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Abstract
The equilibrium between energy consumption and energy production defines the metabolic rate of an
organism. This homeostatic balance is tightly regulated by a variety of sophisticated processes that occur
within and between cells and tissues. These processes also allow animals to tolerate some deviation from
baseline by recruiting adaptive mechanisms to bring cells and organisms back to homeostasis. Temporary
changes in the organism’s environment, such as alterations in ambient temperature, oxygen levels and
infections are examples of conditions where animals must have a healthful adaptive metabolic response,
allowing them to sustain the duration of the stress. However, in conditions of chronic disease or long-term
stress, these adaptive mechanisms can no longer be protective and may even contribute to the damage
incurred by the animal. Therefore, metabolism can either be healthful and adaptive to stressors, or stressors
can induce pathogenic metabolic changes in an organism. In this body of work, I explore this bidirectional
relationship between external stresses and organismal metabolism. In chapter 2, I investigate the contribution
of hypermetabolism (energy production > energy consumption) in a mouse model of the disease
amyotrophic lateral sclerosis (ALS). While hypermetabolism is a feature of ALS, it is not known if it
contributes to disease pathogenesis. In a mouse model of ALS, I genetically induce hypometabolism to
determine if this change alters disease progression. In chapter 3, I study the role of neuropeptides in regulating
hypometabolic tolerance to extreme oxygen deprivation. Here, I employ C. elegans, a genetically tractable
soil-dwelling nematode, as a model. Worms can tolerate long durations of anoxia by lowering their metabolic
rate, and loss of neuropeptide signaling can further increase its ability to tolerate this stress. I investigate
various aspects of neuropeptide regulation of this phenotype. Together, these projects demonstrate the role of
metabolism in health, disease and stress, and suggest that inter-cellular and inter-tissue communication is a
critical aspect of metabolic homeostasis.
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ABSTRACT 

 

GENETIC REGULATORS OF TOXICITY IN A MOUSE MODEL OF AMYOTROPHIC  
 

LATERAL SCLEROSIS AND A WORM MODEL OF ANOXIC INJURY 
 

Shachee Doshi 

Robert G. Kalb 

 

The equilibrium between energy consumption and energy production defines the 

metabolic rate of an organism. This homeostatic balance is tightly regulated by a variety 

of sophisticated processes that occur within and between cells and tissues. These 

processes also allow animals to tolerate some deviation from baseline by recruiting 

adaptive mechanisms to bring cells and organisms back to homeostasis. Temporary 

changes in the organism’s environment, such as alterations in ambient temperature, 

oxygen levels and infections are examples of conditions where animals must have a 

healthful adaptive metabolic response, allowing them to sustain the duration of the 

stress. However, in conditions of chronic disease or long-term stress, these adaptive 

mechanisms can no longer be protective and may even contribute to the damage 

incurred by the animal. Therefore, metabolism can either be healthful and adaptive to 

stressors, or stressors can induce pathogenic metabolic changes in an organism. In this 

body of work, I explore this bidirectional relationship between external stresses and 

organismal metabolism. In chapter 2, I investigate the contribution of hypermetabolism 

(energy production > energy consumption) in a mouse model of the disease amyotrophic 

lateral sclerosis (ALS). While hypermetabolism is a feature of ALS, it is not known if it 

contributes to disease pathogenesis. In a mouse model of ALS, I genetically induce 

hypometabolism to determine if this change alters disease progression. In chapter 3, I 



v	
	

study the role of neuropeptides in regulating hypometabolic tolerance to extreme oxygen 

deprivation. Here, I employ C. elegans, a genetically tractable soil-dwelling nematode, 

as a model. Worms can tolerate long durations of anoxia by lowering their metabolic 

rate, and loss of neuropeptide signaling can further increase its ability to tolerate this 

stress. I investigate various aspects of neuropeptide regulation of this phenotype. 

Together, these projects demonstrate the role of metabolism in health, disease and 

stress, and suggest that inter-cellular and inter-tissue communication is a critical aspect 

of metabolic homeostasis. 
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CHAPTER 1  
 

 

General Introduction 

 

Metabolic homeostasis is essential to health and physiology. It operates at 

cellular and organismal levels to coordinate and balance energy intake and expenditure. 

However, it can deviate from this homeostatic balance in conditions of stress and 

disease. Here, I will explore two different contexts of metabolism - one in which 

metabolic adaptation is detrimental to a particular neurodegenerative disease, and 

another in which metabolic adaptation is essential to survival against an environmental 

stress. 

 

Metabolic dysfunction at the organism level is a feature of many 

neurodegenerative diseases such as Alzheimer’s disease (AD), Amyotrophic lateral 

sclerosis (ALS), Huntington’s disease (HD) and Parkinson’s disease (PD) (Dupuis et al., 

2011; Cai et al., 2012). These changes are not  identical across these diseases, but it is 

interesting to note that many of the same markers such as circulating hormones and 

body weight are commonly altered in all of them. A brief outline of these abnormalities 

follows below. 

In Alzheimer’s disease, the most widely occurring neurodegenerative disease 

and the leading cause of dementia and cognitive impairment, increased body weight in 

midlife (35-65 years) has a significant correlation with onset of dementia in later life 

(Albanese et al., 2017). Type 2 diabetes is strongly correlated with AD, brain glucose 

metabolism is decreased in patients with AD compared to controls, and abnormalities in 
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glucose metabolism manifest decades before cognitive symptoms of AD (Mosconi, 

2005; Chen and Zhong, 2013; Duran-Aniotz and Hetz, 2016). AD patients can manifest 

neuronal insulin resistance and have increased brain insulin receptor expression (Frölich 

et al., 1998; Stanley et al., 2016). Metabolic hormones such as leptin and ghrelin are 

also altered in AD – higher circulating leptin correlates with higher brain volume and 

reduced incidence of dementia and AD while ghrelin mRNA is decreased in cortex of AD 

patients (Lieb et al., 2009; Gahete et al., 2010).  

HD patients have increased weight loss and increased fasting energy 

expenditure than controls (Pratley et al., 2000; Aziz et al., 2010). Patients also have 

increased leptin secretion with increased CAG repeat length (Ahmad Aziz et al., 2009). 

Total cholesterol, high density lipoprotein and low density lipoprotein levels are all 

decreased in HD patients compared to familial controls (Wang et al., 2014). 

In PD, patients have increased serum levels of insulin-like growth factor 1 

compared to healthy controls (Godau et al., 2010). Patients also demonstrate decreased 

body weight (Chen et al., 2003), and patients with decreased weight loss also have an 

unrelated decrease in circulating leptin (Evidente et al., 2001). 

ALS patients also present with a hypermetabolic phenotype, measured as a 

higher resting energy expenditure, that manifests early, is persistent and is correlated 

with survival (Desport et al., 2001; Bouteloup et al., 2009; Funalot et al., 2009a). A 

higher premorbid BMI and higher fat diets are associated with better disease 

progression in ALS (Ngo et al., 2014). Patients have impaired glucose tolerance (Pradat 

et al., 2010), and the level of total cholesterol is two-fold higher in ALS patients 

compared to controls (Dupuis et al., 2008). 

While there is a growing body of work highlighting a wide range of organism level 

deficits in metabolic homeostasis in neurodegenerative diseases, it is unknown if this 
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altered metabolic state contributes to worsening disease progression. It is, therefore, 

important to gain a deeper understanding of how perturbations in metabolic homeostasis 

contributes to the progression of various neurodegenerative diseases in order to devise 

effective treatment plans. In the current work, we focus on ALS to highlight and address 

whole organism metabolic changes observed in this disease.  

 

Amyotrophic Lateral Sclerosis 

 Amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease, Charcot 

disease and motor neuron disease, is a devastating neurodegenerative disease 

characterized by progressive loss of upper and lower motor neurons leading to muscle 

wasting, paralysis and ultimately death due to respiratory failure. It has a worldwide 

incidence of 1.9 in every 100,000 people (Arthur et al., 2016), and affects more men 

than women. It is also more prevalent in non-Hispanic populations, and affects military 

veterans and sports people at a higher rate than the rest of the population (Hardiman et 

al., 2011; Kiernan et al., 2011). ALS is the most common adult onset motor neuron 

disease, with an average age of onset around 55-60 (Ferraiuolo et al., 2011). It 

progresses rapidly, and most patients die within 3-5 years of symptom onset. In addition 

to motor symptoms, a subpopulation of patients also manifests deficits in cognitive 

functions such as decision-making and language processing (Phukan et al., 2007). As a 

result, ALS has significant clinical and biological overlap with frontotemporal dementia, 

and the two are thought to be on a pathophysiological continuum (Ling et al., 2013). Ling 

et al carefully describe the clinical features that set up the ALS-FTD spectrum as well as 

underlying genes and molecular mechanisms that may regulate ALS-FTD. For example, 

mutations in some genes such as SOD1 and TDP-43 are thought to predominantly result 

in ALS, while others in VCP and Tau are predominant in causing FTD, and still others 
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like C9orf72 can cause either ALS or FTD or both. It is expected that the number of 

people living with ALS will increase from 222,801 in 2015 to 376,674 in 2040, 

representing an increase of 69% (Arthur et al., 2016), and the disease will thus place a 

significant economic burden on society. There is currently no cure for the disease and 

Riluzole, one of two drugs approved for treatment of ALS, provides a very modest 

improvement in patient outcome (Renton et al., 2014). The FDA approved a second 

drug, Radicava, earlier this year, 22 years after Riluzole. However, it too, was only able 

to slow symptoms in a 6-month clinical trial without significantly altering disease course 

(Hardiman and van den Berg, 2017). 

The majority of ALS cases are sporadic (sALS), with no known single genetic 

abnormality but 5-10% of cases are familial (fALS) and result from single gene mutations 

with a family history of the disease (Ferraiuolo et al., 2011). The most common genetic 

cause of fALS is C9orf72, and the pathogenic expansion of a hexanucleotide repeat in 

the gene accounts for 25-40% of familial cases (Allen et al., 2014; Tan et al., 2014). 

While the exact function of the native protein encoded by the C9orf72 locus remains 

unclear, the disease-associated allele of C9orf72 (containing the GGGGCC repeat 

expansion) disrupts many aspects of cellular function. Cells with expanded C9orf72 have 

RNA accumulations in the nucleus with improper RNA processing and mis-splicing 

(Prudencio et al., 2015) and dysfunctional trafficking between the nucleus and cytoplasm 

(Zhang et al., 2015).  

The second most common causative gene in fALS is the Cu/Zn superoxide 

dismutase 1 (SOD1), accounting for 12-20% of familial cases (Renton et al., 2014). 

SOD1 is a cytosolic enzyme and is responsible for scavenging free radicals and 

converting superoxide to hydrogen peroxide. A large number of point mutations (>100) 

in SOD1 have been associated with ALS, and these mutations cause a toxic gain of 
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function in the enzyme, which leads to pathology (Mattiazzi, 2002; Lin and Beal, 2006). 

Mutations in TAR DNA-binding protein of 43kDa molecular weight (TDP-43), fused in 

sarcoma (FUS), optineurin (OPTN), valosin-containing protein (VCP), among others, are 

also known to cause fALS (Ferraiuolo et al., 2011; Renton et al., 2014).  

Generally, patients with fALS have an earlier age of onset than those with sALS, 

however, disease progression and pathological features of sALS and fALS share 

commonalities (Kiernan et al., 2011; Ngo et al., 2014). The most widely used mouse 

models of the disease are based on fALS-linked mutations in SOD1 and TDP-43. These 

models share many of the features of the disease, including death of motor neurons, 

muscle wasting, limb paralysis and short lifespan (Picher-Martel et al., 2016). Studies in 

these models of disease have revealed many cellular features and pathogenic 

characteristics associated with disease progression. Some of these include dysregulated 

RNA metabolism/trafficking, endoplasmic reticulum (ER) stress, oxidative stress, protein 

misfolding and aggregation, autophagy, mitochondrial dysfunction, impaired axonal 

transport and inflammation (Tefera and Borges, 2017). Adding to this list is a growing 

body of work implicating the role of altered metabolism to ALS pathophysiology. 

 

Metabolic dysfunction in ALS 

 Studies in ALS patients and animal models have revealed a range of organism-

level and cellular metabolic abnormalities, some of which are highlighted below: 

(i) ALS patients and mouse models display hypermetabolism, a state in which energy 

expended by the organism is greater than the energy consumed (Dupuis et al., 2004; 

Bouteloup et al., 2009; Dupuis et al., 2011; Ngo et al., 2014). There is a 20% increase in 

resting energy expenditure measured by indirect calorimetry in a significant 

subpopulation (48%) of ALS patients, even after normalizing for fat-free mass 
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(Bouteloup et al., 2009). In a small study, 100% of patients with fALS were 

hypermetabolic, as compared to 52% of sALS patients (Funalot et al., 2009a). 

(ii) There is a strong correlation between premorbid BMI and ALS risk. Patients with low 

BMI have decreased survival compared to those with higher BMI (Jawaid et al., 2010a). 

Additionally, individuals with higher BMI (overweight or obese) earlier in life had a lower 

risk of developing ALS. There was a 21% decrease in rate of ALS with every 5-unit 

increase in BMI (O'Reilly et al., 2013).  

(iii) ALS patients display dyslipidemia, where the ratio of low density lipoproteins (LDL) to 

high density lipoproteins (HDL) is high (Dupuis et al., 2008; Jawaid et al., 2010b). 

(iv) ALS patients present with a higher prevalence of hyperglycemia and glucose 

intolerance compared to healthy controls. Additionally, ALS patients and mouse models 

have lower glucose uptake in certain regions of the brain and the spinal cord (Miyazaki 

et al., 2012; Cistaro et al., 2014). This demonstrates impaired glucose metabolism in 

patients and animal models of ALS. 

(v) ALS patients and mouse models have mitochondrial dysfunction. Motor neurons from 

patient spinal cords display morphologically abnormal mitochondria, appearing 

aggregated, swollen and vacuolated (Sasaki and Iwata, 2007). Similarly, SOD1 and 

TDP-43 mouse models of ALS are also similar in their morphology (Magrané et al., 

2014; Stribl et al., 2014). In addition, mitochondrial function is compromised in ALS as 

evidenced by decreased electron transport chain activity and decreased ATP production 

in spinal cords from patients and animal models (Mattiazzi, 2002; Wiedemann et al., 

2002; Kirkinezos et al., 2005). The work in mice shows that these mitochondrial 

abnormalities present earlier than motor symptoms, and may indicate a role for cellular 

energy dysfunction in disease pathophysiology. 
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 Together, these data indicate significant perturbations in organism-wide as well 

as cellular changes in metabolism associated with ALS. Is organismal metabolic 

dysfunction a result of underlying cellular pathology in ALS, or does it contribute to 

causing disease pathology? If the latter is true, these metabolic parameters could be 

potential therapeutic targets to alter course of disease. Data from mouse studies suggest 

that the latter may be true. For example, mitochondrial dysfunction as well as altered 

expression of lipid metabolism genes occurs at presymptomatic stages in ALS 

(Ferraiuolo et al., 2011). Certain dietary interventions, all involving different types of high 

caloric diets have benefited mutant SOD1 mice (Dupuis et al., 2004; Zhao et al., 2006; 

Ari et al., 2014). In patients, similar dietary manipulations have also proven successful, 

albeit the size of the study was small. Patients fed a high carbohydrate, high calorie diet 

had an increased lifespan with delayed weight loss and fewer adverse events compared 

with patients fed a regular diet (Wills et al., 2014a). These studies indirectly suggest that 

metabolic dysfunction, specifically hypermetabolism, could be a targeted for therapeutic 

intervention in ALS. However, the question that remains is whether directly altering 

metabolic dysfunction can be beneficial to disease progression. 

Previous studies from our lab have also tried to address hypermetabolism in 

SOD1 mice bearing the G93A point mutation by genetically inducing a lower metabolic 

state (Lim et al., 2014). This was achieved by generating G93A mutant SOD1 mice that 

had a deficiency in the leptin hormone. Leptin is a circulating hormone released by 

adipocytes. It crosses the blood brain barrier and acts on leptin receptors in the 

hypothalamus to suppress hunger and appetite. Leptin deficient animals are obese and 

hypometabolic, as they are worse at suppressing hunger and inducing satiety. In their 

study, Lim et al found that in agreement with the literature, G93A SOD1 single mutant 

mice were hypermetabolic. Leptin deficient (ob/+) single mutant mice, on the other hand, 
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were overweight and hypometabolic. G93A SOD1 and ob/+ double mutant mice mimic 

the weight gain and hypometabolic phenotype of ob/+ mice, demonstrating that 

genetically altering leptin levels is sufficient to alter the hypermetabolism of G93A SOD1 

animals. Interestingly, the double mutant mice had improved limb strength and a female 

specific increase in median lifespan compared to G93A SOD1 mice alone. This indicates 

that hypermetabolism contributes to ALS pathophysiology in the G93A SOD1 mouse 

model.  

Since leptin is a circulating hormone, it has functions in the periphery as well as 

the brain. Additionally, there is emerging evidence for non-hypothalamic actions of leptin 

in the brain (Ahima et al., 1999; Figlewicz et al., 2006; Van Doorn et al., 2017). This 

raises a few questions: 1) does leptin act on its receptor targets in the hypothalamus to 

achieve this benefit, or are its peripheral targets also important? 2) since heterozygous 

leptin deficient mice showed improvement in the G93A SOD1 background, could 

stronger hypometabolism be even more beneficial in this model? To answer these, we 

focused our studies on deletion of the melanocortin-4 receptor (MC4R), a downstream 

target of leptin in the arcuate nucleus of the hypothalamus. If leptin acts on the 

hypothalamus for its hypometabolic benefit in G93A SOD1 mice, MC4R should mimic 

leptin’s effects in the G93A SOD1 mouse, and enhance the effect because it is a 

complete null rather than a heterozygote. We hypothesized that loss of MC4R would 

induce hypometabolism and increase motor output and survival in G93A SOD1 mice. 

This work is detailed in chapter 2 of my dissertation. 

 

Metabolic adaptation to adverse environmental stresses 

 ALS serves as an example that lowering metabolic rate can be neuroprotective in 

certain neurodegenerative diseases where hypermetabolism is a feature of disease. In 
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certain acute injuries and stresses, lowering metabolic rate by therapeutic hypothermia 

is also neuroprotective. In the clinic, therapeutic hypothermia is used to treat patients 

with cardiac arrest and in newborn infants with hypoxic ischemic encephalopathy to 

prevent resultant anoxic brain damage (Nagel et al., 2014). It is also being tested as a 

therapy for other acute conditions such as traumatic brain injury and stroke (Han et al., 

2015). In therapeutic hypothermia, the core body temperature is reduced from 37°C to 

32-35°C (mild), 25-32°C (moderate) or < 25°C (severe/deep) (Lyden et al., 2006). While 

the exact mechanism for the neuroprotective effects of hypothermia remain murky, 

lowering metabolic rate in cells helps to prevent the inflammatory response and resulting 

apoptosis or necrosis in neurons.  

Despite the potential neuroprotective benefits of lowering metabolic rate in 

certain cases of disease and acute injury/trauma, humans (and many other mammals) 

do not generally alter their metabolic rate physiologically in response to disease, injury, 

or environmental stress. Many other species, however, have evolved hypometabolic 

mechanisms to adapt to environmental stresses such as extreme temperatures and low 

oxygen levels. A large number of birds and mammals hibernate to conserve energy 

during winter months. The western jumping mouse can hibernate for upto 9 months of 

the year, and edible dormice can hibernate upto 11 months in years they are non-

reproductive (Cranford, 1983; Hoelzl et al., 2015). During hibernation, animals suspend 

feeding, locomotion and reproduction. This is achieved by lowering metabolic rate 

leading to slow breathing, decreased heart rate and lower core temperature. Seasonal 

hibernation can thus help animals reduce energy expenditure by as much as 85% (Dark, 

2005). Some animals enter a state of torpor where they decrease energy utilization on 

shorter timescales – hours or days Hummingbirds can lower their core temperature and 
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metabolic rate during the night (Hargrove, 2005). Similarly, when oxygen availability is 

reduced, many animals adapt by lowering their metabolic rate. Worms, flies, zebrafish, 

turtles and even mammals, such as the naked mole-rat, are able to survive extreme 

oxygen deprivation (anoxia) by reducing metabolic demand (Ultsch and Jackson, 1982; 

Krishnan et al., 1997; Van Voorhies and Ward, 2000; Padilla and Roth, 2001; Park et al., 

2017).  

 Humans too adapt to certain environmental stresses on the evolutionary timescale. 

For example, populations of people that live in high altitude regions such as Tibet have 

differentially expressed genes in order to efficiently utilize limited oxygen in that 

environment (Simonson et al., 2010). They have a normal metabolic rate despite severe 

arterial hypoxia, potentially representing an adaptation to extreme environments over 

thousands of years. The authors found genes in the hypoxia-inducible factor signaling 

pathway such as EGLN1, EPAS1 and PPARA were positively selected in Tibetan 

highlanders. Additionally, high altitude-dwelling Tibetans with lower levels of hemoglobin 

also have increased cardiac output and greater exercise capacity (Simonson et al., 

2015).  

 These adaptive advantages are present in select human groups because they 

evolved over long timescales. Therefore, not all humans can adopt these strategies to 

survive environmental stresses on the order of days or months. Many mammals, 

however, including primates like the Madagascan lemur, can hibernate to adapt to 

environmental stressors (Dausmann et al., 2004). The western painted turtle survives 

oxygen deprivation and freezing temperatures, and has many differentially expressing 

genes in anoxia that have human orthologs such as the glucose transporter GLUT1 and 

an apolipoprotein encoding gene APOLD1, among others (Shaffer et al., 2013). Studying 

metabolic adaptations in these animals can thus be utilized to understand if similar 
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changes would benefit humans, who have similar genes and molecular pathways, when 

challenged with similar environmental stresses. Gaining a better understanding of 

adaptations to environmental stresses can also have potential benefits for acute injury-

related challenges or chronic challenges such as space travel. In fact, NASA is studying 

torpor to allow humans to survive long journeys in space (www.nasa.gov).  

 Then nematode Caenorhabditis elegans (C. elegans) is a great animal model to 

study response and adaptation to changes in environment (described in detail below). In 

chapter 3 of my dissertation, I will describe work in C. elegans to focus on severe 

oxygen deprivation (anoxia) as one such environmental stress. The goal of my project 

was to expand on previous data from our lab and specifically explain how neuropeptide 

signaling regulates the worm response to anoxia.  

 

Oxygen deprivation in C. elegans – hypoxia vs. anoxia 

 C. elegans is a 1mm long, transparent nematode that normally dwells in soil and 

rotting vegetable matter. It was established as a powerful organism by Sydney Brenner a 

few decades ago (Brenner, 1974) and has since been used to study genetics, cell 

biology, circuit function and basic behaviors. It feeds on bacteria and is easily cultivated 

in the lab on agar plates seeded with a lawn of the E. coli strain OP50, although other 

strains of feeding bacteria are used depending on the study question. There are many 

advantages to studying worms as a model organism. C. elegans has a short life cycle – 

it grows from egg to adulthood in 3 days when raised at 20°C, and lives for 2-3 weeks, 

so experiments can be done relatively rapidly. It is primarily a self-fertilizing 

hermaphrodite and each animal can lay upto 300 eggs, allowing for high throughput 

experiments. It is transparent, allowing for ease of microscopy and use of fluorescent 

genetic markers. Its anatomy is well studied – it has exactly 959 somatic cells and 302 
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neurons and its neuronal wiring diagram is known. Its genome has been sequenced and 

a large number of C. elegans genes have homology with mammals and even humans 

(www.wormbook.org). 

Since they live in the soil and rotting fruit, worms frequently encounter oxygen-

depleted microenvironments in their natural habitat and can tolerate low oxygen well. 

They generally prefer 5-12% O2 environments (Gray et al., 2004) but are able to survive 

hypoxia (<0.5 - 1% O2) without altering feeding, locomotion or reproduction (Nystul et al., 

2003; Miller and Roth, 2009). This requires the activation of the hypoxia induced 

transcription factor hif-1 and its downstream gene targets. Their response to anoxia 

(<0.1% O2), however, is markedly different and is hif-1-independent (Padilla et al., 2002; 

Ghose et al., 2013). In anoxia, animals enter a reversible state of ‘suspended animation’ 

in which they cease all movement, feeding and reproduction. Larvae and young adults 

can tolerate 24 hours of suspended animation under anoxia at 20°C, but lethality 

increases with increasing temperature and increasing duration of anoxia exposure (Scott 

et al., 2002; Mendenhall et al., 2006a). Those that survive extended anoxia have striking 

morphological defects and tissue damage (Scott et al., 2002). There are fewer neurons, 

suggesting cell death; there is a pronounced cell-swelling phenotype in the pharynx and 

across the body wall muscle, reminiscent of necrosis; there is an axonal beading 

phenotype indicating damage to neuronal integrity; nearly all myocytes display nuclear 

fragmentation.  

Besides temperature and duration of insult, other factors contributing to anoxia 

tolerance are developmental stage, diet, genotype and growth conditions (solid agar or 

liquid culture). Of the developmental stages, dauer larvae and embryos are the most 

tolerant to anoxia (Padilla et al., 2002). Exposure to anoxia for shorter durations (upto 4 

hours), also known as anoxic preconditioning, can induce changes in gene expression 
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that provide a protective advantage against long term anoxia. This can occur via 

changes in the apoptosis pathway (ced-4) (Dasgupta et al., 2007) and induction of the 

unfolded protein response pathway (Mao and Crowder, 2010). While subpopulations of 

worms can survive long-term anoxia under certain conditions, it does lead to cellular 

injury such as loss of tissue integrity, presence of large vaucoles, distortion of the 

pharynx and necrotic-like cell swelling (Mendenhall et al., 2006b; Sun et al., 2014).  

 

A note about techniques: Worm biology under anoxic conditions is a relatively young 

field of investigation, and it is essential to point out that studies do not have a consistent 

method of inducing anoxia. Some studies (including ours) take advantage of 

commercially available biobags that generate an anoxic environment in a sealed bag via 

catalytic consumption of O2 in the bag. Others use gloveboxes or chambers that are 

outfitted to carefully control O2 concentration inside them by replacing it with N2. Some 

studies are done on solid agar culture plates and others are done in liquid media. Some 

are conducted at standard laboratory 20°C and others are conducted at a range of 

different temperatures (25-28°C). Finally, some are conducted in embryos, others at 

larval stages of development and yet others in adult worms. As a result of these 

variations in different labs for studying anoxia, there are many differences in similar 

outcome measures such as percent survival. Some basic observations that have been 

repeated by different groups have been consistent across these different techniques, but 

there is not enough data to know if every observation is similarly consistent. However, it 

is important to remain mindful of these technical differences when evaluating the results 

of each study. 
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Metabolic regulation of anoxia 

 Under anoxic stress, worms enter a state of suspended animation and resume 

regular physiological activity when re-exposed to normoxic environments. Early studies 

of worms in anoxia established that their metabolic rate during anoxia falls to as low as 

5% of normoxic levels (Van Voorhies and Ward, 2000). Presumably, this low-activity, 

hypometabolic state is an adaptive mechanism to preserve precious energy stores since 

reproduction, locomotion and tissue maintenance are energetically costly. Adult worms 

will cease all movement and appear ‘stunned’ within 8 hours of anoxia onset 

(Mendenhall et al., 2006b). While there are certain mutants (daf-2, the insulin receptor 

homolog in worms) that take longer to suspend activity, no studied mutant is capable of 

avoiding it completely.  

Studies in adult worms show that under anoxia, animals switch their primary 

energy source from fat to glycogen/glucose stores. Over a 24h anoxic exposure, animals 

can lose up to 2/3rds of their carbohydrate reserve (Föll et al., 1999). In anoxia-tolerant 

mutant (daf-2) worms, there is an increase in fat and glycogen production in intestinal 

and hypodermal cells (Kimura et al., 1997). Worm homologs of the glycoytic enzyme 

glyceraldehyde-3 phosphate dehydrogenase isoforms, gpd-2 and gpd-3, are also 

involved in anoxia tolerance (Mendenhall et al., 2006b). RNAi against these genes led to 

impaired worms after anoxia. However, these results were confounded because other 

glycolytic genes did not similarly induce anoxia sensitivity. 

ATP production, as expected, is also markedly reduced during anoxia (Föll et al., 

1999; Padilla et al., 2002). AMP-kinase (AMPK) is the master cellular sensor of the 

ATP/AMP ratio. AMPK is generally activated when cellular ATP levels fall, and its activity 

leads to an increase in energy producing anabolic processes and a decrease in energy 

consuming catabolic processes. Given that ATP levels decline during anoxia, it is 
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perhaps to be expected that AMPK activation might be upregulated to allow cells to cope 

with this energy deficit appropriately. Worms lacking aak-2, the C. elegans homolog for 

the catalytic alpha subunit of AMPK, are in fact hypersensitive to oxygen deprivation 

(LaRue and Padilla, 2011). They have decreased survival and those that survive have 

defects in motility and/or tissue morphology. Additionally, in one anoxia-tolerant mutant 

(daf-2), there is a decrease in stored carbohydrate consumption compared to wild type 

worms, and this is partially dependent on AMPK. These data suggest that carbohydrate 

availability can impact worm tolerance of anoxia, and AMPK has a role to play in 

regulating its consumption. 

 

Mitochondrial changes in anoxia 

 As the primary site for aerobic ATP synthesis in the cell, it is not surprising that 

mitochondria are sensitive to changes in available oxygen. In C. elegans at the L4 stage 

of development, 24 hours anoxia induces a stress response wherein neuronal 

mitochondria undergo fission, and upon reoxygenation, they refuse and restore their 

original shape and size (Ghose et al., 2013). This study shows that, in the suspended 

animation state, worms prefer smaller, fewer mitochondria, perhaps as a mechanism for 

limiting reactive oxygen species production. Oxidative stress is, however, induced in 

anoxia, and successful recovery from anoxia requires activity of the oxidative factor 

SKN-1/Nrf to allow proper refusion.  

 In other studies conducted in adults and in liquid media, mitochondrial damage is 

observed after just 12h of extreme oxygen deprivation (<0.2% O2). They have severely 

altered morphology, compromised membrane potential as well as accumulation of 

protein aggregates (Kaufman and Crowder, 2015). Consistent with protein accumulation, 

the authors found that the mitochondrial unfolded protein response (UPRmt), was 
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induced in these animals even as early as 4h anoxia, when animals recovered 

completely. This indicated that proteostasis in the mitochondria is extremely sensitive to 

changes in ambient oxygen. When UPRmt was experimentally induced by doxycycline or 

constitutive activation of atfs-1 (the transcription factor required for UPRmt), animals were 

protected from anoxic insult as measured by healthier mitochondria, decreased protein 

accumulation in the mitochondria and improved survival. Additionally, upregulated UPRmt 

was protective both before and after the anoxic insult, suggesting a potential priming 

mechanism to protect mitochondria and improve whole animal survival from anoxic 

stress. 

 An independent study from a different group also found that atfs-1 loss of 

function mutants were sensitive to 20h anoxia in day 1 adults, and that gain of atfs-1 

function was protective as measured by improved survival and decreased axonal 

damage (Peña et al., 2016). However, inducing atfs-1 specifically in the nervous system 

was able to rescue neurons from damage but was not able to improve survival of the 

animal, suggesting either a cell non-autonomous mechanism for atfs-1 or a requirement 

of atfs-1 function in different tissues for protection of C. elegans against anoxia.  

 

Cell non-autonomous features of anoxia in C. elegans 

 Oxygen deprivation is known to cause cell death via cell autonomous and non-

autonomous pathways. Cell autonomous mechanisms lead to induction of apopotosis 

and necrosis in injured cells (Lipton, 1999). Cell non-autonomous pathways are less well 

understood, but lead to injury of secondary cells due to signals released from primary 

injured cells. Release of glutamate and potassium from neurons exposed to hypoxia 

causes cell death in surrounding neurons (Choi and Rothman, 1990; Broughton et al., 

2009). Another example is that in focal ischemic stroke, there is neuronal death in the 
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area of the brain most exposed to the hypoxic insult, but the ischemic penumbra region 

surrounding the stroke is initially viable but experiences delayed cell death presumably 

due to non cell-autonomous factors from the directly injured neurons (Lo, 2008). As 

mentioned above, necrotic-like cell death is observed in worms after an anoxic insult 

(young adult worms exposed to 21h of ≤0.3% O2 in liquid culture) (Sun et al., 2014). To 

study cell autonomous vs non-autonomous cell death in worms after anoxia, these 

authors generated transgenic worm lines that were protected from anoxic death due to a 

loss of function mutation in the gene rars-1 (discussed in detail below), with rars-1 

rescue in specific cell types – either pharyngeal myocytes or GABA-ergic neurons. In 

this manner, just these specific cells were vulnerable to oxygen deprivation while the rest 

of the cells in the organism remained protected. They found that these lines had 

necrotic-like swelling and damage in cells of the pharynx and the tail, suggesting a cell 

non-autonomous mechanism for cellular injury after anoxia. They also found that loss of 

function in daf-2, the insulin-like receptor gene in worms, rescued the pharyngeal cell-

swelling phenotype observed after anoxia, and that this required the C. elegans FOXO 

transcription factor homolog daf-16. Interestingly, daf-16 expression in the intestine was 

able to rescue survival as well as pharyngeal cell-swelling after extreme oxygen 

deprivation, further suggesting a cell-autonomous regulation of anoxia-related injury and 

response. 

 Worms have distinct sets of sensory neurons in their head to detect changes in 

ambient oxygen. Upshifts in oxygen are detected by URX, AQR and PQR neurons, while 

downshifts in oxygen are detected by the BAG neuron. Indeed, worms deficient in BAG 

neurons due to a genetic ablation are unable to sense downshifts in oxygen (Zimmer et 

al., 2009). Interestingly, loss of BAG neurons confers a survival advantage in L4-staged 

worms exposed to anoxia (Flibotte et al., 2014). These worms, similar to wild type 
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animals, enter suspended animation when exposed to anoxia, but have a much higher 

rate of survival after 24 hours of normoxic recovery compared to wild type animals. 

While 45% of wild type animals survived 48 hours of anoxia, 67% of BAG-deficient 

animals survived the same insult (Flibotte et al., 2014). A single neuron is therefore 

capable of regulating whole animal survival when exposed to anoxia, providing yet 

another example of a cell non-autonomous mechanism for regulating the response to 

anoxia. 

 

Gene regulation of anoxia tolerance 

 In order for cell non-autonomous regulation of anoxic stress to occur, molecular 

communication between cells is necessary. Neuropeptides are soluble factors widely 

used in C. elegans to communicate between cells and tissues. Our lab recently identified 

that loss of function mutations in egl-3 and unc-31 protected developing C. elegans from 

anoxia (Flibotte et al., 2014). The egl-3 gene encodes a proprotein convertase required 

for the processing and maturation of neuropeptides (Thacker and Rose, 2000; Kass et 

al., 2001), and the unc-31 gene encodes the C. elegans homolog of the calcium-

dependent activator protein for secretion (CAPS), required for the secretion of 

neuropeptide-carrying dense core vesicles (Speese et al., 2007). Hence, loss of 

neuropeptide signaling is protective against anoxic stress in developing worms. 

However, neuropeptide signaling is not necessary in BAG neurons for this protective 

phenotype. Restoring egl-3 function specifically in BAG neurons in an egl-3 null 

background does not rescue egl-3-mediated increase in anoxic survival (Flibotte et al., 

2014). It remains to be understood which cells neuropeptides might act in for this benefit, 

what mechanistic pathways neuropeptides employ to regulate the response to anoxia 

and which specific neuropeptides might be involved in extending survival under the 
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hypometabolic conditions induced by anoxia. This is the primary focus in chapter 3 of 

this dissertation. 

 Other genes known to affect C. elegans survival against anoxia are enumerated 

below. In chapter 3, we explore the contribution of some of these genes to neuropeptide-

mediated regulation of anoxia survival.  

daf-2: Loss of function mutants in daf-2, the worm homolog of the insulin-like growth 

factor 1 receptor, leads to strong anoxia resistance in worms. Mutants are able to 

survive anoxia (upto 72h) induced in different ways significantly better than wild type 

worms (Scott et al., 2002; Mendenhall et al., 2006a). This survival benefit is dependent 

on the activation of the transcription factor daf-16, the worm homolog of FOXO, 

downstream of daf-2. Further, daf-2 expression in muscle and neurons, but not intestine, 

is necessary for this effect. These data implicate the insulin signaling pathway in 

regulating worm response to anoxia. 

rars-1: Loss of function mutations in rars-1, the worm homolog of the arginyl aminoacyl 

t-RNA synthetase (AAR), significantly protects worms from anoxia-induced death 

(Anderson et al., 2009). This effect was partially due to induction of the unfolded protein 

response. Interestingly, RNAi against almost all other AARs in C. elegans also protected 

them from anoxia, suggesting that translational repression plays a critical role in 

surviving this stress.  

nsy-1: Loss of function mutation in nsy-1, the worm homolog for apoptosis signal-

regulating kinase (ASK), protects worms against long-term anoxia (Hayakawa et al., 

2011). nsy-1 encodes a MAP kinase kinase kinase (MAP3K), and its activity is required 

in many cell types such as hypodermis, neurons and intestine, for this phenotype. 

Additionally, a loss of function mutation in MAP2K (sek-1) also improved survival under 
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anoxic conditions. Together, these data point to a global role for the MAPK pathway in 

regulating anoxia in worms.  

hyl-2: Loss of hyl-2, the worm homolog for a ceramide synthase, makes worms 

hypersensitive to anoxia (Menuz et al., 2009). In worms, hyl-2 encodes a ceramide 

synthase responsible for the de novo synthesis of specific ceramides ranging 20-22 

carbon chain lengths. hyl-2 does not depend on apoptosis to induce anoxia sensitivity in 

worms, and loss of daf-2 in hyl-2 mutants partially rescues survival of animals 

suggesting a potential interaction between these two genes in anoxia survival. Overall, 

these data suggest that synthesis of specific ceramides contributes to the worm 

response against anoxic insult. 

skn-1: Loss of function in skn-1, the worm ortholog for nuclear factor-erythroid-related 

factor (Nrf), prevents recovery of worms after anoxic exposure (Ghose et al., 2013). 

Compared to wild type worms, skn-1 mutants had significantly impaired recovery of 

movement 10 minutes post-anoxia (24h exposure). This lack of behavioral recovery 

correlated with increased mitochondrial fission in skn-1 mutant worms, suggesting a role 

for skn-1-mediated response to oxidative stress in regulating mitochondrial dynamics 

under anoxic stress. 

 

Overall, I will explore the bidirectional role of metabolism in disease and stress by 

a) studying how manipulating organismal metabolism can alter progression of a 

neurodegenerative disease (ALS) (Chapter 2) and b) studying the contribution of 

neuropeptide signaling in a physiological state driven by metabolic adaptation to an 

environmental stress (anoxia) (Chapter 3). 
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Abstract 

Dysfunction and death of motor neurons leads to progressive paralysis in 

Amyotrophic lateral sclerosis (ALS). Recent studies have reported organism-level 

metabolic dysfunction as a prominent, but poorly understood feature of the disease. ALS 

patients are hypermetabolic with increased resting energy expenditure, but if and how 

hypermetabolism contributes to disease pathology is unknown. We asked if decreasing 

metabolism in the mutant superoxide dismutase 1 (SOD1) mouse model of ALS (G93A 

SOD1) would alter motor function and survival. To address this, we generated mice with 

the G93A SOD1 mutation that also lacked the melanocortin-4 receptor (MC4R). MC4R is 

a critical regulator of energy homeostasis and food intake in the hypothalamus. Loss of 

MC4R is known to induce hyperphagia and hypometabolism in mice. In the MC4R null 

background, G93A SOD1 mice become markedly hypometabolic, overweight and less 

active. Decreased metabolic rate, however, did not reverse any ALS-related disease 

phenotypes such as motor dysfunction or decreased lifespan. While hypermetabolism 

remains an intriguing target for intervention in ALS patients and disease models, our 

data indicate that the melanocortin system is not a good target for manipulation. 

Investigating other pathways may reveal optimal targets for addressing metabolic 

dysfunction in ALS. 
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Introduction 

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease 

characterized by loss of upper and lower motor neurons leading to paralysis and death 

(Ferraiuolo et al., 2011; Hardiman et al., 2011; Kiernan et al., 2011; Taylor et al., 2016). 

Work from a variety of models implicates dysfunctional RNA metabolism, protein 

homeostasis, altered mitochondrial function and oxidative stress in disease 

pathophysiology (Ferraiuolo et al., 2011; Robberecht and Philips, 2013; Taylor et al., 

2016). In addition to cell-autonomous factors (i.e., the accumulation of toxic misfolded 

proteins in motor neurons), there is compelling evidence for non-cell autonomous 

processes contributing to disease progression, such as the participation of microglia and 

astrocytes (Wang et al., 2010; O'Rourke et al., 2016). At present these insights into ALS 

have not translated into drugs that substantively influence the course of disease. 

Studies of patients with ALS have provided intriguing evidence for whole 

organism metabolic derangements. For example, glucose intolerance is present in 33% 

of sporadic ALS patients vs. 9.5% in controls (Pradat et al., 2010), hypermetabolism is 

present in 50-60% of ALS patients (Funalot et al., 2009b) and dyslipidemia, measured 

by increased LDL/HDL ratio, is present in 45.4% of ALS patients vs 16.1% in controls 

(Dupuis et al., 2008). ALS patients have lower body mass index (BMI) and lower lean 

body mass compared to healthy controls (Ahmed et al., 2014), and many of these 

perturbations present early in disease and are progressive. There is an inverse 

correlation between premorbid BMI and risk of ALS; in overweight or obese individuals, 

the risk of ALS was reduced 30-40% (O'Reilly et al., 2013). Mouse models of ALS, 

based on known familial mutations such as SOD1, TDP43, FUS and C9ORF72, similarly 

show energetic abnormalities including mitochondrial dysfunction, decreased body 

weight and hypermetabolism (Mattiazzi, 2002; Dupuis et al., 2004; Chiang et al., 2010; 
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Stribl et al., 2014; Perera and Turner, 2015). ALS patients fed a high calorie, high 

carbohydrate diet showed fewer adverse events, delayed weight loss and longer lifespan 

than those fed a control diet (Wills et al., 2014b). Various types of high calorie diets have 

been shown to provide benefits to the mutant SOD mouse model of the disease as well 

(Dupuis et al., 2004; Zhao et al., 2006; Ari et al., 2014). Together, these 

observations provide evidence that organismal metabolism is likely to contribute to the 

pathogenesis of ALS.  

One approach to investigating the contribution of hypermetabolism (an increase 

in resting energy expenditure) to ALS (Bouteloup et al., 2009; Funalot et al., 2009b) is to 

genetically decrease metabolic rate in mouse models of disease. For example, placing 

the G93A SOD1 mice on a leptin deficient background (G93A;ob+/-) lowers organism 

level metabolism (Lim et al., 2014). These mice gain more weight, became 

hypometabolic, have improved motor function as well as longer lifespan compared to 

G93A SOD1 mice alone. However, this study has several inherent limitations. For 

technical reasons, it was not possible to study G93A;ob/ob animals and thus the degree 

of hypometabolism achieved was rather modest. In addition beyond its role in energy 

homeostasis (by controlling feeding and promoting satiety) leptin has myriad additional 

actions, including effects on neuronal development (Ahima et al., 1999; Figlewicz et al., 

2006; Van Doorn et al., 2017). These limitations led us to consider if a different genetic 

manipulation that led to a more pronounced hypometabolic phenotype, and obviated the 

complexities of leptin deficiency, might lead to a greater improvement in the G93A SOD1 

model.  

To this end, we crossed G93A SOD1 mice, henceforth referred to as G93A, to 

those lacking the melanocortin-4 receptor (MC4R), henceforth referred to as MC4R-/-, 

generating double mutant G93A;MC4R-/- mice (see methods and Fig. 2.1a for breeding 
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strategy). We chose this gene since MC4R null mice are shown to be hypometabolic and 

hyperphagic (Huszar et al., 1997; Ste Marie et al., 2000). Additionally, MC4R is a good 

candidate because of its central role in energy homeostasis (Krashes et al., 2016). It is 

expressed in the anterior bed nucleus of the stria terminalis, paraventricular nucleus of 

the hypothalamus and lateral hypothalamus and regulates food intake, metabolic rate 

and body weight. Mice lacking this receptor cannot promote energy expenditure, leading 

to hypometabolism, hyperphagia and weight gain. Our goal was to genetically induce 

hypometabolism in G93A mice by placing them in the MC4R null background, thus 

altering a central component of energy balance, and test the effect of this specific 

manipulation on metabolism, disease progression and survival.  

 

 

Results 

 

G93A mice lacking the melanocortin-4 receptor are obese, hyperphagic and 

lethargic 

 

Body weight. Beginning at P40, WT mice (C57Bl/6) of both sexes gained weight over the 

subsequent 40 weeks (Fig. 2.1b, c). MC4R-/- mice also gained weight over the same 

period, however, they were heavier than WT mice at every recorded time point. For 

example, at week 10 of measurements (P110), female and male WT mice weighed an 

average of 28.3g and 34.9g respectively, while MC4R-/- mice weighed 58.6g and 57.9g 

respectively. G93A mice of both sexes also gained the same amount of weight as WT 

mice until about P103 (9-11 weeks after P40), after which they progressively lost weight 

until they were moribund. G93A;MC4R-/- mice of both sexes gained the same amount of 
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weight as MC4R-/- mice until about P124 (11-12 weeks after P40), after which they 

progressively lost weight until they were moribund. At P110, female and male G93A 

mice weighed an average of 24.9g and 29.2g respectively, while G93A;MC4R-/- mice 

weighed 55g and 53.4g respectively. These results indicate that, as previously reported 

(Huszar et al., 1997; Balthasar et al., 2005), MC4R-/- mice gain significantly more weight 

compared to WT mice as they age, and G93A mice too gain significant weight when 

MC4R function is ablated, in comparison to WT and G93A animals. 

 

Feeding. Next, we used the comprehensive lab animal monitoring system (CLAMS, see 

methods) to study food consumption in these mice over a 24h period at P60, P90 and 

P120 (Fig. 2.1d, e). When all four genotypes (WT, G93A, MC4R-/-, G93A;MC4R-/-) were 

compared, group differences were found by one-way ANOVA for females (P60: F(3,25) = 

4.476, p = 0.012; P90: F(3,21) = 5.924, p = 0.0043; P120: F(3,21) = 1.56, p = 0.2287) and 

males (P60: F(3,19) = 1.311, p = 0.2998; P90: F(3,22) = 3.579, p = 0.0302; P120: F(3,20) = 

1.552, p = 0.232). Female WT mice consumed 3-4g of food over 24h at P60, P90 and 

P120, while male WT mice consumed 4-5g of food at the same times. Female and male 

MC4R-/- mice, in comparison, consumed more food than WT mice (4-5g and 6-7g 

respectively) at these time points but this did not achieve significance in post hoc 

analyses. Female and male G93A mice had similar amounts of food consumption 

compared to WT mice (3-4g and 4-5g respectively), and female and male G93A;MC4R-/- 

mice had similar amounts of food consumption compared to MC4R-/- mice (5g and 5-6g 

respectively). Importantly, female G93A;MC4R-/- mice had significantly greater food 

consumption than G93A mice at P60 and P90 (post hoc, p<0.05 at P60 and p<0.01 at 

P90), but not at P120. Male G93A;MC4R-/- mice consumed more food than G93A mice 

at all age points, but this did not reach statistical significance. These results demonstrate 



27	
	

that WT and G93A mice have similar daily food consumption, and MC4R-/- and 

G93A;MC4R-/- mice have similar daily food consumption that is greater than WT and 

G93A mice.  

 

 

 

Ambulatory activity. We also used the CLAMS to look at ambulatory (non-grooming) 

activity of these mice over 24h at P60, P90 and P120 (Fig. 2.2a, b). Three parameters 

Figure 2.1. Breeding strategy, body weight and food intake in study mice. 
(a) Two step breeding strategy for generating study mice. Parentheses indicate the 
expected genotype frequencies of the progeny in each cross. The relevant animals used 
in this study are represented inside the box in the F2 generation. Body weight 
measurements in female (b) and male (c) WT, G93A, MC4R-/- and G93A;MC4R-/- mice, 
recorded weekly after P40. The vertical dashed lines represent P60, P90 and P120 when 
measurements of food intake, ambulatory activity, metabolic rate and motor function were 
made. Food intake measurements over a 24h period at P60, P90 and P120 in female (d) 
and male (e) mice. Significance measured by one-way ANOVA among genotypes at each 
time point, followed by Tukey’s test for multiple comparisons: p<0.05 (*), p<0.01 (**), 
p,0.001 (***), p<0.0001 (****). 
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were measured at each age: total activity over 24h, activity during the 12h light period 

and activity during the 12h dark period. Group differences within the 4 genotypes (WT, 

G93A, MC4R-/- and G93A;MC4R-/-) were determined using one-way ANOVA at each 

age, followed by post hoc analysis with Tukey’s test for multiple comparisons. 

a) Total Activity. Group differences were found in total activity over 24h at P60, P90 and 

P120 for females (P60: F(3,26) = 9.546, p=0.0002; P90: F(3,24) = 36.55, p<0.0001; P120: 

F(3,23) = 34.36, p<0.0001) and males (P60: F(3,20) = 7.346, p=0.017; P90: F(3,22) = 15.31, 

p<0.0001; P120: F(3,21) = 8.289, p=0.0008). MC4R-/- mice of both sexes were significantly 

less active than WT mice at all three ages (post hoc, p<0.05). G93A mice of both sexes 

were as active as WT mice at all three ages. G93A;MC4R-/- mice of both sexes were as 

active as MC4R-/- mice, and were significantly less active compared to G93A mice at all 

three ages for females and at P90 and P120 for males (post hoc, females p<0.01, males 

p<0.05).  

b) Light Period Activity. Group differences were found in activity of the mice during the 

12h light period at P60, P90 and P120 in females (P60: F(3,25) = 5.328, p=0.0056; P90: 

F(3,22) = 20.76, p<0.0001; P120: F(3,23) = 19.32, p<0.0001) and males (P60: F(3,20) = 7.939, 

p=0.0011; P90: F(3,22) = 4.413, p=0.0142; P120: F(3,21) = 19.51, p<0.0001). MC4R-/- mice 

of both sexes were significantly less active than WT mice at all three ages for females 

and at P60 and P120 for males (post hoc, p<0.05). G93A mice of both sexes had similar 

activity compared to WT mice at all three ages. G93A;MC4R-/- mice of both sexes were 

as active as MC4R-/- mice, and were significantly less active compared to G93A mice at 

P90 and P120 (post hoc, females p<0.001, males p<0.05). 

c) Dark Period Activity. Group differences were found in the activity of the mice during 

the 12h dark period at P60, P90 and P120 in females (P60: F(3,25) = 9, p=0.0003; P90: 

F(3,22) = 28.5, p<0.0001; P120: F(3,23) = 32.57, p<0.0001) and males (P60: F(3,20) = 6.436, 
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p=0.0032; P90: F(3,22) = 17.46, p<0.0001; P120: F(3,20) = 6.302, p=0.0035). MC4R-/- mice 

of both sexes were significantly less active than WT mice at all three ages (post hoc, 

p<0.05). G93A mice of both sexes had similar activity compared to WT mice at all three 

ages. G93A;MC4R-/- mice of both sexes were as active as MC4R-/- mice, and were 

significantly less active compared to G93A mice at P90 and P120 for females and at P90 

for males (post hoc, females p<0.01, males p=0.0001).  

 

 

 

These data indicate that WT and G93A mice have similar activity levels at the 

measured time points both in the light and the dark cycles. During the same periods, 

MC4R-/- mice are significantly less active than WT mice and G93A;MC4R-/- mice have 

similar activity levels as MC4R-/- mice, significantly less than G93A mice alone.  

Figure 2.2. Ambulation in study mice. 
Ambulatory activity measured by beam breaks recorded at P60, P90 and P120 in female (a) 
and male (b) mice. Significance measured by one-way ANOVA among genotypes at each 
time point, followed by Tukey’s test for multiple comparisons: p<0.05 (*), p<0.01 (**), p,0.001 
(***), p<0.0001 (****). 
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In summary, G93A mice begin to lose weight compared to WT mice as they age. 

However, their food intake and activity levels are similar to WT mice at all recorded ages 

and even as they are losing weight, indicating a hypermetabolic phenotype. In all three 

measures - weight gain, food intake and activity level - G93A;MC4R-/- mice are 

indistinguishable from MC4R-/- mice. They are overweight, feed more and have greatly 

reduced activity compared to G93A mice, indicating that ablation of MC4R leads to 

unambiguous and significant phenotypic changes in G93A mice. Manipulating the 

activity of MC4R is thus a reasonable way to induce changes at the whole organism 

level in this mutant SOD1 background. 

 

 

G93A mice lacking the melanocortin-4 receptor are hypometabolic 

 

In order to determine metabolic flux in test mice over time, we measured average 

total oxygen consumption and carbon dioxide production per hour, per kg over a 24h 

period at the three different ages (P60, P90 and P120) using indirect calorimetry by the 

CLAMS (Fig. 2.3a, b). We also looked at the O2 consumption and CO2 production during 

the 12h light period (Fig. 2.4a, b) and 12h dark period (Fig. 2.5a, b) within the 24h 

recording. Group differences between the genotypes (WT, G93A, MC4R-/- and 

G93A;MC4R-/-) were determined using one-way ANOVA at each age, followed by post 

hoc analysis with Tukey’s test for multiple comparisons. 

 

Total O2 consumption (Fig. 2.3a). Group differences in O2 consumption over 24h were 

found at P60, P90 and P120 for females (P60: F(3,25) = 5.259, p=0.0060; P90: F(3,22) = 
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13.61, p<0.0001; P120: F(3,24) = 17.07, p<0.0001) and males (P60: F(3,20) = 3.3916, 

p=0.0238; P90: F(3,22) = 2.434, p=0.0919; P120: F(3,21) = 9.607, p=0.0003). Female 

MC4R-/- mice had significantly less O2 consumption than WT mice at P90 and P120 

(post hoc, p<0.05), while male MC4R-/- mice had decreased O2 consumption compared 

to WT mice at all three ages but this did not achieve significance. Female G93A mice 

had significantly more O2 consumption than WT mice at P90 (post hoc, p<0.05), 

whereas male G93A mice had increased O2 consumption compared to WT mice at P60 

and P120 but this did not achieve significance. G93A;MC4R-/- mice of both sexes were 

similar compared to MC4R-/- mice, and had significantly less O2 consumption compared 

to G93A mice at all three ages for females and at P60 and P120 for males (post hoc, 

females p<0.01, males p<0.05).  

 

Total CO2 production (Fig. 2.3b). Group differences in CO2 production over 24h were 

found at P60, P90 and P120 for females (P60: F(3,25) = 4.258, p=0.0147; P90: F(3,22) = 

10.67, p=0.0002; P120: F(3,24) = 15.85, p<0.0001) and males (P60: F(3,20) = 3.852, 

p=0.0252; P90: F(3,22) = 1.681, p=0.2002; P120: F(3,21) = 6.699, p=0.0024). Female 

MC4R-/- mice had significantly less CO2 production than WT mice at P120 (post hoc, 

p<0.05), while male MC4R-/- mice had decreased CO2 production than WT mice at all 

three ages but this was not statistically significant. Female G93A mice had significantly 

greater CO2 production than WT mice at P90 (post hoc, p<0.05), whereas male G93A 

mice had increased CO2 production compared to WT mice at P60 and P90 but this was 

not statistically significant. G93A;MC4R-/- mice of both sexes were similar compared to 

MC4R-/- mice, but had significantly less CO2 production compared to G93A mice at all 

three ages for females and at P60 and P120 for males (post hoc, p<0.05 for females and 

males). 
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Light Period O2 consumption (Fig. 2.4a). Group differences in oxygen consumption 

during the12h light period were found at P60, P90 and P120 for females (P60: F(3,25) = 

3.271, p=0.0378; P90: F(3,22) = 7.161, p=0.0016; P120: F(3,24) = 10.16, p=0.0002) and 

males (P60: F(3,20) = 1.16, p=0.3498; P90: F(3,22) = 0.747, p=0.5357; P120: F(3,21) = 5.867, 

p=0.0045). Female MC4R-/- mice had significantly less O2 consumption than WT mice at 

P120 (post hoc, p<0.05), while males had decreased O2 consumption compared to WT 

mice at P60 and P120, but this was not significant. Female G93A mice had significantly 

greater O2 consumption than WT mice at P90 (post hoc, p<0.05), whereas male G93A 

mice had increased O2 consumption compared to WT mice at P120, but this was not 

Figure 2.3. Oxygen consumption and carbon dioxide production over one day 
(24h) in study mice. 
Total O2 consumption (a) and CO2 production (b) in female and male WT, G93A, 
MC4R-/- and G93A;MC4R-/- mice at P60, P90 and P120 measured in mL, per hour, 
per kg mass of the animal over 24 hours of recording, including light and dark cycles. 
Significance measured by one-way ANOVA among genotypes at each time point, 
followed by Tukey’s test for multiple comparisons: p<0.05 (*), p<0.01 (**), p,0.001 
(***), p<0.0001 (****). 
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significant. G93A;MC4R-/- mice of both sexes were similar compared to MC4R-/- mice, 

but had significantly less O2 consumption compared to G93A mice at all three ages for 

females and at P120 for males (post hoc, females p<0.05, males p<0.05). 

 

Light Period CO2 production (Fig. 2.4b). Group differences in CO2 production during the 

12h light period were found at P60, P90 and P120 for females (P60: F(3,25) = 3.337, 

p=0.0354; P90: F(3,22) = 5.136, p=0.0076; P120: F(3,24) = 10.79, p=0.0001) and males 

(P60: F(3,20) = 1.326, p=0.2939; P90: F(3,22) = 0.4866, p=0.6951; P120: F(3,21) = 5.126, 

p=0.0081). MC4R-/- mice of both sexes had decreased CO2 production than WT mice at 

P60 and P120 but this was not statistically significant. G93A mice had increased CO2 

production compared to WT mice at P90 and P120 in females and P120 in males but 

this was not statistically significant. G93A;MC4R-/- mice of both sexes were similar 

compared to MC4R-/- mice, but had significantly less CO2 production compared to G93A 

mice at all three ages for females and at P120 for males (post hoc, p<0.05 for females 

and males). 
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Dark Period O2 consumption (Fig. 2.5a). Mice of all genotypes had increased O2 

consumption in the dark compared the light period, consistent with their increased 

nocturnal activity. Group differences in O2 consumption during the 12h dark period were 

found at P60, P90 and P120 for females (P60: F(3,25) = 6.772, p=0.0017; P90: F(3,22) = 

29.86, p<0.0001; P120: F(3,24) = 24.78, p<0.0001) and males (P60: F(3,20) = 9.646, 

p=0.0004; P90: F(3,22) = 9.709, p=0.0003; P120: F(3,21) = 11.98, p<0.0001). MC4R-/- mice 

of both sexes had significantly less O2 consumption than WT mice, at P90 and P120 for 

females and at P120 for males (post hoc, females p<0.01, males p<0.05). Female G93A 

mice had significantly greater O2 consumption than WT mice at P90 (post hoc, p<0.05), 

whereas male G93A mice had increased O2 consumption compared to WT mice at P60 

Figure 2.4. Oxygen consumption and carbon dioxide production during the 12h 
light cycle in study mice. 
Light cycle O2 consumption (a) and CO2 production (b) in female and male WT, G93A, 
MC4R-/- and G93A;MC4R-/- mice at P60, P90 and P120 measured in mL, per hour, per kg 
mass of the animal over 12 hours of recording during the light cycle of the day. 
Significance measured by one-way ANOVA among genotypes at each time point, 
followed by Tukey’s test for multiple comparisons: p<0.05 (*), p<0.01 (**), p,0.001 (***). 
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and P120, but this was not statistically significant. G93A;MC4R-/- mice of both sexes 

were similar compared to MC4R-/- mice, and had significantly less O2 consumption 

compared to G93A mice at all three ages (post hoc, p<0.01).  

 

Dark Period CO2 production (Fig. 2.5b). Similar to O2 consumption, mice of all genotypes 

had increased CO2 production in the dark compared the light period, consistent with their 

increased nocturnal activity. Group differences in CO2 production during the 12h dark 

period were found at P60, P90 and P120 for females (P60: F(3,25) = 4.646, p=0103; P90: 

F(3,22) = 20.56, p<0.0001; P120: F(3,24) = 19.56, p<0.0001) and males (P60: F(3,20) = 8.061, 

p=0.0010; P90: F(3,22) = 3.994, p=0.0206; P120: F(3,21) = 6.135, p=0.0037). Female 

MC4R-/- mice had significantly less CO2 production than WT mice at P90 and P120 (post 

hoc, p<0.05), whereas male MC4R-/- mice had decreased CO2 production compared to 

WT mice at all ages but this was not statistically significant. Female G93A mice had 

significantly increased CO2 production compared to WT mice at P90 (post hoc, p<0.05), 

while male G93A mice had increased CO2 production compared to WT mice at P60 and 

P120 but this was not statistically significant. G93A;MC4R-/- mice of both sexes were 

similar compared to MC4R-/- mice, but had significantly less CO2 production compared to 

G93A mice at all three ages (post hoc, p<0.05 for females and males). 
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Together, these data from indirect calorimetry suggest that compared to WT 

animals, G93A mice display a moderately higher metabolic rate and that MC4R-/- mice 

are hypometabolic. Interestingly, both the G93A hypermetabolism and the MC4R-/- 

hypometabolism is more striking in females than in males, and when the animals are in 

the dark. When G93A mice are placed in the MC4R-/- background, their metabolic profile 

is similar to MC4R-/- mice alone, for both males and females. G93A;MC4R-/- mice are 

significantly more hypometabolic compared to G93A mice in both dark and light periods. 

This suggests that MC4R ablation, in addition to affecting weight, food intake and 

activity, can also rescue the hypermetabolic phenotype in this mutant SOD1 model of 

ALS. 

Figure 2.5. Oxygen consumption and carbon dioxide production during the 12h 
dark cycle in study mice. 
Dark cycle O2 consumption (a) and CO2 production (b) in female and male WT, 
G93A, MC4R-/- and G93A;MC4R-/- mice at P60, P90 and P120 measured in mL, per 
hour, per kg mass of the animal over 12 hours of recording during the dark cycle of 
the day. Significance measured by one-way ANOVA among genotypes at each time 
point, followed by Tukey’s test for multiple comparisons: p<0.05 (*), p<0.01 (**), 
p,0.001 (***), p<0.0001 (****). 
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G93A mice lacking the melanocortin-4 receptor do not have improved motor 

function 

 

 Motor function of G93A mice deteriorates over time (Feeney et al., 2001). We 

asked if induction of hypometabolism blunted this age dependent phenotype. To this 

end, we measured forelimb and hindlimb grip strength in male and female study mice at 

P60, P90 and P120.  

 

Forelimb Strength (Fig. 2.6a). Group differences in forelimb grip strength among 

genotypes (WT, MC4R-/-, G93A, G93A;MC4R-/-) were found using one-way ANOVA at 

each age point for females (P60: F(3,27) = 1.724, p=0.1856; P90: F(3,29) = 12.77, p<0.0001; 

P120: F(3,30) = 50.14, p<0.0001) and males (P60: F(3,24) = 9.174, p=0.0003; P90: F(3,26) = 

15.69, p<0.0001; P120: F(3,29) = 66.43, p<0.0001).  

 MC4R-/- mice of both sexes had similar forelimb grip strength compared to WT 

mice at all three ages. G93A mice of both sexes had significantly decreased forelimb 

grip strength compared to WT mice, at P90 and P120 for females and at all three ages 

for males (post hoc, females p<0.001, males p<0.01). G93A;MC4R-/- mice of both sexes 

had significantly decreased forelimb grip strength than MC4R-/- mice at P90 and P120 

(post hoc, females p<0.001, males p<0.01), and had similar forelimb grip strength 

compared to G93A mice at all three ages. The only exception was that female 

G93A;MC4R-/- mice had significantly improved grip strength compared to G93A mice at 

P120 (post hoc, p<0.05). 
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Hindlimb Strength (Fig. 2.6b). Group differences in hindlimb grip strength among 

genotypes (WT, MC4R-/-, G93A, G93A;MC4R-/-) were found using one-way ANOVA at 

each age point for females (P60: F(3,27) = 12.66, p<0.0001; P90: F(3,29) = 25.69, p<0.0001; 

P120: F(3,30) = 57.73, p<0.0001) and males (P60: F(3,24) = 7.494, p=0.0010; P90: F(3,26) = 

26.7, p<0.0001; P120: F(3,29) = 68.35, p<0.0001).  

 MC4R-/- mice of both sexes had similar hindlimb grip strength compared to WT 

mice at all three ages, with one exception: male MC4R-/- mice had significantly increased 

hindlimb strength compared to WT mice at P120 (post hoc, p=0.0051). G93A mice of 

both sexes had progressively worsening hindlimb grip strength with age, and this was 

significantly decreased compared to WT mice at all three ages (post hoc, females 

p<0.001, males p<0.05). This difference was larger as the animals aged, at P90 and 

P120. G93A;MC4R-/- mice of both sexes had significantly decreased hindlimb grip 

strength than MC4R-/- mice all three ages (post hoc, p<0.05). Although female 

G93A;MC4R-/- mice had increased hindlimb grip strength compared to G93A mice at all 

ages, this did not achieve significance. Male G93A;MC4R-/- mice had similar hindlimb 

grip strength compared to G93A mice at all three ages.  
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These experiments show that G93A mice have significantly less forelimb and 

hindlimb grip strength compared to WT mice, indicating progressively impaired motor 

function. Importantly, although G93A;MC4R-/- mice are similar to MC4R-/- mice in their 

hypometabolic phenotype, they are significantly worse than MC4R-/- mice in grip 

strength. In fact, male G93A;MC4R-/- mice are indistinguishable from G93A mice in grip 

Figure 2.6. Motor function and survival of study mice. 
Forelimb (a) and hindlimb (b) grip strength of female and male WT, G93A, MC4R-/- and 
G93A;MC4R-/- mice measured at P60, P90 and P120. Significance measured by one-
way ANOVA among genotypes at each time point, followed by Tukey’s test for multiple 
comparisons: p<0.05 (*), p<0.01 (**), p,0.001 (***), p<0.0001 (****). Kaplan-Meier 
survival plots (c) of female and male study mice. Significance was calculated using the 
log-rank (Mantel-Cox) test for survival curve comparison between G93A and 
G93A;MC4R-/- mice, and was set to p<0.05. 
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strength. In females, there is significantly improved forelimb strength at P120 in 

G93A;MC4R-/- mice compared with G93A mice, and there is a consistent trend in 

improved hindlimb strength at all time points. Therefore, MC4R ablation has no effect on 

the motor function of male G93A mice and has a modest effect in female G93A mice. 

 

 

G93A mice lacking the melanocortin-4 receptor do not have extended lifespan 

  

Finally we looked at the lifespan of our mice. WT and MC4R-/- mice had similar 

longevity and no animals of these genotypes died within 1 year of birth. In agreement 

with published work, we found male and female G93A mice had a severely shortened 

lifespan compared to WT mice (Gurney et al., 1994), with a median survival of 169.5 

days and 167 days respectively (Fig. 2.6c). There was no significant difference in the 

lifespan of G93A;MC4R-/- mice compared to G93A mice. Median survival in these mice 

was 162 days and 164.5 days for males and females respectively (Fig. 2.6c). Although 

the double mutant G93A;MC4R-/- mice reach the pre-determined euthanasia criteria at 

the same time as G93A mice, they continue to have significantly higher body weight than 

the G93A mice at end stage (Fig. 2.1b, c). Together, these data suggest that ablation of 

melanocortin-4 receptor does not significantly prolong the life span of the G93A mouse.  

 

 

The leptin-MC4R pathway is altered in mice lacking the melanocortin-4 receptor  

  

 In addition to their role in controlling food intake and organismal metabolism, 

peptide hormones that impinge upon the MC4R signaling pathway can display beneficial 
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neuronal activities. In its canonical role in regulating metabolism, leptin acts on two 

populations of neurons in the arcuate nucleus of the hypothalamus: the 

proopiomelanocortin (POMC)-producing neurons and the agouti-related peptide (AgRP)-

producing neurons (Krashes et al., 2016). The POMC derived α-melanocyte stimulating 

hormone (α-MSH) is an agonist and AgRP is an antagonist of the MC4R. When calories 

are replete, α-MSH activates MC4R to promote satiety, feeding suppression, and weight 

loss by energy expenditure. When calories are depleted AgRP antagonizes MC4R to 

promote energy consumption and blunt energy expenditure. With regard to beneficial 

neuronal activities, α-MSH can promote cognitive recovery in a mouse model of 

Alzheimer’s disease (Ma and McLaurin, 2014) and demonstrates general anti-

inflammatory properties (Caruso et al., 2007; Brzoska et al., 2008). Similarly, higher 

circulating leptin is associated with decreased risk of Alzheimer’s disease and protection 

against cognitive decline (Holden et al., 2009). Due to their varied actions, we asked if 

the expression of serum leptin and α-MSH might be altered in G93A and MC4R-/- 

animals in order to clarify the role of these peptides in our experiments.   

We measured plasma concentrations of leptin and α-MSH in adult male WT, 

MC4R-/- and G93A mice. α-MSH levels were decreased in both MC4R-/- and G93A mice 

compared to WT (Fig. 2.7a), but this did not achieve significance (p = 0.08 for MC4R-/- 

and p = 0.16 for G93A). Leptin levels are moderately decreased in G93A mice (Fig 3.7b) 

and markedly increased in MC4R-/- mice compared to WT animals (p < 0.0001), 

consistent with the increased body weight and adiposity of these animals (Fig. 2.1).  As 

seen in previous work (Dupuis et al., 2004; Lim et al., 2014), leptin levels were 

decreased in G93A mice compared to WT mice. The modest difference in α-MSH levels 

among the genotypes may indicate relatively little contribution of the extra-metabolic 
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effects of this hormone on neuronal health. The markedly elevated leptin levels in the 

absence of MC4R may indicate a healthful compensatory hormonal response, although if 

so, it does not improve motor function or extend life of the G93A mice. In light of the 

benefits of haploinsufficiency of leptin demonstrated by Lim et al (Lim et al., 2014), it is 

conceivable that increased leptin in the absence of MC4R actually mitigates any 

potential benefits of hypometabolism. 

 

 

 

 

 

 

 

Figure 2.7. The leptin-MC4R pathway in G93A SOD1 mice. 
Plasma α-MSH (a) and leptin (b) concentrations in adult male WT, MC4R-/- mice (n=3 for 
each genotype). Significance measured by one-way ANOVA among genotypes, 
followed by Tukey’s test for multiple comparisons: p<0.0001 (****). (c) Summary of 
alterations in leptin, α-MSH/POMC cells and AgRP/AgRP cells in *G86R SOD1 mice 
(Vercruysse et al, 2016) and G93A SOD1 mice. (d) Speculative model of the leptin-
MC4R pathway in G93A;MC4R-/- mice based on data from MC4R-/- mice. 
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Discussion 

An increase in resting energy expenditure, or hypermetabolism, is a distinct 

organism-level feature of ALS patients and mouse models (Dupuis et al., 2004; Funalot 

et al., 2009a; Dupuis et al., 2011; Tefera and Borges, 2017). Our goal was to generate 

an ALS model mouse that was hypometabolic, and test the effect of this manipulation on 

key features of disease. In order to induce hypometabolism, we ablated MC4R function 

because it is a central regulator of energy metabolism. We successfully generated and 

studied mice that are null for MC4R and bear the ALS-linked G93A mutation in the 

SOD1 gene. We make two principal observations. First, the G93A;MC4R-/- animals are 

markedly hypometabolic as reported by weight gain and indirect calorimetry. Thus the 

G93A mutation does not impede the central regulation of metabolism via MC4R. 

Second, despite evoking hypometabolism in the G93A animals, the most important 

measures of disease (e.g., motor function and longevity) are unaffected. This argues 

that genetic blunting of the hypermetabolic phenotype by manipulation of MC4R is an 

ineffective intervention for slowing disease progression. 

 

Different mechanisms of inducing hypometabolism in ALS 

Prior studies in the G93A mouse model have shown that hypermetabolism does 

contribute to disease progression, and we highlight two of them here. In 2004, Dupuis et 

al studied male mice in two different ALS-related mutant SOD1 mouse models, G86R 

and G93A (Dupuis et al., 2004). They found that in both models, mice had lower body 

weight and increased energy expenditure by indirect calorimetry compared to age 

matched littermate controls. When the G86R mice were fed a high fat diet consisting of 

regular chow supplemented with 21% butterfat and 0.15% cholesterol, they gained 
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significantly more weight and had increased fat deposits than those fed regular chow 

alone. The high fat diet was associated with slowed motor neuron loss, slowed muscle 

denervation and a 20% improvement in mean lifespan. In 2014, Lim et al showed that 

the G93A mice were hypermetabolic and decreasing leptin levels (by placing them in a 

heterozgous ob+/- background), led to hypometabolism and weight gain in these mice 

(Lim et al., 2014). Leptin deficiency also led to improved hindlimb grip strength and led to 

a female-specific increase in median lifespan. These studies demonstrate that 

ameliorating the hypermetabolic phenotype, either by diet or by a specific genetic 

manipulation, can blunt the progression of ALS-like phenotypes in mutant SOD1 models 

of ALS. 

What does the difference between our current results with MC4R and prior work 

by Dupuis et al and Lim et al tell us about the contribution of hypometabolism to ALS? 

To address this, it is worth considering leptin and its interaction with MC4R. Leptin is a 

circulating hormone that plays a prominent role in controlling food intake and satiety 

(Cone, 2005; Krashes et al., 2016). It is released by adipocytes and acts on specific 

neurons in the arcuate nucleus of the hypothalamus. These first order neurons then act 

on second order neurons in the lateral hypothalamus and the paraventricular nucleus of 

the hypothalamus. MC4R is expressed on the second order neurons that receive 

opposing inputs based on upstream leptin signaling. When calories are replete, leptin-

mediated MC4R activation promotes satiety and energy expenditure. When calories are 

depleted, circulating leptin is reduced and MC4R is inhibited leading to food 

consumption and suppression of energy expenditure. On the surface, the leptin deficient 

G93A;ob+/- mice Lim et al studied and the G93A;MC4R-/- mice we studied are similar; 

they are both heavier than G93A mice and are hypometabolic. Despite this similarity, it is 

surprising that ablating MC4R, leptin’s downstream target, does not confer the same 
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benefits on motor function as reduced leptin signaling does. One possibility is that the 

beneficial effects of reduced leptin signaling acts via MC4R independent pathways. 

Indeed, leptin receptors are expressed in extrahypothalamic neurons in the midbrain and 

the cerebellum and in peripheral tissue such as the liver (Cohen et al., 2005; Oldreive et 

al., 2008; Davis et al., 2011; Forero-Vivas and Hernández-Cruz, 2014) although the 

function of leptin signaling in extrahypothalamic tissues is not well understood. The 

reduction in circulating leptin that Lim et al achieved in the ob+/- background may point to 

important effects of leptin not captured by MC4R ablation. In light of this, we show here 

that mice lacking MC4R have a 20-30 fold increase in circulating leptin and perhaps this 

mitigates any potential benefit of hypometabolism induced by loss of MC4R.   

 

The hypothalamic melanocortin pathway in ALS 

Recent work indicates intrinsic abnormalities in hypothalamus in ALS. Gorges 

and colleagues find significant atrophy of the hypothalamus in sporadic and familial ALS 

patients (Gorges et al., 2017). Atrophy presents in presymptomatic stages in familial 

mutation carriers and is more severe in patients with lower BMI. This suggests that 

changes in the hypothalamus precede changes in metabolism in ALS patients. In a 

different study, Vercruysse and colleagues looked specifically at the hypothalamic 

melanocortin system in ALS patients and the G86R mutant SOD1 mouse model 

(Vercruysse et al., 2016). In the G86R SOD1 mice, there are significantly fewer first 

order, MC4R-activating (POMC-expressing) neurons and significantly more first order, 

MC4R-inhibiting (AgRP containing) neurons compared to WT mice. These differences 

were observed at pre-symptomatic stages and suggest that signaling in the melanocortin 

system is downregulated in this ALS model. We too find changes in the MC4R signaling 

pathway (e.g., leptin and α-MSH are decreased in G93A mice, Fig. 2.7a and b), although 
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we studied the G93A SOD1 model. To test the idea that evoking a hypometabolic state 

would be beneficial, Vercruysse et al administered an inhibitor of the melanocortin 

system, pioglitazone. This did not lead to weight gain in a clinical trial of ALS patients 

and did not lead to increased food intake by the G86R SOD1 mice. Vercruysse et al 

attributed the lack of efficacy of pioglitazone to the intrinsic abnormalities in melanocortin 

system. On the other hand we show that deletion of MC4R in the G93A mouse can 

clearly evoke hypometabolism, regardless of the state of the melanocortin system in 

ALS. Vercruysse et al did not study G93A mice, but our data suggest that even if 

Vercruysse et al could pharmacologically inhibit melanocortin system and evoke a 

hypometabolic state, it may not lead to a meaningful effect on weakness in these 

models.  

Together, this study, Vercruysse et al (2016), Dupuis et al (2004) and Lim et al 

(2014) show that leptin levels are lower in mutant SOD1 mice, there are fewer POMC 

neurons, more AgRP neurons and lower trending α-MSH (Fig. 2.7c). Given that loss of 

MC4R leads to a large increase in leptin levels, we speculate that contrary to G93A 

mice, leptin levels are also upregulated in the G93A;MC4R-/- mice while α-MSH levels 

are lowered (Fig. 2.7d). If this is in fact the case, our study also suggests that 

upregulating leptin in mutant SOD1 mice may not be beneficial in altering disease 

course. 

 

Sex, metabolism and ALS 

Differences between males and females may contribute to the effectiveness of 

metabolic manipulations in ALS. We find a small but significant female-specific 

improvement in forelimb grip strength at P120 in G93A;MC4R-/- mice. In the leptin study, 
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Lim et al showed that the increase in median lifespan in G93A;ob+/- mice compared to 

G93A mice was female-specific. Dupuis et al only used male mice in their high-fat diet 

experiments, but a recent study showed that a diet with low unsaturated fatty acids led to 

female-specific decrease in median lifespan and a worsening of disease progression in 

G93A mice (Cacabelos et al., 2014). Similarly, metabolic manipulations are shown to 

affect male and female animals differently in other ALS studies (Kaneb et al., 2011; Kim 

et al., 2012; Eschbach et al., 2013; Lim et al., 2014).  

In our study, male MC4R-/- mice have 22% lower O2 consumption and 16% lower 

CO2 production at P120 compared to WT mice in the active, dark period. In contrast, 

female MC4R-/- mice at the same age and time of day have 37% lower O2 consumption 

and 33% lower CO2 production than WT mice. This clearly shows a stronger MC4R 

mediated hypometabolic phenotype in females. The results are similar in the G93A 

background. Male G93A;MC4R-/- double mutant mice have 18% lower O2 consumption 

and 16% lower CO2 production than WT mice at P120 in the dark. In contrast, female 

G93A;MC4R-/- mice have 38% lower O2 consumption and 37% lower CO2 production 

than WT mice at the same age and phase of day. This indicates that even in the G93A 

background, loss of MC4R has a stronger hypometabolic effect in females, which 

coincides with improved forelimb strength in females at the same age. Lim et al found 

that G93A females had similar circulating leptin as WT mice while G93A males had 

decreased circulating leptin compared to WT (Lim et al., 2014). Higher baseline leptin in 

female mice may contribute to their differential response to metabolic manipulations in 

the Lim et al study and this study. These observations highlight sex-specific 

perturbations in metabolism and ALS.  

There are well-documented metabolic differences between males and females, 

including effects of sex hormones such as estrogen and testosterone (Salehzadeh et al., 
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2011; Mauvais-Jarvis et al., 2013), differences in fat storage (Fried et al., 2015) and food 

intake (Hallam et al., 2016), to name a few. As highlighted above with leptin, metabolic 

differences are also present between males and females in ALS. In addition, there are 

sex-specific differences in ALS presentation and progression. The overall incidence of 

ALS is higher in males than in females, and spinal cord onset is more likely in males 

while bulbar onset is more likely in females (McCombe and Henderson, 2010). In G93A 

mice, females have later onset and longer survival in different genetic backgrounds 

(Heiman-Patterson et al., 2005), females have preferentially upregulated 

proteasomal activity (Riar et al., 2017) and loss of certain genes like PGC-1α 

accelerates disease progression in males but not females (Eschbach et al., 2013). The 

complex interaction of metabolic differences with pathophysiology and the differences in 

metabolism and disease progression in ALS are just beginning to be studied. It is 

therefore important to address male and female subjects differently in any ALS study, 

and especially those that perturb metabolism. 

 

 The G93A SOD1 mouse model of ALS 

Different features of ALS in patients may not be recapitulated in every model of 

the disease. Here, we chose the G93A SOD1 mouse since it is the most widely studied 

model of ALS. These mice mimic many of the clinical features of the disease in patients, 

including hypermetabolism. Unfortunately, there is no systematic study of the level of 

hypermetabolism specifically in patients with SOD1 mutations. Hence, it is not known 

whether the hypermetabolism in the SOD1 mouse model mimics patient symptoms. 

However, a small study showed that patients with familial ALS have a higher incidence 

of hypermetabolism than those with sporadic ALS (Funalot et al., 2009a), and SOD1 

mutations comprise up to 20% of familial ALS cases. Detailed analysis of the metabolic 
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abnormalities in different SOD1 mutations both in patients and in mouse models will help 

in designing and interpreting studies of the contribution of metabolism in ALS.   

Further, the mutant SOD1 strain we used expresses high levels of the human 

G93A SOD1 transgene, leading to a 4-fold increase in SOD1 activity (Gurney et al., 

1994). Compared to other mouse models with different mutations in SOD1, this line has 

earlier symptom onset (13-17 weeks) and shorter lifespan (17-26 weeks). In contrast, 

the G85R mutant SOD1 mouse model has a later symptom onset (35-43 weeks) and 

longer lifespan (37-45 weeks) (Bruijn et al., 1997). It is conceivable that the more 

aggressive presentation of ALS-like symptoms in the G93A mouse blunts the potential 

therapeutic benefit of hypometabolism. Dupuis et al described a hypermetabolic 

phenotype in G93A and G86R mutant SOD1 mice, both of which have earlier onset of 

symptoms and short lifespans (Dupuis et al., 2004), but it is unknown if the G85R mice 

have a hypermetabolic phenotype. It is thus important to determine the hypermetabolic 

phenotype in the G85R SOD1 model, and if it exists, to test the effect of lowering 

organismal metabolism in that model. 

 

Molecular mechanisms of hypermetabolism in mutant SOD1-linked ALS 

Despite decades of effort, the mechanism by which mutant SOD1 causes motor 

neuron death remains unclear. However, accumulating data suggests that soluble, and 

not aggregated, misfolded mutant SOD1 could lead to cellular damage by promiscuous 

interactions with different molecular pathways, including mitochondrial dysfunction and 

reactive oxygen species production (Parone et al., 2013). Damaged mitochondria can 

thus affect cellular metabolism, and by extension organismal metabolism. It is plausible 

that misfolded, soluble mutant SOD1 in the G93A mice is not affected by ablating MC4R 

and is therefore unable to change disease progression in these mice. Indeed, it is not 
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known if metabolic changes are caused by disease-linked mutations or if metabolism is 

distinct from underlying mutations given the prevalence of aberrant metabolism in 

sporadic ALS patients.  

 

Conclusion 

While experiments have shown that weight gain, increasing BMI, and decreasing 

energy expenditure are associated with lower risk for developing ALS (Paganoni et al., 

2011; O'Reilly et al., 2013; Ngo et al., 2014), not all genetic manipulations for inducing 

weight gain and altering metabolism are equal in their effectiveness. The findings 

presented here add to the growing understanding of how energetic dysfunction is 

coupled to ALS. It is critical to understand the metabolic profile in ALS thoroughly, and to 

detail exactly how different dietary and genetic changes influence metabolism in ALS in 

a sex-specific way in order to design appropriate therapeutic interventions.  

 

 

 



51	
	

Methods 

Mouse strains and husbandry 

Male hemizygous G93A mutant SOD1 mice (G93A+/-) on the C57BL/6 

background (Strain #004435, Jackson Laboratories, Bar Harbor, ME), referred to as 

G93A, were crossed with female heterozygous loxTB MC4R mice (MC4R+/-) in the 

C57BL/6 background (Balthasar et al., 2005) (Strain #006414, Jackson Laboratories, 

Bar Harbor, ME). The G93A mice carry one copy of the human G93A mutant SOD1 

transgene, and the MC4R+/- mice contain a transcriptional block cassette before the 

MC4R start codon. From the F1 progeny, G93A;MC4R+/- males were crossed with 

MC4R+/- females. From the F2 generation, the following groups were used for study 

purposes: WT (+/+), G93A, MC4R-/-, G93A;MC4R-/- (Fig. 2.1a). Both males and females 

from each group were used for all study parameters. Genotypes were determined by 

PCR using tail snip DNA using the following primers – MC4R: 

GCAGTACAGCGAGTCTCAGG (wild type forward), CTCCCACAGGCTTATGACACC 

(wild type reverse), GTGCAAGTGCAGGTGCCAG (mutant), and SOD1: 

CTAGGCCACAGAATTGAAAGATCT (genomic forward), 

GTAGGTGGAAATTCTAGCATCATCC (genomic reverse), 

CATCAGCCCTAATCCATCTGA (transgene forward), CGCGACTAACAATCAAAGTGA 

(transgene reverse).  

Mice were housed at 22°C with a 12-hour light dark cycle. They were fed 

standard diet (23% protein, 22% fat, 55% carbohydrates). Animals were weighed once a 

week at the same time of day starting at P40 for at least 20 weeks. Mice without the 

G93A mutation were measured for over 40 weeks. All animal protocols were approved 

by the Institutional Animal Care and Use Committee (IACUC) at the Children’s Hospital 
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of Philadelphia, and animals were treated in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals.  

 

Study Design 

 Mice of both sexes with four genotypes (WT, G93A, MC4R-/-, G93A;MCR4-/-) 

were studied. The following parameters were measured at P60, P90 and P120: oxygen 

consumption, carbon dioxide production, food consumption, ambulatory activity, forelimb 

strength and hindlimb strength. P60 is shown to be presymptomatic in G93A mice, while 

P90 is symptomatic and P120 is close to end stage (Saxena et al., 2009). We chose 

these time points in order to monitor progression of ALS-related and metabolic 

phenotypes as animals age. Animals were sacrificed when they were unable to right 

themselves within 30 seconds from being supine, and this was recorded as day of death 

for survival measurements.  

 

Weight gain, food consumption, activity and metabolic measurements 

 Food consumption, ambulatory activity and metabolic measurements were made 

at the appropriate time points (P60, P90 and P120) using the Comprehensive Laboratory 

Animal Monitoring System (CLAMS) (Columbus Instruments, Columbus OH). Animals 

were weighed and placed in individual chambers with food and water for 48 hours. Food 

consumption was measured in grams by recording the decrease in weight of the pre-

measured food provided in the chambers. Ambulatory activity was measured in arbitrary 

units by the number of infrared beam breaks in the x-y plane of the cage every minute, 

thus ruling out grooming-related activity in the z-axis. Oxygen consumption and carbon 

dioxide production were measured by indirect calorimetry approximately every 10 

minutes and reported in milliliters per hour, normalized by the body weight of the animal 
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(mL/hr/kg). Animals were allowed to acclimate to the chambers for the first 24 hours, and 

only the data from the final 24 hours was used for analysis.  

 

Motor Output 

 Grip strength measurements were made at the same time of day at appropriate 

time points for the fore and hind paws using a digital grip strength meter (Columbus 

Instruments, Columbus, OH). For fore grip measurements, animals were allowed to grip 

a bar with their fore paws while being held by their tails, and gently pulled back until they 

let go of the bar. The meter recorded the force (in kilogram-force or kgf) with which they 

hold on to the bar as they are pulled back. Similarly, hind grip strength was measured as 

mice gripped a bar with their hind paws. For each animal, one set of trials comprised 3-5 

consecutive trials, and each set was repeated three times, with approximately 3 minutes 

between sets for the animal to rest. The average strength for the 12-15 trials was 

reported for both the fore and the hind paws at each time point.  

 

Plasma leptin and α-MSH measurements 

 Mice were anesthetized using carbon dioxide and cardiac extraction was 

immediately performed to collect blood from adult WT, G93A and MC4R-/- male mice. 

Blood was spun down at 2000g for 20 minutes and supernatant plasma was frozen at -

80C until further use. Plasma concentrations of leptin and α-MSH were determined by 

the Radioimmunoassay and Biomarkers Core facility at the University of Pennsylvania 

using standard ELISA (Leptin: Cat # 22-LEPMS-E01 from ALPCO, Salem NH; α-MSH: 

Cat # MBS2516107 from MyBioSource, San Diego CA). 
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Statistics 

 Data were analyzed using Prism (GraphPad Software, La Jolla, CA). Unless 

otherwise noted, significant differences within groups were determined using one-way 

ANOVA followed by Tukey’s test for multiple comparisons. Survival curves were 

analyzed using the log-rank (Mantel-Cox) test for significance. For all tests, the 

significance threshold was set to p < 0.05. 
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Abstract 

Oxygen deprivation, even for short durations, can be extremely injurious to cells. 

Neurons are particularly vulnerable to changes in oxygen, and cerebral hypoxia has 

debilitating consequences including motor impairments, speech impairments and 

memory loss, and can be fatal. The molecular mechanisms underlying extreme oxygen 

deprivation are not well understood. Here we describe a novel role for neuropeptide 

signaling in regulating survival of the nematode Caenorhabditis elegans under anoxic 

conditions. We find that loss of neuropeptide signaling protects worms from extended 

anoxia and it does not rely on known pathways in stress tolerance and longevity for this 

effect. Loss of genes regulating cellular energy homeostasis and membrane lipid 

synthesis suppresses neuropeptide-mediated protection, indicating an important role for 

metabolism in surviving extended anoxia. Additionally, the nervous system is necessary 

for the secretion of neuropeptides mediating this phenotype, and a screen of 

neuropeptide genes identified nlp-40 as a partial regulator of anoxic survival. Together, 

these data highlight a potential cell non-autonomous regulation of survival against 

extreme environmental stress. 
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Introduction 

Molecular oxygen is essential to the function and survival of multicellular 

organisms. It is the final electron-acceptor of the electron transport chain during 

mitochondrial oxidative phosphorylation, and is thus critical for producing the vast 

majority of ATP to fuel cellular functions (Rich, 2003). Even short periods of oxygen 

deprivation cause cell and organismal damage and death. While all organs are sensitive 

to changes in oxygen, the brain is unique in that it consumes the most (20% of total 

oxygen consumed) of any organ (Erecińska and Silver, 2001). It is, therefore, also the 

most sensitive to oxygen deprivation. There are many injuries and disorders where the 

brain experiences decreased oxygen supply, such as sudden cardiac arrest, ischemic 

stroke, strangulation, choking, carbon monoxide poisoning and seizures (Hopkins and 

Haaland, 2004). Birth-related injuries lead to hypoxic-ischemic encephalopathy in 

newborn infants (Volpe, 2001). Depending on the age at injury and the area of brain 

affected, there are wide-ranging and severe consequences of oxygen deprivation such 

as changes in mood and personality, loss of motor function or speech, memory loss and 

cognitive impairment (Yogaratnam et al., 2013). Understanding the genetic and 

molecular regulation of cellular response to oxygen deprivation can help design 

therapies and drugs to combat its devastating effects. 

C. elegans, the soil-living nematode, is a great model to study oxygen 

deprivation, and has been used as such across its lifespan (Van Voorhies and Ward, 

2000; Padilla et al., 2002; Scott et al., 2002; Peña et al., 2016). It is a relatively simple, 

1mm long organism with 959 somatic cells and 302 neurons (www.wormbook.org). It 

has a short life cycle (it grows from egg to adult in 3 days and lives for 2-3 weeks), feeds 

on bacteria and is transparent, all of which allow for ease of experimental manipulation. 
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Importantly, its neuronal connectivity is completely mapped, its genome shares 

significant homology with humans and is completely sequenced, and many molecular 

pathways are identical between C. elegans and mammals.  

Since it lives in soil, C. elegans generally prefers lower environmental oxygen (5-

12% O2) (Gray et al., 2004). Interestingly, it has distinct responses to moderate and 

severe oxygen deprivation (Padilla et al., 2002). Worms can survive, develop and 

reproduce under low oxygen, hypoxic conditions (0.5-1% oxygen) while decreasing their 

oxygen consumption and locomotion (Jiang et al., 2001). However, under extreme 

oxygen deprivation or anoxia (<0.1% oxygen), worms become hypometabolic, and 

suspend development, feeding and reproduction (Van Voorhies and Ward, 2000; Padilla 

et al., 2002; Nystul et al., 2003). Depending on growth conditions, they can survive in 

this ‘suspended animation’ state for long periods (a few days), but eventually die if 

oxygen is not reintroduced. Upon reoxygenation, they resume normal activity including 

reproduction. While the hypoxic response in C. elegans is extensively studied and 

depends on the canonical hypoxia induced factor (hif-1) pathway, the anoxic response is 

hif-1-independent and is less well understood (Padilla et al., 2002).  

Studies in the past decade have shed light on some features of the worm 

response to anoxia. Loss of function in daf-2, the worm homolog of the insulin-like 

growth factor 1 (IGF1) receptor, protects worms from anoxia, suggesting a role for 

insulin signaling in this response (Scott et al., 2002). This protective effect of daf-2 loss 

of function requires activity of its downstream transcription factor daf-16, the worm 

homolog of the forkhead box protein O (FOXO). Similarly, loss of function mutation in 

nsy-1, a MAP3K, also protects worms from anoxia (Hayakawa et al., 2011). Mutations 

the AMPK pathway (LaRue and Padilla, 2011) and the ceramide synthesis pathway 

(Menuz et al., 2009) make worms hyper sensitvie to anoxia, suggesting a role for 



59	
	

metabolism in the worm anoxic response. Indeed, ATP levels decrease during anoxia, 

and increase upon re-exposure to air (Van Voorhies and Ward, 2000; Padilla et al., 

2002).  

Previous work from our lab shows that the BAG sensory neuron, which detects 

downshifts in environmental oxygen, makes worms sensitive to anoxia. In worms where 

the BAG neuron is genetically ablated, anoxic survival is significantly higher than wild 

type worms (Flibotte et al., 2014). Similarly, we found that in the absence of 

neuropeptide synthesis and secretion, worms survive anoxia significantly better (Flibotte 

et al., 2014). However, neuropeptide signaling is not required in BAG neurons for this 

effect.  These experiments utilized a temperature sensitive allele of egl-3 and were 

conducted at 25 degrees Celsius to enhance egl-3 loss of function. At this higher 

temperature, the temperature sensitive egl-3 mutant continued to be protective against 

anoxic insult. Restoring neuropeptide synthesis specifically in BAG neurons in a 

neuropeptide synthesis-deficient background did not rescue the survival benefit 

conferred by loss of egl-3 mediated neuropeptide signaling. One interpretations of this 

result is that there was not sufficient rescue of egl-3 in the BAG neurons. Alternatively, 

these data suggest that neuropeptide signaling is not required in BAG neurons, is not 

directly related to oxygen sensing, and perhaps works in a parallel, cell non-autonomous 

fashion to regulate worm response to anoxia.  

How, then, does neuropeptide signaling regulate worm survival against anoxia? 

We hypothesize that discrete neuropeptides are secreted by neurons and lead to 

inhibition of stress-resistance and longevity pathways to make developing wild type 

worms specifically vulnerable to anoxia. To test this hypothesis, we sought to answer the 

following questions: Is the regulation of anoxia by neuropeptides specific to this stress? 

Which tissues do neuropeptides act in? What known mechanisms in stress resistance 
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and longevity, if any, impinge on the regulation by neuropeptides? Which specific 

neuropeptides are involved in this anoxic response? How does exposure to anoxic 

stress impact worm lifespan? We chose the L4 larval stage of development to address 

these questions, since it is known to be sensitive to anoxia (Padilla et al., 2002; Flibotte 

et al., 2014), and can approximate hypoxic ischemic encephalopathy experienced at 

birth by newborn infants. Our goal is to expand our understanding of the C. elegans 

response to anoxia by focusing on the neuropeptide regulation of this stress to address 

these questions. 
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Results 

Loss of neuropeptide signaling protects against anoxic stress in developing C. 

elegans 

We previously found that loss of function mutations in egl-3 and unc-31 protected 

worms against anoxia (Flibotte et al., 2014). EGL-3 is a proprotein convertase required 

for maturation of peptide hormones (Thacker and Rose, 2000). It cleaves larger 

proprotein peptides into smaller peptides with C-terminal basic residue(s). Loss of egl-3 

impedes synthesis of hormones, including neuropeptides. UNC-31 is a calcium-

dependent activator protein for secretion (CAPS). It is required for fusion and exocytosis 

of neuropeptide-containing dense core vesicles at presynaptic membranes (Speese et 

al., 2007). Wild-type (N2) survival after anoxia is dependent on the duration of the insult: 

80-90% of N2 worms survive 24 hours of anoxia while only 30-50% survive 48 hours of 

anoxia (Van Voorhies and Ward, 2000; Padilla et al., 2002; Flibotte et al., 2014). As a 

result, we chose 48 hours of anoxic insult to measure changes in susceptibility to this 

stress. 
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Figure 3.1. Survival of neuropeptide processing and secretion mutants at the L4 
stage after 48 hours of anoxia. For a) data were analyzed using one-Way ANOVA 
with Tukey’s test for multiple comparisons (n = 4 independent experiments). For b) 
data were analyzed using paired t-test (n = 6 independent experiments). *p < 0.05, **p 
< 0.01
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We confirmed these findings in egl-3 and unc-31 mutants, and also found that loss of 

egl-21 was protective against 48 hours of anoxia (Fig. 3.1a and b). EGL-21 is a 

carboxypeptidase that is required for maturation of neuropeptides. It removes the C-

terminal basic residue(s) from small peptides generated by EGL-3 (Jacob and Kaplan, 

2003). Thus, loss of function of multiple genes required for neuropeptide synthesis and 

secretion protect worms from anoxic stress. Interestingly, all three of these genes have 

human homologs, and play the same roles in peptide hormone synthesis and secretion 

(Thacker and Rose, 2000; Jacob and Kaplan, 2003; Speese et al., 2007).  

This protective effect was specific to the L4 stage of development, the final larval 

stage before worms enter adulthood. We found that 90-100% of young adult worms 

survived 48 hours of anoxia while 30-50% of L4 worms survived the same insult (Fig. 

3.2a). The L4 stage of worm development lasts upto 8 hours, during which worms 

undergo a variety of physiological changes. 

 

Given that developing worms respond to 48h anoxia differently than mature worms, we 

asked if worms in early L4 would be different from those in late L4 in their anoxic 
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paired t-test. *p < 0.05
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susceptibility. We used a reporter line qIs56 [(lag-2::GFP) + unc-119(+)] for distal tip cell 

maturation (Blelloch et al., 1999) to accurately distinguish early and late L4 worms, and 

subjected them to 48h anoxia. There was no significant difference in anoxic survival 

between the two sub-stages (Fig. 3.2b).   

In addition to O2 depletion, 8-12% CO2 is generated in the biobags used for these 

studies (per manufacturer). Work by others suggests that worms reduce pharyngeal 

pumping in response to high CO2 levels, and this is in part mediated by egl-21 and unc-

31 (Sharabi et al., 2014). In order to determine if the worms were responding to 

hypercarbia instead of anoxia, we placed L4-staged N2, egl-3 and unc-31 worms in a 

chamber with 20% O2 and 10% CO2. After 48 hours in this chamber, none of the lines 

had developmentally arrested (‘stunned’) or died as they do in the biobags. Rather, they 

had developed to adulthood, laid eggs and these eggs had hatched (data not shown). 

We also tested gcy-9 mutant worms, since GCY-9 is known to be necessary for sensing 

CO2, thereby regulating worm avoidance to the gas (Hallem et al., 2011). Loss of gcy-9, 

however, did not alter survival of worms after 48 hours of anoxia compared to N2 

animals (data not shown). Therefore, we concluded that the phenotype we studied was 

specific to anoxia. 

We also found that protection conferred by loss of neuropeptide signaling was 

specific to anoxic stress. Neuropeptide signaling mutants subjected to heat stress, UV 

stress or tunicamycin-induced ER stress did not survive any better than N2 worms (Fig. 

3.3).  

Together, these data show that developing (L4) C.elegans are sensitive to anoxic 

stress in a duration-dependent manner, and loss of function mutations in neuropeptide 

synthesis and secretion specifically confer a survival benefit against this stress. This 
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indicates that neuropeptide signaling makes worms vulnerable to extreme oxygen 

deprivation. 

 

 

Biogenic amines do not underlie unc-31-mediated anoxic survival 

 In C.elegans, dense-core vesicles are known to package biogenic amines in 

addition to peptides (Berendzen et al., 2016). We wondered if unc-31-mediated 

protection under anoxia was partially due to loss of biogenic amine signaling. There are 

four biogenic amines in C.elegans: serotonin, dopamine, tyramine and octopamine. 

These are synthesized by tryptophan hydroxylase (tph-1), tyrosine hydroxylase (cat-2), 

tyrosine decarboxylase (tdc-1) and tyramine β-hydroxylase (tbh-1) respectively. In order 
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Figure 3.3. Response of neuropeptide signaling mutants to different stresses. a) Survival of embryos after 
adult parents (n=16-25 animals) are irradiated with different doses of UV-B. b) Survival of L1 worms (n=40-160 
animals) irradiated with different doses of UV-B. c) Survival of L4 worms (n=50 animals) after 5h and 12h of 34C 
heat shock. Data were analyzed by Two-Way ANOVA with Tukey’s test for multiple comparisons. d-f) Survival of N2 
(d), unc-31 (e) and egl-3 (f) worms at L4 placed on NGM, DMSO (Vehicle) or Tunicamycin plates. Data are 
analyzed using the Mantel-Cox test for survival curve comparison. *p < 0.05, **p < 0.01, ***p < 0.001
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to test their contribution to anoxic survival via UNC-31, we measured survival of worms 

with loss of function mutations in each of these enzymes. We found that none of these 

mutants had a significant survival benefit compared to N2 (Fig. 3.4), suggesting that loss 

of unc-31 confers a survival benefit specifically due to loss of neuropeptide signaling. 

 

 

 

Neuropeptide synthesis in the nervous system is necessary for survival under 

anoxic stress 

 Reporter studies have shown that UNC-31 and EGL-21 are ubiquitously 

expressed in the nervous system and have little detectable expression in other tissues 
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Figure 3.4.  Survival of biogenic amine synthesis mutants at L4 after 48 hours of anoxia. N2 and 
unc-31 survival was compared against survival of a) tryptophan hydroxylase (tph-1), b) tyrosine 
decarboxylase (tdc-1), c) tyramine β-hydroxylase (tbh-1) and d) tyrosine hydroxylase (cat-2). Data were 
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(Jacob and Kaplan, 2003; Speese et al., 2007). Similarly, EGL-3 is broadly expressed in 

the nervous system, but there is evidence that it is also expressed in non-neuronal cells, 

such as the intestine (Hung et al., 2014). We wanted to know which tissue egl-3 loss 

was required in for its pro-survival effect under anoxic conditions. To this end, we 

generated worms expressing genomic egl-3 under either a pan-neuronal, intestinal or 

muscle-specific promoter into the egl-3 mutant background. These lines should be null 

for egl-3 in the whole animal except neurons, muscles and intestine, respectively. After 

subjecting these lines to anoxia, we found that intestinal and muscle expression of egl-3 

did not rescue the survival benefit seen in egl-3 null worms. However, neuronal 

expression of egl-3 rescued this survival benefit back to wild-type levels (Fig. 3.5a). We 

confirmed this finding using pan-neuronal knockdown of egl-3 using RNAi using a worm 

strain sensitized for neuronal RNAi (Firnhaber and Hammarlund, 2013). Compared to 

worms raised on empty vector (EV) bacteria, those raised on pan-neuronal RNAi against 

egl-3 survived anoxia significantly better (Fig. 3.5b). This indicates that loss of egl-3 in 

neurons is necessary to confer survival under anoxia, and that neuropeptides 

synthesized in the nervous system make worms susceptible to anoxic stress. These 

data are also consistent with the expression pattern of unc-31 and egl-21.  

 In order to determine which neuronal subpopulations were necessary for the egl-

3 loss of function phenotype, we similarly conducted RNAi experiments to knock down 

egl-3 in glutamatergic, cholinergic, GABAergic and dopaminergic cells specifically. To do 

this, we obtained worms that were optimized for dsRNA uptake in the specific neuronal 

subtypes (Firnhaber and Hammarlund, 2013). We found that glutamatergic and 

GABAergic neurons do mediate this effect, because we saw significantly higher survival 

upon egl-3 knockdown in these tissues compared to the same worms fed EV bacteria 

after 54h anoxia (Fig 3.5b). In preliminary experiments (n=2) there was no significant 
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difference between EV and egl-3 RNAi groups in cholinergic and dopaminergic neurons 

after 72h anoxia. These experiments were done under higher anoxia durations (54h and 

72h) since we found that all these lines survived 48h of anoxia very well, making those 

data difficult to interpret. Together, these RNAi experiments tell us that loss of egl-3 

function in multiple neuronal subtypes, including glutamatergic and GABAergic neurons, 

accounts for the survival phenotype of egl-3 null worms. 

 

 

 

Known stress-resistance/longevity pathways do not regulate neuropeptide-

mediated survival under anoxia  

 We wanted to understand the mechanism by which neuropeptide signaling 

affects survival under anoxia. Do genes and pathways previously shown to regulate 

stress responses also underlie neuropeptide-mediated anoxic susceptibility?  
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To test this, we interrogated loss of function mutations in a variety of such genes in the 

unc-31 and/or egl-3 background. We tested the following genes due to their described 

role in anoxia, hypoxia or general stress resistance/longevity: (i) daf-16 (Scott et al., 

2002; Mendenhall et al., 2006a), (ii) hif-1 (Zhang et al., 2009), (iii) hsf-1 (Hsu et al., 

2003), (iv) skn-1 (Ghose et al., 2013), (v) nsy-1 (Hayakawa et al., 2011). Briefly, we 

made double mutants between the mutant gene of interest (i-v above) and unc-31/egl-3 

mutants, and subjected them to anoxia. Our reasoning was that if increased anoxic 

survival of unc-31/egl-3 mutants was due to the activity of any one of the genes i-v, then 

loss of that gene in the unc-31/egl-3 mutant background would reverse the survival 

benefit. 

 We found no significant difference in survival between unc-31 or egl-3 mutant 

strains and the respective double mutant strains (Fig. 3.6). Thus, none of these genes 

were unable to rescue survival benefit conferred by loss of unc-31 or egl-3. These data 

indicate that either these genes act in parallel to neuropeptide signaling, or that 

neuropeptide-mediated regulation of anoxia requires the activity of an untested or novel 

cellular factor and does not involve most known stress resistance or longevity promoting 

pathways.  
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Figure 3.6. Survey of canonical stress-resistance and longevity promoting genes in 
regulating neuropeptde-mediated anoxia sensitivity. Survival of the following double 
mutants containing egl-3 or unc-31 was compared with egl-3 or unc-31 alone. a) 
daf-16;unc-31 b) daf-16;egl-3 c) hif-1;unc-31 d) hsf-1;unc-31 e) skn-1;egl-3 f) nsy-1;unc-31. 
(n = 3 independent experiments for b), n = 4 for rest). Data were analyzed using one-way 
ANOVA with Tukey’s test for multiple comparisons. 
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Genes involved in cellular metabolism suppress survival benefit induced by loss 

of neuropeptide signaling 

Since worms enter a hypometabolic, suspended animation state in order to 

survive long term anoxia, we wondered if disrupting genes involved in regulating cellular 

metabolism would affect neuropeptide-mediated sensitivity to anoxic stress. AMP-

associated kinase (AMPK) is the master cellular sensor of a decrease in the ATP/AMP 

ratio. When cellular ATP levels decline, AMPK is activated by phosporylation, and in turn 

it promotes anabolic pathways and restricts catabolic pathways in the cell. Studies have 

shown that ATP levels decrease during worm anoxia (Van Voorhies and Ward, 2000; 

Padilla et al., 2002), and that loss of the worm AMPK, aak-2, also makes worms 

vulnerable to anoxia (LaRue and Padilla, 2011). Previous studies have also implicated 

the short chain (C20-22) ceramide syntase HYL-2 in regulating C. elegans response to 

anoxia (Menuz et al., 2009). Ceramides are essential components of the lipid bilayer, 

and are involved in regulating metabolic homeostasis (Bikman and Summers, 2011). 

Loss of function mutations in hyl-2 made worms extremely sensitive to anoxia, and lack 

of hyl-2 signficantly decreased the survival benefit conferred by mutant daf-2 (Menuz et 

al., 2009).  We decided to test these two genes to assess their involvement in the 

neuropeptide-mediated survival phenotype we observe in developing worms.  

First, we confirmed that loss of hyl-2 and aak-2 renders worms hypersensitive to 

our anoxic conditions. Next, we studied the genetic doubles hyl-2;unc-31, hyl-2;egl-3, 

and aak-2;unc-31. In contrast to other stress-resistance genes discussed in the previous 

section, loss of hyl-2 and aak-2 completely suppressed the survival benefit in the egl-

3/unc-31 mutant background (Figure 3.7a-c and 3.7e). We confirmed the effect of hyl-2 

in two different ways: (i) we tested two different loss of function mutations and obtained 

the same result (Fig. 3.7a and 3.7b), and (ii) we outcrossed hyl-2 from the unc-31;hyl-2 
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double mutant to directly test hyl-2 involvement in survival suppression (Fig. 7d). 

Outcrossing hyl-2 reversed the sensitivity to anoxia seen in the double mutant. In fact, 

the outcrossed strain had similar survival as the unc-31 mutant alone, confirming that 

hyl-2 was necessary for suppression of the unc-31 phenotype. These data indicate that 

cellular pathways regulating energy metabolism in the cell are critical to surviving anoxic 

stress, and that neuropeptide signaling likely acts downstream of these metabolic factors 

in regulating anoxia response.
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Figure 3.7. Anoxia resistance of egl-3 and unc-31 mutants is suppressed by loss of the ceramide 
synthase hyl-2 and the ATP/AMP sensor aak-2. All experiments were done with L4 animals under 48 hours 
anoxia. a) and b) Survival of two different mutant alleles of hyl-2 in the unc-31 mutant background (n = 8 and 3 
independent experiments respectively). c) Survival of mutant hyl-2 in mutant egl-3 background (n=4). d) Survival 
of mutant unc-31 after outcrossing hyl-2 from the hyl-2;unc-31 strain tested in (a) (n=4). e) Survival of aak-2 
mutant in the unc-31 mutant background (n=3). Data were analyzed using one-way ANOVA with Tukey’s test for 
multiple comparisons.
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The neuropeptide nlp-40 partly regulates C. elegans response to anoxia 

 Loss of egl-3, egl-21 and unc-31 should lead to an inhibition of all neuropeptide 

synthesis in the worm. We predicted that the anoxic survival benefit in these mutant 

worms is mediated by either a single neuropeptide or a group of neuropeptides. There is 

a rich body of literature that implicates single neuropeptides in regulating complex 

behaviors and pathways in worms (Nelson et al., 2013; Cheong et al., 2015; Chen et al., 

2016; Shao et al., 2016; Turek et al., 2016). Therefore, we set out to find putative 

neuropeptide(s) that may underlie the effect of egl-3/egl-21/unc-31 loss of function under 

anoxic conditions. There are 113 genes encoding over 250 distinct neuropeptides in 

C.elegans, most of which do not have clearly defined functions (www.wormbook.org). 

These neuropeptide genes are broadly divided into three groups: insulins (ins), FMRF-

like peptides (flp) and non-insulin/non-FMRF like peptides (nlp).  

The first class of neuropeptides we addressed was the insulins, because (i) loss 

of function in the insulin receptor daf-2 is also protective against anoxia and this 

protection is dependent on its downstream transcription factor daf-16 (Scott et al., 2002), 

and (ii) EGL-3 is known to process ins propeptides to generate their mature, active forms 

(Hung et al., 2014). However, the unc-31;daf-16 and egl-3;daf-16 double mutants have 

similar survival compared to unc-31 and egl-3 mutants alone (Fig. 3.6a and 3.6b) 

suggesting that the unc31/egl-3 effect on anoxia is independent of the DAF-2/DAF-16 

pathway. This allowed us to rule out the ins class of neuropeptides, and focus our 

search to flp’s and nlp’s. We tested survival of almost all available deletion mutants of 

flp’s (29 of 31 total flp’s) and nlp’s (36 of 42 total nlp’s) after 48 hours anoxia (Fig. 3.8a 

and 3.8b) in order to find mutants that mimicked the survival benefit seen in unc-31 loss 

of function worms.  



73	
	

 For our initial screen, we tested each mutant 2 independent times, with 3 

technical replicates each time. We had to reconcile the number of independent 

experiments we could carry out here because of the need to balance two competing 

issues – getting through the large screen of available mutants, and testing them 

thoroughly to avoid the substantial biological variability that is a constant feature of this 

anoxia assay. As expected, we did encounter a large amount of biologic variability in 

these experiments, making candidate identification challenging. Ultimately, we decided 

to narrow down an initial list of mutants that had an average survival greater than 50% 

across these 6 observations. The only exception was nlp-15, which was included in the 

candidate list because it had very high survival in one of the two experiments. This left 

us with 8 flp’s and 9 nlp’s for the secondary screen. One of the strains we tested had a 

very large deletion that removed many hundreds of genes (VC30122, which spanned 

nlp-25, nlp-26 and nlp-42). Because of this, we had 15 strains encompassing the 17 total 

mutations after our initial screen.  

To narrow down these candidates further, we employed three different tests – (i) 

repeat the experiment for each candidate >3-4 more times, (ii) backcross each line to N2 

at least 2X to remove mutations in the background genotype and (iii) rescue the deleted 

region in each mutant by injecting a wild-type copy of the gene. We were able to repeat 

the experiment in 11 of 14 strains, backcross 11 of 14 strains and rescue 7 of 14 strains. 

For most lines, repeating the experiment many times dropped the average survival to 

well below 50%, suggesting a high false-positive rate in our initial screen. Additionally, 

we noticed that backcrossing the lines led to high variability in the data. One line that 

had high survival (flp-3), had to be excluded because backcrossing it reduced its survival 

to N2 levels, and fosmid rescue did not reduce its high survival. This indicated that, at 

least for this line, background genotype led to a false positive hit in the initial screen. 
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Since we did not backcross all the lines before initially testing them, it is possible that by 

the same rationale, we may have missed potential hits due to background genetic 

contamination. Despite this limited approach, one of the candidates, nlp-40, was able to 

pass all three tests of the secondary screen (Fig. 3.8c and 3.8d). However, nlp-40 

mutant survival hovers around 50-60% despite backcrossing, suggesting that it is only 

partially responsible for the anoxia survival phenotype of unc-31. It is likely that more 

than one neuropeptide regulates anoxic survival in C. elegans. 
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Figure 3.8. Screen for flp and nlp neuropeptides regulating survival under anoxia. a) Survival of 31 strains 
containing deletions of individual flp’s after 48h anoxia (n = 2 independent experiments). b) Survival of 33 strains 
comprising 36 deletions of individual nlp’s after 48h anoxia (n=2). Strains highlighted in the orange box in (a) and 
(b) were selected as candidates for further screening. c) Survival of candidate flp’s and nlp’s before and after 2X 
backcrossing to N2 (n=3-9). d) Survival of candidate flp’s and nlp’s before and after rescue with a fosmid or a 
PCR fragment containing the genomic locus (n=3-5). Data were analyzed by a two-tailed paired t-test for each 
flp/nlp. Data appear as ‘boxes’ instead of ‘lines’ if the experiment was conducted more than 3 times.  *p <0.05.
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Discussion  

C. elegans employs neuropeptides to regulate a wide range of physiological 

functions. They are involved in many behaviors such as, among others, locomotion 

(Hums et al., 2016), sleep (Nelson et al., 2013), feeding (Cheong et al., 2015), egg-

laying (Ringstad and Horvitz, 2008), mechanosensation (Hu et al., 2011) and 

chemosensation (Cohen et al., 2009). Genes encoding neuropeptides are expressed 

widely throughout the nervous system but are also found in non-neuronal tissue such as 

intestine, the vulval hypodermis and the gonads. They act both locally at synapses and 

over long distances as hormones to coordinate these behaviors within and between 

tissues (Rabinowitch et al., 2016).  

Here, we establish a novel role for neuropeptides in regulating a specific stress – 

extreme oxygen deprivation – in developing C. elegans. We confirm and expand on 

previous work (Flibotte et al., 2014) to demonstrate that loss of neuropeptide synthesis 

by egl-3 and egl-21, as well as loss of neuropeptide secretion by unc-31, lead to 

increased survival when exposed to anoxia. This protective effect of neuropeptide loss is 

specific to anoxic stress (Fig. 3.3). Hence, neuropeptide signaling makes worms 

vulnerable to anoxic insult in particular. We found that neuropeptide synthesis is 

necessary in the nervous system for this effect (Fig.3.5), is independent of insulin 

signaling and does not rely on established stress-resistance and longevity-promoting 

genes (Fig. 3.6).  

 

Cell autonomous vs cell non-autonomous actions of neuropeptides 

The insulin signaling pathway is known to regulate stress-resistance and 

longevity in worms, flies and even mammals (Holzenberger et al., 2002; Broughton et 

al., 2005; Henis-Korenblit et al., 2010). DAF-2 is the insulin/insulin-like growth factor 
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receptor homolog in worms. Insulin-like peptides can bind and activate DAF-2, which 

initiates an intracellular phosphorylation signaling cascade ultimately leading to the 

sequestration of the transcription factor DAF-16 (worm homolog of FOXO) to the cytosol, 

thus preventing transcription of DAF-16 targets. DAF-2 loss of function leads to 

increased lifespan and increased tolerance to many stressors including heat, UV 

radiation, oxidative stress, hypoxia and anoxia (G J Lithgow, 1995; Murakami and 

Johnson, 1996; Honda and Honda, 1999; Scott et al., 2002; Mendenhall et al., 2006b). 

We show here that neuropeptide-mediated regulation of survival against anoxia is 

independent of the DAF-2/DAF-16 pathway. DAF-2 expression in neurons and muscles, 

but not intestines, rescues the extreme hypoxic (<0.3%) survival benefit of daf-2 mutant 

worms (Scott et al., 2002). Our data shows that neuropeptide signaling is necessary in 

neurons and acts in a parallel pathway to DAF-2/DAF-16, which suggests that the daf-2 

mediated survival benefit must be due to its expression in muscles. If the DAF-2/DAF-16 

pathway acts in non-neuronal tissues for regulating response to anoxia, it would argue 

for two separate, cell autonomous regulatory pathways influencing survival under anoxic 

stress. Future studies need to address tissue-specific regulation of anoxia by DAF-

2/DAF-16.  

Neuropeptide-mediated regulation of behaviors can also occur in a cell non-

autonomous fashion (Shao et al., 2016). Here, we find that for inducing sensitivity to 

anoxia, neuropeptide synthesis is necessary in neurons. The BAG sensory neurons in 

worms are responsible for detecting a decrease in environmental oxygen. However, 

surviving anoxic stress during development does not require neuropeptide signaling from 

BAG neurons (Flibotte et al., 2014), since egl-3 null worms with BAG-specific rescue of 

egl-3 continue to survive anoxia similar to egl-3 null worms. The neuropeptide flp-17 is 

primarily expressed in BAG neurons (Ringstad and Horvitz, 2008). In this study, we find 
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that loss of flp-17 does not protect L4 worms from anoxia (Fig.3.8a), further suggesting 

that neuropeptide-mediated regulation of survival under anoxic stress acts in non-BAG 

neurons. However, where the neuropeptides act remains to be determined.  

We describe nlp-40 as a partial regulator of the worm response to anoxia. The 

only published paper about nlp-40 describes its expression to be limited to the intestine 

(Wang et al., 2013), which does not agree with our results of neuropeptides in anoxic 

regulation. There are two ways to reconcile the differences in our findings: first, it could 

be that the nlp-40 mediated regulation of anoxic survival is independent of egl-3 and 

unc-31. Perhaps nlp-40 is processed by a proprotein convertase other than egl-3. There 

are 5 different proprotein convertases in C. elegans, and their expression and function 

remain to be fully understood. Second, it is likely that the reporter construct used in the 

study by Sieburth et al did not fully capture nlp-40 expression. Finally, the putative 

receptor for nlp-40 is aex-2 (Wang et al., 2013), which is thought to be expressed in 

GABAergic neurons, and loss of function mutants of aex-2 are smaller in size and have 

a pale appearance similar to nlp-40 mutants. Studying aex-2 mutants under anoxia may 

also provide insight into the mechanism of action and cell-type specificity of nlp-40 

function. Understanding which cells neuropeptides act on will provide insight into the 

mechanism by which peptides induce anoxic sensitivity in worms, and elucidate their 

local vs. long range actions for modulating physiological responses. 

 

Metabolism and anoxia 

Worms enter a hypometabolic, ‘suspended animation’ state when exposed to 

anoxia, wherein they dramatically reduce their metabolic rate (Van Voorhies and Ward, 

2000; Padilla et al., 2002). In the absence of oxygen, energy consumption occurs via 

breakdown of carbohydrates instead of fats. In fact, carbohydrate stores are depleted by 



78	
	

two-thirds in adult animals exposed to 24 hours of anoxia (Föll et al., 1999), and worms 

mutant for the glycolytic enzyme glyceraldehyde-3 phosphate dehydrogenase (gpd-2 

and gpd-3), are sensitive to anoxia (Mendenhall et al., 2006a). ATP/AMP levels are 

reduced in embryos exposed to anoxia (Padilla et al., 2002). Consistent with this, worms 

mutant for AMPK (aak-2), the master sensor of ATP/AMP, are also sensitive to anoxia, 

as shown previously in adult worms (LaRue and Padilla, 2011) and here in L4 worms. 

Further, a lipid synthesis promoting transcription factor, SREBP1 is required for fatty acid 

accumulation (which requires oxygen) after anoxia (Taghibiglou et al., 2009b). 

Ceramides are important components of the lipid bilayer in cells, and HYL-2, a short 

chain ceramide synthase, is essential for surviving anoxia (Menuz et al., 2009), 

suggesting a role for lipids before anoxia as well. Additionally, diet and nutrition also 

contribute to anoxic survival, as worms fed a higher carbohydrate food source survive 

long-term anoxia better (LaRue and Padilla, 2011). Mutants for nlp-40 are shown to 

deficient in their defacation cycle (Wang et al., 2013) and have a pale appearance, 

presumably due to intestinal swelling and altered fat deposits. Together, these 

observations suggest an important, but incompletely understood contribution of 

metabolism in regulating survival from long-term anoxia exposure. 

We find that survival promoted by loss of neuropeptide signaling is completely 

suppressed by loss of the ATP/AMP sensor AMPK as well as the short-chain ceramide 

synthase HYL-2. AMPK and ceramide synthases are important modulators of cellular 

metabolism and cell membrane integrity. What does the lethality of neuropeptide 

mutant;aak-2 and neuropeptide mutant;hyl-2 tell us about the role of cellular metabolism 

in anoxia? It is interesting to note that hyl-2 loss of function also suppresses the survival 

benefit induced by daf-2 in L4 and young adult worms (Menuz et al., 2009; Garcia et al., 

2015). Similarly, loss of aak-2 significantly reduces the survival benefit of daf-2 animals 
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(LaRue and Padilla, 2011). Our work here shows that EGL-3/UNC-31 mediated 

neuropeptide signaling and DAF-2/DAF-16 mediated insulin signaling are independent 

pathways in regulating anoxia survival. AMPK and HYL-2 can thus suppress the effects 

of two independent pathways involved in anoxia. These two genes may thus act as 

master regulators of energy metabolism in the cell acting upstream of these two 

pathways, further implying that cellular energy is critical to surviving anoxia.  

 

Enhancing understanding of neuropeptides and anoxia 

While this work reveals a new role for neuropeptide signaling, it also opens up 

many potential directions for future study. First, we don’t know why neuropeptide 

signaling would make worms sensitive to anoxia. It would be beneficial to understand 

how much energy neuropeptide synthesis and secretion requires. Given the important 

role of hypometabolism to surviving anoxia, perhaps the cell cannot afford the energy 

consumed by neuropeptide signaling. Second, we don’t know when neuropeptide 

signaling is necessary for inducing anoxic sensitivity in worms. Is neuropeptide signaling 

needed before worms are exposed to anoxia or during the recovery from anoxia? Given 

that many N2 worms already appear dead immediately after re-exposure to oxygen, we 

would hypothesize that neuropeptide signaling is at least in part necessary before and/or 

during exposure to anoxia. The egl-3, egl-21 and unc-31 mutants we use have loss of 

function in these genes throughout their life. In order to address this timing issue, 

constitutive mutants that lose gene function at different stages of life, and at different 

time points before, during and after anoxia will need to be generated. Third, while we 

rule out many canonical stress resistance pathways in contributing to anoxia, we do not 

know how neuropeptides lead to anoxic sensitivity. One pathway that remains 

unexplored in this context is the unfolded protein response (UPR) pathway, which is 
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implicated in different stress responses, including anoxia (Kaufman and Crowder, 2015). 

Neuropeptide signaling may play a role in regulating the UPR, thus regulating the 

response to anoxia.  

 

Conclusion 

This work establishes a novel role for neuropeptide signaling in C. elegans 

response to extreme oxygen deprivation, thereby expanding on genetic and molecular 

regulation of anoxic stress in worms. It suggests that cell non-autonomous regulation 

may play a key role of the response to anoxia that is independent of known stress 

resistance pathways in worms. 
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Methods 

Worm husbandry 

 C. elegans were cultivated at 20 degrees Celsius on nematode growth medium 

(NGM) agar surface, unless otherwise stated. NGM plates were seeded with a lawn of 

the E. coli strain OP50 as the food source, except in RNAi experiments.   

 

Worm Strains 

Strains used in this study are listed in Table 3.1. Double mutants were made 

using standard genetic techniques. Mutations were confirmed by PCR genotyping, and 

the primers used are also listed in Table 3.1.  

 

Anoxia assay 

Worms were synchronized by hypochlorite treatment and eggs were placed on 

fresh plates. For each experiment, 30-50 synchronized L4 animals from each genotype 

were placed on three fresh plates. Each plate was placed in a separate anerobic biobag 

(Becton Dickson, catalog # 261216) along with appropriate co-bagged controls. The 

bags were sealed and an anoxic environment (<0.1% O2) was generated by palladium 

catalyst mediated consumption of ambient oxygen in the bag (per manufacturer 

instructions). A resazurin indicator was included in each bag to confirm oxygen 

deprivation. Unless otherwise stated, worms were placed under anoxia for 48h, after 

which the bags were opened, and the resazurin indicator confirmed reintroduction of 

ambient oxygen in the bag. Anoxia exposure was also confirmed by ‘stunned’ phenotype 

of worms once the bags were opened ((Padilla et al., 2002; Flibotte et al., 2014)). Any 

bags that failed to achieve anoxia according to the indicator and/or due to the absence 
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of ‘stunning’ were excluded from the experiment. Animals were allowed to recover for 

24h after anoxia, after which dead and alive animals were manually scored. Animals 

were considered alive if they were moving, pumping their pharynx and/or responded to 

light touch. Each experiment thus had three technical replicates (3 bags), and 

experiments were generally repeated 3-6 times. The average survival fraction across 

experiments was reported. 

 

Heat shock assay 

 Synchronized L4 worms were picked onto fresh plates, sealed with parafilm and 

placed in a plastic bag submerged in a 34 degree Celsius water bath. Individual plates 

were removed after 5 hours and 12 hours to manually score living/dead animals and 

promptly returned to the water bath. Animals were scored alive if they were moving, 

pumping their pharynx and/or responded to light touch. 

 

ER stress assay 

 NGM plates were supplemented with 5mg/mL tunicamycin or equivalent DMSO 

vehicle (0.05%) and seeded with OP50 bacteria. Synchronized L4 worms raised on 

regular OP50 plates were placed on vehicle or tunicamycin plates and lifespan of worms 

on either plate was determined by scoring live/dead animals daily.  

 

UV stress assay 

To determine ‘germ cell’ survival, young adult animals were irradiated with 0, 80 

and 120 kJ/m2 UV-B and allowed to recover for 24h. Survival of the progeny (eggs laid 

for ~3 hrs) of the irradiated adults was then determined by counting dead and alive eggs. 

Average results across two independent experiments are presented. In each 
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experiment, survival on four replicate plates was determined (the offspring of 16-25 

irradiated animals). The xpa-1 mutant, necessary for nucleotide excision repair, was 

included as a positive control to demonstrate UV toxicity. 

Larval survival was determined by irradiating L1 larvae and scoring the 

percentage of animals that arrested/died or survived (developed into L4/adult) 48 hours 

later. Average results across two independent experiments are presented. In each 

experiment, survival of three replicate plates, each containing between 40 – 160 L1 

larvae, was determined. The xpa-1 (ok698) mutant was included as a positive control 

(Lans et al., 2010). 

 

Hypercarbia assay 

 Carbon dioxide was introduced into a sealed chamber fitted with a CO2 controller 

(ProCO2 from BioSpherix, Inc) until its concentration was 10% of room air, as measured 

by a CO2 sensor in the chamber. A separate sensor measured O2 concentration, which 

was 18% of room air. Synchronized L4 worms were placed in this chamber for 48 hours, 

after which they were removed and assessed for a ‘stunned’ phenotype and survival. 

 

RNAi experiments 

 NGM plates were seeded with E. coli expressing empty vector (L4440) or egl-3 

RNAi-encoding (C51E3.7) plasmids in order to perform feeding RNAi experiments. We 

tested worm strains sensitized to import dsRNA from the bacterial source, and induce 

RNAi against the target gene in either all neurons or specific subsets of neurons to 

achieve cell-type specific knockdown of egl-3. The strains used were: TU3311 (pan-

neuronal knockdown), XE1581 (cholingergic neuron knockdown), XE1582 

(glutamatergic neuron knockdown), XE1375 (GABAergic neuron knockdown) and 
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XE1474 (dopaminergic neuron knockdown). Worms from each of these strains were 

placed on either empty vector or egl-3 RNAi plates for 3-4 generations to ensure 

successful knockdown of egl-3. For anoxia experiments, worms were placed in anerobic 

biobags for 54h and allowed to recover for 24h before scoring survival. 

 

Neuropeptide screen 

 We assembled a list of all nlp’s and flp’s (wormbook.org) and interrogated 

Wormbase (wormbase.org) to identify mutants that were putative null. This list of 

neuropeptide mutants was obtained from either the CGC or the Japanese Consortium. 

We posited that deletion mutants would have the most severe loss of function 

phenotype. Any flp or nlp that did not have a deletion mutant available was excluded 

from the screen. Using this criterion, we were able to test 29 of 31 total flps (all but flp-23 

and flp-32) and 36 of 42 total nlps (all but nlp-4, nlp-6, nlp-13, nlp-16, nlp-33 and nlp-39). 

For the initial screen, each strain was tested two independent times, each time with 

three bags and with co-bagged N2 and unc-31 worms. The average survival of each 

strain across these 6 bags was used to narrow candidates for the secondary screen. 

Any stain with >50% average survival was selected for secondary screening. In the 

secondary screen, strains were (i) tested in 3 additional independent experiments, (ii) 

backcrossed 2x to N2 and retested, and (iii) subjected to rescue experiments using 

available fosmid DNA for each mutant (Source Bioscience, Nottingham UK). Fosmids 

were injected at 160ng/uL along with pmyo-2::mCherry as a coinjection marker. For nlp-

40 rescue experiments, the genomic rescue line used (OJ949) was generously donated 

by Dr. Derek Sieburth (Wang et al., 2013).  

 

Statistics 
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Data were analyzed using Prism (GraphPad Software, La Jolla, CA). Significant 

differences between two groups were determined using paired Student’s t-test (two-

tailed). Significant differences within groups greater than two were determined using 

one-way ANOVA followed by Tukey’s test for multiple comparisons. Survival curves 

were analyzed using the log-rank (Mantel-Cox) test for significance. For all tests, the 

significance threshold was set to p < 0.05. 

 
 
 
Table 3.2: A list of worm strains used in this study, along with their genetic 
description and primers used for genotyping (where applicable) 
 

Strain gene(allele)/genotype PCR primers 
N2 wild-type, Bristol  

CB928 unc-31(e928)  

VC671 egl-3(ok979) 
Fwd Primer: agtccaactccattcatttgc 

Rev Primer (outer): aattccagaactaaggacacg 
Rev Primer (inner): atctctacggaagatgcacc 

VC461 egl-3(gk238) 
Fwd Primer: ccattggagaaagtggaagc 

Rev Primer (outer): aagccagtttgacttttcagc 
Rev Primer (inner): ttcccacggaactcgatgc 

KP2018 egl-21(n476)  

JK2868 qIs56[(lag-2::GFP) + unc-
119(+)]  

MT14525 gcy-9(n4470)  
RB864 xpa-1(ok698)  

MT15434 tph-1(mg280)  
MT15620 cat-2(n4547)  
MT13113 tdc-1(n3419)  
MT9455 tbh-1(n3247)  
RK132 egl-3(ok979);PF2B23.3::egl-3  
RK133 egl-3(ok979);Pges-1::egl-3  
RK134 egl-3(ok979);Pmyo-3::egl-3  

TU3311 uIs60[unc-119p::YFP + unc-
119p::sid-1]  

XE1582 

wpSi11[eat-4p::rde-
1::SL2::sid-1 + Cbr-unc-

119(+)]; eri-1(mg366); rde-
1(ne219); lin15(n744) 

 



86	
	

XE1375 

wpIs36[unc-47p::mCherry]; 
wpSi1[unc-47p::rde-

1::SL2::sid-1 + Cbr-unc-
119(+)]; eri-1(mg366); rde-

1(ne219); lin15(n744) 

 

XE1581 

wpSi10[unc-17p::rde-
1::SL2::sid-1 + Cbr-unc-

119(+)]; eri-1(mg366); rde-
1(ne219); lin15(n744) 

 

XE1474 

wpSi6[dat-1p::rde-1::SL2::sid-
1 + Cbr-unc-119(+)]; eri-
1(mg366); rde-1(ne219); 

lin15(n744) 

 

GR1307 daf-16(mgDf50) 
Fwd Primer: ctctctctgtttctccccgc 

Rev Primer (outer): acggacactgttcaactcgt 
Rev Primer (inner): gcgagagtagcgatgttgga 

ZG31 hif-1(ia4) 
Fwd Primer: gaatgccgcatgttccgatc 

Rev Primer (outer): cggagcagcaatacaagatg 
Rev Primer (inner): atggtgtcttcagtccatacc 

PS3551 hsf-1(sy441)  

FX03411 skn-1(tm3411)/nT1[qIs51] 
Fwd Primer (outer): ctccgaaatctggaacgcc 
Fwd Primer (inner): gagattccgaagagaggcg 

Rev Primer: caggacgtcaacagcagac 

FX0850 nsy-1(tm850) 
Fwd Primer: gcgattccaggaaatgcacg 

Rev Primer (outer): ctccgtatcacactgcttatgg 
Rev Primer (inner): tcaacaagtgccacgtcagc 

FX02031 hyl-2(tm2031) 
Fwd Primer (outer): cgtactaccatttgtataccg 

Fwd Primer (inner): tctcacttctggtctccgg 
Rev Primer: cgtcgtcgcaacatctcct 

RB1498 hyl-2(ok979) 
Fwd Primer (outer): cgtactaccatttgtataccg 

Fwd Primer (inner): tctcacttctggtctccgg 
Rev Primer: cgtcgtcgcaacatctcct 

RB754 aak-2(ok524) 
Fwd Primer: cccaatctgccaaatactgac 

Rev Primer (outer): cacgaccatacatcaacttcg 
Rev Primer (inner): cattgttctgctcatcgagc 

RK135 unc-31(e928); daf-16(mgDf50)  
RK136 egl-3(e928); daf-16(mgDf50)  
RK137 unc-31(e928); hif-1(ia4)  
RK138 unc-31(e928); hsf-1 (sy441)  

RK139 egl-3 (ok979); skn-
1(tm3411)/nT1  

RK140 unc-31(e928); nsy-1(tm850)  
RK141 unc-31(e928); hyl-2(tm2031)  
RK142 unc-31(e928); hyl-2(ok979)  
RK143 egl-3(ok979); hyl-2(tm2031)  
RK144 unc-31(e928); aak-2(ok524)  
NY16 flp-1(yn4)  
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VC2591 flp-2(ok3351) 
Fwd Primer: gcggattgaatcgttttccg 

Rev Primer (outer): ttctcgatgcggaaagttgc 
Rev Primer (inner): tttcctcgtccttctcgcc 

RK145 flp-2(ok3351)  
2X backcrossed 

Fwd Primer: gcggattgaatcgttttccg 
Rev Primer (outer): ttctcgatgcggaaagttgc 

Rev Primer (inner): tttcctcgtccttctcgcc 

VC2497 flp-3(ok3265) 
Fwd Primer: gccaaatggagcactgtcg 

Rev Primer (outer): tttggtagcgtcgggtagg 
Rev Primer (inner): aatgagatttggaaagctgc 

RK146 flp-3(ok3265)  
2X backcrossed 

Fwd Primer: gccaaatggagcactgtcg 
Rev Primer (outer): tttggtagcgtcgggtagg 

Rev Primer (inner): aatgagatttggaaagctgc 

NY226 flp-4(yn35) 
Fwd Primer: cacatgccagtctgcctaca 

Rev Primer (outer): ttgttcggtcaagactcggc 
Rev Primer (inner): ttgagacagagacgtgacgc 

RK147 flp-4(yn35) 
2X backcrossed 

Fwd Primer: cacatgccagtctgcctaca 
Rev Primer (outer): ttgttcggtcaagactcggc 

Rev Primer (inner): ttgagacagagacgtgacgc 
VC20382 flp-5(gk320541)  
VC2324 flp-6(ok3056)  

VC20593 flp-7(gk951274)  
NQ913 flp-7  
PT501 flp-8(pk360)  

RB2067 flp-9(ok2730)  
RB1989 flp-10(ok2624)  
FX02706 flp-11(tm2706)  
RB1863 flp-12(ok2409)  
NQ602 flp-13(tm2427)  

VC1957 flp-14(gk1055) 
Fwd Primer: aggaaaaccggcaagcctag 

Rev Primer (outer): 	cggcgccataataacatctgc 
Rev Primer (inner): cgcccctgtttcctacttct 

RK148 flp-14(gk1055) 
2X backcrossed 

Fwd Primer: aggaaaaccggcaagcctag 
Rev Primer (outer): 	cggcgccataataacatctgc 

Rev Primer (inner): cgcccctgtttcctacttct 
VC30176 flp-15(gk960606)  
FX04829 flp-16(tm4829)  
MT15933 flp-17(n4894)  
AX1410 flp-18(db99)  
RB1902 flp-19(ok2460)  
PT505 flp-20(pk1596)  
RB982 flp-21(ok889)  

VC3465 flp-22(gk1201)/hT2  

VC1971 flp-24(gk3109) 
Fwd Primer (outer): ctaagcaggcatactacagg 
Fwd Primer (inner): aaccacgcaaaatattattcg 

Rev Primer: ttggcatgccgaaaaaaggg 
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RK149 flp-24(gk3109)  
2X backcrossed 

Fwd Primer (outer): ctaagcaggcatactacagg 
Fwd Primer (inner): aaccacgcaaaatattattcg 

Rev Primer: ttggcatgccgaaaaaaggg 

VC1982 flp-25(gk1016) 
Fwd Primer: tttgacccaattcacttgacg 

Rev Primer (outer): cttgattggacattgcgcga 
Rev Primer (inner): gcactccttttttgcttcgg 

RK150 flp-25(gk1016)  
2X backcrossed 

Fwd Primer: tttgacccaattcacttgacg 
Rev Primer (outer): cttgattggacattgcgcga 
Rev Primer (inner): gcactccttttttgcttcgg 

VC3017 flp-26(gk3015) 
Fwd Primer (outer): ggtttgtcatgatcggttgg 
Fwd Primer (inner): tcaagtttccctaatccccc 

Rev Primer: ttgaagtcttcattagctccg 

RK151 flp-26(gk3015) 
2X backcrossed 

Fwd Primer (outer): ggtttgtcatgatcggttgg 
Fwd Primer (inner): tcaagtttccctaatccccc 

Rev Primer: ttgaagtcttcattagctccg 
VC2012 flp-27(gk3331)  
VC2502 flp-28(gk1075)  
VC2423 flp-33(gk1038)  
RB2269 flp-34(ok3071)  
RB1340 nlp-1(ok1469)  
RB1341 nlp-1(ok1470)  
FX01908 nlp-2(tm1908)  
FX03023 nlp-3(tm3023)  
RB1609 nlp-5(ok1981)  
FX02984 nlp-7(tm2984)  
VC1309 nlp-8(ok1799)  
FX03572 nlp-9(tm3572)  
FX06232 nlp-10(tm6232)  
VC40940 nlp-11(gk891596)  

RB607 nlp-12(ok335) 
Fwd Primer: tttttgcaacacagtcgccg 

Rev Primer (outer): tgatgttcagtacggtctgc 
Rev Primer (inner): tcgattggtggtttggatgg 

RK152 nlp-12(ok335) 
2X backcrossed 

Fwd Primer: tttttgcaacacagtcgccg 
Rev Primer (outer): tgatgttcagtacggtctgc 
Rev Primer (inner): tcgattggtggtttggatgg 

VC1108 nlp-14(ok1517)  

VC1063 nlp-15(ok1512) 
Fwd Primer: tttatgccgtgtcttatgtcc 

Rev Primer (outer): gccaggctgtcctattacg 
Rev Primer (inner): tcgtttgacgcacttcttcg 

RK153 nlp-15(ok1512) 
2X backcrossed 

Fwd Primer: tttatgccgtgtcttatgtcc 
Rev Primer (outer): gccaggctgtcctattacg 
Rev Primer (inner): tcgtttgacgcacttcttcg 

VC30240 nlp-17(gk960682)  
RB1372 nlp-18(ok1557)  

VC40619 nlp-19(gk951891)  
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RB1396 nlp-20(ok1591)  
FX02569 nlp-21(tm2569)  
FX06351 nlp-22(tm6351)  
FX05531 nlp-23(tm5531)  
FX02105 nlp-24(tm2105)  

VC30122 nlp-25; nlp-26; nlp-
42(gk963304)  

VC40271 nlp-27; nlp-28; nlp-29; nlp-30; 
nlp-31; nlp-34(gk963785)  

FX01931 nlp-29(tm1931)  
VC40420 nlp-32(gk628779)  
FX05434 nlp-35(tm5434)  

FX05156 nlp-36(tm5156) 
Fwd Primer: tgagagacccaccagattgc 

Rev Primer (outer): gggaccaagcttcatgtcga 
Rev Primer (inner): tgttgcttcaagtcgacgga 

RK154 nlp-36(tm5156) 
2X backcrossed 

Fwd Primer: tgagagacccaccagattgc 
Rev Primer (outer): gggaccaagcttcatgtcga 
Rev Primer (inner): tgttgcttcaagtcgacgga 

LSC59 nlp-37(tm4393); IstEx24  
FX04393 nlp-37(tm4393)  
FX04780 nlp-37(tm4780)  
VC2357 nlp-38(ok2330)  

FX04085 nlp-40(tm4085) 
Fwd Primer: caagtcgccacatatcccg 

Rev Primer (outer): ccacgcgaccattctcttc 
Rev Primer (inner): gccgctgaaagttgtgttgt 

RK155 nlp-40(tm4085) 
2X backcrossed 

Fwd Primer: caagtcgccacatatcccg 
Rev Primer (outer): ccacgcgaccattctcttc 
Rev Primer (inner): gccgctgaaagttgtgttgt 

VC20740 nlp-41(gk963053)  

RK156 
flp-2(ok3351); 

WRM061B_H10; 
pmyo2::mCherry 

 

RK157 
flp-3(ok3265); 

WRM061B_H10; 
pmyo2::mCherry 

 

RK158 
flp-24(gk3109); 

WRM0636B_B10; 
pmyo2::mCherry 

 

RK159 
flp-25(gk1016); 

WRM0627A_A09; 
pmyo2::mCherry 

 

RK160 
flp-26(gk3015); 

WRM0634D_E12; 
pmyo2::mCherry 

 

RK161 nlp-15(ok1512);  
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WRM066C_H12; 
pmyo2::mCherry 

OJ949 
nlp-40(tm4085); vjEx330[Pttx-

3::RFP, nlp-40 genomic 
DNA(~8.8kb)] 
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CHAPTER 4 
 

General Discussion 

 

This body of work highlights the important role of metabolism in two different 

scenarios: (i) in Chapter 2, I use a mouse model to study the contribution of a change in 

metabolism at the organism-level to ALS progression and (ii) in Chapter 3, I use C. 

elegans to study how neuropeptides may contribute to surviving an environmental stress 

(severe oxygen deprivation) during which worms enter a hypometabolic state. Each of 

these projects generated some key insights into disease and stress and raised 

interesting questions for further investigation, some of which I highlight below. 

 

Bridging cellular energy homeostasis and organism-wide metabolic defects in 

ALS 

The findings presented here focus on organism wide metabolic perturbations in 

ALS. However, a key feature of all neurodegenerative diseases is the presence of 

mitochondrial dysfunction in the brain and spinal cord (Lin and Beal, 2006). It remains to 

be understood how nervous system mitochondrial dysfunction at the cellular level and 

organism level metabolic abnormalities are related. Does energy imbalance at the 

cellular level, caused by dysfunctional mitochondria, contribute to organism level 

changes in weight and glucose homeostasis? Alternatively, is organism level metabolic 

dysfunction uncoupled from neuronal mitochondrial damage, and can it be targeted 

independently to alter the course of disease progression?  
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In familial ALS, as well as the G93A SOD1 mouse model used in the studies 

here, mutations in ubiquitously expressed genes such as C9orf72 and SOD1 lead to 

specific degeneration of motor neurons. It is not known why motor neurons are 

selectively vulnerable to damage. Mitochondrial damage is observed in neurons but also 

in non-neuronal tissues, such as liver and skeletal muscle (Nakano and Hirayama, 1987; 

Siklós et al., 1996; Sasaki and Iwata, 2007). There are two potential mechanisms by 

which cellular mitochondrial dysfunction and organism-wide hypermetabolism in ALS 

might be related. (i) Mutant SOD1 leads to peripheral tissue metabolic dysfunction, 

which, in aggregate, results in organism-wide metabolic phenotypes. (ii) The nervous 

system undergoes pathologic changes due to mutant SOD1, and through cell non-

autonomous processes such as hormone signaling, leads to altered metabolism in 

peripheral tissue. In either scenario, the trigger is cellular-level abnormality due to 

mutant SOD1, which causes a cascade of events in both cell autonomous and non-

autonomous ways. The overall, compounded effect of these abnormalities is whole body 

metabolic derangement. In addition to changes in ATP production, features of 

dysfunctional mitochondria in neurodegenerative diseases include generation of reactive 

oxygen species and alterations in the redox status of cells (Lin and Beal, 2006). It is 

possible that aberrant mitochondria influence cellular metabolism through any of these 

different ways. Regardless, these make mitochondrial dysfunction an attractive 

candidate for this trigger. 

Figuring out the mechanistic link between mitochondrial defects at the cellular 

level and organism-wide hypermetabolic profile in ALS will be a key development in 

understanding disease progression. 
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Targeting peripheral tissue for hypometabolism 

 In these studies, MC4R was knocked out in the hypothalamus to induce 

hypometabolism in the G93A SOD1 background. Loss of MC4R, in addition to 

hypometabolism, also induces hyperphagia and increased fat deposits in these mice 

(Balthasar et al., 2005). The increased fat deposition makes mice lethargic and 

sedentary, and complicates interpretation of motor function in the ALS context. We were 

unable to dissociate its effects on feeding from its effects on metabolic rate. Our goal 

was to first generate mice that lacked MC4R globally in the G93A SOD1 background 

(G93A;MC4R-/- ), and then cross them to a Sim1-Cre mouse line to re-express MC4R in 

the paraventricular hypothalamus. As reported in work by Balthasar et al, this partial 

restoration of MC4R was able to reduce obesity in MC4R-/- mice by 60%, while 

maintaining their hypometabolic phenotype (Balthasar et al., 2005). We attempted to 

make this triple mutant cross in our mice, but did not achieve large enough brood sizes 

in both sexes to do the entire range of our experiments. Therefore, we studied the 

double mutant mouse containing a global knockout of MC4R in the G93A SOD1 

background. Our grip strength data suggest that MC4R mutant animals, while obese and 

sedentary, can exert similar if not higher muscle force when compared to WT mice. 

Physiologically, however, it is difficult to tease apart these dual actions of MC4R, and 

practically, drugs targeting MC4R for obesity have met limited success due to a lack of in 

vivo efficacy, side effects and blood brain barrier penetrance (Fani et al., 2014). 

 It may, therefore, be beneficial to target peripheral sources of metabolic rate 

control. One interesting candidate for modulating disease is the gut microbiota, which 

harbor as many as 100 trillion diverse bacteria (Ley et al., 2006). Recently, the 

relationship between the microbiome and the CNS has begun to emerge (Sharon et al., 

2016). For example, mice lacking the gut microbiome (termed germ-free mice) have 
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impaired spatial and object recognition, altered expression of critical neuronal molecules 

such as subunits of the dopamine receptor, as well as the brain derived neurotrophic 

factor (Bercik et al., 2011; Heijtz et al., 2011; Möhle et al., 2016). They also show 

impairments in the blood brain barrier (Braniste et al., 2014). The role of the gut 

microbiota is much less understood in the context of neurodegenerative diseases. One 

study showed that the G93A SOD1 mouse has a presymptomatic increase in intestinal 

permeability and an altered gut microbiome compared to wild type mice (Wu et al., 

2015). The same group did a follow up study and showed that administration of 2% 

butyrate, a by product of bacterial fermentation in the gut, reduced intestinal ‘leakiness’, 

decreased mutant SOD1 aggregation and increased lifespan by an average of 38 days 

in the G93A SOD1 mouse (Zhang et al., 2017). However, there is no report of how the 

altered microbiome of G93A SOD1 mice might alter whole body metabolism. It might be 

worthwhile to do fecal transplantation studies in these mice, where healthy microbiota 

are transplanted into the ALS-like mice, and study changes in metabolism and disease 

progression. 

 In PD, there is a study of fecal transplantation that demonstrated the role the 

microbiome might play in motor dysfunction (Sampson et al., 2016). PD patients have an 

altered gut microbiome compared to healthy controls (Scheperjans et al., 2015). 

Sampson and colleagues showed that the presence of the microbiome led to 

manifestation of motor deficits as well as microglial activation in the caudate/putamen of 

mice overexpressing α-synuclein. This was dependent on short chain fatty acids 

produced by the gut bacteria. Antibiotic administration diminished the microbiome and 

led to improved motor pathology. Strikingly, compared to control mice transplanted with 

fecal microbiomes from healthy human donors, those transplanted with fecal 

microbiomes from PD patients developed significantly altered gut microbiomes of their 
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own. They also developed motor dysfunction compared to the control mice. Together, 

these studies demonstrate the important role of the microbiome in altering disease 

progression, and may act as a peripheral target to manipulate organismal metabolism as 

well. 

 

Neuropeptide signaling and metabolism in C. elegans anoxia 

 Worms have the remarkable ability to survive near-complete oxygen deprivation. 

A hallmark of this phenotype is that worms enter a state of suspended animation where 

they cease most physiological functions including feeding, developing, reproducing and 

locomotion for the duration of the anoxic stress. In this state, they deplete a large 

amount of their carbohydrate reserves and decrease ATP production, indicating a 

hypometabolic phenotype. Our data also shows that aak-2 (AMPK) mutants are 

hypersensitive to this insult, demonstrating a vital role for AMPK in regulating and 

directing appropriate energy consumption to survive the stress. The absence of AMPK 

continued to be fatal to worms in anoxia even in unc-31 mutant worms, which normally 

are anoxia resistant. Work by others shows that loss of AMPK has a similar effect in the 

absence of daf-2, which too is anoxia resistant (Mendenhall et al., 2006a). This indicates 

that functional AMPK is essential to worm survival in anoxia, and acts as a ‘bottleneck’, 

effectively masking the contribution of other pathways such as neuropeptide and insulin 

signaling. Similarly, we confirm here that hyl-2 (ceramide synthase) mutants are 

hypersensitive to anoxia and that this effect too masks that of anoxia tolerance in both 

egl-3 and unc-31 mutants. Ceramides are a class of lipid molecules that are essential for 

proper maintenance of cell membranes. Here, too, hyl-2 loss was detrimental to worm 

survival even in the daf-2 mutant background (Menuz et al., 2009), suggesting a broad 

suppression of anoxia tolerance-promoting pathways. 
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There is additional data suggesting a critical role for metabolic 

enzymes/transcription factors in anoxia tolerance. A key transcription factor essential for 

glucose metabolism and lipid/fatty acid synthesis is SREBP1. Levels of SBP-1, the worm 

homolog for SREBP1 (sterol regulatory element binding protein), increase with 

increasing duration of anoxia in developing (L3) worms (Taghibiglou et al., 2009b). 

Although the authors used different tools to generate anoxia than us, they found that 5 

hours of anoxia induced lipid accumulation and increased body size in these worms, 

both of which were reversed by knocking down sbp-1. Further, loss of gpd-2 and gpd-3, 

worm homologs of isoforms of the glycolytic enzyme glyceraldehyde-3 phosphate 

dehydrogenase, led to impairments in worm behavior after anoxia, and they act 

downstream of the daf-2/daf-16 pathway (Mendenhall et al., 2006a). Otherwise 

protected daf-2 mutants lost their survival benefit when gpd-2 was also mutated. 

 How are all these genes, essential for various aspects of cellular metabolism, 

coordinating their activity under anoxia? Ceramides negatively regulate transcription of 

SREBP1 in mammalian cells (Worgall et al., 2002). If this is also true in worms, it might 

provide a potential explanation for the mechanism of hyl-2 mutant sensitivity to anoxia. 

Perhaps, in the absence of hyl-2, there is an increase in SREBP1 expression and an 

increase in lipid accumulation that is toxic to worms. Further experiments are needed to 

explore these possibilities and clearly define these relationships with regard to their 

regulation of anoxic stress.  

Understanding how oxygen deprivation alters metabolism and induces metabolic 

changes has important consequences for human health. In an elegant study, it was 

demonstrated that SREBP1 inhibition is protective in an in vitro model of focal ischemia 

(Taghibiglou et al., 2009a). C. elegans is an excellent tool to study genetic and 
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molecular interactions and is ideally suited to study these metabolic gene interactions in 

the context of oxygen deprivation. 

 

Multifactorial response to anoxia in worms 

 Many genes and pathways are implicated in regulating the response to anoxic 

stress in worms, such as daf-2 (insulin signaling), nsy-1 (MAP kinase signaling), rars-1 

(protein translation), skn-1 (oxidative stress response) and hyl-2 (ceramide synthesis). 

To add to this growing list are genes described here – egl-3, unc-31 and egl-21 

(neuropeptide signaling). We tested many of the above genes to see if neuropeptide 

signaling was dependent on their function for its effects in anoxia. We were unable to 

find any interaction, suggesting that most of these pathways acted in parallel to the 

neuropeptide signaling pathway. Hence, multiple pathways can potentially regulate the 

response to this stress in worms.  

 Previous work also suggests that there may be more than one mechanism by 

which neuropeptide signaling mediates survival in anoxia. Anderson and colleagues 

(Anderson et al., 2009) identified that suppressing protein translation (rars-1 loss of 

function) makes worms resistant to extreme oxygen deprivation. This was mediated in 

part by induction of the unfolded protein response pathway, suggesting that other 

mechanisms are also recruited by protein translation to regulate survival after anoxia. 

Similarly, there may be small changes in multiple pathways as a result of disrupted 

neuropeptide signaling, which in sum lead to improved survival in anoxia. 

 This idea is also bolstered by the fact that we were unable to find a strong effect 

of a single neuropeptide in regulating anoxia susceptibility. Based on results from our 

screen, our best candidate is nlp-40, however loss of nlp-40 only provides a partial 

increase in survival compared to N2 worms. This suggests the involvement of additional 
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neuropeptides in egl-3 mediated anoxia tolerance. Further, our RNAi experiments show 

that knocking down egl-3 in multiple neuronal subtypes continues to protect worms from 

anoxia, suggesting that many neuronal subtypes may be involved in this regulation. 

Overall, our data are consistent with the idea that multiple neuropeptides are released 

from multiple neuron-types to make worms sensitive to anoxia. Perhaps small 

downstream effects of these neuropeptides summate and make worms broadly 

vulnerable to anoxic insult. It may be essential to knock down/out egl-3 in many neurons 

to induce an appreciable survival benefit.  

 

Timing of neuropeptide signaling in anoxia 

 An important question that was not addressed in this dissertation is when 

inhibiting neuropeptide signaling is most protective to worms. In other words, when does 

neuropeptide activity make wild type worms sensitive to anoxia? We use genetic 

knockouts or RNAi to diminish neuropeptide signaling via egl-3, unc-31 and egl-21, so 

these worms lack neuropeptide activity throughout their life. Is neuropeptide signaling 

requires before, during or after the anoxic exposure (or some combination of these) to 

sensitize worms to the stress? In future experiments, conditional knockouts or RNAi 

experiments could help to answer this question. Having this information may give us 

clues about the role of neuropeptides in modulating this phenotype, and more 

appropriately target therapeutic interventions if this were to be translational. 

 Another important observation in our work, which confirms observations by 

others, is that there is a developmental regulation of worm susceptibility to anoxia (Van 

Voorhies and Ward, 2000; Padilla et al., 2002). In our assay, L4 staged developing 

worms were sensitive to 48h of anoxia, while young adults were resistant. The major 

physiological events between these two stages of worm development are vulval 
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development, a period of lethargus and the final molt/cuticle development (Raizen et al., 

2008; Schindler et al., 2014; Mok et al., 2015). Studying mutants in these pathways may 

clarify if disruption of these events contributes to the sensitivity of worms to anoxia 

during L4. 

 

Protein translation, neuropepitde synthesis and anoxia 

 As mentioned earlier, Anderson et al showed that mutating aminoacyl-tRNA 

synthetases had a strong positive effect on worm survival in anoxia (Anderson et al., 

2009). This suggests that decreasing protein translation is beneficial in worms. From an 

energetic perspective, observation is consistent with preserving ATP loads during anoxia 

and redirecting cell biology away from energy-expensive catabolic processes like protein 

translation (one of the primary roles of AMPK). In their study, the authors found that the 

effect of reducing protein translation was protective partially due to upregulation of the 

unfolded protein response (UPR) machinery.  

One idea that we did not explore in our work, is if there is decreased 

neuropeptide translation and decreased neuropeptide signaling in the aminoacyl-tRNA 

synthetase mutants such as rars-1. In other words, if we tested double mutants bearing 

a loss of function in egl-3/unc-31 as well as rars-1, would there be an additive survival 

benefit in anoxia, or would the double mutant be similar to either individual mutant? If 

there is no additive effect of the two mutations, they likely occur in the same genetic 

pathway, suggesting that a rars-1 mutation may act to increase anoxia survival by 

decreasing neuropeptide signaling. 

Additionally, is the UPR induced in neuropeptide signaling-deficient worms? We 

show that egl-3 and unc-31 mutant worms are sensitive to tunicamycin (a UPR inducer) 

and have reduced lifespan when raised on tunicamycin. This is a preliminary indicator 
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that neuropeptide mutant worms are not resistant to sustained tunicamycin-induced 

toxicity, but it is not known if the UPR is induced in unc-31 and egl-3 mutant worms at 

baseline or after anoxia. If neuropeptide signaling does not rely on the UPR for its effects 

on anoxia, it may help to partially explain the protection conferred by rars-1 deletion. 

 

Data variability 

 On a technical note, one of the major challenges in the anoxia experiments was 

the significant amount of biological variability in the data. N2 survival ranged from 10-

80% and unc-31 survival varied from 20-95% over 40-50 independent experiments of 

48h anoxia in L4 worms. This made some data difficult to interpret, affected the results 

of our neuropeptide screen and necessitated many independent experiments to reliably 

conclude a biological effect. By and large, there was very little variation between the 3 

technical replicates within an experiment, but the variability was substantial between 

different experiments. We tried to address the source of this variability by accurately 

staging animals at the same stage of L4 and positioning plates differently in the bags, 

but we were unable to find a systematic factor that affected the range of survival. 

However, there are some additional factors that may contribute to the variability that we 

did not explore. Some of these are: precise volume of agar in plates, gentleness of 

handling worms while placing them on plates, lot-to-lot variability in culture reagents, 

small changes in the incubator environment and age of food on the plate. 

 We know that preconditioning worms to a stressor like a different diet, a different 

growth temperature, or a short bout of anoxia enhances their survival under long term 

anoxia (Dasgupta et al., 2007; LaRue and Padilla, 2011). Could it be that the source of 

the variability comes from previous experience? Factors such as plate crowding, freshly 

seeded food plates (‘younger’ OP50 vs ‘older’ OP50) and contamination in an earlier 
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generation are some factors that can be readily controlled for in a systematic way. 

Minimizing variability will be a huge benefit to ease of conducting and interpreting future 

experiments. 

 

Conclusion 

 A central theme bridging these two projects is that cell autonomous and non-

autonomous factors regulate how an organism responds environmental stress and 

disease. In the case of ALS, we demonstrate that decreasing metabolic rate by loss of 

MC4R in the hypothalamus does not alter progression or outcome of ALS. However, we 

do not know if there are cellular level changes to mitochondrial health, and if this is 

different in the nervous system compared to muscles. In fALS, a mutation in a single 

gene in all cells in the body affects mitochondrial health in many cells, whole body 

metabolism but preferentially causes death of motor neurons. This points to cell 

autonomous cellular damage. However, it remains to be determined what the source of 

metabolic derangement in ALS is and how it relates to preferential death of motor 

neurons. As suggested earlier, one potential mechanism is that a cell non-autonomous 

factor, potentially released by energy starved neurons, signals to the rest of the body 

and causes whole body hypermetabolism. 

 In the case of anoxic stress, we establish that loss of neuropeptide signaling is 

beneficial to worms undergoing anoxia in a manner that is independent of many 

established stress-resistance pathways. There is likely a group of neuropeptides, of 

which nlp-40 is one, that regulates this response, and the neuropeptides are secreted 

from the nervous system. This work demonstrates that soluble factors such as 

neuropeptides can act cell non-autonomously to regulate organism level response to an 

external stress.  
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 This work sheds light on the bidirectional role of metabolism in disease and 

stress. Changes in metabolic rate can be an adaptive response to external stress, and 

can be modulated to impact disease in sophisticated and specific ways. 
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Lifespan of neuropeptide signaling mutants 

 In Chapter 3, the readout for all our experiments was survival of worms 24h after 

recover from a 48h anoxic insult. However, this did not tell us anything about the biology 

of the worms after this 24h post-anoxia window. We were curious to see if the various 

neuropeptide signaling mutants we used in Chapter 3 had any differences in lifespan 

pre- and post- anoxia. We placed L4 worms on plates supplemented with 5-Fluoro-2′-

deoxyuridine (FUdR) at a final concentration of 200uM, and measured their survival on 

these plates either at baseline, or that of surviving worms after 48h of anoxia.  FUdR is a 

potent inhibitor of DNA synthesis, and was used here to prevent eggs laid by test 

animals from hatching. In this manner, we avoided ‘contamination’ by progeny and 

limited repeated handling and moving the test worms.  

We found that all the neuropeptide mutants – egl-3 (ok979), egl-3 (gk238), egl-21 

(n476), unc-31 (e928) – were significantly longer lived than the wild type line (Fig A1a). 

Additionally, we measured the lifespan of surviving worms after the 48h anoxic insult, 

and found that they continued to be longer-lived post anoxia (Fig. A1b). Interestingly the 

lifespan of all lines, including N2, was higher post anoxia than that at baseline. Hence, 

L4 staged neuropeptide mutant worms have significantly greater survival compared to 

N2 after 48h anoxia (see Chapter 3), and the worms that survive anoxia have a greater 

lifespan compared to N2 worms. Additionally, anoxia may act as a stressor that allows 

worms that can survive the stress to have increased lifespan than those that do not 

experience this stress. 
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‘Healthspan’ of neuropeptide signaling mutants 

 The lifespan of different worm lines tells us about how long they live, but does not 

tell us about how well they live. We attempted to get a measure of worm ‘health’ post 

anoxia. To do this, we scored anoxia-surviving worms 6 days after they were removed 

from the anoxic biobags. We looked to see if worms had developed to adulthood, had 

sexually matured and had normal locomotion on the plates. If they did, we scored these 

as ‘healthy’. The worms that did not achieve these benchmarks were scored as 

‘unhealthy’. These ‘unhealthy’ worms generally had one or more of the following 

phenotypes, that did not change throughout their life: (i) they were much smaller than 

normal adult worms, (ii) they had aberrant locomotion and stayed in the same spot on 

the plate, (iii) they did not bear eggs, (iv) they appeared very pale, seemingly lacking the 

characteristic dark color of adult worms due to fat deposits, (v) they had a ‘sheath’ 
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Fig. A1. Survival of anoxia tolerant neuropeptide mutants. Lifespan of mutants in egl-3, egl-21 
and unc-31 are plotted against N2 lifespan a) at baseline and b) after 48h anoxia. Data are 
analyzed using the Mantel-Cox test for survival curve comparisons. *p < 0.05, ***p < 0.001, ****p < 
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surrounding the entire body, presumably the cuticle that they were unable to shed during 

molting. 

 If the worms met any of these phenotypic criteria, we scored them as ‘unhealthy’. 

Images of smaller, paler worms without eggs alongside ‘healthy’ worms are presented in 

Fig. 2a-e. We also noticed that these worms tended to have shorter lifespan compared 

to the ‘healthy’ worms on the same plate. These ‘unhealthy’ animals were present in all 

the strains, including N2. However, there were strikingly fewer ‘unhealthy’ N2 worms 

post-anoxia than all the other strains (Fig. A2f). This indicates that although a smaller 

fraction of N2 worms survive the initial anoxic insult, those that do have a ‘healthier’ 

lifespan. Conversely, a higher proportion of neuropeptide signaling mutant worms 

survive the initial anoxic insult, but many of them are ‘unhealthy’ after anoxia. 

Additionally, the lifespan data in Fig A1b contains neuropeptide signaling mutants that 

are both ‘healthy’ and ‘unhealthy’. This suggests that the anoxic insult generates two 

populations of worms in these mutants, ones that are shorter-lived and sicker, and ones 

that are very long-lived and healthier.
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Fig. A2. ‘Healthspan’ of anoxia-tolerant neuropeptide signaling mutants after 
anoxia. a-e) Representative pictures of ‘healthy’ and ‘unhealthy’ surviving worms in N2 
and anoxia-tolerant neuropeptide signaling mutants 6 days after 48h anoxia. f) 
Quantification of percent ‘unhellthy’ worms in every genotype, alongside total number of 
worms.
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Survival of egl-3 and unc-31 mutants after anoxia is additive  

 Since egl-3 is required for neuropeptide maturation and unc-31 is required for 

neuropeptide secretion, we hypothesized that they are in the same genetic pathway, 

where egl-3 acts upstream of unc-31. Compared to wild type worms, loss of function 

mutants in each of these genes leads to increased survival after 48h anoxia in L4 worms 

(Chapter 3). If they are in the same pathway, survival of egl-3;unc-31 double mutants 

should not be any higher than either of the single mutants. On the other hand, if they 

were in unrelated, parallel pathways, the combined survival of the double mutant would 

be the sum of their individual survival phenotypes. In order to test this hypothesis, we 

generated the double mutants and tested their survival after 54h anoxia. We chose a 

higher anoxia duration because there was a ceiling effect of survival in these mutants at 

48h, making it difficult to ascertain if they were truly in the same or parallel pathways. 

To our surprise, we found that egl-3;unc-31 double mutants had significantly 

greater survival compared to either of the single mutants (Fig. A3). This suggests that 

egl-3 and unc-31 may act via different mechanisms, or in different cells, to confer a 

survival benefit under anoxia. However, this requires further study. Further, it is worth 

noting that survival of egl-3 and unc-31 mutants is much lower at 54h (30-40%) than at 

48h (70-90%), and is not significantly different from N2. This suggests that there is a 

limited window of anoxic exposure where loss of egl-3 and unc-31 activity is protective in 

worms. 
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Fig. A3. Survival of egl-3;unc-31 double mutants after anoxia. Worms were exposed to 
54h anoxia, and allowed to recover for 24h before scoring live/dead worms (n = 4 
independent experiments). Data were analyzed by one-way ANOVA with Tukey’s test for 
multiple comparisons. ***p < 0.001.
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