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Statistical Methods For Truncated Survival Data

Abstract
{Truncation is a well-known phenomenon that may be present in observational studies of time-to-event data.
For example, autopsy-confirmed survival studies of neurodegenerative diseases are subject to selection bias
due to the simultaneous presence of left and right truncation, also known as double truncation. While many
methods exist to adjust for either left or right truncation, there are very few methods that adjust for double
truncation. When time-to-event data is doubly truncated, the regression coefficient estimators from the
standard Cox regression model will be biased. In this dissertation, we develop two novel methods to adjust for
double truncation when fitting the Cox regression model. The first method uses a weighted estimating
equation approach. This method assumes the survival and truncation times are independent. The second
method relaxes this independence assumption to an assumption of conditional independence between the
survival and truncation times. As opposed to methods that ignore truncation, we show that both proposed
methods result in consistent and asymptotically normal regression coefficient estimators and have little bias in
small samples. We use these proposed methods to assess the effect of cognitive reserve on survival in
individuals with autopsy-confirmed Alzheimer’s disease. We also conduct an extensive simulation study to
compare survival distribution function estimators in the presence of double truncation and conduct a case
study to compare the survival times of individuals with autopsy-confirmed Alzheimer’s disease and
frontotemporal lobar degeneration. Furthermore, we introduce an R-package for the above methods to adjust
for double truncation when fitting the Cox model and estimating the survival distribution function.
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ABSTRACT

STATISTICAL METHODS FOR TRUNCATED SURVIVAL DATA

Lior Rennert

Sharon X. Xie

Truncation is a well-known phenomenon that may be present in observational studies of time-to-

event data. For example, autopsy-confirmed survival studies of neurodegenerative diseases are

subject to selection bias due to the simultaneous presence of left and right truncation, also known

as double truncation. While many methods exist to adjust for either left or right truncation, there are

very few methods that adjust for double truncation. When time-to-event data is doubly truncated,

the regression coefficient estimators from the standard Cox regression model will be biased. In

this dissertation, we develop two novel methods to adjust for double truncation when fitting the

Cox regression model. The first method uses a weighted estimating equation approach. This

method assumes the survival and truncation times are independent. The second method relaxes

this independence assumption to an assumption of conditional independence between the survival

and truncation times. As opposed to methods that ignore truncation, we show that both proposed

methods result in consistent and asymptotically normal regression coefficient estimators and have

little bias in small samples. We use these proposed methods to assess the effect of cognitive

reserve on survival in individuals with autopsy-confirmed Alzheimers disease. We also conduct

an extensive simulation study to compare survival distribution function estimators in the presence

of double truncation and conduct a case study to compare the survival times of individuals with

autopsy-confirmed Alzheimers disease and frontotemporal lobar degeneration. Furthermore, we

introduce an R-package for the above methods to adjust for double truncation when fitting the Cox

model and estimating the survival distribution function.
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CHAPTER 1

INTRODUCTION

Truncation is a statistical phenomenon that has been shown to occur in a wide range of applications,

including survival analysis, epidemiology, economics, and astronomy. Individuals who are subject

to truncation provide no information to the investigator. Left truncation occurs when data is only

recorded for individuals whose survival time exceeds a random time (i.e. left truncation time). Right

truncation occurs when data is only recorded for individuals whose survival time proceeds a random

time (i.e. right truncation time). When both left and right truncation are present, this is known as

double truncation.

Double truncation is inherent in retrospective autopsy-confirmed studies of neurodegenerative dis-

eases. Due to the inaccuracy of clinical diagnosis (Beach et al., 2012), autopsy confirmation is

needed for a definitive diagnosis (Grossman and Irwin, 2016) of a particular neurodegenerative

disease. The right truncation occurs because information is only obtained from a subject when they

receive an autopsy. Subjects who survive past the end of the study are not diagnosed and therefore

not included in the study sample, resulting in a sample that is biased towards subjects with smaller

survival times. Furthermore, the retrospective sample is also left truncated because subjects who

succumb to the disease before they enter the study are unobserved, resulting in a sample that is

biased towards subjects with larger survival times. We note that right censoring is not possible in

this setting, since any subject who has an autopsy performed will also have a known survival time.

A diagram showing how double truncation occurs is provided in Figure 2.1.

The aim of our data analysis is to get accurate estimates of the effect of risk factors on survival

from disease symptom onset in subjects with autopsy-confirmed neurodegenerative diseases. The

default application for analysis in this setting is the Cox regression model (Cox, 1972). However,

regression techniques which do account for truncation will result in biased regression coefficient

estimators. This is because under left truncation, individuals with smaller event times are less

likely to be observed, resulting in a study sample that is biased towards larger event times and

risk factors associated with larger event times. Similarly, under right truncation, individuals with

larger event times are less likely to be observed, resulting in a study sample that is biased towards
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smaller event times and risk factors associated with smaller event times. If double truncation is

not accounted for, then the regression coefficient estimators from the Cox regression model will be

biased.

In Chapter 2, we introduce a weighted estimating equation approach to adjust the Cox regression

model in the presence of double truncation, under the assumption that the survival times and trun-

cation times are independent. In chapter 3, we use a conditional likelihood approach to relax this

independence assumption to an assumption of conditional independence between the survival and

truncation times. Here we estimate the regression coefficient estimators for the Cox regression

model using an expectation-maximization (E-M) algorithm. In Chapter 4, we conduct a case study

to compare estimators of the survival distribution function under double truncation. In Chapter 5, we

introduce an R-package to adjust both the Cox regression model and the survival time distribution

function in the presence of double truncation. The R-package is intended for the situation where

the survival and truncation times are independent. Concluding remarks are given in Chapter 6. The

code for the Cox regression coefficient estimators using the EM algorithm introduced in Chapter 3 is

provided in Appendix D. The code for the functions contained in the R package described in Chap-

ter 5, which use a nonparametric weighting approach to adjust the Cox regression model (Chapter

2) and the survival distribution function (Chapter 4), is provided in Appendix E and F, respectively.

2



CHAPTER 2

COX REGRESSION MODEL WITH DOUBLY TRUNCATED DATA

2.1. Introduction

Accurate regression coefficient estimation in survival analysis is crucial for studying factors that

affect disease progression. However in some survival studies the outcome of interest may be

subject to either left or right truncation. When both left and right truncation are present, this is known

as double truncation. For example, double truncation is inherent in retrospective autopsy-confirmed

studies of Alzheimer’s disease (AD), where autopsy confirmation is the gold standard for diagnosing

AD due to the inaccuracy of clinical diagnosis (Beach et al., 2012). The right truncation occurs

because information is only obtained from a subject when they receive an autopsy. Subjects who

survive past the end of the study are not diagnosed and therefore not included in the study sample,

resulting in a sample that is biased towards subjects with smaller survival times. Furthermore, the

retrospective sample is also left truncated because subjects who succumb to the disease before

they enter the study are unobserved, resulting in a sample that is biased towards subjects with

larger survival times. We note that right censoring is not possible in this setting, since any subject

who has an autopsy performed will also have a known survival time.

A diagram showing how double truncation occurs is provided in Figure 2.1. In this hypothetical

example, we assume subjects 1, 2, and 3 all have similar times of disease symptom onset. For

illustrative purposes, we also assume that subjects 1, 2, and 3 have the same study entry time,

however this need not be the case. Here the x-axis represents time, and the squares represent the

terminating events. Subject 1 is left truncated because they die before they enter the study. Subject

2 enters the study and dies before the end of the study, and is therefore observed. Subject 3 is

right truncated because they live past the end of the study, and therefore do not have an autopsy

performed.

If the left and right truncation are not accounted for then the observed sample will be biased,

which may lead to biased estimators of regression coefficients and hazard ratios. In this paper, we

examine the relationship between education and survival from AD symptom onset in a retrospective

autopsy-confirmed AD population. The default application for analysis in this setting is the Cox

3



Figure 2.1: Hypothetical example of double truncation

onset study entry end of study

Subject 1

Subject 2

Subject 3

truncated
observed

In this hypothetical example, we assume subjects 1, 2, and 3 all have similar times of disease
symptom onset. For illustrative purposes, we also assume that subjects 1, 2, and 3 have the same
study entry time, however this need not be the case. Here the x-axis represents time, and the
squares represent the terminating events. Subject 1 is left truncated because they die before they
enter the study. Subject 2 enters the study and dies before the end of the study, and is therefore
observed. Subject 3 is right truncated because they live past the end of the study, and therefore do
not have an autopsy performed.

regression model (Cox, 1972). However, to obtain consistent regression coefficient estimators,

we must adjust for truncation. Regression techniques already exist under left truncation (Lai and

Ying, 1991), right truncation (Kalbfleisch and Lawless, 1991), and length-biased data (Wang, 1996).

In this paper, we propose a Cox regression model to adjust for double truncation using a weighted

estimating equation approach, where the hazard rate for the failure times follows that of the standard

Cox regression model.

Although double truncation may appear in many studies in which data is only recorded for subjects

whose event times fall in an observable time interval, the amount of literature on methods to handle

double truncation is small. Most of the literature deals with the estimation of the survival distribution

rather than regression. Efron and Petrosian (1999) introduced the nonparametric maximum likeli-

hood estimator (NPMLE) for the survival distribution function under double truncation. Shen (2010)

investigated the asymptotic properties of the NPMLE and introduced a nonparametric estimator of

the truncation distribution function. Shen (2010) and Moreira and de Ũna-Álvarez (2010) introduced

a semiparametric maximum likelihood estimator (SPMLE) for the survival distribution function under

double truncation. Shen (2013) introduced a method for regression analysis of interval censored

4



and doubly truncated data using linear transformation models, but these models only allow discrete

covariates and the asymptotic properties of the resulting estimators are not established. Moreira,

de Ũna-Álvarez, and Meira-Machado (2016) introduced nonparametric kernel regression for doubly

truncated data, where a mean function conditional on a single covariate is estimated, rather than a

hazard ratio. Furthermore, the resulting estimator is asymptotically biased. Since right censoring is

rare under double truncation, the current literature assumes no censoring or interval censoring.

The concept of adjusting the Cox regression model for biased samples using a weighted estimating

equation approach was first introduced by Binder (1992) for survey data. In this setting, the weights

were known a priori and a biased study sample was selected directly from the target population

(i.e. the population we wish to study). Lin (2000) proved the asymptotic normality of the regression

coefficient estimator introduced by Binder, and extended the model to settings where the biased

study sample is selected from a representative sample of the underlying target population. Pan

and Schaubel (2008) introduced a Cox regression model with estimated weights, using logistic

regression to estimate each subject’s probability of selection into the study. In their setting, they

assumed that baseline information was available from both subjects with observed and missing

survival times. Due to truncation, we do not have any information on subjects with missing survival

times. Therefore previous methods are unable to address the unique challenges present in our AD

study.

There are several new contributions of this paper to the literature. We propose a Cox regression

model using a weighted estimating equation approach to obtain a hazard ratio estimator under dou-

ble truncation, where the weights are inversely proportional to the probability that a subject is not

truncated. These selection probabilities are estimated both parametrically and nonparametrically

using methods introduced by Shen (2010a, 2010b) and Moreira and de Ũna-Álvarez (2010). As

opposed to using data from missing subjects, the selection probabilities here are estimated using

survival and truncation times from observed subjects only. The parametric selection probabilities

make distributional assumptions about the truncation times, while the nonparametric selection prob-

abilities do not. We show that the proposed regression coefficient estimators are consistent, and

greatly reduce the bias in finite samples compared to the standard Cox regression estimator which

ignores double truncation. We prove the asymptotic normality of the regression coefficient estima-

tor under parametric weights, and provide a consistent estimator of its asymptotic variance. We

5



use the bootstrap technique (Efron and Tibshirani, 1993) to estimate the variance and confidence

intervals of the regression coefficient estimator under nonparametric weights.

The remainder of this paper is organized as follows. In Section 2.2 we introduce the weighted esti-

mating equation and the proposed estimators, as well as the estimation procedure for the weights.

The asymptotic properties of the proposed estimators are provided in Section 2.3. In Section 2.4

we conduct a simulation study to assess the finite sample performance of the proposed estimators.

The proposed method is then applied to the AD data in Section 2.5. Discussion and concluding

remarks are given in Section 2.6.

2.2. Proposed Parametric and Nonparametric Weighted Estimators

Throughout this paper, we refer to population random variables as random variables from the target

population and denote them without subscripts. We refer to sampling random variables as random

variables from the observed sample and denote them with subscripts. These two sets of variables

may have different distributions due to double truncation, which is why standard methodology may

be inappropriate.

Let Ti denote the observed survival times for subject i = 1, ..., n ≤ N , where n is the size of the

observed sample and N is the size of the target sample. Here we use the term target sample to

denote a representative sample from the underlying target population. In our setting, this consists

of all subjects that would have been included in the observed sample had truncation not occurred.

For a given time t, define Yi(t) = 1{Ti≥t} and Ni(t) = 1{Ti≤t}. Let τ be a constant set to the end of

study time. The Cox regression model assumes that for a given subject with p× 1 covariate vector

Zi(t), the hazard function at time t is given by λi(t) = λ0(t)eβ
′
0Zi(t), where λ0(t) is the true baseline

hazard function and is unspecified. The true p× 1 regression coefficient vector, β0, is estimated by

β̂, the solution to

U(β) =

n∑
i=1

∫ τ

0

{
Zi(t)−

∑n
j=1 Yj(t)e

β′Zj(t)Zj(t)∑n
j=1 Yj(t)e

β′Zj(t)

}
dNi(t) = 0, (2.1)

where dNi(t) = Ni(t) −Ni(t−). Since right censoring is not possible under our sampling scheme,

we do not include it in the estimation procedures. Therefore dNi(Ti) = 1 in this setting, since all

subjects in our study sample experience an event.

6



When subjects have unequal probabilities of selection, then the study sample will not be a repre-

sentative sample of the underlying target population. To adjust for biased samples, Binder (1992)

proposed weighting each subject in the score equation 2.1 by the inverse probability of their inclu-

sion in the sample. The true regression coefficient β0 is then estimated by β̂w, the solution to the

weighted score equation

Uw(β,π) =

n∑
i=1

∫ τ

0

wi

{
Zi(t)−

∑n
j=1 wjYj(t)e

β′Zj(t)Zj(t)∑n
j=1 wjYj(t)e

β′Zj(t)

}
dNi(t) = 0. (2.2)

Here π = (π1, ..., πn) and wi = π−1
i , where πi is the selection probability for subject i, and is

conditional on subject specific characteristics. The method described above assumes that the

selection probabilities πi are known a priori. When these probabilities are not known, they must be

estimated.

In our setting, we can estimate the probability that a subject was selected in our sample (i.e. not

truncated), conditional on their observed survival time. Thus a natural solution to adjust for double

truncation is to use these estimated selection probabilities in (2). These selection probabilities are

estimated using the survival and truncation times from observed subjects only. The estimation

procedure is given in Section 2.2.1.

In our data example, the left truncation time is taken to be the time from AD symptom onset to

entry into the study. The right truncation time is set to the time from AD symptom onset to the end

of the study. Let U and V denote the left and right truncation times, respectively. Due to double

truncation, we observe {T,U, V,Z(t)} if and only if U ≤ T ≤ V .

Conditional on Ti, subject i is observed with probability πi = P (U ≤ T ≤ V |T = Ti). Here πi is

the probability that a subject from the target sample with survival time T = Ti is observed, and is

called the selection bias function (Bilker and Wang, 1996). For an intuition as to why this weighting

scheme works, we consider the following. If x individuals with survival time Ti are observed in the

sample, then by the definition of πi, there must be x/πi individuals in the target sample with survival

time Ti. Without loss of generality, suppose x = 1, so that there are 1/πi individuals with survival

time Ti in the target sample. Of these, (1/πi) × πi = 1 will be observed and the other 1/πi − 1

individuals are referred to as ghosts (Turnbull, 1976) and are unobserved. In this case, each Ti

represents 1/πi individuals from the target sample with survival time T = Ti. We can therefore
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adjust for the biased sample by weighting each observation in the estimating equation 2.1 by 1/πi.

To give another intuitive view as to how the weighting works, it can be shown that πi is proportional

to the probability of observing a survival time Ti in the observed sample relative to the probability of

observing a survival time Ti in the target sample. That is, πi ∝ P (T = Ti|U ≤ T ≤ V )/P (T = Ti).

Using these selection probabilities in (2) works because observations with survival times which are

oversampled in the observed sample relative to the target sample are downweighted and those

which are undersampled are upweighted, yielding a score function consisting of survival times (and

corresponding covariates) that are distributed according to those of the target population. We show

in Section 2.3 that if these selection probabilities are estimated consistently and plugged into the

score equation 2.2, then this score function is asymptotically equivalent to the unweighted score

function using all observations from the target sample, and is therefore asymptotically unbiased.

This results in the consistency of the proposed regression coefficient estimators presented below.

2.2.1. Estimation of selection probabilities

The methods used to estimate the selection probabilities assume that the survival and truncation

times are independent in the observable region U ≤ T ≤ V . This independence assumption is

needed to estimate π using the estimation procedures below. We note that under independence,

πi is simply P (U ≤ Ti ≤ V ). Situations where the independence assumption can be relaxed by

covariate adjustment are discussed in Section 2.6.

Before we describe the parametric and nonparametric procedures for estimating the selection prob-

abilities, we introduce additional notation and assumptions. Let f(t) and F (t) denote the density

and cumulative distribution functions of T . Let k(u, v) and K(u, v) denote the joint density and

cumulative distribution functions of (U, V ). For any cumulative distribution function H, define the

left endpoint of its support by aH = inf{x : H(x) > 0} and the right endpoint of its support by

bH = inf{x : H(x) = 1}. Let HU (u) = K(u,∞) and HV (v) = K(∞, v) denote the marginal

cumulative distribution functions of U and V , respectively. For the following methods, we assume

that aHU < aF ≤ aHV and bHU ≤ bF < bHV . These conditions are needed for identifiability of the

selection probability estimators presented below (Shen, 2010a,b; Woodroofe, 1985).

Letting π(t) = P (U ≤ t ≤ V ), our methods rest on the assumption that π(t) > 0 for all t ∈ [aF , bF ].

That is, we assume all survival times have a positive probability of being observed. A near violation
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of this positivity assumption can lead to a πi that is very small and thus gives undue influence to

the ith observation in the score equation 2.2. We discuss a remedy to this situation at the end of

Section 2.6. We note that this positivity assumption is generally implied through the identifiability

constraints aHU < aF ≤ aHV and bHU ≤ bF < bHV . Justification of these constraints and positivity

assumption for our data example, and a discussion on when these may be violated, are given in

Web Appendix D.

Nonparametric estimation

We now present the nonparametric estimation of the selection probabilities πi. As shown in Shen

(2010a, p. 837), the distribution of the observed survival times, F̃ (t), can be written as F̃ (t) =

P (Ti ≤ t) = P (T ≤ t|U ≤ T ≤ V ) = p−1P (T ≤ t, U ≤ T ≤ V ) = p−1
∫ t

0
[K(s, bHV )−K(s, s)]F (ds),

where p = P (U ≤ T ≤ V ) is the probability of observing a random subject from the target sample.

The last equality follows from the independence of T and (U, V ) in the observable region U ≤ T ≤

V . In this case, the density of the observed survival times is given by f̃(t) = p−1 × π(t)f(t), where

π(t) = K(t, bHV ) − K(t, t) = P (U ≤ t ≤ V ). It can also be shown that under this independence

assumption, the joint density of the observed truncation times can be written as k̃(u, v) = p−1 ×

ϕ(u, v)k(u, v), where ϕ(u, v) = F (v)− F (u−) = P (u ≤ T ≤ v).

Let ϕ = (ϕ1, ..., ϕn), where ϕi = ϕ(Ui, Vi). Since k(u, v) = p × k̃(u, v)/ϕ(u, v), we have that when

ϕ and p are known, K(u, v) can be estimated by n−1p
∑n
j=1

1{Uj≤u,Vj≤v}

ϕj
. Setting u and v to ∞,

we can estimate p by n
[∑n

j=1 1/ϕj
]−1. Therefore when ϕ is known, we can estimate K(u, v)

by
[∑n

j=1 1/ϕj
]−1∑n

j=1

1{Uj≤u,Vj≤v}

ϕj
and thus πi = K(Ti, bHV ) − K(Ti, Ti) can be estimated by[∑n

j=1 1/ϕj
]−1∑n

j=1

1{Uj≤Ti≤Vj}

ϕj
. Similarly, since f(t) = p × f̃(t)/π(t), we have that when π is

known, F (t) can be estimated by
[∑n

j=1 1/πj
]−1∑n

j=1

1{Tj≤t}

πj
and thus ϕi = F (Vi) − F (Ui−) can

be estimated by
[∑n

j=1 1/πj
]−1∑n

j=1

1{Ui≤Tj≤Vi}

πj
.

Shen (2010) proved that the NPMLE’s of ϕi and πi, denoted by ϕ̂i and π̂i, respectively, can be

found using the following iterative algorithm:

Step 0) Set ϕ̂(0)
i = n−1

∑n
j=1 1{Ui≤Tj≤Vi}, for i = 1, ..., n.

Step 1) Set π̂(1)
i =

(∑n
j=1

1

ϕ̂
(0)
j

)−1∑n
j=1

1{Uj≤Ti≤Vj}

ϕ̂
(0)
j

, for i = 1, ..., n.
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Step 2) Set ϕ̂(1)
i =

(∑n
j=1

1

π̂
(1)
j

)−1∑n
j=1

1{Ui≤Tj≤Vi}

π̂
(1)
j

, for i = 1, ..., n.

Step 3) For a prespecified error e, repeat steps 1 and 2 until
∑n
i=1 |π̂

(s)
i − π̂

(s−1)
i | < e.

The NPMLE of π is given by π̂np = (π̂
(s)
1 , ..., π̂

(s)
n ), with estimated weights wnp = 1/π̂np. The

corresponding estimator of β0 is denoted by β̂wnp , the solution to Uw(β, π̂np) = 0.

Because we do not need estimates of the survival and truncation time distributions, the algorithm

to estimate π presented here is a simplified version of the algorithm given in Shen (2010). We note

that both algorithms result in the same estimator π̂np.

Parametric estimation

We can also estimate the selection probabilities parametrically using the methods introduced by

Shen (2010) and Moreira and de Ũna-Álvarez (2010). In this setting, we assume that the truncation

times U and V have a parametric joint density function kθ(u, v). Here θ ∈ Θ is a q × 1 vector of

parameters and Θ is the parametric space.

Under the assumption of independence in the region U ≤ T ≤ V , the conditional likelihood of

the (Ui, Vi) given Ti is given by Lc(θ) =
∏n
i=1 kθ(Ui, Vi)/π

θ
i , where πθi =

∫
u≤Ti≤v kθ(u, v)dudv =

Pθ(U ≤ Ti ≤ V ). Here the subscript θ denotes that the probability depends on θ. In this setting, we

estimate πi by πθ̂i =
∫
u≤Ti≤v kθ̂(u, v)dudv. The conditional likelihood estimator, θ̂, is the solution to

U c(θ) = ∂
∂θ logLc(θ) = 0.

The MLE of π is given by πθ̂ = (πθ̂1 , ..., π
θ̂
n). The weights wi are then estimated by wi(θ̂) = p(θ̂)/πθ̂i ,

where p(θ̂) = Pθ̂(U ≤ T ≤ V ) =
(
n−1

∑n
j=1 1/πθ̂j

)−1. The corresponding estimator of β0 is denoted

by β̂w
θ̂
, the solution to Uw(β,πθ̂) = 0. Here the estimated parametric weights wi(θ̂) scale 1/πθ̂i

by p(θ̂) so that they sum up to the original sample size n, which is needed for the derivation of the

asymptotic variance of β̂w
θ̂
.

2.2.2. Estimating the regression coefficients

The estimated parametric and nonparametric selection probabilities, πθ̂ and π̂np, can be computed

using the code provided in the online supplementary materials. The regression coefficient estima-

tors β̂w
θ̂

and β̂wnp can be obtained by specifying the weight option in SAS (phreg, surveyphreg) or

10



R (coxph) with weights p(θ̂)/πθ̂ and 1/π̂np. More details, including standard error estimates and

confidence intervals of β̂w
θ̂

and β̂wnp , as well as sample data, are provided in our code.

2.3. Asymptotic Properties of Proposed Estimators

In this section, we describe the asymptotic properties of our proposed estimators β̂wnp and β̂w
θ̂
.

The asymptotic properties of the proposed estimators refer to the situation when the total number

of observed (non-truncated) subjects n → ∞. The following theorems assume that the regularity

conditions listed below hold.

The regularity conditions listed here are adapted from Andersen and Gill (1982), Pan and Schaubel

(2008), and Shen (2010ab). For a p× 1 vector a, we denote a⊗0 = 1, a⊗1 = a, and a⊗2 as the p× p

matrix aa′. Conditions (a)-(f) below are needed for the consistency of β̂wnp :

(a) {Ti, Ui, Vi,Zi} are independent and identically distributed for i = 1, ..., N ,

(b)
∫ τ

0
dΛ0(t) <∞, where Λ0(t) is the baseline cumulative hazard function,

(c) For Sw(j)(β,π; t) = n−1
∑n
i=1 π

−1
i Yi(t)e

β′Zi(t)Zi(t)
⊗j , j = 0, 1, 2, we assume the existence of a

neighborhoodB0 of β0 and Π0 of π0 such that supt∈[0,τ ],β∈B0,π∈Π0
‖Sw(j)(β,π; t)−sw(j)(β,π; t)‖

p−→ 0 as n→∞, for j = 0, 1, 2, where sw(j)(β,π; t) = E{Sw(j)(β,π; t)} and s(0)
w (β,π; t) > 0,

(d) There exists a δ > 0 such that π(t) = P (U ≤ t ≤ V ) > δ almost surely for every t ∈ [aF , bF ],

(e)
∫ τ

0
|Zik(t)|dt <∞ almost surely, where Zik(t) is the kth covariate value for subject i at time t,

(f) The Cox model assumption λ(t) = λ0(t)eβ
′
0Z(t) holds for both observed and unobserved sub-

jects.

Condition (a) is used when applying the central limit theorem, and this assumption is reasonable

in practice assuming the subjects are independent. Condition (b) is used to ensure that several

terms in the proofs of Theorems 2.1 and 2.2 are bounded. Condition (c) ensures that Sw(j)(β,π; t)

converges in probability, and that e(β,π; t) = sw
(1)(β,π;t)

s
(0)
w (β,π;t)

is bounded. This assumption is applied

several times throughout the proofs below. Condition (d) states that the probability of observing

any survival time t in [0, τ ] is non-zero, which leads to the boundedness of several quantities in the

proofs below and ensures that N and n go to∞ at the same rate. Condition (e) is a boundedness

condition of the covariate Zik(t). While it is not required, it is applicable in most situations and is

used to simplify the proofs of Theorems 2.1 and 2.2. For a fixed covariate vector Z(t) and fixed time

t, condition (f) ensures that the relationship between survival and Z(t) is the same (i.e. assumes a
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Cox model) regardless of whether a subject was observed or truncated. This assumption is used

implicitly in the proof of Theorem 2.1 when concluding N−1Uw(β, π̂) and N−1U∗(β) (defined in

the proof of Theorem 2.1) converge to the same limit.

For the consistency of β̂w
θ̂
, we need the following three conditions in addition to (a)-(f):

(g) Gθ(t) = Pθ(U ≤ t ≤ V ) =
∫
u≤t≤v kθ(u, v)dudv is continuous in t for every θ ∈ Θ,

(h) θ̂n
p−→ θ implies Gθ̂n(t)

p−→ Gθ(t) for every t ∈ [0, τ ],

(i) Existence of a neighborhoodB0 of β0 and Θ0 of θ0 such that supt∈[0,τ ],β∈B0,θ∈Θ0
‖Sw(j)(β,θ; t)

−sw(j)(β,θ; t)‖ p−→ 0 as n→∞, for j = 0, 1, 2, where sw(j)(β,θ; t) = E{Sw(j)(β,θ; t)} and

s
(0)
w (β,θ; t) > 0. The quantity Sw(j)(β,θ; t) is defined in the proof of Theorem 2.2.

Conditions (g) and (h) are used for the uniform consistency of πθ̂i to πθ0
i across all possible values of

Ti in [0, τ ]. Note that πθi = Gθ(Ti). Condition (i) ensures that Sw(j)(β,θ; t) converges in probability,

and that e(β,θ; t) = sw
(1)(β,θ;t)

s
(0)
w (β,θ;t)

is bounded.

The regularity conditions (j) and (k) below are needed in addition to (a)-(i) for the asymptotic nor-

mality of β̂w
θ̂
:

(j) For every t ∈ [0, τ ] and θ in a neighborhood Θ0 of θ0, Gθ(t) is continuously differentiable in θ,

(k) Positive-definiteness of the matrices Aw(β,θ) and I(θ) (defined in proof of Theorem 2.2).

Condition (j) is used to ensure the existence of Q(β0, θ̂) defined in the proof of Theorem 2.2,

along with its convergence to Q(β0,θ0). Condition (k) ensures the existence of the inverses of the

matrices Aw(β,θ) and I(θ).

Theorem 2.1: β̂wnp and β̂w
θ̂

are consistent estimators of β0 as n→∞.

Proof of Theorem 2.1: The following proof holds for both ŵ = wnp and ŵ = wθ̂. We therefore

denote π̂np and πθ̂ by π̂ to simplify notation in this setting. The score equation 2.2 can be written

as

Uw(β,π) =

N∑
i=1

∫ τ

0

ξi
πi
{Zi(t)−Ew(β,π; t)}dNi(t), (2.3)

where Ew(β,π; t) =
∑N
j=1

{ ξj
πj
Yj(t)e

β′Zj(t)Zj(t)
}
/
∑N
j=1

{ ξj
πj
Yj(t)e

β′Zj(t)
}

, and ξi is an indicator

function set to 1 if subject i is observed, and 0 otherwise. Note that 2.3 consists of observations

12



from both truncated and observed subjects, with ξi = 0 for truncated subjects.

Let β̂ŵ be the solution to Uw(β, π̂) = 0. We will show that N−1Uw(β, π̂) and N−1U∗(β) converge

to the same limit, where U∗(β) =
∑N
i=1

∫ τ
0
{Zi(t) − E(β; t)}dNi(t) is the complete case score

function which includes all observations from both truncated and observed subjects, and E(β; t) =∑N
j=1{Yj(t)eβ

′Zj(t)Zj(t)}/
∑N
j=1{Yj(t)eβ

′Zj(t)}. We then apply results from Lin (2000) and convex

function theory to conclude that β̂ŵ
p−→ β0.

For π(t) = P (U ≤ t ≤ V ), Shen (2010a,2010b) proved that π̂(t) converges uniformly in probability

(with respect to t) to π0(t). Here π̂(t) denotes the estimator of π(t) under both parametric and

nonparametric assumptions, and π0(t) is the true probability of observing a subject with survival

time t. We will denote π̂i and π0,i as the estimated and true probability of observing a subject with

survival time Ti, respectively. Note that π̂i = π̂(Ti) and π0,i = π0(Ti).

We can re-express N−1Uw(β, π̂) as

N−1Uw(β, π̂) = N−1
N∑
i=1

∫ τ

0

π−1
0,i ξi{Zi(t)−Ew(β, π̂; t)}dNi(t) (2.4)

+N−1
N∑
i=1

∫ τ

0

{π̂−1
i − π

−1
0,i }ξi{Zi(t)−Ew(β, π̂; t)}dNi(t). (2.5)

We will now state and prove a lemma used throughout the proof of Theorem 2.1.

Lemma: N−1
∑N
i=1(π̂−1

i − π
−1
0,i )g(·) p−→ 0 for any stochastically bounded function g.

Proof: Let HN (π̂; ·) = N−1
∑N
i=1(π̂−1

i − π
−1
0,i )g(·). We need to show that ∀ε > 0,∃N ≥ Nε such that

P (|HN (π̂; ·)| > ε) < ε.

By the uniform consistency of π̂(t) in t for t ∈ [aF , bF ] and the continuous mapping theorem, we

have that π̂−1(t) is also uniformly consistent in t for t ∈ [aF , bF ]. That is, ∀ε > 0,∃Nε1 such that

N ≥ Nε1 =⇒ P ( sup
t∈[aF ,bF ]

|π̂−1(t) − π−1
0 (t)| > ε) < ε. Since g is stochastically bounded, ∃M < ∞

and Nε2 such that ∀ε > 0, N > Nε2 =⇒ P (|g(·)| > M) < ε.

Let Nε = max(Nε1 , Nε2). Then for N ≥ Nε,
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P (|HN (π̂; ·)| > ε) = P (N−1|
N∑
i=1

(π̂−1
i − π

−1
0,i )g(·)| > ε)

≤ P (N−1
N∑
i=1

|(π̂−1
i − π

−1
0,i )g(·)| > ε) ≤ P (N−1

N∑
i=1

|π̂−1
i − π

−1
0,i | > ε/M)

≤ P ( max
i=1,..,N

|π̂−1
i − π

−1
0,i | > ε/M) ≤ P ( sup

t∈[aF ,bF ]

|π̂−1(t)− π−1
0 (t)| > ε/M) < ε.

For j = 0, 1, we can write

Sw
(j)(β, π̂; t) = N−1

N∑
i=1

π−1
0,i ξiYi(t)e

β′Zi(t)Zi(t)
⊗j +N−1

N∑
i=1

(π̂−1
i − π

−1
0,i )ξiYi(t)e

β′Zi(t)Zi(t)
⊗j

Since Zi(t) is stochastically bounded by regularity assumption (e), the term ξiYi(t)e
β′Zi(t)Zi(t)

⊗j

is also stochastically bounded. Application of the lemma therefore yields Sw(j)(β, π̂; t) =

Sw
(j)(β,π0; t) + op(1). Since Ew(β, π̂; t) = Sw

(1)(β,π̂;t)

Sw(0)(β,π̂;t)
, application of Slutsky’s theorem yields

Ew(β, π̂; t) = Ew(β,π0; t) + op(1).

We therefore have that 2.4 is equivalent to N−1
∑N
i=1

∫ τ
0
π−1

0,i ξi{Zi(t)−Ew(β,π0; t)+op(1)}dNi(t).

Equation 2.5 is equivalent to N−1
∑N
i=1

∫ τ
0
{π̂−1

i −π
−1
0,i }ξi{Zi(t)−Ew(β,π0; t)+op(1)}dNi(t), which

converges in probability to 0 by the lemma.

Finally, another application of Slutsky’s theorem yields

N−1Uw(β, π̂) =N−1
N∑
i=1

∫ τ

0

π−1
0,i ξi{Zi(t)−Ew(β,π0; t)}dNi(t) + op(1) = N−1Uw(β,π0) + op(1).

Thus N−1Uw(β, π̂) and N−1Uw(β,π0) converge to the same limit. Since N−1Uw(β, π0) and

N−1U∗(β) converge to the same limit (Lin 2000), N−1Uw(β, π̂) and N−1U∗(β) must also con-

verge to the same limit. Therefore our proposed estimating equation, Uw(β, π̂), is asymptotically

equivalent to the standard Cox estimating equation containing all of the observations from the target

sample, U∗(β). Since U∗(β) is maximized at β0 (Andersen and Gill 1982), it follows from convex

function theory that β̂ŵ
p−→ β0 (Lin 2000). �

Theorem 2.2 Under correct specification of the truncation distribution,
√
n(β̂w

θ̂
− β0) is asymptoti-

14



cally normal as n→∞ with mean zero and covariance matrix

Σ(β0,θ0) = Aw(β0,θ0)−1Vw(β0,θ0)Aw(β0,θ0)−1.

To estimate the asymptotic variance of β̂wθ̂ , we need some additional definitions. Let wi(θ) =

p(θ)/πθi , where p(θ) = Pθ(U ≤ T ≤ V ). Denote θ0 as the true value of θ. For a p× 1 vector a, a⊗0

= 1, a⊗1 = a, and a⊗2 denotes the p× p matrix aa′. Let

dMi(β; t) = dNi(t)− Yi(t)eβ
′Zi(t)dΛ0(t),where dΛ0(t) is the hazard function,

Sw
(j)(β,θ; t) = n−1

n∑
i=1

wi(θ)Yi(t)e
β′Zi(t)Zi(t)

⊗j , j = 0, 1, 2,

Ew(β,θ; t) = Sw
(1)(β,θ; t)/S(0)

w (β,θ; t),

Q(β,θ) = E
[ ∫ τ

0

∂

∂θ̃
wi(θ̃){Zi(t)−Ew(β,θ; t)}dMi(β; t)

]
|θ̃=θ

,

U c(θ) =

n∑
i=1

U ci(θ),where U ci(θ) =
∂

∂θ
log(kθ(Ui, Vi)/π

θ
i ),

I(θ) = −E
{
n−1 ∂Uc(θ̃)

∂θ̃

}
|θ̃=θ

,

φi(β,θ) =

∫ τ

0

wi(θ){Zi(t)−Ew(β,θ; t)}dMi(β; t) +Q(β,θ)I(θ)−1U ci(θ),

Vw(β,θ) = E{φi(β,θ)⊗2},

Aw(β,θ) = E
[
−
∫ τ

0

wi(θ)
{Sw(2)(β,θ; t)

S
(0)
w (β,θ; t)

− Sw
(1)(β,θ; t)⊗2

S
(0)
w (β,θ; t)2

}
dNi(t)

]
,

Σ(β,θ) = Aw(β,θ)−1Vw(β,θ)Aw(β,θ)−1.

The asymptotic variance of β̂wθ̂ is given by Σ(β0,θ0) = Aw(β0,θ0)−1Vw(β0,θ0)Aw(β0,θ0)−1.

We can estimate dΛ0(t) by dΛ̂0(β̂wθ̂ , θ̂; t) = n−1
∑n
j=1 wj(θ̂)dNj(t)/S

(0)
w

(
β̂wθ̂ , θ̂; t

)
, and dMi(β; t)

by dM̂i(β̂wθ̂ , θ̂; t) = dNi(t) − Yi(t)e
β̂
′
w
θ̂
Zi(t)

dΛ̂0(β̂wθ̂ , θ̂; t). It can be shown that the remaining

matrices defined above can be consistently estimated by their empirical counterparts, where β0

and θ0 are replaced by their corresponding estimators β̂wθ̂ and θ̂, respectively. It follows that the

estimator of the asymptotic variance of β̂wθ̂ , Σ
(
β̂wθ̂ , θ̂

)
, is consistent for Σ(β0,θ0). The derivatives

∂
∂θwi(θ), Uc(θ), and ∂Uc(θ)

∂θ can be computed directly (when possible) or numerically.

Proof of Theorem 2.2: The proof proceeds by multiple applications of Taylor’s theorem, results from

empirical processes, the multivariate central limit theorem, and Slutsky’s theorem. It can easily

be shown that all of the matrices listed above can be consistently estimated by their empirical
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counterparts using the strong law of large numbers and Slutsky’s theorem.

Using simple algebra, we rewrite the score function given in equation 2.2 in Section 2.2, with para-

metric weights, as

Uw(β, θ̂) =

n∑
i=1

∫ τ

0

1

πθ̂i
{Zi(t)−Ew(β, θ̂; t)}dM̂i(β, θ̂; t).

Taylor expansion of Uw(β̂wθ̂ , θ̂) around β = β0 yields

√
n(β̂wθ̂ − β0) =

{
n−1 ∂Uw(β, θ̂)

∂β

}−1

|β=β∗

n−
1
2Uw(β0, θ̂),

where β∗ lies between β̂wθ̂ and β0 in Rp. The uniform convergence in probability of πθ̂ to πθ0 ,

the consistency of β̂wθ̂ , and the continuous mapping theorem implies the uniform convergence of

S(j)
w (β̂wθ̂ , θ̂; t) to s(j)

w (β0,θ0; t) in t, for j = 0, 1, 2. Application of the strong law of large numbers

yields

n−1 ∂Uw(β, θ̂)

∂β
|β=β̂w

θ̂

p−→ Aw(β0,θ0).

Applying the mean value theorem yields

√
n(β̂wθ̂ − β0) = Aw(β0,θ0)−1n−

1
2Uw(β0, θ̂) + op(1).

Following similar arguments to Pan and Schuabal (2008), we set

Uw(β0, θ̂) = Uw1(β0, θ̂) +Uw2(β0, θ̂), where

Uw1(β0, θ̂) =

n∑
i=1

∫ τ

0

1

πθ0
i

{Zi(t)−Ew(β0, θ̂; t)}dM̂i(β0, θ̂; t),

Uw2(β0, θ̂) =

n∑
i=1

∫ τ

0

{
1

πθ̂i
− 1

πθ0
i

}
{Zi(t)−Ew(β0, θ̂; t)}dM̂i(β0, θ̂; t).

Using results from empirical process theory, it can be shown that

n−
1
2Uw1(β0, θ̂) = n−

1
2

n∑
i=1

∫ τ

0

1

πθ0
i

{Zi(t)− ew(β0,θ0; t)}dMi(β0; t) + op(1).
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Applying Taylor expansion of Uw2(β0, θ̂) around θ = θ0 yields

n−
1
2Uw2(β0, θ̂) = n−

1
2
∂Uw2(β0,θ)

∂θ
|θ=θ∗(θ̂ − θ0),

where θ∗ lies between θ̂ and θ0 in Rq. Applying Taylor expansion on U c(θ̂) around θ = θ0 yields

θ̂ − θ0 = Ic(θ∗)−1U c(θ0), where Ic(θ) = −n−1 ∂Uc(θ)
∂θ .

Since n−1 ∂Uw2 (β0,θ)

∂θ |θ=θ∗
p−→ Q(β0,θ0) and Ic(θ∗)

p−→ −E
{
n−1 ∂Uc(θ)

∂θ

}
θ=θ0

= I(θ0), we can re-

express n−
1
2Uw2(β0, θ̂) as

n−
1
2Uw2(β0, θ̂) = n−

1
2Q(β0,θ0)I(θ0)−1

n∑
i=1

U ci(θ0) + op(1).

Combining the terms above, we now have the expression

n−
1
2Uw(β0, θ̂) = n−

1
2

n∑
i=1

φi(β0,θ0) + op(1),

which is asymptotically equivalent to a sum of independent and identically distributed random vec-

tors. Using the multivariate central limit theorem (van der Vaart 2000) yields n−
1
2Uw(β0, θ̂)

D−→

N{0,V w(β0,θ0)}. Finally, we apply the result that n−1 ∂Uw(β,θ̂)
∂β |β=β̂w

θ̂

p−→ Aw(β0,θ0) along with

Slutsky’s theorem to conclude
√
n(β̂wθ̂ − β0)

D−→ N{0,Σ(β0,θ0)}, where

Σ(β0,θ0) = Aw(β0,θ0)−1Vw(β0,θ0)Aw(β0,θ0)−1. The covariance matrix Σ(β0,θ0) can be con-

sistently estimated by Σ
(
β̂w

θ̂
, θ̂
)
. �.

The nature of π̂np (e.g. no closed form) complicates the establishment of asymptotic normality

for β̂wnp . Thus we apply the bootstrap technique to get estimates of the standard error for β̂wnp

and corresponding confidence intervals. While asymptotic normality and the theoretical validity of

the bootstrap are not formally established in this paper, our empirical evidence suggests that β̂wnp

is asymptotically normal and that the bootstrap estimators are valid. The evidence for asymptotic

normality is based on the Q-Q plot of β̂wnp from our simulation studies, shown in 2.2. Furthermore,

these simulation studies show that the bootstrap standard errors of β̂wnp are close to the observed

sample standard deviations, and that the 95% confidence intervals based on the (bootstrap) per-

centile method result in coverage probabilities that are close to the nominal level of 0.95 (Table 2.1).

In addition, previous simulations have shown the bootstrap confidence intervals match those based
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on assuming normality.

Figure 2.2: Normal Q-Q plot of T =
β̂wnp−β0

σ̂ from 1000 simulations under the truncation scenario
for the second model described in Table 2.1
.

Here θ1 = 0.40 and θ2 = 0.25, and n=100. Here σ̂ is the standard error estimate of β̂wnp , and is
estimated using the simple bootstrap method.

2.4. Simulations

In this section we examine the performance of the proposed weighted estimators and compare

them to the naı̈ve unweighted estimator which ignores truncation. In all simulations, the survival

times were generated from a proportional hazards model with hazard function λ(t|Z) = λ0(t)eβ0Z ,

and follow a Weibull distribution with scale parameter ρ = 0.1 and shape parameter κ = 1.2. We set

β0 = 1, and generated the explanatory variable Z from a Unif[0,1] distribution. We simulated the left

truncation time from a c1Beta(θ1, 1) distribution and the right truncation time from a c2Beta(1, θ2)

distribution, with c1 = c2 = 30. We chose these distributions based on our data example. The

assumption of the beta distribution for the truncation times in our data example was validated by a

goodness-of-fit test (Section 2.5).

We conducted 1000 simulation repetitions with sample sizes of n = 50, 100, and 250. To obtain

n observations after truncation, we simulated N = n
1−q observations, where q is the proportion of
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truncated data. For each simulation, we estimated the hazard ratio using the naı̈ve unweighted es-

timator which ignores truncation (β̂uw), the parametric weighted estimator (β̂w
θ̂
), the nonparametric

weighted estimator (β̂wnp), and the complete case estimator (β̂cc) based on the full (truncated and

non-truncated) sample. For these estimators, we calculated the estimated bias (β̂ − β0), observed

sample standard deviations (SD), estimated standard errors (ŜE), and the average empirical cov-

erage probability of the 95% confidence intervals (Cov). We used 2000 bootstrap resamples to

estimate the standard error and confidence interval of β̂wnp .

Table 2.1 shows the results of the simulations described above. In the first model we set θ1 = 0.06

and θ2 = 0.60, which produced mild left and right truncation and a total of 20% of the observations

truncated. In the second model we set θ1 = 0.15 and θ2 = 1, which produced moderate truncation

from the left and right and a total of 40% of the observations truncated. In the third model we set

θ1 = 0.40 and θ2 = 0.25, which produced heavy left truncation and mild right truncation and a total

of 60% of the observations truncated. In the fourth model we set θ1 = 0.50 and θ2 = 2.5, which

produced both heavy left and right truncation and a total of 80% of the observations truncated.

In all models, the weighted estimators β̂w
θ̂

and β̂wnp had little bias, while the unweighted estimator

β̂uw was biased. The observed sample standard deviations of β̂w
θ̂

corresponded well with the

standard error estimates based on asymptotic theory. The observed sample standard deviations of

β̂wnp were accurately estimated by the bootstrap technique, and were slightly greater than those of

β̂w
θ̂
. Both weighted estimators had coverage probabilities that were close to the nominal level of

0.95. All of these results held for both smaller (n=50) and larger (n=250) sample sizes. We note

that the high coverage probabilities of β̂uw are an artifact of its large standard error relative to its

bias, which led to wider confidence intervals for β̂uw. In simulations where the standard error of β̂uw

was small relative to its bias, the coverage probabilities of β̂uw did not come close to the nominal

level (e.g. Table 2.2).

We now examine the bias of β̂wnp and β̂uw as a function of left and right truncation proportion

(Figure 2.3). For the purpose of clarity we do not include β̂w
θ̂

in Figure 2.3, but note that its bias

was nearly identical to that of β̂wnp . Even under mild truncation, β̂uw was biased, and this bias

increased drastically as the proportion of right truncation increased. Here β̂wnp had little bias,

regardless of truncation proportion.
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Table 2.1: Simulation results
q n Estimator Bias SD ŜE Cov

0.20

50 β̂uw -0.081 0.574 0.545 0.943
50 β̂w

θ̂
-0.011 0.616 0.552 0.927

50 β̂wnp -0.015 0.616 0.620 0.937
63 β̂cc 0.003 0.504 0.475 0.943

100 β̂uw -0.071 0.375 0.371 0.945
100 β̂w

θ̂
0.003 0.405 0.374 0.940

100 β̂wnp 0.000 0.406 0.408 0.943
125 β̂cc -0.005 0.340 0.328 0.941
250 β̂uw -0.066 0.235 0.231 0.938
250 β̂w

θ̂
0.007 0.254 0.232 0.925

250 β̂wnp 0.004 0.254 0.250 0.945
313 β̂cc 0.011 0.205 0.205 0.951

0.40

50 β̂uw -0.031 0.548 0.536 0.957
50 β̂w

θ̂
0.053 0.593 0.551 0.935

50 β̂wnp 0.045 0.605 0.626 0.934
83 β̂cc 0.047 0.423 0.404 0.949

100 β̂uw -0.092 0.381 0.370 0.939
100 β̂w

θ̂
-0.006 0.424 0.381 0.936

100 β̂wnp -0.009 0.426 0.419 0.938
167 β̂cc 0.008 0.274 0.282 0.958
250 β̂uw -0.084 0.235 0.231 0.927
250 β̂w

θ̂
0.005 0.263 0.235 0.922

250 β̂wnp 0.004 0.266 0.258 0.944
417 β̂cc 0.008 0.180 0.177 0.948

0.60

50 β̂uw 0.139 0.562 0.542 0.937
50 β̂w

θ̂
0.041 0.547 0.561 0.950

50 β̂wnp 0.034 0.555 0.580 0.939
125 β̂cc 0.005 0.338 0.326 0.947
100 β̂uw 0.122 0.374 0.372 0.949
100 β̂w

θ̂
0.014 0.361 0.392 0.970

100 β̂wnp 0.011 0.363 0.382 0.955
250 β̂cc -0.004 0.234 0.228 0.936
250 β̂uw 0.111 0.244 0.232 0.911
250 β̂w

θ̂
0.013 0.234 0.249 0.964

250 β̂wnp 0.005 0.237 0.234 0.937
625 β̂cc 0.006 0.150 0.144 0.947

0.80

50 β̂uw -0.127 0.560 0.538 0.937
50 β̂w

θ̂
-0.015 0.666 0.633 0.940

50 β̂wnp -0.004 0.724 0.701 0.947
250 β̂cc 0.008 0.226 0.233 0.961
100 β̂uw -0.122 0.373 0.367 0.940
100 β̂w

θ̂
0.013 0.472 0.456 0.924

100 β̂wnp 0.016 0.493 0.472 0.949
500 β̂cc 0.006 0.162 0.164 0.955
250 β̂uw -0.163 0.236 0.228 0.878
250 β̂w

θ̂
-0.021 0.316 0.328 0.913

250 β̂wnp -0.019 0.315 0.294 0.927
1250 β̂cc 0.000 0.104 0.103 0.949

q is proportion of truncated observations, n is size of observed sample. β̂uw denotes naı̈ve unweighted estimator, β̂w
θ̂

denotes proposed

parametric weighted estimator, β̂wnp denotes proposed nonparametric weighted estimator, β̂cc denotes unattainable complete case

estimator based on both truncated and non-truncated observations. SD is empirical standard deviation of estimates across simulations, ŜE
is average of estimated standard errors, Cov is coverage of 95% confidence intervals. True value of β is 1.

We also examined the robustness of β̂w
θ̂

under misspecification of the truncation distribution in Ta-

ble 2.2. In this setting, β̂w
θ̂

was biased. Here β̂wnp still had little bias, as β̂wnp makes no distributional
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Figure 2.3: Comparing bias and MSE (mean-squared error) of estimators

 

Bias of the unweighted estimator β̂uw (black) and nonparametric weighted estimator β̂wnp (gray).
Left truncation time simulated from a c1Beta(θ1, 1) distribution, right truncation time simulated from
a c2Beta(1, θ2) distribution, with c1 = c2 = 30. Here θ1 ranges from 0.025 to 0.50 which results in a
range of 5% to 65% truncation from the left, and θ2 ranges from 0.25 to 5 which results in a range
of 5% to 45% truncation from the right. The remaining settings are kept the same as in Table 2.1,
with n = 250.

assumptions for the truncation times.

Table 2.2: Simulation results under misspecification of the truncation distribution
q n Estimator Bias SD ŜE Cov

0.50

250 β̂uw -0.198 0.233 0.229 0.849
250 β̂w

θ̂
-0.053 0.296 0.241 0.876

250 β̂wnp -0.029 0.360 0.318 0.930
500 β̂cc 0.003 0.168 0.164 0.939

0.40

250 β̂uw -0.095 0.235 0.230 0.923
250 β̂w

θ̂
-0.165 0.237 0.258 0.919

250 β̂wnp -0.002 0.306 0.288 0.938
417 β̂cc -0.002 0.173 0.176 0.960

0.35

250 β̂uw -0.245 0.235 0.229 0.795
250 β̂w

θ̂
-0.175 0.267 0.249 0.866

250 β̂wnp -0.034 0.427 0.356 0.920
385 β̂cc 0.002 0.182 0.184 0.953

q is the proportion of observations missing due to

truncation and n is the size of the observed sample. β̂uw denotes the naı̈ve unweighted estimator, β̂w
θ̂

denotes the

proposed parametric weighted estimator, β̂wnp denotes the proposed nonparametric weighted estimator, and β̂cc denotes
the unattainable complete case estimator based on both truncated and non-truncated observations. SD is the empirical

standard deviation of estimates across simulations, ŜE is the average of the estimated standard errors, Cov is the
coverage of 95% confidence intervals. The true value of β is 1.

The simulations above assumed U and V are independent. In some cases, V can be expressed
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as V = U + d0, where d0 can be random or constant. To assess the performance of our proposed

estimators under this dependent truncation structure, we conducted a simulation study in Table 2.3.

The results are similar to those presented in Table 2.1.

Table 2.3: Simulation results under dependent truncation structure V = U + d0.
θU γd0 q n Estimator Bias SD ŜE Cov

0.15 30 0.33

250 β̂uw -0.051 0.235 0.230 0.937
250 β̂w

θ̂
0.012 0.251 0.245 0.946

250 β̂wnp 0.009 0.253 0.251 0.941
374 β̂cc 0.002 0.187 0.187 0.956

0.25 20 0.47

250 β̂uw -0.088 0.231 0.231 0.932
250 β̂w

θ̂
0.019 0.268 0.305 0.964

250 β̂wnp 0.017 0.271 0.280 0.957
472 β̂cc 0.004 0.168 0.167 0.951

0.35 20 0.56

250 β̂uw -0.037 0.248 0.232 0.930
250 β̂w

θ̂
0.018 0.273 0.261 0.930

250 β̂wnp 0.011 0.276 0.270 0.931
569 β̂cc 0.004 0.155 0.154 0.947

U ∼ 20×Beta
(
θU , 1

)
,

d0 ∼ Unif
[
0, γd0

]
. The remaining settings were kept the same as in the simulations in Section 2.4 of the paper. q is the

proportion of observations missing due to truncation and n is the size of the observed sample. β̂uw denotes the naı̈ve
unweighted estimator, β̂w

θ̂
denotes the proposed parametric weighted estimator, β̂wnp denotes the proposed

nonparametric weighted estimator, and β̂cc denotes the unattainable complete case estimator based on both truncated and
non-truncated observations. SD is the empirical standard deviation of estimates across simulations, ŜE is the average of

the estimated standard errors, Cov is the coverage of 95% confidence intervals. The true value of β is 1.

2.5. Application to Alzheimer’s Disease Study

We illustrate our method by considering an autopsy-confirmed AD study conducted by the Center

for Neurodegenerative Disease Research at the University of Pennsylvania. The target population

for the research purposes of this study consists of all subjects with AD symptom onset before

2012 that met the study criteria and therefore would have been eligible to enter the center. Our

observed sample contains all subjects who entered the center between 1995 and 2012, and had

an autopsy performed before 2012. Thus one criterion for a subject to be included in our sample

is that they did not succumb to AD before they entered the study, yielding left truncated data. In

addition, our sample only contains subjects who had an autopsy-confirmed diagnosis of AD, and

therefore we have no knowledge of subjects who live past the end of the study. Thus our data is

also right truncated. Our data consists of n=47 subjects, all of whom have event times. The event

time of interest is the survival time (T ) from AD symptom onset. The left truncation time (U ) is the

time between the onset of AD symptoms and entry into the study (i.e. initial clinic visit). The right

truncation time (V ) is the time between the onset of AD symptoms and the end of the study, which

is taken to be July 15, 2012. Due to double truncation, we only observe subjects with U ≤ T ≤ V .
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Our motivation for studying the effect of education on survival in AD is that education serves as

a proxy for cognitive reserve (CR). CR theorizes that individuals develop cognitive strategies and

neuronal connections throughout their lives through experiences such as education and other forms

of mental engagement (Valenzuela and Sachdev, 2007). For example, CR may have a protective

role in the brain, and therefore lengthen survival during the course of the disease (Ientile et al.,

2013). Paradise et al. (2009) and Meng and D’Arcy (2012) failed to detect an effect of education

on survival from AD symptom onset. However the studies included in their meta-analyses did not

consist of populations with autopsy-confirmed AD.

Here we assess the effect of education on survival time in our autopsy-confirmed cohort, where

education is measured by years of schooling. The median years of education in this cohort is 16

years. Comparing the low education group (< 16 years) and high education group (≥ 16 years) on

the variables of interest revealed no significant differences (Table 2.4).

Table 2.4: Comparing low education (< 16 years) and high education (≥ 16 years) groups
Low education (n=15) High education (n=32)

Variable mean (sd) mean (sd) Test statistic p-value
Age Onset 61.8 (10.5) 63.2 (12.9) t45 = −0.37 0.712
Survival time 8.7 (3.4) 7.9 (3.2) t45 = 0.80 0.430
Time to study entry 3.4 (1.71) 2.7 (1.5) t45 = 1.37 0.177
Time to end of study 13.3 (2.8) 12.6 (4.7) t45 = 0.58 0.563
Male (%) 53 72 χ2

1 = 1.56 0.211

Survival time, time to study entry, and time to end of study are measured in years from AD symptom
onset.

Since our data is doubly truncated, we apply the Cox regression model using the proposed weighted

estimating equation approach. We check the assumption of independence between the truncation

and survival times in the observable region U ≤ T ≤ V using the conditional Kendall’s tau pro-

posed by Martin and Betensky (2005). The resulting p-value is 0.10, and therefore we do not have

enough evidence to reject the null hypothesis that the observed survival and truncation times are

independent. We justify the identifiability constraints, aHU < aF ≤ aHV and bHU ≤ bF < bHV , in

Section 2.4.1 below.

We adjust for double truncation using both parametric and nonparametric weights. The parametric

weights are estimated under the assumption that U ∼ c1Beta(α1, β1) and V ∼ c2Beta(α2, β2),

where c1 = 20 and c2 = 40. Under these parametric assumptions, we have α̂1 = 2.6, β̂1 = 13.8 and
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α̂2 = 3.0, β̂2 = 9.7. To check our assumption of the beta distribution, we test the null hypothesis H0 :

K(u, v) = Kθ(u, v), where θ = (α1, β1, α2, β2). Here the parametric joint cumulative distribution

function Kθ(u, v) = Iu/c1(α1, β1)× Iv/c2(α2, β2), where Ix(a, b) =
∫ x

0
ta−1(1− t)b−1dt. As described

by Moreira, de Ũna-Álvarez, and Van Keilegom (2014), we can testH0 using a Kolmogorov-Smirnov

type test statistic Dn = supu,v∈R|Kn(u, v) − Kθ̂(u, v)|, where Kn(u, v) is the NPMLE of K(u, v)

(Shen, 2010a). This yields a p-value of 0.60, and therefore we do not have enough evidence

against the beta distribution assumption for the truncation times.

Table 2.5 displays the results from the Cox regression model using no weights, parametric weights,

and nonparametric weights. The effects of age at AD symptom onset and male on survival are

nearly twice as large in the weighted models relative to the unweighted model, but these effects

are only significant under parametric assumptions. When we do not account for double truncation,

there is no effect of education on survival (β̂uw = 0; 95% CI: [-0.11,0.12]). When we account for

double truncation, higher education is associated with increased survival under parametric weights

(β̂w
θ̂

= -0.07; 95% CI: [-0.20,0.06]) and nonparametric weights (β̂wnp = -0.06; 95% CI: [-0.29,0.19]).

However the confidence intervals for both β̂w
θ̂

and β̂wnp contain 0.

Table 2.5: Application: Education on survival in AD
Unweighted Parametric weights Nonparametric weights

Predictor β̂uw (ŜE) 95% CI β̂w
θ̂

(ŜE) 95% CI β̂wnp (ŜE) 95%CI
Age Onset 0.03 (0.03) (-0.01, 0.06) 0.05 (0.02) (0.00, 0.09) 0.05 (0.03) (-0.02, 0.12)
Male 0.45 (0.34) (-0.21, 1.11) 1.01 (0.49) (0.06, 1.97) 0.95 (0.61) (-0.36, 2.18)
Education 0.00 (0.06) (-0.11, 0.12) -0.07 (0.07) (-0.20, 0.06) -0.06 (0.11) (-0.29, 0.19)

2.5.1. Justification of identifiability constraints

Here we justify that the identifiability constraints given in Section 2.2.1, aHU < aF ≤ aHV and

bHU ≤ bF < bHV , hold in our data example. First we introduce some notation. Denote τ as the end

of study date, τE as the study entry date, and τA as the date of symptom onset. Note that τ is the

same for all subjects, while τE and τA can differ among subjects. The left truncation time is defined

as U = τE − τA, and the right truncation time is defined as V = τ − τA.

Subjects can theoretically enter the center at the time of AD symptom onset, but not before. There-

fore the smallest possible left truncation time is U=0, and thus aHU = 0. Since recruitment of

subjects into the center stops one week prior to the end of the study, the smallest possible right

truncation time is V = 1 week (or V ≈ 0.019 years). Therefore aHV ≥ 0.019. Since subjects can die
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from AD within a week of symptom onset, and we assume that subjects cannot die on the day of

symptom onset, P (T ≤ t) > 0 for some t ∈ (0, 0.019), where t is measured in years. We therefore

have that 0 < aF < 0.019, and thus the constraint aHU < aF ≤ aHV is satisfied.

Because subjects are not expected to enter the study more than 20 years after symptom onset,

the assumption bHU ≤ 20 is reasonable in practice. Since subjects with AD can live past 20 years

after symptom onset, P (T ≥ 20) > 0, and thus bF ≥ 20. Our study recruited subjects from 1995

to 2012, and subjects with AD symptom onset before 1995 were included in the study. Since the

study recruited subjects over a 17 year period, we have that bHV = bF + 17 and thus bF < bHV .

To see why this is so, note that a subject with a survival time T = bF could have theoretically had

symptom onset in the year 1995 - bF . For example, if bF = 20, a subject could have entered the

study in 1975, in which case their right truncation time would be 37 years. Therefore it is reasonable

to assume that the constraint bHU ≤ bF < bHV is satisfied.

A violation of these assumptions implies that we cannot observe a particular subset S ⊆ [aF , bF ] of

the survival times, which violates the positivity assumption and may lead to unstable estimators. In

other words, a violation of the identifiability constraints implies that π(t) = 0 for a particular survival

time t ∈ S. For example, when aHU < aF is violated, we have that for all t ∈ S = [aF , aHU ],

π(t) = P (U ≤ t ≤ V ) =
∫ bHV
t

∫ t
aHU

K(du, dv) = K(t, bHV ) − K(t, t) = 0 (note that the terms

K(aHU , bHV ) and K(aHU , t) are 0 by the definition of aHU ). To see why π(t) = 0, recall that t ∈ S

implies that t < aHU , and thus P (U ≤ t) = 0 . Since K(u, v) = P (U ≤ u, V ≤ v), we have that

K(t, bHV ) = K(t, t) = 0 when t < aHU .

In practice, a violation of the identifiability constraints could happen if there is a mediating event that

must occur before a subject enters a clinic or study. Suppose that this mediating event occurs only

after the onset of symptoms, say δ units of time, so that aHU ≥ δ. If there is a non-zero probability

that subjects can die between the onset of symptoms and this mediating event, then aF < δ and

thus aF < aHU . In this case π(t) = 0 for all t ∈ [aF , δ) and we would never observe these subjects,

which will lead to invalid inference on the target population.

The justification of the identifiability constraints in our data, along with the study design, provides

evidence that the positivity assumption holds for our observed sample. To demonstrate this, we will

show that if the identifiability constraints hold, then π(t) = 0 if and only if P (U ≤ t|V ≥ t) = 0 (or

25



equivalently P (V ≥ t|U ≤ t) = 0) for some t ∈ [aF , bF ]. By Bayes rule,

π(t) = P (U ≤ t ≤ V ) = P (U ≤ t, V ≥ t) = P (V ≥ t|U ≤ t) ·P (U ≤ t) = P (U ≤ t|V ≥ t) ·P (V ≥ t).

The constraint aHU < aF implies that P (U ≤ t) > 0 for all t ≥ aF , and the constraint bF < bHV

implies that P (V ≥ t) > 0 for all t ≤ bF . Therefore when the identifiability constraints hold, the

positivity assumption can only be violated if P (U ≤ t|V ≥ t) = 0 (or equivalently P (V ≥ t|U ≤ t) =

0) for some t ∈ [aF , bF ]. If such t did exist, say t′, such that π(t′) = 0, then P (U ≤ t′|V ≥ t′) = 0

would imply that all subjects who have a right truncation time that exceeds t′ years could not have

entered the study within t′ years of symptom onset. For example, if t′ = 10, then all subjects with

V ≥ 10 must have had AD symptom onset before 2002 (recall that V is the time from symptom

onset to the year 2012). If P (U ≤ 10|V ≥ 10) = 0, then subjects with AD symptom onset after

2002 would be unable to enter the study within 10 years after symptom onset. However this is not

possible under our study design, since the criteria for entry did not change throughout the course

of the study.

2.6. Discussion

We proposed a weighted estimating equation approach to adjust the Cox regression model under

double truncation, by weighting the subjects in the score equation of the Cox partial likelihood by

the inverse of the probability that they were observed (i.e. not truncated). The probability of being

observed was estimated both parametrically and nonparametrically by methods introduced in Shen

(2010; 2010) and Moreira and de Ũna-Álvarez (2010), and did not require any contribution from

missing subjects. The proposed hazard ratio estimators are consistent. The simulation studies

confirmed that the proposed estimators have little bias, while the naı̈ve estimator which ignores

truncation is biased. The parametric weighted estimator is asymptotically normal, and a consistent

estimator of its asymptotic variance is provided. Our simulations showed that the bootstrap esti-

mate of the standard error for the nonparametric weighted estimator matched the observed sample

standard deviation.

The proposed estimators have little bias in practical settings, which has useful implications in obser-

vational studies. One example is AD - a severe neurodegenerative disorder which has devastating

effects for patients and their caregivers. Thus any knowledge of factors associated with extending
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survival from AD symptom onset can have a great impact on society. In this paper, we assessed

the effect of education on survival in subjects with autopsy-confirmed AD. Our method is critical

for analyzing data of this sort, since autopsy confirmation leads to doubly truncated survival times,

which can result in biased hazard ratio estimators. While AD studies that do not use autopsy con-

firmation avoid double truncation, the conclusions based on these studies may be unreliable due

to the inaccuracy of clinical diagnosis. This may explain the inconclusive findings of the two meta-

analyses conducted by Paradise et al. (2009) and Meng and D’Arcy (2012), who used studies with

clinically diagnosed AD subjects to examine the effect of education on survival. Using our pro-

posed method on an autopsy-confirmed AD study found that higher education was associated with

increased survival. However, these effects were not statistically significant. This may be due to our

small sample size and the fact that our sample was highly educated (range = 12 - 20 years). When

double truncation was ignored, we found no effect of education on survival.

The consistency of the estimated selection probabilities used in our proposed method rests on the

assumption of independence between the survival and truncation times in the observable region. A

violation of this assumption may lead to biased hazard ratio estimators. Currently, we are not aware

of any methods to adjust for violations of this assumption. Because the estimation procedure for the

selection probabilities does not make use of the assumed relationship between the survival time and

covariates, this independence assumption cannot be relaxed simply by covariate adjustment in the

Cox model. However, when conditional independence on discrete covariates holds, we can stratify

the data based on the levels of the covariates, and then estimate the weights independently within

each stratum. In this situation, conditional independence can be tested by applying the conditional

Kendall’s tau (Martin and Betensky, 2005) within each stratum. However, this approach may not

be practical if the number of strata is large. Future work is thus needed to relax the independence

assumption.

Currently there are no closed form estimates for the nonparametric selection probabilities, which

complicate the development of asymptotic properties for the nonparametric weighted estimator.

While our simulations show that the nonparametric weighted estimator appears to satisfy asymp-

totic normality, an extension to our method is to formally prove this result. Furthermore, the theo-

retical validity of the bootstrap estimators needs to be established. Finally, the proposed method

assumes that no censoring is present in the data. While right censoring is uncommon under dou-

27



ble truncation, interval censoring could be present in the data (Bilker and Wang, 1996; Martin and

Betensky, 2005). Future work would thus be needed to extend our methods in the presence of

interval censored data.

While weighting leads to consistent estimators, it may also lead to an increase in the variance

of these estimators in certain cases. In practice, an investigator may wonder whether it is worth

adjusting for double truncation. We recommend using the proposed weighted estimators since they

are consistent and perform well in finite samples, while the naı̈ve estimator can be biased even

in cases of mild truncation. When the truncation is severe, the naı̈ve estimator can be heavily

biased. However, severe truncation may produce large weights which can lead to an increase in

the standard error of the weighted estimators. Therefore if the estimated weights are large, we

recommend performing a sensitivity analysis by truncating the weights as described in Seaman

and White (2013).
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CHAPTER 3

COX REGRESSION MODEL UNDER DEPENDENT TRUNCATION

3.1. Introduction

Truncation is a statistical phenomenon that has been shown to occur in a wide range of applications,

including survival analysis, epidemiology, economics, and astronomy. Individuals who are subject

to truncation provide no information to the investigator. Left truncation occurs when data is only

recorded for individuals whose event time exceeds a random time (i.e. left truncation time). Under

left truncation, individuals with smaller event times are less likely to be observed, resulting in a

study sample that is biased towards larger event times and risk factors associated with larger event

times. Right truncation occurs when data is only recorded for individuals whose event time proceeds

a random time (i.e. right truncation time). Under right truncation, individuals with larger event times

are less likely to be observed, resulting in a study sample that is biased towards smaller event

times and risk factors associated with smaller event times. When both left and right truncation are

present, this is known as double truncation.

Double truncation is inherent in autopsy-confirmed studies of neurodegenerative diseases Rennert

and Xie, 2017. Left truncation occurs because individuals enter the study after the onset of the

disease, and therefore those who succumb to the disease before they enter the study are unob-

served. The right truncation occurs because individuals who live past the end of the study date

do not receive a pathological diagnosis of the disease. Since these subjects cannot be definitively

diagnosed with a particular disease, they are excluded from the autopsy-confirmed study sample

and therefore provide no information to the investigator. This is contrary to censored individuals,

who provide partial information about their survival time. We note, however, that right censoring

is not possible in autopsy-confirmed studies, since any individual who has an autopsy performed

will also have a known survival time. This truncation scheme is illustrated in Figure 2.1, where

only individuals whose time of death falls between the study entry time and end of study time are

observed.

The aim of our data analysis is to get accurate estimates of the effect of risk factors on survival

from disease symptom onset in subjects with autopsy-confirmed Alzheimer’s disease (AD), the
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most common neurodegenerative disease. Because individuals with shorter survival times are

less likely to enter the study, left truncation leads to a study sample that is biased towards larger

survival times and risk factors associated with larger survival times. Similarly, individuals with longer

survival times are more likely to live past the end of the study, and therefore right truncation leads

to a study sample that is biased towards smaller survival times and risk factors associated with

smaller survival times. If double truncation is not accounted for, then the regression coefficient

estimators from the Cox regression model Cox, 1972 will be biased.

Methods to handle double truncation have recently started gaining traction in the literature. In

2017, three methods were published to adjust the Cox model under double truncation (Mandel

et al., 2017; Rennert and Xie, 2017; Shen and Liu, 2017). The estimation procedure for all three

methods rely on estimating the joint distribution of the left and right truncation times, which is used to

compute the probability that a subject is observed (i.e. not truncated). These probabilities are then

used as weights or offsets in the Cox model. However, the estimation of the truncation distribution

relies on the assumption of independence between the observed survival and truncation times,

which may not a reasonable assumption in practice. For example, according to the Alzheimer’s

association and discussions with our clinical investigators, factors such as lower age of symptom

onset, depression, and stress are associated with delayed study entry. Since these factors are

associated with survival, this induces a dependence between the left truncation times and survival

times. As shown in the simulation studies in Section 3.3, the regression coefficient estimators from

(Mandel et al., 2017; Rennert and Xie, 2017; Shen and Liu, 2017) are sensitive to violations of

this independence assumption. Therefore, the existing literature is unable to address the unique

challenges present in our study.

In this paper, we propose a novel method to relax the assumption of independence between the

observed survival and truncation times in the Cox proportional hazards model under left, right,

and double truncation. Specifically, by conditioning on the observed truncation times, our method

relaxes the independence assumption to an assumption of conditional independence. Treating the

truncated survival times as missing, we introduce an expectation-maximization (EM) algorithm to

estimate the regression coefficients and baseline hazard rates. This approach, which completely

avoids the estimation of the truncation distribution, yields consistent and asymptotically normal

regression coefficient estimators. We show through extensive simulation studies that our proposed
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estimators have little bias in small samples, while the estimators based on the methods introduced

in (Mandel et al., 2017; Rennert and Xie, 2017; Shen and Liu, 2017), and the standard model which

ignores double truncation, can be heavily biased under violations of the independence assumption.

We show that even if the independence assumption is satisfied, our proposed method performs

as well as the existing approaches. We illustrate our method by analyzing the effect of cognitive

reserve on survival in an autopsy-confirmed AD cohort.

Cognitive reserve (CR) is a widely used hypothetical construct intended to account for individual

differences in cognitive decline and clinical manifestations of dementia among individuals with AD

(Meng and DArcy, 2012; Stern, 2012). CR hypothesizes that individuals develop cognitive strate-

gies and neural connections throughout their life times through experience such as occupation,

education, and other forms of mental engagement (Valenzuela and Sachdev, 2007). This may

modulate the effects of AD because of compensatory strategies obtained from a higher level of

professional performance or a good education (Sanchez et al., 2011). For example, CR may have

a protective role in the brain and therefore lengthen survival from disease symptom onset (Ientile

et al., 2013).

Occupation, often used as a proxy for CR, has been shown to modulate survival in healthy aging

and AD (Massimo et al., 2015). Several studies in healthy aging have examined the possible protec-

tive influence of higher occupational attainment on survival (Andel, Silverstein, and Kareholt, 2014;

Correa Ribeiro, Lopes, and Loureno, 2013; Enroth et al., 2014). However other studies have shown

that for individuals with AD, those with a higher occupational attainment had a higher mortality rate

than those with a lower occupation attainment (Stern et al., 1999, 1995). The caveat to previous

studies assessing the effect of occupation on survival is that most consisted of populations with

clinically diagnosed AD subjects, which can be unreliable (Beach et al., 2012). Due to the inaccu-

racy of clinical diagnosis of AD, autopsy-confirmation is used for a definitive diagnosis (Grossman

and Irwin, 2016). Without an accurate diagnosis of AD, any estimates of factors affecting survival

are not reliable. In this paper, we aim to get improved estimates of the effect of occupation on

survival from an autopsy-confirmed AD sample, adjusting for both truncation and dependence.

The remainder of this paper is organized as follows. In Section 3.2 we introduce the proposed

EM method, including the estimation procedure and the large sample properties of the resulting

estimators. In Section 3.3, we conduct a simulation study to assess the finite sample performance
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of the proposed estimators under dependent truncation. In Section 3.4, we apply the proposed

method to estimate the effect of occupation on survival in individuals with autopsy-confirmed AD.

Discussion and concluding remarks are given in Section 3.5. Proofs of the large sample results are

outlined in the Appendix.

3.2. Methods

We first introduce notation and assumptions. Let T denote the survival time of interest (e.g. sur-

vival time from disease symptom onset), L denote the left truncation time (e.g. time from disease

symptom onset to entry into the study), R denote the right truncation time (e.g. time from disease

symptom onset to the end of study date), and Z denote a p× 1 vector of covariates. Let N denote

the size of the target population – the population that would have been observed had there been

no truncation present in the study. Due to double truncation, we only observe (Ti, Li, Ri,Zi) for

i = 1, ..., n ≤ N individuals who live long enough to enter the study (i.e. T ≥ L) and do not live past

the end of the study (i.e. T ≤ R). Here we have denoted the population random variables from the

target population without subscripts, and the sampling random variables from the observed sample

with subscripts.

The proportional hazards model (Cox, 1972) is considered the standard regression model for an-

alyzing traditional right-censored survival data. The model assumes that the covariate-specific

hazard function is given by λZ(t) = λ(t) exp(β′Z), where β is a p× 1 regression parameter vector,

and λ(t) is the baseline hazard function and is unspecified. When the survival data are subject

to selection bias, Cox’s partial likelihood approach (Cox, 1975) cannot be directly applied. This is

because the observed data are not a representative sample of the target population, and therefore

the observed, biased data do not follow the model that is assumed for the unbiased data from the

target population. When the data is biased due to double truncation, the distribution of the observed

survival time Ti is given by:

P (Ti ≤ t|Zi) = P (T ≤ t|Zi, L ≤ T ≤ R) =
P (T ≤ t, L ≤ T ≤ R|Zi)

P (L ≤ T ≤ R|Zi)
6= P (T ≤ t|Zi),

which differs from the distribution of the survival time T from the target population. Therefore the

resulting estimates of the regression coefficients based on data from the observed sample will be

biased estimators of the regression coefficients from the target population.
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Under the assumption of independence between the survival and truncation times, (Mandel et al.,

2017; Rennert and Xie, 2017; Shen and Liu, 2017) adjust for double truncation by estimating the

probability that a subject with survival time Ti is observed, defined by π̂i = P̂ (L ≤ T ≤ R|T = Ti),

i = 1, ..., n. These probabilities are then used as weights or offsets in the Cox regression model.

For example, under double truncation and independence between the survival times and truncation

times, Rennert and Xie (2017) consistently estimate the true p× 1 regression coefficient vector β0

by β̂w, the solution to

Uw(β, π̂) =

n∑
i=1

∫ τ

0

π̂−1
i

{
Zi(t)−

∑n
j=1 π̂

−1
j Yj(t) exp{β′Zj(t)}Zj(t)∑n

j=1 π̂
−1
j Yj(t) exp{β′Zj(t)}

}
dNi(t) = 0, (3.1)

where π̂ = (π̂1, ..., π̂n), Yi(t) = I(Ti ≥ t), Ni(t) = I(Ti ≤ t), and I is the indicator function. Here τ

is the maximum of the observed event times. The standard Cox regression estimator (Cox, 1975)

which ignores double truncation, β̂s, is the solution to Uw(β,1) = 0, where Uw(β,1) is the score

equation from the standard Cox model.

The caveat of the approaches which adjust for double truncation is that they require estimating the

distribution of the truncation times, which is needed to obtain the estimator of the selection proba-

bilities π̂. Existing methods to estimate the truncation distribution require independence between

the survival and truncation times. When this independence assumption is violated, the estimator of

the truncation distribution will be biased, and therefore the estimator of the selection probabilities π̂

will be biased. Because the methods in (Mandel et al., 2017; Rennert and Xie, 2017; Shen and Liu,

2017) depend on π̂, the resulting regression coefficient estimators will also be biased. The severity

of this bias is demonstrated by the simulation studies in the next section.

When the survival times are conditionally independent of the truncation times given the covariate

Z, the likelihood of the observed survival times, conditional on the truncation times and covariates,

is given by

Ln(β,Λ) =

n∏
i=1

λ(Ti) exp(β′Zi) exp{−Λ(Ti) exp(β′Zi)}
αi(β, λ)

,

where αi(β, λ) = exp{−Λ(Li) exp(β′Zi)} − exp{−Λ(Ri) exp(β′Zi)} and Λ(t) =
∫ t

0
λ(u)du. That

is, αi(β, λ) = P (L ≤ T ≤ R|Zi, Li, Ri;β, λ) is the probability of observing a random subject
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from the target sample with covariate Zi and truncation times Li and Ri. Conditioning on the

truncation times allows us to utilize the information in the covariates Z to relax the assumption

of independence to an assumption of conditional independence. Furthermore, this conditioning

completely avoids the need to estimate the distribution of the truncation times.

The log-likelihood function, logLn(β,Λ), can be expressed as

ln(β,Λ) = n−1
n∑
i=1

[ ∫ τ

0

{log λ(t) + β′Zi − Λ(t) exp(β′Zi)}dNi(t)− logαi(β, λ)
]
. (3.2)

Due to the difficulties of maximizing the log-likelihood (3.2) over all absolutely continuous cumulative

hazard functions, we allow the estimator of λ to be discrete. Because the maximum likelihood esti-

mation (MLE) of β and λ may be computationally intractable if directly solving the score equations

for (3.2), we estimate β0 and λ using an EM algorithm. This has the advantage that its maximization

step (M-step) only involves the complete-data likelihood. Based on the EM algorithm, we provide

a convenient estimation approach to obtain estimators of the regression coefficients and baseline

hazard function under left, right, or double truncation. This approach allows the survival and trun-

cation times to be dependent through the covariate vector Z. Furthermore, it does not require the

estimation of the truncation time distribution. The estimation approach given here can easily be

implemented using standard software for the Cox regression model.

3.2.1. Proposed EM Algorithm

Motivated by the approach in (Qin et al., 2011), who proposed EM algorithms for length-biased

and right-censored data, Shen and Liu (Shen and Liu, 2017) proposed an EM algorithm to obtain

pseudo MLEs of the regression coefficients from the Cox model under independent left and right

truncation. They referred to their MLEs as pseudo because their proposed likelihood included the

plug-in value of the estimator of the selection probabilities π̂. However, as the authors point out,

the estimated selection probabilities will be biased if the truncation times depend on the covariates

Z. Hence, the resulting pseudo MLEs of the regression coefficients from the Cox model will also be

biased.

We propose an EM algorithm for obtaining the MLE of (β,λ) based on (3.2). This allows us to

relax the assumption of independence required by the methods in (Mandel et al., 2017; Rennert
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and Xie, 2017; Shen and Liu, 2017) to an assumption of conditional independence by avoiding

the estimation of the truncation distribution (and corresponding selection probabilities). Similar to

the approaches of (Shen and Liu, 2017) and (Qin et al., 2011), we let t1 < ... < td denote the

ordered, distinct failure times for {T1, ..., Tn}. We develop the EM algorithm based on the discrete

version of Λ, which we redefine as a step function only taking jumps at t1, ..., td. Specifically, we set

Λ(t) =
∑
tj≤t λj , were λj is the positive jump at time tj for j = 1, ..., n.

Our observed data consists of O = {O1, ...,On}, where Oi ≡ (Ti, Li, Ri,Zi) for i = 1, ..., n. Let

O∗ = {T ∗ir; i = 1, ..., n, r = 1, ...,mi} denote the truncated latent data, where T ∗ir is the missing

survival time for a subject with truncation times (Li, Ri) and covariate vector Zi for i = 1, ..., n and

r = 1, ...,mi. For notational convenience, we set θ = (β,λ) and define the density of T at time tj ,

given Zi, as fi(tj ;θ) = λj exp(β′Zi) exp{−
∑j
s=1 λs exp(β′Zi)}, where λ = (λ1, ..., λd). Assuming

the latent survival times T ∗ir take their values in {t1, ..., td}, the complete data log-likelihood is given

by

lfull(θ;O,O∗) =

d∑
j=1

n∑
i=1

[
I(Ti = tj) +

mi∑
r=1

I(T ∗ir = tj)
]

log fi(tj ;β,λ)

To estimate the parameter θ, the EM algorithm begins by choosing an initial value for θ, say θ(0).

In our setting, we can choose θ(0) = (βs,λs), which are the estimates from the standard Cox

model. For k = 0, 1, 2, ..., the expectation step (E-step) consists of calculating the expected value

of the complete data log likelihood function lfull(θ;O,O∗) with respect to the missing data T ∗ir,

i = 1, ..., n, r = 1, ...,mi, conditional on the observed data (Ti, Li, Ri,Zi), i = 1, ..., n, under the

current estimate θ(k). That is, we compute:

Q(θ;θ(k)) = Eθ(k)

[
lfull(θ;O,O∗)

∣∣O]
In the maximization step (M-step), we choose θ(k+1) to maximize Q(θ;θ(k)). That is, we set

θ(k+1) = arg maxθQ(θ;θ(k))

The E- and M-steps are carried out again, but this time with θ(k) replaced by θ(k+1). The E- and

M-steps are then alternated repeatedly until ‖θ(k+1) − θ(k)‖ < ε for some prespecified error ε > 0.
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The EM algorithm described here is under the double truncation setting. If only left truncation

is present, the algorithm is easily adjusted by setting Ri = ∞ for i = 1, ..., n. When only right

truncation is present, we set Li = −∞ for i = 1, ..., n. Note that when only left truncation is present,

the standard Cox regression estimator can account for dependent left truncation by adjusting the

risk set at a given time point to include all individuals who are alive and in the study at that time

(Klein and Moeschberger, 2003). We denote this estimator by β̂s,l. We show through simulations

in the next section that when only left truncation is present, our proposed estimator and β̂s,l yield

nearly identical results.

3.2.2. E-step

At the kth iteration, define θ(k) = (β(k),λ(k)). Then,

Q(θ;θ(k)) = Eθ(k)

[ d∑
j=1

n∑
i=1

[
I(Ti = tj) +

mi∑
r=1

I(T ∗ir = tj)
]

log fi(tj ;θ)
∣∣O]

=

d∑
j=1

n∑
i=1

{
I(Ti = tj) +

d∑
j=1

n∑
i=1

Eθ(k)

[ mi∑
r=1

I(T ∗ir = tj)
∣∣∣Oi

]}
log fi(tj ;θ)

=

d∑
j=1

n∑
i=1

{
I(Ti = tj) +

d∑
j=1

n∑
i=1

Emi
[
mi × Eθ(k) [I(T ∗ir = tj)|Oi]

]}
log fi(tj ;θ),

where

Eθ(k) [I(T ∗ir = tj)|Oi] = Pθ(k)(T ∗ir = tj |Li, Ri,Zi) = Pθ(k)(T = tj |Li, Ri,Zi, {T < L} ∪ {T > R})

=
Pθ(k)(T = tj , {T < L} ∪ {T > R}|Li, Ri,Zi)

Pθ(k)({T < L} ∪ {T > R}|Li, Ri,Zi)

=
fi(tj ;θ

(k))× [I(tj < Li) + I(tj > Ri)]

1− αi(θ(k))
.

Since mi is the number of missing/truncated subjects with covariate values Zi and truncation times

Li and Ri, mi follows a geometric distribution with success rate αi(θ). Therefore when θ = θ(k),

E[mi] = 1−αi(θ(k))

αi(θ(k))
.

The complete data log likelihood is then given by

Q(θ;θ(k)) =

d∑
j=1

n∑
i=1

{
I(Ti = tj) +

I(tj < Li) + I(tj > Ri)

αi(θ
(k))

fi(tj ;θ
(k))
}

log fi(tj ;θ)
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3.2.3. M-step

Let w(k)
ij = I(Ti = tj) +

I(tj<Li)+I(tj>Ri)

αi(θ(k))
fi(tj ;θ

(k)). The complete data log likelihood can be written

as

Q(θ;θ(k)) =

d∑
j=1

n∑
i=1

w
(k)
ij log fi(tjθ) =

d∑
j=1

w
(k)
+j λj +

n∑
i=1

w
(k)
i+ β

′Zi +

n∑
i=1

d∑
j=1

j∑
s=1

w
(k)
ij exp(β′Zi)λs,

where w(k)
+j =

∑n
i=1 w

(k)
ij and w(k)

i+ =
∑d
j=1 w

(k)
ij .

Treating w(k)
ij as constant, we set ∂Q(θ;θ(k))

∂λj
= 0 to get a closed form solution to λj as a function of

β:

λj =
w

(k)
+j∑d

s=j

∑n
i=1 w

(k)
is exp(β′Zi)

, j = 1, ..., d. (3.3)

Differentiating Q(θ;θ(k)) with respect to β yields

∂Q(θ;θ(k))

∂β
=

n∑
i=1

w
(k)
i+ Zi +

n∑
i=1

d∑
j=1

j∑
s=1

w
(k)
ij Zi exp(β′Zi)λs.

Setting the equation above equal to 0 and inserting the equation for λj yields

n∑
i=1

w
(k)
i+ Zi −

d∑
s=1

w
(k)
+s

{∑n
i=1

∑d
j=s w

(k)
ij Zi exp(β′Zi)∑n

i=1

∑d
j=s w

(k)
ij exp(β′Zi)

}
= 0. (3.4)

The estimating equation (3.4) can be solved by specifying the “weights” option in the “coxph” func-

tion in R. First, a weight vector of length ndmust be created: w(k)
nd = (w

(k)
11 , ..., w

(k)
1d , ..., w

(k)
n1 , ..., w

(k)
nd ).

The corresponding failure time data and covariate vectors are also created with length nd as follows:

T nd = (t1, ..., td, ..., t1, ..., td) and Znd = (Z1, ...,Z1, ...,Zn, ...,Zn). Letting ∆nd be the identity vec-

tor of length nd, the solution to (3.4), which we denote by β(k+1), can be obtained with the following

command:

coxph(Surv(T nd,∆nd) ∼ Znd, weights = w(k)
nd , subset = which(w(k)

nd > 0)).

Plugging β(k+1) into (3.3) yields an updated estimator for λ, λ(k+1). We then set θ(k+1) = (β(k+1),
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λ(k+1)), and repeat the E- and M-steps. We continue to alternate between the E- and-M steps until

‖θ(k+1) − θ(k)‖ < ε, for some prespecified error ε > 0. The MLE of the hazard ratio is then given by

β̂em = β(k+1). We denote the corresponding baseline hazard by λ̂em = λ(k+1), and the cumulative

baseline hazard function by Λ̂em(t) =
∑
tj≤t λ

(k+1)
j .

The EM algorithm presented here falls into the general scheme of the ECM algorithm, and therefore

its convergence to the local maximizer is guaranteed by the same conditions required for conver-

gence of the ECM algorithm (Qin et al., 2011). The uniqueness of the resulting estimators are

guaranteed by the regularity conditions in Appendix A. The R code implementing the EM algorithm

described is provided in Appendix D.

3.2.4. Asymptotic Properties

In this section, we establish the strong consistency and asymptotic normality of the proposed EM

estimators. Here we denote the proposed estimators by θ̂ = (β̂em, Λ̂em), and denote the true

regression coefficients and cumulative baseline hazard function θ0 = (β0,Λ0). The asymptotic

properties of the proposed estimators refer to the situation when the total number of observed

(non-truncated) subjects n → ∞. The following theorems assume that the regularity assumptions

in Appendix A hold.

Theorem 3.1: Under the regularity assumptions given in Appendix A, θ̂ is consistent: As n → ∞,

β̂em converges to β0, and Λ̂em(t) converges to Λ0(t) almost surely and uniformly in t for t ∈ [0, τ ].

The existence and uniqueness of the MLE can be proved based on the log-likelihood function

ln(β,λ) = n−1
n∑
i=1

[ ∫ τ

0

β′ZidNi(t) +

d∑
s=1

log λs × I(Ti = ts)−
∑
ts≤ti

λs exp(β′Zi)

− log
{

exp
(
− exp(β′Zi)

∑
ts<Li

λs

)
− exp

(
− exp(β′Zi)

∑
ts≤Ri

λs

)}]
.

Theorem 3.1 can then be proved by applying the classical Kullback-Leibler information approach

as in (Qin et al., 2011).

Theorem 3.2: Under the regularity assumptions given in Appendix A,
√
n(θ̂−θ0) converges weakly

to a tight mean-zero Gaussian process.
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Theorem 3.2 is proved using the Z-theorem for infinite dimensional equations (Vaart and Wellner,

2000). The proofs of Theorem 3.1 and Theorem 3.2 are outlined in Appendix B and C, respectively.

To obtain an estimate of the standard deviation of β̂em, we apply the simple bootstrap technique.

In our setting, the bootstrap sample is obtained by drawing n independent vectors (T bj , L
b
j , R

b
j ,Z

b
j),

j = 1, ..., n, from the observed data vectors (Ti, Li, Ri,Zi), i = 1, ..., n, with replacement. These

data vectors are then used to obtain an estimate of regression coefficients, denoted by β̂
(b)

em. This

process is repeated B times to obtain the B estimators β̂
(1)

em, ...., β̂
(B)

em . The estimate of the standard

deviation of β̂em is computed by taking the standard deviation of the β̂
(b)

em, b = 1, ..., B. We denote

this estimate by σ̂β̂em . We show through simulation studies in the next section that the standard

deviation of β̂em is accurately estimated by σ̂β̂em .

3.3. Simulations

In this section we examine the performance of the proposed estimator under dependent trunca-

tion. We compare our proposed estimator to the weighted estimator which adjust for double trun-

cation but assumes independence between the survival and truncation times. We also compare

the proposed estimator to the estimator from the standard Cox regression model. In all simula-

tions, the survival times were generated from a proportional hazards model with hazard function

λ(t) exp(β1Z1 + β2Z2), and follow a Weibull distribution with scale parameter ν = 0.001 and shape

parameter κ = 5. We set β1 = β2 = 1, and generated the risk factors Z1 and Z2 from inde-

pendent Unif[0,5] distributions. The truncation times were also simulated from Weibull distribu-

tions with scale parameter ν = 0.001 and shape parameter κ = 5. The left truncation times were

generated from a proportional hazards model with hazard function λL(l) exp(βL1Z1 + βL2X), and

the right truncation times were simulated from a proportional hazards model with hazard function

λR(r) exp(βR1Z1 + βR2Y ). Here X and Y were generated from independent Unif[0,5] distributions,

with βL2 = βR2 = 1. To adjust the proportion of missing data due to left and right truncation, the

truncation times were multiplied by constants cl and cr, respectively. A higher value of cl induced a

higher proportion of missing data due to left truncation, while a lower value of cr induced a higher

proportion of missing data due to right truncation. Because the survival, left, and right truncation

times are all functions of Z1 for β1 6= 0, βL1 6= 0, and βR1 6= 0, they are dependent. However,

the survival and truncation times are conditionally independent given Z1. To adjust the degree of
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dependence between T and L, and T and R, we varied the regression coefficients βL1 and βR1,

respectively.

We conducted 1000 simulation repetitions with sample sizes of n = 100 and 250. To obtain n

observations after truncation, we simulated N = n
1−q observations, where q is the proportion of

truncated data. For each simulation, we estimated β = (β1, β2), using the proposed EM estimator

β̂em = (β̂em,1, β̂em,2), the weighted Cox regression estimator β̂w = (β̂w,1, β̂w,2), and the standard

Cox regression estimator β̂s = (β̂s,1, β̂s,2). Of the estimators which adjust for double truncation

under the independence assumption, we only focus on β̂w from (Rennert and Xie, 2017), as pre-

vious simulations (not shown here) have concluded that this estimator and that in (Mandel et al.,

2017) are nearly identical, and both outperform the estimators in (Shen and Liu, 2017). For each

estimator, we calculated the estimated bias, observed sample standard deviations (SD), estimated

standard errors (ŜE), and the average empirical coverage probability of the 95% confidence inter-

vals (Cov). To compare the efficiency of the estimators which adjust for double truncation to the

efficiency of the standard estimator, we calculated the relative mean-squared error (MSE) of β̂j to

β̂s,j , j = 1, 2. That is, we computed rMSE(β̂j) =
MSE(β̂j)

MSE(β̂s,j)
for β̂j = β̂em,j and β̂j = β̂w,j . We used

200 bootstrap resamples to estimate the standard error of β̂em,j and β̂w,j , j = 1, 2.

Table 3.1 shows the results of the simulations described above. In the first model, we set βL1 =

−1 to induce a negative dependence between the survival times and left truncation times, which

resulted in a correlation of -0.35. In the second model, we set βL1 = 0 to induce independence

between the survival and left truncation times. In the third model, we set βL1 = 1 to induce a positive

dependence between the survival times and left truncation times, which resulted in a correlation of

0.35. Here cl and cr were chosen such that 25% of the survival times were left truncated and 25%

of the survival times were right truncated, which resulted in q ≈ 0.50. The parameter βR1 was

set to 1 in all models, which resulted in a correlation of 0.35 between the survival times and right

truncation times.

In all models, the proposed EM estimators β̂em,1 and β̂em,2 had little bias, while the standard esti-

mators β̂s,1 and β̂s,2 were biased. The weighted estimator β̂w,1 was heavily biased in all models,

while β̂w,2 was biased in the first set of models (ρLT = −0.35). The observed sample standard

deviations of the proposed estimators were accurately estimated by the bootstrap technique, and

the coverage probabilities of the proposed estimators were all close to the nominal level of 0.95.
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Table 3.1: Simulation results
Here ρLT is the correlation between the left truncation and survival time. The correlation between the right truncation and
survival time is fixed at 0.35. The EM method produces the proposed estimator β̂em, which adjusts for double truncation

and dependence. The weighted method produces the estimator β̂w, which adjusts for double truncation, but assumes
independence between the survival and truncation times. The standard method assumes no truncation and produces the
estimator β̂s, the solution to the standard Cox score equation. Here SD is the empirical standard deviation of estimates

across simulations, ŜE is the average of the estimated standard errors. For an estimator β̂, rMSE = MSE(β̂)
MSE(β̂s)

, where MSE is

the mean-squared error. Cov is the coverage of 95% confidence intervals. Survival times generated from hazard function
λ(t) exp(β1Z1 + β2Z2), with β1 = β2 = 1. Survival times conditionally independent of left and right truncation times given

Z1.

ρLT Method n Bias(β̂1) SD(β̂1) ŜE(β̂1) rMSE(β̂1) Cov(β̂1) Bias(β̂2) SD(β̂2) ŜE(β̂2) rMSE(β̂2) Cov(β̂2)

-0.35

EM 100 0.01 0.13 0.14 1.05 0.96 -0.00 0.14 0.13 0.82 0.94
weighted 100 0.10 0.15 0.16 1.94 0.95 0.06 0.15 0.15 1.11 0.95
standard 100 -0.05 0.12 0.12 1.00 0.91 -0.10 0.12 0.11 1.00 0.82

EM 250 -0.01 0.08 0.08 0.64 0.95 -0.02 0.08 0.08 0.38 0.94
weighted 250 0.08 0.09 0.09 1.54 0.89 0.04 0.09 0.09 0.55 0.92
standard 250 -0.07 0.07 0.07 1.00 0.83 -0.11 0.07 0.07 1.00 0.60

0.00

EM 100 -0.01 0.12 0.13 0.67 0.96 0.00 0.13 0.13 1.07 0.96
weighted 100 -0.05 0.12 0.13 0.75 0.94 0.02 0.12 0.13 0.99 0.96
standard 100 -0.10 0.11 0.12 1.00 0.84 -0.04 0.11 0.11 1.00 0.92

EM 250 -0.01 0.08 0.08 0.38 0.95 -0.01 0.08 0.08 0.80 0.95
weighted 250 -0.05 0.08 0.08 0.56 0.89 0.01 0.07 0.08 0.76 0.95
standard 250 -0.10 0.07 0.07 1.00 0.68 -0.05 0.07 0.07 1.00 0.88

0.35

EM 100 0.03 0.16 0.16 0.72 0.95 0.01 0.14 0.14 1.15 0.96
weighted 100 0.20 0.15 0.15 1.74 0.78 0.00 0.14 0.15 1.23 0.96
standard 100 0.13 0.13 0.12 1.00 0.82 -0.05 0.12 0.12 1.00 0.92

EM 250 0.00 0.09 0.09 0.45 0.94 -0.01 0.08 0.08 0.73 0.94
weighted 250 0.18 0.09 0.09 2.22 0.45 -0.01 0.09 0.09 0.87 0.95
standard 250 0.11 0.08 0.07 1.00 0.67 -0.06 0.07 0.07 1.00 0.84

The coverage probabilities of β̂s,1 and β̂s,2 were well below the nominal level, as were the cover-

age probabilities for β̂w,1. Furthermore, the mean-squared errors of the proposed estimators were

lower than those of the weighted and standard estimators in almost all settings, indicating that the

proposed EM method is more efficient.

We further explored the bias and MSE of these estimators as a function of left and right truncation

proportion (Figure 3.1). We set βL1 = βR1 = 1 and n = 250, which corresponded to the setting of

the last model in Table 3.1, inducing a positive dependency between the survival times and both

left and right truncation times. The proposed estimators had little bias, regardless of truncation

proportion. Even under mild truncation, the weighted estimator β̂w,1 of the regression coefficient

corresponding to Z1, which is correlated with the truncation times, was biased. This bias increased

drastically as the proportion of right truncation increased. The bias was relatively small for both

the proposed and weighted estimator of the regression coefficient corresponding to Z2, which is
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uncorrelated with the truncation times. Both standard estimators β̂s,1 and β̂s,2 were heavily biased

in this setting. The MSE of β̂em,j was significantly lower than the MSE of β̂w,j for j = 1, 2. Further-

more, in most cases the MSE of β̂em,j was lower than the MSE of the standard estimator β̂s,j , i.e.

rMSE(β̂em,j) < 1 for j = 1, 2.

In Figure 3.2, we compared the bias and MSE of these estimators under varying truncation pro-

portions, when the assumption of independence holds (i.e. βL1 = βR1 = 0). The proposed EM

estimators β̂em,j and weighted estimators β̂w,j had little bias, while the standard estimators β̂s,j

were biased for j = 1, 2. We also compared the rMSE of β̂em,j and β̂w,j to β̂s,j , j = 1, 2. As

indicated by the bottom row of Figure 3.2, the proposed EM estimators had similar efficiency to the

weighted estimators when the independence assumption holds. When the proportion of missing

data due to left and right truncation were approximately equal, the standard estimator was more

efficient than the proposed EM estimator and the weighted estimator. This is because the bias due

to left truncation canceled out with the bias due to right truncation when these proportions were

equal, which yielded a lower MSE.

The standard Cox regression model can accommodate left truncation when the left truncation time

is conditionally independent of the survival times given the observed risk factors. We compare the

estimator from this model to our proposed estimator under dependent left truncation only. To adjust

the correlation between the left truncation times and survival times, we varied the parameter βL1

between −1 and 1. In this setting, a value of βL1 = 0, which yields a correlation of 0, indicates

independence between the left truncation times and survival times. We denote the standard re-

gression coefficient estimator which adjusts for dependent left truncation as β̂s,l = (β̂s,l,1, β̂s,l,2).

As shown in Figure 3.3, β̂em,j and β̂s,l,j had little bias, while the weighted estimators β̂w,j were

biased for j = 1, 2. As indicated by the bottom row of Figure 3.3, the proposed EM estimators

had similar efficiency to the standard estimators which accounted for dependent left truncation, and

both estimators were more efficient than the weighted estimators.

3.4. Application to Alzheimer’s Disease

We illustrate our method by considering an autopsy-confirmed AD study conducted by the Center

for Neurodegenerative Disease Research at the University of Pennsylvania. The target population

for the research purposes of this study consists of all subjects with AD symptom onset before 2012
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that met the study criteria and therefore would have been eligible to enter the center. Our observed

sample contains all subjects who entered the center between 1995 and 2012, and had an autopsy

performed before July 1, 2012. Thus one criterion for a subject to be included in our sample is

that they did not succumb to AD before they entered the study, yielding left truncated data. In

addition, our sample only contains subjects who had an autopsy-confirmed diagnosis of AD, and

therefore we have no knowledge of subjects who live past the end of the study. Thus our data is

also right truncated. Our data consists of n=91 subjects, all of whom have event times. The event

time of interest is the survival time (T ) from AD symptom onset. The left truncation time (L) is the

time between the onset of AD symptoms and entry into the study (i.e. initial clinic visit). The right

truncation time (R) is the time between the onset of AD symptoms and the end of the study, which

is taken to be July 1, 2012. Due to double truncation, we only observe subjects with L ≤ T ≤ R.

We are interested in assessing the effect of occupation on survival in AD. Occupation is often used

as a proxy for cognitive reserve (CR), which hypothesizes that individuals develop cognitive strate-

gies and neural connections throughout their life times through experience such as occupation,

education, and other forms of mental engagement (Valenzuela and Sachdev, 2007). A common

hypothesis in the literature is that CR has protective role in the brain and modulates the effects of

AD because of compensatory strategies obtained from a higher level of professional performance

and therefore lengthens survival during the course of the disease (Ientile et al., 2013; Sanchez

et al., 2011).

However some studies have shown a higher mortality rate in AD individuals with higher occupational

attainment (Stern et al., 1999, 1995). This supports an alternative theory of CR; individuals with

higher CR tolerate more pathology which delays the onset of the disease. Because higher age

of AD symptom onset is associated with an increased risk of mortality, this would support the

hypothesis that those with higher CR would have an increased risk of mortality. There are two

caveats to the studies described above. The first is that these studies consisted of populations

with clinically diagnosed AD subjects, which can be unreliable. The second caveat is that the

statistical analyses were subject to confounding, since age of AD symptom onset was not recorded

nor adjusted for.

Here we are interested in obtaining improved estimates of the effect of occupation on survival from

an autopsy-confirmed cohort of individuals with AD who have a known age of disease symptom on-
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set. We use the highest occupational attainment for a given subject as a proxy for their CR. Primary

occupation was classified and ranked based on the US census categories. In the following anal-

yses, subjects who were classified as manager, business/government, and professional/technical

workers were labeled as having high occupational attainment in our study. Subjects classified as

unskilled/semiskilled, skilled trade or craft, and clerical/office workers were classified as having low

occupational attainment. This classification is consistent with previous studies (Massimo et al.,

2015, 2018; Stern et al., 1995). Age at AD symptom onset was estimated based on a family report

at first contact with the individual.

We first check the assumption of independence between the observed survival and truncation

times using the conditional Kendall’s tau proposed by Martin and Betensky (Martin and Betensky,

2005). The resulting p-value is 0.038, and therefore we reject this independence assumption. The

corresponding Kendall’s tau statistic is τK = (0.20, 0.16), indicating positive dependence between

the survival times and truncation times. The positive dependence between the left truncation times

and survival times is clinically plausible because doctors often attribution the symptoms of early

onset AD (onset of AD before 65 years of age) to other causes such as depression and stress,

hence delaying the study entry time. Since younger age at onset is also associated with higher

survival, this induces a positive dependence between the left truncation times and survival times.

Due to the dependence between the survival and truncation times, we apply the proposed method

to estimate the effect of occupation on survival, adjusting for age at AD symptom onset and sex.

Table 3.2 displays the results from the Cox regression model using the proposed EM estimators,

weighted estimators, and the standard estimators. Using the proposed method, the estimated log

hazard ratio for age at AD symptom onset is 0.029 (p-value = 0.016), indicating that AD individuals

who have symptom onset one year later are roughly 3% more likely to die than subjects who have

symptom onset a year earlier (e0.029 = 1.03). The estimated effect of female is -0.636 (p-value =

0.023), indicating that males are almost twice as likely to die than females (e0.636 = 1.89). These

effects are nearly doubled using the weighted method which assumes independence, however the

effects are not statistically significant (p-values = 0.117 and 0.088, respectively).

High occupational attainment is associated with increased survival in all models. Under the pro-

posed method, the effect of high occupational attainment on survival is -0.673 (p-value = 0.009),

indicating that those with a low occupational attainment are approximately twice as likely to die
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than those with a high occupational attainment (e0.673 = 1.96). This effect is attenuated under

the weighted and standard methods, and neither method yielded statistically significant estimates

(p-values are 0.186 and 0.158, respectively).

Table 3.2: Application: Occupational attainment on survival in AD.
EM Weighted Unweighted

Predictor β̂em(ŜE) p-value β̂w(ŜE) p-value β̂s(ŜE) p-value
Age onset 0.029 (0.012) 0.016 0.047 (0.030) 0.117 0.035 (0.013) 0.013
Female -0.636 (0.280) 0.023 -1.026 (0.602) 0.088 -0.532 (0.223) 0.017
High occupation -0.673 (0.257) 0.009 -0.464 (0.351) 0.186 -0.487 (0.345) 0.158

3.5. Discussion

We proposed a novel method which relaxes the independence assumption between the observed

survival and truncation times in the Cox model under left, right, or double truncation to an assump-

tion of conditional independence between the observed survival and truncation times. We obtained

consistent and asymptotically normal estimators of the regression coefficients and baseline haz-

ard function by maximizing the conditional likelihood of the observed survival times using an EM

algorithm. The simulation studies confirmed that the proposed estimators had little bias in small

samples, while the naı̈ve estimators from the Cox models which ignore truncation or assume inde-

pendence were biased. The existing methods which adjust for truncation but assume independence

resulted in heavily biased estimators of the regression coefficients for risk factors of survival that

were also correlated with the truncation times. Furthermore, the proposed estimators were more

efficient than the naı̈ve estimators in most of the simulation settings.

We applied our proposed method to an autopsy-confirmed sample of individuals with Alzheimer’s

disease (AD). AD is a major neurodegenerative disease which currently affects 5.3 million people in

the United States according to the Alzheimer’s Association. In 2017 alone, AD and other dementias

will have cost the nation an estimated $259 billion. Autopsy-confirmation is needed for a definitive

diagnosis of AD, and a definitive diagnosis is necessary to accurately estimate the effect of poten-

tial risk factors associated with a given neurodegenerative disease. However, autopsy-confirmed

samples of neurodegenerative diseases are subject to an inherent selection bias due to double

truncation. Existing methods which adjust the Cox model in the presence of double truncation as-

sume that the observed survival and truncation times are independent. This assumption may not

be reasonable for studies of neurodegenerative diseases. In our data example, this independence
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assumption was rejected. Therefore, previous methods are not appropriate for our setting.

Given the severity of Alzheimer’s disease on patients, their caregivers, and society, accurate esti-

mation of the effects of risk factors on survival is crucial. One such factor, cognitive reserve (CR),

is hypothesized to lengthen survival during the course of the disease. Using occupation as a proxy

for CR, we estimated the effect of CR on survival in an autopsy-confirmed AD sample. Using our

proposed method to adjust for both left and right truncation and dependence between the survival

and truncation times, we found that a low occupational attainment was associated with shortened

survival. Compared to existing methods, the estimated hazard ratios for occupation on survival

were larger under our proposed method. This is consistent with many studies concluding that an

individual’s occupation may provide a protective effect and lengthen survival in AD. These findings

suggest the importance of incorporating occupation in treatment trials and prognostic considera-

tions in individuals with AD.

A limitation of our proposed method is that it in its current form, it cannot properly handle time-

varying covariates measured after study entry, such as cognitive test scores. This is a conse-

quence of the estimation procedure, which uses an expectation-maximization algorithm to estimate

the latent survival times conditional on the observed truncation times and risk factors. This leads

to predicting survival times based on risk factors measured after death for those missing subjects

whose survival time is less than their left truncation time, which may yield biased regression coeffi-

cient estimators.

The proposed method has useful implications for observational studies. Double truncation has

been shown to be present in a variety of studies, such as studies of clinically diagnosed Parkinson’s

disease (Mandel et al., 2017), childhood cancer (Moreira and Una-Alvarez, 2010), astronomy data

Efron and Petrosian, 1999, and studies based on registry data (Bilker and Wang, 1996; Shen and

Liu, 2017). In fact, any data pulled from a disease registry will be subject to inherent right truncation,

since data is only recorded for subjects who have the disease and are entered in the registry by

the time the data is extracted (Bilker and Wang, 1996). In certain cases, the data will also be

subject to left truncation (Bilker and Wang, 1996; Shen and Liu, 2017). In a similar fashion, studies

which only include data from individuals whose event times fall within the time course of the study

are subject to double truncation (Moreira and Una-Alvarez, 2010). Therefore careful consideration

of the study design must be taken into account when fitting the Cox proportional hazards model.
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Furthermore, the assumption of independence should always be tested, given the high sensitivity of

existing methods to this assumption. For example, a quick application of a Kendall’s conditional Tau

test (Martin and Betensky, 2005) revealed this independence assumption is violated in the AIDS

data used in Shen and Liu, 2017. We therefore recommend using the proposed estimators in most

practical settings, since they have little bias, and in most situations, have a lower mean-squared

error compared to existing estimators under left, right, or double truncation, under a wide range of

dependence structures.
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Figure 3.1: Comparing bias and MSE (mean-squared error) of estimators across different left and
right truncation proportions, under dependent survival and truncation times.

 
Survival times generated from proportional hazards model with hazard function λ(t) exp(β1Z1 + β2Z2), with β1 = β2 = 1.
Survival times conditionally independent of left and right truncation times given Z1. For j = 1 (left column) and j = 2 (right
column): Top row compares bias of proposed EM estimator β̂em,j (black) to weighted estimator β̂w,j (gray), which does
not account for dependent truncation. Middle row compares bias of β̂em,j (black) to the standard estimator β̂s,j (gray),
which ignores truncation completely. Bottom row compares rMSE(β̂em,j) (black) to rMSE(β̂w,j) (gray). Here rMSE(β̂) =

MSE(β̂j)
MSE(β̂s,j)

is the relative MSE of the estimator β̂j to the standard estimator β̂s,j .

48



Figure 3.2: Comparing bias and MSE (mean-squared error) of estimators across different left and
right truncation proportions, under independent survival and truncation times.

 
Survival times generated from proportional hazards model with hazard function λ(t) exp(β1Z1 + β2Z2), with β1 = β2 = 1.
For j = 1 (left column) and j = 2 (right column): Top row compares bias of proposed EM estimator β̂em,j (black) to
weighted estimator β̂w,j (gray), which does not account for dependent truncation. Middle row compares bias of β̂em,j
(black) to the standard estimator β̂s,j (gray), which ignores truncation completely. Bottom row compares rMSE(β̂em,j)

(black) to rMSE(β̂w,j) (gray). Here rMSE(β̂) = MSE(β̂j)
MSE(β̂s,j)

is the relative MSE of the estimator β̂j to the standard estimator

β̂s,j .
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Figure 3.3: Comparing bias and MSE (mean-squared error) of estimators under dependent left
truncation.

 

Here ρLT is the correlation between the left truncation and survival time. Survival times generated from proportional hazards
model with hazard function λ(t) exp(β1Z1 + β2Z2), with β1 = β2 = 1. For j = 1 (left column) and j = 2 (right column):
Top row compares bias of proposed EM estimator β̂em,j (black) to weighted estimator β̂w,j (gray), which does not account
for dependent truncation. Middle row compares bias of β̂em,j (black) to the standard estimator under left truncation β̂sL,j
(gray), which accounts for dependent left truncation. Bottom row compares rMSE(β̂em,j) (black) to rMSE(β̂w,j) (gray).

Here rMSE(β̂) = MSE(β̂j)
MSE(β̂sL,j)

is the relative MSE of the estimator β̂j to the standard estimator under left truncation β̂sL,j .
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CHAPTER 4

BIAS IN THE SURVIVAL DISTRIBUTION FUNCTION ESTIMATOR UNDER DOUBLE

TRUNCATION: A CASE STUDY OF NEURODEGENERATIVE DISEASES

4.1. Introduction

Neurodegenerative diseases, such as Alzheimer’s disease (AD) and frontotemporal lobar degener-

ation (FTLD), require an autopsy for a definitive diagnosis (Grossman and Irwin, 2016). Without an

autopsy-confirmed diagnosis, it is uncertain which disease a given individual may have. Hence this

individual cannot be included in an autopsy-confirmed study sample pertaining to a particular dis-

ease. Therefore when the event of interest is death, studies which include only autopsy-confirmed

subjects result in pure right truncation, since individuals who have the disease of interest and live

past the end of study date do not receive a pathological diagnosis. Since these individuals cannot

be included in the autopsy-confirmed study sample, they are treated as unobserved. Furthermore,

studies that recruit individuals after the onset of the disease has occurred may result in left trun-

cation, since individuals who succumb to the disease before they enter the study are unobserved.

This simultaneous presence of left and right truncation, also known as double truncation, is there-

fore inherent in autopsy-confirmed studies of neurodegenerative disease.

Double truncation occurs in these studies as follows: Subjects are only observed if their time of

death, tdeath, occurs after the time of study entry, tentry, and before the study end time tend. In other

words, only subjects with tentry ≤ tdeath ≤ tend are observed. The survival time T in individuals

with neurodegenerative diseases is typically measured as the time from disease symptom onset to

death. That is, T = tdeath − tonset, where tonset is defined as the time in which disease symptom

onset occurs. We therefore define the left truncation time as the time from disease symptom onset

to study entry, L = tentry − tonset, and the right truncation time as the time from disease symptom

onset to study end, R = tend − tonset. The truncation scheme tentry ≤ tdeath ≤ tend is therefore

equivalent to L ≤ T ≤ R.

This truncation scheme is illustrated in Figure 4.1. Unlike a censored individual who provides partial

information about their survival time, a truncated individual is completely unobserved and provides
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no information to the investigator, resulting in a biased sampling scheme. Right truncation in this

setting yields an observed sample that is biased towards smaller survival times, since individuals

with longer survival times are more likely to live past the end of the study. The left truncation

simultaneously leads to an observed sample that is biased towards larger survival times, since

individuals with shorter survival times are more likely to succumb to the disease before they enter

the study. Therefore any estimation procedure of the survival time distribution which does not

account for the double truncation will be biased. In this paper, we focus on autopsy-confirmed

studies of neurodegenerative diseases, but note that double truncation can be present in other

studies (Bilker and Wang, 1996).

Figure 4.1: Schematic depiction of doubly truncated neurodegenerative disease data

383842

      observed sample

L ≤ T      L ≤ T ≤ R     T ≤ R  

Here L, T , and R denote the time from disease symptom onset to study entry, death, and the end
of study, respectively. The solid circle (left) consists of all subjects who entered the study and are
therefore not left truncated. The light grey region of the solid circle is right truncated, and consists
of all subjects who entered but lived past the end of the study, i.e. {L ≤ T} ∩ {T > R}. The
dotted circle (right) consists of all subjects who had an autopsy performed by the end of the study
and are therefore not right truncated. The light grey region of the dotted circle is left truncated,
and consists of all subjects who never entered the study but died before the end of study date,
i.e. {T < L} ∩ {T ≤ R}. The observed sample is represented by the intersection of the two
circles (dark grey region), and consists of all subjects who entered the study and had an autopsy
performed {L ≤ T ≤ R}.

The bias introduced in autopsy-confirmed survival studies is briefly discussed in Rennert and Xie

(2017) in the context of Cox regression models. One of the goals of our paper is to further em-
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phasize and explore this important issue by examining the bias introduced in autopsy-confirmed

survival studies in the context of survival distribution estimation, thus avoiding any assumptions

about the survival time. Survival distribution estimation is useful in time event analysis as it serves

as the first step of evaluating the disease risk. It is a useful exploratory tool before any regression

modeling. It is particularly suited for graphical display which is an essential part of disease risk

modeling.

There are a few papers devoted to the estimation of the survival time distribution in the presence of

double truncation. Bilker and Wang (1996) were one of the first to motivate the problem of double

truncation by noticing that it was present in certain retrospective studies of survival from HIV infec-

tion to AIDS. Motivated by doubly truncated quasar data, Efron and Petrosian (1999) introduced a

nonparametric maximum likelihood estimator (NPMLE) of the survival time distribution under dou-

ble truncation. Shen (2010) established the asymptotic properties of the NPMLE, and introduced a

nonparametric estimator of the truncation distribution. Under the assumption that the joint distribu-

tion function of the truncation times comes from a parametric family, Shen (2010) and Moreira and

de Ũna-Álvarez (2010) introduced a semiparametric maximum likelihood estimator (SPMLE) for the

survival time distribution function under double truncation. The NPMLE and SPMLE both assume

independence between survival and truncation times. A version of a conditional Kendall’s Tau was

introduced by Martin and Betensky (2005) to test for dependence between survival and both left

and right truncation times.

There are several new contributions of this paper, which we summarize below. Our first contribution

is to inform the reader about the inherent double truncation present in autopsy-confirmed survival

studies of neurodegenerative diseases and highlight the importance of accounting for it. Our sec-

ond contribution is to compare the SPMLE and NPMLE to the naı̈ve empirical distribution function

which ignores double truncation. This fills a void in the literature on survival distribution estimation,

which lacks formal comparisons of approaches that adjust for double truncation to approaches that

ignore it. Our third contribution is examining the robustness of the SPMLE and NPMLE to viola-

tions of independence between the survival and truncation times, which have not been previously

studied. Our fourth contribution is that we discover through simulations that the SPMLE is robust

to model misspecification when a gamma distribution with two unknown parameters is assumed

for the truncation times. This discovery is contrary to previous literature which has concluded that
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the SPMLE can be heavily biased under misspecification of the truncation distribution (Moreira and

Una-Alvarez, 2010; Shen, 2010b). Our fifth contribution is to demonstrate how to appropriately

estimate and compare survival distribution functions in the context of autopsy-confirmed survival

studies of AD and FTLD.

In Section 4.2, we introduce notation and the SPMLE and NPMLE of the survival distribution func-

tion, as well as formal tests to compare distribution functions in the presence of double truncation.

The simulations to evaluate and compare the performance of these estimators are presented in

Section 4.3. In Section 4.4 we apply the SPMLE and NPMLE to the neurodegenerative disease

study to estimate and compare the survival curves for subjects diagnosed with AD or FTLD. Con-

cluding remarks and limitations of these methods are discussed in Section 4.5.

4.2. Existing methods to adjust for double truncation

We state the problem in statistical terms as follows. Let T denote the survival time of interest

(e.g. survival time from disease symptom onset), L denote the left truncation time (e.g. time from

disease symptom onset to entry into the study), and R denote the right truncation time (e.g. time

from disease symptom onset to the end of study date). Let N denote the size of the target sample

– the sample that would have been observed had there been no truncation present in the study.

We denote the observed data as (Ti, Li, Ri) for i = 1, ..., n. Due to double truncation, we only

observe (Ti, Li, Ri) for n ≤ N individuals who live long enough to enter the study (i.e. T ≥ L) and

do not live past the end of the study (i.e. T ≤ R). Here we have denoted the population random

variables from the target population without subscripts, and the sampling random variables from

the observed sample with subscripts.

We are interested in estimating the cumulative distribution function F of T , where F (t) = P (T ≤ t)

for a given time t. The survival distribution function is given by S(t) = 1 − F (t). We note that

right censoring is not present in autopsy-confirmed studies of neurodegenerative diseases. This

is because individuals who live past the end of the study are undiagnosed (since an autopsy is

never performed) and not included in the study sample. Therefore no information is available on

the survival time of these individuals. With no censoring, the standard estimator of the cumulative

distribution function of the survival times is just the empirical cumulative distribution function (eCDF)

F̂emp(t) = 1
n

∑n
i=1 I[Ti≤t] for a given time t, where I is the indicator function. We show through
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simulations in the next section that this estimator, which does not take into account that the data

are doubly truncated, is biased. Throughout the paper, we refer to the eCDF as the naı̈ve estimator

and denote it by F̂emp. We note that the eCDF is equivalent to the Kaplan-Meier estimator when no

censoring is present.

The methods to estimate F , described below, assume that the survival times are independent of

the left and right truncation times, that no censoring is present, and that (Li, Ti, Ri) are independent

and identically distributed for i = 1, ..., n. For any cumulative distribution function Q, we define the

left endpoint of its support by aQ = inf{x : Q(x) > 0} and the right endpoint of its support by

bQ = inf{x : Q(x) = 1}. Let K denote the joint cumulative distribution function of the left and

right truncation times. Let HL(l) = K(l,∞) and HR(r) = K(∞, r) denote the marginal cumulative

distribution functions of L and R, respectively. The methods described below assume that aHL <

aF ≤ aHR and bHL ≤ bF < bHR . These conditions are needed for identifiability of the cumulative

distribution function estimators (Woodroofe, 1985).

The two existing methods for estimating the cumulative distribution function under double truncation

are the SPMLE and the NPMLE. Both make no assumptions about the distribution of the survival

times, but the SPMLE assumes that the truncation times L andR have a joint cumulative distribution

function, K(·, ·; θ), that depends on a parameter θ. As described in (Shen, 2010b) and (Moreira

and Una-Alvarez, 2010), an estimate θ̂ of θ can be obtained and then used to compute Wθ̂(Ti), the

estimated likelihood of observing a subject with survival time Ti in the sampled population relative

to the target population. Specifically, Wθ̂(Ti) = Pθ̂(L ≤ T ≤ R|T = Ti), the inverse of the estimated

probability (under parametric assumptions) of observing a subject in the study sample with survival

time T = Ti.

The SPMLE is then a weighted sum of the elements I(Ti ≤ t) of the eCDF and is given by

F̂SP (t) =
1

n

n∑
i=1

Wθ̂(Ti)× I(Ti ≤ t). (4.1)

Under the regularity conditions given in Shen (2010), namely that K(l, r; θ) is continuous in (l, r)

for each θ in a compact set Θ, and K(l, r; θ) is continuously differentiable in θ for each fixed (l, r),

we have that
√
n
(
F̂SP (t) − F (t)

)
→ N

(
0, σ2(t)

)
. This result also rests on the assumption that

the truncation distribution is correctly specified. Details can be found in (Moreira and Una-Alvarez,
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2010; Shen, 2010b). The distributional assumptions for the truncation times can be checked using

the test statistics introduced in (Moreira, lvarez, and Van Keilegom, 2014).

The NPMLE makes no distributional assumptions about the truncation times. Similar to the SPMLE,

the NPMLE is weighted by Ŵ (Ti), the nonparametric estimate of the likelihood of observing a

subject with survival time Ti in the sampled population relative to the target population. Here

Ŵ (Ti) = P̂ (L ≤ T ≤ R|T = Ti)
−1, the inverse of the estimated probability (under no parametric

assumptions) of observing a subject in the study sample with survival time T = Ti. The NPMLE is

then given by

F̂NP (t) =
1

n

n∑
i=1

Ŵ (Ti)× I(Ti ≤ t). (4.2)

Details of this estimation procedure are given in (Shen, 2010a). We note that there is no closed

form variance estimator for F̂NP (t). We therefore apply the simple bootstrap technique to estimate

the variance of F̂NP (t).

Often we would like to test whether two survival distributions are equal. Under double truncation,

this can be done using the semiparametric extension of the Mann-Whitney test introduced in Bilker

and Wang, 1996. This estimator also makes use of the parametric distribution of the truncation

times. Let (L1i , T1i , R1i), 1 ≤ i ≤ n1 be the observed data from group 1 and (L2j , T2j , R2j ),

1 ≤ j ≤ n2 be the observed data from group 2. Here it is assumed that (L1, R1) have a parametric

joint cumulative distribution function Kθ and (L2, R2) have a parametric joint cumulative distribution

function Hγ . The two-sample U-statistic is of the form

U(θ̂, γ̂) =
1

n1n2

n1∑
i=1

n2∑
j=1

sign(T1i − T2j )×W1θ̂(T1i)×W2γ̂(T2j ).

Similar to the definition of Wθ̂(Ti), W1θ̂(T1i) is the inverse of the estimated probability of observing

a subject from group 1 in our study sample with survival time T1i , and W2γ̂(T2j ) is the inverse of

the estimated probability of observing a subject from group 2 in our study sample with survival time

T2j . See (Bilker and Wang, 1996) for more details.

Bilker and Wang’s U-statistic tests whether two survival distributions are equal across all time points.

To test whether the probability of survival between two independent groups are equal at a single
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time point t, we introduce the Wald statistic Wt = [F̂1(t)−F̂2(t)]2

σ̂2
1(t)/n1+σ̂2

2(t)/n2
, where Wt ∼ χ2

1. Here F̂j(t)

and σ̂2
j (t) are any estimates of the cumulative distribution function and standard error at time t for

j = 1, 2.

4.3. Simulation study

We conducted a simulation study to further investigate the impact of ignoring double truncation in

autopsy-confirmed survival studies of neurodegenerative disease and to assess the performance of

the SPMLE and NPMLE under different truncation schemes. Specifically, we compared the SPMLE

(F̂SP ) and NPMLE (F̂NP ) to the eCDF (F̂emp) on bias (F̂ − F0), where F0 is the true distribution

function, observed sample standard deviations (SD), estimated standard errors (ŜE), mean squared

errors (MSE), and the average empirical coverage probability of the 95% confidence intervals (Cov).

We also compared the bias and observed sample standard deviation of the estimated median

survival time t̂0.5 across these estimators. We conducted 1000 simulation repetitions with a target

sample size of n=50 and n=250. In order to get to the desired sample size n, we simulated n/p0

observations to account for truncation, where p0 is the true probability of observing a randomly

selected subject from the target sample.

For these simulations, we generated the survival time from disease symptom onset, T , as

gamma(10, 1). The time from disease symptom onset to study entry, L, was generated as

gamma(α1, β1), and the time from disease symptom onset to the end of study, R, was generated as

gamma(α2, β2). These distributions were chosen to emulate the AD data described in Section 4.4.

In the following models, we changed the values of (α1, β1) and (α2, β2) to adjust the percentage

of truncated observations. In model 1, we set (α1, β1) = (4.5, 1.5) and (α2, β2) = (8, 2.5), which

resulted in mild left and right truncation and a total of 30% of the observations truncated. In model

2, we reduced the left truncation and increased the right truncation by setting (α1, β1) = (3, 1) and

(α2, β2) = (5, 2), which resulted in 55% of truncated observations. Here the values of (α1, β1) and

(α2, β2) were the resulting parameter estimates for the AD truncation distribution in Section 4.4.

In model 3, we set (α1, β1) = (5, 2) and kept (α2, β2) = (5, 2). This resulted in heavy left and

right truncation and a total of 80% of the observations truncated. Figure 4.2 displays the bias of

F̂SP , F̂NP , and F̂emp across the 1st through 9th deciles of F0 for the three models. Here F̂SP has

little bias regardless of sample size or truncation proportion, and F̂NP is slightly biased in the right
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Figure 4.2: Bias of distribution function estimators.
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Bias of F̂SP ( ), F̂NP ( ), and F̂emp ( ) at t0.1, ..., t0.9, which are the deciles of the
true survival time distribution F0. Here F0(t0.1) = 0.1, F0(t0.2) = 0.2, etc.

tail of the distribution under smaller sample sizes and heavy right truncation, and has little bias

otherwise. The naı̈ve estimator, F̂emp, is biased in all three models. The bias of F̂emp in model

1 is negative since the proportion of missing observations due to left truncation is slightly greater

than the proportion missing due to right truncation, and thus we are under sampling the smaller

survival times. In model 2, this bias is both positive and larger in magnitude relative to model 1,

since we are severely under sampling the larger survival times due to the heavy right truncation. In

model 3, this bias is negative across the 1st through 4th deciles of F0, and positive across the 5th

through 9th deciles of F0. The bias here is smaller in magnitude relative to model 2, since we are

(almost) equally under sampling the smaller and larger survival times, and therefore the bias due

to left truncation is canceling out some of the bias due to right truncation.

Table 4.1 compares (absolute) bias(F̂ ), SD(F̂ ), ŜE(F̂ ), MSE(F̂ ), cov(F̂ ), bias(t̂0.5), and SD(t̂0.5) for

F̂ = F̂SP , F̂ = F̂NP , and F̂ = F̂emp. With the exception of bias(t̂0.5) and SD(t̂0.5), these statistics

were averaged across the 1st through 9th deciles of F0. For example, bias(F̂ ) in the first line of

Table 4.1 represents the average absolute value of the bias corresponding to F̂SP in the top left

panel of Figure 4.2. For F̂ = F̂NP , ŜE(F̂ ) was based on 200 bootstrap resamples. The median
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Table 4.1: Simulation results
Model q n Estimator Bias(F̂ ) SD(F̂ ) ŜE(F̂ ) MSE(F̂ ) Cov(F̂ ) Bias(t̂0.5) SD(t̂0.5)

1 0.30 50
F̂SP 0.005 0.069 0.075 0.005 0.927 -0.028 0.622
F̂NP 0.021 0.070 0.069 0.005 0.910 -0.050 0.664
F̂emp 0.039 0.057 0.045 0.005 0.453 0.339 0.485

1 0.30 250
F̂SP 0.005 0.031 0.031 0.001 0.941 -0.024 0.280
F̂NP 0.006 0.031 0.031 0.001 0.940 -0.021 0.284
F̂emp 0.040 0.025 0.020 0.003 0.326 0.382 0.230

2 0.55 50
F̂SP 0.010 0.088 0.101 0.008 0.880 0.042 0.977
F̂NP 0.028 0.091 0.077 0.010 0.818 0.070 0.984
F̂emp 0.151 0.054 0.042 0.028 0.438 -1.364 0.431

2 0.55 250
F̂SP 0.005 0.039 0.038 0.002 0.935 -0.017 0.345
F̂NP 0.007 0.041 0.039 0.002 0.930 -0.003 0.404
F̂emp 0.149 0.024 0.019 0.025 0.332 -1.338 0.196

3 0.80 50
F̂SP 0.005 0.092 0.118 0.009 0.900 0.034 1.055
F̂NP 0.017 0.098 0.088 0.010 0.871 0.062 1.138
F̂emp 0.043 0.055 0.043 0.006 0.426 -0.175 0.424

3 0.80 250
F̂SP 0.006 0.040 0.036 0.002 0.897 -0.030 0.348
F̂NP 0.007 0.042 0.041 0.002 0.924 -0.024 0.377
F̂emp 0.044 0.024 0.020 0.003 0.327 -0.161 0.184

Survival times simulated from a gamma(10, 1) distribution. Left and right truncation times correctly assumed
to come from a gamma(α1, β1) and gamma(α2, β2) distribution, respectively. Model 1 corresponds to

(α1, β1) = (4.5, 1.5) and (α2, β2) = (8, 2.5). Model 2 corresponds to (α1, β1) = (3, 1) and (α2, β2) = (5, 2).
Model 3 corresponds to (α1, β1) = (5, 2) and (α2, β2) = (5, 2). Here q is the proportion of observations

missing due to truncation and n is the size of the observed sample. F̂SP denotes the SPMLE, F̂NP denotes
the NPMLE, and F̂emp denotes the naı̈ve empirical CDF which ignores double truncation. These estimators
were all computed at t0.1, ..., t0.9, the 1st through 9th deciles of the true survival distribution F0. For a given
estimator F̂ , Bias(F̂ ) is the (absolute) difference between F̂ and F0, averaged across the 9 deciles. Here
SD(F̂ ) is standard deviation of F̂ across simulations, ŜE(F̂ ) is estimated standard error of F̂ , MSE(F̂ ) is

mean squared error of F̂ , and Cov(F̂ ) is 95% coverage, all averaged across the 9 deciles. Here t̂0.5 is the
estimated median value based on F̂ . The true median value based on F0 is t0.5 = 9.7. Here Bias(t̂0.5) = t̂0.5 -

t0.5 and SD(t̂0.5) is the standard deviation of t̂0.5 across simulations.

survival time (t0.5) of the gamma(10, 1) distribution is 9.7. From Table 4.1, we see that F̂SP and

F̂NP greatly outperform F̂emp in terms of bias. Furthermore, with the exception of model 3 for n=50,

F̂emp has a greater MSE than F̂SP and F̂NP and is therefore less efficient. When the sample size

is small, F̂SP has a slightly lower MSE than F̂NP . The average coverage probabilities of the 95%

confidence intervals for F̂SP and F̂NP are close to the nominal level of 0.95 when the sample size

is large. This is not the case for F̂emp, where the coverage probabilities are not even close to the

nominal level, even under mild truncation. The bias of the survival distribution and median survival

time based on F̂emp were much greater in model 2, since the truncation scheme in models 1 and 3
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resulted in a sampling scheme that (almost) equally under sampled the smaller and larger survival

times, and therefore the bias due to left truncation canceled out a large amount of the bias due to

right truncation.

4.3.1. Robustness to misspecification of truncation distribution

Since F̂SP requires distributional assumptions on the truncation times, we examine the impact

of misspecification of the truncation distribution. We again assume L ∼ gamma(α1, β1), R ∼

gamma(α2, β2), and T ∼ gamma(10, 1). However, we now incorrectly specify the right truncation

distribution by simulating R ∼ Unif [0, 20], and correctly specify the left truncation distribution by

simulating L ∼ gamma(3, 1) in model 4. In model 5, we correctly specify the right truncation dis-

tribution by simulating R ∼ gamma(5, 2), and incorrectly specify the left truncation distribution by

simulating L ∼ Weibull(1, 3). In model 6, we incorrectly specify both the left and right truncation

distributions by simulating L ∼Weibull(1, 3) and R ∼ Unif [0, 20].

Figure 4.3: Bias of distribution function estimators under misspecification of truncation distribution.
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Bias of F̂SP ( ), F̂NP ( ), and F̂emp ( ) at t0.1, ..., t0.9, under misspecification of
the truncation distribution. Here t0.1, ..., t0.9 are the deciles of the true survival time distribution F0,
where F0(t0.1) = 0.1, F0(t0.2) = 0.2, etc.

Figure 4.3 displays the bias of F̂SP , F̂NP , and F̂emp across the 1st through 9th deciles of F0 for
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models 4, 5, and 6. The bias of F̂SP was still small in this setting. Table 4.2 shows that F̂SP still

performed as well as F̂NP in terms bias and MSE. Furthermore, misspecification of the truncation

distribution only resulted in a slight bias of the median survival time. However the standard error

estimates for F̂SP were biased when the right truncation distribution was misspecified. As expected,

F̂emp was heavily biased while F̂NP remained unbiased, since neither of these estimators make

distributional assumptions about the truncation times. We note that in (Moreira and Una-Alvarez,

2010; Shen, 2010b), the bias of F̂SP was not robust to misspecification of the truncation distribution.

However the simulations were based on an assumed beta distribution for the truncation times with

only one parameter estimated. Here we assumed a gamma distribution with both parameters

estimated, which allows more flexibility in estimating different distributions.

4.3.2. Robustness to independence violation between survival and truncation times

Both F̂SP and F̂NP assume that the survival and truncation times are independent. However this

might not always be the case in practice. We therefore examine the robustness of these estimators

when this independence assumption is violated. We simulate the survival and truncation times

from a normal copula. The marginal distributions for the survival, left, and right truncation times

are set to gamma(10, 1), gamma(3, 1), and gamma(5, 2) distributions, respectively. Let ρXY denote

the correlation between random variables X and Y . In model 7, we set ρLT = 0.5, ρLR = 0.1, and

ρTR = 0.1. In model 8, we set ρLT = −0.5, ρLR = 0.1, and ρTR = −0.1. These correlations lead to

a strong positive dependence (model 7) and strong negative dependence (model 8) between the

left truncation times and survival times. We set ρLT = −0.1, ρLR = 0.1, and ρTR = −0.5 in model 9,

which leads to a strong negative dependence between the survival times and right truncation times.

In model 10, we set ρLT = −0.5, ρLR = 0.1, and ρTR = −0.5, which leads to a strong negative

dependence between both the survival times and left truncation times as well as the survival times

and right truncation times.

Figure 4.4 displays the bias of F̂SP , F̂NP , and F̂emp across the 1st through 9th deciles of F0 for

models 7 through 10. The bias of F̂SP and F̂NP is relatively small when there is only a strong

dependence between the left truncation and survival time (i.e. models 7 and 8). However the bias

of these estimators become much more severe when there is a strong dependence with the right

truncation time (i.e. models 9 and 10). As Table 4.3 shows, the coverage probabilities in this setting

are extremely poor.
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Table 4.2: Simulation results under misspecification of the truncation distribution
Model q n Estimator Bias(F̂ ) SD(F̂ ) ŜE(F̂ ) MSE(F̂ ) Cov(F̂ ) Bias(t̂0.5) SD(t̂0.5)

4 0.52 50
F̂SP 0.008 0.074 0.160 0.006 0.968 0.091 0.725
F̂NP 0.023 0.075 0.068 0.006 0.878 0.017 0.734
F̂emp 0.092 0.056 0.044 0.013 0.455 -0.848 0.461

4 0.52 250
F̂SP 0.009 0.033 0.062 0.001 0.995 0.062 0.310
F̂NP 0.007 0.033 0.033 0.001 0.932 -0.014 0.299
F̂emp 0.091 0.025 0.020 0.010 0.301 -0.816 0.207

5 0.56 50
F̂SP 0.011 0.084 0.098 0.008 0.886 0.032 0.841
F̂NP 0.029 0.087 0.077 0.009 0.834 0.073 0.954
F̂emp 0.144 0.054 0.042 0.026 0.441 -1.297 0.423

5 0.56 250
F̂SP 0.007 0.038 0.037 0.002 0.921 -0.032 0.339
F̂NP 0.008 0.040 0.039 0.002 0.921 -0.021 0.353
F̂emp 0.144 0.024 0.019 0.024 0.331 -1.288 0.201

6 0.54 50
F̂SP 0.009 0.073 0.168 0.006 0.961 0.047 0.698
F̂NP 0.027 0.073 0.068 0.006 0.873 -0.030 0.659
F̂emp 0.088 0.056 0.044 0.012 0.455 -0.826 0.476

6 0.54 250
F̂SP 0.010 0.034 0.062 0.001 0.992 0.035 0.320
F̂NP 0.009 0.035 0.032 0.001 0.924 -0.039 0.365
F̂emp 0.086 0.025 0.020 0.009 0.301 -0.771 0.210

Survival times simulated from a gamma(10, 1) distribution. Left and right truncation times assumed to come
from a gamma(α1, β1) and gamma(α2, β2) distribution, respectively. Model 4 corresponds to misspecification
of the right truncation time by simulating it as Unif(0, 20), and the left truncation time as gamma(3, 1). Model

5 corresponds to misspecification of the left truncation time by simulating it as Weibull(1, 3), and the right
truncation time as gamma(5, 2). Model 6 corresponds to misspecification both truncation times by simulating
the left truncation time as Weibull(1, 3) and the right truncation time as Unif(0, 20). Here q is the proportion
of observations missing due to truncation and n is the size of the observed sample. F̂SP denotes the SPMLE,

F̂NP denotes the NPMLE, and F̂emp denotes the naı̈ve empirical CDF which ignores double truncation.
These estimators were all computed at t0.1, ..., t0.9, the 1st through 9th deciles of the true survival distribution
F0. For a given estimator F̂ , Bias(F̂ ) is the (absolute) difference between F̂ and F0, averaged across the 9
deciles. Here SD(F̂ ) is standard deviation of F̂ across simulations, ŜE(F̂ ) is estimated standard error of F̂ ,
MSE(F̂ ) is mean squared error of F̂ , and Cov(F̂ ) is 95% coverage, all averaged across the 9 deciles. Here
t̂0.5 is the estimated median value based on F̂ . The true median value based on F0 is t0.5 = 9.7. Here

Bias(t̂0.5) = t̂0.5 - t0.5 and SD(t̂0.5) is the standard deviation of t̂0.5 across simulations.

4.4. Example: Autopsy-confirmed Alzheimer’s disease and frontotemporal lobar

degeneration

Our motivating example comes from autopsy-confirmed data on individuals with either AD or FTLD

retrieved from The Center for Neurodegenerative Disease Research at the University of Pennsyl-

vania between 1995 and 2012. The target sample for the research purposes of the study consists

of all individuals with either AD or FTLD onset before 2012, who either entered the center between
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Figure 4.4: Bias of distribution function estimators under violation of independence assumption
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Bias of F̂SP ( ), F̂NP ( ), and F̂emp ( ) at t0.1, ..., t0.9, under violation of inde-
pendence between the survival and truncation times. Here t0.1, ..., t0.9 are the deciles of the true
survival time distribution F0, where F0(t0.1) = 0.1, F0(t0.2) = 0.2, etc.

1995 and 2012, or would have entered the center between 1995 and 2012, had they not succumbed

to the disease beforehand. Our observed sample contains all individuals who entered the center

between 1995 and 2012, and had an autopsy-confirmed diagnosis of AD or FTLD before 2012.

Individuals with AD or FTLD who met the study criteria but died before entering the center were not

observed, yielding left truncated data. Furthermore, observations were only obtained from individ-

uals who had an autopsy-confirmed diagnosis of AD or FTLD. Individuals who lived past the end

of study date were not diagnosed, and therefore not included in our sample. Thus our data is also

right truncated. Our data consists of 47 autopsy-confirmed AD subjects and 31 autopsy-confirmed

FTLD subjects. The survival time of interest (T ) is the time between disease symptom onset and

death. The left truncation time (L) is the time between disease symptom onset and entry into the

study (i.e. initial clinic visit). The right truncation time (R) is the time between disease symptom
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Table 4.3: Simulation results under violation of the independence assumption
Model ρLT ρLR ρTR Estimator Bias(F̂ ) SD(F̂ ) ŜE(F̂ ) MSE(F̂ ) Cov(F̂ ) Bias(t̂0.5) SD(t̂0.5)

7 0.5 0.1 0.1
F̂SP 0.031 0.042 0.039 0.003 0.865 0.373 0.422
F̂NP 0.027 0.043 0.040 0.003 0.883 0.347 0.454
F̂emp 0.142 0.025 0.019 0.023 0.331 -1.294 0.202

8 -0.5 0.1 -0.1
F̂SP 0.028 0.038 0.038 0.003 0.847 -0.236 0.311
F̂NP 0.028 0.039 0.037 0.003 0.832 -0.211 0.319
F̂emp 0.146 0.024 0.019 0.025 0.331 -1.295 0.182

9 -0.1 0.1 -0.5
F̂SP 0.173 0.028 0.034 0.034 0.048 -1.436 0.199
F̂NP 0.174 0.028 0.027 0.035 0.021 -1.437 0.204
F̂emp 0.218 0.021 0.016 0.054 0.235 -1.786 0.163

10 -0.5 0.1 -0.5
F̂SP 0.157 0.027 0.035 0.030 0.134 -1.301 0.185
F̂NP 0.157 0.027 0.027 0.029 0.089 -1.289 0.190
F̂emp 0.204 0.020 0.017 0.050 0.246 -1.663 0.147

Survival and truncation times simulated from a normal copula with correlations ρLT , ρLR, and ρTR, where
ρXY denotes the correlation between random variables X and Y . The marginal distributions for the survival,

left, and right truncation times are set to gamma(10, 1), gamma(3, 1), and gamma(5, 2) distributions,
respectively. This resulted in roughly 55% of truncated observations in all models. Here n is the size of the

observed sample. F̂SP denotes the SPMLE, F̂NP denotes the NPMLE, and F̂emp denotes the naı̈ve
empirical CDF which ignores double truncation. These estimators were all computed at t0.1, ..., t0.9, the 1st

through 9th deciles of the true survival distribution F0. For a given estimator F̂ , Bias(F̂ ) is the (absolute)
difference between F̂ and F0, averaged across the 9 deciles. Here SD(F̂ ) is standard deviation of F̂ across

simulations, ŜE(F̂ ) is estimated standard error of F̂ , MSE(F̂ ) is mean squared error of F̂ , and Cov(F̂ ) is 95%
coverage, all averaged across the 9 deciles. Here t̂0.5 is the estimated median value based on F̂ . The true
median value based on F0 is t0.5 = 9.7. Here Bias(t̂0.5) = t̂0.5 - t0.5 and SD(t̂0.5) is the standard deviation of

t̂0.5 across simulations.

onset and the end of the study, which is taken to be July 1st, 2012. Due to double truncation, we

only observe individuals with L ≤ T ≤ R.

The study and comparison of AD and FTLD are of importance because it gives us insight towards

developing disease modifying therapies in the future. Our goal here is to estimate and compare the

survival distributions for these two groups. Before we apply the SPMLE or NPMLE to estimate the

survival distributions for AD and FTLD, we must test whether the survival times are independent of

the truncation times for each group. We test this assumption using the test statistic introduced in

(Martin and Betensky, 2005). The resulting tests did not reject the null hypothesis of independence

at the α = 0.05 level for either the AD or FTLD group. We can therefore proceed to apply the

methods described in Section 4.2 to our data.

The NPMLE and eCDF were computed without any parametric assumptions on the survival or

truncation times. For the AD group, the SPMLE was computed by assuming that the left truncation
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time has a gamma(α1, β1) distribution and the right truncation time has a gamma(α2, β2) distribu-

tion. The SPMLE for the FTLD group was estimated independently of the AD group, and assumed

that the left truncation time has a gamma(θ1, γ1) distribution and the right truncation time has a

gamma(θ2, γ2). The distribution of the truncation times were chosen by examining an external data

set of individuals with clinically diagnosed AD and FTLD. Under these parametric assumptions, we

have (α̂1 = 2.9, β̂1 = 1.1), (α̂2 = 5.2, β̂2 = 1.9), (θ̂1 = 1.7, γ̂1 = 3.1), and (θ̂2 = 12.7, γ̂2 = 1.1).

Based on these results, the probability of observing an individual with AD or FTLD was estimated

to be 0.42 and 0.46, respectively.

To check whether the choice of the gamma distribution is appropriate, we test the null hypothesis

H0 : K = Kθ, independently for the AD and FTLD group, using a Kolmogorov-Smirnov type test

statistic introduced in (Moreira, lvarez, and Van Keilegom, 2014). The resulting test did not reject

H0 at the α = 0.05 level for either AD or FTLD, and therefore we do not have enough evidence

against the gamma distribution assumptions for the truncation times in either group.

The estimated survival curves Ŝ(t) = 1 − F̂ (t) based on the SPMLE, NPMLE, and eCDF are

plotted in Figure 4.5. In the top left panel, we compare these three estimators for the AD group.

The estimated survival probabilities based on the SPMLE and NPMLE are similar, and are greater

than those based on the eCDF. This implies that right truncation had a greater impact than left

truncation in the AD group. In other words, a greater proportion of larger survival times were

unobserved relative to smaller survival times. The top right panel compares these estimators for

the FTLD group. Here the estimated survival probabilities based on the SPMLE and NPMLE are

also similar, but are less than those based on the eCDF. This implies that left truncation had a

greater impact than right truncation in the FTLD group. In other words, a greater proportion of

smaller survival times were unobserved relative to larger survival times.

The bottom row of Figure 4.5 compares the AD and FTLD survival probabilities based on the

SPMLE (left) and the eCDF (right). When we do not adjust for double truncation, the eCDF con-

cludes that the survival curves of AD and FTLD are nearly identical, with median survival times less

than 1 year apart (AD = 7.3 years, FTLD = 6.7 years). This is not consistent with previous literature

(Rascovsky et al., 2005). When we adjust for the double truncation, the survival probabilities for AD

are greater than those of FTLD. Furthermore, the difference in median survival time is now greater

than 5 years (AD = 9.9 years, FTLD = 4.3 years).
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Figure 4.5: Estimated distribution functions for AD and FTLD
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Top row: Estimated survival curves for AD (top left panel) and FTLD (top right panel) based on F̂SP
( ), F̂NP ( ), and F̂emp ( ).
Bottom row: Comparing AD ( ) and FTLD ( ) survival curves based on the SPMLE F̂SP
(bottom left panel) and eCDF F̂emp (bottom right panel). Vertical dotted lines represent median
survival times for each group.

We test for equality of the distribution functions of AD and FTLD using Bilker and Wang’s semipara-

metric extension of the Mann-Whitney test. The resulting U-statistic is Û=2.62 with variance V̂Û =

2.81. Û > 0 gives evidence that the survival curve for AD is greater than that for FTLD. However

this result is not statistically significant (p-value = 0.12). We note that the standard log-rank test

(ignoring truncation) resulted in a p-value of 0.46.

The Mann-Whitney test above tests whether two survival curves are equal. We now test for a

difference in survival probabilities between AD and FTLD at specific time points. The results are

provided in Table 4.4. When we adjust for double truncation, we conclude that the AD group has

a greater survival probability than the FTLD group at years 3, 6 and 9. While the probability of
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survival at 12 years is also greater for the AD group, the resulting test is not statistically significant

(p=0.221). When we do not account for double truncation, we find no significant difference in the

survival probabilities.

Table 4.4: Testing equality of survival probabilities between AD and FTLD
AD FTLD

t Estimator Ŝ(t) (ŜEt) Ŝ(t) (ŜEt) Wt p-value

3 SPMLE 0.94 (0.04) 0.64 (0.11) 6.80 0.009
NPMLE 0.93 (0.03) 0.62 (0.12) 6.45 0.011

eCDF 0.94 (0.04) 0.81 (0.07) 2.67 0.102

6 SPMLE 0.81 (0.06) 0.45 (0.10) 9.58 0.002
NPMLE 0.79 (0.06) 0.43 (0.12) 7.05 0.008

eCDF 0.70 (0.07) 0.61 (0.09) 0.66 0.417

9 SPMLE 0.62 (0.09) 0.26 (0.08) 8.56 0.003
NPMLE 0.60 (0.08) 0.25 (0.09) 7.50 0.006

eCDF 0.40 (0.07) 0.32 (0.08) 0.55 0.459

12 SPMLE 0.33 (0.11) 0.17 (0.07) 1.50 0.221
NPMLE 0.30 (0.08) 0.15 (0.07) 1.28 0.258

eCDF 0.13 (0.05) 0.19 (0.07) 0.59 0.444
Ŝ(t) = 1− F̂ (t) is survival probability at time t, ŜEt is the estimated standard error at time t, Wt is the Wald

statistic comparing the survival probability between AD and FTLD at time t, for t =3, 6, 9, 12

4.5. Discussion and Recommendations

Due to the inaccuracy of clinical diagnoses and a lack of available biomarkers, many studies of

neurodegenerative diseases rely on autopsy-confirmed diagnoses. The purpose of this paper was

to raise awareness of the selection bias in these studies and to highlight appropriate methods to

account for it. We described how the selection bias arises due to the double truncation inherent in

these studies, and showed that ignoring double truncation leads to biased estimators of the survival

time distribution. To adjust for double truncation, we applied semiparametric and nonparametric

maximum likelihood estimators of the survival time distribution. We conducted a simulation study to

evaluate the performance of these estimators in a variety of settings, and applied these estimators

to a data set consisting of autopsy-confirmed AD and FTLD individuals.

The simulation study confirmed that the SPMLE and NPMLE had little bias in small samples, while

the naı̈ve empirical CDF which ignores double truncation was heavily biased. We also found that

the empirical CDF had a much larger mean squared error relative to the SPMLE and NPMLE under

moderate to severe truncation. Furthermore, the 95% confidence intervals of the empirical CDF
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were well below the nominal level, while those corresponding to the SPMLE and NPMLE were

close to the nominal level under larger sample sizes.

When applied to our autopsy-confirmed data set, the survival probabilities based on the SPMLE

and NPMLE were significantly greater for the AD group relative to the FTLD group at almost all

time points. Furthermore, the difference in median survival time between AD and FTLD was over

5 years. However we did not have enough evidence to conclude that the survival curves were

significantly different between the two groups. Application of the empirical CDF to the AD and

FTLD groups found that the survival probabilities were similar between the two groups, with median

survival time less than one year apart. This is contrary to the previous literature hypothesizing that

survival in AD is greater than that of FTLD (Rascovsky et al., 2005).

We recommend the approach taken in our data example when estimating the survival time distribu-

tion of an autopsy-confirmed neurodegenerative disease, since this approach leads to consistent

and more efficient estimators. Our approach consisted of first testing whether the truncation and

survival times are independent, and then applying the SPMLE and NPMLE of the survival distri-

bution function to the data. Based on our simulations and (Moreira and Una-Alvarez, 2010; Shen,

2010b), the SPMLE has a lower standard error and MSE than the NPMLE, and is therefore a more

efficient estimator. However the SPMLE requires the correct distribution of the truncation times.

Although incorrectly specifying the truncation distribution did not result in biased estimators of the

survival time distribution in our simulation study, this is not always the case (Moreira and Una-

Alvarez, 2010; Shen, 2010b). We therefore recommend testing the parametric assumptions of the

SPMLE using the test statistics provided in (Moreira, lvarez, and Van Keilegom, 2014)

The main limitation with the methods described in this paper is that they require independence

of the truncation and survival times. This is not always a realistic assumption in individuals with

neurodegenerative diseases. Our simulation studies showed that the estimators which adjust for

double truncation are sensitive to this independence assumption. Therefore these estimators must

be used with caution. While methods exist to test this independence assumption (Martin and Beten-

sky, 2005), an extension of these methods is needed to adjust for dependent truncation and survival

times in the presence of double truncation.

The double truncation inherent in autopsy-confirmed studies of neurodegenerative diseases and
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methods to correct for it have so far received little attention in the literature. In this paper, we

showed that ignoring double truncation leads to biased estimators of the survival time distribution,

and outlined methods to adjust for it. The effects of ignoring double truncation in these studies was

highlighted in our data example, where the estimated survival curves for AD and FTLD were not

consistent with previous literature. Given the devastating effects of neurodegenerative diseases on

patients, their caregivers, and society, it is imperative to adjust for double truncation in order to have

accurate knowledge of the survival time distribution.

69



CHAPTER 5

A PACKAGE FOR ANALYZING TRUNCATED DATA IN R

5.1. Introduction

Truncation is a statistical phenomenon that has been shown to occur in a wide range of applications,

including survival analysis, epidemiology, economics, and astronomy. Individuals who are subject

to truncation provide no information to the investigator. Left truncation occurs when individuals

who experience the terminating event before they are recruited into the study are unobserved. For

example, when individuals are recruited into a study after some initiating event (e.g. age at disease

onset), then individuals who experience the terminating event (e.g. death) before they enter the

study will not be observed. Right truncation occurs when data is only recorded for individuals

whose terminating event occurs before some specified time. For example, data retroactively pulled

from a disease registry will only include individuals who experienced the event of interest by the

study end date or the date of data extraction. Individuals who do not experience the event by this

time will be unobserved (Bilker and Wang, 1996).

Double truncation, the simultaneous presence of left and right truncation, refers to the situation

when observations are only record for data that fall within a subject-specific random interval. Bilker

and Wang, 1996 noticed this issue in an epidemiological study of AIDS incubation times from HIV

infection. Because the database only reported information for individuals who were diagnosed be-

fore a specific date, the data is subject to right truncation. This data is also subject to left truncation

because data was not recorded for individuals who developed AIDS before 1982, as AIDS was

unknown before then. Because smaller incubation times are less likely due be observed due to left

truncation and large incubation times are less likely to be observed due to right truncation, double

truncation results in a complex observational bias.

Prior to this decade, there have only been a few papers devoted to double truncation, and all of

them dealt with the estimation of the survival distribution function for the event times. Efron and

Petrosian, 1999 first introduced an iterative algorithm to compute the nonparametric maximum like-

lihood estimators (NPMLE) for the distribution of event times that are subject to double truncation.

Shen, 2010a developed the asymptotic properties of this estimator, and also introduced an iterative

70



algorithm to jointly estimate both the NPMLE of the event time distribution and the truncation time

distribution. Both of these methods have been implemented in the DTDA package in R (Moreira,

Una-Alvarez, and Crujeiras, 2010).

In recent years double truncation has started gaining traction in the literature. In 2017, three meth-

ods were introduced to adjust the Cox regression model for doubly truncated data (Mandel et al.,

2017; Rennert and Xie, 2017; Shen and Liu, 2017). However, there is no existing software to ad-

just the Cox regression model for doubly truncated data. In this paper, we introduce the R package

SurvTruncation, which contains functions to fit the Cox regression model and compute the NPMLE

of the distribution function for the event time and truncation times using the methods introduced in

(Rennert and Xie, 2017) and (Shen, 2010a), respectively. In addition to obtaining estimates of the

regression coefficients from the Cox regression model, this package also provides estimates of the

standard error and confidence intervals, as well as p-values, which are all based on the simple

bootstrap technique.

The remainder of this paper is organized as follows. In Section 5.2, we provide a brief review of

the existing algorithms to compute the NPMLE of the event time distribution and truncation time

distribution under double truncation, as well as the algorithm to adjust the Cox regression model

under double truncation. In Section 5.3 we describe the SurvTruncation package and illustrate its

use through the analysis of the AIDS data example. Concluding remarks and a discussion of future

extensions are provided in Section 5.4.

5.2. Statistical methodology

We refer to population random variables as random variables from the target population and denote

them without subscripts. We refer to sampling random variables as random variables from the

observed sample and denote them with subscripts. Let Ti denote the observed survival time and

Zi(t) denote the observed p×1 covariate vector at time t for subject i = 1, ..., n, where n is the size

of the observed sample. The left and right truncation times are denoted by L and R, respectively.

Due to truncation, we observe the data vector {T, L,R,Z(t)} if and only if L ≤ T ≤ R.

Let F (t) denote the cumulative distribution functions of T . Let K(l, r) denote the joint cumulative

distribution function of (L,R). For any cumulative distribution function H, define the left endpoint
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of its support by aH = inf{x : H(x) > 0} and the right endpoint of its support by bH = inf{x :

H(x) = 1}. Let HL(l) = K(l,∞) and HR(r) = K(∞, r) denote the marginal cumulative distribution

functions of L and R, respectively. The following methods assume that aHL < aF ≤ aHR and

bHL ≤ bF < bHR , which are required for identifiability of the estimators presented here (Rennert

and Xie, 2017; Shen, 2010a; Woodroofe, 1985).

These methods also assume that the survival times are independent of the truncation times in the

observed region L ≤ T ≤ R. This independence assumption is needed to estimate the probability

that a subject with survival time Ti is not truncated and thus observed. These are referred to as

selection probabilities, and are denoted by πi, i = 1, ..., n. Here πi = P (L ≤ T ≤ R|T = Ti). Under

the independence assumption, πi is simply P (L ≤ Ti ≤ R).

5.2.1. NPMLE of survival and truncation distribution functions

Here we present a slightly modified version of the algorithm described in (Shen, 2010a). Let

ϕi = F (Ri) − F (Li), i = 1, ..., n. The NPMLE’s of ϕi and πi can be found using the following

iterative algorithm:

Step 0) Set ϕ̂(0)
i = n−1

∑n
j=1 1{Li≤Tj≤Ri}, for i = 1, ..., n.

Step 1) Set π̂(1)
i =

(∑n
j=1

1

ϕ̂
(0)
j

)−1∑n
j=1

1{Lj≤Ti≤Rj}

ϕ̂
(0)
j

, for i = 1, ..., n.

Step 2) Set ϕ̂(1)
i =

(∑n
j=1

1

π̂
(1)
j

)−1∑n
j=1

1{Li≤Tj≤Ri}

π̂
(1)
j

, for i = 1, ..., n.

Step 3) For a prespecified error e, repeat steps 1 and 2 until
∑n
i=1 |π̂

(s)
i − π̂

(s−1)
i | < e.

The NPMLE of πi and ϕi are given by π̂i = π̂
(s)
i and ϕ̂i = ϕ̂

(s)
i , respectively. The NPMLE of

the event time distribution at time t, F̂np(t), and the NPMLE of the joint distribution function for the

truncation times at (l, r), K̂np(l, r), are then given by
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F̂np(t) =
[ n∑
j=1

1/π̂j
]−1

n∑
j=1

1{Tj≤t}

π̂j
,

K̂np(l, r) =
[ n∑
j=1

1/ϕ̂j
]−1

n∑
j=1

1{Lj≤l,Rj≤r}

ϕ̂j
.

More details can be found in (Shen, 2010a).

5.2.2. Estimating the regression coefficients from the Cox regression model

For a given time t, define Yi(t) = 1{Ti≥t} and Ni(t) = 1{Ti≤t}. Let τ be a constant set to the largest

observed survival time. The Cox regression model assumes that for a given subject with p × 1

covariate vector Zi(t), the hazard function at time t is given by λi(t) = λ0(t)eβ
′
0Zi(t), where λ0(t) is

the true baseline hazard function and is unspecified. Here β0 is the true regression coefficient.

When subjects have unequal probabilities of selection, then the study sample will not be a repre-

sentative sample of the underlying target population. In this situation the standard Cox regression

coefficient estimator will be a biased estimator of β0. To adjust for biased samples due to double

truncation, Rennert and Xie (2017) maximize the weighted Cox score function (Binder, 1992) using

the estimated selection probabilities π̂i for i = 1, ..., n. The weighted Cox score function is given by

Uw(β,π) =

n∑
i=1

∫ τ

0

1

πi

{
Zi(t)−

∑n
j=1

1
πj
Yj(t)e

β′Zj(t)Zj(t)∑n
j=1

1
πj
Yj(t)eβ

′Zj(t)

}
dNi(t) = 0. (5.1)

Letting π̂ = (π̂1, ..., π̂n), a consistent estimator of β0 is obtained by solving Uw(β, π̂) = 0. We

denote the resulting estimator by β̂ŵ.

5.3. Overview of the package SurvTruncation

The package SurvTruncation contains a function to compute the NPMLE of the event time dis-

tribution and truncation time distribution when the event time is subject to double truncation. In

addition, the SurvTruncation package includes a function to fit the Cox regression model to doubly

truncated data. This section shows the usage of the SurvTruncation package by analyzing the
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AIDS data set using both functions.

This package incorporates the methods introduced in Shen, 2010a and Rennert and Xie, 2017

described in Section 5.2. The package is composed of the following two functions that allow the

user to fit these methods. These functions are:

cdfDT() computes the NPMLE of the event time distribution and

truncation time distribution, when the event times

are subject to left and/or right truncation.

coxDT() fits a Cox proportional hazards regression model when the

event times are subject to left and/or right truncation.

Tables 5.1 and 5.2 show a summary of the arguments for the functions cdfDT and coxDT, respec-

tively. For the function cdfDT, the argument boot has a default setting of FALSE. If true, the standard

error and 95% pointwise upper and lower confidence limits will be computed. Note that only the

unique event times, number of events at each unique event time, and the event time cumulative

distribution function and corresponding survival function are displayed (assuming display=TRUE).

The remaining values must be called from the saved output (see Section 5.3.1). The R code for the

functions coxDT and cdfDT are provided in Appendix E and F, respectively.

5.3.1. Data example

The AIDS Blood Transfusion Data were collected by the Center for Disease Control and retrieved

from their registry database. The data set AIDS, included in the SurvTruncation package, consists

of individuals who were infected with HIV from a contaminated blood transfusion on April 1, 1978.

The infection time is the months from April 1, 1978 to HIV infection. The event of interest here is

the induction time, which is the time from HIV infection to the development of AIDS. The data, taken

from Klein and Moeschberger (2003), contains 295 infection and induction times for 258 adults

and 37 children. The pediatric population was either infected in utero or at birth via the parent

who received the contaminated blood transfusion. The infection time for the pediatric population is

months from April 1, 1978 to birth.

Let tAIDS denote the calendar time of the AIDS virus. Because AIDS was unknown prior to 1982,
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any individual who developed AIDS before τstart = January 1982 would not have been included in

the data registry. Therefore we only observe cases with τstart ≤ tAIDS . Because cases reported

after τend = July 1986 are not included to avoid inconsistent data and bias from reporting delay, we

only observe cases with tAIDS ≤ τend. Therefore the data is doubly truncated, as we only observe

cases with τstart ≤ tAIDS ≤ τend.

Let T denote the induction time from HIV infection to the development of AIDS (Induction.time

in AIDS data set). Let U denote the time from the contaminated blood transfusion (April, 1978) to

HIV infection (Infection.time in AIDS data set). Due to double truncation, it can be shown that we

only observe individuals with L ≤ T ≤ R (Shen and Liu, 2017). Here L is the left truncation time

(L.time in AIDS data set) and is equal to 45 months - months from contaminated blood transfusion

(i.e. 45 - U ). Here R is the right truncation time (R.time in AIDS data set) and is equal to L + 54

months.

5.3.2. Estimating the event time distribution using cdfDT

We apply the function cdfDT to estimate the distribution function of the time from HIV infection to the

development of AIDS (i.e. T ). In the AIDS data set, this variable is denoted by Induction.time. The

Arguments Description
y vector of event times
l vector of left truncation times
r vector of right truncation times
n.iter maximum number of iterations
boot Logical. Default=FALSE. If TRUE, the simple bootstrap method is ap-

plied to estimate the standard error and pointwise confidence intervals
of the event time distribution

B.boot Numeric value for number of bootstrap resamples. Default is 200.
joint Logical. Default=FALSE. If TRUE, computes joint and marginal distri-

butions of the truncation times
plot.cdf Logical. Default is FALSE. If TRUE, the estimated cumulative distribu-

tion and survival functions of the event times are plotted. If boot=TRUE,
confidence intervals are also plotted.

plot.joint Logical. Default is FALSE. If TRUE, the estimated marginal distribu-
tion functions of the truncation times and the joint distribution of the
truncation times, are plotted. Note: Plot will only be displayed if both
plot.joint=TRUE and joint=TRUE.

display Logical. Default is TRUE. If FALSE, output will not be displayed upon
execution of function.

Table 5.1: Summary of the arguments of the function cdfDT.
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Arguments Description
formula a formula object, with the response on the left of a operator, and the

terms on the right. The response must be a survival object as returned
by the Surv function.

L vector of left truncation times
R vector right truncation times
data an optional data.frame vector, needed to interpret variables named in

the formula

subset an optional vector specifying a subset of observations to be used in the
fitting process. All observations are included by default.

time.var default = FALSE. If TRUE, specifies that time varying covariates are fit
to the data.

subject a vector of subject identification numbers. Only needed if
time.var=TRUE.

B.SE.np number of iterations for bootstrapped standard error (default = 200)
CI.boot requests bootstrap confidence intervals (default==FALSE)
B.CI.boot number of iterations for bootstrapped confidence intervals (default =

2000)
pvalue.boot requests bootstrap confidence intervals (default==FALSE)
B.pvalue.boot number of iterations for bootstrapped p-values (default = 200)
print.weights requests the output of nonparametric selection probabilities (de-

fault==FALSE)
error convergence criterion for nonparametric selection probabilities (default

= 10e-6)
n.iter maximum number of iterations for computation of nonparamteric selec-

tion probabilities (default = 10000)

Table 5.2: Summary of the arguments of the function coxDT.

left and right truncation times, L and R, are denoted by L.time and R.time, respectively. Below we

request that the bootstrap technique be applied to estimate the standard error and 95% confidence

limits of the distribution function for the time to development of AIDS from HIV infection, using 200

bootstrap resamples (boot=TRUE,B.boot=200). We also request the computation of the joint and

marginal distributions of the truncation times (joint=TRUE). Finally, we request the plots for the

estimated cumulative distribution function and survival function of the event time (plot.cdf=TRUE),

as well as the marginal and joint distribution of the truncation times (plot.joint=TRUE).

> data(AIDS)

> fit1 <- cdfDT(AIDS$Induction.time,AIDS$L.time,AIDS$R.time,error=1e-6,

+ boot=TRUE,B.boot=200,joint=TRUE,plot.cdf=TRUE,plot.joint=TRUE)

number of iterations 21

time n.event cumulative.cdf survival

3 9 0.0136 0.9864
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6 7 0.0238 0.9762

9 18 0.0495 0.9505

12 20 0.0771 0.9229

15 18 0.1022 0.8978

18 26 0.1393 0.8607

21 16 0.1636 0.8364

24 14 0.1861 0.8139

27 22 0.2232 0.7768

30 17 0.2558 0.7442

33 15 0.2867 0.7133

36 23 0.3384 0.6616

39 14 0.3750 0.6250

42 9 0.4016 0.5984

45 5 0.4187 0.5813

48 11 0.4640 0.5360

51 10 0.5110 0.4890

54 6 0.5424 0.4576

57 5 0.5737 0.4263

60 8 0.6343 0.3657

63 9 0.7131 0.2869

66 5 0.7664 0.2336

69 2 0.7949 0.2051

72 1 0.8136 0.1864

75 1 0.8339 0.1661

78 2 0.8937 0.1063

81 1 0.9296 0.0704

87 1 1.0000 0.0000

number of observations 295

Running the function cdfDT automatically displays the number of unique event times, the number

of observations for each unique event time, as well as estimates of the cumulative distribution

function and survival function at each unique event time. The plots are automatically generated
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and displayed in Figures 5.1, 5.2, and 5.3, respectively.

To display the remaining output, we need to call it. For example, the estimated selection probabili-

ties for the first 5 subjects, π̂i = P̂ (L ≤ Ti ≤ R) for i = 1, ..., 5, can be called as follows:

> fit1$P.K[1:5]

[1] 0.16581658 0.03510388 0.16581658 0.16581658 0.01784253

Figure 5.1: NPMLE of the cumulative distribution function and survival function of the AIDS induc-
tion times.
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Note: 95% upper and lower confidence limits displayed (since boot=TRUE).

5.3.3. Estimating the Cox regression coefficients using coxDT

The arguments for the function coxDT are similar to that of coxph in the survival package in R.

Unlike the function cdfDT, here we can directly insert the variable names as long as we include the

data set in the argument (e.g. data=AIDS). In this example, we specify 200 bootstrap resamples for

estimation of the standard error for the regression coefficient (B.SE.np=200).

> data(AIDS)
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> fit2 <- coxDT(Surv(Induction.time,status)~Adult,L.time,R.time,data=AIDS,

B.SE.np=200,print.weights=TRUE)

> fit2

$results.beta

Estimate SE CI.lower CI.upper Wald statistic p-value

[1,] -1.0545 0.5601 -2.152 0.043 3.54 0.0598

$CI

[1] "Normal approximation"
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Figure 5.2: NPMLE of the marginal cumulative distribution function of left truncation time (left) and
right truncation time (right).
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Figure 5.3: NPMLE of the joint cumulative distribution function of left and right truncation times.

$p.value

[1] "Normal approximation"

$weights

[1] 6.030760 28.486881 6.030760 6.030760 56.045875 . . .

The Estimate of the regression coefficient for adults is displayed in the output under

results.beta. The value of -1.0545 indicates that adults are exp(−1.0545) = 0.35 times less likely

than children to develop AIDS after HIV infection. The output CI = "Normal approximation" and
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p.value = "Normal approximation" indicate that the 95% confidence interval and Wald p-value

were computed by assuming normality for the regression coefficient estimator β̂ŵ. The argument

print.weights=TRUE outputs the weights for all subjects. Here we suppress the output to include

the weights for the first 5 subjects only. Note that the weights displayed here are the inverse of the

estimated selection probabilities which were output in the previous subsection. That is, the weights

displayed here are simply ŵi = 1/π̂i for i = 1, ..., 5.

The example provided here assumes that the covariates are time independent. The coxDT function

can easily accommodate time-varying covariates in a similar manner to the coxph function. Details

can be found in the help file for coxDT.

5.4. Conclusions

This paper discusses the implementation of software for the event time distribution function and Cox

regression model when the survival times are subject to both left and right truncation. The event

time distribution function is estimated in the SurvTruncation package in R using the algorithm

introduced in Shen, 2010a. The Cox regression model is fit using the weighted estimating equation

approach introduced in Rennert and Xie, 2017, which uses the inverse of the estimated selection

probabilities from (Shen, 2010a) as weights.

The function cdfDT displays both numerical output and graphical displays of the estimates of the

survival and truncation time distributions. Both cdfDT and the function to estimate the Cox regres-

sion model, coxDT, estimate the standard errors by using the simple bootstrap technique. The

CoxDT function also allows for estimating the 95% confidence intervals and p-values of the regres-

sion coefficient estimators by the simple bootstrap technique. We note that both methods assume

that the observed survival and truncation times are independent.

To our knowledge, the SurvTruncation package is the first to implement the Cox regression model

under double truncation in a friendly way. The arguments for the coxDT function are similar to

the coxph in the Survival package in R. The coxDT function also handles time-varying covari-

ates in a similar fashion to coxph. The implementation of the Shen (2010) algorithm was previ-

ously done in the shen function in the DTDA package in R (Moreira, Una-Alvarez, and Crujeiras,

2010). While the output from cdfDT and shen are similar, the function cdfDT has a significantly
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faster computation time. The SurvTruncation package can be downloaded at the following link:

https://github.com/rennertl/SurvTruncation.
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CHAPTER 6

DISCUSSION

The double truncation inherent in autopsy-confirmed studies of neurodegenerative diseases and

methods to correct for it have so far received little attention in the literature. Due to the inaccuracy

of clinical diagnoses and a lack of available biomarkers, many studies of neurodegenerative dis-

eases rely on autopsy-confirmed diagnoses. We described how the selection bias arises due to

the double truncation inherent in these studies, and showed that ignoring double truncation leads

to biased estimators of the regression coefficients from the Cox regression model. In Chapter 2,

we introduced a weighted estimating equation approach to adjust the Cox regression model under

double truncation, by weighting the subjects in the score equation of the Cox partial likelihood by

the inverse of the probability that they were observed (i.e. not truncated). The probability of being

observed was estimated both parametrically and nonparametrically by methods introduced in Shen

(2010; 2010) and Moreira and de Ũna-Álvarez (2010), and did not require any contribution from

missing subjects. We proved the resulting regression coefficient estimators are consistent. The

simulation studies confirmed that these estimators had little bias, while the naı̈ve estimator which

ignores truncation is biased. We proved the parametric weighted estimator is asymptotically nor-

mal, and a consistent estimator of its asymptotic variance was provided. Our simulations showed

that the bootstrap estimate of the standard error for the nonparametric weighted estimator matched

the observed sample standard deviation.

The consistency of the estimated selection probabilities used in this method rests on the assump-

tion of independence between the survival and truncation times in the observable region. We

showed in Chapter 3 that a violation of this assumption leads to biased estimators of regression

coefficient estimators. We therefore proposed a novel method in Chapter 3 which relaxes the in-

dependence assumption between the observed survival and truncation times in the Cox model

under left, right, or double truncation to an assumption of conditional independence between the

observed survival and truncation times. We obtained consistent and asymptotically normal esti-

mators of the regression coefficients and baseline hazard function by maximizing the conditional

likelihood of the observed survival times using an EM algorithm. The simulation studies confirmed

that the proposed estimators had little bias in small samples, while the naı̈ve estimators from the
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Cox models which ignore truncation or assume independence were biased. The existing methods

which adjust for truncation but assume independence resulted in heavily biased estimators of the

regression coefficients for risk factors of survival that were also correlated with the truncation times.

Furthermore, the proposed estimators had a lower mean-squared error than the naı̈ve estimators

in most of the simulation settings.

We also conducted a simulation and case study to examine survival time distribution function esti-

mators under double truncation. We showed that the SPMLE and NPMLE of the survival distribution

function had little bias in small samples, while the naı̈ve empirical CDF which ignores double trun-

cation was heavily biased. We found that the empirical CDF had a much larger mean squared

error relative to the SPMLE and NPMLE under moderate to severe truncation. Furthermore, the

95% confidence intervals of the empirical CDF were well below the nominal level, while those cor-

responding to the SPMLE and NPMLE were close to the nominal level under larger sample sizes.

When applied to our autopsy-confirmed data set, the survival probabilities based on the SPMLE

and NPMLE were significantly greater for the AD group relative to the FTLD group at almost all

time points. Furthermore, the difference in median survival time between AD and FTLD was over

5 years. Application of the empirical CDF to the AD and FTLD groups found that the survival

probabilities were similar between the two groups, with median survival time less than one year

apart. This is contrary to the previous literature hypothesizing that survival in AD is greater than

that of FTLD (Rascovsky et al., 2005).

The main limitation with the SPMLE and NPMLE of the survival time distribution is that they require

independence of the truncation and survival times. As shown in Chapter 3 and Chapter 4, these

methods are very sensitive to this independence assumption. Therefore these estimators must be

used with caution. An extension of these methods is needed to adjust for dependent truncation and

survival times in the presence of double truncation.

The function to compute the Cox regression model using the weighted estimating equation ap-

proach in Chapter 2, and the function to estimate the survival and truncation time distributions

under nonparametric assumptions, are implemented in our SurvTruncation package in R. This

package is described in Chapter 5. To our knowledge, this package is the first to implement the

Cox regression model under double truncation in a friendly way. The arguments for the coxDT
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function are similar to the coxph in the Survival package in R. The coxDT function also handles

time-varying covariates in a similar fashion to coxph. The implementation of the Shen (2010)

algorithm was previously done in the shen function in the DTDA in R (Moreira, Una-Alvarez,

and Crujeiras, 2010). While the output from cdfDT and shen are similar, the function cdfDT has

a significantly faster computation time. This package can be downloaded at the following link:

https://github.com/rennertl/SurvTruncation.

We applied our proposed methods from Chapters 2 and 3 to assess the effect of cognitive reserve

on survival in an autopsy-confirmed sample of individuals with Alzheimer’s disease (AD). AD is a

major neurodegenerative disease which currently affects 5.3 million people in the United States

according to the Alzheimer’s Association. In 2017 alone, AD and other dementias will have cost

the nation an estimated $259 billion. Therefore it is crucial to determine factors affecting survival.

Using both education and highest occupational attainment as proxies for cognitive reserve, our data

analyses concluded that cognitive reserve prolongs survival in subjects with Alzheimers disease.

Our proposed methods have useful implications for observational studies beyond autopsy-confirmed

neurodegenerative diseases. Double truncation has been shown to be present in a variety of stud-

ies, such as those of clinically diagnosed Parkinson’s disease (Mandel et al., 2017), childhood

cancer (Moreira and Una-Alvarez, 2010), astronomy data (Efron and Petrosian, 1999), and stud-

ies based on registry data (Bilker and Wang, 1996; Shen and Liu, 2017). In fact, any data pulled

from a disease registry will be subject to inherent right truncation, since data is only recorded for

subjects who have the disease and are entered in the registry by the time the data is extracted

(Bilker and Wang, 1996). In certain cases, the data will also be subject to left truncation (Bilker

and Wang, 1996; Shen and Liu, 2017). In a similar fashion, studies which only include data from

individuals whose event times fall within the time course of the study are subject to double trun-

cation (Moreira and Una-Alvarez, 2010). Therefore careful consideration of the study design must

be taken into account when fitting the Cox proportional hazards model. Furthermore, the assump-

tion of independence should always be tested, given the high sensitivity of existing methods to

this assumption. For example, a quick application of a Kendall’s conditional Tau test (Martin and

Betensky, 2005) revealed this independence assumption is violated in the AD data set analyzed in

Chapter 3 and the AIDS data used in Shen and Liu (2017). When time varying covariates are not

of interest, we recommend estimating the regression coefficients using the EM method in Chapter
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3, since the resulting estimators have little bias, and in most situations, have a lower mean-squared

error compared to existing estimators under left, right, or double truncation, and under a wide range

of dependence structures. When time-varying covariates are of interest, the weighted estimating

equation approach from Chapter 2 is more suitable, as long as the independence assumption is not

violated. Future methods are needed to develop methods to handle time varying covariates under

double truncation when the assumption of independence is violated.
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APPENDIX A

REGULARITY ASSUMPTIONS OF PROPOSED E-M ESTIMATOR

Regularity Assumptions

1. The true hazard function λ0(·) is continuously differentiable, Λ0(0) = 0, and Λ0(τ) <∞.

2. The true parameter vector β0 lies in a compact set B. The set A contains all nondecreasing

functions Λ satisfying regularity assumption 1.

3. E‖Z‖ and E‖ exp(β′Z)‖ are bounded, where ‖z‖ ≡
√
z2

1 + ...+ z2
p.

4. The information matrix −∂2E[ln(β, λ̂(β))]/∂β2|β=β0
is positive definite. Here λ̂(β) = λem is

used to emphasize the dependence on β.

5. If P (b′Z = c) = 1 for some constant c, then b = 0.

Assumptions 1 and 2 are required for stochastic approximation. Assumptions 3 and 4 are needed

to establish the asymptotic properties of the regression parameter estimates from the Cox model

(Andersen et al., 1997). Assumption 5 implies no covariate colinearity and thus ensures that the

model is identifiable.
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APPENDIX B

PROOF OF THEOREM 3.1

Since each function of λ in ln(β,λ) is concave or strictly concave, and the summation of concave

functions is concave, the log-likelihood function ln(β,λ) is strictly concave in λ. Therefore we can

find a unique maximizer λ̂(·,β) of ln(β,λ) for each β in a compact set B. The existence of the

NPMLE for (β,λ) follows by compactness of B for the likelihood ln(β, λ̂(·,β)), which is continuous

in β. Uniqueness is guaranteed by Assumption 4 in Appendix A for large samples.

Here we show that if θ̂n converges, it must converge to θ0. As θ̂n maximizes the log-likelihood

given in (3.2), ln(θ), the empirical Kullback-Leibler distance ln(θ̂n) − ln(θ0) must be nonnegative.

Suppose θ̂n converges to some θ∗ = (β∗,Λ∗). Then by the strong law of large numbers (SLLN),

ln(θ̂n) − ln(θ0) must converge to the negative Kullback-Leibler distance between Pθ∗ and Pθ0
.

Here Pθ is the probability measure under the parameter θ. Since the Kullback-Leibler distance

and ln(θ̂n) − ln(θ0) are nonnegative, the Kullback-Leibler distance between Pθ∗ and Pθ0
must be

zero. Therefore Pθ∗ = Pθ0
almost surely, and it then follows from model identifiability that θ∗ = θ0.

Therefore if θ̂n converges, it must converge to θ0.

The technical details to show that θ̂n indeed converges are similar to those in (Murphy, 1994). The

idea is to find a further convergent subsequence for any subsequence of θ̂n, and then apply Helly’s

selection theorem. Here we provide only a sketch of the proof. The first step is to show that θ̂n stays

bounded. By regularity assumption 3, β̂n is in a compact set and is therefore bounded. To show Λ̂n

is bounded, we make use of the fact that the empirical Kullback-Leibler distance ln(θ̂n) − ln(θ̄) is

always non-negative for each θ̄ in the parameter set. Using the approach of Murphy (1994), it can

be shown that if Λ̂n does indeed diverge to ±∞, then it is possible to construct some sequence θ̄n

such that ln(θ̂n) − ln(θ̄) eventually becomes negative infinity, which contradicts the nonnegativity

of the empirical Kullback-Leibler distance.

Since θ̂n stays bounded, we can apply Helly’s selection principal to find a further convergent sub-

sequence θ̂nk = (β̂nk , Λ̂nk) for any subsequence of θ̂n indexed by {1, ..., n}. By the classical

Kullback-Leibler information approach, and the SLLN, θ̂nk must converge to θ0. It then follows from

Helly’s selection theorem that the entire sequence (β̂n, Λ̂n(t)) must converge to (β0,Λ0(t)) for ev-
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ery t ∈ [0, τ ], where τ = td is the maximum of the observed event times. Since Λ0(·) is assumed

to be monotone and continuous, the convergence of Λ̂n(t) is uniformly in t ∈ [0, τ ]. Because the

proof is carried out for a fixed ω in the underlying probability space Ω, where the SLLN is applied

countably many times, the convergence here is also almost surely a true convergence.
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APPENDIX C

PROOF OF THEOREM 3.2

Here we outline the proof for the weak convergence of θ̂n, which follows the proof for weak conver-

gence in (Qin et al., 2011). The proof consists of the application of empirical process theory and

the Z-theorem for infinite dimensional estimating equations (Vaart and Wellner, 2000).

Denote the score equation for β by U1n(θ) = ∂ln(θ)/∂β. To obtain the score equation Λ(·), we

define the submodel dΛε = (1 + εh)dΛ, where h is a bounded and integrable function. Setting

h(·) = I(· ≤ t), the score equation for Λ is given by U2n(t,θ) = ∂ln(β,Λε)
∂ε |ε=0.

We denote the vector of the score functions by Un(·,θ) = [U1n(θ),U2n(t,θ)]. The expectation E0

under the true value θ0 is given by U0(·,θ) = [U10(θ),U20(t,θ)], where U10(θ) = E0[U1n(θ)] and

U20(t,θ) = E0[U2n(·,θ)].

By the definition of the MLE, Un(·, θ̂n) = 0. Since U0(·,θ0) = 0, we can show that |
√
n{U0(·, θ̂n)−

Un(·, θ̂n)} −
√
n{Un(·,θ0)−U0(·,θ0)}| = op(1). The estimating equation evaluated at

θ0,
√
nUn(·,θ0) =

√
n{Un(·,θ0)−U0(·,θ0)}, is a sum of iid terms. We can therefore use empirical

process theory to show that
√
nUn(·,θ0) converges weakly to W = (W1,W2), where W1 is a

Gaussian random vector and W2 is a tight Gaussian process. The covariance matrix for W1 is

given by Σ11 = E0{U1n(θ0)⊗2}, and the covariance between W2(s) and W2(t) is given by

Σ22(s, t) = E0{U2n(s,θ0)U2n(t,θ0)′}.

Applying the Z-theorem for the infinite dimensional estimating equations, Theorem 3.3.1 in Van

der Vaart and Wellner (2000), we have that under the regularity conditions in A.1,
√
n(θ̂n − θ0)

converges weakly to a tight mean-zero Gaussian process −U̇−1
θ0

(W).

Here U̇θ0 is the Fréchet derivative of the map U0(·,θ) evaluated at θ0. Using arguments similar to

Appendix A.5 in (Qin et al., 2011), we can show U0(·,θ) is Fréchet differentiable and the Fréchet

derivative, U̇θ0 , is continuously invertible. By definition of the Fréchet derivative, we have that

U̇θ0
{
√
n(θ̂n − θ0)} = −

√
n{Un(·,θ0)−U0(·,θ0)}+ op(1). This completes the proof.
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APPENDIX D

R FUNCTION FOR COX REGRESSION COEFFICIENT ESTIMATOR UNDER DOUBLE

TRUNCATION USING EM ALGORITHM

# user-defined functions that will be called in the algorithm

fun.geq=function(a,b) I(a>=b)*1;

fun.leq=function(a,b) I(a<=b)*1;

fun.eq=function(a,b) I(a==b)*1;

fun.length.which=function(a,b) length(which(a==b));

# function to compute the baseline hazard function

lambda.0=function(beta,y,z,t) return(1/apply(sapply(y,t,FUN="fun.geq")

%*%as.matrix(exp(z%*%beta),nrow=length(y)),1,sum))

# function to compute the weight vector w

fun.W=function(beta,lambda,y.unique,y,z,u,v) {

n=length(y);

temp.1=sapply(y.unique,y,FUN="fun.eq") # n x d matrix I(T_i = t_j)

# computing n x d matrix I(t_j < U_i) + I(t_j > V_i)

temp.2=sapply(y.unique,u,FUN="fun.leq")+sapply(y.unique,v,FUN="fun.geq")

## checked this- it works

temp.3=exp(z%*%beta)%*%t(lambda);

temp.4=exp(-exp(z%*%beta)%*%t(cumsum(lambda)));

## checked this- it works

temp.5=matrix(rep(exp(-exp(z%*%beta)*sapply(y.unique,u,FUN="fun.leq")

%*%lambda),length(y.unique)),nrow=n,ncol=length(y.unique));

temp.6=matrix(rep(exp(-exp(z%*%beta)*sapply(y.unique,v,FUN="fun.leq"

%*%lambda),length(y.unique)),nrow=n,ncol=length(y.unique));

W=temp.1+temp.2*temp.3*temp.4/(temp.5-temp.6)

return(W)}

91



# fun.EM: function to implement the EM algorithm

# formula = same as formula from coxph function in Survival package

# u and v are left and right truncation times, respectively

# Difference between successive estimates of beta.EM must be less than

# prespecified error and before max number of iterations n.iter achieved

fun.EM=function(formula,u,v,error,n.iter) {

# extracting the variable names

mf = model.frame(formula=formula);

z=model.matrix(attr(mf,"terms"),data=mf)[,-1]

y=model.response(mf);

data=data.frame(y,u,v,z); n=dim(data)[1];

newdata=data[order(y),]; # Ordering data set by survival time

y=as.numeric(newdata$y)[1:n]; u=newdata$u; v=newdata$v;

z=as.matrix(newdata[,4:dim(data)[2]]); y.unique=unique(y)

# number of unique observations, and covariates

d=length(y.unique); num.cov=dim(newdata)[2]-3;

# Beginning EM Algorithm

beta.EM=matrix(0,nrow=n.iter,ncol=num.cov)

lambda.EM=matrix(0,nrow=n.iter,ncol=d)

# Step 1 (initial values)

beta.EM[1,]=coxph(formula)$coefficients

lambda.EM[1,]=lambda.0(beta.EM[1,],y,z,y.unique)

# Creating weights

W=fun.W(beta.EM[1,],lambda.EM[1,],y.unique,y,z,u,v);
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w=as.vector(t(W));

w.plus.j=apply(W,2,"sum")

w.i.plus=apply(W,1,"sum")

# Creating new data to apply coxph function with weight vector of length n*d

y.new=rep(y.unique,length(y))

status.obs.new=rep(1,length(y.new))

z.temp=matrix(0,nrow=n*d,ncol=num.cov)

for(i in 1:num.cov) z.temp[,i]=rep(z[,i],each=d)

znam <- paste0("z.new", 1:num.cov)

colnames(z.temp)=znam;

new.data=data.frame(y.new,status.obs.new,z.temp)

new.formula=as.formula(paste("Surv(y.new,status.obs.new) ~ ",

paste(znam, collapse= "+")))

# Step 2 (Maximizing expected complete data likelihood)

beta.EM[2,]=coxph(new.formula,data=new.data,weights=w,

subset=which(w>0))$coefficients

temp=t(W)%*%exp(z%*%beta.EM[2,]) # column j of W times exp(z*beta)

lambda.EM[2,]=sapply(1:d, function(j) w.plus.j[j]/sum(temp[j:d]))

# Step k (Iterating through step 2 until convergence)

k=2;

while(max(abs(beta.EM[k,]-beta.EM[k-1,]))>error)

{

if(k>=n.iter) break;

k=k+1;

W=fun.W(beta.EM[k-1,],lambda.EM[k-1,],y.unique,y,z,u,v)

w=as.vector(t(W));
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w.plus.j=apply(W,2,"sum")

w.i.plus=apply(W,1,"sum")

beta.EM[k,]=coxph(new.formula,data=new.data,weights=w,

subset=which(w>0))$coefficients

temp=t(W)%*%exp(z%*%beta.EM[k,]) # column j of W times exp(z*beta)

lambda.EM[k,]=sapply(1:d, function(j) w.plus.j[j]/sum(temp[j:d]))

if(k>n.iter) break;

#print(k)

}

beta.hat.EM=beta.EM[k,]

lambda.hat.EM=lambda.EM[k,]

# Indicator of whether the maximum number of iterations was reached

max.iter_reached=0; if(k>=n.iter) max.iter_reached=1;

if(k<n.iter) return(list(beta.hat=beta.hat.EM,lambda.hat=lambda.hat.EM,

n.iterations=k,max.iter_reached=max.iter_reached))

if(k>=n.iter) return(list(max.iter_reached=max.iter_reached))

}
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APPENDIX E

R FUNCTION FOR NONPARAMETRIC WEIGHTED COX REGRESSION COEFFICIENT

ESTIMATOR UNDER DOUBLE TRUNCATION

coxDT = function(formula,L,R,data=list(),subset,time.var=FALSE,subject=NULL,

B.SE.np=200,CI.boot=FALSE,B.CI.boot=2000,pvalue.boot=FALSE,

B.pvalue.boot=200,print.weights=FALSE,error=10^-6,n.iter=10000)

{

set.seed(1312018)

data=data[subset,]

# extracting outcomes and covariates

mf = model.frame(formula=formula,data=data)

X=model.matrix(attr(mf,"terms"),data=mf)[,-1]

p=1; n=length(X);

# number of predictors and observations

if(length(dim(X))>0) {p=dim(X)[2]; n=dim(X)[1]}

Y=as.numeric(model.response(mf))[1:n];

# extracting truncation times

L=deparse(substitute(L)); R=deparse(substitute(R));

formula.temp=paste(L,R,sep="~")

mf.temp=model.frame(formula=formula.temp,data=data)

obs.data=sapply(rownames(mf),rownames(mf.temp),FUN=function(x,y) which(x==y))

L=mf.temp[obs.data,1]; R=mf.temp[obs.data,2];

# estimating individual nonparametric probabilities of being observed

P.obs.y.np=cdfDT(Y,L,R,error,n.iter,display=FALSE)$P.K

# weights
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weights.np=1/P.obs.y.np

# estimating nonparametric probability of observing random subject

P.obs.NP=n*(sum(1/P.obs.y.np))^(-1)

# creating new data set which incorporate weights

data.new=data.frame(data,weights.np)

# computing estimates of nonparametric weighted regression coefficient estimator

beta.np=coxph(formula,data=data.new,weights=weights.np)$coefficients

# computing bootstrapped standard errors

# first, we import the vector of subject id’s

# for bootstrapping data with time-varying coefficients

if(time.var==TRUE)

{

subject=deparse(substitute(subject))

formula.temp2=paste(subject,subject,sep="~");

subjects=model.response(model.frame(formula.temp2,data=data));

n.subject=length(unique(subjects));

}

B=B.SE.np

if(CI.boot==TRUE) B=max(B.SE.np,B.CI.boot)

beta.boot.np=matrix(0,nrow=B,ncol=p)

for(b in 1:B) {

repeat{ # creating repeat loop in case Shen algorithm fails

if(time.var==FALSE) {temp.sample=sort(sample(n,replace=TRUE))};

if(time.var==TRUE) {

temp.obs=sort(sample(n.subject,replace=TRUE))

temp.sample=unlist(sapply(temp.obs,subjects,FUN=function(x,y) which(x==y)))

}
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Y.temp=Y[temp.sample]; L.temp=L[temp.sample]; R.temp=R[temp.sample];

if(p==1) X.temp=X[temp.sample];

if(p>=2) X.temp=X[temp.sample,];

P.obs.NP.temp=cdfDT(Y.temp,L.temp,R.temp,error,n.iter,display=FALSE)$P.K

if(length(which(P.obs.NP.temp<.01))==0) {break}

} # ending repeat loop

# non-parametric weights (Shen) for cox regression

weights.np.temp=1/P.obs.NP.temp

# updating data set to include bootstrapped observations

data.temp=data.frame(data[temp.sample,],weights.np.temp)

# computing estimates of nonparametric weighted estimator

beta.boot.np[b,]=coxph(formula,data=data.temp,

weights=weights.np.temp)$coefficients

}

# standard error

se.beta.np=apply(beta.boot.np,2,sd);

# If bootstrap not requested, return normal confidence intervals

if(CI.boot==FALSE) {

CI.lower=beta.np-1.96*se.beta.np; CI.upper=beta.np+1.96*se.beta.np;

CI.beta.np=round(cbind(CI.lower,CI.upper),3)

}

# If bootstrap not requested, return p-values based on normality assumption

if(pvalue.boot==FALSE) {

Test.statistic=(beta.np/se.beta.np)^2;

p.value=round(2*(1-pnorm(abs(beta.np/se.beta.np))),4)
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}

# computing 95% confidence intervals

if(CI.boot==TRUE)

{

CI.beta.np=matrix(0,nrow=p,ncol=2)

for(k in 1:p) CI.beta.np[k,]=round(c(quantile(beta.boot.np[,k],seq(0,1,0.025))[2],

quantile(beta.boot.np[,k],seq(0,1,0.025))[40]),3)

}

if(pvalue.boot==TRUE)

{

B1=B2=B.pvalue.boot

beta.boot.np1=matrix(0,nrow=B1,ncol=p); beta.boot.np2=matrix(0,nrow=B2,ncol=p);

beta.boot.np.sd1=matrix(0,nrow=B1,ncol=p)

for(b1 in 1:B1) {

repeat{ # creating repeat loop in case Shen algorithm fails

if(time.var==FALSE) {temp.sample1=sort(sample(n,replace=TRUE))};

if(time.var==TRUE) {

temp.obs1=sort(sample(n.subject,replace=TRUE))

temp.sample1=unlist(sapply(temp.obs1,subjects,FUN=function(x,y) which(x==y)))

}

Y.temp1=Y[temp.sample1]; L.temp1=L[temp.sample1]; R.temp1=R[temp.sample1];

if(p==1) X.temp1=X[temp.sample1,];

if(p>=2) X.temp1=X[temp.sample1,];

P.obs.NP.temp1=cdfDT(Y.temp1,L.temp1,R.temp1,error,n.iter,display=FALSE)$P.K

if(length(which(P.obs.NP.temp1<.01))==0) {break}
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} # ending repeat loop

weights.np.temp1=1/P.obs.NP.temp1

# updating data set to include bootstrapped observations

data.temp1=data.frame(data[temp.sample1,],weights.np.temp1)

# computing estimates of nonparametric weighted estimator

beta.boot.np1[b1,]=coxph(formula,data=data.temp1,

weights=weights.np.temp1)$coefficients

# The loop below is to compute the standard error of each bootstrap estimate

for(b2 in 1:B2) {

repeat{ # creating repeat loop in case Shen algorithm fails

if(time.var==FALSE) {temp.sample2=sort(sample(temp.sample1,replace=TRUE))};

if(time.var==TRUE) {

temp.obs2=sort(sample(temp.obs1,replace=TRUE))

temp.sample2=unlist(sapply(temp.obs2,subjects,FUN=function(x,y) which(x==y)))

}

Y.temp2=Y[temp.sample2]; L.temp2=L[temp.sample2]; R.temp2=R[temp.sample2];

if(p==1) X.temp2=X[temp.sample2,];

if(p>=2) X.temp2=X[temp.sample2,];

P.obs.NP.temp2=cdfDT(Y.temp2,L.temp2,R.temp2,error,n.iter,display=FALSE)$P.K

if(length(which(P.obs.NP.temp2<.01))==0) {break}

} # ending repeat loop

# non-parametric weights (Shen) for cox regression

weights.np.temp2=1/P.obs.NP.temp2
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# updating data set to include bootstrapped observations

data.temp2=data.frame(data[temp.sample2,],weights.np.temp2)

# computing estimates of nonparametric weighted estimator

beta.boot.np2[b2,]=coxph(formula,data=data.temp2,

weights=weights.np.temp2)$coefficients

}

beta.boot.np.sd1[b1,]=apply(beta.boot.np2,2,"sd")

}

# computing test statistics, bootstrapped test statistics, and p-values

test_statistic.beta.np=numeric(p)

test_statistic.beta.np.boot=matrix(0,nrow=B1,ncol=p)

p.value=numeric(p)

for(k in 1:p) {

test_statistic.beta.np[k]=(beta.np[k]/se.beta.np[k])^2

test_statistic.beta.np.boot[,k]=

((beta.boot.np1[,k]-beta.np[k])/beta.boot.np.sd1[,k])^2

p.value[k]=round(length(which(test_statistic.beta.np.boot[,k]>

test_statistic.beta.np[k]))/B1,4)

}

Test.statistic=test_statistic.beta.np

}

beta.np=round(beta.np,4);

se.beta.np=round(se.beta.np,4);

Test.statistic=round(Test.statistic,2)

results.beta=cbind(beta.np,se.beta.np,CI.beta.np,Test.statistic,p.value)

rownames(results.beta)=colnames(X); colnames(results.beta)=

c("Estimate","SE","CI.lower","CI.upper","Wald statistic","p-value")
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weights="print option not requested";

if(print.weights==TRUE) weights=weights.np;

if((CI.boot==TRUE)&(pvalue.boot==FALSE)) return(list(results.beta=results.beta,

CI="Bootstrap",p.value="Normal approximation",weights=weights));

if((CI.boot==FALSE)&(pvalue.boot==TRUE)) return(list(results.beta=results.beta,

CI="Normal approximation",p.value="Bootstrap",weights=weights));

if((CI.boot==TRUE)&(pvalue.boot==TRUE)) return(list(results.beta=results.beta,

CI="Bootstrap",p.value="Bootstrap",weights=weights));

if((CI.boot==FALSE)&(pvalue.boot==FALSE)) return(list(results.beta=results.beta,

CI="Normal approximation",p.value="Normal approximation",weights=weights));

}
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APPENDIX F

R FUNCTION FOR NONPARAMETRIC ESTIMATION OF SURVIVAL DISTRIBUTION

FUNCTION AND SELECTION PROBABILITIES UNDER DOUBLE TRUNCATION

cdfDT=function(y,l,r,error=1e-6,n.iter=10000,boot=FALSE,B.boot=200,joint=FALSE,

plot.cdf=FALSE,plot.joint=FALSE,display=TRUE)

{

if(joint==FALSE) plot.joint=FALSE;

# removing rows from data frame with missing data

temp.data=data.frame(y,l,r);

missing.data=unique(which((is.na(temp.data[,1])==TRUE)|

(is.na(temp.data[,2])==TRUE)|(is.na(temp.data[,3])==TRUE)))

if(length(missing.data)==0) {

y=temp.data[,1]; u=temp.data[,2]; v=temp.data[,3]};

if(length(missing.data)>=1) {temp.data2=temp.data[-missing.data,];

y=temp.data2[,1]; u=temp.data2[,2]; v=temp.data2[,3];}

n=length(y);

fun.U=function(y,u) I(y>=u)*1;

fun.V=function(y,v) I(y<=v)*1;

fun.DT=function(y,u,v)

{

n=length(y);

temp.U=sapply(y,u,FUN="fun.U")

temp.V=sapply(y,v,FUN="fun.V")

J=temp.U*temp.V
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K=matrix(0,nrow=n.iter+1,ncol=n); F=matrix(0,nrow=n.iter+1,ncol=n);

f=matrix(0,nrow=n.iter+1,ncol=n); k=matrix(0,nrow=n.iter+1,ncol=n);

# Step 0

F.0=apply(J,2,"sum")/n

# Step 1

k[1,]=(sum(1/F.0)^-1)/F.0

K[1,]=apply(k[1,]*J,2,"sum")

f[1,]=(sum(1/K[1,])^-1)/K[1,]

F[1,]=apply(f[1,]*t(J),2,"sum")

# Step 2

k[2,]=(sum(1/F[1,])^-1)/F[1,]

K[2,]=apply(k[2,]*J,2,"sum")

f[2,]=(sum(1/K[2,])^-1)/K[2,]

F[2,]=apply(f[2,]*t(J),2,"sum")

# Step s - iterating through step 2

s=2;

while(sum(abs(f[s,]-f[s-1,]))>error)

{

s=s+1;

# Step s.1

k[s,]=(sum(1/F[s-1,])^-1)/F[s-1,]

K[s,]=apply(k[s,]*J,2,"sum")

# Step s.2

f[s,]=(sum(1/K[s,])^-1)/K[s,]

F[s,]=apply(f[s,]*t(J),2,"sum")
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if(s>n.iter) break;

}

# P.K = P(L<T_i<R); P.F = P(L_i<T<R_i)

P.K=K[s,]; P.F=F[s,]

n.unique.y=length(unique(y))

distF=numeric(n.unique.y)

# computing CDF estimate at unique (ordered) survival times

for(i in 1:n.unique.y) {

distF[i]=round(sum(1/P.K)^-1*sum(I(y<=sort(unique(y))[i])/P.K),4)}

# f = density of observed survival times

# k = joint density of observed truncation times

f=round(f[s,],4); k=round(k[s,],4);

max.iter_reached=0; if(s>=n.iter) max.iter_reached=1;

return(list(f=f,k=k,P.K=P.K,P.F=P.F,distF=distF,n.iterations=s,

max.iter_reached=max.iter_reached))

}

out=fun.DT(y,u,v);

P.K=out$P.K; P.F=out$P.F; distF=out$distF; f=out$f;

k=out$k; n.iterations=out$n.iterations;

max.iter_reached=out$max.iter_reached;

###################################################################

# NPMLE of truncation distribution

if(joint==TRUE)

{

# NPMLE of joint truncation distribution
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unique.u=sort(unique(u)); unique.v=sort(unique(v));

Joint.UV=matrix(0,nrow=length(unique.u),ncol=length(unique.v));

for(a in 1:length(unique.u)) {

for(b in 1:length(unique.v)) {

Joint.UV[a,b]=(sum(1/(P.F)))^-1*

sum(I(u<=unique.u[a])*I(v<=unique.v[b])/(P.F))

}

}

# NPMLE of marginal truncation distributions

Q.U=Joint.UV[,length(unique.v)]; R.V=Joint.UV[length(unique.u),]

for(a in 1:length(unique.u)) {

for(b in 1:length(unique.v)) {

Joint.UV[a,b]=(sum(1/P.F))^-1*

sum(I(u<=unique.u[a])*I(v<=unique.v[b])/P.F)

}

}

Q.U=round(Joint.UV[,length(unique.v)],4);

R.V=round(Joint.UV[length(unique.u),],4)

Joint.UV=round(Joint.UV,4)

}

#####################################################################

# computing standard errors and confidence interavls for survival CDF

if(boot==TRUE)

{

temp.data=data.frame(y,u,v);

temp.data=temp.data[order(temp.data$y),]

y.sort=temp.data$y; u.sort=temp.data$u; v.sort=temp.data$v;
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y.unique=sort(unique(y));

n.unique.y=length(unique(y));

F.boot=matrix(-1,nrow=B.boot,ncol=n.unique.y)

for(b in 1:B.boot) {

repeat{ # creating repeat loop in case program does not converge

temp.sample=sort(sample(n,replace=TRUE))

# Creating new data set based off of bootstrapped samples

y.boot=y.sort[temp.sample]; u.boot=u.sort[temp.sample];

v.boot=v.sort[temp.sample];

y.boot.unique=(unique(y.boot))

#####################################################################

#####################################################################

# Survival distribution is at observed survival times, need to

# impute survival function for survival times not selected

# by the bootstrap procedure

x1=which(is.element(y.unique,y.boot.unique)==FALSE);

x2=which(is.element(y.unique,y.boot.unique)==TRUE);

x3=x1[which((x1>min(x2))&(x1<max(x2)))];

x3min=x1[which(x1<min(x2))]; x3max=x1[which(x1>max(x2))];

out.boot=fun.DT(y.boot,u.boot,v.boot)

if(out.boot$max.iter_reached==0) {break}

} # ending repeat loop

F.boot[b,x2]=out.boot$distF

if(length(x1)>0)

{
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if(length(x3min)>0) F.boot[b,x3min]=0;

if(length(x3max)>0) F.boot[b,x3max]=1;

if(length(x3)>0)

{

while(min(F.boot[b,x3])<0)

{

F.boot[b,x3]=F.boot[b,x3-1]

}

}

}

#####################################################################

#####################################################################

}

# computing standard error of bootstrapped samples

sigma=apply(F.boot,2,"sd")

# computing confidence intervals based on normality assumption

CI.lower.F=distF-1.96*sigma; CI.upper.F=distF+1.96*sigma;

}

# getting density at unique survival times

f=f[which(duplicated(y)==FALSE)];

f=f[order(unique(y))];

# printing plots

if(display==TRUE)

{

if(max.iter_reached==0)

{

cat("number of iterations", n.iterations, "\n")

summary <- cbind(event.time = sort(unique(y)), n.event = table(sort(y)),
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F = distF, Survival = 1-distF)

colnames(summary) <- c("time", "n.event", "cumulative.df", "survival")

rownames(summary) <- rep("", times = length(unique(y)))

print(summary, digits = 4, justify = "left")

cat("number of observations", n, "\n")

}

if(max.iter_reached==1) print("Maximum number of iterations reached.

Program did not converge")

}

if(plot.cdf==TRUE)

{

dev.new()

par(mfrow=c(1,2))

plot(distF~sort(unique(y)),ylim=c(0,1),xlab="event time",ylab="",

main="Cumulative distribution function")

lines(distF~sort(unique(y)))

if(boot==TRUE)

{

lines(CI.lower.F~sort(unique(y)),lty=2)

lines(CI.upper.F~sort(unique(y)),lty=2)

}

plot((1-distF)~sort(unique(y)),ylim=c(0,1),xlab="event time",ylab="",

main="Survival function")

lines((1-distF)~sort(unique(y)))

if(boot==TRUE)

{

lines((1-CI.lower.F)~sort(unique(y)),lty=2)

lines((1-CI.upper.F)~sort(unique(y)),lty=2)

}

}
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if(plot.joint==TRUE)

{

dev.new()

par(mfrow=c(1,2))

plot(Q.U~sort(unique(u)),ylim=c(0,1),xlab="left truncation time",ylab="",

main="Marginal cdf (left)")

lines(Q.U~sort(unique(u)))

plot(R.V~sort(unique(v)),ylim=c(0,1),xlab="right truncation time",ylab="",

main="Marginal cdf (right)")

lines(R.V~sort(unique(v)))

dev.new()

persp(sort(unique(u)),sort(unique(v)),Joint.UV,

theta=30,expand=0.75,col="lightblue",

main="Joint truncation distribution",

xlab="left truncation time",ylab="right truncation time",zlab="")

}

if(boot==TRUE)

{

if(joint==TRUE) return(invisible(list(time=round(sort(unique(y)),4),

n.event = table(sort(y)), F = distF, Survival = 1-distF,sigma.F=sigma,

CI.lower.F=CI.lower.F,CI.upper.F=CI.upper.F,P.K=P.K,

Joint.LR=Joint.UV,Marginal.L=Q.U,Marginal.R=R.V,n.iterations

=n.iterations,max.iter_reached=max.iter_reached)));

if(joint==FALSE) return(invisible(list(time=round(sort(unique(y)),4),

n.event = table(sort(y)), F = distF, Survival = 1-distF, F=distF,

sigma.F=sigma,CI.lower.F=CI.lower.F,CI.upper.F=CI.upper.F,P.K=P.K,

n.iterations=n.iterations,max.iter_reached=max.iter_reached)));
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}

if(boot==FALSE)

{

if(joint==TRUE) return(invisible(list(time=round(sort(unique(y)),4),

n.event = table(sort(y)), F = distF, Survival =1-distF,P.K=P.K,

Joint.LR=Joint.UV,Marginal.L=Q.U,Marginal.R=R.V,

n.iterations=n.iterations,max.iter_reached=max.iter_reached)));

if(joint==FALSE) return(invisible(list(time=round(sort(unique(y)),4),

n.event = table(sort(y)), F = distF, Survival = 1-distF,P.K=P.K,

n.iterations=n.iterations,max.iter_reached=max.iter_reached)));

}

}
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