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Diffuse Optical Biomarkers Of Breast Cancer

Abstract
Diffuse optical spectroscopy/tomography (DOS/DOT) and diffuse correlation spectroscopy (DCS) employ
near-infrared light to non-invasively monitor the physiology of deep tissues. These methods are well-suited to
investigation of breast cancer due to their sensitivity to physiological parameters, such as hemoglobin
concentration, oxygen saturation, and blood flow. This thesis utilizes these techniques to identify and develop
diffuse optical biomarkers for the diagnosis and prognosis of breast cancer.

Notably, a novel DOS prognostic marker for predicting pathologic complete response to neoadjuvant
chemotherapy using z-score normalization and logistic regression was developed and demonstrated. This
investigation found that tumors that were not hypoxic relative to the surrounding tissue were more likely to
achieve complete response. Thus, the approach could enable dynamic feedback for the optimization of
chemotherapy. Similar logistic regression models based on other optical parameters distinguished tumors
from the surrounding normal tissue and diagnosed whether a lesion was malignant or benign. These
diagnostic markers improve the ability of DOS/DOT to accurately localize tumors and could serve as a type
of optical biopsy to classify suspicious lesions. Another study carried out the first longitudinal DCS blood
flow monitoring over a full course of neoadjuvant chemotherapy in humans; this work explored initial
correlations between blood flow and response to therapy and showed how DCS and DOS together can more
accurately probe tumor physiology than either modality alone. Finally, still other thesis research included the
final construction and initial imaging tests of a DOT instrument incorporated into a clinical MRI suite and the
optimization of the DOT reconstruction algorithm. In total, these instrumental and algorithmic advances
improved DOT image quality, helped to increase contrast between malignant and normal tissue, and
eventually could lead to better understanding of tumor microvasculature.

These contributions represent important steps towards the translation of diffuse optics into the clinic,
demonstrating significant roles for optics to play in the diagnosis, prognosis, and physiological understanding
of breast cancer.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Physics & Astronomy

First Advisor
Arjun G. Yodh

Keywords
Biomarkers, Biopsy, Breast Cancer, Diffuse Optics, Neoadjuvant Chemotherapy, Tomography

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2804

https://repository.upenn.edu/edissertations/2804?utm_source=repository.upenn.edu%2Fedissertations%2F2804&utm_medium=PDF&utm_campaign=PDFCoverPages


Subject Categories
Optics | Physics

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2804

https://repository.upenn.edu/edissertations/2804?utm_source=repository.upenn.edu%2Fedissertations%2F2804&utm_medium=PDF&utm_campaign=PDFCoverPages


DIFFUSE OPTICAL BIOMARKERS OF BREAST CANCER

Jeffrey M. Cochran Jr.

A DISSERTATION

in

Physics and Astronomy

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy

2018

Supervisor of Dissertation

Arjun G. Yodh, Professor of Physics and Astronomy

Graduate Group Chairperson

Joshua Klein, Professor of Physics and Astronomy

Dissertation Committee

Philip Nelson, Professor of Physics and Astronomy

Justin Khoury, Professor of Physics and Astronomy

Alison Sweeney, Assistant Professor of Physics and Astronomy

Ravinder Reddy, Professor of Radiology



DIFFUSE OPTICAL BIOMARKERS OF BREAST CANCER

COPYRIGHT

2018

Jeffrey Martin Cochran Jr.



ABSTRACT
DIFFUSE OPTICAL BIOMARKERS OF BREAST CANCER

Jeffrey M. Cochran Jr.

Arjun G. Yodh

Diffuse optical spectroscopy/tomography (DOS/DOT) and diffuse correlation spectroscopy (DCS)

employ near-infrared light to non-invasively monitor the physiology of deep tissues. These methods

are well-suited to investigation of breast cancer due to their sensitivity to physiological parameters,

such as hemoglobin concentration, oxygen saturation, and blood flow. This thesis utilizes these

techniques to identify and develop diffuse optical biomarkers for the diagnosis and prognosis of

breast cancer.

Notably, a novel DOS prognostic marker for predicting pathologic complete response to neoad-

juvant chemotherapy using z-score normalization and logistic regression was developed and demon-

strated. This investigation found that tumors that were not hypoxic relative to the surrounding

tissue were more likely to achieve complete response. Thus, the approach could enable dynamic

feedback for the optimization of chemotherapy. Similar logistic regression models based on other

optical parameters distinguished tumors from the surrounding normal tissue and diagnosed whether

a lesion was malignant or benign. These diagnostic markers improve the ability of DOS/DOT to

accurately localize tumors and could serve as a type of optical biopsy to classify suspicious lesions.

Another study carried out the first longitudinal DCS blood flow monitoring over a full course of

neoadjuvant chemotherapy in humans; this work explored initial correlations between blood flow

and response to therapy and showed how DCS and DOS together can more accurately probe tumor

physiology than either modality alone. Finally, still other thesis research included the final con-

struction and initial imaging tests of a DOT instrument incorporated into a clinical MRI suite and

the optimization of the DOT reconstruction algorithm. In total, these instrumental and algorithmic

advances improved DOT image quality, helped to increase contrast between malignant and normal

tissue, and eventually could lead to better understanding of tumor microvasculature.

These contributions represent important steps towards the translation of diffuse optics into the

clinic, demonstrating significant roles for optics to play in the diagnosis, prognosis, and physiological

understanding of breast cancer.

iii



Dedication
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And though I didn’t pick the day to turn the page

I know it’s not the end every time I see her face
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Chapter 1

Introduction

1.1 Diffuse Optics

The work in this thesis utilizes diffuse optical technologies to identify and follow various biomarkers

of tissue health. Visible light has long been used for diagnostic purposes in medicine [82]. Light in

this wavelength range is useful because it provides excellent spatial resolution and is non-ionizing

[254]. However, many tissue components, known as chromophores, are strong absorbers of visible

light; thus, these traditional optical techniques are largely limited to surface measurements [215].

On the other hand, photons with wavelengths in the near-infrared (NIR) window (∼ 650−950nm),

are able to traverse human tissue with relatively little absorption (see Figure 1.1) due to low levels

of NIR absorption of the most prominent tissue chromophores: oxygenated-hemoglobin (HbO2),

deoxygenated-hemoglobin (HHb), water, and lipid [155; 156; 215; 148]. This scenario permits the

measurement of deep tissue, between 1 and 4 cm below the surface depending on the tissue type and

optical properties [201; 85; 22]. Due to the preponderance of organelles and cells with diameters

of ∼ 1µm, tissue also strongly scatters photons [148] in the NIR range. The combination of high

scattering and low absorption provides the necessary conditions for light transport to obey a diffu-

sion equation in many tissues [202; 196; 267]. This well-known mathematical framework can thus

be exploited to probe tissue with light and is the basis of two diffuse optical techniques employed in

this thesis: diffuse optical spectroscopy (DOS), also known as near-infrared spectroscopy (NIRS),

and diffuse correlation spectroscopy (DCS). These techniques probe tissue optical properties, blood

volume, tissue blood oxygen saturation, and tissue blood flow non-invasively, using non-ionizing

radiation, and with portable, bedside instruments that permit continuous monitoring [98]. With

more spatial information, these monitoring techniques can be utilized to perform three-dimensional
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imaging with diffuse light: diffuse optical tomography (DOT) and diffuse correlation tomography

(DCT).

Figure 1.1: Tissue Chromophore Absorption Spectra. The absorption coefficients µa (see Section
2.1) due to four different tissue chromophores, oxy-hemoglobin HbO2, deoxy-hemoglobin HHb,
water, and lipid, for typical chromophore concentrations are plotted for wavelengths λ ranging
from 300nm to 1000nm [215; 148]. Wavelengths between ∼ 650nm and 950nm are demarcated
by the green box; they have significantly lower absorption in the NIR, thereby creating the so-called
physiological window where tissue absorption is low enough to allow depth penetration of greater
than several centimeters. Note that the water and lipid spectra are scaled by a factor of 100× so
that they are visible relative to the oxy- and deoxy-hemoglobin spectra.

For DOS, DOT, and DCS, near-infrared light is introduced into the tissue, e.g., via fiber couplers

or direct illumination, and either the transmitted or reflected light is detected. Then, using the

diffusion equation, an inverse problem can be solved to determine the tissue optical properties

[87; 203; 267]. In DOS and DOT, multiple wavelengths of light are typically used because the

differences in the known absorption spectra of the chromophores [148] (see Figure 1.1) can then

be employed to determine the concentrations of HbO2 and HHb [267; 266]; this information can

further be used to determine the total hemoglobin concentration (HbT ≡ HbO2 + HHb) and

tissue oxygen saturation (StO2 ≡ HbO2/HbT ). DCS is a qualitatively different NIR technique

which interrogates the decay of the temporal auto-correlation function of the measured intensity
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(see [33; 32] and references therein). This decay rate depends on the movement of scatterers in

the tissue, particularly red blood cells [97; 101; 98; 37], and thus, DCS provides a blood flow

index (BFI) that has been demonstrated to be proportional to blood flow [50; 158; 182; 51; 151].

Moreover, combining StO2 measurements from DOS with BFI measurements from DCS offers a

new ability to explore tissue oxygen metabolism [69; 97; 101; 273; 54].

1.2 Breast Cancer

Breast cancer is the most common form of cancer among women in the United States, accounting

for ∼ 30 % of all new cancer cases [233]. Approximately 1 in 8 women will develop invasive breast

cancer in her lifetime [89]. Breast tumors are most commonly detected via x-ray mammography

and determined to be malignant via an invasive needle biopsy [29]. These tumors are classified by

which tissues they are affecting (see Figure 1.2). They are then staged and tested for a variety of

genetic and hormonal markers to determine subtype [29; 1]. Typically, tumors form in-situ in either

glandular ducts or lobes, resulting in Ductal Carcinoma or Lobular Carcinoma In-Situ (DCIS or

LCIS), respectively. As these malignancies grow, they may invade the surrounding tissue to become

either Invasive Ductal Carcinomas (IDC) or Invasive Lobular Carcinomas (ILC), at which point

the cancer is classified as Stage I. Tumors that have then metastasized to local lymph nodes, such

as the axillary or sternal lymph nodes, are considered locally advanced breast cancer (LABC) and

are classified as either Stage II or Stage III. Further metastasis to other organs or distant lymph

nodes changes the classification to Stage IV [234]. In addition to staging, the biopsied tissue is

tested for a series of hormonal and proteomic markers that determine the cancer subtype and

inform the treatment regimen. These markers include the estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor (Her2) proteins, as well as the Ki-67

antigen [1]. Tumors that are ER-positive, PR-positive, or Her2-positive often receive hormone

treatment in addition to other therapies, which has been shown to improve outcome [235]. The

majority of breast cancer patients undergo surgical resection of the tumor, followed by an adjuvant

chemotherapy and/or radiation regimen. For LABC, though, it is common for subjects to undergo

a neoadjuvant chemotherapy regimen prior to surgery. This regimen can lead to improved response;

it also permits increased conservation of breast tissue during tumor resection and limits the need

for axillary node treatment and surgery [235].

There are several areas of weakness in the current clinical paradigm for both breast cancer detec-

tion and breast cancer treatment, which could potentially be addressed by new imaging/monitoring

technologies.
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Figure 1.2: Breast Tumors and Staging. A) In-situ carcinomas form in either the glandular ducts
(DCIS) or lobes (LCIS). They may grow and progress to become invasive carcinomas (IDC or ILC)
that affect the surrounding tissue. This diagram is taken from Cancer Research UK [4]. B) In-situ
tumors are not considered invasive and are thus classified as Stage 0. Stage I tumors are IDC or ILC
with no metastasis beyond the original tumor. Stage II and Stage III disease, also known as locally
advanced breast cancer (LABC), are defined as invasive tumors with the spread of malignancies to
regional lymph nodes. Stage IV is metastatic disease in which cancer has spread to other organs
or distant lymph nodes [234].
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1. Low Specificity of Mammography. X-ray mammography has a very high sensitivity to

breast tumors, i.e., it is very likely to detect malignancies. However, it has a low specificity,

i.e., it has limited ability to distinguish malignancies from benign masses (see Section 2.10

for a more detailed discussion of sensitivity and specificity). Thus, mammography has a high

false positive rate, prompting many unnecessary invasive biopsies.

2. Inaccessible Populations. Women with radiographically dense breasts, some of whom

may be at increased risk of breast-cancer [42; 131], are difficult to image with mammography.

Additionally, while other modalities such as PET or MRI may be able to complement or

augment the diagnostic ability of mammography, they also have logistical constraints, such

as ionizing radiation, cost, lack of insurance coverage, and low throughput, which prevent

wider adoption.

3. Monitoring Therapy Response. Breast cancer treatment regimens have few interme-

diate markers of cancer progression. Clinicians typically rely on post-therapy radiology or

post-surgery pathology to determine the therapy efficacy. This time-delay for acquisition of

useful information inhibits a physician’s ability to recognize and change ineffective treatment

regimens, which are costly and often have significant detrimental side effects.

1.3 Diffuse Optics Applications in Breast Cancer

Diffuse optical techniques are well-suited to study breast cancer for several reasons. First, breast

tissue has a particularly low absorption in the near-infrared window due to lower hemoglobin

concentrations and higher relative lipid concentrations than most tissue [99; 148]. These factors

lead to larger signals and deeper penetration of light into tissue. Also, due to the rapid proliferation

of cancer cells and the blood vessels that supply them, there is significant expected contrast between

tumors and background tissue in blood volume, blood flow, and oxygen metabolism [119; 57]. For

these reasons, and others, DOS [30; 273; 249], DOT [187; 120; 210; 191; 129; 140; 146; 169; 46; 263;

106; 72; 110; 25], and DCS [100; 273; 269; 53; 73] have all been extensively employed to investigate

breast cancer.

Furthermore, diffuse optics holds the potential to address some of the weaknesses of the current

breast cancer diagnosis and monitoring paradigms discussed in Section 1.2. For example, DOT has

shown potential for high specificity in distinguishing malignant tumors from benign lesions, such

as cysts and adenomas [67; 72; 165]. Though DOT cannot replicate the high spatial resolution

of x-ray mammography [195; 32], it could serve as a complement to mammography that reduces

false positive rates and, therefore, the number of unnecessary invasive biopsies. Additionally, diffuse
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optics could serve as an alternative modality for patient populations that are inaccessible to current

clinical imaging. For example, DOT can successfully image tumors in patients with radiographically

dense breasts [164]. Diffuse optical techniques are also generally cost-effective, available at the

bedside and free of ionizing radiation [98]; thus, they provide advantages that could help expand

the imaged patient population. Finally, the aforementioned logistical advantages position diffuse

optics as an ideal modality for repeated, longitudinal monitoring of patients undergoing cancer

treatment. Indeed, some potential markers of treatment efficacy, particularly in the neoadjuvant

chemotherapy setting, have been identified using both DOS [70; 248; 273; 59; 276; 154; 236; 61;

220; 109; 250; 71; 55; 249; 223] and DCS [273].

1.4 Thesis Contributions and Organization

The work in this thesis is focused on the development of novel biological markers for both cancer

diagnosis and for prediction of treatment efficacy using DOS, DOT, and DCS alone, in combination,

and with input from structural imaging modalities such as MRI. The remainder of this thesis is

organized as follows.

Chapter 2 presents a derivation of the theoretical and mathematical formalism that underlies

diffuse optical techniques. This includes the derivation of the diffusion equation (Section 2.2),

application of the boundary conditions and techniques required to solve the diffusion equation

inverse problem (Section 2.5), algorithms for DOT (Section 2.6), and a brief introduction to DCS

(Section 2.9). This chapter also includes a discussion of the statistical methods and models employed

throughout the thesis (Section 2.10).

Chapter 3 describes the development of a novel predictor for neoadjuvant chemotherapy re-

sponse. This new method employs a logistic regression machine learning algorithm and novel,

z-score normalized, diffuse optical spectroscopic imaging (DOSI) [30] measurements of tissue oxy-

gen saturation derived from a multi-site clinical trial [249]. This robust response prediction method

found that non-hypoxic tumors were more likely to achieve complete response to therapy and, ar-

guably, offers the most impressive evidence to date of the potential of diffuse optics for assessment

of cancer treatment efficacy and for guiding cancer treatment adaptations at early time-points.

These results have been submitted for publication [75].

Chapter 4 presents a pilot study that employed a subset of patients from the multi-site clinical

trial described in Chapter 3; importantly, these patients were imaged at the University of Penn-

sylvania with both DOSI and DCS. This work represents the first longitudinal DCS monitoring of

humans throughout the entire course of a neoadjuvant chemotherapy regimen. The combination of
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DOSI and DCS was shown to improve the quantitative accuracy of DCS. Moreover, the data com-

bination provided the ability to quantify tissue oxygen metabolism of the tumors during treatment.

The resulting publication showed interesting pilot observations of blood flow differences between

responders and non-responders to chemotherapy and rationalized these variations [76].

Chapter 5 describes the application of a z-score normalization and logistic regression scheme

for differentiating between malignant and normal tissue, as well as malignant and benign lesions,

across a large population of subjects (n = 222) measured using DOSI. The models developed from

this analysis hold potential to both improve tumor localization with DOS/DOT and to function as

an optical biopsy that can determine a probability of malignancy for suspicious lesions identified

by mammography. The publication of these findings is currently in preparation.

Chapter 6 describes the construction, optimization, and initial measurements of a high-spatial

density DOT instrument that operates concurrently with a clinical MRI. The DOT system utilizes

hybrid laser sources to measure absolute optical properties; the structural information from MRI

enables improvement of the DOT image quality. These capabilities have been validated in tissue

phantoms. The combination of the DOT with clinical MRI systems also presents an opportunity

to synthesize DOT biomarkers with hemodynamic properties measured by cutting-edge DCE-MRI

methods [237; 238; 92]. A manuscript describing this instrument is also currently being prepared.

Chapter 7 details the novel optimization of a DOT reconstruction algorithm for another high-

spatial density DOT instrument, which was described in a recent publication [25]. Modifications

to the data weighting method, the inverse problem regularization scheme, and the spatial density

of optical data was shown to significantly improve the quality of DOT images.

Finally, Chapter 8 contains a conclusion and some discussion of future directions.
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Chapter 2

Diffuse Optical and Statistical

Theory

Both of the primary optical techniques presented here, diffuse optical spectroscopy (DOS) and dif-

fuse correlation spectroscopy (DCS), are dependent on the quantification of diffuse light propagation

through highly scattering media. The analytical framework for DOS evolved from a special case of

the radiative transport equation (Section 2.1), in which certain assumptions about the propagation

media and light sources allow for approximation to a diffusion equation (Section 2.2). This diffusion

equation can be solved for the optical properties of either infinite (Section 2.4) or bounded (Section

2.5) homogeneous media or for heterogeneous media (Section 2.6) via tomographic reconstruction.

The reconstructed optical properties can then be utilized to determine significant physiological

properties (Section 2.8). Finally, a blood flow index can be calculated via DCS using a similar

diffusive framework (Section 2.9) for temporal auto-correlation.

The various physiological measures produced by DOS and DCS can then be used with statistical

and machine learning techniques (Section 2.10) to create useful biomarkers for cancer diagnosis and

prognosis.

2.1 Radiative Transport

The radiative transport equation (RTE) is a conservation of energy equation that governs the

propagation of electromagnetic radiation in an absorbing and scattering medium. A scalar version

of the RTE can be derived from Maxwell’s Equations [219] and written as
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1

v

∂L(~r, Ω̂, t, λ)

∂t
+ Ω̂ · ~∇L(~r, Ω̂, t, λ) =

− µt(~r, Ω̂, t, λ)L(~r, Ω̂, t, λ) +Q(~r, Ω̂, t, λ)+

µs(~r, Ω̂, t, λ)

∫
4π

L(~r, Ω̂′, t, λ) f(Ω̂, Ω̂′, ~r, t, λ) dΩ′. (2.1)

Here, the quantities have the following definitions:

• L(~r, Ω̂, t, λ) is the light radiance [Wcm−2sr−1] at position ~r and time t, with wavelength λ,

propagating in the Ω̂ direction.

• µa(~r, Ω̂, t, λ) and µs(~r, Ω̂, t, λ) are the absorption and scattering coefficients [cm−1], respec-

tively, at position ~r and time t for light with wavelength λ traveling in the Ω̂ direction.

• µt is the transport coefficient [cm−1], which is defined as

µt = µa + µs. (2.2)

• Q(~r, Ω̂, t, λ) is the power per unit volume [Wcm−3sr−1] emitted by sources at position ~r and

time t, with wavelength λ, propagating in the Ω̂ direction.

• f(Ω̂, Ω̂′, ~r, t, λ) is the normalized scattering phase function, which represents the probability

density of a photon with wavelength λ propagating in the Ω̂′ direction scattering into the Ω̂

direction at position ~r and time t.

Each term of the RTE describes an aspect of the physics governing photon transport.

2.1.1 Material Derivative

A material derivative describes the time rate of change of a quantity that is subject to some flow

velocity v in a given direction Ω̂ [31]. In this case, the measured quantity is the light radiance L,

and its material derivative is the left-hand side of Equation 2.1, given as

1

v

∂L(~r, Ω̂, t, λ)

∂t
+ Ω̂ · ~∇L(~r, Ω̂, t, λ). (2.3)

Thus, the left-hand side of Equation 2.1 is simply the rate of change of L at position ~r and time t

with wavelength λ in the Ω̂ direction. The terms on the right-hand side of Equation 2.1 then must

represent all possible mechanisms for changing the light radiance in the system; these will now be

explored.
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2.1.2 Absorption and Scattering Loss

In transport theory, the light radiance L in a particular direction Ω̂ can decrease via two mecha-

nisms: 1) the absorption of photons and 2) the scattering of photons into a different direction of

propagation. To quantify the amount of absorbed and scattered light, the absorption coefficient,

µa [cm−1] and scattering phase function p(Ω̂′, Ω̂) [cm−1sr−1] are used.

The absorption coefficient µa represents the linear probability density of a photon being ab-

sorbed, and it can thus be used to calculate the total power density per unit steradian lost due to

absorption

µa(~r, Ω̂, t, λ)L(~r, Ω̂, t, λ). (2.4)

The absorption length la, i.e., the mean distance of propagation before a photon is absorbed,

can also be can also be calculated by using µa and solving for the expectation value of propagation

distance, resulting in

la =
1

µa
. (2.5)

The scattering phase function p(Ω̂′, Ω̂) [cm−1sr−1] is the probability density that a photon trav-

eling in the Ω̂ direction will be scattered into the Ω̂′ direction. For isotropic scattering, p(Ω̂′, Ω̂) = 1

whereas non-isotropic scattering will have a p with an angular dependence, e.g., the Rayleigh scat-

tering phase function p(Ω̂′, Ω̂) = 3
4

(
1 + cos2 (Ω′ − Ω)

)
[43]. Here, we are interested in the loss in

light radiance due to scattering, and, as such, we are interested in the probability of light scattering

from Ω̂ into any other direction. Thus, we can define the scattering coefficient µs as

µs(Ω̂) =

∫
4π

p(Ω̂′, Ω̂)dΩ′, (2.6)

which is the integral of the scattering phase function p(Ω̂′, Ω̂) over all possible target solid angles

Ω̂′. As with µa and absorption, µs can also be used to calculate the power density per steradian

lost to scattering, given by

µs(~r, Ω̂, t, λ)L(~r, Ω̂, t, λ) (2.7)

and the scattering length ls, which represents the mean distance a photon will travel before being

scattered,

ls =
1

µs
. (2.8)

Given the power densities lost due absorption (Equation 2.4) and scattering (Equation 2.7) and

the definition of the transport coefficient µt from Equation 2.2, it is apparent that the term

µt(~r, Ω̂, t, λ)L(~r, Ω̂, t, λ) (2.9)
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from the right-hand side of Equation 2.1 represents the loss of power density per unit steradian in

the Ω̂ direction due to both absorption and scattering.

Figure 2.1: Diagram of the change in light radiance in a single, infinitesimal volume element and
propagation direction. A single volume element at position ~r and time t experiences an increase
in radiance L with wavelength λ, propagating in the Ω̂ direction via two mechanisms: 1) Light
Sources Q (Section 2.1.3), and 2) Scattering of light into the Ω̂ direction from another direction Ω̂′

(Section 2.1.4). The volume element experiences a decrease in radiance due to absorption and the
scattering of light traveling in the Ω̂ direction into any other direction (Section 2.1.2).

2.1.3 Light Sources

The Q(~r, Ω̂, t, λ) term represents the power of light emitted per unit volume by all light sources

with wavelength λ in the Ω̂ direction at position ~r and time t. Therefore, this term represents a

increase in light radiance due light sources.

2.1.4 Scattering Gain

Section 2.1.2 discussed the loss of light radiance propagating in the Ω̂ direction due to scattering.

It is also possible for light traveling in a different initial direction Ω̂′ to be scattered into the Ω̂

direction, resulting in an increase in light radiance along Ω̂. To interrogate this phenomenon, the

normalized scattering phase function f is defined as
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f(Ω̂, Ω̂′, ~r, t, λ) ≡ p(Ω̂, Ω̂′, ~r, t, λ)

µs(~r, Ω̂, t, λ)
. (2.10)

Therefore, f(Ω̂, Ω̂′) represents the fractional probability that a photon that is scattered while prop-

agating along Ω̂′ is scattered into the Ω̂ direction. Given the definition of µs in Equation 2.6, it

follows that ∫
4π

f(Ω̂, Ω̂′)dΩ′ = 1, (2.11)

and thus, as per its name, f is normalized. Given the definition of f in Equation 2.10 and the

analogous term for radiance loss due to scattering in Equation 2.7, the final term on the right-hand

side of Equation 2.1

µs(~r, Ω̂, t, λ)

∫
4π

L(~r, Ω̂′, t, λ))f(Ω̂, Ω̂′, ~r, t, λ)dΩ′ (2.12)

represents the light radiance increase due to photons scattered into the Ω̂ direction from all other

directions.

Thus, it has been demonstrated that the RTE in Equation 2.1 can be thought of as an equation

of conservation for light radiance along a propagation direction Ω̂.

2.1.5 Assumptions

The scalar RTE from Equation 2.1 provides a significantly simpler framework than Maxwell’s Equa-

tions for analysis and calculation of photon transport in a variety of interesting media, including

Earth’s atmosphere [226] and astronomical dust and gas clouds [68]. However, Equation 2.1 is only

valid under the following assumptions [219], which allow for the use of geometric optics [137]:

1. The average distance of propagation between photon absorption and scattering events is

significantly larger than the wavelength of light.

la, ls >> λ. (2.13)

Under this condition, light can be modelled using a far-field, plane wave representation, and

the interference between neighboring particles can be neglected in determining the absorption

and scattering properties of the particles [42]. For near-infrared light (λ ∼ 800nm) in tissue,

these quantities are typically in the range of ls ∼ 0.02 cm and la ∼ 10 cm, and thus, the

condition is fulfilled.

2. The light is unpolarized in the medium of propagation, and thus a scalar radiance can be

used instead of a vector representation of the light intensity [137].
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3. The index of refraction n is homogeneous throughout the medium. This condition is not

necessary to create a scalar RTE, but it does allow for the assumption of constant propagation

velocity for light in the medium. If the index of refraction is sufficiently non-uniform, the

heterogeneity must be accounted for to properly quantify the photon propagation [83].

The RTE is also an accurate model for the migration of photons through human tissue [128], in

which the necessary assumptions are usually met. However, for most relevant tissues, measurement

geometries, and boundary conditions, solutions to the RTE require computationally intensive nu-

merical methods [14]. Simplifying the RTE, using a series of approximations that are valid in many

biological tissues of interest, leads to a diffusive model of photon propagation, which creates more

readily usable analytic solutions and boundary conditions. Section 2.2 will detail the derivation of

this diffusion approximation (DA) from the full scalar RTE.

2.2 Photon Diffusion Approximation

The general form of the homogeneous partial differential diffusion equation is

∂F (~r, t)

∂t
− ~∇(D(~r)~∇F (~r, t)) = 0, (2.14)

where F is a generic function of ~r and t, and D is a spatially dependent diffusion coefficient.

This mathematical framework has well-known solutions for a variety of interesting geometries and

boundary conditions [9] and has been used to describe, among other processes, the transfer of heat

through metal [58] and the mixing of gases [21]. Under typical conditions present in biological

tissue, the transport of photons can often be described via a diffusion equation derived from the

full RTE [22; 32; 254]. The following sub-sections will describe this derivation and the necessary

assumptions required for the diffusion approximation’s validity.

2.2.1 Photon Fluence Rate and Flux

Three quantities associated with light radiance and sources must first be defined.

1. Photon Fluence Rate

Φ(~r, t, λ) ≡
∫

4π

L(~r, Ω̂, t, λ) dΩ (2.15)

where Φ, the photon fluence rate, has units of [Wcm−2] and is defined as the integral of the

light radiance over all solid angles. Thus, the photon fluence rate can be thought of as the

total power per unit area of photons with a given wavelength λ moving radially outward at

a specific position ~r and time t.
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2. Photon Flux

~J(~r, t, λ) ≡
∫

4π

L(~r, Ω̂, t, λ) Ω̂ dΩ (2.16)

where ~J , the photon flux, has units of [Wcm−2] and can be thought of as the direction-

dependent sum of the radiance with wavelength λ emerging from a volume element at position

~r and time t.

3. Source Power Concentration

S(~r, t, λ) ≡
∫

4π

Q(~r, Ω̂, t, λ) dΩ (2.17)

where S, the radiant source power concentration, has units of [Wcm−3] and is the concentra-

tion of power emitted radially outward at wavelength λ from a source at position ~r and time

t over all solid angles Ω̂.

These physical quantities allow for the simplification of the RTE under certain assumptions.

2.2.2 Assumption 1: Isotropic Medium

The first necessary assumption is that the medium through which the light propagates is isotropic.

This condition is typically satisfied for disordered media without an underlying crystalline or semi-

crystalline structure, eliminating any orientation-dependence of the permittivity, permeability, and

index of refraction [43]. Importantly, this also eliminates the orientation-dependence of the absorp-

tion and scattering coefficients, which is represented mathematically as

µa(~r, Ω̂, t, λ)→ µa(~r, t, λ), (2.18)

µs(~r, Ω̂, t, λ)→ µs(~r, t, λ). (2.19)

Thus, throughout the medium, incident photons will be absorbed or scattered with the same re-

spective probabilities, regardless of their direction of travel.

The first step in the diffusion approximation derivation is to integrate the entire RTE over all

4π solid angles, resulting in∫
4π

1

v

∂L(~r, Ω̂, t, λ)

∂t
dΩ +

∫
4π

Ω̂ · ~∇L(~r, Ω̂, t, λ) dΩ =

−
∫

4π

µt(~r, Ω̂, t, λ)L(~r, Ω̂, t, λ) dΩ +

∫
4π

Q(~r, Ω̂, t, λ) dΩ +∫
4π

µs(~r, Ω̂, t, λ)

∫
4π

L(~r, Ω̂′, t, λ) f(Ω̂, Ω̂′, ~r, t, λ) dΩ′ dΩ. (2.20)
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Since Ω̂ is constant relative to the spatial derivative ~∇, the following equation is true:

Ω̂ · ~∇L(~r, Ω̂, t, λ) = ~∇ · (L(~r, Ω̂, t, λ) Ω̂). (2.21)

Then, by incorporating the relations in Equations 2.18, 2.19, and 2.21, as well as the quantities

defined in Equations 2.15, 2.16, and 2.17, Equation 2.20 can be rewritten as

1

v

∂Φ(~r, t, λ)

∂t
+ ~∇ · ~J(~r, t, λ) = −µt(~r, t, λ) Φ(~r, t, λ) + S(~r, t, λ) +

µs(~r, t, λ)

∫
4π

[∫
4π

f(Ω̂, Ω̂′, ~r, t, λ) dΩ

]
L(~r, Ω̂′, t, λ) dΩ′. (2.22)

The next assumption will further simplify Equation 2.22 to define a continuity relation.

2.2.3 Assumption 2: Rotational Symmetry in Scattering Phase Function

The second assumption is that the normalized scattering phase function f is rotationally symmetric;

therefore, f is dependent only on the angle between the incident and scattering directions, rather

than the absolute incident or scattering direction. Mathematically, this means that

f(Ω̂, Ω̂′, ~r, t, λ) = f(Ω̂ · Ω̂′, ~r, t, λ), (2.23)

and ∫
4π

f(Ω̂ · Ω̂′, ~r, t, λ)dΩ = 1. (2.24)

Using Equation 2.24 and Equation 2.15, the RTE in Equation 2.22 simplifies to a continuity

relation for the fluence rate,

1

v

∂Φ(~r, t, λ)

∂t
+ ~∇ · ~J(~r, t, λ) + µa(~r, t, λ)Φ(~r, t, λ) = S(~r, t, λ), (2.25)

which will later be used to simplify the RTE to a diffusion equation.

Physically, this assumption is usually satisfied under the same conditions that the isotropic

medium assumption is satisfied, so it is typically valid in the biological tissues of interest.

2.2.4 Spherical Harmonic Expansion

Spherical harmonic series expansion is a useful technique for approximating quantities that have

specific angular dependence, like the radiance L in the RTE. Here, L is written as

L(~r, Ω̂, t, λ) =

N∑
l=0

l∑
m=−l

√
2l + 1

4π
φ̃lm(~r, t, λ)Ylm(Ω̂) (2.26)
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where Ylm(Ω̂) is the spherical harmonic term with angular dependence, φ̃lm(~r, t, λ) is the spherical

harmonic coefficient without angular dependence, and N is the number of terms in the expansion

[9]. Given this definition, the photon fluence rate Φ and the dot product of the photon flux ~J and

the propagation direction Ω̂ can be calculated using the l = 0 and l = 1 spherical harmonic terms,

respectively, as follows

Φ(~r, t, λ) =
√

4π φ̃00(~r, t, λ)Y00(Ω̂), (2.27)

~J(~r, t, λ) · Ω̂ =

√
4π

3

[
φ̃1−1(~r, t, λ)Y1−1(Ω̂) + φ̃10(~r, t, λ)Y10(Ω̂) + φ̃11(~r, t, λ)Y11(Ω̂)

]
. (2.28)

A full derivation of these representations of Φ and ~J can be found in Appendix A.1.

2.2.5 Assumption 3: Light is Nearly Isotropic

The third assumption required for the diffusion approximation is that light propagates approxi-

mately isotropically throughout the medium. Mathematically, this translates to

Φ(~r, t, λ)�
∣∣∣ ~J(~r, t, λ)

∣∣∣ (2.29)

because ~J is a vector while Φ is directionless. Physically, this condition is satisfied in tissue due

to multiple scattering; the direction of light propagation is randomized after photons have been

scattered many times.

In the spherical harmonic series expansion, only the l = 0 term Y00 is isotropic while the

higher order, i.e., l > 0, terms are increasingly anisotropic. Thus, given the assumption of nearly

isotropic light propagation, the series can be truncated without sacrificing accuracy. For media

with somewhat less isotropic light propagation, keeping all terms of the radiance expansion where

l ≤ 3, referred to as the P3 approximation, is necessary [98]. However, for many tissues of interest,

keeping only the l = 0 and l = 1 terms provides an accurate representation of the radiance. This

is referred to as the P1 approximation.

Given that the P1 approximation is valid, the spherical harmonic expansion in Equation 2.26

can be truncated at N = 1, and the spherical harmonic representations of photon fluence rate

(Equation 2.27) and flux (Equation 2.28) can be used to express the radiance as

L(~r, Ω̂, t, λ) =
1

4π
Φ(~r, t, λ) +

3

4π
~J(~r, t, λ) · Ω̂. (2.30)

Thus, under the P1 approximation, the radiance can be written as a linear combination of the photon

fluence rate and the projection of the photon flux into the Ω̂ direction. Substituting Equation 2.30
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into the RTE (Equation 2.1) while utilizing the previous assumptions and multiplying both sides

by 4π results in

1

v

∂Φ(~r, t, λ)

∂t
+

3

v

∂

∂t

(
~J(~r, t, λ) · Ω̂

)
+ Ω̂ · ~∇Φ(~r, t, λ) + 3Ω̂ · ~∇

(
~J(~r, t, λ) · Ω̂

)
=

− µt(~r, t, λ)Φ(~r, t, λ) − 3µt(~r, t, λ) ~J(~r, t, λ) · Ω̂ + 4πQ(~r, Ω̂, t, λ) +

µs(~r, t, λ)

∫
4π

Φ(~r, t, λ) f(Ω̂ · Ω̂′, ~r, t, λ) dΩ′ + 3µs(~r, t, λ)

∫
4π

~J(~r, t, λ) · Ω̂′ f(Ω̂ · Ω̂′, ~r, t, λ) dΩ′.

(2.31)

First, the fluence rate term for the gain due to scattering simplifies as follows

µs(~r, t, λ)

∫
4π

Φ(~r, t, λ) f(Ω̂ · Ω̂′, ~r, t, λ) dΩ′ = µs(~r, t, λ) Φ(~r, t, λ) (2.32)

due to the lack of Ω̂′ dependence of the fluence rate and Equation 2.24. To simplify the flux term

for the gain due to scattering, Ω̂ is defined, without loss of generality, as pointing along the ẑ

direction, i.e.,

Ω̂ = ẑ. (2.33)

Thus, in spherical coordinates, the dot product between Ω̂ and Ω̂′ is simply

Ω̂ · Ω̂′ = cos θ′, (2.34)

where θ′ is the polar angle coordinate of Ω̂′. Then, using the definition of dΩ̂′ in Cartesian coordi-

nates (see Equation A.11 in Appendix A.1), the flux term of the gain due to scattering becomes

3µs(~r, t, λ)

∫
4π

~J(~r, t, λ) · Ω̂′ f(Ω̂ · Ω̂′, ~r, t, λ) dΩ′ =

3µs(~r, t, λ)

∫
4π

~J(~r, t, λ) · (cos θ′ · ẑ) f(Ω̂ · Ω̂′, ~r, t, λ) dΩ′. (2.35)

Given the definition of Ω̂, as seen in Equations 2.33 and 2.34, this term further simplifies to

3µs(~r, t, λ)

∫
4π

~J(~r, t, λ) · Ω̂′ f(Ω̂ · Ω̂′, ~r, t, λ) dΩ′ = 3µs g(~r, t, λ) ~J(~r, t, λ) · Ω̂. (2.36)

Here g, the anisotropy factor, is defined as

g(~r, t, λ) ≡
∫

4π

f(Ω̂ · Ω̂′, ~r, t, λ) Ω̂ · Ω̂′ dΩ′ (2.37)

=

∫
4π

f(cos θ′, ~r, t, λ) cos θ′ dΩ′ (2.38)

= 〈cos θ′〉, (2.39)
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and is thus the ensemble average of the cosine of the angle between the incident and scattered

propagation directions. Therefore, the anisotropy factor g can be thought of as a measure of the

likelihood of a photon scattering in the forward, i.e., the incident, direction. An incident photon

will always undergo forward scattering when g = 1 while g = −1 indicates completely backwards

scattering, and g = 0 represents isotropic scattering.

2.2.6 Assumption 4: Light Sources are Isotropic

The fourth necessary assumption in the diffusion approximation is that all light sources Q must be

isotropic, and therefore

Q(~r, Ω̂, t, λ)→ Q(~r, t, λ). (2.40)

As with the assumption of isotropic radiance, this assumption is valid due to the multiple scattering

of photons in the tissue, which randomizes the propagation direction.

Once this assumption is made, using Equations 2.32 and 2.36 to simplify the RTE in Equation

2.31, multiplying both sides of the equation by Ω̂, and integrating both sides of the equation over

all solid angles Ω results in

1

v

∂Φ(~r, t, λ)

∂t

∫
4π

Ω̂ dΩ +
3

v

∂

∂t

∫
4π

Ω̂
[
~J(~r, t, λ) · Ω̂

]
dΩ +∫

4π

Ω̂
(

Ω̂ · ~∇Φ(~r, t, λ)
)
dΩ + 3

∫
4π

Ω̂
(

Ω̂ · ~∇
[
~J(~r, t, λ) · Ω̂

])
dΩ =

− [µt(~r, t, λ)− µs(~r, t, λ)] Φ(~r, t, λ)

∫
4π

Ω̂ dΩ−

3 [µt(~r, t, λ)− g(~r, t, λ)µs(~r, t, λ)]

∫
4π

Ω̂
[
~J(~r, t, λ) · Ω̂

]
dΩ +

4πQ(~r, t, λ)

∫
4π

Ω̂ dΩ. (2.41)

This equation can be simplified by noting the following three vector integral identities:∫
4π

Ω̂ dΩ = 0, (2.42)

∫
4π

Ω̂
[
Ω̂ · ~A

]
dΩ =

4π

3
~A, (2.43)

∫
4π

Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
dΩ = 0, (2.44)

where ~A is a generic vector. A full derivation of these identities can be found in Appendix A.2.

With these identities, the RTE can be further simplified to

3

v

∂ ~J(~r, t, λ)

∂t
+ ~∇Φ(~r, t, λ) = −3 [µt(~r, t, λ)− g(~r, t, λ)µs(~r, t, λ)] ~J(~r, t, λ). (2.45)

One final assumption must now be made to transform the RTE into a diffusion equation.

18



2.2.7 Assumption 5: Slow Temporal Variation in Photon Flux

The final necessary assumption is that the the photon flux varies slowly in time, such that

3

v

∂ ~J(~r, t, λ)

∂t
� ~∇Φ(~r, t, λ) (2.46)

� 3 [µt(~r, t, λ)− g(~r, t, λ)µs(~r, t, λ)] ~J(~r, t, λ). (2.47)

Therefore, in Equation 2.45,

3

v

∂ ~J(~r, t, λ)

∂t
→ 0, (2.48)

resulting in a relationship between the photon flux ~J and the spatial derivative of the photon fluence

rate Φ of the form

~∇Φ(~r, t, λ) = −3 [µt(~r, t, λ)− g(~r, t, λ)µs(~r, t, λ)] ~J(~r, t, λ). (2.49)

Solving for the photon flux ~J results in

~J(~r, t, λ) =
−1

3 [µt(~r, t, λ)− g(~r, t, λ)µs(~r, t, λ)]
~∇Φ(~r, t, λ), (2.50)

which has the form of Fick’s 1st Law of Diffusion [27]. In this case, the diffusing particles are

photons, and the term in front of the gradient of Φ is a diffusion coefficient.

With the definition of µt (Equation 2.2), this Fick’s Law relationship can be rewritten as

~J(~r, t, λ) = −D(~r, t, λ)

v
~∇Φ(~r, t, λ), (2.51)

where a diffusion coefficient D [cm2s−1] has been defined as

D(~r, t, λ) ≡ v

3 [µa(~r, t, λ) + µ′s(~r, t, λ)]
=
v

3
ltr(~r, t, λ). (2.52)

This definition of D also introduces two new quantities. First, D determines the photon transport

length ltr [cm], which represents the average random walk step size for a photon [27] and can be

expressed as

ltr(~r, t, λ) =
1

µa(~r, t, λ) + µ′s(~r, t, λ)
. (2.53)

Both of these quantities are also dependent on the reduced scattering coefficient µ′s [cm−1], which

is defined as

µ′s(~r, t, λ) ≡ µs(~r, t, λ) [1− g(~r, t, λ)] . (2.54)
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Finally, the Fick’s Law relationship in Equation 2.51 can be substituted into the fluence rate

continuity relation (see Equation 2.25) to arrive at the photon diffusion equation [135]

~∇ ·
[
D(~r, t, λ)~∇Φ(~r, t, λ)

]
− v µa(~r, t, λ)Φ(~r, t, λ)− ∂Φ(~r, t, λ)

∂t
= −v S(~r, t, λ), (2.55)

which contains the characteristic relationship between spatial and temporal derivatives for a dif-

fusion equation [27]. The resulting physical process of diffusive photon transport, as well as the

validity of the assumptions required for the diffusion approximation, will be discussed in the next

section.

2.2.8 Photon Transport and the Validity of Diffusion Approximation

Assumptions

In diffusive processes, the diffusing particles make random walks through tissues with an average

step size known as the transport length ltr [27]. In photon diffusion, ltr is dependent on the

absorption coefficient µa and the reduced scattering coefficient µ′s (see Equation 2.53). The reduced

scattering coefficient is, in turn, dependent on both the scattering coefficient µs and the anisotropy

factor g. With respect to these coefficients, tissue has two important properties for light with

wavelengths in the biological window:

1. Tissue is highly scattering [148], and thus,

µa � µs. (2.56)

2. In tissue, g is usually between ∼ 0.7 and ∼ 0.95 [148], meaning that the scattering has a bias

towards the forward direction. Therefore, given the definition of µ′s (Equation 2.54) and the

typical values of g in tissue for the relevant wavelengths,

µ′s � µs. (2.57)

Given these relations, it is also clear that

ltr >> ls, (2.58)

and therefore many scattering events occur over the length of a single random walk step (see Figure

2.2). This is an important condition for the validity of several assumptions required in the derivation

of the diffusion equation. The assumption of isotropic light propagation in Sections 2.2.5 and

2.2.6 is premised on the randomization in photon propagation direction due to multiple scattering.

However, a single scattering event does not fully randomize the propagation direction because of
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the high anisotropy factor g, which indicates a bias towards forward scattering. Therefore, several

of these forward-biased scattering events are required before the photon propagation direction is

randomized relative to the incident direction, a condition that is fulfilled by Equation 2.58. Thus,

under these optical conditions, which are present in many tissues of interest, near-infrared light will

propagate through tissue isotropically, allowing for the approximations made in Sections 2.2.5 and

2.2.6.

Figure 2.2: Schematic of photon propagation in tissue. A single photon propagates through tissue
with a characteristic scattering length ls. Due to a high anisotropy factor g, each scattering event is
biased towards forward scattering, and thus the transport length ltr (Equation 2.53) is greater than
ls. Therefore, a photon will experience multiple scattering events (small blue arrows) over the course
of a single random walk step of size ltr (large red arrows). The absorption length la is significantly
greater than both ls and ltr under typical conditions; the photon is thus likely to undergo many
random walk steps prior to being absorbed. This mechanism of motion is characteristic of diffusion.
Note that this figure is adapted from a similar figure in the PhD Theses of David R. Busch [52]
and Wesley B. Baker [22].

The final assumption (see Section 2.2.7) is that the photon flux ~J experiences slow temporal

variation, allowing for the employment of a steady-state treatment for ~J . For this model to be

accurate, the photon flux must vary slowly relative to the time it takes for a photon to travel a

single random walk step of length ltr. If the photon flux is oscillating with an angular frequency of

ω, due to a frequency domain light source (see Section 2.3), then the period of oscillation is defined

as

Tflux ≡
2π

ω
=

1

f
, (2.59)

where f [Hz] is the frequency of oscillation. This period Tflux must be large relative to the time
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for the photon to take a single random walk step, or mathematically,

1

f
� ltr

v
, (2.60)

Given typical optical properties of tissue for NIR light of µa = 0.1 cm−1, µ′s = 10 cm−1, and

n = 1.4 [148], the time it takes for a photon to travel the transport length is approximately 5×10−12

seconds. This means that the condition of slow temporal flux variation is met when f � 200GHz.

In typical diffuse optical experiments, the modulation frequency is on the order of 100MHz, and

thus, this condition is fulfilled.

2.3 Source Types

The diffusion equation in 2.55 describes how the photon fluence rate is dependent on only the light

source S and the absorption and diffusion coefficients µa and D, which is also dependent on the

reduced scattering coefficient µ′s. Thus, the general algorithm for diffuse optics is to introduce light

from a source into tissue, measure the fluence rate at given detector positions, and solve an inverse

problem to determine the optical properties of the tissue.

In diffuse optics, sources are typically lasers or light emitting diodes (LEDs) with wavelengths

ranging from 600nm to 1100nm [98]. There are three primary methods for using these light sources

with varying costs and information qualities.

2.3.1 Continuous Wave

Continuous wave (CW) measurements are performed using an input source with a constant inten-

sity. CW diffuse optical spectroscopy allows for simpler computational methods and fast, low-cost,

easy-to-implement detection instrumentation, such as charge-coupled devices (CCD) [80] and pho-

todiodes [232; 188], which permits construction of instruments with many source-detector pairs.

However, the detected intensity contains information only about the change in amplitude between

source and detector intensity (see Figure 2.3), precluding CW DOS from being able to simultane-

ously determine µa and µ′s [13; 121]. This is a significant disadvantage, requiring the assumption

of a value for µ′s to determine µa, which can result in significant quantitative offsets. This assumed

µ′s value usually takes the form of a population average for a given tissue type, but can also be

measured via hybrid diffuse optical instrumentation (see Chapter 6).
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Figure 2.3: Common source and data types used in diffuse optics. Three common types of light
sources used in diffuse optics are, in order of increasing information content and cost: A) Continuous
Wave (CW) - Light with constant intensity is input into tissue. Thus, the detected signal only
provides information about the change in the amplitude (∆A) of the intensity. This makes it
difficult for CW diffuse optics to uniquely determine absolute values of µa and µ′s [13; 121]. B)
Frequency Domain (FD) - Source light is modulated with frequency on the order of 100MHz. The
detected signal oscillates at the same frequency but with amplitude attenuation ∆A and a phase
shift φ, enabling simultaneous determination of µa and µ′s [203; 213; 63]. C) Time Domain (TD) -
A short pulse of light (∼ 100 ps) is sent into tissue. The resultant point spread function is measured
and fit to analytical solutions to the diffusion equation. The time shift ∆to between the input and
output signals is largely determined by µ′s while the width (∆ts) and terminal slope of the point
spread function is highly dependent on µa [202; 258; 192]. Note that this figure is a modified version
of a figure that appears in [98].

2.3.2 Frequency Domain

Frequency domain (FD) instruments utilize near infrared light sources sinusoidally modulated in

the radio frequency range (f ≈ 70MHz to 1GHz). The detected intensity signal oscillates at the

same modulation frequency as the source light but does so with amplitude attenuation and a phase

shift (see Figure 2.3). Measuring both of these quantities enables the determination of both µa and

µ′s [203; 213; 63]. Frequency domain instruments require modulation of either laser diode or LED

sources and can include avalanche photodiode (APD) [262; 30; 80], photomultiplier tube (PMT)

[179], or heterodyne CCD [25] detection, increasing the cost and complexity of the instrumentation.

2.3.3 Time Domain

Time domain (TD), or time-resolved (TR), instruments use very short (∼ 100 ps) source light

pulses, which are temporally broadened during their propagation through tissue. Measurement
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and fitting of the resultant point spread functions (see Figure 2.3) provides very dense information

content, equivalent to FD measurements performed over a large range of frequencies, which allows

for accurate simultaneous determination of both µa and µ′s [202; 11; 258]. However, measurement of

the these broadened pulses requires very sensitive time-resolved single-photon counting electronics,

in addition to PMT [192; 224; 207; 52] or APD [208] detection, which practically limits the number

of source-detector pairs that can be included in a single system.

2.4 Solutions in a Homogeneous Infinite Geometry

2.4.1 Homogeneous Medium Diffusion Equation

The simplest solution to the fluence rate diffusion equation can be found by assuming a homogeneous

distribution for the optical properties at a single wavelength, i.e.

µa(~r, t, λ)→ µa, (2.61)

µ′s(~r, t, λ)→ µ′s, (2.62)

D(~r, t, λ)→ D. (2.63)

Note that for inhomogeneous media, the measured µa and µ′s from a homogeneous analysis will

be an average of these properties across the measured tissue, weighted by the probability that a

photon visits a given region [98; 22]. The diffusion equation (Equation 2.55) can then be simplified

to

D∇2Φ(~r, t)− v µaΦ(~r, t)− ∂Φ(~r, t)

∂t
= −v S(~r, t), (2.64)

where the constant D has been brought outside of the derivative. A frequency domain (FD) source

term provides an important example solution to Equation 2.64. The source term S for a point

source emitting a single wavelength can be written as

S(~r, t) = So
(
1 +M eıωt

)
δ(~r − ~rs), (2.65)

where So is the average power emitted by the source [W ], M is the modulation depth of the

sinuosoid, which can vary from 0 to 1, ω is the angular frequency, such that f = ω/(2π) is the

oscillation frequency in Hz, and ~rs is the position of the point source. Note that in practice,

physical quantities will be the real part of any complex representation. A solution for the fluence

rate given this FD source term is particularly useful because it can also be applied to both CW
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and TD representations. A CW point source is simply the FD source with ω = 0, and a pulsed TD

source is the Fourier transform of the modulated FD source [11].

Given this source, the fluence rate Φ can be written as the sum of a continuous wave DC

component and an AC component oscillating with angular frequency ω, as follows:

Φ(~r, t) = ΦDC(~r) + ΦAC(~r, t) (2.66)

= ΦDC(~r) + U(~r) eıωt. (2.67)

If the representation of Φ in Equation 2.67 is substituted into the diffusion equation (Equation

2.64), the time-dependent and time-independent terms can be separated as

D∇2ΦDC(~r)− v µaΦDC(~r)− ∂ΦDC(~r)

∂t
= −vSoδ(~r − ~rs), (2.68)

D∇2
(
U(~r)eıωt

)
− v µaU(~r)eıωt − ∂ (U(~r)eıωt)

∂t
= −vSoM eıωtδ(~r − ~rs). (2.69)

By taking the time derivatives for both the DC and AC components and dividing through by eıωt

in Equation 2.69, these equations can be simplified to(
∇2 − k2

o

)
ΦDC(~r) = −vSo

D
δ(~r, ~rs), (2.70)

(
∇2 − k2

)
U(~r) = −vSoM

D
δ(~r, ~rs), (2.71)

where ko and k are defined as

ko ≡
√
vµa
D

, (2.72)

k ≡
√
vµa + ıω

D
. (2.73)

These equations are similar to Helmholtz differential equations [98] and thus have known solutions

that take the form of damped, oscillating wave patterns [9]. In diffuse optics, these fluence rate

waves are known as diffuse photon density waves (DPDW), and this propagation of the photon

energy density demonstrates typical wave propagation characteristics [196; 36; 32; 195].

In order to solve these differential equations for the form of ΦDC or U , boundary conditions

that correspond to the geometry of the medium must now be imposed.

2.4.2 Infinite Homogeneous Geometry - Boundary Condition

The simplest geometry to consider is an infinite homogeneous medium with a point source at the

origin of the coordinate system. This solution is not particularly practical for tissue applications,
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but the solution is an instructive demonstration of the form taken by diffuse photon density waves.

Note that for any analysis involving a point source, the solution will, by definition, simply be a

convolution of the Green’s function solution and the source power term [9], e.g. SoM in Equation

2.71. In practice, the sources used will not be true point sources, and thus a convolution between

the mathematical form of a source’s spatial extent and the Green’s function must also be performed.

In an infinite geometry, the only boundary condition that must be imposed on the diffusion equa-

tion in Equation 2.71 is that Φ → 0 as ~r → ∞. This greatly simplifies the process of determining

solutions to the diffusion equation.

2.4.3 Infinite Homogeneous Geometry - Frequency Domain

Given the boundary condition that fluence rate falls to 0 as ~r approaches ∞, the solution to the

diffusion equation takes the form of a spherical wave disturbance propagating outwards from the

source position [58], such that

U(~r) =
v SoM

4πD |~r|
e−k|~r|. (2.74)

Given the definition of U , the full form of the AC fluence rate can thus be written as

ΦAC(~r, t) =
v SoM

4πD |~r|
e−kr|~r| eı(ωt−ki|~r|), (2.75)

where kr and ki are the real and imaginary components, respectively, of k (Equation 2.73). The

full solution for the fluence rate will also include a DC component (see Equation 2.66), but the

AC component is sufficient for solving for the homogeneous optical properties. This expression for

ΦAC can be simplified to

ΦAC = A(~r)eı(ωt−θ(~r)), (2.76)

where

A(~r) =
v SoM

4πD |~r|
e−kr|~r|, (2.77)

θ(~r) = ki|~r|. (2.78)

A schematic and spatial map of A and θ can be found in Figure 2.4. The real and imaginary

components of k are dependent on the optical properties of the tissue and can be written as

kr =
(vµa

2D

)1/2

(1 +

(
ω

vµa

)2
)1/2

+ 1

1/2

; (2.79)
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ki =
(vµa

2D

)1/2

(1 +

(
ω

vµa

)2
)1/2

− 1

1/2

. (2.80)

Thus, if the index of refraction n for tissue is known or assumed via a population average [148],

these components of k can be used to solve for the optical properties µa and µ′s [112; 22], which

take the form

µa =
ω

2v

(
kr
ki
− ki
kr

)
; (2.81)

µ′s =
2v

3ω
krki − µa. (2.82)

A full derivation of these representations of µa and µ′s can be found in Appendix A.3.

In order to solve for the optical properties of the medium, however, kr and ki must be able

to be determined uniquely. This is not practically possible for a measurement from only a single

source-detector pair because the SoM factor in Equation 2.77, which is determined not only by

the true average power and modulation depth of the source, but also factors such as fiber coupling

and detector efficiency, cannot be consistently calculated [113]. This limitation can be overcome,

though, by acquiring data at multiple source-detector separations. In that scenario, ki is the slope

of the fitted line for θ vs |~r| and −kr is the slope of the fitted line for ln (A |~r|) vs |~r| (see Equations

2.78 and 2.77). Additionally, measurements using sources with multiple modulation frequencies

can be performed in lieu of multiple source-detector separations. This technique, however, does

not allow for the simple linear fitting provided by multiple source-detector separations. Instead, a

non-linear fitting algorithm must be performed (see Sections 2.6.6 and 3.2.2).

2.4.4 Infinite Homogeneous Geometry - Continuous Wave

The CW solution to the diffusion equation in any geometry is simply a special case of the FD

solution with ω = 0. Thus, the fluence rate can be determined, using the DC diffusion equation

(Equation 2.70), to be

ΦCW (~r) = ΦDC(~r) =
vSo

4πD |~r|
e−ko|~r|, (2.83)

where ko =
√

(vµa) /D (Equation 2.72). This ΦCW is insufficient to uniquely determine both µa and

µ′s [13; 121], and unlike in the frequency domain case, the non-uniqueness of the optical properties

cannot be overcome by performing measurements at multiple source-detector separations. Thus,

CW instruments must assume one of the optical properties, usually µ′s, in order to solve for the

other, usually µa. This technique allows CW instruments to solve for the concentrations of tissue
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Figure 2.4: Frequency Domain Fluence Rate in the Infinite Homogeneous Geometry. A) Tissue
and source properties used for this example, along with the boundary condition necessary to solve
the differential equation in the infinite geometry. B) Schematic of an infinite homogeneous medium
with a source at the origin of the coordinate system. C) Plot of the normalized natural log of the
amplitude of the fluence rate multiplied by the distance from the origin (ln [A |~r|]) in the y = 0
plane of the infinite medium. The slope of the linear fit of this quantity vs |~r| yields −kr (see
Equation 2.77). D) Plot of the phase offset in degrees of the fluence rate in the y = 0 plane of the
infinite medium. The slope of the linear fit of this quantity vs |~r| yields ki (see Equation 2.78).

chromophores (e.g., oxy- or deoxy-hemoglobin) that contribute to absorption (see Section 2.8), but

the use of an assumed µ′s value introduces significant error to the calculation of µa.

2.4.5 Infinite Homogeneous Geometry - Time Domain

Time-domain photon propagation obeys the time-dependent photon diffusion equation (see Equa-

tion 2.55) with a source term S of the form

S(~r, t) = Soδ(t− ts)δ(~r − ~rs). (2.84)
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Here, S is an infinitely short point source light pulse at position ~rs that occurs at time t = ts.

Note that this source term is the Fourier transform of the source term in the AC diffusion equation

(Equation 2.71). Therefore, the Green’s function solution to the full time domain diffusion equation

with this source term is also the Fourier transform of the Green’s function solution to the frequency

domain diffusion equation (Equation 2.74). As such, the photon fluence rate in the time domain

can be written as

Φ(~r, t) =
vSo

(4πDt)
3/2

exp

[
− r2

4Dt
− vµat

]
. (2.85)

The full calculation of the time domain solution using the Fourier transform can be found in

Appendix A.4.

For time domain instruments, measurements of the fluence rate are made at many time points,

and then this fluence rate data is fit to Equation 2.85 to determine µa and µ′s [202; 258; 52; 190].

The data collected at multiple time points allows for the simultaneous determination of both optical

properties using only a single source-detector separation, providing an advantage unavailable to CW

or FD instruments. As discussed earlier, the primary disadvantage of TD instruments is the relative

cost of the instrumentation necessary to make measurements with sufficient temporal resolution.

In practice, the pulsed laser source, which can reasonably be modeled as a delta function, is not

the light directly entering the tissue. The light must usually travel through optical fibers, switches,

and other instrumentation, which broadens the previously very narrow pulse. This broadening due

to the instrument is referred to as the Instrument Response Function (IRF). The true light source

that enters the tissue is actually a convolution of the initial pulse and the IRF. Thus, the measured

fluence rate must be fit to a convolution of the IRF and the time domain Green’s function. This

will be discussed further in Section 6.3.2.

2.5 Solutions in Homogeneous Bounded Geometries

In almost all practical applications, an infinite geometry is not an accurate model for the tissue being

measured. Instead, there is usually an interface between the diffusive tissue and a non-diffusive

medium, e.g., air. The two most common geometries used in diffuse optics are:

1. Semi-Infinite - A geometry that contains both a diffusive and non-diffusive region divided by

an infinite planar interface.

2. Infinite Slab - A geometry that contains a diffusive region of a fixed depth that extends to

infinity in both planar dimensions with non-diffusive regions bounding both the “shallow”

and “deep” interfaces of the diffusive region.
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In these geometries, sources and detectors are typically placed on one or, in the case of transmission

slab measurements, both of the interfaces. Thus, fitting the measured fluence rate at the detectors

requires a solution to the diffusion equation that is accurate near the tissue boundaries, which, in

turn, requires the application of appropriate boundary conditions.

2.5.1 Partial Flux Boundary Condition

The inward flux of light Jin at time t and a position ~ri on the tissue interface can be defined as

Jin(~ri, t) ≡ ~J(~ri, t) · ẑ (2.86)

=

∫
Ω̂·ẑ>0

L(~ri, Ω̂, t)Ω̂ dΩ · ẑ. (2.87)

Here ẑ is the direction opposite the normal of the tissue surface (see Figure 2.5), and Equation

2.87 is simply the definition of ~J in terms of the radiance L from Equation 2.16, except here, the(
L Ω̂
)

term is only integrated over the solid angle hemisphere pointing into the tissue. Using the

P1 approximation for the radiance L, and noting that Ω̂ · ẑ = cos θ, allows this equation to be

rewritten as

Jin(~ri, t) =

∫ π/2

θ=0

∫ 2π

ϕ=0

cos θ sin θ[
1

4π
Φ(~ri, t) +

3

4π
(Jx(~ri, t) sin θ cosϕ+ Jy(~ri, t) sin θ sinϕ+ Jz(~ri, t) cos θ)

]
dϕ dθ. (2.88)

Here, the Cartesian coordinate definition of Ω̂ (A.11) was used to separate ~J into Cartesian com-

ponents. The Jx and Jy terms go to 0 when the integration over ϕ is performed, leaving

Jin(~ri, t) =

∫ π/2

θ=0

1

2
Φ(~ri, t) cos θ sin θ +

3

2
Jz(~ri, t) cos2 θ sin θ dθ (2.89)

=
1

4
Φ(~ri, t) +

1

2
Jz(~ri, t). (2.90)

For diffusive media, this inward flux Jin is due almost exclusively to back reflections of light traveling

from within the tissue. This state is caused by two conditions

1. Under the conditions necessary for the application of the diffusion equation, sources on the

interface of the tissue can be modeled as isotropic point light sources approximately one

transport length ltr from the interface [113] because of the randomization of propagation

direction caused by multiple scattering (see Section 2.2.8). Thus, all light sources are inside

the tissue in this model.

2. Light that leaves the tissue is rarely reflected back into the tissue because the outside medium

generally has very low scattering.
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Therefore, the inward photon flux Jin can also be written as

Jin(~ri, t) =

∫
Ω̂·ẑ<0

RF (Ω̂)L(~ri, Ω̂, t)Ω̂ dΩ · (−ẑ) , (2.91)

where RF (θ) is the Fresnel reflection coefficient for unpolarized light incident at an angle θ from ẑ

[135; 22]. Note that because the semi-infinite and infinite slab geometries are symmetric about ẑ,

the Fresnel reflection coefficient is not dependent on ϕ. Here, Jin is dependent on the dot product

between the integral and −ẑ, rather than ẑ, because the projection of the incident radiance L onto

the normal axis is parallel to −ẑ direction. The simplest way to perform this integral is to define

Figure 2.5: Geometry of Reflected Radiance for Partial Flux Boundary Condition. When all light
sources are inside a diffusive medium, the inward photon flux will be due entirely to light reflected
back into the tissue by the tissue interface. Here, the light radiance L incident on the interface
from the tissue side is traveling in direction Ω̂ which has a polar angle (π − θ). The light reflected
back into the tissue is L multiplied by the Fresnel reflection coefficient RF , which is dependent on
the angle θ and the indices of refraction outside and inside the tissue.

θ to be the angle between ẑ and the incident light and integrate over the hemisphere where θ goes

from 0 to 2π. With this convention, the polar angle of Ω̂ is (π − θ) (see Figure 2.5). The,n using
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the P1 approximation and performing the integration over ϕ, the integral can be expressed as

Jin(~ri, t) = −
∫ π/2

θ=0

RF (θ) cos (π − θ) sin (π − θ)
[

1

2
Φ(~ri, t) +

3

2
Jz(~ri, t) cos (π − θ)

]
dθ. (2.92)

The integral can be further simplified using the trigonometric identities for cosine and sine of (π−θ)

[5], such that

Jin(~ri, t) =
1

4
Φ(~ri, t)RΦ −

1

2
Jz(~ri, t)RJ , (2.93)

where

RΦ = 2

∫ π/2

θ=0

RF (θ) cos θ sin θ dθ, (2.94)

RJ = 3

∫ π/2

θ=0

RF (θ) cos2 θ sin θ dθ. (2.95)

Equations 2.90 and 2.93 provide two representations of Jin which can be set equal to each other

and rearranged to solve for Φ, such that

Φ(~ri, t) = −2Jz(~ri, t)

[
1 +RJ
1−RΦ

]
. (2.96)

For simplicity, a new term Reff is often defined as

Reff ≡
RΦ +RJ

2−RΦ +RJ
. (2.97)

Reff can be calculated either by numerically integrating the expressions in Equations 2.94 and 2.95

or using the common approximation [128]

Reff ≈ −1.440

(
nin
nout

)−2

+ 0.701

(
nin
nout

)−1

+ 0.668 + 0.0636

(
nin
nout

)
, (2.98)

where nin and nout are the indices of refraction inside and outside the medium, respectively.

This allows the boundary fluence rate relationship (Equation 2.96) to be written as

Φ(~ri, t) = −2Jz(~ri, t)

[
1 +Reff
1−Reff

]
. (2.99)

Finally, the ẑ-component of the Fick’s Law diffusion relationship (Equation 2.51) and the definition

of the diffusion coefficient D (Equation 2.52) are employed to rewrite Equation 2.99 entirely in terms

of Φ, where

Φ(~ri, t) = zb
∂Φ(~ri, t)

∂z
. (2.100)

32



Here, zb is defined as

zb ≡
2

3
ltr

1 +Reff
1−Reff

, (2.101)

where ltr is the transport length (Equation 2.53). This relationship is the partial flux boundary

condition, in which the fluence rate at the interface is directly proportional to the spatial derivative

along the dimension normal to that interface. This is an exact boundary condition for these

geometries, given the assumption of no photon flux into the tissue from outside. However, this

boundary condition can be practically difficult to use for determining analytical solutions to the

diffusion equation. Therefore, it is convenient to employ the extrapolated-zero boundary condition,

an approximation of the partial flux boundary condition.

2.5.2 Extrapolated-Zero Boundary Condition

The extrapolated-zero boundary condition, which has been demonstrated to be accurate in tissue

[135], can be derived by approximating the fluence rate Φ near the tissue interface with a first-order

Taylor series expansion along the ẑ-axis. The fluence rate can thus be expressed as [39]

Φ (z) = Φ (z = 0) +
∂Φ (z)

∂z
z. (2.102)

The partial flux boundary condition provides an expression for ∂Φ/∂z in terms of Φ on the interface,

which can be substituted into the Taylor expansion to create the relation

Φ (z) = Φ (z = 0)

[
1 +

z

zb

]
, (2.103)

where zb is defined as in Equation 2.101. From this relation, it is apparent that Φ will equal 0 when

z = −zb, or mathematically,

Φ (z = −zb) = 0. (2.104)

Therefore, under the extrapolated-zero boundary condition, there is a point outside the tissue region

at which the fluence rate falls to 0, and the distance of this point from the interface is dependent on

the characteristic transport length ltr of the tissue and the indices of refraction on both sides of the

interface, via the Fresnel reflection coefficients. A graphical schematic of this boundary condition

can be found in Figure 2.6.

2.5.3 Semi-Infinite Homogeneous Solution - Partial-Flux Boundary Con-

dition

Solving for the Green’s function solution to the diffusion equation in the semi-infinite geometry

requires the use of the method of images [49; 202; 113]. The Green’s function solution will be a

33



Figure 2.6: Fluence Rate near Tissue Interface - Extrapolated-Zero Boundary Condition. A)
Schematic of the Tissue Interface. In a diffusive medium, a source on the boundary is well-modeled
by an isotropic point source at a distance of ltr into the tissue. Under the extrapolated-zero
boundary condition, a point that is a distance of zb outside the tissue is set to have a fluence rate of
0. This quantity zb is determined by both ltr of the diffusive medium and Reff , which is dependent
on the indices of refraction n inside and outside the tissue via the Fresnel reflection coefficient.
B) Plot of Fluence Rate versus Depth. Given the Taylor expansion used for the extrapolated-
zero boundary condition, the fluence rate outside the tissue decreases linearly with a slope of
∂Φ(z = 0)/∂z until the fluence rate goes to 0 at z = −zb.

superposition of infinite geometry Green’s function solutions arising from the real light source and

a number of image sources that satisfy a given boundary condition.

First, semi-infinite and slab geometries are both conveniently described using the cylindrical

coordinate system, whereby z is the depth, ρ is the radial distance from the origin along the

interface, and ϕ is the azimuthal angle. In practice, ϕ will not usually be important due to the

symmetry of these geometries about the longitudinal (ẑ) axis. Therefore, given Equation 2.74, the

frequency domain, infinite homogeneous medium Green’s function GIo for a light source at position

(ρ = 0, z = ltr) expressed in cylindrical coordinates is

GIo(ρ, z) =
v

4πDr1
exp [−kr1], (2.105)

where r1 is defined as

r1 =

√
(z − ltr)2

+ ρ2. (2.106)

Using the method of images, the generic Green’s function solution GBo for a bounded medium will

be

GBo = GIo(ρ, z) +GCo (ρ, z), (2.107)
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where GCo is a correction term to find the full bounded Green’s function GBo . For a semi-infinite

medium constrained by the partial-flux boundary condition, GCo can be written as

GCo =
v

4πDr2
exp [−kr2]−

2

zb

∫ ∞
0

v

4πD
√

(z + ltr + u)2 + ρ2
exp

[
−k
√

(z + ltr + u)2 + ρ2 − u

zb

]
du, (2.108)

where

r2 =
√

(z + ltr)2 + ρ2, (2.109)

and u is the result of an integral substitution. This correction term is derived by enforcing the

partial-flux boundary condition on GBo and using an image source at position z = −ltr. The full

derivation [22] can be found in Appendix A.5. The first term in GCo can be thought of as an image

source at position z = −ltr, and the integral can be thought of as continuous line distribution of

image sinks, i.e., negative sources, spanning the distance from z = −ltr to z = −∞. The amplitude

of these image sinks falls to 0 as z goes to −∞ due to the e−u/zb term. A schematic can be found

in Figure 2.7. The sum of GIo + GCo will clearly be a solution to the diffusion equation because it

satisfies the partial-flux boundary condition (see Appendix A.5) and because each of the individual

terms is a solution to the diffusion equation. Therefore, by the superposition principle, their sum

is a solution as well [103]. Although this is an exact Green’s function solution for the semi-infinite

medium obeying the partial-flux boundary condition, it can be cumbersome to use in practice due

to the infinite line of image sinks. This challenge can be overcome by using the extrapolated-zero

boundary condition.

2.5.4 Semi-Infinite Homogeneous Solution - Extrapolated Zero Bound-

ary Condition

The extrapolated-zero boundary condition states that there is a plane at z = −zb where the photon

fluence rate is 0. Thus the correction term GCo is simply the infinite homogeneous Green’s function

for an image sink at z = −(2zb + ltr) with identical amplitude to the isotropic point source at

z = ltr (see Figure 2.8), and the full Green’s function takes the form

GSIo (ρ, z) =
v

4πD

[
e−kr1

r1
− e−krb

rb

]
, (2.110)

where

r1 =
√

(z − ltr)2 + ρ2, (2.111)
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Figure 2.7: Semi-Infinite Geometry and Partial-Flux Boundary Condition. A Green’s function
solution to the diffusion equation for a semi-infinite homogeneous geometry can be determined
using the partial-flux boundary condition and the method of images. The full Green’s function is a
superposition of infinite homogeneous Green’s functions for 1) a real source at position z = ltr, 2)
an image source at position z = −ltr, and 3) an infinite series of image sinks ranging from z = −ltr
to z = −∞, with amplitudes falling to 0 as z approaches −∞. This produces an exact, but difficult
to use, Green’s function solution for the semi-infinite homogeneous geometry.

rb =
√

(z + 2zb + ltr)2 + ρ2. (2.112)

The two infinite homogeneous Green’s function both individually satisfy the diffusion equation,

and the fact that they are mirror images about the z = −zb plane satisfies the extrapolated-zero

boundary condition. This solution is much easier to use in practice than the partial-flux boundary

solution because it contains only two terms and does not require the integration of an infinite image
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Figure 2.8: Semi-Infinite Geometry and Extrapolated-Zero Boundary Condition. A Green’s func-
tion solution to the diffusion equation for the semi-infinite homogeneous geometry can be deter-
mined using the extrapolated-zero boundary condition and the method of images. This Green’s
function is a superposition of the infinite homogeneous Green’s functions for 1) a real source at
position z = ltr and 2) an image source at position z = −(2zb + ltr). Though an approximation,
the solution produced by the extrapolated-zero boundary condition is typically very accurate [135]
and much easier to use than the partial-flux boundary condition solution.

sink.

2.5.5 Infinite Slab Homogeneous Solution - Method of Images

The infinite slab geometry is a commonly used geometry for diffuse optical imaging of breast cancer

using parallel source and detector plates [81; 278; 25; 8]. In this geometry, the tissue has a finite

thickness d along the ẑ dimension but is infinite in the x̂ and ŷ directions. Like the semi-infinite
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geometry, the infinite slab also obeys the extrapolated-zero boundary condition; however, there are

now two tissue interfaces, and thus, there is an extrapolated-zero plane on each side of the tissue

(see Figure 2.9).

These two extrapolated-zero boundary conditions necessitate an infinite series of image sources

and sinks, resulting in a Green’s function solution of the form

GSlabo (ρ, z) =
v

4πD

∞∑
m=−∞

[
e−kr+,m

r+,m
− e−kr−,m

r−,m

]
, (2.113)

where

r±,m ≡
√

(z − z±,m)2 + ρ2, (2.114)

and the image source positions z+,m and image sink positions z−,m can be defined as

z+,m ≡ 2m(d+ 2zb) + ltr, (2.115)

z−,m ≡ 2m(d+ 2zb)− 2zb − ltr. (2.116)

Here, d is the thickness of the slab along the ẑ dimension. Although the exact Green’s function

under the given boundary conditions is an infinite series, the amplitudes of the series terms in the

region of interest, i.e., the tissue, decrease as |m| increases because the image sources and sinks

are placed increasingly farther from the tissue. For example, the amplitude of the fluence rate

due to the nearest |m| = 5 image is approximately four orders of magnitude smaller than the real

source amplitude. Thus, the infinite series can be truncated after relatively few terms, providing a

tractable solution to the diffusion equation.

2.5.6 Time Domain Solutions - Semi-Infinite and Infinite Slab

As with the infinite homogeneous solution, the time-domain Green’s functions for the semi-infinite

and infinite slab will be Fourier transforms of the frequency-domain Green’s functions. These can

be calculated using the method used in Appendix A.4 to derive the time-domain Green’s function

for the infinite homogeneous geometry. The resulting time-domain Green’s functions for a point

source at position (ρ = 0, z = ltr) and time ts are

gSIo (ρ, z, t) =
v exp (−vµa(t− ts))

(4πD(t− ts))3/2

[
exp

(
r2
1

4D(t− ts)

)
− exp

(
r2
b

4D(t− ts)

)]
, (2.117)

gSlabo (ρ, z, t) =
v exp (−vµa(t− ts))

(4πD(t− ts))3/2

∞∑
m=−∞

[
exp

(
r2
+,m

4D(t− ts)

)
− exp

(
r2
−,m

4D(t− ts)

)]
, (2.118)
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Figure 2.9: Infinite Slab Geometry and Extrapolated-Zero Boundary Condition. A Green’s function
solution to the diffusion equation for the homogeneous infinite slab geometry can be determined
using the extrapolated-zero boundary condition and the method of images. Unlike the semi-infinite
geometry, the infinite slab has two tissue interfaces, and therefore requires the extrapolated-zero
boundary condition to be applied on both sides of the tissue. The full Green’s function solution is a
superposition of the infinite homogeneous Green’s functions for 1) a real source at position z = ltr
and 2) an infinite series of image sources at positions z = 2m(d + 2zb) + ltr and image sinks at
positions z = 2m(d+ 2zb)− 2zb − ltr where m goes from −∞ to ∞. Note that the m = 0 “image”
source is actually the real isotropic point source. These image sources and sinks form a recursive
series wherein each set of sources and sinks complement previous sinks and sources to force the
fluence rate to zero at one of the two extrapolated-zero planes.
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where r1, rb, and r±,m are defined as in the frequency-domain Green’s functions. As with the

infinite homogeneous medium, to fit the measured fluence rate, convolutions between these Green’s

functions and both the source profile term and instrument response function must be performed.

2.5.7 Solving for Optical Properties in Bounded Geometries

The Green’s function solutions for semi-infinite and infinite slab geometries in Sections 2.5.4 and

2.5.5 enable the calculation of photon fluence rate in the tissue for a given source and homogeneous

optical property distribution.

A convolution of the Green’s function solution with the spatial source profile of the light source,

or, in the case of time-domain measurements, the spatial and temporal light source profiles, provides

solutions to the fluence rate diffusion equation. Therefore, the amplitude term of the frequency

domain fluence rate U can be expressed as

U(~r) =

∫
G(~r′, ~rs)S(~r + ~rs − ~r′) d3r′, (2.119)

where ~rs is the source position and for an oscillating source,

SAC(~r, t) = S(~r)eıωt. (2.120)

In the time-domain, the fluence rate can be expressed as

Φ(~r, t) =

∫
g(~r′, ~rs, t

′, ts)S(~r + ~rs − ~r′, t+ ts − t′) d3r′ dt′. (2.121)

where S(~r, t) is the full source term.

For point sources, these convolutions would simply be the Green’s function multiplied by the

constant amplitude So of the source. For sources that have a spatial extent, or temporal broadening

in the time-domain, the full convolution must be performed.

Equations 2.119 and 2.121 now provide the calculated fluence rate at any point in the tissue,

including on the boundary. In diffuse optics applications, detectors are typically placed on a

tissue interface, and thus, these calculated fluence rates at these interfaces enable an optimization

problem which compares calculated and measured light intensities and optimizes for the absorption

coefficient µa and reduced scattering coefficient µ′s. However, it is still necessary to convert the

fluence rate to the quantity that is actually measured by detectors. For a fiber-coupled detector with

the fiber optic placed on the tissue surface, the detected intensity I is an integral of the radiance

L over the detection area and the solid angle range over which light can enter the fiber. Given

the P1 approximation, the radiance can easily be expressed in terms of the fluence rate (Equation

2.30). The actual intensity detected by the fiber is not only dependent on the fluence rate, though,
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but also on quality of contact between the fiber and tissue, the width, numerical aperture, and

transmission coefficient of the fiber, and the sensitivity of the detector [135; 72; 22]. The detected

intensity can thus be expressed as

I(~r, t) = C(~r, t)Φ(~r, t), (2.122)

where C(~r, t) is the coupling coefficient at time t for a detector at position ~r. Though C could be

calculated theoretically for a given tissue and optical fiber, in practice, C is dependent on many

factors that are difficult to measure or predict, making calculation impractical. C must thus be

treated as an unknown that needs to be fit or normalized away via phantom or other reference

measurements (see Section 7.2.4 for one such strategy).

Once these coupling coefficients are accounted for, an optimization routine can now be performed

which compares the calculated intensity from the Green’s function solution, due to a source and

guessed optical properties, to the actual measured intensity. The guessed optical properties are

then updated, and a new predicted intensity is calculated. This algorithm is then performed

repeatedly until a sufficiently good fit is obtained. The optical properties that provide this fit are

then predicted to be the optical properties of the tissue. In practice, for the instruments and studies

in this thesis, this fitting algorithm is performed either by the MATLAB function fminsearchbnd [3]

or via a non-linear iterative solver called TOAST [227], which enables three-dimensional imaging

of heterogeneous media and will be discussed in more detail in Section 2.6.

2.6 Diffuse Optical Tomography for Heterogeneous Media

2.6.1 Perturbation from the Homogeneous Medium

Solutions to the diffusion equation for homogeneous media are useful for many scenarios in diffuse

optics where average tissue optical properties are sufficient, including in the brain [65; 45], muscle

[64; 256], and breast [30]. However, to perform three-dimensional imaging of the optical properties,

known as Diffuse Optical Tomography (DOT), the diffusion equation needs to be solved for het-

erogeneous media, and thus, the optical properties need to be calculated at many positions in the

tissue. Even for instruments that use many source and detector positions, this three-dimensional

imaging creates under-determined systems of equations, which can be difficult or impossible to solve

analytically. However, for geometries that have analytical solutions to the diffusion equation in ho-

mogeneous media, these heterogeneous media solutions can be found via a perturbative method,

wherein the optical properties are assumed to have a small spatially-dependent perturbation from

41



the homogeneous properties, such that

µa(~r) = µoa + δµa(~r), (2.123)

D(~r) = Do + δD(~r). (2.124)

Here, µoa and Do are the homogeneous absorption and diffusion coefficients, and δµa and δD are

the spatially-varying perturbations in the absorption and diffusion coefficients. Note that these are

generally small perturbations, such that δµa � µoa and δD � Do. Under these conditions, the

fluence rate solution in the heterogeneous medium can be expressed as a perturbation from the

solution in the homogeneous medium. The two most common representations of this perturbation

in the solution are the Born method and the Rytov method. With the Born method, the AC part

of the fluence rate solution U is written as

U(~r) = Uo(~r) + Usc(~r), (2.125)

where Uo is the solution in the homogeneous medium, and Usc is the perturbation, or scattering

term, due to the optical property perturbation.

The Rytov method expresses the heterogeneous solution U as

U(~r) = Uo Usc (2.126)

= eφo eφsc = eφo+φsc . (2.127)

Here, again, Uo is the homogeneous medium solution, and Usc represents the perturbation to Uo

while φo and φsc are the exponential representations of the homogeneous and perturbation terms,

respectively. Using the Rytov approximation, the frequency domain diffusion equation for the

heterogeneous medium at a single wavelength can be written as

∇ · [(Do + δD(~r))∇ (UoUsc(~r))]− [v (µoa + δµa(~r)) + ıω] (UoUsc(~r)) = −vSoMδ(~r, ~rs). (2.128)

This equation has been solved for the φsc term [225; 10; 15; 197; 195] using the homogeneous medium

diffusion equation, Green’s Theorem [9], and several approximations relating to the assumption of

a small perturbation. The full derivation can be found in Appendix A.6, and the discretization of

the medium into a series of volume elements, known as voxels, results in a matrix equation of the
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form 

φsc(~rs1 , ~rd1)

φsc(~rs2 , ~rd2)
...
...
...

φsc(~rsM , ~rdM )


=



WA
1,1 . . . WA

1,N WS
1,1 . . . WS

1,N

WA
2,1 . . . WA

2,N WS
2,1 . . . WS

2,N

...
...

...
...

...
...

...
...

...
...

...
...

WA
M,1 . . . WA

M,N WS
M,1 . . . WS

M,N





δµa(~rn1
)

...

δµa(~rnN
)

δD(~rn1)
...

δD(~rnN
)


. (2.129)

Here, ~rsi is the position of the source in the ith source-detector pair, ~rdi is the position of the

detector in the ith source-detector pair, M is the total number of source-detector pairs, ~rnj
is the

position of the jth voxel, and N is the total number of voxels. Note that the maximum value of M

is the number of source positions Ns multiplied by the number of detector positions Nd; however,

in practice, some possible combinations of source and detector positions will not be used due to

insufficient signal or signal-to-noise ratio. WA
i,j and WS

i,j are the absorption and scattering weight

factors, respectively, and are defined as

WA
i,j ≡

Uo(~rnj
, ~rsi)Go(~rdi − ~rnj

)v∆V

DoUo(~rsi , ~rdi)
, (2.130)

WS
i,j ≡

(
∇Uo(~rnj

, ~rsi)
) (
∇Go(~rdi − ~rnj

)
)
v∆V

DoUo(~rsi , ~rdi)
. (2.131)

Here, Go is the homogeneous medium Green’s function for a given geometry, and ∆V is the volume

of a single voxel. For simplicity, Equation 2.129 can be written as

~φ = W~µ, (2.132)

where ~φ is the φsc vector, ~µ is the optical property perturbation vector, and W is the weight matrix.

This matrix equation can be solved for the heterogeneous optical property vector using the

heterogeneous fluence rate measurements and the weight matrix W (see Section 2.6.2). In the

frequency domain, the heterogeneous part of the fluence rate φsc can easily be written in terms

of the amplitude A and phase θ of the AC fluence rate U . If a measurement of a homogeneous

medium similar to the heterogeneous measurement is made, either via a phantom normalization or

a difference reconstruction, the data set will contain both the measured homogeneous fluence rate

Uo and the measured heterogeneous fluence rate U . These quantities can be further decomposed

into the homogeneous amplitude Ao and phase θo and the heterogeneous amplitude A and phase

θ.
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First, note that

ln

(
U

Uo

)
= ln

(
eφoeφsc

eφo

)
(2.133)

= φsc. (2.134)

Then, given the definition of the AC fluence rate in Equation 2.76, the following relationship also

holds

ln

(
U

Uo

)
= ln

(
Aeıθ

Aoeıθo

)
(2.135)

= [ln (A)− ln (Ao)] + ı [θ − θo] . (2.136)

Therefore the φsc term can be expressed using the differences between the log-amplitudes and

phases of the heterogeneous and homogeneous measurements, such that

φsc = [ln (A)− ln (Ao)] + ı [θ − θo] . (2.137)

Thus, difference measurements of phase and amplitude, combined with the matrix equation in

Equation 2.129, provide a framework for performing three-dimensional tomography of the optical

properties µa and µ′s, via D, and the corresponding tissue chromophore concentrations.

2.6.2 Reconstructing Optical Properties

Because the weight matrix W in Equation 2.132 maps the optical properties of the tissue ~µ onto

the measured output ~φ, it is referred to as the forward operator, and solving for ~φ, given ~µ, is

called the forward problem. The algorithms underlying DOT are premised on solving the inverse

problem, wherein the optical properties ~µ are determined given a set of measurements ~φ.

The simplest method to solve the inverse problem is to invert W, such that

~µ = W−1~φ. (2.138)

However, W is an M × N matrix, where M is the number of source-detector pairs and N is the

number of reconstruction voxels. Due to logistical limitations, M � N , meaning that W is not a

square matrix, and the system of equations is undetermined. Thus, W is not generally invertible.

A simple inverse solution is therefore not practical for solving this equation with a unique solution.

Many methods have been developed for overcoming this limitation including discrete algebraic

inversions [225; 124; 123; 24], analytic linear subspace techniques [123; 175; 176; 159], and non-

linear iterative algorithms [228; 15; 12; 174; 84]. All of these techniques, in combination with

regularization (see Section 2.6.5), provide additional constraints to reduce the ill-posedness of the
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problem. Here, the focus will be on the non-linear iterative methods, a flow chart for which can be

found in Figure 2.10. Note also, that throughout this section, the vector of measurements ~φ will

be the measured amplitude and phase for a series of source and detector position combinations.

However, these algorithm can also be performed such that ~φ is the amplitude and phase measured

at a single source-detector pair but for a series of modulation frequencies. This will not provide

heterogeneous spatial information but will provide improved quantification of µa and µ′s at a single

position [30] (see Section 3.2.2).

2.6.3 DOT Initialization and Forward Problem

The first step in iterative reconstruction algorithms for DOT is initialization, whereby an initial

optical property distribution ~µ is set. The simplest initial optical properties are homogeneous

distributions of the absorption and diffusion coefficients µoa and Do. In this case, the initial ~µ would

be a 0-vector since there are no heterogeneous perturbations δµa and δD from the homogeneous

distribution.

Heterogeneous optical property distributions can also be chosen for initialization. This is partic-

ularly useful in the case that a priori structural knowledge can be used to identify disparate tissue

regions, with distinct optical properties (see Section 2.6.7). Regardless of what type of distribution

is chosen, it is important that the initial optical properties are chosen to be reasonably close to the

true values; otherwise the iterative algorithm may not converge to a meaningful solution [194].

These initial conditions are then used to solve the forward problem, utilizing the appropriate

weight matrix W , which is dependent on the homogeneous fluence rate, Green’s function, and

optical property distributions, as well as the voxel volume (see Equations 2.130 and 2.131). This

forward problem results in a calculated fluence rate vector ~φc.

2.6.4 DOT Objective Function

The goal of the iterative reconstruction algorithm is to minimize an objective function Ψ of the

form

Ψ = χ2 + τRR, (2.139)

where χ2 is a function comparing the calculated fluence rate ~φc to the measured fluence rate ~φm, R

is regularization term that compensates for the ill-posedness of the inverse problem, and τR is the

regularization hyper-parameter, which calibrates the relative weight of the χ2 and R terms. The

various forms of the regularization term will be discussed in Section 2.6.5.
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Figure 2.10: Flow Chart for Non-Linear Iterative DOT Algorithm. The non-linear iterative Diffuse
Optical Tomography (DOT) algorithm for reconstructing heterogeneous optical properties across a

three-dimensional medium from the measured fluence rate ~φm is comprised of the following steps:
1) Initialization. First, set an initial optical property distribution ~µ. 2) Forward Problem. Next,
solve the forward problem using the initial optical property vector ~µ and the appropriate weight
matrix W. This will produce a calculated fluence rate vector ~φc. 3) Objective Function Evaluation
(Section 2.6.4). The objective function for the algorithm is now evaluated. This function will

usually be comprised of a χ2 term comparing the measured and calculated fluence rates, ~φm and
~φc, and a regularization term that compensates for the ill-posedness of the matrix equation (Section
2.6.5). The goal is to minimize this objective function and, in doing so, find the appropriate optical
property vector ~µ. If the objective function meets some stopping criteria, the algorithm ends.
Otherwise, the algorithm proceeds to the next step. 4) Optical Property Update (Section 2.6.6).

If the objective function does not meet the stopping criteria, ~µ must be updated to make ~φc closer
to ~φm. 5) Iterate. The new optical property vector ~µ is used to solve the forward problem, and the
algorithm continues iterating.
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The χ2 term typically takes the form [245]

χ2 =
∑

(
~φc − ~φm

)2

~σ2

 (2.140)

=
∑

(
W~µ− ~φm

)2

~σ2

 . (2.141)

Here, the summation is performed over all source-detector pair measurements, ~σ is a weight

vector that represents the uncertainty, or standard deviation, of each source-detector pair mea-

surement, and element-wise division is performed between the calculated-measured fluence rate

difference and ~σ. The weight vector is often chosen to be uniform [84; 14]; however, it can also be

determined via experimental error and used to emphasize source-detector pairs with high signal-

to-noise or de-emphasize noisier measurements [25] (see Section 7.2.4).

Given the definition of ~φ in terms of φsc (Equation 2.129) and the definition of φsc in the

perturbative framework, the ~φc − ~φm term can be written as

~φc − ~φm = ln

(
U c

U co

)
− ln

(
Um

Umo

)
(2.142)

= ln

(
U cUmo
U coU

m

)
(2.143)

=

[
ln

(
Ac

Aco

)
− ln

(
Am

Amo

)]
+ ı [(θc − θco)− (θm − θmo )] . (2.144)

Thus, the χ2 term can be written in terms of the differences between the log-amplitudes and phases

of the heterogeneous and homogeneous fluence rates. If, in the experimental DOT procedure, a

measurement of a homogeneous reference is made, a difference reconstruction between the tissue

and reference phantom can be explicitly performed [14; 227]. To complete the objective function,

a regularization term must now be added.

2.6.5 DOT Regularization Techniques

The inverse DOT problem is usually ill-posed. For a full three-dimensional reconstruction, the

system of equations is under-determined because the number of reconstructed voxels is much greater

than the number of source-detector pairs. The system can also be over-determined in the case

of a hard-prior spatial constraint (see Section 2.6.7), which limits the reconstruction to a few

homogeneous regions. Under-determined systems of equations typically suffer from non-unique

solutions. Regularization ameliorates this issue by penalizing undesirable solutions, e.g., optical

properties far from typical tissue values or non-physical, rapidly fluctuating distributions, and thus
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constraining the problem [246; 161]. Although the potential presence of local minima in the iterative

algorithm precludes a definitively unique solution, regularization significantly reduces the possible

solution space. There are a wide variety of regularization techniques used in DOT reconstruction

[14; 84; 227]; this research uses three such techniques: Zeroth-Order Tikhonov (TK0), First-Order

Tikhonov (TK1), and total variation (TV).

The simplest regularization technique is Zeroth-Order Tikhonov, which seeks to minimize the

difference between the reconstructed optical properties ~µ and some initial estimate or a priori

known value of the optical property distribution ~µo.

RTK0 = ‖I (~µ− ~µo) ‖2 (2.145)

=

2N∑
n=1

[µn − µon]
2
, (2.146)

where I is the identity matrix, ~µo is the initial optical property distribution, ‖ · ‖2 represents the l2-

norm of the vector, and N is the number of voxels. Here, the sum goes from n = 1 to 2N because

two optical properties are reconstructed for each voxel. This technique prevents reconstructed

absorption and scattering coefficients in a given voxel that are unrealistically different from the

initial estimates in that voxel [246].

The First-Order Tikhonov regularization parameter enforces a smoothness condition, seeking

to minimize the gradient of the optical property distribution [77; 227]. This is accomplished via

the same framework as Zeroth-Order Tikhonov regularization but with a different linear operator

matrix L1, such that

RTK1 = ‖L1 (~µ− ~µo) ‖2 (2.147)

=

2N∑
i=1

 2N∑
j=1

Li,j
(
µj − µoj

)2

. (2.148)

Here L1 is the discrete first derivative matrix operator of size 2N × 2N , given by

Li,j =


ni if i = j

−1 if j is a neighbor of i

0 otherwise,

(2.149)

where ni is the number of neighbors surrounding the ith voxel. The First-Order Tikhonov regu-

larization term is thus dependent on the difference between the optical properties of a given voxel

and the optical properties of its neighbors. This quantity is proportional to the gradient of the op-

tical property distribution. If the initial optical property estimate is homogeneous, the First-Order
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Tikhonov regularization term reduces to

RTK1 =

2N∑
i=1

 2N∑
j=1

Li,j µj

2

(2.150)

because the gradient across the entire initial distribution is 0.

The total variation regularization scheme is similar to the First-Order Tikhonov method in that

it minimizes the optical property distribution gradient; however, instead of using the l2-norm, total

variation regularization utilizes the l1-norm [26], such that

RTV = ‖L1 (~µ− ~µo) ‖1 (2.151)

=

√√√√√ 2N∑
i=1

 2N∑
j=1

Li,j
(
µj − µoj

)2

+ T 2 − T, (2.152)

where ‖ · ‖1 is the l1 norm of the vector and T is a small threshold parameter [227; 25], which

allows for minimization in the regularization term despite any potential non-differentiability of the

optical properties [205]. Total variation has an advantage over First-Order Tikhonov for tissues

with sudden changes in optical properties. First-Order Tikhonov regularization tends to smooth all

regions, whereas total variation retains sharper edge features [205; 26; 25], which can be important

for contrast localization. As with First-Order Tikhonov regularization, total variation also reduces

to a simpler form if the initial optical properties are homogeneous:

RTV =

√√√√√ 2N∑
i=1

 2N∑
j=1

Li,j µj

2

+ T 2 − T. (2.153)

Regardless of which type of regularization is used, the hyperparameter τR must be chosen to

balance the regularization term with the χ2 minimization of the difference between calculated and

measured fluence rate. If the τR is too low, the reconstructed solution will be largely un-regularized

and subject to excessive high-frequency noise. A τR value that’s too high will result in an artificially

homogeneous and/or smooth distribution that doesn’t accurately reflect the tissue (see Figure 2.11).

In statistical parlance, a low tau value produces a high variance and results in overfitting while a

high tau value produces a large bias and is an example of underfitting [257].

The most common method for choosing the optimal τR value in optical tomography is L-curve

selection [133; 134]. This method requires reconstructions to be performed for a series of τR values

ranging from the underfit to the overfit regimes. The values of the χ2 part of the objective function

at the final iteration, hereafter referred to as the likelihood term [227], are then plotted against the

log-values of R at the same iteration, known as the prior term [227], with each point representing
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a different τR value. The point of maximum curvature on this plot will be the point at which both

the likelihood and prior terms are nearly minimized, providing the optimal τR value. Figure 2.11

contains an L-curve and characteristic phantom images at different τR values.

Additionally, it is not necessary for the regularization hyperparameter to be a constant; in-

stead of a constant τR, the parameter can be a vector ~τR of length 2N with a separate value for

each combination of voxel and reconstructed optical property. For instance, DOT is known to be

susceptible to artifacts near tissue boundaries due to the breakdown of the assumptions inherent

in the diffusion equation. Thus, a spatially-variant regularization parameter, with higher values

for voxels near the tissue boundaries, can reduce image noise without significantly impairing the

optical contrast elsewhere in the tissue [212; 72]. Alternatively, different values of τR, or even

different types of regularization, can be used for individual optical properties. For example, some

DOT instruments and reconstruction algorithms may inherently reconstruct the reduced scattering

coefficient µ′s with higher contrast and better resolution than the absorption coefficient µa. In

that case, it may be beneficial to use a First-Order Tikhonov algorithm and higher τR value for

the diffusion coefficient terms while employing Total Variation and a lower τR for the absorption

coefficient terms. This technique proved beneficial in our reconstruction work with a high spatial

density frequency domain DOT instrument [25] (see Section 7.2.4). A final use of spatially-varying

regularization is so-called soft-prior reconstruction, in which a priori knowledge of the tissue struc-

ture is used to assign varying regularization parameters to voxels based on their proximity to the

boundaries between tissue regions [84]. This will be discussed in more detail in Section 2.6.7.

Once the objective function Ψ, including the χ2 term and the regularization term, is evaluated,

it is tested against some stopping criterion, usually an acceptable value for the current iteration Ψi

or a minimum difference between successive iterations Ψi−Ψi−1. If the objective function satisfies

one of these criteria, the reconstruction algorithm ends. Note that the reconstruction can also be

terminated after a set number of iterations for practical purposes. If the objective function does not

satisfy the stopping criteria, the optical property vector ~µ must be updated to minimize difference

between the calculated and measured fluence rates.

2.6.6 DOT Optical Property Update Methods

There are several methods that can be used to update the optical property solution vector in order

to force the calculated fluence rate to converge to the measured fluence rate. The underlying concept

for all of these methods is the minimization of the objective function via a gradient with respect to

~µ. As with any optimization problem, a function will be minimized when its gradient approaches

0 [103]. The three methods used for reconstructions here are the Gauss-Newton algorithm, the
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Figure 2.11: L Curve Selection and the Effect of the Regularization Hyperparameter. A series of
reconstructions with different τR hyperparameters were performed for human subject breast cancer
data from a Frequency Domain DOT instrument using the conjugate gradient method (see Section
2.6.6) and a split First-Order Tikhonov and Total Variation regularization scheme (see Section
7.2.4). A) L-Curve analysis was performed and the likelihood term was plotted against the natural
logarithm of the prior term for a series of τR values (represented by the numbers on the plot).
The optimal τR is then chosen to be the point that maximizes the curvature at the L-bend, which
optimally minimizes both the likelihood and prior terms. For this reconstruction, τR = 3 × 10−5

was the best fit. B) Reconstructions of µa and µ′s at λ = 785nm are shown for high, optimal,
and low values of τR. Note that when τR is too high, the image is artificially smooth and does
not provide contrast between tumor and normal tissue. When τR is too low, high-frequency noise
dominates the reconstruction, obscuring the contrast.
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Conjugate Gradient algorithm, and the Levenberg-Marquadt algorithm. These methods can be

used for any of the previously discussed regularization techniques (Section 2.6.5), but, for simplicity,

the update algorithms will be demonstrated using Zeroth-Order Tikhonov regularization.

Gauss-Newton Method

The Gauss-Newton method has been extensively defined and employed for DOT [15; 229; 84].

The first step is to set the derivative of the objective function Ψ (Equation 2.139 using Zeroth-Order

Tikhonov regularization) equal to 0 with respect to the optical property vector ~µ such that

∇Ψ = 2
∑[

J>
(
~φc − ~φm

)
+ τRI (~µ− ~µo)

]
= 0, (2.154)

where τR is the regularization hyperparameter, I is the identity matrix, ~µ is the current optical

property distribution, ~µo is the initial optical property distribution, and JT is the transpose of the

Jacobian matrix J, defined as

J =
∂~φc
∂~µ

(2.155)

=



∂φ1
c

∂µ1
a

. . .
∂φ1

c

∂µNa

∂φ1
c

∂D1
. . .

∂φ1
c

∂DN

∂φ2
c

∂µ1
a

. . .
∂φ2

c

∂µNa

∂φ2
c

∂D1
. . .

∂φ2
c

∂DN

...
...

...
...

∂φMc
∂µ1

a

. . .
∂φMc
∂µNa

∂φMc
∂D1

. . .
∂φMc
∂DN


. (2.156)

Here, φic is the calculated flunce for the ith measurement, µja and Dj are the absorption and diffusion

coefficients for the jth voxel, N is the number of voxels, and M is the number of measurements. For

difference reconstructions in the frequency domain, φc can be written in terms of differences in log-

amplitude and phase as described in Equation 2.137; therefore, the difference in the log-amplitude

is simply the real part of φc, and the phase difference is the imaginary part of φc. The amplitude
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and phase for each measurement can then be regarded as independent parameters, such that

~φ→



ln

(
A1

A1
o

)
...

ln

(
AM

AMo

)
(
θ1 − θ1

o

)
...(

θM − θMo
)



=



∆A1

...

∆AM

∆θ1

...

∆θM



. (2.157)

In this commonly used framework, the Jacobian becomes

J =



∂∆A1

∂µ1
a

. . .
∂∆A1

∂µNa

∂∆A1

∂D1
. . .

∂∆A1

∂DN

...
...

...
...

∂∆AM

∂µ1
a

. . .
∂∆AM

∂µNa

∂∆AM

∂D1
. . .

∂∆AM

∂DN

∂∆θ1

∂µ1
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. . .
∂∆θ1

∂µNa

∂∆θ1

∂D1
. . .

∂∆θ1

∂DN

...
...

...
...

∂∆θM

∂µ1
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. . .
∂∆θM

∂µNa

∂∆θM

∂D1
. . .
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. (2.158)

For either form of the Jacobian, the update to the optical properties is calculated using the linear

term of a Taylor series expansion for the difference between ~φc in successive iterations, allowing ~φc

at iteration i+ 1 to be expressed as

~φc(i+ 1) = ~φc(i) + Jδ~µ, (2.159)

where ~φc(i) is the forward solution at the ith iteration, ~φc(i + 1) is the forward solution at the

(i + 1)th iteration, and δ~µ is the difference between optical properties in these two iterations

(~µ(i+ 1)− ~µ(i)). If this Taylor expansion is substituted into the summand in Equation 2.154, and

it is set to 0 to minimize the objective function,

J>
(
~φc(i)− ~φm

)
+ τRI (~µ(i)− ~µo) + J>Jδ~µ+ τRIδ~µ = 0, (2.160)

J>
(
~φc − ~φm

)
+ τRI (~µ− ~µo) =

(
J>J + τRI

)
δ~µ. (2.161)
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The optical property update to minimize the objective function is then calculated as

δ~µ =
(
J>J + τRI

)−1 [
J>
(
~φc − ~φm

)
+ τR (~µ− ~µo)

]
. (2.162)

Here the
(
J>J + τRI

)−1

term is a regularized pseudo-inverse of the Jacobian matrix known as the

Hessian and is calculable with a variety of techniques [229]. Gauss-Newton optimization is thus

dependent on a second derivative of the objective function.

The Gauss-Newton algorithm is relatively straight forward to implement but is computationally

intensive and not guaranteed to converge. It is also highly dependent on the chosen initial optical

properties [16].

Conjugate Gradient Method

The Conjugate Gradient algorithm is a steepest descent method dependent on the first derivative

of the objective function Ψ. It incurs a lower computational cost than the Gauss-Newton method;

however, it may require more iterations to converge and can sometimes act as a low-pass filter that

minimizes spatial heterogeneity in the reconstruction [16; 77].

For the first iteration, a residual vector ~ro, calculated based on the gradient of the objective

function at the first iteration Ψo with respect to the initial optical properties ~µo, is defined as

~ro = −
(
~∇Ψo

)
◦ ~µo, (2.163)

where ◦ indicates element-wise multiplication. For this iteration only, the search direction vector

~do is set to be equal to ~ro

(
~do = ~ro

)
. The new optical property vector will then be

~µ1 = ~µo + αo ~do, (2.164)

where αo is a step size constant. Here, αo is calculated via a line search method along the search

direction vector ~do which seeks the optimal step size for minimizing the objective function Ψ1

[16; 227].

Successive iterations then calculate a new ~ri where

~ri = −
(
~∇Ψi

)
◦ ~µi (2.165)

for the ith iteration. However, instead of setting ~di = ~ri,

~di = ~ri + βi ~di−1, (2.166)

where βi is a constant that weights the contribution of the current iteration gradient versus the

previous search direction. In the reconstructions presented here, βi was calculated using the Polak-

Ribiére method [214; 16]. This method specifies a βi of the form

βi ≡
~r>i ~ri − ~r>i ~ri−1

~r>i−1~ri−1
. (2.167)
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However, to ensure convergence, βi is set to 0 if the above definition produces a negative value.

The next optical property solution vector is then set in the same manner as the first iteration, so

~µi+1 = ~µi = αi ~di. (2.168)

Here, αi is again set via a line search minimization, and the algorithm will continue iterating until

the objective function satisfies the stopping criteria.

Levenberg-Marquadt Method

The Levenberg-Marquadt algorithm is a variation of the Gauss-Newton method that modifies

the regularization hyperparameter such that the optical property update is defined as [167; 84]

δ~µ =
(
J>J + γ τRI

)−1 [
J>
(
~φc − ~φm

)
+ τR (~µ− ~µo)

]
. (2.169)

The constant γ modifies the hyperparameter τR to control the level of regularization for a given iter-

ation. A larger γ leads to a highly regularized update which is dominated by the non-Hessian term

in Equation 2.169. This term is dependent on the gradient of the Ψ and thus more closely resem-

bles the conjugate gradient method. A very small γ results in an update dominated by the Gauss-

Newton-like Hessian term. A typical strategy, and the one implemented for all Levenberg-Marquadt

reconstructions here, is for γ to decrease monotonically across successive iterations [260; 84; 23].

This large early regularization inhibits divergence of the reconstruction due to the aberrant search

directions that can be caused by highly inaccurate initial optical properties. Less regularization

at later iterations allows the reconstruction to converge once the search direction is more certain.

As such, the Levenberg-Marquadt algorithm reduces some of the dependence on initial optical

properties that plagues the Gauss-Newton method [167; 260].

2.6.7 A Priori Spatial Information

Relative to gold-standard structural imaging techniques like x-ray or MRI, Diffuse Optical Tomogra-

phy has limited spatial resolution due to the large effective wavelength of the diffuse photon density

waves used in the image reconstruction [195; 32; 98]. For most DOT instruments the best resolu-

tion ranges from approximately 2 to 10mm [67; 159; 72]; the exact value of the resolution is highly

dependent on the number, location, and field of view of the sources and detectors, the data quality,

and the optical property contrast of the imaged inhomogeneity [32]. This relative lack of resolution

can impair localization of high contrast regions, such as tumors, and the quantitative accuracy of

the optical property reconstruction. One method of overcoming these issues is combining DOT with

a clinically standard structural imaging modality, such as x-ray CT [169; 270; 111; 183; 280], MRI

[193; 46; 142; 271; 52; 105], or ultrasound [274; 140; 275; 277]. A large majority of multi-modality
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DOT instruments perform both imaging techniques simultaneously; however, it is also possible,

via a co-registration algorithm, to use non-concurrent structural images with DOT reconstructions

[20].

These multi-modality measurements serve three primary purposes:

1. Validation - A structural image taken simultaneously can help validate the ability of DOT to

localize the optical contrast of a region of interest.

2. Constraint - The structural image can be used as an input to the DOT reconstruction, more

accurately locating different regions and thus improving the quantitative optical property

reconstruction.

3. Synthesis - Information from the clinical modality, such as water density or blood perfusion

from MRI, can be combined with optical parameters, like tissue oxygen saturation, to create

a new biomarker unavailable to either technique alone.

Validation can be performed by reconstructing the optical contrast entirely independently of

the structural image and then comparing the location of the region of interest in each modality.

This type of validation has been done for DOT of breast tumors with both MRI and x-ray CT

[193; 52; 111] and for functional brain mapping DOT with comparison to BOLD fMRI [157; 104].

Constraining the reconstruction requires that the a priori spatial information obtained from

the structural imaging modality serves as input to the DOT algorithm. The most common input

is a segmented mask of the structural image, separating the imaging volume into distinct regions.

For example, for a multi-modal DOT-MRI breast imager, the tissue could be divided into adipose

(fatty), fibroglandular, and tumor regions. The reconstruction can then be constrained via these

region designations in several ways. The simplest method is to simply set different initial optical

properties for each region. This technique is most useful if the segmented image is divided into

tissue and non-tissue regions, e.g., breast tissue and a surrounding lipid emulsion bath, because it

preserves the boundary location between the regions without biasing the tissue reconstruction [25].

This strategy is less effective when comparing two tissue regions, e.g., tumor and healthy, because

the optical contrast between the two regions will be biased by the initial conditions.

The most common use of spatial information with DOT is as a so-called hard prior. A hard

prior uses the segmented image to define distinct spatial regions and then forces the reconstructed

optical properties to be homogeneous within each region. This reduces the number of parameters

that must be reconstructed and thus reduces the length of the optical property vector ~µ. Instead

of reconstructing properties for many small voxels, the DOT algorithm only needs to reconstruct
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a single value of each optical property for each region. For DOT instruments with many source-

detector pairs, this transforms the inverse problem from an under-determined system of equations

to an over-determined one. Hard-prior constraint has been shown to improve quantitative contrast

between tumor and normal regions [47; 178; 117]; however, this technique is very sensitive to

inaccuracy in the location of the defined regions [41; 88]. Therefore accurate segmentation and

spatial co-registration between modalities is imperative.

Another implementation of the segmented image is as a soft boundary prior, in which the

regularization hyperparameter τR is lower near region boundaries than in the region interior. This

enforces a smoothing condition within a given region while allowing for significant updates at the

boundaries where there is more potential for a physiological non-linearity. Soft-prior regularization

has been shown to improve optical contrast relative to unconstrained DOT [145; 130; 260; 25] but

is generally not as effective in this regard as hard-prior constraints [211; 259]. It also does not

reduce parameter space for the inverse problem since all voxels are still reconstructed. Soft-prior

regularization does have the advantage of being less critically dependent on accurate segmentation,

though.

Finally, information from other modalities can be synthesized with DOT-measured water, lipid,

or hemoglobin concentrations to potentially highlight new physiological processes. For example,

glucose metabolism information from FDG-PET could be combined with DOT-measured tissue

oxygenation to explore the relative levels of different metabolic processes [122]. Alternatively,

gadolinium-uptake DCE-MRI techniques can measure tumor blood perfusion which, combined with

oxygen saturation, could directly probe oxygen metabolism [52].

2.7 Finite Element Method

The DOT reconstruction methods presented so far have relied upon two primary assumptions: 1)

a small perturbation from homogeneous optical property distributions and 2) a regular geometry

for which an analytical Green’s function solution can be calculated. The Finite Element Method

(FEM) [279] is a numerical technique that helps to overcome these limitations and has been used

extensively in diffuse optics [17; 228; 15; 204; 84; 227]. This method is premised on subdividing the

imaging domain Ω, which contains a boundary referred to as ∂Ω into a series of discrete regions,

similar to the voxels discussed earlier. These elements can take a variety of shapes but tetrahedral

and cubic elements are the most common [14]. The vertices of the elements are referred to as

nodes, and these nodes (∼ 105) and elements comprise the finite element mesh over which the

reconstruction is performed. The nodes also serve as a basis set for discretizing the fluence rate.
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The total fluence rate in the frequency-domain, here referred to by convention as Φh, can be written

as

Φh(~r) =

V∑
i=1

Φiui(~r). (2.170)

Here, ui(~r) is simply a δ-function at the position of the ith node, Φi is the fluence rate at the ith

node, and V is the total number of nodes. In this formulation, the vector ~Φ, which is the vector of

all V values of Φi, obeys a diffusion equation of the form

[K + C + ıωM + A] ~Φ = ~Q, (2.171)

where ~Q is a vector of length V of the source power at each node. In most applications, where the

source positions lie on the tissue boundary, ~Q will only be non-zero for boundary nodes. K, C,

M, and A are all matrices of size V × V whose terms in the ith row and jth column are defined as

follows [17; 228]:

Kij =

∫
Ω

= D(~r)
(
~∇uj(~r)

)
· ~∇ui(~r) dΩ, (2.172)

Cij =

∫
Ω

vµauj(~r)ui(~r) dΩ, (2.173)

Mij =

∫
Ω

uj(~r)ui(~r) dΩ, (2.174)

Aij =
1

2

1−Reff
1 +Reff

∫
∂Ω

uj(~r)ui(~r) d(∂Ω). (2.175)

Each of these terms clearly resembles part of the diffusion equation. K is the term containing the

spatial derivatives and diffusion coefficients, C is the absorption term, M is the frequency-domain

implementation of the time-derivative, and A, which is integrated only over the surface nodes, is the

discretized partial-flux boundary condition. Note that Reff is the same value defined in Equation

2.97. Since uj(~r) and ui(~r) form an orthogonal basis set of δ-functions at each node, these integrals

will only be non-zero when the ith and jth nodes in the integral are both vertices of the same

element. Thus, all four matrices are extremely sparse. As with the analytic diffusion equation, this

frequency-domain equation can easily be converted to continuous wave or time-domain.

This matrix diffusion equation can be solved using the techniques discussed previously, but

now, analytic Green’s function solutions for different geometries are not required. The infinite

homogeneous geometry Green’s function can be used for interior nodes, and the same Green’s

function plus the partial flux boundary condition can be used for boundary nodes. The full fluence
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rate will thus be a numeric approximation of the true fluence rate which becomes more accurate for

denser meshes with more nodes. The actual measurements can then be thought of as the photon

flux normal to the boundary in the elements that contain the detector positions, which is calculated

by integrating the fluence rate over the describing nodes of the element and using the partial flux

boundary condition (see Equation 2.100).

2.8 Tissue Spectroscopy and Scattering Model

2.8.1 Tissue Spectroscopy

The analytical strategies discussed to this point have focused on modelling the photon fluence

rate in order to determine the absorption (µa) and reduced scattering (µ′s) coefficients of tissue.

While these properties have demonstrated potential clinical utility [255; 56], the concentration of

chromophores that absorb light in the near-infrared wavelength range can provide particularly useful

physiological information. The four primary absorbers in diffuse optics are oxygenated hemoglobin

(HbO2), deoxygenated hemoglobin (HHb), water (H2O), and lipid. The absorption coefficient

for a particular wavelength can be written as a summation of the absorption due to these tissue

chromophores, such that

µa(λ) = µoa(λ) +
∑
i

εi(λ)Ci, (2.176)

where εi [M−1cm−1] is the extinction coefficient for the ith chromophore, Ci [µM ] is the con-

centration of the ith chromophore, and µoa is a background absorption coefficient. The extinction

coefficients ε are generally known for the chromophores of interest [215] (see Figure 2.12). If dif-

fuse optical measurements are made at multiple wavelengths, i.e., multi-spectrally, Equation 2.176

becomes a system of equations that can be solved for the chromophore concentrations. Given the

nature of systems of equations, the number of chromophore concentrations that can be distin-

guished is dependent on the number of unique wavelengths used. For example, two wavelengths, if

properly chosen, can be enough to determine the concentrations of HbO2 and HHb; the ideal pair

of wavelengths is one between 660 and 760nm and another at 830nm [34; 261]. However, given

the experimental uncertainties inherent in the measurements, quantification is often improved by

including more wavelengths than unknown fitted parameters.

For many applications, fitting for the four previously mentioned chromophores obviates the

need to include a background absorption coefficient µoa in the fitting algorithm. However, there are

other chromophores that significantly contribute to absorption in certain tissues, such as myoglobin

in muscle [66; 64] or collagen in the breast [243; 272]. If the concentration of these or other
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Figure 2.12: Chromophore Absorption Spectra in the Physiological Window. The absorption coef-
ficients due to four different tissue chromophores, oxy-hemoglobin HbO2, deoxy-hemoglobin HHb,
water, and lipid, for typical chromophore concentrations are plotted [215; 148]. This wavelength
range represents the so-called physiological window where tissue absorption is low enough to allow
depth penetration of greater than several centimeters. The known extinction coefficients for these
chromophores can be used in concert with the reconstructed µa value to determine chromophore
concentrations.

chromophores are not determined through multi-spectral fitting, the absorption due to them can

be subsumed into the background absorption coefficient µoa. The most common multi-spectral

measurements in diffuse optics calculate only the HbO2 and HHb concentrations, which allows for

the determination of the total hemoglobin concentration (HbT = HbO2 + HHb) and the tissue

oxygen saturation (StO2 = HbO2/HbT ). The absorption due to water, lipid, and other parameters

are then assumed from a population average for a given tissue [215; 148; 99]. Note that the

concentrations described here are the concentrations of the given chromophores in tissue, not in

blood. Therefore, the fitted hemoglobin concentrations, for example, will be much lower than

typical hemoglobin concentrations in blood.

2.8.2 Mie Scattering Model

As with the absorption coefficient, the reduced scattering coefficient µ′s is also wavelength depen-

dent. In tissue, there are many particles, including proteins, organelles, and cells, with sizes on the
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order of near-infrared wavelengths (∼ 50nm to 10µm), and therefore, near-infrared light under-

goes Mie-type scattering with a weak wavelength dependence and a bias towards forward scattering

[184; 186], as opposed to the Rayleigh scattering that would occur for smaller particles [137]. Thus,

the reduced scattering coefficient can be expressed as

µ′s(λ) = A

(
λ

λo

)−b
, (2.177)

where λo is a reference wavelength, A is the scattering amplitude, and b is the scattering power.

With measurements performed at multiple wavelengths, the wavelength-independent tissue pa-

rameters A and b can be determined. In practice, b is often assumed based on a population- or

phantom-derived average [148] while a fit for A is performed.

2.8.3 Multi-spectral Fitting

In practice, there are two methods of determining the chromophore concentrations and tissue

scattering parameters:

1. Perform separate fits of the Green’s function solutions for µa and µ′s at each measured wave-

length. Then, optimize the chromophore concentrations and scattering parameters using

Equations 2.176 and 2.177.

2. Perform a multi-spectral fit, wherein the fluence rates at all measured wavelengths are fit

simultaneously. In this method, the models for µa and µ′s in Equations 2.176 and 2.177

are built into the Green’s function or DOT solutions [79; 78; 240; 25], and the chromophore

concentrations Ci and tissue scattering parameters A and b are fit directly.

Multi-spectral reconstructions using the known chromophore extinction coefficients and Mie scatter-

ing model have been shown to produce more robust calculations of tissue parameters [79; 240; 102]

because utilizing data from every wavelength better constrains the fitting algorithm [78]. For

multi-spectral DOT, every reconstruction step discussed previously remains the same except the

fit parameters are now the wavelength-independent chromophore concentrations, e.g., HHb and

HbO2, and scattering properties in each voxel. The measurement vector ~φ must then include

the amplitude and phase data for all source-detector pairs and all measured wavelengths. Thus,

a multi-spectral reconstruction is also more computationally intensive than a single-wavelength

reconstruction but generally requires less computation than multiple, separate single-wavelength

reconstructions.
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2.9 Diffuse Correlation Spectroscopy

DOS and DOT generally measure static tissue properties, such as µa, µ′s, and the concentrations of

oxy- and deoxy-hemoglobin, water, and lipid. Diffusive near-infrared light can also measure dynamic

properties, though. Specifically, a technique called Diffuse Correlation Spectroscopy (DCS) can be

used to measure the motion of the red blood cells that scatter light in tissue, providing a biomarker

of blood flow.

2.9.1 Dynamic Light Scattering - Single Scattering Event

In the limit where light is introduced to a medium, undergoes a single scattering event, and is

then collected by a detector, a mathematical description of dynamic light scattering is relatively

simple. If a detector measures light at two time points, separated by a time offset τ , there will

be an interference, or speckle, pattern [35] caused by photon propagation path-length changes. A

normalized temporal auto-correlation function at these two time points for the electric field ~E of

the light can be defined as [28; 74; 48; 98]

g1(τ) ≡

〈
~E∗(t) · ~E(t+ τ)

〉
〈∣∣∣ ~E(t)

∣∣∣2〉 = eı2πfτ e−q
2〈∆r2(τ)〉/6. (2.178)

Here, ~E∗ is the complex conjugate of ~E, the brackets represent a time average for experimental

collection, f is the frequency of the light, and q is the magnitude of the difference between the

input and output wave vectors k. This auto-correlation function will decay as a function of how far

the scattering particles move from their original positions over the time delay τ . This motion can

be characterized as an ensemble average of the mean-square displacement
〈
∆r2(τ)

〉
[48]. In most

experimental setups, the detector measures intensity I rather than the electric field. Thus, only

the normalized intensity auto-correlation function g2 can be measured. Here, g2 is defined as

g2(τ) ≡ 〈I(t) I(t+ τ)〉
〈I(t)〉2

, (2.179)

where the intensity I(t) ≡
∣∣∣ ~E(t)

∣∣∣2. In order to extract the electric field auto-correlation function

g1 from the intensity auto-correlation function g2, the Siegert relation [162], defined as follows, can

be used:

g2(τ) = 1 + β |g1(τ)|2 . (2.180)

Here, β is a constant that is a measure of the magnitude of the speckle intensity relative to the

average intensity and is dependent on the system instrumentation [126; 22]. In an ideal setup,
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β = 1 for completely polarized light and β = 0.5 for completely unpolarized light [33; 22]. If β

is too close to 0, then there is not enough detectable contrast due to the intensity fluctuations to

perform a significant measurement.

2.9.2 Dynamic Light Scattering - Multiple Scattering Events

Because tissue is highly scattering, the single scattering framework must be extended to the multiple

scattering domain in order to derive physiological parameters from this correlation analysis. One

method of analyzing this scenario, called Diffusing Wave Spectroscopy (DWS), has been developed

extensively for light scattering in colloids [209; 172; 268]. DWS relies on the measurement of the

change in phase for different photon random-walk paths after a delay time τ [98]. An alternative

analysis scheme developed a transport model for the temporal auto-correlation function [6; 93]

that is analogous to the RTE (see Equation 2.1). This correlation transport equation describes

the transport of the direction-dependent un-normalized electric field auto-correlation function G>1 ,

which is defined as

G>1 (~r, Ω̂, τ) =
〈
~E∗(~r, Ω̂, t) · ~E(~r, Ω̂, t+ τ)

〉
. (2.181)

The transport relation is then

~∇G>1 (~r, Ω̂, τ)Ω̂ =

− µt(~r)G>1 (~r, Ω̂, τ) + Q(~r, Ω̂) + µs

∫
4π

G>1 (~r, Ω̂′, τ) gs1(Ω̂, Ω̂′, τ) f(Ω̂, Ω̂′) dΩ′. (2.182)

Here, gs1 is the normalized electric field auto-correlation function for a single scattering event (see

Equation 2.178), and all other quantities are defined as in the radiative transport equation (Equa-

tion 2.1). In comparing the two transport equations, it is apparent that G>1 is analogous to the

direction-dependent radiance L. Therefore, if the appropriate assumptions are made and the P1

approximation (see Section 2.2) is applied, a diffusion equation can be derived for a direction-

independent un-normalized field auto-correlation function G1 [33; 32], which is analogous to the

fluence rate and defined as

G1(~r, τ) ≡
∫

4π

G>1 (~r, Ω̂, τ) dΩ =
〈
~E∗(~r, t) · ~E(~r, t+ τ)

〉
. (2.183)

The correlation diffusion equation then takes the form

~∇ ·
[
D(~r)~∇G1(~r, τ)

]
−
[
v µa(~r) +

α

3
vµ′sκ

2
o

〈
∆r2(τ)

〉]
G1(~r, τ) = −v S(~r), (2.184)

where α is the fraction of scattering events that involve moving scatterers, κo = 2π/λ is the

wavenumber for the light, and
〈
∆r2(τ)

〉
is the mean-square displacement of the moving scatterers
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defined in Section 2.9.1. All other parameters are defined in the same way as the fluence rate

diffusion equation. It is clear, then, that Equation 2.184 has an identical form to the CW fluence

rate diffusion equation except for a modification to the absorption coefficient term that contains

the dynamic information. Because of this, solutions for G1 will obey the same boundary conditions

and have the same Green’s function solutions as Φ. The only modification will be that, instead of

the quantity k, as defined in Equation 2.72, the decay constant will be K, defined as

K =

√√√√√√v

[
µa +

αµ′s k
2
o

〈
∆r2(τ)

〉
3

]
D

, (2.185)

and the infinite homogeneous medium solution will be

G1(~r, τ) =
v

4πD
e−Kr. (2.186)

As with the single scattering case, instruments will generally measure the light intensity and use

hardware [32] or software [252] correlation to calculate the auto-correlation function G2, defined as

G2(~r, τ) = 〈I(~r, t)I(~r, t+ τ)〉 . (2.187)

Thus, the Siegert equation (Equation 2.180) must again be applied. For multiple scattering, this

relation is only valid if almost all of the photons undergo at least one scattering event caused by

a moving scatterer [98]. Because of the extremely high scattering coefficient and preponderance

of moving scatterers, this condition is typically met in tissue. A schematic of the effect of moving

scatterers on measured intensity and the intensity auto-correlation function can be found in Figure

2.13.

2.9.3 Physiological Meaning of Blood Flow Index

As with diffuse optical spectroscopy, the correlation diffusion equation can be solved for the effective

optical properties of the medium and fit to values of G2 measured at a range of delay times τ .

In this case, the optical properties are the diffusion coefficient D and the effective absorption

coefficient that is dependent on the real absorption coefficient µa, the reduced scattering coefficient

µ′s, and the term α
〈
∆r2(τ)

〉
. As mentioned previously, α is the fraction of scattering events

that involve moving scatterers. Because the primary dynamic scatterers are red blood cells, this

fraction α is proportional to the tissue blood volume fraction, i.e.
VBlood
VTissue

[32; 22]. The mean-

square displacement
〈
∆r2(τ)

〉
is dependent on the motion of the red blood cells. In DCS, Brownian

motion appears to be the best model for the motion of the red blood cells [97; 101; 98; 37]. Red

blood cells traveling through narrow capillaries will experience significant shear-induced diffusive
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Figure 2.13: Effect of Moving Scatterers on Intensity Auto-Correlation. Diffuse Correlation Spec-
troscopy (DCS) utilizes an intensity auto-correlation function to measure the motion of red blood
cells and thus provides an index of blood flow. A) If tissue scatterers, like red blood cells, are moving,
light measured at times offset by a time delay τ will follow different paths. This path-length differ-
ence will lead to an interference, or speckle, effect that can be measured with an auto-correlation
function. If the red blood cells are moving faster, the mean-square distance

〈
∆r2(τ)

〉
traversed by

the cells will be larger, and thus the path light travels at time t = τ will be less correlated with the
path the light traveled at time t = 0. B) Faster blood flow will lead to more significant intensity
fluctuations than slow blood flow. This, in turn, leads to a more rapid decay of the intensity auto-
correlation function g2 for fast blood flow than for slow flow. This figure is adapted from a similar
figure in the PhD Thesis of Wesley B. Baker [22].

motion in addition to the laminar forward flow [37]. Since DCS is primarily sensitive to blood flow

in the microvasculature, it makes sense that a diffusive model best fits the data [98]. In this case,

the mean-square displacement can be related to a Brownian diffusion coefficient DB , such that

〈
∆r2(τ)

〉
= 6DBτ. (2.188)

In practice, it is difficult to simultaneously fit for the absorption, reduced scattering, α, and〈
∆r2(τ)

〉
. Doing so requires many source-detector pairs or an extension to Time-Domain DCS,

which both require more expensive and complex instrumentation [242; 199]. Thus, µa and µ′s are
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generally treated as inputs, either calculated via DOS or assumed from population-average values,

while α
〈
∆r2(τ)

〉
is calculated from the fitting algorithm. Accurately measured optical properties

significantly reduce the errors in the fit for αDB and cross-talk between optical and flow properties

[147; 114; 264; 76]. There is no simple method for individually calculating α and DB using DCS;

therefore, the combined quantity is calculated and designated as the a blood flow index BFI where

BFI = αDB . (2.189)

This blood flow index is dependent on both the blood volume fraction and the red blood cell diffusion

dynamics and has units of cm2s−1. Thus, BFI is not measured in the traditional blood flow units

used clinically, often mLBlood/minute
100mLof Tissue , and the blood volume fraction α can potentially confound

the true flow measurement of BFI. However, this BFI has been validated in humans using

several gold-standard flow-measuring techniques [182], including transcranial Doppler ultrasound

[50], xenon contrast-enhanced computed tomography [158], and phase-encoded velocity mapping

MRI [51; 151]. It appears, therefore, that BFI is proportional to the true blood flow. Though it

is unnecessary for many applications, including the one discussed in Chapter 4, BFI can also be

calibrated to absolute blood flow units using DOS techniques [91; 170].

2.9.4 DCS Instrumentation

The instrumentation used for DCS is similar to that required to perform DOS. This enables rea-

sonably seamless integration of the two technologies to measure static and hemodynamic tissue

properties simultaneously [69; 96; 97; 273; 158; 76]. However, there are several specific experimental

considerations for DCS that are not applicable to DOS. For example, DCS requires a long-coherence

length laser, generally with a coherence length greater than 5m. Loss of coherence at the source

can confound the ability of an instrument to resolve the broadening of the power spectrum due

to the motion of red blood cells [32; 97; 22]. Single-mode, or potentially few-mode, optical fibers

are also required for detection to prevent modal noise [97; 126; 22]. These single-mode fibers have

much lower signal, though, than the multi-mode fibers used for DOS. Thus, DCS requires very high

sensitivity avalanche photodiodes (APDs), often utilizes parallel detection, and can still suffer from

a lack of signal at long source-detector separations [98; 22]. This signal consideration is more of an

issue for highly absorbing tissue, e.g. brain and muscle, than it is for the DCS measurements in

breast tissue discussed in Chapter 4.
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2.10 Statistical Techniques

In addition to the standard analysis necessary to perform DOS, DOT, and DCS, the development

of novel biomarkers requires statistical analysis of the reconstructed optical properties and physio-

logical parameters for correlation with clinical diagnoses and outcomes. In the context of the work

presented here, these statistical techniques fall into three categories:

1. Z-Score Normalization. Tissue optical properties and hemodynamic parameters display

significant inter- and intra-subject heterogeneity. Thus, choosing the proper normalization

technique, e.g., for tumor properties with respect to normal tissue, is of paramount impor-

tance. The method demonstrated to provide the most value in the analysis presented here

is z-score normalization, in which a healthy tissue mean value for a given parameter is sub-

tracted from the tumor value and this difference is divided by the standard deviation of the

normal tissue measurements. Section 2.10.1 contains a full description of this method and its

statistical benefits.

2. Logistic Regression. Two common applications of diffuse-optically measured parameters

in breast cancer are diagnosis, e.g., distinguishing malignant tissue from benign tissue, and

prognosis, e.g., predicting responders versus non-responders to chemotherapy. These are both

classification learning problems, which are addressed here using logistic regression, a technique

discussed in detail in Section 2.10.2.

3. Regression Model Evaluation. The final step in developing useful biomarkers is to eval-

uate the the quality of the models that are produced. This quality is typically determined

by two factors: discriminatory ability and calibration. Here, the discriminatory ability, i.e.,

the model’s ability to differentiate between the positive and negative groups, is determined

by receiver operating characteristic analysis (Section 2.10.3) and the calibration, i.e., the de-

gree to which predicted probabilities correspond to actual probabilities, is characterized with

Hosmer-Lemeshow analysis (Section 2.10.4).

2.10.1 Z-Score Normalization

The simplest DOS metric would be an un-normalized value of one of the -measured parameters,

e.g., StO2. Another common metric is tissue-to-normal ratio-normalized data StO2T/N
, wherein a

measured StO2 value is divided by the average StO2 of a known normal tissue region. This StO2T/N

quantity improves upon the un-normalized StO2 by accounting for the inter-subject variability in the

systemic levels of DOS-measured physiological parameters (see Example 1 in Figure 2.14). However,
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healthy breast tissue also exhibits significant intra-subject heterogeneity in these quantities [99;

230; 56]. This variation is not accounted for in the tumor-to-normal ratio normalization technique.

Thus, StO2T/N
provides no indication of whether a value is within the expected range of the normal

tissue StO2 due to heterogeneity or whether the value is significantly different from the healthy

tissue. To resolve this issue, the normalization technique needs to account for both the mean

and the standard deviation of the normal tissue StO2 (see Example 2 in Figure 2.14). A z-score

normalization scheme has been previously developed for this purpose with respect to differentiating

malignant and healthy tissue [56; 55] (see Chapter 5).

Briefly, the natural logarithm of each data point is first taken because the log-data for each pa-

rameter was empirically determined to be more normally distributed, i.e., Gaussian, across healthy

tissue than the raw data [56]. Gaussian distributions, which are well-characterized by a mean and

standard deviation, enable the use of z-scores, which are a measure of how many standard devia-

tions away from the mean a given data point is [257]. These z-scores can provide a quantitative

measure of how likely it is that a data point belongs to a given distribution; in this case, the z-scores

measure whether a tumor physiological parameter is significantly different from the same quantity

in healthy tissue.

To transform raw tumor data into z-score data, the mean and standard deviation of a normal

(healthy) region of tissue is used as in Equation 3.1

Zj =
lnXj − 〈lnXjNorm

〉
σ [lnXjNorm

]
. (2.190)

Here, Xj is the un-normalized jth measured parameter in the tumor region, XjNorm
is the un-

normalized jth measured parameter in a normal (healthy) region of either the tumor-bearing breast

or the contralateral breast,〈lnXjNorm
〉 represents the mean over all points in the normal (healthy)

region, and σ [lnXjNorm
] represents the standard deviation over all points in the normal (healthy)

region. Zj is then the tumor region z-score relative to the healthy tissue for the jth parameter.

Thus, every tumor data point is measured in units of standard deviations from the mean of a

given parameter in healthy tissue. In addition to transforming all parameters to be approximately

the same magnitude, this method better accounts for the inter-subject systemic variations by

finding the difference of each parameter from the mean value of the normal (healthy) tissue. It also

more fully accounts for intra-subject variation in healthy tissue by normalizing with the healthy

tissue standard deviation. Finally, this techniques transforms the normal tissue measurements such

that they more closely obey a normal Gaussian distribution, which improves statistical robustness

[206; 136; 141]. A concrete example of the benefit of this statistical transformation scheme is
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Figure 2.14: Normalization to Account for Inter- and Intra-Subject Heterogeneity. Example 1 -
Here, Patient A and Patient B are indistinguishable if only the un-normalized StO2 tumor values
are considered. However, if tumor-to-normal ratio normalization is performed by dividing the
mean tumor tissue value by the mean normal tissue value, it appears that Patient A’s tumor is
hyperoxic relative to the normal tissue, while Patient B’s tumor is hypoxic. Thus, Tumor-to-Normal
normalization was able to account for systemic inter-subject variation. Example 2 - Here, Patient A
and Patient B are indistinguishable with either un-normalized or tumor-to-normal data. However,
if the normal tissue standard deviation is included, it is clear that Patient B has much more
heterogeneous normal tissue. Accounting for this variation, via a z-score, enables a more accurate
measure of whether each tumor oxygen saturation falls within the expected range of the normal
tissue. Thus, the z-score normalization can account for both inter- and intra-subject heterogeneity.

shown in Figure 2.15 for Early time-point tissue oxygen saturation in the ACRIN-6691 multi-site

trial subject cohort (see Chapter 3).
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Figure 2.15: Histograms of the Early Normal Tissue StO2. A) Fractional histograms of the un-
normalized StO2 of the normal tissue on the tumor-bearing breast at the Early time-point for
each subject. Each line represents a different subject. B) Fractional histograms of the z-score
normalized log-transformed StO2 data of the normal tissue on the tumor-bearing breast at the
Early time-point for each subject. Each line represents a different subject. Note that with the
z-score normalization, the distributions for all subjects have the same means and approximately
Gaussian distributions; this effect is consistent across all measured parameters and time-points.
Features that obey Gaussian distributions typically produce more statistically robust models.

2.10.2 Binomial Logistic Regression

Logistic regression is one of the most common machine learning techniques for classification. This

research utilizes binomial logistic regression, i.e., regression against a dichotomous qualitative vari-

able. Here, the two classifications are either malignant and healthy tissue, for Chapter 5, or

complete responder or non-complete responder to chemotherapy, for Chapter 3. Full derivations of

the logistic regression algorithm can be found in [257; 136; 141].

Binomial logistic regression is always performed over a set of independent variables which are

typically different observed parameters for each subject in the dataset. Here the independent
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variables will be represented by ~Zi, where

~Zi =
[
Z1, Z2, . . . , ZNj

]i
. (2.191)

Thus Zij is the the jth measured parameter (out of Nj parameters) for the ith subject (out of Ni

subjects) in the dataset. The ith subject is also classified by a binary response variable Y i, which

can take only two values, 0 or 1.

Now a probability for achieving a certain state Y for a given set of observed parameters ~Z

must be defined. Unsurprisingly, in this case, this probability is defined using a logistic function,

which has the advantage of transforming any real number from −∞ to ∞ onto the range 0 to 1, a

necessary condition for probability. The probability of the ith subject being a member of the set

Y = 1, given the measured parameters ~Zi for the ith subject, is defined as

Pi = Prob
(
Y i = 1|~Zi

)
≡

exp

(
βo +

Nj∑
j=1

βj · Zij

)

1 + exp

(
βo +

Nj∑
j=1

βj · Zij

) =
1

1 + exp

(
−βo −

Nj∑
j=1

βj · Zij

) . (2.192)

Here, ~β =
[
βo, β1, . . . , βNj

]
is a weight vector for each measured parameter with an intercept term

βo.

The logit, or log-odds function is then defined as

logit
(
Pi
)
≡ ln

(
Pi

1− Pi

)
. (2.193)

Thus, the log-odds is defined as the natural logarithm of the ratio of the probability of being in the

positive Y = 1 state to the probability of being in the negative Y = 0 state. Substituting Equation

2.192 into the definition of the logit function results in

logit(Pi) = βo +

Nj∑
j=1

βj · Zij . (2.194)

This log-odds definition is called the malignancy parameter M in Chapter 5 and the response

parameter R in Chapter 3.

Unlike linear regression, minimization using a least-squares method is not applicable to logistic

regression because the dependent variables are classifications rather than numeric values. Thus, a

term known as the likelihood L is defined such that

L =

Ni∏
i=1

(
Pi
)Y i (

1− Pi
)1−Y i

, (2.195)

where Ni is the number of subjects, Y i is the actual classification state for the ith subject, and Pi

is the probability that the ith subject is in the Y = 1 state. The likelihood L is larger if subjects
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in the Y = 1 state have probabilities close to 1 while subjects in the Y = 0 state have probabilities

close to 0. Given the definition of Pi from Equation 2.192, the likelihood for a given weight vector

~β can be written as

L
(
~β
)

=

Ni∏
i=1

exp

(
Y i

(
βo +

Nj∑
j=1

βj · Zij

))

1 + exp

(
βo +

Nj∑
j=1

βj · Zij

) . (2.196)

The goal of the logistic regression algorithm is to maximize this likelihood parameter L by optimiz-

ing ~β. By inspection, it is clear that when Y i = 0, the term inside the product is maximized as the

log-odds term goes to −∞. Conversely, if Y i = 1, the term inside the product is maximized as the

log-odds term goes to +∞. Thus, an optimal weight vector ~β will produce highly negative log-odds

for subjects with Y = 0 and highly positive values for subjects with Y = 1. This is consistent with

the logistic definition of P, the probability of being in state Y = 1. A highly positive log-odds leads

to P→ 1, and a highly negative log-odds leads to P→ 0. A log-odds of 0 corresponds to P = 0.5.

In practice, the optimal weight vector ~β to maximize the likelihood is usually determined using

some sort of Newtonian update algorithm (see Section 2.6.6) [3].

2.10.3 Receiver Operating Characteristic (ROC) Analysis

Receiver operating characteristic (ROC) analysis is a common method for assessing the discrimina-

tory ability of a classification model, i.e., a model that produces a probability metric for membership

in a given class. For this research, the two classifications types are: malignant versus healthy tis-

sue or malignant versus benign lesions (Chapter 5), and complete responder versus non-complete

responder to chemotherapy (Chapter 3). The example below will describe the ROC method in

terms of the malignant versus healthy tissue classification probability PM ; however, this discussion

is readily transferable to the responder versus non-responder model with probability PR.

ROC analysis is predicated on setting some cutoff value PMc
for the probability of malignancy

metric PM , such that any data point with probability of malignancy above the cutoff is predicted

to be positive, i.e., malignant tissue; analagously, any point below the cutoff is predicted to be

negative, i.e., normal tissue. Thus all of the points in the test dataset can be divided into four

categories:

1. True Positives: actually malignant and predicted to be malignant due to a PM > PMc

2. True Negatives: actually healthy and predicted to be healthy due to a PM < PMc

3. False Positives: actually healthy but predicted to be malignant due to a PM > PMc
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4. False Negatives: actually malignant but predicted to be healthy due to a PM < PMc .

Figure 2.16A contains a graphical representation of these classifications. In that example, there are

15 true positives, 16 true negatives, 5 false positives, and 4 false negatives.

Given these four categories, four different measures of accuracy can also be obtained:

1. True Positive Rate: fraction of actually malignant tissues predicted to be malignant. This is

also known as the sensitivity.

TPR = Sensitivity ≡ #TruePositives

#TruePositives + #FalseNegatives
(2.197)

2. False Positive Rate: fraction of actually healthy tissues predicted to be malignant. The

quantity (1− False PositiveRate) is also known as the specificity

FPR = 1− Specificity ≡ #False Positives

#TrueNegatives + #False Positives
(2.198)

3. Positive Predictive Value: fraction predicted to be malignant that are actually malignant

PPV ≡ #TruePositives

#TruePositives + #False Positives
(2.199)

4. Negative Predictive Value: fraction predicted to be healthy that are actually healthy

NPV ≡ #TrueNegatives

#TrueNegatives + #FalseNegatives
(2.200)

These quantities are also described graphically in Figure 2.17, in which a cutoff of PMc
= 0.5 was

chosen. In this example, TPR (Sensitivity) = 15
15+4 = 0.789, FPR = 5

16+5 = 0.238 (Specificity =

0.762), PPV = 15
15+5 = 0.75, and NPV = 16

16+4 = 0.8.

Varying the cutoff value PMc alters the number of data points in each of the four groups (see

Figure 2.16B-C). For example, increasing PMc
leads to a lower true positive rate and a lower false

positive rate. Conversely, decreasing PMc
results in both a higher true positive rate and higher false

positive rate. Thus, for practical use, it is necessary to optimize PMc
to balance these competing

effects. One common method is to find the value of PMc that maximizes the sum of the sensitivity

and specificity [115]. For a quality prediction model, this results in a high true positive rate and a

low false positive rate. The overall predictive accuracy for a given cutoff can then be defined as

Accuracy ≡ #TruePos + #TrueNeg

#TruePos + #TrueNeg + #False Pos + #FalseNeg
. (2.201)

For the data shown in Figure 2.17, the overall classification accuracy is 70 %. Figures 2.16 and

2.18 demonstrate how each of these accuracy parameters changes for the model dataset in Figure
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Figure 2.16: Receiver Operating Characteristic (ROC) Analysis. An example dataset is graphed
such that the y-axis represents the true binomial classification, either positive or negative, of every
data point, and the x-axis is the predicted probability of a data point being positive. A cutoff
value for the probability PMc

can be chosen, above which all data points are predicted to be
positive, and below which all data points are predicted to be negative. This results in four possible
classifications for each data point: 1) True Positives: actually positive and predicted to be positive,
2) True Negatives: actually negative and predicted to be negative, 3) False Positives: actually
negative but predicted to be positive, and 4) False Negatives: actually positive but predicted to be
negative. Note that the number of data points in each of these groups is determined by the cutoff
value PMc

that is chosen. A) displays a cutoff of PMc
= 0.5, B) shows a cutoff of PMc

= 0.25, and
C) has a cutoff of PMc = 0.75. Higher PMc cutoffs lead to more true negatives and false negatives
while lower PMc values lead to more true positives and false positives.
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Figure 2.17: ROC Accuracy Parameters. The four most commonly used accuracy parameters for
ROC analysis are displayed graphically. Each accuracy parameter can generally be thought of as
the fraction of two ROC classification groups, e.g., false positive and false negative, or false positive
and true positive, that fall into a single one of those classification groups. Thus, for each parameter
in this figure, the denominator of this fraction is the sum of data points across the two highlighted,
colorful regions, and the numerator is the number of data points in the region encased by the green
rectangle. Four parameters are shown: A) True Positive Rate (TPR): number of true positives
divided by all actual positives, B) False Positive Rate (FPR): number of false positives divided by
all actual negatives, C) Positive Predictive Value (PPV ): number of true positives divided by all
predicted positives, and D) Negative Predictive Value (NPV ): number of true negatives divided
by all predicted negatives.

2.16 given different PMc values. In general, higher PMc cutoffs lead to improvement in specificity and

positive predictive value while lower PMc
values provide better sensitivity and negative predictive

value.

A more holistic measure of the discriminatory ability of a prediction model is the so-called area

under the ROC curve (AUC). The ROC curve is created by plotting the true positive rate vs the

false positive rate for a range of cutoff values from 0 to 1. When PMc
= 0, all data points will be
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Figure 2.18: Example ROC Accuracy Parameters versus Probability Cutoff. The example data
here comes from the schematic ROC analysis example in Figure 2.16. A) Plot of the overall
accuracy, sensitivity (TPR), and specificity (1−FPR). Note that higher PMc

cutoff values lead to
lower sensitivity and higher specificity while lower PMc cutoffs provide higher sensitivity and lower
specificity. The overall accuracy is maximized by an intermediate PMc value. B) Plot of the overall
accuracy, positive predictive value (PPV ), and negative predictive value (NPV ). Note that higher
PMc

cutoffs produce better positive predictive values and worse negative predictive values. Lower
PMc

cutoffs yield worse positive predictive values and better negative predictive values.
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classified as positive. Thus, the true positive rate will be 1, but the false positive rate will also be

1. Similarly, when PMc = 1, all data points will be classified as negative. Therefore the true and

false positive rates will both be zero. A perfect discriminator would have a true positive rate of 1

and a false positive rate of 0 for all cutoff values. In this scenario, the area under the plotted ROC

curve would be 1. For good, but imperfect, predictors, the true positive rate rapidly increases as

PMc decreases while the false positive rate increases slowly. This results in an area under the curve

value where 0.5 < AUC < 1, with better predictors having AUC values closer to 1. A model that

randomly classifies data points as either positive or negative produces an AUC = 0.5; thus, AUC

must be greater than 0.5 for a model to be said to have predictive value. Figure 2.19 contains

an example ROC curve using the model data from Figure 2.16. In that case, the AUC is 0.82,

indicating good predictive value.

2.10.4 Hosmer-Lemeshow Analysis

The calibration of a prediction model is a goodness-of-fit measure of the degree to which model-

predicted probabilities of being in a particular state accurately reflect the observed data [189;

206; 141]. If a dataset contains a significant number of subjects with identical data features, and

thus identical predicted probabilities, a standard Pearson χ2 goodness-of-fit test can be performed

[257; 141]. For breast cancer, this could occur if the features in question were qualitative classifers,

e.g., menopausal state or tumor grade. However, for studies in which no two subjects are likely

to have identical features, e.g., the continuous, quantitative metrics produced by DOS, Hosmer-

Lemeshow analysis is a common method for assessing this calibration [141].

Once the model-predicted probabilities have been produced for each subject, in this case, via

logistic regression, Hosmer-Lemeshow analysis begins by sorting all subjects by predicted proba-

bility from smallest to largest. The sorted subjects are then divided by quantile, typically into ten

groups. Within each group, the numbers of subjects observed to be in the positive and negative

states, O+ and O−, respectively, are counted, and the average model-predicted probability of being

in the positive state P+ is calculated (see Figure 2.20). The expected number of subjects in the

positive and negative states for each group can then be calculated via

E+ = N · P+, (2.202)

E− = N · (1− P+), (2.203)

where N is the number of subjects in a given group. The Hosmer-Lemeshow statistic H can then
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Figure 2.19: ROC Area Under the Curve (AUC). ROC curves plot the true positive rate vs the
false positive rate for a given prediction model across a range of probability cutoffs PMc

from 0 to
1. The area under this curve then serves as a measure of the model’s overall discriminatory ability,
with AUC = 1 indicating a perfect model and AUC = 0.5 indicating a random guess and thus a
model with no predictive value. The ROC curve displayed here comes from the example dataset
from Figure 2.16 and produces an AUC = 0.82, indicating good predictive value.

be calculated with [141]

H =

Nq∑
q=1


(
O+q − E+q

)2

E+q

+

(
O−q − E−q

)2

E−q

 . (2.204)

Here, q is the index for a specific quantile group, and Nq is the number of groups into which the

subjects are divided. This H metric, which has the form of a χ2 value, provides a measure of the

offset between the expected and observed number of subjects in each state and each group. H can

then be used to determine a p-value with a χ2 distribution with Nq − 2 degrees of freedom. In
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this case, the null hypothesis is that there is no significant difference between the observed and

expected values across all groups. Thus, if the null hypothesis is accepted (p > 0.05), the model

is well-calibrated; a rejected null hypothesis (p < 0.05) is a sign of a poorly calibrated model. A

common visualization for the degree of calibration is a plot of actual, i.e., observed, versus expected,

i.e., model-derived, probabilities for each group (see Figure 2.20).

Figure 2.20: Hosmer-Lemeshow Analysis Schematic. Consider a dataset consisting of 200 subjects
in either a positive or negative state. Each subject has a model-developed probability of being in
the positive state. A) Plot of model-predicted probability versus an arbitrary subject ID. Positive
subjects are plotted as red circles while negative subjects are plotted as blue diamonds. B) The first
step in Hosmer-Lemeshow analysis is to sort the subjects in ascending order of model probability,
and divide them into 10 groups, indicated by the alternating shaded regions on the plot. C) The
actual (observed) and expected (model) number of subjects in the positive and negative states can
be calculated for each group to perform Hosmer-Lemeshow analysis. The actual probability can
then be plotted against the expected probability for each group as a visual representation of the
model’s calibration.
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Chapter 3

Diffuse Optical Prediction of

Response to Neoadjuvant

Chemotherapy

3.1 Introduction

The most common treatment paradigm for breast cancer is adjuvant chemotherapy, in which the

primary tumor is removed first, and chemotherapy is then given to eliminate any residual malig-

nancy [62]. Neoadjuvant chemotherapy (NAC) is another treatment method for breast cancer in

which chemotherapy is given to a patient prior to surgical resection of a tumor. NAC is widely

used for locally advanced breast cancer (see Figure 1.2), typically permits increased conserva-

tion of healthy breast tissue during tumor resection, and limits the need for axillary lymph node

treatment or surgery [235]. The most prevalent marker of neoadjuvant chemotherapy efficacy is

pathologic complete response (pCR) to NAC, defined as no residual invasive carcinoma, which has

been correlated with improved survival compared to incomplete response [217; 108]. However, this

pathological assessment occurs after the completion of chemotherapy when the resected tissue is

analyzed, and thus, pCR offers no intra-therapy information. The ability to predict response to

NAC at an earlier time-point during chemotherapy, by contrast, could enable physicians to dynam-

ically optimize the treatment regimen, thereby avoiding unnecessary therapy doses, reducing tissue

damage, and improving patient outcomes.

In current clinical practice, physical exams and radiologic imaging are used intermittently to
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monitor NAC response. Unfortunately, these methods are inadequate predictors of pCR [116; 138;

251]. Magnetic resonance imaging (MRI) provides better correlation with pathology than mam-

mography or ultrasound [265]. In general, functional monitoring techniques offer significantly im-

proved correlation with response at an earlier time-point relative to structural imaging modalities.

Magnetic resonance spectroscopy (MRS) [181], contrast-enhanced MRI [144], and fluorodeoxyglu-

cose positron emission tomography (FDG-PET) [173; 180; 143], for example, have predictive value

with respect to pCR, but MRI, MRS, and PET all have practical constraints which limit the

frequency of monitoring in clinical care. All three modalities require the use of injected con-

trast agents and are expensive and difficult to obtain insurance coverage for. PET has the added

disadvantage of exposing the subject to ionizing radiation. Thus, while these modalities have

demonstrated ability to predict which subjects will achieve pCR [7; 200; 180; 200; 160], they are

not well-suited to the type of repeated, longitudinal monitoring that may be necessary over a

therapy regimen that spans several months. Conversely, diffuse optical monitoring is ideally po-

sitioned for this application. Repeated measurements across months are more feasible due to the

lower cost, non-invasive nature, and lack of ionizing radiation in diffuse optical instruments, and

diffuse optics measures the type of functional parameters that tend to be better correlated with

response to chemotherapy. Indeed, several studies have employed diffuse optics to explore func-

tional changes in tumors during NAC and have correlated these changes with response to therapy

[248; 70; 59; 154; 236; 61; 220; 109; 250; 55; 249; 76; 223; 8].

The study discussed here develops and employs a novel analytical technique to the previously

reported multi-center ACRIN-6691 trial overseen by the American College of Radiology Imaging

Network (ACRIN) [249]. This trial prospectively tested the ability of diffuse optical spectroscopic

imaging (DOSI), discussed in more detail in Section 3.2.2, to discriminate, by the Midpoint of

therapy, subjects who achieved pCR from those who did not achieve pCR. Specifically, the primary

aim of ACRIN-6691 was to evaluate whether a change in a particular DOSI endpoint, the tissue

optical index (TOI) (see Section 3.2.2), could be used to predict pCR by the midpoint of NAC,

approximately 2-3 months after the first infusion [249]. In that initial study, significant reductions

in tumor-to-normal (T/N) TOI ratios were seen for pCR subjects. A 40 % or greater change in

this parameter at the midpoint, combined with Baseline tumor StO2 greater than median value

(77 %), was shown to be a promising predictor of pCR (AUC = 0.83; 95 %CI : 0.63 − 1) (see

Section 2.10.3 for a full explanation of AUC) [249]. The presented study explores the ACRIN-6691

secondary aim of predicting pCR much earlier in the 3− 6 month NAC cycle by examining DOSI

response parameters within 10 days of therapy initiation. To address this goal, a logistic regression

algorithm [141] was retrospectively developed and applied to correlate DOSI-measured parameters
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of malignant breast lesions to subjects’ post-therapy pathologic response status. The hypothesis is

that identification and optimization of this new DOSI index could predict pCR to NAC at an early

time-point in the course of therapy, providing significant potential for clinical utility.

3.2 Subjects and Methods

3.2.1 Trial Design and Subjects

Data for this study were collected during the ACRIN-6691 multi-site trial using a diffuse optical

spectroscopic imaging (DOSI) instrument developed at the University of California, Irvine [30; 166]

and deployed at seven institutions: University of California, Irvine; University of California, San

Francisco; University of Pennsylvania; Boston University; Dartmouth Hitchcock Medical Center;

Massachusetts General Hospital; and MD Anderson Cancer Center [249]. Subjects provided writ-

ten informed consent, and the HIPAA-compliant protocol and informed consent were approved by

the American College of Radiology Imaging Network Institutional Review Board, the NCI Cancer

Therapy Evaluation Program (CTEP), and each site’s Institutional Review Board. All 60 enrolled

subjects were females between the ages of 28 and 67 with biopsy-confirmed invasive ductal carcino-

mas and/or invasive lobular carcinomas of at least 2 cm in length along the greatest dimension. For

each subject, the chemotherapy regimen was determined by the subject’s physician. Chemotherapy

type was not controlled in this study, except that regimens were required to include at least one

cytotoxic chemotherapeutic agent. .

Pathologic complete response (pCR) to therapy was defined here as no residual invasive primary

carcinoma without regard to residual lymph node disease. Some definitions of pCR require there

to be no residual disease in any lymph nodes; however, since DOSI is sensitive only to the primary

tumor, the lymph node condition was not enforced for this analysis. Pathologic response status

was determined for each subject by post-surgery pathology reports. Subjects that achieved partial

response were not distinguished from non-responders due to statistical considerations with respect

to the sample size and the previously reported correlation between complete response and im-

proved survival [217; 108]. Table 3.1 contains demographic information, as well as tumor histology,

immunohistochemistry, and chemotherapy regimens for complete and non-complete responders.

A number of enrolled subjects were excluded from the final data set. Of these, three subjects

withdrew from the study. An additional 13 subjects were not included in the imaging analysis

because of the following DOSI scan issues: mandatory Baseline DOSI was not performed (n =

1), baseline DOSI was non-evaluable (n = 8), mandatory mid-therapy DOSI was not performed

(n = 3), or too few normal region points were available (n = 1). A DOSI scan was considered

82



non-evaluable in the case of unrealistic physiological values or incorrect instrument configuration.

This decision was made on blinded, de-identified data using instrument calibration and raw data

QC reports [249]. One subject was excluded due to unavailable pathology information, and ten

additional subjects were excluded because the measurement of the contralateral breast was not

performed. A flow chart for this exclusion process can be found in Figure 3.1.

Figure 3.1: Enrollment to Analysis Population Flowchart. Although 60 subjects were enrolled in the
original ACRIN 6691 trial, only 33 participants fulfilled all of the criteria to be included in the final
evaluable population. Of the subjects excluded, 3 withdrew consent, 13 had DOSI measurements
that weren’t performed or were non-evaluable, 1 did not have the required pathology information,
and 10 did not receive a normal breast measurement. This evaluable population was chosen to
be identical to the that used in the ACRIN 6691 trial [249], except for the exclusion of a single
additional subject whose Early time-point measurement was not evaluable for the purposes of the
z-score normalization algorithm.

Subjects were measured with the DOSI system at four time-points throughout the course of their

neoadjuvant chemotherapy regimens (see Figure 3.2). The first measurement (Baseline) occurred

prior to the first dose of chemotherapy. The second measurement, which is referred to as the

Early measurement time-point, was performed between 5 and 10 days after the first chemotherapy

treatment. The third measurement (Midpoint) occurred in the middle of the therapy regimen, and

a Final measurement was made after the completion of therapy but prior to tumor resection.
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Responders (n = 15) Non-Responders (n = 18)

Age, Years
Mean ± St. Dev. (Range) 49.0± 11.6 (30− 67) 49.4± 10.9 (28− 66)

Menopausal Status, n (%)
Pre- 5 (33 %) 9 (50 %)
Peri- 1 (7 %) 2 (11 %)
Post- 9 (60 %) 7 (39 %)

Maximum Tumor Size, cm
Mean ± St. Dev. (Range) 37.9± 22.8 (12− 95) 37.5± 18.1 (11− 75)

Histological Status, n (%)
IDC 9 (60 %) 12 (67 %)
ILC 0 (0 %) 1 (6 %)
IDC + DCIS 4 (27 %) 5 (28 %)
IDC + ILC 1 (7 %) 0 (0 %)
Unknown 1 (7 %) 0 (0 %)

ER Status, n (%)
Positive 5 (33 %) 16 (89 %)
Negative 8 (53 %) 2 (11 %)
Unknown 2 (13 %) 0 (0 %)

PR Status, n (%)
Positive 5 (33 %) 11 (61 %)
Negative 8 (53 %) 7 (39 %)
Unknown 2 (13 %) 0 (0 %)

Her2 Status, n (%)
1 5 (33 %) 4 (22 %)
2 1 (7 %) 9 (50 %)
3 5 (33 %) 1 (6 %)
Unknown 4 (27 %) 4 (22 %)

Molecular Subtype, n (%)
Her2 Positive 3 (20 %) 1 (6 %)
HR Positive 0 (0 %) 2 (11 %)
Luminal A 0 (0 ,%) 3 (17 %)
Luminal B 6 (40 %) 11 (61 %)
Triple Negative 4 (27 %) 1 (6 %)
Unknown 2 (13 %) 0 (0 %)

Table 3.1: Physiological Tumor Properties by Response Status. Demographic, histological, and
immunohistochemical data is provided for all subjects in the ACRIN 6691 trial and divided into
complete responder (pCR) (n = 15) and non-complete responder (non-pCR) (n = 18) groups. For
histological information, IDC refers to invasive ductal carcinoma, ILC refers to invasive lobular
carcinoma, and DCIS is ductal carcinoma in-situ. ER, PR, and Her2 represent estrogen receptor,
progesterone receptor, and human epidermal growth factor receptor status, respectively.
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Figure 3.2: Timeline of DOSI Monitoring during Neoadjuvant Chemotherapy. Each enrolled subject
underwent neoadjuvant chemotherapy for a period of 4 to 6 months. DOSI measurements were made
at four time-points throughout the course of therapy: 1) Baseline – prior to the administration of
therapy. 2) Early – 5 to 10 days after the first dose of therapy. 3) Midpoint – the midpoint of
the therapy regimen. 4) Final – at least 7 days after the final dose of therapy and prior to tumor
resection. Note, some subjects are missing data at one or more of the non-Baseline time-points, and
the measurements at the Final time-point were not used for the probability of response analysis
due to their limited predictive utility.

3.2.2 Optical Imaging Methods

All diffuse optical measurements were made with the diffuse optical spectroscopic imaging system

developed and built at the University of California, Irvine [30; 166]. This is a hybrid DOS instrument

that combines multi-spectral frequency-domain and broadband imaging to measure absolute µa,

µ′s, and the tissue concentrations of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin

(HHb), water, and lipid. The combination of these chromophores permits calculation of tissue total

hemoglobin concentration (HbT ) and tissue oxygen saturation (StO2). Another optical parameter,

known as the tissue optical index (TOI), defined as TOI = HHb·H2O
Lipid , is also calculated. TOI was

derived empirically to maximize contrast between tumor and normal tissue [60].

For data presented herein, DOSI utilizes a single source-detector separation: 2.2 cm for phantom

measurements and 2.8 cm for tissue measurements. At this single separation, frequency domain

measurements are made using laser diodes at six wavelengths (660, 680, 785, 810, 830, and 850nm)

that are fiber coupled to an imaging hand-piece that, in turn, is put into contact with the tissue (see

Figure 3.3). This hand-piece contains an avalanche photodiode (APD) for detection of the frequency

domain signals. To compensate for the lack of multiple source-detector positions, each laser diode is
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modulated at 251 to 601 distinct frequencies ranging from 50MHz to 600MHz. Three frequency

sweeps are performed and averaged for each wavelength, and the absorption coefficient µa and µ′s

are fit using a Levenberg-Marquadt algorithm for the amplitude and phase data at each frequency

(see Section 2.6.6). A Mie-scattering framework is assumed for the scatterers, and thus a scattering

amplitude A and scattering power b are fit using all 6 wavelengths (see Section 2.8.2).

Figure 3.3: DOSI Instrumentation and Hand-piece. This figure comes from [166]. A) DOSI Opto-
Electronics Rack. This instrument cart contains the white-light source, laser diodes, spectrometer,
frequency analyzer, and instrument control computer for the DOSI system. Several systems similar
to this collected all of the DOSI data in Chapters 3, 4, and 5. Note that the instrument is portable
and can be wheeled to the patient’s bedside. B) DOSI Hand-piece and Calibration Phantom. The
DOSI hand-piece contains an APD for frequency-domain detection and optical fibers coupled to the
optical components on the instrument rack. A calibration phantom, placed inside a case for easy
alignment with the hand-piece, is also shown. C) DOSI Hand-piece and Reflectance Standard. The
DOSI hand-piece is shown in contact with the broadband reflectance standard. Note that the fiber-
coupling apparatus can easily be moved to three different positions, using the silver spring-loaded
hand screws seen here, to provide multiple source-detector separations.

Broadband spectroscopy is performed using a continuous-wave white-light source and diffraction-

grating spectrometer with a range of 650 to 1000nm, both of which are also fiber-coupled to the
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tissue via the hand-piece. The best-fit A and b parameters from the frequency-domain scattering fit

are then used to correct the CW reflectance spectroscopy for the tissue scattering. Additionally, the

absolute absorption coefficients at the 6 frequency-domain wavelengths are used to quantitatively

scale the broadband CW absorption spectrum. Finally, the DOSI instrument is calibrated using

two standardized phantoms, for the frequency-domain system, and a reflectance standard, for the

broadband system, before and after every measurement (see Figure 3.3). Thus, DOSI provides

absolute µa and µ′s values across the entire 650 to 1000nm range.

This hybrid modality provides improved quantification of chromophore concentration relative

to DOS techniques that use several individual wavelengths because of the increased spectroscopic

information across the full biological window. This scheme is particularly beneficial for calculating

the lipid and water concentrations because light with wavelength greater than 900nm is more

sensitive to these chromophores, and the spectrometer can easily measure the absorption spectrum

at these longer wavelengths. Frequency-domain-only instruments often struggle to measure at

wavelengths greater than 900nm because the required detectors, either PMTs or APDs, typically

have very poor sensitivity over this range [247]. Full descriptions of this DOSI instrumentation and

analysis technique have been published [30; 166].

During each subject’s Baseline measurement, a grid of ∼ 50−240 points that encompassed both

the palpated tumor region and the surrounding normal tissue was measured on the lesion-bearing

breast using the DOSI handpiece. A mirrored grid of points was measured on the contralateral

breast. These measurement grids were recorded using a hand-marked transparency film that was

produced for each subject in order to guide DOSI handpiece placement to the same grid points

during the three subsequent measurement time-points (see Figure 3.2). This practice ensured that

each measurement point was probing the same tissue region during each longitudinal measurement.

Each point measurement lasted approximately 2 to 5 seconds. Since the data analysis is performed

independently at each point using a semi-infinite homogeneous model (see Section 2.5.4), this grid

will produce separate µa and µ′s values for each wavelength and each grid point. These independent

measurements can then be smoothed into a two-dimensional topographic image. Figure 3.4 contains

a schematic of the DOSI measurement across these spatial grids and a sample image.

3.2.3 Statistical and Analytic Methods

The primary aim of this study was to train a logistic regression algorithm to discriminate between

responders and non-responders based on DOSI-measured parameters. The tumor region for each

subject was determined using the Tissue Optical Index (TOI). This TOI parameter has been

empirically shown to differentiate malignant tissue from normal tissue in the breast [60] and will
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Figure 3.4: Schematic of DOSI Measurement and Region Definition. Top Left: DOSI instrument
and probe. Bottom left: A sample DOSI image projected onto a model breast. Right: A grid of
points, over a surface area ranging from 7 cm×7 cm to 15 cm×16 cm, were measured on the lesion-
bearing breast. This grid was chosen to encompass both the tumor and a portion of the surrounding
healthy tissue. The grid of points was marked using a transparency, which was then used to mirror
the grid for measurements on the contralateral breast. The transparency was also used to ensure
consistent measurement locations across all time-points. The tumor region was chosen to be all
contiguous points with magnitude greater than half of the maximum Tissue Optical Index (TOI)
measurement. The tumor breast normal region was defined as all points outside the tumor region
and areola, excluding a 1 cm margin around both the tumor and areola. The contralateral breast
normal region was defined as all measured points, excluding the areola and a 1 cm margin around
the areola.

again be demonstrated to have significant discriminatory value in Chapter 5. Here, the full-width-

at-half-maximum contour around the point of maximum TOI in the Baseline measurement of

the lesion-bearing breast was designated as the edge of the tumor region. This region remained

constant throughout all longitudinal measurements for a given subject. The normal region on

the lesion-bearing breast was defined as all points outside the tumor region excluding the areola

and 1 cm margins around the areola and tumor region (see Figure 3.4). These margins were not

included in the normal region to limit signal contamination from the tumor region due to the partial

volume effect and limited spatial resolution of diffuse optics [195; 163]. The normal region on the

contralateral breast was chosen to be all points excluding the areola and a 1 cm margin around the

areola. The areola was excluded in both normal regions due to its abundance of highly scattering

fibroglandular tissue and higher blood volume, which is not representative of typical non-areolar

breast tissue and has been shown to contaminate healthy breast tissue measurements [230; 164].

In practice, significant inter- and intra-subject variation in optically measured physiological

parameters of healthy breast tissue can arise [230; 56], and these systemic variations can bias the
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logistic regression. Moreover, the optically measured tissue parameters are not normally distributed

(see Figure 2.15). To remedy these issues, a z-score normalization method was developed.

Z-Score Normalization

The simplest DOSI prediction metric would be an un-normalized value of one of the DOSI-

measured parameters, e.g., StO2, with a cutoff between StO2 values for subjects that achieved pCR

and subjects that did not. Another common metric employs tissue-to-normal ratio-normalized data

StO2T/N
, wherein a measured StO2 value is divided by the average StO2 of a known normal tissue

region. This StO2T/N
quantity improves upon the un-normalized StO2 by accounting for the inter-

subject variability in the systemic levels of DOSI-measured physiological parameters. However,

healthy breast tissue also exhibits significant intra-subject heterogeneity in these quantities [99;

230; 56]. This variation is not accounted for in the tumor-to-normal ratio normalization technique.

Thus, StO2T/N
provides no indication of whether a value is within the expected range of the normal

tissue StO2 due to heterogeneity or whether the value is significantly different from the healthy

tissue. To resolve this issue, the normalization technique needs to account for both the mean

and the standard deviation of the normal tissue StO2. A z-score normalization scheme has been

previously developed for this purpose with respect to differentiating malignant and healthy tissue

[56; 55] and is described in Section 2.10.1.

Briefly, the natural logarithm of each data point is first taken. Then the mean and standard

deviation of a normal (healthy) region of tissue is used to transform raw tumor data into z-score

data as in Equation 3.1

Zj =
lnXj − 〈lnXjNorm

〉
σ [lnXjNorm

]
. (3.1)

Here, Xj is the un-normalized jth measured parameter in the tumor region, XjNorm
is the un-

normalized jth measured parameter in the normal (healthy) region of the tumor-bearing breast

or contralateral breast, 〈lnXjNorm
〉 represents the mean over all points in the normal (healthy)

region, and σ [lnXjNorm
] represents the standard deviation over all points in the normal (healthy)

region. Zj is then the tumor region z-score relative to the healthy tissue for the jth parameter.

Each Zj parameter was averaged over all spatial points in the tumor region for a given subject and

time-point. As a result, the logistic regression algorithms can utilize a single tumor quantity for

each subject, for each time-point, and for each measured parameter. In contrast to Chapter 5, here,

only tumor parameters will be used in the regression model because this algorithm is not looking

to differentiate malignant tissue from benign tissue but rather, to correlate tumor properties to a

subject’s pathologic response status.
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Thus, every predictor data point used in the regression model is measured in units of standard

deviations from the mean of a given parameter in healthy tissue. In addition to transforming all

parameters to be approximately the same magnitude, this method better accounts for the inter-

subject systemic variations by finding the difference of each parameter from the mean value of the

normal (healthy) tissue. It also more fully accounts for intra-subject variation in healthy tissue

by normalizing with the healthy tissue standard deviation. Finally, this techniques transforms the

normal tissue measurements such that they more closely obey a normal Gaussian distribution, which

improves statistical robustness [206; 136; 141]. A concrete example of the benefit of this statistical

transformation scheme is shown in Figure 2.15 for Early time-point tissue oxygen saturation in the

ACRIN-6691 subject cohort. In the present study, z-score normalization schemes that defined the

normal region as either the healthy breast (excluding the areola) or all tissue on the lesion breast

outside a certain margin of the tumor region (excluding the areola) were explored. See Figure 3.4

for a graphical representation of these different normalization regions.

Logistic Regression

These tumor Zj values can then be used to run a logistic regression algorithm [141], which

produces a model that optimally classifies each subject as either pathologic complete responders

(pCR) or pathologic non-complete responders (non-pCR) based on the chosen parameter Zj . In the

logistic regression framework, the response parameter for a given model, which is fit to maximize

the likelihood estimation, as discussed in Section 2.10.2, is defined as

Ri = βo +

Nj∑
j=1

βj · Zij . (3.2)

Here Ri is the given model’s log-odds of response for the ith subject, βo is the intercept term of the

fitted weight vector, βj is the weighting term for the jth measured parameter used in the model, Zij

is the z-score for the jth measured parameter of the ith subject, and Nj is the number of parameters

used in a particular model. The full weight vector ~β is then

~β =
[
βo, β1, . . . βNj

]
. (3.3)

The ~β weight vector is fit using MATLAB’s native logistic regression function, mnrfit [3]. The

response parameter R can then be transformed into a probability of response parameter PR using

a logistic function,

PR =
1

1 + e−R
. (3.4)
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The parameter PR represents the probability that a subject will achieve pCR. It has a range

from 0 to 1, and it can readily be used to predict each subject’s status as either a pathologic

complete responder, or non-complete responder, depending on threshold levels.

Because the usable dataset in this study is small (n = 33 subjects), a leave-one-out validation

protocol [136] was employed to test the regression model. Thus, a series of logistic regression models

were created for each parameter set, and each of these models leaves one of the subjects out of the

training dataset (see Figure 3.5). The weight vector created by each of these models, ~βi, is the

weight vector created when the ith subject is left-out; it is then used to produce a probability of

response prediction for the ith subject PiR, which is independent of the ~βi model. This well-known

approach provides the most robust and least biased validation given the study’s sample size, which

precludes the use of a significantly large independent test set [136].

The quality of the predictions with respect to the actual response status is determined via

receiver operating characteristic (ROC) analysis [132; 257; 115]. The primary metric for the dis-

criminatory ability of a prediction model in ROC analysis is the area under the curve (AUC).

Models with excellent predictive ability will have AUC values that are close to 1, but models with

no predictive ability, i.e., a random guess, will have AUC = 0.5. A full description of ROC analysis,

the area under the curve, and other accuracy parameters can be found in Section 2.10.3.

Here, the AUC and its 95 % confidence interval for the resultant prediction models were empir-

ically determined using DeLong’s method [86]. The ROC analysis is performed using each of the

individual leave-one-out models, and the reported weight vector
〈
~β
〉

will be the median ~β from

the series of models created for each parameter set, with the interquartile range of these models

reported as uncertainty. Figure 3.5 contains a flow-chart that summarizes the full analysis scheme

performed here. Additionally, the degree to which the models are properly calibrated, i.e., how

well the predicted probabilities correspond to the true probabilities, is determined via Hosmer-

Lemeshow analysis (see Section 2.10.4) [141]. These Hosmer-Lemeshow plots will be displayed for

some prediction models.

Models based on all combinations of one, two, and three parameters from the Baseline, Early,

and Midpoint time-points were tested. Models with more than three parameters were not tested to

avoid over-fitting. Data from the Final time-point was not used because the focus of this work is

early prediction of response. Thus, the Final time-point parameters offer little additional clinical

utility.

Other normalization methods were also tested for comparison to z-score normalization. These

comparisons included tumor-to-normal ratio normalization without information about the normal

tissue heterogeneity, as well as raw tumor physiological values without normalization. The Z-score
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Figure 3.5: DOSI Regression Data Analysis Flow Chart. For all sections, orange boxes indicate
input or intermediate data, purple boxes are analytical actions performed, and white boxes are the
final outputs of the algorithm. 1) Data Processing – Measured quantities at all spatial points and all
n subjects across the first three time-points are first divided into tumor and normal (healthy) regions
(see Figure 3.4). All tumor points are then z-score normalized to their respective normal (healthy)
regions (see Equation 3.1), and the mean is taken for a given subject and time-point. Finally,
one, two, or three parameters are chosen from among the combinations of measured quantities and
time-points as model inputs. 2) Leave-One-Out Logistic Regression – A set of n logistic regression
algorithms are performed, each of which leaves out a single subject from the training data and
produces a ~βi weight vector. Each ~βi is then used to calculate the probability of response for the
subject left out of the given training set (see Equations 3.2 and 3.4). 3) Model Evaluation – ROC
analysis is performed using the calculated PiR values to determine the area under the curve (AUC),

and a median weight vector 〈~β〉 is calculated from the n resulting ~βi vectors.

normalization algorithm itself was performed using two different methods: one which classified the

tumor-bearing breast normal tissue as the “normal” region and one that classified the contralateral

breast as the “normal” region. Finally, for data at the Early and Midpoint time-points, both the

temporally absolute z-scores and the change in the z-score parameters from Baseline to the given

time-point were tested as features in logistic regression models.
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3.3 Results

The final data set for this study was derived from n = 33 subjects who had complete, evaluable

data sets at the Baseline and Midpoint time-points. For models that used measured parameters

from the Early time-point, slightly fewer subjects were used (n = 29) due to missing data at this

time-point. All subjects had biopsy-confirmed invasive carcinomas and underwent a neoadjuvant

chemotherapy regimen determined by their physicians (see Table 3.1) [249].

For the logistic regression algorithm, z-score normalization to the healthy tissue on the lesion

breast, as opposed to normalization to the contralateral breast, produced more predictive models.

Recall that z-score data was derived for multiple data types (HbO2, HHb, HbT , StO2, H2O, Lipid)

at multiple time points (Baseline, Early, Midpoint); a summary of all the data is available in Table

3.2. Regression models were produced for all combinations of one, two, and three parameters from

all three time-points. Higher-order models, e.g. four-parameter, were not considered in order to

avoid overfitting of the data.

The single best regression model used only the Early time-point tissue oxygen saturation

(eStO2). The weight vector for this model was 〈~β〉 = [βo = 0.79± 0.09, βeStO2
= 2.29± 0.04].

This finding suggests that, at the Early time-point, tumors that are not hypoxic relative to the

surrounding normal tissue, or tumors that are only slightly hypoxic and within the normal region’s

confidence interval, are more likely to be pathologic complete responders to neoadjuvant chemother-

apy. By contrast, subjects whose tumors were significantly hypoxic relative to the normal tissue

were likely to be non-responders (see Figure 3.6 for a summary of this model in traditional, clinical

units). When ROC analysis was performed, this model produced an AUC = 0.92 with a 95 %

confidence interval of AUC = 0.82− 1 (see Figure 3.7). Additionally, the small uncertainties of the

〈~β〉 components, relative to the median, indicate that the fitted 〈~β〉 did not vary significantly across

the leave-one-out validation protocol. The eStO2 model is also well-calibrated, as demonstrated

by a Hosmer-Lemeshow p-value of 0.79 and the calibration plot in Figure 3.8. Also, although

many models could be produced that had comparable predictive ability using eStO2 in combina-

tion with one or two other measured parameters, none of these models actually improved upon the

AUC = 0.92 produced by eStO2 alone.

This eStO2 model was produced using the absolute z-score value, i.e., not the change between

the Baseline and Early values, and with normalization to the normal tissue on the tumor-bearing

breast. Models that used the temporal change in the StO2 z-score (AUC = 0.63) and the normal

tissue on the contralateral breast (AUC = 0.67) were also produced but were not as predictive

as the best model. For comparison, prediction models that used more common normalization
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Baseline
Median Z-Score (IQR)

pCR non-pCR

HbO2 1.5 (1.1, 1.8) 1.0 (0.4, 1.9)
HHb 2.2 (1.5, 2.7) 1.9 (1.5, 4.0)
HbT 1.8 (1.5, 2.4) 1.4 (0.8, 2.2)
StO2 −0.2 (−0.8, 0.1) −1.8 (−2.3, −0.8)
H2O 2.1 (1.5, 2.8) 1.8 (1.2, 3.1)
Lipid −1.8 (−2.9, −1.4) −1.4 (−2.5, −0.1)
TOI 3.0 (1.7, 3.8) 2.4 (1.6, 4.1)

Early
Median Z-Score (IQR)

pCR non-pCR

HbO2 1.4 (0.8, 1.7) 0.6 (0.1, 1.1)
HHb 1.5 (1.0, 1.9) 1.7 (1.2, 3.4)
HbT 1.4 (0.8, 1.8) 0.9 (0.5, 1.3)
StO2 0.4 (−0.3, 0.5) −1.2 (−1.7, −0.4)
H2O 1.5 (1.3, 2.3) 1.2 (0.8, 3.2)
Lipid −1.0 (−1.8, −0.6) −0.9 (−2.2, −0.1)
TOI 1.7 (1.2, 2.4) 1.5 (1.2, 4.0)

Midpoint
Median Z-Score (IQR)

pCR non-pCR

HbO2 0.6 (0.4, 1.1) 0.5 (0.2, 1.3)
HHb 1.2 (0.9, 1.6) 1.4 (0.9, 3.0)
HbT 1.0 (0.7, 1.4) 0.9 (0.5, 1.6)
StO2 −0.4 (−1.0, 0.2) −0.9 (−1.8, −0.6)
H2O 0.9 (0.4, 2.0) 1.3 (0.9, 2.3)
Lipid −0.7 (−1.1, −0.1) −0.9 (−1.6, −0.6)
TOI 1.5 (0.9, 2.0) 1.5 (1.2, 3.2)

Table 3.2: Median Z-score values with interquartile ranges (IQR) for each measured parameter and
time-point, separated by pathologic complete response (pCR) status. Note the clear separation
between the complete and non-complete responders in the StO2 at the Early time-point. This is
the source of the prediction from the best regression model (see Figure 3.7).
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Figure 3.6: Tumor and Normal Early StO2 vs Probability of Response. This graph illustrates
the probability of response predicted by the regression model using only Early time-point StO2

(see Figure 3.7). Contour lines of constant probability are also included. The probability of
response (shading) is plotted versus the difference between the absolute tumor region percent
oxygen saturation and the absolute normal region percent oxygen saturation (horizontal axis) and
the size of the confidence interval for the absolute normal region oxygen saturation, corresponding
to one standard deviation in the log-transformed data (vertical axis). Note, the oxygen saturation
in this figure is not log-transformed or z-score normalized, and the confidence intervals for these
absolute percent oxygen saturation measurements are calculated using the standard deviation of the
log-transformed data. Each cross represents a subject that was a pathologic complete responder
while each circle indicates a non-responding subject. All subjects that had tumor regions with
absolute oxygen saturations that were higher than their normal regions achieved pCR. Subjects
whose tumor regions were only slightly hypoxic relative to their normal regions were more likely
to achieve pCR if the subjects’ normal regions had larger confidence intervals. The observations
indicate that a subject is likely to be a pathologic complete responder if the oxygen saturation of
the tumor region is either higher than that of the normal region or well within the normal region’s
confidence interval. Subject whose tumors were significantly hypoxic relative to the normal tissue
were likely to be non-responders.

schemes, i.e., either no normalization or simple tumor-to-normal ratio normalization, were also

produced to explore the added value of z-score normalization. These models were also significantly

less predictive of response than z-score normalization with AUC values of 0.80 for tumor-to-normal

ratio normalization and 0.75 for un-normalized tumor data.

The one-parameter model that used only Baseline tissue oxygen saturation (bStO2) also pro-

duced a predictive model, albeit with lower accuracy than the eStO2 model. The weight vector for
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Figure 3.7: Early Time-point Oxygen Saturation Prediction Model. The model providing the best
predictions used the Early time-point tissue oxygen saturation (eStO2). The median weight vector

〈~β〉 = [βo = 0.79 ± 0.09, βeStO2
= 2.29 ± 0.04] indicates that tumors that are not hypoxic relative

to the normal tissue on the tumor breast are more likely to be pathologic complete responders to
chemotherapy. A) ROC Analysis of eStO2 Model. This model produced an AUC = 0.92 (95%CI :
0.82 − 1), indicating excellent predictive value. B) Boxplots of Probability of Response. The
probability of response boxplots, divided into subjects that achieved pCR (n = 12) and subjects
that did not achieve pCR (n = 17), indicate clear separation between the two groups using this
model (p = 8.74× 10−6 using a two-sample student’s t-test). The hinges of the boxplots represent
the first and third quartiles of the data, the whiskers represent the range of measurements within
a distance 1.5× the interquartile range, and the cross represents an outlier. Note that there is
no overlap between the interquartile ranges of the probabilities of response of the complete and
non-complete responders.

this model was 〈~β〉 = [βo = 1.05± 0.09, βbStO2 = 1.24± 0.06], and the AUC was 0.79 (95 %CI :

0.64 − 0.94) (see Figure 3.9). Importantly, this model demonstrates a similar physiological rela-

tionship: relative tumor hypoxia is a predictor of non-complete response. Thus, although it is less

predictive than the Early time-point StO2 model, a Baseline tissue oxygen saturation model may

still be of clinical utility due to its earlier prediction time-point. A biomarker based on bStO2 could

be produced before a patient had to undergo a single chemotherapy treatment.

The best model that exclusively used Baseline data, i.e, a model that would enable pre-treatment

prediction, was a two-parameter model that provided an AUC = 0.83 with a 95 % confidence

interval of AUC = 0.70 − 0.97. This two-parameter model incorporated the Baseline oxygen

saturation (bStO2) and water concentration (bH2O), and the median weight vector was 〈~β〉 = [βo =
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Figure 3.8: Early Time-Point Oxygen Saturation Logistic Function and Calibration A) Logistic
function plot displaying the relationship between the predicted probability of response and the
eStO2 z-score, which represents how many standard deviations the tumor StO2 is from the mean
normal tissue StO2. For example, a z-score of −1.3 produces a PR = 0.1, a z-score of −0.35
produces a PR = 0.5, and a z-score of 0.61 produces a PR = 0.9. B) Five-group Hosmer-Lemeshow
calibration plot comparing the actual fraction of subjects in a group that achieved pCR versus the
predicted fraction of subjects in that group that should achieve pCR based on their individual PR
values. See Section 2.10.4 for more information. Note that p = 0.79 indicates a good correspondence
between actual and predicted pCR fractions.

0.14± 0.09, βbStO2
= 1.69± 0.06, βbH2O = 0.65± 0.03] (see Figure 3.10). Again, the uncertainties

in the 〈~β〉 components for H2O and StO2 are small, signifying a consistent fitted model across the

leave-one-out validation procedure. Since βbStO2
> βbH2O, the model indicates that the oxygen

saturation is a more significant predictor of pCR than water concentration at the Baseline time-

point. As with the Early time-point model, subjects with hypoxic tumors were less likely to achieve

pCR.

As previously mentioned, many models were produced that did not include either the Baseline or

Early time-point (StO2), and some of these models were predictive (AUC = 075− 0.80). However,

all of the other models that were definitively predictive, when accounting for the 95 % confidence

interval, incorporated at least one parameter from the Midpoint measurement. Thus, these models

could only enable predictions ∼ 2 months after the Baseline and Early StO2 models.
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Figure 3.9: Baseline Time-point Oxygen Saturation Prediction Model. The model using only the
Baseline time-point tissue oxygen saturation (bStO2) produced a median weight vector 〈~β〉 = [βo =
1.05± 0.09, βbStO2

= 1.24± 0.06]. This finding indicates that tumors that are not hypoxic relative
to the normal tissue on the tumor breast are more likely to be pathologic complete responders to
chemotherapy. A) ROC Analysis of bStO2 Model. This model produced an AUC = 0.79 (95%CI :
0.64− 0.94), indicating predictive value, though considerably less than the AUC obtained with the
eStO2 model (Figure 3.7). B) Boxplots of Probability of Response. The probability of response
boxplots, divided into subjects that achieved pCR (n=15) and subjects that did not achieve pCR
(n=18), indicate fairly good separation between the two groups using this model (p = 0.0029 using
a two-sample student’s t-test). The hinges of the boxplots represent the first and third quartiles
of the data, and the whiskers represent the range of measurements within a distance 1.5× the
interquartile range.
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Figure 3.10: Baseline Time-point Oxygen Saturation and Water Prediction Model. The model
using the Baseline time-point tissue oxygen saturation (bStO2) and the Baseline water concentration

(bH2O) produced a median weight vector 〈~β〉 = [βo = 1.05 ± 0.09, βbStO2
= 1.24 ± 0.06, βbH2O =

0.65±0.03]. This model indicates that tumors that are not hypoxic relative to the normal tissue on
the tumor breast are more likely to be pathologic complete responders to chemotherapy and that
Baseline oxygen saturation is more predictive than Baseline water concentration (βbStO2

> βbH2O).
A) ROC Analysis of bStO2 − bH2O Model. This model produced an AUC = 0.83 (95%CI :
0.70− 0.97), indicating predictive value, though considerably less than the AUC obtained with the
eStO2 model (Figure 3.7). B) Boxplots of Probability of Response. The probability of response
boxplots, divided into subjects that achieved pCR (n=15) and subjects that did not achieve pCR
(n=18), indicate good separation between the two groups (p = 6.68 × 10−4 using a two-sample
student’s t-test). The hinges of the boxplots represent first and third quartiles of the data, and
the whiskers represent the range of measurements within a distance 1.5× the interquartile range.
Note that there is no overlap between the interquartile ranges of the probabilities of response of
the complete and non-complete responders.
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3.4 Discussion

By application of a logistic regression model using z-score normalized DOSI measurements, a robust

predictor of response (AUC = 0.92; 95 %CI : 0.82−1) can be derived within the first 10 days after

a subject’s initial chemotherapy dose. Using an optimally chosen cutoff value of PR = 0.50, which

maximizes the sum of the sensitivity and specificity, this model provided an overall classification

accuracy of 86 % (25 of 29 subjects), including a positive predictive value of 79 % for subjects

predicted to achieve pCR (11 of 14), and a negative predictive value of 93 % for subjects predicted

to not achieve pCR (14 of 15). These positive and negative predictive values are dependent on the

chosen cutoff point (see Figure 3.11). Thus, for example, the positive predictive value could be

optimized by using a higher PR cutoff value.

Additionally, the Baseline StO2 z-score can be used to create a predictive model (AUC =

0.79; 95 %CI : 0.64 − 0.94), where higher StO2 is once again correlated with pathologic complete

response. This model is not as predictive as the Early time-point StO2 model, with overall accuracy

of 79 % (26 of 33), positive predictive value of 79 % (11 of 14), and negative predictive value of 79 %

(15 of 19) at an optimal cutoff of PR = 0.57. Though the AUC value and prediction accuracy are

lower for this model compared to the Early time-point StO2 model, prediction of response prior to

the initiation of therapy offers additional clinical utility because it provides a potential determina-

tion of future response at a time-point that could prevent a patient from receiving any unnecessary

doses of chemotherapy. With this goal in mind, a two-parameter model, which also relies only on

Baseline data, using the Baseline StO2 and water concentration (AUC = 0.83; 95 %CI : 0.70−0.97)

was produced. This model provides an overall accuracy of 82 % (27 of 33), a positive predictive

value of 80 % (12 of 15), and a negative predictive value of 83 % (15 of 18) at a probability cutoff

of PR = 0.53. Thus, this two-parameter model represents an improvement over the bStO2 model,

but does not perform as well as the eStO2 model.

Prediction of response at these early therapy time-points was a secondary aim of the ACRIN 6691

trial [249] and could, with further validation, enable clinicians to modify the patient’s therapeutic

plan after a single dose of chemotherapy. This ability holds potential to improve patient outcomes

and prevent unnecessary side effects from ineffective treatments. The predictive ability of these

models is comparable to, or slightly better than, early prediction models developed with other

modalities, such as MRI [7; 200], FDG-PET [180; 200; 160], and biomarker analysis [125; 19; 95].

Some of these studies produced predictions prior to or within the first 10 days of treatment initiation

[19; 95; 125; 160] while other approaches relied on imaging that occurred either after 6 weeks of

NAC [7], at the midpoint of therapy [180], or after the completion of NAC [200]. The potential
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Figure 3.11: Early Time-Point Oxygen Saturation Model Accuracy. The eStO2 model produces
probability of response values PR for each subject. In order to predict whether individual subjects
will achieve pCR, a cutoff value for PR must be chosen. In this plot, the purple line represents
the positive predictive value, i.e, the percentage of subjects predicted to achieve pCR who are
accurately classified, as a function of PR cutoff. The orange line is the negative predictive value,
i.e, the percentage of subjects predicted to not achieve pCR that are accurately classified. The
black line is the overall classification accuracy, and the dotted black line is the optimal cutoff
value chosen by maximizing the sum of the sensitivity and specificity. See Section 2.10.3 for more
information about these quantities.

advantage of this logistic regression DOSI model is premised on its unique combination of accurate

prediction at an early time-point in therapy and the portability, low cost, and lack of ionizing

radiation inherent in diffuse optical imaging techniques.
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3.4.1 Physiological Meaning

All three of the best models indicated that low StO2 at the Early or Baseline time-points relative

to the surrounding normal tissue was predictive of non-response to chemotherapy. Physiologically,

this hypoxia could be a sign of tumors that are not well-perfused in the early stages of treatment.

Thus, the supply of oxygen is not sufficient to meet the metabolic demands of the tumor, leading to

a hypoxic environment. This lack of perfusion could also inhibit efficient delivery of chemotherapy,

preventing the subject from achieving pCR [90; 139; 150]. Tumors in oxygen-rich environments

are also typically more responsive to therapy than hypoxic tumors, which often exhibit resistance

to treatment independent of the perfusion level [139; 150]. These physiological mechanisms could

explain the correlation between oxygen saturation and response at both the Baseline and Early

time-points. The Early time-point StO2 correlation could also be related to the actual tumor re-

sponse to therapy. The lack of hypoxia in complete responders could indicate a decreased oxygen

demand due to suppression of tumor metabolism by the chemotherapy, an indication that ther-

apy is quickly working to destroy the tumor [94]. Alternatively, the improved correlation at the

Early time-point could be due to the measurement of tumors that have undergone vascular re-

normalization, wherein the initial destruction of inefficient blood vessels via therapy reduces the

interstitial pressure, allowing for increased perfusion [150]. Section 4.4 contains a more complete

discussion of this phenomenon. These oxygen saturation models are also consistent with previous

diffuse optical studies, which have observed correlation between pathologic complete response and

optically-measured tissue oxygen saturation prior to the start of therapy [250] and after the first

dose [220].

The two-parameter Baseline model also correlates high tumor water content relative to the

normal tissue with probability of achieving pCR. The Baseline water weight factor βbH2O is signif-

icantly less than the Baseline oxygen saturation weight βbStO2 in this model, indicating that the

water concentration is less predictive of pCR than StO2. Given the relatively small sample size, it

is unclear if including the Baseline water concentration with the Baseline StO2 actually improves

the model, or if the apparent improvement is due to statistical noise. Higher water concentration

could correlate with likelihood to achieve pCR because water concentration is likely correlated with

blood volume; therefore, higher water concentration could indicate a more well-perfused tumor

[198], which would tend to achieve better therapy response [139; 150].

Lastly, Early time-point optical measurements may be a more reliable predictor of response than

Midpoint measurements due to the mechanism of chemotherapeutic effects. The Early time-point

measurements typically occur before significant anatomic changes in tumor size arise. This feature
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enables the DOSI measurement to sample known tumor tissue more easily; at the Midpoint of

therapy, by contrast, the tumor size has decreased and signal contamination between the malignant

and healthy tissue can occur due to the partial volume effect, limiting the ability of DOSI to

determine tumor physiological parameters accurately. This inability to distinguish tumor and

normal tissue properties at the Midpoint is of particular concern with the z-score normalization

algorithm that relies on accurate measurement of both regions.

3.4.2 Comparison to Other Normalization Techniques

Previous diffuse optical studies of response to breast cancer neoadjuvant chemotherapy have typi-

cally used the contralateral breast for normalization, have not utilized z-score normalization, and/or

have correlated temporal changes in measured physiological parameters with response to treatment

[248; 70; 59; 154; 236; 61; 220; 109; 250; 55; 223; 8]. These alternative approaches were explored in

the current study to determine the optimal normalization method for prediction.

First, z-score normalization was implemented to place all parameters on the same magnitude

scale, which mitigates systemic physiological differences among the subject population and ac-

counts for the systemic effects of chemotherapy. For comparison, models were created that used

fully un-normalized data and Tumor-to-Normal ratio normalization, i.e., an average value of a tu-

mor parameter divided by the average of the same parameter in the normal tissue. As with the

z-score normalized data, the logistic regression algorithm was run to produce probabilities of re-

sponse. With Tumor-to-Normal ratio normalization, a one-parameter model with Early time-point

StO2 produced an AUC = 0.80, the Baseline StO2 model resulted in an AUC = 0.69, and the two-

parameter model with Baseline time-point StO2 and H2O produced an AUC = 0.67. The AUC

values for the same models but with no normalization were even lower (AUC = 0.75, AUC = 0.64,

and AUC = 0.67, respectively). The advantage of un-normalized or Tumor-to-Normal data is that

it can be acquired with fewer spatial data points. However, these mean values do not account for

the inherent heterogeneity of the normal breast tissue. For example, without some knowledge of

the normal tissue heterogeneity, such as a standard deviation across many spatial points, there is

little context to indicate whether a given Tumor-to-Normal parameter value represents a significant

contrast between the tumor and normal tissue or simply a random variation that could be expected

to be found in the normal tissue itself. This limitation, along with the statistical issues inherent in

regressing over features with large magnitude variations and features with non-Gaussian distribu-

tions, could explain the improved correlation generated by z-score normalized data [206; 136; 141].

Many diffuse optical chemotherapy monitoring studies also utilize temporal normalization,

whereby the change in parameters from Baseline are correlated with response to treatment [248;
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59; 154; 236; 61; 220; 109; 55]. Z-score regression models with this temporally normalized data

were also tested. However, even the most predictive of the models derived in this analysis that

used the change in any DOSI physiological parameter between the Baseline and Early time-points

only produced an AUC = 0.63. The best temporal change model between the Baseline and Mid-

point produced an AUC = 0.74, which, although more predictive than the models at the Early

time-point, has the disadvantage of providing predictions approximately two months later in the

chemotherapy cycle. The temporal change models of StO2, in particular, could be limited by the

large inter-subject dispersion of the Baseline oxygen saturation; this large dispersion prevents the

change in StO2 between the Baseline and Early time-points alone from accurately reflecting the

oxygenation state of the tumor relative to the normal region. By contrast, the eStO2 model pre-

sented here does not depend on the Baseline StO2 and, as such, is not affected by inter-subject

Baseline variation. In other words, the set of subjects whose tumors exhibit high Early time-point

StO2 z-scores encompasses both those subjects whose Baseline StO2 was high and subjects whose

Baseline StO2 experienced a large increase after the first dose of therapy. Models that rely on the

change in StO2 between the Baseline and Early time-points may not accurately reflect the normoxic

or hyperoxic states of tumors that began with high StO2 and experienced a limited change.

Finally, z-score normalization to the contralateral breast tissue, rather than the normal tissue

on the tumor-bearing breast, was tested. This is a common method of normalization in the diffuse

optical community due to the fear of tumor tissue signal contamination in the tumor-bearing

breast normal tissue caused by the partial volume effect. If the contralateral breast was used for

z-score normalization with the primary models discussed here, the one-parameter Early StO2 model

produced an AUC = 0.67, the one-parameter Baseline StO2 model produced and AUC = 0.68, and

the two-parameter model with Baseline StO2 and H2O produced an AUC = 0.64. Thus, z-score

normalization to normal tissue on the tumor-bearing breast appears to enable better predictions of

response to therapy than use of the contralateral breast data. This could be a result of systemic

differences in oxygen saturation between the ipsilateral and contralateral breast. Thus, comparison

of the tumor oxygen saturation to the contralateral oxygen saturation may not be an accurate

representation of the relative level of tumor hypoxia. The comparatively better quality of the

tumor breast z-score normalized models suggests that measurement of the contralateral breast is

less important for early prediction of response to therapy than previously thought, which confirms

other work done with the DOSI instrument [163]. If this is true, then a new imaging paradigm

could eliminate the need for contralateral measurement and reduce imaging time by half. This

advance could enable easier clinical adoption of the DOSI system.
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3.4.3 Limitations and Future Directions

The primary limitations of this study are the relatively small number of subjects and the highly

variable chemotherapy regimens across the subject population. Additionally, the initial study had

a fairly high dropout rate (see Figure 3.1) [249], introducing a potential bias into the statistical

analysis. Finally, although the initial ACRIN 6691 trial was a prospective study, this z-score

parameter imaging metric was retrospectively optimized using a standard leave-one-out protocol.

The leave-one-out technique limits overfitting and enhances the generalizability of the prediction

metric [136]; it has been used extensively in the cancer imaging community [152; 7; 250; 185; 153].

However, a fully prospective validation with an independent cohort of subjects will be necessary to

test this biomarker prior to clinical adoption.

Per the first limitation noted above, application of this model to a prospective study with a larger

subject population is a natural course of action. A new multi-site trial has already been initiated for

this purpose. Importantly, because the DOSI instrumentation has been shown to provide consistent

performance over time, across multiple instruments, and across multiple measurement sites [166],

the weight vectors derived for these StO2 models (see Figures 3.7, 3.9, and 3.10) could be used with

z-score normalized measurements in future DOSI studies to calculate a probability of response,

i.e., without creating a new logistic regression model for each population. In this case, the future

study would serve as a direct, independent test set for the results obtained by the current model.

Additionally, a new logistic regression could also be run on this larger data set to derive an improved

prediction model based on a larger training set. If a future study were performed on a significantly

different patient population, e.g., patients with tumors in non-breast tissue, then deriving a new

weight vector via logistic regression would likely be beneficial.

Besides providing evidence to further corroborate the results of this pilot investigation, the

larger subject population may enable stratification of the subject population by tumor subtype

and/or chemotherapy regimen. The current results are reported for a diverse patient population

with various tumor molecular subtypes (see Table 3.1), as well as an assortment of chemotherapy

regimens [249]. Tumor subtypes may have different levels of tissue oxygen saturation and may re-

spond to chemotherapy differently [221; 107; 108]. The physiological mechanisms of chemotherapy

regimens also vary [62]. Thus, especially for parameters at the Early time-point, response predic-

tion might be improved by creating individual models for different classes of chemotherapy and/or

different tumor subtypes or by incorporating hormone biomarkers into the prediction models. Also,

measurement of independent hypoxia biomarkers, such as carbonic anhydrase IX [2] or O-15 water
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PET [173], and assays for vascular density, such as CD31 staining [2], may enable better under-

standing of the mechanism responsible for the correlation between tissue oxygen saturation and

response. The simplest method for investigating this is to combine this DOSI model with DCS

measurements, as is done in Chapter 4. This blood flow information could help to disentangle the

roles of perfusion and metabolism in the oxygen saturation measurement. Exploration of these

questions should be possible in a larger study.

3.5 Conclusion

Logistic regression models of z-score normalized physiological parameters measured by diffuse op-

tical spectroscopic imaging (DOSI) were found to predict pathologic complete response (pCR) to

neoadjuvant chemotherapy. The best model successfully predicted pCR (AUC = 0.92; 95 %CI :

0.82− 1) using tumor and normal tissue oxygen saturation measured within the first 10 days after

the initial dose of therapy based on data from the ACRIN 6691 multi-site clinical trial [249]. This

model suggests that if tumors are hypoxic relative to the surrounding normal tissue, then they are

less likely to achieve pCR. Models that incorporate the pre-therapy (Baseline) oxygen saturation

were also predictive and demonstrated a similar correlation between physiology and response to

chemotherapy. These early predictions of therapeutic efficacy are based on quantitative DOSI mea-

surements of tumor and normal tissue functional parameters, which have been shown to be more

predictive of response to therapy than structural changes in tumor size [173; 181; 180; 144; 143].

The DOSI-measured models produced here had similar or improved predictive power at a com-

parable or earlier time-point to gold-standard functional imaging modalities [180; 7; 200; 160] in

addition to the inherent logistical benefits of DOSI, such as low imaging costs, portable instru-

ments, and lack of ionizing radiation. The z-score normalization of the tumor physiological data

also yielded improved prediction models compared to tumor-to-normal ratio or un-normalized data,

indicating the importance of incorporating the heterogeneity of breast tissue into diffuse optical

analysis. Prospective validation with a fully independent population is still needed to confirm these

promising results, and a study is underway for this purpose across many of the same sites that par-

ticipated in the ACRIN-6691 trial. With this validation set, DOSI and logistic regression methods

could be used early in the course of neoadjuvant chemotherapy to optimize treatment regimens

for individual patients, potentially improving outcomes and sparing patients the unnecessary side

effects associated with ineffective treatments.
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Chapter 4

Combined DOS and DCS

Monitoring of Breast Tumors

during Neoadjuvant

Chemotherapy

4.1 Introduction

Chapter 3 introduced neoadjuvant chemotherapy (NAC) in clinical breast cancer treatment, dis-

cussed limitations of current treatment monitoring modalities, and introduced a diffuse optical

method for predicting pathologic complete response (pCR) to chemotherapy. This technique uti-

lized a z-score normalization technique and logistic regression, based on parameters measured with

diffuse optical spectroscopic imaging (DOSI).

However, all of the DOSI-measured parameters are steady-state measures. That is, while DOSI

provides a measure of blood volume, via the total hemoglobin concentration (HbT ), and oxygena-

tion, via the tissue oxygen saturation (StO2), it does not directly probe blood flow. In previous

NAC monitoring studies, other imaging modalities that have predictive value with respect to pCR,

such as magnetic resonance spectroscopy (MRS) [181], contrast-enhanced MRI [144], and positron

emission tomography (PET) [173; 180], suggest that metabolism and/or blood flow are correlated

with treatment response. Unfortunately, MRI, MRS, and PET all suffer from logistical limita-

tions which limit their viability for serial monitoring of therapy progression in patients undergoing
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chemotherapy, including high-cost, use of exogenous contrast agents, and ionizing radiation in the

case of PET. Thus, a concurrent diffuse optical measurement of blood flow should provide useful

information for predicting treatment response without the inherent practical limitations of MRI

and PET. Fortunately, diffuse correlation spectroscopy (DCS), a technique introduced in Section

2.9, offers such a measurement of blood flow.

Recall, from Section 2.9, that DCS utilizes the temporal fluctuations of detected light intensity

to probe microvasculature blood flow in deep tissue [32; 98]. The blood flow index (BFI) [cm2/s]

measured by DCS has been validated in humans against numerous gold-standard techniques [182],

including transcranial Doppler ultrasound [50], phase-encoded velocity mapping MRI [51; 151], and

xenon-enhanced computed tomography [158]. DCS has also been used to characterize hemodynamic

properties of normal and malignant human breast tissue [273; 100; 269; 53; 73], to investigate blood

flow in the early stages of NAC [273], and to longitudinally explore chemotherapy regimens in a

murine model [216].

The present study utilized both DCS and DOSI; their combined use provides several benefits.

First, absolute µa and µ′s values derived by DOSI constrain DCS blood flow fittings and thus reduce

cross-talk between changes in optical and blood flow parameters [147; 114; 76; 264]. Additionally,

the combination of StO2, measured by DOSI, with BFI, measured by DCS, permits investigation of

oxygen metabolism in malignant tissue. Oxygen metabolism is a comparatively new biomarker for

chemotherapy response that could enable direct comparison of optical diagnostics to other imaging

modalities such as FDG-PET.

This study utilized four patients enrolled in the previously discussed ACRIN-6691 clinical trial

[249]. They were monitored longitudinally using both DCS and DOSI throughout their NAC

regimens. The blood flow data in tumor and healthy breast tissue was analyzed to ascertain

potential hemodynamic differences between responders and non-responders. Previous studies have

used combinations of DCS and DOS instrumentation to monitor breast tumors [100; 273; 73; 264]

and to monitor head and neck tumors [241; 147], but the present work is the first investigation to

use DCS to measure blood flow throughout the course of NAC in humans with breast cancer, and

it is the first to correlate DCS hemodynamic properties with pCR and treatment in humans [76].

These pilot measurements suggest that DCS-derived blood flow parameters are correlated with

pCR. Importantly, this blood flow information could enable more reliable prediction of lesion re-

sponse or elucidation of the mechanism by which tumors respond or don’t respond (see Section

3.4.1), enabling physicians to individually optimize treatment regimens, avoid unnecessary therapy

doses, reduce tissue damage, and improve patient outcomes.
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Subject 1 Subject 2 Subject 3 Subject 4

NAC Response pCR non-pCR pCR non-pCR
Age, Years 65 56 32 39
Menopausal Status Post- Peri- Pre- Pre-
Max. Tumor Size 3.2 cm 6.2 cm 6.5 cm 2.1 cm
Histological Status IDC IDC IDC+DCIS IDC
ER Status Negative Positive Positive Negative
PR Status Negative Positive Positive Negative
Her2 Status Negative Negative Positive Negative
Molecular Subtype Triple Neg. Luminal B Her2 Positive Triple Neg.

NAC Regimen Doxorubicin Taxol Taxol Doxorubicin
Cyclophos. Carboplatin Carboplatin Cyclophos.

Tamoxifen Herceptin

Table 4.1: DOSI/DCS Study Tumor Properties by Response Status. Demographic, histological,
immunohistochemical, and chemotherapy regimen data is provided for all four subjects from the
ACRIN 6691 trial used in this pilot study. The NAC response status is either pCR for pathologic
complete responders or non-pCR for non-complete responders. For histological information, IDC
refers to invasive ductal carcinoma, and DCIS is ductal carcinoma in-situ. ER, PR, and Her2
represent estrogen receptor, progesterone receptor, and human epidermal growth factor receptor
status, respectively. The neoadjuvant chemotherapy (NAC) regimens given here are the treatments
initially received by the subject; some subjects underwent a change in regimen after the Midpoint
of therapy. Finally, Triple Neg. refers to the triple negative molecular subtype, and Cylcophos.
refers to the chemotherapy drug cyclophosphamide.

4.2 Subjects and Methods

4.2.1 Study Design and Subjects

For this study, four breast cancer patients who were enrolled in the ACRIN-6691 DOSI trial [249]

and imaged at the University of Pennsylvania were also measured with a DCS system developed

at the University of Pennsylvania. The subjects were females between the ages of 31 and 65 with

biopsy-confirmed invasive carcinomas of at least 2 cm in diameter along the largest axis. These

subjects underwent an NAC regimen prior to surgery. All four subjects received either Doxoru-

bicin/Cyclophosphamide, Taxol, or a combination of both within the course of NAC treatment.

In addition, hormone receptor positive subjects were given hormone therapy. The chemotherapy

regimen was determined by each subject’s physician and was not controlled for in this study. Here,

pathologic complete response (pCR) was defined in the same manner as Chapter 3, i.e, no residual

invasive carcinoma, as determined by post-surgery pathology reports, without regard to residual

lymph node disease. Table 4.1 contains relevant physiological information for these subjects.

Each subject was imaged at the four prescribed time-points throughout the course of treatment
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from the ACRIN-6691 trial (see Figure 3.2). The first (Baseline) measurement occurred prior to

the subject’s first chemotherapy treatment. The second measurement, referred to as the Early

measurement, was performed between 5 and 10 days after the first chemotherapy treatment. This

time period was chosen in order to avoid the so-called oxyhemoglobin flare that has been found

to occur immediately after chemotherapy treatment [273; 220]. A third measurement was made at

the midpoint of the therapy regimen (Midpoint), and a final measurement (Final) was made at the

conclusion of the regimen, prior to surgical intervention.

4.2.2 Optical Imaging Methods

The custom-built DCS instrumentation used in this study is described in full elsewhere [97]. Briefly,

light from a continuous wave, long-coherence length (> 5m), 785nm laser (DL785-100-3O, Crys-

taLaser, Reno, Nevada) with a maximum power of 100mW , attenuated to within ANSI power

limits and coupled to a multi-mode fiber (200µm core/0.22NA, 4m in length, OZ Optics, On-

tario, Canada), illuminated the breast tissue. A single-mode detection fiber (5µm mode field

diameter/0.13NA, 4m in length, OZ Optics, Ontario, Canada) couples diffusive light emerging

from the tissue to a single photon counting avalanche photodiode (SPCM-AQ4C, Excelitas, Que-

bec, Canada) operating in photon counting mode. The source and detector probe was placed on

the tissue with minimal pressure to prevent significant pressure-induced changes in blood flow [53].

The photodiode’s collected light intensity at time t (I(t)) was sent to a multiple-τ hardware cor-

relator (Flex02OEM4ch, Correlator.com, New Jersey) for computation of the normalized intensity

autocorrelation function in real time, i.e., computation of g2(τ) ≡ 〈I(t)I(t+ τ)〉/〈I(t)〉2. Here, the

angular brackets 〈〉 represent time-averages over an interval of 2.5 s. A semi-infinite homogeneous

tissue model is employed to derive a DCS blood flow index (BFI) from the temporal decay of

g2(τ). Section 2.9 contains a more complete description of the theory underlying DCS. Multi-layer

models for DCS fitting have also been explored to reduce the signal contamination from blood flow

in the superficial skin/skull layer of the head [149; 231; 22]. However, in this study, the superficial

(skin) layer was very thin in comparison to the source-detector separation, and breast tissue is less

susceptible to layer-dependence than cerebral measurements which must traverse the skull. More-

over, the study did not incorporate multiple source-detector separations nor a priori anatomical

knowledge of the superficial layer thickness. Therefore, the simple semi-infinite model was both the

best fit for breast anatomy and did not require unverified assumptions.

Formally, the normalized autocorrelation function of the electric field (E(t)), i.e., g1(τ) ≡

〈E∗(t) · E(t + τ)〉/〈I(t)〉 (Equation 2.178), is obtained from the measured normalized intensity

autocorrelation function (Equation 2.179) via the Siegert relation (Equation 2.180) [162]. g1(τ)
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is in turn modeled by the semi-infinite homogeneous medium solution to the correlation diffusion

equation (Equation 2.184), which depends on the underlying tissue blood flow index (BFI), µa,

and µ′s [33; 38]. The semi-infinite correlation diffusion solution is fit to g1(τ) using a nonlinear

minimization algorithm [3], and an estimate of BFI is obtained from the fit [38; 98].

The same DOSI instrument that was described in Section 3.2.2 was used in the present study.

It combines multi-spectral frequency-domain and broadband imaging to measure absolute µa,

µ′s, and the tissue concentrations of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin

(HHb), water, and lipid. The combination of these chromophores permits calculation of tissue

total hemoglobin concentration (HbT ) and tissue oxygen saturation (StO2). Full descriptions of

this instrument and imaging technique have been published [30; 166].

As with the rest of the subjects in the ACRIN-6691 trial, a grid of approximately 10×10 points

with 10 mm spacing between adjacent points was marked on the subject’s skin during the Baseline

measurement. The location of this grid was chosen to encompass the entire extent of the lesion

and to include the surrounding healthy tissue. The location of and extent of the lesion was derived

from an ultrasound image. The measurement grid was then recorded using a transparency, so that

its location could be accurately replicated during future measurements. A mirrored grid of points

was also marked on the contralateral breast. DOSI data was recorded at each of the points on

both grids, thereby providing images of the underlying tissue optical properties and chromophore

concentrations, as well as absolute optical properties at each point.

DCS data was collected along a single line of points (∼ 10 points) on each grid. This line was

chosen to traverse both lesion and non-lesion tissue on the tumor-bearing breast and was mirrored

to the same locations on the contralateral breast (see Figure 4.1). Spatial points were categorized

as either tumor measurements, which were those spatial points measuring the ultrasound-defined

tumor region at the Baseline measurement, ipsilateral normal tissue measurements, which were

the points away from the tumor region on the tumor-bearing breast, and contralateral normal

measurements, i.e., all points on the contralateral breast.

4.2.3 Statistical and Analytic Methods

The first application of the co-located DOSI and DCS measurement is to utilize the absolute DOSI-

measured µa and µ′s at each point as inputs in the fitting algorithm for the DCS BFI. The DCS

BFI was also calculated using a single set of assumed µa and µ′s values that most closely fit our

DOSI-measured optical property data. The error in the BFI between these two methods was then

calculated as a function of the µa and µ′s errors in order to determine the effect of inaccurate optical

properties on the BFI calculation.
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Figure 4.1: Schematic of the DOSI and DCS measurements. Left: DCS and DOSI instruments and
probes. Right: A grid of approximately 10 × 10 DOSI measurements were made on each of the
subject’s breasts. The location of the grid was chosen to encompass the entire lesion, in addition
to surrounding normal tissue, and was then recorded on a transparency along with physiological
landmarks such as moles, freckles, and the areolae. This transparency allowed for a mirrored grid
of points to be measured on the contralateral (healthy) breast. DCS measurements were made at
a single line of ∼ 10 grid points that completely traversed the lesion and the ∼ 10 corresponding
points on the contralateral breast.

Measurements of absolute BFI, tumor-to-normal ratio BFI, i.e., the BFIT in the tumor region

divided by the corresponding BFIN on the contralateral breast, and Baseline-normalized BFI, i.e.,

the BFI in the tumor region at a given time-point divided by the BFI at the same spatial point

during that subject’s Baseline measurement BFIT,B , were then calculated across all four time-

points (see Figure 3.2). Qualitative initial correlations between these hemodynamic parameters

and the subjects’ pathologic response statuses were than explored.

Finally, as previously noted, the combination of DCS blood flow measurements (BFI) with

DOSI tissue oxygen saturation (StO2) measurements permits investigation of oxygen metabolism.

A steady-state compartment model and the Fick principle [118] can be used to calculate a so-

called mammary metabolic rate of oxygen consumption MMRO2 [273; 54]. Briefly, the MMRO2

in a tissue compartment is proportional to the blood flow to the compartment multiplied by the

difference in oxygen concentration between the arterial and venous compartments (see Figure 4.2).

Thus, MMRO2 can thus be written as

MMRO2 ∝ BFI · (SaO2 − SvO2) , (4.1)

where BFI is the DCS blood flow index, SaO2 is the arterial oxygen saturation, and SvO2 is the

venous compartment oxygen saturation. Note that a proportionality constant κ is needed here
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Figure 4.2: Schematic of Steady-State MMRO2 Compartment Model. In steady-state, the mam-
mary metabolic rate of oxygen consumption MMRO2 in the tissue compartment can be modeled
as being proportional to the blood flow BFI times the difference in arterial and venous oxygen
saturations, SaO2 and SvO2, respectively. This model is based on the Fick principle [118] and
has been previously utilized in breast tissue [273; 54]. Note, the inability to determine the ex-
act proportionality constant for this relationship necessitates the use of relative measurements of
MMRO2.

to calculate absolute MMRO2 because the BFI must be calibrated to absolute clinical blood

flow units (see Section 2.9.3). While this equation offers a useful relation, DOS actually measures

the tissue oxygen saturation StO2 which is sensitive to the oxygen saturation averaged across the

microvasculature. Thus the the measured StO2 should be modeled as a weighted average of the

arterial and venous oxygen saturations, i.e.,

StO2 = (1− γ)SaO2 + γ SvO2. (4.2)

Here, γ is a weighting factor indicating the fraction of StO2 that is dependent on SvO2. In practice,

γ represents

γ ≡ HHbv/HbTv

HHb/HbT
(4.3)

Thus, γ depends on the ratio of deoxyhemoglobin to total hemoglobin concentration in the ve-

nous vascular compartment (i.e., HHbv/HbT,v) relative to the ratio of deoxyhemoglobin to total

hemoglobin in all tissue (e.g., as determined by DOSI tissue measurements). The aforementioned

proportionality coefficient between BFI and absolute blood flow, i.e., κ, can also be subsumed

into this constant. In both this data set and in past studies [273; 54], γ is unknown because it

is not readily feasible to separate the venous compartment contribution to the optical signal from

that of the arterial and capillary contributions, and because the DCS-measured BFI [cm2/s] has

not been calibrated to obtain κ. Therefore, instead of estimating absolute MMRO2, the present

work focuses on the relative tumor-normal (T/N) oxygen metabolism ratio, rMMRO2(T/N)
, and
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temporal changes in tumor oxygen metabolism relative to the Baseline time-point (see Figure 3.2),

rMMRO2B
. The first step is to simplify Equation 4.1 by substituting for SvO2 using Equation

4.2, resulting in

MMRO2 =
1

γ
(SaO2 − StO2) ·BFI. (4.4)

Then, it can be assumed that SaO2 ≈ 1 since the hemoglobin in arterial blood is almost fully

oxygenated. This simplifies the equation further to

MMRO2 =
1

γ
(1− StO2) ·BFI. (4.5)

Thus, other than the proportionality constant γ, the calculation of MMRO2 can be accomplished

using two quantities, StO2 and BFI, measured by DOSI and DCS, respectively. Assumption of a

constant γ permits relative measurements of MMRO2 to normalize away the γ factor and provide

useful measurements of rMMRO2. For example, the relative tumor-normal oxygen metabolism

ratio is the oxygen metabolism of a point over the tumor divided by the oxygen metabolism at the

corresponding position on the contralateral breast. It is calculated via

rMMRO2(T/N)
≈
(

1− StO2T

1− StO2N

)(
BFIT
BFIN

)
. (4.6)

Here, StO2T
and BFIT represent StO2 and BFI measurements made at a spatial location within

the tumor region (see Figure 4.1) at the time point of interest during NAC treatment (see Figure

3.2), and StO2N
and BFIN are derived from StO2 and BFI measurements made at the corre-

sponding spatial location on the contralateral breast. Equation 4.6 assumes that γ in Equation 4.5

is the same for both breasts.

Similarly, temporal relative changes in tumor oxygen metabolism are calculated via

rMMRO2B
≈
(

1− StO2T

1− StO2T,B

)(
BFIT
BFIT,B

)
, (4.7)

where StO2T
and BFIT are defined as in Equation 4.6 and StO2T,B

and BFIT,B explicitly denote

StO2T
and BFIT for the Baseline time-point (see Figure 3.2). Equation 4.7 assumes that γ in

Equation 4.5 remains constant for all measurement time-points during NAC treatment.

While this approach is a sensible first approximation, the assumption of constant γ is not verified,

and its verification would require research into the microcirculation of malignant and healthy tissue

that is beyond the scope of this study. See Section 4.4 for more discussion of this complication.
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4.3 Results

4.3.1 Blood Flow Measurements

All four of the measured subjects were diagnosed with biopsy-confirmed invasive ductal carcinomas.

Two of the four subjects achieved pCR as determined by the post-surgery pathology report. One

of the complete responders was pre-menopausal and one was post-menopausal. Similarly, one of

the non-pCR subjects was pre-menopausal while the other was peri-menopausal. Across the four

subjects, 36 total spatial points were measured on the subjects’ lesion-bearing breasts, and 40 total

spatial points were measured on the subjects’ contralateral breasts (∼ 10 spatial points per subject

per breast) for each of the four longitudinal time points. Of the 36 total spatial points on the

ipsilateral breast, 22 points were directly above the ultrasound-confirmed location of the lesion.

Notably, these four subjects all exhibited the expected Early time-point StO2 from the prediction

model in Chapter 3 for their respective response statuses.

The data were divided into contralateral (healthy) and lesion-bearing breast data for each

subject, and then grouped based on response to chemotherapy (pCR and non-pCR). The points

on the lesion breast were further divided into points directly over the tumor and points in the

nominally normal tissue surrounding the tumor. The blood flow at the non-tumor points on the

lesion-bearing breast tended to resemble the blood flow in the healthy breast and thus will not

be shown in the figures. For the responder group (pCR), 11 spatial points were measured in the

tumor region (5 on one subject, 6 on the other subject), and 19 spatial points were measured

on the healthy breast (9 on one subject, 10 on the other subject) across the two subjects. The

non-responder group (non-pCR) had 11 spatial points in the tumor region (6 on one subject, 5

on the other subject), and 21 spatial points on the healthy breast (10 on one subject, 11 on the

other subject). Note, due to the small sample size of our data set, herein potentially interesting

distinctions that are suggested by the data are explored, but no claim of statistically significant

differences between the responders and non-responders can be made.

Figure 4.3 shows the DCS BFI measurements at each of the four longitudinal time points for

both healthy breast and tumor tissue. Notice first that the BFI is lower in responders compared to

non-responders. This distinction exists at all four temporal points, but the distinction becomes more

pronounced at the Midpoint and Final time points of the chemotherapy regimen, at which time,

the difference between the responders’ and non-responders’ tumor blood flow is apparent despite

clear intra-subject spatial heterogeneity in blood flow. At these points the responders’ tumor BFI

begins to resemble the BFI in the responders’ healthy breast tissue while the non-responders’ tumor
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Figure 4.3: Absolute Blood Flow Measurements for NAC Responders vs Non-Responders. Boxplots
of the DCS blood flow index (BFI) [cm2/s] measurements made in healthy tissue (left panel)
and tumor tissue (right panel) at each measurement time-point during the NAC treatment (see
Figure 3.2). The two boxplots for each measurement time-point correspond to the measurements
in subjects with pathologic complete response (pCR) (n = 19 points in healthy tissue and n = 11
points in tumor tissue) and with non-pathologic complete response (non-pCR) (n = 21 points
in healthy tissue and n = 11 points in tumor tissue). In both healthy and tumor tissue, the
absolute BFI is lower for responders than for non-responders. Furthermore, the separation between
responders and non-responders is larger at the Midpoint and Final measurements. At these points,
the tumor BFI for responders is approaching that of the responders’ normal tissue, potentially
indicating the efficacy of chemotherapy. The hinges of the boxplots are the first and third quartiles
of the data. The whiskers indicate the farthest measurements within 1.5x the interquartile range.
Outliers beyond 1.5x the interquartile range are plotted as crosses.

BFI remains elevated relative to the non-responders’ normal tissue. Furthermore, the potential

for differentiation can be seen in both the tumor-bearing and healthy breasts, indicating that the

response, or lack of response, to chemotherapy may be a systemic effect.

BFI in the lesion-bearing breast was also normalized to BFI in the contralateral breast. This

relative tumor-to-normal (T/N) blood flow index (rBFI(T/N)) is analogous to the T/N ratios

of StO2 and HbT concentration, among other markers explored in the ACRIN-6691 study [249].

The rBFI(T/N) at each time point for both responders and non-responders is shown in Figure

4.4. Interestingly, at the Midpoint measurement, the responders’ rBFI(T/N) approaches 1 (mean

rBFI(T/N) = 1.34 across the responders’ 11 measured spatial points) while the non-responders’

tumor blood flow remains elevated relative to normal tissue (mean rBFI(T/N) = 2.65 across the

non-responders’ 11 measured spatial points). Additionally, differences between responders and

non-responders can be seen in the fractional change of average rBFI(T/N) between the Baseline

and Early measurements (pCR = +70.9 %, non-pCR = −42.5 %) and between the Early and
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Midpoint measurements (pCR = −63.6 %, non-pCR = +3.5 %). Thus, though there is not a

sufficiently large sample size to draw definitive conclusions, these observations represent promising

and physiologically suggestive results that strongly indicate further investigation is warranted.

4.3.2 Benefit of Absolute Optical Properties

The data also demonstrate the benefit of including the DOSI measurements of absolute µa and

µ′s as inputs in the DCS fitting algorithm for calculating BFI. Without the DOSI measurement,

optical properties must be assumed based on literature values. This assumption can be problematic

due to the relatively large observed inter- and intra-subject heterogeneity of breast tissue optical

properties (see Figure 4.5) [230; 56]. To characterize this effect, the BFI values calculated using

DOSI-measured optical properties were compared to BFIassumed values calculated using constant

(assumed) optical properties. Here the assumed optical properties that provided the best overall

agreement between BFIassumed and BFI, µa = 0.0045 mm−1 and µ′s = 0.85 mm−1, were chosen.

Figure 4.6 demonstrates the extent to which deviations between assumed and measured optical

properties affect the calculated BFI.

For example, a percent error of 50 % in µa produces an ∼ 20 % change in BFI, while a percent

error of 25 % in µ′s produces a 25 − 45 % change in BFI, which is consistent with the errors due

to optical property offsets seen in a previous study [147]. These variations are within typical

intra-subject optical property ranges, as evidenced by Figure 4.5, particularly in the lesion-bearing

breast. Additionally, using assumed optical properties, approximately 75 % of the measured BFI

values are at least 10 % away from their true value, and approximately 51 % of the measured BFI

values are at least 20% away from their true value (see Figure 4.6-Inset).

The effects of optical property errors on the relative BFI parameters (i.e., rBFI(T/N)) is less

severe but still significant, especially for scattering errors. In Figure 4.4, each blood flow index

boxplot for non-responders, which represents rBFI(T/N) at a given longitudinal time point, has

a 35 % larger normalized standard deviation (on average) when assumed optical properties are

used instead of DOSI-measured properties. We observe no significant difference in the normalized

standard deviation for the responders in this data set because the responders’ measured optical

properties are, on average, less heterogeneous than the non-responders’, and the responders’ µ′s

values, which have a larger effect on the BFI calculation than µa (see Figure 4.6), are clustered

around the assumed µ′s value (see Figure 4.5). The observed heterogeneity in optical properties

suggest that in future studies, subject-specific measurement of optical properties is important, and

therefore the combination of DOSI and DCS will likely be necessary for maximizing the utility of

DCS blood flow as an early marker of NAC treatment efficacy.
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Figure 4.4: Tumor to Normal Blood Flow and Oxygen Metabolism Measurements. Top: Box
plots of blood flow in the tumor tissue normalized to the flow in the contralateral (healthy) breast
(rBFI(T/N)) at each time point separated into responders (pCR) and non-responders (non-pCR).
The responder group experiences an increase in rBFI(T/N) between the Baseline and Early mea-
surements, followed by a steep decline in rBFI(T/N) between the Early and Midpoint measure-
ments. The non-responder group experiences a slight decrease in rBFI(T/N) between the Baseline
and Early measurements but no change between the Early and Midpoint measurements. At the
Midpoint measurement, the responder group has a mean rBFI(T/N) of 1.34 (n = 11 spatial points)
while the non-responder group has a mean rBFI(T/N) of 2.65 (n = 11 spatial points). This indi-
cates that the responders’ blood flow in the lesion is approaching normal levels by the midpoint
of therapy while the non-responders’ is still elevated. Bottom: Box plots of oxygen metabolism
in the tumor tissue normalized to the oxygen metabolism in the contralateral (healthy) breast
(rMMRO2(T/N)

). Note that rMMRO2(T/N)
follows a similar trend to the rBFI(T/N) for respon-

ders and non-responders due to the relatively small difference in StO2 between tumor and normal
tissue. The hinges of all boxplots are the first and third quartiles of the data. The whiskers in-
dicate the farthest measurements within 1.5x the interquartile range. Outliers beyond 1.5x the
interquartile range are plotted as crosses.
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Figure 4.5: DOSI-Measured Optical Properties in Breast Tissue. Boxplots of µa and µ′s at λ =
785nm in both breasts are plotted for responders and non-responders across all four time points.
The responders’ data set consists of 15 spatial points measured on the lesion-bearing breasts and 19
spatial points measured on the healthy breasts. The non-responders’ data set consists of 21 spatial
points on the lesion-bearing breasts and 21 spatial points on the healthy breasts. The horizontal
lines on each graph indicate the assumed optical properties (µa = 0.0045 mm−1; µ′s = 0.85 mm−1)
used as inputs to the DCS fits for calculation of BFI when the DCS analysis is performed without
DOSI data. Note that the responders and non-responders exhibit similar heterogeneity and offset
from the assumed values in the µa plots. However, the optical properties of the responders are
more homogeneous and clustered around the assumed value for the µ′s plots. This observation
explains why the non-responders have a relatively large increase in normalized standard deviation
of rBFI(T/N) (∼ 35 %) when assumed optical properties are used while the standard deviation
for the responders’ data is virtually unchanged. The hinges of the boxplots are the first and third
quartiles of the data. The whiskers indicate the farthest measurements within 1.5x the interquartile
range. Outliers beyond 1.5x the interquartile range are plotted as crosses.
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Figure 4.6: Effect of Tissue Optical Property Errors on BFI Calculation. Main: Percent error in
the calculated absolute BFI (i.e., 100 × (BFIassumed − BFI)/BFI) plotted against the percent
error in the assumed µa relative to the DOSI-measured value (red curve) and against the percent
error in the assumed µ′s relative to the DOSI-measured value (blue curve). Note that the values on
the vertical axis are plotted as mean ± SD for the data points at each value of the optical property
percent error. Clearly, µ′s errors have a larger effect on the calculated BFI than µa errors. Inset:
Histogram of the error in BFI measurements when using assumed µa and µ′s vs DOSI-measured
µa and µ′s across all subjects and time points. Approximately 75 % of all points have an error of
greater than 10 %, 51 % of all points have an error of greater than 20 %, and 22 % of all points have
an error of greater than 30 %. Also note that the responders generally have less error in the BFI
measurements with assumed optical properties than non-responders; this effect is due to a smaller
error in the assumed µ′s for the responders (see Figure 4.5).
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4.3.3 Oxygen Metabolism Calculation

Finally, the combination of StO2 measurements from the DOSI data and BFI measurements with

DCS allows for the calculation the T/N ratio of oxygen metabolism, rMMRO2(T/N)
(Equation

4.6). The rMMRO2(T/N)
measured here closely tracks rBFI(T/N) because of the relatively small

difference in StO2 between tumor and normal tissue (see Figure 4.4). To further explore the utility

of the oxygen metabolism measurement, the Baseline-normalized blood flow index rBFIB , oxygen

saturation rStO2B
, and oxygen metabolism rMMRO2B

(Equation 4.7) were calculated. Figure 4.7

provides a case study comparing these three quantities for a single subject, along with potential

physiological explanations for the findings, which are discussed in Section 4.4.

Figure 4.7: Baseline-Normalized Hemodynamic Parameters during A/C Therapy in a Single Sub-
ject. Each measured point is normalized to the corresponding spatial point in the Baseline measure-
ment. The flow charts indicate the expected physiological mechanism of the chemotherapy at the
given time points. At the Early time point, transient re-normalization of the vasculature leads to
increases in both rBFIB and rMMRO2B

. At the Midpoint, the therapy has effectively destroyed
the tumor vasculature, which, combined with the cytotoxicity of Doxorubicin, has inhibited cell
metabolism, leading to decreased rBFIB and rMMRO2B

, as well as relative tumor hypoxia, i.e.,
decreased rStO2B

. This case study displays the potential of oxygen metabolism measurements
from combined DCS and DOSI to track the physiological mechanisms and efficacy of chemotherapy
treatment.
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4.4 Discussion

The results presented here represent an important step towards the use of DCS-measured blood

flow (BFI) as a biomarker of NAC response. In the long term, the ability to accurately quantify

BFI in multiple subjects and at different spatial locations across optically heterogeneous breasts

will be an important factor in determining the utility of DCS blood flow as a predictor of a patient’s

response to treatment. The incorporation of absolute tissue optical properties determined by DOSI

into the DCS blood flow calculation improves the accuracy of blood flow measurements by isolating

the effects of actual blood flow changes from concurrent changes in optical properties.

The absolute BFI measurements and the normalized rBFI(T/N) offer interesting possibilities

for early differentiation between responders and non-responders. For example, effective chemother-

apy treatments should inhibit cell metabolism and/or angiogenesis. Thus, the tumor regions of

responders should have lower blood flow levels compared to non-responders. The lower levels of ab-

solute BFI and rBFI(T/N) during chemotherapy for responders found in our study are consistent

with these expectations, as well as with changes found in previous blood flow studies using FDG-

PET [173; 18] and with the changes in hemoglobin concentration measured in the ACRIN-6691

study [249]. It is also possible that the increase in responders’ rBFI(T/N) between the Baseline

and Early measurements (see Figure 4.4) could correspond to the oxyhemoglobin flare that has pre-

viously been observed in NAC responders [273; 220] or to particular chemotherapeutic mechanisms

that will be discussed later (see Figure 4.7).

Indications of treatment efficacy at the midpoint of treatment or earlier are of particular interest

because they could enable oncologists to augment or change an ineffective therapy regimen. At

the Midpoint time-point in this data set, the average rBFI(T/N) of the responders approaches 1

while the same quantity for the non-responders remains abnormal. This observation suggests that

by the treatment midpoint, blood flow in the lesion has begun to resemble that of the normal

breast in responders, while the non-responders still have anomalous blood flow. Again, this finding

is consistent with both intuition about the efficacy of treatment and with data from the larger

ACRIN 6691 DOSI study which indicate that some hemodynamic properties of responders and

non-responders are distinguishable by the midpoint of treatment [249].

The calculation of T/N oxygen metabolism, rMMRO2(T/N)
, closely tracks rBFI(T/N) (see

Figure 4.4), which is consistent with a relatively small average difference in StO2 between tumor and

normal tissue that is seen in this study and in previous studies [60; 72; 56]. However, investigation

into rMMRO2(T/N)
is still important because the oxygen saturation of tumors is very heterogeneous

and dependent on biochemical characteristics and the stage of the cancer [72]. Therefore, the tumor
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StO2 may vary greatly from the normal StO2 for a given patient. In that case, rBFI(T/N) alone

would not be an accurate marker of metabolism.

One important reason to measure oxygen metabolism is that there are potential physiologi-

cal scenarios wherein blood flow and metabolism measurements could more accurately reflect the

physiological changes in the tumor, e.g., compared to measurements of blood flow alone or oxy-

gen saturation alone. For example, in Chapter 3, the Early time-point StO2 prediction model

(see Figure 3.7) describes the correlation between higher relative oxygen saturation and complete

response to chemotherapy. However, there are several competing hypotheses for the mechanism

behind this correlation. Lower tumor metabolism in eventual complete responders, due to effective

chemotherapy, could lead to higher StO2 values relative to non-responders. This effect would likely

be coupled to lower blood flow for responders. However, vascular re-normalization due to anti-

angiogenic drugs could lead to higher StO2 and higher BFI in responders than non-responders.

Importantly, DCS measurements of BFI could help to elucidate these physiological processes that

underlie the correlation between StO2 and response. The calculation of oxygen metabolism could

provide further insight to these processes.

Here, a case study of a single subject is presented to explore these potential physiological

changes (see Figure 4.7). The data correspond to Baseline-normalized rBFIB , rMMRO2B
, and

rStO2B
during the administration of a Doxorubicin/Cyclophosphamide treatment regimen. In

this case, the blood flow and metabolism increase in the tumor from the Baseline to Early time

point, which is consistent with blood flow increases seen immediately after the administration of

this therapy combination in mouse models [216]. This initial increase in blood flow is likely due

to the transient re-normalization of the tumor vasculature caused by the anti-angiogenic effects of

the chemotherapy regimen [150]. Vascular re-normalization allows for increased oxygen metabolism

and enables delivery of therapy to the tumor cells. At the Midpoint measurement, however, rBFIB

and rMMRO2B
are depressed, potentially indicating an effective response to treatment in which

the Doxorubicin/Cyclophosphamide combination has inhibited cell metabolism and effectively de-

stroyed the tumor vasculature. In contrast, a chemotherapy regimen that primarily disrupts cancer

cell metabolism, with little angiogenic inhibition, would likely exhibit more significant changes in

measurements of rMMRO2B
than in measurements of rBFIB while still possibly exhibiting the

same changes in StO2B
. The combination of DCS and DOSI, along with the subsequent calcula-

tion of oxygen metabolism, will enable further exploration of these physiological changes, and their

correlation with treatment response, in future optical studies.

The distinctions between the responders and non-responders in absolute BFI (Figure 4.3),
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rBFIT/N , and rMMRO2(T/N)
(Figure 4.4), combined with the fact that these effects are con-

sistent with both expectations about hemodynamics from previous studies and with the expected

physiological mechanisms of chemotherapy, provide motivation to further investigate the predictions

of DCS measurements during neoadjuvant chemotherapy with a larger sample size. An obvious fu-

ture direction for this work is to complete a study with a larger subject population that permits

more statistically significant differentiation between responders and non-responders, especially at

the more clinically valuable Early and Midpoint measurements. The combination of z-score nor-

malization and logistic regression presented in Chapter 3 could be utilized to develop prediction

models incorporating BFI and StO2 or BFI alone.

Over the course of this future study, several changes could also be made to the measurement

protocol to collect additional useful information. First, more spatial points could be collected on

each breast to enable diffuse correlation tomography (DCT) blood flow image reconstruction. In this

case, DOSI measurements could also be used to spatially constrain the DCT inverse problem. This

augmentation could improve blood flow index quantification in the lesion tissue, in the nominally

healthy tissue of the lesion-bearing breast, and in the contralateral breast.

Finally, it appears valuable to explore techniques for determining absolute oxygen metabolism

(MMRO2) instead of relative oxygen metabolism (rMMRO2(T/N)
) by isolating the venous contri-

bution to the optical signal. This pursuit is of particular interest because it is currently unknown

whether γ is truly constant between tumor and normal tissues or across longitudinal measure-

ments. Progress has been made towards using DOS to measure SvO2 in the brain [171]; however,

it is unclear if this technique would be applicable to breast measurements. Advances along these

lines would enable the DCS/DOSI combination to potentially track systemic metabolic changes in

addition to the relative changes between healthy and lesion-bearing breasts.

4.5 Conclusion

The pilot study presented here [76] was the first to use diffuse correlation spectroscopy (DCS) to

monitor blood flow throughout the course of neoadjuvant chemotherapy (NAC) in a human clinical

trial and the first investigation into the potential correlation between DCS-measured blood flow

index (BFI) and NAC response. Diffuse optical spectroscopic imaging (DOSI) was performed in

conjunction with DCS, which allowed for both the constraint of the DCS fitting using absolute

DOSI-measured optical properties, and for the calculation of relative oxygen metabolism. Clearly,

DCS and DOSI are attractive modalities for the monitoring of response to treatment due to their
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sensitivity to functional hemodynamic properties, as well as their portability, their use of non-

ionizing radiation, and their relatively low cost. The results suggest the existence of an interesting

correlation between pathologic complete response to NAC and both lower absolute BFI and lower

relative BFI between the tumor and normal tissue at the midpoint of the chemotherapy regimen.

The calculation of oxygen metabolism using the combined DOSI and DCS data also presented

an interesting opportunity to more accurately explore the physiological mechanisms and efficacy

of chemotherapy. DCS measures of BFI and metabolism could both have predictive value with

respect to chemotherapy pCR; they could also help to elucidate the mechanisms underlying the

Early time-point StO2 correlation to response found in Chapter 3. These pilot results provide

both clear evidence for combining DOSI and DCS in future comprehensive clinical studies and

interesting pilot data for guiding these studies towards a more complete understanding of tumor

hemodynamics during chemotherapy.
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Chapter 5

Statistical Differentiation of

Malignant and Healthy Breast

Tissue

5.1 Introduction

Chapters 3 and 4 explored the role that diffuse optics could play in monitoring and predicting

breast cancer patients’ responses to neoadjuvant chemotherapy. This prognostic role is one of the

most promising potential applications of diffuse optics in the oncologic setting. However, optically

measured parameters have also shown ability to discriminate malignant from healthy tissue in the

breast [240; 239; 60; 72; 253; 111; 177], and thus DOS/DOT may also have diagnostic applications.

In standard clinical practice, breast cancer diagnosis is performed in two steps. First, suspicious

lesions are identified via x-ray mammography [29]. Thus, the first step requires differentiating

potentially malignant tissue from the surrounding healthy tissue. Second, invasive needle-aspiration

biopsies are performed to determine whether the suspicious lesion is malignant or benign [29].

Treatment plans can then be developed for malignant carcinomas while benign lesions are either

surgically resected or left in place.

Diffuse optics holds potential to contribute to both phases of this diagnostic process. Although

its spatial resolution is likely too low to replace x-ray mammography [195; 32; 98], DOT has

demonstrated the ability to locate lesions and provide significant contrast with respect to back-

ground tissue [240; 60; 168; 218; 253; 111]. This localization ability is also very important for the
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prognostic monitoring of chemotherapy response. For example, the prediction models developed

in Chapter 3 rely on the tissue oxygen saturation of both the tumor and normal tissue. Thus,

accurate identification of these regions is vital.

Optics could also play a role in the second phase of breast cancer diagnosis. DOT has shown

great promise in its ability to distinguish malignant and benign lesions [72; 111; 177]. Thus, if

properly validated, DOS/DOT could serve as a non-invasive biopsy after identification of the lesion

with mammography. Even if diffuse optics does not replace invasive biopsies, it could serve as an

initial test that could be performed immediately to rule out, or rule in, obvious cases. This scheme

could significantly reduce the number of lesions falsely identified as malignant by mammography

that needed to progress to an invasive biopsy, saving time, money, and stress.

Another, less fully explored, area concerns the potential heterogeneity in optically measured

parameters among breast carcinoma molecular subtypes. These subtypes are determined by the

hormone receptor (HR) statuses, i.e., estrogen (ER), progesterone (PR), and human epidermal

growth factor (Her2) receptor status, and the Ki-67 proteomic marker level [40; 29]. The subtypes

included in this analysis are luminal A, luminal B, HR positive, Her2 positive, and triple negative.

All these variations have different molecular and genetic structures and may be treated with different

therapies [29]. However, to this point, there has been very little research into variations in the

physiological parameters that are accessible to optics.

The dataset explored in this chapter offers a unique opportunity to investigate both the diag-

nostic abilities of DOS and any potential heterogeneity across tumor subtypes. This very large

subject population (n = 222) includes patients with a variety of malignant carcinomas with differ-

ent tumor subtypes and subjects with benign lesions. All subjects were measured using the same

diffuse optical spectroscopic imaging (DOSI) technique discussed in Chapters 3 and 4, providing

consistency across the full sample. Logistic regression models were run to differentiate malignant

tissue from the surrounding normal tissue using various DOSI-measured properties. These models

were then applied to a test set which contained malignant tumors, benign lesions, and normal tissue

to ascertain the model’s ability to perform both stages of the breast cancer diagnostic paradigm.

The different normalization techniques discussed in Chapter 3 were explored. Z-score normalized

models using both the deoxy-hemoglobin concentration HHb and the DOSI-derived tissue optical

index TOI were able to differentiate malignant tissue from both normal tissue and benign lesions.

This work thus provides an important piece of evidence for the utility of diffuse optics in the

diagnostic setting.

The heterogeneity in DOSI-measured parameters across tumor subtypes was also explored.

However, no prominent differences among subtypes were found for any single DOSI parameter.
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This observation suggests that the single parameter models explored here, and in Chapter 3, should

be universally applicable, regardless of tumor subtype. Nevertheless, more work can still be done in

the future to determine if multi-parameter DOSI models might be able to provide distinct optical

signatures for each subtype.

5.2 Subjects and Methods

5.2.1 Subjects

For this analysis, a database of n = 222 subjects imaged with diffuse optical spectroscopic imaging

(DOSI) devices across seven different institutions (University of Pennsylvania; University of Cali-

fornia, Irvine; University of California, San Francisco; Massachusetts General Hospital; Dartmouth

Hitchcock Medical Center; Boston University; and MD Anderson Cancer Center) was utilized. Sub-

jects provided written informed consent, and the HIPAA-compliant protocols and informed consent

documents were approved by each site’s Institutional Review Board. The 222 subjects were women

between the ages of 20 and 77 with breast lesions of at least 1 cm in length along the greatest di-

mension. Within this dataset, 181 subjects had biopsy-confirmed invasive ductal carcinoma (IDC),

invasive lobular carcinoma (ILC), or both; 10 subjects had pre-malignant ductal or lobular carci-

noma in-situ (DCIS or LCIS); and 31 subjects had a benign lesion. Table 5.1 contains demographic

information, as well as tumor histology, immunohistochemistry, and molecular subtype breakdowns

for the subjects with malignant and benign lesions. Note that this population includes, but is not

limited to, the subjects from the ACRIN-6691 study [249] (Chapter 3).

The subjects in this study were measured across a variety of imaging studies wherein the total

number of subjects was greater than 222; however, the group presented here represents the subset

of subjects considered evaluable based on criteria relating to data quality and acquisition [30;

60; 249; 166]. Although some subjects were measured longitudinally, e.g., throughout the course of

chemotherapy (see Chapters 3 and 4), only the pre-therapy measurements are presented for analysis

herein. Thus, none of the tissue has been altered by chemotherapy or any other treatment regimen.

5.2.2 Optical Imaging Methods

The DOSI instrument used in this study combines multi-spectral frequency-domain and broadband

diffuse optical spectroscopy to measure tissue concentrations of oxygenated hemoglobin (HbO2),

deoxygenated hemoglobin (HHb), water (H2O), and lipid, as well as the tissue scattering ampli-

tude (A) and power (b), as defined by a simplified Mie scattering model (see Section 2.8) [184].
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Malignant (n = 181) Benign (n = 31)

Age, Years
Mean ± St. Dev. (Range) 50.2± 11.8 (26− 77) 40.5± 11.9 (20− 69)

Menopausal Status, n (%)
Pre- 86 (48 %) 25 (81 %)
Peri- 11 (6 %) 1 (3 %)
Post- 84 (46 %) 5 (16 %)

Maximum Tumor Size, cm
Mean ± St. Dev. (Range) 34.6± 21.7 (10− 120) 19.5± 7.8 (10− 39)

Histological Status, n (%)
IDC 133 (73 %) −
ILC 9 (5 %) −
IDC + DCIS 28 (15 %) −
ILC + LCIS 2 (1 %) −
IDC + ILC 5 (3 %) −
Other Malignant 4 (2 %) −
Fibroadenoma − 20 (65 %)
Cyst − 5 (16 %)
Other Benign − 6 (19 %)

ER Status, n (%)
Positive 129 (71 %) −
Negative 49 (27 %) −
Unknown 3 (2 %) −

PR Status, n (%)
Positive 115 (64 %) −
Negative 63 (35 %) −
Unknown 3 (2 %) −

Her2 Status, n (%)
Positive 50 (28 %) −
Negative 121 (67 %) −
Equivocal 2 (1 %) −
Unknown 8 (4 %) −

Molecular Subtype, n (%)
Her2 Positive 16 (9 %) −
HR Positive 12 (7 %) −
Luminal A 36 (20 %) −
Luminal B 82 (45 %) −
Triple Negative 27 (15 %) −
Unknown 8 (4 %) −

Table 5.1: Physiological Malignant and Benign Lesion Properties. Demographic, histological, and
immunohistochemical data is provided for all subjects in the differential diagnosis dataset and
divided into malignant (n = 181) and benign (n = 31) lesion groups. Note that data for the n = 10
pre-malignant subjects is not included here because these subjects were excluded from the analysis.
For histological information, IDC refers to invasive ductal carcinoma, ILC refers to invasive lobular
carcinoma, DCIS is ductal carcinoma in-situ, and LCIS is lobular carcinoma in-situ. ER, PR,
and Her2 represent estrogen receptor, progesterone receptor, and human epidermal growth factor
receptor status, respectively.
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The combination of these measured parameters permits calculation of total tissue hemoglobin con-

centration (HbT = HbO2 + HHb), tissue oxygen saturation (StO2 = HbO2/HbT ) and the tissue

reduced scattering coefficient (µ′s). A more complete description of the DOSI method and instru-

ment [30] can be found in Section 3.2.2. The ACRIN-6691 multi-center trial also demonstrated

the consistency and quality of multiple individual DOSI instruments across two years and all seven

measurement sites [166].

DOSI measurements were made at a grid of distinct points on the tumor-bearing breast. This

grid was chosen to encompass the entire tumor and surrounding normal tissue; it ranged in size

from 7 cm × 7 cm to 15 cm × 16 cm with an average size of approximately 10 cm × 10 cm. The

tumor location was generally determined via an ultrasound and/or palpation. A mirrored grid of

points was then measured on the contralateral breast. The two measurement grids enabled the

definition of three distinct regions. The first region is the tumor tissue, which, for this dataset,

was defined as an area of the known dimensions and orientation of the tumor, as measured by

ultrasound, centered about the point of maximum TOI. Thus, though TOI was used to center the

lesion location, the definition of its extent was independent of any optical parameters. The second

region is the normal tissue on the healthy breast, which was defined as a set of points as far away

from the tumor region as possible on the measurement grid, excluding the areola. This approach

helps to prevent any signal contamination in the normal region due to the partial volume effect.

The areola was excluded from this region because of its high blood flow and scattering, which is

more similar to tumor tissue than normal tissue. Finally, the contralateral breast tissue, i.e., the

third region, was defined as the entire grid on the contralateral breast outside the areolar region.

Figure 5.1 contains a schematic of these DOSI grid measurements and a sample image.

5.2.3 Statistical and Analytic Methods

Since TOI has been empirically shown to distinguish malignant tissue from healthy tissue in a single

subject [60], there is significant interest in determining the ability of TOI to distinguish between

malignant lesions, benign lesions, and healthy tissue across a subject population. The goal of the

analysis performed here was to establish diagnostic metrics using TOI, or other DOSI-measured

parameters, and apply those metrics to multiple tissue types.

As discussed in Section 2.10.1, the simplest diagnostic metric would be an un-normalized value

of a DOSI-measured parameter, e.g., TOI, with a cutoff between TOI values that are considered

normal and those that are consistent with malignant tissue. To this end, tumor-to-normal ratios of

TOI (TOI(T/N)) improve upon the un-normalized TOI by accounting for inter-subject variability

in the systemic levels of DOSI-measured physiological parameters. However, because healthy breast
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Figure 5.1: Schematic of DOSI Measurement and Region Definition for Differential Diagnosis.
Bottom left: A sample DOSI image projected onto a three-dimensional breast surface. Top Left:
DOSI instrument and probe. Right: A grid of points, over a surface area ranging from 7 cm× 7 cm
to 15 cm × 16 cm, was measured on the lesion-bearing breast. This grid was chosen to encompass
both the tumor and a portion of the surrounding healthy tissue. The grid of points was marked
using a transparency, which was then used to mirror the grid for measurements on the contralateral
breast. The tumor region was chosen to be a region with an area equal to the known tumor size,
as measured with ultrasound, centered about the point of maximum Tissue Optical Index (TOI).
The tumor breast normal region was defined as the set of points farthest away from the tumor
region, excluding the areola. The contralateral breast normal region was defined as all measured
points, excluding the areola.

tissue also exhibits significant intra-subject heterogeneity in these quantities [99; 230; 56], a metric

that takes into account the normal tissue heterogeneity might be expected to be more robust and

provide the most complete information. With this goal in mind, a z-score normalization scheme

[56; 55], which transforms the logarithm of a DOSI-measured parameter on the tumor-bearing

breast to a z-score relative to the mean and standard deviation of the same parameter on the

contralateral breast can be used. This z-score parameter is defined as

Zj =
lnXj − 〈lnXjCont

〉
σ [lnXjCont

]
. (5.1)

Here, Xj is an un-normalized jth measured parameter from a single spatial location on the tumor-

bearing breast, XjCont
is the un-normalized jth measured parameter at a spatial point on the

contralateral breast, and 〈lnXjCont
〉 and σ [lnXjCont

] represent the mean and standard deviation,

respectively, over all points on the contralateral breast. Zj is thus the z-score for a given spatial

measurement on the tumor-bearing breast relative to the healthy contralateral breast tissue for

the jth parameter. The Zj parameters are then separately averaged over all spatial points in the
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tumor region and normal region on the tumor-bearing breast, resulting in an average tumor Zj and

an average normal Zj for each subject. This z-score normalization also happens to transform the

values of the data points to obey an approximately Gaussian distribution centered about Zj = 0;

this feature improves the robustness of statistical algorithms, like logistic regression, that use these

data points. Figure 2.15 provides an example of this distribution transformation.

Logistic Regression

The resultant tumor and normal Zj values can be used to run a logistic regression algorithm

[141], which produces a model that optimally classifies each data point as either malignant or

healthy based on the chosen parameter Zj . A full description of the logistic regression algorithm

is given in Section 2.10.2. Briefly, a malignancy parameter M is fit to maximize the likelihood

estimation, and M is given by

Mi = βo +

Nj∑
j=1

βj · Zij . (5.2)

Here, Mi is the given model’s log-odds of malignancy for the ith subject, βo is the intercept term

of the fitted weight vector, βj is the weighting term for the jth measured parameter used in the

model, Zij is the z-score for the jth measured parameter of the ith subject, and Nj is the number

of parameters used in a particular model. For this analysis, Nj = 1, 2, or 3. The full weight vector

~β is then

~β =
[
βo, β1, . . . βNj

]
. (5.3)

The ~β weight vector is fit using MATLAB’s native logistic regression function, mnrfit [3]. The

malignancy parameter M can then be transformed into a probability of malignancy, PM, using a

logistic function,

PM =
1

1 + e−M
. (5.4)

The parameter PM represents the probability that a sampled tissue is malignant. It has a range

from 0 to 1, and it can readily be used to predict the malignancy status of the tissue, depending

on threshold levels.

Once the probability of malignancy PM metric has been determined, it must be tested to analyze

its discriminatory ability for malignant and non-malignant tissue. This is achieved by applying the

weight vector ~β to all tumor and normal regions across the subjects in the test set, i.e., subjects
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who were explicitly left out of the training set, and then calculating PM for these test data subjects.

Importantly, this approach provides a validation of the fitted model that is not biased towards the

sample on which the training was performed [257]. The quality of the predictions, i.e., how well the

predictions correspond to the actual tissue type, is determined via receiver operating characteristic

(ROC) analysis [132; 257; 115]. ROC analysis is discussed more fully in Section 2.10.3. For this

particular ROC analysis, the AUC is calculated using DeLong’s method for the AUC and its 95 %

confidence interval [86]. In addition to discriminatory ability, all models were also tested for their

calibration, i.e., the degree to which the predicted probabilities of malignancy correspond to the

actual rate of malignancy in the data. This analysis was performed using the Hosmer-Lemeshow

method, [141], a goodness-of-fit metric which sub-divides the subject population by model-predicted

probability of malignancy and compares the expected and actual probabilities within each group.

A more complete description of this technique is given in Section 2.10.4.

Training and Test Sets

For this dataset, the probability of malignancy model was trained using only the tumor and

normal tissue for subjects with biopsy-confirmed invasive carcinomas. Thus, the n = 31 subjects

with benign lesions and the n = 10 subjects with only carcinomas in-situ were not used to train

the model. This choice of training set provides maximum contrast between known healthy and

malignant tissues. Additionally, only subjects that had contralateral breast measurements could

be used for the z-score normalization algorithm; therefore, only n = 158 of the n = 181 subjects

with malignant lesions were utilized. Because the remaining subjects with malignant lesions still

comprised a large dataset, a subset of these subjects were set aside to serve as an independent test

set for the trained model. In this case, 60 % of the subjects (n = 95) were used to train the model,

and 40 % (n = 63) were set aside for independent validation. In addition, the fitted model was

applied to the lesion and healthy tissues for the n = 31 subjects that had benign masses. This

additional application thus provides information about whether benign lesions can be distinguished

from malignant tumors using the same metric that differentiates malignant lesions from surrounding

healthy tissue. Figure 5.2 contains a flow chart detailing the sub-division of the full dataset.

Finally, the variation in performance of the malignancy prediction models across different tumor

characteristics, e.g, molecular subtype, was explored.

For comparison, models using completely un-normalized DOSI-measured parameters and tumor-

to-normal ratio normalized parameters were also tested.
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Figure 5.2: Flow Chart of Subject Population Division for Differential Diagnosis. The full dataset
contains n = 222 subjects. N = 10 were excluded because their lesions were pre-malignant, rather
than malignant or benign, and n = 23 were excluded because they did not undergo contralateral
breast measurements. Of the remaining 189 subjects, 158 had biopsy-confirmed malignant tumors,
and 31 had benign lesions. The subjects with malignant lesions were further subdivided into an
n = 95 subject training set and an n = 63 subject test set. The training set was used to train
logistic regression models to distinguish between malignant and normal tissue using various DOSI-
measured parameters. These models were then applied to the tumor and healthy tissues in the
test set to validate the models’ abilities to differentiate malignant lesions from surrounding normal
tissue. The same models were then applied to the n = 63 malignant tumors in the test set and the
n = 31 benign lesions to determine their abilities to categorize lesions as malignant or benign.

5.3 Results

Logistic regression models to differentiate malignant tissue from the surrounding normal tissue were

run for every combination of one, two, and three DOSI-measured parameters in the specified test

set. Each model was also run using z-score normalization, tumor-to-normal ratio normalization,

and no normalization. These models were then applied to both the malignant tumors and healthy

tissue in the test set and to the lesion tissues of subjects with benign tumors. The model can be

evaluated by two performance metrics: 1) Ability to distinguish between malignant tumors and
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healthy tissue, which it was trained to do, and 2) Ability to distinguish malignant tumors from

benign lesions.

Regardless of normalization technique, the tissue optical index TOI and deoxy-hemoglobin

concentration HHb proved to be the best parameters for predicting malignancy. For models using

these two parameters, however, normalization had a significant effect on diagnostic ability. All

models indicated that higher values of HHb or TOI were predictive of malignancy. This effect can

be seen in the values of the β weight vectors in Figures 5.3-5.8. The HbO2, HbT , H2O, and lipid

concentrations were also predictive of malignancy; however, none of these parameters performed as

well as HHb or TOI and thus, are not presented here.

The un-normalized HHb model (see Figure 5.3) produced an AUC = 0.85 and a 95 % confidence

interval of 0.78 to 0.92 for discriminating malignant from normal tissue, indicating good diagnos-

tic ability. However, this model’s ability to distinguish malignant from benign lesions was more

marginal with an AUC = 0.75 (95 %CI : 0.62 to 0.88). The un-normalized TOI model (see Figure

5.4) produced worse diagnoses than the corresponding HHb models with a malignant versus normal

AUC = 0.80 (95 %CI : 0.72 to 0.88) and a malignant versus benign AUC = 0.54 (95 %CI : 0.41

to 0.67). Thus, un-normalized TOI was somewhat able to discriminate between malignant tissue

and healthy tissue, but it was unable to distinguish malignant lesions from benign lesions.

Tumor-to-normal ratio normalization improved both the malignant versus normal discrimination

AUC = 0.89 (95 %CI : 0.84 to 0.95) and the malignant versus benign discrimination AUC =

0.86 (95 %CI : 0.79 to 0.94) for the TOI model (see Figure 5.6). However, the tumor-to-normal

HHb model (malignant versus normal AUC = 0.91 (95 %CI : 0.85 to 0.96); malignant versus

benign discrimination AUC = 0.71 (95 %CI : 0.59 to 0.83) - see Figure 5.5) did not offer significant

improvement over the un-normalized model.

Finally, when z-score normalization was used, bothHHb and TOI provided very good diagnostic

models, for malignant versus normal and malignant versus benign. The z-score HHb model had

AUC = 0.90 (95 %CI : 0.85 to 0.95) for malignant versus normal tissue and AUC = 0.85 (95 %CI :

0.77 to 0.93) for malignant versus benign lesions (Figure 5.7). The z-score TOI model had AUC =

0.88 (95 %CI : 0.82 to 0.94) for malignant versus normal tissue and AUC = 0.85 (95 %CI : 0.77

to 0.93) for malignant versus benign lesions (Figure 5.8).

Since HHb or TOI were used in all models presented here, it was desirable to explore any poten-

tial variation in these parameters across different molecular subtypes. For the subtypes investigated

here, namely luminal A, luminal B, hormone receptor positive, Her2 positive, and triple negative

(see Table 5.1), no significant differences were seen in HHb or TOI across subtype regardless of

normalization technique (see Figure 5.9). This observation provides evidence that the diagnostic
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Figure 5.3: Un-Normalized Deoxy-Hemoglobin Diagnostic Model. A) ROC curve for discrimination
between malignant lesions and normal tissue. B) Ten-group Hosmer-Lemeshow calibration plot (see
Section 2.10.4) comparing the actual fraction of tissue regions in the group that were malignant
versus the predicted fraction of tissue regions in that group that should be malignant based on
their individual probability of malignancy PM values. A well-calibrated model will have points
that approximately lie along the identity line. C) Boxplots of PM divided into four groups: 1)
Norm - B: normal tissue for subjects with benign lesions 2) Norm - M: normal tissue for subjects
with malignant tumors 3) Benign: benign lesions 4) Malignant: malignant tumors. The hinges of
the boxplots represent the first and third quartiles of the data, the whiskers represent the range
of measurements within a distance 1.5× the interquartile range, and the crosses represent outliers.
D) ROC curve for discrimination between malignant lesions and benign lesions. This model pro-
vides good diagnostic ability for malignant versus normal tissue but more marginal discrimination
between malignant and benign lesions. Note that the β weight vector for the model is given at the
top of the figure.
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Figure 5.4: Un-Normalized Tissue Optical Index Diagnostic Model. A) ROC curve for discrimi-
nation between malignant lesions and normal tissue. B) Ten-group Hosmer-Lemeshow calibration
plot (see Section 2.10.4) comparing the actual fraction of tissue regions in the group that were
malignant versus the predicted fraction of tissue regions in that group that should be malignant
based on their individual probability of malignancy PM values. A well-calibrated model will have
points that approximately lie along the identity line. C) Boxplots of PM divided into four groups:
1) Norm - B: normal tissue for subjects with benign lesions 2) Norm - M: normal tissue for subjects
with malignant tumors 3) Benign: benign lesions 4) Malignant: malignant tumors. The hinges of
the boxplots represent the first and third quartiles of the data, the whiskers represent the range of
measurements within a distance 1.5× the interquartile range, and the crosses represent outliers. D)
ROC curve for discrimination between malignant lesions and benign lesions. This model provides
average diagnostic ability for malignant versus normal tissue but no significant discrimination be-
tween malignant and benign lesions. Note also in the boxplots that there are no PM < 0.25. This
could be a sign that the model is not properly calibrated. Note that the β weight vector for the
model is given at the top of the figure.
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Figure 5.5: Tumor-to-Normal Deoxy-Hemoglobin Diagnostic Model. A) ROC curve for discrimi-
nation between malignant lesions and normal tissue. B) Ten-group Hosmer-Lemeshow calibration
plot (see Section 2.10.4) comparing the actual fraction of tissue regions in the group that were
malignant versus the predicted fraction of tissue regions in that group that should be malignant
based on their individual probability of malignancy PM values. A well-calibrated model will have
points that approximately lie along the identity line. C) Boxplots of PM divided into four groups:
1) Norm - B: normal tissue for subjects with benign lesions 2) Norm - M: normal tissue for subjects
with malignant tumors 3) Benign: benign lesions 4) Malignant: malignant tumors. The hinges of
the boxplots represent the first and third quartiles of the data, the whiskers represent the range of
measurements within a distance 1.5× the interquartile range, and the crosses represent outliers. D)
ROC curve for discrimination between malignant lesions and benign lesions. This model provides
excellent diagnostic ability for malignant versus normal tissue but significantly worse discrimination
between malignant and benign lesions due to the large variation in HHb(T/N) for benign masses.
Note that the β weight vector for the model is given at the top of the figure.
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Figure 5.6: Tumor-to-Normal Tissue Optical Index Diagnostic Model. A) ROC curve for discrimi-
nation between malignant lesions and normal tissue. B) Ten-group Hosmer-Lemeshow calibration
plot (see Section 2.10.4) comparing the actual fraction of tissue regions in the group that were
malignant versus the predicted fraction of tissue regions in that group that should be malignant
based on their individual probability of malignancy PM values. A well-calibrated model will have
points that approximately lie along the identity line. C) Boxplots of PM divided into four groups:
1) Norm - B: normal tissue for subjects with benign lesions 2) Norm - M: normal tissue for subjects
with malignant tumors 3) Benign: benign lesions 4) Malignant: malignant tumors. The hinges of
the boxplots represent the first and third quartiles of the data, the whiskers represent the range
of measurements within a distance 1.5× the interquartile range, and the crosses represent outliers.
D) ROC curve for discrimination between malignant lesions and benign lesions. This model pro-
vides good diagnostic ability for both malignant versus normal tissue and malignant versus benign
lesions. However, the model does not seem to be very well calibrated, as evidenced by the Hosmer-
Lemeshow plot that is significantly different from unity and the lack of tissues with PM < 0.28.
Note that the β weight vector for the model is given at the top of the figure.
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Figure 5.7: Z-Score Normalized Deoxy-Hemoglobin Diagnostic Model. A) ROC curve for discrimi-
nation between malignant lesions and normal tissue. B) Ten-group Hosmer-Lemeshow calibration
plot (see Section 2.10.4) comparing the actual fraction of tissue regions in the group that were
malignant versus the predicted fraction of tissue regions in that group that should be malignant
based on their individual probability of malignancy PM values. A well-calibrated model will have
points that approximately lie along the identity line. C) Boxplots of PM divided into four groups:
1) Norm - B: normal tissue for subjects with benign lesions 2) Norm - M: normal tissue for subjects
with malignant tumors 3) Benign: benign lesions 4) Malignant: malignant tumors. The hinges of
the boxplots represent the first and third quartiles of the data, the whiskers represent the range of
measurements within a distance 1.5× the interquartile range, and the crosses represent outliers. D)
ROC curve for discrimination between malignant lesions and benign lesions. This model provides
very good diagnostic ability for both malignant versus normal tissue and malignant versus benign
lesions. The separation between these three tissue types can be seen in the PM boxplots where all
three groups are distinguishable. Note that the β weight vector for the model is given at the top
of the figure.
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Figure 5.8: Z-Score Normalized Tissue Optical Index Diagnostic Model. A) ROC curve for discrim-
ination between malignant lesions and normal tissue. B) Ten-group Hosmer-Lemeshow calibration
plot (see Section 2.10.4) comparing the actual fraction of tissue regions in the group that were
malignant versus the predicted fraction of tissue regions in that group that should be malignant
based on their individual probability of malignancy PM values. A well-calibrated model will have
points that approximately lie along the identity line. C) Boxplots of PM divided into four groups:
1) Norm - B: normal tissue for subjects with benign lesions 2) Norm - M: normal tissue for subjects
with malignant tumors 3) Benign: benign lesions 4) Malignant: malignant tumors. The hinges of
the boxplots represent the first and third quartiles of the data, the whiskers represent the range
of measurements within a distance 1.5× the interquartile range, and the crosses represent outliers.
D) ROC curve for discrimination between malignant lesions and benign lesions. This model pro-
vides very good diagnostic ability for both malignant versus normal tissue and malignant versus
benign lesions. The separation between these three tissue types can be seen in the PM boxplots
where all three groups are distinguishable. This model is also very well-calibrated, as seen in the
Hosmer-Lemeshow plot and in the boxplots where PM spans the range from 0 to 1. Note that the
β weight vector for the model is given at the top of the figure.
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Figure 5.9: HHb and TOI by Normalization Technique and Molecular Subtype. Boxplots are
shown for un-normalized, tumor-to-normal, and z-score normalized values of deoxy-hemoglobin
(HHb) and tissue optical index (TOI). Each boxplot is divided into tumors of five molecular
cancer subtpyes: triple negative (Triple Neg), luminal A (Lum A), luminal B (Lum B), hormone
receptor positive (HR Pos), and human epidermal growth factor positive (Her2). Notice that there
is no significant difference between the subtypes for any of these parameters. This indicates that
the diagnostic models presented in this section, which rely on HHb or TOI, should not vary
significantly in performance for different molecular subtypes.
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models presented in this section should not significantly vary in performance for different molecular

subtypes.

5.4 Discussion

The primary goal of this study was to determine the ability of various DOSI-measured parameters

to accurately differentiate between malignant tissue and normal tissue, as well as between malignant

tumors and benign lesions, in a large, heterogeneous subject population. An additional aim was

to explore the effect of different data normalization techniques on these diagnostic models. The

tumor and normal tissues from n = 95 subjects with biopsy-confirmed invasive carcinomas were

used to train logistic regression models to predict malignancy using DOSI-measured parameters.

Three different models were run for each parameter with three distinct normalization techniques: no

normalization, tumor-to-normal ratio normalization, and z-score normalization (see Section 5.2.3).

Each model was then applied to an independent test set of n = 63 subjects with invasive carcinomas

to test the model’s ability to discriminate malignant from healthy tissue. Every model could then

be applied to measurements of the lesion tissue for n = 31 subjects with benign masses. These

benign lesion measurements were then compared to the malignant lesion measurements to test the

model’s ability to distinguish malignant and benign masses.

This work represents the result of a robust statistical procedure, utilizing the largest known

database of diffuse optically measured breast tumors, as well as a fully independent validation

dataset to reduce training bias. Importantly, each prediction model created by this method can

be used to both 1) localize lesions with respect to the surrounding normal tissue and 2) determine

whether that lesion is malignant or benign. Thus, models like this could either be used as a non-

invasive optical biopsy (see Section 1.1) or as a means of accurately identifying tumor and normal

tissue to improve therapy monitoring (see Chapters 3 and 4).

The two optically-measured parameters that consistently performed the best, regardless of

normalization method, were deoxy-hemoglobin concentration (HHb) and the tissue optical in-

dex (TOI = (HHb ·H2O) /Lipid). Multi-feature regression did not significantly improve upon

either of these two single-parameter models. TOI and HHb were both able to distinguish between

malignant and healthy tissue (all AUC > 0.80) regardless of normalization technique; however,

tumor-to-normal and z-score normalization did improve upon the un-normalized models. More-

over, z-score normalization significantly improved each of these parameter’s ability to differentiate

malignant lesions from benign lesions with an AUC = 0.85 for both HHb and TOI (see Figures

5.7 and 5.8). The tumor-to-normal TOI also provided clear differentiation between malignant and
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benign lesions with an AUC = 0.86. However, this model is sub-optimal for two reasons. First,

it does not appear to be very well-calibrated, especially for the lower end of the probability range.

This can be seen in the Hosmer-Lemeshow plot in Figure 5.6, in which the plot of actual versus

expected malignancy fractions varies significantly from the identity line. Second, TOI relies on

measurement of HHb, H2O, and Lipid concentrations. This reliance is not an issue for the DOSI

system, which uses broadband spectroscopy to accurately quantify all of these parameters. How-

ever, most DOS or DOT systems use two to five distinct wavelengths, and more often than not, they

only reconstruct HHb and HbO2 concentrations. Thus, if a model that relied only on HHb could

produce predictions of equal quality to one that used TOI, the HHb model would be preferable

because it could be more widely adopted. For the present dataset, z-score normalization is the only

technique that provides acceptable prediction quality using HHb concentration.

It should also be noted that it is not particularly surprising that z-score normalization improves

the diagnosis of malignant versus benign lesions much more than it does the diagnosis of malignant

versus normal tissue. This is because the separation in these parameters is larger between malignant

and normal tissue than it is between malignant and benign lesions. Thus, the “noise” introduced

by inter- and intra-subject variations is larger relative to the malignant versus benign “signal” than

the malignant versus normal “signal.” The differences between the three groups can easily be seen

in the boxplots in Figures 5.3 and 5.4.

The other aim of this analysis was to determine if there were meaningful differences in the

DOSI-measured parameters across various tumor subtypes. In the simple analysis performed here,

no significant differences among the molecular subtypes were found for either HHb or TOI (see

Figure 5.9). This uniformity should ensure that the diagnostic models developed here are applicable

across malignant tumors, regardless of molecular variations.

Several areas could be further explored with respect to diagnostic markers in this type of dataset.

First, differentiation of malignant and benign lesions was determined using a prediction model that

was trained to distinguish malignant from normal tissue, rather than benign lesions. Thus, it

would be instructive to explore direct binomial logistic regression between invasive carcinomas and

benign masses. If this analysis produced similar physiological correlations between HHb or TOI

and malignancy, it would be further evidence of the robustness of these methods. This technique

was not attempted for this dataset due to the approximate 5 : 1 disparity between the number of

available malignant and benign lesions. This type of discrepancy between the two training classes

can significantly bias the fitting algorithm towards the larger class [136]. Additionally, the ideal

role for DOSI in the diagnostic setting must be determined. Though it is unlikely to replace gold-

standard invasive biopsy as a means of determining malignancy, DOSI could be used a preliminary
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screening tool to prevent clearly unnecessary biopsies for obviously benign lesions. For example,

if the probability of malignancy cutoff value was set to be very low, i.e., relatively close to 0,

a very high negative predictive value could be achieved, with which only patients with clearly

benign lesions would be identified as benign. Thus, these subjects could avoid undergoing a costly,

invasive biopsy that is extremely unlikely to yield a positive result. This could be of particular use

for subjects with high density breasts who are prone to false positives in x-ray mammography. The

ideal cutoff and prediction metric for this type of screening would require further validation.

The determination of optically measured differences across molecular subtypes could also be

performed with a more complex analytic technique. For example, a machine learning algorithm

could be performed with DOSI-measured parameters as features, but with tumor subtypes used

as the model classes instead of malignancy status. Thus, the models would be trained to directly

predict tumor subtype based on DOSI measurements. If successful, these models would determine

the characteristic optical properties of each subtype, which could enable improved normalization

and lesion identification. A similar procedure could also be utilized for different pathological or

radiographic markers, such as breast density, hormone receptor level, or menopausal status. This

differential diagnosis could both provide more knowledge about the hemodynamic, structural, and

optical characteristics of tumors and help guide DOSI studies to the specific populations that could

benefit most from optical imaging.

5.5 Conclusion

A dataset of n = 222 subjects, including those with both malignant and benign lesions, were

measured using diffuse optical spectroscopic imaging (DOSI). Logistic regression models using single

DOSI-measured parameters were created to distinguish malignant tissue from normal tissue on

the tumor-bearing breast in a subset of the subjects with malignant carcinomas. These models

were then applied to an independent set of subjects with malignant lesions, and to all subjects

with benign lesions, in order to test the model’s ability to discriminate both malignant tissue

from normal tissue and malignant lesions from benign lesions. Different normalization techniques,

including no normalization, tumor-to-normal-ratio normalization, and z-score normalization, were

tested. The best models used either the deoxy-hemoglobin concentration (HHb) or the tissue optical

index (TOI) parameters. Z-score normalization produced the most robust and well-calibrated

models across both parameters and provided a significant improvement for HHb models. This is

of particular importance because most DOS systems have fewer available wavelengths than DOSI

and thus are unable to calculate the water and lipid concentrations necessary to calculate TOI.
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These z-score normalized models discriminated malignant tissue from normal tissue with AUCs

of 0.90 (95 %CI : 0.85 to 0.95) and 0.88 (95 %CI : 0.82 to 0.94) for HHb and TOI, respectively.

The same models for HHb and TOI could accurately distinguish malignant and benign lesions with

an AUC = 0.85 (95 %CI : 0.77 to 0.93) for both parameters (see Figures 5.7 and 5.8), indicating

that DOSI not only has the ability to distinguish malignancies from healthy tissue in a single

subject, but also to differentiate between malignant and benign lesions with the same quantitative

models. This positions DOSI as an attractive modality for performing preliminary, non-invasive

biopsies.

An initial investigation of the heterogeneity in HHb and TOI across different tumor molecular

subtypes was also performed. No significant difference in either HHb or TOI was found among

these subtypes, suggesting that the HHb and TOI diagnostic parameters should perform well

across all subtypes. Further work is needed to more fully characterize optically measured differences

between various tumor and subject characteristics and, thus, to determine DOSI’s ability to perform

differential diagnosis of breast cancer patients.

146



Chapter 6

Development of a DOT

Instrument for Simultaneous

Measurement with MRI

6.1 Introduction

The diffuse optical techniques presented thus far have essentially been point measurements of ho-

mogeneous optical property distributions. The DOSI instrument collects these point measurements

over a grid of spatial points, thereby deriving a two-dimensional topographic map of optical prop-

erties and chromophore concentrations; however, DOSI does not provide enough information for

full tomographic image reconstruction, as discussed in Section 2.6. This more sophisticated type

of three-dimensional imaging is complicated by several issues. First, DOT image reconstruction is

dependent on solving an ill-posed inverse problem for the optical property distributions. Second,

DOT typically has limited spatial resolution due to the diffusive nature of photon transport in

tissue [195; 32; 98]. Both of these limitations can be ameliorated by incorporating information

from another clinically-standard structural imaging modality into the DOT imaging protocol. As

enumerated in Section 2.6.7, this additional structural information serves multiple purposes: val-

idation of DOT’s ability to localize tumors, constraint of the DOT reconstruction algorithm, and

synthesis of functional DOT parameters with other quantitative parameters from MRI, PET, X-ray,

or ultrasound that may provide novel physiological insight.

147



Fortunately, the portable nature, comparatively low cost, and lack of ionizing radiation associ-

ated with diffuse optics makes combination with standard clinical modalities simple compared to

the combination of two clinical imaging modalities, such as MRI-PET or PET-CT. Several groups

have successfully combined DOT with x-ray mammography [169; 270; 111; 183; 280], ultrasound

[274; 140; 275; 277], or MRI [193; 46; 142; 271; 52; 105]. It is usually advantageous for these

combined instruments to acquire data simultaneously. This is especially true for breast imaging

because the compressibility of breast tissue makes non-concurrent co-registration difficult, requiring

a sophisticated deformation algorithm and a series of assumptions [20].

The instrument presented herein was designed, built, and implemented over the last several years

at the University of Pennsylvania. It is a hybrid DOT system that performs both high-spatial den-

sity continuous wave (CW) DOT and time-domain (TD) DOS measurements concurrently with

clinical MRI instrumentation. This incorporation of a research DOT system into clinical MRI RF

coils is a significant advance that enables improved patient throughput and the use of more sophis-

ticated and robust MR pulse sequences than a custom-built RF coil. Furthermore, the combination

of a high-density CW system with TD measurements enables both absolute quantification, via the

TD system, and relatively fast, high-quality three-dimensional reconstructions, via the CW sys-

tem. Additionally, this instrument contains the most source and CW detector locations (64 and

108, respectively) of any DOT-MRI system yet reported. This will improve the fidelity of images

for comparison to and synthesis with MRI. Finally, this combined instrument system provides two

new venues for exploring the combination of the static tissue properties from DOS with blood

flow or perfusion information. First, this platform also contains 20 source and 20 detector posi-

tions for DCS measurements. This density of optode positions could enable not only point DCS

measurements, but also potentially diffuse correlation tomography (DCT), which would provide

three-dimensional images of the blood flow index (BFI). Second, the combination of the DOT

system with a clinical coil enables the use of fast DCE-MRI measurements, such as KWIC, that

provide metrics of tumor perfusion and permeability [237; 238; 92].

At this stage, the joint DOT-MRI instrument has been fully implemented in the clinic at the

Hospital of the University of Pennsylvania. Healthy volunteers have been measured to test the pa-

tient interface and data acquisition algorithms, and multi-modality phantoms have been constructed

and imaged to test the data analysis and image reconstruction procedures. In time, this instrument

should provide improved quantification of tumor optical and hemodynamic properties, which could

serve as a well-validated reference for studies seeking to distinguish malignant from healthy tissue

(Chapter 5) or attempting to predict and understand chemotherapy response (Chapters 3 and 4).
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6.2 Instrument Design

A new platform for combined diffuse optical and magnetic resonance imaging was developed at

the University of Pennsylvania. The initial stages of this instrument’s construction have been

previously reported [52], but the system has since been completed as a part of this thesis. This

instrument integrates both time domain (TD) and continuous wave (CW) diffuse optical imaging

systems for simultaneous DOT with either 1.5T or 3T MRI. Adjustable optical modules permit

optimized optode positioning for each subject and enable opto-electronic compatibility with future

7T MRI platforms. This system provides the largest in-magnet, i.e., concurrently measured with

MRI, DOT spatial data sets yet reported. Figure 6.1 displays a schematic of the optical and

electronic instrumentation in the system, and Figure 6.2 displays the opto-electronic instrument

rack.

Figure 6.1: Schematic of DOT-MRI Instrument Optics and Electronics. This hybrid CW and
TD DOT-MRI system employs 6 pulsed laser sources (690nm, 750nm, 780nm, 798nm, 838nm,
905nm) for TD measurement of absolute bulk optical properties and 5 continuous wave laser
sources (670nm, 785nm, 808nm, 850nm, 915nm) for producing three-dimensional reconstructions
of relative optical properties. The sources are coupled to optical imaging modules via a 12 × 1
wavelength switch and an effective 1 × 64 source position switch. CW detection is performed via
detection fibers mounted on a plate and imaged onto a CCD, and TD detection is accomplished
with PMTs and time-correlated single photon counting (TCSPC) modules. All components are
controlled via the instrument computer, digital input/output channels and a National Instruments
DAQ board. This figure is modified from a similar one in the PhD Thesis of David R. Busch [52].
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Figure 6.2: DOT-MRI Instrument Rack. The optical and electronic components of the DOT-MRI
instrument are housed within an instrument rack on pneumatic wheels for easy transport to and
from the MR suite. This rack contains all laser sources, the pulsed laser diode driver, all optical
switches, the CW detection fiber imaging plate and CCD, PMTs and PMT control-units for TD
detection, and TCSPC control instrumentation.
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6.2.1 Continuous Wave System

The CW measurements are performed using five steady-state AlGaAs lasers with wavelengths

670nm (Sony - Tokyo, Japan), 785nm (Frankfurt Laser Company - Friedrichsdorf, Germany),

808nm, 850nm, and 915nm (Roithner LaserTechnik - Vienna, Austria). These lasers account for

five of the inputs to a 12 × 1 optical switch (PiezoJena - Jena, Germany), the output of which is

coupled to a 95 : 5 optical fiber splitter (OZ Optics - Carp, ON, Canada). The 95 % output of the

splitter is then fiber-coupled to an attenuator, which is coupled to a 1 × 2 optical switch (DiCon

FiberOptics - Richmond, CA) and then further to two 1× 32 optical switches (DiCon FiberOptics

- Richmond, CA). For CW laser sources, the attenuator is set to maximize signal delivered to the

tissue. The proximal end of the optical source fibers (62.5/125 diameter, FiberOptic Systems, Inc.

- Simi Valley, CA, USA) are then coupled to each of the 64 switch outputs. These fibers are then

bundled together into the fiber bundles discussed in Section 6.2.3.

CW detection is performed via 108 1-mm diameter optical fibers (FiberOptic Systems, Inc -

Simi Valley, CA, USA) whose proximal ends are mounted to an imaging plate and imaged onto

an Andor IKon CCD (Model No.: DW936N-#BV - Belfast, Northern Ireland, UK) (see Figure

6.3). The 5 % output from the fiber splitter coupled to the 12× 1 switch is also mounted onto this

imaging plate. This fiber serves as a reference channel by which fluctuations in the laser amplitude

are directly measured and can thus be accounted for via normalization of the detected signal.

6.2.2 Time Domain System

The time domain system consists of six pulsed lasers sources (PicoQuant - Berlin, Germany) with

wavelengths 690nm, 750nm, 780nm, 798nm, 838nm, and 905nm. These sources account for six

more of the inputs to the 12 × 1 wavelength switch (PiezoJena - Jena, Germany), the output of

which is then attenuated and coupled to the source position switches.

Time domain light is collected by 8 3-mm optical fibers which are each coupled to a photomul-

tiplier tube (PMT) (H7422-50mod, Hamamatsu - Hamamatsu, Japan). This larger fiber diameter

enables more photons to be collected and thus provides a vital improvement in signal-to-noise for

the PMT detection system. The instrument contains sixteen distinct PMT modules, enabling the

use of the PMTs with optimal sensitivity and providing back-up detectors in the event of dam-

age. These PMTs are protected from saturation via the source-side attenuator coupled to the

laser sources and with individual shutters designed to protect the detectors when not in use. The

PMTs are connected to Becker & Hickl (Berlin, Germany) time-correlated single photon counting

(TCSPC) modules. The single photon counting techniques are necessary to temporally resolve the
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Figure 6.3: Detection Fiber Plate and CCD. CW detection fibers and the CW reference channel
are mounted onto a plate which is then imaged onto a CCD. The spot on the CCD from each
fiber tip can then be used as an individual detector. Note that this is a photograph of the plate in
the early stages of construction [52], prior to completion of the system; the final version contains
considerably more fibers.
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detected signal collected by the PMTs and thus measure the point-spread functions necessary for

the determination of optical properties via time-domain techniques (see Section 2.3.3).

6.2.3 Optical Modules, RF Coil, and Imaging Platform

All fibers, including the source fibers, CCD-coupled CW detection fibers, and PMT-coupled TD

detection fibers are gathered together into approximately 10m-long shielded fiber bundles. The

bundles must be this long to enable optical data to be collected inside an MR suite; the instrument’s

electronic modules must also be kept sufficiently far away, i.e., outside the restricted area of the

magnetic field. The proximal end of all fibers are permanently mounted inside four custom-built

optical modules made of grey PVC material with a 3D-printed plastic shielding; these materials

were demonstrated to have no detectable magnetic susceptibility that could contaminate the MR

signal. Each of the four module faces, which are placed in contact with the tissue, have a length

of 16.4 cm, and a height of either 3 cm or 3.5 cm. This provides a sufficient coverage area of source

and detector positions for most breasts. The two source modules each contain 32 source fibers.

The first detector module contains 54 CW detection fibers and 5 TD detection fibers while the

second detector module contains 54 CW detection fibers but only 3 TD detection fibers. The

fiber optic modules also contain 20 DCS source fibers (FiberOptic Systems, Inc. - Simi Valley, CA,

USA), shared across the two detector modules, and 20 single-mode DCS detector fibers (FiberOptic

Systems, Inc. - Simi Valley, CA, USA), spread across the two source modules. Note that these fibers

are not coupled to DCS source and detector instrumentation on the current opto-electronics rack.

Instead, a separate DCS device must be used if DCS measurements are to be performed. Figure

6.4 contains photographs of the mounted fibers and the tissue interfaces of the optical modules.

These modules are mounted in a parallel-plate geometry within the windows of two clinically

standard Sentinelle RF biopsy coils (INVIVO Corp. Gainesville, FL Part No.:4000044-11), with

the two source modules on the medial side of the subject’s breast and the two detector modules

on the lateral side of the breast (see Figure 6.5). This alignment puts the source positions farther

away from lateral side of the breast where a majority of breast tumors form [222], and thus limits

contamination between the tumor contrast and the known imaging artifacts found near the source

plane [80; 25]. In clinical use, the RF coils have open windows with plastic grids so that MRI-

guided breast biopsies can be performed. If the plastic grids are removed, the coil provides an

ideal window for the optical modules to couple to tissue. The biopsy coils are housed in a patient

imaging platform in which the patient lies prone and the breast is inserted between the two coils

for simultaneous optical and MR imaging. The compatible coils available at the Hospital of the

University of Pennsylvania can be used in either 1.5T or 3T large-bore MR scanners, e.g., the 1.5T
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Figure 6.4: Optical Source and Detector Modules. A) Side view of source fibers mounted onto one
of the source modules. Note that the exposed parts of these fibers are shielded by a 3D-printed
cover when the module is in use. This photograph is from the PhD Thesis of David R. Busch [52].
B) Front view of two source modules (top) and two detector modules (bottom). On the detector
modules, the large fiber tips are the 3-mm fibers coupled to PMTs, and the smaller tips are either
the 1-mm fibers imaged onto the CCD or DCS source fibers. The fiber tips on the source modules
are either source fibers coupled to the optical position switch or single-mode DCS detection fibers.
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Siemens Espree system (Erlangen, Germany). The optical modules can also be positioned at any

height within the biopsy window, enabling optimization of the source and detector positions, which

allows for better coverage of the tumor region and limits the number of sources and detectors that

are not directly in contact with tissue. Finally, MRI fiducial markers are mounted on the optical

modules to permit co-registration of the DOT and MR imaging geometries (see Figure 6.4).

6.2.4 System Control and Stability

All of the aforementioned optical and electrical components, along with the instrument control com-

puter, are housed in a rack-mounted instrument with pneumatic wheels for simple, safe transport

of the instrument to and from the MR suite (see Figure 6.2). As previously mentioned, the ∼ 10m

fiber bundles can then be passed through the MR suite waveguide, so that the optical modules can

be mounted on the RF coil, while the instrument rack remains outside the high magnetic field of the

MRI (see Figure 6.6). The instrument computer controls the function of all components through

LabVIEW (National Instruments, Austin, TX) and Becker & Hickl (Berlin, Germany) software

and is coupled to the opto-electronic components via digital input/output channels and a National

Instruments DAQ board (Austin, TX, USA).

Prior to imaging, the lasers must be turned on for a thirty-minute warm-up period, after which

the CW laser intensities are stable to < 1 %; the remaining power variations are normalized using

the low power arm of the 95 : 5 splitter. The time domain system requires a somewhat longer period

of ∼ 1 hour to stabilize. This appears to be due primarily to jitter in the laser diode driver oscillator

(PicoQuant, Berlin, Germany); the pulsed laser instability is also more difficult to eliminate via

normalization because the detected power from the TD lasers is not high enough to quantify using

the reference channel imaged by the CCD.

Light leakage at the detectors is minimized to the point that DOT images can be successfully

carried out in typical clinical lighting conditions. However, the bore light in the MRI is turned off,

and the subject is covered with a sheet, to minimize stray light at the patient interface.
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Figure 6.5: RF Coil and Optical Modules. A) Sentinelle breast biopsy RF coil photo courtesy of
Siemens, Inc. Note the window in the biopsy coil that allows the optical modules to interface with
tissue. B) A rear view of the DOT-MRI source modules in the breast biopsy coil. Note that the
modules can be placed at any vertical position within the coil to optimize source locations. The
same can also be done for the detector modules on the lateral side of the breast. A fiducial marker,
which enables co-registration of the optical and MR geometries, is visible on the top left side of the
top source module.
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Figure 6.6: DOT-MRI System in MR Suite. When in use, the DOT instrument rack is brought
to the control room of the MR suite at the Hospital of the University of Pennsylvania. The fiber
bundles then pass through the waveguide and are incorporated into the clinical breast biopsy RF
coil, on which the subject can lie in a prone position to be simultaneously imaged by MRI and
DOT
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6.3 Data Acquisition and Analysis

For this hybrid instrumentation, three imaging sequences must be performed for each subject or

phantom measurement: continuous wave (CW) DOT, time domain (TD) DOS, and MRI (see Fig-

ure 6.7). Because the optical measurements do not interfere with the magnetic field, the MRI

and optical sequences can be performed simultaneously; however, the CW and TD diffuse opti-

cal imaging must be performed sequentially. In addition to the target measurement, a reference

phantom is imaged using the same TD and CW sequence as the target. This reference measure-

ment enables reconstruction based on differences, which eliminates error due to source-detector

coupling coefficients (see Section 2.5.7) and ensures that the small perturbation condition of the

Rytov approximation (see Section 2.6.1) is met.

Figure 6.7: DOT-MRI Imaging Sequence Flow Chart. The DOT-MRI instrument performs the op-
tical and MRI measurements simultaneously. Structural T1- and T2-weighted MRI measurements
are made prior to the injection of a gadolinium contrast agent. After the contrast injection, another
set of MR images are acquired, thereby permitting subtraction imaging that enables optimal tumor
contrast. Simultaneously, optical data is acquired. First, TD measurements are made at several
positions to determine absolute bulk optical properties. Then, CW measurements are made at all
source and detector positions to enable full three-dimensional reconstruction.
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6.3.1 MRI

The MRI pulse sequences performed with this instrument are clinically standard gadolinium-

contrast (Gd-contrast) uptake sequences used for breast MR imaging. These sequences typically

consist of a series of T1- and T2-weighted structural image sequences, a baseline T1-weighted se-

quence sensitive to the Gd-contrast agent, and then a contrast image of the same type as the

baseline image after the Gd-contrast agent uptake by the tumor. These MR images provide the

location and structure of the breast and a clear subtraction Gd-contrast image of the tumor. The

MRI will also image the fiducial markers placed at known positions on the optical modules, which

enables the co-registration of the optical and MRI coordinate systems.

6.3.2 Time Domain Measurements

The optical imaging sequence begins with a series of TD measurements. Approximately 4 of the

64 source positions are illuminated with each of the 6 available pulsed laser wavelengths. These

measurements are performed sequentially for each source-wavelength combination, and all eight

available PMT detector locations are active for every measurement. In practice, fewer than eight

detectors will be used for each source position due to signal limitations caused by differences in

source-detector separations. The PMTs, in conjunction with the TCSPC electronics (see Section

6.2.2), then record point-spread functions for each wavelength/source-detector combination. These

point-spread functions are dependent on the absorption and reduced scattering coefficients of the

tissue. The light pulse input to the tissue is not a true delta function due to broadening of the

light pulse that occurs in the optical switches, attenuators, and fibers (see Section 2.4.5). This

broadening, known as the instrument response function (IRF), is of particular concern with this

DOT-MRI instrument due to the long (∼ 10m) optical fibers on both the source and detector

sides. Thus, to distinguish the temporal broadening due to diffusion through tissue from the

inherent broadening in the instrument, the IRF must be measured. With this system, the IRF

can be found by performing TD measurements without an optically thick diffusive medium, e.g.,

without a breast or phantom, between the source and detector planes. Care must be taken in this

step to attenuate the source light to avoid saturating and/or damaging the PMTs. Once the IRF

is known, it serves as an effective temporal source profile, which can be convolved with the Green’s

function solution for an infinite slab (see Section 2.5.5). The measured point-spread function is

then fit to this solution function using a non-linear fitting algorithm, in this case, the MATLAB

function fminsearchbnd [3], to calculate the optimal absorption and reduced scattering coefficients.

Since only a few source positions are used for the TD measurements, the fitted absorption and
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reduced scattering coefficients for each source-detector pair are typically averaged with all other

measurements at the same wavelength. Performing TD measurements at more source positions

could enable a sort of coarse imaging of absolute optical properties; however, this benefit must be

balanced by the time it adds to the patient imaging sequence, and thus, it is not feasible under

most circumstances.

6.3.3 Continuous Wave Imaging

The CW imaging sequence is performed after the completion of the TD measurements. Each

of the 5 CW laser wavelengths and 63 of the available 64 source positions are cycled through

sequentially. One source position is usually left disconnected to provide a sham measurement

for background normalization purposes. A single frame is acquired by the CCD for each source-

wavelength combination. This frame will contain the outputs from the fiber tips at the imaging

plate. Thus each detector fiber will be imaged over an approximate circle containing ∼ 80 pixels

(see Figure 6.8). The detector locations on the CCD are determined using a mask for the sum

over all measured frames. The signal used for analysis of a single detector is the sum over all

pixels assigned to the given detector fiber for a single camera frame. The entire sequence of source

and wavelength combinations is often performed several times to guard against potential motion

artifacts or other systematic instabilities. The data from these multiple passes through the entire

sequence are then averaged for each wavelength-source-detector combination. In the case of a clear

artifact, the data is excluded from the average.

Once this data is collected, single-wavelength or multi-spectral reconstruction is performed.

The absolute bulk absorption and reduced scattering coefficients from the TD analysis are used

as the initial conditions for the reconstruction. Because this high-spatial density system is CW,

only the absorption coefficient, and by extension the chromophore concentrations are reconstructed,

while the reduced scattering remains constant. The knowledge of absolute background absorption

coefficient from the TD instrumentation transforms the relative absorption coefficients typically

reconstructed in CW DOT to absolute values. It may be possible to perform multi-spectral CW

reconstructions that simultaneously reconstruct oxy- and deoxy-hemoglobin concentrations as well

as the scattering amplitude (A) and scattering power (b) by utilizing all 5 CW wavelengths. How-

ever, this approach is heavily dependent on the the medium obeying the Mie scattering model and

accurate estimation of non-reconstructed chromophore concentrations, such as water and lipid. As

such, this type of reconstruction was not employed for the initial phantom tests.

A finite difference method reconstruction is performed using TOAST++ [227]. This normalizes

the source-detector coupling coefficients and provides a convenient reconstruction framework for
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Figure 6.8: Detector Measurement Extraction from CCD. The left image shows a sample CCD
frame. Each circle is a single imaged fiber tip. Note that different detectors have different signal
levels due to their varying proximity to the source position and the heterogeneous absorption and
scattering coefficients of the tissue. The center image is a sum over all camera frames, i.e., for
all wavelengths and sources, normalized by a dark image. The centroids (small red dots in center
image) of each region of high signal are then found. These centroids and the average diameter of
the high signal regions are used to create a mask of detector locations (right). This mask indicates
which pixels belong to each individual detector. Note that this image is cropped to show only the
∼ 90 detectors that were in contact with the measured phantom.

utilizing the reference phantom. For phantom measurements, single-wavelength reconstructions

are performed for each wavelength while human subject data is usually reconstructed with a multi-

spectral algorithm that directly determines the oxy- and deoxy-hemoglobin concentrations. Given

the number of available wavelengths, water or lipid concentrations could also be reconstructed.

This would likely be easier if a hard-prior constraint (see Section 6.3.4) was used, minimizing the

under-determined nature of the DOT inverse problem.

6.3.4 Incorporation of MRI into DOT Reconstruction

The primary purpose of simultaneous DOT and MRI, other than the validation of the ability of

DOT to localize tumors, is the use of MRI structural images as a prior constraint on the DOT

reconstruction. After the co-registration of the two coordinate systems using the MR fiducial

markers, the MRI must be segmented into a mask identifying distinct regions. This mask is created

via signal thresholding, in which signal cutoff values between various regions are determined. It is

possible to create a four-region mask, e.g, non-tissue, adipose, fibroglandular, and tumor; however,

for this system, the MRI is generally segmented into non-tissue regions, background breast tissue,

and tumor. This type of segmentation is particularly simple for contrast-enhanced MRI because the

subtraction image provides distinct contrast between the tumor and the rest of the breast tissue.
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Figure 6.9 contains an example of a phantom MRI and the segmented mask. Note that the regions

outside the breast are not reconstructed.

Figure 6.9: Phantom MRI and Segmented Mask. MR images are segmented using signal thresholds
to define distinct regions in the tissue. Here a tissue-like, multi-modality gelatin phantom containing
a liquid target (see Section 6.4.1) was imaged with a T1-weighted MR sequence. The three regions
with distinct signals, i.e, the liquid target, the gelatin phantom, and the background region, were
then segmented into a mask using signal thresholds to determine the region boundaries. The
three-region mask is then ready for use as a hard- or soft-prior constraint.

Once the MRI has been segmented into distinct regions, these regions can be used to constrain

the DOT reconstruction using the MRI as either a hard prior or a soft prior. Section 2.6.7 contains

more information about these two types of constraints.

6.4 Phantom Image Tests

Initial tests of the imaging capability of this joint DOT-MRI system were conducted using a tissue-

like phantom with both magnetic and optical absorption contrast. This phantom provided a test for

the DOT acquisition sequence, data processing, and image reconstruction techniques in a controlled

environment with known optical properties.

6.4.1 Phantom Construction and Characteristics

Most diffuse optics phantom experiments utilize liquid phantoms comprised of water, ink (for

absorption contrast), and Intralipid (for scattering). This is not an ideal solution for experiments

performed in the MR suite because liquid phantoms expose expensive MRI equipment to potential
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damaging spills. Thus, a gelatin phantom was created for this purpose.

First, a mold was designed and 3D-printed using a segmented MRI to mimic the approximate

shape of a breast. A porcine gelatin powder (Sigma-Aldrich, St. Louis, MO) was mixed with

water, India Ink (Higgins, Leeds, MA), a 20 % Intralipid soy emulsion (Fresenius Kabi Global - Bad

Homburg, Germany), and a Gd-chelate magnetic contrast agent (MultiHance - Bracco Diagnostics,

Milan, Italy). Air bubbles were removed from the gelatin mixture using a vacuum pump prior to

the gelatin setting to prevent non-diffusive regions from forming in the phantom. A hollow target,

16mm in diameter with 1mm thick Delrin walls, was suspended approximately in the center of the

gelatin mold prior to the pouring of the gelatin. This target was connected to thin nylon tubing

with both ends of the tubing terminating outside of the gelatin phantom (see Figure 6.10), which

enabled the injection of small amounts of liquid with different magnetic and absorption properties

into the target for varying levels of contrast with the background phantom.

Figure 6.10: Gelatin Phantom and Mold. Left: One half of the breast-shaped gelatin phantom
mold with target prior to pouring of the gelatin mixture. Note that the target is held in place by
thin, white string which does not significantly change the optical properties of the phantom. Right:
Final gelatin phantom. Different liquid phantom materials can be injected, via the nylon tubing,
into the target within the gelatin.

In this experiment, the background gelatin, Gd ink and Intralipid solution had optical properties

of µa = 0.05 cm−1 and µ′s = 8 cm−1 at 785nm. Additional India Ink was added to the target India

Ink and Intralipid solution to create a 4:1 optical contrast in µa. The background phantom also

contained 0.5mM MultiHance Gd-chelate to create an MR contrast relative to the target, which

did not contain the Gd-contrast agent. A reference phantom could be created for the difference

measurement by injecting a liquid phantom with the same optical and magnetic properties as the

gelatin into the target.
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µa at 785nm [cm−1]
Avg. Background Max. Target Contrast

Expected 0.05 0.20 4 : 1
Time-Domain 0.053 − −
Unconstrained 0.06 0.14 2.3 : 1
Hard-Prior 0.051 0.095 1.9 : 1
Soft-Prior 0.055 0.15 2.7 : 1

Table 6.1: DOT-MRI Reconstructed Optical Properties. Expected and reconstructed µa values
for the unconstrained, hard-prior, and soft-prior reconstructions, as well as the bulk absolute mea-
surement with the time-domain system, in both the background and target regions. Note that the
reconstructed contrast is unlikely to ever fully reach the expected 4 : 1 value, which represents the
ratio of target to background µa, due to the broadening of the reconstructed target (see Section 6.5).
Thus, unconstrained and soft-prior reconstructions both demonstrate reasonably good contrast.

6.4.2 MR and Optical Imaging

A T1-weighted fat-suppressed gradient echo MRI pulse sequence was run to provide MR images

with good contrast between the target and background phantom (see Figure 6.11A). Optical data

was collected using all available wavelengths at all source positions for the CW measurement and

all available wavelengths at four spatially dispersed source positions for the TD measurement (see

Section 6.2 for details). Because the phantom optical properties were known precisely only at

785nm, the single wavelength reconstruction of only the 785nm data is presented here. Note

that the absolute optical properties measured at 780nm with the TD system were assumed to be

approximately equivalent to the optical properties at 785nm, which is a very reasonable assumption.

The slight offsets between the CW and TD laser wavelengths only present an issue for single-

wavelength reconstructions; multi-spectral reconstructions for both the TD and CW data would

rely on wavelength-independent chromophore concentrations. Here, the fitted time domain data

resulted in absolute bulk optical properties of µa = 0.053 cm−1 and µ′s = 7.6 cm−1, which are

within 6 % and 5 %, respectively, of the expected background values.

DOT images were reconstructed using the TOAST++ software suite [227]. A Gauss-Newton

method for the optical property update (see Section 2.6.6) and total variation (TV) regularization

(see Section 2.6.5) were used. Figure 6.11B contains an unconstrained DOT reconstruction from

this data. Thus, this image was created with no a priori information from the MRI. Note that this

reconstruction provides relatively good quantitative contrast between the target and background

(see Table 6.1); however, there are also image artifacts of comparable contrast near the phantom

boundary and the source and detector planes.

A priori information from the segmented MRI was used in attempt to suppress these artifacts
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Figure 6.11: Unconstrained and Hard-Prior DOT Reconstructions. A) Sagittal slices, separated by
1 cm, of a T1-weighted fat-suppressed gradient echo MRI of the gelatin phantom and target. Note
that the horizontal lines on the first (source-side) and last (detector-side) slices are indentations in
the phantom from the optical modules. B) Sagittal slices of an unconstrained DOT reconstruction.
The DOT reconstruction accurately localizes the target and provides good absorption contrast
relative to the background. However, there are numerous boundary artifacts with reconstructed
µa values similar to the target’s. C) Sagittal slices of a DOT reconstruction constrained by a hard
spatial prior. Although the artifacts are removed by the hard-prior constraint, the contrast here is
also reduced. This is likely due to inaccuracy in the co-registration of the segmented MR image.
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Figure 6.12: Unconstrained and Soft-Prior DOT Reconstructions. A) Sagittal slices, separated by
1 cm, of a T1-weighted fat-suppressed gradient echo MRI of the gelatin phantom and target. Note
that the horizontal lines on the first (source-side) and last (detector-side) slices are indentations in
the phantom from the optical modules. B) Sagittal slices of an unconstrained DOT reconstruction.
The DOT reconstruction accurately localizes the target and provides good absorption contrast
relative to the background. However, there are numerous boundary artifacts with reconstructed
µa values similar to the target’s. C) Sagittal slices of a DOT reconstruction constrained by a soft
spatial prior. Note the slightly improved contrast and significantly reduced artifacts relative to the
unconstrained reconstruction.
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and improve contrast. A hard-prior constraint was placed on the DOT reconstruction, enforcing

homogeneous optical property updates within both the target and background regions (see Figure

6.11C). Though this technique eliminates the artifacts, by definition, the contrast between the

target and background is unexpectedly low. This is likely due to an inaccuracy in the coordinate

system co-registration and thus imperfect spatial designations for the two regions. To overcome this

flaw, soft-prior constraint was also utilized. Here, a first-order Tikhonov regularization scheme (see

Section 2.6.5) was used with a regularization parameter that increased with increasing distance away

background-target boundary. Figure 6.12C displays this soft-prior reconstruction. The boundary

artifacts present in the unconstrained reconstruction are now gone, and the contrast between the

target and background has slightly increased.

6.5 Discussion

6.5.1 DOT Reconstruction Validation

The images reconstructed from a breast-shaped, gelatin phantom in Section 6.4.2 provide a valida-

tion of the ability of the DOT-MRI platform to provide high spatial resolution, three-dimensional

images of the absorption coefficient and demonstrate the utility of using MR images as spatial

priors. First, the time-domain system produced accurate quantification of the average absolute

absorption and reduced scattering coefficients with errors of only 6 % and 5 %, respectively. The

unconstrained CW reconstruction (see Figure 6.11), which was performed with no input from the

MR image, reconstructed a target with reasonably good contrast (2.3 : 1 vs an expected contrast

of 4 : 1) at the appropriate location in three-dimensions. This is evidence that the high-spatial

density DOT system provides quality reconstructions without a priori information. Note that

reconstructed images are expected to have lower maximum contrast than the actual physical con-

trast due to the partial volume effect and spatial broadening of the target, which spreads the total

contrast over a larger volume [195; 25]. Despite the quality localization, there were, however, arti-

facts in the absorption reconstruction near the boundaries, which would complicate the imaging of

heterogeneous breast tissue.

To address these artifacts, a priori structural information from the MRI was used. A hard-

prior reconstruction, whereby the background and target regions determined by the segmented MRI

are forced to update homogeneously, unexpectedly provided worse contrast than the unconstrained

reconstruction (1.9 : 1). This is likely due to inaccuracy of the co-registration of the optical and MRI

coordinate systems. Hard-prior reconstructions are particularly sensitive to this offset [41; 88]. To

mitigate this source of error in future measurements, more well-defined fiducial markers in precisely
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measured locations have been added. The soft-prior constraint reconstruction provided the best

overall image quality for this phantom, with the highest target-to-background contrast (2.7 : 1)

and the elimination of the boundary artifacts found in the unconstrained reconstruction.

In future human subject imaging, all three types of reconstruction (unconstrained, hard-prior,

and soft-prior) could be used. The unconstrained image is most useful for directly validating DOT

as an imaging technology against gold-standard MRIs. Although the hard-prior is the most com-

monly used constraint, soft-prior reconstructions may be more beneficial in this study. Chapter 3

demonstrated the benefits of incorporating information about the normal tissue heterogeneity, via

a standard deviation, in predicting response to chemotherapy. This information is accessible from

a soft-prior reconstruction but suppressed by a hard-prior constraint. Additionally, in Chapter 3,

1 cm margins around both the tumor and areola were excluded from the data to avoid contam-

ination due to the partial volume effect. This technique is also not feasible with the hard-prior

reconstruction unless more regions are defined, which would increase possible sources of error in

the over-determined reconstruction.

6.5.2 Instrument Advances and Applications

The primary advances associated with the joint imaging system presented in this thesis are the

high-spatial density optical information, absolute optical property quantification via the TD system,

compatibility with a clinical RF coil, and the inclusion of DCS fibers for measurement of blood

flow. These instrument characteristics help to address some of the most interesting applications of

DOT in breast cancer.

The improved reconstruction quality over DOT-MRI systems with fewer source and detector

positions, and those with only relative optical property calculation, can enhance both the localiza-

tion and quantification of tumor optical and physiological properties. This could enable improved

differentiation between malignant and healthy tissue (as in Chapter 5) or improved characterization

of tumors for prediction of response to chemotherapy (as in Chapter 3). The spatial information

provided by the MRI will also improve the identification of tumor and normal tissue regions.

The use of the clinical coil itself is of great benefit; it provides higher-quality MRI and a more

comfortable patient experience than a custom-built RF coil. Patient comfort is very important,

not only for the increased ability to recruit study subjects, but also because of the reduction in

motion artifacts associated with a comfortable resting position. The modular design of the optical

interface with the RF coil also enables optimization of the source and detector locations, individually

optimizing coverage of each tumor and enabling subjects with unusually positioned tumors to be

enrolled in trials.
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This clinical coil also enables the use of more advanced DCE-MRI techniques, such as K-space

weighted image contrast (KWIC), which relies on fast, compressed-sensing pulse sequences and

imparts information about tumor perfusion [237; 238; 92]. These techniques, along with the 20

DCS source fibers and 20 DCS detector fibers, provide two methods of obtaining three-dimensional

maps of blood flow with precise structural knowledge. The benefits of this are three-fold. First,

the blood flow information could be used as a predictor of response to chemotherapy as in Chapter

4. Second, the flow information could be combined with tissue oxygen saturation to explore three-

dimensional oxygen metabolism maps. Finally, the DCT and KWIC DCE-MRI perfusion markers

could be compared to provide a more complete picture of flow in the tumor vasculature. KWIC

techniques are sensitive to uptake and washout and are thus dependent on the permeability of the

blood vessels whereas the DCS BFI is a more direct measure of flow. This information could be

complementary, especially in untangling the effects of chemotherapy on the vasculature, as discussed

in Section 3.4.1.

6.5.3 Future Improvements

During this instrument’s initial testing phase, it became apparent that several minor improvements

were needed. The first, which has already been completed, is the incorporation of more precise fidu-

cial markers to improve the co-registration between the optical and MRI coordinate systems. The

new fiducial makers are thin tubes, three of which are attached to each optical module in orthogonal

orientations to ensure accurate localization in all three dimensions. A second instrumental short-

coming is the lack of sensitivity of the PMT detectors to the 905nm pulsed laser, which reduces

the number of available TD wavelengths and inhibits the system’s ability to accurately reconstruct

water concentration. This limitation could be ameliorated by complementing the current PMTs

with newer, custom-built PMT modules [244] that are more sensitive to infrared light. The final

significant instrument deficiency was an aspect of the control software. The system is currently de-

signed to capture frames from the CCD with a single exposure time across all wavelengths. Because

the various CW lasers have different powers, and because tissue absorbs some wavelengths more

than others, an optimal exposure time for one wavelength could result in saturation or low signal

for another wavelength. In the current setup, this flaw can be overcome by manually changing the

exposure time for each wavelength in the series; however, this is a time-consuming process which

can’t feasibly be done during a patient measurement. Thus, it would be beneficial to automate this

procedure by incorporating an exposure-time optimization scheme. An algorithm to accomplish

this goal has been designed and is currently being tested for the instrument.
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6.6 Conclusion

A joint DOT-MRI platform for simultaneous clinical MRI and hybrid continuous wave (CW) and

time domain (TD) optical imaging has been presented. This system has 64 source fiber positions,

108 CW detector fiber positions, and 8 TD detector positions, with 5 CW and 6 TD laser sources at

wavelengths ranging from 670nm to 915nm. The instrument has modular optical interfaces that

can be used in 1.5T or 3T clinical MR suites; these optical interfaces also contain 20 DCS source

fibers and 20 single-mode DCS detector fibers for potential incorporation of diffuse correlation

tomography (DCT).

The DOT reconstruction algorithm has been validated using a breast-shaped gelatin phantom

with a liquid target. Unconstrained, soft-prior constrained, and hard-prior constrained images were

produced, which demonstrated the ability of the system to accurately locate lesions and provide

reasonable levels of target-to-background contrast. The soft-prior constrained image, in particular,

provided a quality reconstruction with high contrast and limited artifacts.

This system will be used in the clinic to more accurately quantify tumor and healthy tissue for

diagnosis of malignant lesions, prediction of response to neoadjuvant chemotherapy, and exploration

of blood flow and oxygen metabolism in breast cancer. Thus, this system provides an excellent

opportunity to improve the accuracy of diffuse optical measurements and explore the development

of new multi-modal flow and oxygenation biomarkers that could illuminate tumor physiology.
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Chapter 7

Optimization of DOT

Reconstruction Algorithm

7.1 Introduction

As discussed in Section 2.6, diffuse optical tomography (DOT) can be performed with a wide variety

of initial conditions, normalization methods, update algorithms, spatial constraints, and regulariza-

tion techniques. Optimizing these procedures can improve tumor contrast and spatial localization,

reduce cross-talk between reconstructed parameters, and alleviate the prevalence of image artifacts.

All of these reconstruction improvements are important for the accurate measurement of tumor and

normal region tissue properties that is needed for the diagnostic and prognostic imaging tests in

Chapters 3, 4, and 5.

In this chapter, different reconstruction techniques are considered and compared for data col-

lected by a spatially dense, frequency domain (FD) DOT breast cancer imaging system developed

at the University of Pennsylvania [25]. Different update algorithms were tested, but a conjugate

gradient scheme (see Section 2.6.6) was used for all final images. Both first-order Tikhonov (TK1)

and total variation (TV) regularization techniques were explored. In addition, a range of regu-

larization hyperparameters were examined to balance the image smoothness versus the ability to

accurately update the tissue properties (Section 2.6.5). A standard-deviation weighting method for

the difference data was developed and employed to weight source-detector pairs, thereby limiting

the detrimental effects of noisy measurements on the reconstruction. Finally, the minimum number

of source positions required to produce high quality images was investigated.

The resulting improvements in image quality due to the optimization of some of these conditions
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were discussed in a previous publication that described this FD-DOT system [25]. Here, the focus

of the discussion will be on development of the optimal reconstruction algorithms. Both phantom

and human subject data will be presented to demonstrate the value of these algorithmic advances.

7.2 FD-DOT Instrument and Experiments

7.2.1 FD-DOT Instrument

The frequency domain (FD) DOT instrument used here has been described in detail in another pub-

lication [25]. Briefly, five laser sources (660nm, 690nm, 785nm, 808nm, 830nm) are amplitude-

modulated at 70MHz by a frequency generator and coupled to a galvonometer source position

switch that is fiber-coupled to an 11 × 19 grid of 209 source positions with 8mm separation be-

tween successive points. Several reference channels are used to normalized amplitude fluctuations

and phase drift in the signal. A gain-modulated image intensifier is modulated at 70MHz+1Hz to

enable heterodyne detection at 1Hz with a CCD. An optical profilometry system utilized spatially

modulated light to determine the exact breast boundary for use as a spatial prior. A schematic

can be found in Figure 7.1.

In this DOT system, the patient lies prone on a biopsy table with her breast resting in an

Intralipid bath. This Intralipid prevents light outside of the tissue from saturating the CCD and

maximizes the usable dynamic range of the system. Subjects can be imaged in either the sagittal

or axial geometries due to the two examination beds connected to the system. Figure 7.2 contains

a photograph of the instrument. This DOT imaging platform is currently installed at the Hospital

of the University of Pennsylvania.

During data acquisition, each source position is illuminated sequentially by light at a single

wavelength. Seventeen frames are acquired by the CCD at each source position over a 2 second

period. Virtual detectors are then assigned at different positions on the CCD imaging surface,

similar to the detector grid in the DOT-MRI instrument in Section 6.3.3. The resulting sinusoidal

profile for each detector can be fit for the amplitude and phase offset. These two parameters are

then used for the frequency domain reconstruction of absolute absorption coefficient, or, in the

multi-spectral framework, chromophore concentrations, and reduced scattering coefficient. Figure

7.3 contains a sample CCD image and sinusoidal profile of the diffusive wave.
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Figure 7.1: Schematic of FD-DOT Imaging System. This frequency domain DOT imaging system
utilizes 70MHz modulated laser sources at five wavelengths (660nm, 690nm, 785nm, 808nm,
830nm), directed by a galvonometer optical switch to a grid of 209 source positions. Two reference
channels for signal normalization are also used. Heterodyne detection is accomplished via a gain-
modulated image intensifier and CCD. An optical profilometry system is also incorporated to
determine the boundary between the breast tissue and the surrounding Intralipid bath. This
schematic can also be found in [25].
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Figure 7.2: FD-DOT System in the Clinic. This instrument is installed in the clinic at the Hospital
of the University of Pennsylvania. The instrument rack on the right contains the laser sources and
instrument control components. The pink biopsy bed contains the imaging tank, as well as the
source fibers and detection instrumentation. Axial imaging is performed with the subject lying on
the pink bed. Sagittal imaging can also be performed using the grey examination bed. A similar
figure appears in [25].

Figure 7.3: Sample Data Acquisition for FD-DOT System. A) Sample CCD images for a single
source position. Note that 17 frames are taken to capture the sinusoidal oscillation of the frequency-
domain signal. On this plot, five different detector positions, arbitrarily labeled 1 − 5 are shown,
in addition to the pickoff and calibration channel positions, which are used for data normalization.
B) Intensity plot for five different detectors of varying distance from the source position. Note that
the amplitudes of the sine curves decrease and the phase shifts change as the detector moves farther
from the source.
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7.2.2 Phantom Experiment

The phantom experiments presented here involved three targets similar to the one described in

Section 6.4.1. The targets were connected to nylon tubing that could be used to easily change the

contrast level in each target, and then placed in a liquid Intralipid phantom with optical properties

of µa = 0.05 cm−1 and µ′s = 8 cm−1 at a wavelength of 785nm. The absorption contrast in the

phantom was provided by two inks with different spectral properties: Nigrosin (Sigma-Aldrich, St.

Louis, MO) and IR-806 (Sigma-Aldrich, St. Louis, MO). These inks play the roles of different tissue

chromophores whose concentrations would be reconstructed in a patient measurement. One target

was filled with a liquid with a 2× contrast in the scattering and no absorption contrast relative

to the background. Another target was filled with either 2×, 3×, or 6× concentration of Nigrosin

relative to the background, and the third target was filled with 2×, 3×, or 6× the concentration

of IR-806. Figure 7.4 contains a schematic of this phantom and the absorption spectra of the two

chromophores.

Figure 7.4: FD-DOT 3-Target Phantom Experiment Schematic. A) Schematic of the three targets:
Nigrosin concentration contrast, IR-806 concentration contrast, and scattering contrast. Note that
the scattering target always has a µ′s that is 2× the background while the two ink targets can
have concentration contrasts of 2×, 3×, or 6×. B) Absorption spectra of Nigrosin and IR-806 inks.
Note that these two chromophores behave similarly to the oxy- and deoxy-hemoglobin extinction
coefficients in this wavelength range. Thus, distinguishing between these two inks is a reliable
indicator of the system’s ability to quantitatively separate HbO2 and HHb concentrations.

This phantom experiment was a useful tool for the characterization and optimization of the FD-

DOT instrument, including the system’s ability to differentiate absorption contrast from scattering
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contrast, to differentiate two spectrally different absorption chromophores, to spatially localize the

target contrast, and to do so with quantitative accuracy and limited image artifacts.

7.2.3 Human Subject Imaging

Several cancer patients have also been imaged with this FD-DOT system. All subjects were con-

sented and enrolled under a research protocol approved by the IRB at the University of Penn-

sylvania. The one subject whose reconstructions are presented here was a 79 year old with a

biopsy-confirmed invasive mammary carcinoma, i.e., the carcinoma had both ductal and lobular

features, of 1.8 cm along the largest dimension. The subject was also non-concurrently imaged with

a standard DCE-MRI sequence, which is used only for comparison.

7.2.4 Reconstruction Methods

All images presented here are multi-spectral, non-linear reconstructions using the TOAST++ soft-

ware suite developed at University College London [227]. Although multiple parameter update

procedures were tested, a conjugate gradient approach was primarily used (see Section 2.6.6).

The most significant aspect of the reconstruction optimization was the determination of the best

regularization technique and regularization hyperparameter. Both first-order Tikhonov (TK1) and

total variation (TV) techniques were tested (see Section 2.6.5). Because scattering and absorption

features can update at different rates for different imaging systems, the scattering and chromophore

concentration parameters were not necessarily constrained by the same regularization methods.

Different techniques and different hyperparameters were tested across the two properties. The

L-curve method was also used for optimization of the hyperparameter (see Figure 2.11).

A heterogeneous weight vector ~σ was also used in the χ2 term of the objective function (see

Equation 2.140) to account for varying levels of noise for different source-detector separations.

This vector ~σ was calculated by binning all measurements by source-detector separation |~r| =√
z2 + ρ2 into 1mm bins, calculating the standard deviation across all measurements in a given

bin, and dividing this standard deviation by the mean of all measurements in that bin. Because

the tissue or phantom volumes are assumed to have only a small perturbation from a homogeneous

medium, all measured intensities at a given source-detector separation should be approximately

the same. Thus, the normalized standard deviation of these ring-shaped bins are an approximate

measurement of the experimental noise, with longer source-detector separations generally having

larger normalized standard deviations. This decreases the weighting factor for large source-detector

separation measurements, i.e., where the source and detector positions are off-axis. Note that, for

these reconstructions, no source-detector separations longer than 90mm were used due to the noise
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Figure 7.5: FD-DOT Detector and Standard Deviation Weighting Schematic. Top Left: Example
CCD frame measuring intensity at the detector plane due to light at a single source position. Top
Right: Example of assigned detector positions on CCD imaging plane. In this case, 209 detectors
directly across from the source fibers are defined with the signal summed over a diameter of 8mm.
Bottom Left: Standard deviation calculation example. Because, in a homogeneous medium, the
intensity decreases symmetrically with respect to the cylindrical angle ϕ, all measured intensities
at a given position ρ relative to the source position should be constant. Thus, variation across
these points can be thought of as noise. Here, 2mm thick, ring-shaped bins along the ρ dimension
are chosen, and the standard deviation is calculated for all data in each ring and divided by the
mean of the data in that ring. Bottom Right: The calculated standard deviations are assigned
to the given detector positions. These standard deviation values are then used to weight the χ2

contributions for each source-detector pair (see Equation 2.140).
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floor. Figure 7.5 contains an example of this standard deviation calculation for a single source

position.

The final area of investigation is the number of source and detector positions used in the

reconstruction. This instrument is the most spatially-dense fiber-coupled DOT instrument yet

presented [25]; therefore, the marginal benefit of the additional source positions for image quality

was undetermined. This effect is explored here. The number of source positions can be set by simply

choosing which positions to illuminate in the data collection algorithm. The detector locations,

though, can be chosen to be anywhere on the CCD imaging plane. For simplicity, the detectors

identified on the CCD here are always directly across from the active source positions. Thus, if 60

source positions are used, there are also 60 detector positions.

Image reconstruction quality was assessed using a number of factors. First, the reconstructed

target region was determined using a full-width-half-maximum contour around the maximum value

of each reconstructed parameter. The contrast within that contour relative to the background was

them summed and normalized by the expected total contrast between the target and background for

the given parameter. This metric determines the degree to which the expected contrast is recovered.

The total size of the reconstructed target, as determined by the number and size of the pixels

within the contour, was divided by the expected target size to determine the degree to which the

reconstructed target was broadened. Finally, the standard deviation of the reconstructed parameter

in the background region outside the target contour, which is expected to be homogeneous, was

calculated as a measure of image artifacts.

7.3 Results

7.3.1 Phantom Results - Regularization

Multi-spectral reconstructions using the five available wavelengths were performed for data taken

with the FD-DOT system discussed in Section 7.2.1 at 209 source positions. L-curve optimization

was used to determine the optimal τ hyperparameter for the regularization (see Figure 2.11). Here,

the best regularization scheme used τ = 8×10−4 and a total variation (TV) prior for the absorption

coefficient and τ = 8 × 10−3 and a first-order Tikhonov (TK1) prior for the reduced scattering

coefficient (see the reconstructed image in Figure 7.6). This regularization scheme was chosen

based on its ability to maximize reconstructed contrast and minimize the spatial broadening across

all three targets. Table 7.1 provides a comparison of these parameters, along with the standard

deviation of the background regions, which is a measure of the image artifacts and/or target cross-

talk, across four different regularization methods. The ”Split 1×” technique still employed TV
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regularization for the absorption coefficient and TK1 regularization for the reduced scattering

coefficient, but it used the same τ value for all parameters (see Figure 7.7). The other two methods

used either total variation (TV 10×) or first-order Tikhonov (TK1 10×) with the 10 × τ offset

between the absorption and scattering parameters (see Figures 7.8 and 7.9).

Figure 7.6: Phantom Schematic and Best Reconstructed Image. The phantom described in Figure
7.4 is used here. In these figures, each window represents a single sagittal slice of the reconstruction,
and each slice is separated by 15 mm. Top: Schematic of Phantom with respect to Reconstructed
Images. The top panel represents five sagittal slices of the IR806 concentration reconstruction, the
middle panel is five slices of the Nigrosin reconstruction, and the bottom is the reduced scattering
coefficient reconstruction. This schematic indicates the expected location of each of these targets.
Bottom: Reconstructed image using the Split 10× method which was determined to be the optimal
reconstruction method for this instrument. Note that C/Co, here and in all other figures, is the
reconstructed concentration C normalized by the expected background concentration Co, and µ′so
is the expected background reduced scattering coefficient.

Once the optimal regularization method was determined, reconstructions were performed with a

varying number of source positions and mirrored detector positions. Here, the series of reconstruc-

tions that were performed used Ns = Nd = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 140,
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Split 10× Split 1× TV 10× TK1 10×
IR806 Target

Fraction of Expected Contrast 0.63 0.67 0.69 0.65
Fraction of Expected Target Size 2.94 3.21 3.19 3.71
Background Standard Deviation 0.01 0.01 0.01 0.01

Nigrosin Target
Fraction of Expected Contrast 0.68 0.74 0.75 0.69
Fraction of Expected Target Size 4.28 5.17 4.93 6.62
Background Standard Deviation 0.02 0.02 0.02 0.02

Scattering Target
Fraction of Expected Contrast 0.68 0.87 1.04 0.68
Fraction of Expected Target Size 1.67 1.29 1.22 1.67
Background Standard Deviation 0.01 0.03 0.05 0.01

Table 7.1: FD-DOT Phantom Regularization Comparison. Four different regularization schemes for
the phantom reconstruction are shown here: 1) Split 10×: TV with τ = 8×10−4 for absorption and
TK1 with τ = 8×10−3 for reduced scattering. 2) Split 1×: TV with τ = 8×10−4 for absorption and
TK1 with τ = 8×10−4 for reduced scattering. 3) TV 10×: TV with τ = 8×10−4 for absorption and
TV with τ = 8× 10−3 for reduced scattering. 4) TK1 10×: TK1 with τ = 8× 10−4 for absorption
and TK1 with τ = 8 × 10−3 for reduced scattering. Note that the Split 10× method reconstructs
approximately the same fraction of the expected contrast in all three targets. This method also
minimizes the spatial broadening of all three targets, as seen by the Fraction of Expected Target
Size. Most of this broadening occurs along the axis perpendicular to the source and detector planes,
as expected [210; 193; 80; 25]. Finally, note that the standard deviation in the background regions,
which is a measure of reconstruction artifacts, is only notably higher in the Split 1× and TV 10×
scattering reconstructions. This can be seen clearly in Figures 7.7 and 7.8.
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Figure 7.7: Phantom Reconstruction - Effect of Regularization Hyperparameter Offset. Top: Phan-
tom reconstruction with Split 10× regularization algorithm. Bottom: Phantom reconstruction with
Split 1× regularization algorithm. Thus, the only difference between these two reconstructions is
that the reduced scattering coefficient τ is 8× 10−3 for Split 10× and 8× 10−4 for Split 1×. Note
that Split 1× regularization leads to significant image artifacts in the scattering reconstruction
and significantly reduced contrast for the chromophore absorption targets relative to the Split 10×
reconstruction.
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Figure 7.8: Phantom Reconstruction - Split versus Total Variation Regularization. Top: Phantom
reconstruction with Split 10× regularization algorithm. Bottom: Phantom reconstruction with TV
10× regularization algorithm. Thus, the only difference between these two reconstructions is that
the reduced scattering coefficient uses TK1 regularization for Split 10× and TV regularization for
TV 10×. Note that TV 10× regularization leads to significant image artifacts in the scattering
reconstruction and significantly reduced contrast for the chromophore absorption targets relative
to the Split 10× reconstruction.
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Figure 7.9: Phantom Reconstruction - Split versus First-Order Tikhonov Regularization. Top:
Phantom reconstruction with Split 10× regularization algorithm. Bottom: Phantom reconstruction
with TK1 10× regularization algorithm. Thus, the only difference between these two reconstruc-
tions is that the absorption coefficient uses TV regularization for Split 10× and TK1 regularization
for TK1 10×. Note that the TK1 10× regularization scheme reconstructs the chromophore targets
with significantly more spatial broadening than the Split 10× reconstruction (see Table 7.1).
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160, 180, 200, and 209. Once Ns > 80, there was little improvement in either the reconstructed

contrast or target size, and after Ns > 100, the results became consistent enough that further

source positions were seemingly unnecessary (see Figure 7.10).

Figure 7.10: Reconstructed Contrast and Target Size versus Number of Source Positions. A)
Fraction of Expected Target Contrast Reconstructed vs Number of Source Positions Used. Note
that, except for Ns = 10 and Ns = 20 source positions, where the size of the reconstructed
targets is very large, the reconstructed contrast increases for the chromophore targets through
approximately Ns = 80. The scattering target is reconstructed consistently regardless of Ns. B)
Size of Reconstructed Targets Relative to Actual Target Size. The reconstructed chromophore
target size remains approximately constant after Ns = 100, and the scattering target reconstructs
at the same size regardless of Ns. Note that a size of 1 would correspond to perfectly accurate
reconstruction of the target size. The broadening seen here is expected [210; 193; 80] and occurs
primarily along the transverse axis. The reconstructed scattering target size is significantly closer
to the actual size, likely due to the increased sensitivity function for scattering with this instrument
[25].

It was necessary to optimize the number and density of optode positions, as well as the reg-

ularization scheme, using phantom DOT measurements because phantoms provide more exact

information about target contrast and size than human subjects. Thus, these phantom reconstruc-

tions enable an assessment of image quality that is inaccessible to human measurements. Since the

instrumentation is constant and the imaging medium is very similar between phantoms and human

subjects, these optimized parameters should be readily transferable to patient measurements.

7.3.2 Human Subject Results and Standard Deviation Weighting

The subject presented here is a 79-year-old female with a biopsy-confirmed invasive carcinoma of

maximum size 18mm with both ductal and lobular features. As part of her routine clinical care,

the subject received DCE-MR imaging prior to being measured with the FD-DOT instrument.
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The patient consented to participate in this study under conditions approved by the University of

Pennsylvania Institutional Review Board.

The optimal regularization scheme developed in phantom imaging, Split 10×, was used for the

multi-spectral image reconstruction of the data collected from this subject. Figure 7.11 provides a

subtraction MR image for comparison and contains reconstructions of the oxy- (HbO2) and deoxy-

(HHb) hemoglobin concentrations, as well the reduced scattering coefficient µ′s. The MRI in Figure

7.11 is not a perfect comparison standard for the DOT reconstructions due to unaccounted-for

differences in imaging geometry and breast compression; however, the DOT reconstruction displays

significant contrast in HbO2, HHb, and µ′s in the approximate expected tumor location, with

reasonable physiological values.

The benefits of including source-detector pair weighting based on the source-detector separation,

as was discussed in Section 7.2.4, can also be seen in this example patient. Reconstructions with

and without this normalization technique are included in Figure 7.11.

Figure 7.11: Human Subject Reconstruction - Effect of Standard Deviation Weighting. Top: Sagit-
tal slices of a gadolinium-enhanced DCE-MRI subtraction image of an invasive mammary carci-
noma. Each slice is separated by approximately 8mm. Middle: Sagittal slices of a FD-DOT image
reconstruction of HbO2, HHb, and µ′s without standard-deviation weighting by source-detector
separation. Each slice is separated by ∼ 8.5mm. Note that there are significant image artifacts
in the µ′s reconstruction and very low contrast in the HbO2 and HHb reconstructions. Bottom:
Sagittal slices of a FD-DOT image reconstruction of HbO2, HHb, and µ′s with standard-deviation
weighting by source-detector separation. Note the significant reduction in image artifact and im-
proved contrast in all three reconstructions. Note also that the location of the apparent tumor
reconstruction in the DOT images corresponds very well to the tumor location in the DCE-MR
images.
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7.4 Discussion

Optimization of the DOT reconstruction parameters and techniques for this frequency-domain

instrument is an important step in translating this technology from the bench-top to the clinic.

Additionally, the lessons learned from the exploration of different regularization and normalization

techniques, as well as the marginal benefit of including more optode positions, can be applied to

future instrument construction and implementation.

First, it became apparent in the initial reconstructions of data from this FD-DOT instrument

that scattering features were reconstructing with higher contrast and resolution than the absorption

features, i.e., chromophore concentrations. This was preventing the chromophore concentrations

from updating enough to accurately reflect the known values in phantoms. To correct this, a

stricter regularization needed to be enforced on the scattering parameter than the chromophore

concentrations. The simplest method of doing this was to implement a τ hyperparameter for µ′s that

was 10 times greater than the optimal τ determined by the L-curve method, which was used for µa.

When this was done with total variation regularization (TV), there was still significant noise in the

µ′s image and limited improvement in the chromophore concentration contrasts (see Figure 7.8). The

10× τ contrast method implemented with first-order Tikhonov (TK1) regularization did improve

both image artifacts and chromophore contrast relative to the TV 10× method; however, the

reconstructed chromophore targets were still significantly broadened, especially along the transverse

axis (see Figure 7.9).

Thus, the “Split 10×” method was tried. This regularization method still used the 10× offset

in the τ hyperparameter, but instead of a uniform regularization scheme, Split 10× regularization

employed TV regularization for µa and TK1 regularization for µ′s. This was expected to have the

desired effect because the TV regularization allows for a sharper contrast than TK1 regularization

(see Section 2.6.5), thus improving the resolution of the absorption-dependent reconstructions.

The new regularization scheme did indeed produce the best images for phantom experiments,

providing maximum contrast that was approximately the same across all reconstructed parameters

and minimizing the spatial broadening of the reconstructed targets. Table 7.1 contains summaries

of these image quality parameters (Section 7.2.4) for the various regularization schemes. This

is the first use of split regularization with both different τ values and different regularization

techniques for the absorption and reduced scattering coefficients in DOT [25] and could represent

an important advance in tuning the DOT reconstruction algorithm to accurately quantify optical

and physiological properties.
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Another technique explored in these reconstructions was weighting the data from given source-

detector pairs by their separation distance (see Figure 7.5 for a schematic of the algorithm). Because

the amplitude of the photon fluence rate decreases approximately as e−r/r, off-axis source-detector

pairs can have orders of magnitude less signal than on-axis pairs. Thus, the signal-to-noise ratio

decreases dramatically with respect to the source-detector separation. Weighting the contributions

of long source-detector separations to the objective function less than the contributions from short

source-detector separations was shown to improve image quality by decreasing artifacts and in-

creasing contrast (see Figure 7.11). Although the effect of this weighting is only shown for the

human subject imaging here, the effect was consistent throughout all phantom tests. The method

proposed here is a reasonably simple technique that could easily be applied to any spatially-dense

DOT system.

Finally, this FD-DOT system contains the most source positions of any fiber-based DOT imager

and a full CCD detection scheme. Thus, it is able to provide very spatially-dense information.

Because of the system’s novelty, however, it was unknown how beneficial each marginal source

would be to the reconstruction quality. This effect was explored by using different numbers Ns of

the total available source positions and using detector positions at the mirrored locations to the

active source positions on the detector plane. Thus, for each experiment, Ns = Nd. Reconstructions

that used significantly fewer than the total available source positions, i.e., Ns ≤ 70, provided

noticeably worse contrast and resolution. However, for Ns beyond ∼ 110, the reconstruction did

not meaningfully improve (see Figure 7.10). Given the 0.8 cm spacing between successive source

locations, if all source positions are used, each source covers an area of approximately 0.64 cm2.

Thus, for Ns = 110, the number of sources above which there is minimal image improvement, the

optode density is approximately 1 source per 1.22 cm2. This is a similar finding to an earlier study,

which found limited improvement in resolution for optode spacing less than ∼ 1 cm [81].

There is some variation in the reconstructed contrasts and target sizes between successive Ns

values beyond Ns = 110; however, these fluctuations are likely due to which source positions are

chosen and their positions relative to the stationary targets. These fluctuations are smaller for

greater Ns because the coverage area changes less between successive values of Ns than it does in

the small Ns regime. A similar relationship between number of sources used and image quality

was seen in the patient imaging as well. This information could both guide future instrument

construction, by setting an upper limit on the necessary density of optodes near ∼ 1 source per

1.2 cm2, and increase the speed of imaging with the current system by enabling the instrument to

cycle through fewer source positions while maintaining the same image quality. Shorter imaging

times could improve patient comfort, reduce motion artifacts, increase patient throughput, or enable
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the use of more wavelengths for quantification of other chromophores, like the water concentration.

The advances developed here for improving image quality do have several limitations. One is

that the split regularization technique is likely to be highly dependent on the individual DOT system

that is used. Thus, the specific technique developed here may not be applicable to all instruments

because of differences in the relative absorption and scattering sensitivity profiles. Additionally,

the source-detector standard deviation weighting, while limiting noise, also reduces the information

available from off-axis source-detector pairs. This narrows the aperture of the effective light cone-

beam, which limits resolution along the transverse axis and leads to the spatial broadening seen

here, hindering the ability of this DOT system to accurately localize tumors. Thus, a balance will

need to be struck between including off-axis measurements to improve resolution and discarding

measurements which are dominated by noise. Finding this optimal cutoff point is an area of ongoing

research.

7.5 Conclusion

The frequency-domain DOT instrument presented here represented an important advance in high

spatial-density, optical-only DOT for absolute quantification of optical and physiological properties.

The optimization of the reconstruction algorithms used with this system was a vital step in its

introduction to clinical use. Using both multi-chromophore phantoms and human subject imaging,

multi-spectral reconstructions were performed with a variety of regularization techniques, noise-

weighting schemes, and number of sources.

Initial tests indicated that this system was more sensitive to changes in scattering than in

absorption. Thus, the best regularization algorithm used total variation regularization for µa and

first-order Tikhonov regularization for µ′s. The τ hyperparameter for µ′s was also chosen to be

10× greater than the τ used for µa. This split regularization scheme provided consistently high

contrast and resolution across both scattering and chromophore concentration reconstructions and

significantly improved images relative to previously used regularization methods (see Table 7.1).

It was also determined that not all of the available 209 source positions were necessary to achieve

optimal image quality. Increasing the number of sources beyond approximately 110 did not provide

any significant benefits in either contrast or resolution (see Figure 7.10). Thus, the data acquisition

algorithm can be modified to cycle through only half the sources, decreasing imaging time by a

factor of two. This will likely improve patient comfort, reduce motion artifacts, and increase patient

throughput with the current system. It could also serve as a guide for future systems in determining

the necessary density of optodes.
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Finally, the noise-weighting algorithm based on source-detector separation (see Figure 7.5)

clearly reduced image artifacts and increased contrast (see Figure 7.11). This final optimiza-

tion, along with the other advances, enabled this FD-DOT system to provide high-contrast, high-

resolution optical-only images of HbO2, HHb, and µ′s, demonstrating the system’s ability to accu-

rately and robustly locate and characterize breast tumors.
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Chapter 8

Conclusion

Diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) are promising op-

tical techniques for developing biomarkers of breast cancer. Both modalities provide functional

information at the bedside with no ionizing radiation, thus positioning them as ideal candidates for

non-invasive differentiation of malignant lesions from benign lesions and for longitudinally moni-

toring of treatment outcome.

This thesis has presented further development of these biomarkers for both diagnosis and prog-

nosis of breast cancer. First, a robust prognostic biomarker which could predict pathologic complete

response to neoadjuvant chemotherapy (NAC) within 10 days of treatment initiation was developed

(Chapter 3). This predictive model utilized DOS-measured tumor tissue oxygen saturation (StO2),

z-score normalized to healthy tissue StO2, and a logistic regression algorithm applied to 33 subjects

from a multi-site clinical trial. Tumor hypoxia relative to the surrounding tissue was found to be

predictive of non-response to therapy. This method arguably offers the most compelling evidence

yet of the ability of diffuse optics to predict chemotherapy response. Then, to more fully explore

tumor hemodynamics during chemotherapy, the first pilot study to longitudinally monitor breast

cancer with DCS throughout the course of a NAC regimen was performed (Chapter 4). This study

provided interesting preliminary correlations between blood flow and complete response to ther-

apy; it also demonstrated how combined StO2 information from DOS, blood flow information from

DCS, and the resultant calculation of oxygen metabolism could help to characterize the physiolog-

ical mechanisms that underlie tumor response to chemotherapy. There are still significant aspects

of these biomarkers to explore in future studies. First and foremost, the initial prediction models

presented in Chapter 3 need to be validated on a larger, independent subject population. This

is a vital step in the translation of these biomarkers into clinical use. In the same vein, a larger
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DCS neoadjuvant chemotherapy study would allow the pilot correlations found between blood flow

and therapy response in Chapter 4 to be quantified and modeled using the methods developed in

Chapter 3. These larger subject populations would also allow for sub-division of patients by tumor

subtype, chemotherapy regimen, and other physiological parameters, which could enable different

prediction models optimized for each sub-population. Additionally, the ability to significantly an-

alyze more homogeneous sub-populations will also provide the opportunity to accurately correlate

diffuse optical measurements with physiological mechanisms.

Similar statistical techniques, i.e., z-score normalization and logistic regression, were used to

develop diagnostic models from DOS-measured deoxy-hemoglobin concentration (HHb) and a tissue

optical index (TOI) that has been previously shown to differentiate tumors from healthy tissue

in a single subject. This analysis was performed with a large (n = 222), heterogeneous subject

population and indicated that higher HHb and TOI values were predictive of malignancy (Chapter

5). Importantly, if z-score normalization was utilized, a single model could provide differentiation

between tumors and the surrounding healthy tissue and between malignant lesions and benign

lesions. Thus, these models hold the potential to improve optical tumor localization and to enable

non-invasive, optical biopsy. In the future, different statistical techniques could be investigated to

explore optically measured differences among molecular subtypes and other tumor characteristics.

One such area of exploration is the use of the full absorption and scattering spectra across the

entire wavelength range as features in machine learning models rather than the fitted constituent

chromophore concentrations, e.g., HHb, HbO2, H2O, Lipid, etc., that were used here. This could

introduce more structural information, such as collagen content, into the functional prediction

models. These techniques could also be used to perform differential diagnosis, in which optically

measured parameters are correlated directly with tumor properties, such as subtype, breast density,

and proteomic biomarkers.

In a different vein, this thesis described the development of several advances in diffuse opti-

cal tomography (DOT). The first of these advances concerned the construction, optimization, and

testing of a new experimental DOT instrument designed to image subjects concurrently with clin-

ical MRI (Chapter 6). This instrument offers spatially dense data and hybrid continuous-wave

and time-domain DOT for three-dimensional image reconstruction and absolute optical property

quantification. This quality optical data, combined with clinical MRI, enables validation of DOT

localization, constraint of the DOT reconstruction for more accurate quantification of physiological

properties, and synthesis of diffuse optical markers with advanced perfusion MRI sequences that

provide markers of blood flow. This newly implemented DOT-MRI instrument requires the recruit-

ment of a significant number of patients to fully validate the system’s multi-spectral reconstruction
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ability. A key aspect of these future studies could also be the synthesis of DOT images with mi-

crovasculature blood flow information from the embedded diffuse corrrelation tomography (DCT)

system and tumor perfusion information from gadolinium-contrast uptake MR images. These stud-

ies could present a novel method of obtaining non-invasive images of oxygen metabolism, furthering

the understanding of tumor hemodynamics

The final contribution of this thesis concerns optimization of the DOT reconstruction algo-

rithm (Chapter 7) for a DOT-only instrument. This work includes data noise-weighting, novel

regularization schemes, and the determination of optimal data spatial density. These advances

clearly improved DOT tumor-to-background contrast, reduced imaging artifacts, and minimized

the imaging time required to produce quality images. More investigation is needed to determine

how transferable the optimization for this instrument is to other systems. The first step in this

analysis can be performed with the aforementioned joint DOT-MRI system.

The advances presented in this thesis and the future directions discussed here represent the

next stage in the continued translation of diffuse optics from research imaging to a clinically viable

modality with important roles to play in the breast cancer diagnosis and treatment paradigm.
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Appendix A

Diffuse Optical Theory Derivations

A.1 Spherical Harmonic Representation of Φ and ~J

A.1.1 Spherical Harmonics

The spherical harmonic series is used as a series expansion for the radiance in 2.2.4. The spherical

harmonic terms Ylm(Ω̂) are defined as [9]

Ylm(Ω̂) = Ylm(θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ)eımϕ, (A.1)

where θ and ϕ are the angular spherical coordinates and Plm is the Legendre polynomial, which is

given by [9]

Plm(x) =
1

2ll!
(1− x2)m/2

∂l+m

∂xl+m
(x2 − 1)l. (A.2)

Importantly, the spherical harmonic terms form an orthonormal set [9], and thus∫
4π

Y ∗lm(Ω̂) Yl′m′(Ω̂) dΩ = δll′ δmm′ , (A.3)

where Y ∗lm(Ω̂) is the complex conjugate of Yl′m′(Ω̂). Therefore, if l = l′ and m = m′, the integral

in Equation A.3 equals 1; otherwise, the integral equals 0. This condition allows the spherical

harmonics to form a basis set for expansion, as done with the radiance L in Equation 2.26

L(~r, Ω̂, t, λ) =

N∑
l=0

l∑
m=−l

√
2l + 1

4π
φ̃lm(~r, t, λ)Ylm(Ω̂), (A.4)

where φ̃lm(~r, t, λ) is the spherical harmonic coefficient, with no angular dependence, for the Ylm(Ω̂)

spherical harmonic term.
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A.1.2 Spherical Harmonic Expansion of Φ

Equation A.4 and the definition of the photon fluence rate in Equation 2.15 can be used to write

a spherical harmonic representation of Φ as

Φ(~r, t, λ) =

∫
4π

N∑
l=0

l∑
m=−l

√
2l + 1

4π
φ̃lm(~r, t, λ)Ylm(Ω̂) dΩ. (A.5)

Given that the angular dependence of the expansion is entirely contained by the Ylm terms, Equation

A.5 can be rewritten as

Φ(~r, t, λ) =

N∑
l=0

l∑
m=−l

√
2l + 1 φ̃lm(~r, t, λ)

∫
4π

√
1

4π
Ylm(Ω̂) dΩ. (A.6)

Then, by substituting l = 0 and m = 0 into Equations A.1 and A.2,

Y00(Ω̂) = Y ∗00(Ω̂) =

√
1

4π
, (A.7)

allowing Equation A.6 to become

Φ(~r, t, λ) =

N∑
l=0

l∑
m=−l

√
2l + 1 φ̃lm(~r, t, λ)

∫
4π

Y ∗00(Ω̂)Ylm(Ω̂) dΩ. (A.8)

Given the orthonormality condition in Equation A.3, the only non-zero term in the expansion of Φ

will be the term where l = 0 and m = 0, which, when Equation A.8 is simplified, means that

Φ(~r, t, λ) = φ̃00(~r, t, λ) =
√

4π φ̃00(~r, t, λ)Y00(Ω̂). (A.9)

Thus, the photon fluence rate can be expressed, without any approximation, as the l = 0 coefficient

of the spherical harmonic expansion for the radiance.

A.1.3 Spherical Harmonic Expansion of ~J

Equation A.4 and the definition of the photon flux in Equation 2.16 can be used to write the

spherical harmonic representation of ~J as

~J(~r, t, λ) =

∫
4π

[
N∑
l=0

l∑
m=−l

√
2l + 1

4π
φ̃lm(~r, t, λ)Ylm(Ω̂)

]
Ω̂ dΩ. (A.10)

Note that Ω̂, which is normally defined using the spherical coordinates θ and ϕ, can be expressed

in Cartesian coordinates as [9]

Ω̂ = sin θ cosϕ x̂ + sin θ sinϕ ŷ + cos θ ẑ. (A.11)
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Substituting this Cartesian representation and separating the angular components allows Equation

A.10 to be rewritten as

~J(~r, t, λ) =

N∑
l=0

l∑
m=−l

√
2l + 1

4π
φ̃lm(~r, t, λ)∫

4π

Ylm(Ω̂) [sin θ cosϕ x̂ + sin θ sinϕ ŷ + cos θ ẑ] dΩ. (A.12)

Now, using Equations A.1 and A.2, the three l = 1 terms, i.e., m = −1, m = 0, and m = 1, are

written as

Y1−1(Ω̂) =
1

2

√
3

2π
sin θ [cosϕ− ı sinϕ] , (A.13)

Y10(Ω̂) =

√
3

4π
cos θ, (A.14)

Y11(Ω̂) = −1

2

√
3

2π
sin θ [cosϕ+ ı sinϕ] . (A.15)

These equations can now be used to derive expressions for the Cartesian components of Ω̂, sin θ cosϕ,

sin θ sinϕ, and cos θ (see Equation A.11), in terms of the complex conjugates of the spherical

harmonics. From Equation A.14,

cos θ = 2

√
π

3
Y ∗10(Ω̂). (A.16)

Then, via algebraic manipulation of Equations A.13 and A.15, the other two components of Ω̂ are

sin θ cosϕ =

√
2π

3

(
Y ∗1−1 − Y ∗11

)
, (A.17)

sin θ sinϕ = −ı
√

2π

3

(
Y ∗1−1 + Y ∗11

)
. (A.18)

Substituting Equations A.16, A.17, and A.18 into Equation A.12 yields

~J(~r, t, λ) =

N∑
l=0

l∑
m=−l

√
2l + 1

4π
φ̃lm(~r, t, λ)

∫
4π

[√
2π

3

(
Y ∗1−1 − Y ∗11

)
x̂ +−ı

√
2π

3

(
Y ∗1−1 + Y ∗11

)
ŷ + 2

√
π

3
Y ∗10(Ω̂) ẑ

]
Ylm(Ω̂) dΩ. (A.19)

The orthonormality of the spherical harmonics (Equation A.3) forces all l 6= 1 terms to 0, such that
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~J(~r, t, λ) =
1√
2

[
φ̃1−1(~r, t, λ)− φ̃11(~r, t, λ)

]
x̂

− ı√
2

[
φ̃1−1(~r, t, λ) + φ̃11(~r, t, λ)

]
ŷ + φ̃10(~r, t, λ) ẑ. (A.20)

Then, performing a dot product with Ω̂ on both sides of Equation A.20, and using the Cartesian

definition of Ω̂ results in

~J(~r, t, λ) · Ω̂ =
1√
2

[
φ̃1−1(~r, t, λ)− φ̃11(~r, t, λ)

]
sin θ cosϕ−

ı√
2

[
φ̃1−1(~r, t, λ) + φ̃11(~r, t, λ)

]
sin θ sinϕ + φ̃10(~r, t, λ) cos θ. (A.21)

Grouping the three spherical harmonic coefficients in Equation A.21, and using the trigonometric

identity eıx = cosx+ ı sinx [9], results in

~J(~r, t, λ) · Ω̂ = φ̃10(~r, t, λ) cos θ +
1√
2
φ̃1−1(~r, t, λ) sin θe−ıϕ − 1√

2
φ̃11(~r, t, λ) sin θeıϕ. (A.22)

Using the equations for the l = 1 spherical harmonics (Equations A.13, A.14, and A.15), ~J(~r, t, λ)·Ω̂

can be written in terms of spherical harmonics as

~J(~r, t, λ) · Ω̂ =

√
4π

3

[
φ̃1−1(~r, t, λ)Y1−1(Ω̂) + φ̃10(~r, t, λ)Y10(Ω̂) + φ̃11(~r, t, λ)Y11(Ω̂)

]
. (A.23)

Thus the dot product of the photon flux and Ω̂ is generally proportional to the sum of the three

l = 1 spherical harmonic terms.

A.2 Vector Calculus Integral Identities

To further simplify the RTE in Equation 2.41, the vector identities in Equations 2.42, 2.43, and

2.44 must be used.

A.2.1 Integral of Ω̂

The first integral of interest is ∫
4π

Ω̂ dΩ. (A.24)

First, rewrite Ω̂ in Cartesian coordinates using Equation A.11 and the volume integral element

using spherical coordinates, such that∫
4π

Ω̂ dΩ =

∫ π

θ=0

∫ 2π

ϕ=0

[sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ] sin θ dθ dϕ. (A.25)
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The integral over ϕ from 0 to 2π forces the x̂ and ŷ terms to 0, leaving only∫
4π

Ω̂ dΩ = 2π

∫ π

θ=0

cos θ sin θ ẑ dθ. (A.26)

This integral can be solved by substitution for sin θ, which, when completed, demonstrates that∫
4π

Ω̂ dΩ = 0. (A.27)

This is the identity given in Equation 2.42.

A.2.2 Integral of Ω̂
[
Ω̂ · ~A

]
The next integral that is required to simplify the RTE is∫

4π

Ω̂
[
Ω̂ · ~A

]
dΩ, (A.28)

where ~A is a generic vector quantity. It is possible, without a loss of generality, to define ~A such

that it is parallel to ẑ, which can be written mathematically as

~A

| ~A|
= ẑ. (A.29)

Then, using the Cartesian coordinate representation of Ω̂ in Equation A.11, the dot product of Ω̂

and ~A can be written as

Ω̂ · ~A = | ~A| cos θ. (A.30)

With this representation of the dot product, as well as the Cartesian coordinate definition of Ω̂,

the integral can be rewritten as∫
4π

Ω̂
[
Ω̂ · ~A

]
dΩ = | ~A|

∫ π

θ=0

∫ 2π

ϕ=0

cos θ [sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ] sin θ dθ dϕ. (A.31)

Note that for the integration over ϕ, this integral is identical to the one in Equation A.25. Thus,

the x̂ and ŷ terms go to 0, leaving only∫
4π

Ω̂
[
Ω̂ · ~A

]
dΩ = 2π| ~A|

∫ π

θ=0

cos2 θ sin θ ẑ dθ. (A.32)

This integral can be solved via substitution for cos2 θ, resulting in∫
4π

Ω̂
[
Ω̂ · ~A

]
dΩ =

4π

3
| ~A|ẑ, (A.33)

which, given the definition of ~A in Equation A.29, can be simplified to∫
4π

Ω̂
[
Ω̂ · ~A

]
dΩ =

4π

3
~A. (A.34)

This is the identity given in Equation 2.43.
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A.2.3 Integral of Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
The final integral of interest that appears in Equation 2.41 is∫

4π

Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
dΩ. (A.35)

The first step in simplifying this integral is exploiting the vector calculus identity [39]

~∇
(
~A · ~B

)
=
(
~A · ~∇

)
~B +

(
~B · ~∇

)
~A+ ~A×

(
~∇× ~B

)
+ ~B ×

(
~∇× ~A

)
, (A.36)

where ~A and ~B are generic vectors. For the integral in Equation A.35, ~A = ~A and ~B = Ω̂. Since

Ω̂ is a constant unit vector that is not spatially-dependent,(
~A · ~∇

)
Ω̂ = 0, (A.37)

and

~A×
(
~∇× Ω̂

)
= 0. (A.38)

Thus, a simplified version of the vector identity in Equation A.36 can be substituted into the

integral, such that∫
4π

Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
dΩ =

∫
4π

Ω̂
[
Ω̂ ·
(

Ω̂ · ~∇
)
~A+ Ω̂ ·

(
Ω̂×

(
~∇× ~A

))]
dΩ. (A.39)

Here, the first dot product with Ω̂ has been distributed across the substituted vector calculus

identity.

Now consider the term Ω̂ ·
(

Ω̂×
(
~∇× ~A

))
. By definition, Ω̂×

(
~∇× ~A

)
will produce a vector

that is orthogonal to Ω̂. Thus, the dot product between the resultant vector and Ω̂ will, again by

definition, be 0. Therefore Equation A.39 reduces to∫
4π

Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
dΩ =

∫
4π

Ω̂
[
Ω̂ ·
(

Ω̂ · ~∇
)
~A
]
dΩ. (A.40)

Now, note that, in spherical coordinates, [44]

Ω̂ = r̂, (A.41)

and [39]

~∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂ϕ
ϕ̂. (A.42)

Given these definitions, the integral in Equation A.40 can be simplified to∫
4π

Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
dΩ =

∫
4π

Ω̂
∂Ar
∂r

dΩ, (A.43)
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where Ar is the r̂ component of ~A. Since ∂Ar

∂r is not dependent on θ or ϕ it can be brought outside

the integral, resulting in ∫
4π

Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
dΩ =

∂Ar
∂r

∫
4π

Ω̂ dΩ, (A.44)

which has already been shown in Appendix A.2.1 to be equal to 0. Therefore,∫
4π

Ω̂
[
Ω̂ · ~∇

(
~A · Ω̂

)]
dΩ = 0. (A.45)

This is the identity given in Equation 2.44.

A.3 Homogeneous Optical Properties from k

As defined in Equation 2.73, the variable k, which governs the propagation of an oscillating diffuse

photon density wave due to a frequency domain source term, is given by

k ≡
√
vµa + ıω

D
. (A.46)

As discussed in Section 2.4.3, real and imaginary parts of k can be determined from measurements

of the fluence amplitude and phase offset at multiple source detector separations. These values can

then be used to calculate the homogeneous optical properties of the medium. First, kr and ki can

be derived from the definition of k in Equation A.46 by examining k2, where

k2 =
vµa + ıω

D
. (A.47)

Then, this term can be rewritten in the polar representation of complex numbers [9] as

k2 =

√
v2µ2

a + ω2

D2
exp

[
ı arctan

(
ω

vµa

)]
. (A.48)

Then, by taking the square root of Equation A.48 and converting k back to the Cartesian repre-

sentation of complex numbers [9], k can be written as

k =

[
v2µ2

a + ω2

D2

]1/4

exp

[
ı

2
arctan

(
ω

vµa

)]
(A.49)

=

[
v2µ2

a + ω2

D2

]1/4

cos

[
1

2
arctan

(
ω

vµa

)]
+ ı

[
v2µ2

a + ω2

D2

]1/4

sin

[
1

2
arctan

(
ω

vµa

)]
. (A.50)

Therefore the real and imaginary parts of k are

kr =

[
v2µ2

a + ω2

D2

]1/4

cos

[
1

2
arctan

(
ω

vµa

)]
; (A.51)
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ki =

[
v2µ2

a + ω2

D2

]1/4

sin

[
1

2
arctan

(
ω

vµa

)]
. (A.52)

The trigonometric functions in Equations A.51 and A.52 can be simplified using the identities [5]

cos (arctanx) =
1√

1 + x2
, (A.53)

sin (arctanx) =
x√

1 + x2
, (A.54)

and the half-angle formulae [5] for both sine and cosine. This results in the following expressions

for kr and ki

kr =
(vµa

2D

)1/2

(1 +

(
ω

vµa

)2
)1/2

+ 1

1/2

; (A.55)

ki =
(vµa

2D

)1/2

(1 +

(
ω

vµa

)2
)1/2

− 1

1/2

. (A.56)

These are the representations of kr and ki seen in Equations 2.79 and 2.80.

The next step is to derive expressions for the optical properties µa and µ′s in terms of kr and

ki. First, for simplicity, write the polar representation of k (Equation A.49) as

k = Aeı b, (A.57)

where

A =

[
v2µ2

a + ω2

D2

]1/4

; (A.58)

b =
1

2
arctan

(
ω

vµa

)
. (A.59)

Then, given the relationship between the polar and Cartesian representations of k [9],

kr = A cos b ; (A.60)

ki = A sin b . (A.61)

The first step to solve for µa is to write the following quantity, given Equations A.60 and A.61,

kr
ki
− ki
kr

=
cos b

sin b
− sin b

cos b
(A.62)

=
cos2 b− sin2 b

cos b sin b
. (A.63)
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Then, given the double-angle formulae for sine and cosine [5], this quantity can be rewritten as

kr
ki
− ki
kr

=
2 cos (2b)

sin (2b)
. (A.64)

Finally, using the arctangent identities in Equations A.53 and A.54 and the definition of b in

Equation A.59, the expression can be written as

kr
ki
− ki
kr

=
2vµa
ω

, (A.65)

and thus, µa can be written as

µa =
ω

2v

[
kr
ki
− ki
kr

]
. (A.66)

This is the expression for µa given in Equation 2.81.

In order to derive the expression for µ′s, first start with the term

k2
r − k2

i = A2
[
cos2 b− sin2 b

]
(A.67)

= A2 cos (2b). (A.68)

Equation A.68 takes advantage of the double-angle formula for cosine [5]. Then, using the definition

of A and b in Equations A.58 and A.59, as well as the arctangent identity in Equation A.53, the

quantity can be written as

k2
r − k2

i =
vµa
D

. (A.69)

By using the definition of the diffusion coefficient D (Equation 2.52) and performing some algebraic

manipulation, µ′s can then be expressed as

µ′s =
k2
r − ki2

3µa
− µa. (A.70)

Substituting the definition of µa from Equation A.66 into the denominator yields

µ′s =
2v

3ω
ki kr − µa. (A.71)

This is the expression for µ′s in Equation 2.82. Since, under the assumptions required for the

diffusion equation to be valid, µa � µ′s, the µa term can usually be dropped from Equation A.71

for an accurate approximation of µ′s. For an exact solution, the value of µa in terms of kr and ki

from Equation A.66 can again be substituted into the full expression.

A.4 Fourier Transform for Time Domain Solution

The Green’s function solution to the time domain diffusion equation is simply the Fourier transform

of the Green’s function solution to the frequency domain diffusion equation. This is true regardless

of tissue geometry and boundary conditions.
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In the infinite homogeneous geometry, the frequency domain Green’s function G can be written

as

G(~r, ~rs) =
v

4πD |~r − ~rs|
e−k|~r−~rs|, (A.72)

where ~rs is the source position. This is the Green’s function solution associated with Equation

2.74. Here k, as defined in Equation 2.73, is
√

vµa+ıω
D . The time domain Green’s function g will

be the Fourier transform of Equation A.72, such that

g(~r, ~rs, t, ts) =
1

2π

∫ ∞
−∞

G(~r, ~rs) exp [ıω (t− ts)]dω, (A.73)

and, therefore, with Equation A.72 substituted in for G,

g(~r, ~rs, t, ts) =
1

2π

∫ ∞
−∞

v

4πD |~r − ~rs|
exp [−k|~r − ~rs|] exp [ıω (t− ts)]dω. (A.74)

First, note that the v
4πD |~r−~rs| term is not dependent on ω and can be taken outside the integral.

Next, perform a variable substitution using the defined value of k, where

k =

√
vµa + ıω

D
. (A.75)

It follows from this substitution that

ıω = Dk2 − vµa, (A.76)

dω = −2ıD k dk. (A.77)

After moving all ω-independent terms outside the integral, this substitution results in

g(~r, ~rs, t, ts) =
−ıDv

4π2D |~r − ~rs|
exp [−vµa (t− ts)]

∫ ∞
−∞

k exp
[
D (t− ts) k2 − |~r − ~rs|k

]
dk. (A.78)

Completing the square of the exponent inside the integral by adding and subtracting the term

|~r−~rs|2
4D(t−ts) further simplifies the equation to

g(~r, ~rs, t, ts) =
−ıDv

4π2D |~r − ~rs|
exp

[
− |~r − ~rs|

2

4D (t− ts)
− vµa (t− ts)

]
∫ ∞
−∞

k exp

(√D (t− ts)k −
|~r − ~rs|√
4D (t− ts)

)2
 dk. (A.79)

A second variable substitution for the exponent in the integral can be made, such that

−u2 =

(√
D (t− ts)k −

|~r − ~rs|√
4D (t− ts)

)2

. (A.80)
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From this substitution, it follows that

k =
1√

D (t− ts)

(
|~r − ~rs|√
4D (t− ts)

− ıu

)
, (A.81)

dk =
ı√

D (t− ts)
du. (A.82)

Substituting these three relations into Equation A.79 yields

g(~r, ~rs, t, ts) =
Dv

4π2D |~r − ~rs|
1

D (t− ts)
exp

[
− |~r − ~rs|

2

4D (t− ts)
− vµa (t− ts)

]
∫ ∞
−∞

[
|~r − ~rs|√
4D (t− ts)

− ı u

]
e−u

2

du. (A.83)

It can now be noted that the u exp
[
−u2

]
term is an odd function, and therefore, its integral

from −∞ to ∞ is 0 [39]. The other term inside the integral is simply a constant multiplied

by a Gaussian, and thus, it reduces to the constant times
√
π [127]. Thus, with only algebraic

manipulation, Equation A.83 reduces to

g(~r, ~rs, t, ts) =
v

(4πD (t− ts))3/2
exp

[
− |~r − ~rs|

2

4D (t− ts)
− vµa (t− ts)

]
. (A.84)

This is the Green’s function for the fluence expression in Equation 2.85; therefore, the frequency

and time domain Green’s functions have been shown to be a Fourier transform pair.

A.5 Semi-Infinite Homogeneous Green’s Function

As discussed in Section 2.5.3, the semi-infinite homogeneous Green’s function solution to the dif-

fusion equation can be determined using the method of images and the partial-flux boundary

condition [49; 22]. With the method of images, the total semi-infinite Green’s function solution

GSI in cylindrical coordinates can be written as the sum of the infinite geometry Green’s function

and a correction term as follows

GSI = GI(ρ, z) +GC(ρ, z), (A.85)

where

GI(ρ, z) =
v

4πDr1
exp [−kr1], (A.86)

r1 ≡
√

(z − ltr)2
+ ρ2. (A.87)
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Here, GI is the infinite homogeneous Green’s function for an isotropic point source at position

(ρ = 0, z = ltr), and GC is an as-yet-undetermined correction term. The partial-flux boundary

condition, as given in Equation 2.100, is

Φ(ρ, z = 0, t) = zb
∂Φ(ρ, z = 0, t)

∂z
. (A.88)

Given Equation A.85, this boundary condition can be written as

[GI +GC ]z=0 = zb

[
∂GI
∂z

+
∂GC
∂z

]
z=0

. (A.89)

Taking the derivative of of GI with respect to z results in the following relationship:[
∂GC
∂z
− GC

zb

]
z=0

= −
[
∂GI
∂z
− GI

zb

]
z=0

(A.90)

=

[
v

4πDr2
1

exp [−kr1]

(
z − ltr
r1

+ k(z − ltr) +
r1

zb

)]
z=0

. (A.91)

Remembering that r1 is dependent on z, the z = 0 condition can now be implemented, such that[
∂GC
∂z
− GC

zb

]
z=0

=
v

4πD (l2tr + ρ2)
exp

[
−k
√
l2tr + ρ2

][√
l2tr + ρ2

zb
− ltr√

l2tr + ρ2
− kltr

]
. (A.92)

Now, consider an image source that occurs at position (ρ = 0, z = −ltr) and is thus a mirror image

of the real source about the z = 0 interface. An infinite homogeneous Green’s function for this

source will have the form

GimI (ρ, z) =
v

4πDr2
exp [−kr2], (A.93)

where

r2 ≡
√

(z + ltr)
2

+ ρ2. (A.94)

Then, it can be shown via derivation of GimI with respect to z that, for z = 0,[
∂GimI
∂z

+
GimI
zb

]
z=0

=
v

4πD (l2tr + ρ2)
exp

[
−k
√
l2tr + ρ2

][√
l2tr + ρ2

zb
− ltr√

l2tr + ρ2
− kltr

]
.

(A.95)

The right hand side of this equation is equal to the right hand side of Equation A.92, and thus the

partial-flux boundary condition is satisfied when

∂GC
∂z
− GC

zb
=
∂GimI
∂z

+
GimI
zb

. (A.96)

Therefore, solving Equation A.96 for GC will provide a Green’s function solution for the semi-

infinite homogeneous medium. The first step to solve this equation is to multiply both sides by
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e−z/zb and to recognize that these terms can be rewritten using the partial integral with respect to

z of the combined G and exponential terms as

∂

∂z

[
GCe

−z/zb
]

=
∂

∂z

[
GimI e−z/zb

]
+

2

zb
GimI e−z/zb . (A.97)

Then, with a variable change of z → z′, integration of both sides over z′ = z to z′ = ∞, and

substitution for GimI (Equation A.93), the equation can be expressed as

∫ ∞
z

∂

∂z′
[GC exp [−z′/zb]] dz′ =

∫ ∞
z

∂

∂z′

v exp
[
−(k

√
(z′ + ltr)2 + ρ2 + z/zb

)
4πD

√
(z′ + ltr)2 + ρ2

 dz′+
2

zb

∫ ∞
z

v exp
[
−(k

√
(z′ + ltr)2 + ρ2 + z/zb

)
4πD

√
(z′ + ltr)2 + ρ2

dz′. (A.98)

The left hand side and first term on the right hand side are simple to integrate, leaving

−GC exp [−z/zb] = −
v exp

[
−(k

√
(z + ltr)2 + ρ2 + z/zb

)
4πD

√
(z + ltr)2 + ρ2

+ (A.99)

2

zb

∫ ∞
z

v exp
[
−(k

√
(z′ + ltr)2 + ρ2 + z′/zb

)
4πD

√
(z′ + ltr)2 + ρ2

dz′. (A.100)

Finally performing a variable substitution, such that u = z′ − z, results in

GC =
v

4πDr2
e−kr2 − 2

zb

∫ ∞
0

ve−u/zb

4πD
√

(u+ z + ltr)2 + ρ2
exp

[
−k
√

(u+ z + ltr)2 + ρ2
]
du.

(A.101)

This is the correction term for the semi-infinite Green’s function solution under the partial-flux

boundary condition given in Equation 2.108. The first term represents an image source at position

z = −ltr, and the second term represents a continuous line of image sinks with amplitudes falling

to 0 as z goes to ∞.

A.6 Rytov Solution for Heterogeneous Medium

The frequency domain diffusion equation can be solved for heterogeneous media where the pertur-

bation from a homogeneous medium is small (see Section 2.6.1). In this case, the optical properties

can be represented as

µa(~r) = µoa + δµa(~r), (A.102)

D(~r) = Do + δD(~r). (A.103)
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Here, µoa and Do are the homogeneous absorption and diffusion coefficients, respectively, while δµa

and δD are the small, spatially-dependent perturbations in the optical properties. With the Rytov

approximation, the AC term of the photon fluence U is written as

U(~r) = Uo Usc (A.104)

= eφo eφsc = eφo+φsc , (A.105)

where Uo = eφo is the solution to the homogeneous medium diffusion equation, in which µa = µoa

and D = Do. Usc = eφsc is the perturbative, or scattering, correction to the homogeneous medium

solution due to the optical property perturbations.

As a reminder, the homogeneous medium diffusion equation is

∇2Uo(~r, ~rs)−
vµoa + ıω

Do
Uo(~r, ~rs) = −v B δ(~r, ~rs). (A.106)

Here ~rs is the position of the modulated point source, and B is a constant term representing the

source profile. The diffusion equation for the heterogeneous medium can then be expressed as

∇ · [(Do + δD(~r))∇ (Uo(~r, ~rs)Usc(~r, ~rs))]−

[v (µoa + δµa(~r)) + ıω] (Uo(~r, ~rs)Usc(~r, ~rs)) = −v B δ(~r, ~rs). (A.107)

Henceforth, the explicit reference to the dependence of Uo, Usc, δµa, and δD on ~r and ~rs will be

dropped for notational simplicity. Note that µoa and Do are independent of ~r. Next, distributing

the derivatives across all terms and dividing by Do results in

(
∇2Uo

)
Usc + 2 (∇Uo)∇Us + Uo∇2Usc + (∇F ) (∇Uo)Usc + (∇F )Uo∇Usc + F

(
∇2Uo

)
Usc

+ 2F (∇Uo)∇Usc + FUo∇2Usc −
[
vµoa + vδµa + ıω

Do

]
UoUsc = −vB

Do
δ(~r, ~rs), (A.108)

where F is defined as

F ≡ δD

Do
. (A.109)

Then, given the exponential definition of Usc (see Equation A.105), the derivatives of Usc can be

written in terms of φsc, such that

∇Usc = (∇φsc)Usc, (A.110)

∇2Usc =
(
∇2φsc

)
Usc + (∇φsc)2

Usc. (A.111)
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Equations A.110 and A.111 can be substituted into Equation A.108, and then both sides of the

equation can be divided by Usc, leaving

∇2Uo + 2 (∇Uo)∇φsc + Uo∇2φsc + Uo (∇φsc)2
+ (∇F )∇Uo + (∇F )Uo∇φsc + F∇2Uo

+ 2F (∇Uo)∇φsc + FUo∇2φsc + FUo (∇φsc)2 −
[
vµoa + vδµa + ıω

Do

]
Uo =

− vB

DoUsc(~r = ~rs)
δ(~r, ~rs). (A.112)

Note that the remaining Usc term is multiplied by a delta function at position ~r = ~rs, i.e., the

source position; therefore Usc is evaluated only at ~r = ~rs. At the source position, there is no

difference between the fluence for the heterogeneous medium and the fluence in the homogeneous

medium. Thus, Usc(~r = ~rsc) = 1, i.e., U(~r = ~rs) = Uo.

With this formulation, the terms from the homogeneous medium diffusion equation (Equation

A.106) can be canceled. Also the following vector calculus identity [39]

∇2 (Uoφsc) =
(
∇2Uo

)
φsc + Uo∇2φsc + 2 (∇Uo)∇φsc (A.113)

can be used to rewrite the 2 (∇Uo)∇φsc + Uo∇2φsc terms in Equation A.112. This results in the

relation

∇2 (Uoφsc)−
(
∇2Uo

)
φsc =

− Uo (∇φsc)2 − (∇F )∇Uo − (∇F )Uo∇φsc − F∇2Uo−

2F (∇Uo)∇φsc − FUo∇2φsc − FUo (∇φsc)2
+HUo, (A.114)

where

H ≡ vδµa
Do

. (A.115)

Next, given the homogeneous diffusion equation (Equation A.106), it is apparent that, for all

positions ~r 6= ~rs

∇2Uo = k2Uo, (A.116)

where

k2 ≡ vµoa + ıω

Do
. (A.117)

Substituting Equation A.116 into Equation A.114 results in a Helmholtz-like equation of the form

(
∇2 − k2

)
(Uoφsc) =

− Uo (∇φsc)2 − (∇F )∇Uo − (∇F )Uo∇φsc − F∇2Uo−

2F (∇Uo)∇φsc − FUo∇2φsc − FUo (∇φsc)2
+HUo. (A.118)
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The right hand side of this equation can be considered a source term, allowing for the application

of Green’s theorem to solve for Uoφsc at a specific detector position ~rd. In this case, the Green’s

function solution to this equation will be of the form

G ≡ G(~r − ~rd). (A.119)

Using Green’s theorem [9], Uoφsc can then be written as

Uoφsc =

−
∫
G
[
Uo (∇φsc)2

+ (∇F )∇Uo + F∇2Uo + (∇F )Uo∇φsc+

FUo∇2φsc + FUo (∇φsc)2
+ 2F (∇Uo)∇φsc −HUo

]
d3r. (A.120)

Green’s first identity of vector calculus can be used to simplify this equation. This identity relates

an integral over the volume of a domain to an integral over the surface of the domain [9], such that∫
V

[
ϕ∇2ψ + (∇ϕ)∇ψ

]
d3r =

∮
S

ϕ n̂ · ∇ψ d2r. (A.121)

Here, ϕ and ψ are generic functions and n̂ is the normal vector on the surface S. Equation A.120

can be simplified if this identity is applied twice: once with ϕ = GF and ψ = Uo and once with

ϕ = GFUo and ψ = φsc. The resulting simplified equation is

Uoφsc =

−
∫ [

GUo (∇φsc)2 − (∇G)F∇Uo +GF (∇Uo)∇φsc−

(∇G)FUo∇φsc +GFUo (∇φsc)2 −GHUo
]
d3r. (A.122)

Note that both surface integrals from the Green’s first identity substitutions went to zero because

this solution is for the infinite geometry. Thus, the surface of the volume is at ~r = ∞, and the

fluence at that surface is 0. In order to apply this infinite geometry solution to bounded geometries,

the boundary conditions and image source methods from Section 2.5 are used.

Further simplification of this equation requires the small perturbation approximation in the

following forms:

1. Since the perturbation in the fluence is small, G(~r − ~rd) ≈ Go(~r − ~rd), where Go is the

homogeneous medium Green’s function. Therefore, Uo, which is dependent on ~rs, is simply

the convolution of a constant term with Go, which is dependent on ~rd. Thus, given that this

solution is symmetric with respect to the source and detector,∫
(∇G)FUo∇φsc d3r =

∫
GF (∇Uo)∇φsc d3r, (A.123)

and these two terms cancel in Equation A.122.
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2. Because the perturbations in the scattering and the fluence are small, F � 1 and (∇φsc)2 �

(∇G)∇Uo. Therefore, the two terms that contain (∇φsc)2
can be approximated as 0.

These two approximations leave the following simplified equation:

Uoφsc =

∫
(∇G)F∇Uo d3r +

∫
GHUo d

3r. (A.124)

Finally, in practice, the optical properties and fluence will be calculated over a discrete grid of

voxels; therefore, these integrals should become summations. Discretizing Equation A.124, dividing

through by Uo, and substituting in the definitions of F and H, results in an expression for φsc at

a detector position ~rd due to a source at position ~rs of the form

φsc(~rs, ~rd) =

Nn∑
n=1

[
Uo(~rn, ~rs)Go(~rn − ~rd)v∆V

DoUo(~rs, ~rd)
δµa(~rn)+

(∇Uo(~rn, ~rs) · ∇Go(~rn − ~rd)v∆V

DoUo(~rs, ~rd)
δD(~rn)

]
. (A.125)

Here, n is the index of a discrete voxel, or node, in the volume, Nn is the total number of voxels, ∆V

is the volume of a single voxel, and ~rn is the position of the nth voxel. Because this reconstruction of

the optical properties will be performed across many voxels and will utilize multiple source-detector

pairs, Equation A.125 is actually a matrix equation of the form

φsc(~rs1 , ~rd1)

φsc(~rs2 , ~rd2)
...
...
...

φsc(~rsM , ~rdM )


=



WA
1,1 . . . WA

1,N WS
1,1 . . . WS

1,N

WA
2,1 . . . WA

2,N WS
2,1 . . . WS

2,N

...
...

...
...

...
...

...
...

...
...

...
...

WA
M,1 . . . WA

M,N WS
M,1 . . . WS

M,N





δµa(~rn1
)

...

δµa(~rnN
)

δD(~rn1)
...

δD(~rnN
)


. (A.126)

Here, ~rsi and ~rdi are the positions for the source and detector, respectively, that make up the ith

source-detector pair, rnj
is the position of the jth voxel, M is the number of source-detector pairs,

N is the number of voxels, and the absorption weight factor WA
i,j and scattering weight factor WS

i,j

are defined as

WA
i,j ≡

Uo(~rnj
, ~rsi)Go(~rdi − ~rnj

)v∆V

DoUo(~rsi , ~rdi)
, (A.127)

WS
i,j ≡

(
∇Uo(~rnj , ~rsi)

) (
∇Go(~rdi − ~rnj )

)
v∆V

DoUo(~rsi , ~rdi)
. (A.128)

These three equations are Equations 2.129, 2.130, and 2.131 found in Section 2.6.1.
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