
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2018

Planning For Non-Player Characters By Learning
From Demonstration
John Drake
University of Pennsylvania, drake@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2756
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Drake, John, "Planning For Non-Player Characters By Learning From Demonstration" (2018). Publicly Accessible Penn Dissertations.
2756.
https://repository.upenn.edu/edissertations/2756

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2756&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2756?utm_source=repository.upenn.edu%2Fedissertations%2F2756&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2756
mailto:repository@pobox.upenn.edu

Planning For Non-Player Characters By Learning From Demonstration

Abstract
In video games, state of the art non-player character (NPC) behavior generation typically depends on hard-
coding NPC actions. In many game situations however, it is hard to foresee how an NPC should behave to
appear intelligent or to accommodate human preferences for NPC behavior. We advocate the creation of a
more flexible method to allow players (and developers) to train NPCs to execute novel behaviors which are
not hard-coded. In particular, we investigate search-based planning approaches using demonstration to guide
the search through high-dimensional spaces that represent the full state of the game. To this end, we
developed the Training Graph heuristic, an extension of the Experience Graph heuristic, that guides a search
smoothly and effectively even when a demonstration is unreachable in the search space, and ensures that more
of the demonstrations are utilized to better train the NPC's behavior. To deal with variance in the initial
conditions of such planning problems, we have developed heuristics in the Multi-Heuristic A* framework to
adapt demonstration trace data to new problems. We evaluate our approach in the Creation Engine game
engine by modifying The Elder Scrolls V: Skyrim (Skyrim) to accommodate our NPC behavior generators
and experiments. In Skyrim, players are given "quests" which are composed of several objectives. NPCs in the
game sometimes accompany the player on quests, but state-of-the-art companion NPC AI is not sophisticated
enough to behave according to arbitrary player desires. We hope that our work will lead to the creation of
trainable NPC AI. This will enable novel gameplay mechanics for video game players and may augment video
game production by allowing developers to train NPCs instead of hard-coding complex behaviors.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Maxim Likhachev

Keywords
non-player characters, search-based planning, training graph heuristic, video game ai

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2756

https://repository.upenn.edu/edissertations/2756?utm_source=repository.upenn.edu%2Fedissertations%2F2756&utm_medium=PDF&utm_campaign=PDFCoverPages

PLANNING FOR NON-PLAYER CHARACTERS BY LEARNING FROM

DEMONSTRATION

John Drake

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2018

Supervisor of Dissertation

———————————-
Maxim Likhachev
Adjunct Assistant Professor
Computer and Information Science

Graduate Group Chairperson

———————————-
Lyle H. Ungar
Professor
Computer and Information Science

Dissertation Committee

Sven Koenig, Professor of Computer Science

Norman Badler, Professor of Computer and Information Science

Kostas Daniilidis, Professor of Computer and Information Science

Jianbo Shi, Professor of Computer and Information Science

ACKNOWLEDGEMENTS

I thank my parents, Janet and Daniel, without whose encouragement and support I

might never have pursued graduate school.

I thank my thesis committee members Sven, Norm, Kostas, and Jianbo. Special thanks

to Norm for advising me as an undergraduate and hosting me in the SIG Lab where I began

my formation as a researcher.

I thank the CG@Penn community, especially Ben, Catherine, and Aline for mentoring

me on my first projects and publications.

I thank my advisors Maxim and Alla and the Search Based Planning Lab community

for hosting me during my time in graduate school. Special thanks to Mike, whose work I

extended, and Brian, Jon, and Sameer for their good humor.

Also, I thank my research assistants Pow, Roy, Max, and Stephen, who helped me

develop my work while tending to their own projects. I hope that I was as good a mentor

to all of them as they were assistants to me.

I thank the communities of Tilbury and The Oratory of St. Philip Neri in Pittsburgh for

forming my person in ways that the school of engineering does not. Deo gratias.

Finally, I thank my wife Maria for sticking with me while I finished the doctoral pro-

gram despite the student stipend and the times that I was too busy to do anything fun. I

especially appreciate the late-night car rides home when I had unwisely walked to campus

on days that were wet and cold.

ii

ABSTRACT

PLANNING FOR NON-PLAYER CHARACTERS BY LEARNING FROM

DEMONSTRATION

John Drake

Maxim Likhachev

In video games, state of the art non-player character (NPC) behavior generation typically de-

pends on hard-coding NPC actions. In many game situations however, it is hard to foresee how an

NPC should behave to appear intelligent or to accommodate human preferences for NPC behavior.

We advocate the creation of a more flexible method to allow players (and developers) to train NPCs

to execute novel behaviors which are not hard-coded. In particular, we investigate search-based

planning approaches using demonstration to guide the search through high-dimensional spaces that

represent the full state of the game. To this end, we developed the Training Graph heuristic, an ex-

tension of the Experience Graph heuristic, that guides a search smoothly and effectively even when

a demonstration is unreachable in the search space, and ensures that more of the demonstrations are

utilized to better train the NPC’s behavior. To deal with variance in the initial conditions of such

planning problems, we have developed heuristics in the Multi-Heuristic A* framework to adapt

demonstration trace data to new problems. We evaluate our approach in the Creation Engine game

engine by modifying The Elder Scrolls V: Skyrim (Skyrim) to accommodate our NPC behavior

generators and experiments. In Skyrim, players are given “quests” which are composed of several

objectives. NPCs in the game sometimes accompany the player on quests, but state-of-the-art com-

panion NPC AI is not sophisticated enough to behave according to arbitrary player desires. We

hope that our work will lead to the creation of trainable NPC AI. This will enable novel gameplay

mechanics for video game players and may augment video game production by allowing developers

to train NPCs instead of hard-coding complex behaviors.

iii

Contents

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 2

1.2 Quests . 7

1.2.1 Main Quest Line . 8

1.2.2 Side Quests . 10

1.2.3 Radiant Story Quests . 10

1.3 Gameplay . 10

1.3.1 Navigation . 11

1.3.2 Combat . 12

1.3.3 Speech . 12

1.3.4 World Interaction . 13

1.4 Proposed Approach . 13

1.5 Evaluation . 14

1.6 Contributions . 15

iv

1.7 Outline . 16

2 Related Work 17

2.1 NPC Behavior Generation . 17

2.2 Heuristic Search . 21

2.3 Sampling-Based Approaches . 23

2.4 Optimization Approaches . 26

2.5 Planning from Experience and Demonstration 27

3 Background 30

3.1 A* . 30

3.2 Weighted A* . 32

3.3 Experience Graph Heuristic . 34

3.4 Multi Heuristic A* . 35

3.4.1 Inadmissible Heuristic Calibration 36

3.4.2 Improved Multi Heuristic A* . 38

4 Training Graph Heuristic 40

4.1 Graph Search . 40

4.2 E-Graph Heuristic . 41

4.3 T-Graph Heuristic . 42

4.4 Theoretical Properties . 44

4.5 Implementation in Skyrim . 45

4.6 Analysis . 46

5 Adaptability Across Quests 56

5.1 MHA* With T-Graph Heuristics . 57

5.2 Calibration of Heuristics . 59

v

5.3 Theoretical Properties . 60

5.4 Analysis . 60

6 Cooperative Planning 70

6.1 Learning Playstyles . 71

6.2 Player Behavior Classification . 73

6.3 Toward Cooperative Planning . 75

7 Experimental Analysis 80

7.1 Training Quality . 80

7.1.1 User Study . 86

7.2 Computational Performance . 91

7.2.1 Parameter Selection . 91

7.2.2 Computational Performance Results 94

7.3 NPC Skill . 106

8 Concluding Remarks 114

8.1 Discussion and Future Work . 114

8.2 Conclusions . 119

Bibliography 121

vi

List of Tables

1.1 Main Skyrim quests and their primary goal types. 9

4.1 Experimental results for T-Graph heuristic and Weighted A*. 47

6.1 NPC planning results when following the SNEAK playstyle. 77

7.1 Questionnaire response scores by NPC type. 91

7.2 Skill rating results for branching factor 256. 110

7.3 EWR results for branching factor 256. 112

vii

List of Figures

1.1 Example Borderlands mission with three objectives. 3

1.2 Example Skyrim mission with four objectives. 4

1.3 Example dungeon and lever as goal. 5

1.4 Borderlands mission sharing the same environment with Figure 1.1. 6

1.5 Two Skyrim quests sharing objectives in the same dungeon, Saarthal. 7

2.1 Example of a behavior tree for generating NPC behavior. 19

2.2 RRT exploration of a square 2D space . 23

2.3 RRT-Connect planning process in a square 2D space with obstacles 25

2.4 ReUse-Based PRM constructed from obstacle perimeter samples 25

2.5 Lightning system diagram . 28

2.6 Visualization of E-Graph heuristic for a sample problem. 29

4.1 Simple search problem example. 48

4.2 Example illustrating problems with E-Graph heuristic in this domain. . . . 49

4.3 Illustration of T-Graph heuristic in example scenario. 50

4.4 Equivalence of Weighted A* and T-Graph method when εT = 1. 51

4.5 Greywater Grotto scenario and Weighted A* solution path. 52

4.6 Greywater Grotto scenario and T-Graph solution path. 52

4.7 Visualization of the T-Graph heuristic in the Greywater Grotto scenario . . 53

viii

4.8 Experimental results for Bear Bypass scenario. 54

4.9 Experimental results for Greywater Grotto scenario. 55

5.1 Example scenario used to illustrate the advantages of MHA* in this domain. 57

5.2 Example T-Graph inputs to MHA* with T-Graph Heuristics algorithm. . . . 63

5.3 Illustration of poor performance of T-Graph heuristic in example scenario. . 64

5.4 Typical path planned to solve sample quest task 65

5.5 Parameter configurations used to generate MHA* results 66

5.6 Sample MHA* solution, showing limited number of states expanded. 67

5.7 Computation time results for MHA* . 67

5.8 Expansion count results for MHA* . 68

5.9 Computation time results for MHA* in expanded state space 68

5.10 Randomized initial condition results . 69

6.1 Bayesian Belief Network used in online playstyle classification. 74

6.2 Cooperative NPC planning example. 76

6.3 Playstyle exemplars for COMBAT (left) and SNEAK (right). 77

6.4 NPC planning example. 77

6.5 NPC planning example, A*, with COMBAT player model. 78

6.6 NPC planning example, A*, SNEAK player model. 78

6.7 NPC planning example using T-Graph and player model. 79

7.1 T-Graph heuristic enabling solution to mimic demonstration. 82

7.2 Solution mimics training even when training is inaccessible in search space. 83

7.3 Multiple demonstrations and solution deviating from training when necessary. 84

7.4 Expanding a T-Graph heuristic more often for better training re-use. 85

7.5 New scenario used in user study. 87

ix

7.6 Parameter analysis for T-Graph search. 93

7.7 Parameter analysis for T-Graph search, larger suboptimality bound. 93

7.8 Parameter analysis for MHA* with T-Graph Heuristics search. 95

7.9 Scenarios used in new computational performance results. T-Graphs in red. 96

7.10 Performance results for 1 Key 1 Door Exact scenario. 98

7.11 Performance results for 1 Key 1 Door Close scenario. 99

7.12 Performance results for 1 Key 1 Door Far scenario. 100

7.13 Performance results for 5 Keys 1 Door scenario. 101

7.14 Performance results for 5 Keys 5 Doors In Series scenario. 102

7.15 Effect of demonstration size on computation times. 105

7.16 Effect of uninformative quest events on computation times. 106

7.17 Effect of duplicated quest event heuristics on computation times. 107

x

Chapter 1

Introduction

Planning video game non-player character (NPC) behavior is a complex problem, with

solutions typically depending on hard-coded components or minimization of some given

objective function [1]. Moreover, there did not exist ways to train NPC tactical behavior

by demonstration. Heuristic graph search techniques such as A* search [2] can be used

for planning NPC tactics, however they can be computationally expensive and do not by

default incorporate player preference on how NPCs should behave.

The previously-developed Experience Graph (E-Graph) [3] method allows the use of

experience or demonstration data in a graph search. However, this breaks down in the con-

text of video game quests. We introduced an alternative Training Graph (T-Graph) heuristic

formulation to address these issues. Our method utilizes demonstration data that does not

lie directly on the search graph and is not accessible from the search graph. Our method en-

courages more complete use of demonstration data than the E-Graph method does, in order

to train complete tactics. Also, our heuristic can be combined with other deterministic AI

behavior control methods. These features together enable demonstration-based behavior

planning to generate behaviors for NPCs in situations similar to those encountered during

their training.

1

Open-world games often present the player with quests or missions that give the player

new tasks in already-visited locations. For example, the player may be asked to clear a

dungeon of enemies in one quest, and then to go back to the same location in another

quest to retrieve a special item. When the NPC behavior needed to accomplish a quest

goal differs from behavior which was demonstrated in training, the use of the E-Graph or

T-Graph heuristics can be more computationally costly than planning a solution without the

use of any training data. It can also produce strongly sub-optimal solution behaviors, since

the search prefers to use the training data, which leads it astray. To address these issues, we

developed a method to use Multi-Heuristic A* Search (MHA*) [4] to adapt demonstration

from one quest configuration to a new one. Our MHA* heuristics enable demonstration-

based NPC behavior training to work more efficiently in environments similar to those of

training, despite changes to the tasks to complete.

1.1 Motivation

We consider open-world video games such as the games in the Elder Scrolls and Border-

lands series. These kinds of games often send the player and supporting NPCs on quests

(or “missions”) through portions of the game environment we will call “dungeons” here.

Each dungeon is accessible from the greater game world, but itself only represents a limited

physical area. The game’s storyline presents the player with quests, and so-called “side-

quests” tangential to the main storyline are also available to the player. See Figure 1.1 and

Figure 1.2 for examples of quest objectives and the corresponding dungeon areas from both

the Borderlands and The Elder Scrolls V: Skyrim (hereafter referred to simply as Skyrim)

games.

Within these types of games, we consider in this thesis the following common scenario

in a game. The player encounters a friendly NPC who winds up joining the player on a

2

Figure 1.1: A Borderlands game mission with three objectives. The first objective’s loca-
tion (waypoint) is marked with a diamond marker at the bottom of the local map.

mission. The mission is short and has a clearly specified goal, e.g. to pull a lever at the end

of a small dungeon. The player and his companion begin at the door to the dungeon. There

may be forks in the passageways between the door and the lever, creating different route

options. There may be different actions to take before reaching the lever, for example to

kill particular enemies along the way or to leave them alone. The player and NPC can also

choose to move stealthily or run through quickly.

The player navigates the dungeon to get to the lever at the end (Figure 1.3). His com-

panion NPC acts according to its programming. It often happens that this is insufficient.

For example, the NPC may only know to charge ahead despite the fact that the level de-

mands a stealthy approach. There may be a very strong enemy NPC in one part of the level

3

Figure 1.2: A Skyrim game quest with four objectives. The local map of the associated
game area shows a quest objective marked with a V marker at the bottom of the view.

which could be bypassed via another route. There may be a navigational trap, such as a

spear pit. It is not possible to foresee every such situation while designing the AI code for

the NPC. The player may wish to instruct the NPC how to behave, and indeed many games

incorporate commands which can be given to friendly NPCs, but it is often not possible

to issue compound commands for complex tactics and not possible to foresee command

schemes to handle every scenario. The game developer might also wish to author NPC

behavior by demonstration, perhaps to augment other behavior control code for complex

scenarios that leave the NPC incapable of solving them.

These quests often re-use particular dungeons at different points in the game. The

player may be sent through a dungeon to retrieve a special item in one quest, but then be

sent back to the same dungeon to activate a device in another quest. Parts of the dungeon

may be exactly the same in a later quest as they were previously, but other important parts

of the dungeon may have moved around. A key to open a door might be moved to a new

4

Figure 1.3: Example dungeon and lever as goal.

location, there might be additional health pack pick-ups available, and enemies may have

been randomly placed in new locations. See examples of environment reuse across quests

in Figure 1.4 and Figure 1.5.

It can be useful to train NPC behavior in these kinds of games, so that a companion NPC

can more effectively assist the player, or so that the game developer can augment the NPC’s

ordinary AI capabilities with trained behavior for special circumstances. Training can be

done by allowing the player (or developer) to record a trace of gameplay in a dungeon

environment and then feeding this trace into a demonstration-based planning method, as

we discuss in this thesis.

5

Figure 1.4: A Borderlands mission sharing the same environment with Figure 1.1. Note
that the objective has moved.

In this chapter, we review the game Skyrim in more detail in order to illustrate the con-

text of our work. The game’s goals are presented to the player in the form of quests. Quests

also serve to expose the player to the game’s storyline. Skyrim’s various gameplay features

enable the player to achieve the goals set forth by quests, thereby advancing the game’s

plot. By reviewing Skyrim’s quests and gameplay, we can understand what is possible in

games like this, and which areas are lacking in existing NPC behavior generation schemes.

6

Figure 1.5: Two Skyrim quests sharing objectives in the same dungeon, Saarthal.

1.2 Quests

We wanted to make sure that our techniques worked across the most common types of

quests encountered in contemporary open-world games. We examined the video game

Skyrim and used its design for guidance while testing our work.

7

1.2.1 Main Quest Line

Open-world games typically have a primary sequence of quests which reveal the story of the

game as they are completed. These quests are carefully crafted by the developer. Skyrim’s

main quest line starts with a quest called “Unbound,” in which the player character finds

himself bound as a prisoner on way to be executed at Helgen Keep. During the execution, a

dragon appears in the sky above and it begins to attack the keep. The player escapes custody

and eventually fights his way through the interior section of the fort, and then through an

attached cave before reaching the greater part of the game world. Along the way, there are

many weapons, pieces of armor, potions, and other items the player can pick up and equip.

The player must fight a few opponents, including dangerous wildlife in the cave. This all

serves to familiarize the player with the game.

In the third quest of Skyrim’s main quest line, the player is sent into a “dungeon”

location called Bleak Falls Barrow by a character named Farengar to retrieve an item called

the “Dragonstone.” The barrow is largely linear in layout, with traps and puzzles along the

way. A special key must be acquired by killing a character within. The key is used to open

the last door of the crypt. Beyond the door, the player must fight one more opponent and

when this enemy is killed, the Dragonstone is found on its corpse. At this point, the exit to

Bleak Falls Barrow is accessible, and the player can return the Dragonstone to Farengar.

We distill the main or final objective of each of Skyrim’s main quests in Table 1.1 to

illustrate that most of the game’s challenges can be encoded as a simple goal. Many of

these quests, such as the game’s third main quest discussed above, can be decomposed

into several component tasks with specific sub-goals. These individual sub-goals follow

the same formats as the overarching quest goals: go to location, retrieve item, kill target

opponent, etc.

8

Unbound Go to location
Before the Storm Go to location
Bleak Falls Barrow Retrieve item
Dragon Rising Kill target opponent
The Way of the Voice Go to location
The Horn of Jurgen Windcaller Retrieve item
A Blade in the Dark Kill target opponent
Diplomatic Immunity Talk to character
A Cornered Rat Talk to character
Alduin’s Wall Go to location
The Throat of the World Talk to character
Elder Knowledge Retrieve item
Alduin’s Bane Kill target opponent
Season Unending Talk to character
The Fallen Talk to character
Paarthurnax Kill target opponent
The World-Eater’s Eyrie Go to location
Sovngarde Go to location
Dragonslayer Kill target opponent

Table 1.1: Main Skyrim quests and their primary goal types.

9

1.2.2 Side Quests

Skyrim’s developers have also filled the game world with ways to initiate what are called

side quests. These quests are not part of the main storyline, but bring the player to new

parts of the game world and offer the player opportunities to advance their skills, earn game

money, and acquire new weapons and other equipment. Side quests are typically initiated

by talking to an NPC, who will then ask the player to do some kind of errand for them

in exchange for something valuable. Side quests generally have the same formats as main

storyline quests: go to a location, retrieve an item for an NPC, or kill something for an NPC.

Sometimes, side quests are open-ended or ambiguous, such as the “No Stone Unturned”

quest, which tasks the player with locating 24 unusual gemstones scattered across the entire

game world without giving the player any specific direction regarding where they can be

found. Usually, the objectives of these quests are specific and the player is shown where to

go to complete the objectives.

1.2.3 Radiant Story Quests

Skyrim has a system, called Radiant Story which provides the player of the game with an

innumerable number of randomly-generated quests in addition to the other game quests

which can only be completed once. Radiant quests give the player a random task to com-

plete in a random location the player likely has not yet visited. Though randomized in this

manner, these quests follow the general format of other side quests.

1.3 Gameplay

Skyrim presents players with a variety of actions that they can perform to change the game’s

world state. These actions comprise either navigation, combat, speech, or other miscella-

10

neous world interactions. Navigation actions move the player through the large open game

world. Combat actions generally effect the death of opponents. Speech actions advance the

storyline of the game, develop relationships between the player and NPCs, enable the sale

and purchase of items from NPCs, among other purposes. Finally, there are other miscella-

neous interactions the player can have with the world, such as inventory transfers between

the player and storage containers, the activation of various mechanisms, crafting of items,

and more. All of these at different times contribute to the completion of quest objectives

and to the advancement of the player’s own personal goals within the game.

1.3.1 Navigation

In Skyrim, the player is generally free to navigate on relatively flat ground. The player

can jump, but only a limited height and distance. The player can choose to sneak, walk,

or run. Sneaking reduces the chances of being detected by other characters or creatures

in the game, but causes reduced movement speed. Various obstacles such as doors, gates,

and drawbridges prevent the player from navigating certain ways until those obstacles are

removed. Doors can be locked, requiring either a key or (sometimes) lockpicking skills to

unlock. Sometimes an obstacle can only be moved by activating a button or by solving a

puzzle. Sometimes navigation actions cannot be reversed, such as jumping down a ledge

to a lower area. In deep water, the player can swim, but swimming time under water is

limited before the player’s character will drown. The player may acquire a special ability

in game to dash forward a short distance very quickly. In our work in this thesis, we use

a simplified navigational action set. We allow our NPCs in experiments to sneak and walk

and include navigational obstacles such as locked doors.

11

1.3.2 Combat

Combat in Skyrim can be done with bare fists, bows and arrows, blades, magical items,

magical spells, and other miscellaneous weapons. Successful attacks reduce the target’s

health level. Attacks can be blocked with the right equipment. Weapons can be poisoned

for additional damage. Weapons can be enchanted to cause additional types of damage or

other effects when they hit a target. Extra-powerful attacks can be made at the expense

of the player’s stamina reserve. Stamina returns naturally over time while resting, but can

also be replenished with some types of food and potions. Stamina is drained by running.

Magic attacks deplete the player’s “magicka” reserve. Like stamina, this returns slowly on

its own naturally, but can also be restored with consuming certain potions. Melee combat

takes place in close quarters to enemies, but ranged attacks by archery or magic occur over

a distance. The player can also acquire in game other special combat abilities, such as the

ability to freeze an opponent solid or the ability to become invisible to enemies for a short

time. In our work in this thesis, we keep things simple and only model bare fist combat by

NPCs.

1.3.3 Speech

Very often in Skyrim, the player needs to talk with NPCs. This is often done during quests

to advance the plot of the game’s story. Conversation with NPCs is done via scripted dialogs

where the player is presented with several options of things to say to the NPC, and based

on which option is selected, the NPC responds with its own scripted reaction. The choices

the player makes in these conversations can have significant impact on what happens next.

For example, if the player is caught stealing by a town guard, the player may be able to

choose to comply with the guard’s orders, to intimidate the guard, or to persuade the guard

to look the other way. Since speech decisions are generally only made by the player, we do

12

not model speech mechanics in our NPC behavior generation work.

1.3.4 World Interaction

There are many other additional ways that the player can interact with the game world.

The world is scattered with such things as treasure chests, plants which can be harvested,

mechanisms operated by buttons and levers, and puzzles to solve. Some artifacts in the

game world, when encountered, grant the player special perks. For example, The Shadow

Stone artifact enables the player to become invisible for one minute once a day. This perk

is available to the player until the player chooses to replace it with another. We have not

modeled most of these ancillary gameplay mechanics in our work, but given access to the

source code for a game, any of these features could be incorporated.

1.4 Proposed Approach

We propose using search-based planning to enable the training of tactical behaviors for

video game non-player characters (NPCs). At a high level, this kind of planner begins with

a starting state in a graph representing the accessible states in a search space and the edges

which validly connect them. A search algorithm finds a path through this graph to connect

to a goal state. For example, imagine a video game quest where an NPC must navigate

a dungeon in order to reach a goal position on the other side. The video game developer

might wish that the NPC prefer to take a particular path through part of the dungeon for

artistic reasons, or a video game player might wish that every time he enters the dungeon,

that the NPC keep out of his way. These preferences can be provided as demonstrations.

We desire that the search process will tend to re-use the demonstrations when possible,

thereby producing trained behavior as output.

We build on the work done on Experience Graphs[3], using a special heuristic to guide

13

the search process to re-use experience or demonstration[5] data while finding a solution

to the problem at hand. To address particular challenges in the NPC behavior planning

domain, we modify the Experience Graph approach into our Training Graph method. We

also apply a Multi-Heuristic A* algorithm[4] to our problem domain, affording us the op-

portunity to use additional special heuristics (based on our Training Graph heuristic) which

helps adapt to new problems.

1.5 Evaluation

We evaluated our Training-Graph and Multi-Heuristic A* With Training-Graph Heuristics

methods with experiments in both a simulated game environment and in the context of the

video game The Elder Scrolls V: Skyrim.

In simulation, we authored many test scenarios mimicking video game quests and envi-

ronments with various types of constraints and types of goals. We model combat with en-

emies, shields for protection in combat, keys, locked doors, and walls and other obstacles.

Goal types include kill a target opponent and navigate to a target position. We extracted

the navigation meshes from several environments from Skyrim in order to test both our

own contrived scenarios and real in-game challenges. We coupled our system with Skyrim

so that NPC behavior can be planned by our methods and then executed in-game.

We investigated the use of skill rating system TrueSkill[6] to compute a notion of the

skill of an NPC behavior planner by treating planning episodes as competitions between the

algorithm and the problem. This allows algorithms to be compared to each other in terms of

skill and for problems to be compared to each other in terms of difficulty. Furthermore, we

show that hypothetical algorithm-problem pairs can be evaluated using TrueSkill ratings

for a prediction of whether the algorithm would succeed in solving the problem.

We implemented a small user study to investigate the perceived qualities of our planned

14

NPC behaviors. Since the ultimate goal is to generate behaviors for NPCs in video games

operating beside human players, it is important to understand what humans think about the

behavior of these NPCs.

1.6 Contributions

This thesis makes the following contributions:

• The Training Graph heuristic, adapting the Experience Graph approach to the context

of tactical NPC behavior planning. We discuss the theoretical properties of this new

heuristic and compare its performance to other methods.

• The MHA* With Training Graph Heuristics approach to NPC behavior planning,

which utilizes our Training Graph heuristic in a special way to further adapt training

data to new situations.

• A framework to apply NPC behavior planning techniques to a real video game, The

Elder Scrolls V: Skyrim. We implemented our methods in this framework and used

it for parts of our analysis.

• An experimental evaluation of planning with our methods. We compute computation

performance figures for our methods across several representative planning prob-

lems. We use a rating system called TrueSkill to compute a notion of algorithm skill

at solving those planning problems. We analyze the quality of planned NPC be-

haviors and demonstrate that they succeed in mimicking training input. Finally, we

conducted a small human subject study to test the perceived qualities of our planned

NPC behaviors.

15

1.7 Outline

This thesis is arranged as follows:

• Chapter 2 reviews related research for generating NPC behavior and planning from

experience or demonstration.

• Chapter 3 explains in more detail the particular antecedents of our work: A*,

Weighted A*, the Experience Graph heuristic, and Multi Heuristic A*.

• Chapter 4 describes and analyzes our first contribution, the Training Graph heuristic

and our framework for evaluating it in a real video game: Skyrim.

• Chapter 5 describes and analyzes our second contribution, the use of Training Graph

heuristics within Multi Heuristic A* to adapt NPC training to new scenarios.

• Chapter 6 summarizes work completed in [7] which extends our systems to include

player modeling and implements cooperative NPC behavior planning from demon-

stration.

• Chapter 7 details our experimental analysis of the T-Graph and MHA* With T-Graph

Heuristics approaches from qualitative and quantitative perspectives.

• Chapter 8 concludes our thesis with discussion, avenues for future work, and a sum-

mary of contributions.

16

Chapter 2

Related Work

Our work focuses on the use of demonstrations to train the behavior of NPCs in video

games. We review several state of the art methods for generating NPC behavior in games.

Since we accomplish NPC behavior generation in our work using heuristic search-based

planning techniques, we review several heuristic search algorithms. For comparison, we

also touch on related sampling-based and optimization-based approaches. Finally, we re-

view existing work on planning from experience or demonstration, since our goal is to

create a system for training NPC behavior.

2.1 NPC Behavior Generation

NPC behavior planning is typically accomplished via hard-coded methods (such as rule-

based systems, finite state machines [8], or behavior trees [9]) or by minimizing some given

objective function, as in planning approaches (such as POMCoP [10] or GOAP[11]).

Rule-Based systems (RBS) operate on a set of rules used to govern AI behavior. These

are generally the most basic form an artificial intelligence system can take[12], but are also

the most popular form of AI found in games [13]. For example, an AI blackjack dealer

17

might always hit when the cards dealt add up to 17 or less. The enemy characters in Pac-

Man are also controlled with a Rule-Based System. One ghost enemy always turns left, one

always turns right, one turns randomly, and one turns toward the player. Individually, the

rule controlling each ghost would be easy to figure out, however the group of four ghosts

together presents a confusing challenge to the human player.

Finite State Machines (FSMs) [14] offer a more sophisticated approach to video game

NPC control. FSMs model agents which go through a set of distinct states during gameplay.

For example, a guard NPC might ordinarily be in an at post state, and when he hears a

noise switches to a searching state. The searching state could transition back to the at post

state, or if the cause of the noise is discovered, the FSM could transition to another state

such as pursuit. The NPC executes different specific behaviors in each state, and there

is logic to control transitions between states. The behavior executed at a particular state

can be coded with e.g. a rule-based system, or any other method. FSMs are appealing for

game development because they are easy to understand and efficient to execute. Manually

authoring detailed FSMs for the diverse multitude of NPCs in modern video games is a

cumbersome task. Work [8] done in 2013 presents a method to automatically generate

NPC behavior-control FSMs from the results of nondeterministic planning episodes.

A Behavior Tree[9] is a tree controlling the behavior of an NPC. Nodes either make

an NPC perform an action (generally leaf nodes) or control the visitation of other nodes

(generally nodes with children). Behavior is produced by traversing the behavior tree from

the root node, following the direction of parent nodes. For an example, see Figure 2.1.

A sequence parent node (e.g. the root of our example) chains the actions of its children

in order to produce a complex behavior composed of multiple parts. A selector parent

node determines which one of its children is visited depending on the results of some

computation. The example behavior tree in Figure 2.1 encodes the logic and actions of

going to a door, determining if it is locked, unlocking it if it is, opening the door, and then

18

walking through. Components like this are combined into a larger behavior tree capturing

all of the desired behaviors for an NPC. Work in [15] investigates parameterization of

behavior trees, encapsulating subtrees for better reuse. Behavior Trees are efficient, easy

to understand, and have been used to great effect in video games such as those in the Halo

series [9, 16] and Spore[17].

Figure 2.1: Example of a behavior tree for generating NPC behavior.

Search-based planning techniques are also used to generate NPC behavior in games.

Games very often used A* graph search to plan navigation behavior for NPC agents, even

when at another level of control, the agent is controlled with something like a Behavior

Tree. In our earlier behavior tree example (Figure 2.1), the Walk to Door action might be

accomplished with the help of A* for path planning. Commonly used to facilitate search-

based path planning in video games is the navigation mesh (navmesh)[18] structure. A

navmesh is a mesh structure which encodes the navigable portions of a game environment.

An NPC navigation path to a desired goal can be planned on the navmesh and then the

paths can be followed by the NPC in the game to reach the goal. Methods also exist to plan

more than just the navigational component of NPC behaviors.

Goal-Oriented Action Planning (GOAP)[11, 19] is an NPC behavior planning approach

19

inspired by STRIPS [20] classical planning and similar methods. GOAP uses abstractions

of game elements and of the state space to produce a graph representing potential NPC

action choices and their high-level effects. A search through the graph is executed to gen-

erate an NPC behavior plan, which can then be executed by the NPC in the video game.

Low-level behavior in GOAP is controlled by a simple three-state FSM. Each NPC can be

in one of these states: Go To (controlling low-level navigation toward a specific goal loca-

tion), Animate (enabling the NPC to act out specific movements like shoot at player), and

Use Smart Object, which is just a data-driven version of Animate. Master’s thesis work in

[21] compared the performance of GOAP with FSMs in the context of NPC behavior gen-

eration, finding that although GOAP was associated with more overhead in creation and at

runtime, the benefits to NPC competitive advantage when controlled by GOAP outweighed

the costs. GOAP is the foremost planning approach used in video games In our work, we

choose not to rely on abstractions from the model representing the mechanics of the game

and we do not use a low-level FSM. Thus, we have to search a much higher-dimensional

search space, but our plans are precise and detailed behavior plans for the NPC to carry out.

Our solution plans do not have to rely on special controllers to execute each segment of a

behavior plan. Moreover, our work can produce NPC behavior plans which follow training

examples, but GOAP alone does not. We suspect that our work could be adapted to other

graph search techniques like GOAP for a combined system generating trained behaviors.

In [22], the authors explore the use of a combined action representation for both plan

recognition and planning so that an NPC can both figure out what the player is trying to

do and generate plans to assist the player cooperatively. The system described builds on

classical planning approaches and so it operates at an abstract level and in a limited domain,

however the authors argue that it would scale to much more complex domains.

Recent work on tactical behavior planning by N. Sturtevant [23] proposed a method

which takes into account relationships between NPCs while planning paths. The proposed

20

method focuses on path planning alone and decomposes NPC interaction into parameters

which, in sum with distance traveled, make up the cost function of the search. Our work

in this thesis plans for behavior actions beyond only navigation and provides an avenue for

player preference to affect tactical planning. Our methods could be combined with cost

formulations such as this one to yield a combined system.

Research by Uriarte and Ontanon published in 2016 on the use of Monte-Carlo Tree

Search (MCTS) in “real-time strategy” (RTS) games [24] processes experience traces of

past gameplay to inform a policy used to plan new gameplay decisions. RTS games require

the simultaneous control of many combat units and other gameplay elements, whereas our

work is focused on shooter or role playing games, where the player would only interact

with a small number of NPCs at any one time. Moreover, RTS games involve unpredictable

opponents, so it is difficult to model the behavior of the enemy through the rest of the game.

MCTS is well suited to that situation, however we assume that we have an accurate world

model which we can exploit in planning for better results.

2.2 Heuristic Search

Heuristic search finds a path on a graph from a start state to a goal state. Heuristic search

techniques such as A*[2] build on Dijkstra’s algorithm[25], but incorporate the use of

heuristics to guide the search process. A* uses a heuristic to focus the search toward

the goal state. For many kinds of search spaces and problems, this permits the search to

explore many fewer states than Dijkstra’s algorithm does. In order to apply graph search to

the NPC behavior planning domain, the space of game world states is discretized into an

implicit graph with NPC actions connecting neighboring states. Thus, these searches are

“resolution-complete,” meaning that if a path exists in the discretized search space, it will

be found. However, the discretization process might turn a problem which is solvable in

21

continuous space into an impossible problem on the search graph. A*, like Dijkstra’s algo-

rithm, yields an optimal solution (if a solution is found at all). A more detailed description

of A* search is provided in Section 3.1.

Weighted A*[26] is a heuristic search technique which enables the heuristic function

to bias the search toward the goal more than it does in ordinary A*. In practice, this

yields many fewer state expansions and much shorter computation times than A*. Solutions

computed with Weighted A* are not guaranteed to be optimal in cost, however the sub-

optimality of Weighted A* solutions is bounded by a user-chosen multiple of the optimal

solution cost. More discussion on Weighted A* is available in Section 3.2.

Other algorithms used for heuristic search come with additional special properties. Any-

time planners, such as ARA*[27], produce an initial suboptimal solution quickly, but given

additional search time yield better-quality solutions, ultimately yielding the optimal solu-

tion. Incremental planners, such as D*[28] and D* Lite[29] allow for efficient re-planning

after changes occur in the search space. These methods attempt to reuse the search tree

from previous planning episodes and repair it to account for changes to the graph. AD*[30]

is an example of an anytime incremental planner.

Independent Multi-Heuristic A*, Shared Multi-Heuristic A*, and Improved Multi-

Heuristic A* are examples of heuristic search techniques which utilize multiple different

heuristics to guide the search process. The one heuristic used in many heuristic search

planners such as A* and Weighted A* must be admissible and consistent in order for

the algorithms to yield optimal or bounded-suboptimal solutions. Multiple heuristic

planners also permit the use of other inadmissible and/or inconsistent heuristics to guide

the search out of particularly challenging portions of the search space without affecting the

guarantees of the search. A more detailed description of MHA* techniques is presented in

Section 3.4.

22

2.3 Sampling-Based Approaches

A sampling-based motion planner generates a path by finding valid edges to connect a sam-

pling of states in a search space from start to goal[31]. In practice, sampling-based methods

can solve high-dimensional planning problems very efficiently[32]. These methods tend to

provide a probabilistic guarantee on completeness, meaning that as the number of samples

increases toward infinity, if there is a solution to the problem, a solution is more likely to

be found.

The Rapidly-exploring Random Trees (RRT)[33] algorithm iteratively grows a tree in

a search space rooted at the start state. In each iteration, a random state in the space is

chosen. If the state is invalid (for example, in the domain of robot motion planning, if the

configuration at the state is outside of joint limits, makes the body collide with an obstacle,

etc.), a new random configuration xrand is selected until it is valid. Then, the nearest tree

node to that configuration, xnear is found. If xnear and xrand can be connected with an edge,

xrand becomes xnew (a new node for the tree) and is added to the tree with that edge. This

process is repeated for as many iterations as it takes to reach the goal state.

Figure 2.2: RRT exploration of a square 2D space[33]

In this simple form of RRT, the outward growth of the tree can be limited by projecting

xrand toward xnear to some chosen maximum growth rate distance (before it becomes xnew)

if xrand is initially farther from xnear than that amount. Then, new nodes are never more

23

than the maximum growth distance from the existing tree. Alternatively, and as proposed in

the original paper, a set of valid state transition "inputs", U , can describe possible transitions

outward from some configuration. Then, the input u which could bring xnear closest to

xrand is chosen and the tree is grown by u from xnear to its destination xnew. U can encode

"non-holonomic" movement constraints on the robot, such as minimum turning radius.

Pseudocode for this original form of RRT is shown in Algorithm 1.

Algorithm 1: GENERATE_RRT(xinit,K)
1 τ .init(xinit); // τ is the tree
2 for k = 1 to K do
3 xrand← RANDOM_STATE();
4 xnear ← NEAREST_NEIGHBOR(xrand,τ);
5 u← SELECT_INPUT(xrand,xnear); // Finds best u to reach

xrand
6 xnew ← NEW_STATE(xnear,u); // Evaluates u to create new

state
7 τ .add_vertex(xnew);
8 τ .add_edge(xnear,xnew,u);
9 return τ ;

RRT-Connect Explanation

RRT-Connect[34] works by growing two RRT trees simultaneously. One tree is rooted at

the start state, as in RRT, and the other tree is rooted at the goal state. When the trees

meet one another, a continuous path is formed from start to goal. Moreover, the algorithm

attempts to grow the trees greedily toward one another instead of always toward any random

configuration as in RRT.

The Probabilistic Roadmap approach (PRM) [35] operates in two phases: construction

and query. A roadmap structure is constructed by uniformly sampling a search space. In-

valid samples are discarded (e.g. a state might be invalid because it is inside an obstacle)

and connections to neighboring samples are created when possible (e.g. an edge between

24

Figure 2.3: RRT-Connect planning process in a square 2D space with obstacles[34]

two states intersecting an obstacle is not valid, and so that connection is not included). This

process yields a graph approximating the accessible portions of the search space. In the

query phase, start and goal nodes are added to the roadmap graph with valid connections,

and then a graph search technique, such as Dijkstra’s algorithm or A*, is used to find a

path connecting the start and goal states. Extensions to PRM include biasing the sampling

of states toward the perimeters of obstacles [36] (see also Figure 2.4) and delaying expen-

sive collision checking operations until run-time when portions of the graph are actually

used[37].

Figure 2.4: ReUse-Based PRM (RU-PRM) constructed from obstacle perimeter
samples[38]

In loosely constrained situations, a sampling-based planner can rapidly find valid paths

through the space. However, in highly constrained situations (e.g. a narrow passageway

which must be used to get from start to goal), it can be difficult for a sampling-based

planner to discover a valid path through the graph[31]. The NPC behavior planning domain

25

unfortunately does contain many of these narrow passageways in portions of the search

space. For example, consider a scenario where a key is needed to open a door and the

action to pick up a key can only be executed from states within a short distance of the key.

The high dimensionality and large size of the search space makes it is unlikely that random

samples will both place the NPC near to the key and also then find another nearby state

holding the key to connect with a pick up the key action. A scheme to bias samples near

to these kinds of regions might help, but heuristic search methods can be guided with good

heuristics and also provide guarantees on solution quality.

In sampling-based approaches, the distribution of samples and the edges selected af-

fect the quality of the path. As noted in [32], sampling-based planners tend to generate

solutions which look random. Paths zig-zag through open portions of the search space to

meet random samples along the way. Sampling-based output behaviors must be smoothed

as a post-process, but heuristic search techniques naturally produce smooth goal-directed

output. Though unusual motions may be acceptable in e.g. robotics applications, the per-

ceived quality of NPC behavior output is important because NPCs are designed to interact

with human players.

2.4 Optimization Approaches

Optimization approaches have been used in the robotics domain to generate robot tra-

jectories. A good example is CHOMP (Covariant Hamiltonian Optimization for Motion

Planning[39]). CHOMP typically starts with a straight line path from start to goal and it-

eratively optimizes the path out of and away from obstacles according to a cost function.

Path smoothness is achieved with a soft constraint limiting the distance between adjacent

path vertexes. Other optimization techniques operate in a similar fashion. In practice,

optimization techniques tend to converge on solutions in particular local minima highly

26

dependent on the initial trajectory provided before optimization begins[32]. Our NPC be-

havior generation problem is described by a largely non-continuous space with discrete

state parameters, so while these optimization methods may work for trajectory generation,

they are a poor fit to our domain.

2.5 Planning from Experience and Demonstration

Like the MCTS method discussed in Section 2.1, methods in robotics research have also

incorporated demonstration data in order to learn a policy to use in planning. For example,

Inverse Optimal Control [40] has been used to learn a cost function from demonstration

for a planning problem. In our work presented in this thesis, we leave the game’s standard

cost function intact and instead guide the search by altering search heuristics. A 2009

research survey [41] collects some other methods for learning robot control policies from

demonstration.

There are existing methods which utilize demonstration and experience to guide the

planning process for better performance. One example of this is the Lightning [42] method,

an extension of Rapidly-exploring Random Trees (RRT) [33]. Lightning uses solution

plans from past experience to try to reduce the time it takes to find a new solution. It

retrieves saved paths from a path library and then repairs them to match the start, goal, and

obstacles in the current search problem. In many cases, this process can complete faster

than planning from scratch, reusing experience and saving computation time.

Another method from robotics, the Experience Graph (E-Graph) heuristic [5], is an

extension from A* heuristic graph search [2]. A* uses a heuristic estimate of the transition

cost between nodes to constrain the amount of the search graph which needs to be examined

before finding a solution to the problem. The E-Graph algorithm extends A* search to re-

use the results of previous searches and/or demonstration data. It does it in a way that

27

Figure 2.5: Lightning system diagram, from [42]

provides provable bounds on the sub-optimality of the solution. The E-Graph heuristic

is described in more depth in Section 3.3. The standard formulation of E-Graph search,

assumes that the E-Graph is reachable from the search graph and traversable along its

length. Unfortunately, in video game contexts, demonstrations may not be accessible from

the search graph, because NPC behavior is often more constrained than the behavior actions

available to the demonstrator. For instance, a game player may demonstrate a behavior

while jumping on top of obstacles, but the NPC may be constrained only to navigate on the

game’s navigation mesh (for information on navigation meshes, see [18]) without jumping,

as in Skyrim.

28

Figure 2.6: This figure shows the obstacles and heuristic values for an (x, y, θ) nonholo-
nomic constraint navigation problem with a heuristic calculated on a down-projected (x, y)
graph. The robot is not able to navigate the U-shaped corridor.
Top Row: regular 2D Dijkstra heuristic, oblique height map view.
Bottom Row: example E-Graph (blue line) and corresponding hE , oblique height map view.
The E-Graph heuristic forms a valley bypassing the un-navigable corridor. This leads the
search away from that local minima, saving computation time.
Images courtesy of E-Graph authors[3]

29

Chapter 3

Background

3.1 A*

A* [2] is a widely used heuristic graph search algorithm which improves on the perfor-

mance of Dijkstra’s Algorithm[25] with the use of a "heuristic". The heuristic in an A*

search is an estimation of the minimal cost of traveling from some graph node to the goal.

In order for A* search to yield a minimum-cost path, the heuristic must never overestimate

the minimal cost from some node to the goal. For example, Euclidean distance is a common

heuristic for simple 2D or 3D navigation problems.

A* Explanation

The A* algorithm[2] explores outward from the start node, bookkeeping information at

each node along the way to guarantee that a minimal cost route is found, and eventually

encounters the goal, if there is some path from start to goal. For bookkeeping, the algorithm

keeps a set of nodes called the "closed set" which have been wholly evaluated, an "open

set" of nodes yet to be evaluated, a "g-value" at each explored node representing the cost

from the start to the node along the yet best known path, and an "f-value" at each node

30

storing the g-value at that node added to the heuristic estimate from the node to the goal.

Pseudocode for A* is available in Algorithm 2, and it is explained here in greater detail.

At the beginning, the start node is given a zero g-value and its f-value is the heuristic

estimate from start to goal. The start node is put in the open set. Until the open set is

empty, the following exploration and update procedure is executed repeatedly.

The node in the open set with the lowest f-value is selected as the current node to

explore from and it is moved from the open set to the closed set because by the time this

iteration is over, its connections to its neighbors will all be entirely explored. If the current

node is the goal node, then the exploration process is finished. If it is not the goal node,

then each of the neighbors (often called "successors") is evaluated as follows.

If the neighbor is already in the closed set, that neighbor is skipped since it is already

entirely evaluated 1. Otherwise, a tentative g-value (remember, the lowest yet known path

cost from the start to some node) for the neighbor is calculated by adding the current node’s

g-value to the cost it would take to travel from the current node to the neighbor. If the

neighbor is not already in the open set, then it has not been explored yet and needs to be

added to the open set and given some g-value and f-value, so it is added to the open set and

receives the tentative g-value as its g-value and its f-value as the tentative g-value added

to the heuristic estimate from the neighbor to the goal. If the neighbor is already in the

open set, that means that the node has already been given some g-value and f-value via a

different direction than from the current node. So in this case, there is an opportunity to

update its g-value and f-value if it happens that the tentative g-value from the current node

is lower than the already stored g-value in the neighbor. If this is the case (like in the case

1The point of this neighbor examination procedure is to update the neighbor’s ideas of which is the lowest
cost path from the start to the neighbor (the g-values and f-values). It might seem bad to ignore closed set
nodes because the current node might be a node on a better path from the start to the neighbor. However,
because nodes are selected from the open set according to lowest f-value (and because the heuristic is a
consistent underestimate), when a node n is thus selected and moved into the closed-set, there is no possible
way another open set node could be part of a different path with a lower cost from start to n

31

it was not previously in the open set), the neighbor is given the tentative (lower) g-value

as its g-value and its f-value is set to the tentative g-value plus the heuristic estimate from

neighbor to goal. This completes the exploration loop.

If the open set is exhausted before the goal state is encountered, there is no path from

the start to goal in the current graph. If the goal was encountered, then the least-cost

path is found by backtracking through the graph from goal to start, following all edges

to nodes with the lowest g-values. RECONSTRUCT_PATH(a, b) in Algorithm 2 and

Algorithm 4 operates this way.

Alternatively, "back pointers" can be kept during graph exploration which always point

back from a node to its neighbor which is closest to the start (by g-value). These back

pointers are set in the neighbor update step, after the tentative g-value is calculated and

either the neighbor is found not to be in the open set or has a large g-value which needs to

be updated. In these cases, we know that the current node is currently the best way to get

from the neighbor back to the goal (and this can change during the search if a better path

is found), so the back pointer from the neighbor is set to the current node. If this is done,

path reconstruction is done by following back pointers from the goal to the start. The bp()

values in Algorithm 3 facilitate this approach to path reconstruction.

3.2 Weighted A*

Weighted A*[26, 43] works much like A*, but with one change. A parameter, w ≥ 1, is

introduced. When the heuristic is calculated and used in the algorithm, it is multiplied by

w. In Algorithm 2, this happens on lines 4 and 17, where h(..., ...) would be replaced with

w ·h(..., ...). Thus, when w = 1, it is equivalent to ordinary A* search. If w > 1, this tends

to bias the search more toward the goal (because the seemingly-bad paths come to seem

even worse), so in most scenarios less exploration is needed to find some path from start to

32

Algorithm 2: A_STAR(start,goal,h,c)
Input: start and goal nodes, heuristic function h, and cost(distance) function c
Output: Path from start to goal, or EMPTYPATH if no path exists from start to

goal
1 closedset = ∅;
2 openset = {start};
3 start.gvalue = 0;
4 start.fvalue = start.gvalue+ h(start, goal);
// Explore graph

5 while openset is not empty do
6 current = node in openset with lowest f-value;
7 if current == goal then
8 return RECONSTRUCT_PATH(goal,start);
9 openset.remove(current);

10 closedset.add(current);
// Expand neighbors

11 foreach neighbor ∈ current do
12 if neighbor ∈ closedset then
13 continue; // Skip closed nodes
14 tentative_g_value = current+ c(current, neighbor);
15 if neighbor 6∈ closedset ∨ tentative_g_value < neighbor.gvalue then
16 neighbor.gvalue = tentative_g_value;
17 neighbor.fvalue = neighbor.gvalue+ h(neighbor, goal);
18 if neighbor 6∈ openset then
19 openset = openset ∪ {neighbor}
20 return EMPTYPATH; // No path from start to goal

goal. However, when a node is selected and moved to the closed set, it could be that it is

being closed too soon and its current g-value might not get a crucial (smaller) update later.

So while Weighted-A* runs faster than A*, it does not produce an optimal solution. The

suboptimality of the solution is bounded by a factor of w[43]. This means that the solution

has a cost at worst w times the cost of the optimal solution.

33

3.3 Experience Graph Heuristic

The E-Graph algorithm[3] introduces a method to guide a graph search to use trajectory

data encoded in an E-Graph to help the search avoid local minima. The E-Graph can be

created from the solutions of prior planning problems in the same domain, or it can be

created by demonstration [5]. If necessary, new edges are added to the search graph to

connect it to the E-Graph. The E-Graph heuristic hE is used to bias the search toward reuse

of the E-Graph edges while searching for a solution.

E-Graph E is a directed graph with nodes EN encoding search state information. Suc-

cessor function succ(a) = b records valid transitions between states a and b as observed in

the experience with an associated cost function cE(a, b) which records the observed costs

of these transitions. The experience graph heuristic hE(a, b) between nodes a, b on the

search graph can be computed in a general way as follows. Note that node b is typically the

goal state in a search problem, so hE(a) can be understood as shorthand for hE(a, goal).

Let hG be some heuristic on the search graph which is admissible and consistent.

1. The E-Graph is augmented with virtual edges from every E-Graph node s to every

other E-Graph node s′ at their known E-Graph cost cE(s, s′) if the transition already

existed in the E-Graph (if s′ ∈ succ(s)) or at cost εEhG(s, s′) otherwise.

2. The E-Graph is further augmented with virtual edges from every E-Graph node s to

b at cost εEhG(s, b).

3. Dijkstra’s algorithm is run on the augmented graph from b as the source. The Dijkstra

output distances are used as hE(s, b) for all nodes s ∈ EN .

4. Finally, hE(s) = mins′∈{EN∪sgoal} [ε
EhG(s, s′) + hE(s′, sgoal)] That is, the smallest

of the direct path εEhG(s, goal) and every sum εEhG(s, s′) + hE(s′, goal) among all

s′ ∈ EN is selected as hE(s, goal).

34

In a more general way, the E-Graph heuristic hE(s0, sgoal) can also be defined as in

Equation 3.1.

min
π

N−1∑
i=0

min
{
εEhG(si, si+1), c

E(si, si+1)
}

(3.1)

In Equation 3.1, π is a path 〈s0...sN−1〉 and sN−1 is sgoal. cE(..., ...) returns the ordinary

cost cost(..., ...) if its inputs are both on the E-Graph, otherwise returns an infinite value.

This heuristic returns the minimal path cost from s0 to sgoal where the path π is composed

of an arbitrary number of two types of segments. One type of segment is a jump between

si and si+1 at a cost equal to the original graph heuristic inflated by εE . The other type

of segment is an edge on the E-Graph, and its cost in π is its actual cost. In this way, the

larger εE gets, the more the search prefers to utilize path segments on the E-Graph, since

searching off of the E-Graph becomes costly.

There are some situations where this can be optimized. Some heuristics are computed

using dynamic programming in a lower dimensional state space. For example, in a (x, y, θ)

space, where x and y represent Cartesian positional information and θ represents an ori-

entation, a 2D heuristic can be computed with Dijkstra’s algorithm on just (x, y). In this

case, the E-Graph heuristic can be computed by running the same reduced-dimensionality

Dijkstra computation, but with additional edges in the graph added by projecting the E-

Graph down to the lower dimensional space. This can be done with similar efficiency to

the original Dijkstra-computed heuristic, so it does not add any significant computational

overhead. The original E-Graph authors used this approach in their experiments.

3.4 Multi Heuristic A*

Multi-Heuristic A* enables multiple heuristics to be used to guide a graph search. The

authors of [4] present two implementations: Independent Multi-Heuristic A* and Shared

35

Multi-Heuristic A* (SMHA*). We choose to focus on SMHA* and refer to it as simply

MHA* throughout most of this thesis. In order to guarantee a bound on the suboptimality of

solution costs, one heuristic, called the anchor heuristic, must be admissible and consistent.

The other heuristics need not be admissible or consistent, and are generally referred to as

the algorithm’s set of inadmissible heuristics. SMHA* uses multiple open sets (individually

similar to A*’s single open set), one for each heuristic. Open set zero is for the anchor

search. There are two closed sets: one for the anchor search, and the other one for all

inadmissible searches. The open sets are sorted by key, where the key for a particular state

is computed differently for each open set. The pseudocode for SMHA* (including the Key

function) is presented in Algorithm 3.

When the anchor search is admissible and consistent, SMHA* search is guaranteed to

yield solutions with suboptimality bounded by a factor of search parameters w1 · w2. The

proof of this, and several other theoretical properties of SMHA* can be found in [4]

3.4.1 Inadmissible Heuristic Calibration

Though SMHA* utilizes heuristics which are arbitrarily inadmissible, when the scale of

these heuristics greatly exceeds the scale of the anchor heuristic, search performance suf-

fers. In our trials, this happened because the condition tested at Line 15 in Algorithm 3 can

be rarely, if ever, satisfied, even for relatively large values of w2. Thus, the inadmissible

searches using OpenSet1 through OpenSetn are not explored, and only the anchor search

makes progress toward the goal. When this happens, the inadmissible heuristics do not

contribute anything to the search process and the problem is essentially reduced to A* with

only the anchor search. A solution is to calibrate the scales of the heuristics so that they

can all contribute to guidance of the search.

36

Algorithm 3: Shared Multi-Heuristic A* (SMHA*)
1 Function Key(s, i)
2 return g(s) + w1 · hi(s)
3 Procedure ExpandState(s)
4 Remove s from OpenSeti ∀ 0 ≤ i ≤ n
5 forall s′ ∈ Succ(s) do
6 if s′ was never before generated then
7 g(s′) =∞; bp(s′) = null
8 if g(s′) > g(s) + c(s, s′) then
9 g(s′) = g(s) + c(s, s′); bp(s′) = s

10 if s′ /∈ ClosedSetanchor then
11 Insert/Update s′ in OpenSet0 with Key(s′, 0)
12 if s′ /∈ ClosedSetinad then
13 for 1 ≤ i ≤ n do
14 if Key(s’,i) ≤ w2 · Key(s,0) then
15 Insert/Update s′ in OpenSeti with Key(s′, i)

16 Function Main()
17 g(sstart) = 0; g(sgoal) =∞; bp(sstart) = bp(sgoal) = null
18 for 0 ≤ i ≤ n do
19 OpenSeti = {sstart with Key(sstart, i)}
20 ClosedSetanchor = ∅; ClosedSetinad = ∅
21 while OpenSet0.MinKey() <∞ do
22 for 1 ≤ i ≤ n do
23 if OpenSeti.MinKey() ≤ w2 ·OpenSet0.MinKey() then
24 if g(sgoal) ≤ OpenSeti.MinKey() then
25 if g(sgoal) <∞ then
26 Terminate and return path pointed to by bp(sgoal)
27 else
28 s = OpenSeti.T op()
29 ExpandState(s)
30 Insert s in ClosedSetinad
31 else
32 if g(sgoal) ≤ OpenSet0.MinKey() then
33 if g(sgoal) <∞ then
34 Terminate and return path pointed to by bp(sgoal)
35 else
36 s = OpenSet0.T op()
37 ExpandState (s)
38 Insert s in ClosedSetanchor

37

3.4.2 Improved Multi Heuristic A*

Later work on a method called Improved Multi-Heuristic A* [44] also addresses the heuris-

tic calibration problem. Pseudocode for Improved MHA* is presented in 4. Improved

MHA* requires a termination criterion Term-Criterion(), a state priority function

Priority(), and a potential set criterion P-Criterion(). Note that with the appro-

priate choices for Term-Criterion() and Priority(), Improved Multi-Heuristic

A* is identical to Weighted A* when lines 17-24 are excluded from Algorithm 4. The po-

tential set (PSet) holds a set of states which may potentially be expanded by the n arbitrary

(potentially inadmissible and uncalibrated) heuristics. On line 17, the PSet is constructed.

On lines 18-24, an expansion is made for each arbitrary heuristic hi and the state chosen

to be expanded is selected according to hi via Rank(s, i). Rank(s, i) is hi(s) for uncal-

ibrated heuristics and g(s) + w · hi(s) for calibrated heuristics. All variants of Improved

MHA* have theoretical guarantees similar to MHA*. The suboptimality of the solution

is bounded by w times the cost of the optimal solution. For the proof of this and fur-

ther discussion on the properties of the algorithm with particular sample instantiations for

Term-Criterion(), Priority(), and P-Criterion(), see [44].

38

Algorithm 4: Improved Multi-Heuristic A*
1 Procedure ExpandState(s)
2 Remove s from OpenSet
3 forall s′ ∈ Succ(s) do
4 if s′ was not seen before then
5 g(s′) =∞
6 if g(s′) > g(s) + c(s, s′) then
7 g(s′) = g(s) + c(s, s′)
8 if s /∈ ClosedSeta then
9 Insert/Update s′ in OpenSet with Priority(s′)

10 Function Main()
11 OpenSet = ∅
12 ClosedSeta = ∅; ClosedSetu = ∅
13 g(sstart) = 0; g(sgoal) =∞
14 Insert sstart in OpenSet with Priority(sstart)
15 while ¬ Term-Criterion(sgoal) do
16 if OpenSet.Empty() then return null;
17 PSet = {s : s ∈ OpenSet ∧ s /∈ Closedu ∧ P-Criterion(s)}
18 for 1 ≤ i ≤ n do
19 si = argmins∈PSet Rank(s,i)
20 ExpandState(si)
21 ClosedSetu = ClosedSetu ∪ {si}
22 sa = OpenSet.Top()
23 ExpandState(sa)
24 ClosedSeta = ClosedSeta ∪ {sa}
25 return solution path; /* Path extracted by examining

g-values or with backpointers as in Algorithm 3 */

39

Chapter 4

Training Graph Heuristic

4.1 Graph Search

NPC tactic planning can be accomplished as a graph search problem. Our search graph is

composed of nodes representing search states and edges representing possible transitions

between search states. Graph search states are composed of world state information and the

state of the NPC whose behavior is being planned. World state information is composed

of the state of every NPC (including enemies), and other miscellaneous world parameters.

NPC state information encodes values for position, health, stamina, navigation information,

gait (sneaking, walking, running), etc. for the NPC. Graph edges have an associated cost

defined as the amount of time it takes to complete that state transition. A transition that

results in companion NPC death has infinite cost.

We use heuristic graph search to find a feasible path from the start state to the goal. We

tested our planner on different partially-specified goal states, including one that is satisfied

when the NPC is within two meters of a destination location and one that is satisfied when

a target enemy NPC is dead. Heuristic graph search algorithms use a heuristic which

focuses search efforts to dramatically speed up the search process. A heuristic estimates

40

the distance between two states. A graph search heuristic can estimate the distance between

a state and the goal, even if the goal is partially-specified.

A graph heuristic used throughout this paper, hS(a, b) between search states a and b

(visualized in a test environment in Figure 4.1), is defined as Euclidean distance between

the planned NPC positions in a and b divided by the maximum possible travel speed for

the NPC. It therefore estimates the time-to-goal, which makes it consistent with the cost

function.

4.2 E-Graph Heuristic

The E-Graph heuristic (as detailed in Section 3.3) enables graph search to re-use expe-

rience or demonstration data while searching for a goal-satisfying state on a graph. The

E-Graph heuristic could be applied to our NPC behavior planning problem, however prob-

lems were encountered. This standard implementation of the E-Graph heuristic guides the

graph search in a way that assumes the E-Graph is traversable and directly reachable from

the search graph. The search is often guided toward E-Graph nodes, so if the E-Graph

density is sparse compared to the search graph’s discretization, the search may be guided

backwards (away from the goal and backward along the E-Graph) to reach an E-Graph

node before making progress toward the goal (these are the local minima visible in Figure

4.2). Also, due to the use of Dijkstra’s algorithm in the existing E-Graph heuristic formu-

lation, the search may leave the E-Graph long before reaching its end. This can prevent the

E-Graph demonstration data from leading the solution path first toward the goal and then

away from it, though that kind of behavior is important to some tactical maneuvers.

41

4.3 T-Graph Heuristic

We modify the computation of the heuristic so that it encourages the search to expand states

that follow the demonstration without requiring the state to be exactly on the demonstration.

In other words, we need to make the heuristic decrease between the start and the demon-

stration graph, then decrease along the length of the demonstration graph and, finally also

decrease between the end of the demonstration graph and the goal. Our new heuristic is vi-

sualized for a test environment in Figure 4.3. Training graph (T-Graph) T is represented the

same way as an E-Graph. Let TN indicate the set of nodes making up T . Let succ(s) return

the set of successor neighbors of T-Graph node s. Let pred(s) return the set of T-Graph

nodes s′ such that succ(s′) = s. For all s ∈ TN and s′ ∈ succ(s), let cT (s, s′) describe the

cost of transitioning from s to s′. Let TNterm ⊂ TN represent the set of terminal nodes s in

TN such that succ(s) = ∅. Let TNinit ⊂ TN represent the set of initial nodes s in TN such

that pred(s) = ∅. A shortest path graph heuristic hP (a, b) is defined as the shortest path

length from a to b on the search graph divided by the maximum possible travel speed.

We compute our training heuristic hT (a, b) as follows:

1. Let εT be a heuristic inflation factor like εE in the E-Graph method.

2. For each terminal node s ∈ TNterm, assign hT (s, b) = hP (s, b).

3. Working backwards from each terminal node s, where s′ ∈ pred(s), assign

hT (s′, b) = hT (s, b) + cT (s′, s). Repeat this until every T-Graph node s′ is assigned

a hT (s′, b) value. This step replaces the Dijkstra calculation in the E-Graph method.

4. An estimation hTest(a, b, s, s
′) of the heuristic between a and b is computed for every

pair of T-Graph nodes s ∈ TN and s′ ∈ succ(s) by observing that hS(s, s′), hS(s, a),

and hS(a, s′) are available to compute a notion of how far a is located between s and

s′. This is used to choose a value for hTest between hT (s, b) and hT (s′, b) (or larger).

42

In our method, we decided to compute this as a projection π and rejection ρ from an

imaginary line between s and s′ as follows:

(a) Let π = hS(a,s′)
2−hS(s,a)2+hS(s,s′)2

2hS(s,s′)2

(b) Let α = π/hS(s, s′)

(c) Let ρ =
√
hS(s, a)2 − (hS(s, s′)− π)2

(d) If α < 0, let hTest(a, b, s, s
′) = εThS(a, s′) + hT (s′, b)

(e) If α > 1, let hTest(a, b, s, s
′) = εThS(s, a) + hT (s, b)

(f) If 0 ≤ α ≤ 1, let

hTest(a, b, s, s
′) = εTρ+ αcT (s, s′) + hT (s′, b)

5. An estimation hTest(a, b, s, b) of the heuristic between a and b is computed for every

pair of terminal node s ∈ TNterm and node b in the same way as step 4. This allows

the search to be drawn in a focused way from the training data toward the goal. In

our work, we use hP here instead of hS as it tended to make this last section of the

heuristic computation conform to the navmesh better and therefore produced better

results.

6. An estimation hTest(a, b, a, s) of the heuristic between a and b is computed for every

pair of node a and initial node s ∈ TNinit in the same way as step 5. This allows the

search to be drawn in a focused way from the start node toward the training data.

7. The smallest of the direct path εThS(a, b) and every hTest(a, b, s, s
′) estimate among

all s ∈ TN ∪ {a}, s′ ∈ TN ∪ {b} is selected as hT (a, b).

On state expansions, for every state s and successor state s′ (with transition cost t =

cT (s, s′)), a deterministic world simulation function w′ = sim(sw, t) is used to forward-

simulate world state sw over a duration of t, outputting updated world state w′. Successor

43

state s′ is then assigned w′ as its world state information. The simulation function evaluates

models of behavior for all dynamic components of the world. In this function, behavior

models for all NPCs are evaluated. The NPC being planned may be partially modeled by

sim, for example if despite the planner, parts of this NPC’s behavior are to be controlled

by another technique. In our implementation, planned parameters include desired location

(as a position) and willingness to fight (as a Boolean value) and then deterministic scripted

behavior handles the details of navigation and combat in sim. As long as accurate NPC

behavior models are available to sim, sim accurately predicts how all NPCs behave during

the graph search. Other dynamic components of the world relevant to the planning problem

can be modeled here, such as doors which automatically open or close, physics on moving

objects, or consideration for how some kinds of attack damage (e.g. splash damage which

could affect multiple targets) should be resolved.

4.4 Theoretical Properties

Some general properties of ε-admissible heuristic graph search are preserved in our method.

The search is complete; if a solution is possible on the search graph, the search will return

a solution. We do not modify the search graph in any way and we use Weighted A* graph

search, which is a complete planner, so our search is also complete.

Our heuristic is εT -admissible. An admissible heuristic between nodes a and b never

overestimates the actual transition cost between a and b. An ε-admissible heuristic never

overestimates the transition cost by more than a factor of ε. Our heuristic hT (a, b) is com-

puted as the minimum of several options, one of which is the direct connection (step 7

above) between nodes a and b, computed as εThS(a, b), so ht(a, b) must always be less

than or equal to εThS(a, b). hS(a, b) is an admissible heuristic, so εThS(a, b) is an εT -

admissible heuristic, and since hT (a, b) ≤ εThS(a, b), it must also be an εT -admissible

44

heuristic.

A consistent heuristic obeys the triangle inequality as specified here: h(a, c) ≤ c(a, b)+

h(b, c). That is, the heuristic value between nodes a and c should be less than or equal to

the cost to transition from a to successor node b ∈ succ(a) plus the heuristic value between

b and c. An ε-consistent heuristic obeys this inequality: h(a, c) ≤ ε · c(a, b) + h(b, c). εT -

Consistency of our hT heuristic depends on the formulation of hTest in steps 4 and 5 above.

We found that our searches using the T-Graph heuristic functioned well and path costs

were always well within sub-optimality bound w · εT times the cost of the optimal path.

However, by testing the ε-consistency condition during some sample searches using the

T-Graph heuristic, we discovered counterexamples to the claim that the T-Graph heuristic

is always ε-consistent. Occasionally, inconsistent expansions were made. In these cases,

the difference between the sides of the inequality was very small (under thousandths of a

heuristic unit), so there is a possibility that the ε-inconsistency we observed was actually

an accumulation of floating point error. Future work using the T-Graph heuristic would

have to consider how to remedy the problem of ε-inconsistency or expect to utilize a search

algorithm tolerant to inconsistent heuristics, such as MHA*[4]. In the rest of our work, we

use the T-Graph heuristic in MHA* in a manner where the εT -inconsistency of the T-Graph

heuristic has no effect on the guarantees of the algorithm.

4.5 Implementation in Skyrim

We have used the video game Skyrim as a testing ground for our work. Since we do

not have access to full models of how the game’s existing NPCs behave, we have sim-

plified the game’s wolf and bear AI models so that they can be better modeled in our

system. We depopulated game areas and repopulated them with our custom wolf and bear

agents for testing. We extracted game navmesh data, including Skyrim’s unidirectional

45

drop down edges, from these game areas for use in our system’s navigation routines. We

have used the game’s Creation Kit editing software and modified the Skyrim Script Ex-

tender (SKSE, http://skse.silverlock.org/) for integration with our behavior planner and

demonstration recorder. Demonstration data is recorded by sampling all relevant state in-

formation of the game world (health values, agent positions, etc.) at a regular interval and

saving this information to a log file. The player presses a key (handled with SKSE and

Papyrus scripting) to start and stop each log file. These logs are then used by our algorithm

as demonstration data. They player has another key control to begin the NPC’s autonomous

planned control, using the recorded demonstration data.

4.6 Analysis

Our hT heuristic calculation guides the graph search along training demonstration data

paths, even where they might move away from the goal. Like with the E-Graph heuristic

computation, if εT = 1, the heuristic degenerates to the graph heuristic hS (see Figure 4.4).

Higher values of εT encourage the search to use the demonstration data more closely. Our

formulation tolerates situations where the demonstration data does not lie directly on the

search graph.

Since our method tolerates sparse demonstration data samples, it permits demonstration

data to be sampled below its full resolution for performance improvements at the expense

of training precision, if desired.

Typically, many parts of the hT computation can be precomputed and accessed from

memory at runtime. However, if the sim function can affect the heuristic functions, then

hT needs to be evaluated in full at runtime. For example, if the goal of a problem is to kill

a mobile enemy NPC and the heuristic guides the search toward the location of the NPC,

then the T-Graph heuristic needs to be fully reevaluated every time the NPC moves.

46

Some experimental results comparing the performance of the T-Graph algorithm to A*

with a Euclidean distance heuristic follow. These are an expansion of the results from

[45], and additional experimental results are presented later in this thesis in Chapter 7. We

used two scenarios to test the T-Graph algorithm. The first scenario is the one presented

above in Figure 4.1, which we call the Bear Bypass scenario. The second test scenario

we constructed by extracting the navmesh representing the navigable portion of a cave in

Skyrim and then populating it with a dangerous bear. We name this scenario after the name

of the same cave in Skyrim, Greywater Grotto. See Figure 4.5 for the layout of the scenario

including start position S, goal position G, and killer bear B. Also in that figure is a solution

path found by Weighted A* (the dark dots are waypoints on the path). Figure 4.6 shows a

solution found using the T-Graph heuristic. The T-Graph heuristic is visualized in Figure

4.7.

Scenario Sub-optimality Bound w εT Time Expansions Path Cost
Greywater 1 1 0.20 s 508 625 s
Grotto 10 10 0.14 s 412 646 s

100 100 0.11 s 253 646 s
1 1 1 0.17 s 508 625 s

10 10 1 0.11 s 412 646 s
1 10 0.18 s 447 655 s

100 100 1 0.10 s 253 646 s
10 10 0.11 s 234 703 s
1 100 0.14 s 272 720 s

Bear 1 1 0.16 s 940 48 s
Bypass 10 10 0.10 s 544 54 s

100 100 0.10 s 547 52 s
1 1 1 0.22 s 940 48 s

10 10 1 0.11 s 544 54 s
1 10 0.06 s 121 55 s

100 100 1 0.13 s 547 52 s
10 10 0.06 s 80 55 s
1 100 0.06 s 92 55 s

Table 4.1: Experimental results for T-Graph heuristic and Weighted A*. These results are
plotted in Figure 4.8 and Figure 4.9

47

Figure 4.1: Top: Test environment with forked navmesh, start position S, goal G, and killer
bear B hiding in den.
Bottom: Standard graph heuristic hS , based on Euclidean distance. The values decrease
(darken) near the goal in a smooth manner.

48

Figure 4.2: Left: Test environment with training path (white lines) visualized.
Right: E-Graph heuristic used without E-Graph being connected to the search graph. The
white lines represent the E-Graph. Heuristic values decrease both toward the E-Graph
nodes and overall toward the goal, but each node forms a local minima, which significantly
delays search progress.

49

Figure 4.3: T-Graph heuristic values decrease both toward the T-Graph and along it toward
the goal in a smooth manner. White lines represent the T-Graph.

50

Figure 4.4: Top: E-Graph heuristic with εE = 1.
Bottom: T-Graph heuristic with εT = 1. Note that these both degenerate to the simple
graph heuristic hs seen in Figure 4.1.

51

Figure 4.5: Greywater Grotto scenario and Weighted A* solution path.

Figure 4.6: Greywater Grotto scenario and T-Graph solution path.

52

Figure 4.7: Visualization of the T-Graph heuristic in the Greywater Grotto scenario. The
red line represents the T-Graph. Darker samples represent lower heuristic values. The
region near the goal actually has the lowest heuristic values, but due to a sampling artifact,
this area appears in this visualization to be brighter than parts along the T-Graph.

53

Bear Bypass Expansion Counts

0

200

400

600

800

1000

1 10 100

Combined Epsilon Bound

E
xp

an
si

on
 C

ou
nt

T-graphs
Expansions

A*
Expansions

Bear Bypass Computation Times

0.00

0.05

0.10

0.15

0.20

0.25

1 10 100

Combined Epsilon Bound

T
im

e
(s

)

T-graphs
Time

A* Time

Bear Bypass Path Costs

0

10
20

30

40
50

60

1 10 100

Combined Epsilon Bound

Pa
th

 C
os

t (
s) T-graphs

Path Cost

A* Path
Cost

Figure 4.8: Experimental results for Bear Bypass scenario.

54

Greywater Grotto Expansion Counts

0

100
200

300

400
500

600

1 10 100

Combined Epsilon Bound

E
xp

an
si

on
 C

ou
nt

T-graphs
Expansions

A*
Expansions

Greywater Grotto Computation Times

0.00

0.05

0.10

0.15

0.20

0.25

1 10 100

Combined Epsilon Bound

T
im

e
(s

)

T-graphs
Time

A* Time

Greywater Grotto Path Costs

0

200

400

600

1 10 100

Combined Epsilon Bound

Pa
th

 C
os

t (
s) T-graphs

Path Cost

A* Path
Cost

Figure 4.9: Experimental results for Greywater Grotto scenario.

55

Chapter 5

Adaptability Across Quests

When the E-Graph heuristic (or T-Graph heuristic from [45], explained in Section 4.3)

is used to guide an NPC behavior planner search to reuse training paths and the current

quest configuration of a dungeon differs from its configuration in the training quest, search

progress can be delayed by large local minima due to these differences. A contribution of

this thesis is in the use of Multi-Heuristic A* graph search to alleviate such issues.

Multi-Heuristic A* (MHA*) [4] performs a graph search while exploiting the guidance

of multiple different heuristics. We will focus on the MHA* implementation called Shared

Multi-Heuristic A*. MHA* essentially conducts multiple separate graph searches, each

using a different heuristic. One search, called the anchor search, uses an admissible heuris-

tic, while the other searches do not need to be admissible. In A*, Weighted A*, and many

other graph search algorithms, the solution path is entirely discovered by just one search

using one heuristic. However, in MHA*, search g-values are shared across searches, which

enables the solution path to be composed of segments first explored by different searches

with different heuristics.

56

5.1 MHA* With T-Graph Heuristics

Figure 5.1: Test environment used in this paper to illustrate the advantage of using MHA*.
The two lines with dots at each vertex represent E-Graph paths where the key and shield
were instead located at points A and B, respectively.

Consider the following example of a simplified game with an NPC and a dungeon

environment. The NPC can navigate the environment by walking or sneaking, but there

are obstacles in the environment blocking some paths. In addition, the NPC can complete

some spatial events in the environment, such as picking up an item. A key and a shield are

available in the environment. The NPC starts without holding the key nor the shield and

must walk over these items to pick them up. There may be an enemy in the environment

which attacks when the NPC gets near it. The enemy’s attacks hurt less if the NPC is

carrying a shield. There may be a door in the environment, which will not open unless the

NPC possesses the key.

See Figure 5.2 and Figure 5.1 to see how a dungeon configuration can change between

quests. In this example there was one dungeon iteration with a shield and an enemy, another

57

dungeon iteration with a key and a door, and finally a third iteration with a shield in a new

position, an enemy, a key in a new position, and a door.

See Figure 5.3 for a visualization of how the T-Graph method can perform well when

the demonstration path closely matches the current quest configuration, but performance

suffers severely when the quest changes.

We use hS (Euclidean Distance heuristic) as the anchor heuristic in our MHA*-based

NPC behavior planner. We use several inadmissible heuristics as follows. Let each event

instance i be defined as a partially-specified world state where an important quest event

occurs. Examples of quest events include the moment an NPC picks up an important item

and the moment an NPC interacts with an important part of the environment. A property

T (i, s) is true whenever the effect of i being Triggered is detectable on state s (e.g. after

picking up a shield, the shield is present in NPC inventory). For each event instance i, we

include an additional heuristic hQi(a, b) we call a quest-event heuristic. This heuristic

guides the search first toward the event location and then from the event location to b

according to the E-Graph heuristic. Specifically, the heuristic is computed conditionally

as defined in Equation 5.1:

hQi(a, b) =

 hS(a, i) + hT (i, b) : ¬T (i, a)

hT (a, b) : T (i, a)
(5.1)

If the event instance i has not been triggered (e.g. for the shield pick-up event, if the

shield is not yet in inventory) at state a, then hQi(a, b) is the distance from a to i plus the

E-Graph heuristic from i to b; otherwise if the event instance i has already been triggered

(e.g. if the shield is already in inventory) at a, then hQi(a, b) is simply the T-Graph heuristic

from a to b. A variation on our method would use a different heuristic (perhaps the T-Graph

heuristic) for the distance between a and i in the case ¬T (i, a), the case where event i has

not yet been triggered at a.

58

Important quest events in games are often revealed as sub-goals in the description of

a quest. For example, in Skyrim’s Bleak Falls Barrow quest, the player knows upfront

that they need to locate and acquire the “Dragonstone” item. Quest events can also be

extracted from the game data describing the world. Stored in the game data file for the

Bleak Falls Barrow location are the controls of the various puzzles and the key needed to

open the last door of the crypt. Only very rarely are there things like keys and levers added

to a game location without them being relevant to the tasks which need to be completed

in that location, so it may be safe to automatically treat these elements as quest events.

The game developer could manually mark quest events in special situations. Also, it is

not unreasonable to let NPCs “know” the locations of quest events. In Skyrim, the vast

majority of quests requiring the player to locate something also pinpoint exactly where on

the world map it can be found. The game usually provides a compass heading toward the

active quest objective, and a spell named “Clairvoyance” visualizes the path to it. NPCs

may also be able to utilize this kind of guidance without it seeming that they are cheating.

5.2 Calibration of Heuristics

As mentioned in Section 3.4.1, MHA* may suffer from poorly calibrated heuristics. Since

our inadmissible T-Graph heuristics have the same general form, they can all be calibrated

to the anchor heuristic in the same way. We multiply our inadmissible heuristics by a factor

of 1/(2 · εT) to account for the inflating effect of εT . The two in the divisor accounts for the

inadmissible T-Graph heuristics generally leading the search along longer paths than the

optimal solution. Our T-Graphs did not lead the search more than two times the optimal

path cost out of the way, but if such demonstrations were used, the factor used to calibrate

these heuristics might have to be made smaller. Because we do not adjust the anchor

heuristic, the theoretical properties of MHA* are not affected by this calibration process.

59

5.3 Theoretical Properties

Our technique inherits theoretical properties from MHA*. Though we have focused on

simply generating feasible solutions in less time, MHA* provides a bound on the cost of

the solution path. Two parameters used within the MHA* algorithm are w1 and w2. The w1

parameter inflates the heuristics used within the MHA* searches, and the w2 parameter is

a factor to prioritize the inadmissible searches over the admissible anchor search. The cost

of the solution path found by MHA* is guaranteed not to be more than w1 ∗ w2 times the

cost of the optimal solution.

Though the T-Graph heuristic on its own introduces the possibility of sub-optimality in

solution paths (in proportion to the size of the εE parameter), since we only use the T-Graph

heuristic within the inadmissible searches of MHA*, εT has no effect on the sub-optimality

guarantee of the MHA* search. MHA* provides its bound on sub-optimality independently

of how inadmissible the inadmissible heuristics are.

5.4 Analysis

To illustrate the benefit of using MHA*, we implemented a simplified NPC behavior plan-

ning problem. In the example test game (Figure 5.1) is an NPC whose state includes 2D (x

& y) position (each axis discretized into fifty possible values), a health value from 0 to 100

(discretized in multiples of twenty, so there are six possible values), stealth mode (sneaking

or not sneaking), and an inventory which can hold (or not) a key and hold (or not) a shield.

This test quest requires the NPC to acquire both the shield and the key to reach the goal.

The quest task is to traverse the dungeon space to reach the goal position G. The goal is

within a room blocked by a locked door, and the vicinity of the room can only be reached

by making it past an enemy at a choke point. The enemy can only be passed alive while

60

holding the shield. See Figure 5.4 to see an example of the kind of NPC behavior required

to complete the quest task.

Two demonstrations, shown in Figure 5.1 and separately in Figure 5.2, each from a

different quest in the same environment, are provided to the NPC. In one, there is no enemy

at the choke point, and the key is in a slightly different location. In the other, there is no

door, and the shield is in a slightly different location. The planning problem at hand is a

compound problem incorporating versions of both the key-door challenge and the shield-

bear challenge.

We compiled results for Weighted A* (including w = 1, which is standard A*), the

T-Graph algorithm (εT is its inflation factor, like E-Graph’s εE), and MHA* as described

in the previous section. Various configurations of the w, εT , w1, and w2 parameters were

tested and from these we chose the best for each algorithm. Listed in Figure 5.5 are the con-

figurations we used. Because of the poor performance of the T-Graph method at adapting

across quests, the optimum values for εT were actually all found to be 1, degenerating it to

A* search, so we picked the value 2 instead to illustrate the problem. We generated MHA*

results for εT = 2 to compare, and also for εT = 100 to show its capacity for improved

performance for the same bounds.

As seen in Figure 5.7 the overhead of MHA* can cause it to run slower than the other

methods in some cases when the bound factor is low, but as the bound factor increases,

MHA* manages to outperform the other methods. A visualization of one MHA* solution

can be seen in Figure 5.6. Compare to Figure 5.3 where Weighted A* with the T-Graph

heuristic encounters a huge local minima and must expand many states before finding a

valid solution.

As seen in Figure 5.8, our MHA* approach outperforms the other methods in terms

of expansion counts. Our MHA* method performs the best because it adapts the demon-

strations to the new event locations and utilizes information from both experience paths

61

together while searching for the goal. Note that the MHA* samples for εT = 2, N*, O*,

P*, Q*, and S* outperform the corresponding T-Graph samples H†, I†, J†, K†, and L†, even

though εT is the same and they have the same sub-optimality bound.

For a more complex problem, where each state expansion is more expensive (e.g. more

expensive successor generation due to collision checking, world modeling, etc.), MHA*’s

advantage in expansion counts outweighs the overhead of using MHA*. We tested this by

adding several parameters to the NPC state, increasing the number of successors generated

for a state from 16 to 256. Results are in Figure 5.9. The state parameters added to the

search space include rotation (θ, discretized into four possibilities), combat mode (willing

to engage in combat or not), and blocking mode (blocking incoming attacks or not).

We also tested randomizing the key and shield locations to see how our MHA* method

performs over a range of initial conditions. The key and shield were randomly placed in

feasible locations (so they could be acquired before they are needed to solve the problem).

Our results can be seen in Figure 5.10. MHA* greatly outperformed Weighted A* and

T-Graph in these trials.

62

Figure 5.2: The configurations of the dungeon when the two demonstration paths were each
recorded. On the top is a path demonstrating a behavior to pick up a shield before facing an
enemy at the choke-point. The bottom path demonstrates picking up a key before reaching
the locked door near the goal.

63

Figure 5.3: Top: The T-Graph planner is used to reach the goal quickly when given a
demonstration similar to the solution.
Bottom: The T-Graph planner encounters huge local minima when used to solve a new
scenario with the door and key introduced. Many states need to be expanded before the
goal can be found.

64

Figure 5.4: An example of a typical path planned to solve the quest task. The NPC starts at
S, the start position, moves south to pick up the key, moves northeast and around a wall to
get the shield, then moves to the center of the map to pass through the choke point with the
enemy (which can only be survived with the shield), then finally moves southeast through
the door (D), to the goal (G).

65

Label w εT w1 w2 Bound Factor
w

A 1 1
B 10 10
C 100 100
D 1000 1000
E 10000 10000
F 100000 100000

w ∗ εT
G† 1 1 1
H† 5 2 10
I† 50 2 100
J† 500 2 1000
K† 5000 2 10000
L† 50000 2 100000

w1 ∗ w2

M* 2 1 1 1
N* 2 10 1 10
O* 2 20 5 100
P* 2 200 5 1000
Q* 2 2000 5 10000
R* 2 20000 5 100000
S* 100 1 1 1
T* 100 1 10 10
U* 100 1 100 100
V* 100 20 50 1000
W* 100 200 50 10000
X* 100 2000 50 100000

Figure 5.5: The parameter configurations used to generate performance results in Figure
5.7 and Figure 5.8. † indicates a T-Graph search, * indicates an MHA* search using our
heuristics, all others are Weighted A*. The final column shows the sub-optimality bound
for each configuration, used as a common reference to compare results between algorithms.

66

Figure 5.6: Sample MHA* solution, showing limited number of states expanded despite
the compound problem.

A

B
C D E F

G†

H† I† J† K† L†

M*

N*

O* P* Q* S*

T*

U*

V*
W* X* Y*

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 10 100 1000 10000 100000

C
o

m
p

u
ta

ti
o

n
 T

im
e

(S
e
co

n
d

s)

Bound Factor

Figure 5.7: Computation time results. Reference Figure 5.5 for the configuration associated
with each label.

67

A

B
C D E F

G†

H† I† J† K† L†

M*

N*

O* P* Q* S*

T*

U*

V*
W* X* Y*

0

5000

10000

15000

20000

25000

30000

35000

40000

1 10 100 1000 10000 100000

E
x
p

a
n
si

o
n
 C

o
u
n
t

Bound Factor

Figure 5.8: Expansion count results. Reference Figure 5.5 for the configuration associated
with each label.

A

B
C D E F

G†

H†

I† J† K† L†

M*

N*

O* P* Q* S*

T*

U*

V*
W* X* Y*

0.00

50.00

100.00

150.00

200.00

250.00

1 10 100 1000 10000 100000

C
o

m
p

u
ta

ti
o

n
 T

im
e

(S
e
co

n
d

s)

Bound Factor

Figure 5.9: Computation time results for an expanded state space. Reference Figure 5.5 for
the configuration associated with each label. Note that the computation times for MHA*
have lowered significantly relative to the other search times, as compared to the standard
state space results in Figure 5.7.

68

0

5

10

15

20

25

30

10 100 1000

E
x
p

an
si

o
n
 C

o
u
n
t

x
 1

0
0

0
0

Bound Factor

Weighted A*

T-Graph

MHA* ϵᵀ=2

MHA* T-Graph

ϵᵀ=100

0

20

40

60

80

100

120

10 100 1000

C
o

m
p
u
ta

ti
o
n
 T

im
e

(S
ec

o
n
d

s)

Bound Factor

Weighted A*

T-Graph

MHA* ϵᵀ=2

MHA* T-Graph

ϵᵀ=100

Figure 5.10: Randomized initial condition results. Like in the other trials, favorable param-
eters were selected to give each algorithm its best chance.

69

Chapter 6

Cooperative Planning

Master’s thesis work by Stephen Chen [7] done in collaboration with the authors of this

thesis, extends our NPC trained behavior planning framework to incorporate player behav-

ior classification, player modeling, and cooperative behavior planning. Cooperative NPC

behavior planning is the task of planning NPC behavior so that the NPC can work coop-

eratively with the player to solve the current game goal together. A game’s level may be

designed such that an NPC’s assistance is required to complete the level. For example,

in the Angarvunde tomb level in Skyrim, a key is required to access portions of the tomb

necessary to proceed through to the end. The NPC named Medresi Dran holds the key, so

excepting the rather impolite options of pickpocketing Medresi or outright killing her, the

player needs to agree to assist her navigating the tomb and then she assists the player by

giving the player the tomb key. Some NPCs are so important to the progression of game

quests that they are made invincible by the game’s developer and cannot be killed by any

means. In existing games, these cooperative scenarios are accomplished with scripted NPC

behaviors, and with scripted behavior comes its disadvantages of development cost and in-

flexibility. The player cannot ask these NPCs to assist in arbitrary ways: they are limited to

their scripting.

70

An example of another game requiring cooperation to complete is the two-player cam-

paign of Portal 2. Portal 2’s cooperative mode is designed to be played by pairs of human

players, but a sufficiently sophisticated NPC could be substituted for one of the players,

and the player could train his NPC companion how to behave in the game. A primitive sys-

tem of this kind was released in 2014 as a mod for Portal 2, called Time Machine[46]. In

Time Machine, the player is given an opportunity to play through a level in the shoes of his

companion. Then, the player can play through again as himself while his previous actions

are replayed exactly by code controlling the NPC. In this way, the game’s puzzles can be

solved cooperatively. We endeavored to create a smarter and more flexible system like this,

capable of adapting NPC behavior to solve new problems not precisely and completely

demonstrated by the training input.

In order to use the player’s behavior in our search-based planning framework, a model

predicting the behavior of the player in the near future is required. We assume the set of the

player’s behaviors can be divided into distinct classes known as playstyles. We formalize

the process of learning this playstyles as an offline unsupervised learning problem. With a

set of learned playstyles, the player’s current behavior in the current problem can be classi-

fied into a playstyle with an online classifier. Then, in the NPC behavior planning process,

a model for predicted player behavior is extracted from the playstyle class matching the

player’s recent actions. Plans generated in this way exhibit cooperative behavior, with the

NPC assisting the player to complete the goals of the game.

6.1 Learning Playstyles

We provide our playstyle classification system with a set of example traces of player behav-

ior playing through various challenges in a video game. These traces are provided in a form

we call activities. Activities are ordered sequences of events. Events tag important interac-

71

tion of agents or objects in the game environment. For example, in Skyrim, events might

be as specific as the moment that a character swings a sword or abstract like “initiation of

combat.” Depending on how events are defined, activities can encode detailed low level

behaviors or high level tactics and strategies such as “flank the enemy” and then “engage in

melee combat.” To capture playstyles, we use abstract events like “initiating combat” and

“sneaking past an enemy.” Though outside the scope of our work, the processing of raw

gameplay data into events and activities could be done post-hoc by careful analysis of the

raw gameplay traces. Alternatively, since the environment and opponents in video games

are often controlled by such things as FSMs and RBSs, important high-level changes in

these structures (such as an enemy FSM transitioning to a “pursuit” state) can be used as

event triggers, building up an activity in an online fashion while gameplay happens.

We further process activities into what are called n-Gram histograms. This is done by

counting the number of instances of each unique substring of length n in an activity for

several values of n. Work in [47] shows that for human behavior, n-Grams tend to perform

poorly above n = 5. We use 1 ≤ n ≤ 3, a choice shown in our experiments (see results in

[7]) to be the best choice in our domain.

Next, our activity n-Grams are clustered into playstyles with an unsupervised clustering

algorithm. To facilitate clustering, we created a similarity metric between activities, defined

in Equation 6.1. Ks ∈ [0, 1] is the weight of substring s and
∑

s∈SA,SB
Ks = 1. Notation

s ∈ SA, SB means that each element of SA and SB is considered individually, even if it

appears in both SA and SB (then it is used as substring s twice). Our similarity metric

always returns similarity values in the range [0, 1]. Activities which are exactly the same

have similarity value 1, and activities with mutually exclusive substrings have similarity 0.

sim(A,B) = 1−
∑

s∈SA,SB

Ks
|f(s|HA)− f(s|HB)|
f(s|HA) + f(s|HB)

(6.1)

72

We treat all input activities as nodes in a fully connected graph. Edges between activity

nodes are assigned weights according to our similarity metric (Equation 6.1). In partially-

connected graphs, a maximal-clique is defined as the largest fully-connected subgraph.

Since our graph is fully connected, we instead find a dominant set in the graph, defined

as the maximal subgraph with high-weight edges connecting the vertices in that subgraph.

This approach is described in [48]. We identify playstyle classes by repeatedly finding the

dominant set in the graph and then removing it from the graph. Each dominant set found

represents a playstyle, since all of the behaviors in that set are highly similar to one another.

We find dominant sets in our graph using an optimization technique known as replicator

equations. For details on how this works, please see Stephen Chen’s thesis[7] and [48].

6.2 Player Behavior Classification

Now, a new player behavior activity τ can be classified as belonging to a particular

playstyle. To accomplish this, we score τ according to its similarity with each existing

playstyle class c ∈ C with the function in Equation 6.2. pc(j) is a function detailed

in [7] which represents the participation of an activity in its playstyle class (how well

it fits in). Then, the best playstyle class, c∗ for an activity is simply the one with the

highest similarity: c∗ = argmaxc∈C Ac(τ). Alternatively, similarities can be normalized

to produce a probability distribution over the possible classes. Using normalization

factor α =
∑

c∈C Ac(τ), probability that any particular class is the optimal class for τ ,

Pr[c∗ = c] = Ac(τ)
α

.

Ac(τ) =
∑
j∈c

sim(τ, j)pc(j) (6.2)

Described above is our activity classifier method for producing a single playstyle clas-

73

sification given a player activity. However, the human player may adopt a new playstyle

while playing the game, and the system should be able to detect this over time and issue

a new playstyle classification. Also, when play first begins, until a record of recent player

activity is built, the methods we described above cannot yet be used to classify the player’s

playstyle. To account for these problems, we combine several factors in a Bayesian Belief

Network (see Figure 6.1). The probability distribution on classifications at the next time

stem t + 1 given the current observations OBSt is ultimately determined by Equation 6.3.

For a detailed description of each component, see [7].

Figure 6.1: Bayesian Belief Network used in online playstyle classification.

This formulation has the following properties. It factors in confidence in the activity

classifier, weighing it lower when there few events have been observed. It provides classi-

fication at each game time step, rather than at the resolution of individual triggered events.

This is important when events are not triggered frequently. It factors in the motion of the

player as they approach new potential events not yet triggered (in addition to the events

already in the activity used for activity classification). Because of this, an online classifica-

tion is available even when the activity classifier alone cannot yet provide a classification

because there are zero or few events in the recent activity.

74

Pr[Xt+1|OBSt] = Pr[Zt = 0] · Pr[X ′t] + Pr[Z = 1] · Pr[Yt|OBSt] (6.3)

6.3 Toward Cooperative Planning

We present an example to motivate the application of cooperative planning. We use a cave

environment from Skyrim and populate it with a very difficult to defeat killer bear (B),

easy to defeat wolves (W), and difficult to defeat superwolves (W*). See Figure 6.2 which

illustrates the scenario, including start position S and goal G. The killer bear can only be

defeated when two characters combine their forces to defeat it. The superwolves are best

evaded by sneaking past them. Two playstyles relevant in this example are “COMBAT”

and “SNEAK”. In the COMBAT style, the player chooses to attack the bear, necessitating

assistance from the NPC. In the SNEAK style, the player chooses to sneak past the super-

wolves to reach the goal, requiring the NPC to also sneak past the superwolves, since it

could not defeat the bear on its own. Figure 6.3 shows example activity traces for each of

these playstyles.

Planning NPC behavior to reach the goal in this scenario results in a path past the

superwolves, shown in Figure 6.4. When a player model is introduced, planning complexity

goes up due to the extra state information needed to model the player. An example solution

with a player model (COMBAT type) is shown in Figure 6.5. As recorded in [7], search

expansion counts go up from 478 to 1797 and search times increase from 0.135 seconds

to 0.497 seconds due to the addition of the player model. The planned behavior includes a

fight with the bear, since it can now be defeated.

However, a local minima in the search space is encountered when the SNEAK playstyle

is detected and the player model attempts to sneak past the superwolves. The shortest path

distance heuristic used previously guides the NPC toward the killer bear, which cannot now

75

Figure 6.2: Cooperative NPC planning example.

be defeated since the player model predicts the player going the other way. This forms a

local minima in the search space, slowing the search process so much that it takes over five

minutes to complete. The solution path can be seen in Figure 6.6.

The Training-Graph heuristic is introduced to the problem to guide the NPC along the

appropriate route. Since the playstyle is SNEAK, a sneaking example is used as the T-

Graph, helping cut planning time nearly in half to 185 seconds. An example solution path

for this configuration is provided in Figure 6.7. Finally, we also examined the use of MHA*

with a T-Graph heuristic. The heuristics used in this instantiation of MHA* were: shortest

path distances (admissible and consistent) for the anchor search, the T-Graph heuristic, and

a special heuristic favoring states where the NPC was in sneak mode like the player. This

cut down planning times for the SNEAK playstyle to 2.047 seconds, a vast improvement

over both Weighted A* and T-Graph alone. Table 6.1 collects the experimental performance

results for these cooperative planning episodes.

76

Figure 6.3: Playstyle exemplars for COMBAT (left) and SNEAK (right).

Figure 6.4: NPC planning example.

Algorithm (and Heuristic) States Expanded Planning Time Path Cost
Weighted A* 898,008 306.003 s 140.1 s
Shortest Path
Weighted A* 578,781 185.249 s 137.1 s
T-Graph (w = 10, εT = 10)
MHA* 345,208 117.892 s 197.3 s
T-Graph (w = 10, εT = 10)
Weighted A* 17,261 4.985 s 137.1 s
T-Graph (w = 20, εT = 5)
MHA* 9,356 2.047 s 166.7 s
T-Graph (w = 20, εT = 5)

Table 6.1: NPC planning results when following the SNEAK playstyle.

77

Figure 6.5: NPC planning example, A*, with COMBAT player model.

Figure 6.6: NPC planning example, A*, SNEAK player model.

78

Figure 6.7: NPC planning example using T-Graph and player model.

79

Chapter 7

Experimental Analysis

We designed and executed several experiments to test the qualities of our methods. First, we

tested the ability of the Training-Graph heuristic to produce NPC behaviors which mimic

the demonstrated behaviors provided as training data. This is essentially a qualitative test,

so several figures illustrating the capabilities of the Training-Graph approach are presented.

Next, we provide an analysis of the computational performance of our methods in compari-

son to each other and to the alternative A* search. We demonstrate the computational plau-

sibility of using our methods to generate tactical NPC behaviors in video games. Finally,

we propose the use of skill-based rating algorithms to estimate the relative skill levels of

NPC behavior generators as a means to compare them. We present preliminary skill rating

results from pitting several NPC behavior generators against several sample quests.

7.1 Training Quality

Our goal in our work on the T-Graph and MHA* with T-Graph Heuristics methods is to en-

able planned NPC behaviors to follow training demonstrations in order to produce trained

output behaviors. This is largely a qualitative pursuit, so we provide here some demon-

80

strations of the qualitative capabilities of our work, including a small user study soliciting

human feedback.

Figure 7.1 shows that using the T-Graph heuristic in Weighted A* graph search pro-

duces solutions which mimic the training input. Figure 7.2 shows that using the T-Graph

heuristic in Weighted A* graph search produces solutions which mimic the training input

even when the training input cannot be followed exactly because it lies outside the current

problem’s search space. Figure 7.3 shows that the T-Graph heuristic will mimic the training

input even if doing so requires taking actions besides simple navigation actions. Here, the

search finds that it can use gait-changing actions to switch into sneak mode to both follow

the spatial layout of the T-Graph and avoid being spotted by the bear.

While conducting the various experiments mentioned in this chapter, we stumbled upon

a strategy for increasing the reuse of experience in MHA* solutions. In addition to the quest

event heuristics described in Section 5.1, the T-Graph heuristic (calibrated the same way

as the others) can be used as an additional inadmissible heuristic to guide the search. This

causes states near the T-Graph to be expanded. By itself, this does not have a very large

effect on the solutions found. However, if this one heuristic is expanded multiple times

per search expansion (equivalent to duplicating this heuristic multiple times), it can form

a tunnel through the search space, along the T-Graph, from which the other inadmissible

heuristics branch off toward their intermediate quest event goals. This can result in so-

lutions which reuse more of the training data. This technique for re-using more of the

demonstration data was sensitive to the parameters chosen for w1 and εT , so we did not

include it in our experimental analyses, but figures illustrating the possibilities are shown

below in Figure 7.4. A similar strategy of expanding heuristics which make more progress

toward the goal is investigated in [49], but the technique described in this paragraph is dif-

ferent in that a heuristic which reuses training data is expanded more often. We leave it to

future work to perform a thorough analysis of this technique.

81

Figure 7.1: This figure shows a cave scenario with an unbeatable killer bear in its den
labeled ‘B’. The starting position for our NPC is labeled ‘S’ and its goal location is labeled
‘G’. The T-Graph is the black segmented line on the left and the T-Graph heuristic with
Weighted A* search was used to generate these solutions. The solution is the thick dotted
line which connects ‘S’ to ‘G’.
The top image shows a solution when εT = 1, which is the same as the ordinary Weighted
A* solution for the same suboptimality bound. When εT = 1, the T-Graph has no influence
on the search process. However, when εT is increased, the search produces a solution which
mimics the training behavior encoded in the T-Graph. In the bottom image, εT = 10, which
guides the search to take the long way through the left side of the cave, following the T-
Graph which runs through the same area.

82

Figure 7.2: This figure shows a cave scenario with an unbeatable killer bear in its den la-
beled ‘B’. The starting position for our NPC is labeled ‘S’ and its goal location is labeled
‘G’. The T-Graph is the black segmented line on the left and the T-Graph heuristic with
Weighted A* search was used to generate these solutions. The solution is the thick dotted
line which connects ‘S’ to ‘G’.
In this case, as opposed to Figure 7.1, the T-Graph was recorded in an environment similar
but different to the cave environment being used for planning now. The top image shows
a solution when εT is set to a low value, too low to influence the search solution. How-
ever, the bottom image shows that when εT is increased, the search produces a solution
which mimics the training behavior encoded in the T-Graph, even though the T-Graph is
not directly accessible in this search space.

83

Figure 7.3: This figure shows another scenario with an unbeatable killer bear labeled ‘B’.
The starting position for our NPC is labeled ‘S’ and its goal location is labeled ‘G’. The
T-Graph is composed of multiple separated T-Graph components (the segmented black
lines), some of them relevant and some of them irrelevant. Moreover, one of the T-Graph
components demonstrates a dangerous maneuver moving within the killer bear’s ordinary
detection radius. In the solution (marked in red), the planner discovered that it could mimic
the training data most closely in this region and also avoid the killer bear by slowing down
and sneaking past the bear. The arrows and white dots indicate the beginning and end of
the sneaking segment.

84

0× 10× 20×

30× 40× 50×

Figure 7.4: 5 Keys 1 Door scenario (MHA*, w1 = 100, w2 = 1, εT = 100) with the T-
Graph heuristic is used as one of our MHA* inadmissible heuristics. Depicted are solutions
when the T-Graph heuristic is expanded 0, 10, 20, 30, 40, and 50 extra times per MHA*
expansion. This can enable better training data re-use in MHA*. For 0× and 10×, other
heuristics manage to guide the search to the goal before the T-Graph is explored, but for
20× and above, the search zooms along the T-Graph and encounters a key to open the door
near to the T-Graph before the ones which are farther away.

85

7.1.1 User Study

We conducted a small user study to evaluate the qualities of our results as perceived by

human subjects. Since our work can be applied to e.g. cooperative planning (see Chapter

6), it is important that the NPC behavior appeal to human players.

We invited participants to play a simple video game of our design. The game presents

a 2D environment to the player. The goal of the game is to navigate the player’s character

through the environment to reach a goal position. The player uses the computer keyboard

arrow keys to navigate. In each game scenario, there are several obstacles in the environ-

ment blocking progress to the goal. The player and NPC must both work to overcome

these obstacles and must both reach the goal to proceed. In order to keep participation time

around 20 minutes, we presented two scenarios to each participant. The first scenario is the

5 Keys 5 Doors In Series scenario we used in our computational performance results (see

Figure 7.9). For the second user study scenario, we designed a new scenario (we will call it

the “Bear Lever” scenario) required cooperative behavior to complete (see Figure 7.5). In

the Bear Lever scenario, there is a killer bear guarding a lever. The lever must be activated

to open the doors in the level which block the path to the goal. If the player walks into the

bear’s vicinity, the bear will attack. However, the NPC has a special ability enabling it to

walk past the bear undetected.

Four NCP types were used: Weighted A* (w=1000), T-Graph (w =
√
1000,εT =

√
1000), MHA* with our Quest Event Heuristics (w1 = 1000, w2 = 1, εT =

√
1000),

and a rule-based NPC which moves to a new position near the player every couple of sec-

onds. Both scenarios can be solved by all four NPC types, however the solution to the

Bear Lever scenario for the rule-based NPC may not be obvious to some participants. At

the moment each trial is started, the planner-based NPCs begin their planning process on

a new thread and when it completes, the NPC begins to execute its planned behavior. The

86

Figure 7.5: Bear Lever scenario on demonstration screen with a demonstration visualized,
and in game (note additional pathways opened).

player can move the player character immediately, even while the planned NPCs are still

planning.

First, we show participants an empty environment with no obstacles, so that they can

become accustomed to the controls. Then we begin the first section of game trials using

the 5 Keys 5 Doors In Series scenario. This scenario is repeated four times, once with each

NPC. After each of these times, we presented participants with a short questionnaire asking

several questions about the NPC’s behavior. Then, the Bear Lever scenario is shown on the

screen. We explain that the participant must draw out a line on the screen as a demonstration

for the NPC. We told them to draw the demonstration the same way they might choose to

draw a line on a map while showing another human directions. Once they were satisfied

with their demonstration, the Bear Lever scenario was presented four times to the player,

once with each NPC type. In-game, two sections of the Bear Lever obstacles are removed

so that participants can see whether each algorithm exactly re-uses the demonstration path

or takes a shortcut (see Figure 7.5). After each of the Bear Lever trials, the questionnaire

is presented to the participant, and it includes additional questions about how well the

participant thought the NPC followed the provided demonstration.

The questionnaire items included these statements:

87

• Q1: The NPC’s behavior resembles behavior that a human player would exhibit in

the same situation.

• Q2: The NPC took too much time (including time spent standing still) for a video

game.

• Q3: The NPC’s behavior was reasonable for a video game.

• Q4: The NPC’s behavior was efficient.

The statements below only appeared for the Bear Lever trials.

• Q5: The NPC followed the demonstration.

• Q6: The NPC should have followed the demonstration more closely.

• Q7: The NPC should have followed the demonstration less closely.

Participants were asked to respond to each statement on a 5-point Likert scale [50] indi-

cating how much they agreed with the statement. The choices available were “Strongly

Disagree,” “Disagree,” “Neutral,” “Agree,” and “Strongly Agree.” We also asked partici-

pants to write down any additional comments they had about the NPC behavior or about

the game. The experimenter wrote down any spoken comments made by participants while

playing.

The questionnaire choices (“Strongly Disagree,” “Disagree,” etc.) were given attitude

scores -2, -1, 0, 1, and 2, respectively. We grouped the results by NPC type and then

computed average attitude values for each statement, shown in Table 7.1.

Our MHA* with Quest Event Heuristics approach had the highest attitude rating for Q1

(human-like behavior), the lowest rating for Q2 (excessive time spent), the highest rating

for Q3 (reasonability of behavior for a video game), and the highest rating for Q4 (behavior

88

efficiency). This NPC inspired the most positive comments from participants, e.g. “I like

this one!”

The T-Graph approach had the best responses for demonstration re-use. The T-Graph

approach achieved the highest attitude rating for Q5 (following the demonstration) and the

lowest attitude rating for Q6 (the need to follow demonstration more closely). Some par-

ticipants tried to demonstrate actions to the rule-based NPC (not knowing how it worked

internally) by moving their own character around on the screen. One participant com-

mented aloud while playing “What are you thinking? Let me show you what you need to

get.”

Statement Q7 (demonstration should have been followed less closely) was given in

an attempt to understand when participants thought that demonstration was followed too

closely, at the cost of something else (path optimality, human-like behavior, etc.). Some-

times participants gave both Q6 and Q7 “Disagree” or “Strongly Disagree” responses, indi-

cating that they thought the algorithm followed the demonstration with approximately the

right level of precision. This happened most often for the T-Graph NPC. The MHA* with

Quest Event Heuristics approach had the highest attitude rating for Q7, indicating that par-

ticipants thought it followed the demonstration too closely. This is a strange result, because

MHA* solutions will only follow the demonstration after reaching the quest-event (here,

the lever), whereas T-Graph solutions follow the demonstration wherever possible. This

was noticeable to participants; one commented that because the MHA* NPC followed the

demonstration closely part of the way but also left the demonstration for a more optimal

path in another part of the level that there was a “good balance” in its behavior. Another

participant hesitated while answering Q7 because it confused them; there may have been

confusion among several of the participants and perhaps Q7 should have been worded dif-

ferently.

Trials with the rule-based NPC took the longest to solve, averaging 67.3 seconds, com-

89

pared to an average 43.6 seconds for the planned NPCs. Participants gave this NPC the least

favorable responses to Q2, indicating that they thought the NPC took too long. However,

one participant remarked that this NPC “is responsive.” Another participant commented

that it was fun to lead this NPC through the game. This NPC attracted the lowest attitude

rating for Q1 (human-like behavior), though one participant remarked that it was like lead-

ing a human child. One participant wrote in “less intelligent” on the questionnaire page.

A participant commented on the autonomy of this NPC: “[the rule-based NPC] could be

used as a companion for searching surroundings but not for following demonstrations and

doing remote tasks.” This participant also mused that “the perfect [NPC] could be a mix

of [MHA* NPC] and [Weighted A* NPC],” marking positive attitude responses for the

MHA* NPC’s quick solution time and for Weighted A* not following the demonstration

exactly.

Participants indicated that NPC “thinking” (computation) time was an extremely im-

portant factor for their enjoyment of the experience. One participant commented that he

was starting to feel competitive and wanted to beat his own completion times. Another

said that time was “all that matters to me.” We reveal completion times in the game’s user

interface, so this may have communicated a sense that the game’s objective was to finish it

as quickly as possible.

One participant commented on the particular ways that the NPCs moved. Human play-

ers, because of the arrow key controls, generally only move in the cardinal directions or at

45 degree angles diagonally, however the NPCs can trace out paths through the game world

at other angles. This participant also noticed a zig-zag movement in one of the T-Graph

solutions and he asked if this was “necessary.” Most participants had nothing to say about

the details of NPC movements.

90

NPC Time Q1 Q2 Q3 Q4 Q5 Q6 Q7
Weighted A* 43.5 0.5 0.4 0.8 0.6 0.3 -0.2 -1.0
T-Graph 44.6 0.6 0.5 1.1 0.8 1.7 -1.3 0.0
MHA* 42.8 1.5 -0.9 1.4 1.3 1.2 -0.7 0.2
Rule-based 67.3 -1.3 0.7 -0.8 -1.2 -1.3 1.5 -1.5

Table 7.1: Questionnaire response scores by NPC type. The MHA* NPC utilized our Quest
Event Heuristics.

7.2 Computational Performance

We compared the computational performance of Weighted A*, our T-Graph method, and

our MHA* method using T-Graph inadmissible heuristics. We computed parameters for

each of the methods so that we could compare results for suboptimality bounds 1, 10,

100, 1000, and 10000. To illustrate computational performance differences between our

three test algorithms and to expand on the results in [51], we authored a handful of new

test environments and quests. Each algorithm was used to solve each scenario for each of

the test suboptimality bounds. These trials were repeated 10 times and the results were

averaged. Results show that our MHA* method using T-Graph heuristics, for sufficiently

high bound settings, can find a solution in fewer state expansions than both the Weighted

A* and T-Graph methods. This, in turn, results in better computation times, especially

as world model and search branching factor become more complex. Despite the higher

suboptimality bounds, path costs remain similar across all trials.

7.2.1 Parameter Selection

To ensure a fair comparison of the three algorithms, we started by determining how to

configure the parameters of each algorithm for good performance across the experiment

scenarios. The suboptimality bound for Weighted A* is determined by its w parameter, so

w was set to match the bound. The T-Graph and MHA* methods each have two parameters

91

determining the suboptimality bound, so we tested several ways to balance these param-

eters. While performing these tests, we discovered several interesting properties of these

algorithms.

The T-Graph method’s two parameters are w and εT . As discussed in Section 4.3, w

biases the search to follow the heuristic function (which here is the T-Graph heuristic), and

εT affects how much the T-Graph heuristic function biases re-use of training data. The

original E-Graph authors suggested a ratio of 2:10 between ε (the same as our w) and

εE (like our εT) [3]. Although the T-Graph method is inspired by the E-Graph heuristic,

our formulation is different enough that we could expect a different optimal distribution

of these parameters. T-Graph parameter balance test results for suboptimality bound 10

are displayed in Figure 7.6 and results for bound 100 are displayed in Figure 7.7. From

these results, we concluded that the best parameter balance to use in our computational

performance experiments for the T-Graph method was approximately a 1:1 ratio between

the values of w and εT . When there is a 1:1 ratio, both parameters are set to the square root

of the suboptimality bound, since they are multiplied to determine the bound.

MHA* has two parameters, w1 and w2, which affect the suboptimality bound on so-

lutions. As discussed in Section 3.4, w1 acts something like w does in Weighted A*, and

w2 can cause the search to utilize the inadmissible heuristics more. Initially we computed

parameter test results using the MHA* with T-Graph heuristics algorithm as it is described

in [51] and found that there could be very dramatic performance changes with very small

changes in the parameters. This turned out to be a symptom of the inadmissible heuristics

being poorly calibrated relative to the anchor heuristic. This problem was addressed in [44]

with the Improved Multi-Heuristic A* (Improved MHA*) algorithm, but we chose here to

scale our inadmissible MHA* heuristics to better match up with the anchor heuristic. The

matter of calibrating our inadmissible heuristics is discussed in more detail in Section 3.4.1.

Parameter balancing test results for suboptimality bound 10 are shown in Figure 7.8. Re-

92

ϵT 1 : 1 ~ 1 : 2 w

N
o

rm
al

iz
ed

 E
x
p

an
si

o
n

 C
o

u
n

ts

Parameter Bias

5 Keys 5 Doors In Series

1 Key 1 Door Exact

1 Key 1 Door Close

5 Keys 1 Door

5 Keys 5 Doors In Series

Figure 7.6: This stacked area plot shows that in general, the best parameter ratio between
w and εT is around the range of 1:1 - 1:2. Each test scenario’s plotted area is determined
by expansion counts normalized so that each scenario type has the same area on the plot.

ϵT 1 : 1 ~ 1 : 2 w

N
o

rm
al

iz
ed

 E
x
p

an
si

o
n

 C
o

u
n

ts

Parameter Bias

5 Keys 5 Doors In Series

1 Key 1 Door Exact

1 Key 1 Door Close

5 Keys 1 Door

5 Keys 5 Doors In Series

Figure 7.7: This plot is like Figure 7.6, but shows the results for suboptimality bound 100.
Results for higher suboptimality bounds follow a similar trend.

93

sults for larger suboptimality bounds all showed the same trend, so they are omitted here.

From these results, we concluded that the best parameter balance to use in our computa-

tional performance experiments for the calibrated MHA* with T-Graph heuristics method

was to set w2 to 1.0 and set w1 to the suboptimality bound. We expected the parameter

ratio to be something more balanced, like the 1:1 ratio found for the T-Graph method, but

we believe that our w1-dominated balance is a consequence of the inadmissible heuristics

being calibrated as we discussed above. w2 is effectively useless, and in keeping with this is

the observation that Improved MHA*, which also solves the heuristic calibration problem,

has only one parameter affecting the suboptimality bound.

Since we use the T-Graph heuristic in our MHA* inadmissible Quest Event heuristics,

we actually have a third parameter, εT , in MHA* trials. However, it has no effect on the

suboptimality of solutions, so we simply set εT to the square root of the suboptimality

bound as done for the T-Graph-only trials so that these results could be directly compared

to T-Graph-only results.

7.2.2 Computational Performance Results

We ran experiments with all combinations of these parameter configurations for scenarios,

branching factors, and suboptimality bounds:

Scenarios:

• 1 Key 1 Door Exact, representing a simple quest task with a locked door, key, and

training data which shows exactly how to get the key on the way to the door. (Figure

7.9)

• 1 Key 1 Door Close, the same task as 1 Key 1 Door Exact, but the training data only

goes near to the key on the way to the door. (Figure 7.9)

94

w2 … w1

N
o

rm
al

iz
ed

 E
x
p

an
si

o
n

 C
o

u
n

ts

Parameter Bias

5 Keys 5 Doors In Series

1 Key 1 Door Exact

1 Key 1 Door Close

1 Key 1 Door Far

5 Keys 1 Door

Figure 7.8: This stacked area plot shows that in general, the best parameter distribution
between w1 and w2 is to set w2 to 1 and set w1 to equal the suboptimality bound. At the left
side of this plot, w2 is given a value much larger than w1 and at the right side of the plot,
the opposite is true. Each test scenario’s plotted area is determined by expansion counts,
normalized so that each scenario type has the same area on the plot. The results shown here
were computed for suboptimality bound 10, and the results for larger suboptimality bounds
all showed the same trend.

95

1 Key 1 Door Exact 1 Key 1 Door Close 1 Key 1 Door Far

5 Keys 1 Door 5 Keys 5 Doors In Series

Figure 7.9: Scenarios used in new computational performance results. T-Graphs in red.

• 1 Key 1 Door Far, the same task as 1 Key 1 Door Close, but the training path is much

farther from the key. (Figure 7.9)

• 5 Keys 1 Door, a similar task to those above, but with multiple keys which all unlock

the door and a training path passing by one of the keys. (Figure 7.9)

• 5 Keys 5 Doors In Series, a more complex task requiring each of five rooms’ keys to

be found before advancing further toward the goal. (Figure 7.9)

These scenarios were designed to expand on the situations already tested in [45]

and[51]. They represent the approximate complexity level of quest sub-goals which might

be encountered in a game like Skyrim.

Search Branching factors: 16, 256 (increased by adding dimensions to the world state

and altering the successor generation functions)

96

Suboptimality Bound Factors: 1, 10, 100, 1000, 10000

These results were computed on a Pentium i7-860 machine with 12GB of RAM. For

these particular results, our algorithm was implemented to run on a single thread in C# for

compilation with and execution in the Unity3D[52] engine. Compiled here are plots show-

ing the expansion counts, computation times, and solution costs for all of the experiments.

Plots are grouped together in Figures by scenario type.

Gaps in any of the plotted lines represent search failures due to exceeding a 30 second

search time limit. 30 seconds was chosen because it approximately matches the loading

time of video game environments – if a search can succeed in 30 seconds, the planned NPC

has a chance to begin executing its behaviors once the human player is ready to join it.

Lower computation times are always better, and if they are low enough, one could imagine

re-planning NPC behavior multiple times during the play-through of a quest to account for

unexpected changes to the game world caused by the player, or to improve solution quality

in an anytime replanning framework.

Solution Costs

Solution plan costs did differ between choices of algorithm and suboptimality bound, how-

ever the highest cost solutions never exceeded 2× the optimal cost, even when the subopti-

mality bound was as high as 10000 (meaning that in the worst case, the solution cost could

be 10000× larger than the optimal solution). Much of the extra cost in our solutions is due

to the influence of demonstration data, which is a a desired property. Our goal is not to find

optimal solutions, but solutions which follow provided demonstrations. Some of the great-

est deviation in solution cost (compared to the optimal cost) was found with the T-Graph

method for large suboptimality bounds in the 1 Key 1 Door Far scenario ((Figure 7.12).

This example was specifically designed to draw the search far out of the way of the optimal

path. A highly suboptimal cost was also seen in the 5 Key 1 Door scenario (Figure 7.13) for

97

0

1000

2000

3000

4000

5000

6000

7000

8000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Exact

Branching Factor 16

0

10000

20000

30000

40000

50000

60000

70000

80000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Exact

Branching Factor 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Exact

Branching Factor 16

0

5

10

15

20

25

30

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Exact

Branching Factor 256

0

10

20

30

40

50

60

70

80

90

100

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Exact

Branching Factor 16

0

10

20

30

40

50

60

70

80

90

100

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Exact

Branching Factor 256

Figure 7.10: Performance results for 1 Key 1 Door Exact scenario. When the T-Graph
exactly demonstrates a solution, the T-Graph results are the best when the suboptimality
bound is greater than 1, however this situation is unlikely to be found in a video game
between different quests.

98

0

1000

2000

3000

4000

5000

6000

7000

8000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Close

Branching Factor 16

0

10000

20000

30000

40000

50000

60000

70000

80000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Close

Branching Factor 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Close

Branching Factor 16

0

5

10

15

20

25

30

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Close

Branching Factor 256

0

10

20

30

40

50

60

70

80

90

100

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Close

Branching Factor 16

0

10

20

30

40

50

60

70

80

90

100

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Close

Branching Factor 256

Figure 7.11: Performance results for 1 Key 1 Door Close scenario.

99

0

1000

2000

3000

4000

5000

6000

7000

8000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Far

Branching Factor 16

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Far

Branching Factor 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Far

Branching Factor 16

0

5

10

15

20

25

30

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Far

Branching Factor 256

0

20

40

60

80

100

120

140

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Far

Branching Factor 16

0

20

40

60

80

100

120

140

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

1 Key 1 Door Far

Branching Factor 256

Figure 7.12: Performance results for 1 Key 1 Door Far scenario. When the training data
strays far from the optimal solution, performance of the T-Graph method suffers even com-
pared to Weighted A*. Our MHA* with T-Graph Heuristics approach outperforms the
other methods.

100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 1 Door

Branching Factor 16

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 1 Door

Branching Factor 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 1 Door

Branching Factor 16

0

5

10

15

20

25

30

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 1 Door

Branching Factor 256

0

20

40

60

80

100

120

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 1 Door

Branching Factor 16

0

20

40

60

80

100

120

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 1 Door

Branching Factor 256

Figure 7.13: Performance results for 5 Keys 1 Door scenario. Since the goal in this scenario
can be reached by several different behaviors, for low suboptimality bounds, the Weighted
A* and T-Graph methods naturally find a solution quickly compared to MHA*, which
spreads out its efforts. However, for higher bounds, MHA* performance is superior, even
in the trials with a lower branching factor.

101

0

2000

4000

6000

8000

10000

12000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 5 Doors In Series

Branching Factor 16

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

E
x
p

an
si

o
n

 C
o

u
n

t

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 5 Doors In Series

Branching Factor 256

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 5 Doors In Series

Branching Factor 16

0

5

10

15

20

25

30

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 5 Doors In Series

Branching Factor 256

0

50

100

150

200

250

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 5 Doors In Series

Branching Factor 16

0

50

100

150

200

250

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

P
at

h
 C

o
st

Bound Factor

Weighted A* T-Graph MHA* T-Graph

5 Keys 5 Doors In Series

Branching Factor 256

Figure 7.14: Performance results for 5 Keys 5 Door In Series scenario. In this scenario, A*
fails across the board when the branching factor is increased. Our methods, however, are
capable of succeeding and our MHA* with T-Graph Heuristics method does particularly
well even compared to T-Graph.

102

the T-Graph search with suboptimality bound 10. In this scenario, five keys can all open the

door at the goal and the T-Graph guides the search toward a key which is far out of the way.

There is another key nearly on the optimal path, so the optimal solution is to pick up that

key instead. Our search methods instead produce the alternative (but longer) solution ac-

cording to the desired behavior encoded in the demonstration. Our MHA* approach tended

to yield solution costs similar to T-Graph.. However, the computational performance ad-

vantage of the MHA* approach makes it the most appealing algorithm among the three for

solving these kinds of NPC behavior generation problems.

The Effect of Demonstration Quality

Our results for the 1 Key 1 Door “Exact,” “Close,” and “Far” scenarios (Figures 7.10,

7.11, and 7.12) reveal the effects of demonstration quality on computational performance.

Weighted A*, since it does not utilize the demonstrations, performs the same in all of these

results. However, the T-Graph algorithm exhibits its best performance when the “Exact”

demonstration is provided, since the search can proceed directly along the T-Graph from

start to goal. T-Graph performance is worst in the “Far” scenario, when the demonstration

strays far from the key necessary to reach the goal. In this case, the search process is

lead astray and needs to wastefully expand many states near the T-Graph before finding

the key. Our Quest Event (T-Graph) heuristics in MHA* fared better, since the search

is guided to the key despite the poor demonstration. For higher suboptimality bounds,

MHA* computation time results were better than the T-Graph results, except when the

demonstration exactly passed over the key (see the computation time plots in Figure 7.10).

The Effect of Demonstration Size

To test the effect of T-Graph size on computation time, we selected the 1 Key 1 Door

Close scenario and tried subdividing the T-Graph’s edges into additional pieces. We only

103

subdivide the line segments: T-Graph still traces out the same shape and still has the same

overall cost structure, so it still encodes the same demonstration and the search completes

in the same number of expansions. The computation of the T-Graph heuristic visits each T-

Graph edge once per heuristic request, so for searches with the same number of expansions,

we expect a linear increase in search times as the number of T-Graph edges increases. In

Figure 7.15, we plot the computational slowdown caused by additional T-Graph subdivision

amounts up to 200. At 200, each edge of the T-Graph has gone from having 1 component

to having 201 components, so the T-Graph is 201 times larger. The 1 Key 1 Door Close

scenario has 3 edges initially, so at 200 additional subdivisions, it has 603 edges which each

must be visited while computing the T-Graph heuristic, yielding a 7.9× overall search time

increase. If a player is providing a demonstration by drawing it out on a map of the game

environment, as we tested in our user study (Section 7.1.1), they are unlikely ever to use

so many segments. A user interface enabling demonstration authoring like this could be

programmed to limit the number of segments available, putting a cap on the computational

slowdown caused by demonstration segment count. Alternatively, demonstration paths can

be downsampled, at the risk of losing some detail in the demonstration which might be

important.

The Effect of Additional Quest Events

We tested the relationship between quest event count and computation times for our MHA*

with T-Graph Heuristics approach. Since each quest event means the addition of another

heuristic to the search, we expected that computation times would slow down in proportion

to the number of uninformative quest events. We tested the addition of 1 to 50 randomly-

positioned quest events and repeated these tests to average results. We computed these

results for both the 1 Key 1 Door Close scenario and the 5 Keys 5 Doors In Series scenario,

to see if the scenario structure would make a difference. As seen in Figure 7.16, it did

104

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200

Sl
o

w
d

o
w

n
 F

ac
to

r

Demonstration Subdivisions

Figure 7.15: Effect of demonstration size on computation times.

105

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50

Sl
o

w
d

o
w

n
 F

ac
to

r

Additional Uninformative Quest Events

1 Key 1 Door Close

1

6

11

16

21

26

31

36

41

46

0 10 20 30 40 50

Sl
o

w
d

o
w

n
 F

ac
to

r

Additional Uninformative Quest Events

5 Keys 5 Doors In Series

Figure 7.16: Effect of uninformative quest events on computation times.

make a difference. Adding uninformative quest events dilutes the helpful guidance of the

informative heuristics, degrading search performance. The effect is more pronounced in

some quest and environment types, and gets worse as the number of additional quest events

increases. These results show that it is important to limit the number of uninformative

quest events used. If instead of using random positions, additional quest-event heuristics

are added by mimicking the existing quest event heuristics in a scenario, the slowdown

observed is much smaller, and seems to increase in a linear manner (see Figure 7.17). In

fact, in the open environment of the 1 Key 1 Door Close scenario, duplicating the key quest

event actually improves performance until the number of duplications exceeds 50. This is

because the additional heuristics guide the search toward the key faster.

7.3 NPC Skill

We investigated the use of rating systems such as ELO[53], Glicko[54], Glicko-2[55], and

TrueSkill [6], to learn a rating of the relative difficulties of different scenarios and the

relative skill levels of planning algorithms. Normally these systems are used to rate human

game players when playing games against one another.

106

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0 10 20 30 40 50

Sl
o

w
d

o
w

n
 F

ac
to

r

Additional Uninformative Quest Events

1 Key 1 Door Close

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 10 20 30 40 50

Sl
o

w
d

o
w

n
 F

ac
to

r

Additional Uninformative Quest Events

5 Keys 5 Doors In Series

Figure 7.17: Effect of duplicated quest event heuristics on computation times.

We borrow an idea from [56], where a rating of level difficulty and player skill is learned

by treating each level and player as opponents to one another: if the player can solve the

problem presented by a level, the player is counted as the winner, but if the player becomes

stuck, the level is counted as the winner. In this context and also in ours, players (NPC

behavior generators) do not play against one another and levels (scenarios) cannot play

against one another. Despite this, rating systems produce rating values which can be used

to compare all entities.

Rating systems have been used to rate the skill levels of competitive computer-

controlled video game players (bots). In [57], ELO is used to rate game AI bots in

matches against other bots in the real-time strategy game StarCraft. That work also utilizes

a proprietary rating system named “SSCAIT rank”[58], based on the “ICCUP ranking

system”[59] used for rating competitive human StarCraft game players. Another bot

competition, The Student StarCraft AI Tournament (SSCAIT)[58], also uses ELO ratings

to compare bot performance.

A simple rating function for our analysis could be devised based on the numbers or

percentages of successful NPC behavior plans (under a time limit, as in Section 7.2.2).

In [60], the problems using this kind of “Empirical Winning Rate” (EWR) are discussed.

107

EWR does not take into account the difficulty of a particular opponent; winning against a

strong opponent should count for more than winning against an easy opponent. We chose

here to use the TrueSkill rating system to rate the relative skill levels of three NPC behavior

generation algorithms.

We began by using the 30 second time limit success and failure results from Section

7.2.2, but found that in some cases, methods which differed greatly in performance were

rated the same. For example, for the 5 Keys 5 Doors In Series scenario results (Figure

7.14), both the Weighted A* and MHA* With T-Graph Heuristics methods have the same

numbers of successes and failures. This produced approximately the same rating for these

two algorithms, but the MHA* approach had significantly faster computation times.

TrueSkill can take into account “partial play” information about how much time a

player spent in a competition. We tested using this as a means to break rating ties when one

algorithm finished faster than another. We indicated to TrueSkill the fraction of the 30 sec-

ond time limit that the algorithm used to generate its plan as its partial play time. Because

of how TrueSkill uses partial play information, this did not work as a means to break rating

ties. For example, imagine two teams of two human players each competing in a real world

physical sport. Half of the way through a match, one of the players on Team 1 suffers an

injury and sits out the rest of the match. If the one-player team wins against the two-player

team despite its disadvantage, TrueSkill rates the disadvantaged team’s remaining player

slightly higher than it would otherwise. However, since the injured player was not there the

full time, the results of the match do not affect the injured player’s rating as strongly as if

he were there the entire time. This seems to hold even for 1-vs-1 matches. When the partial

play time is over 50% of the match, a win counts for a little bit extra, but when partial

play time is under 50%, a win counts for a little bit less than it would otherwise. In the

context of our skill analysis, when an algorithm used less than 50% of the time limit, it had

a negative effect on the rating. It is thus clear that algorithm computation time differences

108

are not analogous to partial play times, so we had to look at a different solution.

To avoid these problems, instead we computed results for a range of several time limits

up to 30 seconds. We excluded results for suboptimality bound 1. In the case of subop-

timality bound 1, it never makes sense to use an algorithm with more overhead than A*,

so these results are irrelevant to skill rating. We only used results for branching factor 256

because this posed a harder challenge to the planners and therefore allowed better rating

discrimination between them. To compare algorithms with scenarios at different time lim-

its in a rating system, we could consider each scenario as being instantiated once in the

ratings for each time limit tested (e.g. the 1 Key 1 Door Close scenario would be rated

separately for time limit 10 as for time limit 15). Instead, we decided to treat time limits

and scenarios as teammates in 2-vs-1 matches against NPC behavior generation algorithms.

This discriminates better between the algorithms according to their computation times and

yields in the end a single difficulty rating for each scenario, a difficulty rating for each time

limit, and a skill rating for each algorithm. Because the ratings are done one trial at a time,

the order of the ratings has some effect on the rating outputs. We repeated the full set of

ratings 10 times and randomized the order of ratings each time to ensure that the ratings

have all converged.

Skill rating results can be seen in Table 7.2. Each TrueSkill rating represents a normal

distribution with mean µ and standard deviation σ. For each entry in the table, the TrueSkill

µ value indicates the learned mean skill level. The σ value represents the standard devia-

tion of the skill level for that entity. Default parameters of µ = 50 and σ = 50 ÷ 3 were

used to initialize all ratings before processing. A conservative estimate of the true skill

of each entity is provided in the last column of Table 7.2. This column holds TrueSkill’s

conservative skill rating estimate, computed as Rating = µ − 3σ. Thus, with over 99%

certainty (the area of a normal distribution above µ − 3σ), the entity’s true skill is at or

above TrueSkill’s conservative skill rating. Our MHA* With T-Graph Heuristics method

109

TrueSkill
µ σ Skill

Algorithms
Weighted A* 68.2 0.984 65.2

T-Graph 66.9 1.0 63.9
MHA* T-Graph 80.2 1.12 76.9

Scenarios

1 Key 1 Door Exact 22.9 1.04 19.8
1 Key 1 Door Close 24.7 1.07 21.5

1 Key 1 Door Far 31.1 1.02 28.0
5 Keys 1 Door 21.9 1.07 18.7

5 Keys 5 Doors In Series 34.1 0.985 31.2

Time Limits

3 50.3 0.955 47.4
6 48.4 0.941 45.6
9 47.7 0.941 44.9

12 44.7 0.934 41.9
15 36.1 1.01 33.1
18 35.6 1.02 32.5
21 33.3 1.07 30.1
24 31.6 1.11 28.3
27 27.0 1.27 23.2
30 11.2 3.2 1.64

Table 7.2: Skill rating results for branching factor 256.

110

tops the skill ratings with Skill=76.9, followed Weighted A* with Skill=65.2, and then our

T-Graph method with Skill=63.9. Since we have also treated the scenarios as competitors

in the rating process, we have learned µ values for each scenario as well. These represent

the relative difficulty of finding a solution for each scenario. TrueSkill regards the 5 Keys

5 Doors In Series scenario as the most difficult, at Rating=31.2. This parallels the com-

putational performance results, where there were many failures to complete a plan within

the 30 second time limit for this scenario. The 5 Keys 1 Door and 1Key 1 Door Exact sce-

narios are rated as the easiest. These results also parallel the computational performance

results, where even for suboptimality bound 10, all algorithms managed to find solutions

well within the 30 second time limit.

The TrueSkill rating system permits hypothetical matches to be evaluated for quality

even if the competing players or teams have never faced one another before. TrueSkill’s

design operates on an assumption that the skill level of a team is equal to the sum of the

skill levels of the team’s members [61]. This ignores the possibility that the performance

of a team could be greater than the sum of its parts. Hypothetical pairings of algorithm and

scenario/time limit teams can be evaluated for an estimate of whether the algorithm could

produce a solution to the scenario under the imposed time limit, even if that combination

had never been tried before. If we look at the ratings of algorithms and of scenarios, we

see that all algorithms rate higher than all of the scenarios. This may reflect the fact that

all algorithms here are “complete”, and in the absence of a time limit will eventually find

a solution if a solution exists. However, since we performed all TrueSkill rating operations

as 1-vs-2 team matches, to properly compare an algorithm’s skill against a scenario, the

scenario should be paired with a time limit.

For example, Weighted A*’s TrueSkill rating of 65.2 tested against scenario 5 Keys

1 Door (rating 18.7) and time limit 6s (rating 45.6) on a team together (combined rating

64.3) is close match predicting a tie. In our experiments of this configuration, Weighted A*

111

EWR

Algorithms
Weighted A* 55.5%

T-Graph 58.0%
MHA* T-Graph 86.0%

Scenarios

1 Key 1 Door Exact 18.3%
1 Key 1 Door Close 25.0%

1 Key 1 Door Far 40.0%
5 Keys 1 Door 18.3%

5 Keys 5 Doors In Series 65.8%

Time Limits

3 70.0%
6 63.3%
9 61.7%

12 50.0%
15 23.3%
18 21.7%
21 18.3%
24 15.0%
27 8.33%
30 3.33%

Table 7.3: EWR results for branching factor 256.

always succeeded, however computation times average 5.6s, nearly at the 6s time limit.

Another example: MHA* With T-Graph Heuristics (rating 76.9) vs. scenario 1 Key

1 Door Exact (rating 19.8) and time limit 30 (rating 1.64) on a team together (combined

rating 21.4). This is a highly unbalanced match strongly in favor of the search algorithm.

Indeed, all experiments of this configuration yielded successful solutions for the algorithm.

We compared the TrueSkill rating results with the Empirical Win Rate (EWR) results

for the same data from Section 7.2.2. EWR results are available in Table 7.3. The rela-

tive ordering of these results matches the relative ordering of the TrueSkill skill values for

the same scenarios and time limits. However, the relative ordering of algorithms does not

match. The MHA* with T-Graph heuristics method had the highest EWR and the highest

skill rating, but Weighted A* had a higher skill rating even though T-Graph had a higher

EWR. This means that the times when Weighted A* succeeded and T-Graph failed, it was

112

in trials with more difficult scenarios and time limits than the times that T-Graph succeeded

and Weighted A* failed. The TrueSkill ratings suggest that the 1 Key 1 Door Far scenario

(rating 28.0) and the 24 second time limit (rating 28.3) both contribute approximately the

same amount of challenge to algorithms attempting to produce an NPC behavior plan suc-

cessfully. The same kind of information cannot be gleaned from EWR results, where, e.g.,

the 1 Key 1 Door Far scenario has EWR 40.0% and time limit 24 has EWR 15.0%.

We generated our TrueSkill ratings by considering only wins and losses, however it

may yet be possible to incorporate the “margin of victory” (in our case, the margin of

computation time) into the rating system. In our context, the computation time of an al-

gorithm’s solution could be treated as a kind of score so that even when two algorithms

both succeed, the faster one would rate higher. It might also be possible to score success

according to how closely a solution re-uses demonstration data (with e.g. dynamic time

warping [62]), for ratings based on trainability. ELO has been adapted to account for mar-

gin of victory [63, 64]. TrueSkill has also been extended to accommodate “score-based

match outcomes”[65]. We leave it as future work to use one of these rating systems which

take into account the margin of victory to analyze results like ours.

Another avenue for future work in this area is the use of skill rating systems to compare

the skill of NPCs with the skill of human players. In this way, players might be matched

with opponents of similar skill. Also, weak players might be matched with strong NPCs

to help them solve difficult challenges or defeat powerful opponents. Using the team-

based ratings enabled by TrueSkill, NPC skill and player skill can be analyzed in the same

framework with quest difficulty, time limit difficulty, and other game elements which affect

how challenging the game can be. Skill ratings cannot be used to determine what makes a

skilled player better than an unskilled one. However, given a process to learn the methods

of a skilled player, skill ratings could inform that process better than empirical winning

rates alone.

113

Chapter 8

Concluding Remarks

8.1 Discussion and Future Work

A* search and other heuristic graph search techniques are most widely used in video games

for navigation path planning. Our heuristic formulations for planning NPC behavior from

demonstration can trivially be applied to path planning. This is accomplished by only

including navigation state in the search space. Without modifying a path planner’s cost

function, the T-Graph heuristic can be used to make certain routes through a game envi-

ronment more likely to be used by NPCs. This might be used to help keep NPCs from

planning “as the crow flies” shortest-distance paths when there are more sensible human-

like routes to take. MHA* with inadmissible heuristics like ours based on the T-Graph

would be easy to apply to video game path planning most likely improving computation

times and permitting training of path outputs.

As noted in Section 4.4, our T-Graph heuristic is not ε-consistent, so care must be taken

if the T-Graph heuristic is used in a domain which requires guarantees on the suboptimality

of solutions. Weighted A* search with the T-Graph heuristic does not provide a guarantee

that solutions will be at most ε times the cost of the optimal solution. However, other

114

algorithms such as MHA* can utilize some arbitrarily inconsistent heuristics while still

providing guarantees on the suboptimality of solution costs.

In Section 7.2.1 we found that a 1:1 ratio of the parameters w and εT worked well in

our trials, however this might need to be assigned differently for different types of prob-

lems. For w1 and w2 in MHA*: though we found that all weight should be put on w1, for

uncalibrated heuristics, w2 should be raised. Alternatively, we suggest exploring the use of

a different algorithm like Improved MHA*[44], which does not have a second parameter

to tune.

One can imagine many situations in video games where training data collected in the

past is not relevant to the current problem at hand. For example, see our experimental re-

sults in Section 7.2.2 for the 1 Key 1 Door Far scenario, which was specifically crafted to

lead T-Graph search astray, but represents a situation that could easily be encountered in

practice when items like the key in this example move far from their previous locations.

Computation times using Weighted A* and the T-Graph heuristic can be very bad in this

kind of situation. It would be important to develop methods to filter irrelevant experience.

Multi-heuristic approaches can avoid some of these problems, but it is still true that irrel-

evant experience will degrade search performance. Machine learning techniques might be

used to help classify experience traces as relevant or irrelevant.

The authors of [8] describe a method using nondeterministic NPC behavior planning

to generate diverse solution policies which can be executed as FSMs controlling NPC be-

havior. We imagine that an application of nondeterministic heuristic search ideas and the

use of our T-Graph heuristic could bias this kind of FSM-generation process to produce

FSMs encoding trained NPC behaviors. The use of FSMs is desirable in video game NPC

control because they are computationally inexpensive at runtime. Since behavior trees can

be thought of as hierarchical finite state machines, we imagine the same approach could be

applied to the automated generation of trained behavior trees using heuristic search.

115

Since our approach requires a discretization of the game state space, our method may

be applied well to games which are inherently discretized in a reasonable way, such as

board games and tile-based games. This includes some three-dimensional games, such

as Minecraft. In our experiments, we sometimes observed strange behavior because our

discretization of the game world did not correspond closely enough with the spatial and

temporal continuity of Skyrim. In some instances we had to modify our world model to be

more conservative. For example, we had to make the killer bear enemy dole out additional

damage in simulation and use an inflated detection radius. Otherwise, the planner could

generate edge-case solutions stepping near to the bear and then running away. These edge-

case solutions worked in simulation but did not work in real-time in the continuous game

world. This same kind of problem is mentioned in [66], where attack ranges had to be

inflated and a special movement delay had to be added to account for shortcomings in

the model compared to the full game. An interesting avenue for future work would be

implementing the T-Graph or MHA* With T-Graph Heuristics approaches in the framework

of Goal-Oriented Action Planning (GOAP)[11]. Planning trained tactical NPC behavior at

that level of abstraction could yield good NPC behavior solutions for video games in much

faster computation times. It may be most fruitful to use a system at a higher level of

abstraction, such as GOAP, because low-level discrepancies are expected and accounted

for with flexibility in the control schemes used to execute a high-level plan.

In the same vein, another approach which we think could pair well with our work is

that of State Lattice Planning with Controller-based Motion Primitives [67, 68], where

controller-based actions make up some of the edges on the search graph. We believe that

video games are full of many scenarios which can effectively be handled by a controller

(for example, melee combat with an enemy, or the navigation of obstacles such as moving

platforms requiring precision and dexterity). The “controllers” used could be defined using

other NPC behavior techniques such as FSMs or behavior trees. Planning detailed behavior

116

for some of these things (without controllers) could require adding dimensions to the search

space and refining the discretization of the search space. However, the use of controller-

based motion primitives able to accomplish the same things could permit a simpler (and

faster) search process.

Our two NPC behavior training methods suffer from the limitation that their guidance

is dependent on the spatial configuration of demonstrations. When the spatial aspects of

a demonstration do not correspond well with the spatial layout of the problem at hand, it

may happen that the planner completely ignores the demonstration data, even though it

might have been a demonstration of a useful high-level tactic. We leave it as future work

to devise ways to utilize demonstration in the planning process without dependence on the

spatial similarity of demonstration to the problem at hand. The abstract tactic encoded in

a demonstration could be extracted, generalized, and then applied to new problems with

differing spatial arrangements. The events and activities used for playstyle classification in

Chapter 6 are a possible first step in this direction.

Because of the geometric formulation use in step 4 of the T-Graph procedure described

in Section 4.3, triangle inequality h(s, a) + h(a, s′) ≥ h(s, s′) must be satisfied. This

is equivalent to the condition defining a search property called h-consistency. When the

simple graph heuristic used within the T-Graph computation is based on Euclidean distance

in the search space (as it is in our work), h-consistency is trivially satisfied, however there

can be other search spaces where it is not. h-consistency is an assumption of our T-Graph

heuristic formulation.

We think that rating systems may be a useful tool in the development of NPC control

schemes for games. Skill ratings offer some insights into the nature of NPC behavior

planning challenges that empirical win rates cannot. We hope to see future work use rating

systems to determine which NPC behavior generation schemes could pair best with humans

in cooperative challenges. Human player skill rating information could inform attempts to

117

analyze which behavior patterns are most associated with skilled players and then use these

skilled behaviors to train NPC behavior via our methods.

Finally, we review what it would take to implement our methods in a new video game.

We found in our user study that players were eager to demonstrate behavior to NPCs, even

without being told that there was any NPC control mechanism utilizing demonstration. A

video game implementation requires a gameplay feature allowing players to demonstrate

behaviors to the NPC. This could take the form of a play diagram in an American foot-

ball playbook, wherein the player draws out a path for the NPC to take. Alternatively,

the player could act out a demonstration in-game for the NPC to use later. We took the

latter approach in our example implementation for Skyrim (see Section 4.5) and the for-

mer approach in our user study (see Section 7.1.1). As discussed above, there should be

a mechanism to filter out irrelevant demonstrations since they negatively affect search per-

formance. If our MHA* with Quest Event Heuristics approach is used, performance is best

if the quest events correspond with places in the environment where visitation is required

to complete the task at hand. Care should be taken while choosing these quest events; it

is not a good idea to arbitrarily create a quest event for every potentially-relevant place in

the environment. We reviewed some of these considerations in Section 5.1. Our planner

output is a sequence of actions the NPC can take to accomplish its goal. Depending on

the mechanics of the game and the discretization of the search space, path-following code

may be needed to translate the planned behavior into high-resolution in-game control for

the NPC. Because of nondeterminism in the behavior of the player (and potentially, other

game elements), it would be important to monitor the state of the game world during NPC

behavior execution. If the game state strays far from the game state as modeled during the

NPC behavior planning process, a new behavior plan should be generated. The automated

FSM-generation technique discussed above offers one solution to this problem, since it in-

corporates nondeterminism in the planning process and in the structure of the generated

118

FSMs. Finally, cooperative companion NPC behavior planning is best done with good

models of player behavior, as we discussed in Chapter 6.

8.2 Conclusions

In this thesis, we present our work on training video game NPC behaviors. We accomplish

NPC behavior training by using our Training-Graph heuristic to bias a search-based plan-

ning process. We adapt training data to novel game quests by using Multi-Heuristic A*

with heuristics based on the Training-Graph heuristic.

We presented a description and analysis of the Training-Graph heuristic, which allows

training data to be used to guide an NPC behavior planner graph search. The T-Graph

approach solves problems encountered when trying to use the E-Graph heuristic on video

game training data.

We described and analyzed an approach using Multi-Heuristic A* search with the T-

Graph heuristic to better adapt the planning process to new quest tasks. Because MHA*

shares partial solutions while being guided by multiple different heuristics, our method also

enables demonstrations of particular tactics to be combined to solve a compound problem

quickly.

We described work done in collaboration with another researcher on playstyle classifi-

cation, player modeling, and cooperative planning. This work was built as an extension to

our framework and tested our methods in the context of cooperative planning.

We tested and analyzed the qualitative performance of both of our algorithms. We

implemented both methods as extensions to the popular video game Skyrim and evaluated

their potential impact on human gameplay with a small user study. Both of our methods

tend to re-use demonstration data to find a trained behavior solution to quest tasks. We

also tested and analyzed the computational performance of our methods and reviewed their

119

theoretical properties. We tested a means to rate and compare the skill of algorithms and

the difficulty of planning challenges.

120

Bibliography

[1] Ian Millington and John David Funge, Artificial Intelligence for Games 2nd Edition,

Morgan Kaufmann, 2009.

[2] P.E. Hart, N.J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-

tion of minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions

on, vol. 4, no. 2, pp. 100–107, July 1968.

[3] Mike Phillips, Benjamin Cohen, Sachin Chitta, and Maxim Likhachev, “E-graphs:

Bootstrapping planning with experience graphs,” in Proceedings of Robotics: Science

and Systems, Sydney, Australia, July 2012.

[4] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor Hwang, and

Maxim Likhachev, “Multi-heuristic A*,” International Journal of Robotics Research

(IJRR), 2015.

[5] Mike Phillips, Victor Hwang, Sachin Chitta, and Maxim Likhachev, “Learning to

plan for constrained manipulation from demonstrations,” in Proceedings of Robotics:

Science and Systems, Berlin, Germany, June 2013.

[6] Thomas Minka, Thore K H Graepel, and Ralf Herbrich, “Determining relative skills

of players,” U.S. Patent US8538910 B2, 2013.

121

[7] Stephen Chen, “Learning player behavior models to enable cooperative planning for

non-player characters,” M.S. thesis, Carnegie Mellon University, 2017.

[8] Alexandra Coman and Héctor Muñoz-Avila, “Automated generation of diverse npc-

controlling fsms using nondeterministic planning techniques,” in Proceedings of the

Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment, 2013.

[9] Damian Isla, “Handling complexity in the halo 2 ai,” in GDC 2005 Proceedings,

2005.

[10] Owen Macindoe, Leslie Pack Kaelbling, and Tom´as Lozano-P´erez, “Pomcop: Be-

lief space planning for sidekicks in cooperative games,” in Proceedings, The Eighth

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,

2012.

[11] Jeff Orkin, “Symbolic representation of game world state: Toward real-time planning

in games,” in Proceedings of the AAAI Workshop on Challenges in Game AI, 2004.

[12] Donald Kehoe, “Designing artificial intelligence for games,” Online,

jul 2009, https://software.intel.com/en-us/articles/

designing-artificial-intelligence-for-games-part-1.

[13] James Wexler, “Artificial intelligence in games: A look at the smarts behind lion-

head studio’s “black and white” and where it can and will go in the future,” On-

line, may 2002, https://www.cs.rochester.edu/~brown/242/assts/

termprojs/games.pdf.

[14] Jack Belzer, Albert George Holzman, and Allen Kent, Encyclopedia of Computer

Science and Technology, vol. 25, p. 73, CRC Press, 1975.

122

https://software.intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1
https://software.intel.com/en-us/articles/designing-artificial-intelligence-for-games-part-1
https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf
https://www.cs.rochester.edu/~brown/242/assts/termprojs/games.pdf

[15] Alexander Shoulson, Francisco Garcia, Matthew Jones, Robert Mead, and Norman

Badler, “Parameterizing behavior trees,” in Motion in Games, Jan Allbeck and Pet-

ros Faloutsos, Eds., vol. 7060 of Lecture Notes in Computer Science, pp. 144–155.

Springer Berlin / Heidelberg, 2011.

[16] Damian Isla, “Building a better battle: Halo 3 ai objectives,” in Game Developers

Conference, 2008.

[17] Marc-Antoine Argenton, Max Dyckhoff, Chris Hecker, and Lauren McHugh, “Three

approaches to halo-style behavior tree ai,” in Game Developers Conference, 2007.

[18] Greg Snook, “Simplified 3d movement and pathfinding using navigation meshes,” in

Game Programming Gems, Mark DeLoura, Ed., pp. 288–304. Charles River Media,

2000.

[19] Jeff Orkin, “Three state and a plan: The a.i. of f.e.a.r.,” in Game Developers Confer-

ence, 2006.

[20] Richard E Fikes and Nils J Nilsson, “Strips: A new approach to the application of

theorem proving to problem solving,” Artificial Intelligence, 1971.

[21] Edmund Long, “Enhanced npc behaviour using goal oriented action planning,” M.S.

thesis, University of Abertay Dundee, 2007.

[22] Christopher Geib, Janith Weerasinghe, Sergey Matskevich, Pavan Kantharaju, Bart

Craenen, and Ronald P. A. Petrick, “Building helpful virtual agents using plan recog-

nition and planning,” in Proceedings of the Twelfth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE-16), 2016.

123

[23] Nathan R. Sturtevant, “Incorporating human relationships into path planning,” in

Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, 2013.

[24] Alberto Uriarte and Santiago Ontanon, “Improving monte carlo tree search policies

in starcraft via probabilistic models learned from replay data,” in Proceedings, The

Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment (AIIDE-16), 01 2016.

[25] E.W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[26] Ira Pohl, “Heuristic search viewed as path finding in a graph,” Artificial Intelligence,

vol. 1, pp. 193–204, 12 1970.

[27] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* search with provable

bounds on sub-optimality,” in Proceedings of Conference on Neural Information

Processing Systems (NIPS), S. Thrun, L. Saul, and B. Schölkopf, Eds. 2003, MIT

Press.

[28] Anthony Stentz, “Optimal and efficient path planning for unknown and dynamic

environments,” International Journal of Robotics and Automation, vol. 10, pp. 89–

100, 1993.

[29] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown terrain,”

Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 354–363, June 2005.

[30] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime dynamic

a*: An anytime replanning algorithm,” in International Conference on Automated

Planning and Scheduling. 200, AAAI.

124

[31] Jérôme Barraquand, Lydia Kavraki, Jean-Claude Latombe, Tsai-Yen Li, Rajeev Mot-

wani, and Prabhakar Raghavan, “A random sampling scheme for path planning,” IN-

TERNATIONAL JOURNAL OF ROBOTICS RESEARCH, vol. 16, pp. 759–774, 1996.

[32] Michael Phillips, Experience Graphs: Leveraging Experience in Planning, Ph.D.

thesis, Carnegie Mellon University, 2015.

[33] Steven M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”

Tech. Rep. TR 98-11, Computer Science Department, Iowa State University, 1998.

[34] James J. Kuffner Jr. and Steven M. Lavalle, “Rrt-connect: An efficient approach to

single-query path planning,” in Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), 2000, pp. 995–1001.

[35] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” Robotics and

Automation, IEEE Transactions on, vol. 12, no. 4, pp. 566–580, Aug 1996.

[36] V. Boor, M. Overmars, and A van der Stappen, “The gaussian sampling strategy for

probabilistic roadmap planners,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA ’99), 1999, vol. 2, pp. 1018–1023.

[37] R. Bohlin and E. Kavraki, “Path planning using lazy prm,” in IEEE International

Conference on Robotics and Automation, Proceedings (ICRA ’00), 2000, vol. 1, pp.

521–528.

[38] Jyh-Ming Lien and Yanyan Lu, “Planning motion in similar environments,” in Pro-

ceedings of Robotics: Science and Systems V, Seattle, USA, June 2009.

125

[39] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. A.

Bagnell, and S. Srinivasa, “Chomp: Covariant hamiltonian optimization for motion

planning,” International Journal of Robotics Research, 2013.

[40] Chelsea Finn, Sergey Levine, and Pieter Abbeel, “Guided cost learning: Deep inverse

optimal control via policy optimization,” in Proceedings of the 33rd International

Conference on Machine Learning, 2016, vol. 48.

[41] Brenna Argall, Sonia Chernova, Manuela Veloso , and Brett Browning , “A survey of

robot learning from demonstration,” Robotics and Autonomous Systems, vol. 67, pp.

469–483, 2009.

[42] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg, “A robot path planning frame-

work that learns from experience.,” in ICRA. 2012, pp. 3671–3678, IEEE.

[43] Judea Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[44] Venkatraman Narayanan, Sandip Aine, and Maxim Likhachev, “Improved multi-

heuristic a* for searching with uncalibrated heuristics,” in Proceedings of the Inter-

national Symposium on Combinatorial Search (SoCS), 2015.

[45] John Drake, Alla Safonova, and Maxim Likhachev, “Demonstration-based training

of non-player character tactical behaviors,” in Proceedings of the Twelfth Conference

on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2016.

[46] Ruslan “Strideman” Rybka, “Thinking with time machine,” Online, http://www.

moddb.com/mods/portal-2-thinking-with-time-machine.

[47] Ian Millington and John Funge, Artificial Intelligence for Games, Second Edition,

Morgan Kaufmann Publishers, Inc., 2008, ISBN: 0123747317, 9780123747310.

126

http://www.moddb.com/mods/portal-2-thinking-with-time-machine
http://www.moddb.com/mods/portal-2-thinking-with-time-machine

[48] Massimiliano Pavan and Marcelo Pelillo, “A new graph-theoretic approach to clus-

tering and segmentation,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2003.

[49] Michael Phillips, Venkatraman Narayanan, Sandip Aine, and Maxim Likhachev, “Ef-

ficient search with an ensemble of heuristics,” in International Joint Conference on

Artificial Intelligence (IJCAI), Pittsburgh, PA, July 2015.

[50] Rensis Likert, “A technique for the measurement of attitudes,” Archives of Psychol-

ogy, 1932.

[51] John Drake, Alla Safonova, and Maxim Likhachev, “Towards adaptability of

demonstration-based training of npc behavior,” in Proceedings of the AAAI Confer-

ence on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2017.

[52] “Unity 2017: The world-leading creation engine for gaming,” Online, 2017o,

https://unity3d.com/unity.

[53] Arpad E. Elo, The Rating of Chessplayers, Past and Present, Arco Pub., 1978.

[54] Mark E. Glickman, “Parameter estimation in large dynamic paired comparison ex-

periments,” Applied Statistics, vol. 48, pp. 377–394, 1999, Part 3.

[55] Mark E. Glickman, “Dynamic paired comparison models with stochastic variances,”

Journal of Applied Statistics, vol. 28, no. 6, pp. 673–689, 2001.

[56] Anurag Sarkar and Seth Cooper, “Level difficulty and player skill prediction in human

computation games,” in Proceedings of the Thirteenth AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE-17), 2017.

127

https://unity3d.com/unity

[57] Michal Certicky and David Churchill, “The current state of starcraft ai competitions

and bots,” in AIIDE 2017 Workshop on Artificial Intelligence for Strategy Games, 10

2017.

[58] “Student starcraft ai tournament & ladder,” Online, https://

sscaitournament.com/index.php?action=scoresCompetitive.

[59] “Starcraft rating system,” Online, https://iccup.com/starcraft/sc_

rating_system.html.

[60] Severin Hacker and Luis von Ahn, “Matchin: Eliciting user preferences with an

online game,” in Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems, 10 2009, pp. 1207–1216.

[61] Jeff Moser, “Computing your skill,” Online, mar 2010, http://www.

moserware.com/2010/03/computing-your-skill.html.

[62] HIROAKI SAKOE and SEIBI CHIBA, “Dynamic programming algorithm optimiza-

tion for spoken word recognition,” IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 26, pp. 43–49, 1978.

[63] Nate Silver, “Introducing nfl elo ratings,” Online, sep

2014, https://fivethirtyeight.com/features/

introducing-nfl-elo-ratings/.

[64] Nate Silver, “It’s brazil’s world cup to lose,” Online, jun

2014, https://fivethirtyeight.com/features/

its-brazils-world-cup-to-lose/.

[65] Shengbo Guo, Scott Sanner, Thore Graepel, and Wray Buntine, “Score-based

bayesian skill learning,” in Proceedings of the 2012 European Conference on Ma-

128

https://sscaitournament.com/index.php?action=scoresCompetitive
https://sscaitournament.com/index.php?action=scoresCompetitive
https://iccup.com/starcraft/sc_rating_system.html
https://iccup.com/starcraft/sc_rating_system.html
http://www.moserware.com/2010/03/computing-your-skill.html
http://www.moserware.com/2010/03/computing-your-skill.html
https://fivethirtyeight.com/features/introducing-nfl-elo-ratings/
https://fivethirtyeight.com/features/introducing-nfl-elo-ratings/
https://fivethirtyeight.com/features/its-brazils-world-cup-to-lose/
https://fivethirtyeight.com/features/its-brazils-world-cup-to-lose/

chine Learning and Knowledge Discovery in Databases - Volume Part I, Berlin, Hei-

delberg, 2012, ECML PKDD’12, pp. 106–121, Springer-Verlag.

[66] David Churchill, Zeming Lin, and Gabriel Synnaeve, “An analysis of model-based

heuristic search techniques for starcraft combat scenarios,” in AAAI Publications,

Thirteenth Artificial Intelligence and Interactive Digital Entertainment Conference,

2017.

[67] Jonathan Butzke, Krishna Sapkota, Kush Prasad, Brian MacAllister, and Maxim

Likhachev, “State lattice with controllers: Augmenting lattice-based path planning

with controller-based motion primitives,” in Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2014.

[68] Jonathan Butzke, Planning for a Small Team of Heterogeneous Robots: from Collab-

orative Exploration to Collaborative Localization, Ph.D. thesis, Robotics Institute,

Carnegie Mellon University, 2017, to be published.

129

	University of Pennsylvania
	ScholarlyCommons
	2018

	Planning For Non-Player Characters By Learning From Demonstration
	John Drake
	Recommended Citation

	Planning For Non-Player Characters By Learning From Demonstration
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Quests
	1.2.1 Main Quest Line
	1.2.2 Side Quests
	1.2.3 Radiant Story Quests

	1.3 Gameplay
	1.3.1 Navigation
	1.3.2 Combat
	1.3.3 Speech
	1.3.4 World Interaction

	1.4 Proposed Approach
	1.5 Evaluation
	1.6 Contributions
	1.7 Outline

	2 Related Work
	2.1 NPC Behavior Generation
	2.2 Heuristic Search
	2.3 Sampling-Based Approaches
	2.4 Optimization Approaches
	2.5 Planning from Experience and Demonstration

	3 Background
	3.1 A*
	3.2 Weighted A*
	3.3 Experience Graph Heuristic
	3.4 Multi Heuristic A*
	3.4.1 Inadmissible Heuristic Calibration
	3.4.2 Improved Multi Heuristic A*

	4 Training Graph Heuristic
	4.1 Graph Search
	4.2 E-Graph Heuristic
	4.3 T-Graph Heuristic
	4.4 Theoretical Properties
	4.5 Implementation in Skyrim
	4.6 Analysis

	5 Adaptability Across Quests
	5.1 MHA* With T-Graph Heuristics
	5.2 Calibration of Heuristics
	5.3 Theoretical Properties
	5.4 Analysis

	6 Cooperative Planning
	6.1 Learning Playstyles
	6.2 Player Behavior Classification
	6.3 Toward Cooperative Planning

	7 Experimental Analysis
	7.1 Training Quality
	7.1.1 User Study

	7.2 Computational Performance
	7.2.1 Parameter Selection
	7.2.2 Computational Performance Results

	7.3 NPC Skill

	8 Concluding Remarks
	8.1 Discussion and Future Work
	8.2 Conclusions

	Bibliography

