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ABSTRACT
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We study the spectral data for the higher direct images of a parabolic Higgs

bundle along a map between a surface and a curve with both vertical and horizontal

parabolic divisors. We describe the cohomology of a parabolic Higgs bundle on a

curve in terms of its spectral data. We also calculate the integral kernel that

reproduces the spectral data for the higher direct images of a parabolic Higgs bundle

on the surface. This research is inspired by and extends the works of Simpson [21]
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Chapter 1

Introduction

A Higgs bundle (E,ϕ) on a smooth complex projective variety X is an algebraic

vector bundle E equipped with an algebraic Higgs field ϕ, i.e. an OX-linear map

ϕ : E → E ⊗ Ω1
X such that ϕ ∧ ϕ = 0. A flat bundle (F,∇) on X is an algebraic

vector bundle F equipped with an algebraic flat connection ∇, i.e. an C-linear

map ∇ : F → F ⊗ Ω1
X satisfying the Leibniz rule and such that ∇2 = 0. Via the

Riemann-Hilbert correspondence specifying a flat bundle on X is the same thing as

specifying a local system L on X, i.e. a locally constant sheaf of C-vector spaces

on X or equivalently a representation of the fundamental group π1(X).

The Non Abelian Hodge Correspondence (NAHC) on X says that semistable

Higgs bundles with vanishing Chern classes and flat bundles are equivalent data

[3, 23]. The equivalence in the NAHC is mediated by a richer object called a

harmonic bundle which determines both a Higgs bundle and a flat bundle. In fact,
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a harmonic bundle determines a whole family of λ-connections parametrized by

λ ∈ C. The Higgs field corresponds to the λ = 0 value of the parameter while the

flat connection of corresponds to the λ = 1 value.

The notion of a harmonic bundle was introduced by Corlette and Simpson [3,

23, 25] as a gauge theoretic extension of the classical notion of a variation of Hodge

structures. Recall [23] that a complex variation of Hodge structures on X is a C∞

complex vector bundle V equipped with a decomposition V =
⊕

p+q=k V
p,q, a non-

degenerate Hermitian pairing (polarization), and a flat connection D : V → A1(V ),

satisfying the Griffiths transversality property – D is of degree one with respect to

the total gradings on V and A1(V ). In other words D decomposes into four pieces:

D = ∂+∂+ θ+ θ : V p,q → A1,0(V p,q)⊕A0,1(V p,q)⊕A1,0(V p−1,q+1)⊕A0,1(V p+1,q−1).

A complex variation of Hodge structures is a generalization of the notion of an

integral variation of Hodge structures, which was first introduced and studied by

Griffiths in his classical work [8]. A special and very interesting class of such vari-

ations of Hodge structures are the variations of geometric origin that arise from

smooth projective families of varieties. Indeed if Z → X is a smooth projective

morphism, then the family of vector spaces Lx = Hk(Zx,C) yields a local system L

on X. The corresponding C∞ vector bundle V = L ⊗C C∞X comes equipped with

a natural flat connection - the Gauss-Manin connection - corresponding to the lo-

cally constant structure of L. Finally the Hodge decomposition of Lx with pieces

Lp,qx = Hp,q(Zx) induces the desired decomposition V =
⊕

p+q=k V
p,q of V .
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From a variation of Hodge structure, we obtain a system of Hodge bundles, that

is a direct sum E =
⊕

p+q=k E
p,q of holomorphic vector bundles with a holomorphic

endomorphism θ : Ep,q → Ep−1,q+1 ⊗ Ω1
X satisfying θ ∧ θ = 0. In fact, Ep,q is

the bundle V p,q equipped with the holomorphic structure given by ∂, and θ is the

corresponding piece in the decomposition of D. By Griffiths’ infinitesimal period

relations [8] it is known that we can in fact recover the variation of Hodge structures

from the system of Hodge bundles. The systems of Hodge bundles which arise from

irreducible variations of Hodge structures are necessarily stable and have vanishing

Chern classes. Using Yang-Mills-Higgs theory Simpson reinterpreted the period

relations as the existence of a special metric - the so called harmonic metric - on the

system of Hodge bundles. He showed that given a stable system of Hodge bundles

with vanishing Chern classes, we can recover the irreducible complex variation of

Hodge structures as the Chern connection for this special metric. Therefore, there

is an equivalence between the category of irreducible complex variations of Hodge

structures and stable systems of Hodge bundles with vanishing Chern classes. The

NAHC extends this equivalence to arbitrary flat bundles and general semistable

Higgs bundles with vanishing Chern classes. In fact one can use the extended

NAHC to characterize the flat bundles underlying complex variations of Hodge

structures. By a theorem of Simpson [23] they are exactly the ones corresponding

to Higgs bundles which are fixed by the natural C×-action: (E,ϕ) 7→ (E, tϕ) for

t ∈ C×.
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The natural and meaningful cohomology theory of variations of Hodge struc-

tures or more general harmonic bundles arises from deriving the functor of global

sections that are L2-summable in the norm corresponding to the harmonic metric.

The resulting cohomology theory is hard to compute directly but one can gain access

to it through the NAHC. Indeed, the NAHC identifies [23] the L2 cohomology of a

harmonic bundle with the de Rham cohomology of the associated flat bundle and

also with the Dolbeault cohomology of the associated Higgs bundle. De Rham and

Dolbeault cohomology theories admit respectively a topological and an algebraic

model that make them much more tractable. Finally, the general spectral corre-

spondence [11, 6] can be used to recast the Dolbeault cohomology theory of Higgs

bundles as a purely sheaf theoretic cohomology of the associated spectral data [21].

The spectral description provides a powerful geometric tool for understanding

and computing cohomology and direct images of harmonic, flat, or Higgs bundles

when dealing with smooth and compact varieties. The theory becomes much more

complicated in the non-compact or singular setting. For smooth quasi-projective

varieties and flat or Higgs bundles with tame ramification at infinity the NAHC was

developed in the works of Simpson [20] and Mochizuki [13, 14, 15, 16]. The algebraic

de Rham and Dolbeault models for the corresponding L2-cohomology of harmonic

metrics with singularities was constructed in the recent work [7] of Donagi-Pantev-

Simpson. So for computational purposes the main missing ingredient of this theory

is an appropriate version of the spectral correspondence that will account for the
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blow-up behavior of L2-cohomology classes at infinity.

In this thesis, we consider the question of how to compute cohomology and push-

forwards of Higgs bundles in terms of spectral data in the presence of singularities

of the harmonic metrics. More precisely, let f : X → Y be a map from a smooth

projective surface to a curve. Suppose that f is smooth away from some simple

normal crossings divisor DV of X. Let (E,ϕ) be a tame parabolic Higgs bundle that

has parabolic structures along DV as well as some horizontal divisor DH . Suppose

each component of DH is etale over Y . Put D = DV +DH and Q = f(DV ). In this

situation, the “correct” higher direct images of (E,ϕ) can be described algebraically

using the parabolic L2 Dolbeault complex in [7]. By “correct” we mean that these

higher direct images correspond under the tamely ramified NAHC to the higher

direct images of the corresponding filtered local system as stated in Theorem 2.3.1.

The analytic motivation of the L2 cohomology comes from estimates for the norms of

sections or holomorphic 1-forms under a metric which is asymptotically the Poincaré

metric near punctures so that meromorphic sections along fibers Xy for y ∈ Y −Q

are in L2.

On the other hand, a Higgs bundle can be encoded in its spectral sheaf by the

spectral correspondence [11, 6]. We discuss a parabolic refinement of the spectral

construction in which the spectral datum is a parabolic coherent sheaf on the total

space of Ω1
X(logD) and we proceed to describe the higher images of (E,ϕ) in terms

of this spectral data.
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The structure of this thesis is as follows. In Chapter 2, we review some basic

notions of the theory of Higgs bundles including the spectral construction, the

concept of a tame parabolic Higgs bundle, the non-compact NAHC which was given

in [13], and the standard root stack construction through which a parabolic Higgs

bundle can be converted into a meromorphic Higgs bundle on an orbifold.

In Chapter 3, we study the case when f is smooth and (E,ϕ) is just a holomor-

phic Higgs bundle. In this case, we review a result of Simpson’s from [21]. Basically,

this says that the higher direct images for (E,ϕ) are the hyperdirect images of the

relative Dolbeault complex (3.1.1) and the Higgs fields of the higher direct images

are defined by the coboundary maps for hyperdirect images of a certain short ex-

act sequence of complexes consisting of relative and absolute Dolbeault complexes.

After this, in Section 3.2, we find the spectral sheaves for the higher direct images

of (E,ϕ) in terms of the spectral sheaf for (E,ϕ). It is this result that we want to

generalize to the situation where we have a parabolic Higgs bundle with parabolic

structure specified along both vertical and horizontal divisors.

In Chapter 4, we define the parabolic L2 Dolbeault complex and state the main

theorem in [7]. In Chapter 5, we study our main problem of how to describe

the cohomology and higher direct images of a parabolic Higgs bundle by using its

spectral data.
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Chapter 2

Basic notions on Higgs bundles

2.1 Higgs bundles and their spectral covers

Let X be a smooth projective variety.

Definition 2.1.1. A Higgs bundle (E,ϕ) on X is a pair consisting of a holomorphic

vector bundle E and a OX-linear map ϕ : E → E ⊗ Ω1
X such that ϕ ∧ ϕ = 0.

For a vector bundle K over X, there is a more general notion of a K-valued Higgs

bundle, which is a pair (E,ϕ : E → E ⊗ K) satisfying ϕ ∧ ϕ = 0. A morphism

a : (E1, ϕ1) → (E2, ϕ2) between two K-valued Higgs bundles is a map of coherent

sheaves which intertwines the respective Higgs fields, that is a map a : E1 → E2 for

which ϕ2 ◦ a = a ◦ ϕ1.

The category of Higgs bundles has internal tensor products and internal Homs.

Given two Higgs bundles (E1, ϕ1) and (E2, ϕ2) on X, we can define their tensor
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product as the Higgs bundle:

(E1, ϕ1)⊗ (E2, ϕ2) := (E1 ⊗ E2, ϕ1 ⊗ idE2 + idE1 ⊗ϕ2).

Similarly we can define their Hom Higgs bundle as:

Hom((E1, ϕ1), (E2, ϕ2)) := (Hom(E1, E2), h 7→ −h ◦ ϕ1 + ϕ2 ◦ h). (2.1.1)

Furthermore, suppose f : X → Y is a map of smooth projective varieties. Given a

Higgs bundle (E,ϕ) on Y , the pullback of (E,ϕ) is defined by

f ∗(E,ϕ) := (f ∗E, (idf∗E ⊗df ∗) ◦ f ∗ϕ),

where df ∗ : f ∗Ω1
Y → Ω1

X is the codifferential of f .

A Higgs bundle on X can be thought of as a vector bundle E together with

an action of the symmetric algebra of the tangent bundle Sym• TX . Note that the

one-form ϕ gives an action of the symmetric algebra rather than of the full tensor

algebra because of the condition ϕ ∧ ϕ = 0, which says that the endomorphisms

ϕξ = ϕ ⌟ ξ : E → E corresponding to different tangent vectors ξ ∈ TX commute.

The projection from the cotangent space π : T ∗X → X is an affine map. Note

that

T ∗X = Spec(Sym• TX), π∗OT ∗X = Sym• TX .

Thus we see that a coherent sheaf E on T ∗X is the same thing as a coherent sheaf

F = π∗E on X together with an action of Sym• TX on F . In particular a Higgs

bundle (E,ϕ) can be viewed as a coherent sheaf E on T ∗X .
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The coherent sheaf E can be described explicitly as follows. Given a Higgs

bundle (E,ϕ) on X, for each x ∈ X we can look at the spectrum of the linear map

ϕx. Let λ be the tautological section of π∗Ω1
X . We define E to be the cokernel of

the map ⌟(idπ∗E ⊗λ− π∗ϕ):

π∗E ⊗ π∗TX π∗E E 0.
⌟(idπ∗E ⊗λ−π∗ϕ)

(2.1.2)

This E is called the spectral sheaf for the Higgs bundle (E,ϕ). The spectral

sheaf E is a coherent sheaf on T ∗X which is finite and flat over OX . The spectral

cover for (E,ϕ) is defined to be the subscheme Supp(E) ⊂ T ∗X , and the map from

Supp(E) to X is proper. Explicitly, Supp(E) is given as the zero scheme of the

section

det(λ · id−π∗ϕ) ∈ Symr π∗Ω1
X .

We can recover the Higgs data (E,ϕ) from E by simply setting E = π∗E and

ϕ = π∗(−⊗ λ). Therefore, we have set up an equivalence of categories coherent sheaves on T ∗X ,

finite and flat over X

⇐⇒
(

Higgs bundles on X

)
.

This equivalence is called the spectral correspondence. This correspondence

also works for any K-valued Higgs bundle. More generally, if (E,ϕ) is a coherent

Higgs sheaf rather than a Higgs bundle, then in the spectral correspondence above

it will correspond to a coherent sheaf on T ∗X that is finite but not necessarily flat

over X.

9



Remark 2.1.2. We want to mention another reason why the condition “ϕ ∧ ϕ = 0”

in Definition 2.1.1 is needed. Consider a K-valued Higgs bundle (E,ϕ). If K|U '

Cn⊗OU is a local trivialization of K over an open subset U ⊂ X, then we see that

ϕ consists of n endomorphisms of E:

ϕ|U = (ϕ1, · · · , ϕn), with ϕi ∈ Γ(U,EndE).

We may look at the spectrum of each ϕi, but the collection of spectral covers we get

in this way makes little sense since these ϕi may not share any common eigenvectors.

Hence we need all ϕi to have a common spectrum, which is equivalent to requiring

that [ϕi, ϕj] = 0 for all i, j. This is the condition ϕ ∧ ϕ = 0.

2.2 Parabolic Higgs bundles

Let D ⊂ X be a simple normal crossings divisor. We recall the notion of a parabolic

vector bundle with parabolic structure along D.

Definition 2.2.1. A parabolic bundle E on (X,D) consists of a family of vector

bundles E = {Eβ} on X labeled by a collection of real numbers β = {βi}, one for

each irreducible component Di of D, which satisfies the following conditions:

• If β ≤ β′, then Eβ is a subsheaf of Eβ′ ,

• Eβ jumps only at discrete levels, that is if ε = {εi} is a collection of small

positive numbers, then Eβ+ε = Eβ,
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• Eβ+δi = Eβ(Di), where δi is Kronecker’s delta.

If X is a smooth projective curve, then D = {pi} is a finite set of points, and a

parabolic bundle E on (X,D) is equivalent to a vector bundle E on X equipped

with a flag of subspaces in the fiber Epi for each pi ∈ D:

0 = E0
pi
⊂ E1

pi
⊂ · · ·E`i−1

pi
⊂ E`i

pi
= Epi ,

together with a collection of real numbers - parabolic weights assigned to each

subspace in the flag:

0 = αi0 < αi1 < · · · < αi(`i−1) < αi`i = 1.

We denote dim(Ej+1
pi

)− dim(Ej
pi

) by mij and define the parabolic degree of E by

par degE = degE +
k∑
i=1

`i−1∑
j=0

αijmij.

The parabolic slope of E is defined by

µ(E) =
par degE

rankE
.

We can thus speak of stable (respectively semistable) parabolic bundles by requiring

that for every proper subbundle F of E with the induced parabolic structure, we

have

µ(F ) < (respectively ≤) µ(E). (2.2.1)

A Higgs field ϕ (respectively a flat connection ∇) on a parabolic bundle E:

ϕ = {ϕβ} (respectively ∇ = {∇β}) is a family where ϕβ (respectively ∇β) is a
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Higgs field (respectively a flat connection) on Eβ so that for β ≤ β′ we the fields

ϕβ and ϕβ′ (respectively the connections ∇β and ∇β′) are compatible under the

inclusion Eβ ⊂ Eβ′ . This compatibility condition forces the restrictions of all ϕβ to

X −D to be equal to each other (respectively the restrictions of all ∇β to X −D

to be equal to each other). Thus any of the fields ϕβ (respectively ∇β) determines

the whole family ϕ (respectively ∇). To simplify notation we will write just ϕ or

∇ for one of the members of the family and this will be understood as specifying

the Higgs field or flat connection on the parabolic bundle. From the nature of the

compatibility condition it is clear that the notions of a parabolic Higgs field and flat

connection also make sense if we allow their coefficients to be meromorphic, with

some poles along D.

In other words, a parabolic Higgs bundle can be viewed as a refinement of

a meromorphic one, i.e. a meromorphic Higgs bundle with poles along a simple

normal crossings divisor, which is endowed with a parabolic structure preserved by

the the Higgs field. Throughout this thesis we are only concerned for parabolic

Higgs bundles with logarithmic Higgs fields. These are defined as follows:

Definition 2.2.2. A logarithmic parabolic Higgs bundle (E,ϕ) on (X,D) is

a pair consisting of a parabolic bundle E and a Higgs field ϕ such that ϕ preserves

the parabolic structure in the sense that for each parabolic level β, we have

ϕ : Eβ → Eβ ⊗ Ω1
X(logD).

For a parabolic Higgs bundle (E,ϕ) on a curve, we also have a stability condition,

12



that is, E is stable (respectively semistable) if for every subbundle F preserved by

the Higgs field ϕ, we have the condition in (2.2.1).

2.3 Non Abelian Hodge Correspondence

Higgs bundles are closely related to flat bundles through the Non Abelian Hodge

Correspondence (NAHC) [10, 3, 23, 25], which establishes an equivalence between

the two categories on X semisimple flat

bundles on X

⇐⇒
 polystable Higgs bundles on X with

vanishing Chern classes c1 = c2 = 0


given by Hitchin’s equations [10, 23].

A noncompact version of the NAHC on X−D, where X is compact and D ⊂ X

is a simple normal crossings divisor, was established in T. Mochizuki [13]. This

setup involves a flat bundle (F ◦,∇) and a Higgs bundle (E◦, ϕ) that are defined

on X −D and carry order of growth filtrations along the components of D. More

precisely, in the logarithmic setting, (F ,∇) is a polystable parabolic flat bundle

with vanishing parabolic Chern classes, and (E,ϕ) is a parabolic Higgs bundle,

consisting of a locally abelian parabolic vector bundle E with vanishing parabolic

Chern classes, together with a Higgs field ϕ that is logarithmic with respect to the

parabolic structure along D.

Recall that a harmonic bundle over X−D consists of the data (L,D′,D′′, h)

13



where L is a C∞ bundle over X − D equipped with a hermitian metric h and

operators

D′ = ∂ + ϕ, D′′ = ∂ + ϕ : L → A1(L)

such that ∂, ϕ are of type (1, 0) and ∂, ϕ are of type (0, 1). Put D = D′ +D′′.

These are subject to the following conditions:

1. ∂ + ∂ is an h-unitary connection;

2. ϕ+ ϕ is h-self-adjoint;

3. (D′′)2 = 0 so that E◦ = (L, ∂) is a holomorphic bundle and

ϕ : E◦ → E◦ ⊗ Ω1
X−D is a holomorphic Higgs field;

4. D2 = 0, so that L = LD is a local system, or equivalently (F ◦,∇) is

a flat bundle, where F ◦ is the holomorphic bundle F ◦ = (L, ∂ + ϕ) and

∇ : F ◦ → F ◦ ⊗ Ω1
X−D is the holomorphic connection given by ∇ = ∂ + ϕ.

Consider a smooth point p ∈ Di of one of the divisor components, and let zi a

coordinate function defining Di near p. Let {r(t)}t∈(0,1) be a ray emanating from

p, with |zi(r(t))| = t. If {u(t) ∈ Lr(t)} is a flat section of the local system L over

the ray, we can look at the growth rate of
∥∥u(t)

∥∥
h(r(t))

with respect to the harmonic

metric h. We say that u has polynomial growth (respectively sub-polynomial

growth) along the ray, if for some (respectively all) b > 0 we have

∥∥u(t)
∥∥
h(r(t))

≤ Ct−b.

14



The harmonic bundle is said to be tame if all its flat sections have polynomial

growth along rays. It is said to be tame with trivial filtrations if flat sections

have sub-polynomial growth along rays.

Suppose (L,D′,D′′, h) is a tame harmonic bundle. Using the order of growth,

we obtain a collection of filtrations on the restrictions of the local system L to

punctured neighborhoods of each of the divisor components. Let j : X −D ↪→ X.

If η = {ηi} is a parabolic level then Lη is the subsheaf of j∗L consisting of sections

that have growth rate ≤ Ct−ηi−ε for any ε > 0, along rays going towards smooth

points of Di. The collection L = {Lη} is the filtered local system associated to

(L,D′,D′′, h). Note that the condition of trivial filtration is equivalent to L0 = j∗L

and Lη = j!L for ηi < 0. Similarly, the Higgs bundle (E◦, ϕ) extends to a parabolic

sheaf (E,ϕ).

The following summarizes some of T. Mochizuki’s main results in [13]:

Theorem 2.3.1 (Non-compact tame non-abelian Hodge correspondence). Let

(L,D′,D′′, h) be a tame harmonic bundle on X−D and let L, (F ,∇), and (E,ϕ) be

the associated filtered local system, parabolic flat bundle, and parabolic Higgs bundle

respectively. Then:

• The filtered local system L is locally abelian, that is, it is locally an extension

of rank 1 filtered local systems.

• The parabolic sheaves E and F are both locally abelian parabolic bundles, that

is, they are locally direct sums of parabolic line bundles.
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• The Higgs field ϕ and the flat connection ∇ are both logarithmic.

• The filtered local system, the parabolic logarithmic flat bundle, and the parabolic

logarithmic Higgs bundle, are all polystable objects with vanishing Chern classes.

• Furthermore, any polystable filtered local system or parabolic logarithmic Higgs

bundle with vanishing Chern classes comes from a unique harmonic bundle.

This sets up one to one correspondences among the four kinds of objects.

Throughout this thesis, we will always work under the following standing assump-

tion:

Definition 2.3.2 (Nilpotence Assumption). For every logarithmic parabolic

Higgs bundle (E,ϕ), we assume the residue of ϕ along each parabolic divisor com-

ponent has zero eigenvalues.

Under the NAHC this assumption corresponds to the condition that the filtered

local system L has a trivial filtration and has local monodromies whose eigenvalues

are in S1 ⊂ C× [7].
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2.4 The root stack construction

Throughout this thesis we assume that all the parabolic weights are rational num-

bers. So all the weights are multiples of 1/` for some fixed ` ∈ Z>0. It is a classic

result that such parabolic Higgs bundles on a smooth curve can be identified with

ordinary Higgs bundles on an orbicurve. In this section we review this construction

[1], [2], [4], [9].

Given a curve C and a marked point p, we first construct an orbicurve C̃ as

follows. Let U = C \ p. Let ∆p denote a small analytic (or formal) disk centered at

p and let ∆◦p = ∆p ×C U be the corresponding punctured disk. Take φ : ∆̃p → ∆p

to be the ` : 1 cover given by z 7→ z`. The group µ` of `-th roots of unity acts

naturally on ∆̃p sending z 7→ ωz, where ω = exp(2π
√
−1/`). The quotient stack

[∆̃p/µ`] can then be glued to U using the morphism φ to identify the open substack

[∆̃p

◦
/µ`] with the punctured disk ∆◦p. This yields a smooth Deligne-Mumford stack

C̃ equipped with a map µ : C̃ → C which identifies C as its coarse moduli space.

We denote the orbifold point in C̃ by p̃.

Suppose that we have a holomorphic Higgs bundle on C̃, that is a vector bundle

Ẽ equipped with a Higgs field ϕ̃ : Ẽ → Ẽ ⊗ Ω1
C̃

. This data determines a parabolic

Higgs bundle on C as follows. Observe that µ∗OC(p) corresponds to the rank one

free C[[z]]-module generated by z−`. Hence, there is a `-th root line bundle L̃ on C̃

which corresponds to the module generated by z−1. Now let E = µ∗Ẽ and

Fi = µ∗(Ẽ ⊗ L̃i)
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for 1 ≤ i ≤ `− 1. By the base change theorem, all the direct images are locally free

and the sheaves Fi form a filtration

E ⊂ F1 ⊂ · · · ⊂ F`−1 ⊂ E(p). (2.4.1)

More explicitly, the morphism µ : C̃ → C is locally of the form w = z`, where

w is a local coordinate on C centered at p. Note that Ẽ is locally isomorphic to

a sum of line bundles of the form
⊕r

j=1O(nj), corresponding to the C[[z]]-module⊕r
j=1 z

−njC[[z]] with the natural µ` action. We can decompose it into a sum of

submodules
⊕`−1

k=0Mk, such that for each k, the action of µ` on Mk is given by the

multiplication by ωk. Then the C[[w]]-module Fi is the µ`-fixed part of
⊕`−1

k=0 z
−iMk,

that is Fi = z−iMi.

The filtration (2.4.1) defines a flag

Ei = ker(Ep → E/Fi(−p)) (2.4.2)

in the fiber Ep, and we thus obtain a parabolic bundle E on C. According to

[18] assigning Ẽ to the parabolic bundle E yields an equivalence of groupoids.

Furthermore, the degree of Ẽ as an orbibundle is equal to the parabolic degree of

E if we assign Ei the weight αi = i/`.

Next, we note that

Ω1
C̃
' L̃`−1 ⊗C̃ µ

∗Ω1
C ' L̃−1 ⊗C̃ µ

∗Ω1
C(p). (2.4.3)

Hence ϕ = µ∗ϕ̃ : E → E ⊗C Ω1
C(p) is a Higgs field on E. Moreover, (2.4.3) implies
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that

ϕ(Fi) ⊂ Fi−1 ⊗C Ω1
C(p).

Such Higgs bundles are called strongly parabolic Higgs bundles with respect to

the flag (2.4.2).

In general we may consider a meromorphic Higgs bundle (Ẽ, ϕ̃) with a logarith-

mic pole at the point p̃, that is

ϕ : Ẽ → Ẽ ⊗ Ω1
C̃

(p̃).

Then in the same way the root stack construction tells us that (Ẽ, ϕ̃) corresponds

to an ordinary (not necessarily strongly) parabolic Higgs bundle on C with respect

to the flag (2.4.2). We summarize this correspondence in the following proposition.

Proposition 2.4.1. The root stack construction yields a one-to-one correspondence

between meromorphic Higgs bundles on the orbicurve C̃ with a logarithmic pole at p̃

and parabolic Higgs bundles on C with respect to a flag {Ei}1≤i≤` at p. In particular,

holomorphic Higgs bundles on C̃ correspond to strongly parabolic Higgs bundles on

C.
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Chapter 3

Direct images of Higgs bundles

In this chapter we consider projective semistable morphisms f : X → Y between

smooth varieties and study the f -pushforward formulas for parabolic Higgs bun-

dles in various situations. We successively analyze the cases of holomorphic Higgs

bundles, logarithmic Higgs bundles with trivial parabolic structures, tame strongly

parabolic Higgs bundles, and general tame parabolic Higgs bundles with nilpotent

residues.

In the case that the map is smooth and the Higgs bundle is holomorphic without

any parabolic structure, i.e. there are no vertical or horizontal divisors, Simpson

gave out an algebraic definition of the higher direct images in [21]. He also described

how to pushforward a Higgs bundle in terms of its spectral data. In the following,

we review Simpson’s results which will give us a heuristic guide of what we need to

do in the general situation.

20



3.1 Direct images of a holomorphic Higgs bundle

under a smooth map

Suppose that X and Y are smooth projective varieties and f : X → Y is a smooth

projective morphism. Suppose that (E,ϕ) is a Higgs bundle on X. We define its

higher direct images Hi
DOL(X/Y,E) as follows. Let Ω•X/Y (E) be the complex of

sheaves (the relative Dolbeault complex of E on X/Y )

· · · Ωi
X/Y ⊗ E Ωi+1

X/Y ⊗ E · · · ,∧ϕ ∧ϕ ∧ϕ
(3.1.1)

where Ωi
X/Y is the sheaf of relative differentials.

Now define

Hi
DOL(X/Y,E) = Rif∗(Ω

•
X/Y (E)). (3.1.2)

These are coherent sheaves on Y . We give them structures of Higgs sheaves in

the following way. Let Ω•X(E) denote the Dolbeault complex of E on X, with

differentials given by the operator ϕ. Let I1 = I1Ω•X(E) be the subcomplex of

Ω•X(E) that is the image of f ∗Ω1
Y ⊗ Ω•X(E) and let I2 = I2Ω•X(E) be the image of

f ∗Ω1
Y ⊗ I1Ω•X(E). Note that the relative Dolbeault complex is the quotient

Ω•X/Y (E) = Ω•X(E)/I1,

and we have an isomorphism

f ∗Ω1
Y ⊗ Ω•X/Y (E) ' I1Ω•X(E)/I2.
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Hence we get an exact sequence of complexes

0→ f ∗Ω1
Y ⊗ Ω•X/Y (E)[−1]→ Ω•X(E)/I2 → Ω•X/Y (E)→ 0. (3.1.3)

The hyperdirect image of the complex on the left is

Ri+1f∗(f
∗Ω1

Y ⊗ Ω•X/Y (E)[−1]) ' Ω1
Y ⊗ Rif∗(Ω

•
X/Y (E)).

So the coboundary map for the hyperdirect images gives a morphism

θ : Hi
DOL(X/Y,E)→ Hi

DOL(X/Y,E)⊗ Ω1
Y . (3.1.4)

We can check that θ ∧ θ = 0 (Propostion 3.3.2). If the Hi
DOL(Xy, E) have the

same dimensions for all y ∈ Y , then by the base-change theorem, the direct-image

sheaves Hi
DOL(X/Y,E) are locally free with Hi

DOL(X/Y,E)y = Hi
DOL(Xy, E). In

this case, the direct images are Higgs bundles [21].

3.2 Direct images via spectral data

In the previous section we defined the higher direct image functor Hi
DOL(X/Y,−)

from the category of coherent Higgs sheaves CohHiggs(X) to CohHiggs(Y ).

Composing this functor with the spectral correspondence:

CohHiggs(X) Cohf(T
∗
X)

CohHiggs(Y ) Cohf(T
∗
Y )

'
SC on X

HiDOL(X/Y,−) Φi

'
SC on Y

(3.2.1)
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we obtain a functor Φi from Cohf(T
∗
X) to Cohf(T

∗
Y ). Here, we use Cohf(T

∗
X) to

denote the category of coherent sheaves over T ∗X that are finite over X.

Let d = dimX−dimY and Z = f ∗T ∗Y be the pull back of T ∗Y by f . In [21], Simpson

showed that Φi is given by a Fourier-Mukai type transform with the kernel equal

to the complex ωZ/T ∗X [−d], where ωZ/T ∗X is the restriction of π∗XΩd
X/Y to Z and we

form the complex by placing the sheaf ωZ/T ∗X in cohomological degree d.

Z T ∗Y

T ∗X X Y

i

g

p
πY

πX f

(3.2.2)

Our aim in this thesis is to extend this result to the situation where f is not

necessarily smooth but only semistable, and where we are pushing forward tame

parabolic Higgs bundles with parabolic structure along both vertical and horizontal

divisors as will be described in Section 4.1. In this section, we will first complete

the proof of Simpson’s result and then generalize it to the situation where we have

a logarithmic Higgs bundle with poles along some vertical divisors.

Theorem 3.2.1 (C. Simpson [21]). Let E be the spectral sheaf for (E,ϕ). Define

Fi := Rig∗(i
∗E

L
⊗ ωZ/T ∗Y [−d]). (3.2.3)

Then the coherent sheaf Fi is the spectral sheaf for the Higgs sheaf Hi
DOL(X/Y,E).

23



Proof. The tautological section of π∗XΩ1
X maps to a section of π∗XΩ1

X/Y , which will

be again denoted by λ. Consider the complex Λ• defined by setting

Λi = π∗XΩi
X/Y

with the differential given by the wedge product with λ. Using the fact that π∗E = E

and the projection formula, we have

Ω•(X/Y,E) = πX∗(E ⊗ Λ•).

Note that each Λi is a vector bundle and hence is torsion free. By construction the

complex Λ• is exact everywhere except at the last term π∗XΩd
X/Y where its cokernel

is ωZ/T ∗Y . It follows that Λ• is quasi-isomorphic to ωZ/T ∗Y [−d]. Therefore, we can

now represent the Dolbeault cohomology (3.1.2) as

Hi
DOL(X/Y,E) = Ri(f ◦ πX)∗(E

L
⊗ ωZ/T ∗Y [−d]). (3.2.4)

Since ωZ/T ∗Y [−d] is supported on the closed subvariety Z = f ∗T ∗Y and f ◦ πX |Z =

πY ◦ g, we conclude that

Hi
DOL(X/Y,E) = Ri(πY ◦ g)∗(i

∗E
L
⊗ ωZ/T ∗Y [−d]). (3.2.5)

Finally, since πY is affine, the direct image πY ∗ is equal to the derived direct image

and therefore we have Hi
DOL(X/Y,E) = πY ∗Fi.

To show that Fi is the spectral sheaf for Hi
DOL(X/Y,E), it suffices to prove the

following.
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Proposition 3.2.2. The map θ in (3.1.4) is equal to the pushforward of

Fi Fi ⊗ π∗Y Ω1
Y ,

⊗σ
(3.2.6)

where we denote the tautological section of π∗Y Ω1
Y by σ.

Proof. For each i ≥ 0 we have the short exact sequence of locally free sheaves on

X:

0→ f ∗Ω1
Y ⊗ Ωi−1

X/Y → Ωi
X/I

2 → Ωi
X/Y → 0,

Note that the pullback π∗X is exact. Furthermore, since π∗XΩi
X/Y is locally free,

Tor1(E , π∗XΩi
X/Y ) = 0 and hence taking the tensor product with E is also exact. We

thus obtain the following short exact sequence of complexes on T ∗X :

0→ (f ◦πX)∗Ω1
Y ⊗E⊗π∗XΩ•X/Y [−1]→ E⊗π∗X(Ω•X/I

2)→ E⊗π∗XΩ•X/Y → 0, (3.2.7)

where the differential in each complex is given by the wedge product with λ. Note

that the coboundary map for the cohomology of (3.2.7) is given by the tensor

product with λ.

If we apply πX∗ to (3.2.7) then we will obtain (3.1.3). From the identity f ◦

πX |Z = πY ◦ g it follows that the hyperdirect images under Rf∗ ◦ πX∗ in (3.2.7) are

equal to the hyperdirect images under πY ∗ ◦ Rg∗. Therefore we see that the Higgs

field θ is the pushforward of the coboundary map:

Rig∗i
∗(E ⊗ π∗XΩ•X/Y ) Ri+1g∗i

∗((f ◦ πX)∗Ω1
Y ⊗ E ⊗ π∗XΩ•X/Y [−1])

Fi Fi ⊗ π∗Y Ω1
Y .

δ
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To see that the coboundary map δ is equal to the tensor product with the

tautological section σ, note that we have a spectral sequence with Ek,i−k
2 term

Rkg∗(i
∗(Hi−k(E ⊗ π∗XΩ•X/Y )), converging to the hyperdirect image Fi. On the E2

level, the map δ is given by

Rkg∗i
∗(Hi−k(E ⊗ π∗XΩ•X/Y )) Rkg∗i

∗(Hi+1−k((f ◦ πX)∗Ω1
Y ⊗ E ⊗ π∗XΩ•X/Y [−1])),

g∗i∗(⊗λ)

which is induced from the coboundary map for the cohomology of (3.2.7). We see

that g∗i
∗(⊗λ) is in fact equal to the tensor product with σ.

Remark 3.2.3. Note that the cohomology sheaves of the complex E
L
⊗ ωZ/T ∗Y [−d]

are supported on R = Supp(E) ∩ Z, which is a closed subset of the spectral cover

Supp(E). In particular, g(R) is closed and proper over Y . We see that Fi is in fact

supported on the closed subset g(R) (See [21] for details).

Next, we want to consider a logarithmic meromorphic Higgs bundle and a not

necessarily smooth map f : X → Y . For the time being we only allow to have

vertical polar divisors. We assume that f is smooth away from a simple normal

crossings divisor DV and DV = f−1(Q). Let (E,ϕ) be a meromorphic Higgs bundle

with the Higgs field ϕ : E → E⊗Ω1
X(logDV ). The construction of relative Dolbeault

complex (3.2.1) applies to the meromorphic case to yield a logarithmic relative
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Dolbeault complex Ω•X/Y (E, logD):

· · · Ωi
X/Y (logDV )⊗ E Ωi+1

X/Y (logDV )⊗ E · · · ,∧ϕ ∧ϕ ∧ϕ
(3.2.8)

where

Ωi
X/Y (logDV ) :=

Ωi
X(logDV )

f ∗(Ω1
Y (logQ))⊗ Ωi−1

X (logDV )
.

We now define the higher direct images of (E,ϕ) to be

Hi
DOL(X/Y,E, logDV ) := Rif∗(Ω

•
X/Y (E, logDV )),

with the Higgs fields induced from appropriate coboundary maps as in (3.1.4).

However, the direct images defined in this way are not always “correct” in the

sense that they do not always coincide with the higher direct images of the local

system corresponding to the Higgs bundle as stated in the non-abelian Hodge cor-

respondence Theorem 2.3.1. In the case where X is a surface and Y is a curve,

we will see in next chapter that the correct direct images can be described alge-

braically using the parabolic L2 Dolbeault complex. It turns out that in this case

Hi
DOL(X/Y,E, logDV ) does represent the correct higher direct image if we view

meromorphic Higgs bundles as parabolic ones with trivial parabolic structures.

We can now describe the higher direct images using the spectral data. Similar

to the case of a smooth map f , let Z be the pull back of tot(Ω1
Y (logQ)) by f and

ωZ be the restriction of π∗XΩ1
X/Y (logDV ) to Z.

Z tot(Ω1
Y (logQ))

tot(Ω1
X(logDV )) X Y

i

g

p
πY

πX f

(3.2.9)
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It is easy to prove the following result.

Proposition 3.2.4. Let E be the spectral sheaf for (E,ϕ). Then the spectral sheaf

for the i-th higher direct image of (E,ϕ) is

Fi := Rig∗(i
∗E

L
⊗ ωZ [−1]).
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Chapter 4

The L2 parabolic Dolbeault

complex

In this chapter, we review the algebraic description given in [7] of the higher di-

rect images of a parabolic Higgs bundle along a map that have both vertical and

horizontal parabolic divisors.

4.1 Some preparation

4.1.1 The underlying geometry

Suppose we are given a smooth projective surface X with a morphism f : X → Y

to a smooth projective curve Y . Suppose we are given a simple normal crossings

divisor D ⊂ X. Additionally suppose Q ⊂ Y is a reduced divisor, i.e. Q is just
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a finite collection of points qi. We assume that the divisor D has the following

structure:

• D decomposes as

D = DV +DH

into two simple normal crossings divisors meeting transversally, called the

vertical and horizontal divisors respectively.

• DV = f−1(Q) as a divisor, so the fibers of f over the points qi are reduced

with simple normal crossings.

• DH is etale over Y , so it is a disjoint union of smooth component, not inter-

secting each other but possibly intersecting DV .

We use Dk to refer to any component irreducible component of these divisors. Each

Dk is smooth and irreducible:

DV =
nv∑
i=1

Dv(i), DH =

nh∑
j=1

Dh(j).

We assume that f is smooth away from DV , so the only singular fibers are among

the fibers f−1(ql). It follows from our etaleness assumption that DH is entirely

contained in the smooth locus of f .
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4.1.2 The monodromy weight filtration

Before we explain the definition of the L2 parabolic Dolbeault complex, we need

to recall a basic construction from linear algebra. Let V be a finite dimensional

complex vector space, N : V → V be a nilpotent linear operator. The monodromy

weight filtration of N is the unique increasing filtration W = W•(N) of V :

0 ⊂ W−m(N) ⊂ W−m+1(N) ⊂ · · · ⊂ Wm−1(N) ⊂ Wm(N) = V

with the properties

• N(Wi(N)) ⊂ Wi−2(N);

• the map N ` : grW` → grW−` is an isomorphism for all ` ≥ 0.

Explicitly, the mondromy weight filtration W•(N) is defined as follows. Choose a

Jordan basis for the nilpotent endomorphism N and assign integer weights to the

basis vectors so that N lowers weights by 2, and so that the weights of each Jordan

block are arranged symmetrically about 0. Note that even though the Jordan basis

is not unique, the monodromy weight filtration will be uniquely determined since

Wk(N) is the span of the basis vectors of weights less than or equal to k.

4.2 Local study of parabolic Higgs bundles

Let (E,ϕ) be a parabolic Higgs bundle satisfying the Nilpotence Assumption (Defin-

tion 2.3.2). Along a component Dk of the parabolic divisor D, our E determines
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a family Grk,b(E), indexed by real b, of parabolic vector bundles on Dk. Their

parabolic structure is along the divisor D∩k = (D −Dk) ∩Dk where Dk meets the

other components. These come with endomorphisms Nk,b induced by the residues

of the Higgs field ϕ. In this section we discuss the monodromy weight filtration

W (Grk,b(E)) = W (Nk,b).

To understand the parabolic structure on Grk,b(E) focus on a points p ∈ D∩k.

Note that for each such point there is an index j 6= k such that p ∈ Dj ∩Dk. Given

a vector α of parabolic levels for these indices, then we obtain a bundle E
(Dk)
α,b in a

tubular neighborhood of Dk. Near a point p ∈ Dj ∩Dk, the divisor Dj contains a

piece transverse to Dk at p and we can use the parabolic structure of E with level

αp for such a piece of Dj, and level b along Dk.

Define

Grk,b(E)α := E
(Dk)
α,b /E

(Dk)
α,b−ε.

Assuming that the original bundle was locally abelian, then Grk,b(E) will be a

locally abelian parabolic bundle on Dk with respect to the divisor D∩k.

The Higgs field

ϕ : Eβ → Eβ ⊗ Ω1
X(logD)

induces a map

Nk,b := resb ϕ : Grk,b(E)→ Grk,b(E).

This is a map of parabolic bundles on Dk since ϕ respects the parabolic structure

of E. Our Nilpotence Assumption tells us that Nk,b is nilpotent.
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Using the basic fact that if p, p′ ∈ D∗k := Dk − D∩k, then Nk,b(p) and Nk,b(p
′)

are conjugate as nilpotent endomorphisms of a vector space, we can prove

Proposition 4.2.1 (Donagi-Pantev-Simpson [7]). Over D∗k for any real number b,

there is a weight filtration W (Nk,b) of the vector bundle Grk,b(E) with respect to the

Nk,b such that the restriction of this filtration to any point p is the weight filtration

of Nk,b(p).

According to Lemma 3.4 in [7], this property extends to the normal crossings

points too. As a result, we obtain weight filtrations W (Grk,b(E)) := W (Nk,b) of

the parabolic vector bundles Grk,b(E) over Dk, with parabolic structure along D∩k.

These are filtrations by strict parabolic subbundles.

4.3 The L2 parabolic Dolbeault complex

We proceed to define a complex on X as follows. For any divisor component Dk,

for any parabolic level multi-index β, put

Grk,βk(Eβ) := Grk,βk(E)β(∩k),

where β(∩k) consists of the coordinates of β for the components of D∩k. We have

explicitly that

Grk,βk(Eβ) = Eβ/Eβ−εδk .

In the previous section we defined the weight filtrationW (Grk,βk(E)) of the parabolic

bundle Grk,βk(E) on Dk. By assigning parabolic levels β(∩k) on D∩k this gives a
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weight filtration of the bundle Grk,βk(Eβ), and we call that W (Grk,βk(Eβ)).

Denote by

W (k,Eβ) ⊂ Eβ

the pullback of the weight filtration W (Grk,βk(Eβ)) over Dk, to a filtration on Eβ

by locally free subsheaves, via the map

Eβ → Grk,βk(Eβ).

Let W (H,Eβ) denote the weight filtration obtained by using W (h(j), Eβ) along

each horizontal component Dh(j). More precisely, we use the weight filtration as we

have defined in the previous section on the parabolic bundle Grk,βk(E), and take the

resulting weight filtration on the piece Grk,βk(Eβ) = Grk,βk(E)β(∩k) of this parabolic

bundle.

For any real number a, let α(a) denote the parabolic level for the divisor D

determined by using parabolic level a along the vertical components and parabolic

level 0 along the horizontal components. We then obtain the levels of the horizontal

weight filtrations

W`(H,Eα(a)) ⊂ Eα(a).

Note that since along the horizontal divisor components Dh(j) we have α(a)h(j) = 0

so the horizontal weight filtrations come from filtrations on the parabolic level zero

graded pieces Grh(j),0(Eα(a)).

Definition 4.3.1 (Donagi-Pantev-Simpson [7]). The relative L2 parabolic Dol-
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beault complex is

DOLpar
L2 (X/Y,Eα(a)) :=

[
W0(H,Eα(a)) W−2(H,Eα(a))⊗OX Ω1

X/Y (logD)
ϕ

]
,

where W0(H,Eα(a)) sits at degree 0, and Ω1
X/Y (logD) = Ω1

X(logD)/f ∗Ω1
Y (logQ) is

the sheaf of relative logarithmic one forms along the fibers of f .

The following theorem explains that the higher direct images of the relative L2

parabolic Dolbeault complex yields the “correct” pushforward of the parabolic Higgs

bundle on X in the sense that they correspond via the NAHC to the pushforwards

of the corresponding local system.

Theorem 4.3.2 (Donagi-Pantev-Simpson [7]). Let

F i
a := Rif∗(DOLpar

L2 (X/Y,Eα(a))).

1. The F i
a are locally free, and fit together as a varies into a parabolic bundle F i.

2. Formation of the higher direct images is compatible with base-change, in other

words F i
a(y) is the cohomology of the fiber over y ∈ Y .

3. The parabolic bundle F i has a Higgs field θ given by the usual Gauss-Manin

construction (see below), making it into a tame parabolic Higgs bundle.

4. This parabolic Higgs bundle on (Y,Q) is the one associated to the middle per-

versity higher direct image (of degree i = 0, 1, 2) of the local system underlying

our original harmonic bundle.
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5. More specifically, over Y − Q, the bundle F i has a harmonic metric given

by the L2 metric on cohomology classes in the fibers, and the parabolic Higgs

structure is the one associated to this harmonic metric.

To give the definition of the Higgs field for the parabolic bundle F i in the above

theorem, we use the analogous construction as we did in Section 3.1. More precisely,

we need to construct the absolute Dolbeault complex DOLpar
L2 (X,Eα(a)) on X, which

is presumably a subcomplex of the Dolbeault complex of Eα(a):

Eα(a) Eα(a) ⊗ Ω1
X(logD) Eα(a) ⊗ Ω2

X(logD).
∧ϕ ∧ϕ

We use the same notation as in [7] to denote DOLpar
L2 (X,Eα(a)) by

DOLpar
L2 (X,Eα(a)) =



W−2,0(H,Eα(a))

W−2,0(H,Eα(a) ⊗ Ω1
X(logD))

W−2,0(H,Eα(a) ⊗ Ω2
X(logD))

∧ϕ

∧ϕ


(4.3.1)

We fit the absolute Dolbeault complex into the short exact sequence of complexes

0

DOLpar
L2 (X/Y,Eα(a))[−1]⊗ f ∗Ω1

Y (logQ)

DOLpar
L2 (X,Eα(a))/I

2(Eα(a))

DOLpar
L2 (X/Y,Eα(a))

0.

(4.3.2)
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Here, we again define the subcomplexes Ik(Eα(a)) formally as below:

I0(Eα(a)) = DOLpar
L2 (X,Eα(a)),

Ik+1(Eα(a)) = image of Ik(Eα(a))[−1]⊗ f ∗Ω1
Y (logQ) in DOLpar

L2 (X,Eα(a)).

From (4.3.2) we see immediately that we must have

W−2,0(H,Eα(a)) = W0(H,Eα(a)).

Consequently, W−2,0(H,Eα(a) ⊗ Ω1
X(logD)) must fit into the short exact sequence:

0

W0(H,Eα(a))⊗ f ∗Ω1
Y (logQ)

W−2,0(H,Eα(a) ⊗ Ω1
X(logD))

W−2(H,Eα(a))⊗ Ω1
X/Y (logD)

0.

To find W−2,0(H,Eα(a) ⊗ Ω1
X(logD)), we use the short exact sequence on X:

0 f ∗Ω1
Y (logQ) Ω1

X(logD) Ω1
X/Y (logD) 0.
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and take the tensor product with W0(H,Eα(a)) to get

0

W0(H,Eα(a))⊗ f ∗Ω1
Y (logQ)

W0(H,Eα(a))⊗ Ω1
X(logD)

W0(H,Eα(a))⊗ Ω1
X/Y (logD)

0.

(4.3.3)

Now we define W−2,0(H,Eα(a) ⊗ Ω1
X(logD)) to be the preimage of

W−2(H,Eα(a)) ⊗ Ω1
X/Y (logD) in W0(H,Eα(a)) ⊗ Ω1

X(logD) by the natural inclu-

sion

W−2(H,Eα(a))⊗ Ω1
X/Y (logD) ⊂ W0(H,Eα(a))⊗ Ω1

X/Y (logD).

ForW−2,0(H,Eα(a)⊗Ω2
X(logD)), since DOLpar

L2 (X/Y,Eα(a)) has no degree 2 term,

we see that W−2,0(H,Eα(a) ⊗ Ω2
X(logD)) must fit into the short exact sequence:

0

image of W0(H,Eα(a))⊗ f ∗Ω1
Y (logQ)⊗ f ∗Ω1

Y (logQ) in W−2,0(H,Eα(a) ⊗ Ω2
X(logD))

W−2,0(H,Eα(a) ⊗ Ω2
X(logD))

W−2(H,Eα(a))⊗ Ω1
X/Y (logD)⊗ f ∗Ω1

Y (logQ)

0.
(4.3.4)
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Note that the first term in (4.3.4) must be 0, and we have

Ω1
X/Y (logD)⊗ f ∗Ω1

Y (logQ) ' Ω2
X(logD).

Therefore, we conclude that

W−2,0(H,Eα(a) ⊗ Ω2
X(logD)) = W−2(H,Eα(a))⊗ Ω2

X(logD).

Now, we have obtained the absolute Dolbeault complex DOLpar
L2 (X,Eα(a)) and by

analogy the push forward of (4.3.2) by f yields the Higgs field of F i:

Rif∗DOLpar
L2 (X/Y,Eα(a)) Ri+1f∗(DOLpar

L2 (X/Y,Eα(a))[−1]⊗ f ∗Ω1
Y (logQ))

F i
a F i

a ⊗ Ω1
Y (logQ).

θ

To help understand the L2 parabolic Dolbeault complex, we briefly look at the

analytic motivation behind its definition (See [7] for details).

Consider an open fiber X◦y = (X − D)y for y ∈ Y − Q. Give it a metric that

is asymptotically the Poincaré metric near puncture points. We are interested in

the L2 cohomology of the harmonic bundle (L,D′,D′′, h) restricted to this fiber.

This is the cohomology of the complex of the complex of forms with coefficients in

L that are L2, and whose derivative is L2.

The main fact is that the L2 Dolbeault cohomology is isomorphic to the hyperco-

homology of the complex on Xy consisting of holomorphic forms whose restriction

to X◦y in in L2 and whose differential is also in L2. A standard estimate from

[20] implies that a holomorphic section of E|X◦y (resp. E|X◦y ⊗ Ω1
X◦y

) can be in L2
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only if it extends to a section of the 0-component of the parabolic structure E0

(E0 ⊗ Ω1
Xy

(logDy)).Furthermore, if it is in Ea (respectively Ea ⊗ Ω1
Xy

(logDy)) for

a < 0 then it is automatically L2.

Suppose e is a section of (E0)y near a point p on the horizontal divisor component

Dk and denote by grk,0(e) its projection in Grk,0(E)y. Suppose this projection is

in W` but not W`−1. Then, denoting by z a coordinate on Xy vanishing at p, the

norm of e is asymptotically

|e| ∼ | log |z||`/2.

Calculation with the Poincare metric for the norms of sections tells us that e is in

L2 if and only if ` ≤ 0. Similarly, a section edz
z

of E0 ⊗ Ω1
Xy

(logDy) is in L2 if and

only if

grk,0(e) ∈ W−2 Grk,0(E).
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Chapter 5

Direct images of Higgs bundles

revisited

In this chapter, we analyze the spectral data for the pushforward of a parabolic Higgs

bundle (E,ϕ) on X that has both vertical and horizontal parabolic divisors. Our

strategy is to first use the root stack construction to remove the parabolic structure

by converting (E,ϕ) to a meromorphic Higgs bundle (Ẽ, ϕ̃) on the orbifold X̃. The

Higgs data (Ẽ, ϕ̃) is then encoded in a coherent sheaf (the spectral sheaf Ẽ) over

the total space of the logarithmic cotangent bundle of X̃. After that we show how

to describe the spectral sheaves for the higher direct images of (E,ϕ) in terms of Ẽ .

To start, we first study the case that f : X → Y is smooth and we only have

horizontal parabolic divisors. To do this, we look at the cohomology of (E,ϕ) along

each fiber of f . Note that the fiber of f is a smooth curve, and the restriction
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of (E,ϕ) to each fiber will be a parabolic Higgs bundle with several poles at the

intersections with those horizontal divisors. To reduce complexity in the notation

we will focus on the case when there is only one pole p in the fiber, that is when

the horizontal divisor is a section. The general case easily reduces to this one by a

base change.

5.1 Spectral data on the orbicurve

Suppose that we fix a parabolic Higgs bundle (E,ϕ) on a smooth curve C and

the parabolic structure is given at p ∈ C. We will calculate algebraically the L2

cohomology of (E,ϕ) and describe it using the spectral sheaf. Denote the root stack

of (C, p) by (C̃, p̃). We will write µ : C̃ → C and π̃ : tot(Ω1
C̃

) → C̃ for the natural

projections, and we will denote the composite map µ ◦ π̃ by π. Thus we have the

basic diagram:

tot(Ω1
C̃

(p̃)) C̃

C

π

π̃

µ (5.1.1)

We start with a simple case where (E,ϕ) is strongly parabolic.

Proposition 5.1.1. Suppose (E,ϕ) is strongly parabolic. Then the parabolic L2

Dolbeault complex of (E,ϕ) is isomorphic to the complex

π∗Ẽ π∗(Ẽ ⊗ π̃∗Ω1
C̃

).
π∗(⊗λ)
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Proof. Since (E,ϕ) is strongly parabolic, the residue map on Grp,0(E) is trivial.

Hence we find that W0E0 = E0 and W−2E0 = E−ε. By our root stack construction,

we have E0 = µ∗(Ẽ) and

E−ε ⊗ Ω1
C(p) = F`−1 ⊗ Ω1

C

= µ∗(Ẽ ⊗ L̃`−1)⊗ Ω1
C

= µ∗(Ẽ ⊗ L̃`−1 ⊗ µ∗Ω1
C)

= µ∗(Ẽ ⊗ Ω1
C̃

).

On the other hand, since π̃∗Ẽ = Ẽ, we have π∗Ẽ = µ∗(π̃∗Ẽ) = µ∗Ẽ and using

the projection formula we have

π∗(Ẽ ⊗ π̃∗Ω1
C̃

) = µ∗(π̃∗(Ẽ ⊗ π̃∗Ω1
C̃

)) = µ∗(π̃∗Ẽ ⊗ Ω1
C̃

) = µ∗(Ẽ ⊗ ΩC̃).

This proves the proposition.

Since all the maps in (5.1.1) have no higher direct images, this proposition tells

us that

RΓ(C,DOLpar
L2 (C,E)) = RΓ(C̃, Ẽ → Ẽ ⊗ Ω1

C̃
) (5.1.2)

= RΓ(tot(Ω1
C̃

), Ẽ → Ẽ ⊗ π̃∗Ω1
C̃

) (5.1.3)

Next, we consider the case where (E,ϕ) is tame parabolic with nilpotent residue but

is not necessarily strongly parabolic. In this case the root stack construction con-

verts (E,ϕ) into a meromorphic (non-parabolic) Higgs bundle (Ẽ, ϕ̃) with nilpotent
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residue on C̃. To get the correct cohomology we again need to take into account

the weight filtration of Ẽ by thinking of it as a parabolic Higgs bundle with the

trivial parabolic structure at p̃.

Lemma 5.1.2. The parabolic L2 Dolbeault complex of (E,ϕ) is isomorphic to the

complex

µ∗(W0Ẽ) µ∗(W−2Ẽ ⊗ Ω1
C̃

(p̃)).
µ∗ϕ̃

(5.1.4)

Proof. Recall from Section 2.4 that locally around p̃, Ẽ decomposes into
⊕`−1

j=0Mj

and we have for 0 ≤ i ≤ `− 1

Fi = z−iMi,

where Fi is the parabolic filtration of (E,ϕ) in (2.4.1), and z is a local coordinate

of the covering space of C̃. In particular, locally we have E0 = M0 and E−ε =

F`−1(−p) = zM`−1. Since the parabolic structure of Ẽ is trivial, we have Ẽ−ε =

Ẽ(−p̃) =
⊕`−1

j=0 zMj. Hence, the µ` fixed part of Ẽ−ε is zM`−1.

To finish the proof, we note that resp̃ ϕ̃ preserves the decomposition
⊕`−1

j=0Mj.

Therefore, the weight filtration of Ẽ is the direct sum of the weight filtrations of

each Mj. Since µ∗ returns only µ` fixed sections, we see that

µ∗(W0Ẽ) = W0E0, µ∗(W−2Ẽ) = W−2E0.

The proposition follows from using the projection formula on the right hand side of

(5.1.4).
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We need to interpret the complex (5.1.4) in terms of the spectral data of the mero-

morphic Higgs bundle (Ẽ, ϕ̃). The key is to identify a geometric filtration F• on the

spectral sheaf Ẽ of Ẽ which induces the monodromy weight filtration W• on Ẽ by

π̃∗. Since this problem in fact has nothing to do with the orbicurve structure, we

will simplify notation and work under the assumption that (E,ϕ) is a meromorphic

Higgs bundle on C with a pole at p and has a nilpotent residue. For simplicity, we

assume further that the spectral cover S = Supp(E) is smooth and the residue of

ϕ is regular at p. This is to say, resp ϕ is nilpotent and has only one Jordan block,

and the projection from S to C is totally ramified at p of degree r = rank E.

Let q ∈ S be the point that maps down to p. Recall that the spectral sheaf

satisfies π∗E = E. Choose a pair of local coordinates (x, y) for tot(Ω1
C(p)) around q

by taking x to be the local coordinate along the zero section and y along the vertical

direction such that S is locally given by the equation x = yr. At p we see that

Ep = π∗E ⊗ OC/mp

= π∗(E ⊗ π∗(OC/mp))

= π∗(E|π−1(0)).

E is locally represented by a finitely generated C[x, y]-module M , which is supported

over the curve x = yr. Hence, we have π∗(E|π−1(0)) ' M/xM . The residue of the

Higgs field ϕ at p is therefore equal to

M/xM M/xM.
×y
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Since E is flat over C, we can take M to be a free C[x]-module of rank r. By our

assumption that resp ϕ is regular, we may choose a set of C[x]-basis {e1, · · · , er} for

M with the property that the multiplication by y maps ei to ei+1. It follows that

the monodromy weight filtration of M/xM is equal to the filtration

Wi(M/xM) :=


y
r−1
2
−b i

2
cM/xM if r is odd;

y
r
2
−b i+1

2
cM/xM if r is even.

Therefore, we have proved

Proposition 5.1.3. Let W• be the filtration on E defined by taking the preimage

of Wi(M/xM) in the quotient map M → M/xM . Then the complex (5.1.4) is

isomorphic to the following complex:

π∗(W0E) π∗(W−2E ⊗ π∗Ω1
C(p)).

π∗(⊗λ)
(5.1.5)

Put t = (r − 1)/2 if r is odd and t = r/2 if r is even. Let R be the intersection

of the spectral cover S with the zero section Σ of tot(Ω1
C(p)).

R S

Σ tot(Ω1
C(p)) C

j ι
ρ

i π

Let F = ι∗E . Then we have ι∗F = E . From our previous discussion we have

seen that

W0E = ι∗(F ⊗OS(−tq))
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and

W−2E = ι∗(F ⊗OS(−(t+ 1)q)).

Since we will use the derived projection formula in the following calculation, we

state the formula before we proceed.

Theorem 5.1.4 (Projection formula). For any F• ∈ Db(X) and G• ∈ Db(Y ), we

have

Rf!F•
L
⊗ G• ' Rf!(F•

L
⊗ f ∗G•),

where f! is the direct image with compact supports functor, i.e.

f!F(U) := {s ∈ Γ(f−1(U),F) such that f |Supp(s) : Supp(s)→ U is proper }.

In the case that f is a closed immersion, we have Rf! = f∗. We can now calculate

the cohomology of (5.1.5) as follows:

RΓπ∗(W0E
⊗λ−→ W−2E ⊗ π∗Ω1

C(p))

= RΓρ∗(F ⊗OS(−tq) ⊗λ−→ F ⊗OS(−(t+ 1)q)⊗ ρ∗Ω1
C(p))

= RΓρ∗(F
L
⊗ (OS(−(t+ 1)q)⊗ ρ∗Ω1

C(p)|R)[−1])

= RΓπ∗(E
L
⊗ ι∗(OS(−(t+ 1)q)⊗ ρ∗Ω1

C(p)|R)[−1])

= RΓ(π ◦ i)∗(i∗E
L
⊗ j∗(OS(−(t+ 1)q)⊗ ρ∗Ω1

C(p)|R)[−1]) (5.1.6)

= RΓ(i∗E
L
⊗ ωR[−1]), (5.1.7)

where in the last step we denote j∗(OS(−(t+ 1)q)⊗ ρ∗Ω1
C(p)|R) by ωR.
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Remark 5.1.5. Recall that in Theorem 3.2.1, we showed that the the spectral sheaf of

the higher image of a holomorphic Higgs bundle (E,ϕ) is given by

Rg∗(i∗E
L
⊗ ωZ/T ∗Y [−d]). In the special case that X = C and Y = pt, f ∗T ∗Y de-

generates to the zero section Σ. We can check that (5.1.6) gives the same result as

Theorem 3.2.1. For a meromorphic Higgs bundle on C, (5.1.6) is very similar to

(3.2.5).

5.2 The relative case

5.2.1 The case with no vertical divisors

Suppose now f : X → Y is a smooth map from a surface to a curve. (E,ϕ) is

a parabolic Higgs bundle with parabolic structure along some horizontal divisor

DH = qDi.

We can apply the root stack construction on X with respect to (E,DH) to obtain

a orbisurface X̃ and a map µ : X̃ → X. Note that since DH is horizontal, along

each fiber Xy = f−1(y), X̃|Xy is equal to the orbicurve of Xy with respect to the

restriction of (E,DH) to Xy. This tells us that passage to the root stack does not

alter the horizontal differential forms, that is the differential forms that are pullback

from Ω1
Y . On the other hand, from Section 2.4 it follows that the differentials in

the vertical direction satisfy

Ω1
X̃/Y

(log D̃H) = µ∗(Ω1
X/Y (logDH)). (5.2.1)
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Let (Ẽ, ϕ̃) be the meromorphic Higgs bundle on X̃ corresponding to (E,ϕ) via the

root stack construction. From (5.2.1) and the proof of Lemma 5.1.2, we see that

the parabolic L2 Dolbeault complex for (Ẽ, D̃H) is the pushforward of the parabolic

L2 Dolbeault complex for (E,DH):

DOLpar
L2 (X/Y,E) = µ∗(DOLpar

L2 (X̃/Y, Ẽ)). (5.2.2)

Since µ has no higher direct images, (5.2.2) implies that DOLpar
L2 (X/Y,E) and

DOLpar
L2 (X̃/Y, Ẽ) will have the same hyperdirect images to Y . Furthermore, we

can check that the pushforward of Higgs fields are also equal:

Proposition 5.2.1. The following two short exact sequences of complexes are iso-

morphic:

(1) (2)

0 0

DOLpar
L2 (X/Y,E)[−1]⊗ f ∗Ω1

Y µ∗(DOLpar
L2 (X̃/Y, Ẽ)[−1]⊗ f ∗Ω1

Y )

DOLpar
L2 (X,E)/I2(E)) µ∗(DOLpar

L2 (X̃, Ẽ))/I2(Ẽ))

DOLpar
L2 (X/Y,E) µ∗(DOLpar

L2 (X̃/Y, Ẽ))

0 0

Proof. Note that since X is a surface I2(E) = I2(Ẽ) = 0. From Section 4.3 we have
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seen that

DOLpar
L2 (X,E) =



W0(H,E)

W−2(H,E)⊗ Ω1
X(logDH) +W0(H,E)⊗ f ∗Ω1

Y

W−2(H,E)⊗ Ω2
X(logDH)

∧ϕ

∧ϕ


,

and DOLpar
L2 (X, Ẽ) takes the same form. The claim that (1) and (2) are isomorphic

now follows since (5.2.2) and the proof of Lemma (5.1.2) give a term by term isomor-

phism of these complexes while the Higgs fields coincide generically and intertwine

the term by term isomorphisms, and so must be equal everywhere.

To summarize, we have shown that the higher direct images of the parabolic Higgs

bundle (E,ϕ) are equal to the higher direct images of the meromorphic Higgs bundle

(Ẽ, ϕ̃) on the orbisurface X̃. Next, we shall find the spectral data for the higher

direct images using the spectral data of (Ẽ, ϕ̃). For the sake of simplicity, in the

following we assume (E,ϕ) is already a meromorphic Higgs bundle along DH and

thus suppress those cumbersome tilde notations.

It is crucial to note that the monodromy weight filtration W (H,E) is irrelevant

to the component of the Higgs field ϕ with respect to the horizontal differentials.

We can extend globally the formula (5.16) which is valid along each fiber of f to

X. As in (3.2.2), let Z be the pullback of T ∗Y by f . Put ρ = πX ◦ ι, and we consider

the following diagram:
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S R

tot(Ω1
X(logDH)) Z T ∗Y

X Y

ι j

πX

p

i g

πY

f

(5.2.3)

Let ϕ : E → E ⊗ Ω1
X/Y (logDH) be the relative Higgs field induced from ϕ. In the

following, we assume that the restriction of the Ω1
X/Y (logDH)-valued Higgs bundle

(E,ϕ) to each fiber Xy has a smooth spectral curve.

Theorem 5.2.2. Suppose that the meromorphic Higgs bundle (E,ϕ) has nilpotent

residues along a horizontal divisor DH and the residue along each divisor component

of DH is regular, i.e. it has only one Jordan block. Let B be the preimage of DH in

the zero section of tot(Ω1
X(logDH)). Denote the rank of E by r and put t = br/2c.

Then the spectral sheaf of the i-th higher direct image of (E,ϕ) is given by

Rig∗(i
∗E

L
⊗ ωR[−1]), (5.2.4)

where ωR = j∗(OS(−(t+ 1)B)⊗ ρ∗Ω1
X/Y (logD)|R).

Proof. This follows directly from the calculation in Section 5.1 of the cohomology

of parabolic Higgs bundles along each fiber of f .
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5.2.2 The general case

In this section, we consider the situation where we have both type of divisors:

D = DV +DH .

Given a parabolic Higgs bundle (E,ϕ) with parabolic structure along D, apply-

ing the root stack construction along the horizontal divisor DH , we again obtain

a meromorphic Higgs bundle (Ẽ, ϕ̃) on the orbisurface X̃ with logarithmic poles

along D̃H . In addition, (Ẽ, ϕ̃) has a parabolic structure along D̃V , which is induced

from the original parabolic Higgs bundle (E,ϕ). Thus at each parabolic level β

along D̃V , we have a meromorphic Higgs bundle (Ẽβ, ϕ̃) on X̃ with a logarithmic

Higgs field ϕ̃ : Ẽβ → Ẽβ ⊗ Ω1
X̃

(log D̃).

Note that the spectral sheaf for (Ẽ, ϕ̃) is parabolic, that is to say, the usual

spectral sheaf for (Ẽβ, ϕ̃) at each parabolic level β forms a filtration of sheaves: Ẽβ ⊆

Ẽβ′ if β ≤ β′. Furthermore, all these Ẽ have the same support in tot(Ω1
X̃

(log D̃)).

In the following, we will again assume that we work with the Higgs bundle

after the root stack construction. Hence, we are given a meromorphic Higgs bundle

(E,ϕ) on X with parabolic structure along a vertical divisor DV and the Higgs field

ϕ : Eβ → Eβ ⊗Ω1
X(logD). Let S be the spectral cover of Eβ for all β and Z be the

pullback of tot(Ω1
Y (logQ)) by f .
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S R

tot(Ω1
X(logD)) Z tot(Ω1

Y (logQ))

X Y

ι j

πX

p

i g

πY

f

(5.2.5)

Under the same assumption as Theorem 5.2.2, we obtain the following result.

Theorem 5.2.3. Assume that the residue on Eβ along each horizontal divisor com-

ponent is regular. Let B ⊂ tot(Ω1
X(logD)) be the preimage of DH in the zero section

of tot(Ω1
X(logD)). Then the spectral sheaf of the i-th higher direct image of (E,ϕ)

is the parabolic sheaf formed by

Rig∗(i
∗Eα(a)

L
⊗ ωR[−1]), (5.2.6)

where ωR = j∗(OS(−(t+1)B)⊗ρ∗Ω1
X/Y (logD)|R) and for each real number a, α(a)

is the parabolic weight by using weight a along all divisor components of DV .

Proof. This follows directly from our previous discussion and Theorem 4.3.2.
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