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Intergenerational Mechanisms Of Paternal Stress Transmission

Abstract
Evidence that the intergenerational transmission of parental experiences can influence offspring outcomes
prompts new consideration for the molecular mechanisms underlying disease risk and resilience. The role of
the paternal preconception environment has been of particular interest, stimulating characterization of germ
cell epigenetic marks that can respond dynamically to environmental insults and transmit this information at
fertilization. Given such exciting potential for sperm epigenetic marks, how these marks are changed by the
environment and subsequently impact offspring development are key questions that require investigation. In
this dissertation, we address these questions using our established mouse model of paternal stress, where
specific sperm microRNA altered by paternal chronic stress exposure causally reprogram offspring
hypothalamic-pituitary-adrenal (HPA) stress axis reactivity and the hypothalamic transcriptome. First, we
examined the role of glucocorticoids, a major component of the HPA stress response, as a signal for sperm
microRNA changes. To ensure similar levels of glucocorticoids are produced in response to stress and thus are
available for paternal cellular signaling, we developed an approach to confirm the stress sensitivity and
reactivity of experimental mice. We next demonstrated that glucocorticoids are involved in communicating
stress to the caput epididymis, a somatic tissue that secretes extracellular vesicles (EVs) to deliver microRNA
from epididymal epithelial cells to maturing sperm. Using an in vitro model where we administered
glucocorticoids to caput epididymal epithelial cells, we showed altered EV microRNA content and within
epithelial cells, changes to histone post-translational modifications and increased glucocorticoid receptor
levels, mimicking aspects of our in vivo paternal stress model. Further, we demonstrated the crucial role of
caput epididymal glucocorticoid receptors in paternal stress transmission by transgenic knockdown,
preventing offspring HPA axis and hypothalamic programming. In our final study, we provided evidence for
the specificity of paternal stress sperm microRNA effects on embryonic brain and placental transcriptomes,
indicating a tightly regulated process by which sperm microRNA are coordinated and function to influence
offspring development. Together, the research presented in this dissertation provides insight into the
mechanisms contributing to paternal transmission and support the paternal preconception environment as an
influential factor in offspring disease risk and resilience.
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ABSTRACT 
	  

INTERGENERATIONAL MECHANISMS OF PATERNAL STRESS 
TRANSMISSION 

 
Jennifer C Chan 

 
Tracy L. Bale 

 

Evidence that the intergenerational transmission of parental experiences can influence 

offspring outcomes prompts new consideration for the molecular mechanisms underlying 

disease risk and resilience. The role of the paternal preconception environment has been 

of particular interest, stimulating characterization of germ cell epigenetic marks that can 

respond dynamically to environmental insults and transmit this information at 

fertilization. Given such exciting potential for sperm epigenetic marks, how these marks 

are changed by the environment and subsequently impact offspring development are key 

questions that require investigation. In this dissertation, we address these questions using 

our established mouse model of paternal stress, where specific sperm microRNA altered 

by paternal chronic stress exposure causally reprogram offspring hypothalamic-pituitary-

adrenal (HPA) stress axis reactivity and the hypothalamic transcriptome. First, we 

examined the role of glucocorticoids, a major component of the HPA stress response, as a 

signal for sperm microRNA changes. To ensure similar levels of glucocorticoids are 

produced in response to stress and thus are available for paternal cellular signaling, we 

developed an approach to confirm the stress sensitivity and reactivity of experimental 

mice. We next demonstrated that glucocorticoids are involved in communicating stress to 

the caput epididymis, a somatic tissue that secretes extracellular vesicles (EVs) to deliver 
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microRNA from epididymal epithelial cells to maturing sperm. Using an in vitro model 

where we administered glucocorticoids to caput epididymal epithelial cells, we showed 

altered EV microRNA content and within epithelial cells, changes to histone post-

translational modifications and increased glucocorticoid receptor levels, mimicking 

aspects of our in vivo paternal stress model. Further, we demonstrated the crucial role of 

caput epididymal glucocorticoid receptors in paternal stress transmission by transgenic 

knockdown, preventing offspring HPA axis and hypothalamic programming. In our final 

study, we provided evidence for the specificity of paternal stress sperm microRNA 

effects on embryonic brain and placental transcriptomes, indicating a tightly regulated 

process by which sperm microRNA are coordinated and function to influence offspring 

development. Together, the research presented in this dissertation provides insight into 

the mechanisms contributing to paternal transmission and support the paternal 

preconception environment as an influential factor in offspring disease risk and 

resilience. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Much of the content of this chapter was originally published in Biological Psychiatry, 
2018, May 15, Vol. 83(10): 886-894, PMID: 29198470, Biological Psychiatry (under 

review), or adapted from work originally published in Hormones, Brain and Behavior 3rd 
edition, 2016 November 26, Vol. 5: 117-132. 

 
 

I. Stress axis programming and neuropsychiatric disease 

 Stress is pervasive in the environment, and the individual variation in the response 

to stress is a considerable factor for neuropsychiatric disease risk. First, what is 

considered stress? Stress has been defined as “…a real or interpreted threat to the 

physiological or psychological integrity of an individual that results in physiological 

and/or behavioral responses. In biomedicine, stress often refers to situations in which 

adrenal glucocorticoids and catecholamines are elevated because of an experience”  

(McEwen, 2000). Stressful experiences can be chronic or acute, deriving from life events 

(e.g. death of a loved one, divorce), life trauma (e.g. war, domestic violence), or daily 

agitations (e.g. financial struggles, relationship problems, work-related stressors). The 

severity and duration of stress, as well as the individual’s coping ability and genetics, 

often influence the long-term physiological and psychological impacts of a stressor. For 

example, overcoming acute, mild adversity can stimulate learning, resilience and social 

bonding, while exposure to chronic, severe stress can be maladaptive and promote social 

instability and ill health (McEwen et al., 2010). In addition, the developmental window 

during which stress is experienced can greatly impact the outcome (Heim et al., 2012). 

For instance, a healthy adult may experience stress for several months, but with proper 
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social support may not experience life-altering, long-term consequences. In contrast, 

during specific neurodevelopmental critical periods, such as early life and pubertal 

periods when the brain is undergoing dramatic maturation, several months of stress can 

have severe and long-lasting impacts on an individual’s health and behavior (Eiland et 

al., 2013). 

 Stress responsivity and homeostasis is controlled by the Hypothalamic-Pituitary-

Adrenal (HPA) stress axis (Brown et al., 1985; Vale et al., 1981). The HPA stress axis is 

a self-regulating system designed to maintain homeostasis in response to challenges, i.e., 

stress. The primary neuronal contributors are corticotropin-releasing factor (CRF) 

neurons in the paraventricular nucleus (PVN) of the hypothalamus (“H” in HPA). These 

neurons release CRF, a neuropeptide, to activate corticotrope cells in the anterior 

pituitary (“P” in HPA). The pituitary releases adrenocorticotropic hormone (ACTH) into 

circulation where it reaches the adrenal gland (“A” in HPA). ACTH activates 

melanocortin-2 receptors in the adrenal gland cortex to then synthesize and release 

glucocorticoids, including cortisol (in humans) and corticosterone (in rodents) that bind 

to their cognate low and high affinity receptors, glucocorticoid (GR) and 

mineralocorticoid (MR) receptors, respectively (de Kloet et al., 2005). GR and MR 

largely act as transcriptional regulators or participate in rapid, non-genomic signaling to 

alter cellular function (Evans, 1988; Makara et al., 2001; Tasker et al., 2006). In general, 

glucocorticoid-mediated activation of GR and MR initiate catabolic processes throughout 

the body, essential in stress signaling and maintenance of organismal homeostasis 

(Hasselgren, 1999). Importantly, subsequent glucocorticoid action in the brain, including 
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at ventral hippocampal neurons and CRF neurons in the PVN, impedes CRF secretion 

and thus, completes a negative feedback loop (de Kloet, 2005). 

 Critical to understanding disease mechanisms, HPA stress axis dysregulation is a 

common endophenotype across neuropsychiatric disorders. Aberrant responses to stress 

in the environment can often precipitate or worsen disease progression, depending “on 

the degree to which an individual has control over a given stressor” (McEwen, 2010). 

Both hyper- and hypo-reactivity of the HPA axis have been implicated in patient 

populations as underlying features of disease risk (de Kloet, 2005). For example, hypo-

reactivity of the HPA axis has been observed in subsets of patients with major depressive 

disorder or post-traumatic stress disorder (Meewisse et al., 2007; Sherin et al., 2011). 

Importantly, stress dysregulation is suggested to precede, and therefore increase the risk 

for, disease onset rather than emerging as a result of disease (Yehuda, 2009). Thus, 

considerable research, including this dissertation, focus on understanding the factors that 

contribute to HPA axis programming as a readout of neuropsychiatric disease risk. 

 Key programming of HPA axis function and responsivity occurs during early 

development, largely preceding birth. In both human studies and animal models, parental 

susceptibility to stress and/or exposures to stress prior to parturition can influence HPA 

axis development in offspring (Bale, 2015; Ostiguy et al., 2011; Yehuda et al., 2007). To 

identify the specific contributors of HPA axis programming, animal models are used to 

control the types and amount of stress in the environment (Nestler et al., 2010). For 

example, stress can be imparted in preclinical rodent studies using psychological and/or 

physical challenges, including immobilization, social defeat, and isolation (Campos et al., 
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2013). During pregnancy, maternal stress alters the maternal milieu that can directly or 

indirectly impact fetal development in utero (Bale, 2016; Weinstock, 2005). Because the 

impact of stress is transmitted from parent to offspring, the term ‘intergenerational 

transmission’ has been applied (Klengel et al., 2016). However, preconception stress in 

either parent can impact germ cells, thus influencing development in one or more 

generations, resulting in transgenerational effects (Lane et al., 2014; Rodgers & Bale, 

2015). Importantly, the specificity of intergenerational and transgenerational effects can 

depend on the parent-of-origin, lying downstream of sex-dependent genetic factors (e.g. 

sex chromosomes or genomic imprinting) or reproductive tissues (e.g. placenta, testes, 

epididymis) (Bale, 2015; Gabory et al., 2009). While efforts to understand parental stress 

inheritance have largely focused on maternal gestational stress, recent research using 

mouse models support the contribution of paternal lifetime stress in influencing offspring 

outcomes. Moreover, modeling parental stress in mice necessitates the careful 

characterization of parental mouse strains and their associated baseline stress 

vulnerability, which can impact offspring HPA axis development outside of 

environmental triggers (Bogaert et al., 2006; Mozhui et al., 2010). This dissertation 

explores parental influences on HPA axis programming with a specific focus on the 

paternal lineage, downstream of both baseline strain-dependent stress phenotypes and 

chronic stress in the environment, investigating mechanisms whereby paternal tissues and 

germ cells influence offspring neurodevelopment. 

 

II. Parental transmission of stress phenotypes 
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 In both human studies and animal models, intergenerational transmission of stress 

exposures through both the maternal and paternal lineages have been associated with 

endophenotypes of stress-related neuropsychiatric disease in adult offspring, including 

disruption of the HPA stress axis (Bale, 2015; Bowers et al., 2016; Lehrner et al., 2014; 

Yehuda et al., 2014). Understanding the mechanisms by which parental stress exposure is 

ultimately communicated to the developing fetal brain is critical for elucidating the 

complex etiology of mental health disorders. Epigenetic control of gene expression, 

including DNA methylation, histone post-translational modifications (PTMs), and non-

coding RNAs, evolved to regulate and establish cell- and tissue-specific gene expression 

programs and to control normal cellular functions (Gibney et al., 2010; Jaenisch et al., 

2003). Stress experienced during critical developmental windows when these epigenetic 

patterns are generated can result in reprogramming of cellular epigenomes, leading to 

long-term changes in patterns of gene expression and cellular function. More specifically, 

stress exposure can lead to such epigenetic alterations in brain, peripheral tissues, and 

sperm and oocytes, resulting in transmission of altered marks to the pluripotent zygote 

(Bale, 2011; Nugent et al., 2015; Rodgers, 2015). Following conception, stress exposure 

can also directly alter epigenetic programming of the fetus by disrupting the function of 

extra-embryonic tissues, including the placenta, to promote alterations in key 

developmental signals throughout gestation. These epigenetic signals are mechanisms by 

which transient stress experienced during critical periods in offspring brain development 

produce long-term HPA stress axis dysregulation. Thus, parental stress exposures during 
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the preconception and prenatal windows can have lasting consequences on offspring 

development and, subsequently, adult outcomes (Figure 1.1). 

 

Human evidence of intergenerational stress transmission 

 Epidemiological studies provide abundant evidence linking parental stress to 

offspring health outcomes. Historically, efforts to understand parental stress inheritance 

have largely focused on maternal gestational exposures where prenatal stress has been 

associated with an increased risk for autism spectrum disorders, schizophrenia, affective 

disorders, and attention deficit hyperactivity disorder in offspring, related to the specific 

stage of pregnancy in which stress experience occurred (Weinstock, 2005). For example, 

maternal psychological stressors, such as those associated with war and other traumatic 

life events, experienced during the first and second trimester of pregnancy have been 

associated with an increased risk of schizophrenia in male, but not female children 

(Khashan et al., 2008; van Os et al., 1998). In contrast, late gestation may be a sensitive 

period wherein stress exposure can lead to long-term alterations in cognitive function and 

risk for ADHD, particularly in females (LeWinn et al., 2009; Li et al., 2013; Ronald et 

al., 2010). Maternal preconception stress effects on offspring disease risk have been less 

explored. However, there have been significant associations between maternal childhood 

abuse and poor psychological outcomes in future children (Dubowitz et al., 2001; 

Miranda et al., 2011). Other studies in human populations have linked maternal grief 

within the year prior to conception with increased risk of offspring neurodevelopmental 

and affective disorders and infant mortality (Class et al., 2013; Rieder et al., 2013; 
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Yehuda et al., 2008b; Yehuda, 2014). Additionally, offspring born to mothers who were 

Holocaust survivors had greater GC sensitivity and decreased methylation in the GR 

promoter of blood samples, suggesting preconception maternal stress has 

intergenerational effects (Lehrner, 2014; Yehuda, 2014). 

 More recently, research efforts have focused on understanding the contribution of 

paternal lifetime exposures on offspring development. For example, well-kept records 

from the town of Overkalix, Sweden documented the births and deaths of its citizens as 

well as periods of nutrient abundance and scarcity. Using these records, researchers 

linked paternal and grand-paternal food supply during the slow-growth period, a window 

of adolescence, to mortality and cardiovascular risks in subsequent generations (Bronson 

et al., 2017; Clifton, 2010; Gabory et al., 2012; Howerton et al., 2013). In other 

retrospective epidemiological studies, adult offspring whose fathers were Holocaust 

survivors presented with increased rates of major depressive disorders and anxiety, 

reduced GR sensitivity, and increased methylation at the GR promoter in blood samples 

(Lehrner, 2014; Yehuda et al., 2001; Yehuda, 2014; Yehuda et al., 2008). Other paternal 

exposures including smoking (Deng et al., 2013; Ji et al., 1997; Pembrey et al., 2006a), 

alcohol abuse (Abel, 2004; Day et al., 2016) and advanced age (Malaspina et al., 2001; 

Reichenberg et al., 2006) have also been associated with changes to offspring health, 

supporting that the paternal preconception environment has intergenerational effects as 

well. 

 How specifically can parental stress modulate offspring development? Parental 

experiences were predominately thought to impact offspring health by shaping parental 
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behavior and care. For example, experiencing trauma prior to conception and presenting 

with symptoms of post-traumatic stress disorder during childrearing is a strong predictor 

of offspring neuropsychiatric disease risk (Yehuda et al., 2001). However, as discussed, 

parental stress transmission may also lie downstream of cellular programming events, 

implicating maternal and paternal germ cells (i.e. oocyte and eggs) or the trophoblast 

cells of the placenta. Efforts to determine specific cellular mechanisms of 

intergenerational stress transmission have recently focused on rodent models of paternal, 

rather than maternal, preconception stress for two major reasons: 1) the mechanisms 

whereby maternal stress imparts life-long neurodevelopmental dysfunction during both 

prenatal and preconception windows are complex, with stress affecting the oocyte, 

intrauterine environment, placenta, fetus and maternal care simultaneously, and 2) in 

most rodent models, males do not participate in offspring rearing, allowing researchers to 

isolate the specific contribution of epigenetic changes in paternal germ cells on offspring 

development. Thus, the animal studies discussed in this dissertation focus on mechanistic 

insights from models of paternal stress transmission. 

 

Animal models of paternal stress 

 Corroborating findings in humans, male mice exposed to periods of chronic or 

defeat stress sire offspring that have behavioral, physiological or metabolic dysfunction 

characteristic of stress-sensitive neuropsychiatric disorders (Carone et al., 2010; Dietz et 

al., 2011; Franklin et al., 2010; Lambrot et al., 2013; Rodgers et al., 2013). As the males 

are often immediately removed from the female’s cage following copulation to limit any 
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influence on maternal behavior/care (Curley et al., 2011), these studies implicate 

epigenetic mechanisms within germ cells as mediators of intergenerational transmission. 

Indeed, rodent studies have demonstrated germ cell susceptibility to stressful 

environments across the paternal lifespan. For instance, male mice exposed to maternal 

separation stress during the perinatal period sired offspring with depressive-like 

behaviors (Franklin, 2010). Our lab has shown that male mice exposed to stress in utero 

present with altered stress coping behaviors and a heightened HPA stress response and 

transmit this phenotype only to their male, but not female, offspring in the next 

generation (Morgan et al., 2011). These were two of the first rodent studies 

demonstrating that male germ cells can be reprogrammed by stress experience during 

early development. Sperm has distinct periods of differentiation, development, and 

maturation, and therefore the timing of stress exposure likely impacts distinct 

mechanisms (Rodgers, 2015). During the prenatal and perinatal periods, development and 

epigenetic patterning of germ cell precursors and the surrounding reproductive tissues is 

dynamic; therefore, stress exposure during these critical windows may disrupt the 

organization of important processes unique to this period (Ly et al., 2015). 

 Other studies examining paternal transmission have demonstrated that stress 

exposure of adolescent and adult animals alters germ cell programming. For example, 

male mice exposed to chronic variable stress sire male and female offspring that exhibit a 

significantly blunted HPA stress response (Rodgers, 2013). Interestingly, this paternal 

effect occurred whether the sires were exposed to stress over the pubertal window or 

solely during adulthood, suggesting that stress exposures post-puberty (i.e. following 
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maturation of the male reproductive system) evoke similar mechanisms. In contrast, 

retrospective studies from Swedish famine cohorts associated nutritional challenge during 

preadolescence with changes in grandson longevity, while such challenges later in life 

produced no transgenerational effects (Bygren et al., 2001). This disparity in the timing 

of germ cell vulnerability between our findings in stress-exposed rodents and the findings 

from the Swedish cohorts may be dependent on species, timing of exposure, or type of 

perturbation (e.g. psychosocial vs. nutritional). Therefore, further studies are needed in 

order to identify the windows of germ cell vulnerability in humans. Other paternal 

exposures on offspring phenotypes have been described using rodent models, including 

chronic intake of alcohol or drugs of abuse (Finegersh et al., 2014; Vallaster et al., 2017; 

Vassoler, et al., 2012), nutritional challenges (Carone, 2010; Chen et al., 2015; Lambrot, 

2013; Ng et al., 2010), advanced age (García-Palomares et al., 2009; Smith et al., 2009), 

and environmental toxicants (Guerrero-Bosagna et al., 2014; Skinner et al., 2013), 

substantiating paternal germ cells as versatile vectors of environmental information to 

developing offspring. 

 

Strain-dependent transmission of paternal stress 

 Rodent studies offer strong supporting evidence for observations of paternal stress 

transmission in human populations, enabling examination of the specific effects of germ 

cell programming on offspring outcomes. In studies using inbred mouse lines, for 

example, one fundamental advantage that is impossible in human cohorts is the ability to 

control the genetic background of the individuals experiencing stress that governs the 
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physiological and/or behavioral response to stress. Critical to the use of mouse models 

and the extent of paternal stress effects is selection of the mouse genetic background 

where different inbred mouse strains have distinctive characteristics, such as variations in 

physiological responses, cognitive performance, or stress susceptibility (Anisman et al., 

2001; Contet et al., 2001; Holmes et al., 2002; Mozhui, 2010; Shanks et al., 1990; 

Tannenbaum et al., 2003). While paternal strain selection can clearly influence offspring 

outcomes through inheritance of the genetics characteristic of that strain (Jacobson et al., 

2007), it can also control the paternal response to the environment that may alter the non-

genetic (i.e. epigenetic) germ cell components delivered at fertilization. For example, the 

degree of stress susceptibility in mice can determine the extent of the HPA axis response, 

or vice versa, influencing levels of glucocorticoids available for cellular programming 

(Ebner et al., 2017; Nasca et al., 2015; Reichardt et al., 2000) and, subsequently, 

offspring outcomes. In our lab’s mouse model of paternal stress, the use of a paternal 

mouse background (C57BL/6:129 mixed F1 background) known to elicit ample levels of 

glucocorticoids results in downstream programming of the offspring HPA axis (Rodgers, 

2013; Võikar et al., 2001). In comparison, the same paternal stress protocol used in a 

stress-resistant mouse strain (C57BL6/J) did not recapitulate offspring effects (Rompala, 

2018), potentially owing to the known disparities in stress sensitivity between these 

mouse backgrounds (Võikar, 2001). Moreover, the effects of paternal strain on offspring 

can be modulated by maternal strain, where strain differences in maternal care 

(Champagne et al., 2007; Chourbaji et al., 2011) or parent-of-origin genomic imprinting 

(Barlow et al., 2014; Chaillet, 1994) can influence offspring development, making the 
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assignment of parental mouse strains an important factor in the intergenerational 

transmission of stress signals. Thus, baseline stress susceptibility and reactivity as a result 

of genetic background, especially when compounded by additional environmental 

perturbations, is an essential consideration for modeling paternal stress in mice. Methods 

that evaluate paternal stress susceptibility and the extent of HPA axis activation are 

needed in order to ensure similar levels of offspring programming and for investigation 

into the cellular mechanisms involved in paternal stress transmission. 

 

III. Paternal mechanisms of intergenerational stress transmission 

Stress Programming of Epigenetic Marks in Sperm 

 The observation that stress exposures across the male lifespan can lead to 

transmission of offspring phenotypes has brought mounting attention to examination of 

epigenetic marks in male germ cells (Jirtle et al., 2007). Epigenetic marks have been 

described in mature sperm in both humans and rodents, including DNA methylation, 

histone PTMs, and small noncoding RNAs, and have been implicated in transmitting 

environmental information to the next generation (Bohacek et al., 2015; Rodgers, 2015). 

The male germ cell undergoes unique and continuous waves of development and 

proliferation, called spermatogenesis, where patterns of DNA methylation, histone 

distribution, and small RNA populations are dynamically regulated (Belleannée, 2015; 

Ly, 2015; McLay et al., 2003). Each step of this process may be vulnerable to 

environmental stimuli during a male’s lifetime. The majority of epigenetic patterning of 

the male germ cell occurs prenatally by programming primordial germ cells with non-
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somatic patterns of DNA methylation (Hajkova et al., 2002). Then, in the postnatal testes, 

immature sperm cells born from a self-renewing stem cell population migrate through the 

seminiferous tubules where they rely on Sertoli and Leydig cells to provide immune, 

nutritional, hormonal and structural support (Cheng et al., 2010). At this stage, sperm 

histones are actively replaced by protamines, highly charged proteins that allow 

condensation of sperm chromatin to one-tenth that of somatic cells (Miller et al., 2010). 

As a result, mature sperm become transcriptionally inert, and are considered resistant to 

external influences. Following spermatogenesis, the immotile spermatozoa are discharged 

into the head of the epididymis (the caput) for post-testicular maturation. It is here in the 

caput that spermatozoa acquire the abilities to swim and fertilize before the fully mature 

sperm travel to the caudal region of the epididymis where they are stored (Cornwall, 

2009). However, recent studies have turned this dogma upside down, demonstrating that 

mature sperm are responsive to homeostatic challenges, including dietary disruption, 

stress or trauma, and exposure to drugs of abuse, during spermatogenesis or the 

maturation stage that occurs in the epididymis (Chen, 2015; Lambrot, 2013; Rodgers, 

2013; Sharma et al., 2016; Siklenka et al., 2015; Vassoler, 2012). 

 

DNA Methylation in Sperm 

 Sperm DNA methylation patterns are well described in normal germ cell 

development, and specific changes to these patterns have been reported in response to 

paternal stress exposure, such as maternal separation stress and odor-paired fear 

conditioning (Dias et al., 2014; Franklin, 2010). During embryogenesis, the developing 
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germ cell undergoes global erasure of DNA methylation marks. Following this process, 

de novo DNA methyltransferases specify germ cell methylation patterns that are distinct 

from those in somatic cells (Ly, 2015). An additional wave of active DNA demethylation 

of the paternal gamete occurs immediately post-fertilization in the zygote (Wu et al., 

2010). Importantly, some genomic loci are resistant to demethylation, a process of 

genomic imprinting critical for normal development, as mistakes at imprinted loci can 

result in neurodevelopmental disorders, including Angelmans and Prader-Willi 

syndromes (Hackett et al., 2013; Lawson et al., 2013). Changes to sperm DNA 

methylation have been reported in rodent models of chronic stress experience (Dias, 

2014; Franklin, 2010; Wu et al., 2016). For example, males that experienced odor-paired 

fear conditioning as adults had decreased DNA methylation at the specific genomic locus 

of the corresponding odor receptor in their sperm, suggesting a mechanism by which 

stress experience may produce offspring with specific behavioral changes (Dias, 2014). 

Intriguingly, in the same study, these sperm DNA methylation changes corresponded to 

increased offspring behavioral sensitivity to the associated odor. However, DNA 

methylation changes at this odor receptor were not present in the brains of these 

offspring, suggesting sperm DNA methylation changes may influence other epigenetic 

mechanisms, such as histone PTMs, to program the offspring brain. In another study, 

males exposed postnatally to maternal separation stress sired offspring with depressive-

like behaviors (Franklin, 2010). These altered behaviors were also associated with 

changes in DNA methylation patterns at loci related to stress regulatory genes and 

epigenetic pathways in both the paternal germ cell and in the offspring brain. However, 
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how stress induces such site-specific sperm methylation changes and how these changes 

influence the programming of adult offspring tissues to produce behavioral phenotypes, 

are not known. 

 

Histone Post-Translational Marks (PTMs) in Sperm 

 Histone PTMs are also potential epigenetic signals in sperm. Roughly 1% of 

histones in mice and 10% of histones in humans are retained in sperm chromatin 

following the active exchange of histones with protamines during late spermatogenesis 

(Brykczynska et al., 2010; Miller, 2010). As a result, any information written into the 

sperm histone code regarding paternal exposures was assumed to be lost. However, 

retained histones have been mapped to regions of important developmental genes, 

suggesting a designation for those that are critical for post-fertilization function in the 

zygote (Hammoud et al., 2009). Histone PTMs associated with transcriptional activation 

in sperm may increase the dosage of important developmental genes and/or allow for 

paternal-driven gene expression in the zygote. As evidence to this point, disruption of the 

specific histone mark, H3K4me2, in sperm altered gene expression in the two-cell zygote 

and severely impaired offspring development (Siklenka, 2015). In addition, sperm from 

male rats that were administered chronic cocaine showed increased H3 acetylation 

specifically at the Bdnf promoter in both paternal sperm and in the offspring brain, 

supporting the hypothesis that retained histone PTMs may denote genes important to 

offspring development (Vassoler, 2012; Wimmer et al., 2017). In addition to histone 

PTMs, protamine biochemical modifications have also been reported, supporting a 
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potential protamine code in sperm that imparts transcriptional effects on embryo 

development (Brunner et al., 2014). However, as protamines are rapidly replaced with 

maternal histones post-fertilization (McLay, 2003), how such protamine modifications 

could influence embryogenesis requires further investigation. 

 

Small Non-coding RNAs in Sperm 

 While the central dogma describes mature sperm as transcriptionally inert, their 

content is now understood to change through the maturational stage in the epididymis. 

Indeed, populations of small noncoding RNAs (~22-34 bp) have been well described in 

the mature sperm of humans and animals, including microRNA (miRs), PIWI-associating 

RNAs (piRNAs), and transfer RNA-derived fragments (tRFs) (Kawano et al., 2012; 

Krawetz et al., 2011; Peng et al., 2012; Sendler et al., 2013). Small non-coding RNAs 

have the capacity to respond rapidly to environmental cues and regulate gene expression, 

making them primary candidates for transmission of paternal experience. In particular, 

studies suggest that miRs are critical for proper embryogenesis (Bernstein et al., 2003; 

Liu et al., 2012; Lykke-Andersen et al., 2008). miRs are ~22 bp non-coding RNAs that 

post-transcriptionally regulate gene expression. In the nucleus, the enzyme Dicer 

preprocesses miR precursors and loads them into the RNA-induced Silencing Complex 

(RISC). The RISC employs miRs as guides to target complementary mRNAs for 

degradation or to inhibit translation. The capacity for each miR to regulate hundreds of 

genes suggests that miRs can have extensive programmatic effects. In the zygote, loss of 

Dicer or Argonaut-2, the catalytic component of the RISC, results in embryonic lethality 
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(Bernstein, 2003; Lykke-Andersen, 2008). Moreover, inhibition of miR-34c, a known 

sperm-derived miR, arrests the zygote before the two-cell stage, again supporting the 

important role of sperm miRs (Liu, 2012). 

 Stress-dependent changes to sperm small RNAs have been reported in rodent 

models of chronic stress, dietary challenges, and substances of abuse (Chen, 2015; de 

Castro Barbosa et al., 2016; Fullston et al., 2013; Gapp et al., 2014; Rodgers, 2013; 

Rompala et al., 2018; Sharma, 2016; Short et al., 2016). In our lab, male mice 

administered a chronic variable stress paradigm sired offspring with stress dysregulation 

as adults, with increased levels of specific sperm miRs as potential molecular links 

(Rodgers, 2013). Additionally, changes to sperm tRF levels have been identified in 

response to both low protein and high fat diets in male rodents (Chen, 2015; Sharma, 

2016). In order to test the specific contribution of sperm RNA on transmitting paternal 

experiences to offspring development, microinjection techniques can be used to directly 

inject experience-altered RNAs found in sperm into fertilized zygotes. These zygotes can 

then be examined for the direct effects of sperm RNA or implanted into foster females to 

be reared and tested as adults. Such manipulations enable researchers to separate the 

effects of sperm RNAs from confounding factors, present in both human studies and 

animal models, that can also influence offspring outcomes, such as changes to paternal or 

maternal behavior (Curley, 2011). Indeed, zygote microinjection of total sperm RNA, 

specific miRs or specific tRFs phenocopied transmission of paternal experiences (Chen, 

2015; Gapp, 2014; Grandjean et al., 2015; Rassoulzadegan et al., 2006; Rodgers et al., 

2015; Sharma, 2016). For example, we previously demonstrated that animals resulting 
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from zygote microinjection of the sperm miRs altered by paternal chronic stress 

recapitulated the offspring stress phenotype (Rodgers, 2015). These studies demonstrate 

that sperm small RNA populations, including miRs, are sensitive to a variety of 

psychological and physiological stressors, and are causal mediators of offspring brain 

programming. Recently, RNA modifications in sperm have also been implicated in 

paternal transmission of high-fat diet (Chen, 2015; Chen et al., 2016); however, more 

studies are needed to generalize their role to other paternal perturbations and to humans. 

 

Sperm RNA Programming: Soma-to-Germline Communication by Extracellular 

Vesicles 

 The plethora of evidence supporting germ cell epigenetic modifications in 

response to environmental perturbations prompts consideration for the mechanisms by 

which the male reproductive tract can alter germ cell content. Historically, contrary to 

this line of thinking was August Weismann’s popular theory published in 1893, known as 

the ‘Weismann barrier’, describing a one-way information transfer from germ cells to 

somatic cells (Weismann, 1893). This theory implied that environmental changes to 

somatic cells could not be inherited through the germline and, in effect, Lamarck’s theory 

of inheritance of acquired characteristics was impossible (Eaton et al., 2015). In an 

attempt to mechanistically explain Lamarck’s observations, Darwin proposed his 

pangenesis theory. The pangenesis theory suggested that all somatic cells shed minute 

particles termed ‘gemmules’ that could accumulate in the gonads and integrate with the 

germline, conferring inheritance of acquired parental characteristics to the next 
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generation (Liu, 2008). This theory was largely rejected during Darwin’s lifetime; 

however, recent studies shed new light on soma-to-germline communication.  

 Accumulating evidence support soma-derived factors as causal mediators of germ 

cell changes. For example, in a rat model of paternal liver fibrosis, chronic treatment with 

the hepatotoxin CCl4 resulted in suppressed hepatic wound healing across multiple 

generations. In the exposed male rats, chronic treatment induced chromatin remodeling in 

sperm. Subsequently, serum transfer from CCl4-treated rats to naïve rats recapitulated 

sperm chromatin remodeling, suggesting blood-borne soluble factors can induce germ 

cell epigenetic changes (Zeybel et al., 2012). While the serum soluble factor responsible 

for these effects were not identified, hormones have been suggested as potential somatic 

signals of paternal experience (Sharma, 2013), though this has not been well-examined. 

 Mechanistically, how molecular substrates in blood can regulate sperm content is 

not well understood. In the male reproductive tract, very real biological manifestations of 

Weismann’s theoretical barrier can be identified. For example, sperm develop and mature 

in the lumen of the immune-privileged testes and epididymis, whereby tight junctions of 

the blood-testis and blood-epididymis barriers formed by Sertoli cells or epididymal 

epithelial cells, respectively, physically restrict many blood-borne molecules from 

interacting with sperm in order to generate a microenvironment distinct from the 

surround interstitium (Mital et al., 2011; Sullivan et al., 2013). Transporters lining the 

apical and basolateral membranes of these barriers additionally regulate the permeability 

of these tissues (Mital, 2011), prompting consideration for how circulating molecules can 

penetrate these barriers to alter the luminal microenvironment regulating sperm content. 
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Of particular interest to this question is the observation that, despite losing much of its 

cytoplasmic volume and transcriptional activity upon entering the stage of post-testicular 

maturation (Cooper, 2005; Neto et al., 2016), sperm continue to gain additional functions 

through changes in its lipid, protein, and RNA content throughout the epididymis 

(Machtinger et al., 2016; Sullivan, 2013). Here, extracellular vesicles (EVs), that 

normally deliver cargo from epididymal epithelial cells to maturing sperm, have been 

proposed as Darwin’s ‘gemmules’, acting as dynamic intermediaries between paternal 

environmental exposures, somatic responses, and sperm changes (Liu, 2008). We will 

discuss the role of epididymal EVs in specifically altering sperm small RNAs, as multiple 

studies now demonstrate their causal and functional role in transmitting paternal lifetime 

exposures. 

 

Extracellular Vesicles – bypassing the Weismann Barrier 

 Extracellular vesicles (EVs) are small membrane bound particles produced by 

most, if not all, eukaryotic cells (Tetta et al., 2013). EVs have been classified primarily 

by their subcellular origin and the tissue that produces them. Some EVs, often referred to 

as microvesicles (50-1000 nm in diameter), bud directly from the cell membrane. Others 

are generated inside multivesicular bodies and released upon fusion of these 

compartments with the plasma membrane (Raposo et al., 2013; Théry et al., 2006). These 

are generally termed as exosomes (40-100 nm in diameter), though it is also common to 

see this name altered to reflect their tissue of origin – for instance, exosomes produced by 

epithelial cells in the epididymis are often called epididymosomes, while prostasomes 
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originate from the prostate (Tkach et al., 2016). EVs play a recently appreciated role in 

intercellular communication and have advantages over other mechanisms in that rather 

than a given signal consisting of a single molecule, they can deliver complex payloads of 

communicating factors, including proteins, lipids, and nucleic acids (Raposo, 2013; Tetta, 

2013). Once they reach their targets, EVs can transmit their signal by presenting a 

membrane-bound ligand to a cellular receptor, by inducing their internalization via 

endocytosis, or by fusing directly to the plasma membrane, passing on membrane bound 

constituents and/or releasing an internal cargo to act inside a targeted cell (Tkach, 2016). 

EVs are produced at high levels by the tissues of the male reproductive tract, such as the 

epididymis, and play a critical role in the intercellular signaling of these tissues with 

sperm (Belleannée, 2015; da Silveira et al., 2018). 

 Within the epididymis, regulation of EV content is regionally distinct in the three 

main segments of the epididymis: the caput, the corpus, and the cauda (Belleannée et al., 

2013). Although most of the initial work characterizing the role of epididymal EVs in 

shaping post-testicular sperm development focused on changes in lipid and protein 

profiles, recent studies have emphasized EV-mediated delivery of small RNAs to 

transcriptionally silent sperm. For example, a recent study in mice found that more than 

80% of epididymal EV miRs were shared by sperm isolated from the same epididymal 

region (Reilly et al., 2016). Interestingly, this was a significantly greater degree of 

overlap in miR content than existed between the epididymal EVs and the epithelial tissue 

that produced them. An independent group made the same observation in the bovine 

epididymis, suggesting that EV miRs are actively tailored for export, rather than simply 
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reflecting the miR profile of the originating tissue (Belleannée, 2013). Additionally, 

epididymal EVs can package tRFs that contribute approximately 80% of the small RNA 

content of sperm in the cauda epididymis (Sharma, 2016). This was not the case for 

sperm isolated directly from the testes, suggesting that sperm gained the tRFs as they 

matured in the epididymis.  

 Given their origin from a somatic tissue capable of receiving physiological 

signals, epididymal EVs and their content may be influenced by paternal exposures. For 

example, the epididymis is a hormone-responsive tissue containing receptors for 

androgens and glucocorticoids (O’Hara et al., 2011; Silva et al., 2010; You et al., 1998), 

suggesting a potential mechanism whereby chronic pharmacological treatment with 

glucocorticoids alone was sufficient to produce sperm changes (Petropoulos et al., 2014; 

Short, 2016; Wu, 2016). Moreover, in a mouse model of paternal low protein diet, caput 

epididymal EVs had altered tRF profiles, resulting in changes in the sperm tRF content 

delivered to the oocyte (Sharma, 2016). Thus, epididymal EVs may act as key players in 

soma-to-germline communication, where paternal perturbations can be communicated to 

transmit heritable information to offspring 

 

Targets and Functions of Sperm miRs 

 Though many studies have now related paternal stress experiences with changes 

to sperm small RNA content, how sperm small RNAs subsequently act at fertilization to 

alter the trajectory of offspring development remains unclear. To understand the direct 

effect of sperm RNAs, the majority of studies have focused on changes to the zygote and 
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early embryo (Chen, 2015; Rodgers, 2015; Sharma, 2016). Interestingly, two distinct cell 

lineages derive from the early embryo to form embryonic and extra-embryonic 

membranes, generating the fetal tissues and placenta, respectively. Aberrant development 

of the fetal tissues can result in improper tissue functions in adulthood, increasing the risk 

for disease later in life (Calkins et al., 2011). Proper placental function is also a crucial 

contributor to offspring viability and health, acting as the interface between maternal and 

fetal circulation (Cross, 2006). Thus, sperm RNA action in the zygote that impairs 

downstream development and functions of these tissues may mechanistically contribute 

to offspring reprogramming. 

 

Oocyte/Zygote 

As the relative abundance of RNA delivered by one sperm cell (~10 fg) (Boerke et al., 

2007; Krawetz, 2005) is so little compared to the amount of RNA in a single oocyte (0.5-

1.5 ng), the role of sperm RNA has been considered negligible for embryogenesis 

(Olszanska et al., 1990). This view was substantiated by the generation of parthenogenic 

mice – offspring produced from only maternal germ cells (Kono et al., 2004), suggesting 

successful reproduction does not require the paternal gamete, let alone paternal RNAs. 

However, the survival rate of parthenogenic mice was low, with only 0.6% (2/371) of 

parthenogenic embryos transferred to recipient females living to adulthood (Kono, 2004). 

Therefore, the paternal contribution at fertilization likely includes elements, perhaps 

RNAs amongst others, critical for facilitating proper development. The argument for an 

important role for sperm RNAs is substantiated by a study where idiopathic infertility in 
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men was correlated with a lack of sperm RNAs (Jodar et al., 2015). Further, a study in 

mice demonstrated that sperm treated with RNases, resulting in a 90% decrease in RNA 

levels, led to reduced morula-blastocyst transitions and live birth rates (Guo et al., 2017). 

However, these effects of RNase-treated sperm were partially rescued by 

supplementation with wildtype RNA (Guo, 2017), supporting a functional role for sperm 

RNAs in embryogenesis. 

 Considering the important presence of sperm RNAs, what then is their 

contribution to development? Here, we focus on the recent evidence for functional roles 

of sperm small RNAs during embryogenesis. In particular, sperm miRs have been 

implicated in fertilization and pre-implantation development. Sperm miR-34c, for 

example, when inhibited in the zygote, suppressed DNA synthesis and zygotic cleavage 

(Liu, 2012), suggesting this sperm miR plays a critical role in fertilization, despite its 

reported functional redundancy (Wu et al., 2014). Following fertilization, another critical 

stage for embryogenesis is the maternal-to-zygotic transition, wherein maternal mRNAs 

are degraded before zygotic transcription occurs (Tadros et al., 2009). Given the 

canonical function of miRs to degrade mRNAs, sperm miRs transferred and present in 

the zygote may facilitate this process. For example, germ cell-specific knockout of 

Dicer1 or Drosha, two enzymes critical for processing miR precursors into their mature 

forms, resulted in aberrant miR profiles in sperm (Yuan et al., 2016). Zygotes resulting 

from these knockout sperm had impaired maternal mRNA turnover and development 

(Yuan, 2016), suggesting that sperm miRs promote embryogenesis by facilitating the 

maternal-to-zygotic transition, as suggested for other miRs present during this 
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developmental stage (Giraldez et al., 2006). Importantly, when miRs important for 

maternal mRNA degradation are absent, maternal mRNA clearance is delayed (Giraldez, 

2006), suggesting developmental delay may occur depending on the miRs present during 

this sensitive window, thus influencing offspring outcomes. 

 As environmental perturbations, such as stress, during the paternal lifetime can 

alter sperm miR populations, miR regulation of mRNA in the zygote may be a 

mechanism whereby paternal exposures influence offspring development. To test this 

hypothesis, we used our paternal chronic stress model where specific sperm miRs 

reprogrammed stress axis reactivity and hypothalamic transcription in offspring 

(Rodgers, 2013; Rodgers, 2015). Following zygote microinjection of the stress-altered 

sperm miRs, we examined the expression levels of maternal mRNAs that were predicted 

targets of these specific miRs in the two-cell zygote. As expected, the majority of these 

predicted mRNAs were repressed (Rodgers, 2015). Interestingly, the two most 

downregulated transcripts were Sirt1 and Ube3a, which play important roles during 

mammalian development and have been implicated in neurodevelopmental and metabolic 

disorders in humans (Greer et al., 2010; Herskovits et al., 2014). In our paternal stress 

model, neither the expression of Sirt1 or Ube3a were altered in the adult offspring 

hypothalamus, suggesting repression of these genes by sperm miRs may act during the 

early sensitive window in the zygote to influence subsequent developmental events, 

ultimately reprogramming adult offspring tissue (Rodgers, 2015). 

 Other small noncoding RNAs in sperm, such as tRFs, may have similar roles 

during offspring development. Derived from the 5’ or 3’ ends of tRNAs, tRFs can silence 
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viral transcripts with complementary sequences and inhibit translation (Raina et al., 

2014). When delivered by sperm, tRFs in the zygote repress genes associated with 

endogenous retroelements active in pre-implantation embryos (Sharma, 2016). Further, 

microinjection of sperm tRFs altered by high fat diets resulted in distinct transcriptomic 

changes at the 8-cell and blastocyst stages, with few overlapping differentially expressed 

genes between these stages (Chen, 2015). These studies suggest that sperm small RNAs 

can directly impact gene expression in the zygote, thus initiating a cascade of 

transcriptional events that alters the development of later embryonic stages, ultimately 

guiding towards a phenotype reflective of the paternal environment.  

 

Placenta  

 Until recently, the placenta has been often overlooked as a factor in the 

developmental origins of disease (Cross, 2006). Lying between the maternal milieu and 

fetal circulation, the placenta plays a critical role by providing the fetus with essential 

nutrients and gases and blocking maternal immune signals (Nugent, 2015). Importantly, 

shifts in placental function or regulation can disrupt brain development, resulting in 

changes to adult behaviors, metabolism, and HPA stress axis reactivity (Bronson, 2017; 

Howerton et al., 2014; Nelissen et al., 2011; Wu et al., 2017). As the developing placenta 

derives from the embryo, it is likely sensitive to post-fertilization events, such as sperm 

small RNA actions in the zygote, and their downstream consequences. In fact, 

specification of the trophectoderm that forms the placenta begins at the 8-cell stage, when 

blastomeres separate into embryonic and extra-embryonic cell lineages (Red-Horse et al., 
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2004). Such specification of these cell lineages is a careful coordination of both 

transcriptional and epigenetic regulation present during earlier development (Maccani et 

al., 2009; Red-Horse, 2004). Therefore, paternal delivery of functional RNAs, such as 

miRs, may have the capacity to alter the regulatory transcriptional events upstream of 

trophectoderm specification and subsequently, placental regulation of offspring 

neurodevelopment.  

 While evidence for the role of sperm small RNAs on placental development and 

function is in its infancy, two studies to date have associated paternal exposures with 

placental alterations. In one study, a paternal low folate diet altered the DNA methylation 

profile in sperm and resulted in transcriptional dysregulation in the placenta (Lambrot, 

2013). Importantly, these changes in sperm and placenta were further associated with 

negative offspring outcomes, including craniofacial and musculoskeletal deformations 

(Lambrot, 2013). In another study, a paternal high-fat diet impaired placental growth and 

gene expression, and associated these changes with reduced fetal growth and viability 

(Binder et al., 2015). Therefore, paternal exposures may contribute to offspring 

reprogramming through changes in the placenta. Further studies should examine the 

effects of sperm RNA, such as miRs, on placental development and function.  

 

IV. Overview of Dissertation 

 Considering the number of studies establishing experience-dependent changes in 

sperm small RNAs, including miRs, as conveyors of the paternal preconception 

environment, the main goal of this dissertation was twofold: 1) to identify the upstream 
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cellular mechanism whereby paternal stress exposure is communicated from somatic 

tissues to the germ cells, and 2) to examine the actions of sperm miRs during 

embryogenesis that can influence adult offspring outcomes. In Chapter 2, we describe a 

strategy to characterize and confirm paternal stress susceptibility and reactivity in mouse 

models that require strain selection, with a focus on the use of transgenic mice for 

probing mechanisms involved in stress signals. In Chapter 3, we use our established 

paternal stress mouse model to determine a cellular mechanism within the epididymis 

that programs sperm miRs and the downstream offspring stress dysregulation phenotype. 

In Chapter 4, we build on the evidence that sperm miRs can influence regulation of 

offspring neurodevelopment by disrupting the transcriptome of the embryonic brain and 

placenta. Finally, we conclude this dissertation in Chapter 5 with a general discussion of 

this work, its potential implications, and future directions. 
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Figure 1.1. Intergenerational transmission of maternal and paternal stress can impact 
offspring neurodevelopment. Paternal stress exposures influence offspring outcomes (left table), 
potentially through changes in sperm epigenetic marks. Maternal stress during pregnancy alters 
placental signaling to reprogram offspring neurodevelopment (right table). Few studies to date 
have examined maternal preconception stress effects on the oocyte, likely due to current technical 
barriers. References (Ref) correspond with the bibliography where this figure was originally 
published in Biological Psychiatry, 2018, May 15, Vol. 83(10): 886-894, PMID: 29198470. H, 
human; M, mouse; R, rat. Illustration by Jay LeVasseur / www.appliedartstudio.com. 
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Main Text 

 The use of transgenic mouse lines over the last several decades has been 

indispensible for modeling human conditions and probing mechanisms underlying 

disease. Importantly, selecting the correct mouse background strain can be difficult and 

is, no doubt, critical to experimental outcomes, interpretation of results, and 

reproducibility. In the fields of stress and neuropsychiatric disease research, strain-

dependent differences in treatment sensitivity, neuroanatomical development, stress and 

physiological responses, and performance on behavioral tests have directed laboratories 

toward using preferred mouse strains for reliable, robust results.  

 In the last 25 years, transgenic mice have paved the way toward a greater 

understanding of genes involved in disease pathology. However, when examining the 

Jackson Laboratories mouse inventory, the chances of finding a transgenic mouse on 

your preferred background strain are unlikely. In fact, the standard transgenic mouse-

production pipeline of injecting embryonic stem cells (ES) with the incorporated 

transgenic modification into blastocysts typically uses 129-derived ES cells and C57BL/6 

blastocysts (Ledermann, 2000). The resulting successful chimeras are then backcrossed 

on a C57BL/6 background to determine transgene transmission. As agouti coat color is 

dominant over black, this cross allows penetrance determination. For convenience and to 

save time, labs then often continue breeding the mice to a C57BL/6 background, thus 

resulting in the extensive usage of this strain of mice for neurobehavioral outcomes. 

Numerous studies have corroborated the usefulness of the C57BL/6 mouse in 

neuroscience research as this strain excels in learning-dependent tasks (Holmes, 2002), 
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shows clear preferences for sucrose and alcohol (Pothion et al., 2004; Yoneyama et al., 

2008), gains weight in diet-induced obesity models (West et al., 1992), exhibits high 

levels of immobility in the forced swim test (Lucki et al., 2001), has high sensitivity to 

pain (Mogil et al., 1999), and responds well to antidepressant treatment compared to 

other inbred strains (Lucki, 2001). In comparison, substrains of the 129 background 

display significant difficulty with hippocampal-dependent learning tasks and fear 

extinction (Camp et al., 2012; Hefner et al., 2008), and another popular inbred strain, 

FVB/N, also has problems with learning tasks and prominent visual impairments (Brown 

et al., 2007). Moreover, the C57BL/6 mouse was the first rodent to have its genome 

completely sequenced, again adding to its popularity amongst researchers and the 

disproportionately available literature and resources for this strain (Consortium et al., 

2002). 

 For many labs, however, the C57BL/6 mouse is not advantageous. In 2005, 

Ducottet and Belzung reported that among 8 inbred mouse strains tested, C57BL/6 mice 

were relatively resistant to mild chronic variable stress, rendering this strain less relevant 

for studies examining the role of stress experiences in the etiology of neuropsychiatric 

disorders (Ducottet et al., 2005). Strain differences in baseline stress responsiveness and 

anxiety-like behaviors are likely critical components of strain disparities in stress 

susceptibility (Homanics et al., 1999; Mozhui, 2010) In contrast to C57BL/6 mice, 

BALB/c and 129 mouse strains produce significantly greater levels of corticosterone in 

response to an acute stress (e.g. restraint). These 2 strains also exhibit more anxiety-like 

behaviors in the elevated plus maze, light-dark box, and open field tests, and show 
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greater susceptibility to chronic stress (Anisman et al., 2005; Homanics, 1999).  

Therefore, the 129 and BALB/c strains are more likely to provide face validity in studies 

modeling susceptibility to stress experiences as an increased risk for neuropsychiatric-

related disorders than C57BL/6 mice (Anisman, 2005; Ducottet, 2005). Importantly, the 

use of specific inbred mouse strains based on behavioral and physiological characteristics 

to model disease does not parallel the relatively heterogeneous characteristics of the 

human population. However, for some disorders in which there is phenotypic 

vulnerability, including increased stress sensitivity as a predisposition for affective 

disorders, it may be effective to develop rodent models by strategically selecting mouse 

strains based on their known characteristics (Bale, 2006). 

 More recently, to apply the mutual advantages of these known strain-specific 

attributes, many labs are using mixed-strain background mice (Curley et al., 2012; 

Mueller et al., 2008; Ridder et al., 2005). Researchers selectively breed two strains that 

have desired characteristics with the resulting offspring demonstrating a hybrid vigor 

(Birchler et al., 2006). For instance, in order to produce a mouse strain that is susceptible 

to chronic stress and still produces robust phenotypes on behavioral tasks including 

cognitive performance, our lab uses C57BL/6:129 F1 hybrids for many of our studies. 

This method allows our lab to use a new transgenic line arriving on a C57BL/6 

background for experimental testing after only one generation by crossing them with 

129S1/SvImJ mice to generate the F1 hybrid. However, in the case of conditional 

knockouts and more complex crosses in which two or more transgenic lines are on a 

C57BL/6 background, one or more lines need to be backcrossed onto a 129 strain before 
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we can produce F1 hybrids for testing. With each mouse breeding requiring substantial 

time – each generation taking at least three months - we wanted to develop a biological 

assay as a readout to determine how many generations a C57BL/6 mouse needed to be 

backcrossed before producing experimental animals that would more closely resemble 

traits of the 129 strain. 

 To resolve this question, we used the robust strain differences in the 

hypothalamus-pituitary-adrenal (HPA) stress axis between the low stress-responding 

C57BL/6 and the high stress-responding 129 mouse strains as a physiological readout for 

inheritance of background genetics. We utilized the HPA stress axis due to its known 

strain differences, and as it is a robust, quantitative, and relatively non-invasive procedure 

that provides predictive validity for chronic stress susceptibility. There are certainly other 

stress measures that may also be relevant (e.g. prefrontal cortex and/or amygdala 

reactivity) that could be explored in specific mouse strains as well (Kumar et al., 2014; 

Williams et al., 2015). Following each backcross, we examined the HPA stress response 

of the resulting offspring. The generation in which the strain differences in HPA 

reactivity disappeared designated the minimal number of backcrosses necessary for a 

mouse of C57BL/6 origin to inherit the genes underlying our desired characteristic - in 

this case, a heightened HPA stress axis responsiveness. 

 In addition, as labs interested in developmental outcomes may be backcrossing 

male and/or female mice of either strain, we also considered the important potential 

contribution of maternal vs. paternal genotype for inheritance of background genetics 

utilizing the HPA stress axis phenotype as our outcome measure. Figure 2.1 A&B 
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suggest that for inheritance in both male and female F1 offspring, penetrance of stress-

responsive genes was greater with a maternal 129 x paternal C57BL/6 cross, suggesting 

an effect of maternal/paternal imprinted genes or maternal care in the intergenerational 

transmission of stress phenotypes. As F1 hybrids resulting from a maternal C57BL/6 x 

paternal 129 cross had a less reactive HPA stress response, we continued to backcross the 

male F1 hybrid offspring with 129 females. We exploited the known sex differences in 

the magnitude of the HPA stress response (i.e. females having a more robust response 

compared to males), and focused on the female offspring from subsequent generations to 

produce the greatest strain differences in the HPA response curve. Surprisingly, only 

three backcrosses were required for the hybrid offspring to show a stress response 

identical to 129 mice (Figure 2.1 C&D), suggesting F3 mice can be used to generate 

experimental animals for stress exposure studies. 

 Clearly, research requires great care in selecting the appropriate mouse strain to 

ensure reproducibility, face validity, and measurable outcomes across research 

laboratories and models. Mathematically, 10 generations are needed to ensure a strain has 

achieved 99.9% genetic similarity to the designated pure strain it has been crossed with 

(Eisener-Dorman et al., 2009). However, timing and mouse care expenses render this 

expectation extraordinarily expensive, both in terms of cage costs and research time to 

produce the experimental animals (i.e., nearly 3 years and over 12K in housing costs to 

generate experimental animals). We propose here that for researchers interested in stress-

related research and who are confronted with backcrossing mice to a preferred strain, the 

HPA stress axis can be used as a robust outcome measure to designate when a mouse 
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strain has been sufficiently backcrossed to pass on genes sufficient for stress responsivity. 

In our studies, 3 generations of backcrosses with 129 females were adequate for C57BL/6 

mice to produce a 129-like HPA stress response, effectively reducing the number of 

necessary backcrosses to produce experimental animals by years. Following generation 

of experimental animals, researchers can continue backcrossing their mice with new 

breeders to achieve more genetic similarity with the designated pure strain, and to avoid 

genetic drift that may occur within their mouse colony (Casellas, 2010). 
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Figure 2.1. Strain-dependent differences in HPA stress axis responsiveness can be used to 
identify a backcrossing strategy. (A) Male and (B) female F1 hybrid offspring resulting from 
the Maternal 129 x Paternal C57 breeding scheme had greater stress reactivity than offspring 
from a Maternal C57 x Paternal 129 scheme, indicated by greater levels of corticosterone at the 
30-minute time point in males: F3,32=32.61, p<.0001; and a main effect on the corticosterone 
response curve in females: parental strain: F3,34=41.25, p<.0001; time: F3,102=172.1, p<.0001; 
interaction: F9,102=6.82, p<.0001. *p<.05 Maternal 129 x Paternal C57 vs. Maternal C57 x 
Paternal 129 and Maternal 129 x Paternal 129 vs. Maternal C57 x Paternal C57. N=6-
11/group/sex. (C) Female mice of 129 and F3 strains had significantly different corticosterone 
responses from C57BL/6 female mice over time (strain: F3,25=6.302, p=.0025; time: 
F3,75=55.94, p<.0001; interaction: F9,75=1.28, p=.26. N=6-8/group. *p<.05 compared to 
C57BL/6). (D) Total corticosterone levels by area under the curve (AUC) measurements of 129 
and F3 strains were significantly greater than C57BL/6 levels (F3,25=5.005, p=.0074. N=6-
8/group. *p<.05 compared C57BL/6 by post-hoc analysis). Data are mean ± SEM. 
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Abstract 
 
Paternal preconception exposures and insults, including stress, dietary challenge and 

drugs of abuse, can shape offspring health and disease risk outcomes, as evidenced from 

retrospective human studies and more recent animal models (Carone, 2010; Chen, 2015; 

Dias, 2014; Dietz, 2011; Donkin et al., 2016; Franklin, 2010; Kaati et al., 2007; Lambrot, 

2013; Lehrner, 2014; Ng, 2010; Pembrey, 2006; Rodgers, 2013; Vallaster, 2017; 

Vassoler, 2012; Wu, 2016; Yehuda, 2014). Mechanistic examination has implicated small 

noncoding RNA populations in sperm, including microRNA (miRs), as carriers of 

paternal environmental information that consequently influence offspring development 

(Chen, 2015; Gapp, 2014; Grandjean, 2015; Rassoulzadegan, 2006; Rodgers, 2015; 

Sharma, 2016). However, the cellular mechanisms by which these paternal signals are 

relayed to sperm and how they may persist remain unknown. Here, using our previously 

established paternal stress mouse model we identify caput epididymal epithelial 

glucocorticoid receptors as crucial upstream mediators of long-lasting germ cell 

programming. We show that glucocorticoid treatment of caput epididymal epithelial cells 

results in increased glucocorticoid receptor levels and enduring changes to the miR 

content of secreted extracellular vesicles (EVs), or epididymosomes, known to interact 

with sperm and alter their RNA content (Belleannée, 2015; Reilly, 2016). Further, 

significant changes were detected in the caput epididymal histone code long after stress 

ended, both in vitro and in vivo, as a potential mechanism whereby stress programmed 

enduring changes to EV miRs. Genetic targeting to reduce caput epididymal epithelial-

specific glucocorticoid receptors reversed stress-induced chromatin remodeling and 
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promoted cellular resilience to paternal stress, ultimately rescuing transmission of a stress 

dysregulated offspring phenotype. Taken together, these studies identify glucocorticoid 

receptor regulation of EV miRs in the caput epididymis as a key contributor in the 

intergenerational transmission of paternal environmental stress experiences.  
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Main Text 

 The contribution of preconception insults in the etiology of disease has garnered 

great interest in recent years, yet the crucial molecular mechanisms whereby an 

environmental insult is transmitted from somatic to germ cells and is able to persist long 

after the insult had ended, are not known. To address this, we utilized our established 

paternal stress mouse model in which we have previously demonstrated that stress-altered 

sperm miRs causally promote offspring brain reprogramming and stress dysregulation 

(Rodgers, 2013), an endophenotype common to many neuropsychiatric disorders (Bale, 

2006). We focused on the contribution of glucocorticoids as an essential and necessary 

component of stress signaling that when elevated, bind and activate the low-affinity 

glucocorticoid receptor, a ubiquitously expressed molecule critical for the orchestration 

of cellular responses and chromatin remodeling (de Kloet, 2005; Deroo et al., 2001). 

Further, extracellular vesicles (EVs) from caput epididymal epithelial cells deliver 

important proteins, lipids, and RNAs, including miRs, to maturing sperm, altering sperm 

content (Belleannée, 2015, 2013; Reilly, 2016; Sharma, 2016; Sullivan et al., 2007). 

Therefore, we hypothesized that in response to stress, caput epididymal epithelial 

glucocorticoid receptors are poised to contribute both to changes in the composition of 

the secreted EV miRs that interact with and shape maturing sperm, and also to coordinate 

local somatic epigenetic remodeling, as paternal-experienced stress produces effects that 

endure long after stress end (Hunter, 2012). 

 Therefore, to identify the molecular and epigenetic marks involved in the 

persistence of sperm miR alterations by stress, we administered chronic stress to male 
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mice and collected epididymal sperm 1- or 12-weeks post-stress end (Fig. 3.1a, top) to 

compare the acute and enduring (allowing approximately two cycles of sperm turnover 

following stress exposure (Oakberg, 1956)) effects. We performed small RNA 

sequencing and identified two distinct populations of differentially expressed sperm miRs 

(adjusted P < 0.05), with no similarly stress-altered miRs shared between these 

populations (Fig. 3.1b), suggesting that a unique mechanism emerges following the acute 

response to stress to induce enduring changes in sperm miR populations.  

 As we previously established that intergenerational transmission of paternal stress 

can continue for months after stress has ended, we investigated the epigenetic mechanism 

whereby epididymal EV miR changes, that are likely to impact sperm content during 

maturation, are maintained. To examine the specific population of caput epididymal EVs, 

we treated cultured DC2 mouse caput epididymal epithelial cells with corticosterone in 

vitro. Using DC2 cells allowed us to isolate EVs secreted into the media produced from a 

specific cell population. As all mammalian tissues secrete EVs into circulation, such 

select isolation in vivo is not possible (Tetta, 2013). Further, this allowed for the 

controlled administration of corticosterone, the primary glucocorticoid in rodents 

produced by activation of the hypothalamus-pituitary-adrenal (HPA) stress axis and 

known to activate the low affinity glucocorticoid receptors (de Kloet, 2005). We 

confirmed the purity of EVs isolated from DC2 cells using validated EV markers (Théry, 

2006) (Supplementary Fig. 3.1). To develop an accurate modeling of the timing of 

events of this ‘stress in a dish’ model compared to our in vivo paternal model, we first 

examined three distinct concentrations of corticosterone that included the range of the 
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mouse physiological baseline (low) and stress response (medium), as well as a 

supraphysiological (high) concentrations, at three time points post-treatment to examine 

the acute, intermediate, and enduring effects of treatment in DC2 cells (Fig. 3.1a, 

bottom). We then used rank-rank hypergeometric overlap (RRHO) analyses to evaluate 

the extent of overlap between stress- and corticosterone-altered miRs in vivo and in vitro, 

respectively. We compared control v. stress enduring differential expression profiles in 

sperm miRs and the vehicle v. corticosterone differential expression profiles in DC2 EV 

miRs at each collection point post-treatment allowing for threshold-free identification 

followed by quantification of statistically significant overlap between datasets (Plaisier et 

al., 2010). Using this approach, we compared the populations of significantly overlapping 

EV miRs following small RNA sequencing and found distinct groups of altered EV miRs 

that were dependent on the time post-treatment, where the degree of overlap increased 

dramatically at 8-days compared to 1-day post-treatment at all corticosterone 

concentrations (Fig. 3.1c and Supplementary Fig. 3.2a), supporting enduring effects 

present in our in vitro model. Following quantification of total overlapping EV miRs at 

all corticosterone concentrations and times, we confirmed that 8-days following treatment 

with the stress-relevant concentration of corticosterone most-closely matched the in vivo 

enduring paternal stress sperm (Fig. 3.1d and Supplementary Fig. 3.2b), where the total 

proportion of significantly overlapping miRs rose to 31.4% (116/369). No doubt, the 

complexity of sperm miR composition reflects additional interactions from along the 

reproductive tract and therefore will not completely mirror the DC2 EVs, as has been 

described (Belleannée, 2013; Jerczynski et al., 2016).  
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 To ensure corticosterone treatment did not disrupt the endogenous properties and 

tissue selectivity of DC2 EVs in vivo, we quantified and characterized the size 

distribution of DC2 EVs using Nanosight particle tracking analysis. Interestingly, 

corticosterone treatment reduced EV mean size, but not mode, consistent with possible 

changes to lipid or protein composition that may affect EV performance at select tissues 

(Record et al., 2014) (Fig. 3.1e). We labeled and isolated vehicle- and corticosterone-

treated DC2 EVs with a near-infrared, lipophilic DiR dye, and injected 50 million EVs 

intravenously into naïve male mice (Fig. 3.1f, top schematic). 24-hours post-injection, we 

imaged the tissues to evaluate the bio-distribution of caput epididymal EV targeting. As 

expected, there was substantial accumulation of EVs in the liver and spleen, as previously 

described for EVs from most other cellular sources (Wiklander et al., 2015). However, 

specific to EVs from these epididymal epithelial DC2 cells, there was substantial 

accumulation along the reproductive tract, including the caput epididymis and testes, and 

a surprising localization to the brain (Fig. 3.1f). Importantly, corticosterone treatment of 

DC2 cells did not alter EV tissue targeting (Fig. 3.1g and Supplementary Fig. 3.3). 

These results suggest that stress at the level of the caput epididymis impacts EV and 

sperm miR content without disruption to endogenous EV tissue selectivity. The local 

effects of EV miRs on paternal tissues such as the brain remain to be evaluated.   

 To assess the role of glucocorticoid receptors in the prolonged timing effects of 

EV miRs, we performed immunoblotting on DC2 cells 1- and 8-days following 

corticosterone treatment. While there were no significant changes in glucocorticoid 

receptor levels immediately following corticosterone treatment end (Fig. 3.2a, left), 
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glucocorticoid receptor levels were increased 8-days post-treatment at all corticosterone 

concentrations (Fig. 3.2a, right). We hypothesized that increased nuclear glucocorticoid 

receptors may coordinate chromatin remodeling to promote enduring changes to EV miR 

content. As changes to histone composition and post-translational modifications (PTM) 

are a likely candidate for upstream broad transcriptional control of miR genes, we 

performed unbiased quantitative histone mass spectrometry in DC2 cells 8-days post-

corticosterone treatment. We applied Random Forests classification analysis to our 

dataset to identify the histones and PTMs altered by corticosterone. Random Forests is an 

ensemble-learning algorithm that identifies groups of features (i.e. histone PTMs) altered 

together, and ranks these features according to their importance to the model’s accuracy 

(Breiman, 2001). Using this approach, we identified the top thirteen histone PTMs, as 

determined by ten-fold cross-validation of the model (Fig. 3.2b, inset), that most 

accurately discriminate vehicle v. corticosterone-treated DC2 cells (Fig. 3.2b). To 

confirm these Random Forests results, we performed Mann-Whitney U tests (Fig. 3.2c), 

demonstrating long-term remodeling of the histone code that corresponded with post-

treatment glucocorticoid receptor increases.  

 We then compared these enduring in vitro DC2 epigenetic changes to our in vivo 

paternal stress model. We again performed histone PTM mass spectrometry on whole 

caput epididymal tissue from control and stress males 12-weeks post-stress end, and used 

Random Forests analyses. We identified ten histone PTMs that most accurately classified 

our model (Fig. 3.2d), and that were substantiated by Mann-Whitney U tests (Fig. 3.2e). 

We deconvoluted these histone PTMs identified by Random Forests in our in vitro and in 
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vivo models and identified five overlapping histone PTMs (Fig. 3.2f), approximately 45% 

(5/11) of total treatment-discriminating in vivo histone PTMs, supporting that our 

paternal ‘stress in a dish’ model, where glucocorticoids were administered, extensively 

mimics features of endogenous paternal stress programming. These five common histone 

PTMs include modifications to two H1 variants (H12 and H15), H2A1 K5 acetylation, 

H3 K18 monomethylation, and H3 K14 acetylation. Interestingly, H3 K14ac has been 

implicated in driving stress effects at the chromatin level in other stress models 

(Covington et al., 2009; Johnsson et al., 2009; Li et al., 2003). While the literature is 

scarce regarding the remaining histone PTMs, these data suggest that post-stress 

glucocorticoid receptor increases may mediate chromatin remodeling at specific loci, 

including those of EV miRs, to alter their expression, consistent with previous reports 

(John et al., 2008; Jubb et al., 2017; Paakinaho et al., 2010). Moreover, these data support 

that stress in the environment is able to promote lasting modifications to cellular 

transcriptional machinery within reproductive tissues, functionally modifying germ cell 

content.  

 To then examine a causal role of epididymal epithelial glucocorticoid receptors in 

the intergenerational transmission of paternal stress in vivo, we genetically targeted 

glucocorticoid receptors in male mice to reduce expression (GRHet) specifically in caput 

epididymal epithelial cells using the lipocalin-5 (Lcn5) promoter (Xie et al., 2013) 

crossed with GRflox mice (Brewer et al., 2003) (Fig. 3.3a). We additionally incorporated 

the transgenic RiboTag line, allowing isolation of mRNA specifically from the HA-

tagged ribosomal subunit, Rpl22, in caput epididymal epithelial cells for RNA 
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sequencing (Sanz et al., 2009). In these mice, we verified transgenic reduction as well as 

the inhibition of stress-mediated increases in glucocorticoid receptors 12-weeks post-

stress in GRHet mice (Fig. 3.3b). We hypothesized that inhibiting post-stress 

glucocorticoid receptor increases here would prevent the enduring intergenerational 

transmission of the paternal stress phenotype. To test this, we bred control and stressed 

GRWT and GRHet males to wildtype females, and examined the offspring HPA stress axis 

response. Remarkably, there was a significant paternal treatment x paternal genotype 

interaction in the offspring response to an acute restraint whereby paternal epididymal 

GRHet prevented the blunted offspring stress response to control levels (Fig. 3.3c). We 

extended this finding by examining the effect in response to an additional type of HPA 

activation, an acute predator odor, as a more ethologically relevant challenge in mice. 

Again, paternal stress GRWT offspring presented with a dysregulated HPA axis response 

compared to paternal control offspring, and this heightened response was again rescued 

in paternal stress GRHet offspring (Fig. 3.3d). Importantly, neither treatment nor genotype 

affected paternal reproductive function or litter characteristics (Supplementary Table 

3.1). The paraventricular nucleus (PVN) of the hypothalamus is key to HPA stress 

regulation and we have previously demonstrated transcriptional dysregulation of the PVN 

in paternal stress offspring (Rodgers, 2013). Therefore, we next examined the ability of 

the GRHet paternal genotype to rescue these gene expression changes in the offspring 

PVN. As expected, hierarchical clustering of all genes altered by paternal stress exposure 

demonstrated that the greatest difference in PVN gene expression was between control 

and paternal stress GRWT offspring, supporting a strong programming effect of paternal 
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stress, while paternal GRHet mitigated the extent of PVN changes by paternal stress (Fig. 

3.3e), demonstrating that caput epididymal glucocorticoid receptors govern paternal 

stress transmission of the offspring brain and stress response.  

 To then determine the mechanism within the caput epididymis that can promote 

or prevent enduring transmission, we performed differential expression analyses on the 

actively translating genes isolated from HA-tagged Rpl22 subunits (RiboTag) in Lcn5+ 

cells. Remarkably, comparing within genotype for the effects of stress, there were 1826 

differentially expressed genes (adjusted P < 0.05) affected by stress 12-weeks following 

stress-end between GRHet mice, but very few (65 genes) between GRWT mice (Fig. 3.4a), 

suggesting that reducing caput glucocorticoid receptors results in a robust, compensatory 

response to stress within these epididymal cells. Importantly, there were 176 

differentially expressed genes between control mice and 810 genes between stress mice; 

therefore, the robust response of GRHet mice to stress was not attributed to glucocorticoid 

receptor reduction alone. In comparison, using the same pipeline, there was a modest 

caput epididymal response acutely post-stress, where the total number of genes altered 

(adjusted P < 0.05) in all comparisons totaled 62 (Fig. 3.4b). Comparing the number of 

acute v. enduring stress-altered differentially expressed genes, there was a 3-fold 

induction in GRWT males and a 200-fold induction in GRHet males (Fig. 3.4c), supporting 

the time post-stress as a crucial window whereby stress is processed to promote long-

term transmission.  Lastly, to determine the functional pathways broadly affected by the 

interaction of treatment and genotype in the caput epididymis that remain altered long-

term, we performed cluster analyses and identified three clearly distinct groups of co-
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regulated genes (Fig. 3.4a, heatmap side). For each cluster, we used ClueGO for 

functional annotation analysis and gene ontology (GO) terms for biological processes to 

inform us as to pathways that may be driven by stress, by genotype, or by both (Bindea et 

al., 2009). Genes from cluster 1 were clearly changed specifically in control GRHet mice, 

an effect driven by a reduction in glucocorticoid receptors alone, and enriched for GO 

terms including cell-cell signaling and vesicle-mediated transport (data not shown), 

suggesting caput glucocorticoid receptors normally regulate epithelial cell 

communication with other cell types. Related to our hypothesis, cluster 2 genes were 

upregulated in GRWT mice by prior stress experience, and intriguingly, were reversed in 

GRHet stressed mice, supporting that this cluster includes genes involved in enduring 

programming of intergenerational transmission. Genes from cluster 2 were most 

significantly enriched for GO terms representing chromatin-modifying processes and 

intracellular transport (Fig. 3.4d, left), again corroborating that stress reprograms the 

histone code long-term. Cluster 3 genes were upregulated specifically in GRHet mice 

exposed to prior stress, and were enriched for ribosomal biogenesis, mitochondrial 

transport and metabolic processes (Fig. 3.4d, right), suggesting increased oxidative 

phosphorylation capacity by mito-ribosome biogenesis may be a counteractive response 

to stress (Silva et al., 2015). Altogether, these data indicate that paternal stress 

transmission is glucocorticoid receptor-dependent, where caput epididymal 

glucocorticoid receptor reduction reverses stress-induced chromatin remodeling and 

enhances mitochondrial function, promoting cellular resilience to environmental 

challenges (Du et al., 2014) and preventing transmission of an offspring phenotype. 
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 In summary, these studies identify a cellular mechanism whereby paternal stress 

experience produces lasting consequences for future offspring neurodevelopment. Our 

findings implicate caput epididymal epithelial glucocorticoid receptors as important 

orchestrator of environmental stress contributing to enduring epigenetic reprogramming 

and epididymal epithelial EV and sperm miR changes. We show that caput epididymal 

glucocorticoid receptor reduction coordinates a compensatory response to stress, 

including reversal of chromatin modifications that ultimately rescues paternal stress 

transmission of the offspring phenotype. These studies establish the paternal caput 

epididymis as a key determinant in the intergenerational transmission of environmental 

experience and programming of offspring disease risk. 
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Materials and Methods 

 
Animals.  Male C57BL/6J and female 129S1/SvImJ mice were obtained from Jackson 

Laboratories and were used to produce C57BL/6:129 F1 hybrids. F1 hybrids were used 

for all paternal stress studies. For the caput epididymal epithelial cell-specific reduction 

of GR and RiboTag breedings, GRflox (B6.129S6-Nr3c1tm2.1Ljm/J) and RiboTag (B6N.129-

Rpl22tm1.1Psam/J) mice were crossed with 129S1/SvImJ females for minimally 3 

generations (Chan et al., 2017). Lcn5-Cre male mice on a C57Bl/6J background were 

purchased from the Model Animal Research Center of Nanjing University and were bred 

to double heterozygous GRflox; RiboTag 129 females to generate experimental animals. 

All mice were housed in a 12:12 light:dark cycle with temperature 22°C and relative 

humidity 42%. Food (Purina Rodent Chow; 28.1% protein, 59.8% carbohydrate, 12.1% 

fat) and water were provided ad libitum. All studies were performed according to 

experimental protocols approved by the University of Pennsylvania Institutional Animal 

Care and Use Committee, and all procedures were conducted in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals. 

 

Chronic Variable Stress. Administration of chronic variable stress was performed as 

previously described (Rodgers, 2013). At PN28, males were weaned, pair-housed with a 

same-sex littermate, and randomly assigned to a control or stress group. Chronic variable 

stress occurred over 28 days (PN28-56). One stressor was administered each day and the 

order of stressors was randomized each week. Stressors include the following: 36 h 

constant light, 1 h exposure to predator odor (1:5000 2,4,5-trimethylthiazole (Acros 
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Organics) or 1:2000 phenethylamine (Sigma)), 15 min restraint, novel object (marbles or 

glass vials) overnight, multiple cage changes, 100 dB white noise overnight, and 

saturated bedding overnight. 

 

Breeding. Following completion of chronic variable stress (PN56), males were all left 

undisturbed for at least 1 week to remove the acute effects of stress. Males were then 

housed with virgin, stress-naïve F1 hybrid females at either 1- or 12-weeks following the 

end of stress exposure for a maximum of 3 nights. To minimize male-female interactions 

that may impact maternal investment or care (Curley, 2011), observation of a copulation 

plug within 1 h after lights on signaled the immediate removal of the female to her own 

cage containing a nestlet. 

 

Adult tissue collection. Sires were rapidly decapitated under isoflurane anesthesia 24 h 

following copulation. The testes, caput and corpus epididymis were removed and flash 

frozen in liquid nitrogen. Sperm were obtained by mincing the caudal epididymis into 1% 

BSA and subsequently isolated at 37°C through a double swim-up assay. The supernatant 

containing motile sperm was centrifuged for 5 min at 4000 rpm and the sperm pellets 

were stored at -80°C. Adult offspring were dissected at ~20 weeks of age. Whole brains 

were removed, frozen on dry ice, and stored at -80°C.  

 

HPA axis assessment. Plasma corticosterone was measured in response to an acute 15 

min restraint stress in a 50mL conical tube. Testing occurred 2-5 h after lights on. Tail 
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blood was collected at onset and completion of restraint (0 and 15 min) and 15 and 115 

min after the end of restraint (30 and 120 min). Samples were immediately mixed with 50 

mM EDTA and centrifuged 10 min at 5000 rpm. 3ul of plasma was collected at stored at 

-80°C until analysis. Corticosterone levels were determined by 125I-corticosterone 

radioimmunoassay (MP Biomedical) according to manufacturer’s protocol. For HPA axis 

responsivity to fox odor exposure, 1:5000 2,4,5-trimethylthiazole (Acros Organics) was 

administered on a Q-tip cotton swab in a separate testing room for 15 min to minimize 

odor exposure during recovery. For each experiment, no more than two littermates were 

included in each group. 

 

Cell culture and corticosterone treatment. Immortalized mouse distal caput epididymal 

epithelial (DC2) cells were purchased from Applied Biological Materials and cultured as 

previously described (Araki et al., 2002). Briefly, cells were seeded in 75cm2 Nunc 

EasYFlasks (Thermo Fisher) coated in collagen type 1, rat tail (Millipore). Cells were 

grown in Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 10% 

exosome-free fetal bovine serum (Gibco) and 1% penicillin-streptomycin (Gibco). At 

monolayer confluency, the media was replaced and cells were either treated with 1:1000 

vehicle (ethanol; resulting in 0.1% ethanol) or 1:1000 corticosterone in ethanol (Sigma; 

low concentration 144µM, medium concentration 1.4mM, high concentration 14.4mM - 

resulting in about 50, 500, or 5000 ng/ml of corticosterone, respectively). Cells were 

treated every 24 h for 3 days for a total of three treatments. The media was replaced 24 

and 96 h following the last treatment. Media and cells were collected at 24, 96, or 192 h 
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following the last treatment. For cell collection, cells were trypsinized in 0.25% trypsin-

EDTA (Gibco), centrifuged at 1500 rpm for 3 min, and frozen at -80°C until further 

analysis. 

 

Extracellular vesicle (EV) isolation. EVs were isolated from exosome-free media 

(Gibco) using differential centrifugation (Théry, 2006). Briefly, cellular debris was 

removed from the media by centrifugation at 200g for 10 min, 2000g for 10 min, and 

10,000g for 30 min. EVs were pelleted by ultracentrifugation at 100,000g for 1 h using 

the Optima L-90K Ultracentrifuge and SW 32 Ti swinging bucket rotor (Beckman 

Coulter). The EV pellet was resuspended in PBS or TriZol reagent and frozen at -80°C 

until further analysis. 

 

Nanoparticle tracking analysis. All samples were run on a NanoSight NS500 to 

determine the size distribution of EV particles at the Center for Nanotechnology in Drug 

Delivery at the University of North Carolina. All samples were diluted to a concentration 

between 1EE08-5EE08 particles/mL in filtered PBS. Five 40 sec videos were taken of 

each sample to capture particles moving by way of Brownian motion. The nanosight 

software tracked the particles individually and using the Stokes-Einstein equation, 

calculated the hydrodynamic diameters. 

 

IVIS Spectrum Imaging of labeled EVs. EVs isolated 8 days following 3 day treatment 

were labeled with XenoLight DiR Fluorescent Dye (PerkinElmer) per manufacturer’s 
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instruction. Briefly, EV pellets were resuspended in 600 µl cold PBS and incubated with 

20 µl 10mM DiR dye for 5 min at RT. As a non-EV control, 600 µl PBS alone was 

processed in parallel. The total volume was brought up to 38 ml with PBS and 

ultracentrifuged at 100,000g for 1 h. The dyed EV pellet was resuspended in PBS and 

5e7 particles were injected intravenously via the tail vein into naïve adult F1 hybrid male 

mice. 24 h following injection, the mice were sacrificed and their tissues were collected 

for imaging using an IVIS Spectrum (PerkinElmer). The excitation filter was set at 745 

and the emission filter was set at 800. For quantification, total radiant efficiency was 

calculated using Living Image software, with the minimum set at 1e7 and the maximum 

set at 1.45e7. Total radiant efficiencies for each tissue were normalized to total radiant 

efficiency of 0.1 g liver to control for success of the injection. 

 

Protein extraction and western immunoblotting. Cell pellets were processed for 

immunoblotting using established protocols. For nuclear extractions, samples were 

homogenized with a pestle in cold sterile PBS, homogenates were centrifuged at 1200 g 

for 10 min at 4°C, pellets were washed with PBS, and resuspended in Buffer A (10mM 

Hepes pH 7.8, 10 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, protease inhibitor cocktail 

(Sigma), phosphatase inhibitor cocktail (Sigma)).  Following a 15 min incubation on ice, 

0.05% NP-40 was added, samples were vortexed, and nuclear extracts pelleted at 14,000 

x g for 30 sec. Nuclear pellets were resuspended in Buffer B (50 mM Hepes pH 7.8, 50 

mM KCl, 300 mM NaCl, 0.1 mM EDTA, 1 mM DTT, protease inhibitor cocktail, 

phosphatase inhibitor cocktail). For whole cell extracts and EV protein extraction, 
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samples were homogenized and resuspended in radioimmunoprecipitation assay (RIPA) 

buffer with protease inhibitor cocktail (Sigma), rotated for 2 h at 4°C, and pelleted at 

5000 x g for 10 min. Protein quantification was done using Bradford assay (BioRad). For 

immunoblotting, twenty µg of protein was loaded per lane for gel electrophoresis onto a 

NuPAGE 4-12% Bis-Tris gel (Life Technologies). After running, gels were cut and the 

same molecular weight sections for all samples were transferred together to enable 

multiple probing and to control for transfer conditions. After transfer of proteins to a 

nitrocellulose membrane (Life Technologies), membranes were blocked with Odyssey 

blocking buffer (Li-Cor) and probed with rabbit anti-GR (1:10000; Abcam ab109022), 

mouse anti-beta actin (1:30000; Sigma A5441), rabbit anti-CD63 (1:1000; Systems 

Biosciences EXOAB-CD63A-1), rabbit anti-Lamp1 (1:1000; Abcam ab22595), and/or 

rabbit anti-Calnexin (1:1000; Abcam ab24170), followed by incubation in IRDye800-

conjugated donkey anti-rabbit secondary (1:20,000; Li-Cor) and/or IRDye680-conjugated 

goat anti-mouse secondary (1:20,000; Li-Cor). 

Histone extraction, bottom-up nanoLC MS/MS and data analysis. Samples were 

processed as previously described (Sidoli et al., 2016). Briefly, whole caput epididymides 

or DC2 cell pellets were homogenized in nuclei isolation buffer (15mM Tris-HCl pH 7.5, 

60 mM KCl, 15mM NaCl, 5mM MgCl2, 1 mM CaCl2, 250 mM sucrose) with 1 mM 

DTT, 1% phosphatase inhibitor (Sigma), 1 pellet protease inhibitor (Roche), 10mM 

sodium butyrate (Sigma), and 10% NP-40. Histones were acid extracted from nuclei by 

rotating overnight in 0.4N H2SO4 at 4°C and precipitated with 100% trichloroacetic acid 

overnight at 4°C. Extracted histones were washed with acetone and quantified by 
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Bradford reagent according to manufacturer’s protocol (Sigma). ~20ug histones were 

derivatized using propionic anhydride (Sigma) and digested with 1:10 trypsin (Promega). 

Samples were subsequently desalted by binding to C18 material from a solid phase 

extraction disk (Empore), washed with 0.5% acetic acid, and eluted in 75% acetonitrile 

and 5% acetic acid. Peptides were separated in EASY-nLC nanoHPLC (Thermo 

Scientific, Odense, Denmark) through a 75 µm ID x 17 cm Reprosil-Pur C18-AQ column 

(3 µm; Dr. Maisch GmbH, Germany) using a gradient of 0-35% solvent B (A = 0.1% 

formic acid; B = 95% acetonitrile, 0.1% formic acid) over 40 min and from 34% to 100% 

solvent B in 7 minutes at a flow-rate of 250 nL/min. LC was coupled with an Orbitrap 

Fusion mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) with a spray 

voltage of 2.3 kV and capillary temperature of 275 °C. Full scan MS spectrum (m/z 

300−1200) was acquired in the Orbitrap with a resolution of 60,000 (at 200 m/z) with an 

AGC target of 5x10e5. At Top Speed MS/MS option of 2 sec, the most intense ions 

above a threshold of 2000 counts were selected for fragmentation with higher-energy 

collisional dissociation (HCD) with normalized collision energy of 29, an AGC target of 

1x10e4 and a maximum injection time of 200 msec. MS/MS data were collected in 

centroid mode in the ion trap mass analyzer (normal scan rate). Only charge states 2-4 

were included. The dynamic exclusion was set at 30 sec. Where data-dependent 

acquisition (Sidoli et al., 2015) was used to analyze the peptides, full scan MS (m/z 

300−1100) was performed also in the Orbitrap with a higher resolution of 120,000 (at 

200 m/z), AGC target set at the same 5x10e5. The difference is in the MS/MS though 

also performed in the ion trap, was with sequential isolation windows of 50 m/z with an 
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AGC target of 3x10e4, a CID collision energy of 35 and a maximum injection time of 50 

msec. MS/MS data were collected in centroid mode. For both acquisition methods, peak 

area was extracted from raw files by using our in-house software EpiProfile (Yuan et al., 

2015). The relative abundance of a given PTM was calculated by dividing its intensity by 

the sum of all modified and unmodified peptides sharing the same sequence. For isobaric 

peptides, the relative ratio of two isobaric forms was estimated by averaging the ratio for 

each fragment ion with different mass between the two species. 

 

RNA isolation. Total RNA extraction from epididymal sperm and EV pellets were done 

using the TRIzol reagent (Thermo Fisher) according to manufacturer’s protocol. For 

RNA extraction of PVN punches, the RNeasy Micro Kit was used according to 

manufacturer’s protocol (Qiagen).  

 

RiboTag mRNA immunoprecipitation. To obtain actively translating mRNA, RiboTag 

mice were used as previously described (Sanz, 2009). Briefly, whole caput epididymal 

tissue were dounce homogenized in 1 ml supplemented homogenization buffer (50 mM 

Tris pH 7.5, 100 mM KCl, 12 mM MgCl2, 1% NP-40, 1mM DTT, 200U/mL RNasin 

(Promega), 1mg/mL heparin, 100 µg/mL cyclohexamide, protease inhibitor cocktail 

(Sigma)). Following centrifugation at 10,000g for 10 min, 800µl of the supernatant was 

incubated with 5µl of anti-HA.11 clone 16B12 antibody (Biolegend) for 4 h at 4°C. 400µl 

of Dynabeads Protein G (Life Technologies) were washed with supplemented 

homogenization buffer and incubated with the supernatant-antibody complex overnight at 
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4°C. The next morning, bead-antibody-protein complexes were washed 3 times for 10 

min with high salt buffer (50 mM Tris pH 7.5, 300 mM KCl, 12 mM MgCl2, 1% NP-40, 

1 mM DTT, 100 µg/mL cyclohexamide). Immediately following washes, Qiagen Buffer 

RLT with beta-mercaptoethanol was added and the RNeasy protocol was followed 

according to manufacturer’s protocol to isolate RNA from the complexes. 

 

mRNA sequencing and analysis. Total RNA from caput epididymal RiboTag and PVN 

punches were quantified on a NanoDrop 2000 spectrophotometer (Thermo Scientific). 

Libraries for RNA-seq were made using a TruSeq Stranded mRNA Sample Preparation 

Kit (Illumina) with 250ng RNA according to manufacturer’s protocol. All library sizes 

and concentrations were confirmed on a TapeStation 4200 (Agilent) and Qubit 3.0 

Fluorometer (Thermo Fisher). Individually barcoded libraries were pooled and sequenced 

on an Illumina NextSeq 500 (75-bp single-end). Fastq files containing an average of 50 

million reads were processed for pseudoalignment and abundance quantification using 

Kallisto (version 0.43.1) (Bray et al., 2016). The transcriptome was aligned to the 

EnsemblDB Mus musculus package (version 79). 

 

Small RNA sequencing and analysis. Small RNA libraries were constructed using the 

NEBNext Small RNA Library Prep Set for Illumina (NEB) on 200ng total RNA 

according to manufacturer’s protocol. All library sizes and concentrations were 

confirmed on a TapeStation 4200 (Agilent) and Qubit 3.0 Fluorometer (Thermo Fisher). 

Individually barcoded libraries were pooled and sequenced on an Illumina NextSeq 500 
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(75-bp single-end). Fastq files containing an average of 10 million reads per sample were 

aligned and quantified using miRDeep2 (version 2.0.0.8) (Friedländer et al., 2012).  

 

Bioinformatics analyses: All analyses were performed using R version 3.3.3 and 

Bioconductor version 3.4. 

  

Random Forests. The R package randomForest (Breiman, 2001) was used to analyze 

histone mass spectrometry ratio data with the parameters ntree=1000 and mtry=√p for 

classification analysis, based on calculation of p where p=total number of histone 

modifications identified. This approach ranks each histone modification by the percent 

decrease (MDA) to the model’s accuracy that occurs if the histone mark is removed, 

allowing for the identification of a histone code that discriminates between treatment 

groups. To estimate the minimal number of histone modifications required for prediction, 

ten-fold cross-validation using the ‘rfcv’ command was implemented through the 

randomForest package. 

  

Rank-rank hypergeometric overlap (RRHO). The R package RRHO was used to 

evaluate the degree and significance of overlap in threshold-free differential expression 

data between in vivo sperm and in vitro EV miR datasets (Plaisier, 2010). For each 

comparison, one-sided enrichment tests were used on –log10(nominal p-values) with the 

default step size, and corrected Benjamini-Yekutieli p-values were calculated. Each pixel 
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represents one miR comparison between the two datasets, with the degree of significance 

color-coded. 

  

Differential expression analysis. The R package DESeq was used to perform pairwise 

differential expression analyses on RNA-seq datasets using the negative binomial 

distribution (Anders et al., 2010). For PVN and RiboTag mRNA-seq, count data were 

filtered for at least 10 counts per gene across all groups, normalized, and dispersions were 

estimated per condition with a maximum sharing mode. Small RNA-seq data were 

filtered for greater than 2 counts in at least 3 samples across all groups, normalized, and 

dispersions were estimated per-condition using empirical values. Significance for all 

differential expression was set at an adjusted P-value<0.05. Heatmaps were generated 

using the R package gplots heatmap.2 function. All heatmaps are plotted as average Z 

scores per treatment group and arranged through hierarchical clustering of groups. 

Clusters of co-regulated differentially expressed genes were determined with the R 

package Stats using hierarchical clustering of genes (complete method) followed by 

‘cutree’, k=3. 

  

ClueGO. Functional annotation analysis was performed on co-regulated differentially 

expressed gene clusters with the Cytoscape plug-in ClueGO (Bindea, 2009). ClueGO 

identifies enriched pathways using Gene Ontology (GO) terms and can reduce 

redundancy of GO terms that share similar genes by sorting into parent categories. For 

each cluster of differentially expressed genes, ClueGo was used to determine the enriched 
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GO biological processes. Redundant terms were allowed to fuse with related terms that 

had similar associated genes. Networks of GO terms visualized using Cytoscape were 

linked using kappa statistics, with connecting nodes sized according to P-values corrected 

by Bonferroni step down. For each group of related GO terms, the leading group was 

determined by highest degree of significance. Top enriched groups of GO terms for each 

cluster were determined by the corrected group P-value. 

 

Statistics. Corticosterone levels were analyzed by two-way ANOVA with time as a 

repeated measure. Corticosterone AUC, litter characteristics, testis weights, and gene 

expression data were analyzed by two-way ANOVAs. Outliers for HPA axis assessment 

were excluded at all time points and determined by data greater than two standard 

deviations away from the group mean or corticosterone levels greater than 150 ng/mL at 

the 120 min time point, indicating no stress recovery. Immunoblotting data were analyzed 

using one-way ANOVAs or two-tailed t-tests. Nanosight, and IVIS radiant efficiency 

were analyzed using two-tailed t-tests. Histone mass spectrometry ratio data were 

analyzed Mann-Whitney U tests. When appropriate, Bonferroni’s multiple comparisons 

or Student’s t-tests were used to explore main effects. Proportions of reproductive 

success were analyzed using chi-square tests. Significance was set at P<0.05. 
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Figure 3.1. Glucocorticoid-treated DC2 mouse caput epididymal epithelial cell EVs in vitro 
mimic paternal stress programming of enduring sperm miRs in vivo. (a) Male mice were 
exposed to stress from postnatal days (PN) 28-56. Sperm and caput epididymal tissue were 
collected at 1-week (acute) and 12-weeks (enduring) post-stress. To mimic chronic stress, DC2 
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cells were administered three concentrations of corticosterone (cort) (50ng/ml (low), 500 ng/ml 
(medium), or 5 µg/ml (high)) for 3-days. Epididymal cells and secreted EVs isolated at 1 (acute), 
4 (intermediate), and 8-days (enduring) post-treatment were examined for similar changes as 
those from paternal stress tissue. (b) Differential expression analysis of paternal sperm miRs 
identify distinct populations altered at 1- and 12-weeks post-stress, with each point representing 
one miR, suggesting unique mechanisms for acute and enduring sperm miRs post-stress. N = 6-8; 
adjusted P < 0.05. (c) Rank-rank hypergeometric overlap (RRHO) analysis was used between 
enduring in vivo paternal sperm miRs and in vitro DC2 EV miRs post-treatment to determine the 
best-matched period of miR regulation in DC2 cells. Venn diagram of significantly overlapping 
EV miRs from cells treated with the medium (physiologically relevant) corticosterone 
concentration following small RNA-sequencing, demonstrating the greatest overlapping number 
of miRs at 8-days post-treatment. N = 3-4; max -log10(P-value)= 3. These data are represented 
visually using (d) RRHO heatmaps where each pixel represents one miR comparison color-coded 
for degree of significance, with the most upregulated miRs at the bottom left corner and 
downregulated miRs at the top right corner (as described in the schematic, right). (e) 
Representative particle tracking plot (left) using Nanosight confirm DC2 EV size distribution. 
Corticosterone treatment did not affect the mode (Student’s t-test, t(10) = 1.165, P = 0.2712), but 
reduced the mean (Student’s t-test, t(10) = 3.865, P = 0.0031) of EV particle size 8-days post-
treatment, suggesting altered lipid composition/function. N = 6. Student’s t-test, **P < 0.01. (f) 
Representative image of tissue-specific selectivity of 5E7 near-infrared DiR dye-labeled DC2 
EVs treated with vehicle or corticosterone. (g) There were no differences between treatment for 
each tissue in total radiant efficiency of caput epididymis (Student’s t-test, t(10) = 0.4757, P = 
0.6445), testes (Student’s t-test, t(10) = 0.8337, P = 0.4239), and brain (Student’s t-test, t(10) = 
0.00912, P = 0.9929) between EVs injected, suggesting corticosterone-treated EVs retain 
endogenous tissue selectivity. N = 6. Data are mean ± SEM, with individual data points overlaid. 
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Figure 3.2. Glucocorticoid receptors are increased post-stress and correspond with 
enduring reprogramming of the caput epididymal histone code. (a) Immunoblotting of 
glucocorticoid receptor levels 1- (acute time point, left) and 8-days (enduring time point, right) 
post-treatment. No effect of corticosterone treatment at the acute time point (one-way ANOVA, 
F(3, 11) = 1.644, P = 0.2360). There were significant treatment effects at the enduring time point 
(one-way ANOVA, F(3,12) = 7.306, P = 0.0048. Bonferroni’s post-hoc analysis showed 



	   66	  

significant differences between vehicle (Veh) v. medium (Med) concentration (t(12) = 4.625, 
adjusted P = 0.0018); vehicle v. high concentration (t(12) = 2.93, adjusted P = 0.0378), and a 
nonsignificant difference between vehicle v. low concentration (t(12) = 2.416, adjusted P = 
0.0977), suggesting glucocorticoid receptors (GR) are involved in enduring EV miR alterations. 
N=3-4; one-way ANOVA with Bonferroni’s correction,  **P < 0.01, *P < 0.05, #P < 0.1. Data 
are mean ± SEM, with individual data points overlaid. (b and d) Random Forests analysis of 
quantitative histone post-translational modifications (PTM) mass spectrometry identified the top 
histone PTMs, ranked by importance, that most accurately discriminate at the enduring time point 
between (b) vehicle v. corticosterone treatment of DC2 cells in vitro, and (d) control v. stress 
caput epididymis in vivo. Mean decrease accuracy indicates the percent decrease in model 
accuracy if the histone PTM is removed. N = 4-6. Error bars are ± SD. (c and e) Relative 
abundance of the top eight histone PTMs determined by Random Forests were confirmed by 
Mann-Whitney U tests between treatment for each individual histone PTM in (c) DC2 cells and 
(e) paternal stress caput epididymis. Data are median ± interquartile range. **P < 0.01, *P < 0.05, 
#P < 0.1. (f) Venn diagram of total deconvoluted histone PTMs discriminating treatment groups, 
as determined by Random Forests analysis, between in vivo caput epididymis (gray) and in vitro 
DC2 cells (green), and their overlap (histone PTMs listed below). 
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Figure 3.3. Genetic reduction of caput epididymal epithelial glucocorticoid receptors in vivo 
rescues paternal stress programming of offspring stress dysregulation. (a) Caput epididymal 
epithelial cell-specific Lcn5-Cre x GRflox x Ribotag (Rpl22) male mice were exposed to stress, as 
above, and were bred 12-weeks post-stress. Adult offspring were assessed for HPA stress axis 
responsivity. (b) To ensure transgenic glucocorticoid receptor (GR) reduction and inhibition of 
post-stress glucocorticoid receptor increases, glucocorticoid receptor mRNA expression from 
paternal caput epididymal epithelial cells was examined using Ribotag technology (two-way 
ANOVA, main effect of genotype (F(1, 17) = 68.71, P < 0.0001), interaction of genotype x 
treatment (F(1,17) = 8.652, P = 0.0091). Tukey’s post-hoc analysis showed significant 
differences between Control GRWT and Control GRHet (t(17) = 5.527, adjusted P = 0.0056) and 
between Stress GRWT and Stress GRHet (t(17) = 10.89, adjusted P < 0.0001)). N = 4-6; Tukey’s 
post-hoc test, **P < 0.01, ****P < 0.0001. (c) There was a significant interaction for paternal 
treatment x genotype for the offspring HPA area under the curve (AUC), where the reduced 
response to an acute restraint in wildtype (Wt) paternal stress offspring was normalized by 
paternal glucocorticoid receptor reduction (two-way ANOVA, interaction of paternal genotype x 
paternal treatment, F(1, 34) = 4.902, P = 0.0336). N = 8-11; two-way ANOVA, *P < 0.05. (d) 
Similarly, there was a significant interaction in the AUC (two-way ANOVA, interaction of 
paternal genotype x paternal treatment, F(1, 29) = 12.65, P = 0.0013. Tukey’s post-hoc analysis 
showed significant differences between Control GRWT offspring v. Stress GRWT offspring (t(29) = 
4.554, adjusted P = 0.0158) and between Stress GRWT offspring v. Stress GRHet offspring (t(29) = 
4.369, adjusted P = 0.0216)) and a main effect on the curve (two-way ANOVA with time as a 
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repeated measure, main effect of treatment (F(3, 29) = 3.325, P = 0.0333) and main effect of time 
(F(3, 87) = 97.71, P < 0.0001). Tukey’s post-hoc analysis showed significant differences at the 
30-minute time point between Control GRWT offspring v. Stress GRWT offspring (t(116) = 5.183, 
adjusted P = 0.0021) and between Stress GRWT offspring v. Stress GRHet offspring (t(116) = 
5.125, adjusted P = 0.0009)), whereby paternal GRHet prevented the paternal stress-altered HPA 
response to an acute predator odor exposure in offspring. N = 7-9; Tukey’s post-hoc test on the 
curve, ***P < 0.001; Tukey’s post-hoc test on the AUC, *P < 0.05. Data are mean ± SEM, with 
individual data points overlaid. (e) Hierarchical clustering and heatmap of all differentially 
expressed genes between paternal stress and control groups from RNA-sequencing of the 
paraventricular nucleus (PVN) from naïve adult offspring, showing caput epididymal GRHet 
mitigation of paternal stress programming. N = 5-6; adjusted P < 0.05. 
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Figure 3.4. Reduction of caput epididymal glucocorticoid receptors reverses stress-induced 
epigenetic programming and promotes ribosomal and mitochondrial processes. (a, b) 
Heatmap of all differentially expressed (DE) genes from RNA-sequencing of paternal caput 
epididymal epithelial cells isolated using Ribotag technology at (a) 12- and (b) 1-week post-
stress. N = 4-6; adjusted P < 0.05. Hierarchical clustering of co-regulated genes for (a) is depicted 
by color blocking on right of heatmap for functional annotation analysis. (c) Venn diagrams of 
the acute v. enduring caput epididymal epithelial response to prior stress exposure between GRWT 
males (top) and GRHet males (bottom), substantiating a post-stress mechanism that mediates 
enduring changes. (d) Functional annotation analysis of the enduring caput epididymal response 
12-weeks post-stress using gene ontology terms (biological processes) for cluster 2 (genes 
increased in Stress GRWT and decreased in Stress GRHet, left) and cluster 3 (genes increased only 
in Stress GRHet , right) reveal pertinent enriched pathways, determined by ClueGo and depicted 
as a network. Edges indicate degree of connectivity between terms. Node size indicates statistical 
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significance, with the leading term (large, colored descriptor) determined by greatest degree of 
significance. Node colors indicate number of groups associated with the gene ontology term.  
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Supplemental Figure 3.1. Validation of extracellular vesicles (EV) isolated from culture 
media of DC2 caput epididymal epithelial cells via differential centrifugation. (a) 
Representative western blot and (b) quantification of CD63, a known EV tetraspanin, Calnexin, 
an endoplasmic reticulum-associated protein, and Lamp1, a lysosome-associated protein. CD63 
(Student’s t-test, t(7) = 13.96, P < 0.0001) is typically found on EV membranes, while Calnexin 
(Student’s t-test, t(7) = 7.678, P = 0.0001) and Lamp1 (Student’s t-test, t(7) = 3.138, P = 0.0164) 
are typically found from cell lysates, suggesting minimal cellular contamination in isolated EV 
populations. N = 4-5. Data are mean ± SEM, with individual data points overlaid. Student’s t-test, 
*P < 0.05, ***P < 0.001, ****P < 0.0001. 
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Supplemental Figure 3.2. Determining timing and concentration of corticosterone to 
optimally recapitulate paternal stress programming in vitro. (a) Venn diagrams of 
significantly overlapping EV miRs by RRHO (max -log10(P-value) = 5) from DC2 caput 
epididymal epithelial cells treated with (left) low (50 ng/ml) or (right) high (5 µg/ml) 
concentrations of corticosterone, demonstrating distinct groups of EV miRs changed at each time 
point post-treatment, with the number of overlapping EV miRs increased at 8- compared to 1-day 
post-treatment. N=3-4. (b) Rank-rank hypergeometric overlap (RRHO) analysis to determine 
corticosterone concentration and timing post-treatment of in vitro DC2 mouse caput epididymal 
epithelial cell-derived EV miRs that most closely match enduring sperm miRs altered 12-weeks 
post-stress in vivo. Overlap data are plotted as sperm miRs (increasing down the y-axis) or EV 
miRs (increasing left along the x-axis). Each pixel represents one miR, with the color coded 
according to degree of significant overlap. Quantification for total number of significantly 
overlapping miRs are presented below each plot, showing that miR changes by the medium 
concentration of corticosterone 8 days post-treatment (enduring time point post-treatment, bottom 
middle plot) has the greatest degree of overlap with enduring sperm miRs altered post-stress. 
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Supplemental Figure 3.3. Quantification and imaging of tissues from male mice injected i.v. 
with DiR-labeled extracellular vesicles (EVs) secreted from DC2 caput epididymal epithelial 
cells. (a) Testes and epididymal tissue from DiR-only PBS control and DiR-labeled untreated EV 
injections, showing that caput epididymal EVs specifically target testes and caput epididymal 
tissues, regardless of treatment. (b) Liver, testes, caput and cauda epididymal tissue from mice 
injected with vehicle or corticosterone treated DC2 secreted EVs. (c) Quantification of total 
radiant efficiency of liver (Student’s t-test, t(10) = 0.1691, P = 0.8691) and (d) cauda epididymis 
(Student’s t-test, t(10) = 0.3298, P = 0.7483) normalized to radiant efficiency of 0.1 g liver to 
control for injection success. (e) Imaging of brains from mice injected with vehicle or 
corticosterone-treated DC2 secreted EVs. Quantification of caput epididymis, testes, and brain 
target are presented in the main text. N=6. Data are mean ± SEM. 
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Supplementary Table 3.1. Assessment of Reproductive Function 

 Control GRwt CVS GRwt Control GRhet CVS GRhet 

% Plugged 77.78 66.67 75.0 88.89 
% Pregnant 55.55 66.67 75.0 72.22 
% Testis weight 0.36 ± 0.04 0.38 ± 0.05 0.38 ± 0.04 0.36 ± 0.02 
     Litter characteristics   
Average size 9.67 ± 3.27 7.6 ± 3.44 9 ± 2.19 8.56 ± 1.81 
% Male 54.95 ± 26.34 62.09 ± 16.31 56.21 ± 12.93 65.24 ± 8.92 
 
% Plugged indicates ratio of females found with a copulation plug within 3 nights of breeding. 
% Testis weight is (g left testis weight/g body weight) * 100. 
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Abstract 

Germ cell epigenetic marks responding to a variety of environmental exposures, 

including stress, dietary challenges and substances of abuse, have been implicated to 

shape offspring development. In particular, sperm small RNA populations such as 

microRNA (miRs) transmit paternal environmental information sufficient to shift adult 

offspring outcomes. Furthermore, sperm miRs delivered at fertilization function to 

repress gene expression in the zygote. Yet, how sperm miRs at fertilization promote 

lasting consequences during later development and adulthood is not well understood. 

Here, we utilize our established paternal stress model where specific sperm miRs 

responsive to chronic stress reprogram the adult offspring hypothalamus and stress axis 

reactivity. Using zygote microinjection, we tested the specific impact of our paternal 

stress sperm miRs against a composite of randomly selected sperm miRs on the 

developing brain and placenta, as these tissues are known to contribute to hypothalamic 

development. We show that microinjection of stress miRs produced robust, 

transcriptional dysregulation of the embryonic brain compared to few differences by 

random miRs. In contrast, the placental transcriptome was sensitive to both miR groups, 

suggesting sperm miR effects depend on the miR population and tissue target. Lastly, 

changes in histone post-translational modifications in the embryonic and adult brain 

suggest a potential mechanism by which sperm miRs promote long-term transcriptional 

dysregulation. These studies demonstrate the importance of sperm miRs in producing 

developmental antecedents to adult offspring outcomes, emphasizing the paternal 

environment as a potential factor underlying disease risk. 
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Introduction 

 Mounting evidence that germ cell epigenetic marks can carry information 

regarding the preconception environment to influence offspring development has brought 

new attention to the players involved at fertilization. Germ cell epigenetic marks, 

including DNA methylation, histone post-translational modifications and small RNA 

populations, have been described to respond to a variety of environmental stimuli and 

perturbations, including chronic stress/trauma, dietary challenges, or substances of abuse 

(Carone, 2010; Chen, 2015; Dias, 2014; Dietz, 2011; Franklin, 2010; Lambrot, 2013; 

Rodgers, 2013; Siklenka, 2015; Vallaster, 2017; Vassoler, 2012). Notably, sperm small 

RNAs, such as microRNA (miRs) and tRNA-derived fragments, causally link the 

paternal preconception environment to changes in offspring outcomes (Benito et al., 

2018; Chen, 2016; Gapp, 2014; Rodgers, 2015; Sharma, 2016). We previously 

established a paternal chronic stress mouse model where exposed males sired offspring 

with dysregulated hypothalamic-pituitary-adrenal (HPA) stress axis reactivity and an 

altered transcriptome in the paraventricular nucleus (PVN) of the hypothalamus in 

adulthood (Rodgers, 2013). As a potential mode of paternal stress transmission, we 

identified specific miRs increased in sperm following stress exposure. Indeed, zygote 

microinjection of these altered sperm miRs recapitulated the dysregulated stress 

phenotype in adult offspring (Rodgers, 2015). Further, we demonstrated that these sperm 

miRs functioned to alter gene expression in the pluripotent zygote (Rodgers, 2015), 

supporting sperm small RNAs as influential regulators of embryogenesis. However, the 

downstream effects of sperm miRs introduced at fertilization in modulating development 
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of offspring tissues, such as the brain, to promote phenotypic changes in adulthood is not 

well understood. 

 The canonical function of miRs to post-transcriptionally repress gene expression 

by binding complementary sequences on mRNA positions sperm miRs as influential 

regulators of early transcriptional events (Zhao et al., 2007). In the zygote, development 

relies on the presence of stored maternal mRNAs from the oocyte, and zygotic 

transcription is stalled until the maternal mRNAs are cleared (Li et al., 2014). The 

capacity for miRs present during this window to deplete maternal transcripts in the 

zygote has been shown (Bushati et al., 2008; Giraldez, 2006; Lund et al., 2009; Tang et 

al., 2007), where one miR may regulate up to thousands of transcripts and a single 

mRNA can be targeted by multiple miRs (Sevignani et al., 2006). Such regulatory control 

by miRs has suggested their role in ‘fine-tuning’ crucial transcriptional events, such as 

during early embryonic stages where rapid regulation of transcription factor or 

morphogen levels is important for determining cell fate decisions (Zhao, 2007). This 

highly efficient system is further regulated by the specific composition of miRs present 

during these critical windows, where groups of co-regulated miRs can coordinately 

modulate entire cellular pathways or compound repression of individual targets 

(Ivanovska et al., 2008). Given the sensitivity of transcriptome regulation in the 

pluripotent zygote, the delivery of functional miRs by sperm may have complex 

consequences on the trajectory of offspring development. 

 During early embryogenesis, the first cell fate specification event begins at the 8-

cell stage and becomes apparent in the blastocyst, where the outer layer forming the 



	   80	  

trophectoderm is segregated from the inner cell mass (Red-Horse, 2004). The inner cell 

mass has unlimited developmental potential, eventually giving rise to all fetal tissues 

through a complex, organized cascade of molecular and transcriptional events (Wobus et 

al., 2005). Additionally, the trophectoderm gives rise to the trophoblast cells that form the 

placenta, a crucial tissue that provides nutrients, gases, and growth factors to the 

developing fetus and simultaneously protects it from maternal immune signals (Nugent, 

2015). Importantly, shifts in placental regulation can disrupt fetal neurodevelopment, 

promoting cognitive, behavioral and physiological phenotypes in adulthood, including 

disruption of the HPA stress axis (Bronson et al., 2014; Bronson, 2017; Howerton, 2014; 

Hsiao et al., 2012). Thus, changes in offspring outcomes and tissue development may 

derive from reprogramming of key regulatory transcriptional events either through the 

embryonic and/or extra-embryonic lineages. However, whether sperm miRs shift these 

events to reprogram offspring outcomes by a direct regulatory cascade of molecular 

events from the zygote to differentiated tissues, such as the brain, and/or through changes 

in placental signaling has not been examined. 

 Therefore, in this study we utilized our paternal stress mouse model to test the 

hypothesis that coordinated changes in specific sperm miRs in response to chronic stress 

exposure alter the development of offspring tissues. Nine miRs previously identified in 

sperm to transmit paternal stress effects were selected for our ‘Stress miRs’ treatment 

group. To examine the specificity of miRs altered by paternal stress in influencing 

offspring development, we incorporated another treatment group that includes nine miRs 

present in sperm but not altered by stress exposure, termed ‘Random miRs’. We 
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microinjected these two miR groups (Stress or Random) into single-cell zygotes. 

Following cleavage, two-cell zygotes were transferred into surrogate foster females, 

where embryos from one treatment group (X) were transferred into the left uterine horn 

and embryos from a second treatment group were transferred into the right uterine horn 

(Y), thereby allowing control of the maternal intrauterine environment on embryo 

development (Figure 4.1a). As our lab has previously demonstrated transcriptomic 

changes in the embryonic brain and placenta as developmental antecedents of HPA axis 

reprogramming (Bronson, 2017; Howerton, 2013; Mueller, 2008), we collected embryos 

at embryonic day E12.5 to examine these tissues. We next performed quantitative histone 

mass spectrometry in E12.5 brains following zygote microinjection as a potential 

mechanism whereby sperm miRs promote downstream transcriptional consequences. 

Lastly, we examined the histone PTM profiles of adult PVN from paternal stress 

offspring to compare the relevance and persistence of histone PTMs altered by Stress 

miRs in the E12.5 brain. Together, this approach provides an opportunity to compare the 

specificity and developmental effects of experience-dependent sperm miRs, and to 

evaluate mechanisms whereby sperm miRs introduced transiently at fertilization can 

produce outcomes during development and adulthood. 

 

Materials and Methods 

Animals. C57BL/6J females (Jackson Laboratories) were superovulated with 5 IU 

pregnant mare serum gonadotropin (Sigma) and 5 IU human chorionic gonadotropin 

(Sigma). Following, they were mated with 129S6/SvEvTac males (Taconic) and F1 
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hybrid fertilized zygotes were collected 14-16 hours after human chorionic gonadotropin 

injection. CD-1 females (Charles River) used for zygote transfer were mated with 

vasectomized males. On the day of zygote transfer, recipient CD-1 females were 

identified by observation of a copulation plug. All mice were housed in a 12:12 light:dark 

cycle with temperature 22°C and relative humidity 42%. Food (Purina Rodent Chow; 

28.1% protein, 59.8% carbohydrate, 12.1% fat) and water were provided ad libitum. All 

studies were performed according to experimental protocols approved by the University 

of Pennsylvania Institutional Animal Care and Use Committee, and all procedures were 

conducted in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals. 

 

Microinjection and miR selection. Zygote microinjection was performed as previously 

described (Rodgers, 2015). Briefly, C57/BL6:129S6/SvEvTac hybrid mouse zygotes 

were randomly assigned for microinjection of either nine previously identified paternal 

stress miRs (miR-29c, miR-30a, miR-30c, miR-32, miR-193-5p, miR-204, miR-375, 

miR-532-36, miR-698), nine random miRs that were selected based on low expression 

levels in mature sperm (average Ct > 25 for Rodent Taqman microRNA array or average 

normalized reads < 50 for small RNA sequencing), that were not responsive to stress in 

two in-lab datasets (miR-132-3p, miR-149-5p, miR-15a-5p, miR-223-5p, miR-292a-3p, 

miR-301a-5p, miR-326-3p, miR-466d-3p, miR-709), or 1x DPBS. The miR treatments 

groups had a final concentration of 1 ng/µl, with each miRIDIAN mimic diluted to 0.11 

ng/µl in DPBS. Microinjected zygotes were cultured overnight in KSOM media 
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(Millipore) and transferred into recipient CD-1 foster females (Charles River). To control 

for the intrauterine environment, 7-10 zygotes from one treatment group were transferred 

into the left uterine horn, and 7-10 zygotes from a separate treatment group were 

transferred into the right uterine horn. Following injection, CD-1 dams were singly 

housed until embryo collection. 

 

Paternal stress and offspring brain collection. Administration of chronic variable 

stress to sires was performed as previous (Rodgers, 2013). Briefly, stressed males 

received one of seven different stressors across 28 days: 36 h constant light, 15 min 

exposure to fox odor (1:5000 2,4,5-trimethylthiazole; Acros Organics, Geel, Belgium), 

novel object (marbles) overnight, 15 min restraint in a 50 mL conical tube, multiple cage 

changes, novel 100 dB white noise (Sleep Machine; Brookstone, Merrimack, NH) 

overnight, and saturated bedding overnight. Following chronic variable stress, males 

were bred with naïve females for a minimum of 3 nights, where observation of a 

copulation plug signaled the removal of the female to her own cage. Resulting offspring 

were weaned at postnatal day 28 and left undisturbed until brain collection at ~15 weeks. 

 

PVN micropunching. Whole brains were cryosectioned at -20°C. Brain regions were 

micropunched using a hollow needle (Ted Pella Inc.) according to the Paxinos and 

Franklin atlas (Paxinos, 2013) with the following coordinates: 1.00 mm punch along the 

midline from two successive 300µm slices -0.50 to -0.80 and -0.80 to -1.10 relative to 

bregma, atlas figs. 36-40. 
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Analysis of oocye/zygote gene targets. The targets of the Stress or Random miRs groups 

were predicted by the miRWalk database, which identifies putative miR target sequences 

in the 3’ UTR of mRNA transcripts (Dweep et al., 2011). Target mRNAs were 

considered if they were predicted by miRWalk, miRDB.org, miRanda, and TargetScan 

algorithms. Putative gene targets determined by all four algorithms were cross-referenced 

with gene lists previously established from: late stage MII mouse oocytes or single-cell 

zygotes (Potireddy et al., 2006) and/or homologously shared between both human and 

mouse mature oocytes (Stanton et al., 2001) to identify sperm miR targets most likely 

present post-fertilization. The resultant gene lists were used for functional annotation 

clustering using David (Huang et al., 2009). 

 

Embryonic tissue collection. Pregnant CD-1 dams were deeply anesthetized with 

isoflurane on E12.5, and each uterine horn was removed where conceptuses were 

harvested. Fetal brains, placentas, and tails were flash frozen in liquid nitrogen and stored 

at -80°C until processing. All dissections were completed between 11:00 and 15:00. Tails 

were used for determination of sex by Jarid genotyping, as we have previously described 

(Bronson, 2014). 

 

RNA isolation. Total RNA extraction from whole embryonic heads and placentas were 

done using the TRIzol reagent (Thermo Fisher) according to manufacturer’s protocol. 
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mRNA sequencing and analysis. Total RNA from brains and placentas were quantified 

on a NanoDrop 2000 spectrophotometer (Thermo Scientific). Libraries for RNA-seq 

were made using a TruSeq Stranded mRNA Sample Preparation Kit (Illumina) with 

250ng RNA according to manufacturer’s protocol. All library sizes and concentrations 

were confirmed on a TapeStation 4200 (Agilent) and Qubit 3.0 Fluorometer (Thermo 

Fisher). Individually barcoded libraries were pooled and sequenced on an Illumina 

NextSeq 500 (75-bp single-end). Fastq files containing an average of 50 million reads 

were processed for alignment and abundance quantification using Rsubread (version 

1.20.2) (Liao et al., 2013). The transcriptome was aligned and assembled to the Ensembl 

Mus musculus reference genome GRCm38.p5. 

 

Histone extraction, bottom-up nanoLC MS/MS and data analysis. Samples were 

processed as previously described (Sidoli et al., 2016). Briefly, PVN micropunches were 

pooled 4 per sample across litters and within sex and treatment, with a final N = 4-5, with 

16-20 total brains used. Pooled PVN samples were homogenized in nuclei isolation 

buffer (15mM Tris-HCl pH 7.5, 60 mM KCl, 15mM NaCl, 5mM MgCl2, 1 mM CaCl2, 

250 mM sucrose) with 1 mM DTT, 1% phosphatase inhibitor (Sigma), 1 pellet protease 

inhibitor (Roche), 10mM sodium butyrate (Sigma), and 10% NP-40. Histones were acid 

extracted from nuclei by rotating overnight in 0.4N H2SO4 at 4°C and precipitated with 

100% trichloroacetic acid overnight at 4°C. Extracted histones were washed with acetone 

and quantified by Bradford reagent according to manufacturer’s protocol (Sigma). ~20ug 

histones were derivatized using propionic anhydride (Sigma) and digested with 1:10 
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trypsin (Promega). Samples were subsequently desalted by binding to C18 material from 

a solid phase extraction disk (Empore), washed with 0.5% acetic acid, and eluted in 75% 

acetonitrile and 5% acetic acid. Peptides were separated in EASY-nLC nanoHPLC 

(Thermo Scientific, Odense, Denmark) through a 75 µm ID x 17 cm Reprosil-Pur C18-

AQ column (3 µm; Dr. Maisch GmbH, Germany) using a gradient of 0-35% solvent B (A 

= 0.1% formic acid; B = 95% acetonitrile, 0.1% formic acid) over 40 min and from 34% 

to 100% solvent B in 7 minutes at a flow-rate of 250 nL/min. LC was coupled with an 

Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) with 

a spray voltage of 2.3 kV and capillary temperature of 275 °C. Full scan MS spectrum 

(m/z 300−1200) was acquired in the Orbitrap with a resolution of 60,000 (at 200 m/z) 

with an AGC target of 5x10e5. At Top Speed MS/MS option of 2 sec, the most intense 

ions above a threshold of 2000 counts were selected for fragmentation with higher-energy 

collisional dissociation (HCD) with normalized collision energy of 29, an AGC target of 

1x10e4 and a maximum injection time of 200 msec. MS/MS data were collected in 

centroid mode in the ion trap mass analyzer (normal scan rate). Only charge states 2-4 

were included. The dynamic exclusion was set at 30 sec. Where data-dependent 

acquisition (Sidoli et al., 2015) was used to analyze the peptides, full scan MS (m/z 

300−1100) was performed also in the Orbitrap with a higher resolution of 120,000 (at 

200 m/z), AGC target set at the same 5x10e5. The difference is in the MS/MS though 

also performed in the ion trap, was with sequential isolation windows of 50 m/z with an 

AGC target of 3x10e4, a CID collision energy of 35 and a maximum injection time of 50 

msec. MS/MS data were collected in centroid mode. For both acquisition methods, peak 
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area was extracted from raw files by using our in-house software EpiProfile (Yuan et al., 

2015). The relative abundance of a given PTM was calculated by dividing its intensity by 

the sum of all modified and unmodified peptides sharing the same sequence. For isobaric 

peptides, the relative ratio of two isobaric forms was estimated by averaging the ratio for 

each fragment ion with different mass between the two species. 

 

Rank-rank hypergeometric overlap (RRHO). The R package RRHO was used to 

evaluate the degree and significance of overlap in threshold-free differential expression 

data between in vivo sperm and in vitro EV miR datasets (Plaisier, 2010). For each 

comparison, one-sided enrichment tests were used on –log10(nominal p-values) with the 

default step size, and corrected Benjamini-Yekutieli p-values were calculated. Each pixel 

represents one miR comparison between the two datasets, with the degree of significance 

color-coded. 

  

Differential expression analysis. The R package DESeq was used to perform pairwise 

differential expression analyses on RNA-seq datasets using the negative binomial 

distribution (Anders et al., 2010). Count data were filtered for at least 10 counts per gene 

across all groups, normalized, and dispersions were estimated per condition with a 

maximum sharing mode. Significance for all differential expression was set at an 

adjusted P-value < 0.05. 
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Statistics. Histone mass spectrometry data were analyzed by nonparametric Mann-

Whitney U tests, with significance set at P < 0.05.. Functional annotation clustering was 

performed with DAVID version 6.8, for all gene ontology terms for biological processes, 

with a cutoff of 1.3 for cluster enrichment score and Benjamini-corrected P < 0.05 

(Huang, 2009).  

 

Results 

Selection of Random miRs and functional annotation of predicted targets 

 Nine miRs for the Stress group were select from previous examination of paternal 

stress sperm. For the Random miRs treatment group, miRs were selected based on three 

criteria applied to two large data sets examining sperm miR expression: the miR must be 

1) detectable, 2) lowly expressed, and 3) be unaffected by stress exposure (Table 4.1). 

From this filtered list, nine miRs were randomly chosen for the Random miR treatment 

group. To examine the specificity of miR targeting on cellular pathways, we used 

miRWalk 2.0 to computationally predict the targets of each miR group based on the 

3’UTR seed sequence, and compared the results with three other algorithms and 

databases (Dweep, 2011). Using genes predicted by all four programs as putative targets 

of our miR groups, we next filtered these for genes reported previously in the mouse 

oocyte or single-cell zygote (Potireddy, 2006; Stanton, 2001) in order to examine those 

gene sets directly relevant to sperm function post-fertilization. Next, we performed 

functional annotation analysis on these relevant gene sets (Supplementary Table 4.1) 

using DAVID tools for enrichment of Gene Ontology (GO) terms for biological 
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processes, with a cutoff of Benjamini-corrected P-value < 0.05 and Enrichment Score > 

1.3. Remarkably, the putative Stress miR targets significantly enriched for seven clusters 

of GO terms, including cellular component organization, cellular response to stress, and 

neuron development (Table 4.2). In contrast, there were no clusters of GO terms 

significantly enriched for targets of the Random miR group (Table 4.3), suggesting 

specific composites of sperm miRs, and not any random population of miRs, are 

conserved to function post-fertilization. 

 

Specificity of sperm miRs in changes to embryonic brain transcriptome 

 To determine the specificity and downstream impact of sperm miRs on 

neurodevelopment, we performed RNA-sequencing on E12.5 brains from male offspring 

and compared the Stress and Random miR treatment groups to the PBS group. 

Differential expression analysis identified 702 genes (adjusted P < 0.05) altered by 

microinjection of Stress miRs compared to PBS, whereas Random miR microinjection 

resulted in 4 differentially expressed genes that were shared with the Stress miR group 

(Fig. 4.1b, c). The differences produced by the Stress and Random miRs suggest that the 

population of sperm miRs delivered at fertilization is carefully coordinated to modulate 

brain development. We corroborated this hypothesis by using Rank-rank hypergeometric 

overlap (RRHO) analysis, allowing the comparison of differential expression profiles 

between Stress v. Random miRs in a threshold-free manner (Plaisier, 2010). This 

approach subsequently allows for the quantification of statistically significant genes 

overlapping between these two comparisons, and the directionality of gene changes. As 
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expected, there were very few (35/10784 = 0.32%) statistically significant overlapping 

genes (max –log10(P-value) = 15), where all 35 overlapping genes were increased in both 

miR microinjection groups compared to PBS (Fig. 4.1d), suggesting these genes may be 

affected by the increased concentration and/or number of miRs delivered to the zygote. 

There were no differences in the characteristics of each microinjected litter, including 

number of zygotes implanted per uterine horn or sex ratio (Supplementary Table 4.2).  

 To determine the functional pathways broadly affected by Stress sperm miRs in 

the embryonic brain, we used DAVID functional annotation clustering tools on the 702 

differentially expressed genes for enrichment of GO terms for all biological processes, 

with a cutoff of Benjamini-corrected P-value < 0.05 and Enrichment Score > 1.3. 

Notably, plotting one representative statistically significant GO term for the top eight 

enriched GO clusters indicated that processes important to neurodevelopment were 

dysregulated by zygote microinjection of Stress miRs (Fig. 4.1e). We did not perform 

functional annotation analysis on the genes altered by Random miRs as this is below the 

recommended number for robust analysis. 

 
 
Placental transcriptome is sensitive to sperm miRs from both treatment groups 
 
 As fetal development can be influenced by changes to placental signaling, we 

next examined whether sperm miRs at fertilization dysregulated placental development 

by performing mRNA sequencing on E12.5 male placentas following zygote 

microinjection. Differential expression analysis identified 82 significantly altered genes 

(adjusted P-value < 0.05) by Stress miRs and 460 genes by Random miRs (Fig. 4.2a, b). 
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Strikingly, the majority of differentially expressed genes in both groups was 

downregulated, where genes altered by Stress miRs were largely shared with the Random 

miRs group. These results were confirmed using RRHO analysis, with the greatest degree 

of overlap (max –log10(P-value) = 605) in the top right corner (Fig. 4.2c), suggesting 

these genes were broadly influenced by the microinjection of miRs in the zygote and 

were not specific to one group of sperm miRs. We performed functional annotation 

analysis for GO terms of biological processes and identified several clusters shared 

between these two groups (Figure 4.2d). The most enriched processes altered by Stress 

miRs included transport and localization of macromolecules and lipids, inflammatory 

responses, and blood regulation. These pathways were also significantly enriched by 

Random miRs, but to a lesser extent than organization of the extracellular matrix and 

response to external stimuli. While the placental transcriptome was disrupted by both 

miR microinjection groups, there were more genes altered by Random miRs, supporting 

that placental changes depend on the miRs present in the zygote. This suggests the 

placenta is sensitive to the presence of specific miRs during early development, but is not 

the main contributor of brain programming by sperm miRs. 

 

Sperm miRs influence chromatin remodeling in the brain  

 To examine the mechanism by which sperm miRs promote long-term alterations 

in the brain transcriptome, we investigated the potential for zygote-microinjected miRs to 

epigenetically reprogram the brain. We performed quantitative histone mass spectrometry 

on whole E12.5 brains to compare the complete profile of histone post-translational 
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modifications (PTMs) between the PBS and Stress miR groups. We identified four 

histone PTMs significantly altered by Stress miRs (Figure 4.3a), suggesting sperm miRs 

can crosstalk with chromatin modifiers during development. Next, to assess whether 

chromatin remodeling continued in the adult hypothalamus and also pertained to our 

paternal stress model, we performed the same pipeline on pooled PVN from the 

hypothalamus in adult paternal stress offspring. We identified changes in the abundance 

of five histone PTMs (Figure 4.3b), suggesting an upstream mechanism whereby sperm 

miRs at fertilization can produce lasting transcriptional dysregulation in the developing 

and adult offspring brain. Finally, to test the persistence of developmentally altered 

histone PTMs, we examined the overlap between altered histone PTMs in the E12.5 brain 

vs. adult PVN. We observed no similarly changed histone marks between these time 

points, suggesting changes to the brain histone code by sperm miRs likely depends on a 

stepwise modulation of chromatin regulators and their expression levels across 

development. 

 

 
Discussion 

 Germ cell epigenetic marks have been implicated in mediating paternal stress 

transmission following exposures to stress, nutritional challenge, and substances of abuse 

(Carone, 2010; Dias, 2014; Dietz, 2011; Finegersh, 2014; Franklin, 2010; Lambrot, 2013; 

Rodgers, 2013; Vallaster, 2017; Vassoler, 2012). In particular, sperm miRs have been 

causally linked with offspring programming through zygote microinjection of 

experience-dependent miRs and examination of the resulting offspring in adulthood. In 
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our model of paternal stress, specific changes in sperm miRs transmitted a dysregulated 

HPA stress axis response and transcriptional reprogramming in the PVN of the 

hypothalamus in offspring (Rodgers, 2013; Rodgers, 2015). Moreover, microinjection of 

these sperm miRs repressed maternal mRNA stores in the two-cell zygote. In the current 

study, we pursued the downstream effects of sperm miR action in developing offspring 

with a focus on the embryonic brain and placenta, two tissues known to contribute to 

programming of the HPA stress axis. Moreover, we compared the effects of nine miRs 

altered by paternal stress experience to the effects of nine randomly selected miRs to 

assess the specificity of sperm miR action post-fertilization. 

 To evaluate the specific composition of sperm miRs co-regulated by 

environmental stress, we used bioinformatic methods to identify the putative targets of 

these miRs and whether these targets were enriched for biological processes relevant to 

the zygote. Unsurprisingly, there were no significantly enriched pathways for the 

predicted targets of the Random miRs group, whereas there were interesting, relevant 

developmental pathways predicted as targets of Stress miRs in the post-fertilization 

zygote. These data suggest changes in the paternal environment trigger a coordinated 

response, leading to a specific population of miRs altered in sperm. Such an organized 

mechanism is likely conserved to most efficiently and precisely regulate developmental 

processes, e.g. miRs that together tune the expression of various members of a 

developmental cellular pathway compared to miRs that have no relevant targets or that 

may compete with each other for targets (Sevignani, 2006; Zhao, 2007), resulting in less 

effective regulation, as has been suggested (Nyayanit et al., 2015). Related to our paternal 
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stress model, one significantly enriched cluster of GO terms for predicted Stress miR 

targets included processes relevant to neurodevelopment. Notably, one miR included in 

the Random group, miR-132, has been identified in another mouse model where paternal 

environmental enrichment transmitted cognitive benefits to offspring (Benito, 2018). In 

that model, increases in miR-132 were responsible for transmitting this phenotype, 

suggesting this miR in the proper context (i.e. composite of other miRs) may have 

influential, developmental effects. Moreover, a previous study in our lab showed that 

microinjection of one miR increased by paternal stress (miR-193-5p), at the same 

concentration as microinjection of nine Stress miRs combined, was ineffective in 

regulating mRNA in the zygote or reprogramming the adult hypothalamic transcriptome 

(Rodgers, 2015), supporting that paternal transmission occurs as result of a specific 

population of miRs delivered by sperm. 

 We further demonstrated the accuracy, as well as the specificity, of the pathways 

predicted as targets of Stress miRs in our examination of the embryonic brain 

transcriptome. Remarkably, we identified robust differences in the number of 

differentially expressed genes in embryos resulting from zygote microinjection of Stress 

miRs, compared to very few changes in those resulting from Random miRs. As these 

differentially expressed genes enriched for processes related to neurogenesis, neuron 

differentiation and regulation of synaptic transmission, stress miRs may delay or promote 

the rate of neurodevelopment, though this directionality is difficult to conclude, as the 

genes enriching for these processes were both up- and down-regulated. Importantly, the 

limited impact of Random miRs on neurodevelopment reinforces that it is the 
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composition of miRs delivered at fertilization, rather than the concentration or number of 

miRs, that results in developmental programming.  

 As miRs are unlikely to be maintained past numerous rounds of cell division and 

lineage specification (Gantier et al., 2011; Zhang et al., 2012), how then can sperm miRs 

influence embryonic brain development twelve days post-fertilization? We previously 

demonstrated that the Stress miRs repress maternal mRNA in the zygote, where the two 

most down-regulated genes were Sirt1 and Ube3a (Rodgers, 2015). Given the known 

developmental roles these two genes play in post-transcriptional regulation and 

neurodevelopment (Calvanese et al., 2010; Greer, 2010; Herskovits, 2014), they may 

initiate a cascade of molecular events upstream of brain transcriptome reprogramming. 

Indeed, neither Sirt1 nor Ube3a was altered in the whole E12.5 brain or adult 

paraventricular nucleus of the hypothalamus following zygote microinjection (Rodgers, 

2015), suggesting they act during a sensitive window of development to catalyze long-

term changes. 

 Gene expression differences in important developmental regulators in the 

pluripotent zygote suggest that sperm miRs likely influence development of multiple 

offspring tissues. As we were interested in identifying developmental antecedents to our 

adult stress dysregulation phenotype, we additionally focused on the placenta. 

Interestingly, we showed broad repression in the placental transcriptome by zygote 

microinjection of both miR groups, suggesting the placenta is sensitive to the early 

presence of miRs, regardless of the miR population. However, specific miRs within the 

Random miR group may be responsible for the robust downregulation of genes. For 
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example, miR-223, miR-149 and miR-301a have been linked with preeclampsia and 

preterm birth in humans (Choi et al., 2013; Gray et al., 2017; Vashukova et al., 2016; 

Yang et al., 2015), suggesting these miRs may be specifically important for placental 

development. As the fetally-derived trophoblasts of the placenta are one of the first cell 

lineages to differentiate (Red-Horse, 2004), there are fewer steps between direct sperm 

miR action in the zygote and placental development than for other embryonic tissues, 

suggesting the placenta is more vulnerable to miR functions in the zygote. Indeed, our 

data suggest some tissue specificity in sperm miR effects, as Random miRs result in 

broad transcriptional reprogramming in the placenta, but not in the embryonic brain. 

Moreover, these data suggest that, for this model, the placenta is an unlikely contributor 

to brain reprogramming, and that paternal stress sperm miRs impact the developing brain 

via changes to the embryonic, and not extra-embryonic, lineage that lies upstream of 

neural differentiation.  

 In order to understand how sperm miRs introduced transiently at fertilization 

results in persistent transcriptional reprogramming in the brain, we examined histone 

PTMs as changes to the histone code can govern transcriptional regulation and 

neurodevelopment (Dulac, 2010; Fagiolini et al., 2009; Yoo et al., 2009). Moreover, 

following zygote microinjection of Stress miRs, the histone deacetylase Sirt1 was 

repressed in the zygote, and the expression of numerous known histone modifiers (e.g. 

the H3K36 methyltransferase Setd2, and the H3K27 demethylase UTY) was significantly 

altered in the E12.5 brain, suggesting sperm miRs may crosstalk with other epigenetic 

modifiers to produce gene expression changes. Indeed, there were significant alterations 
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in histone PTMs including H3K27 and H3K36, consistent with our RNA sequencing data 

that modifiers of those histone peptide sites were altered at this time point. Interestingly, 

the regulation of these two marks is thought to be tightly intertwined, such that 

methylation on one site antagonizes the methylation status of the other (Yuan et al., 

2011), suggesting a careful balance of transcriptional repression and activation. 

Moreover, genetic ablation of readers and writers of these marks are associated with 

neurodevelopmental disorders, including Wolf-Hirschhorn and Weaver syndromes 

(Parkel et al., 2013), supporting the role of these marks in guiding neuroplasticity that 

ultimate reprograms adult brain function.  

 We next extended these histone PTM findings in the adult paternal stress 

offspring PVN as a means of relating our observations from microinjected embryos with 

animals from our paternal stress model. We again detected significant differences in 

histone PTMs in the PVN that may lie upstream of the transcriptional repression we 

previously observed. As the control center of the HPA stress axis response, chromatin 

regulation of these changes in the PVN transcriptome may produce the stress 

dysregulation phenotype in our model. Indeed, methylation of H3K9 and acetylation of 

H4 lysines have been implicated as crucial regulators of both the acute and chronic 

effects of stress in other brain regions (Ferland et al., 2014; Hunter et al., 2009; 

Kenworthy et al., 2014; Levine et al., 2012; Pathak et al., 2017; Sun et al., 2013). 

Interestingly, in a separate model of paternal stress transmission, H4K5ac was implicated 

in promoting the behavioral phenotypes in offspring (Gapp et al., 2016), suggesting the 

influential role of these histone marks in their convergent response to acute, chronic, and 
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paternal stress. As the PVN encompasses a small region within the hypothalamus, 

technical limitations currently restrict our ability to test this relationship in our model.  

 Next, we assessed whether the same histone PTMs governed transcriptional 

dysregulation during embryonic development vs. adulthood. Comparing the significantly 

altered histone PTMs by either zygote microinjection of Stress miRs or by paternal stress 

transmission, we observed no shared histone marks altered between these time points. 

Unsurprisingly, the composition of histone marks and variants mature across 

development and adulthood (Maze et al., 2015). Thus, the functional importance of 

histone PTMs in our model may also be time-specific, resulting from a cascade of 

epigenetic modifiers changing over time, consistent with our data, or the interaction of 

Stress miR-induced remodeling with age. However, the comparison of an entire 

embryonic brain with the specific region of the PVN, and/or the differences in 

transmission of paternal stress with sperm miR microinjection may also contribute to this 

observation. 

 Together, our findings demonstrate that sperm miRs altered by paternal stress can 

influence offspring neurodevelopment through stepwise changes in chromatin and 

transcriptional regulation. Disruption of the embryonic brain transcriptome suggests 

developmental antecedents in the paternal transmission of offspring endophenotypes. 

Moreover, specificity in the sperm miR population at fertilization suggests a conserved 

and coordinated process by which paternal tissues convey information capable of 

offspring programming. These studies confer the importance of germ cell epigenetic 
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marks in influencing offspring outcomes, and further emphasize the paternal 

preconception environment as a potential factor in the etiology of disease. 
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Figure 4.1. Paternal stress sperm miRs specifically program the embryonic brain 
transcriptome. (a) Schematic of experimental design: single-cell zygotes were 
microinjected with either nine miRs previously identified in transmitting paternal stress 
effects (Stress miRs), a composite of nine miRs that are lowly expressed in sperm and 
unresponsive to stress exposure (Random miRs), or a PBS control. Resultant 2-cell 
zygotes were transferred into surrogate fosters where one treatment group (X) was 
transferred to the left uterine horn and another group (Y) was transferred to the right 
uterine horn. As embryos were collected at E12.5, this allowed for harvesting of each 
individual uterus and the control of the maternal intrauterine environment. (b) 
Differential expression analyses of E12.5 male brains showing the robust and specific 
effects of Stress miRs are presented as the log2 fold change of each miR group compared 
with PBS, where each dot represents one gene color-coded for significance. Red: adjusted 
P-value < 0.05, PBS v. Stress. Purple: adjusted P-value < 0.05, PBS v. Stress and PBS v. 
Random. Black: not significant by either comparison. N = 6 embryos/group. (c) Venn 
diagrams of significant differentially expressed genes for each miR microinjection 
comparison with PBS, and their overlap. (d) Rank-rank hypergeometric overlap (RRHO) 
was used between the differential expression profiles of PBS v. Stress miRs and PBS v. 
Random miRs, showing the degree of significant overlap in a threshold-free manner (max 
-log10(P-value) = 15. Few overlapping genes clustered in the bottom left corner, 
indicating upregulation by both miR microinjection groups (see key, right). (e) 
Functional annotation cluster analysis of all differentially expressed genes by Stress miR 
microinjection using gene ontology (GO) terms for biological processes, with a cutoff of 
Benjamini-corrected P-value < 0.05 and Davidtools Enrichment Score > 1.3. For each 
significantly enriched cluster, one GO term is plotted.  
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Figure 4.2. Sperm miRs at fertilization influence the placental transcriptome. (a) 
Differential expression analyses of E12.5 male placentas showing transcriptional 
downregulation as a result of both miR microinjection groups are presented as the log2 
fold change of each miR group compared with PBS, where each dot represents one gene 
color-coded for significance. Red: adjusted P-value < 0.05, PBS v. Stress. Blue, adjusted 
P-value < 0.05. Purple: adjusted P-value < 0.05, PBS v. Stress and PBS v. Random. 
Black: not significant by either comparison. N = 5-6 samples/group. (b) Venn diagrams 
of significant differentially expressed genes for each miR microinjection comparison with 
PBS, and their overlap. (c) Rank-rank hypergeometric overlap (RRHO) was used 
between the differential expression profiles of PBS v. Stress miRs and PBS v. Random 
miRs, showing the degree of significant overlap in a threshold-free manner (max -
log10(P-value) = 605. There was strong overlap in the genes in the top right corner, 
indicating extensive repression in placental gene expression by both miR microinjection 
groups (see key, Fig. 1d, right). (d) Functional annotation cluster analysis of all 
differentially expressed genes by Stress miRs (red bars) and Random miRs (blue bars) 
using GO terms for biological processes, with a cutoff of Benjamini-corrected P-value < 
0.05 and Davidtools Enrichment Score > 1.3. One representative GO term was plotted for 
the top significantly enriched clusters for each miR group analysis, showing the majority 
of enriched placental processes affected by both Stress and Random miRs.  
 
  



	   104	  

 

Figure 4.3. Paternal stress sperm miRs influence the histone code in developing and 
adult brains. (a) To examine the how sperm miRs at fertilization can promote long-term 
transcriptional changes, we performed quantitative histone mass spectrometry on E12.5 
whole brains following zygote microinjection. We identified four histone PTMs 
significantly altered by Stress miRs. N = 4-5 embryos/group; Mann-Whitney U, **P < 
0.01, *P < 0.05. (b) Histone mass spectrometry of adult paternal stress offspring pooled 
paraventricular nuclei samples was conducted to examine continued chromatin 
remodeling in adulthood as related to our paternal stress mouse model. We similarly 
identified five histone PTMs significantly altered by paternal stress exposure. N = 4-5; 
Mann-Whitney U, **P < 0.01, *P < 0.05. Box plots indicate median ± interquartile range 
(edges of box) and range (bars). 
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PBS Stress miRs Random miRs

- mmu-miR-29c mmu-miR-132-3p

- mmu-miR-30a mmu-miR-149-5p

- mmu-miR-30c mmu-miR-15a-5p

- mmu-miR-32 mmu-miR-223-5p

- mmu-miR-193-5p mmu-miR-292a-3p

- mmu-miR-204 mmu-miR-301a-5p

- mmu-miR-375 mmu-miR-326-3p

- mmu-miR-532-3p mmu-miR-466d-3p

- mmu-miR-698 mmu-miR-709

Table 4.1. Composition of microinjection treatment groups
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Table 4.2. Functional annotation clustering of putative Stress miR targets in the zygote
Annotation Cluster 1 Enrichment Score: 3.61
Term Fold Enrichment Benjamini
GO:0016043~cellular component organization 1.62 0.03
GO:0071840~cellular component organization or biogenesis 1.58 0.01
GO:0044085~cellular component biogenesis 1.82 0.06
GO:0006996~organelle organization 1.46 0.25

Annotation Cluster 2 Enrichment Score: 2.73
Term Fold Enrichment Benjamini
GO:0033554~cellular response to stress 2.49 0.02
GO:0006950~response to stress 1.60 0.12
GO:0051716~cellular response to stimulus 1.16 0.58

Annotation Cluster 3 Enrichment Score: 2.64
Term Fold Enrichment Benjamini
GO:0051179~localization 1.55 0.03
GO:0071702~organic substance transport 1.95 0.05
GO:0061024~membrane organization 2.90 0.05
GO:1902580~single-organism cellular localization 2.76 0.05
GO:0006810~transport 1.62 0.05
GO:0051640~organelle localization 3.96 0.05
GO:0034613~cellular protein localization 2.29 0.05
GO:0070727~cellular macromolecule localization 2.27 0.05
GO:0046907~intracellular transport 2.39 0.05
GO:0044802~single-organism membrane organization 3.01 0.06
GO:0045184~establishment of protein localization 2.06 0.06
GO:0051234~establishment of localization 1.57 0.06
GO:0015031~protein transport 2.07 0.07
GO:0033036~macromolecule localization 1.79 0.07
GO:0010256~endomembrane system organization 3.42 0.07
GO:0008104~protein localization 1.84 0.08
GO:0051656~establishment of organelle localization 3.97 0.09
GO:0051641~cellular localization 1.82 0.10
GO:0051649~establishment of localization in cell 1.99 0.11
GO:1902582~single-organism intracellular transport 2.93 0.13
GO:0006886~intracellular protein transport 2.26 0.22
GO:0033365~protein localization to organelle 2.36 0.22
GO:0016192~vesicle-mediated transport 2.00 0.25
GO:1902578~single-organism localization 1.45 0.31
GO:0044765~single-organism transport 1.45 0.36
GO:0006605~protein targeting 2.33 0.37
GO:0072594~establishment of protein localization to organelle 2.31 0.44
GO:0051049~regulation of transport 1.36 0.71

Annotation Cluster 4 Enrichment Score: 2.21
Term Fold Enrichment Benjamini
GO:0048666~neuron development 3.00 0.02
GO:0031175~neuron projection development 3.22 0.01
GO:0030182~neuron differentiation 2.60 0.02
GO:0048699~generation of neurons 2.45 0.02
GO:0030154~cell differentiation 1.69 0.04
GO:0022008~neurogenesis 2.28 0.05
GO:0030030~cell projection organization 2.35 0.05
GO:0007399~nervous system development 1.93 0.06
GO:0044707~single-multicellular organism process 1.44 0.06
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GO:0048869~cellular developmental process 1.57 0.06
GO:0048468~cell development 1.92 0.06
GO:0048812~neuron projection morphogenesis 3.28 0.06
GO:0048731~system development 1.52 0.09
GO:0032502~developmental process 1.41 0.10
GO:0007275~multicellular organism development 1.44 0.12
GO:0000904~cell morphogenesis involved in differentiation 2.52 0.14
GO:0044767~single-organism developmental process 1.38 0.15
GO:0048856~anatomical structure development 1.37 0.17
GO:0048667~cell morphogenesis involved in neuron differentiation 2.95 0.17
GO:0032989~cellular component morphogenesis 1.92 0.24
GO:0000902~cell morphogenesis 1.94 0.25
GO:0048858~cell projection morphogenesis 2.25 0.25
GO:0007409~axonogenesis 2.96 0.26
GO:0048513~animal organ development 1.46 0.27
GO:0032990~cell part morphogenesis 2.17 0.29
GO:0061564~axon development 2.74 0.31
GO:0009653~anatomical structure morphogenesis 1.48 0.37
GO:0006928~movement of cell or subcellular component 1.63 0.40
GO:0007411~axon guidance 3.68 0.40
GO:0097485~neuron projection guidance 3.66 0.41
GO:0040011~locomotion 1.63 0.46
GO:0045664~regulation of neuron differentiation 2.06 0.48
GO:0050767~regulation of neurogenesis 1.89 0.50
GO:0048870~cell motility 1.62 0.52
GO:0051674~localization of cell 1.62 0.52
GO:0051960~regulation of nervous system development 1.69 0.62
GO:0032501~multicellular organismal process 1.12 0.68
GO:0006935~chemotaxis 1.45 0.92
GO:0042330~taxis 1.45 0.92

Annotation Cluster 5 Enrichment Score: 2.18
Term Fold Enrichment Benjamini
GO:0048522~positive regulation of cellular process 1.65 0.02
GO:0051254~positive regulation of RNA metabolic process 2.45 0.04
GO:0048518~positive regulation of biological process 1.56 0.05
GO:0006357~regulation of transcription from RNA polymerase II promoter 2.20 0.05
GO:0006366~transcription from RNA polymerase II promoter 2.20 0.05
GO:0051173~positive regulation of nitrogen compound metabolic process 2.15 0.05
GO:0045935~positive regulation of nucleobase-containing compound metabolic process 2.19 0.05
GO:0045893~positive regulation of transcription, DNA-templated 2.33 0.06
GO:1903508~positive regulation of nucleic acid-templated transcription 2.33 0.06
GO:1902680~positive regulation of RNA biosynthetic process 2.32 0.06
GO:0006351~transcription, DNA-templated 1.74 0.06
GO:0010557~positive regulation of macromolecule biosynthetic process 2.17 0.06
GO:0045944~positive regulation of transcription from RNA polymerase II promoter 2.53 0.06
GO:0048523~negative regulation of cellular process 1.55 0.07
GO:0019219~regulation of nucleobase-containing compound metabolic process 1.59 0.09
GO:0031325~positive regulation of cellular metabolic process 1.75 0.09
GO:0044260~cellular macromolecule metabolic process 1.32 0.09
GO:0051252~regulation of RNA metabolic process 1.61 0.10
GO:0010604~positive regulation of macromolecule metabolic process 1.73 0.10
GO:0031328~positive regulation of cellular biosynthetic process 2.01 0.10
GO:2000112~regulation of cellular macromolecule biosynthetic process 1.57 0.10
GO:0009891~positive regulation of biosynthetic process 1.97 0.11
GO:0048519~negative regulation of biological process 1.47 0.11
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GO:0051171~regulation of nitrogen compound metabolic process 1.51 0.12
GO:0010556~regulation of macromolecule biosynthetic process 1.53 0.12
GO:0034645~cellular macromolecule biosynthetic process 1.46 0.13
GO:0006355~regulation of transcription, DNA-templated 1.58 0.13
GO:1903506~regulation of nucleic acid-templated transcription 1.58 0.13
GO:2001141~regulation of RNA biosynthetic process 1.58 0.13
GO:0018130~heterocycle biosynthetic process 1.52 0.14
GO:0019438~aromatic compound biosynthetic process 1.51 0.14
GO:0010628~positive regulation of gene expression 1.92 0.15
GO:0009059~macromolecule biosynthetic process 1.42 0.17
GO:0009893~positive regulation of metabolic process 1.61 0.17
GO:0097659~nucleic acid-templated transcription 1.54 0.17
GO:0090304~nucleic acid metabolic process 1.43 0.17
GO:0031323~regulation of cellular metabolic process 1.37 0.17
GO:0032774~RNA biosynthetic process 1.53 0.17
GO:0043170~macromolecule metabolic process 1.25 0.17
GO:1901362~organic cyclic compound biosynthetic process 1.47 0.18
GO:0031326~regulation of cellular biosynthetic process 1.47 0.18
GO:0009889~regulation of biosynthetic process 1.45 0.21
GO:0034654~nucleobase-containing compound biosynthetic process 1.46 0.22
GO:0016070~RNA metabolic process 1.40 0.25
GO:0044237~cellular metabolic process 1.19 0.25
GO:0046483~heterocycle metabolic process 1.33 0.26
GO:0006725~cellular aromatic compound metabolic process 1.32 0.29
GO:0010468~regulation of gene expression 1.39 0.29
GO:1901360~organic cyclic compound metabolic process 1.31 0.30
GO:0044249~cellular biosynthetic process 1.31 0.30
GO:0044271~cellular nitrogen compound biosynthetic process 1.35 0.30
GO:0009058~biosynthetic process 1.29 0.31
GO:0080090~regulation of primary metabolic process 1.30 0.31
GO:0019222~regulation of metabolic process 1.28 0.33
GO:1901576~organic substance biosynthetic process 1.28 0.34
GO:0006139~nucleobase-containing compound metabolic process 1.30 0.34
GO:0060255~regulation of macromolecule metabolic process 1.28 0.37
GO:0034641~cellular nitrogen compound metabolic process 1.26 0.38
GO:0006807~nitrogen compound metabolic process 1.24 0.39
GO:0010467~gene expression 1.25 0.48
GO:0044238~primary metabolic process 1.14 0.48
GO:0008152~metabolic process 1.12 0.50
GO:0071704~organic substance metabolic process 1.12 0.52
GO:0065007~biological regulation 1.10 0.53
GO:0051716~cellular response to stimulus 1.16 0.58
GO:0050794~regulation of cellular process 1.08 0.73
GO:0050789~regulation of biological process 1.07 0.74
GO:0007165~signal transduction 1.08 0.87

Annotation Cluster 6 Enrichment Score: 1.80
Term Fold Enrichment Benjamini
GO:0046847~filopodium assembly 16.24 0.05
GO:0051491~positive regulation of filopodium assembly 20.11 0.06
GO:0051489~regulation of filopodium assembly 12.99 0.12
GO:0031346~positive regulation of cell projection organization 3.19 0.22
GO:0031344~regulation of cell projection organization 2.35 0.31
GO:0044087~regulation of cellular component biogenesis 1.97 0.47
GO:0060491~regulation of cell projection assembly 3.90 0.51
GO:0030031~cell projection assembly 2.23 0.61
GO:0044089~positive regulation of cellular component biogenesis 1.76 0.84
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Annotation Cluster 7 Enrichment Score: 1.71
Term Fold Enrichment Benjamini
GO:0006357~regulation of transcription from RNA polymerase II promoter 2.20 0.05
GO:0006366~transcription from RNA polymerase II promoter 2.20 0.05
GO:0051252~regulation of RNA metabolic process 1.61 0.10
GO:0045934~negative regulation of nucleobase-containing compound metabolic process 1.98 0.18
GO:0051172~negative regulation of nitrogen compound metabolic process 1.85 0.22
GO:0031324~negative regulation of cellular metabolic process 1.64 0.24
GO:0051253~negative regulation of RNA metabolic process 1.94 0.25
GO:0000122~negative regulation of transcription from RNA polymerase II promoter 2.29 0.29
GO:0009892~negative regulation of metabolic process 1.51 0.36
GO:2000113~negative regulation of cellular macromolecule biosynthetic process 1.73 0.38
GO:0010629~negative regulation of gene expression 1.63 0.43
GO:0010558~negative regulation of macromolecule biosynthetic process 1.66 0.44
GO:0031327~negative regulation of cellular biosynthetic process 1.59 0.48
GO:0010605~negative regulation of macromolecule metabolic process 1.45 0.48
GO:0009890~negative regulation of biosynthetic process 1.56 0.50
GO:0045892~negative regulation of transcription, DNA-templated 1.68 0.51
GO:1903507~negative regulation of nucleic acid-templated transcription 1.66 0.52
GO:1902679~negative regulation of RNA biosynthetic process 1.64 0.54

Annotation Cluster 8 Enrichment Score: 1.70
Term Fold Enrichment Benjamini
GO:0061024~membrane organization 2.90 0.05
GO:1902580~single-organism cellular localization 2.76 0.05
GO:0044802~single-organism membrane organization 3.01 0.06
GO:0010256~endomembrane system organization 3.42 0.07
GO:1903729~regulation of plasma membrane organization 9.50 0.09
GO:1903076~regulation of protein localization to plasma membrane 8.66 0.22
GO:1904375~regulation of protein localization to cell periphery 8.54 0.22
GO:0072657~protein localization to membrane 3.09 0.24
GO:1904377~positive regulation of protein localization to cell periphery 11.41 0.32
GO:1903078~positive regulation of protein localization to plasma membrane 11.41 0.32
GO:0007009~plasma membrane organization 3.35 0.35
GO:0090003~regulation of establishment of protein localization to plasma membrane 9.17 0.39
GO:0072659~protein localization to plasma membrane 3.75 0.40
GO:0060341~regulation of cellular localization 1.98 0.41
GO:1990778~protein localization to cell periphery 3.42 0.44
GO:1903827~regulation of cellular protein localization 2.25 0.46
GO:0090150~establishment of protein localization to membrane 2.93 0.52
GO:0032880~regulation of protein localization 1.71 0.55
GO:0090002~establishment of protein localization to plasma membrane 3.34 0.75
GO:1903829~positive regulation of cellular protein localization 1.77 0.89
GO:1904951~positive regulation of establishment of protein localization 1.49 0.91

Annotation Cluster 9 Enrichment Score: 1.68
Term Fold Enrichment Benjamini
GO:0010941~regulation of cell death 2.02 0.11
GO:0012501~programmed cell death 1.92 0.12
GO:0008219~cell death 1.87 0.12
GO:0006915~apoptotic process 1.93 0.12
GO:0042981~regulation of apoptotic process 2.00 0.16
GO:0043067~regulation of programmed cell death 1.98 0.17
GO:0097190~apoptotic signaling pathway 2.68 0.22
GO:0010942~positive regulation of cell death 2.51 0.26
GO:2001237~negative regulation of extrinsic apoptotic signaling pathway 6.43 0.30
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GO:0043065~positive regulation of apoptotic process 2.43 0.34
GO:0043068~positive regulation of programmed cell death 2.41 0.35
GO:0043066~negative regulation of apoptotic process 2.00 0.37
GO:0043069~negative regulation of programmed cell death 1.97 0.38
GO:2001234~negative regulation of apoptotic signaling pathway 3.66 0.41
GO:0097191~extrinsic apoptotic signaling pathway 3.33 0.46
GO:0060548~negative regulation of cell death 1.80 0.47
GO:2001236~regulation of extrinsic apoptotic signaling pathway 3.87 0.51
GO:2001233~regulation of apoptotic signaling pathway 2.45 0.54
GO:0001655~urogenital system development 2.14 0.73

Annotation Cluster 10 Enrichment Score: 1.56
Term Fold Enrichment Benjamini
GO:0080135~regulation of cellular response to stress 4.00 0.02
GO:0043412~macromolecule modification 1.72 0.05
GO:0036211~protein modification process 1.71 0.06
GO:0006464~cellular protein modification process 1.71 0.06
GO:0031325~positive regulation of cellular metabolic process 1.75 0.09
GO:0044260~cellular macromolecule metabolic process 1.32 0.09
GO:0010604~positive regulation of macromolecule metabolic process 1.73 0.10
GO:0065009~regulation of molecular function 1.84 0.11
GO:0010648~negative regulation of cell communication 2.28 0.11
GO:0044093~positive regulation of molecular function 2.21 0.11
GO:0023057~negative regulation of signaling 2.28 0.11
GO:0080134~regulation of response to stress 2.22 0.12
GO:0044267~cellular protein metabolic process 1.45 0.15
GO:0042327~positive regulation of phosphorylation 2.34 0.17
GO:0031399~regulation of protein modification process 1.93 0.17
GO:0009893~positive regulation of metabolic process 1.61 0.17
GO:0043170~macromolecule metabolic process 1.25 0.17
GO:0046330~positive regulation of JNK cascade 6.29 0.18
GO:0048583~regulation of response to stimulus 1.55 0.18
GO:0031401~positive regulation of protein modification process 2.16 0.19
GO:0019538~protein metabolic process 1.38 0.21
GO:0001934~positive regulation of protein phosphorylation 2.27 0.22
GO:0006796~phosphate-containing compound metabolic process 1.58 0.22
GO:0006793~phosphorus metabolic process 1.57 0.22
GO:0009968~negative regulation of signal transduction 2.13 0.23
GO:0032874~positive regulation of stress-activated MAPK cascade 5.38 0.23
GO:0070304~positive regulation of stress-activated protein kinase signaling cascade 5.34 0.24
GO:0010646~regulation of cell communication 1.57 0.24
GO:0019220~regulation of phosphate metabolic process 1.81 0.24
GO:0051174~regulation of phosphorus metabolic process 1.81 0.24
GO:0023051~regulation of signaling 1.55 0.25
GO:0045937~positive regulation of phosphate metabolic process 2.07 0.25
GO:0010562~positive regulation of phosphorus metabolic process 2.07 0.25
GO:0042325~regulation of phosphorylation 1.88 0.25
GO:0001932~regulation of protein phosphorylation 1.91 0.26
GO:0046328~regulation of JNK cascade 4.56 0.30
GO:0006468~protein phosphorylation 1.71 0.31
GO:0007254~JNK cascade 4.40 0.31
GO:0032268~regulation of cellular protein metabolic process 1.56 0.35
GO:0016310~phosphorylation 1.59 0.37
GO:0009966~regulation of signal transduction 1.52 0.37
GO:0051246~regulation of protein metabolic process 1.51 0.38
GO:0048584~positive regulation of response to stimulus 1.61 0.39
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GO:0032872~regulation of stress-activated MAPK cascade 3.75 0.40
GO:0035556~intracellular signal transduction 1.51 0.40
GO:0070302~regulation of stress-activated protein kinase signaling cascade 3.73 0.40
GO:0048585~negative regulation of response to stimulus 1.73 0.41
GO:0010647~positive regulation of cell communication 1.67 0.42
GO:0023056~positive regulation of signaling 1.67 0.43
GO:0051403~stress-activated MAPK cascade 3.42 0.44
GO:0050790~regulation of catalytic activity 1.59 0.46
GO:0031098~stress-activated protein kinase signaling cascade 3.22 0.48
GO:0051247~positive regulation of protein metabolic process 1.64 0.48
GO:0043410~positive regulation of MAPK cascade 2.34 0.50
GO:0007154~cell communication 1.20 0.52
GO:0023052~signaling 1.19 0.57
GO:0051716~cellular response to stimulus 1.16 0.58
GO:0007166~cell surface receptor signaling pathway 1.37 0.61
GO:0009967~positive regulation of signal transduction 1.53 0.63
GO:0043408~regulation of MAPK cascade 1.85 0.63
GO:0044700~single organism signaling 1.17 0.63
GO:0000165~MAPK cascade 1.80 0.65
GO:0023014~signal transduction by protein phosphorylation 1.79 0.66
GO:0043085~positive regulation of catalytic activity 1.62 0.67
GO:1902531~regulation of intracellular signal transduction 1.41 0.71
GO:1902533~positive regulation of intracellular signal transduction 1.55 0.75
GO:0007165~signal transduction 1.08 0.87
GO:0051338~regulation of transferase activity 1.42 0.88
GO:0051347~positive regulation of transferase activity 1.58 0.89
GO:0043549~regulation of kinase activity 1.39 0.91
GO:0045860~positive regulation of protein kinase activity 1.61 0.93
GO:0071900~regulation of protein serine/threonine kinase activity 1.54 0.94
GO:0071902~positive regulation of protein serine/threonine kinase activity 1.81 0.94
GO:0033674~positive regulation of kinase activity 1.47 0.95
GO:0045859~regulation of protein kinase activity 1.27 0.96
GO:0044710~single-organism metabolic process 0.86 1.00

Annotation Cluster 11 Enrichment Score: 1.40
Term Fold Enrichment Benjamini
GO:1902110~positive regulation of mitochondrial membrane permeability in apoptotic process 18.71 0.22
GO:1902686~mitochondrial outer membrane permeabilization in programmed cell death 18.71 0.22
GO:0035794~positive regulation of mitochondrial membrane permeability 16.70 0.23
GO:1902108~regulation of mitochondrial membrane permeability involved in apoptotic process 14.61 0.26
GO:0046902~regulation of mitochondrial membrane permeability 9.95 0.37
GO:0090559~regulation of membrane permeability 8.82 0.40
GO:0006839~mitochondrial transport 3.54 0.43
GO:0007006~mitochondrial membrane organization 5.50 0.55
GO:0008637~apoptotic mitochondrial changes 4.33 0.65
GO:0007005~mitochondrion organization 1.61 0.79

Annotation Cluster 12 Enrichment Score: 1.38
Term Fold Enrichment Benjamini
GO:0030154~cell differentiation 1.69 0.04
GO:0048869~cellular developmental process 1.57 0.06
GO:0042221~response to chemical 1.45 0.22
GO:0070887~cellular response to chemical stimulus 1.55 0.29
GO:0071310~cellular response to organic substance 1.56 0.39
GO:0010033~response to organic substance 1.36 0.51
GO:1901700~response to oxygen-containing compound 1.40 0.69
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GO:0014070~response to organic cyclic compound 1.55 0.71
GO:0071495~cellular response to endogenous stimulus 1.44 0.75
GO:1901701~cellular response to oxygen-containing compound 1.47 0.76
GO:0009719~response to endogenous stimulus 1.26 0.85
GO:0009725~response to hormone 1.33 0.91

Annotation Cluster 13 Enrichment Score: 1.34
Term Fold Enrichment Benjamini
GO:0007420~brain development 2.51 0.18
GO:0007417~central nervous system development 2.25 0.18
GO:0060322~head development 2.36 0.22
GO:0021543~pallium development 4.35 0.32
GO:0021537~telencephalon development 2.92 0.53
GO:0030900~forebrain development 2.26 0.60
GO:0021987~cerebral cortex development 3.93 0.69
GO:0021953~central nervous system neuron differentiation 2.24 0.89

Annotation Cluster 14 Enrichment Score: 1.31
Term Fold Enrichment Benjamini
GO:0007416~synapse assembly 6.39 0.18
GO:0031344~regulation of cell projection organization 2.35 0.31
GO:0050808~synapse organization 3.27 0.47
GO:0050803~regulation of synapse structure or activity 2.78 0.55
GO:0050807~regulation of synapse organization 3.65 0.72
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Table 4.3. Functional annotation clustering of putative Random miR targets in the zygote
Annotation Cluster 1 Enrichment Score: 1.80
Term Fold Enrichment Benjamini
GO:0030163~protein catabolic process 3.49 0.68
GO:0044257~cellular protein catabolic process 3.76 0.58
GO:0019941~modification-dependent protein catabolic process 4.20 0.49
GO:0043632~modification-dependent macromolecule catabolic process 4.14 0.34
GO:0044265~cellular macromolecule catabolic process 3.25 0.35
GO:0009057~macromolecule catabolic process 2.90 0.31
GO:0051603~proteolysis involved in cellular protein catabolic process 3.55 0.36
GO:0006511~ubiquitin-dependent protein catabolic process 3.80 0.40
GO:0044248~cellular catabolic process 2.29 0.45
GO:1901575~organic substance catabolic process 2.09 0.51
GO:0009056~catabolic process 1.98 0.53
GO:0051865~protein autoubiquitination 13.58 0.53
GO:0006508~proteolysis 1.88 0.60
GO:0070647~protein modification by small protein conjugation or removal 2.02 0.75
GO:0042787~protein ubiquitination involved in ubiquitin-dependent protein catabolic process 4.70 0.75
GO:0043161~proteasome-mediated ubiquitin-dependent protein catabolic process 2.97 0.77
GO:0000209~protein polyubiquitination 4.29 0.78
GO:0032446~protein modification by small protein conjugation 2.04 0.80
GO:0010498~proteasomal protein catabolic process 2.72 0.81
GO:0016567~protein ubiquitination 1.83 0.90

Annotation Cluster 2 Enrichment Score: 1.46
Term Fold Enrichment Benjamini
GO:1902680~positive regulation of RNA biosynthetic process 2.73 0.85
GO:0051254~positive regulation of RNA metabolic process 2.62 0.42
GO:1903508~positive regulation of nucleic acid-templated transcription 2.55 0.31
GO:0045893~positive regulation of transcription, DNA-templated 2.55 0.31
GO:0045944~positive regulation of transcription from RNA polymerase II promoter 2.80 0.35
GO:0010557~positive regulation of macromolecule biosynthetic process 2.32 0.38
GO:0006357~regulation of transcription from RNA polymerase II promoter 2.20 0.40
GO:0045935~positive regulation of nucleobase-containing compound metabolic process 2.24 0.43
GO:0010628~positive regulation of gene expression 2.15 0.48
GO:0031328~positive regulation of cellular biosynthetic process 2.14 0.46
GO:0051173~positive regulation of nitrogen compound metabolic process 2.10 0.46
GO:0009891~positive regulation of biosynthetic process 2.10 0.44
GO:0090304~nucleic acid metabolic process 1.53 0.44
GO:0006351~transcription, DNA-templated 1.72 0.45
GO:0044260~cellular macromolecule metabolic process 1.31 0.56
GO:0006366~transcription from RNA polymerase II promoter 2.01 0.55
GO:0043170~macromolecule metabolic process 1.26 0.54
GO:0006139~nucleobase-containing compound metabolic process 1.41 0.57
GO:0010604~positive regulation of macromolecule metabolic process 1.66 0.58
GO:0006355~regulation of transcription, DNA-templated 1.56 0.59
GO:1903506~regulation of nucleic acid-templated transcription 1.56 0.59
GO:2001141~regulation of RNA biosynthetic process 1.55 0.59
GO:0048522~positive regulation of cellular process 1.42 0.60
GO:0019219~regulation of nucleobase-containing compound metabolic process 1.49 0.59
GO:0034645~cellular macromolecule biosynthetic process 1.42 0.59
GO:0046483~heterocycle metabolic process 1.38 0.59
GO:1901360~organic cyclic compound metabolic process 1.36 0.59
GO:0034641~cellular nitrogen compound metabolic process 1.34 0.58
GO:0097659~nucleic acid-templated transcription 1.52 0.60
GO:0006725~cellular aromatic compound metabolic process 1.36 0.59
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GO:0032774~RNA biosynthetic process 1.51 0.59
GO:0051171~regulation of nitrogen compound metabolic process 1.45 0.59
GO:0051252~regulation of RNA metabolic process 1.50 0.59
GO:0006807~nitrogen compound metabolic process 1.31 0.59
GO:0009059~macromolecule biosynthetic process 1.39 0.60
GO:0080090~regulation of primary metabolic process 1.35 0.60
GO:0031325~positive regulation of cellular metabolic process 1.59 0.60
GO:0044237~cellular metabolic process 1.20 0.61
GO:0009893~positive regulation of metabolic process 1.55 0.62
GO:0009058~biosynthetic process 1.32 0.62
GO:1901362~organic cyclic compound biosynthetic process 1.42 0.62
GO:0044249~cellular biosynthetic process 1.32 0.62
GO:0031399~regulation of protein modification process 1.81 0.63
GO:0034654~nucleobase-containing compound biosynthetic process 1.42 0.63
GO:0048518~positive regulation of biological process 1.33 0.63
GO:1901576~organic substance biosynthetic process 1.30 0.64
GO:0018130~heterocycle biosynthetic process 1.40 0.64
GO:0019438~aromatic compound biosynthetic process 1.40 0.65
GO:0031323~regulation of cellular metabolic process 1.29 0.67
GO:2000112~regulation of cellular macromolecule biosynthetic process 1.39 0.69
GO:0044238~primary metabolic process 1.17 0.69
GO:0071704~organic substance metabolic process 1.15 0.71
GO:0010556~regulation of macromolecule biosynthetic process 1.36 0.71
GO:0009889~regulation of biosynthetic process 1.34 0.71
GO:0019222~regulation of metabolic process 1.24 0.73
GO:0044271~cellular nitrogen compound biosynthetic process 1.29 0.74
GO:0016070~RNA metabolic process 1.30 0.76
GO:0008152~metabolic process 1.12 0.75
GO:0060255~regulation of macromolecule metabolic process 1.23 0.76
GO:0031326~regulation of cellular biosynthetic process 1.30 0.77
GO:0006468~protein phosphorylation 1.55 0.79
GO:0010468~regulation of gene expression 1.26 0.81
GO:0010467~gene expression 1.22 0.82
GO:0009719~response to endogenous stimulus 1.37 0.92
GO:0042127~regulation of cell proliferation 1.34 0.93

Annotation Cluster 3 Enrichment Score: 1.46
Term Fold Enrichment Benjamini
GO:0033365~protein localization to organelle 3.39 0.37
GO:0017038~protein import 5.20 0.35
GO:1902578~single-organism localization 1.84 0.33
GO:0044765~single-organism transport 1.87 0.31
GO:0042990~regulation of transcription factor import into nucleus 11.11 0.42
GO:0042991~transcription factor import into nucleus 10.98 0.42
GO:0051234~establishment of localization 1.59 0.46
GO:0051179~localization 1.48 0.47
GO:0042992~negative regulation of transcription factor import into nucleus 22.21 0.45
GO:0071702~organic substance transport 1.88 0.46
GO:0006810~transport 1.58 0.45
GO:0046822~regulation of nucleocytoplasmic transport 5.50 0.50
GO:1902580~single-organism cellular localization 2.55 0.54
GO:0034613~cellular protein localization 2.12 0.57
GO:0051051~negative regulation of transport 3.35 0.55
GO:0070727~cellular macromolecule localization 2.10 0.56
GO:0072594~establishment of protein localization to organelle 3.16 0.54
GO:0042308~negative regulation of protein import into nucleus 12.42 0.56
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GO:1904590~negative regulation of protein import 12.42 0.56
GO:0006913~nucleocytoplasmic transport 3.61 0.56
GO:0008104~protein localization 1.75 0.57
GO:0051169~nuclear transport 3.58 0.57
GO:0006606~protein import into nucleus 4.38 0.58
GO:1902593~single-organism nuclear import 4.38 0.58
GO:0044744~protein targeting to nucleus 4.38 0.58
GO:0051170~nuclear import 4.35 0.57
GO:1902582~single-organism intracellular transport 2.92 0.59
GO:0046823~negative regulation of nucleocytoplasmic transport 10.62 0.59
GO:1900181~negative regulation of protein localization to nucleus 10.32 0.59
GO:0006605~protein targeting 2.85 0.58
GO:0042306~regulation of protein import into nucleus 5.55 0.58
GO:1904589~regulation of protein import 5.43 0.59
GO:0051223~regulation of protein transport 2.49 0.60
GO:0045184~establishment of protein localization 1.81 0.59
GO:0033036~macromolecule localization 1.63 0.59
GO:0051641~cellular localization 1.69 0.59
GO:0015031~protein transport 1.83 0.60
GO:0032880~regulation of protein localization 2.20 0.61
GO:0090317~negative regulation of intracellular protein transport 8.33 0.61
GO:0070201~regulation of establishment of protein localization 2.33 0.62
GO:0034504~protein localization to nucleus 3.33 0.63
GO:1900180~regulation of protein localization to nucleus 4.38 0.63
GO:0051224~negative regulation of protein transport 4.32 0.63
GO:0006886~intracellular protein transport 2.18 0.64
GO:0032387~negative regulation of intracellular transport 6.79 0.64
GO:1904950~negative regulation of establishment of protein localization 4.12 0.64
GO:0046907~intracellular transport 1.87 0.67
GO:0032879~regulation of localization 1.55 0.67
GO:1903828~negative regulation of cellular protein localization 5.27 0.72
GO:1902532~negative regulation of intracellular signal transduction 2.66 0.73
GO:1903533~regulation of protein targeting 3.27 0.73
GO:0032386~regulation of intracellular transport 2.55 0.75
GO:0051649~establishment of localization in cell 1.56 0.78
GO:1903827~regulation of cellular protein localization 2.20 0.82
GO:0033157~regulation of intracellular protein transport 2.62 0.82
GO:0051049~regulation of transport 1.47 0.83
GO:0060341~regulation of cellular localization 1.70 0.89
GO:0042981~regulation of apoptotic process 1.15 0.99
GO:0043067~regulation of programmed cell death 1.14 0.99
GO:0097190~apoptotic signaling pathway 1.26 1.00

Annotation Cluster 4 Enrichment Score: 1.30
Term Fold Enrichment Benjamini
GO:0015849~organic acid transport 10.98 0.42
GO:1905039~carboxylic acid transmembrane transport 19.29 0.45
GO:1903825~organic acid transmembrane transport 19.29 0.45
GO:0006820~anion transport 3.47 0.58
GO:0015711~organic anion transport 4.13 0.59
GO:0098656~anion transmembrane transport 7.64 0.62
GO:0006865~amino acid transport 7.12 0.63
GO:0046942~carboxylic acid transport 3.91 0.67
GO:0006811~ion transport 1.62 0.81
GO:0034220~ion transmembrane transport 1.78 0.91
GO:0071705~nitrogen compound transport 1.40 0.98
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Stress miRs Random miRs
Dnmt3a Pex13
Ubn1 Epha4
Arf4 Iqgap2
Pnn Ralbp1

Ptpn21 Ptpn7
Bnip3l Cnn3
Vapa Ptp4a2

Ptpn13 Cd81
Eed Svil

Sfrs7 Mkln1
Rap1b Hivep1

Slc30a4 Slc7a2
Becn1 Ube2a
Cdh2 Yes1
Ilf2 Rcn2

Tomm70a Ier3
Trip12 Rb1
Atf2 Slc6a6

Gtf2h1 Pik3r1
Jak1 Gtf2h1
Mest Ube3a
Snx4 Irf1
Nasp Usp1

Ppm1d Ptprr
Wasl Ppm1b
Fmr1 Gtf2b
Atrx Ubqln2
Btg2 Tagln2
Evi5 Timm10
Ptpro Api5

Map2k4 Golph3
Itga6 Nrf1
Ptpre Elf2

Prkar1a Fdft1
Slc16a2 Mcm5
Pik3r1 Pcyox1
Cdk9 Med28
Traf4 Stx17

Nfe2l1 Nln

Supplementary Table 4.1. Putative sperm miR target 
genes in the oocyte and/or zygote
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Large Cadps2
Papolg Abcc1
Gpt2 Gnb4
Capza1 Slc7a11
Rab38 Tnfaip8
Xpr1 Mpp5
Ttc13 Rbm9
Ndel1 Tjp2
Lrrfip2 Arhgef11
Usp47 Ubap2
Pitpnm2 Qtrtd1
Ube2g1 Ctdsp1
Fbxo42 Wdr32
Dlgap4 Scamp5
Tnfaip8 Rybp
Ripk1 Mllt3
Rnf122 Topbp1
Mkrn1 Mpzl1
Dicer1 Sfrs1
Ap1s3 Jag1
Mrps25 Tnpo1
Dyrk1a Lamc1
Farp1 Tollip
Dpp10 Dffb
Mllt3 Slc4a7
Dnajc14 2810407c02rik
Dusp19 Il1rap
Fbxl19 C1galt1c1
Spop Hectd2
Ss18l1 1110067d22rik
Nr6a1 D12ertd551e
Elf2 Anp32e
Osbp Dclre1a
Abcb6 Slc30a5
Wdr32 Ccnt2
Spna2 Pkd2
Rnf12 Depdc1a
Pigc Mlstd2
Per3 -
Srpr -
Myo1b -
Dock5 -
Stx17 -
Rbpms2 -
Tob1 -
Plekhm1 -
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Yap1 -
Hipk2 -
Slc6a7 -
Myo5b -
Dnajb1 -
Zfp687 -
Zswim4 -
Srf -

Mbtps1 -
B4galt2 -
Slc4a7 -
Atad2 -
Rev3l -
Stag2 -
Ptgfrn -
Slc41a2 -
Ccnt2 -
Ddx19b -
Pdcl -
Unc5c -
Acvr1 -
Slc12a6 -
Col9a3 -
Drctnnb1a -
Ssr3 -
Tmem2 -
Epha7 -
Elovl5 -
Rhot1 -

2810485i05rik -
Kctd5 -
Il1rap -
Cdca4 -
Dbt -
Lamc1 -
Kif5b -
Cog3 -
Rsbn1 -
Unc84a -
Slc12a5 -
Gpm6a -
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Supplementary Table 4.2. Summary of embryo and litter statistics

Injected litters PBS Stress miRs Random miRs ANOVA P-value

litter N 5 5 5 - -
zygotes per uterine horn 5.2 ± 2.9 4.6 ± 2.9 5.4 ± 2.5 F2, 12 = 0.11 0.89

implantation (%) 53.3 ± 17.0 50.1 ± 20.5 59.8 ± 31.2 F2, 12 = 0.23 0.79
male (%) 41.0 ± 10.2 47.2 ±  15.0 47.6 ± 33.0 F2, 12 = 0.13 0.87
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CHAPTER FIVE 

GENERAL DISCUSSION 

 

 Stress, encompassing various environmental challenges that disrupt homeostasis, 

is a well-established risk factor for neuropsychiatric disorders across the lifespan (de 

Kloet, 2005; McEwen, 2000). With recent studies, such as those in this dissertation, we 

now understand that stress occurring during parental preconception windows can also 

influence disease risk in subsequent generations (Lane, 2014). Parental germ cells 

(spermatozoa and oocytes) that receive environmental inputs across the lifetime can 

respond to these cues, resulting in changes in epigenetic marks that are disseminated at 

fertilization. In particular, evidence from numerous rodent models now demonstrate that 

paternal lifetime exposures to a variety of stressors are signaled to sperm to influence 

offspring behavior, physiology, and disease risk. In our established mouse model, 

paternal stress exposure alters sperm miR content to disrupt offspring HPA stress axis 

responsivity (Rodgers, 2013), an underlying feature of many neuropsychiatric disorders 

such as major depression, post-traumatic stress disorder, schizophrenia, and autism 

(Arborelius et al., 1999; Corbett et al., 2014; Nestler et al., 2002; Walker et al., 2008; 

Yehuda, 2009). While HPA axis dysregulation alone is not indicative of disease, 

cumulative aberrant responses to lifetime stressors can precipitate disease onset or 

exacerbate existing symptoms, contributing to the extensive multifactorial etiology of 

neuropsychiatric disorders (Lupien et al., 2009; Russo et al., 2012). Thus, expanding on 

the ongoing examination of gene x environment interactions that underlie disease 
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vulnerability, mechanisms by which paternal stress experiences are transmitted to 

influence offspring outcomes should be considered. Currently, there are two major gaps 

in understanding intergenerational transmission of paternal stress: 1) the soma-to-

germline mechanism whereby the reproductive tract senses perturbations in the paternal 

environment to alter sperm content, and 2) how sperm epigenetic marks subsequently 

shift the trajectory of offspring development to reflect the paternal environment. 

 In order to answer these questions, we used our established paternal stress mouse 

model, exploiting the known relationship between a paternal exposure, resultant offspring 

phenotype, and specific sperm miRs that can be manipulated in the zygote (Rodgers, 

2013; Rodgers, 2015). First, we hypothesized that glucocorticoids, a major component of 

stress signaling following activation of the HPA axis, were involved in communicating 

with the male reproductive tract to alter sperm miRs following chronic stress exposure. 

However, critical to testing this hypothesis, not all mouse lines used in rodent research 

produce the same levels of glucocorticoids in response to stress (Shanks, 1990), making 

some mouse strains more susceptible to the effects of glucocorticoids in experimental 

stress paradigms and therefore, the choice of mouse strain a critical factor in experimental 

reproducibility (Anisman, 2005; Benedetti et al., 2012). In Chapter 2 of this dissertation, 

we developed an approach to test the stress susceptibility and reactivity of several mouse 

strains. We quantified and compared the extent of HPA axis activation in response to 

stress between mouse strains in order to standardize the level of glucocorticoids released 

into circulation, as this indicates the amount available for cellular programming in our 

model. Though the use of mouse strains based on stress susceptibility is not a novel 
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concept, our goal was to identify a simple and quantifiable method to ensure all 

experimental mice in our model shared similar stress reactivity, glucocorticoid levels, 

and, thus, germ cell and offspring programming. However, the utility of this approach is 

more generalizable in the field of stress research, especially when incorporating new 

transgenic mouse lines that arrive on stress resistant backgrounds. Using the HPA stress 

axis as a readout, these new lines can be backcrossed until exhibiting appropriate stress 

reactivity for experimental conditions. 

 Having this method in our arsenal, we next investigated the role of 

glucocorticoids in programming somatic cells of the reproductive tract, presented in 

Chapter 3 of this dissertation. We examined the role of the epididymis, where the 

involvement of extracellular vesicles (EVs) produced from caput epididymal epithelial 

cells (termed ‘epididymosomes’) was recently suggested to deliver miRs to maturing 

sperm (Belleannée, 2013; Reilly, 2016). Using both our mouse model and cultured DC2 

caput epididymal epithelial cells, we showed that chronic stress in vivo and 

glucocorticoid administration in vitro resulted in long-term increases in glucocorticoid 

receptor (GR) levels and reprogramming of the epididymal histone code, consistent with 

previous research regarding the capacity for glucocorticoids to remodel chromatin via GR 

(John, 2008). Further, we demonstrated that glucocorticoid treatment alone could produce 

similar changes in the miR content of EVs secreted from DC2 cells as we saw in sperm 

following chronic stress. This study provided a central finding as, despite the recent surge 

in EV research as a novel mode of intercellular communication within numerous bodily 

systems (Raposo, 2013; Tetta, 2013), scarce studies to date have examined the impact of 
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glucocorticoids or even chronic stress on EV content/function. However, the most 

striking finding of this dissertation lie in the rescue of paternal stress transmission of 

offspring HPA axis dysregulation using a combination of three transgenic mouse lines to 

block stress-induced GR increases specifically within the paternal caput epididymal 

epithelial cells, showing a molecule within a somatic cell that signaled germ cell 

reprogramming in response to the paternal environment. Moreover, each data point had 

different effects depending on time collected post-stress (acute vs. enduring), suggesting 

that it is not only the type and length of paternal exposure, but also processing time post-

treatment that impacts germ cell programming. These data demonstrated a cellular 

pathway whereby stress resulted in long-term increases in caput epididymal GR 

expression, remodeling the epididymal histone code to produce enduring changes in EV 

miR content that fuse with sperm, integrating what is known within the fields of stress, 

EV, epigenetic, and andrology research to produce a unique mechanism of paternal 

transmission.  

 Understanding how paternal stress is communicated from the caput epididymis to 

alter sperm miRs, we next questioned how these changes in sperm miRs influenced 

offspring development. We hypothesized that sperm miRs repress maternal mRNAs in 

the zygote immediately post-fertilization, initiating a cascade of transcriptional and 

molecular events that guide neurodevelopment towards a paternal stress phenotype 

(Rodgers, 2015). With the ability to microinject specific sperm miRs altered by paternal 

stress into a naïve, fertilized zygote, we examined the downstream effects of these miRs 

on neurodevelopment. Multiple research groups interested in paternal transmission have 
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implicated different populations of sperm miRs (Fullston et al., 2016; Gapp, 2014; 

Rompala, 2018), prompting our examination of the specificity of sperm miRs altered by 

paternal stress. Previous unpublished work in the lab examined the expression of our nine 

paternal stress miRs in intergenerational transmission models of chronic cocaine 

administration (Vassoler, 2012) and odor-paired fear conditioning (Dias, 2014) where 

they were not altered in sperm, suggesting that the paternal exposure induces expression 

of a distinct population of sperm miRs. In Chapter 4, we expanded on these results with 

the addition of a Random miR group, including nine sperm miRs that were present but 

unchanged by stress exposure. We examined the effects of the Stress vs. Random miR 

groups on the embryonic brain and placenta, two tissues previously described with the 

capabilities to disrupt development of the HPA stress axis (Bronson et al., 2016; Kapoor 

et al., 2006). In this study, we found that these two populations of miRs had distinct 

targets during development, where our paternal stress miRs resulted in broad 

transcriptional changes in the developing brain, compared to practically no differences in 

the Random miRs group. In comparison, both groups disrupted the placental 

transcriptome, showing both the specificity of sperm miR composites and their tissue 

targeting. Moreover, both embryonic whole brains and paternal stress PVN showed 

chromatin remodeling, demonstrating that sperm miRs influence epigenetic regulators to 

promote lasting downstream effects. The changes to these histone PTMs may lie 

upstream of the transcriptional dysregulation that promotes a stress dysregulation 

phenotype; however, technical limitations regarding the size of the PVN restricts our 

ability to make these associations for now. This study was important in adding 
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developmental time points to our model, confirming our previous conclusions that 

paternal stress sperm miRs impact neurodevelopment by functioning during a sensitive 

window to initiate a cascade of events, rather than being maintained in expression until 

adulthood. 

 Together, these studies on the mechanisms of paternal stress transmission 

received an R37 merit award from the National Institute for Mental Health, providing ten 

years of funding and showing the substantial interest in advancing this field of research. 

This interest spans multiple disciplines, as researchers in the fields of metabolism, drug 

abuse, epigenetics, and fertility have built considerable evidence supporting 

intergenerational transmission through the paternal lineage. Thus, the following 

discussion will address the implications of this work, including future directions and 

potential translational approaches. 

 

Does paternal stress transmission equate to disease transmission? 

 Neuropsychiatric disorders are multifactorial in etiology, where some factors can 

produce disease in a subset of individuals and not others. For example, while most 

individuals experience chronic psychological stress across the lifetime, the incidence of 

disorders such as schizophrenia and autism spectrum disorders remains at 30% of the 

general population (Blaxill, 2004; Chen et al., 2007; Elsabbagh et al., 2012; Simonoff et 

al., 2008; Weintraub, 2011). Additionally, hyporeactivity of the HPA stress axis is 

observed in many, but not all, patients with post-traumatic stress disorder (Meewisse, 

2007; Sherin, 2011). In a similar manner, paternal preconception stress may transmit 
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endophenotypes of risk (i.e. HPA axis dysregulation) that alone do not equate to disease, 

but can prime an individual if accumulated with other risk factors. This idea is known as 

the two- or multiple-hit hypothesis, originally proposed in the context of mutations 

contributing to cancer (Knudson, 1971), but now applied more broadly to neuropathology 

(Gershon et al., 2011; Giovanoli et al., 2013; Maynard et al., 2001). This hypothesis 

generally considers the interaction of gene x environment, where a genetic vulnerability 

compounded by trauma may precipitate disease. We can apply our results from Chapters 

2 and 3 of this dissertation, where a mouse genetic background underlying a robust 

physiological response to stress (C57BL/6:129 mixed F1) was required in order to 

produce paternal stress effects. As previously noted, the use of a pure stress-resistant 

C57BL/6J strain for this model was insufficient to produce offspring HPA axis 

reprogramming (Rompala, 2018), suggesting our model actually incorporates three 

sequential hits - requiring a 1) genetic vulnerability for 2) paternal stress effects to 

transmit offspring 3) HPA axis dysregulation. 

 With this hypothesis in mind, what might happen to naïve paternal stress 

offspring that show no other cognitive or behavioral impairments but are downstream of 

three “hits”, if administered stress during the lifetime? We expect that additional stress 

may precipitate other disease endophenotypes, such as depression-like behaviors or social 

impairments on behavioral tests, though these experiments have not yet been conducted. 

Interestingly and relevant to other studies in our lab, stress during in utero development 

may also compound paternal stress effects. In other words, can maternal gestational stress 

act as an additional hit? As disruption of placental development and signaling is a major 
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component of maternal stress effects, our data from Chapter 4 of this dissertation, where 

zygote microinjection of sperm miRs disrupted the placental transcriptome, suggest this 

is an intriguing possibility. Indeed, human studies suggest that the combined impact of 

paternal and maternal trauma increases offspring risk of anxiety, depressive, and post-

traumatic stress disorders (Lehrner, 2014; Yehuda, 2008a, 2014). However, there have 

been limited studies examining the interaction of paternal and maternal stress effects on 

offspring risk. 

 Despite our discussion thus far that paternal preconception stress can promote 

disease risk, in reality this is an oversimplified interpretation of the role of paternal 

transmission. Evolutionarily, germ cell programming may reflect the inheritance of 

phenotypes that, in fact, are advantageous. In our model, transmission of altered HPA 

axis reactivity may better prepare offspring for a stressful environment based on paternal 

experiences. Furthermore, unpublished data from our lab suggest that paternal stress 

offspring exposed to caloric restriction in adulthood lose less weight than control 

offspring, suggesting they may be more metabolically equipped for the potential of 

famine in their lifetime. Certainly, these conclusions must be made with caution, though 

other paternal transmission studies have similar findings (Benito et al., 2018; Gapp, et al., 

2014). For example, in a study of paternal chronic cocaine exposure, cocaine-sired 

offspring self-administered less cocaine than control offspring, suggesting inheritance of 

a resistance phenotype (Vassoler, 2012). Therefore, paternal preconception exposures 

may transmit risk or resilience to disease dependent on the offspring environment. 
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Are miR delivery mechanisms a broad mode of stress programming? 

 MiRs are an enticing regulatory mechanism given their essential role in the 

development and function of all tissues, responsiveness to external triggers, and ability to 

repress numerous transcripts (Cai et al., 2009; Leung et al., 2010; Morgan et al., 2012). 

Many miRs acting on genes post-transcriptionally in a cell are themselves transcribed in 

the nucleus and processed into the cytoplasm. Recent descriptions of exogenous or 

extracellular miRs being delivered to and functioning within cells provide an exciting 

mechanism for intercellular and inter-tissue communication (da Silveira, 2018; Tetta, 

2013). As we have described, EVs delivering a payload of miRs, as well as proteins, 

lipids and other RNA populations, from one cell to another to regulate various processes, 

including neural and glial communication (Lafourcade et al., 2016; Morel et al., 2013), 

immune function (Valadi et al., 2007), and sperm maturation (Reilly, 2016; Sullivan, 

2007). Subsequently, we now know that sperm can deliver miRs to the oocyte 

(Ostermeier et al., 2004), where they act to impact offspring development. Given the 

recent literature and the studies included in this dissertation, the intercellular transport of 

miRs provide an intriguing mechanism whereby tissues responsive to stress signals can 

communicate with each other or relay those signals to less responsive or unexposed 

tissues. 

 The influential role of miRs delivered to other cells is vast, where one sperm 

carrying <10 fg of miRs to a stress-naïve oocyte containing about 1 ng RNA (a ratio of 

1:105), can shift maternal mRNA control of zygote development to incorporate paternal 

signals in offspring phenotypes (Boerke, 2007; Krawetz, 2005). However, skeptics of 
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sperm miR-mediated transmission question the raw numbers of miRs actually carried in 

by sperm, and whether microinjection experiments reflect these numbers. To test this 

question, the combination of small RNA standards must be incorporated with single cell 

sequencing of one sperm cell, which has not yet been accomplished. Moreover, as we 

now understand that epididymal epithelial cells produce EV populations containing miR 

profiles reflective of sperm content, some of these epididymal EVs do not fuse with 

sperm but are instead incorporated into the seminal fluid along with EVs from the 

seminal vesicle glands and prostate (Aalberts et al., 2013; Belleannée, 2015; Machtinger, 

2016; Sullivan, 2013). When ejaculated into the female reproductive tract, these 

populations of EVs can interact with female cells or further with spermatozoa (Aalberts, 

2013; Robertson et al., 2013, 2016). Thus, it is possible the epididymal EVs can fuse 

further with or get “stuck” on sperm cells following ejaculation, bringing further RNA 

cargo to the oocyte. Indeed, sperm that are stringently washed of seminal factors prior to 

methods of in vitro fertilization (IVF), such as intracytoplasmic sperm injection (ICSI), 

for use in fertility clinics or transgenic mouse cores often produce lower birth rates or 

changes in offspring outcomes (Anthony, 2002; Cox et al., 2002; Ecker et al., 2004; 

Fernandez-Gonzalez et al., 2004; Giritharan et al., 2007; Rybouchkin et al., 1995; 

Yoshida et al., 2007). This has been previously attributed to many potential factors 

(Odom et al., 2010; Rinaudo et al., 2004; Rinaudo et al., 2006; Stouder et al., 2009), 

including the protein content of seminal fluid factors, such as prostasomes through their 

modulation of female immune cells and capacitation of sperm (Aalberts, 2013; Bromfield 

et al., 2014; Robertson, 2016). However, seminal fluid EV miRs, amongst other EV 
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components such as lipids or tRFs, may be poised to act on female reproductive and 

immune cells and sperm post-coitus as well, as has been described in the vagina 

(Madison et al., 2015; Vojtech et al., 2014). Ongoing studies examining this possibility 

for seminal fluid EV miRs to influence the pre-implantation microenvironment post-

ejaculation should be conducted as an additional mode of paternal to offspring 

communication of stress signals. 

 Given the capacity for EV miRs to relay stress signals between somatic and germ 

cells within one reproductive system or between paternal and maternal cells in the female 

genital tract, might EV miRs also communicate between somatic tissues within one 

individual? Recent evidence suggests this inter-system regulatory possibility, where EV 

miRs can communicate axon injury between sensory neurons and macrophages (Simeoli 

et al., 2017) and glucose regulation between adipose tissue and the liver (Thomou et al., 

2017). Our data presented in Chapter 3 (Fig. 3.1f,g) and collected from ongoing studies 

add to this growing, complex network of intercellular conversation. Injection followed by 

imaging of dye-labeled EVs collected from a pure population of cultured caput 

epididymal epithelial cells into the bloodstream of male mice revealed selective EV 

accumulation in the caput epididymis, testes, and brain. Given the physical connection 

between the caput epididymis and testes via the efferent ducts (Cornwall, 2009), such 

communication within the male reproductive tract is unsurprising, though the function of 

epididymal EVs traveling upstream to the testes has not been tested. Remarkably, that 

epididymal EVs may localize to the brain suggest an exciting mechanism whereby 

reproductive tissues can convey information centrally. Moreover, as we know that 
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glucocorticoid treatment alters epididymal EV miR content, and likely other components 

as well, can these EV miRs regulate gene expression in the brain and potentially 

influence behavior or physiology? These questions are of course not limited to the 

epididymis, as all cells in the body are implicated to secrete EVs (Raposo, 2013; Tetta, 

2013) and comprise GR (Oakley et al., 2013). Thus, the role of cellular EVs in delivering 

stress signals, perhaps in the form of miRs, to other cells in the body is an exciting 

potential mode of stress programming of both the individual exposed to stress and 

subsequent offspring. 

 

What is the translational potential of paternal transmission research? 

 The majority of studies supporting paternal transmission and sperm miRs thus far 

are derived primarily from mouse models. As sperm is an easily obtainable biological 

material in humans, the potential use of sperm miRs as biomarkers of prior stress 

exposure or disease risk is an exciting prospect. However, evidence in human populations 

that sperm miRs reflect paternal exposures and contribute to offspring outcomes is 

limited. The principal epidemiological studies underlying paternal transmission were 

retrospective examinations, restricting those researchers from collecting tissue. More 

recently, prospective studies have enabled recruitment of men and collection of their 

semen for RNA analysis. For example, a study comparing smokers to non-smokers 

observed altered miR profiles in sperm (Marczylo et al., 2012), suggesting a potential 

link for previous retrospective observations that paternal smoking influenced offspring 

health (Deng, 2013; Ji, 1997; Pembrey, et al., 2006). The ability to classify specific miR 
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profiles in sperm as indicative of paternal exposures or offspring endophenotypes would 

be immensely useful in the development of predictive disease biomarkers. The potential 

to identify at-risk individuals may then inform clinical decisions, including altering 

prenatal care and earlier interventions for children. However, there are still many 

questions that require investigation in human cohorts. 

 While mouse models of paternal transmission have identified several populations 

of sperm miRs that, through proof of concept experiments, are involved in programming 

offspring outcomes, whether these miRs have similar functions in humans is not known. 

For example, one of our paternal stress sperm miRs, miR-204-5p, is transcribed from 

chromosome 19 in mice but chromosome 9 in humans despite sharing sequence 

homology, as determined by miRBase (Griffiths-Jones et al., 2008), suggesting distinct 

mechanisms of miR regulation between humans and mice. Further, whether stress-

responsive sperm miRs across species converge to act on the same biological pathways in 

the zygote has not been examined. Therefore, the identity of sperm miRs that respond to 

paternal exposures in humans needs to be specifically surveyed. Adding to the intricacy 

of sperm miR regulation in humans is timing from the initial exposure. Our mouse data 

suggests that the timing of post-stress processing, appended to the effects of stress 

duration, contributes to sperm miR programming. Given these dynamic changes in a 

controlled laboratory setting, it is likely that the profile of sperm miRs responsive to the 

environment also fluctuates over time in humans. Studies that repeatedly sample sperm at 

multiple time points following stress exposure could address and outline this dynamic 

regulation of sperm miRs in men. Another complication regarding the timing of sperm 
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regulation is the continuously changing environment across the human lifespan, as the 

impact of cumulative life experiences on sperm miR profiles is not known. It is 

conceivable that sequential life events can ablate or override the expression of previously 

responsive miRs, or perhaps accumulate to create a unique population. This can be 

examined in prospective human cohorts, where at the time of semen collection, 

questionnaires accounting for stress, diet and other life events can be administered to 

associate specific sperm miR populations with one or a combination of exposures, and to 

assess how these miR levels change over time and/or in response to additional triggers. 

  

Concluding remarks 
 
 Mechanisms by which the paternal lineage can influence offspring development 

were historically reduced to the delivery of genomic material by sperm. In this 

dissertation, we challenged these previous notions by describing three levels by which the 

paternal germ cell contribution is altered by stress to impact offspring outcomes: 1) at the 

level of sperm, by delivering stress-sensitive miRs capable of disrupting offspring 

neurodevelopment, 2) at the level of the paternal epididymis, which can detect stress in 

the environment and alter sperm content, and 3) at the level of the paternal physiological 

response to stress, which governs the degree of reproductive tissue programming. 

Importantly, we have built on the growing intergenerational transmission literature by 

establishing a soma-to-germline mechanism whereby an environmental trigger is 

communicated to sperm, demonstrating a fundamental biological process for the 

regulation and transmission of non-genetic signals at fertilization. Altogether, these 
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studies provide insight into the factors and processes that shape disease risk and 

resilience, prompting new consideration for the role of the paternal environment as a key 

determinant of offspring development. 
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