests a complex regulatory relationship. If the hypothesis that in wild-type flies 

but not MI00393/+ flies there is homeostatic compensation in the circuit in response to 

persistent dopamine signaling is correct, perhaps that compensation also prevents the 

need for or execution of a mitochondrial response to dopamine. It is also possible that 

Ddc and mitochondrial biogenesis are regulated by common factors. However, the 

reduction of Ddc in MI00393/+ flies is observed under baseline conditions, while the 

increase in mitochondrial biogenesis is specifically triggered by thermogenetic sleep 

deprivation, so this explanation seems less likely. 
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The role of gene expression changes in rebound after sleep deprivation 
 
Previous gene expression studies have characterized changes that occur with sleep 

deprivation in wild-type animals (Cirelli et al. 2005; Zimmerman et al. 2006; Williams et 

al. 2007), but the functional significance of these changes has remained unclear. Our 

findings show that the vast majority of gene expression changes that occur in wild-type 

animals also occur in mutants that do not undergo rebound sleep. This does not exclude a 

functional role for these genes in sleep homeostasis – it is possible that the genes that 

change with sleep deprivation still represent somnogens and MI00393/+ (II) flies are 

deficient in pathways that sense and respond to such molecular signatures of sleep loss. 

Nonetheless, it is interesting that these changes occur even when rebound sleep does not, 

suggesting that they do not depend on the “rebound” brain state. 

Gal4 dilution as a potential confounding factor in Drosophila experiments 
 
In this study, we unexpectedly find that introducing a UAS-construct that should have no 

effect on neuron physiology (UAS-GFP) affects c584-Gal4, UAS-TrpA1-mediated 

thermogenetic sleep loss and subsequent rebound. Follow-up experiments showed that 

the observed phenotype is likely due to the fact that upon introduction of a second UAS 

construct, the available Gal4 transcription factor is now split between two UAS sites, 

resulting in a dilution of the transcription-promoting effect. This finding underscores the 

importance of running appropriate controls in Gal4/UAS experiments, especially in 

experiments with complicated designs that involve multiple transgenes. A few common 

types of experiments may be particularly vulnerable to erroneous conclusions that result 
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from Gal4 dilution; these include 1) experiments where a UAS-transgene is used to 

rescue a UAS-RNAi phenotype in order to show that the phenotype is not due to an 

RNAi off-target; 2) experiments where a UAS-RNAi is used to show that a gene is 

necessary for a change in physiology that is measured with a UAS-driven fluorescent or 

luminescent indicator; and 3) experiments, like the one described here, that use UAS-

RNAi to show that a neurotransmitter or signaling pathway is responsible for a phenotype 

produced by thermogenetic or optogenetic stimulation of the same neurons. While many 

experiments in the literature include appropriate controls or screen many UAS lines to 

identify individual lines with a phenotype, others do not, indicating that the potential for 

Gal4 dilution to lead researchers to incorrect conclusions is not yet widely appreciated. 

Controls designed to rule out the possibility of Gal4 dilution should consist of similar 

UAS constructs, i.e. UAS constructs with the same vector and landing site. Indeed, while 

the data presented here show Gal4-dilution-related phenotypes with 10X-UAS VALIUM 

vectors, 5X-UAS vectors did not have the same effect. 

Conclusions  
 
In this work, reduced Ddc levels were identified as a mechanism for the reduced rebound 

after thermogenetic sleep deprivation in MI00393/+ mutants. Although baseline sleep and 

sleep loss are unchanged or increased in MI00393/+ and Ddc mutants, sleep rebound 

after thermogenetic sleep deprivation is reduced. Since wake-promoting dopaminergic 

cells are thermogentically activated in our method of sleep deprivation, and Ddc is 

necessary for dopamine synthesis, this finding suggests a connection between the extent 

of dopamine signaling during sleep deprivation and rebound the following day. I also 

identify reduced Gal4-driven TrpA1 levels as an additional mechanism that contributes to 
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the reduced rebound following thermogenetic sleep deprivation in MI00393/+ mutants. A 

manipulation that reduces TrpA1 levels has modest effects on the extent of sleep loss but 

abolishes sleep rebound. This work suggests that the strength of the wake-promoting 

stimulus is a major contributor to sleep rebound following sleep deprivation. The next 

chapter will discuss experiments to test a model based on these findings, that homeostatic 

plasticity within sleep regulatory circuits underlies sleep rebound following sleep 

deprivation.  

 



105 

Figure 3-1: MI00393/+ Phenotype Partially Maps to Chromosome II 
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Figure 3-1: MI00393/+ Phenotype Partially Maps to Chromosome II  

Thermogenetic sleep deprivation experiment with lines where the MI00393 

chromosomes II or III are isolated in an otherwise iso31 background. All genotypes 

include c584-Gal4/+, UAS-TrpA1/+. Baseline data is collected at 21°C and sleep 

deprivation is produced by exposing flies to 9 hours (ZT12-21) of heat at 29°C, a 

temperature at which TrpA1 opens to drive depolarization of c584-Gal4 labeled cells. A) 

Sleep rebound after thermogenetic sleep deprivation. Sleep rebound is calculated as the 

difference between sleep time during the 15-hour recovery period from ZT21-ZT12 and 

the equivalent 15-hour period during the baseline day. B) Sleep loss during 

thermogenetic sleep deprivation. Sleep loss is calculated as the difference between sleep 

time from ZT12-ZT21 on the baseline day and ZT12-ZT21 during 9 hours of 

thermogenetic SD. C) Baseline daytime (DT) and nighttime (NT) sleep time. D) Sleep 

graphs from a representative experiment with sleep on the baseline day, sleep on the 

sleep deprivation day, and sleep on the recovery day superimposed for each genotype. 

Bar graphs in A), B), and C) are pooled data from three independent experiments with 

n=60-64 for each genotype in each experiment. 
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Figure 3-2: MI00393/+ Phenotype Does Not Map to Transposon Insertion  
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Figure 3-2: MI00393/+ Phenotype Does Not Map to Transposon Insertion 

Thermogenetic sleep deprivation experiment with a precise excision of the MiMIC 

insertion in MI00393, compared to a control. Both the precise excision and control lines 

have an isolated MI00393 second chromosome in an otherwise iso31 background. All 

genotypes include c584-Gal4/+, UAS-TrpA1/+. Baseline data is collected at 21°C and 

sleep deprivation is produced by exposing flies to 9 hours (ZT12-21) of heat at 29°C, a 

temperature at which TrpA1 opens to drive depolarization of c584-Gal4 labeled cells. A) 

Sleep rebound after thermogenetic sleep deprivation. Sleep rebound is calculated as the 

difference between sleep time during the 15-hour recovery period from ZT21-ZT12 and 

the equivalent 15-hour period during the baseline day. B) Sleep loss during 

thermogenetic sleep deprivation. Sleep loss is calculated as the difference between sleep 

time from ZT12-ZT21 on the baseline day and ZT12-ZT21 during 9 hours of 

thermogenetic SD. C) Baseline daytime (DT) and nighttime (NT) sleep time. D) Sleep 

graphs from a representative experiment with sleep on the baseline day, sleep on the 

sleep deprivation day, and sleep on the recovery day superimposed for each genotype. 

Bar graphs in A), B), and C) are pooled data from two independent experiments with 

n=30-32 for each genotype in each experiment. 
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Figure 3-3: Comparison of Gene Expression Changes with SD in Wild-Type iso31 
and MI00393/+ (II) Flies 
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Figure 3-3: Comparison of Gene Expression Changes with SD in Wild-Type iso31 
and MI00393/+ (II) Flies 

A) Schematic for RNA-Seq Experiment. WT (c584/+, UAS-TrpA1/+) and MI00393/+ 

(c584/+, UAS-TrpA1/+, MI00393/+ made with the MI00393 chromosome II isolated 

line) flies were either kept at a constant 21°C or exposed to 11.5 hours of heat at 29°C 

from ZT12 to ZT23.5 to induce thermogenetic sleep deprivation. After the sleep 

deprivation period, all flies were removed from incubators at ZT0, and 20 brains per 

condition were dissected and collected for RNA extraction. This procedure was repeated 

on four separate days to create four independent sets of samples. Libraries were then 

prepared for Illumina sequencing. B) Numbers of genes changed with SD (FDR=0.10) in 

WT, MI00393/+ (II) flies, or both genotypes.  
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Figure 3-4: Baseline Gene Expression Differences Between iso31 and MI00393/+ (II) 
Suggest Reduced Wake-Promoting Stimulus in MI00393/+ (II) 
 

 

A) Normalized RNA-Seq data for Ddc and TrpA1 reveal a difference in expression levels 

between iso31 and MI00393/+ (II) at baseline and further changes that occur with 

thermogenetic SD. Both differences are consistent with reduced wake-promoting 

stimulus in MI00393/+ (II) flies. B) GFP qPCR in c584-Gal4, UAS-GFP/+ flies reveals 

reduced Gal4-driven expression in MI00393/+ (II) flies compared to iso31. Both 

genotypes contain c584-Gal4, UAS-nGFP/+. Data from three independent experiments. 
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Figure 3-5: Ddc Mutations Partially Phenocopy MI00393/+ (II) 
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Figure 3-5: Ddc Mutations Partially Phenocopy MI00393/+ (II) 

Thermogenetic sleep deprivation experiment with heterozygous Ddc alleles backcrossed 

into the iso31 wild-type background. All genotypes include c584-Gal4/+, UAS-TrpA1/+. 

Baseline data is collected at 21°C and sleep deprivation is produced by exposing flies to 

11.5 hours (ZT12-23.5) of heat at 29°C, a temperature at which TrpA1 opens to drive 

depolarization of c584-Gal4 labeled cells. A) Sleep rebound after thermogenetic sleep 

deprivation. Sleep rebound is calculated as the difference between sleep time during the 

12 hour recovery period from ZT0-ZT12 and the equivalent 12 hour period during the 

baseline day. B) Sleep loss during thermogenetic sleep deprivation. Sleep loss is 

calculated as the difference between sleep time from ZT12-ZT24 on the baseline day and 

ZT12-ZT24 during thermogenetic SD. C) Baseline daytime (DT) and nighttime (NT) 

sleep time. D) Sleep graphs from a representative experiment with sleep on the baseline 

day, sleep on the sleep deprivation day, and sleep on the recovery day superimposed for 

each genotype. Bar graphs in A), B), and C) are pooled data from three independent 

experiments with n=27-32 for each genotype in each experiment. 
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Figure 3-6: Additional UAS-construct Reduces TrpA1 Expression and Abolishes 
Sleep Rebound with a Smaller Effect On Sleep Loss 
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Figure 3-6: Additional UAS-construct Reduces TrpA1 Expression and Abolishes 

Sleep Rebound with a Smaller Effect On Sleep Loss 

Thermogenetic sleep deprivation experiment in flies with 10X-UAS-RNAi or 10X-UAS-

GFP constructs. All genotypes include c584-Gal4/+, UAS-TrpA1/+. Baseline data is 

collected at 21°C and sleep deprivation is produced by exposing flies to 11.5 hours 

(ZT12-23.5) of heat at 29°C, a temperature at which TrpA1 opens to drive depolarization 

of c584-Gal4 labeled cells. A) Sleep rebound after thermogenetic sleep deprivation. Sleep 

rebound is calculated as the difference between sleep time during the 12 hour recovery 

period from ZT0-ZT12 and the equivalent 12 hour period during the baseline day. B) 

Sleep loss during thermogenetic sleep deprivation. Sleep loss is calculated as the 

difference between sleep time from ZT12-ZT24 on the baseline day and ZT12-ZT24 

during thermogenetic SD. C) Baseline daytime (DT) and nighttime (NT) sleep time. D) 

Sleep graphs from a representative experiment with sleep on the baseline day, sleep on 

the sleep deprivation day, and sleep on the recovery day superimposed for each genotype. 

Bar graphs in A), B), and C) are pooled data from two independent experiments with 

n=31-32 for each genotype in each experiment. E) TrpA1 expression as measured by 

qPCR is reduced in flies with 10X-UAS-RNAi or 10X-UAS-GFP, suggesting Gal4 

dilution. Data shown are from two independent qPCR experiments. 
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Table 3-1: Top 100 Genes (Lowest q-value) Changed with SD in WT Flies 
 

Symbol 

WT 
Control 

vs. SD q-
value 

WT 
Control 
vs. SD 
Fold 

Change 

WT 
Control 
vs. SD 

Direction 

MI00393 
Control 

vs. SD q-
value 

MI00303 
Control 
vs. SD 
Fold 

Change 

MI00393 
Control vs. 

SD 
Direction 

Avg. # of 
Reads 

per 
Sample 

Ddc 0 2.548 down 0 2.541 down 2012 

CG31760 0 1.389 down 0.033 1.287 down 1536 

CG1358 0 1.532 down 0 1.446 down 1354 

CG4577 0 1.442 up 0.009 1.202 up 5391 

CG44247 0 1.364 up 0 1.293 up 2211 

CG14864 0 2.585 down 0.049 2.394 down 31 

CG6511 0 4.545 up 0 3.676 up 336 

CG14186 0 1.741 up 0.016 1.472 up 628 

Cul1 0 1.458 up 0.008 1.446 up 1587 

FoxP 0 1.784 up 0.012 1.525 up 2110 

CG43102 0 1.403 up 0 1.294 up 2514 

tud 0 1.219 up 0.076 1.139 up 3533 

rgn 0 1.235 down 0.031 1.232 down 881 

dally 0 1.514 down 0 1.4 down 1811 

CG10254 0 1.284 up 0.001 1.27 up 671 

gfzf 0 1.88 up 0.001 1.919 up 277 

Xrp1 0 1.365 up 0.059 1.313 up 1550 

Pitslre 0 1.544 down 0.009 1.55 down 3378 

YT521-B 0 1.285 up 0.027 1.299 up 2032 

Lk6 0 1.525 up 0 1.449 up 7673 

CG1316 0 1.427 up 0 1.368 up 1214 
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Cul3 0 1.162 up 0.265 1.044 up 783 

Ars2 0 1.323 up 0.016 1.239 up 1089 

CG32756 0 2.482 up 0.016 2.226 up 256 

CG14299 0 1.331 up 0.028 1.318 up 596 

Ten-m 0 1.35 down 0.031 1.374 down 2957 

CG42235 0 1.581 down 0.033 1.245 down 722 

CG12858 0 1.465 down 0 1.425 down 2672 

CG42575 0 1.171 up 0.015 1.241 up 4130 

pdm3 0 1.374 down 0 1.428 down 446 

Eaat1 0 1.551 down 0.045 1.345 down 3267 

shi 0 1.281 down 0 1.269 down 7150 

vap 0 1.387 up 0 1.356 up 965 

CG1416 0 2.178 up 0.001 2.547 up 519 

Cirl 0 1.244 down 0.044 1.253 down 3946 

Atpalpha 0 1.472 down 0 1.456 down 27477 

Ntf-2 0 1.785 up 0 1.926 up 460 

pds5 0 1.219 up 0.07 1.041 up 563 

Gad1 0 1.266 down 0 1.225 down 5845 

pUf68 0 1.428 down 0.007 1.482 down 2566 

CG15765 0 1.334 down 0.019 1.265 down 4602 

CG11407 0 1.67 down 0.298 1.084 down 398 

hrg 0 1.22 up 0.042 1.194 up 1518 

ytr 0 1.582 up 0.035 1.52 up 941 

CG14408 0 1.316 up 0.008 1.421 up 1062 

EloA 0 1.379 up 0.016 1.311 up 372 
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Caper 0 1.712 down 0 1.488 down 859 

pAbp 0 1.286 up 0.053 1.227 up 4572 

CG14619 0 1.35 up 0 1.237 up 1831 

inaE 0 1.545 down 0.03 1.437 down 785 

hig 0 1.307 down 0.017 1.225 down 5179 

Tsp5D 0 1.868 down 0.072 1.397 down 507 

eRF1 0 4.157 up 0 3.592 up 1189 

CG32000 0 1.58 up 0.064 1.329 up 11784 

Sox102F 0 1.644 down 0.01 1.665 down 636 

ClC-b 0 1.589 up 0 1.579 up 533 

nrv2 0 1.699 down 0.074 1.327 down 5433 

CG9153 0 1.818 up 0 1.862 up 2514 

Pa1 0 1.616 up 0.052 1.782 up 192 

Tsp42Ek 0 3.504 up 0.013 3.77 up 118 

stau 0 1.319 up 0.043 1.219 up 1591 

CG2269 0 1.071 up 0.154 1.082 up 7972 

Aps 0 1.52 up 0.017 1.405 up 1294 

Ef1alpha100E 0 1.515 up 0.007 1.54 up 4929 

Droj2 0 1.594 up 0 1.816 up 1651 

CG2918 0 1.395 up 0.029 1.459 up 1022 

CG6424 0 1.185 up 0.047 1.172 up 8742 

MICAL-like 0 1.69 up 0.026 1.526 up 660 

HmgZ 0 3.754 down 0 3.833 down 615 

CR45683 0 2.546 up 0 2.253 up 190 

CG17490 0 2.241 up 0.03 2.032 up 422 
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CG5337 0 1.486 up 0.008 1.531 up 624 

cwo 0 1.508 up 0.069 1.237 up 299 

CG32164 0 1.585 up 0.019 1.459 up 198 

ATP8B 0 1.413 up 0.069 1.283 up 999 

CycG 0 1.439 up 0.037 1.306 up 3928 

ab 0 1.433 down 0.038 1.646 down 380 

elav 0 1.67 up 0.049 1.45 up 4187 

CG5872 0 2.408 up 0 2.354 up 344 

Hsp23 0 7.746 up 0 6.975 up 236 

Dark 0 1.439 up 0.074 1.28 up 741 

mthl8 0 1.751 up 0.003 1.502 up 2124 

CG8216 0 1.498 down 0.265 1.128 down 247 

pps 0 2.176 up 0.026 2.309 up 1203 

Ir76a 0 2.427 up 0.004 2.21 up 289 

CR44662 0 3.585 up 0 2.923 up 75 

tho2 0 1.342 up 0.04 1.248 up 733 

Hsp68 0 7.376 up 0.013 5.821 up 80 

Hsromega 0 5.014 up 0.031 4.478 up 3955 

Ugt35b 0 1.527 down 0.257 1.114 down 1767 

CG43191 0 43.866 up 0.004 66.545 up 88 

CG31776 0 13.612 up 0.017 9 up 40 

CG5618 0 6.023 up 0 7.882 up 309 

Uhg5 0.001 2.048 up 0.035 1.916 up 455 

Hop 0.001 2.593 up 0 2.646 up 322 

CG31646 0.001 1.419 down 0 1.35 down 290 
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Hrb98DE 0.001 1.273 up 0 1.343 up 1908 

CG33230 0.001 2.458 up 0.003 2.543 up 89 

stj 0.001 1.422 down 0.023 1.395 down 2597 

CR45479 0.001 3.32 up 0.006 2.625 up 67 
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Table 3-2: DAVID Term Clusters for Genes Changed with Thermogenetic SD in 
WT Flies (FDR=0.10) 
 
Color Code for % of Genes Down- or Up-Regulated in Table 3-1 and Table 3-2 
Down                   Up 

90% 80% 70% 60% 50% 50% 60% 70% 80% 90% 

 

Enrich-
ment 
Score 

# of 
Genes 

Genes 
Up 

Genes 
Down Cluster GO terms 

3.57 245 168 77 

Nucleotide/nucleoside binding: nucleotide binding, 
purine ribonucleotide binding, ribonucleotide binding, 
purine nucleotide binding, adenyl ribonucleotide binding, 
ATP binding, nucleoside binding, purine nucleoside 
binding, adenyl nucleotide binding 

3.40 22 14 8 

Splicing: regulation of alternative nuclear mRNA splicing, 
via spliceosome; regulation of RNA splicing; regulation of 
mRNA processing; regulation of nuclear mRNA splicing, 
via spliceosome 

2.92 113 100 13 

Translation: amino acid activation; ncRNA metabolic 
process; tRNA aminoacylation; tRNA aminoacylation for 
protein translation; ligase activity, forming carbon-oxygen 
bonds; ligase activity, forming aminoacyl-tRNA and related 
compounds; aminoacyl-tRNA ligase activity; tRNA 
metabolic process; translation 

2.54 98 63 35 

Vesicle-mediated transport: vesicle-mediated transport; 
membrane invagination; endocytosis; membrane 
organization; phagocytosis, engulfment; phagocytosis 

2.18 46 38 8 

Ubiquitin metabolism: ubiquitin protein ligase binding; 
cullin-RING ubiquitin ligase complex; enzyme binding; 
ubiquitin ligase complex; nuclear ubiquitin ligase complex; 
ubiquitin-dependent protein catabolic process 

2.16 149 71 78 

Synaptic function: synapse; postsynaptic membrane; 
glutamate receptor activity; cell junction; synapse part; 
extracellular ligand-gated ion channel activity; ligand-
gated channel activity; ligand-gated ion channel activity; 
passive transmembrane transporter activity; channel 
activity; ion channel activity; substrate specific channel 
activity; extracellular-glutamate-gated ion channel activity; 
ionotropic glutamate receptor activity; gated channel 
activity; ion transport; cation channel activity; metal ion 
transmembrane transporter activity 

2.05 136 108 28 
Macromolecule catabolism: modification-dependent 
protein catabolic process; modification-dependent 
macromolecule catabolic process; small conjugating 
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protein ligase activity; ubiquitin-protein ligase activity; 
cellular protein catabolic process; proteolysis involved in 
cellular protein catabolic process; protein catabolic 
process; acid-amino acid ligase activity; cellular 
macromolecule catabolic process; ligase activity, forming 
carbon-nitrogen bonds; ubiquitin-dependent protein 
catabolic process; macromolecule catabolic process; 
proteolysis 

2.05 85 70 15 RNA binding: RNA binding; mRNA binding 

1.72 97 50 47 

Neurotransmission: synaptic transmission; cell-cell 
signaling; transmission of nerve impulse; secretion; 
secretion by cell; regulation of neurotransmitter levels; 
synaptic vesicle endocytosis; synaptic vesicle transport; 
neurotransmitter secretion; generation of a signal involved 
in cell-cell signaling; neurotransmitter transport; 
exocytosis; synaptic vesicle exocytosis; neurological 
system process 

1.58 306 205 101 
Ion binding: zinc ion binding; metal ion binding; transition 
metal ion binding; ion binding; cation binding 

1.48 45 21 24 

Memory, olfaction, and cognition: memory; learning or 
memory; learning; olfactory learning; olfactory behavior; 
chemosensory behavior; cognition 

1.45 40 29 11 

Microtubule cytoskeleton and centrosome 
organization: centrosome cycle; centrosome 
organization; microtubule organizing center organization; 
centrosome duplication; centriole replication; spindle 
organization; microtubule cytoskeleton organization 

1.45 35 33 2 

Protein folding: cis-trans isomerase activity; protein 
folding; peptidyl-prolyl cis-trans isomerase activity; 
regulation of cellular protein metabolic process 

1.44 37 32 5 
Translation: regulation of translation; posttranscriptional 
regulation of gene expression 

1.44 13 4 9 

Regulation of neuronal system process: regulation of 
system process; regulation of synaptic transmission; 
regulation of transmission of nerve impulse; regulation of 
neurological system process 

1.41 57 43 14 

Cellular Stress: cellular response to stress; response to 
DNA damage stimulus; DNA repair; DNA metabolic 
process 

1.35 37 24 13 

Response to Heat and Environment: response to 
temperature stimulus; response to heat; response to 
abiotic stimulus 

1.33 5 4 1 Regulation of Ion Transport: regulation of ion transport; 
regulation of metal ion transport; regulation of calcium ion 
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transport 

1.33 54 40 14 

GTP/GDP binding: GTP binding; guanyl ribonucleotide 
binding; guanyl nucleotide binding; GTPase activity; small 
GTPase mediated signal transduction 

1.31 35 13 22 
Behavior: adult behavior; locomotory behavior; adult 
locomotory behavior 
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Table 3-3: Top 100 Genes (Lowest q-value) Changed with SD in WT Flies but not 
(q>0.40) in MI00393/+ (II) flies  
 

Symbol 

WT 
Control 
vs. SD 
q-value 

WT 
Control 
vs. SD 
Fold 

Change 

WT 
Control 
vs. SD 

Direction 

Avg. # of 
Reads 

per 
Sample 

MI00393 
Control 

vs. SD q-
value 

MI00393 
Control 
vs. SD 
Fold 

Change 

MI00393 
Control vs. 

SD 
Direction 

Gs2 0.005 1.425 down 3491 1 1.052 down 

CG43707 0.005 1.293 down 2427 1 1.004 down 

pkaap 0.007 1.439 up 374 1 1.031 up 

CalpA 0.01 1.137 up 820 1 1.019 up 

mnb 0.01 1.218 up 397 0.265 1.034 down 

CG30105 0.011 2.068 up 11 1 1 unchanged 

gek 0.013 1.053 up 779 1 1.025 down 

CG7365 0.013 2.4 up 1 1 2.5 up 

Fbw5 0.014 1.325 up 86 1 1.005 down 

Acf1 0.015 1.205 up 513 1 1.008 up 

CG7442 0.015 1.666 down 42 1 1.032 up 

CG4409 0.016 1.417 down 559 1 1.008 down 

CG9005 0.017 1.102 down 828 1 1.005 down 

Zir 0.019 1.279 up 1756 1 1.035 up 

Strica 0.019 4.545 up 5 1 1.384 up 

CG11619 0.019 1.595 up 76 1 1.068 up 

Unc-115b 0.019 1.62 up 69 1 1.015 down 

CG8301 0.02 1.201 down 302 1 1.013 up 

Axs 0.021 1.509 down 32 1 1 unchanged 

l(2)35Bc 0.021 1.775 up 30 1 1.042 up 

CR43459 0.021 1.317 up 57 1 1.073 up 

Dad 0.022 1.123 up 232 0.062 1.082 down 

CG7509 0.022 1.701 down 236 1 1.108 down 

CG14688 0.022 1.655 down 144 0.283 1.106 up 

CG17556 0.022 1.389 up 83 1 1.071 up 

CG12994 0.022 1.425 down 88 1 1.058 up 

pico 0.022 1.16 up 540 1 1.046 up 
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Orco 0.024 2.56 down 11 1 1.187 down 

CG17018 0.024 2.587 up 98 0.119 1.087 down 

l(2)03659 0.027 1.545 up 6 1 1.033 up 

E23 0.028 1.368 down 89 1 1.017 down 

Vha68-1 0.028 1.169 down 2437 1 1.022 up 

CG9313 0.029 2.25 up 6 1 1.13 down 

CG15728 0.031 2.8 down 4 1 1.058 up 

serp 0.031 3.25 up 2 1 1.545 down 

CG12926 0.032 1.354 down 163 1 1.049 down 

CG8858 0.032 1.232 up 299 1 1.047 up 

jnj 0.032 1.17 up 285 1 1.01 down 

ninaB 0.035 1.427 down 324 1 1.055 down 

Vha55 0.035 1.109 down 2291 1 1.01 down 

Nmdar1 0.035 1.232 down 597 1 1.01 down 

DIP1 0.035 1.15 down 2241 1 1.041 down 

VhaPPA1-1 0.035 1.158 down 566 1 1.018 down 

Rh50 0.035 1.337 down 651 0.283 1.069 up 

EndoB 0.035 1.099 down 626 1 1.011 down 

metro 0.035 1.196 down 566 1 1.019 up 

AGO1 0.035 1.232 up 4956 1 1.022 up 

Obp44a 0.036 1.895 down 427 1 1.014 up 

CR44472 0.036 2.044 up 16 1 1.047 up 

CR45054 0.037 1.844 up 24 1 1 unchanged 

CR45161 0.037 1.378 down 52 1 1.032 up 

CG14451 0.039 2 down 2 1 1.222 down 

CG17387 0.039 2.375 down 2 1 1.083 down 

CG18754 0.039 2.625 up 2 1 1.333 up 

nAChRalpha2 0.04 1.162 down 446 1 1.027 down 

CG9935 0.04 1.47 up 112 1 1.025 up 

tefu 0.04 1.196 up 275 1 1.007 down 

CR43957 0.04 1.569 down 26 1 1.103 down 

Rop 0.043 1.384 down 1466 1 1.042 down 
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Ank 0.043 1.215 up 6524 1 1.029 up 

DIP2 0.043 1.16 up 1908 1 1.021 up 

CG45050 0.043 1.264 up 2975 1 1.009 up 

mei-41 0.045 1.395 up 63 1 1.066 up 

CG7191 0.045 1.335 up 119 1 1.039 up 

CG7737 0.045 1.277 down 120 1 1.012 down 

CG4835 0.045 3 up 1 1 2.5 up 

CG7979 0.045 1.167 up 139 1 1.042 up 

CG31467 0.045 1.544 up 25 1 1.049 up 

hd 0.045 1.64 down 7 1 1.074 up 

Fcp3C 0.048 2.1 down 3 1 1.083 up 

Ir20a 0.048 2.2 up 1 1 1 unchanged 

CG9294 0.048 2.2 down 1 0.145 1.428 up 

slgA 0.049 1.077 down 3254 1 1.01 down 

CG7420 0.049 1.432 down 27 1 1.096 up 

CG7433 0.049 1.196 down 3553 1 1.023 down 

DNApol-iota 0.049 1.133 down 209 1 1.046 down 

CR44024 0.049 1.273 up 1462 1 1.003 down 

CG7084 0.05 1.395 down 440 1 1.061 down 

CG31475 0.052 1.27 down 206 1 1.014 up 

hk 0.053 1.126 down 733 1 1.02 up 

Ptp69D 0.053 1.171 up 706 1 1.005 up 

List 0.053 1.235 down 469 1 1.027 up 

Tusp 0.053 1.16 down 679 1 1.018 down 

CG34126 0.053 1.068 down 1247 1 1.018 down 

slim 0.053 1.113 up 763 1 1.022 up 

CG10555 0.055 1.229 up 258 1 1.05 up 

CG8818 0.055 1.411 down 238 1 1.041 up 

Cyp12b2 0.055 1.204 down 284 1 1.009 down 

CG5728 0.055 1.273 up 206 1 1.024 up 

Tango5 0.055 1.19 down 285 1 1.003 up 

CG34133 0.055 1.109 down 402 1 1.025 down 
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NKAIN 0.055 1.043 up 1052 1 1 up 

CG15209 0.059 1.499 down 1222 1 1.061 down 

CDase 0.059 1.353 down 1036 1 1.016 down 

wech 0.059 1.215 up 1108 1 1.008 down 

CG14044 0.06 1.307 down 15 1 1.234 down 

CG3437 0.06 1.115 up 49 1 1.064 down 

CG12590 0.06 1.95 down 6 1 1.24 down 

CG17777 0.06 2 down 9 1 1.205 down 

CG31898 0.06 1.88 down 22 1 1.032 down 
  



128 

Table 3-4: Top 100 Genes (Lowest q-value) Changed with SD in MI00393/+ (II) 
Flies but not (q>0.40) in WT Flies  
	

Symbol 

MI00393 
Control 

vs. SD q-
value 

MI00393 
Control vs. 

SD Fold 
Change 

MI00393 
Control vs. 

SD 
Direction 

Avg. # of 
Reads 

per 
Sample 

WT 
Control 

vs. SD q-
value 

WT 
Control 
vs. SD 
Fold 

Change 

WT 
Control vs. 

SD 
Direction 

CG2662 0.001 1.532 up 24 1 1.019 up 

CG3353 0.003 1.92 up 45 1 1.427 up 

CG15143 0.006 2.363 down 4 1 1.411 down 

ACXC 0.006 2.75 down 15 1 1.131 down 

CG31370 0.006 3.034 up 13 1 1.5 up 

pirk 0.008 2.507 up 28 1 1.171 up 

CG4089 0.009 1.523 up 60 1 1.091 up 

CG10979 0.01 1.119 up 237 1 1.034 up 

CG9422 0.012 1.503 up 78 1 1.009 up 

CG5681 0.013 3.833 down 3 1 1.076 up 

RpI12 0.013 2.227 up 8 1 1.088 down 

CG10916 0.017 1.518 up 86 1 1.148 up 

sun 0.018 1.624 up 142 1 1.032 up 

CG15892 0.018 3.833 up 7 1 1.064 up 

CG13001 0.018 1.334 up 120 1 1.138 up 

CG11454 0.018 1.405 up 68 1 1.092 down 

MED4 0.018 1.727 up 23 1 1.18 up 

Ubc4 0.019 1.339 up 225 1 1.145 up 

Asciz 0.019 1.467 up 74 1 1.175 up 

Scox 0.019 1.948 up 99 1 1.311 up 

CG43861 0.02 1.22 down 139 1 1.044 down 

thoc7 0.021 1.228 up 112 1 1.134 up 

dyn-p25 0.021 1.594 up 43 1 1.116 up 

CG9164 0.022 1.123 up 322 1 1.012 up 

CG2685 0.023 1.469 up 62 1 1.202 up 

CG3253 0.023 1.3 up 141 1 1.04 down 



129 

Hmg-2 0.024 1.939 up 27 1 1.049 down 

CstF-64 0.024 1.775 up 30 1 1.238 up 

CG10324 0.024 1.96 up 82 1 1.162 up 

Prx6005 0.025 2.52 up 22 1 1.216 up 

CG10463 0.025 1.613 up 37 1 1.356 up 

CG4538 0.025 1.242 up 534 1 1.079 up 

mus81 0.025 2 up 17 1 1.176 up 

CG33267 0.025 1.354 up 25 1 1.357 up 

CG3638 0.025 1.185 down 1071 1 1.039 down 

coro 0.025 1.217 up 159 1 1.128 up 

Marf 0.026 1.167 up 1417 1 1.04 up 

CG11885 0.027 1.54 up 25 1 1.265 up 

Gmd 0.027 1.476 up 72 1 1.12 up 

CG11906 0.027 1.268 up 82 1 1.076 up 

CG5567 0.027 1.343 up 146 1 1.179 up 

Vps2 0.027 1.385 up 102 1 1.073 up 

CG30371 0.027 2.6 down 1 1 1.2 down 

nmd 0.028 1.363 up 221 1 1.135 up 

l(1)G0230 0.028 1.356 up 283 1 1.009 down 

HP5 0.028 1.192 up 261 1 1.085 up 

CG8239 0.028 1.957 up 38 1 1.292 up 

CG6878 0.028 1.455 up 57 1 1.158 up 

MED19 0.028 1.406 up 152 1 1.136 up 

Sod 0.029 1.872 up 226 1 1.172 up 

mRpL49 0.029 2.008 up 45 1 1.188 up 

tkv 0.03 1.277 up 580 1 1.07 up 

smg 0.03 1.132 up 432 1 1.049 up 

fend 0.03 1.358 down 336 1 1.113 down 

CG6406 0.03 1.256 up 179 1 1.091 down 

CG9801 0.03 1.241 up 311 1 1.074 up 

Trx-2 0.03 1.361 up 242 1 1.006 up 

CR45533 0.03 1.317 down 295 1 1.155 down 
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Prosalpha5 0.031 1.728 up 83 1 1.09 up 

CG3621 0.031 1.613 up 37 1 1.279 up 

Mst85C 0.031 1.38 up 68 1 1.163 up 

CG18420 0.031 1.866 down 4 1 1.866 down 

CG12125 0.031 1.418 up 175 1 1.085 up 

dik 0.031 1.391 up 119 1 1.078 up 

insv 0.031 1.696 up 36 1 1.072 down 

CG3077 0.031 1.359 up 118 1 1.124 up 

CG11986 0.031 1.453 up 33 1 1.035 up 

CG14894 0.031 1.474 up 88 1 1.034 up 

CG5934 0.031 1.362 up 58 1 1.288 down 

Nhe2 0.031 1.12 down 2752 1 1.038 down 

CR13130 0.031 1.532 up 19 1 1.025 down 

Prosalpha4 0.032 1.577 up 80 1 1.153 up 

CG3735 0.032 1.376 up 76 1 1.265 up 

CG14982 0.032 1.251 up 524 1 1.046 up 

CG44009 0.032 1.418 up 23 1 1.137 up 

Scsalpha 0.033 1.372 up 356 1 1.06 up 

Scp1 0.033 2.461 down 8 1 1.12 down 

CG14971 0.033 1.37 up 204 1 1.193 up 

CG10053 0.033 1.447 up 22 1 1.154 up 

Miro 0.033 1.228 up 457 1 1.089 up 

CG30340 0.033 2.666 down 1 1 1.333 down 

CoRest 0.033 1.219 up 334 1 1.078 up 

Fic 0.033 1.407 up 83 1 1.127 up 

e(y)2 0.034 1.7 up 15 1 1.109 down 

TfIIS 0.034 1.385 up 145 1 1.017 up 

Uch-L5 0.034 1.421 up 72 1 1.154 up 

MED15 0.034 1.456 up 167 1 1.199 up 

mRpL24 0.034 1.515 up 171 1 1.19 up 

CG8204 0.034 1.942 up 24 1 1.106 up 

CG9804 0.034 1.716 up 36 1 1.389 up 
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MtnA 0.035 1.766 up 1351 1 1.146 up 

CG10376 0.035 1.204 up 309 1 1.096 up 

Drl-2 0.035 1.285 down 574 1 1.085 down 

CG10209 0.035 1.256 up 97 1 1.062 up 

ste24a 0.035 1.288 up 269 1 1.151 up 

CG10469 0.035 1.33 up 34 1 1.1 up 

Mtr3 0.035 1.734 up 32 1 1.327 up 

CG11722 0.035 1.448 up 46 1 1.083 up 

vig2 0.035 1.563 up 181 1 1.166 up 
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Table 3-5: DAVID Term Clusters for Genes Changed with Thermogenetic SD in 
MI00393/+ (II) Flies Only (FDR=0.10) 
 

Enrich-
ment 

# of 
Genes 

Genes 
Up 

Genes 
Down Cluster terms 

2.71 64 61 3 

Organelle lumen: mitochondrial lumen, mitochondrial 
matrix, intracellular organelle lumen, organelle lumen, 

membrane-enclosed lumen, nucleoplasm, nucleoplasm 
part, nuclear lumen 

2.40 105 103 2 

Mitochondrion: mitochondrion, mitochondrial part, 
mitochondrial envelope, organelle envelope, envelope, 

mitochondrial membrane, organelle membrane, 
mitochondrial inner membrane, hydrogen ion 

transmembrane transporter activity, cellular respiration, 
monovalent inorganic cation transmembrane transporter 

activity, organelle inner membrane, respiratory chain, 
respiratory chain complex IV, mitochondrial respiratory 

chain complex IV, generation of precursor metabolites and 
energy, electron transport chain, energy derivation by 

oxidation of organic compounds, oxidative 
phosphorylation, mitochondrial ATP synthesis coupled 

electron transport, ATP synthesis coupled electron 
transport, mitochondrial respiratory chain, oxidoreductase 
activity, acting on heme group of donors, oxidoreductase 

activity, acting on heme group of donors, oxygen as 
acceptor, cytochrome-c oxidase activity, heme-copper 
terminal oxidase activity, respiratory electron transport 

chain, mitochondrial electron transport, cytochrome c to 
oxygen, mitochondrial membrane part 

2.35 17 16 1 

Cofactor/coenzyme metabolic process: cofactor 
metabolic process, coenzyme metabolic process, cofactor 

biosynthetic process, coenzyme biosynthetic process 

2.24 71 67 4 

Mitochondrial ribosomal protein, mitochondrial 
matrix, translation: organellar large ribosomal subunit, 

mitochondrial large ribosomal subunit, mitochondrial 
lumen, mitochondrial matrix, organellar ribosome, 
mitochondrial ribosome, large ribosomal subunit, 

ribonucleoprotein complex, ribosomal subunit, structural 
constituent of ribosome, ribosome, translation, structural 

molecule activity 

1.79 14 13 1 
Lipid binding: phospholipid binding, phosphoinositide 

binding, lipid binding 

1.75 5 4 1 

Vitamin biosynthetic process: water-soluble vitamin 
biosynthetic process, water-soluble vitamin metabolic 

process, vitamin biosynthetic process, vitamin metabolic 
process 

1.55 32 31 1 Endomembrane system, RNA localization: 
establishment of RNA localization, mRNA transport, RNA 
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transport, nucleic acid transport, mRNA export from 
nucleus, RNA localization, RNA export from nucleus, 
nucleobase, nucleoside, nucleotide and nucleic acid 

transport, nuclear export, pore complex, nuclear pore, 
nuclear transport, nucleocytoplasmic transport, 

endomembrane system, nuclear envelope 
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Table 3-6: Gene Expression Differences Between iso31 and MI00393/+ Flies Under 
Baseline Conditions (FDR=0.40) 
 

Gene Symbol q-val 
Fold 

Change 

Avg. # of 
Reads per 

Sample 

bowl 0 30.374 644 

CG17018 0 11.253 98 

CG18853 0 38.25 21 

CG17684 0.055 3.997 237 

Gadd45 0.069 2.694 80 

CG33296 0.069 2.789 628 

loh 0.071 1.746 79 

CG32581 0.071 122.25 72 

Cyp6a20 0.087 7.246 71 

Lap1 0.099 1.493 658 

Ady43A 0.111 2.501 160 

CG11319 0.122 1.409 2702 

CG43707 0.122 1.702 2427 

Tsp42Ee 0.138 1.177 979 

CG17167 0.235 1.77 36 

CG40470 0.242 1.374 1931 

CG15431 0.29 1.305 787 

Ddc 0.317 1.321 2012 

CG31760 0.319 1.229 1536 

Mical 0.399 1.774 3014 
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Supplemental Figure 3-1: Principal Component Analysis of RNA-Seq Data 
 

 
	

Principal component analysis reveals good separation of control and sleep deprivation 

(SD) groups on principal component two (PC2) but no apparent separation between 

genotypes. 
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Methods 
 

Fly Stocks and Husbandry 

Flies are maintained on standard cornmeal/molasses food. c584-Gal4, UAS-TrpA1 and 

MI00393 flies were described in Chapter 2. Other stocks were obtained from 

Bloomington Stock Center (BSC; Bloomington, Indiana), the Drosophila Genomics and 

Genetic Resources department (DGGR; Kyoto, Japan), or made as described. Stocks for 

mapping the MI00393 phenotype to a single chromosome were created in a series of 

crosses using iso31; Sco/CyO (BSC# 5907) iso31;; TM2/TM6cSb (BSC# 5906) and 

iso31; Sco/CyO; TM2/TM6bTb (Sehgal Lab) stocks. The MI00393 “excision” and 

“control” stocks were created by crossing the MI00393 stock to yw; Sco/SM6a-hsILMiT 

(BSC# 36311), subjecting progeny to a heat shock during gametogenesis to induce Minos 

transposase expression, then using single male progeny in subsequent crosses to re-isolate 

the MI00393 chromosome II (with or without the MiMIC transposon excised) in an 

otherwise iso31 background, as was done in initial chromosome mapping. In addition to 

the excision stock, this allowed the creation of a control stock subjected to the same 

exposure to transposase and series of crosses but with the MiMIC transposon retained. 

 

Fly stocks carrying Ddclo (DGGR# 102105) and Ddc27 (BSC# 3109) alleles and TRiP 

RNAi construct JF02356 (BSC# 27030) were obtained from Bloomington Stock Center. 

Ddclo and Ddc27 were backcrossed into the wild-type iso31 background for 5 generations 

before testing behavior. Although relative levels of Ddc activity had been characterized 
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for these alleles previously (Wright et al. 1982), the causal mutations in Ddc had not been 

identified, so we used a series of PCR reactions to amplify the Ddc coding sequence in 

these stocks and submitted the PCR products to the University of Pennsylvania DNA 

Sequencing Core (Philadelphia, PA) for Sanger Sequencing. This revealed an A>G 

change in the coding sequence of Ddclo (genome position 2L:19117596) that results in a 

Lysine>Glutamate change in the Ddc polypeptide. We could not identify a coding change 

in Ddc27; however we were able to identify a change in a Broad-Complex binding site 

previously implicated in epidermal expression of Ddc (Hodgetts et al. 1995; Chen et al. 

2002) and a 12-base pair insertion in the Ddc 5’ UTR. Further work will be needed to 

determine if either of these non-coding mutations is the causal change this allele. 

Importantly, the Ddc27 allele retained homozygous lethality even after backcrossing, 

suggesting that the null mutation is still present in this stock.  

 

Crosses for behavioral and most molecular assays were set by crossing c584-Gal4, UAS-

TrpA1 iso31 females to males of the test genotype, resulting in heterozygous progeny. In 

the experiment where GFP expression driven by c584-Gal4 was assessed by quantitative 

PCR, females of a c584-Gal4, UAS-nGFP iso31 genotype were crossed with males of the 

test genotypes. 

 

Thermogenetic Sleep Deprivation and Sleep Behavior Assays 
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For thermogenetic sleep deprivation experiments, flies were raised at 19-20°C to 6-14 

days old, loaded into locomotor tubes, and transferred to a 21°C 12 hour:12 hour 

light:dark cycle for habituation and collection of baseline data. After 4-5 days of 

habituation, flies were subjected to a high temperature of 29°C for 9 or 11.5 hours 

starting at ZT12. Behavioral data before, during, and after sleep deprivation were 

collecting using the Drosophila Activity Monitoring System (Trikinetics, Waltham, MA) 

and processed using pySolo (Gilestro and Cirelli 2009). Sleep rebound is calculated as 

the difference between sleep duration during the 15-hour (ZT21-12) or 12-hour (ZT0-12) 

recovery period and the equivalent baseline period.  Sleep loss is calculated by 

subtracting sleep through the 9-hour or 12-hour sleep loss period from the equivalent 

baseline period. 

 

Illumina RNA Sequencing 

Flies were raised and loaded into DAM tubes and subject to heat to induce 11.5-hour 

thermogenetic sleep deprivation as done for behavioral assays. At ZT0 following sleep 

deprivation, 20 flies per condition were briefly anesthetized with CO2 then put on ice at. 

Brains were dissected in ice cold PBS within 40 minutes of anesthetization, disrupted in 

TRIzol (Thermo Fisher), then stored at -80°C. Procedure was repeated four times for four 

independent sets of samples. Individuals performing the dissections were randomized 

such that each individual did dissections for a different group on each of the four sample 

collection days to avoid variable dissection quality becoming a confounding factor. After 

all samples were collected, chloroform was used to extract RNA to aqueous phase, which 
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was then further purified Quiagen RNasy Mini Kit. Libraries for sequencing were 

prepared from RNA using the Illumina TruSeq Stranded mRNA Sample Prep kit. Sample 

quality control was conducted at the Wistar Institute Genomics Core (Philadelphia, PA). 

100 base pair paired-end sequencing was performed on an Illumina HiSeq 2000 by the 

Beijing Genomic Institute/Children’s Hospital of Philadelphia High Throughput 

Sequencing Center (Bejing, China and Philadelphia, PA).  

 

Bioinformatics 

Alignment, normalization, and statistical analysis were done in collaboration with the 

Institute for Translational Medicine Bioinformatics Group at the University of 

Pennsylvania Perelman School of Medicine (Philadelphia, PA). Reads were aligned to 

the Drosophila melanogaster Release 6 genome using STAR version 2.3.0e and 

normalized by resampling using PORT v.0.7 (https://github.com/itmat/Normalization). 

Statistical comparison of gene expression across conditions was done using PADE 

version 0.2.1a1 (https://github.com/itmat/pade), which employs a permutation analysis to 

assign a q-value to each gene (Grant et al. 2005). Once a gene expression change meeting 

the FDR cut-off of 10% was identified in one genotype (q<0.10), a more lenient FDR of 

40% was used to determine if the change also occurred in the second genotype (q<0.40). 

This approach improves our confidence in our “genotype only” gene lists and avoids the 

many false positives that would have occurred in these lists otherwise, with 

comparatively few false positives in the “both genotypes” list. DAVID analysis of 

enriched Gene Ontology (GO) terms was done by uploading lists of genes to DAVID 6.7 
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Web Service and applying Functional Annotation Clustering to group similar GO terms 

together. Principal components analysis was done using data from all genes with an 

average of 5 or more reads per sample using the prcomp function in R version 3.4.1. 

 

Quantitative PCR 

4-6 flies per group were briefly anesthetized and put on ice. Brains were dissected in ice 

cold PBS. RNA extraction was done with Qiagen Mini or Micro Plus RNeasy kits with 

on-column DNase digestion. Reverse strand cDNA synthesis was done with the Applied 

Biosystems High-Capacity cDNA Reverse Transcription kit and quantitative PCR was 

done with standard SYBR Green reagents on a Viia7 Real-Time PCR system (Thermo 

Fisher Scientific) using the Relative Standard Curve procedure. GFP primers were 

designed by hand (Forward: 5’ GAAGGTGATGCAACATACGG 3’, Reverse: 5’ 

ACAAGTGTTGGCCATGGAAC 3’). TrpA1 primers primer sequences were obtained 

from GetPrime (http://bbcftools.epfl.ch/getprime) (Forward: 5’ 

GAATGGCGACTTTAATGCG 3’, Reverse: 5’ CAATAGATAGTCCAGAGCGTC 3’). 

Expression was normalized to α-tubulin (Forward: 5’ CGTCTGGACCACAAGTTCGA 

3’, Reverse: 5’ CCTCCATACCCTCACCAACGT 3’). 

 

Statistics for Behavioral Assays 

Statistics on behavioral data were calculated using R version 3.4.1. Statistical 

significance for sleep duration was calculated by ANOVA followed by Tukey’s Honest 
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Statistical Difference post-hoc test. Differences in sleep duration were considered 

statistically significant with a p<0.05 in both pooled data and in the majority of individual 

experiments. 
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Chapter 4: Conclusions and Future Directions 
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In the past two decades, sleep research has seen a rapid explosion in the identification of 

genes, neurotransmitters, and neurons that influence sleep-wake regulation. These 

findings have also revealed specific mechanisms that allow sleep to change in the face of 

environmental, social, and metabolic conditions. The identification of “the” sleep 

homeostat – the force that increases sleep drive in response to long periods of 

wakefulness – is in some ways considered the elusive Holy Grail of basic sleep research. 

Indeed, our motivation for conducting a screen to identify genes essential for sleep 

rebound was to identify key components of such a homeostat. However, the work 

presented here and elsewhere suggests a shift in thinking may be necessary – rather than 

trying to identify “the” homeostat, we may need to think of sleep regulation as many 

forces that adjust sleep to match the environmental needs of an animal, in a way that 

flexibly balances the brain need for sleep with what is advantageous in the external 

conditions an animal finds itself in. Homeostasis is likely just one aspect of a more 

complex model for sleep regulation, and seems to be carried out by different mechanisms 

in different circumstances. 

Research into sleep homeostasis has rested on several assumptions that come from early 

research on mammalian sleep. One assumption is that sleep regulation can be neatly split 

into a circadian process and a homeostatic process, which are independent from each 

other and which follow predictable kinetics under a variety of environmental scenarios 

and perturbations. Another assumption is that homeostatic sensors of sleep need are 

reading and responding to global molecular changes that likely reflect the function of 

sleep. These assumptions are not unfounded. Indeed, to the first point, mathematical 

models with a circadian component and a homeostatic component can elegantly describe 
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many, though not all, of the behavioral phenomena observed in sleep research (Borbely 

1982; Daan et al. 1984; Franken et al. 2001; McCauley et al. 2009). The second point has 

been highly influenced by the finding that the cerebro-spinal fluid of animals that have 

been sleep deprived can induce sleep in non-deprived animals (Kubota 1989), leading 

some researchers to hypothesize the existence of global somnogens with potent sleep-

inducing properties that are produced by neurons as they start to use up whatever 

resource sleep functions to restore (Porkka-Heiskanen and Kalinchuk 2011).  

However, our growing understanding of the molecular biology of sleep has not supported 

the idea of a single homeostatic process or the idea of a key global somnogen. Many 

potential somnogens have been identified – neurochemicals that do indeed increase with 

sleep deprivation and have sleep inducing effects – but genetic studies have revealed the 

limited roles of these chemicals (Mizoguchi et al. 2001; Deboer et al. 2002; Stenberg et 

al. 2003; Huang et al. 2005; Bjorness et al. 2009). Each appears to influence only a 

subset of the phenomena that have traditionally been thought to be part of the 

homeostatic process, with relatively modest effects. The idea that changes in somnogens 

reflect global changes related to sleep function is also likely to be inaccurate. The 

somnogen adenosine, for example, was once thought to reflect brain-wide energy 

metabolism. Based on more recent work, however, it seems that adenosine is likely 

working through a specific circuit, where production relevant for sleep rebound is 

dependent on cholinergic cells in the basal forebrain (Porkka-Heiskanen and Kalinchuk 

2011). 
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We add to this data our findings regarding sleep rebound. Like others, we find that sleep 

loss generated by different neural mechanisms produces different magnitudes of sleep 

rebound (Thimgan et al. 2010; Suzuki et al. 2013; Seidner et al. 2015; Machado et al. 

2017) (Chapter 2, Figure 2-1). We see that different behaviors associated with sleep 

homeostasis are influenced by different genetic factors, and specifically find that 

mutations can have dramatic effects on sleep rebound with little to no effect on baseline 

sleep (Chapter 2, Figure 2-3 and Figure 2-S3). We also provide evidence that sleep 

rebound can be reduced by limiting the amount of wake-promoting stimulus used to keep 

flies awake, even when the extent of sleep loss is unaffected (Chapter 3, Figure 3-5 and 

Figure 3-6). This points to a mechanism of sleep rebound in which it is not sleep loss per 

se but the activity of wake-promoting neurons that produces increased sleep the following 

sleep deprivation. We propose a mechanism where homeostatic plasticity in sleep-

regulatory circuits acts in opposition to wake-promoting stimuli to increase the 

propensity for sleep, resulting in sleep rebound when the wake-promoting stimulus stops 

or is overcome (Figure 4-1).  

Below, we discuss experiments to identify homeostatic plasticity and underlying 

molecular mechanisms able to produce stable changes in a sleep-regulatory circuit 

following thermogenetic sleep deprivation (SD). We envision that homeostatic plasticity 

occurs in a circuit made up of the wake-promoting dopaminergic PPM3 neurons that we 

activate to produce thermogenetic SD and the sleep-promoting ExFl2 neurons in the 

dorsal fan-shaped body. ExFl2 are neurons thought to be downstream partners of PPM3s, 

and can be silenced by dopamine to produce wake (Ueno et al. 2012; Liu et al. 2012; 

Pimentel et al. 2016). Although this work focuses on a single circuit, there is the potential 
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for similar mechanisms to exist in any sleep-regulating circuit across the animal 

kingdom. 

Homeostatic plasticity as a mechanism for sleep rebound 
 
Homeostatic mechanisms exist throughout the brain to keep neuronal properties within 

acceptable parameters in the face of changing inputs (Marder and Goaillard 2006; 

Turrigiano 2012). Homeostatic plasticity must co-exist with Hebbian mechanisms that 

exist to re-enforce relevant signals (Turrigiano 2017). That homeostatic plasticity often 

affects a whole neuron, rather than a single synapse, and occurs on a longer time scale 

than Hebbian plasticity is likely what allows it to occur without erasing or interfering 

with information stored by Hebbian mechanisms. 

Homeostatic plasticity has been well-characterized in several systems. In the Drosophila 

neuromuscular junction, a retrograde signal up- or down- scales neurotransmitter release 

from the pre-synaptic neuron when the neurotransmitter-evoked response in the post-

synaptic muscle is inhibited or promoted (Frank 2014). In mammalian cortical neurons, 

each neuron has a firing-rate set point that it returns to after perturbations, primarily by 

cell-autonomously up- or down-scaling AMPA receptor expression, although presynaptic 

changes affecting excitatory and inhibitory inputs also occur (Turrigiano 2012). These 

phenomena act on time scales from minutes to hours long, and invoke many of the same 

molecules involved in other forms of neuronal plasticity. Although homeostatic plasticity 

has been studied in greatest detail in the systems mentioned above, homeostatic 

mechanisms exist throughout organisms and cell types. Indeed, in mammalian 

dopaminergic circuits, both pre- and post-synaptic homeostatic mechanisms have been 
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observed in response to both up- and down-regulation of dopamine signaling (Zigmond 

1997; Jones et al. 1998; Bezard et al. 2003; Perez et al. 2008; Azdad et al. 2009; 

Bergstrom et al. 2011; Friedman et al. 2014; Fieblinger et al. 2014). Given the diversity 

of homeostatic mechanisms that exist to regulate neuronal activity throughout the brain, it 

is not unexpected that in the face of a long-term wake-promoting stimulus there might be 

some compensation in a sleep-wake regulatory circuit to favor sleep.  

Sleep and synaptic homeostasis have been connected before, though in a different 

context. A well-known hypothesis known as the Synaptic Homeostasis hYpothesis or 

“SHY” proposes that a function of sleep is to allow a time for global homeostatic down-

scaling of synapses that balances long-term potentiation taking place during wake 

(Tononi and Cirelli 2006). In investigating this hypothesis, numerous groups have shown 

that genes involved in synaptic plasticity or synaptic homeostasis are also involved in 

sleep-wake regulation: these include CREB, NFκB, FMR1, homer, Alk, Nf1, Adar, cv-c in 

Drosophila (Hendricks et al. 2001; Williams et al. 2007; Bushey et al. 2009; Naidoo et 

al. 2012; Donlea et al. 2014; Bai and Sehgal 2015) and CREB, BNDF, TNFα in 

mammals (Kushikata et al. 1999; Graves 2003; Krueger 2008; Faraguna et al. 2008; 

Bachmann et al. 2012; Watson et al. 2014). Note that there is significant overlap between 

genes involved in homeostatic and Hebbian plasticity. In many of these cases, it is not 

clear whether the observed effects on sleep are a result of global changes in synaptic 

strength, which would fit with SHY, or an effect in a specific circuit, which might 

suggest a mechanism similar to that discussed here. 
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In order to investigate the hypothesis that homeostatic plasticity in the neuronal circuit 

used to produce sleep loss drives subsequent rebound, techniques to interrogate neuron 

physiology are needed. Classical electrophysiology is one such method, however to do 

electrophysiology on PPM3 or ExFl2 cells, a large amount of brain matter above these 

cells needs to be removed, potentially severing relevant connections. Electrophysiology is 

also extremely low throughput, and cannot resolve issues that arise when heterogeneous 

cell groups such as PPM3s or ExFl2s are the targets of study. An alternative approach is 

optical electrophysiology – the use of fluorescent sensors that reflect neuronal activity 

(Lin and Schnitzer 2016). 

Direct evidence of homeostatic plasticity as a mechanism that might underlie sleep 

rebound could be acquired by identifying a relevant physiological parameter in the sleep-

regulating neuronal circuit, showing that the parameter changes after thermogenetic sleep 

deprivation, and then showing that the changes do not occur with sleep deprivation in 

mutant flies with reduced rebound. One relevant parameter might be the ExFl2 response 

to dopamine. Electrophysiology has been used to characterize the silencing of ExFl2 cells 

upon dopamine application, which is reflected by a decrease in input resistance and 

membrane time constant (Pimentel et al. 2016). Dopamine also provokes a large calcium 

influx in these cells (Nguyen 2017). Thus, a calcium sensor such as GCaMP6 (Chen et al. 

2013) or a fast voltage sensor such as ASAP2f (Yang et al. 2016) could be used to 

characterize ExFl2 response to dopamine, construct a dose response curve, and then 

determine whether ExFl2 responses to dopamine are changed after thermogenetic sleep 

deprivation in a way that would favor sleep. Other relevant physiological parameters 

might be ExFl2 intrinsic activity, responses to other neurotransmitters, or anatomical 
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changes that reflect an increase or decrease in connectivity to other sleep-regulating 

areas.  

Homeostatic plasticity might also work by affecting transmitter release in the neurons 

used to induce sleep loss. This type of homeostatic mechanism could be revealed by 

examining evoked PPM3 transmitter release, which could by produced by expressing 

P2X2, an ATP-sensitive sodium channel, in PPM3s and applying a low dose of ATP. An 

indirect way to detect a change in evoked transmitter release from PPM3s might be to 

measure the evoked physiological response in ExFl2 neurons in response to PPM3 

stimulation. More direct approaches to identifying homeostatic mechanisms affecting 

PPM3s could involve quantifying evoked synaptic vesicle release using false fluorescent 

neurotransmitters (Gubernator et al. 2009) or synapto-pHlourin (Miesenbock et al. 1998). 

Both of these fluorescent tools are packaged into synaptic vesicles and produce a change 

in fluorescence upon vesicle exocytosis, allowing time course and magnitude of vesicle 

release following a stimulus to be measured. False fluorescent neurotransmitters are also 

packaged into vesicles through the same molecular mechanisms as ordinary 

catecholamines, so false fluorescent neurotransmitters can additionally act as a readout of 

vesicle loading. Finally, anatomic changes that suggest homeostatic plasticity might also 

be observed in this set of neurons. 

Different roles for dopamine receptors in sleep loss and sleep rebound 
 
Our work suggests a role for dopamine in both keeping flies awake and in producing 

subsequent sleep rebound. Dopamine is a potent wake-promoting stimulus in Drosophila 

and has been well-studied in the contexts of both sleep and memory. One interesting 
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aspect of dopamine signaling in Drosophila is apparently different roles of two DA1-like 

dopamine receptors, Dop1R1 and Dop1R2, even within the same cells. Both of these 

receptors have been implicated in mediating the wake-promoting effects of dopamine, but 

in different ways. Dop1R1 mutations prevent the wake-promoting effects of 

thermogenetically activating dopaminergic neurons or feeding flies L-DOPA, and these 

effects can be rescued by expressing Dop1R1 in ExFl2 cells (Ueno et al. 2012; Liu et al. 

2012). However, Dop1R1 knockdown in ExFl2 cells did not have any effect on baseline 

sleep, while Dop1R2 knockdown in ExFl2 neurons does increase baseline sleep and alters 

the sensitivity of these cells to applied dopamine (Ueno et al. 2012; Pimentel et al. 2016). 

Dop1R1 and Dop1R2 also have different effects on memory, although the details remain 

unclear. Whereas Dop1R1 is required for olfactory memory acquisition (Kim et al. 2007) 

and likely transmits valence cues necessary for associative memory (Perisse et al. 2013), 

Dop1R2 has a more complex role, and has been linked to forgetting, memory 

consolidation, and in shaping the interconnectivity of dopamine neurons in mushroom 

body circuits that gives rise to compartmentalization of dopamine signaling (Berry et al. 

2012; Cohn et al. 2015; Plaçais et al. 2017). The role in forgetting in particular suggests 

that Dop1R2 might in some way have effects that oppose the molecular changes 

produced by Dop1R1, at least on long time scales.  

There also seem to be differences between the effects of Dop1R1 and Dop1R2 

knockdown on the physiological properties of cells. Although both have homology to 

mammalian DA1 receptors, these receptors have different reported effects on ExFl2 

physiology – Dop1R1 is required for DA-induced increases in cAMP (Ueno et al. 2012), 
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while Dop1R2 is required for DA-induced increases in calcium (Nguyen 2017). It also 

remains unclear which G protein signaling pathways are important for Dop1R1 and 

Dop1R2 signaling. That Dop1R1 is necessary for a DA-induced increase in cAMP in 

ExFl2 cells suggests Gs coupling. Indeed, expressing the catalytically active subunit of 

PKA in ExFl2 cells results in decreased sleep, suggesting that cAMP-PKA signaling is 

capable of silencing the sleep-promoting ExFl2 cells (Liu et al. 2012). On the other hand, 

it has been suggested that Dop1R2-mediated silencing mechanisms act through Gi or Gq, 

because targeting these G proteins produces similar effects as Dop1R2 knockdown on 

aspects of ExFl2 physiology (Pimentel et al. 2016; Nguyen 2017). 

Although both Dop1R1 and Dop1R2 seem to facilitate the short-term wake-promoting 

effects of dopamine, it is possible that either or both of these receptors also have roles in 

producing a homeostatic response to increased dopaminergic signaling. Thus, an area of 

future research will determine the effects of Dop1R1 and Dop1R2 knockouts on both 

sleep loss produced by thermogenetic SD and subsequent rebound. Given its more 

complex role in memory and forgetting, Dop1R2 seems the more likely candidate for 

mediating homeostatic compensation to increased DA signaling, while published data 

have demonstrated that Dop1R1 is necessary for sleep loss induced by elevated 

dopamine. This result would provide a molecular basis for the apparent disconnect 

between sleep loss and sleep rebound observed in our data, and provide a starting point 

for further experiments to elucidate the mechanisms of homeostatic compensation in the 

circuit.  
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Genes that might be downstream mediators of homeostatic plasticity 
 
In addition to dopamine receptors, we can identify other candidate genes that might play 

a role in homeostatic plasticity of this circuit. For any gene that might be part of the 

mechanism producing homeostatic plasticity in the PPM3>ExFl2 cell circuit, a role can 

be tested by knocking down the gene in the cells of interest using RNAi. In order to 

knock down genes in ExFl2 cells using the Gal4/UAS system while testing the response 

to thermogenetic sleep deprivation, an alternative thermogenetic method would be 

developed that uses the LexA/LexAOp binary expression system. A tyrosine hydroxylase 

(TH)-LexA construct that expresses in dopaminergic cells paired with LexAOp-TrpA1 

could be one such method that would evoke sleep loss through a similar molecular 

mechanism as our current thermogenetic approach. 

As mentioned previously, several genes with known roles in synaptic plasticity or 

function have already been implicated in Drosophila sleep behavior – these include the 

Rho-GAP cv-c, which has been implicated specifically in homeostatic plasticity at the 

Drosophila NMJ (Pilgram et al. 2011); homer, implicated in homeostatic plasticity at 

hippocampal neurons in mammals (Sala et al. 2005); as well as genes such as NFκB, Alk, 

FMR1, Adar, and insomniac, which have roles in synaptic strength and function even if 

they have not been linked specifically to homeostatic plasticity (Zhang et al. 2001; 

Heckscher et al. 2007; Rohrbough et al. 2012; Maldonado et al. 2013; Li et al. 2017).  

Of these, cv-c and insomniac are particularly compelling because their effects on sleep 

have already been linked to the circuit we are interested in. cv-c, which in the NMJ is 

required postsynaptically to downregulate presynaptic transmitter release (Pilgram et al. 
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2011), is a sleep-promoting molecule with function that maps to the ExFl2 neurons 

(Donlea et al. 2014). In a scenario where persistent activation of dopaminergic neurons 

leads to a down-regulation in dopamine release, cv-c might be a key non-cell-autonomous 

signaling molecule necessary for these changes.  

Insomniac, a Cullin-3 BTB adaptor, is a sleep-promoting molecule with function that 

seems to depend on dopamine, although specific cells where insomniac is required have 

not been identified (Stavropoulos and Young 2011; Pfeiffenberger and Allada 2012). 

Insomniac is localized to synapses, where it modulates synaptic function (Li et al. 2017). 

These findings are particularly interesting because Cullin-3, which physically interacts 

with insomniac and also regulates sleep, is one of few genes in our RNA-Seq data set 

with expression that is changed with sleep deprivation in wild-type flies but not in 

MI00393/+ mutant flies. Thus, these two genes might be mediators of homeostatic 

plasticity that occurs in wild-type flies to produce rebound but does not occur in 

MI00393/+ flies. 

Although existing data provide some hints at mechanisms that might underlie 

homeostatic plasticity within this neural circuit, an unbiased approach could also be 

employed. We note that it is quite likely that molecular changes that reflect homeostatic 

plasticity would not be reflected in our RNA-Seq data, which is taken from whole brains 

and does not reflect any post-transcriptional mechanisms that might be at work. 

Translating Ribosome Affinity Purification is a next-generation sequencing approach that 

overcomes both of these shortcomings by allowing tagging of specific neurons and 

assessment of transcripts that are bound to ribosomes, indicating active translation 
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(Heiman et al. 2014). This approach could be used in either PPM3 or ExFl2 neurons to 

identify genes with changes in translation following sleep deprivation. The potential to 

identify novel plasticity mechanisms using an unbiased approach is particularly important 

given that homeostatic plasticity in Drosophila has been primarily studied at the NMJ; 

homeostatic plasticity in CNS circuits might occur by different mechanisms. 

Finally, it is worth noting that although we envision baseline differences in Ddc 

expression and the different signaling roles of dopamine receptors as upstream steps that 

affect the initiation of homeostatic plasticity, changes in expression of these genes might 

also be effectors of a homeostatic mechanism. Indeed, decreases in Ddc and Dop1R1 

transcript levels are observed after thermogenetic sleep deprivation, although these 

changes occur in both wild-type and MI00393/+ flies, and therefore do not seem to be 

responsible for the differences in rebound sleep that we observe between these genotypes. 

Concluding Remarks 
 
The work presented here challenges many widely held assumptions about the nature of 

sleep homeostasis, and suggests homeostatic neuronal plasticity as a potential mechanism 

for the sleep rebound that occurs after a population of wake-promoting neurons is 

thermogenetically activated to induce sleep loss. Although we have not yet obtained 

direct evidence of homeostatic plasticity in this circuit, it would not be unexpected given 

the diversity of homeostatic plasticity mechanisms that exist. Future investigation will 

harness the power of genetically encoded sensors that reflect neuronal activity to 

determine the nature of homeostatic plasticity in this circuit, if it exists, and further 

genetic studies will be conducted to elucidate molecular mechanisms that underlie such 
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plasticity. Our work, in combination with previously published data, already suggests 

some potential molecular mediators, although unbiased work may be successful in 

identifying novel regulators of both sleep and homeostatic plasticity in the Drosophila 

CNS. 
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Figure 4-1: Homeostatic Plasticity in Sleep-Regulating Circuits as a Potential 
Mechanism for Sleep Rebound 
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Figure 4-1: Homeostatic Plasticity in Sleep-Regulating Circuits as a Potential 

Mechanism for Sleep Rebound 

At baseline, normal amounts of the wake-promoting neurotransmitter (NT) act on the NT 

receptor to produce normal amounts of sleep. SD is produced by increasing wake-

promoting NT release. Over time, excess wake-promoting NT triggers homeostatic 

plasticity in the circuit. This could manifest in a number of different ways, but is depicted 

here as a reduction in NT receptor levels. When SD stops, the reduced sensitivity to the 

wake-promoting NT results in higher sleep drive, producing sleep rebound. Not depicted: 

in mutants with reduced wake-promoting NT release during SD, less homeostatic 

plasticity occurs, resulting in less rebound. 
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