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Flexible, Photopatterned, Colloidal Cdse Semiconductor Nanocrystal
Integrated Circuits

Abstract
As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create
transistors which are not nearly as small. These transistors are not intended to match the performance of
traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured
using methods that can make them physically flexible for applications where form is more important than
speed. One of the developing technologies for this application is semiconductor nanocrystals.

We first explore methods to develop CdSe nanocrystal semiconducting “inks” into large-scale, high-speed
integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton
substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device
integrated circuits including inverting amplifiers with ~7 kHz bandwidths, ring oscillators with <10 >µs stage
delays, and NAND and NOR logic gates.

In order to produce higher performance and more consistent transistors, we develop a new hybrid procedure
for processing the CdSe nanocrystals. This procedure produces transistors with repeatable performance
exceeding 40 cm2/Vs when fabricated on silicon wafers and 16 cm2/vs when fabricated as part of
photopatterned integrated circuits on Kapton substrates.

In order to demonstrate the full potential of these transistors, methods to create high-frequency oscillators
were developed. These methods allow for transistors to operate at higher voltages as well as provide a means
for wirebonding to the Kapton substrate, both of which are required for operating and probing high-frequency
oscillators. Simulations of this system show the potential for operation at MHz frequencies. Demonstration of
these transistors in this frequency range would open the door for development of CdSe integrated circuits for
high-performance sensor, display, and audio applications.

To develop further applications of electronics on flexible substrates, procedures are developed for the
integration of polychromatic displays on polyethylene terephthalate (PET) substrates and a commercial near
field communication (NFC) link. The device draws its power from the NFC transmitter common on
smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible,
interactive displays on product packaging.
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ABSTRACT 

FLEXIBLE, PHOTOPATTERNED, COLLOIDAL CdSe  

SEMICONDUCTOR NANOCRYSTAL INTEGRATED CIRCUITS  

F. Scott Stinner 

Cherie Kagan 

 

 As semiconductor manufacturing pushes towards smaller and faster transistors, a 

parallel goal exists to create transistors which are not nearly as small. These transistors 

are not intended to match the performance of traditional crystalline semiconductors; they 

are designed to be significantly lower in cost and manufactured using methods that can 

make them physically flexible for applications where form is more important than speed. 

One of the developing technologies for this application is semiconductor nanocrystals.  

 We first explore methods to develop CdSe nanocrystal semiconducting “inks” 

into large-scale, high-speed integrated circuits. We demonstrate photopatterned 

transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods 

for vertical interconnect access holes to demonstrate multi-device integrated circuits 

including inverting amplifiers with ~7 kHz bandwidths, ring oscillators with <10 µs stage 

delays, and NAND and NOR logic gates. 

 In order to produce higher performance and more consistent transistors, we 

develop a new hybrid procedure for processing the CdSe nanocrystals. This procedure 

produces transistors with repeatable performance exceeding 40 cm2/Vs when fabricated 
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on silicon wafers and 16 cm2/vs when fabricated as part of photopatterned integrated 

circuits on Kapton substrates.  

 In order to demonstrate the full potential of these transistors, methods to create 

high-frequency oscillators were developed. These methods allow for transistors to 

operate at higher voltages as well as provide a means for wirebonding to the Kapton 

substrate, both of which are required for operating and probing high-frequency 

oscillators. Simulations of this system show the potential for operation at MHz 

frequencies. Demonstration of these transistors in this frequency range would open the 

door for development of CdSe integrated circuits for high-performance sensor, display, 

and audio applications.  

 To develop further applications of electronics on flexible substrates, procedures 

are developed for the integration of polychromatic displays on polyethylene terephthalate 

(PET) substrates and a commercial near field communication (NFC) link. The device 

draws its power from the NFC transmitter common on smartphones and eliminates the 

need for a fixed battery.  This allows for the mass deployment of flexible, interactive 

displays on product packaging.  
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Chapter 1 : Background  

1-1 : Colloidal Semiconductor Nanocrystals 

 Nanocrystals are being broadly developed for a variety of applications, including 

sensors,1 displays,2 thermoelectric cells,3 integrated circuits (IC)4,5, and solar cells6,7. 

Their solution processability and low cost make them a desirable material for emerging 

technologies looking to exploit novel deposition techniques for unconventional 

applications, such as flexible electronics. Their tunable optical properties make them 

desirable for making photodetectors with a broad range of parameters as well as solar 

cells competitive with cells made from more expensive fabrication methods.  

 A wide variety of nanocrystals can be made in large quantities with monodisperse 

properties using chemical synthesis techniques. Changing parameters and materials in 

these syntheses can adjust properties of the product including size, shape, chemical 

composition, and surface chemistry.8–10 These parameters allow the particles to be 

synthesized with properties matching their desired usage. Further processing after 

synthesis allows these properties to be changed as well as for the introduction of surface 

chemistries not compatible with the synthesis process.11–13  

 This work focuses on the use of cadmium selenide (CdSe) nanocrystals (NCs). 

They are formed using a hot injection synthesis process, as described in literature.14 The 

size and surface chemistry of these particles can be tuned to fit their application. For the 

work described in this dissertation, we use NCs that are approximately 4 nm in diameter 

and are stabilized in solution using trioctylphosphine oxide (TOPO) ligands on their 
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surface. Following synthesis, the TOPO ligands are replaced in a chemical exchange 

process by thiocyanate (SCN). As SCN is a much shorter molecule than TOPO, this 

allows increased interparticle coupling and greater transport of electronic carriers through 

films formed from this material.  

1-2 : Nanocrystal TFTs 

 In order to create a direct application of these materials, thin-film transistors 

(TFTs) can be formed using CdSe NC films with SCN ligands as the semiconducting 

layer. The simplest form of these TFTs uses a heavily doped silicon wafer coated with 

thermal oxide as the gate and oxide of the transistor. The semiconducting material is then 

deposited on this substrate and patterned metal contacts are added to create the source 

and drain. These types of TFTs have been demonstrated with multiple exchange 

procedures15,16 with varying results.  

 These TFTs can also be doped using a variety of different techniques including 

chemical treatments17–19 as well as the direct deposition of metals.15,20–22,11 For this work, 

indium is used as a dopant as it can be easily deposited by thermal evaporation. It then 

diffuses into the NC film by annealing as it has very low melting point.15  

 Using these techniques, high performance TFTs have been demonstrated with 

mobilities exceeding 30 cm2/Vs.15 This performance, while not competitive with 

crystalline semiconductors, is competitive with other low-cost, solution processable 

semiconductors including MoSe2 (50 cm2/Vs23), carbon nanotube arrays (35 cm2/Vs24), 
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sol-gel metal oxides (14 cm2/Vs25) and sol-gel IZO and IGZO (30 and 20 cm2/Vs, 

respectively26) This performance is adequate for many low-speed applications including 

sensors and displays.  

1- 3 : Low-Speed Flexible Nanocrystal Integrated Circuits 

 Single TFT devices, while interesting, have very few direct applications. In order 

to transition CdSe NC-TFTs from concept to applicable technology, multi-TFT integrated 

circuits (ICs) have to be demonstrated. Thus, our group previously developed multi-TFT 

ICs which utilize shadow mask patterning allowing simple fabrication.4 This technique 

avoids air and chemical exposure of the NC films, both of which can cause significant 

damage. This allows simple demonstrations to be developed using procedures not 

drastically different than those used for the original single-TFT demonstrations.    
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When creating ICs, the most important structure is called the vertical interconnect 

access or VIA. This structure creates a vertical connection between different layers of 

metal in a circuit, such as between a layer used for gating and a layer used for contact to 

the source and drain of the TFTs, as was needed for CdSe NC-ICs. For these simple 

TFTs, a method was developed to exploit the chemical instability of oxides on gold. 

  

Figure 1-1 (A) Schematic of shadow mask patterned CdSe NC FET on Kapton substrate. 
(B) Photograph of shadow mask patterned CdSe TFTs. (Reproduced from Kim, D. et al, 
2012) 

 

The bottom layer of the transistor structure is the gating layer, shown 

schematically in Figure 1-1A. Aluminum is used due to its similar work function to that 

of doped CdSe NCs as well as its chemical compatibility with the high-k dielectric 

constant material alumina, which is used as the gate dielectric layer in these TFTs.  A 

patterned gold layer can be deposited on top of this aluminum layer, creating a vertical 

pillar of gold used as the VIA. Following this gold deposition, a layer of alumina is 

deposited by atomic layer deposition (ALD) which is a chemical vapor deposition 

process. For thin layers of alumina, this process creates an unstable oxide top of the gold. 
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This unstable layer of oxide is believed to be removed during subsequent processing 

steps leaving an oxide on top of the aluminum gate sections and a bare gold surface 

where the VIAs are deposited creating a conductive vertical pathway. 

This work also utilized a flexible substrate for fabricating these TFTs. The 

substrate used is polyimide film, which is purchased commercially and is commonly 

known under the DuPont trade name Kapton, shown in Figure 1-1B. This film has a high 

tensile strength, chemical resistance, and melting point allowing it to be easily 

incorporated into procedures common to semiconductor manufacturing.  

The largest drawbacks to this material during fabrication are its inherent 

flexibility and high coefficient of thermal expansion. To remedy this issue, a thin layer of 

alumina is deposited on the Kapton film prior to the deposition of any other layers. This 

layer is thin enough to maintain the flexibility of the substrate but strong enough to 

prevent the Kapton film from significantly deforming in subsequent thermal processing 

steps. The flexibility of the substrate is managed during processing using a carrier wafer 

when a stable base capable of holding the Kapton flat is not provided by the tool. This 

method utilizes a soft polydimethylsiloxane (PDMS) adhesive film, purchased 

commercially under the trade name GelPak, mounted on a silicon wafer as a temporary 

carrier.  

The TFTs produced from this worked showed modest performance. Single 

transistors were demonstrated with mobilities around 20 cm2/Vs. While this does not 
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match the performance of single TFTs previously demonstrated this degradation was not 

unexpected. As the NC films are very chemically and situationally sensitive, some 

depletion in performance can be expected as the structure they are being incorporated 

within increases in complexity.  

This work also demonstrated simple ICs based on the inverter structure including 

digital inverters, analog inverting amplifiers, and ring oscillators. As the CdSe NC 

transistors fabricated are solely n-type, these TFTs utilize a unipolar, saturated load 

design. Due to the limitations of shadow mask patterning, these TFTs were unfortunately 

very large. For two TFTs, as needed to demonstrate the inverter, the total pattering area 

was around 1 cm2 (Figure 1-2A). This greatly limited their performance in the frequency 

domain due to large intrinsic capacitances and also makes them impractical for 

applications. These constraints limited the TFTs to a measured 3dB bandwidth of only 

900 Hz (Figure 1-2C).  

 

Figure 1-2 (A) Photograph of shadow mask patterned CdSe NC TFT inverter. (B) Circuit 
schematic of CdSe NC inverter. (C) Bode Plot of the output of a shadow mask patterned 
CdSe NC TFT inverting amplifier. (Reproduced from Kim, D. et al, 2012) 
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Extending the development of the inverter, 5 stage ring oscillators were also 

fabricated. These TFTs were again limited by their large sizes. The measured results 

showed ring oscillators with 150 Hz oscillation frequencies. While the speed of these 

devices is limited, this work marked the first demonstrations of CdSe NC-ICs and 

provides much of the basic methods needed to further develop CdSe NC TFTs into faster 

and more complex ICs.  

1-4: Air Stable CdSe NC TFTs 

 In order to scale down the device dimensions, a procedure must be developed 

which allows sub-10 µm patterning and alignment of metal electrodes. One route to 

fabricate TFTs on these length scales is the development of photolithographic processes. 

However, these processes will expose the TFTs to air and solvents not present when 

patterning with shadow masks. Like many solution processable semiconductors, CdSe 

NCs must be handled inside of a nitrogen glovebox to avoid exposure to oxygen and 

water which can greatly degrade their performance. This air sensitivity significantly 

limits their potential applications as their performance is diminished in atmosphere. The 

desire to mitigate these limitations led to the development of methods to make CdSe NC 

TFTs recoverable after exposure to air and solvents as well as being stable long-term 

outside of an inert atmosphere.20  
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Figure 1-3 (A) Schematic representation of indium-driven CdSe recovery. (B) Plot of 
maximum drain current after exposure to atmosphere (red) and subsequent recovery 
annealing (blue). (Reproduced from Choi, J. et al, 2013) 

 

 The use of indium as a dopant for CdSe is widely accepted in both polycrystalline 

and NC TFT applications.15,20–22,11 Given its low meting point, indium can be easily 

deposited by thermal evaporation and subsequently melted by annealing to drive 

diffusion of the material into the semiconducting film, acting an n-type dopant. As it 

would turn out, the annealing process also causes the desorption of oxygen from CdSe 

NC films (Figure 1-3A). Oxidation is the biggest cause of degradation in performance of 

CdSe NC films following exposure to atmosphere. Oxygen adsorbed into a CdSe NC film 

acts as a carrier trap, greatly reducing the number of available carriers and the 

conductivity of the film.27 This causes a drastic reduction in current. Annealing the CdSe 
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NC films in the presence of indium causes this oxygen to be desorbed and/or gettered and 

provides additional indium dopant to the NC surface (Figure 1-3B).20  

 

Figure 1-4 (A) Plot of percentage maximum drain current (IDS) loss following exposure 
to different solvents for CdSe NC TFTs (bar graph) on SiO2 (black) and Al2O3 (blue) 
substrates as well as a plot of the percentage recovery after annealing (dots at top). (B) 
Plot of mobility (black) and threshold voltage (blue) vs. time of NC TFTs stored and 
measured in atmosphere. (Reproduced from Choi, J. et al, 2013) 

 

 This concept allows recovery of the TFTs from exposure to atmosphere as well as 

a wide variety of solvents, as shown in Figure 1-4A. This also allowed for the creation of 

a procedure for encapsulation the TFTs. Conformal metals and oxides are completely 

impermeable to gasses. As metals are conductive, this is not an option for creating the 

needed impermeable barrier. Therefore, an oxide was required. Using atomic layer 

deposition, a thin, impermeable, conformal layer of aluminum oxide can be deposited 

onto the CdSe NC TFTs. As it would turn out, this layer acted not only as a barrier to 

exposure, but also reduced the observed hysteresis of the TFTs, making them more stable 

for IC applications.20 
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 This development opens the door for developing these materials into large-area, 

photolithographically patterned ICs. By being able to recover the material from chemical 

and atmospheric exposure, we can reverse the effects of photolithographic processing 

techniques, almost all of which are performed in atmosphere and utilize harsh chemicals. 

1-5 : Flexible, Photopatterned CdSe Nanocrystal Integrated Circuits 

 In this thesis, we demonstrate photopatterned CdSe-TFT ICs. This includes the 

demonstration of procedures to produce low-voltage, photopatterned ICs on Kapton 

substrates. It is extended by the demonstration of chemical processing procedures which 

improve the performance of CdSe NC-TFTs. We further the evolution of CdSe NC-ICs 

with the development of procedures which allow for the demonstration of high-frequency 

NC-TFT oscillators on Kapton substrates. We extend the development of low-power, 

flexible substrate electronics with the demonstration of flexible electrochromic displays 

which can be powered with a near field communication (NFC) receiver.  

The work in Chapter 2 develops and demonstrates the procedures used for 

fabricating photolithographically patterned CdSe-TFT ICs on Kapton substrates. These 

ICs include the demonstration of TFTs with motilities of 10 cm2/Vs , high-speed 

inverting amplifiers with 6.7 kHz bandwidths, 5-stage ring oscillators with 65 kHz 

oscillating frequencies, as well as multi input logic including NAND and NOR gates. 

This shows the viability of fabricating CdSe NC-TFT ICs with photolithographic 

techniques.   
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Chapter 3 introduces a hybrid procedure for exchange, incorporating both a 

solution as well as a solid state thiocyanate ligand exchange process. This process 

demonstrates CdSe NC- TFTs with mobilities up to 40 cm2/Vs on silicon with shadow 

mask patterns and 17 cm2/Vs with photolithographic IC patterns on Kapton, besting the 

values previously reported for thiocyanate capped CdSe.  

 Chapter 4 develops methods by which CdSe NC-TFTs fabricated on Kapton 

substrates can be formed into simple cross-coupled oscillators and wirebonded directly 

on to a printed circuit board. These methods show the potential for CdSe-TFTs to be 

demonstrated and probed at MHz frequencies. This will not only demonstrate the full 

potential of CdSe-NC TFTs without being limited by transistor sizing, but may also 

provide insight into the movement of carriers in the NC film.  

 Chapter 5 furthers the development of low-power electronics on flexible 

electronics with a demonstration of flexible electrochromic displays which can be 

powered using an NFC link. These displays are demonstrated with large-area patterns 

activated and powered by a wireless NFC link available in most smartphones. This shows 

the potential for deploying small, low-power displays without the need for a battery.  
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Chapter 2 : Flexible, High-Speed CdSe Nanocrystal Integrated Circuits 

2-1 : Introduction 

 Solution and low-temperature processable semiconductors are being explored to 

realize low-cost, large-area, flexible electronics and to enable emerging mobile, wearable, 

and implantable devices. Applications including displays,1,2 sensors,3 integrated circuits 

(ICs),4–8 and radio frequency identification (RFID) systems9,10 have been demonstrated 

through the solution-based casting and printing of semiconducting organic molecules and 

polymers,1,2,4,9,10 carbon nanotube arrays,3,5,8 and sol-gel metal oxides.7 Recently, 

colloidal nanocrystals (NCs) have emerged as a new member of this family of solution-

processable semiconductors with demonstrations of high mobility (>10 cm2/Vs) 

electronic transistors11–16 and integrated circuits.6,17  

Colloidal semiconductor NCs are typically synthesized with long-chain organic 

ligands on the NC surface allowing 1) the controlled growth of NC samples that are 

monodisperse and tunable in size and shape and 2) the dispersion of NCs in non-polar 

organic solvents, creating inks.18–20 However, these long organic ligands serve as barriers 

to charge transport when NCs are assembled to form thin film solids. The introduction of 

compact ligand chemistries and processes to exchange these long ligands greatly 

enhances the electronic coupling between NCs in solids.15,21,22 The combination of strong 

coupling through ligand exchange and of recently reported synthetic23–25  and post-

synthetic11–15 methods to dope NC thin films are responsible for the dramatic increase of 

carrier mobility in colloidal NC-based thin films. Previously, our group exploited these 
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high mobility NC thin films in field-effect transistors to demonstrate solution-processable 

and flexible, low-voltage analog and digital integrated circuits (ICs).6 However, in this 

first demonstration of nanocrystal integrated circuits (NCICs), the transistor wiring was 

defined by shadow masks which created large transistor sizes and electrode overlap and 

therefore introduced large parasitic capacitances that limited the bandwidth to ~900 Hz 

and switching speed to 600 µs for low-voltage analog and digital circuits, respectively.  

 In this chapter, we exploit methods we introduced for in-situ device repair that 

allows us to take these semiconducting NC materials, which are typically highly sensitive 

to their environment, out of the nitrogen glovebox and into the cleanroom, where they are 

exposed to the air and to the solvents commonly used in fabrication processes.11 Here we 

use photolithography to pattern device electrodes enabling us to scale down device 

dimensions, drastically reducing parasitic capacitances from electrode overlap, and scale 

up fabrication across large 4 inch flexible Kapton substrates. We demonstrate NC field-

effect transistors (NC-FETs) with channel lengths ranging from 5-40 μm and electron 

mobilities up to 10 cm2/Vs. We integrate these NC-FETs using a newly developed 

process to fabricate vertical interconnect access (VIA) holes, which allows us to realize 

complex integrated circuits.  These circuits include the fundamental building blocks for 

analog and digital circuits such as inverters and NAND and NOR gates. Taking 

advantage of reduced parasitic capacitances, we use these building blocks to realize 

amplifiers with ~7 kHz bandwidth and ring oscillators with a 7.7 μs delay per stage at a 2 

V supply voltage. The delay per stage decreases with increasing supply voltage, reaching 
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1.5 μs at a 5 V supply voltage. To the best of our knowledge, these NCIC ring oscillators 

are the fastest solution-processable, semiconductor-based ring oscillators fabricated on a 

flexible substrate and operating at low voltages.  

2-2 : Methods 

 We use contact photolithographic techniques to pattern the gate, VIA holes and 

source/drain layers to realize flexible, wafer-scale CdSe NCICs. First, a 4 inch diameter, 

50 μm thick, Kapton film is encapsulated in a 20 nm layer of alumina (Al2O3) grown by 

atomic layer deposition (ALD). This process preshrinks the Kapton and prevents the 

deformation of the plastic during following thermal processing steps, which can 

otherwise cause the delamination of subsequently deposited layers. Next, a 

photolithographically-defined and thermal (Al) and e-beam (Ti, Au) evaporated metal 

stack of Ti/Au/Ti/Al is fabricated to form gate electrodes. Aluminum, rather than gold, is 

required as the top layer of this stack in order to grow a stable, conformal oxide on top of 

the gate electrodes. The gate electrodes are oxidized by an oxygen reactive ion etching 

(RIE) process in order to promote further oxide growth. A 20 nm, high-k, Al2O3 layer is 

then grown by ALD on top of the RIE-oxidized gate electrodes to form a high quality, 

high unit capacitance (220 nF/cm2) gate dielectric layer. Holes in the insulating Al2O3 

layer are defined by photolithography and created by a chlorine RIE process. Chlorine 

etching of the Al2O3 layer is very aggressive and not only etches the Al2O3 dielectric 

layer, but also etches the underlying aluminum.26  The gold layer in the stack is 

introduced to provide a robust etch stop and to maintain conductivity between the gate 
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layer and the subsequently deposited VIA. The VIA holes are filled by e-beam 

evaporation of gold. The VIA is essential as it creates vertical connections between 

different metal electrode layers through the insulating Al2O3 layer, required to develop 

complex, IC topologies.  To test VIA conductivity, we measure a test structure composed 

of many VIAs of identical size. The VIAs show Ohmic contact to the gate layer with a 

resistance of 60 ± 15 Ω for each VIA hole [Appendix 2-2]. This robust VIA process may 

be generally useful for devices fabricated from different solution-processable 

semiconductors as it desirably allows the use of Al2O3 as a gate dielectric layer for low-

voltage, low-hysteresis flexible devices.  

To fabricate the CdSe NC active layer, 4 nm CdSe NCs are prepared, following 

literature procedures.27 The long-chain organic ligands introduced during synthesis are 

exchanged in solution with the compact ligand thiocyanate (SCN). These SCN-

exchanged CdSe NCs are dispersed in dimethylformamide (DMF) at a concentration of 

19.6 mg/mL, as estimated from the optical density at the first excitonic peak,28 and 

deposited by spincoating to form 40 nm thin film, CdSe NC semiconducting channel 

layers, as previously reported.14 Following spincasting, the CdSe NC thin films are 

annealed at 200 oC for 10 minutes to promote their adhesion to the substrate. To further 

prevent NC thin film delamination during processing, an ultrathin, 1 nm ALD Al2O3 

layer is deposited. Source and drain electrodes composed of a metal stack of indium and 

gold are defined by photolithography and deposited by thermal evaporation to complete 

bottom-gate, top-contact NC-FETs and NCICs. The devices are annealed at 300 oC for 30 
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min in order to drive indium diffusion from the source and drain electrodes through the 

40 nm thickness of the CdSe NC thin film, heavily doping the contact region, and into 

and across the 5-40 μm long CdSe NC thin film active area, lightly doping the channel 

[Appendix 2-6]. In order to better control doping at the contacts and in the channel and 

realize high mobility and current modulation in devices as we scale down the channel 

length in comparison to our previous work, we deposit an additional 5 Å layer of indium 

by thermal evaporation across the entire NC film and then anneal the devices at 300 oC 

for 10 min, an approach used previously to dope poly-crystalline CdSe transistors.29 

Next, devices are encapsulated in an additional 50 nm ALD Al2O3 layer to passivate the 

CdSe NC thin film surface and reduce device hysteresis.11 Finally, the devices are 

annealed at 300 oC for 10 min to complete the doping of the channel from the added 

indium as well as to repair the CdSe NC thin film after oxygen and solvent exposure 

during photolithographic patterning and ALD encapsulation. Detailed methods are 

discussed in Appendix 2-1. 
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2-3 : Results and Discussion 

 

Figure 2-1 (A) Schematic of a CdSe NC-FET and a VIA used as building blocks to 
construct NCICs. (B) Photograph of an array of CdSe NCICs fabricated on a 4 inch, 
flexible, Kapton substrate. (C) Output ID-VDS and (D) transfer ID-VGS characteristics of a 
flexible CdSe NC-FET with photolithographically-patterned electrodes defining a 
channel length L= 10 μm and width W= 1000 μm. 

 

Figure 2-1A details a schematic of a completed CdSe NC FET and a VIA defined 

to realize NCICs. We successfully fabricate many individual transistors, inverters, 
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voltage amplifiers, NOR and NAND gates and ring oscillators on a single 4 inch, wafer-

sized, flexible Kapton substrate [Figure 2-1B]. Figure 2-1C, D shows representative NC-

FET device output (ID-VDS) and transfer (ID-VGS) characteristics used as the building 

blocks to construct the NCICs. The NC-FETs show well-behaved, n-type characteristics 

at low operating voltages, seen by the linear increase and then saturation of the drain 

current (ID) with increasing drain bias (VDS) and the increase in drain current (ID) with 

increasing gate bias (VGS), as electrons are accumulated at low fields in the channel 

across the high unit capacitance, Al2O3 gate dielectric layer. Averaged over 30 measured 

NC-FETs with channel lengths ranging from 5 to 40 μm, in the saturation regime [Figure 

2-1D] the electron field-effect mobility (µe) is 10.1 ± 0.28 cm2/Vs with a threshold 

voltage (VT) of 1.07 ± 0.03 V and a low hysteresis (ΔVT) of 0.22 ± 0.02 V. In the linear 

regime [Appendix 2-6] µe is 6.2 ± 0.15 cm2/Vs with a VT of 0.84 ± 0.073 V and a ΔVT of 

0.32 ± 0.02 V. The drain current on/off ratio is greater than 104, with an average 

subthreshold swing of 350 ± 9 mV per decade. The calculated semiconductor-dielectric 

interface trap density is 7.14 ± 0.05 x 1012 cm-2, similar to our previous reports on high-

performance CdSe NC-FETs.6,14 The metal-semiconductor contact resistance is probed 

using the transmission line method [Appendix 2-7] and is consistent with the formation 

of low-resistance, Ohmic contacts.30  
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Figure 2-2 (A) Schematic of the load transistor used to construct the NCIC inverter. (B) 
Circuit diagram and (C) photograph of a flexible, CdSe NCIC inverter. The output 
voltage (VOUT) is measured as a function of the input voltage (VIN) for different supply 
voltages (VDD) applied with respect to ground (GND).  (D) Voltage transfer 
characteristics (VOUT-VIN), (E) voltage gain, (F) noise margin (orange squares), and (G) 
drain current for a CdSe NCIC inverter as a function of the supply voltage VDD. (H) 
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Output waveform (red) of a NCIC voltage amplifier in response to a 1 kHz, 200 mV 
sinusoidal input on a 600 mV DC input bias (blue). (I) Frequency response (Bode Plot) of 
a NCIC voltage amplifier (black circles). A linear fit (red dashed line, top) shows a 8.3 
dB voltage gain at low frequency, which is used to find the 3 dB bandwidth (red dashed 
line, bottom).  

Since our NC-FETs are n-type and have a positive VT, we implement an 

enhancement-load design to form NCIC inverters. This topology uses two NC-FETs 

operating in unison where one FET serves as the driver and the other as the load [Figure 

2-2B]. The load, shown schematically in Figure 2-2A, is built by connecting the drain 

and gate of the NC-FET through a VIA and operates as a two terminal, linear resistor. 

Figure 2-2C shows a photograph of a fabricated NCIC enhancement-load inverter.  

Figure 2-2D-G show the inverter voltage transfer characteristics (VTCs), voltage 

gain, noise margin, and drain current for different supply voltages (VDD). The circuit 

shows the expected VTCs, inverting a low voltage input (VIN) to yield a high voltage 

output (VOUT) and vice versa [Figure 2-2D]. The voltage swing in the VTCs for all supply 

voltages remains constant at 78 +/- 1 % of VDD. This is in agreement with the ideal VDD-

VT voltage swing for an enhancement-load inverter as VT depends on the applied voltage, 

consistent with a gate bias dependent mobility common to amorphous semiconductor 

transistors.31,32 

The voltage gain, defined as the slope of the VTCs, shows a maximum gain of -

2.1 V/V for all input voltages and a wide region where the output voltage gain is greater 

than unity.  For an enhancement-load inverter, the theoretical maximum gain is defined 
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as Gain =
𝑔mDriver

𝑔mLoad+𝑔dsload+𝑔dsdriver
. For an ideal device, the values of drain-to-source 

conductance (gds) for the driver and load are several orders of magnitude smaller than the 

transconductance (gm) of the load which for this device gm is 14.4 μS. However, gds is 1.7 

μS, as seen by the residual slope in the saturation regime of the NC-FET output curves 

[Figure 2-1C], and is too large to be neglected. This effectively reduces the gain, yielding 

a calculated gain of 2.18 in strong agreement with our measured value [Appendix 2-3].   

The noise margin is the measure of the ability of one device to switch another, 

thus allowing multi-stage digital circuit operation. It is determined by calculating the 

difference between the output voltage swing when the gain is greater than unity and the 

input voltage swing over the same range.33 It can be shown visually by overlaying the 

inverter VTCs and its inverse at each VDD, as highlighted by the orange rectangles in 

Figure 2-2F. The noise margin increases from 450 mV at VDD = 2 V to 1130 mV at VDD = 

5 V [Appendix 2-5]. 

The NCIC inverter gain opens the door for use of these devices in analog circuit 

applications, such as voltage amplifiers. As an example, we drive an inverter with a VDD 

= 2 V and a VIN composed of a 200 mV, 1 kHz peak-to-peak sinusoidal input 

superimposed on a 600 mV DC offset [Figure 2-2H]. The DC offset is chosen to operate 

the inverter at its point of maximum gain, as shown in Figure 2-2E.  The output 

waveform is amplified with a gain of approximately -2V/V and is offset at 780 mV, 

consistent with the inverter VTCs, and it shows a 180 degree phase shift, originating from 
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the negative gain of the inverter. The frequency response of the voltage amplifier is 

measured by taking a series of these measurements at varying frequency and recording 

the amplitude of the input and output signals to find the voltage gain in decibels (dB). 

The results of these measurements are summarized in a Bode Plot in Figure 2-2I.  The 

bandwidth, defined as the point where the gain has been reduced by 3 dB from that at low 

frequency, is estimated from the plot to be 6.8 kHz. Amplification remains above unity, 

or 0 dB, for frequencies of up to 10 kHz. Approximating the resistances and capacitances 

in the inverter as a single time constant network, we calculate a theoretical bandwidth of 

9.8 kHz, in strong agreement with the measured result [Appendix 2-4].  This measured 3 

dB bandwidth is almost 8 times larger than our previous voltage amplifiers and is 

primarily attributed to the smaller device features sizes realized here, which greatly 

reduce the parasitic capacitances from the gate to source/drain overlap from 277 pF [Ref. 

6] to 36 pF.  
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Figure 2-3 Circuit diagrams, photographs, and truth tables of flexible, CdSe NCIC (A, B, 
C) NAND and (D, E, F) NOR logic gates. (G) Waveforms for input voltages (VIN) on the 
A (red) and B (blue) driver NC-FETs, which are switched at 100 Hz and 200 Hz, 
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respectively. (H) Output waveforms (VOUT) for NCIC NAND (purple) and NOR (green) 
logic gates with VDD = 2 V. 

 

Figure 2-3 shows circuit diagrams, photographs, and truth tables for flexible CdSe 

NCIC NAND and NOR logic gates. The logic gates are each constructed from three NC-

FETs. The NAND gate uses two driver NC-FETs connected in series [Figure 2-3A]. Both 

NC-FETs must be on (state "1") to switch the output off (state "0"), as described by the 

truth table in Figure 2-3C. The NOR gate uses two driver NC-FETs in parallel [Figure 2-

3D] allowing either to be switched on (state "1") to switch the output off (state "0"), as 

shown in the truth table Figure 2-3F.  In order to test the function of these gates, we 

simulate the input conditions by connecting the gates of the A and B driver NC-FETs to 

two function generators. The function generators are setup to produce 0 to 2 V square 

wave voltages, switching at 100 Hz for the A NC-FET and at 200 Hz for the B NC-FET 

as shown in Figure 2-3G. The output waveform of each logic gate is captured on an 

oscilloscope and is shown in Figure 2-3H. The results are consistent with the NAND and 

NOR truth tables, where an output from each device close to 0 V corresponds to a “0” 

and an output of >1 V corresponds to a “1”. The two distinct potentials at the "0" state 

output from the NOR gate correspond to a higher drain current achieved when both driver 

transistors are active. If only one driver transistor is turned on, the device current is 

halved, giving rise to slightly higher "0". This difference, however, is only ~50 mV 

which is a negligible difference for digital circuit applications as it is well below the 
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noise margin. The demonstration of robust NCIC NAND and NOR gates shows promise 

for applications in complex digital circuitry. 
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Figure 2-4 (A) Circuit diagram, (B) photograph, and output characteristics at (C) 2 V and 
(D) 5 V supply voltages (VDD)  for a five-stage CdSe NCIC ring oscillator with a sixth 
stage buffer. (E) Delay per stage versus supply voltage (VDD) for a CdSe NCIC ring 
oscillator. (F) Comparison of the delay per stage versus supply voltage (VDD) for 
solution-processable, semiconducting (green) organic, (blue) carbon nanotube array, (red) 
sol-gel metal oxide, and (black) colloidal nanocrystal channel layers. Circuits are 
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fabricated on (filled symbols) rigid substrates and (open symbols) flexible substrates. The 
flexible, CdSe NCICs reported here are highlighted as yellow-filled, black stars. 

 

To further probe the switching speed of our NCICs and highlight the larger scale 

device uniformity, 5-stage ring oscillators are fabricated [Figure 2-4A]. A 6th stage is 

used as a buffer to isolate the output probe from the ring oscillators. Figure 2-4B is a 

photograph of a 5-stage ring oscillator built from the NCIC inverters shown in Figure 2-

2. The output waveforms under VDD = 2 V and 5 V are shown in Figure 2-4C,D. At VDD =  

2V, there is a 400 mV output swing oscillating at 13 kHz, equal to a 7.7 µs delay per 

stage (𝜏) calculated from τ = 1
2×𝑁×𝑓

 , where N is the number of stages and f is the 

oscillation frequency. This delay per stage is two orders of magnitude smaller than the 

first NCIC based ring oscillator (𝜏 = 600 µs), demonstrated at a 2 V VDD.6 At VDD = 5V, 

there is a 1.2 V output swing oscillating at ~65 kHz, yielding a 1.5 µs delay per stage.  

Figure 2-4E shows the relationship between stage delay and VDD between 2 V and 5 V. 

Faster switching speed is seen at higher VDD as more current [see Figure 2-2G] passes 

through the devices allowing them to more quickly charge and discharge the capacitive 

loads. 

Figure 2-4F compares the supply voltage dependent switching speed from ring 

oscillators constructed using our solution-deposited colloidal NCICs6 and solution-

processable organic semiconductors,34–40 carbon nanotube arrays,5,41,42 and sol-gel metal-

oxides.7 The primary challenge in creating a ring oscillator for all of these materials is 
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integrating them into IC fabrication processes. The secondary challenge is realizing 

devices which operate at less than 5 V, crucial for applications in portable electronics and 

sensors powered by batteries or inductive charging. In many other solution-processable 

materials, surface defects, high contact resistances, thick oxides, and large channel 

lengths limit their applications to higher operating voltages. The switching speed of our 

NCICs [Figure 2-4F (yellow-filled, black stars)] outperforms other solution-processable 

materials on flexible substrates at low voltages. As we have also developed processes to 

make NCICs compatible with conventional photolithography, NCICs can be adapted to 

currently available large-area fabrication equipment and techniques, boosting its 

development toward lost-cost, large-area electronics.  

2-4 : Conclusions 

In summary, we use photolithography to scale down device dimensions and 

reduce parasitic capacitance and scale up device fabrication to demonstrate large-area and 

flexible, solution-processable CdSe NCICs that operate at high bandwidth and high-speed 

for analog and digital electronics. We demonstrate the first NCIC NOR and NAND logic 

gates and report voltage amplifiers with a 6.8 kHz bandwidth at 2 V and ring oscillators 

with a 1.5 µs switching speed at 5 V. The higher bandwidth and higher speed of NCICs 

shows the promise of colloidal NCs as a materials class for large-area, flexible, high-

speed circuits.              
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2-6 : Appendix 

Appendix 2-1 : Detailed Methods 

CdSe NC Synthesis, Ligand Exchange, and Deposition 

4 nm CdSe NCs capped with trioctylphosphine oxide (TOPO) are synthesized using a 
modified version of methods found in Ref. 27. The selenium precursor for NC synthesis 
is created by combining 100 mL 97% tributylphosphine (Aldrich) and 9.9 g 99.99% 
selenium shot (Strem) under nitrogen and stirring them overnight to form 
tributylphosphine selenide. The cadmium precursor for NC synthesis, cadmium stearate, 
is created by combining 55 g 97% stearic acid (Acros), 10 g 99% CdO (Strem), and 50 
mL 90% octadecene (Aldrich) and heating it under nitrogen to 280 ˚C. The solution is 
held at temperature until bubbling ceases. The reaction is allowed to cool, and then the 
mixture is precipitated with acetone, vortexed at high speed until sufficiently mixed to a 
uniform color, and centrifuged at the highest speed available in order to recover as much 
precursor as possible. The supernatant is discarded. The acetone precipitation, vortexing, 
and centrifuging process is repeated, and the supernatant is again discarded. The 
precipitant is then dried in a vacuum oven at 50 ˚C. Once dry, the cadmium stearate is 
pulverized in a mortar and pestle. The washing, vortexing, precipitation, drying, and 
pulverization procedure is repeated twice with methanol and then twice with acetone in 
order to insure the precursor is sufficiently clean.  

CdSe NCs are synthesized by mixing 40 g of 90% TOPO (Aldrich), 40g of 90% 
octadecylamine (Acros), and 4.2 g of cadmium stearate (prepared as described above). 
The solution is heated to 135 ˚C and degassed under vacuum. The mixture is then heated 
under nitrogen to 320 ˚C.  20 mL of tributylphosphine selenide is then quickly injected to 
nucleate the NCs. Growth is continued at 290 ˚C for 15 min. The reaction is stopped by 
adding 50 mL of anhydrous toluene. The solution is transferred into a nitrogen glovebox. 
Anhydrous methanol is added to the solution until precipitation of the particles is 
observed. The mixture is then centrifuged at the highest speed available in order to 
recover as many NCs as possible. The supernatant is discarded. 16 mL of anhydrous 
hexanes are used to redisperse the precipitant. The resulting solution is then centrifuged 
and the supernatant is retained. The NCs are then redispersed in 16 mL anhydrous 
hexanes. Anhydrous ethanol is then added until precipitation of particles is observed. 
This mixture is vortexed until the mixture is a uniform color, and then centrifuged at the 
highest speed available and the supernatant is discarded. The process of redispersion in 
16 mL of hexane, adding anti-solvent until precipitation is observed, vortexing, 
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centrifuging, and discarding the supernatant is repeated with anhydrous acetone and 
anhydrous isopropanol. The final precipitant is then dispersed in 16 mL of anhydrous 
hexane for storage until use.   

Ligand exchange with ammonium thiocyanate (NH4SCN) is performed in an inert 
environment using the recipe found in Ref. 14, scaled proportionately to create a 450 μL 
dispersion of SCN-capped CdSe NCs in dimethylformamide (DMF) at an optical density 
(OD) of 40. This is performed by starting with 2.4 mL of TOPO-capped, CdSe NCs at an 
OD of 20 and combining it in a centrifuge tube with 3.6 mL of hexane and 3.2 mL of 
NH4SCN in acetone at a concentration of 10 mg/mL. This mixture is vortexed at 3000 
rpm for 2 min, centrifuged at 2000g for 1 min, and then the supernatant is discarded. 4.8 
mL of tetrahydrofuran is added to the precipitated NCs and this mixture is vortexed at 
3000 rpm for 2 min, centrifuged at 2000g for 1 min, and the supernatant is discarded. 4.8 
mL of toluene is then added to the precipitated NCs and this mixture is vortexed for 1 
min at 3000 rpm, centrifuged at 2000g for 1 min, and the supernatant is discarded. The 
precipitated NCs are then dispersed into 400 μL of DMF. 

Thin films are deposited in an inert atmosphere by passing the resulting NC dispersion 
through a 1 inch diameter, 0.2 μm pore polytetrafluorethylene filter onto the substrate, 
then spinning the sample at 500 rpm for 15 s, ramping to 800 rpm over 15 s, and then 
holding at 800 rpm for an additional 30 sec. 

Device Fabrication  

CdSe NCICs are fabricated on 50 μm DuPont Kapton substrates. These substrates are 
encapsulated by 20 nm of Al2O3 deposited at 280°C in a Cambridge Nanotech Savannah 
200 ALD system using trimethylaluminium and water precursors. Photolithographic 
patterns are defined in a bilayer of photoresists, MicroChem LOR3A and MicroChem 
S1813, deposited by spincoating at 3000 rpm for 45 s and 4000 rpm for 25 s, 
respectively, then baked at 180 °C for 105 s and 115 °C for 60 s, respectively. For the 
VIA and source/drain layer only S1813 is used. Patterns are exposed by contact 
photolithography using a Nanonex NX2600 system for a time of 6.3 s at 14.3 mW/cm2. 
Exposed patterns are developed in Microposit MF-CD-26 for 60 s. Metal layers are 
deposited in a Kurt Lesker PVD75 system by thermal (Al) and e-beam (Ti, Au) methods 
at a deposition rate of 0.5 Å/s. For the gate metal, a stack of 2 nm Ti, 20 nm Au, 2 nm Ti, 
and 40 nm Al is used. MicroChem Remover PG heated to 70 °C in an ultrasonic bath is 
used for lift-off. The gate layer is oxidized by an Oxford 80 Plus RIE system with a 150 
sccm flow of O2 for 10 min at an RF power of 150 W. The gate dielectric layer is 20 nm 
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of Al2O3, deposited by the same ALD method described above. VIAs are defined by 
photolithographic methods (as above) and etched using a Trion Phantom III RIE/ICP 
system with a 50 sccm flow of BCl3 gas for 35 s at an RF power of 300 W. VIAs are 
refilled using a stack of 2 nm Ti and 80 nm Au. CdSe NCs are exchanged as previously 
described and then deposited using a Specialty Coating Systems G3P spincoater installed 
inside of a nitrogen glovebox. The sample is heated on a Torrey Pines HP40 hotplate in 
an inert environment for 10 min at 200 °C to promote CdSe NC thin film adhesion.  1 nm 
Al2O3 is deposited by ALD at 150° C to protect the CdSe NC layer. The source/drain 
layer is defined by photolithography and consists of a stack of 40 nm In/50 nm Au, 
deposited at 0.5 Å/s in a custom Angstrom Engineering thermal evaporator installed 
inside a nitrogen glovebox. Following liftoff of the source/drain layer, the sample is 
heated at 300 °C in an inert atmosphere for 30 min. 5 Å of In is deposited at 0.05 Å/s by 
thermal evaporation in an inert atmosphere to further control the channel doping. To 
complete the channel doping, the sample is annealed at 300 °C for 10 min in an inert 
atmosphere. A 50 nm Al2O3 encapsulation layer is deposited by ALD at 150 °C. To 
complete recovery from air exposure for encapsulation, the sample is annealed at 300 °C 
for 10 min in an inert atmosphere.  

NCIC Measurement 

Devices are probed with a Suss MicroTec PM5 probe system enclosed in a nitrogen 
glovebox. Current and VTC measurements are performed using an Agilent 4156C 
semiconductor parameter analyzer. AC inverter measurements, NAND and NOR 
measurements, as well as ring oscillator output characteristics are collected using a 
Tektronix TDS 2014B oscilloscope buffered by a TI TL074CN operational amplifier chip 
setup on a custom printed circuit board as a unity gain buffer. Inputs for these 
measurements are provided by HP 33120A function generators. Unit capacitance is 
measured by an HP 4192A impedance analyzer.  
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Appendix 2-2 : VIA resistance 

The VIA resistance is probed by applying 1 V across an even number of VIAs of equal 
size connected in a serpentine structure and measuring the current. Figure A2A shows a 
photograph of a 10 VIA structure and Figure A2B a schematic of a 6 VIA structure. The 
resistance is calculated using Ohm’s Law and is shown as a function of increasing 
number of VIAs in Figure A2C. The resulting fit line gives us a resistance of 60 Ω per 
VIA and a probe contact resistance of 200 Ω. 
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Figure A2-2 (A) Photograph of 10 fabricated VIAs and (B) schematic showing only 6 
VIAs in the serpentine structure used to probe VIA resistance. (C) Plot of resistance 
versus number of VIAs traversed. 
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Appendix 2-3 : Inverter Gain 

The gain for an enhancement load inverter is defined as: Gain =
𝑔mDriver

𝑔mLoad+𝑔dsload+𝑔dsdriver
 

The parameters are defined and calculated in Appendix 2-4. 

𝑔mload = 14.4 µS 

𝑔mdriver = 35.2 µS 

𝑔dsdriver = 1.7 µS  

gdsload
 ~ 10-2 μS 

Using these parameters, we see a result of: Gain = 2.18 V
V
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Appendix 2-4 : Single-time Constant Network Analysis of Amplifier Bandwidth 

In order to determine the theoretical bandwidth, we used the approximation of a single 
time constant network. This defines the bandwidth as 𝑓3dB = 1

2π∗τ
, where τ = 𝑅tot ∗ 𝐶tot. 

The total resistance (Rtot) can be approximated in this structure as the inverse of the sum 
of the conductance of the driver and load transistors (gds) and the transconductance (gm) of 
the load transistor. The total capacitance at the node is the sum of the gate-to-source 
overlap capacitance of the load, the decoupled Miller drain-to-source overlap capacitance 
of the driver, and the cables used to connect the amplifier to the buffer and isolate the 
measurement from the large load capacitance of the oscilloscope. The capacitance of the 
cables is approximated from the capacitance per unit length of an RG-58 BNC cable (93 
pF/m) and the length of two 4 ft. sections of cable required for electrical connection. We 
also used mobility and threshold voltage for the measured devices, which is 8 cm2/Vs and 
0.4 V, respectively. We used the same biasing conditions as described in the paper of 600 
mV and 780 mV DC input and output bias, respectively.  

 
𝐶dsdriver = 22 pF 

𝐶gsload = 𝐶Overlap + 𝐶channel = 3.7 pF 

Gain = 2.1 

𝐶millerdriver = 𝐶dsdriver �1 +
1

Gain
�  = 32.5 pF 

𝐶node = 𝐶gsload + 𝐶millerdriver = 36.2 pF 

𝐶cables = 𝐿cable ∗ 𝐶/𝐿RG58 = 223.2 pF 

𝐶tot = 𝐶node + 𝐶cables = 259.4 pF 

𝑔mload = 𝜇 𝐶ox
𝑊
𝐿
�𝑉𝑉gs − 𝑉𝑉t�  = 14.4 µS 

𝑔dsdriver = 1.7 µS (Calculated from slope of the Vds curves) 

gdsload
 ~ 10-2 μS 

𝑅tot =
1

𝑔mload + 𝑔dsdriver + 𝑔dsload
= 62.1 kΩ 
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𝑓3dB =
1

2𝜋 𝑅tot𝐶tot
= 9.8 kHz 

If we perform this calculation after eliminating the cable capacitance, we see: 

𝑓3dBproj =
1

2𝜋 𝑅tot𝐶node
= 70.1 kHz 
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Appendix 2-5 : Noise Margin 

The noise margin of an inverter is defined by the difference between the output voltage 
range and the input voltage range when the gain is greater than 1.  

 
Noise Margin = �𝑉𝑉OH − 𝑉𝑉OL� − �𝑉𝑉IH − 𝑉𝑉IL� 

 
This is illustrated for a CdSe NC inverter with a 5 V supply voltage in Figure A2-5A. 
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Figure A2-5 (A) Illustration of the noise margin calculation from VTCs collected with a 
5V VDD. (B) Table of noise margin values. 

 

 

 

  

Noise Margin 

2 V 450 mV 

3 V 740 mV 

4 V 950 mV 

5 V 1130 mV 

B) 
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Appendix 2-6 : Additional Device Characteristics 
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Figure A2-6 (A) Transfer (ID-VGS) characteristics of a flexible CdSe NC-FET prior to 
channel doping. The device has an electron field-effect mobility (µe) of 8.6 cm2/Vs with a 
threshold voltage (VT) of 1.9 V. (B) 3 Transfer (ID-VGS) characteristics of a flexible CdSe 
NC-FET in the linear regime. 
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Appendix 2-7 : Contact Resistance  
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Gate Voltage Channel Resistance (Ω*m/μm) Contact Resistance (Ω*m) 

2 V 1.20764   -0.84074 

3 V 0.46184 -0.33599 

4 V 0.27629 -0.17863 

5 V 0.21618 -0.24037 

B) 

A) 
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Figure A2-7 (A) Total transistor resistance scaled by channel width vs. channel length 
used to extract the Channel Resistance (slope) and Contact Resistance (y-intercept). (C) 
Example resistance values are calculated for each voltage using a transistor with a 
channel length of 20 μm and a channel width of 300 μm. 

 

 

 

 

 

 

 

 

  

Gate Voltage Channel Resistance (Ω) Contact Resistance (Ω) 

2 V 80.5 x 103   -2.8 x 103 

3 V 30.8 x 103 -1.1 x 103 

4 V 18.4 x 103 -0.59 x 103 

5 V 14.4 x 103 -0.80 x 103 

C) 



43 

 

 
2-5 : References 

1. Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on 
solution-processed organic transistors. Nat. Mater. 3, 106–110 (2004). 

2. Wood, V. et al. Inkjet-printed quantum dot-polymer composites for full-color AC-
driven displays. Adv. Mater. 21, 2151–2155 (2009). 

3. Takahashi, T., Takei, K., Gillies, A. G., Fearing, R. S. & Javey, A. Carbon 
Nanotube Active-Matrix Backplanes for Conformal Electronics and Sensors. Nano 
Lett. 5408–5413 (2011). 

4. Min, S.-Y. et al. Large-scale organic nanowire lithography and electronics. Nat. 
Commun. 4, 1773 (2013). 

5. Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. 
Nanotechnol. 6, 156–161 (2011). 

6. Kim, D. K., Lai, Y., Diroll, B. T., Murray, C. B. & Kagan, C. R. Flexible and low-
voltage integrated circuits constructed from high-performance nanocrystal 
transistors. Nat. Commun. 3, 1216 (2012). 

7. Kim, Y.-H. et al. Flexible metal-oxide devices made by room-temperature 
photochemical activation of sol–gel films. Nature 489, 128–132 (2012). 

8. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–30 (2013). 
9. Myny, K. et al. Plastic circuits and tags for 13.56 MHz radio-frequency 

communication. Solid. State. Electron. 53, 1220–1226 (2009). 
10. Cantatore, E. et al. A 13.56-MHz RFID system based on organic transponders. 

IEEE J. Solid-State Circuits 42, 84–92 (2007). 
11. Choi, J. H. et al. In situ repair of high-performance, flexible nanocrystal 

electronics for large-area fabrication and operation in air. ACS Nano 7, 8275–8283 
(2013). 

12. Dolzhnikov, D. S. et al. Composition-matched molecular ‘ solders ’ for 
semiconductors. Science 347, 6–10 (2015). 

13. Oh, S. J. et al. Stoichiometric control of lead chalcogenide nanocrystal solids to 
enhance their electronic and optoelectronic device performance. ACS Nano 7, 
2413–2421 (2013). 

14. Choi, J. H. et al. Bandlike transport in strongly coupled and doped quantum dot 
solids: A route to high-performance thin-film electronics. Nano Lett. 12, 2631–
2638 (2012). 

15. Liu, W., Lee, J. S. & Talapin, D. V. III-V nanocrystals capped with molecular 
metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. 
J. Am. Chem. Soc. 135, 1349–1357 (2013). 

16. Lee, J.-S., Kovalenko, M. V, Huang, J., Chung, D. S. & Talapin, D. V. Band-like 
transport, high electron mobility and high photoconductivity in all-inorganic 



44 

 

nanocrystal arrays. Nat. Nanotechnol. 6, 348–352 (2011). 
17. Chung, D. S., Lee, J., Huang, J., Nag, A. & Ithurria, S. Low Voltage, Hysteresis 

Free, and High Mobility Transistors from All- Inorganic Colloidal Nanocrystals. 
Nano Lett. 12, 1813–1820 (2012). 

18. Rogach, A. L. et al. Organization of matter on different size scales: Monodisperse 
nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002). 

19. Ye, X. et al. Improved size-tunable synthesis of monodisperse gold nanorods 
through the use of aromatic additives. ACS Nano 6, 2804–2817 (2012). 

20. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and Characterization of 
Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu. 
Rev. Mater. Sci. 30, 545–610 (2000). 

21. Kovalenko, M. V, Scheele, M. & Talapin, D. V. Colloidal nanocrystals with 
molecular metal chalcogenide surface ligands. Science 324, 1417–20 (2009). 

22. Liu, Y. et al. Dependence of carrier mobility on nanocrystal size and ligand length 
in pbse nanocrystal solids. Nano Lett. 10, 1960–1969 (2010). 

23. Sahu, A. et al. Electronic impurity doping in CdSe nanocrystals. Nano Lett. 12, 
2587–2594 (2012). 

24. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–
1779 (2008). 

25. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005). 
26. Lutze, J. W. Anisotropic Reactive Ion Etching of Aluminum Using Cl[sub 2], 

BCl[sub 3], and CH[sub 4] Gases. J. Electrochem. Soc. 137, 249 (1990). 
27. Fafarman, A. T. et al. Thiocyanate-capped nanocrystal colloids: Vibrational 

reporter of surface chemistry and solution-based route to enhanced coupling in 
nanocrystal solids. J. Am. Chem. Soc. 133, 15753–15761 (2011). 

28. Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental Determination of the 
Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 15, 
2854–2860 (2003). 

29. Scilla, G. J. & Luo, F. C. Indium diffusion in cadmium selenide thin-film 
transistors with indium-gold contacts. Appl. Phys. Lett. 42, 538–540 (1983). 

30. Lai, Y. et al. Low-Frequency (1/              f              ) Noise in Nanocrystal Field-
Effect Transistors. ACS Nano 8, 9664–9672 (2014). 

31. Shur, M. & Hack, M. Physics of Amorphous Silicon Based Alloy Field-Effect 
Transistors. J. Appl. Phys. 55, 3831–3842 (1984). 

32. Dimitrakopoulos, C. D. Low-Voltage Organic Transistors on Plastic Comprising 
High-Dielectric Constant Gate Insulators. Science 283, 822–824 (1999). 

33. Hauser, J. R. Noise margin criteria for digital logic circuits. IEEE Trans. Educ. 36, 
363–368 (1993). 

34. Cai, X. et al. Solution-processed high-performance flexible 9, 10-



45 

 

bis(phenylethynyl)anthracene organic single-crystal transistor and ring oscillator. 
Appl. Phys. Lett. 104, 63305 (2014). 

35. Herlogsson, L., Crispin, X., Tierney, S. & Berggren, M. Polyelectrolyte-gated 
organic complementary circuits operating at low power and voltage. Adv. Mater. 
23, 4684–4689 (2011). 

36. Zhao, Y. et al. All-solution-processed, high-performance n-channel organic 
transistors and circuits: Toward low-cost ambient electronics. Adv. Mater. 23, 
2448–2453 (2011). 

37. Xia, Y. et al. Printed Sub-2 V Gel-Electrolyte-Gated Polymer Transistors and 
Circuits. Adv. Funct. Mater. 20, 587–594 (2010). 

38. Gundlach, D. J. et al. Contact-induced crystallinity for high-performance soluble 
acene-based transistors and circuits. Nat. Mater. 7, 216–221 (2008). 

39. Yan, H. et al. Solution processed top-gate n-channel transistors and 
complementary circuits on plastics operating in ambient conditions. Adv. Mater. 
20, 3393–3398 (2008). 

40. Herlogsson, L., Cölle, M., Tierney, S., Crispin, X. & Berggren, M. Low-voltage 
ring oscillators based on polyelectrolyte-gated polymer thin-film transistors. Adv. 
Mater. 22, 72–6 (2010). 

41. Ha, M. et al. Printed, sub-3V digital circuits on plastic from aqueous carbon 
nanotube inks. ACS Nano 4, 4388–95 (2010). 

42. Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube 
ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013). 

  



46 

 

Chapter 3 : The Hybrid Exchange Procedure 

3-1: Background and Motivation 

Colloidal semiconductor nanocrystals (NC) are being developed for a wide 

variety of applications, including sensors,1 displays,2 thermoelectric cells,3 integrated 

circuits (IC)4,5, and solar cells6,7 from a variety of materials. These NCs can be dispersed 

in solvent to make “inks” making them compatible with low-cost deposition techniques, 

like spincoating,8–11 dip coating,12,13 and inkjet printing.2 When formed into solid films, 

the mobilities of semiconducting NC-TFTs are not currently comparable with traditional 

crystalline semiconductors, however their low-cost and ability to be deposited on a 

variety of substrates4,14 makes them attractive for low-speed and flexible applications. 

Colloidal NC semiconductor inks are typically synthesized with long chain 

organic ligands on their surface.8,15–17 These ligands serve to stabilize and control the 

synthesis reaction in solution as well as allow them to be dispersed in non-polar solvents. 

However, these long ligands impede charge transport when the NCs are formed into solid 

semiconducting films. Therefore exchange processes have been developed for removing 

these long-chain surface ligands and replacing them with compact surface ligands 

allowing greater interparticle coupling and charge transport.9,12,18,19  

Two different procedures have been broadly developed for the exchange of the 

surface ligands of colloidal NCs. The first being the solution-based exchange which 

replaces these ligands in solution, prior to the deposition of the material.8,9 This is done 

by adding a solution of the compact ligands to the dispersion of NCs. For colloidal NC 
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materials synthesized in research laboratories, the procedure needs to be tuned for each 

batch of material to obtain high-performance TFTs. This is believed to be due to the 

small batch synthesis procedure, where personal technique and timing can impact the 

output, as well as variability of the residual contaminants in synthesis precursors. Thus, 

when performing the exchange, if not enough of the compact ligand solution is added, too 

much of the insulating ligands remain and poor device performance is observed; if too 

much is added, the NCs often aggregate when redispersed in solvent for deposition. This 

makes the particles difficult to deposit, creating non-uniform films. For example, for the 

compact ligand thiocyanate, we believe thiocyanate does not replace all ligands on the 

NC surface, leaving less ligand on the surface after a more rigorous solution exchange. 

This creates more unbound surface sites on the NCs and a loss of ligands to stabilize 

dispersions. This effect may also be accelerated by the choice of solvent. We hypothesize 

that decomposition of dimethylformamide (DMF), creating formic acid,20 may cause acid 

catalyzed ligand stripping, further increasing the number of open surface sites. While the 

NC dispersion may be optimized via iterative trials, this is a labor intensive and time 

consuming procedure. This limits further commercial development of these materials 

using this process, as a more robust procedure is needed for mass production.  

The second type of exchange is a solid-state exchange, where the ligands are 

replaced after the NCs have been deposited into a film and the dispersing solvent has 

evaporated. Solid-state exchange procedures have been developed to exchange a wide 

array of NC compositions.21–23 The procedure involves immersing a deposited film of 
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NCs with organic ligands introduced in synthesis in a bath of the compact ligand 

solution. This procedure is more straightforward in that solution concentration, solvent, 

and treatment times can be easily adjusted and the processes tend to be more robust to 

slight parameter changes. It also allows the NCs to be more completely stripped of the 

insulating ligands, compared to the solution exchange which often leaves some remnant 

organic ligand to prevent aggregation in solution, allowing improved interparticle 

coupling. The drawback to this approach is that there is significant volume loss from the 

removal/replacement of the long ligands. This subsequently requires that the procedure 

be done in a series of many thin layers in order to refill cracks and voids formed from the 

loss in volume. The resulting film often retains remnant defects and irregularities 

stemming from this process.  

 In this chapter we introduce the hybrid exchange; a procedure which combines 

both a solution-state and a solid-state exchange. With this procedure, an initial solution-

exchange procedure is carried out on the NCs using a moderate amount of compact 

ligand solution. Alone, this would create TFTs with mediocre performance. However, the 

film is then further processed using a solid-state exchange procedure. This 

removes/replaces almost all of the remnant insulating ligands allowing greater charge 

transport between the NCs, as is desirable from the solid exchange. However, as much of 

the long, insulating ligands have already been removed in solution, the volume loss 

usually associated with the solid exchange is greatly reduced. This is believed to reduce 

the number of remnant cracks and irregularities in the film.  
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3-2: Methods  

 For this work, 4 nm TOPO-capped CdSe NCs are prepared using literature 

procedures8 described in detail in Appendix 2-1 and dispersed in hexane. This material is 

then exchanged using a procedure similar to literature procedures for a solution 

thiocyanate exchange.9 In this procedure, however, a constant recipe is used in order to 

standardize the procedure; previous work allowed this recipe to vary for optimization of 

the procedure. The standardized recipe begins with 1.8 mL of TOPO-capped CdSe NCs 

in a centrifuge tube diluted to an optical density (OD) of 5 in hexanes. 1.2 mL of 

NH4SCN in acetone at a concentration of 10 mg/mL is added to the NC dispersion. This 

amount of NH4SCN solution was chosen to be on the lower end of the range for 

optimized procedures which used the equivalent of approximately 1-2.5 mL of this 

solution for this volume of OD5 NC dispersion. The mixture is vortexed at 3000 rpm for 

2 minutes, centrifuged at 2000g for 1 minute, and the supernatant is discarded. 2.5 mL of 

tetrahydrofuran is then added and this mixture is vortexed at 3000 rpm for 2 minutes, 

centrifuged at 2000g for 1 minute, and the supernatant is discarded. 2.5 mL of toluene is 

then added and this mixture is vortexed at 3000 rpm for 1 minute, centrifuged at 2000g 

for 1 minute, and the supernatant is discarded. The resulting precipitate is then dispersed 

in either 0.2 mL of dimethylformamide, to deposit NC films in a single layer, or 0.4 mL, 

to build up films from multiple layers.  

 The films are then deposited in an inert atmosphere glovebox by passing the 

dispersion through a 0.2 µm pore polytetrafluorethylene filter onto heavily doped silicon 
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wafers coated with approximately 250 nm of thermally grown silicon oxide and 20 nm of 

aluminum oxide grown by atomic layer deposition (ALD). Before deposition, the 

substrates are cleaned by 150W oxygen plasma for 10 minutes as well as an in-situ UV-

Ozone for 30 minutes. The partially, NH4SCN-exchanged NC dispersion is then spun 

onto substrates at 500 rpm for 15 sec, ramped to 800 rpm over 15 sec, and then held at 

800 rpm for an additional 30 seconds.  

 Solid-state exchange is done in a similar manner to published procedures. The 

samples are soaked in a bath of saturated (>200 mg/mL) NH4SCN in acetonitrile large 

enough to fully submerge the sample for 1 minute followed by a 1 minute soak in pure 

acetonitrile to remove excess ligands from the surface. Acetonitrile was chosen after 

experiments showed significantly lower TFT mobilities and delamination using other 

solvents commonly employed for the procedure, including acetone and methanol.  

 For the two layer procedure, the samples are annealed following the spincoating 

of the first layer at 200 °C for 5 minutes in order to decompose most of the thiocyanate 

on the surface, as described in literature8, making the NCs insoluble in 

dimethylformamide. This allows a second layer to be deposited without damaging the 

first layer. A second layer is then added using the same deposition and spinning 

procedure as the first. This is followed by an additional solid-state exchange treatment. 

 Following the ligand exchange, 40 nm of indium and 50 nm of gold are deposited 

to form source and drain contacts using an in-situ thermal evaporator with a pattern 
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defined by a shadow mask. The samples remain under nitrogen or vacuum for the 

duration of processing. This shadow mask pattern defines source and drain electrodes to 

construct TFT channels with a fixed W/L ratio of 15 and channel lengths varying from 

30-200 µm. The samples are then annealed under nitrogen for 30 minutes at 300°C. TFT 

characterization is performed by using the heavily doped silicon substrate as a gate, 

making contact to the structure with a probestation mounted inside a nitrogen glovebox, 

and taking current measurements with an HP 4156 semiconductor parameter analyzer. 

Mobility is extracted by fitting the transfer characteristics using oxide parameters 

extracted from spectroscopic ellipsometry measurements.   

  For optical measurements, two samples are produced in parallel with the 

electrical sample; high-resistivity (1-10 Ω-cm) double-side polished silicon wafer and 

silica glass. These samples are taken through the same cleaning, deposition, and 

exchange procedures. Contacts are not deposited on these samples. Fourier transform 

infrared spectroscopy (FTIR) measurements are taken using the silicon wafer sample, 

taking an average of 256 scans from 1500-3750 cm-1.  UV-Visible spectrophotometry 

(UV-Vis) measurements are taken using the silica glass sample by taking a reverse scan 

from 850-400 nm.   

3-3: Results 

 The initial development of these TFTs used a single layer procedure. In order to 

gain insight into the surface chemistry of the exchanged particles during the process, we 

used FTIR measurements. The curves (Figure 3-1A) show two peaks corresponding to 
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the characteristic stretching of the carbon-nitrogen bond and the carbon-hydrogen bond. 

The former gives insight into the amount of thiocyanate introduced to the surface of the 

NCs, the latter gives insight into the amount of organic ligands remaining on the surface.  

Using the vibrational fingerprints to report on NC surface chemistry, it can be inferred 

that the additional thiocyanate treatment almost completely strips the remnant long 

insulating ligands from the surface of the NCs, as a control sample treated in pure 

acetonitrile without thiocyanate yielded no discernable change in peak level. Removal of 

long ligands is consistent with reducing the interparticle spacing and increases coupling 

between the NCs enabling greater transport.9 This procedure yields TFTs with electron 

mobilities exceeding 30 cm2/Vs with no optimization. These TFTs showed the viability 

of the procedure as it demonstrates similar electron mobilities as those found from an 

optimized solution exchange.9,14 A comparison of the performance of these TFTs is 

shown in Figure 3-1A. However, these films tended to be relatively thick (~40 nm). Due 

to the volume loss incurred during the solid-state exchange procedure, these films would 

frequently form cracks and even partially or completely delaminate during processing. 
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Figure 3-1 (A) Comparison of FTIR measurements of NC films formed from as-
synthesized particles as well as following solution and hybrid exchange. (B) Transfer 
characteristics (ID-VGS) of hybrid exchanged CdSe NC-TFT with channel length L=50 
µm and channel width W=750 µm. 

 

 This delamination issue is common for thick films using the solid-state exchange 

procedure. One hypothesis is that delamination may be due to the aggressive exchange of 

the top layers by the saturated solution causing contraction at the upper surface of the 

film, pulling lower layers away from the substrate before they can be exchanged while 

still adhered to the surface. This hypothesis could be tested by using a lower 

concentration solution for solid-state exchange and longer exchange times, however 

during this work fabricating TFTs with lower concentration solutions resulted in lower 

mobilities. Thus, a multi-step procedure is developed to remedy this issue. This 

procedure utilizes multiple, thinner layers, providing additional layers which can refill 

any cracks or voids that can formed during the first solid-state exchange treatment, while 

doing so with a much smaller volume loss than a complete solid-state procedure. This is 
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evident from the fact that integration of integration of peaks in the single-layer FTIR 

measurements show a decrease in organic ligand of 75% (reduction from 11.7 to 2.9) 

during the solution exchange and a 93% decrease overall (reduction from 11.7 to 0.87) 

following the hybrid exchange. Even though there is thiocyanate added, it is much shorter 

than the original TOPO ligands, allowing the particles to be more closely packed. In the 

case of a solid-state exchange, this ligand replacement will happen in one step, leading to 

a much greater volume loss, making the film more prone to larger cracks and voids.  A 

photograph showing the step-by-step addition to construct multiple layer films is shown 

in Figure 3-2A. This procedure showed a marked improvement over a single layer 

process in terms of eliminating the issue of delamination. However, beginning with the 

third layer of CdSe NCs, the mobility began to decrease, as shown in Figure 3-2B. This is 

partially due to increased off-current resulting from the larger cross section of the film, 

but the on-currents also decreased. It is believed that this may be an effect of doping as an 

increase in film thickness can decrease the relative amount of indium available to dope 

the film. Thus, it was determined that a procedure with only two steps would be optimal. 

With some procedural optimization, including reducing soak times from two minutes to 

one minute and increasing the inter-layer annealing temperature from 150°C to 200°C as 

well as following literature procedures for device encapsulation, mobilities of two layer 

TFTs reached 41±3 cm2/Vs, as shown in Figure 3-2C, besting the highest mobility 

previously reported for CdSe NC transistors exchanged with thiocyanate ligands.  
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Figure 3-2 (A) Photograph of a step-by-step addition of layers of a hybrid exchanged 
CdSe NC film deposited on SiO2 coated silicon wafer. (B)  Comparison of transfer 
characteristics (ID-VGS) of multiple layers of hybrid exchanged CdSe NC-TFTs with 
channel length L=50 µm and channel width W=750 µm. The 4 layer result is omitted due 
to the lack of current modulation. (C) Transfer characteristic of optimized 2-layer hybrid 
device.  

 

 Further characterization of the two layer TFTs is performed in an attempt to 

understand the origin of improved device performance. UV-Vis and FTIR measurements 

are collected for each step of a two layer process and is shown in Figure 3-3. The peak 

broadening and red-shift in the UV-Vis plots shown in Figure 3-3A is consistent with 

increased interparticle coupling.8 While this loss of quantum confinement is undesirable 
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for optoelectronic applications, it is believed to be advantageous for transistor 

performance. As the NCs move closer together, the wave functions of the individual NCs 

become more greatly coupled, allowing the electrons to move more freely and improve 

transport.  

Further characterization by FTIR gives insight into the surface chemistry. The 

curves (Figure 3-3B) show that after each subsequent deposition of solution-exchanged 

CdSe NCs, two strong peaks associated with thiocyanate and the organic ligands emerge. 

The organic ligand stretching peak is greatly depleted by each solid-state exchange 

treatment, decreasing the integrated area of the peak by ~70% during each treatment, 

consistent with prior reports,8,21 suggesting significant removal of the organic ligand. 

There is some reduction of the thiocyanate during the hybrid exchange, as well. We 

believe that this is due to the high solubility of thiocyanate in acetonitrile which may be 

causing the loss of thiocyanate from the surface. The thiocyanate peak is further reduced 

upon 200°C annealing, as expected, since annealing will decompose the thiocyanate to 

sulfur eliminating the bond that this measurement can detect, as shown by Fafarman et 

al.8  
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Figure 3-3 (A) UV-Vis and (B) FTIR measurements comparing each step in the process 
of depositing 2 layers of hybrid exchanged CdSe NCs. 

 

 This procedure proved to be able to make high performance TFTs from a new 

batch without additional optimization, as compared to solution exchange alone. Figure 3-

4A shows mobility results from solution-exchanged NC TFTs during an optimization 

procedure. This procedure is time consuming and the best mobility achieved is around 25 

cm2/Vs. Figure 3-4B shows mobility results from hybrid-exchanged NC TFTs without 

any batch optimization thus demonstrating the robust nature of this procedure. 
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Figure 3-4 Average mobility as calculated from a fit of the transfer characteristics over 
time for (A) solution and (B) hybrid exchnaged NC TFTs. Each data point represents two 
CdSe thin films on silicon with Al2O3/SiO2 dielectric stack ,measuring 6-8 TFTs 
measured on each, depending on yield. (C) Comparison of UV-Vis measurments of CdSe 
NCs made in the Kagan Lab and by Ocean Nanotechnology. (D) Comparison of transfer 
characteristics (ID-VGS) of hybrid and solution exchanged CdSe NC-TFTs made from 
Ocean Nanotechnology NCs with channel length L=50 µm and channel width W=750 
µm. 

 

 As an extension to show the robustness and flexibility of this procedure, 

commercial CdSe NCs are purchased from Ocean Nanotech. This removes the control 

over synthesis that could be relied upon when the NCs are made in the labs at Penn. 

These commercial NCs are TOPO-capped with a specified first excitation peak (FEP) of 
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around 580 nm.  When received, the FEP is measured to be 567 nm, which is similar, but 

notably smaller than those made by the Kagan Lab, as shown in Figure 3-4C. After some 

optimization, TFTs fabricated from solution exchanged NCs only had a mobility of 17 

cm2/Vs. Without any batch-specific process optimization, the first TFTs fabricated with a 

hybrid exchanged NC film had a mobility of up to 34 cm2/Vs. (Figure 3-4D) 

These TFTs are also demonstrated using the photolithographic device fabrication 

procedures from Chapter 2 on Kapton substrates, as shown in Figure 3-5A. TFTs are 

produced with mobilities of 16±1 cm2/Vs and threshold voltages of 1.1±0.1 V averaged 

across 12 TFTs. A representative device is shown in Figure 3-5B. While this does not 

match the performance of the TFTs produced with shadow mask patterning on silicon or 

Kapton, this result is not surprising. Using previous solution only exchange procedures, 

the photolithographically patterned circuits from Chapter 2 were demonstrated with 

mobilities of only 10 cm2/Vs, well below the best demonstrated values on silicon of 30 

cm2/Vs. This reduction is believed to be an effect of the extensive chemical exposure 

during the photolithographic processes. While it has been shown that indium doping and 

annealing can be used to recover the NC film from chemical and air exposure,14 that work 

did not account for exposure to alkaline developers as well as aggressive physical 

agitation during sonication.   
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Figure 3-5 (A) Photograph of sample with hybrid exchanged CdSe NC-TFTs with 
photopatterned electrodes. (B) Transfer characteristics (ID-VGS) of hybrid exchanged NC-
TFT with photopatterned electrodes with channel length L=40 µm and channel width 
W=1000 µm. 

 

3-4: Conclusions  

 We demonstrate a hybrid method for ligand exchange of CdSe NCs for thin-film 

transistor applications. This method combines the solution and solid-state exchange 

procedures and demonstrates the best mobility for CdSe NC transistors capped with 

thiocyanate ligands. Infrared spectroscopy measurements confirm the removal of long 

chain organic ligands used in synthesis. Spectrophotometry measurements confirm the 

desired reduced interparticle spacing and increased coupling of the NCs following 

exchange and annealing. Further device measurements show the flexibility of this 

procedure to be used with commercially produced NCs as well as within procedures for 

fabricating integrated circuits. While this procedure focuses on CdSe NCs, other NC 

chemistries use similar procedures as those developed for CdSe NCs. The demonstration 
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of a process to combine these two procedures and take advantage of the benefits of each 

makes this a valuable procedure for the continued development of NC TFTs.   
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Chapter 4 : Flexible CdSe Nanocrystal Oscillators 

4-1: Introduction 

Semiconductor devices which can operate at higher frequencies are applicable in 

a wide variety of fields including audio amplification, radio frequency communication, 

data transmission, computation, and analog signal processing. These applications are 

typically filled with traditional crystalline semiconductors, like silicon, germanium, and 

gallium arsenide. However, these traditional crystalline semiconductors are limited in 

their application as they are rigid and brittle and therefore cannot be used in applications 

where flexibility is required. Therefore, a new class of low-cost, solution-processable 

semiconducting materials is being developed as an option for modular deposition onto 

flexible substrates.1–9    

Within this class of solution-processable semiconducting materials, 

semiconductor nanocrystals (NC) are emerging as a viable option.10–17 NCs can be easily 

synthesized with controllable size and surface chemistries from several different 

materials.18–20 However, the surface of as-synthesized particles is typically terminated 

with long-chain organic ligands. These ligands impede charge transport and hinder 

semiconducting performance of solid films. Therefore, ligand exchange procedures have 

been developed to remove these long-chain ligands and replace them with short 

ligands,14,15,21–23 allowing greater interparticle coupling and charge transport. 

CdSe NCs exchanged with thiocyanate ligands has emerged as a viable 

semiconductor NC ink for high performance thin film transistor (TFT) applications. Prior 
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work from our group showed a thiocyanate solution-exchange procedure, demonstrating 

TFTs with mobilities up to 30 cm2/Vs.11,14 A hybrid exchange procedure, presented in 

Chapter 3, improved this mobility up to 40 cm2/Vs. This performance is comparable to 

many other solution processable semiconductors including MoSe2 (50 cm2/Vs24), carbon 

nanotube arrays (35 cm2/Vs5), sol-gel metal oxides (14 cm2/Vs6) and sol-gel InZnO and 

InGaZnO (30 and 20 cm2/Vs, respectively25).         

High-mobility, solution-exchanged, CdSe NC thin films are coupled with the 

development of photopatterning procedures in Chapter 2 to create high-speed CdSe NC-

ICs. This work demonstrated the possibility for the use of NC-TFTs in high-frequency 

applications, including amplifiers and oscillators which could operate at 6.8 kHz and 65 

kHz, respectively. However, the frequencies measured in Chapter 2 are greatly limited by 

the geometric capacitances of the devices themselves as well as the probing methods used 

for measurement. The geometric capacitances are the direct result of the practical limits 

of the contact photolithographic methods used for fabrication; the measurement method 

is limited by contact probing techniques, which have large intrinsic capacitances which 

create a significant capacitive load on the circuit.  
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Figure 4-1 (A) Schematic of a CdSe NC-TFT. (B) Circuit diagram of simple oscillator 
structure. 

 

In this chapter, we demonstrate the methods required to create simple, tunable, 

two-device cross-coupled oscillators (Figure 4-1) in order to fully characterize the high-

frequency capabilities of CdSe NC-ICs and probe the fundamental transport of carriers 

within the film. This work focuses on developing an oscillator structure on a Kapton 

substrate that is able to be wirebonded directly to a printed circuit board (PCB), 

drastically reducing the loading effects of the probes and interconnecting cables. The 

structure also integrates external inductive elements which allow us to compensate for the 

geometric capacitances and increase the frequency of oscillation. The results of such a 

project would show the true performance of colloidal NC materials in devices, while 

reducing the loading effects of measurement and compensating for the geometric 

capacitances. 
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In contrast to the prior work where oscillation is limited purely by device 

performance and geometric capacitances, the oscillation frequency of the cross-coupled 

oscillator structure developed in this chapter has multiple components. The oscillation 

frequency can be approximated as 𝑓 = 1
√𝐿∙𝐶

, where L is the discrete inductor attached 

externally to the oscillator  and C is a fixed value determined by a combination of the 

geometric capacitances of the TFTs and the coupling capacitance shown in Figure 4-1A. 

By reducing the value of the external inductors, the oscillation frequency can be 

increased and a limit can be found where the TFTs can no longer drive the oscillation. 

This point would represent a more accurate high-frequency limit of the NC TFTs which 

would not only demonstrate the potential abilities of NC TFTs, but may also give us 

some insight into the fundamental transport of carriers in the NC film.  

We believe this frequency limit represents the dielectric relaxation frequency of 

the NC film. This frequency is defined as 𝑓𝑑 = 𝜎
𝜀𝑟𝜀0

 where σ is the conductivity of the 

semiconducting film, εr is the relative dielectric constant of the film, and ε0 is the 

permittivity of free space. This can be approximated theoretically using known 

parameters. The high-frequency (>1 MHz) relative dielectric constant, as measured in a 

similar system by Suresh26, is estimated to be 20 and the conductivity of an un-gated film 

is estimated from TFT measurements to be 45µS. Using these values, we estimate the 

cut-off frequency to be 25 MHz, well above previous values for NC oscillators. If this 

value can be determined within this topology, this measurement would provide a valuable 
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figure of merit for semiconductor NCs as well as a variety of unconventional 

semiconducting materials. 

While the fabrication of the CdSe NC-TFT ICs is similar to Chapter 2 and Ref. 

10, a few new procedures are used to fabricate these oscillators. First, the hybrid ligand 

exchange procedure developed in Chapter 3 is utilized. This procedure offers improved 

device performance as compared to the solution exchange, as is used in Chapter 2. 

Second, the contact structure needs to be updated to accommodate wirebonding. The 

wirebonding process requires the device contacts to be more robust than those previously 

used for direct probing. Finally, the metal layering procedures need to be updated in order 

to bring them in-line with modern semiconductor manufacturing techniques by insetting 

metal layers into layers of oxide of equal thickness, creating a smooth surface for each 

layer; the work in Chapter 2 simply added layers under the assumption that they are thin 

enough as compared to the horizontal dimensions to ignore the roughness. This updated 

procedure allows us to build devices with higher breakdown voltages. 

4-2: Methods 

 To fabricate NC-TFT oscillators (Figure 4-1B), 2.5 inch square, 50 µm thick 

Kapton films are encapsulated in a 100 nm thick layer of Al2O3 deposited by atomic layer 

deposition (ALD) at 300ºC. This process acts to fix the size of the Kapton at the 

maximum thermal processing temperature to prevent further deformation which can 

cause delamination of subsequently deposited films. This layer is thicker than that used 
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previously in Chapter 2 and Ref. 10 in order to provide a media which can be etched to 

inset the gate electrodes.  

 

Figure 4-2 A small section of the photomask designs for NC oscillators with TFT 
channel width W=800 µm and channel length L=10, 20, 40 µm including (A) all layers 
overlaid, (B) the gate, (C) VIA, (D) source and drain electrodes, (E) contact pad 
wirebonding electrodes, and (F) extended wirebonding electrode patterns, respectively. 
The source of the overlap capacitance is indicated in the overlaid image by the blue 
circle, resulting from an overlap of the gate and source and drain electrode layers. 

 

 Next, a pattern for gate electrodes (Figure 4-2B) is defined by photolithography 

using positive photoresist and contact photolithographic methods. Each photolithographic 

patterning step in this procedure utilizes a 1.3 µm layer of S1813 photo resist and is 

exposed using a Suss MA6 mask alignment system with a 200 mJ/cm2 exposure. This 

pattern is used in conjunction with a chlorine inductively coupled plasma (ICP) reactive 

ion etching (RIE) process (RF: 40 W, ICP: 400 W, BCl3: 50 sccm, Pressure: 6 mTorr) for 
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90 seconds in order to form 55 nm deep trenches to inset the gate electrodes. The gate 

electrodes are then deposited in the defined trenches as a stack of thermally deposited 

aluminum and e-beam deposited titanium and gold in a 2nm/15nm/2nm/40nm stack of 

Ti/Au/Ti/Al, respectively. Aluminum is used at the top of the electrode stack in order to 

promote high quality Al2O3 growth on top of the electrodes for the gate oxide. Gold is 

used as a bottom layer to act as an etch stop during subsequent etch processes. 

The resulting patterned, inset electrodes are then cleaned and oxidized by an 

oxygen RIE process (RF: 150 W, O2: 100 sccm, Pressure: 15 mTorr) for 10 minutes in 

order to ensure complete removal of resist products and promote further oxide growth.  

20 nm Al2O3 is then deposited by ALD at 300ºC to form the gate oxide. Vertical 

interconnect access (VIA) holes through the insulating Al2O3 layer are then defined by 

photolithography (Figure 4-2C) and etched with a chlorine ICP RIE process, using the 

same conditions as above, for 50 seconds. The VIA holes are then refilled with an e-beam 

deposited stack of Ti/Au with thicknesses 2nm/80nm, respectively. 

Next, a pattern for wirebonding electrodes is defined by photolithography (Figure 

4-2F) and filled with a stack of e-beam deposited Ti and Au with thicknesses 100 nm and 

600 nm, respectively. This thickness is required to form thick, robust contacts for 

wirebonding.  This thick evaporation procedure is required as the gate oxide is etched by 

the gold electroplating solution which is normally used to build-up wirebonded contacts. 
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 The CdSe NC semiconducting layer, consisting of 4 nm CdSe NCs synthesized 

following literature procedures23, is then deposited and exchanged using a two-layer 

hybrid exchange procedure, combining both solution and solid state exchange steps, as 

outlined in Chapter 3. This process removes long chain ligands introduced during 

synthesis and replaces them with the compact ligand thiocyanate (SCN). Following this 

procedure, the films are annealed at 200ºC for 10 minutes to promote adhesion to the 

substrate. To further protect the CdSe NC film and prevent its delamination during 

subsequent processing, a 1 nm Al2O3 layer is deposited by ALD at 150ºC.  

 Next, photolithographically patterned source and drain electrodes (Figure 4-2D) 

are added on top of this structure. They are formed by a stack of thermally deposited 

indium and gold in a 40nm/50nm stack, respectively. Further channel doping, as needed 

in photopatterned circuits outlined in Chapter 2, is not needed for CdSe NC films 

deposited using the hybrid exchange procedure as it is observed to raise off-currents 

without increasing mobility. The devices are then annealed for 30 minutes at 300ºC and 

initial electrical testing is performed to verify high-performing devices. The devices are 

then encapsulated in 100 nm Al2O3 deposited by ALD at 200ºC in order to encapsulate 

the thin film surface, reduce hysteresis, and make the device stable in air.11 During this 

encapsulation procedure, the wirebonding contacts are masked with adhesive Kapton tape 

to prevent oxide deposition onto the contacts. The devices are then annealed again at 

300ºC for 30 minutes to repair the NC film from air and chemical exposure resulting 
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from the encapsulation procedure. Finally, the devices are mounted to the PCB using 

Kapton tape and wirebonded using gold bonding wire. 

4-3: Discussion and Results 

The oscillators are built from previously studied CdSe NC-TFTs, shown 

schematically in Figure 4-1A, using similar procedures as those used to develop the CdSe 

NC-ICs.  However, modifications to this procedure are required to accommodate the 

operating voltages of the oscillators as well as wirebonding. The oscillator is formed 

using a simple structure of two cross coupled CdSe NC-TFTs, as shown in Figure 4-1B. 

The inductors in the circuit are discrete devices added externally and the coupling 

capacitor is an overlap capacitance between the gate and source/drain layers intrinsic in 

the final mask design (Figure 4-2A).  

SPICE simulations of this system are performed using a custom first-order model 

of the CdSe NC-TFT with parameters extracted from device measurements and ideal 

discrete SPICE components (Appendix 4-1). The results of this simulation show that 

devices may need to operate at voltages up to 8V, as shown in Figure 4-3, with an input 

voltage of only 3V. The results also show the potential for 5-50MHz frequency 

oscillations, tunable by adjusting the external discrete inductors from 10µH to 100nH. 

Given the estimated dielectric relaxation frequency cut-off of 25 MHz, probing in this 

range will allow us to test these devices against our theoretical prediction. 
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Figure 4-3 Output of simulation of oscillator circuit using (A) 10 µH (~5 MHz) and (B) 
100 nH (~50 MHz) external inductors.  

 

Prior IC development outlined in Chapter 2 studied these transistors at voltages up 

to 5V, but did not explore higher voltage operation. When higher voltages are applied in 

a scan starting at 6V to devices fabricated using those methods, breakdown is observed, 

as shown in Figure 4-4C. This is troubling given that breakdown of a 20 nm Al2O3 ALD 

film should be approximately 10-12V, depending on the quality of the film. It is believed 

that this limited operational window may be due to the method in which the IC structure 

is formed. Prior work simply built the layers on top of each other without much regard 

for the smoothness of the structure, shown schematically in Figure 4-4A. This method 

worked for the fabrication as the Al2O3 layer is conformal and was able to mold itself to 

the structure. However, this likely leads to parts of the oxide under the contacts being 

thinner than expected, giving rise to a lower breakdown potential than expected. This 

issue is resolved by etching a trench into the encapsulation oxide and in-setting the gate 

metal into this trench, shown schematically in Figure 4-4B. Embedding the gate electrode 
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in underlying oxide created transistors which operate without breakdown up to 12V, as 

shown in Figure 4-4D. There is a drastic increase in off-current observed at source-drain 

voltages exceeding 10V, but this is believed to be due to nonlinear effects in the CdSe  

NC semiconducting film and not a result of the breakdown as the change was reversible.  

 

Figure 4-4 Diagram of a CdSe NC-TFT (A) without and (B) with gate electrodes inset 
into an oxide foundation. (C) Gate current measurement (IG-VGS) of device oxide 
breaking down at VGS > 5V. (D) Transfer characteristics (ID-VGS) of a CdSe NC-TFT 
with gate inset into the oxide foundation.  

 

In order to be able to make a wirebond connection to the oscillators, it was found 

that the contacts needed to be made significantly thicker and more robust than contacts 

used in prior IC development for direct probing. Thick layers of metal are required for 

wirebonding and this is usually achieved by electroplating the contacts. Unfortunately, 
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the electroplating process will etch the gate oxide. Therefore, contacts are developed 

using thick (~500-1000 nm) layers of gold deposited by e-beam evaporation. Initially, 

these contacts are deposited in a post-process step placing them on top of the structure 

using the source and drain pattern with all but the contact pads physically masked (Figure 

4-2E), as shown schematically in Figure 4-5A. Unfortunately, these contacts did not 

adhere well enough to withstand the wirebonding process and they easily delaminated. 

Thus, the process order was changed to use the same pattern but place a thick stack of 

titanium and gold directly on the gate oxide, as shown schematically in Figure 4-5B. This 

structure proved robust enough for successful wirebonds to be created, as shown in 

Figure 4-5C. 

 

Figure 4-5 (A) Diagram of CdSe NC-TFT with wirebond contact on top of source and 
drain contacts and (B) with wirebond contacts directly placed on gate oxide. (C) 
Photograph of successfully wirebonded contacts. 
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Following the development of the updated fabrication methods, devices are 

fabricated to attempt to measure the oscillators. Figure 4-6A shows the PCB used to 

measure the individual devices. Design and schematics are shown in Appendix 4-2. 

External contacts are made using BNC cables. Power and ground is supplied from an HP 

4156A semiconductor parameter analyzer. The load from the external probing is 

alleviated using an LM6172 100 MHz operational amplifier configured as a unity gain 

buffer. Output measurements are collected with a Tektronix TDS 2024B oscilloscope. 

Detailed diagram of measurement included in Appendix 4-3. Figure 4-5B shows 

completed devices with successful wirebonds to the board. The final design of the 

wirebond contact used large, extended sections of the titanium/gold stack in order to 

more easily allow the physical masking of the contact during the encapsulation 

procedure.  

Unfortunately, the CdSe NC devices are found to be of very poor performance 

following the wirebonding procedure. This can be seen in Figure 4-6C where the 

capacitors and inductors in the oscillator slowly charge and momentarily oscillate. 

However, the CdSe NC-TFTs did not begin to drive the oscillation. The devices had 

degraded to mobilities of ~1 cm2/Vs, despite being encapsulated. As the conductivity of 

the film is directly proportional to mobility, the dielectric relaxation frequency is 

therefore also directly proportional to mobility, assuming the other parameters remain 

constant. This would imply a theoretical cutoff frequency of ~1.5 MHz, well below the 

theoretically predicted oscillation of ~15MHz for a 1µH external inductor. The 
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degradation issue has multiple possible sources. It is possible that aggressive handing 

while mounting the substrate on the PCB compromised the encapsulation layer. It is also 

possible that this thickness of Al2O3 is not adequate to create an impermeable layer on 

Kapton on top of the IC structure. More careful handling of the sample as well as the use 

of thicker and potentially more robust encapsulation, such as an additional polymer layer 

on top of the alumina layer to further protect from devices from exposure and place the 

devices in a neutral strain axis, make it likely that future iterations of these devices will 

be successful.  
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Figure 4-6 (A) Photograph of complete printed circuit board used for probing CdSe NC-
TFT oscillators with sample mounted (lower middle) for wirebonding. (B) Photograph of 
complete devices wirebonded to the PCB. (C) Oscilloscope readout of measured 
oscillator with a 1 µH inductor and CdSe NC TFTs with channel length L=10 µm and 
channel width W=800 µm. 

 

4-4: Conclusions   

 We demonstrate methods to fabricate CdSe NC oscillators targeting MHz 

frequency operation on a flexible substrate. These methods include the development of 

inset gate electrodes allowing for transistors operable at higher voltages as well as the 

development of contacts which allow a wirebond contact on a Kapton substrate. 

Simulations of this structure indicate the probability of MHz frequency oscillation. Future 
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work will continue to pursue functional devices to show this operation in practice. 

Successful measurements will allow us to develop methodologies for directly probing the 

dielectric relaxation frequency; applicable not only on CdSe NC thin films, but also for 

probing transport in other unconventional semiconducting materials. In addition, 

successfully demonstrated CdSe TFTs in this frequency range will also open the door for 

the development of CdSe NC-ICs for high-performance sensors, displays, and audio 

applications.  
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4-5: Appendix 

Appendix 4-1: PSpice Layouts for CdSe device and oscillator circuit simulation.  

Simulation of a custom first-order model for CdSe NC TFTs in a cross-coupled oscillator 
structure. Parameters used for simulation extracted from measurements of a sample of 
CdSe transistors with photopatterned electrodes on a Kapton substrate.  
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Appendix 4-2: Circuit schematic and layout of measurement PCB  

Each oscillator and TFT is independently selectable using switches on the board in order 
to allow each one to be probed individually. 
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Red lines represent traces on the top layer of the PCB. Light blue background is a ground 
plane on the bottom layer of the PCB for noise reduction. 
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Appendix 4-3 : Diagram of Oscillator Measurement 

 
The top wirebond connections are provided with direct correlation to the location and 
number of devices. Bottom wirebond connection is a shared ground line. 
For the selection switches, the two banks on the left and right are labeled as pairs for each 
FET or oscillator with width and length of the devices in microns. The center bank 
changes the function of the board. Starting from the left:  

• Osc to Series – Connects the oscillator switch bank to the series inductances and 
output buffer inputs.  

• Osc to Input – Connects the oscillator switch bank directly to the Left and Right 
terminals on the right of the PCB. 

• VIA Test – Connects a VIA test structure directly to the Left and Right terminals 
on the right of the PCB. (Osc to Input switches must also be active) 

• R Test – Connects a test structure shorting the right terminal to ground to the 
Right BNC terminal on the right of the PCB. (Osc to Input switches must also be 
active) 
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• L Test – Connects a test structure shorting the right terminal to ground to the Left 
BNC terminal on the right of the PCB. (Osc to Input switches must also be active) 

• L-R Test - Connects a test structure shorting the right terminal to the right 
terminal to the Left and Right BNC terminals on the right of the PCB. (Osc to 
Input switches must also be active) 

• FET to Input – Connects the FET switch bank to the Left and Right BNC 
terminals on the right of the PCB.  

Three terminal connections to the parameter analyzer using the 3 top BNC connections 
on the right provide power for oscillators or measure FETs. 
Positive and negative voltages >1V greater than anticipated output must be provided to 
the buffer for buffered output.  
Output to the oscilloscope is probed directly on each end of the oscillator via independent 
buffers. Each output will be ~180º out of phase. Differential voltage must be calculated 
externally.  
Screw terminals are provided for discrete inductor connection using though-hole parts.  
Terminals are provided for adding additional coupling elements and filtering on the 
output. They are optional, but included for additional flexibility to tune or filter the 
oscillation. 
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Chapter 5 : NFC Powered Flexible Electrochromic Displays  

5-1: Introduction 

When deploying electronic equipment, one of the primary concerns is how the 

device will receive power. When a small, portable package is desired, batteries can be 

cumbersome, expensive, and limited in their lifetime. Therefore it is preferable to have a 

permanent external supply or the ability to provide energy on-demand. Near Field 

Communication (NFC) has become a prime option for providing small amounts of on-

demand power to a portable device.  

NFC chips work by the principle of inductive power transmission. This is 

achieved by using two coils of wire in close proximity. The coil in the transmitter 

provides a focused radio frequency (RF) signal which can be received by a second coil of 

wire in close proximity. The electric signal in this second coil of wire can be rectified to 

produce a DC voltage adequate to power small devices. Data can be transmitted over this 

link by modulating the transmission frequency creating a simple link between two 

devices, where only one of which is directly powered. Applications for these devices are 

typically simple communication chips for radio frequency identification (RFID) tags, 

such as those found in access control tags and credit cards. 

Here, we look to create an interactive experience on product packaging. Taking 

advantage of the NFC capabilities of many smartphones, we can harvest the power from 

the NFC link to activate a simple display. This allows the consumer a dynamic 
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experience with the product as well as the potential for the smartphone to interact with 

the product using the traditional NFC communication link. 

For simplicity, a static display technology was chosen. The development of 

flexible display technology focuses on the ability to make a dynamic display capable of 

displaying arbitrary images.1,2 However, simpler bimodal systems have also been 

developed with the capability to display only a single image. One of the simplest systems 

is an electrochromic display.3 These are films which change color when an electric 

potential is applied to them and can only display one color. A simple pattern can be 

applied to show a single desired image. Given the space constraints and the desire to keep 

the cost of this system minimal, this was deemed the best option for this application. 

Recent literature on electrochromic displays has shown the possibility to create 

flexible displays operable at low voltages with multiple colors.3–5  These displays are 

produced with a simple structure and straightforward chemical procedures. Again, 

allowing a focus on the minimal cost of the devices. In addition, their physical flexibility 

allows for their placement in a larger variety of locations. This gives them the ability to 

be incorporated onto food packaging, which in many cases is a plastic bag. Coupling 

these flexible displays with commercially produced NFC products allowed for this 

demonstration of a simple display activated by a smart phone NFC transmitter. 
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5-2: Materials and Methods 

 All chemicals are purchased from Sigma-Aldrich. The electrochromic material is 

formed by a combination of an electrochromic dye, dimethyl ferrocene (DmFc), 

poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)), and an ionic liquid 

(1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) in a mass ratio of 

3:1:12:60, respectively. For the blue color, methyl viologen hexaflourophosphate 

(MVHFP) is used as the electrochromic dye3; for red, diheptyl viologen 

hexaflorophosphate (DHVHFP) is used4. These chemicals are produced with a simple ion 

exchange reaction in DI H2O. 100 mg of either methyl viologen dichloro hydrate* (blue, 

Figure 5-1A, B) or diheptyl viologen dibrobide† (red, Figure 5-1C) is dissolved in 5 mL 

of DI H20. Excess (>200 mg) ammonium hexaflourophosphate is dissolved separately in 

5 mL of DI H2O. The solutions are then combined into a single container. The desired 

material precipitates from this reaction and is filtered from the slurry, washed with DI 

H2O, and placed under vacuum overnight to dry.  

Differing from the literature procedure, these chemical are dispersed in acetone 

progressively. As the base form of P(VDF-co-HFP) is a pellet weighing approximately 

40 mg, it is used as a discrete basis for the mixture. The solid polymer is very difficult 

and time consuming to dissolve in solvent when other materials are present, but can be 

easily dissolved when it is alone in the solvent. Therefore, the polymer is independently 

                                                 
* IUPAC ID: 1,1′-Dimethyl-4,4′-bipyridinium dichloride  
† IUPAC ID: 1,1′-Diheptyl-4,4′-bipyridinium dibromide 
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dissolved in 500 µL of acetone at 50°C.  An exact weight of each pellet is recorded and 

used to determine the required amounts of the other chemicals based on the mass ratio 

specified above. The appropriate amount of DmFc and MVHFP or DHVHFP is then 

added to create an acetone mixture and vortexed briefly at room temperature. If MVHFP 

is being used as the dye, 100 µL of dimethylformamide (DMF) can then be added to the 

mixture to increase the polarity of the solvent. Finally, the appropriate amount of ionic 

liquid is added. It was found in experiment that if the DMF is not added to the MVHFP 

mixture, the addition of the ionic liquid will reduce the polarity of the solution to the 

point that the some of the MVHFP precipitates. DMF is unnecessary for DHVHFP dye.  

As a substrate for the electrochromic material, an SU-8 pattern is created on the 

conductive side of an ITO-coated PET substrate. To create this layer, SU-8 2010 

photoresist is spin coated directly onto ITO-coated PET pieces at 4000 rpm for 30 

seconds creating an approximately 10 µm thick layer of SU-8. A piece of cut glass with 

soft polydimethylsulfoxide film (Trade name Gel-Pak) is used as a carrier to keep the 

PET stable on the spincoater. The substrates are then removed from the carrier and soft 

baked for 3 minutes at 95°C. The SU-8 is exposed using a Nanonex NX2600 mask 

aligner with an exposure of approximately 300 mJ/cm2
.
 The photomask used for the 

exposure is a Hershey corporate logo, a Hershey Kiss, or a Reese’s cup logo pattern 

printed onto transparency film by a laser printer with a minimum dimension of 300 dpi 

(~90 µm) mounted by electrostatic forces to a blank piece of borosilicate glass. As the 

patterns are large, the precise dosing is not important and longer exposure times yields a 
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more robust cross-linked SU-8 product. The pieces are then baked for 4 minutes at 95°C. 

The substrates are then placed into a bath of SU-8 developer for 5 minutes while being 

periodically agitated. The substrates are then rinsed with isopropanol and dried with 

nitrogen. The remnant SU-8 which is exposed and cured during this process represents 

the area of the screen which will not change color when the electric field is applied. Even 

though this will be part of the final product, the residual SU-8 is not hard baked, as 

recommended by the manufacturer, as this makes the SU-8 hydrophobic. This 

hydrophobicity causes bubbling and wrinkles in the electrochromic film as it repels the 

electrochromic ink from the surface during deposition and curing.  

This electrochromic ink is then deposited on the conductive side of ITO-coated 

PET (5 mil thickness, 60 Ω/sq) with an SU-8 pattern affixed with polyimide tape to a hot 

plate at room temperature. If DMF is not added to the MVHFP solution, the precipitated 

MVHFP is simply filtered from the solution with a 0.2 µm pore nylon syringe filter prior 

to deposition. It is important for the initial deposition to be done at room temperature as 

rapid evaporation of the dispersing solvent causes non-uniformities in the film. 

Immediately following deposition, the hot plate is turned on to 50°C and the sample is 

cured for 30 minutes in order to evaporate all residual solvent. While this extended curing 

time is not desirable, it was found that increased temperatures caused the formation of 

bubbles in the solvent which cause imperfections in the final film. If DMF is added to the 

solution to prevent precipitation of MVHFP, this curing time must be increased to 60 

minutes to fully evaporate the solvent.  
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Following deposition of the electrochromic material on the patterned substrate, a 

second piece of ITO-coated PET is placed on top of the electrochromic material with the 

conductive side in contact with the electrochromic material to form the final structure 

(Figure 5-1A). Either Scotch double sided tape or Permatex 66B silicone RTV sealant 

applied by cotton swab was used to adhere the two layers together. As the electrochromic 

layer has very weak adhesion, this additional adhesive provided stability to the structure.  

 

Figure 5-1 (A) Schematic of the electrochromic display structure. (B) Circuit diagram of 
NFC power harvesting circuit connected to electrochromic display. 

 

The NFC circuit which powers the display consists of three stages, as shown in 

Figure 5-1B. The first is an NFC-enabled smartphone and a KKMoon radio frequency 
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identification (RFID) key-tag providing the power source. The second stage is a simple 

diode rectifier and filter capacitor. The third stage is a reverse biased Zener diode acting 

as a voltage regulator and an additional filter capacitor. Connection between this circuit 

and the display was provided using alligator clips or zero insertion force (ZIF) 

connectors. 

5-3: Results 

Initial displays were successful for both blue (Figure 5-2A,B) and red (Figure 5-

2C) dyes. The optional DMF added to the blue dye allowed more of the MVHFP to 

remain in solution and created a darker resultant display. For further demonstrations of 

this work, the optional DMF is not used as shorter annealing times are preferred. 

 

Figure 5-2 Photographs of electrochromic displays with (A) MVHFP dye, (B) MVHFP 
dye with added DMF, and (C) DHVHFP dye. 

 

The displays are tested at applied voltages of 2.5V to 5V. Initial testing is done at 

5V using a USB charger or computer USB port as the power source. This would 
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frequently cause a burn-in effect in smaller displays, where a residual brown image is left 

after the screen is activated and the display will fail to change color when this bias is 

applied. (Figure 5-3A) This is the result of an electrochemical breakdown of the ionic 

liquid. 2.5V commercial voltage regulators are used during initial testing to bring the 

voltages down to a level which did not cause this effect. However, the lower applied field 

extended the time required to complete the electrochemical reaction. This led to slower 

turn-on transients. (Figure 5-3C,D) These turn-on transients could be reduced by using 

more dispersing solvent in the ink thereby reducing the thickness of the screen. (Figure 5-

3 B) The procedure outlined here reflects this increase in solvent to keep turn-on times 

minimal.  
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Figure 5-3 (A) Photograph of electrochromic display with burned-in image. (B)  
Photograph of thin MVHFP dye display after 5 seconds active. Photograph of thick 
MVHFP dye display after (C) 5 seconds and (D) 10 seconds active. 

 

When the switch was made to testing with the NFC link, the regulator output 

failed to activate larger displays. The display was drawing more current than the voltage 

regulator could provide from the NFC link without depleting the output voltage due to the 

source resistance of the rectified signal as well as the regulator’s own internal losses. 

These effects led to the switch to a Zener diode regulator structure when using the NFC 

link. This allows the maximum available power to be drawn directly from the link and the 

diode to simply act as a safety measure in case of a large input signal.  
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The resulting NFC-powered monochromatic displays were successful, as shown 

in Figure 5-4A. The displays turned on over the course of several seconds and bleached 

over the course of several minutes. The extended bleaching time can actually be desirable 

in an application as the display will not need to remain powered to keep the image 

visible. As this is an electrochemical reaction, it was found that the bleaching time could 

be moderately shortened by shorting the two contacts of the display. This may be 

possible in more complex active circuitry or by using a rectifying diode with a higher 

reverse bias current in a fully developed product.  
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Figure 5-4 Photograph of (A) monochromatic and (B) polychromatic electrochromic 
display after being activated by the NFC link. (C) Photograph of monochromatic display 
being bent. 

 

 As an extension of the project, polychromatic devices were made which had both 

red and blue electrochromic material on a single substrate. (Figure 5-4B) The separation 

of the red and blue material was accomplished by careful manual deposition of the 

electrochromic materials into separate sections of the SU-8 pattern. This demonstration 

shows the viability of creating displays with many different colors within the same 

display.  We also tested the functionality of displays under bending. As is shown in 

Figure 5-4C, the display was able to be activated when manually bent, thus displaying the 

viability of these displays to be placed on product packaging where flexibility is required. 
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5-4: Conclusions  

 We demonstrate flexible, electrochromic displays with SU-8 patterns in multiple 

different colors. We integrate these patterned devices with an NFC device which can 

power them remotely without the use of a battery. This would allow for the display to be 

placed on packaging and used without concern for battery lifetime. We also show how 

timing can be controlled by modulating the thickness of the devices, allowing the 

potential for time-variant applications. We further demonstrate devices with multiple 

colors on a single substrate, allowing for polychromatic images to be displayed. These 

developments could be coupled with patterned or printed electrodes and more advanced 

active circuitry, opening the door for the development of mass producible displays on a 

flexible substrate, providing a dynamic, interactive user experience.   
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Chapter 6 : Future Directions 

6-1: Nanocrystal Oscillators 

Unfortunately, the CdSe nanocrystal (NC) oscillators, described in Chapter 4, 

were not successfully measured. A successful measurement is crucial for demonstrating 

the potential high-frequency applications of CdSe NC integrated circuits (IC) as well as 

probing the motion of carriers in the film. In order to create successful NC oscillators, 

there are two hurdles which remain: improved air stability and a reliable method for 

affixing the Kapton sample to the PCB. Both of these issues can be remedied without too 

much additional development. 

Due to extraneous factors, the devices which were wirebonded to the printed 

circuit board (PCB) spent many days in atmosphere. Based on the original work 

demonstrating air stable transistors, this should not be an issue as they should be stable in 

air for many days. However, it has been observed that the devices fabricated in the 

integrated circuit structure are not air stable; the devices degrade after only a couple days 

exposed to air. This is believed to be due to the increased surface roughness of the 

devices creating large steps that the aluminum oxide encapsulating media cannot cover, 

despite being conformal. Increased thicknesses of the encapsulating layer was attempted 

during this work, but was ultimately unsuccessful as of the writing of this dissertation. It 

is believed that the use of a thicker encapsulation layer and possibly an additional 

polymer layer, to provide additional device protection as well as reduce strain on the 

encapsulating film will solve this issue and yield successful results.  
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The issue of substrate connection stems from the inherent flexibility of the Kapton 

and the nature of wirebonding. Initial testing used double-sided adhesive tape under the 

Kapton to attach it to the PCB. Unfortunately, this proved to be too soft for wirebonding 

as the wirebonding tip would not apply enough pressure to create a successful bond. 

Therefore, single-sided tape is used to attach the Kapton to the PCB. By having the 

Kapton directly on the PCB surface, this provided a hard enough surface for successful 

bonds to be made. However, it is very difficult to get the substrate perfectly flat on the 

PCB and the process of doing this bends and stretches the sample, potentially damaging 

the devices and encapsulating layer. The uneven surface that results from this procedure 

makes bonding of the full sample difficult, as the sample would move up and down 

during bonding when the needle presses on the surface. While this still allows the 

progressive testing of all devices, it is believed that leaving a larger blank section of the 

substrate at the edges to accommodate the tape, which was unfortunately trimmed earlier 

in the process, as well as more carful handing could remedy this issue.  

6-2 : Multi-Stage Integrated Circuits 

 In order to further the applications of these devices for digital logic, they must be 

developed into more complex logic designs. One suggested configuration for this is the 

development of an adder. An adder is very important for the development of digital logic 

as it is one of the basic parts of an arithmetic logic unit, a central component of a 

microprocessor. This would involve the interconnection of many cascaded NAND gates, 

as shown in Figure 6-1. This would demonstrate the ability of one set of devices to switch 
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another, also referred to as noise margin. Cascaded logic gates were only demonstrated 

for inverters in Chapter 2. A further demonstration of cascaded multi-input devices is 

crucial to the future development of logic applications from nanocrystal integrated 

circuits. 

 Figure 6-1 (A) Logic diagram of a 1-bit full adder. (B) Circuit Diagram of a unipolar 
CdSe NAND logic gate. 

 

6-3 : Non-Linear CdSe NC-TFT Modeling 

 In a traditional crystalline silicon semiconductor transistor, there are two well-

defined regions of operation; linear and saturation. These regions can be modeled from 

theory using the following equations, usually referred to as the square-law model, with 

carrier mobility µ, oxide unit capacitance Cox, threshold voltage VT, and width and length 

of the active channel W and L, respectively: 

𝐼𝐷 = 𝜇𝐶𝑜𝑥
𝑊
𝐿
�(𝑉𝑉𝐺𝑆 − 𝑉𝑉𝑇)𝑉𝑉𝐷𝑆 −

𝑉𝑉𝐷𝑆2

2
�   (Linear) (0 > 𝑉𝑉𝐷𝑆 > 𝑉𝑉𝐺𝑆 − 𝑉𝑉𝑇) 

𝐼𝐷 =
𝜇𝐶𝑜𝑥

2
𝑊
𝐿

(𝑉𝑉𝐺𝑆 − 𝑉𝑉𝑇)2  (Saturation) (𝑉𝑉𝐷𝑆 > 𝑉𝑉𝐺𝑆 − 𝑉𝑉𝑇) 
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 These models hold true for most calculations. However, a correction, referred to 

as the Early Voltage (λ), is usually added in the saturation regime which accounts for a 

linear increase in drain current as drain-to-source voltage increases. This is most 

prominent in small channel devices (L<1µm) and is usually attributed to a modulation in 

effective channel length under high bias. This factor is added to the standard equation, as 

follows, with I0 representing the uncorrected saturation drain current: 

𝐼𝐷𝜆 = 𝐼0(1 + 𝜆 𝑉𝑉𝐷𝑆) 

 This model works well for modeling crystalline semiconductors. However, in 

many CdSe NC-TFTs, a non-linearity is observed in saturation. This non-linearity causes 

the drain current in the saturation regime not to flatten and increase linearly, but to curve 

and in some cases even decrease as the drain-to-source voltage is increased, as shown in 

Figure 6-21. A physical explanation of this has not yet been found, but we believe it may 

have some basis in high-velocity lattice scattering as electron velocity increases with 

increased potential. In an attempt to characterize this effect, we developed a second-order 

model to fit the transistors. 
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Figure 6-2 Output characteristics (IDS vs. VDS) for a CdSe TFT fabricated on (A) silicon 
wafer with SiO2 dielectric and (B) Kapton with Al2O3 dielectric. (Figure A reproduced 
from Fafarman, A., et al, 2012) 

 

 The model we developed adds a second term to the channel modulation 

parameters in the saturation region of the square law model of transistor operation, as 

follows, with λ` representing the added second-order term: 

𝐼𝐷𝜆` = 𝐼0(1 + 𝜆 𝑉𝑉𝐷𝑆 + 𝜆`𝑉𝑉𝐷𝑆2 ) 

The linear regime is assumed to be of the standard form without correction terms. In the 

linear model, the correction factors are found to have a discernable trend and raise the 

complexity of the model beyond a reasonable computation time for a least sum of squares 

fitting algorithm. 

 Using this model and a large set of data collected from an IC sample fabricated 

with the methods described in Chapter 2, we perform curve fitting of several devices in 



106 

 

MATLAB. The curve fitting algorithm used the assumption that there is a crossover point 

between the linear and saturation regimes where the value of each fit is equal. It then 

iteratively fits the data, assuming each point in the data to be the potential crossover, 

using the linear model to fit the data from VDS=0 to the proposed crossover point and the 

saturation model for the data from the crossover point until VDS=5V, the maximum 

voltage in the data being fitted. This process continues, saving each potential set of fitting 

parameters, until an inflection point is found where the difference between the fits of the 

two sections of the curve at the crossover point is closest to converging. The parameters 

extracted from this modeling are shown in Figure 6-3.  
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Figure 6-3 Plots of fitting results vs. channel length for different drain voltages for 
second order CdSe TFT model for (A) I0 (constant term), (B) Early Voltage (linear term), 
and (C) second-order correction term. Each point represents a fit of measurements from a 
single device. 2V and 3V are excluded from parameter results due to wide variation in 
results. 

 

 The results suggest a correlation between the channel width and the value of the 

fitted parameters. While the fitting parameters appear to show a trend, further exploration 

is needed.  Testing on multiple samples from different fabrication and exchange 

techniques should be performed to characterize the variation in the parameters. For this 

data, there appears to be a correlation between channel sizing and fitted parameters. 

However, it is not yet known if this is a factor of purely the width or overall sizing and 



108 

 

the reasons for it. If this model can be explored and developed to accurately represent the 

devices, including this non-linearity, a better understanding of carrier movement may be 

obtained as well as the development of an advanced model giving us the ability to 

perform more accurate simulations of NC-TFT ICs in SPICE. 

6-4 : CdSe Nanocrystal Photopatterning 

 One of the remaining limitations of CdSe NC-ICs in this work is that the NC thin 

film is not patterned. This means that the NC material covered the entire surface of the 

substrate and not just in the active regions. This has implications to device design as well 

as device performance. For design, the inability to pattern the materials limits us to 

unipolar ICs as we cannot deposit a p-type material for complimentary ICs. For 

performance, the existence of a contiguous film leads to undesirable coupling between 

devices. It also introduces parasitic transistors between the gate and source contacts as the 

gate metal travelling under the space between the contacts modulates the semiconducting 

material.  

 Patterning methods for this material have been previously developed in our group. 

The method is based on the discovery of the removal of CdSe NC films by tetramethyl 

ammonium hydroxide (TMAH) developer common in photolithographic processing. This 

can be coupled with a mask of photoresist to create a pattern in the CdSe NC thin film.   

 The process is done by placing photoresist directly onto a CdSe NC thin film 

without prior annealing. The pattern is then applied which exposes the resist in areas 
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where it is desired to remove the CdSe NC thin film. The developer is then used to 

selectively etch exposed positive photoresist and the underlying CdSe NC thin film by 

soaking the film in a bath of a TMAH developer for 3-5 minutes. This leaves behind a 

CdSe NC thin film pattern behind under unexposed photoresist. The unexposed resist can 

then be easily removed with a brief bath in acetone, which does not remove the CdSe NC 

thin film. Indium doping can then be used to recover the CdSe NC thin film from the 

chemical exposure. Representative samples are shown in Figure 6-4A,B.    
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Figure 6-4 Photograph of patterned CdSe NC thin film on silicon wafer coated with a 
SiO2/Al2O3 dielectric stack following (A) solution and (B) hybrid exchange. (C) 
Comparison of transfer characteristics (ID-VGS) of unpatterned and patterned samples 
form solution and hybrid exchanges. 

 

 While the method could produce patterned results, the performance of the 

recovered CdSe NC film is often degraded, as shown in Figure 6-3C. This reduction is 

mitigated to some extent by performing a hybrid exchange (Figure 6-4B) and a cleaner 

pattern is observed. However, depleted device performance is still observed. It is believed 

that the process, while leaving a film which looks visually acceptable, may damage the 
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film in other ways degrading the performance. In order to fully develop this procedure, 

this damage must be characterized and mitigated to restore high-performance CdSe NC-

TFTs following pattering.   

 Other methods have been more recently developed by the Talapin Group which 

use photosensitive ligands to pattern the CdSe NC films2. The lift-off is then performed 

using polar solvents as developers rather than the TMAH developer. The resulting 

patterned films show only marginally degraded performance versus their prior reports. 

However, different ligand chemistries are used in this application which have not been 

fully explored and may not be compatible with the IC fabrication procedures on flexible 

substrates. Further development of these methods, either through incorporation of 

photosensitive ligands with thiocyanate ligands or development of IC fabrication 

procedures with these different ligand chemistries, may provide another route for 

patterned CdSe nanocrystals.  
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