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A Potential Role For Sap97 In Psychiatric Disorders

Abstract
The goal of this dissertation is to further understand the genetic architecture of neuropsychiatric disorders,
such as autism spectrum disorder (ASD) and schizophrenia (SCZ). We attempt to understand the functional
significance of the gene synapse associated protein of 97KDa (SAP97) and identify a novel role for SAP97 in
the etiology of neuropsychiatric disorders.

SAP97 belongs to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs),
that are highly enriched in the postsynaptic density of synapses and play an important role in organizing
protein complexes necessary for synaptic development and plasticity. Large-scale genetic studies have
implicated MAGUKs in neuropsychiatric disorders such as intellectual disability, ASD, and SCZ, but knock-
out mice have been impossible to study because the Sap97 null mice die soon after birth due to a craniofacial
defect. In Chapter 2, we studied the transcriptomic and behavioral consequences of a viable, brain-specific
conditional knockout of Sap97 (SAP97-cKO). RNA sequencing (RNAseq) from hippocampi from control
and SAP97-cKO male animals identified 67 differentially expressed transcripts, which were specifically
enriched for SCZ-related genes. Subjecting SAP97-cKO mice to a battery of behavioral tests revealed a subtle
anxiety-like phenotype present in both male and female SAP97-cKO animals, as well as a mild male-specific
cognitive deficit and female-specific motor learning deficit. Collectively, this work suggests that loss of Sap97
alters behavior, and may contribute to some of the endophenotypes present in SCZ. In Chapter 3, we discuss
how the SAP97-cKO mouse may serve as a novel model system for interrogating aspects of the cellular and
molecular defects underlying SCZ and other related neuropsychiatric disorders.
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ABSTRACT 
 

A POTENTIAL ROLE FOR SAP97 IN PSYCHIATRIC DISORDERS 

Preetika Gupta 

Robert G. Kalb 

 

The goal of this dissertation is to further understand the genetic architecture of 

neuropsychiatric disorders, such as autism spectrum disorder (ASD) and schizophrenia 

(SCZ).  We attempt to understand the functional significance of the gene synapse 

associated protein of 97KDa (SAP97) and identify a novel role for SAP97 in the etiology 

of neuropsychiatric disorders. 

 

SAP97 belongs to a family of scaffolding proteins, the membrane-associated guanylate 

kinases (MAGUKs), that are highly enriched in the postsynaptic density of synapses and 

play an important role in organizing protein complexes necessary for synaptic 

development and plasticity.  Large-scale genetic studies have implicated MAGUKs in 

neuropsychiatric disorders such as intellectual disability, ASD, and SCZ, but knock-out 

mice have been impossible to study because the Sap97 null mice die soon after birth 

due to a craniofacial defect.  In Chapter 2, we studied the transcriptomic and behavioral 

consequences of a viable, brain-specific conditional knockout of Sap97 (SAP97-cKO).  

RNA sequencing (RNAseq) from hippocampi from control and SAP97-cKO male animals 

identified 67 differentially expressed transcripts, which were specifically enriched for 

SCZ-related genes.  Subjecting SAP97-cKO mice to a battery of behavioral tests 

revealed a subtle anxiety-like phenotype present in both male and female SAP97-cKO 

animals, as well as a mild male-specific cognitive deficit and female-specific motor 
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learning deficit.  Collectively, this work suggests that loss of Sap97 alters behavior, and 

may contribute to some of the endophenotypes present in SCZ.  In Chapter 3, we 

discuss how the SAP97-cKO mouse may serve as a novel model system for 

interrogating aspects of the cellular and molecular defects underlying SCZ and other 

related neuropsychiatric disorders.  
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CHAPTER 1: INTRODUCTION 

 

This thesis attempts to elucidate the potential contribution of SAP97 to 

neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia.  In 

particular, we examine the effects of loss of Sap97 to mouse behavior and alterations in 

the transcriptome.  Here, I will outline the critical information needed to understand the 

progress made in this subject.     

 

SYNAPTOPATHIES: DISORDERS OF THE SYNAPSE 

  
 The genomic revolution has transformed the field of neuroscience by providing a 

platform to decipher the brain and its disorders.  Advancements in whole exome and 

deep sequencing technologies allow for examination of the genetic architecture of 

psychiatric disorders using large patient cohorts.  These large-scale genetic studies 

have implicated key overlapping molecular and cellular pathways that are impacted 

across mental disorders, such as chromatin regulation and the post-synaptic density, 

with dysfunction of the synapse being a convergence point (Grant, 2012; De Rubeis et 

al., 2014; McCarthy et al., 2014; Ardiles et al., 2017; Luo et al., 2017).  This observation 

coined the term “synaptopathies,” or diseases of the synapse, to collectively classify 

these disorders.   

 Human mutations in genes encoding synaptic proteins are increasingly identified 

in neurodevelopmental disorders such as epilepsy, intellectual disability, autism 

spectrum disorder, and schizophrenia.  While these disorders each present with unique 

symptoms, there is increasing recognition of the overlapping comorbidities between 

these disorders, in addition to the large genetic heterogeneity within these disorders 
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(Luo et al., 2017).  As a result, addressing the common underlying genetic mechanisms 

may be key for developing therapies across a broad range of behavioral symptoms.   

In this thesis, we choose to focus on the potential contribution of SAP97 to 

autism spectrum disorder and schizophrenia, two neuropsychiatric conditions that are 

prevalent in today’s society and share a subset of risk-associated genes.  Below, we 

provide a background for each disorder, and discuss both the importance and 

complications associated with each current genetic model.  

 

AUTISM SPECTRUM DISORDERS 

 Epidemiology and clinical presentation 

 
 Autism spectrum disorder (ASD) is diagnosed in approximately 1 out of 110 

children in the United States and is 4-5 times more common in male children than in 

females (The Autism Genome Project Consortium, 2007; Sungur et al., 2017).  Newer 

prospective studies of younger siblings of children with ASD who are at elevated risk 

provide evidence that the age of onset for the majority of cases of ASD is the second 

year of life (Zwaigenbaum et al., 2006; Martínez-Pedraza and Carter, 2009).  Several 

studies document that the mean age at which parents first report concerns to a medical 

professional is between 18 and 24 months of age (Sullivan et al., 2007; Martínez-

Pedraza and Carter, 2009).  Although ASD behaviors lie on a continuum in the general 

population, individuals with ASD are characterized by severe and pervasive impairments 

in reciprocal social interaction and communication and exhibit stereotyped behaviors, as 

well as restricted interests and activities (Martínez-Pedraza and Carter, 2009).  Most 

parents first report concerns in the area of speech and language in addition to extreme 

sensory over-or underreactivity and disturbances in the acquisition of social 
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communication, play, and motor development (Young et al., 2003).  Parents also report 

concerns regarding sleep and eating, which may be associated with sensory sensitivities 

or with the insistence on sameness (Goodlin-Jones et al., 2008; Sharp et al., 2013). 

 

Neuropathologic profile of ASD 

Neuropathologic explorations in human postmortem tissue allow for investigation 

at the cellular and cytoarchitectural levels from individuals with ASD.  Global brain 

development abnormalities are seen in the archicortex, cerebellum, brainstem, and other 

subcortical structures, with region-specific severity of neuropathology in young children 

with ASD (Wegiel et al., 2014; 2015).  Brain size as well as head circumference of a 

subset of subjects with ASD is increased compared to normal age-based values (Sacco 

et al., 2015).  An assessment of the microarchitecture of cortical areas commonly 

implicated in ASD between subjects with ASD and controls reveals disorganization of 

gray and white matter, and disorganized cortical structure and nodules of misplaced 

neurons (Casanova et al., 2013; Stoner et al., 2014; Wegiel et al., 2015).  These defects 

reflect alterations in neuronal maturation and migration processes in subjects with ASD.  

A study from one subject with ASD described finding pencil fibers consisting of 

oligodendrocytes, astrocytes, and glia that disrupted cortical lamination in the prefrontal 

cortex (Hashemi et al., 2016).   

 Young children with ASD also have significantly reduced neuronal and 

cytoplasmic volumes in the majority of examined areas compared to age-matched 

controls (Wegiel et al., 2014; 2015).  The distribution of neuronal sizes becomes more 

comparable between control and ASD individuals in adulthood, which is likely a result of 

opposing developmental trajectories (Wegiel et al., 2014; 2015).  Subjects with ASD also 

have a significant increase in neuropil, comprising the dendrites, non-myelinated axons, 
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synapses, vasculature, and glial cell processes present in between cell bodies 

(Varghese et al., 2017).  Neurons show reduced dendritic branching in the hippocampus 

of ASD subjects as compared to controls (Raymond et al., 1996).  Studies measuring 

spine density on apical dendrites in the cortex of ASD subjects report slower pruning of 

spines in the temporal lobe (Hutsler and Zhang, 2010; Tang et al., 2014).  This results in 

the difference in spine densities between ASD and controls being greater in adolescence 

than in early childhood (Tang et al., 2014).  These changes appear to be related to 

alterations that occur during early pregnancy, such as reduced programmed cell death 

and/or increased cell proliferation, altered cell migration, abnormal cell differentiation, 

abnormal neurite sprouting, and pruning that cause atypical wiring of the brain (Lacivita 

et al., 2017).  

 The biggest motivation for studying ASD is that the disorder has no known cure.  

Psychotropic medications currently available alleviate psychiatric and behavior 

problems, such as aggression, self-injury, hyperactivity, anxiety, and mood symptoms, 

but they do not have an effect on the core symptoms of ASD (Young and Findling, 

2015).  To date, the only approved drugs to treat symptoms of ASD are risperidone and 

aripiprazole, both used to treat aggression, self-injury, and severe tantrums (Lacivita et 

al., 2017).  The lack of treatment is due in part to the multifactorial nature of the disorder.   

Another motivation for studying ASD is that prevalence rates have dramatically 

increased in the past decade (Christensen et al., 2016).  There are various reasons for 

this increase, including broadening of the spectrum to include milder forms of the 

disorder, improved clinical detection, and higher public awareness (Levy et al., 2009).  

As a result, ASD has recently emerged as a major public health issue worldwide.  Due to 

the lack of promising treatment, there is an urgent need for ASD research.  One of the 

obstacles in studying the disorder is that hundreds of risk genes have been identified, 
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with not one major causative gene.  Rare variants have been identified that are highly 

penetrant, and common variants can contribute to small effect sizes (Lacivita et al., 

2017).  Below, we discuss what is currently known regarding the genetic underpinnings 

of ASD.     

 

Genetic susceptibility to ASD 

Interestingly, family genetic data supports a first-degree relative recurrence risk 

of approximately 5-10%, which points to disruption of genetic architecture as being a 

leading cause of the disease (Ritvo et al., 1989; Sumi et al., 2006).  It is believed that the 

neurocognitive phenotype of ASD is the result of a complex and highly heterogeneous 

set of genetic and environmental causes (Lacivita et al., 2017).  In some patients, the 

cause of the disorder is purely genetic (due to known chromosomal mutations), while in 

other patients, the disorder is more likely related to environmental causes such as 

prenatal exposure to chemical pollutants, toxins, viruses, or drugs (Persico and Merelli, 

2014; Lacivita et al., 2017).  For this thesis work, we have chosen to focus primarily on 

the genetic contribution to ASD and other related psychiatric disorders.  The genetic 

abnormalities associated with ASD and other related psychiatric disorders may be 

grouped into three classes: 1) at least 5% are caused by single gene mutations, 2) 

approximately 10% are copy number variations including duplications, large deletions, 

inversions, and translocations of chromosomes, and 3) many are polygenic risk factors 

due to accumulation of common variants, each contributing to a portion of the risk 

(Varghese et al., 2017).  Most research done in the laboratory to model and study the 

unique contribution of each risk-associated gene utilizes rodent models.   
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GENETIC MOUSE MODELS OF ASD 

 There are two types of animal models for ASD: environmentally induced (by 

exposure of the pregnant animals to certain toxins or infection/inflammation) and those 

that are induced by genetic manipulations.  In this introduction, we have chosen to focus 

on genetic mouse models of ASD.  More than a hundred de novo single gene mutations 

and copy-number variants have been implicated in ASD, each occurring in a small 

subset of cases (Kazdoba et al., 2015).  Mutant mouse models with syntenic mutations 

offer investigators a tool for understanding the role of each gene in modulating biological 

and behavioral phenotypes relevant to ASD (Kazdoba et al., 2015).  Investigations of 

ASD, schizophrenia, and other related psychiatric disorders indicate a highly polygenic 

architecture with small effect sizes of each implicated risk variant (Ebert and Greenberg, 

2013; Fromer et al., 2014; Kato, 2014; Smoller et al., 2018).  As a result, mouse 

modeling of these disorders by targeting one such risk variant typically demonstrates a 

moderate, or incomplete manifestation of the human disorder.  Below, we have 

highlighted the most prominent genetic mouse models of ASD.  Extensive 

characterization of these models demonstrates that while ASD is genetically complex, 

these studies are useful in describing the direct contribution of each gene.   

As mentioned previously, a remarkable number of risk genes for ASD code for 

synaptic proteins, including cell adhesion proteins, neuroligins and neurexins, and 

postsynaptic scaffolding proteins such as the PROSAP/SHANK family.  Mice with 

targeted mutations in many of these genes have been generated and characterized, as 

described below. 

 

CNTNAP2 

The contactin associated protein-like 2 (CNTNAP2) gene, a cell adhesion 
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molecule located on chromosome 7, encodes contactin-associated protein-like 2 

(CASPR2), a member of the neurexin superfamily (Rodenas-Cuadrado et al., 2013).  

Several mutations in the CNTNAP2 locus, including rare, common and deletion variants, 

have been associated with ASD (Alarcón et al., 2008; Arking et al., 2008; Rossi et al., 

2008; Poot et al., 2009).  A recessive nonsense mutation in CNTNAP2 was shown to 

cause a syndromic form of ASD, cortical dysplasia, and focal epilepsy syndrome 

(Alarcón et al., 2008; Arking et al., 2008).  The CNTNAP2 variant that increases risk for 

the language endophenotype in ASD was shown to lead to abnormal functional brain 

connectivity in human subjects (Weinstein-Fudim and Ornoy, 2016).  Knockout mice for 

the mutation show migration abnormalities, reduced number of interneurons, and 

abnormal neuronal network activity (Scott-Van Zeeland et al., 2010).  Mice lacking 

Cntnap2 also exhibit behavioral abnormalities such as reduced juvenile ultrasonic 

vocalizations, reduced social interaction time, and increased repetitive behaviors 

(Peñagarikano et al., 2011).  

 

Neuroligins and Neurexins 

Neuroligins are cell adhesion molecules located at the postsynaptic side of the 

synapse and interact with neurexins, their presynaptic partner protein (Bang and 

Owczarek, 2013).  Neuroligins contribute to synaptic neurotransmission through their 

influence on synaptic formation (Hu et al., 2015).  Neuroligin (NLGN) proteins encoded 

by X-linked genes, such as NLGN3 and NLGN4, have been associated with ASD in 

large genome-wide studies (Auranen et al., 2002; Glessner et al., 2009).  Using amino 

acid sequencing in linkage and proband case studies, deletions and frameshifts in 

NLGN3 and NLGN4 sequences have been identified in individuals with ASD (Laumonier 

et al., 2004; Lawson-Yuen et al., 2008).  Knockout mouse models have been created for 
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four neuroligin isoforms—Nlgn1, Nlgn2, Nlgn3, and Nlgn4.  Nlgn1 KO mice show 

minimal social deficits, but have increased grooming and spatial learning impairments 

along with impaired hippocampal long-term potentiation (Blundell et al., 2010).  Nlgn2 

KO mice show no social deficits, but display increased anxiety-like behavior, decreased 

pain sensitivity, and poor motor coordination (Blundell et al., 2010; Wöhr et al., 2013). In 

addition, Nlgn2 KO mice had decreased inhibitory neurotransmission, as well as 

decreased immunostaining of inhibitory synapse markers (Blundell et al., 2010).  Nlgn3 

knock-in (R451C) mice, with a ASD-related point mutation, did not display robust ASD-

like behaviors, but rather had mild developmental differences, enhanced spatial learning, 

and reduced acoustic startle (Tabuchi et al., 2007; Chadman et al., 2008; Etherton et al., 

2011).  These results would suggest that this ASD-related point mutation delayed 

development, altered learning, and reduced sensitivity to stimuli.  Nlgn knock-in mice 

also exhibited increased inhibitory neurotransmission in the barrel cortex, increased 

excitatory neurotransmission and enhanced long-term potentiation in the hippocampus, 

and increased dendritic branching in the hippocampus (Tabuchi et al., 2007; Etherton et 

al., 2011).  Nlgn3 KO mice show no social deficits, but are impaired in fear conditioning 

and olfaction, and are hyperactive.  Nlgn3 KO mice also show decreased total brain 

volume (Radyushkin et al., 2009).  And lastly, Nlgn4 KO mice show reduced sociability 

and ultrasonic vocalizations, as well as a reduction in total brain volume (Jamain et al., 

2008; El-Kordi et al., 2013).  Genetically modified mice have also been made for 

neurexins (NRXN), the neuroligin partner protein.  Numerous association studies have 

identified mutations in the NRXN1 gene, located on chromosome 2, in intellectual 

disabilities and ASD (Feng et al., 2006; Szatmari et al., 2007; Zahir et al., 2007; 

Glessner et al., 2009).  Nrxn1 KO mice display increased grooming, reduced locomotor 

activity, reduced sensorimotor gating, and increased aggression (Etherton et al., 2009; 
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Grayton et al., 2013).  Together, these studies demonstrate that the Nlgn and Nrxn 

genes may not play a prominent role in social behavior, but may instead regulate anxiety 

and cognition.   

 

SHANK/ProSAP2 Family 

The SHANK family of genes, located on chromosome 22q, encodes scaffolding 

proteins that assist in the synaptic organization of excitatory glutamatergic neurons by 

binding to postsynaptic density proteins, signaling molecules, postsynaptic receptors, 

and cytoskeletal proteins (Grabrucker et al., 2014).  Genetic studies have identified de 

novo and inherited mutations in SHANK1, SHANK2, and SHANK3 (Berkel et al., 2010; 

Boccuto et al., 2012; Sato et al., 2012).  22q13 deletion syndrome, also known as 

Phelan-McDermid syndrome, is caused by a deletion on the distal part of the long arm of 

chromosome 22 and is associated with ASD-like behaviors (Phelan and McDermid, 

2011; Kolevzon et al., 2015).  SHANK3 is one of the most commonly mutated genes 

within the Phelan-McDermid critical region (Phelan and McDermid, 2011).  Genetically-

modified mouse models have been generated and characterized for the three Shank 

isoforms.  Shank1 KO mice do not display robust social deficits, but emit fewer ultrasonic 

vocalizations and have motor impairments (Silverman et al., 2011; Wöhr et al., 2011).  

Shank1 KO mice also display dendritic spine abnormalities, including weaker basal 

synaptic neurotransmission (Hung et al., 2008). Shank2 KO mice, however, show 

reduced sociability in addition to abnormal ultrasonic vocalizations (Schmeisser et al., 

2012).  Shank2 KO mice also had reduced number of hippocampal dendritic spines and 

reduced glutamatergic neurotransmission in the hippocampus (Schmeisser et al., 2012).  

Multiple transgenic mouse models of Shank3, with deletions in various domains of the 

gene, have also been generated and characterized.  Reduced sociability, reduced 
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ultrasonic vocalizations, and high levels of repetitive self-grooming were dependent upon 

which isoform of Shank3 was deleted (Peça et al., 2011; Wang et al., 2011b; Kouser et 

al., 2013).  Reduced basal neurotransmission, as well as abnormalities in neuronal 

morphology (neuronal hypertrophy, dendritic spine deficits) have been identified in most 

of these models (Peça et al., 2011; Wang et al., 2011b; Kouser et al., 2013).  Overall, 

these studies highlight that the Shank gene family may be responsible for normal social 

behavior, maintaining normal synaptic function and neuronal structure, and that 

complete or partial loss of Shank may also induce repetitive behaviors.     

 

SCHIZOPHRENIA 

Epidemiology and clinical presentation 

 In addition to ASD, we also chose to examine the potential contribution of SAP97 

to schizophrenia (SCZ).  SCZ affects approximately 5 out of every 1000 individuals (Wu 

et al., 2006).  The age of onset varies between men and women, where men tend to 

have a younger onset, with the peak incidence for men and women lies between 15-24 

years of age (Wu et al., 2006).  Men have about a 30-40% higher lifetime risk of 

developing SCZ.  Like many other psychiatric disorders, SCZ is diagnosed by its 

symptoms, which fall into three main categories: positive, negative, and cognitive.  

Positive symptoms include hallucinations, delusions, and disorganized thinking (Lehman 

et al., 2006; Tandon et al., 2009).  Negative symptoms include social withdrawal, blunted 

affect, and a decreased in incentive motivation (Lehman et al., 2006; Tandon et al., 

2009).  Cognitive symptoms encompass deficits in processing speed, working memory, 

attentional set-shifting, and verbal memory (Lehman et al., 2006; Tandon et al., 2009).  

Typically, the negative and cognitive symptoms are more predictive for the long-term 

prognosis of the disorder (Green et al., 2000).  Similar to ASD, there is evidence 
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suggesting a strong genetic component of SCZ.  Classical twin studies demonstrated a 

50% concordance rate for SCZ among monozygotic twins and a reduced rate of 15% if 

the twins are dizygotic (Canetta and Kellendonk, 2018).  

 

Neuropathologic profile of SCZ  

Abnormalities in neurodevelopment might be responsible for the cognitive deficits 

in SCZ (Tripathi et al., 2018).  In SCZ, abnormal brain development begins as early as 

prenatal life, which intensifies during childhood and continues until adulthood (Tripathi et 

al., 2018).  Many brain areas are altered in SCZ, such as the third and lateral ventricles, 

prefrontal cortex, amygdala, medial temporal lobe, basal ganglia, thalamus, corpus 

collosum, and cerebellum (Tripathi et al., 2018).  Abnormalities in neurotransmission, 

including the neurotransmitters dopamine, serotonin, and glutamate, have also provided 

the basis for theories on the pathophysiology of SCZ (Lavretsky et al., 2008).  Other 

theories implicate aspartate, glycine, and GABA as part of the neurochemical imbalance 

of SCZ (Lavretsky et al., 2008).  The core symptoms of SCZ, such as negative 

symptoms and executive dysfunction, are thought to result directly from altered 

neuroplasticity (Voineskos et al., 2013).  SCZ alters brain derived neurotrophic factor 

(BDNF), which is associated with hippocampal neuroplasticity, attributing to the cognitive 

deficits present in the disorder (Nieto, 2013).  Abnormal activity at dopamine receptor 

sites is also thought to be associated with many symptoms of SCZ.  Low dopamine 

levels within the nigrostriatal pathway are thought to affect the extrapyramidal system, 

leading to motor symptoms (Lavretsky et al., 2008; Patel et al., 2014).  The mesolimbic 

pathway may play a role in the positive symptoms of SCZ in the presence of excess 

dopamine (Lavretsky et al., 2008; Patel et al., 2014).  Negative symptoms and cognitive 

deficits may also be due to low mesocortical dopamine levels (Lavretsky et al., 2008). 
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One of the leading motivations for studying SCZ is that is has no known cure.  

Current pharmacological agents, such as second-generation antipsychotics, are used to 

treat the symptoms of the disorder rather than the underlying cause (Lewis and 

Lieberman, 2018).  However, similar to ASD and many other neuropsychiatric disorders, 

one obstacle in studying the genetic cause of SCZ is that whole genome studies have 

identified over 100 gene variants that are associated with the disorder (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014).  While few studies of 

common variants have produced important insight into possible biological mechanisms 

of SCZ, most common variants only minimally increase the risk for the disorder.  In order 

to elucidate the contributions of each genetic variant to the etiology of SCZ, various 

genetic mouse models have been generated and characterized.   

 

GENETIC MOUSE MODELS OF SCHIZOPHRENIA 

 SCZ has both genetic and environmental components, and an attempt has been 

made to model both aspects of the disorder.  In this thesis introduction, we focus on 

describing genetic models of SCZ.  Several mouse models have been useful for 

studying the behavioral consequences of specific synaptic gene alterations and the 

mechanisms potentially underlying the pathogenesis of SCZ.   

 

Neuregulin  

Neuregulin 1 (NRG1) is part of a family of growth and differentiation factors, and 

was first suggested as a potential candidate gene for SCZ in a study of the Icelandic 

population (Stefansson et al., 2002).  This association between NRG1 and SCZ was 

later confirmed in Scottish and Irish populations (Stefansson et al., 2002; Corvin et al., 

2004).  NRG1 is essential for neurodevelopment, with key roles in synapse formation, 
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neuronal migration, synaptic plasticity, and regulation of neurotransmitter systems (Falls, 

2003).  While homozygous null mice for Nrg1 die midgestation, heterozygous mutant 

mice are viable (Gerlai et al., 2000).  Nrg1 hypomorph epidermal growth factor-like 

domain models result in hyperactivity with impaired PPI (Gerlai et al., 2000; Duffy et al., 

2008).  Additionally, most NRG1 proteins are synthesized with a transmembrane (TM) 

domain, and Nrg1 hypomorph TM models also result in hyperactivity and exhibit 

impaired PPI, altered habituation, increased aggression, and decreased functional 

NMDA receptors (Stefansson et al., 2002; Karl et al., 2007; O'Tuathaigh et al., 2008).  

Nrg1 immunoglobulin-like domain mutant mice, while not hyperactive, are impaired in 

the latent inhibition task (Rimer et al., 2005).  A more recent model focusing on the 

deletion of a specific Nrg1 isoform (Type III) produces mice with a more pronounced PPI 

deficit, impaired performance on delayed alteration memory tasks, enlarged lateral 

ventricles, and decreased spine density (Chen et al., 2008).  Collectively, these studies 

indicate that Nrg1 may play a more prominent role in the sensorimotor gating phenotype 

of SCZ, while its effects on activity and memory remain unclear.   

 

DISC1  

Disrupted-in-schizophrenia-1 (DISC1) was identified as a candidate gene when it 

was found to be disrupted by a balanced translocation that cosegregates with SCZ and 

related psychopathologies (Millar et al., 2000; 2001).  DISC1 plays an important role in 

neurite outgrowth, cell migration, and cell signaling (Mackie et al., 2007).  A mutant 

mouse model of Disc1 carrying a deletion variant displayed impairments in working 

memory, deceased mPFC volume, altered synaptic transmission in the hippocampus, 

and reduced dendritic growth in the dentate gyrus (Koike et al., 2006; Kvajo et al., 2008).  

An inducible Disc1 C-terminal fragment transgenic model exhibited abnormal spatial 
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working memory, deficits in social interaction, and decreased hippocampal dendritic 

complexity (Li et al., 2007).  A model expressing the dominant negative C-terminal 

truncated Disc1 exhibited hyperactivity, disrupted PPI, depressive-like symptoms, and 

enlarged lateral ventricles (Hikida et al., 2007).  Inducible expression of mutant human 

DISC1 also produced mice with enlarged lateral ventricles, deficits in spatial working 

memory, impaired social interaction, and hyperactivity (Pletnikov et al., 2007).  And 

lastly, truncated Disc1 transgenic mice exhibit enlarged lateral ventricles, decreased 

cortical neurogenesis, increased immobility and reduced vocalization in depression-

related tests, as well as impairment in latent inhibition (Shen et al., 2008).  These studies 

demonstrate that while Disc1 clearly contributes to the pathophysiology of SCZ, the 

nature of the mutation has profound effects on the range of observed behavioral 

phenotypes.    

 

Dysbindin 

Several studies have implicated dysbindin (DTNBP1) as a SCZ candidate gene 

(Straub et al., 2002; Tang et al., 2003; Kirov et al., 2004).  DTNBP1 binds to 

dystrobrevins, components of the dystrophin-associated glycol-protein complex (DGC), 

and is thought to play a fundamental role in regulating synaptic structure and signaling 

(Benson et al., 2001).  Dtnbp1 deletion mice on a DBA/2J background strain were found 

to have increased anxiety and impaired social interaction, as well as deficits in working 

and recognition memory (Hattori et al., 2008; Takao et al., 2008).  These mice also 

displayed increased freezing response to a conditioned stimulus, suggesting deficits in 

emotional and motivated learning and memory (Bhardwaj et al., 2009).  These mice also 

had decreased dopamine levels, reduced steady state levels of snapin (synaptic priming 

regulator), and deficiencies in neurosecretion (Murotani et al., 2007; Feng et al., 2008; 
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Chen et al., 2008a).  However, a study of Dtnb1 KO mice on a C57Bl/6 strain showed no 

evidence of increased anxiety, although replicated the spatial learning and memory 

deficit (Cox et al., 2009).  While Dtnb1 partially contributes to a SCZ phenotype, the 

extent remains unclear due to complications with the background strain.   

 

22q11.2 deletion 

 The 22q11.2 deletion is a rare chromosomal mutation spanning ~3 Mb that has 

also been associated with SCZ (Drew et al., 2011).  22q11.2 deletion syndrome 

(22q11DS) is characterized by a 25-fold increased risk for developing SCZ as well as 

cardiac and facial anomalies (Karayiorgou et al., 2010).  This deletion syndrome also 

increases the risk of other psychiatric disorders, such as attention-deficit hyperactivity 

disorder, bipolar disorder, anxiety, and affective disorders (Murphy et al., 1999; 

Niklasson et al., 2001).  22q11.2 microdeletion carriers also show language delay, 

decreased full scale IQ, learning disabilities and mental retardation, and deficits in 

attention and working memory (Niklasson, 2001; Karayiorgou et al., 2010).  Although this 

rare microdeletion is present in only 1-2% of patients with SCZ, its high penetrance for 

the disease makes 22q11DS genetic models an excellent opportunity to investigate the 

pathogenesis underlying certain behavioral abnormalities present in SCZ and other 

related disorders (Karayiorgou et al., 2010).   

 A region of mouse chromosome 16 is homologous to the 22q11.2 region in 

humans, containing murine versions to all genes except CLTCL1, with minimal 

reorganization of gene order (Paylor and Lindsay, 2006).  Several mouse models have 

been generated and characterized with deletions that fall within or encompass the 

microdeletion (Drew et al., 2011).  For example, the Df(16)A+/- mice show impairments 

in the acquisition of a delayed non-match to sample T-maze task that relies on spatial 
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working memory (Stark et al., 2008).  These mice also display reduced synchronous 

activity between the dorsal hippocampus and medial prefrontal cortex during task 

acquisition, suggesting that deficits in communication between the hippocampus and 

prefrontal cortex may underlie working memory impairments (Sigurdsson et al., 2010).  

Another 22q11DS mouse model, Df(16)1+/-, showed weakened auditory thalamocortical 

connections in post-adolescent, but not pre-adolescent animals, mirroring the 

developmental timeline of behavioral impairments in PPI in these mice (Chun et al., 

2014).  This reduction in thalamocortical strength was specific to the auditory cortex, and 

was due to an unexpected increase in dopamine D2 receptors in the medial geniculate 

nucleus of the thalamus (Chun et al., 2014).  Thalamocortical strength and PPI were 

normalized following acute administration of haloperidol, suggesting that the therapeutic 

effects of antipsychotic medications in SCZ could be due to targeting thalamic D2 

receptors (Chun et al., 2014).  Overall, the 22q11DS mouse models may highlight the 

SCZ-related behaviors, along with the associated mechanisms, linked to this 

chromosomal region.   

 

SIGNIFICANCE OF CURRENT RODENT MODELS 

 The above discussion of current and popular rodent models for ASD and/or SCZ 

highlight the polygenic origin of these disorders.  The literature suggests that, at least in 

the mouse, disruption of a single gene is typically not the cause of psychiatric disorder.  

However, study of these risk variants in genetically modified mice allow us the means to 

elucidate which behavioral domains are regulated by each candidate gene.  

Furthermore, we can investigate the specific molecular and cellular pathways regulated 

by each candidate gene that underlie the behavioral domain(s) in question.  In this thesis 

work, we make the first attempt to understand the contribution of candidate gene SAP97 
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to psychiatric disorders such as ASD and SCZ.  Below, we discuss the background of 

SAP97’s gene family, the membrane associated guanylate kinases.  We discuss their 

significance in synapse biology and the current evidence suggesting their role in 

psychiatric disorders.      

 

MEMBRANE ASSOCIATED GUANYLATE KINASES 

 In this section of the introduction, we discuss the membrane associated 

guanylate kinases (MAGUKs), an integral group of synaptic genes known to play a 

prominent role in a broad range of psychiatric disorders, including ASD and SCZ.  We 

choose to focus in depth on the MAGUK family as it is extensively expressed in the brain 

and well conserved throughout evolution.  Below, we provide a general background and 

rationale for focusing on the contribution of MAGUKs to ASD, SCZ, and other related 

psychiatric disorders. 

 

MAGUK Subfamily Classification 

The MAGUK protein family is classified phylogenetically in 10 subfamilies by 

comparison of the genomic sequences of the core PDZ-SH3-GUK region and by the 

supplemental domains they possess (Oliva et al., 2011).  Of the ten MAGUK 

subfamilies, members of the subfamilies DLG, CASK, MPP, CACNB, and MAGI are 

expressed in the central nervous system (CNS) where they play various roles in the 

formation and function of synapses (Laura et al., 2002; Jing-Ping et al., 2005; Deng et 

al., 2006).  Members of the ZO family are not expressed in neurons, but are present in 

the brain where they play an import role in the formation and maintenance of the blood-

brain barrier (Wolburg and Lippoldt, 2002).  The DLG and CASK subfamilies are the 

most well-studied MAGUKs due to their clear role in synapse formation and function 
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(Oliva et al., 2011).  While both subfamilies are also expressed in epithelial tissues and 

the peripheral nervous system, previous groups have focused on their function in the 

CNS (Oliva et al., 2011).  For this body of work, we have chosen to focus on the DLG 

subfamily of MAGUKs. 

 

Expression Pattern of the DLG MAGUK Subfamily 

The DLG subfamily of MAGUKs (Dlg-MAGUK) is expressed in the CNS at all 

stages of development (Kim and Sheng, 2004; Funke et al., 2005).  All members can be 

found presynaptically and postysnaptically, however some are mainly found in the 

postsynaptic compartment of excitatory synapses and restricted to the postsynaptic 

density (Kim and Sheng, 2004; Funke et al., 2005).  The Dlg-MAGUK family also differs 

in their temporal and spatial expression.  PSD-95 is expressed at low levels during 

embryonic and early postnatal development, but is enhanced during postnatal 

development, and reaches maximum expression at adulthood (Hsueh and Sheng, 1998; 

Al-Hallaq et al., 2001).  PSD-93 shows a similar expression profile to PSD-95 in the 

hippocampus (Sans et al., 2000).  SAP102, however, is highly expressed in the 

hippocampus during the first postnatal week, remains stable by postnatal day P35, and 

decreases into adulthood (Muller et al., 1996; Sans et al., 2000).  SAP97 displays an 

expression pattern opposite to PSD-95 and PSD-93 in the hippocampus and other brain 

tissues, where expression levels decrease from embryo to adult stages (Cai et al., 

2008).  This observation suggests that SAP97 participates in developmental processes 

of the nervous system (Cai et al., 2008).   
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The role of Dlg-MAGUKs in Synapse Formation and Function 

The expression pattern of Dlg-MAGUKs during development suggests that they 

are involved in the regulation of synaptogenesis, a highly regulated process of building 

neural circuits.  Studies done in mammals as well as Drosophila neuromuscular junction 

suggest that Dlg-MAGUKs are necessary for the clustering and stabilization of glutamate 

receptors once the pre- and postsynaptic sites have been contacted and stabilized by 

adhesion proteins (Chen and Featherstone, 2005; Waites et al., 2009).  The participation 

of Dlg-MAGUKs in the maturation of mammalian synapses has been shown via 

overexpression experiments.  Overexpression of PSD-95 and SAP97 increases the size 

of spines and the formation of multi-innervated spines in hippocampal neurons 

(Nikonenko et al., 2008; Poglia et al., 2010).  Additionally, overexpression of SAP97 

promotes dendritic growth and requires the binding to the AMPA receptor subunit 

(AMPAR), GLUA1 (Zhou et al., 2008).  SAP97, PSD-95, and SAP102 overexpression 

also enhance the expression of presynaptic proteins such as synatophisin, synapsin, 

and bassoon (Regalado, 2006).  The overexpression of several PSD-95 interacting 

proteins also has an effect in spine morphogenesis (Lee et al., 2008).   

 While Dlg-MAGUK overexpression studies have been informative, loss of 

function experiments have not produced consistent results.  Knockout mice for Psd-95, 

Psd-93, or Sap102 do not have defects in synapse development (Miguad et al., 1998; 

McGee et al., 2001; Cuthbert et al., 2007).  Psd-95 mice carrying a targeted mutation 

that introduces a stop codon in the third PDZ domain show only altered dendritic spine 

density in the hippocampus (Vickers et al., 2006).  Moreover, acute knockdown of Psd-

95 using shRNA does not produce defects in dendritic spine density in primary 

hippocampal cultures (Elias et al., 2006).  Sap97 knockout animals have not been 

possibly to study, as the mutant mice display a cleft palate and die prematurely 
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(Caruana and Bernstein, 2001).  However, studies conducted on neuronal cultures from 

Sap97 knockout animals do not show any defect in glutamate receptor distribution or 

AMPAR mediated currents (Howard et al., 2010).  As it has been demonstrated that 

PSD-95, PSD-93, and SAP102 can compensate for each other, the lack of defects 

observed in the knockout mice can be explained by functional redundancy (Elias et al., 

2006; Howard et al., 2010).    

 The Dlg-MAGUK family also plays an integral role in glutamate receptor 

clustering and trafficking, both of which are essential processes for the efficiency and 

plasticity of glutamatergic synapses.  PSD-95 is the most well-studied Dlg-MAGUK for its 

role in clustering and trafficking glutamate receptors, especially NMDARs (Elias and 

Nicoll, 2007).  PSD-95 is also implicated in the trafficking of AMPARs, although indirectly 

via transmembrane AMPAR regulatory proteins (TARPs) (Chen et al., 2000).   

 SAP97 has been implicated in receptor trafficking by various studies.  Sap97 

occurs as two splice variants (α and β).  SAP97α is mostly found at the postsynaptic 

density, while SAP97β is found in the perisynaptic region (Oliva et al., 2011).  Both 

splice variants are able to bind the GLUA1 AMPAR (Oliva et al., 2011).  Current 

evidence suggests that the ratio between these two isoforms can regulate the 

distribution of GLUA1, and as a result, synaptic strength (Waites et al., 2009).  Acute 

overexpression of SAP97β promotes trafficking of AMPARs and NMDARs to the 

synapse in immature pyramidal neurons but not in mature neurons (Howard et al., 

2010).  However, chronic overexpression in vivo during development enhances synaptic 

transmission in mature neurons (Howard et al., 2010).  These findings suggest that 

SAP97β plays a role in receptor trafficking during development rather than in adult 

plasticity.   
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THE CONTRIBUTION OF MAGUKs TO PSYCHIATRIC DISORDERS  

The prominent role of Dlg-MAGUKs at glutamatergic synapses and in synaptic 

plasticity suggests that mutations in MAGUK genes would be involved in synaptic-

related disorders, notably ASD and SCZ.  Below, we outline the evidence implicating the 

Dlg-MAGUKs in ASD, SCZ, and related neuropsychiatric disorders, and discuss the 

current genetic models available.  

Sequencing techniques and analytics have been used to identify PSD-95 

mutations in ASD and SCZ patients.  Whole-exome sequencing studies of SCZ and ASD 

patients show disrupted mutations of proteins located in excitatory synapses of the PSD, 

such as NMDAR and PSD-95 (Fromer et al., 2014; Purcell et al., 2014).  Studies from 

postmortem SCZ patients reveal a significant decrease in PSD-95 mRNA and protein 

expression levels in the dorsolateral and dorsomedial prefrontal cortex, suggesting an 

association between PSD-95 dysfunction and SCZ (Ohnuma et al., 2000; Catts et al., 

2016).  PSD-95 is also involved in a network of interactions with high-risk ASD genes 

that include SHANK, HOMER, NLGN, and FMR1 (Gilman et al., 2011; Tsai et al., 2012; 

De Rubeis et al., 2014).  Furthermore, PSD-95 is a candidate gene disrupted in 

intellectual disability, a cognitive disorder characterized by a reduction of dendritic spines 

(Lelieveld et al., 2016).  PSD-95 has direct interactions with intellectual disability-related 

proteins within the excitatory PSD that include ARC and IL1RAPL1, which are 

responsible for regulating spine density and function (Pavlowsky et al., 2010; Valnegri et 

al., 2011; Fernández et al., 2017).  To model with in mice, null animals have been made 

and characterized.  Feyder et al. characterized the Psd-95 knockout mice and the mice 

exhibit increased repetitive behaviors, abnormal communication, hyper-social behavior, 

impaired motor coordination, and increased stress-reactivity and anxiety-related 
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responses (Feyder et al., 2010).  The extent to which the Psd-95 null mice faithfully 

report on the contribution of Psd-95 to psychiatric disease is an open question.   

  Mutations in the gene SAP102 are found in patients with X-linked mental 

retardation (Tarpey et al., 2004).  The mutations identified introduce premature stop 

codons within or before the third PDZ domain, and it is likely that this impairs the ability 

of SAP102 to interact with NMDAR and other proteins involved downstream of NMDAR 

signaling pathways (Tarpey et al., 2004; Zanni et al., 2009).  The disruption of the ability 

to bind NMDARs may lead to altered synaptic plasticity and explain the intellectual 

impairment observed in individuals with SAP102 mutations (Tarpey et al., 2004; Zanni et 

al., 2009).  Cuthbert et al. report the first characterization of Sap102 KO mice, and find 

that Sap102 mutant mice display cognitive deficits with a specific spatial learning deficit 

(Cuthbert et al., 2007).     

A variety of evidence implicates SAP97 in the etiology of ASD and SCZ.  Single 

nucleotide polymorphisms in SAP97 have been linked to an increased risk of SCZ in 

males, which supports the possible involvement of SAP97 gene variation in the 

susceptibility to SCZ and in the genetic basis for sex differences in the disorder (Uezato 

et al., 2012).  The human SAP97 gene resides in the chromosomal region 3q29, where 

multiple genome-wide analyses on copy number variations found an excess of 

microdeletions in SCZ (Kirov et al., 2011; Levinson et al., 2011; Kushima et al., 2016; 

Marshall et al., 2016).  A meta-analysis demonstrated the 3q29 deletion confers a 40-

fold increased risk for SCZ (Mulle, 2015).  Additionally, individuals with 3q29 

microdeletions spanning the SAP97 locus display autism and intellectual disability 

(Quintero-Rivera et al., 2010).  In another study of the expression levels of multiple 

postsynaptic density proteins, including PSD-95, PSD-93, and SAP102, the authors 

found a specific decrement in the level of SAP97 in post mortem frontal lobe from 



23 
 

schizophrenic patients (Toyooka et al., 2002).   SAP97 levels were decreased to less 

than half that of control levels, and concordantly, its binding partner GLUA1 was similarly 

decreased in the same brain region (Toyooka et al., 2002).   SAP97 is also the only 

member of the Dlg-MAGUK family that directly binds to the extreme C-terminus of the 

GLUA1 AMPAR, a subunit that promotes dendritic growth and patterned synaptic 

innervation (Zhou et al., 2008; Zhang et al., 2017). Thus, it is plausible that defects in 

these SAP97-dependent mechanisms contribute to a ASD and SCZ phenotype. 

However, unlike the other members of the Dlg-MAGUK family, the issue has been 

difficult to study because Sap97 knockout mice die a few days after birth from a 

craniofacial defect (Caruana and Bernstein, 2001).   

 

STATEMENT OF MOTIVATION AND HYPOTHESIS   

The goal of this thesis is to understand the direct contribution of SAP97 to 

neuropsychiatric disorders such as ASD and SCZ.  While mouse models for Psd-95, 

Psd-93, and Sap102 have been previously generated and characterized behaviorally, 

Sap97 null animals have been impossible study.  In Chapter 2, we determine whether 

Sap97 directly contributes to the pathophysiology of ASD and SCZ, and in what 

capacity, by generating mice that have a conditional knockout of Sap97 targeted to 

neurons using the Cre-loxP system.  Given the substantial evidence supporting the 

involvement of the Dlg-MAGUK family in neuropsychiatric disorders, we hypothesized 

that loss of Sap97 would contribute partially to the endophenotypes of ASD and/or SCZ-

like phenotype.  In order to test this hypothesis, we subjected the Sap97 conditional 

knockout mice to a battery of behavioral tests and biochemical studies to screen for an 

ASD or SCZ-like phenotype. We report that loss of Sap97 results in subtle sex-specific 

behavioral abnormalities and alters the expression of SCZ risk-associated gene 
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transcripts in the hippocampus.  This thesis works provides the first broad behavioral 

and transcriptomic characterization of Sap97 deficient animals, and provides a stepping-

stone for understanding the molecular mechanism by which SAP97 contributes for 

neuropsychiatric disorders.  



25 
 

CHAPTER 2: SAP97 REGULATES BEHAVIOR AND EXPRESSION OF 
SCHIZOPHRENIA RISK ENRICHED GENE SETS IN MOUSE HIPPOCAMPUS 

 
SUMMARY 

Synapse associated protein of 97KDa (SAP97) belongs to a family of scaffolding 

proteins, the membrane-associated guanylate kinases (MAGUKs), that are highly 

enriched in the postsynaptic density of synapses and play an important role in organizing 

protein complexes necessary for synaptic development and plasticity (Cai, 2006; Elias 

and Nicoll, 2007; Zhou et al., 2008; Chen et al., 2015; Zeng et al., 2016).  Large-scale 

genetic studies have implicated MAGUKs in neuropsychiatric disorders such as 

intellectual disability, autism spectrum disorders (ASD), and schizophrenia (SCZ), but 

knock-out mice have been impossible to study because the Sap97 null mice die soon 

after birth due to a craniofacial defect. We studied the transcriptomic and behavioral 

consequences of a brain-specific conditional knockout of Sap97 (SAP97-cKO).  RNA 

sequencing (RNAseq) from hippocampi from control and SAP97-cKO male animals 

identified 67 differentially expressed transcripts, which were specifically enriched for 

SCZ-related genes.  Subjecting SAP97-cKO mice to a battery of behavioral tests 

revealed an anxiety-like phenotype present in both male and female SAP97-cKO 

animals, as well as a male-specific cognitive deficit and female-specific motor learning 

deficit.  These data suggest that loss of SAP97 regulates behavior, and may contribute 

to some of the endophenotypes present in SCZ.  The SAP97-cKO mouse serves as a 

novel model system for interrogating aspects of the cellular and molecular defects 

underlying SCZ and other related neuropsychiatric disorders.  
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INTRODUCTION 

Intellectual disabilities and neuropsychiatric behavioral disorders affect about 

17.9% of individuals over their lifetime and interfere with the ability of people to 

experience a fulfilling and productive life (nimh.nih.gov).  Some of these disorders are 

clearly developmental.  For example, autism spectrum disorders (ASD) are 

characterized by impairments in social interaction and communication, and by restricted, 

repetitive behaviors and about 1% of children show signs and symptoms that lead to the 

diagnosis of ASD (Ebert and Greenberg, 2013; Uchino and Waga, 2013).  Schizophrenia 

(SCZ) is another mental disorder that is characterized by disordered thought processes 

and disturbed emotional responsiveness (Grabrucker et al., 2014).  The symptoms of 

SCZ usually appear during young adulthood, with an overall prevalence of about 0.7% 

(Fromer et al., 2014; Grabrucker et al., 2014).  Technological advances have brought 

unprecedented insights into the genetic architecture of these and many other 

neuropsychiatric disorders (De Rubeis et al., 2014; Fromer et al., 2014; Zhao et al., 

2014; Xing et al., 2016).  

Exome-sequencing technology has allowed us to systematically scan genes for 

de novo mutations at the single-base resolution, potentially offering insights into risk-

determining genes (Ghosh et al., 2013; Fromer et al., 2014).  Whole-exome sequencing 

results from patients with ASD or SCZ reveal significantly enriched copy number variant 

(CNV) mutations in the synaptic gene set (Fromer et al., 2014).  Among the most 

prevalent synaptic genes that have been uncovered in large-scale genomic studies have 

been alterations in the neurexins/neurolignins along with the PROSAP/SHANK family.  

Various genetically manipulated mice of these gene families recapitulate some of the 

behavioral features of ASD, SCZ, and intellectual disability (Peça et al., 2011; Wang et 

al., 2011b; Kouser et al., 2013; Han et al., 2014).  However, none of these models 
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completely phenocopy disease in humans, consistent with the polygenic origin of these 

disorders.  

Another important group of synaptic genes that has been implicated to be 

involved in ASD or SCZ is the Discs-large (Dlg) family of membrane associated 

guanylate kinases (MAGUKs) (Kristiansen et al., 2006; Funk et al., 2009; Feyder et al., 

2010; Xing et al., 2016; Winkler et al., 2017).  The Dlg family is the most 

comprehensively studied family of MAGUKs, and is comprised of PSD-95, PSD-93, 

SAP102, and SAP97.  They share a common domain structure comprised of three PDZ 

domains, along with an SH3 and GUK domain.  The Dlg-MAGUK family directly binds to 

many proteins in the postsynaptic density (i.e. glutamate receptor subunits, TARPS, and 

neurexin/neuroligin clusters), and regulates synaptic nanoscale structure and synaptic 

transmission (Bats et al., 2007; Mondin et al., 2011; Giannone et al., 2013) .  Mice with a 

targeted deletion of Psd-95, Psd-93, and Sap102 show a range of phenotypes also 

displayed by individuals with psychiatric disorders (Cuthbert et al., 2007; Feyder et al., 

2010; Winkler et al., 2017).   

A variety of evidence implicates SAP97 in the etiology of ASD and SCZ: 1) single 

nucleotide polymorphisms in SAP97 have been linked to an increased risk of 

schizophrenia in males (Uezato et al., 2012), 2) individuals with microdeletions spanning 

the SAP97 locus display autism and intellectual disability (Quintero-Rivera et al., 2010), 

and 3) a study of expression levels of multiple postsynaptic density proteins found a 

specific decrement in the level of SAP97 in post mortem frontal lobe from schizophrenic 

patients (Toyooka et al., 2002).   SAP97 is also the only member of the Dlg-MAGUK 

family that directly binds to the extreme C-terminus of the GLUA1 AMPA receptor 

(AMPAR), a subunit that promotes dendritic growth and patterned synaptic innervation 

(Zhou et al., 2008; Zhang et al., 2017). Thus, it is plausible that defects in these SAP97-
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dependent mechanisms contribute to a ASD and SCZ phenotype. While these findings 

advocate for the participation of SAP97 in the etiology of neuropsychiatric disorders, the 

issue has been difficult to study because Sap97 knockout mice die a few days after birth 

from a craniofacial defect (Caruana and Bernstein, 2001).   

In order to determine whether SAP97 directly contributes to the pathophysiology 

of ASD and SCZ, we generated mice that have a conditional knockout of Sap97 targeted 

to neurons using the Cre-loxP system.  We then subjected these mice to a battery of 

behavioral tests and biochemical studies to screen for an ASD or SCZ-like phenotype. 

Overall, our results suggest that loss of Sap97 results in sex-specific behavioral 

abnormalities as well as regulates transcripts of SCZ risk-related genes.   

 
 
MATERIALS AND METHODS 
 
Animals 
 

All animal procedures were approved by the Institutional Animal Care and Use 

Committee.  The Cre-loxP system was used to generate a Sap97 conditional knockout 

(cKO) mouse.  SAP97fl/- mice were generated as previously described (RRID: 

IMSR_JAX:013097).  Nestin-cre+/- mice on a C57Bl/6 background were purchased from 

Jackson Labs (stock number 003771, RRID: IMSR_JAX:003771). Nestin-cre+/-; 

SAP97fl/- mice were generated by crossing male Nestin-cre+/- with female SAP97fl/- 

mice.  Nestin-cre+/-; SAP97fl/- male mice were then crossed with female SAP97fl/- mice 

to generate Nestin-cre+/-; SAP97fl/fl (SAP97-cKO) and littermate control animals.  

Littermate control animals (genotype: Nes-cre+/-, SAP97fl/fl, and wild-type) were 

averaged and compared to cKO animals.  Genomic DNA was extracted from tail snips 

using the Phenolcholoroform acetate method to confirm genotypes.  The primers used 

for genotyping were as follows: Sap97 flox fwd- 
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AGAGTATGCTCTATGTGATGTTGTGTG rev-TAAGAAGGATCAACTGGCAAAGGTG; 

CRE fwd- ACCTGATGGACATGTTCAGG rev-CGAGTTGATAGCTGGCTGG 

 

Behavioral Experiments 

Open Field 

Assessment of general exploratory behavior and anxiety were evaluated using 

the open field paradigm.  Mice were placed in a white, opaque plexiglass box (40cm x 

40cm) and were given 15 minutes to explore the apparatus.  Exploratory locomotor 

activity (total distance traveled, average speed, and mean distance from border) was 

scored using the Any-MAZE tracking software (San Diego Instruments, San Diego, CA, 

RRID:SCR_014289).  

 

Elevated Plus Maze 

Assessment of anxiety-like behaviors was evaluated using an elevated plus 

maze (Coulbourn Instruments, Whitehall, PA).  The mouse was initially placed in the 

center “free zone”, and was allowed to freely explore the apparatus for the 5-minute trial 

time.  Time in the open arms versus the closed arms, as well as number of entries to 

these arms, was measured using the Any-MAZE tracking software.   

 

Accelerating Rotarod 

Assessment of motor learning and motor coordination was evaluated using the 

accelerating rotarod (Ugo Basile, Varese, Italy).  The starting acceleration was 4 rpm, 

and accelerated to 40 rpm over a 5-minute trial time.  Mice underwent 3 trials per day for 

4 consecutive days, for a total of 12 trials.  Latency to fall from the rod was manually 

measured and compared across the 4 days.   
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Novel Object Recognition (NOR) 

Assessment of cognition was evaluated using the NOR paradigm.  The testing 

apparatus was a white, opaque plexiglass box (40cm x 40cm).  On day 1, mice were 

habituated to the testing apparatus for 15 minutes.  On day 2, the mice were 

reintroduced to the testing apparatus and allowed to explore two identical objects equally 

spaced from the walls of the apparatus (objects A and A’) for 5 minutes and the animal 

was then removed.  Any-MAZE tracking software was used to measure the time spent 

investigating each object, and a preference index (PI) was calculated by dividing time 

spent investigating A’ by time spent investigating A (A’/A).  One hour later after identical 

object exploration, the mouse was placed back in the testing apparatus where one of the 

identical objects had been replaced with a novel object that differed in shape, color, and 

texture (object B).  Again, the mouse was given 5 minutes to explore the two objects, 

and preference for the novel object was calculated by dividing time spent investigating B 

by time spent investigating A (B/A).  Significant preference for the novel object was 

assessed by comparing the PI from the training phase to the PI from the testing phase.   

 

Three Chambered Social Choice 

Assessment of sociability was evaluated using the standard three-chambered 

social choice paradigm.  A white, opaque plexiglass rectangular box was used, with 

three partitions (each 20cm x 40cm).  The mouse was first given 5 minutes to habituate 

to the empty apparatus.  After habituation, into the left and right compartments was 

placed either with an inanimate object (non-social zone) or an age and sex-matched 

C57Bl/6 mouse (social zone).  The object and mouse were placed under clear, 

plexiglass cylinders with perforations to allow odor detection.  During the testing phase, 

the test mouse was allowed five minutes to explore either zone.  Time in each zone was 
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measured using the Any-MAZE tracking software and sniffing time of either the 

inanimate or social target was manually scored.  Social zone preference was calculated 

by dividing social zone time by total zone exploration time, and social sniffing preference 

was calculated by dividing time spent sniffing the social target by total sniffing time.  

 

Cued Fear Conditioning 

Assessment of amygdala dependent fear learning was evaluated using the cued 

fear conditioning paradigm.  Fear conditioning paradigms pair an emotionally neutral 

stimulus, such as light/tone (conditioned stimulus or CS) with an aversive stimulus, such 

as footshock (unconditioned stimulus or US), leading to the expression of a threat 

response (freezing) to presentation of the neutral CS alone.  For these experiments, the 

context was altered between training (context A) and testing (context B) to isolate the 

light/tone (CS) cued response from the hippocampal dependent contextual response. 

The cued fear conditioning paradigm used in this study was modified from 

experiments described in (Newton et al., 2004; Wolff et al., 2014). The CS consisted of 

simultaneous auditory (75dB, white noise, 20s) and light stimuli (yellow light pulses, 20s, 

flickering at 4 Hz) generated by built in audio and light stimuli generators (Med 

Associates, Fairfax, VT). The US consisted of a footshock (1.05mA, 1.5s) delivered 

through the metal grid floor. During CS-US pairings, the US was delivered immediately 

following the cessation of the CS.  On day 1 of this paradigm, animals underwent fear 

conditioning training in context A, a rectangular conditioning chamber (21.6 cm × 17.8 

cm × 12.7 cm) with Plexiglas and metal walls, and a metal grid floor (Med Associates, 

Fairfax, VT). Animals were allowed to freely explore the chamber for 1 min before 

experiencing 3 CS-US pairings (60s interstimulus interval). 
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One min after the final CS-US pairing (5 min total), mice were removed from 

context A and placed back in their home cage.  Twenty-four hours later (day 2) animals 

underwent behavioral testing to measure freezing in context B, a custom made triangular 

conditioning chamber with black striped Plexiglas walls and a smooth, opaque black 

plastic floor, scented with organic vanilla extract. Mice were allowed to freely explore the 

chamber for 1 min before experiencing 3 presentations of the CS alone (60s, 

interstimulus interval). Again, animals were removed from context B after a total of 5min. 

During testing, freezing behavior was scan sampled every 5th second from the onset of 

the first CS presentation to the end of the trial (4 min total). Freezing was defined as a 

total lack of movement aside from respiration at the instant of every 5th second. The 

total number of freezing spells was then divided by total observations to generate a 

freezing percentage per animal.  

 

Biochemistry 

Mice were anesthetized with a pentobarbital solution and decapitated.  The brain 

was removed, and each hemisphere of the cerebellum, cerebral cortex, and 

hippocampus was dissected.  One hemisphere was rapidly transferred to a mortar and 

pestle prechilled on dry ice, and ground into a fine powder to be processed for RNA 

extraction by the RNeasy mini kit (Qiagen, Catalogue #74134) according to the 

manufacturer’s instructions.  Once RNA extraction was complete, conversion to cDNA 

was done using the iScript Supermix (Bio-Rad, Catalogue #1708841, Hercules, CA).  

The other hemisphere was transferred to a dounce prechilled on ice, and lysed in 1% 

Triton-X lysis buffer with protease and phosphatase inhibitors for generation of protein 

lysates.   
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Antibodies 
 

The following antibodies were used in this study as follows: immunoblotting of 

SAP97 (Thermo Fisher Scientific, catalogue # PA1-741, RRID:AB_2092020); 

immunoblotting of PSD95 (NeuroMab, catalogue # 75-348, RRID:AB_2315909); 

immunoblotting of PSD93 (NeuroMab, catalogue # 75-284, RRID:AB_11001825); 

immunoblotting of SAP102 (NeuroMab, catalogue # 75-058, RRID:AB_2261666); 

immunoblotting beta-actin (Cell Signaling Technology, catalogue # 3700 (mouse), 

RRID:AB_2242334 or Sigma-Aldrich, catalogue # A2066 (rabbit), RRID:AB_476693).  

Secondary antibodies for immunoblots (IRDye) were purchased from Li-COR (Catalogue 

# 925-32210, RRID: AB_2687825 and Catalogue # 925-68021, RRID: AB_2713919). 

 

Western Blot 

Western blot was performed according to standard procedures (David and Kalb, 

2005; Kim et al., 2005; Mojsilovic-Petrovic, 2006). 

 

Quantitative PCR 

Quantitative real-time PCR (qPCR) was carried out as previously described using 

the delta delta Ct method to calculate relative gene expression levels (Livak and 

Schmittgen, 2001).  Ribosomal S17 and S18 (RS17, RS18) were used as reference 

genes.  Each reaction consisted of cDNA, primers, and Power SYBR Green PCR Master 

Mix (Applied Biosystems, Catalogue # 4367659, Waltham, MA) with a total 25uL 

reaction volume.  Melting curve analysis of the target sequences showed that all primers 

used in this study generated amplification of a single peak, without primer-dimer 

artifacts.  Primer and cDNA concentrations were optimized prior to use in qPCR 

experiments.  Each qPCR experiment consisted of 4-6 biological replicates, as well as 
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three technical replicates per sample.  The primers used for qPCR included: Glua1 fwd- 

CCCTGAGAGGTCCCGTAAAC rev- GCTCAGAGCACTGGTCTTGT; Glua3 fwd- 

CCATGCTCTTGTCAGCTTCG rev- AGTCCACCTATGCTGATGGT; Glua4 fwd- 

TGAATGAACAAGGCCTCTTGGA rev- AGGCACTCGTCTTGTCCTTG; Nrcam fwd- 

AAGACCCGCTGGACTTTGAA rev- GGCTTGCCATTGCCTTCTTA; Huwe1 fwd- 

GTTGGGATTTCCCACCAGGA rev- CAGTCTGCAGGAGCTTCAGT; Pten fwd- 

CCTGCAGAAAGACTTGAAGGTG rev- CTGTGCAACTCTGCAGTTAAA; Adam10 fwd- 

GGCTGGGAGGTCAGTATGGA rev- CTCGTGTGAGACTGCTCGTT; Was fwd- 

TCAGCTGAACAAGACCCCTG rev- CATGCATCAGGGCACCTACT; Erbb4 fwd- 

ACCCAGGGGTGTAACGGT rev- TGGTAAAGTGGAATGGCCCG; Sema4C fwd- 

GGTGGCCGGAGTCAAACG rev- TTCAGTCCAGCAGCCCTCTTT; Kcna3 fwd- 

TCCGAAAAGCCCGGAGTAAC rev- CTGTGGAGTTGCCCGTTTTG; Kcna4 fwd- 

CACTTGCTGGGAATGGTGAAGT rev- GAGAAGGTGGTAGACGCAGT; Kcna5 fwd- 

TAGGACACTGGCTGACCCAT rev- ACGCACAAGCAGCTCAAAAG; Gng13 fwd- 

TTGCTGTCTCCTCCAAAACCTC rev- TCCCTCTTGAAGGCCAGTTG; Fzd7 fwd- 

AGAACCTCGGCTACAACGTG rev- ACCGAACAAAGGAAGAACTGC; Dlgap4 fwd- 

TTTGCTTCTCTGCCCGATCC rev- TGATGAACATTGCTTCAAGAGC; Ctnna1 fwd- 

CAGTTCGCTGCAGAAATGAC rev- ACCTGTGTAACAAGAGGCTCC; Calm3 fwd- 

GAGTAACCTCGATCCCCGAG rev- GAAGGCTTCCTTGAACTCTGC; Kcnc1 fwd- 

CTACGCGCGGTATGTGGC rev- TCGGTCTTGTTCACGATGGG; Axin2 fwd- 

CAGCCCAAGAACCGGGAAAT rev- AGCCTCCTCTCTTTTACAGCA; Lef1 fwd- 

GTCGACTTCAGGTGGTAAGAGA rev- TGCTGTCAGTGTTCCTTGGG; β-catenin fwd- 

GTCAGTGCAGGAGGCCG rev- CAGGTCAGCTTGAGTAGCCA; Runx2 fwd- 

GCCTTCAAGGTTGTAGCCCT rev- GTTCTCATCATTCCCGGCCA; Kalirin fwd- 

GAGTTCAGGGTGGGATGACG rev- CCATCATTCCGAAAAGATCCTCG; Nudel1 fwd- 
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TTTCTTCCATAAAGGGGCAGT rev- ACACTGAGAGGCAGCATACC; Fez1 fwd- 

ATCCCAGGCAGATTCAGTCC rev- TCTCAGCCCTTCATAGGACCA; Tnik fwd- 

TGCCGAACATGAGCAGGAAT rev- AGTAGAGCTTGCTCATGCAGT; Citron fwd- 

GAAGGAACACAAGGCCGAGA rev- TCCAGGTCGTTGAGCTTGTC; Girdin fwd- 

CACCACCTACTGCTGGTAGC rev- CTTTTCTCTCCCAGGCCCAC; Grb2 fwd- 

CAGTGGAATTAAAAAGGGTGGCA rev- GGGAATCTTCCCTGCTGAAGAG; S18 fwd- 

CAGCTCCAAGCGTTCCTGG rev-GGCCTTCAATTACAGTCGTCTTC; S17 fwd- 

GATTCAGAGAGGGCCTGTGAG rev-CTGAGACCTCAGGAACGTAGT 

 

RNA Sequencing 

RNA was isolated from four control and four SAP97-cKO male hippocampi, 

quality evaluated by Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA), and 

sequenced with an Illumina HiSeq 4000 High-Throughput Sequencing System. The 

RNA-seq reads were aligned to the mouse genome mm10.GRCm38.p5 using STAR 

version 2.5.3a (Dobin et al., 2012). Next, normalization and quantification were 

performed with the PORT version 0.8.2a-beta pipeline 

(http://github.com/itmat/Normalization) which first removes reads that map to ribosomal 

RNA sequences or mitochondrial DNA and then uses a read re-sampling strategy for 

normalization to account for batch effects and differences in sequencing depth among 

the samples. After the normalization procedure, the gene level quantification was done 

by PORT with respect to the Ensemblv90 annotation. The normalized count of reads 

mapping to exon 10 of Sap97 showed almost 30-fold reduction from an average of 242 

in the control samples to an average of 8 in the SAP97-cKO samples affirming the 

efficacy of the knockdown procedure. The differential expression analysis was 

performed using the R Bioconductor package limma-voom (Law et al., 2014; Ritchie et 
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al., 2015). The top 566 genes with FDR < 0.5 and fold-change of greater than 1.6 were 

used for general pathway enrichment analyses, which were performed using Ingenuity 

IPA.  

 

Analysis of overlap between differentially expressed genes and risk-associated 

disease genes 

The significance of overlap between the set of differentially expressed genes 

(DEGs) and risk-associated ASD, SCZ, and other neuronal disorder genes was 

analyzed using non-parametric analysis.  The ASD gene list was chosen from research 

by Silvia De Rubeis et al. (De Rubeis, et al., 2014), while the SCZ and ataxia gene lists 

were chosen from online resources (szdb.org, genedx.com). Details of the lists chosen 

and overlap analysis are discussed in results section.  The mean and variance of the 

corresponding hypergeometric distribution were calculated. The p value of the 

significance of the overlap was estimated using the hypergeometric probability test.  

 

Statistics 

Data were analyzed using Prism (GraphPad Software, La Jolla, CA, 

RRID:SCR_015807).  Significant differences within groups were determined using either 

Student’s t-test, one-way ANOVA followed by Tukey’s test for multiple comparisons, or 

repeated-measures two-way ANOVA followed by Tukey’s test for multiple comparisons.  

For all tests except for RNAseq, the significance threshold was set to p<0.05.  The 

significance threshold for DEGs in the RNAseq experiment was set to FDR <0.25.   

 

RESULTS 

Targeted deletion of SAP97 to neurons 
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Global Sap97 knockout mice have been generated, but die soon after birth due 

to a craniofacial defect.  In order to study the effect of loss of Sap97 on neuronal 

development and behavior, we conditionally knocked out Sap97 by crossing Nestin-cre 

mice with Sap97 floxed mice (see Methods).  SAP97-cKO mice were born at Mendelian 

ratios and were grossly normal.  At two months of age, we harvested tissue from the 

cerebellum, hippocampus, and cortex from control and SAP97-cKO animals of both 

sexes and prepared protein lysates for western blot analysis. In all three brain regions, 

the abundance of SAP97 was significantly reduced (Cerebellum: Ctrl 3.998 ± 0.9833, 

n=4; SAP97-cKO 1.373 ± 0.348, n=5, p=0.0279; Hippocampus: Ctrl 4.252 ± 0.6751, 

n=5; SAP97-cKO 1.215 ± 0.4314, n=5, p=0.0053; Cortex: Ctrl 0.287 ± 0.08557, n=5; 

SAP97-cKO 0.06179 ± 0.01072, n=5, p=0.0311), indicating that we successfully 

generated cKO animals (Figure 1A-D).  Additionally, in order to ensure male and female 

animals had comparable expression of SAP97, we harvested tissue from the 

cerebellum, hippocampus, and cortex from male and female C57Bl/6 animals and 

prepared protein lysates for western blot analysis.  In all three brain regions, the 

abundance of SAP97 was not significantly different between male and female animals 

(Cerebellum: Male 0.3029 ± 0.03097, n=4; Female 0.3162 ± 0.03791, n=4; 

Hippocampus: Male 0.3296 ± 0.03764, n=4; Female 0.3135 ± 0.03483, n=4; Cortex: 

Male 0.3272 ± 0.0134, n=4; Female 0.257 ± 0.04237, n=4) (Figure 1E-F).   

 

No apparent compensation by other DLG-MAGUK family members 

Previous work shows that the Dlg-MAGUKs (PSD-95, PSD-93, SAP102, and 

SAP97) can have redundant functions in electrophysiological assays.  In order to 

examine whether loss of SAP97 led to compensatory changes in the abundance of the 

other Dlg-MAGUK family members, we measured total protein levels in the cerebellum, 
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hippocampus, and cortex.  There was no significant difference in the abundance of any 

other Dlg-MAGUK at the protein level in control versus SAP97-cKO male or female 

animals (Figure 2).  These data suggest that if members of the Dlg-MAGUK family 

compensate for the lack of SAP97, they do so without a change in overall abundance.  

 

No changes in gene expression level of known SAP97 binding partners or 

interactors 

SAP97 is a scaffolding protein that allows for a large number of protein-protein 

interactions.  Thus, the absence of SAP97 could potentially affect the expression level of 

numerous proteins.  To determine whether loss of Sap97 contributes to changes in 

expression levels of other identified members of the postsynaptic density, we conducted 

a directed qPCR screen.  We measured mRNA levels firstly of all AMPAR subunits, as 

SAP97 is known to be the only Dlg-MAGUK to directly bind GLUA1.  mRNA levels of 

Glua1, Glua3, and Glua4 remained unchanged in the three brain regions that were 

probed (cerebellum, hippocampus, and cortex) (Figure 3A).  Results from Glua2 were 

highly variable and thus removed from the study.   

We next sought to determine whether the levels of other genes known to interact 

with Sap97 were affected by loss of Sap97.  We measured mRNA levels of 16 genes in 

the hippocampus.  From our selection of 16 genes, we observed no differences in the 

mRNA expression level between control and SAP97-cKO animals (Figure 3B).  We also 

measured mRNA levels of 4 of these 16 genes in the cerebellum and cortex and 

observed no differences in the mRNA expression level between control and SAP97-cKO 

animals (Figure 3B).  These results would suggest that the abundance of genes from our 

selection is not significantly regulated by Sap97 expression.  
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SAP97 also shares direct and indirect binding partners with DISC1, a gene with 

strong association with neuropsychiatric disorders.  Our lab has previously shown that 

SAP97 and DISC1 contribute to maintaining Wnt/β-catenin signaling within a 

homeostatic range.  In order to address whether loss of Sap97 has an effect on the 

Wnt/β-catenin pathway in the SAP97-cKO mice, we measured mRNA levels of 4 

pathway-related genes in the hippocampus, and 2 of these genes in the cortex.  In both 

brain regions, we observed no differences in the mRNA expression level between 

control and SAP97-cKO animals (Figure 3C).  We also measured mRNA levels of 7 

Disc1 pathway-related genes in the cortex and observed no differences in expression 

between control and SAP97-cKO animals (Figure 3D).  These results would suggest that 

the abundance of genes from our selection is not significantly regulated by Sap97 

expression.   

 

Identification of SAP97-regulated transcripts in the hippocampus 

Given that we observed no group differences in our directed qPCR screen, we 

sought a broader, unbiased approach by performing RNAseq analysis on hippocampi 

from SAP97-cKO and control mice (n = 4 per group).  For each animal, we verified the 

presence or absence of SAP97 by western blot on brain tissue before submitting 

hippocampal samples for sequencing.   

A total of 66 genes were found to be significantly downregulated in the SAP97-

cKO animals as compared to control hippocampi (FDR < 0.25) (Figure 4B, Table 1).  In 

contrast, only one gene was upregulated in the hippocampi of SAP97-cKO animals as 

compared to control hippocampi.  Gene ontology analysis of the DEGs revealed 

enrichment for numerous cellular and molecular functional categories, including those 

related to “Cell Morphology,” “Cellular Development,” and “Cell-To-Cell Signaling and 
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Interaction” (Table 2A-B).  Additionally, the top enriched ID Associated Network 

Functions included “Cellular Development, Cellular Growth and Proliferation, 

Hematological System Development and Function,” and “Developmental Disorder, 

Embryonic Development, Organ Development” (Table 2C).  Gene ontology terms to 

describe gene products known to be associated with ASD or the neurexin-neuroligin-

SHANK complex in mice frequently include “Cell Communication” and “Nervous System 

Development”, which overlaps with the findings in our RNAseq study (Patel et al., 2015).  

Previous studies that have conducted RNAseq on SCZ patients and performed gene 

ontology analysis on the resulting DEGs have identified regulation of the actin 

cytoskeleton as a key pathway (Zhao et al., 2014).  While the actin cytoskeleton was not 

directly implicated by our RNAseq study, it is essential for many of the gene ontology 

analysis terms listed in our data set.  As proper arrangement of the actin cytoskeleton is 

essential for neuronal cell maturation and migration, neurite outgrowth, and maintenance 

of synaptic density and plasticity, dysregulation of these pathways in the nervous system 

could have severe consequences in psychiatric disorders such as SCZ. 

 

Schizophrenia risk enrichment in DEG set 

In order to determine whether the DEG set had a significant overlap with genes 

implicated in psychiatric disorders such as ASD and SCZ, we compared our DEG set 

with disease-related gene databases.  For determining overlap with ASD-related genes, 

we used the gene set previously generated from the transmission and de novo 

association test (TADA), which consists of 107 genes.  When we matched our DEG list 

to the TADA ASD gene list, we did not find the match percentage to be significant based 

on the hypergeometric distribution (Distribution mean = 0.30, standard deviation = 0.30; 

SAP97-cKO DEG 0.0) (Figure 4C).  We next chose to compare our DEG list to SCZ risk-
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related genes found from SZDB: A Database for Schizophrenia Genetic Research 

(szdb.org).  The distilled list of genes from this database gives a score for each gene 

based on criteria such as convergent functional genomics, copy number variation, 

differential expression, genome wide association study, and linkage and association 

studies.  The more categories a certain gene is implicated in, the higher the score for 

that gene.  Based on this model, we chose the top 1,000 genes from this database to 

match to our SAP97-cKO DEG list.  Interestingly, we found the SAP97-cKO DEG list to 

have a significant amount of overlap to the SZDB list based on the hypergeometric test 

(Distribution mean = 2.79, standard deviation = 1.63; SAP97-cKO DEG 13.43, 

p=0.0018) (Figure 4C).  Finally, we matched our SAP97-cKO DEG list to ataxia risk-

related genes as a negative control, as ataxia is not classified as a neuropsychiatric 

disorder and SAP97 has not previously been implicated in ataxia.  We used a list of 

ataxia risk-related genes compiled from GeneDx, whose clinical team compiled using 

multiple sources, including Online Mendelian Inheritance in Man (OMIM), Human Gene 

Mutation Database (HGMD), and Human Phenotype Ontology (HPO) terms.  The total 

number of genes in this list was 993, which would also allow us to control for the size of 

the SCZ gene list used.  When we compared our SAP97-cKO DEG list to the GeneDx 

ataxia gene set, we found no significant match percentage (Distribution mean = 2.77, 

standard deviation = 2.65; SAP97-cKO DEG 4.48) (Figure 4C).  Together, these results 

suggest that SAP97-cKO DEGs are specifically enriched for SCZ risk-related genes.   

 

Behavioral analysis of SAP97-cKO mice 

Next, we performed a battery of behavioral tests to screen for behavioral deficits 

in the SAP97-cKO mice.   
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Anxiety-like phenotype in SAP97-cKO mice 

We first performed the open field test to examine general ambulation and center 

exploration behavior.  In the males, we observed no change in the total distance traveled 

(Ctrl 64.8 ± 2.102, n = 29; SAP97-cKO 61.76 ± 3.763, n = 19) (Figure 5A) or the speed 

of the animals (Ctrl 0.07214 ± 0.002259, n = 29; SAP97-cKO 0.06847 ± 0.004183, n = 

19) (Figure 5B), but saw a reduction in the distance from the border (Ctrl 0.06531 ± 

0.001558, n = 29; SAP97-cKO 0.05939 ± 0.00237, n = 19, p=0.0346) (Figure 5C).  This 

indicates that the male SAP97-cKO mice stay closer to the perimeter of the apparatus as 

compared to littermate control, implying that while SAP97-cKO animals do not have a 

basic impairment in movement, they may have an anxiety-like phenotype.  Female 

SAP97-cKO animals exhibited decreases in total distance traveled (Ctrl 64.39 ± 3.495, n 

= 24; SAP97-cKO 52.1 ± 4.519, n = 12, p=0.0446) (Figure 5A) and speed (Ctrl 0.0717 ± 

0.004071, n = 24; SAP97-cKO 0.058 ± 0.005053, n = 12, p=0.0497) (Figure 5B) in 

addition to a reduction in distance from the border (Ctrl 0.06063 ± 0.001486, n = 24; 

SAP97-cKO 0.05369 ± 0.001995, n = 12, p=0.0088) (Figure 5C).  Overall, these 

observations indicate an anxiety-like phenotype present in both male and female 

SAP97-cKO animals.   

Anxiety is a common comorbidity associated with various psychiatric disorders.  

In order to further gauge whether SAP97-cKO mice had alterations in anxiety-like 

behavior, we performed the standard elevated plus maze.  When comparing time spent 

in open arms versus the closed arms, we saw no significant differences between 

genotypes in both males (open arms: Ctrl 69.75 ± 4.098, n = 33; SAP97-cKO 62.47 ± 

9.331, n = 15; closed arms: Ctrl 160.8 ± 5.339, n = 33; SAP97-cKO 179.3 ± 8.893, n = 

15) and females (open arms: Ctrl 68.17 ± 6.734, n = 20; SAP97-cKO 64.85 ± 7.72, n = 

13; closed arms: Ctrl 156.6 ± 8.515, n = 20; SAP97-cKO 172.5 ± 8.559, n = 13) (Figure 
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6A).  Likewise, the number of entries into the open versus closed arms was similar 

between genotypes of both sexes (Figure 6B).  Total distance traveled in the maze was 

also measured and compared between Ctrl and SAP97-cKO animals to ensure no 

significant differences in overall exploration of the maze (Figure 6C).  Together with the 

open field results, these observations indicate an anxiety-like phenotype in both male 

and female SAP97-cKO animals that is particular to specific behavioral tasks.  

 

No changes in cued fear conditioning behavior in male SAP97-cKO mice 

Amygdala circuitry is key for regulating anxiety-like responses in mice, and 

amygdala neuronal activity has been shown to be increased in the open field paradigm 

(Wang et al., 2011a).  Given the observed increase in anxiety-like behavior in the 

SAP97-cKO mice and the wide expression pattern of Sap97, we were interested to know 

whether dysfunction in the amygdala might contribute to these observations. We decided 

to test the mice in the standard cued fear-conditioning paradigm (see Methods), which is 

thought to be an amygdala specific behavior.  Both control and SAP97-cKO male and 

female mice exhibited normal freezing behavior (Male: Ctrl 46.96 ± 3.652, n = 15; 

SAP97-cKO 58.53 ± 6.029, n = 10; Female: Ctrl 35.89 ± 5.249, n=3; SAP97-cKO 40.1 ± 

3.932, n=4) (Figure 7).  These results suggest that the SAP97-cKO mice have no deficit 

in cued fear conditioning behavior and the described anxiety phenotype may be 

independent of amygdala circuitry.  

 

Male-specific cognitive deficit in SAP97-cKO mice 

Cognitive deficits are another endophenotype observed in various psychiatric 

conditions.  Given that cognitive deficits are also present in several mouse models of 

human psychiatric disorders, we examined SAP97-cKO mice for this behavior.  The 



44 
 

novel object recognition task is a standard test for cognition that measures ability to 

recall an object previously observed, as indicated by preference for a novel object (see 

Methods).  During the training phase of this task, we observed no significant differences 

between the ratio of time spent investigating the two identical objects A and A’ for both 

males and females (Male: Ctrl 1.364 ± 0.1438, n = 29; SAP97-cKO 1.441 ± 0.1578, n = 

15; Female: Ctrl 1.3 ± 0.2506, n = 22; SAP97-cKO 1.301 ± 0.2775, n = 10) indicating 

that the animals had no prior bias.  During the testing phase, control male mice 

displayed a marked increase in the preference index for the novel object, while SAP97-

cKO male mice showed no significant increase in novel object preference index (Ctrl A-A 

1.364, Ctrl A-B 2.457; SAP97-cKO A-A 1.441, SAP97-cKO A-B 1.941, F (3, 79) = 5.311, 

p=0.0022) (Figure 8).  When we examined this behavior in the females, we observed a 

trending, but not significant, increase in preference index for the novel object in both 

control and SAP97-cKO animals (Ctrl A-A 1.3, Ctrl A-B 2.255; SAP97-cKO A-A 1.301, 

SAP97-cKO A-B 2.575, F (3, 57) = 2.59, p=0.0616) (Figure 8).  These findings suggest a 

male-specific cognitive deficit in the SAP97-cKO animals.   

 

Female-specific motor learning deficit in SAP97-cKO mice 

Alterations in motor learning and motor coordination have also been observed in 

mouse models of ASD.  In order to determine whether this behavioral change is present 

in the SAP97-cKO mice, we performed the standard rotarod task (see Methods).  

Analysis of both sexes showed significant time effects (Male: F (3, 6) = 12.31, p=0.0057; 

Female: F (3, 6) = 9.126, p=0.0118), while only female animals showed a trend for 

genotype effects and significant time and genotype interaction effects (genotype effect: F 

(1, 2) = 11.53, p=0.0769; time x genotype effect: F (3, 6) = 5.099, p=0.0434) (Figure 9A).  

Control animals of both sexes showed a significant increase in latency to fall from the 



45 
 

rod from day 1 to day 4 (Male: Day 1 157.5 ± 19.12, Day 4 211.1 ± 2.074, n = 30, 

p=0.0010; Female: Day 1 171.6 ± 16.53, Day 4 237.3 ± 3.439, n = 21, p=0.0021), 

indicating learning of the task (Figure 9A-B).  However, while male SAP97-cKO mice 

showed no learning impairment (Day 1 154.4 ± 16.64, Day 4 229.4 ± 0.8372, n = 18, 

p=0.0002), female SAP97-cKO mice showed no significant learning over the timecourse 

of this task (Day 1 186 ± 7.927, Day 4 213.3 ± 9.988, n = 16) (Figure 9A-B).  In order to 

determine whether this female motor learning impairment was dependent on age, we 

tested a subset of aged animals (8-9 months) on the rotarod task.  While both aged 

control and SAP97-cKO female animals did not display significant learning over the 4-

day task (Control: Day 1 146.6 ± 15.06, Day 4 185.3 ± 3.153, n = 7; SAP97-cKO: Day 1 

95.07 ± 8.834, Day 4 129.2 ± 7.136, n = 5), female SAP97-cKO animals performed 

worse overall as compared to littermate controls.  These results suggest that there is a 

female-specific motor learning deficit present in the SAP97-cKO mice that persists with 

age.   

 

No social deficits present in SAP97-cKO mice 

Problems with socialization are often seen in patients with ASD, and many 

genetic mouse models of ASD have been able to mimic this behavioral deficit.  We 

looked for this endophenotype in the SAP97-cKO mice using the three-chambered social 

choice paradigm (see Methods).  During the testing phase of this paradigm, we 

measured preference for the social target zone versus the nonsocial target zone.  

Control and SAP97-cKO animals of both sexes exhibited a strong preference for 

spending time in the social target zone (Male: Ctrl-Nonsocial 0.334, Ctrl-Social 0.666, n 

= 15; SAP97-cKO-Nonsocial 0.4164, SAP97-cKO-Social 0.5836, n = 11, F (3, 48) = 24.67, 

p<0.0001; Female: Ctrl-Nonsocial 0.3641, Ctrl-Social 0.6359, n = 8; SAP97-cKO-
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Nonsocial 0.3045, SAP97-cKO-Social 0.6955, n = 8, F (3, 20) = 14.53, p<0.0001) (Figure 

10A).  Manual scoring of sniffing preference for the social target versus the nonsocial 

target was also measured for the male animals.  Control and SAP97-cKO male animals 

also exhibited a strong preference for sniffing/investigating the social target (Ctrl-

Nonsocial 0.2663, Ctrl-Social 0.7337, n = 8; SAP97-cKO-Nonsocial 0.3513, SAP97-

cKO-Social 0.6487, n = 8; F (3,28) = 54.84, p<0.0001).  These results suggest no social 

deficit in the SAP97-cKO mice.   

 

DISCUSSION 

SAP97 is a member of the Dlg-MAGUK family that has repeatedly been 

implicated in neuropsychiatric disorders (Quintero-Rivera et al., 2010; Uezato et al., 

2012; 2015; Xing et al., 2016), although its direct role in contributing to pathology has 

been unexplored.  We generated and studied mice that were null for Sap97 in the 

nervous system and make three principal observations.  First, there are no 

compensatory changes in expression levels of other Dlg-MAGUKS or AMPARs in the 

SAP97-cKO versus controls.  Second, loss of Sap97 is associated with changes in gene 

transcripts related to SCZ.  And third, SAP97-cKO animals of both sexes display an 

anxiety-like phenotype, as well as a male-specific cognitive deficit and female-specific 

motor learning deficit.  Our results argue that Sap97 is required for normal brain function 

and its absence leads to specific behavioral deficits and transcriptomic changes 

associated with SCZ. 

 

ASD and SCZ as polygenic disorders  

Investigations of ASD, SCZ, and other related psychiatric disorders indicate a 

highly polygenic architecture with small effect sizes of each implicated risk variant.  
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Mouse modeling of these disorders by targeting one such risk variant typically 

demonstrates a moderate, or incomplete manifestation of the human disorder.  This is 

well illustrated by human and mouse studies of the PROSAP/SHANK family member 

SHANK3.  Human genetic studies link mutations in SHANK3 to a broad range of 

neuropsychiatric disorders.  For example, deletions of exons 1-9 or exons 1-17 of 

SHANK3 have been found in patients exhibiting severe language delay and significant 

intellectual disability.  Mice generated to mimic these deletions were generated by Peca 

et al. and the main behavioral effects were repetitive grooming and deficits in social 

interaction (Peça et al., 2011).  Jiang et al. used a different targeting strategy to mimic 

the human deletions and the mice displayed repetitive behaviors, deficits in social 

interaction, abnormal ultrasonic communication patterns and learning and memory 

deficits (Jiang and Ehlers, 2013).  In a second well-studied family, affected individuals 

displayed ASD-features and this was linked to a deletion of SHANK3 exon 21 (an exon 

that included the Homer binding domain).  Mice generated to mimic this genetic lesion 

were created by Kouser and Speed et al. and ~2.5 month old animals exhibit defects in 

spatial learning and memory, motor-coordination deficits, hypersensitivity to heat, 

novelty avoidance, but minimal social abnormalities and no repetitive grooming behavior 

(Kouser et al., 2013).  Together, this work demonstrates that creating a mouse with a 

genetic lesion that closely mimics, or is identical, to the gene defect in humans with 

neuropsychiatric disease only partially recapitulates the human behavioral phenotypes.  

This disparity between genetic lesions associated with psychiatric phenotypes 

and mice created to mimic the human condition also extends to the Dlg-MAGUK family.  

Nonsynonymous missense mutations in the Dlg-MAGUK family members have been 

found in ASD and SCZ patients, and decreased protein expression of PSD-95, PSD-93, 

and SAP97 has been observed in the cortex of postmortem SCZ patients.  To model 



48 
 

with in mice, null alleles of Psd-95, Psd-93, and Sap102 have been created—Psd-95 

and Sap102 knockout animals share spatial learning memory deficits (Migaud et al., 

1998; Cuthbert et al., 2007), while animals null for Psd-95 or Psd-93 share a hyper-

social phenotype (Winkler et al., 2017).  Psd-95 and Sap102 knockout animals display a 

mild, and Psd-93 knockout animals display a severe, motor function defect (Cuthbert et 

al., 2007; Winkler et al., 2017).  The Psd-95 null mouse has been the most extensively 

investigated animal.  Feyder et al. characterized the Psd-95 knockout mice and the mice 

exhibit increased repetitive behaviors, abnormal communication, hyper-social behavior, 

impaired motor coordination, and increased stress-reactivity and anxiety-related 

responses (Feyder et al., 2010).  The extent to which the Psd-95 null mice faithfully 

report on the contribution of PSD-95 to psychiatric disease is an open question.   

 

SAP97 splice variants and their differing roles in the nervous system 

SAP97 has wide molecular diversity, which is created by extensive alternative 

splicing.  The two most well-studied Sap97 splice variants are Sap97α and Sap97β.  In 

Sap97α, the prototypic N-terminal L27 domain is replaced with a putative palmitoylation 

motif.  Overexpression of SAP97α (but not SAP97β) was shown to enhance the synaptic 

levels of AMPARs and to compensate for the shRNA-mediated loss of PSD-95 in 

organotypic slices (Waites et al., 2009). SAP97 isoform-specific biology may also extend 

into human SCZ data.  Uezato and colleagues identified a new SAP97 splicing variant 

that is transcribed from a previously unreported 95-base-pair exon (exon 3b).  In post-

mortem prefrontal cortices of patients with SCZ, mRNA expression of exon 3b was 

significantly reduced, specifically in patients with early-onset SCZ (Uezato et al., 2015).  

How reduced levels of the SAP97 3b transcript may be involved in the susceptibility and 

pathophysiology of early-onset SCZ is unknown.  While our study provides a broad, all-
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around characterization of the effect of Sap97 on brain function, it will be necessary to 

conduct future studies aimed at addressing the individual roles of prominent splice 

variants.   

 

The role of the Serpin family as a molecular module in SCZ  

 The RNAseq study we conducted on the hippocampi of SAP97-cKO animals 

indicated 67 DEGs, which were specifically enriched for SCZ-related risk genes.  The 

specific SCZ-related risk genes we identify in our data are Serping1, Runx3, Clec7A, 

Serpinh1, Cdh1, Ap1S2, Xbp1, Serpind1, and C4b.  These observations lead us to 

hypothesize that Sap97 is a component of a “molecular module” of gene products that 

together subserve aspects of normal behavior.  Further, we hypothesize that 

abnormalities in the operation of this molecular module give rise to select behavioral 

alterations.  Defects in many molecular modules in aggregate manifest as the complex 

psychiatric disorder we recognize as SCZ.  The components of this module may interact 

physically, functionally, developmentally, or in terms of localization.  Future work will be 

required to elucidate: 1) how the components of this hypothesized molecular module 

mechanistically interact, and 2) how this impacts brain function and behavior. 

 Our attention is drawn to three genes that were differentially expressed in the 

hippocampus of SAP97-cKO mice versus controls—serine peptidase inhibitors (serpins), 

as this group of genes has previously been reported in the literature to be associated 

with SCZ (Madani et al., 2003; Hoogendoorn et al., 2004; Saetre et al., 2007; Allswede 

et al., 2017; Chang et al., 2017; Reumann et al., 2017).  SERPING1 was found to be 

upregulated in postmortem brain tissue from SCZ patients (Saetre et al., 2007; Chang et 

al., 2017).  Additionally, a study of adult Swedish twins enriched for SCZ showed an 

association between gene expression level of SERPING1 and thickness across the 
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cortex, a characteristic that is potentially involved in the pathogenesis of SCZ (Allswede 

et al., 2017).   Polymorphisms in the promoter regions of genes on 22q11, a 

chromosomal region that has been associated with various psychiatric illnesses 

including SCZ, resulted in activity differences in the gene SERPIND1 (Hoogendoorn et 

al., 2004).  Another well-studied member of the serpin family previously implicated in 

SCZ, but not directly by our RNAseq data, is neuroserpin (SERPINI1).  SERPINI1 is 

restricted to regions in the brain where synaptic changes are associated with learning 

and memory (cortex, hippocampus, amygdala, and olfactory bulb) (Reumann et al., 

2017).  SERPINI1 has also been implicated in dendrite growth, as overexpression 

studies in primary neurons leads to increased dendritic arborization and altered dendritic 

spine shape (Borges et al., 2010).  Additionally, mice with dysregulated expression of 

Serpini1 show selective reduction of locomotor activity in novel environments, anxiety-

like responses, and neophobic response to novel objects (Madani et al., 2003).  These 

behavioral phenotypes in the Serpini1 deficient mice are reminiscent of the defects we 

see in the SAP97-cKO animals.  Serpini1 is also a known inhibitor of the extracellular 

protease tissue-type plasminogen activator (tPA).  Conditions that affect the activity of 

tPA have consistently been described in drug-naïve cases of SCZ (Halacheva et al., 

2009; Delluc et al., 2013; Song et al., 2014; Gris et al., 2015).  Interestingly, psychotic 

patients on chronic warfarin therapy for deep-vein thrombosis showed remission of 

psychotic symptoms, indicating that defective modulation of the coagulation pathway 

might contribute to the pathogenesis of SCZ (Hoirisch-Clapauch et al., 2015).  C4B, or 

complement component b, is another gene directly listed from our RNAseq study that 

has known roles in the coagulation pathway and is an important cofactor to the serine 

protease family.   The strongest genetic association of SCZ at a population level involves 

variation in the Major Histocompatibility Complex (MHC) locus, where the association of 
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SCZ with the MHC locus arises substantially from many diverse alleles of the C4 genes 

(Rezende, 2003; Schizophrenia Working Group of the Psychiatric Genomics Consortium 

et al., 2016; Allswede et al., 2017). These prior observations along with our findings from 

the SAP97-cKO RNAseq study may highlight the mechanism by which SAP97 

contributes to the etiology of SCZ. 

 

Sex-specific differences in psychiatric disease 

Psychiatric disorders are characterized by substantial sex-differences in their 

prevalence, symptomology, and treatment response (Kokras et al., 2014). Women are 

more likely than men to develop dementia, panic disorder, post-traumatic stress 

disorder, and major depression (Kessler et al., 2008; Wittchen et al., 2011).  Conversely, 

the incidence of neurodevelopmental disorders such as ASD and SCZ is higher in males 

(Fombonne, 2003; Häfner, 2003).  In our study, we conducted RNAseq on male 

hippocampal tissue from SAP97-cKO tissue and found the resulting DEGs to be 

specifically enriched for SCZ risk-related gene sets.  However, our behavioral screen 

was undertaken on both male and female SAP97-cKO animals and identified interesting 

sex-specific differences.  This raises the possibility that the RNAseq profile of female 

SAP97-cKO mice may be at least partially distinct from the male SAP97-cKO dataset.   

One potential limitation of our study of female behavior is the lack of assessment 

of the estrous cycle.  Female mice in distinct stages of the estrous cycle have been 

previously shown to perform differently in behavioral tasks related to anxiety and 

cognition.  Furthermore, it is thought that oestrogens play a protective role against SCZ 

(Kulkarni et al., 2013).  It will be vital to perform behavioral testing at different stages of 

the female estrous cycle, as well as corroborate behavioral findings with RNAseq data in 

order to have a complete understanding of the role of SAP97 in the female brain.  
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Conclusion 

Our study provides the first broad behavioral and transcriptomic characterization 

of Sap97 in the mouse nervous system.  Despite study limitations, we show that loss of 

Sap97 contributes to enrichment of SCZ related genes, as well as behavioral 

abnormalities in both male and female animals.  Our findings are congruous with 

previous literature of monogenic mouse models of psychiatric disorders reporting a 

partial manifestation of the disease phenotype and thus are a first step to understanding 

the molecular mechanism by which SAP97 contributes to neuropsychiatric disorders.     
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FIGURE LEGENDS 

 

Figure 2.1.  SAP97 protein is sufficiently knocked down in SAP97-cKO animals. (A) 

Western blots showing reduced SAP97 band intensity in male SAP97-cKO cerebellum, 

hippocampus, and cortex. (B) Quantification of male western blot analysis. (C) Western blots 

showing reduced SAP97 band intensity in female SAP97-cKO hippocampus and cortex.  (D) 

Quantification of female western blot analysis.  (E) Western blots showing no significant 

changes in SAP97 band intensity between male and female C57Bl/6 animals.  (F) 

Quantification of male versus female C57B/6 western blot analysis.  *P<.05, **P<.01 (two-

tailed Student’s t test).  Data are presented as mean ± SEM. 

 

Figure 2.2 No compensation by Dlg-MAGUK family abundance in SAP97-cKO 

animals.  (A) Western blots and quantification showing no significant change in abundance 

of PSD-95 in cerebellum, hippocampus, and cortex of either male or female SAP97-cKO 

animals. (B) Western blots and quantification showing no significant change in abundance of 

PSD-93 in cerebellum, hippocampus, and cortex of either male or female SAP97-cKO 

animals.  (C) Western blots and quantification showing no significant change in abundance 

of SAP102 in cerebellum, hippocampus, and cortex of either male or female SAP97-cKO 

animals. n.s., no significance (two-tailed Student’s t test).  Data are presented as mean ± 

SEM. 

 

Figure 2.3.  No change in mRNA expression level of AMPAR subunits, selected SAP97 

interactor genes, selected Wnt/β-catenin pathway targets, and selected DISC1 

pathway targets in SAP97-cKO animals.  (A) qPCR results showing no significant change 
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in abundance of Glua1, Glua3, or Glua4 mRNA transcripts in selected brain regions. (B) 

qPCR results showing no significant change in abundance of mRNA levels of selected 

Sap97 interactor genes in selected brain regions.  (C) qPCR results showing no significant 

change in abundance of Wnt/β-catenin pathway targets in selected brain regions.  (D) qPCR 

results showing no significant change in abundance of DISC1 pathway targets in cortex.  

n.s., no significance (two-tailed Student’s t test).  Data are presented as mean ± SEM. 

 

Figure 2.4.  Loss of SAP97 leads to downregulation of DEGs and enrichment of SCZ 

risk-related genes. (A) qPCR verification of top DEG (Sgk1) from RNAseq study.  (B)  Heat 

map representation of downregulation of DEGs in SAP97-cKO hippocampus.  (C) DEGs are 

specifically enriched for SCZ risk-related genes.  *P<.05 (two-tailed Student’s t test), **P<.01 

(hypergeometric probability test). 

 

Figure 2.5. Comparison of open field behavior indicates anxiety-like phenotype in 

both male and female SAP97-cKO animals. (A) No group differences seen in average 

distance traveled in male animals. Female SAP97-cKO animals display significantly less 

distance traveled. (B) No group differences seen in average speed in male animals, while 

female SAP97-cKO show decreased speed. (C) Both male and female SAP97-cKO animals 

show decreased average distance from border of apparatus. n.s., no significance, *P<.05, 

**P<.01 (two-tailed Student’s t test).  Data are presented as mean ± SEM. 

 

Figure 2.6.  Comparison of elevated plus maze behavior between control and SAP97-

cKO animals. (A) No group differences seen in average total time spent in open arms vs 

closed arms of maze. (B) No group differences seen in total open arm entries or closed arm 

entries. (C) No group differences seen in average distance traveled in elevated plus maze 
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apparatus. n.s., no significance (two-tailed Student’s t test).  Data are presented as mean ± 

SEM.   

 

Figure 2.7.  Comparison of cued fear conditioning behavior between control and 

SAP97-cKO animals. (A) Freezing behavior during habituation phase.  Both control and 

SAP97-cKO male and female animals exhibit low levels of freezing with no significant 

differences between groups during habituation. (B) Freezing behavior during testing phase.  

Both male and female SAP97-cKO animals show no differences in freezing behavior 

compared to littermate controls. n.s., no significance (two-tailed Student’s t test).  Data are 

presented as mean ± SEM. 

 

Figure 2.8.  Comparison of novel object recognition behavior indicates male-specific 

cognitive deficit. Control male animals exhibit preference for novel object (Ctrl A-A vs Ctrl 

A-B), while SAP97-cKO male animals do not show preference.   Both control and SAP97-

cKO female animals show trend for preference of novel object, but did not reach 

significance.   n.s., no significance, **P<.01 (ordinary one-way ANOVA with Tukey’s test for 

multiple comparisons).  Data are presented as mean ± SEM. 

 

Figure 2.9.  Comparison of rotarod behavior indicates female-specific motor learning 

deficit.  (A) Both control and SAP97-cKO male animals show learning over the 4-day 

course of rotarod paradigm.  Control female animals show increased motor learning over 

course of 4 days, while female SAP97-cKO show no significant increase in motor learning.  

(B) Plots showing comparison of Day 1 versus Day 4 rotarod data for control and SAP97-

cKO animals indicates female-specific motor learning deficit. (C) Aged SAP97-cKO males 

show learning impairment over the 4-day course of rotarod.  Both aged control and SAP97-
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cKO female animals show no significant increase in motor learning, however, aged female 

SAP97-cKO animals have significantly worse performance on the task as compared to aged 

littermate controls.  (D) Plots showing comparison of Day 1 versus Day 4 rotarod data for 

aged control and SAP97-cKO animals.  n.s., no significance, **P<.01, ***P<.001 (repeated-

measures two-way ANOVA with Tukey’s test for multiple comparisons).  Data are presented 

as mean ± SEM. 

 

Figure 2.10.  Comparison of social choice behavior between control and SAP97-cKO 

animals.  (A) No significant differences observed between control and SAP97-cKO male or 

female animals in preference for social target. (B) No significant differences observed 

between control and SAP97-cKO male animals in preference for sniffing/investigating social 

target.   **P<.01, ***P<.001, ****P<.0001 (ordinary one-way ANOVA with Tukey’s test for 

multiple comparisons).  Data are presented as mean ± SEM.  
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Table 2.1. List of genes with significant expression differences between control 
and SAP97-cKO mice. 

Ensemble Genome ID Gene Symbol Log Fold Change 

ENSMUSG00000019970 Sgk1 -0.604982801 

ENSMUSG00000022770 Dlg1 -0.920172279 

ENSMUSG00000023224 Serping1 -1.092300119 

ENSMUSG00000029304 Spp1 -2.086028102 

ENSMUSG00000031431 Tsc22d3 -0.662945543 

ENSMUSG00000021390 Ogn -1.36634343 

ENSMUSG00000026728 Vim -0.73795218 

ENSMUSG00000022769 Sdf2l1 -0.813450163 

ENSMUSG00000020467 Efemp1 -0.785266079 

ENSMUSG00000033227 Wnt6 -1.860240362 

ENSMUSG00000055128 Cgrrf1 -0.544558433 

ENSMUSG00000037254 Itih2 -1.44816667 

ENSMUSG00000070691 Runx3 -2.433336132 

ENSMUSG00000032575 Manf -0.581728345 

ENSMUSG00000031289 Il13ra2 -1.998579379 

ENSMUSG00000029661 Col1a2 -1.062558267 

ENSMUSG00000067038 Rps12-ps3 2.467941625 

ENSMUSG00000054619 Mettl7a1 -0.39870621 

ENSMUSG00000024650 Slc22a6 -1.704915114 

ENSMUSG00000015090 Ptgds -1.253057418 

ENSMUSG00000026043 Col3a1 -1.300397001 

ENSMUSG00000030357 Fkbp4 -0.343944084 

ENSMUSG00000071005 Ccl19 -2.363646432 

ENSMUSG00000105843 Gm42644 -1.52239332 

ENSMUSG00000030711 Sult1a1 -0.875568486 
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ENSMUSG00000079293 Clec7a -2.007730582 

ENSMUSG00000070436 Serpinh1 -0.658564574 

ENSMUSG00000030154 Klrb1f -2.174662835 

ENSMUSG00000004951 Hspb1 -1.133328217 

ENSMUSG00000036777 Anln -0.750523147 

ENSMUSG00000027248 Pdia3 -0.350126593 

ENSMUSG00000030218 Mgp -1.053034845 

ENSMUSG00000030108 Slc6a13 -1.258734628 

ENSMUSG00000057836 Xlr3a -2.154616401 

ENSMUSG00000000303 Cdh1 -1.987938463 

ENSMUSG00000024087 Cyp1b1 -0.95956574 

ENSMUSG00000032231 Anxa2 -0.831693618 

ENSMUSG00000060591 Ifitm2 -0.82147731 

ENSMUSG00000049241 Hcar1 -1.730353275 

ENSMUSG00000032060 Cryab -0.561687665 

ENSMUSG00000026638 Irf6 -1.238846117 

ENSMUSG00000022548 Apod -0.868596841 

ENSMUSG00000013584 Aldh1a2 -1.291353747 

ENSMUSG00000019539 Rcn3 -0.615255839 

ENSMUSG00000040055 Gjb6 -0.57564983 

ENSMUSG00000040310 Alx4 -1.225356858 

ENSMUSG00000031367 Ap1s2 -0.377838987 

ENSMUSG00000023272 Creld2 -0.51269519 

ENSMUSG00000038155 Gstp2 -1.96171475 

ENSMUSG00000107215 Gm43197 -2.106413397 

ENSMUSG00000074896 Ifit3 -0.830338737 

ENSMUSG00000020484 Xbp1 -0.420933711 

ENSMUSG00000034435 Tmem30b -2.348757156 

ENSMUSG00000022766 Serpind1 -1.521272379 
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ENSMUSG00000005125 Ndrg1 -0.558146377 

ENSMUSG00000038393 Txnip -0.584362558 

ENSMUSG00000041548 Hspb8 -0.559621993 

ENSMUSG00000034165 Ccnd3 -0.399017781 

ENSMUSG00000027048 Abcb11 -2.19248413 

ENSMUSG00000073418 C4b -0.516645555 

ENSMUSG00000025823 Pdia4 -0.55418986 

ENSMUSG00000031070 Mrgprf -1.766073987 

ENSMUSG00000032179 Bmp5 -1.738362368 

ENSMUSG00000043795 Prr33 -2.024615333 

ENSMUSG00000048368 Omd -2.520720092 

ENSMUSG00000066861 Oas1g -2.341011247 

ENSMUSG00000024371 C2 -1.517189655 
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Table 2.2A. List of top diseases identified through IPA that were affected in 
hippocampus of SAP97-cKO animals. 
 

 

 
 

 

 
 
 
 
 
 
 
 
  

Name p-value Genes Affected 

Organismal Injury and 
Abnormalities 

2.58E-02 - 1.30E-05 

 

37 

 

Respiratory Disease 
2.52E-02 - 1.30E-05 

 

10 

 

Endocrine System Disorders 
2.52E-02 - 1.42E-05 

 

16 

 

Gastrointestinal Disease 
2.21E-02 - 1.42E-05 

 

21 

 

Immunological Disease 
2.52E-02 - 1.42E-05 

 

14 
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Table 2.2B.  List of top molecular and cellular functions identified through IPA that 
were affected in hippocampus of SAP97-cKO animals.   
 
 
 

Name p-value Genes Affected 

Cell Death and Survival 
2.83E-02 - 5.79E-05 

 

21 

 

Cellular Movement 
2.52E-02 - 6.58E-05 

 

18 

 

Cell Morphology 
2.52E-02 - 2.70E-04 19 

 

Cellular Development 
2.52E-02 - 2.70E-04 25 

 

Cell-To-Cell Signaling and 
Interaction 

2.47E-02 - 3.32E-04 

 

17 
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Table 2.2C.  List of top networks identified through IPA that were affected in 
hippocampus of SAP97-cKO animals 
 
 

ID Associated Network Functions Score 

Organismal Injury and Abnormalities, Respiratory 
Disease, Cellular Movement 

35 

Cellular Development, Cellular Growth and 
Proliferation, Hematological System Development 
and Function 

22 

Ophthalmic Disease, Organismal Injury and 
Abnormalities, Hereditary Disorder 

22 

Cell Cycle, Gene Expression, Skeletal and 
Muscular System Development and Function 

5 

Developmental Disorder, Embryonic Development, 
Organ Development 

2 
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CHAPTER 3: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 
 

 In this thesis work, I have attempted to further understand the direct role of 

SAP97 in psychiatric disorders, such as ASD and SCZ.  In Chapter 2, I characterize 

mice conditionally lacking Sap97 in the nervous system at the behavioral and 

transcriptomic level.  I find that while SAP97-cKO mice have relatively subtle behavioral 

deficits, loss of Sap97 results in an enrichment of SCZ risk-related DEGs.  Below, I will 

describe the implications for this work and discuss remaining questions for future work.   

 

THE MOLECULAR MODULE HYPOTHESIS 

 Investigations of ASD, SCZ, and other related psychiatric disorders indicate a 

highly polygenic architecture with small effect sizes of each implicated risk variant.  

Mouse modeling of these disorders by targeting one such risk variant typically 

demonstrates a moderate, or incomplete manifestation of the human disorder, as 

discussed in the Introduction of this thesis.  Results from this thesis work coincide with 

previous results indicating psychiatric disorders to be polygenic in nature.  While SAP97-

cKO mice did not show robust changes across the behavioral domains related to ASD 

and/or SCZ, we observed subtle, sex-specific abnormalities.  Likewise, loss of Sap97 

resulted in mild changes at the transcriptomic level as well, with 67 DEGs.  However, 

this DEG set was enriched for SCZ risk-related genes, where 4 of 9 of these SCZ risk 

genes play a role in common pathways.  These genes are Serping1, Serpinh1, 

Serpind1, and C4b.   

This first three of these genes (Serping1, Serpinh1, Serpind1) are known as 

serine protease inhibitors, or serpins.  Protease inhibition by serpins controls an array of 

biological processes, including coagulation and inflammation, and this family of genes 
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has previously been reported in the literature to be associated with SCZ (Madani et al., 

2003; Saetre et al., 2007; Borges et al., 2010; Chang et al., 2017; Reumann et al., 2017; 

Weickert et al., 2018).  C4B, or complement component b, has known roles in the 

coagulation pathway and is an important cofactor to the serine protease family.  The 

strongest genetic association of SCZ at a population level involves variation in the Major 

Histocompatibility Complex (MHC) locus, where the association of SCZ with the MHC 

locus arises substantially from many diverse alleles of the C4 genes (Rezende, 2003; 

Hoirisch-Clapauch et al., 2015; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium et al., 2016).   

 These findings suggest that Sap97 is a member of a tight cluster of genes, or 

“molecular module” that interacts and subserves aspects of normal behavior.  Defects in 

many molecular modules in aggregate may result in the complete manifestation of the 

disorder.  The components of this module may interact physically, functionally, 

developmentally, or in terms of localization.  In order to elucidate how the components of 

this hypothesized molecular module interact, and how this impacts organismal behavior, 

a number of experiments can be done.  Below, I outline a few potential future 

experiments to address these questions. 

 

Interaction within the SAP97 molecular module 

 One question to be addressed is whether Sap97, Serping1, Serpinh1, Serpind1, 

and C4b physically interact.  One method to address this question would be by 

coimmunoprecipitation (CoIP) experiments.  We can begin by overexpressing Sap97 

and one or a combination of SCZ risk genes in HEK cells, and subsequently perform 

CoIP.  We may additionally examine whether this molecular module interacts 



75 
 

endogenously by performing CoIP experiments on brain tissue lysate generated from 

control and SAP97-cKO animals.   

 It is also plausible that the SAP97 molecular module interacts in the region-

specific manner.  For example, members of the serpin family, such as SERPINI1, are 

restricted to regions in the brain where synaptic changes are associated with learning 

and memory (i.e. cortex, hippocampus, amygdala).  One could argue that as a 

scaffolding protein with multiple protein-protein binding domains, SAP97 may aid in 

tethering members of the molecular module to synaptic regions, where they act together 

to ensure proper synapse formation, function, and behavioral output.  To address this 

question, we can prepare synaptosomes from control and SAP97-cKO animals and 

examine physical interaction within this proposed molecular module.  

 Previous evidence from the literature also suggests that members of the SAP97 

molecular module may interact functionally as well.  For example, the serpin family of 

genes, namely Serpini1, has also been implicated in dendrite growth (Borges et al., 

2010; Reumann et al., 2017).  And similar to SAP97, overexpression studies in primary 

neurons leads to increased dendritic arborization (Borges et al., 2010).  Additionally, 

characterization of mice lacking Schnurri-2, or MHC-binding protein 2, show immature 

dendritic spine morphology characterized by increases in spine length and decreases in 

spine diameter (Nakao et al., 2017).  Schnurri-2 knockout mice also exhibited increases 

in C4b gene, which is thought to mediate synapse elimination during postnatal 

development, and show SCZ-like behaviors (Takao et al., 2013).  Other observed 

changes in these mice included a significant reduction in GLUA1 and a trend for 

decreased expression of PSD-95, both of which have strong association with SAP97 

(Nakao et al., 2017).  Overall, these results suggest that the SAP97 molecular module 

we have identified may possibly function at the synapse and play a role in dendrite and 
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spine morphology, and ultimately, proper behavioral output.  We can attempt to address 

this question in the future by conducting co-knockdown experiments (i.e. knockdown of 

serpin family/C4B in addition to SAP97) and using dendritic growth as a readout.  We 

can also employ the use of targeted viral vectors to further the knockdown level of other 

module members within the SAP97-cKO mice.  It is plausible that a more severe 

knockdown effect of this module will result in a larger behavioral defect compared to 

what we observed in our studies.   

 

Neuroinflammation and psychiatric disorders     

 Results from previous studies also indicate that our identified SAP97 molecular 

module may also serve as a potential interface between inflammation and synaptic 

dysfunctions.  Inflammation has been posited as a potential mechanism underlying the 

development and progression of SCZ and other related neuropsychiatric disorders, and 

meta-analyses have demonstrated that patients with SCZ reliably exhibit increased 

markers of inflammation (Potvin et al., 2008; Miller et al., 2011; Goldsmith et al., 2016; 

Miller and Goldsmith, 2016; Schizophrenia Working Group of the Psychiatric Genomics 

Consortium et al., 2016).  Furthermore, there is growing literature showing that 

increased inflammatory cytokines may be linked to negative symptoms in patients with 

SCZ (Garcia-Rizo et al., 2012; Liu et al., 2012; Asevedo et al., 2014; Kissi et al., 2018).  

In particular, TNFα and interleukin-6 were found to be associated with deficit syndrome, 

a distinct subtype of SCZ characterized by primary and enduring negative symptoms 

(Goldsmith et al., 2018).  A previous study identified TNFα as a critical molecule involved 

in the synaptic alterations seen in mice with experimental autoimmune encephalomyelitis 

(EAE), an animal model of brain inflammation (Centonze et al., 2009).  TNFα has the 

potential to promote dendritic spine loss in EAE brains through an excitotoxic 
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mechanism (Centonze et al., 2009). SAP97 also binds to TNFα converting enzyme 

(TACE) via the SAP97 PDZ3 domain (Peiretti, 2003).  Interestingly, overexpression of 

SAP97 reduced the release of three different TACE-processed substrates, including 

TNFα (Peiretti, 2003).  This suggests that SAP97 participates in regulating the 

inflammatory response.   Given that the serpin family of genes and C4B are also known 

to play important roles in the inhibition of the inflammatory response, an interesting 

potential future experiment would be to examine inflammation in the SAP97-cKO 

animals by measuring levels of cytokines such as TNFα and interleukin-6 in plasma 

collected from control and SAP97-cKO animals.  As the SAP97 molecular module is 

downregulated in the SAP97-cKO animals, we would expect these animals to have a 

heightened immune response.  This increased immune response could be a potential 

mechanism underlying the specific behavioral deficits observed in the SAP97-cKO mice, 

and may serve as a target for therapeutic intervention. 

 

ENVIRONMENTAL MODELS OF PSYCHIATRIC DISORDERS IMPLICATE IMMUNE 

RESPONSE 

 In this thesis work, we have chosen to focus predominately on examining and 

modeling the genetic etiology of psychiatric disorders.  However, genetics do not 

account for all patient cases, and environmental factors are thought to contribute 

significantly to disease risk.  Multiple environmental rodent models of psychiatric 

disorders implicate a heightened immune response.    

 A commonly-used environmentally induced model of ASD is the propionic acid 

(PPA) model.  PPA is a short chain fatty acid, a metabolic end-product of enteric 

bacteria in the gut, and a common food preservative.  Various studies have indicated 

that PPA causes ASD-like behaviors and neuroinflammatory response in rats (MacFabe 
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et al., 2007; Shultz et al., 2008; MacFabe et al., 2011).  For example, Shultz et al. 

reported that exposure to PPA resulted in impaired social behavior measured as 

distance apart, proximity, and play behavior in rats (Shultz et al., 2008).  MacFabe et al. 

demonstrated that rats treated with PPA showed restricted behavioral interest to a 

specific object among a group of objects, impaired social behavior, and impaired 

reversal in a T-maze task compared to controls, in addition to reactive astrogliosis and 

activated microglia in the brain (MacFabe et al., 2011).   

As SCZ is considered a neurodevelopmental disorder, early environmental 

factors potentially play a role in the etiology of the disease.  One early life factor 

associated with SCZ is maternal infection during pregnancy (Brown and Derkits, 2010).  

Early epidemiological studies found an increased rate of SCZ among offspring who were 

in utero during major influenza epidemics as compared to non-epidemic periods (Brown 

and Derkits, 2010).  This association was replicated in several geographic populations 

(Brown and Derkits, 2010).  Additional studies found an increased risk of SCZ among 

offspring of mothers who received diagnosis of influenza, toxoplasmosis, rubella, or 

bacterial infection during pregnancy (Brown et al., 2000; Brown et al., 2004; Brown et al., 

2005; Sorensen et al., 2009).  High levels of pro-inflammatory cytokines in the maternal 

serum during pregnancy were also found to increase risk of SCZ in in utero offspring 

(Canetta et al., 2014).  Maternal immune activation (MIA), is not specific to 

schizophrenia, but may also increase the risk for ASD, bipolar disorder, and depression 

(Canetta et al., 2014).   

Several groups have studied prenatal infection in rodent models.  Both direct viral 

infection of the fetus, as well as abnormal activation of the maternal immune system, 

resulted in behavioral impairments relevant to SCZ (Shi et al., 2002; Shi et al., 2005; 

Meyer and Feldon, 2012).  The maternal immune system can be activated with a 
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synthetic double-stranded RNA, polyinosinic-polycytidylic acid (PolyIC).  The PolyIC 

model of SCZ has gained wide recognition in the scientific community as it successfully 

accounts for several aspects of SCZ: epidemiology, pathophysiology, symptomology, 

and treatment (Meyer and Feldon, 2012).   

 PolyIC is a commercially available synthetic analog of double-stranded RNA.  

Double-stranded RNA is generated during viral infection as a replication intermediate for 

single-stranded RNA or as a byproduct of symmetrical transcription in DNA viruses 

(Takeuchi and Akira, 2007).  It is recognized as a foreign by the mammalian immune 

system through the transmembrane protein toll-like receptor 3 (TLR3) (Alexopoulou et 

al., 2001).  Upon binding to TLRs, double stranded RNA, or the synthetic analog PolyIC, 

stimulates production and release of many pro-inflammatory cytokines, including 

interleukin-1B, interleukin-6, and TNFα (Fortier et al., 2004; Cunningham et al., 2007).  

PolyIC is also a potent inducer of the type 1 interferons INF-a and INF-b (Kimura et al., 

1994; Traynor et al., 2004).  Administering PolyIC can therefore mimic the acute phase 

response to viral infection.  Maternal exposure to PolyIC is capable of altering pro- and 

anti-inflammatory cytokine levels in the three relevant compartments of the maternal-

fetal interface of rodents, namely the placenta, amniotic fluid, and the fetus (Meyer et al., 

2006).  This allows the model to include aspects of maternal/fetal inflammation, taking 

into account one of the most relevant immunological mechanisms suggested to be 

crucial for mediating the long-term effects of prenatal infection on brain and behavioral 

development (Patterson, 2009; Meyer et al., 2016).  The PolyIC mouse model of SCZ 

recapitulates behavioral phenotypes such as sensorimotor gating deficits, impaired 

working memory, and reduced social behavior (Ibi et al., 2009).   

 Increased susceptibility to environmental stress remains an open question in the 

SAP97-cKO animals.  As discussed earlier, the literature supports the idea that inhibition 
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of the SAP97 molecular module may induce a heightened immune response in the 

SAP97-cKO animals.  However, as the behavioral deficits observed were moderate, it is 

plausible to assume that the potential immune response in these animals was not 

sufficient to induce a large-scale behavioral effect.  A complementary experiment to 

using targeted viral vectors to further the knockdown level of other SAP97 molecular 

module members would be to expose SAP97-cKO animals to environmental stress (i.e. 

maternal immune activation), and measure whether we obtain a more complete 

manifestation of SCZ as compared to the environmental stress or SAP97-cKO model 

alone.  Results from these proposed experiments would elucidate the mechanism by 

which loss of SAP97 contributes to the etiology of SCZ.   

 

LIMITATIONS OF RODENT MODELS 

 How useful are rodent models, in general, for understanding human psychiatric 

disorders?  Animal models aim to recapitulate behavioral symptoms, but this approach 

has limitations as some of the behavioral symptoms are distinctive for humans and are 

not measurable in animals (i.e. delusions or hallucinations) (Canetta and Kellendonk, 

2018).  Additionally, compensatory mechanisms present in mice may not have the same 

effects in humans (Deconinck et al., 1997). 

 One classical example is the mdx mouse model for Duchenne muscular 

dystrophy (DMD).  DMD in humans is caused by lack of dystrophin, a large membrane-

associated protein expressed in muscle and the brain (Tinsley et al., 1994).  The mdx 

mouse model lacks dystrophin due to a mutation that results in a premature stop codon, 

but presents with a much milder form of the disease than in humans (Bulfield et al., 

1984).  Compensation for lack of dystrophin by structurally related proteins such as 

utrophin may also be more successful in the mouse, leading to a milder phenotype than 
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in humans (Deconinck et al., 1997).  Dystrophin/utrophin double knockout mice have 

been generated and present with many more clinical signs of DMD than mdx mice 

(Deconinck et al., 1997).  Nevertheless, the mdx mouse model is a popular model for 

studying DMD and has proven useful for examining potential therapeutics and molecular 

mechanisms underlying the disorder. 

 The story of the mdx mouse model may also be true for the SAP97-cKO model.  

SAP97 has wide molecular diversity, which is created by extensive alternative splicing.  

Uezato and colleagues identified a new SAP97 splicing variant that is transcribed from a 

previously unreported 95-base-pair exon (exon 3b) (Uezato et al., 2015).  In post-

mortem prefrontal cortices of patients with SCZ, mRNA expression of exon 3b was 

significantly reduced, specifically in patients with early-onset SCZ (Uezato et al., 2015).  

However, this exon is primate-specific (Uezato et al., 2017).  It is plausible that this 

primate-specific exon of SAP97 is responsible for contributing to a more severe 

manifestation of SCZ in humans, while loss of mouse SAP97 is more easily 

compensated for by other genes.  In this thesis work, we have shown that loss of SAP97 

is not compensated for by change in overall abundance of the other Dlg-MAGUK family 

members.  This does not rule out compensation in terms of localization (i.e. at the 

synapse versus whole tissue) or by activity.  These open questions should be addressed 

in the future to further understand SAP97’s role in disease in humans versus the mouse.  

 

 Difficulty in using DSM criteria for rodent models of psychiatric disorders 

 An additional complication with using rodents to model psychiatric disorders is 

determining how symptoms in an animal model add up to a recognized human disorder.  

The Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IVTR) 

contains scant knowledge of the pathophysiology underlying these disorders (Nestler 
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and Hyman, 2010).  Diagnoses are based solely on phenomenology, such as symptoms, 

signs, and course of illness.  As a result, the boundaries between DSM-IVTR disorders, 

and the boundaries between disorder and normal variation, are unclear (Hyman, 2010).  

For example, two patients with major depression may exhibit no overlap of the 9 

symptoms listed in the DSM criteria for Major Depressive Episode.  The multiple 

symptom combination, in addition to the inability to assess certain symptoms in mice, 

means that different mouse models of depression would have little in common (Nestler 

and Hyman, 2010).  This issue is extended to a variety of psychiatric disorders, including 

ASD and SCZ.   

 Additionally, DSM-IVTR diagnoses do not currently map onto abnormalities of 

molecules, synapses, cells, or neural circuits for psychiatric disorders.  There are no 

molecular or cellular abnormalities in the human disease which could validate potential 

phenomenology in an animal (Nestler and Hyman, 2010).  Individual symptoms 

observed in animal models may not have a simple, straightforward correspondence to 

human symptoms.  As a result, animal models are unlikely to mirror the full extent of a 

given psychiatric disorder.  While animal models of disease are useful, it is necessary to 

keep in mind the imperfections of rodent models when interpreting results. 

  

CONCLUSIONS 

 This thesis work provides the first broad behavioral and transcriptomic 

characterization of SAP97 in the mouse nervous system.  Despite study limitations, we 

show that loss of SAP97 contributes to enrichment of SCZ related genes, as well as 

moderate sex-specific behavioral abnormalities.  We have potentially identified a module 

of genes where SAP97 and the serpin/C4B family are participants, whose role is to 

regulate inflammatory response in the nervous system.  While we have taken the first 
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steps to elucidate the contribution of SAP97 to psychiatric disorders, further investigation 

is needed to validate the “molecular module” hypothesis and fully understand the 

downstream pathways and behaviors affected by this module.  Further understanding of 

the role of SAP97 in regulating inflammatory response and behavior may identify new 

targets for therapeutic intervention.   
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