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ABSTRACT

SIMULATION & EXPERIMENT
LEARNING FROM KINASES IN CANCER

E. Joseph Jordan
Ravi Radhakrishnan

The decreasing cost of genome sequencing technology has lead to an explosion of informa-
tion about which mutations are frequently observed in cancer, demonstrating an important
role in cancer progression for kinase domain mutations. Many therapies have been devel-
oped that target mutations in kinase proteins that lead to constitutive activation. However,
a growing body of evidence points to the serious dangers of many kinase ATP competitive
inhibitors leading to paradoxical activation in non-constitutively active proteins. The large
number of observed mutations and the critical need to only treat patients harboring activat-
ing mutations with targeted therapies raises the question of how to classify the thousands
of mutations that have been observed. We start with an in depth look at the state of knowl-
edge of the distribution and effects of kinase mutations. We then report on computational
methods to understand and predict the effects of kinase domain mutations. Using molecular
dynamics simulations of mutant kinases, we show that there is a switch-like network of la-
bile hydrogen bonds that are often perturbed in activating mutations. This is paired with a
description of a software platform that has been developed to streamline the execution and
analysis of molecular dynamics simulations. We conclude by examining a machine learning
method to demonstrate what kinds information derived from protein sequence alone have
the most value in distinguishing activating and non-activating mutations.

iv



Contents

ACKNOWLEDGMENT iii

ABSTRACT iv

LIST OF TABLES viii

LIST OF ILLUSTRATIONS ix

1 Introduction 1
1.1 Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Kinase Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Kinase Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Activation Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 KE salt bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 αC-in vs αC-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.4 DFG-in vs DFG-out . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.5 R-spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Philosophical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Mutations 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Analysis of COSMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Mutations in all proteins . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Frequently mutated residues . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Frequently mutated PFAM domains . . . . . . . . . . . . . . . . . . 13
2.2.4 Kinase subdomain mutation distribution . . . . . . . . . . . . . . . . 13

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Description of Kinase Mutations . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Similarities of kinase mutations . . . . . . . . . . . . . . . . . . . . . 19

3 Kinase MD 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Kinase Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Kinase Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Computational studies . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Analysis of kinase activity . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 H-bonds analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Solvent accessible surface area analysis . . . . . . . . . . . . . . . . . 37

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 H-bonds false positives . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Utility of SASA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.3 Importance of R-spines and H-bonds . . . . . . . . . . . . . . . . . . 41

4 Biophyscode 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Existing MD tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Need for a GROMACS framework . . . . . . . . . . . . . . . . . . . 44
4.1.3 Need for “big green button” . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Inefficiency in standard methods . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Modernizing methods . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Our objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 The BioPhysCode method . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Svm 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Application of machine learning to protein sequences . . . . . . . . . 57
5.1.2 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 Construction of training set . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Creation of feature vectors . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 SVM parameter search . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.4 SVM model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Selection of model parameters . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 SVM test set performance . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 SVM performance on synthetic datasets . . . . . . . . . . . . . . . . 64

5.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion 66
6.1 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



Appendices 67

A Kinase mutation experimental measurements 67

vii



List of Tables

1.1 Major kinase families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 COSMIC frequently mutated proteins . . . . . . . . . . . . . . . . . . . . . 12
2.2 COSMIC frequently mutated residues . . . . . . . . . . . . . . . . . . . . . 13
2.3 COSMIC mutations mapped to PFAM domains . . . . . . . . . . . . . . . . 14

3.1 Experimental characterizations of mutant kinases . . . . . . . . . . . . . . . 29
3.2 H-bonds occupancy classificatory power by subdomain(s) . . . . . . . . . . 32
3.4 Measures of binary classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Labile H-bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 H-bonds at the same position in kinase domain . . . . . . . . . . . . . . . . 36
3.6 H-bonds occupancy classificatory power by residue(s) . . . . . . . . . . . . . 37

5.1 Results for separate iterations with different SVM model parameters. . . . . 63
5.2 Prediction results for a number of different methods. . . . . . . . . 63
5.3 Prediction results on synthetic datasets. . . . . . . . . . . . . . . . . . . . . 64

A.1 Experimental characterizations of mutant kinases . . . . . . . . . . . . . . . 67

viii



List of Figures

1.1 ALK conformations and subdomains . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Nuances among BRAF structures . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Several kinases with large number of mutations . . . . . . . . . . . . . . . . 15

3.1 ALK mutation catalytic and transformation assays . . . . . . . . . . . . . . 30
3.2 Inactive Hbonds contact maps . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 H-bonds occupancy plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 H-bonds occupancy plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Schematic of the framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Structural Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



Chapter 1

Introduction

I insist on the fact that there is generally no growth but only a luxurious
squandering of energy in every form!

Georges Bataille The Accursed Share

1.1 Cancer

In 2014 there were 2,626,418 deaths recorded in the United States. Of these, 591,700 were
recorded as being the result of malignant neoplasm, cancer, accounting for 22.5% of deaths
and second only to heart disease as the leading cause of death in the most recent year with
available data from the Centers for Disease Control and Prevention. Interestingly, many
more Americans under the age of 35 die from accidents, murder, or suicide, than from
cancer. It is not until the age of 35 that cancer becomes the leading cause of death for
Americans, a figure which holds true until the age of 80, when heart disease becomes the
leading cause of death. Over the last 60 years, the proportion of deaths from heart disease,
stroke, and lower respiratory diseases (e.g. pneumonia) have decreased significantly while
cancer has caused a relatively constant fraction of mortality [134] This information, when
taken together, suggests both that cancer is a very challenging problem and that if the
goal of public health policy is to increase life expectancy, resources may be better allocated
to other public health initiatives such as calming traffic or reducing access to firearms.
The importance of political interventions in public health is especially highlighted by the
fact that the two decades of the twentieth century that saw the largest increases in life
expectancy in Britain were the 1910s and 1940s, despite the massive loss of life incurred
by the world wars during these decades, due to significant increases in public support for
social services introduced to support production for the war efforts [222]. Nonetheless, over
the past 30 years, mortality rates of lung, prostate, breast, and colorectal cancers have
declined and 5 year survival has increased by 20% in blacks and 24% among whites [1].
This progress should not be gainsaid, nor should the concomitant increase in our collective
understanding of the underlying biological processes driving cancer progression, which this
thesis will hopefully be a small contribution to.

Tumorigenesis was first posited to be an evolutionary process by Nowell in 1976 [178].
Since then, the idea that cancer cells undergo selection on the path from normal to cancerous

1



cell has only gained traction [241]. This idea is predicated upon the knowledge that tumors
are composed of a heterogeneous population of cells, in terms of mutations, expression
levels, somatic copy number, and epigenetic factors [88, 89]. These factors are then selected
upon for robustness and ability to proliferate, alter the tumor microenvironment, and invade
neighboring tissues [241]. Of all the functional alterations that a cancer cell undergoes, one
of the easiest ones to understand conceptually, and also to measure unambiguously, is that
of mutations which may alter protein function. Mutations that ablate a protein’s regular
function are often observed in cancer cell lines, especially among tumor suppressors such as
TP53 and RB1 [88, 89]. The transformation from normal to cancerous cell is often marked
by a gradual accumulation of mutations over time that eventually increase the ability of the
cancer cell to sustain itself and reproduce [241]. Mutations that confer selective advantage
on the cancer cell line are known as driver mutations while passenger mutations are neutral
in terms of selective advantage [84]. All cells acquire mutations over their life cycle from
differentiation to senescence, with an average of 3 mutations occurring during each round
of cell division and no known increase in the rate of mutation or proliferation over the
life cycle of a healthy cell. A correlation between total number of cell divisions at age of
cancer onset and likelihood of cancer diagnosis has even been demonstrated [243, 242]. It
has also been shown that cancer cells acquire mutations at a faster rate than normal cells
and that this rate may increase over time [151]. Although some of these mutations may
affect protein splicing or regulation, these are not currently thought to contribute greatly
to cancer progression as most mutations will fall in intergenic regions or within introns of
the coding sequences of proteins [83].

One of the grand challenges of the understanding of cancer progression is to find mech-
anistic links between molecular alterations and the hallmarks of cancers such as increased
proliferation and survival, aggressive invasion and metastasis, evasion of cell death, and
increased metabolism [88, 89]. This challenge is also of clinical importance because patient
outcome to therapy (both in terms of initial response to therapy and subsequent develop-
ment of resistance to therapy) is now shown to depend on the genetic alterations (primary
or acquired) in the individual patients [11, 43, 137, 176]. Many targets for therapeutic
intervention/inhibition have been evaluated in the past few years on the basis of a strong
promise provided by preclinical investigations. Nevertheless, experience has shown that the
clinical trials are often unsuccessful when the drugs are administered to un-cohorted patient
populations. There is thus a growing consensus around the need to employ targeted ther-
apies on select populations of patients classified into cohorts based on molecular/genetic
alterations [176]. Rapid genotyping platforms and advances in sequencing cancer genomes
allow detection of genetic aberrations in clinical samples. This allows the identification of
molecular targets in each individual patient, and also the tracking of acquired molecular
changes [45] (expression [53, 105], mutation [252, 101, 233, 173], epigenetic changes [238],
post-translational modifications [208], etc.) during the progression of the disease or during
treatment. Even with quantitative patient data involving protein expression using immune
histochemistry, gene copy number and mutations using sequencing and DNA mutational
analysis, and gene expression using florescence in situ hybridization, polymerase chain re-
action or microarray technology, single-cell imaging [132], mapping this high-dimensional
data to a set of viable cellular mechanisms and using them to infer treatment options is a
daunting undertaking. A further problem is the heterogeneity of tumors [30], that might
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show differential expression, copy number, or mutation patterns within a tumor [172], in
different tumor areas within an individual [64], or in different individuals. The question
then is: how precisely can a tumor be characterized by these techniques? That is, to relate
the molecular profile of a given patient to disease prognosis and potentially to the efficacy of
therapy is a grand challenge in clinical oncology. This represents a promising opportunity
for in silico modeling approaches, and the more specific question of how to relate molecular
profile to disease prognosis is the subject of this thesis.

Recent large-scale sequencing projects have generated copious data on somatic mutations
in cancer. Tumor resequencing efforts have lead to a proliferation of data on cancer somatic
mutations [72]. This in turn has lead to efforts to computationally assess which of these
mutations are drivers and which are passengers. Most of these efforts have been adaptations
of methods developed for predicting whether a single nucleotide polymorphism (SNP), not
necessarily cancer related, is deleterious to protein structure and function. Among these
methods, the most popular are sequence alignment or structure based, machine learning,
and statistical. The sequence- and structure-based methods are fairly accurate and sensitive
over the whole genome, but are generally less accurate than protein family specific methods
[117]. The statistical methods generally try to assess deleteriousness by calculating the
difference between expected and observed mutation rates and locations (e.g. [83]), but
give no insight into why a specific mutation is deleterious. Of the protein family specific
methods, the machine learning technique support vector machines (SVM) is the most widely
used (for a more detailed discussion see chapter 5).

Alternatively, ab initio (physics-based) methods such as molecular dynamics (MD) sim-
ulations have also been employed to interrogate the effects of mutations on structure, dy-
namics, and drug interactions at the molecular level. These efforts generally reveal a more
detailed picture of how a mutation specifically alters the dynamics of a protein but are
generally reserved to study mutations that are observed quite often, as they are much more
computationally costly than statistical or machine learning based methods. There are three
MD methods that are often used in this domain: (1) nanosecond conventional MD, (2)
microsecond conventional MD, (3) enhanced sampling or free energy calculation methods
(for references on the application of these techniques to kinases, see the chapter 3). In
addition to the computational resources needed to perform MD analyses of mutations, an-
other limitation has been the absence of tools that could allow for easy set-up, completion,
and analysis of MD simulation for large numbers of mutations. This issue is addressed in
chapter 4 on the BioPhysCode software suite.

1.2 Kinase Biology

There are 518 proteins in the human genome that have been designated as containing kinase
domains, of which 478 are not classified as atypical [156]. There are several major families
of kinases, the largest of which are listed in Table 1.1 [90].

Most though not all of these catalyze the transfer of the γ phosphate from ATP to a
substrate molecule and all share a distinctive fold [109] to be described in the next section.
In this work, we will be primarily focused on the TK and TKL families, which generally have
as their substrate a serine, threonine, or tyrosine residue, often on another kinase protein.
Given the conserved nature of the kinase domain fold, the results should be applicable to
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Table 1.1: Major kinase families

Kinase family kinase family description

ACG regulate cyclic nucleotides, phospholipids, and calcium

CMGC cyclin dependent kinases and mitogen associated protein kinases (MAPK)

CAMK calcium/calmodulin regulated kinases

STE more MAPKs, homologous with yeast STE signaling pathway

TK tyrosine kinases

TKL tyrosine kinase like, usually phosporylate serine or threonine

most kinase families, especially CMGC and STE. In addition to the kinase domain, each
kinase protein may have domains involved in diverse functions related to ligand binding,
scaffolding downstream targets, determining the location of the protein in the cell, and
promoting substrate specificity [156, 205].

Kinase proteins are involved in many cellular processes such as signaling, differentiation,
and proliferation [147]. Given the role of kinases in cell signaling processes, their role in
cancers should not be surprising [89, 147, 156]. For many kinases, constitutive activation
upregulates cell proliferation, and in these cases activating mutations will be driver muta-
tions. Many kinase activating mutations have been clinically observed [72], but determining
which mutations are activating can still be quite challenging. This is due to the fact that to
establish a kinase domain mutation as a driver mutation it is usually necessary to show both
that the mutation leads to increased kinase activity in the mutant relative to the wild type
protein, as well as to show that this increased activity can lead to increased phosphorylation
of downstream targets or increased capacity for transformation (ability to proliferate in the
absence of growth factors) in the appropriate cellular context [254, 24, 21]. Even this may
be insufficient as there are cases where mutations lead to loss of kinase activity but still lead
to increases in phosphorylation of downstream targets [94]. While it is unlikely that any
computational method could capture all the nuance of the full biological system, the time
and expense required to investigate kinase domain mutations in vitro and in vivo should be
and has been a call to arms for modelers seeking to understand these complex processes.

1.3 Kinase Structure

Kinases are composed of an N-terminal lobe composed mostly of β sheets and a C-terminal
lobe composed mostly of α helices. They also have large conformational differences between
their active and inactive forms [109] (see Figure 1.1). The largest differences between the
active and inactive conformations of kinases are found in the activation loop and αC helix,
though other differences also exist. These differences have lead to extensive investigation
of how clinically observed mutations disrupt the conformational equilibrium between the
active and inactive states, potentially impacting catalysis (see chapter 2 for information on
biochemical analysis).
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Figure 1.1: ALK conformations and subdomains

1.3.1 Activation Loop

In the active conformation the activation loop (or A-loop) exists in an extended conforma-
tion, allowing ATP to bind in the nucleotide binding pocket, with the aid of the glycine rich
nucleotide binding loop (also referred to as the P-loop). In the inactive conformation the
activation loop sits more or less on top of the catalytic loop (or C-loop), which generally
prevents nucleotide binding, though this is not the case in ALK which has been shown
to bind ADP in an inactive conformation [146]. At any rate, correct substrate binding is
prevented in the inactive conformation [109]. The ALK inactive conformation in Figure 1.1
displays a short α helix in the activation loop. This is not the case in all inactive kinase
structures (e.g. in some other members of the insulin receptor kinase family, of which ALK
is a member [12]), but is a common feature of inactive conformations (e.g. EGFR [271],
SRC, and CDK [109]). Another common feature of the active conformation is phosphoryla-
tion of residues in the activation loop. In ALK there are 3 activation loop tyrosines that can
be phosphorylated, though evidence supports the claim that only one of these residues is
required for activation [61] while in EGFR there is only one tyrosine in the activation loop
and it has been shown to be dispensable for full EGFR activation [267]. As a final example,
BRAF, a serine/threonine kinase, has an activation loop serine which must be phosphory-
lated for full activation and an activation loop threonine which is dispensable for activation
[269]. Without burying the lede in a flurry of examples, kinases have subtle differences in
activation loop in the inactive conformation which are important for specificity and regula-
tion while they generally have similar activation loop structures in the active conformation,
generally accompanied by phosphorylation of activation loop residues [109, 147].
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1.3.2 KE salt bridge

For a kinase to be active, it must bind ATP. Attendant upon this binding is the formation
of a conserved salt bridge between a glutamate in the αC helix and an N-lobe lysine (KE
salt bridge) which is requisite for ATP binding. In the inactive conformation, the KE salt
bridge is generally not formed. In the absence of this non-covalent bond, the N-lobe is
free to separate from the C-lobe, disrupting the ability to form a catalytically competent
conformation. While a conformation can be characterized as active despite the lack of the
KE salt bridge or inactive despite its presence, catalysis is though to occur only when this
conserved salt bridge is formed [109, 136].

1.3.3 αC-in vs αC-out

Another feature that has been used to distinguish active from inactive conformations is the
rotation and placement of the αC helix. The active conformation is commonly denoted
αC-in due to the above discussed KE salt bridge constraining the orientation of the αC
helix. In the αC-out conformation the αC helix rotates by several degrees away from the
the the C-lobe, accompanied by separation of N- and C-lobes [109]. Interestingly, recent
hydrogen/deuterium exchange and molecular dynamics experiments have shown that some
kinases may have an intermediate state with a partially disordered αC helix [255, 256, 223].
The αC-in conformation is shown in Figure 1.2 (a) and (c), which are active and inactive
respectively, demonstrating that this feature by itself does not tell the whole story of kinase
activation. The αC-out conformation is shown in Figure 1.2 (b), which is an inactive
conformation.

1.3.4 DFG-in vs DFG-out

At the start of the activation loop there is a conserved Asp-Phe-Gly (DFG) motif which
plays an important role in kinase activation. Extensive studies utilizing both crystallization
and MD experiments have shown the importance of the orientation of the DFG motif
[109, 146, 250, 148, 157, 251]. In the active conformation, the Asp points towards the active
site of the kinase, which is known as the DFG-in conformation for this reason. In the
DFG-in conformation the Asp can coordinate Mg++ which are important for ATP catalysis
and binding [71]. In the DFG-out inactive conformation the Asp points away from the
active site, preventing coordination of Mg++. There is also a DFG-in inactive conformation
[251] which is observed in crystal structures of kinases much more frequently than DFG-out
inactive. Another feature of the DFG-out conformation is that the Phe occupies the active
site, abrogating ATP binding. Several computational studies have also shown that Asp
protonation promotes the DFG-out conformation [225, 152, 164]. A DFG-in conformation
is shown in Figure 1.2 (a) and (b) which are active and inactive, while a DFG-out inactive
conformation is shown in Figure 1.2 (c).

1.3.5 R-spine

Another motif often discussed in the literature on the regulation of kinase domain activation
is the regulatory spine (R-spine) [135, 239, 103]. The partisans of the R-spine have gone
so far as to claim that αC-in vs αC-out and DFG-in vs DFG-out “is irrelevant; it is the
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Figure 1.2: Nuances among BRAF structures

(a) BRAF active − αC-in, DFG-in, formed
R-spine, KE salt bridge not formed (4.7 Å)

(b) BRAF inactive − αC-out, DFG-in,
formed R-spine, KE salt bridge formed (2.8
Å)

(c) BRAF inactive − αC-in, DFG-out, bro-
ken R-spine, KE salt bridge formed (3.1 Å) (d) Alignment of all three structures

BRAF structures were completed (any missing residues were added) with BioPhysCode
utilizing Modeller as outlined in chapter 4. A was modeled off pdb 4MNE, B was based on
3TV4, and C was modeled from 1UWH.

assembly of the R-spine in its entirety that must be considered” [239]. Skepticism of con-
ceptual apparatuses such as αC helix and DFG orientation is generally warranted, but such
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unequivocal claims are themselves guilty of the sort of reification they set out to critique.
At any rate, the formation and dissolution R-spine seems to be a common theme in kinase
activation. The R-spine is composed of 4 residues, generally hydrophobic, which come into
alignment in the active conformation but are not seen to form a spine in some inactive con-
formations. These 4 residues are as follows: the His residue from the catalytic HRD motif
(the Asp in HRD is the catalytic residue), the Phe from the DFG motif, an aliphatic residue
in the αC helix, and an aliphatic residue from β strand 4 [103]. Workers have demonstrated
that mutations that promote R-spine formation in BRAF can cause constitutive kinase
activation [103]. When a kinase is in the DFG-out inactive conformation, the Phe points
towards the active site, thus disrupting R-spine formation; this is shown in Figure 1.2 (c)
while an inactive conformation with the R-spine formed is shown in Figure 1.2 (b). Con-
comitant with the transition from DFG-out to DFG-in, and thus R-spine formation, is the
formation of the KE salt bridge [135], though an active conformation with R-spine but not
KE salt bridge formation is shown in Figure 1.2 (a). Thus it does appear that a concerted
movement of a number of components is important in the activation pathway of kinases,
but this does not require us to set up hierarchies of importance surrounding which reified
components must be considered.

1.4 Philosophical Introduction

The question of the existence and importance and existence of the R-spine gives us a
focal point for analyzing some questions about reification and the scientific method. When
attempting to model any process a scientist may be confronted with a number of technical
challenges, but these are logically secondary to the question of what to model and how to
model it. The answer to these questions is generally provided by convention in the field a
scientist works in [139].

For example, an economist may be concerned with the workings of a single firm [47], an
industry or nation, or even the total economy of the planet [23], but generally not with the
entire balance of energy on the planet [16]. Our hypothetical economist must not choose a
model that is overly complex for the problem at hand; quantum mechanics won’t give any
useful insight into the functioning of the economy. Further, our economist may be shocked
to learn that their object of study (if it is the economy as quantified by GDP) is a social
construct, which was not even conceived as an object for analysis before the late 1930’s
[167]. Finally, the economist, like any social scientist, must confront the troubling situation
that any explanations that they provide for how an economy functions may themselves
impact the functioning of the economy [153].

Fortunately, we are in a slightly less precarious situation. The motions of proteins,
and the equilibria that govern their conformations, are governed by the rigorous laws of
statistical mechanics [56], which tells us how to estimate the behavior of large numbers of
atoms. Unlike our unlucky friend the economist, we do not find ourselves in a situation
where some of the atoms in the system we hope to apply statistical mechanics to are
statistical mechanics; our understanding of how we think the system works should not
affect the workings of the system.

Even this situation can be seen as rather precarious though, for we have a number
of choices to make. First, we must choose what part of the problem we are interested
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in investigating and which we want to discard in the hope that they are not relevant or
important. For example, see chapter 2 for discussion of the ambiguity around studying
different isoforms of ABL that are observed in the clinic. Second, we must chose how to
analyze our results. For example, we may think that the R-spine plays a critical role in
kinase activation and prioritize methods of analysis that can highlight this importance.
There is nothing wrong with conducting scientific experiments in such a way as to make
them easier to perform and interpret, but we must always recognize that this reductionism
may exact the heavy price that we are not looking for our keys where we lost them, but
instead only looking for our keys underneath the nearest street lamp. Even leaving aside
the question of how much of the system of interest to model or how to interpret results,
there are a large number of experimental conditions that must be carefully selected such as
ion concentrations or incubation/simulation time (important in vitro and in silico), which
cell line to use for in vitro experiments, and how to model electrostatic interactions in in
silico experiments.

In fact, no a priori information can ever tell us which experiments to perform, how to set
up these experiments, what analyses to perform, or even whether to perform experiments at
all. In a landmark work in the history and philosophy of science, Feyerabend [68] outlines
the role Galileo played in transforming science from its previous, scholastic, method of
argument from authority, to a new method of argument from experiment. Remarkably, only
by repeated appeals to authority, his own as well as the authority of the newly invented
telescope (which in some cases performed demonstrably worse than the naked eye), was
Galileo able to begin this transformation. Not long after this, the chemist Robert Boyle,
eponymous of the gas law, engaged in a heated debate with Thomas Hobbes, author of
“The Leviathan” and “De Cive” but also an aspiring chemist, on the role of the witness
in an experiment [226]. Boyle thought the best way to get people to believe in scientific
results was to have large numbers of witnesses assent to the truth of experimental results.
This proved to be a challenge since the experimental apparatuses he used precluded all
but the richest scientists from replicating his experiments on their own, and also since the
difficulty of performing the experiments made it unlikely that more than a few people would
ever witness the results of an experiment. Hobbes, raised a number of important questions
about Boyle’s empiricism. Put into modern terms these questions can be formulated as
follows: (1) If new instruments such as the air pump show that the senses do not reveal
everything we could learn about nature, what reason do we have to trust the instruments
over the senses? (2) If some groups of people, like Oxford professors, are more suited to
act as witnesses than others, like Oxfordshire peasants, then doesn’t this say that there is a
subjective component to witnessing? and (3) How do we know the boundary between facts
and theories (or explanations of facts) if we wish to define a boundary between them at all?
It would be a mistake to assume that these problems have been solved today, or that they
could in principle be solved. All three of these questions can be seen revolve around a central
axis, that of the relations of power in society to determine what questions can be asked and
how they can be investigated. For an interesting appraisal of how power affects question
(1), see Bertold Brecht’s play “Life of Galileo” where the power of the Catholic church not
only prevents assent to Galileo’s astronomical theories, but even to learned cardinals looking
through a telescope. For insight into the role of power in question (2), see “Merchants of
Doubt” by Naomi Oreskes and Erik Conway for a detailed description of how well funded
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and well connected scientists worked for fossil fuel and tobacco companies to sow public
doubt about climate change and the dangers of smoking. The role of power in question
(3) is ably considered in “A History of the Modern Fact” where Mary Poovey outlines how
the modern discipline of statistics has its roots in attempts by various people to be able to
make a unique claim about how resources should be used based on supposedly values-free
measurement and calculation. Poovey’s exploration actually only covers the period from
the late 16th century to the middle of the 19th century. If she had gone another century
further, she could have also documented the role of power in question (3) by noting that
both that the early statisticians Irving Fisher [70] and Karl Pearson [189] were interested
in statistics and biology to further (what they viewed as) the science of eugenics. Both
also sought to outline purportedly scientific justifications for colonialism by attempting to
demonstrate that their racist understanding of the world was backed up by a ‘neutral’ body
of facts.

Thus, we must always ask ourselves, as scientists, as citizens, and as human beings,
whether we are in fact being ‘objective’ since what is deemed objective will always be the
result of both societal and scientific convention. In the final analysis, we must take heed
not only of the potentially distorting impacts of power on scientific discourse, but also on
which interests we chose to pursue. As Walter Benjamin (quoted in Agamben [5]) wrote,

The mastery of nature (so the imperialists teach) is the sense of all technology.
But who would trust a cane wielder who proclaimed the mastery of children by
adults to be the sense of education? Is not education, above all, the indispensable
ordering of the relationship between generations and therefore mastery (if we
are to use this term) of that relationship and not of children? And likewise
technology is the mastery not of nature but mastery of the relation between
nature and humanity.

We must be cognizant of what precisely it is we would like to order our understanding of.
In this thesis, we will be attempting to order our understanding of the relationship between
mutations which have primarily been observed in cancer patients and the dynamics or
chemistry of the kinase domains which harbor these mutations. The related questions of
whether this understanding can be translated into clinical practice or used to develop new
treatments is left to future researchers, not only because the author has reservations about
the distribution of resources and agency this implies [114], but more proximately because
life is short.
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Chapter 2

Mutations

Then David said to God, “I have sinned greatly by taking this census. Please
forgive my guilt for doing this foolish thing.”

I Chronicles 21

2.1 Introduction

2.1.1 Analysis of COSMIC

The ongoing decrease in price of genome and exome sequencing has lead to the creation
of online databases for cancer genome sequence information such as the catalog of somatic
mutations in cancer, COSMIC [72] and the cancer genome atlas, TCGA1. This in turn has
driven a longstanding effort to catalog which proteins are frequently mutated in various
cancer types [83, 73], as well as efforts to determine the driver status of mutations [84,
100] and to understand tumor heterogeneity through clonal evolution [178, 257]. A more
thorough overview of the field of computational classification of cancer mutations will be
given in chapter 5. In this chapter I will give some insight into what can be learned about
kinase mutation by comparing the distribution of kinase mutations in COSMIC with what
is known about the activation status of frequently mutated residues. I will provide a brief
analysis of the most frequently mutated genes, residues, and pfam domains, concluding
with a look at the distribution of mutations within the kinase domain. This will lead onto
a detailed discussion of what is known about the activation status of a number of kinase
domain mutations and conclude with a look at commonalities of mutant kinase activity.

2.2 Results

2.2.1 Mutations in all proteins

We proceed first by analyzing the total distribution of non-silent mutations in the COSMIC
v81 whole genome and exome mutation database [72], which contains 29,805 whole genomes
and millions of non-silent mutations. In this dataset there are 4 genes that are mutated

1cancergenome.nih.gov/
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more than 10,000 times, shown in Table 2.1 and 441 genes that are mutated more than 1,000
times. There are over 4.1 million amino acid substitution mutations which result in 20,498
unique substitutions, including truncation mutations. The most frequently mutated protein
is titin, which is over 38 thousand amino acids long, and thus probabilistically likely to be
frequently mutated. It is unlikely that titin plays a role in cancer given that it is involved
in muscle function and not cell growth or proliferation [39]. The next most frequently
mutated protein, p53, regulates progression through the cell cycle and apoptosis and many
mutations are known to be important in cancer progression for a number of tumor types
[192]. Mucin 16 overexpression is used as a biomarker for ovarian cancer but mutations
are not known to have effects on mucin 16 function [91]. Workers have shown that loss
or downregulation of nesprin 1 can lead to misregulation of the DNA damage response,
but to date no biochemical evidence has shown that individual mutations have a role in
cancer [236]. Given the fact that three of the four most frequently mutated proteins are not
known to drive cancer progression, and that these three also are very large proteins, there
is good evidence that the frequency of mutations in a protein as a whole is not necessarily
informative and is not pursued further.

Table 2.1: COSMIC frequently mutated proteins

Protein Mutations # amino acids Role in cell

Titin 44,941 38,148 muscle contraction

p53 29,839 393 cell cycle checkpoint

Mucin 16 16,188 14,507 acts as mucosal barrier in epithelial cells

Nesprin 1 12,859 8,749 connects cytoskeleton to nuclear lamina

2.2.2 Frequently mutated residues

Shown in Table 2.2 are all proteins that have either more than one residue mutated more
than 100 times or at least one residue with more than 500 mutations. Of 78 mutations seen
over 100 times, 56 are found in the gene TP53 (the protein is called p53), which is also
the second most mutated protein after titin. One striking thing about the list of frequently
mutated residues is that, with the exception of p53 mutations which is mostly impacted by
loss of function (LOF) mutations, most of the rest of the frequent mutations are gain of
function mutations (GOF). Even in p53, which has had all 2,314 possible single nucleotide
polymorphism possible tested, around 25% of mutations are GOF, though most of the
frequently observed cancer mutations are LOF mutations [192]. Mutations in the GTPases
KRAS and NRAS are frequently observed and these frequent mutations have been shown
to be GOF, primarily through altering GTP catalysis and exchange rates [8, 218, 231]. The
phosphotidylinositol kinase PIK3CA is important for regulating the phospholipid makeup
of the cell membrane and several of the frequently occurring PIK3CA mutations, including
two kinase domain mutations at residue H1047, have been shown to lead to increased kinase
activity [113]. Isocitrate dehydrogenase 1 (IDH1) is involved in the citric acid cycle and
thus a key node in cellular metabolism. The frequently observed mutation R132H alters
the catalytic site of this enzyme to change the major product of IDH1 from α-ketoglutarate
to 2-hydroxyglutarate, leading in turn to an upregulation of the protein hypoxia inducible
factor 1α, promoting tumor cell growth [270]. The frequent mutation BRAF V600E causes
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constitutive kinase activity and is a well studied cancer driver mutation [254]. The most
curious case is that of the transmembrane serine protease TMPRSS13, which does not have
a known role in cancer but is involved in proteolytic activation of hepatocyte growth factor
[92], one of the hallmarks of cancer [89]. Thus there is a rather large body of evidence that
correlates frequently observed mutations to GOF alterations in protein activity.

Table 2.2: COSMIC frequently mutated residues

Protein Residues mutated > 100 times Residues mutated > 250 times

BRAF 1 1

IDH1 1 1

KRAS 7 5

NRAS 2 0

PIK3CA 6 3

TMPRSS13 2 0

p53 52 15

Total 78 25

2.2.3 Frequently mutated PFAM domains

We proceed next by analyzing the total distribution of non-silent mutations in the COS-
MIC v81 whole genome and exome mutation database [72] which alter a PFAM domain
[69]. Briefly, PFAM domains are constructed by performing sequence alignment of a set of
nonredundant representative proteomes to determine conserved protein motifs across indi-
vidual proteomes and across proteomes in many species. PFAM domains, or architectures,
have a conserved structure and have even been used to find conserved interfaces [263], thus
demonstrating the relation between PFAM domains and protein structure and function.
Data in Table 2.3 shows the percentage of mutation in a PFAM domain relative to the total
mutations observed in all PFAM domains (Domain mutation %) as well as the fraction of
the exome composed of a given PFAM domain (Domain exome %). When taken together,
kinase domains (shown in red in Table 2.3) account for a higher percent of mutated domains
than any other domain. When combining this knowledge with the fact that 2 of the 10 non
p53 mutations in the Table 2.2 list of residues mutated over 250 times are kinases we have
a strong case that a more detailed study of the pattern of kinase domain mutations could
yield important insights. For this reason, we embarked on an analysis of the pattern of
mutations in kinase domains in this dataset.

2.2.4 Kinase subdomain mutation distribution

In order to obtain information on subdomain clustering of kinase domain mutations, the
COSMIC whole genome/exome screen (WGES) database (version 81) [72] was used as the
source for mutational data. A multiple sequence alignment was performed using ClustalW2
[145], and the residues comprising functionally important subdomains were extracted. These
subdomains are as outlined in chapter 1 and include the nucleotide binding loop (p-loop),
the catalytic loop (c-loop), the αC helix, and the activation loop (a-loop). By binning
the clinically observed cancer mutations in kinase domains in this manner, we can observe

13



Table 2.3: COSMIC mutations mapped to PFAM domains

Protein domain Domain mutation %† Domain exome %‡

Cadherin domain 1.77 1.14

Zinc-finger double domain 1.67 2.24

Class I Histocompatibility antigen 1.63 0.28

Immunoglobulin I-set domain 1.46 1.21

Protein kinase domain 1.24 1.92

Zinc-binding dehydrogenase 1.18 0.05

7 transmembrane receptor (rhodopsin family) 1.18 1.59

Seven additional domains 5.85 -

Protein tyrosine kinase 0.64 0.96

†Total # mutations observed in all residues in this PFAM domain
Total # residues in this PFAM domain

‡Total # residues in this PFAM domain
Total # residues in exome

whether or not mutations preferentially segregate to any of these subdomains or whether
there is a more uniform distribution of mutations across the kinase domain. This is shown
in Figure 2.1. There are 22 proteins that have a kinase domain with more than 100 muta-
tions in COSMIC WGES v81 and only one of these shows a mutational distribution where
each subdomain is within one standard deviation of an expected uniform distribution. For
this study, an expected uniform mutation distribution was calculated using a multinomial
distribution, which can be thought of as akin to making n draws, with replacement, from
an urn containing balls of k different colors, with the probability of drawing a ball of color
k, pk, proportional to the number of residues in a subdomain relative to the total number
of residues. The number of draws n is in this case the total number of observed mutations.
These distributions are shown in Figure 2.1 as black errorbars with a white circle as the
mean and the bar length proportional to one standard deviation. Only proteins with par-
ticularly sharp deviation from uniform mutation distribution are shown in Figure 2.1, but
almost all frequently mutated kinase domains show a non-uniform mutational distribution.
Also notable in Figure 2.1 is the fact that the activation loop shows the largest deviation
from a uniform mutation distribution. This is even more in evidence in the case of BRAF
(not shown), where almost 1,000 of the roughly 1100 observed mutations are in the activa-
tion loop. This is largely due to the frequently observed BRAF V600E mutation discussed
in frequently mutated residues.

2.3 Discussion

2.3.1 Description of Kinase Mutations

As noted in the sections frequently mutated residues and kinase subdomain mutation dis-
tribution one of the most frequently observed single mutation in COSMIC is the BRAF
V600E mutation, which is located in the activation loop of the BRAF kinase domain and
has been shown to lead to constitutive activation [254, 112]. In this kinase, several orders
of magnitude more mutations are observed in the activation loop than the entire rest of the
kinase domain. Almost all of these mutations are the V600E mutation. This mutation is
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Figure 2.1: Several kinases with large number of mutations

Errorbars represent expected mutation distribution based on a uniform (multinomial) dis-
tribution.

frequently observed in several cancer types, including thyroid, colon, skin, leukemia, and
lung cancers. While V600E is by far the most common BRAF mutation, there are a number
of BRAF mutations that have been studied to determine their activation status. Most of
these mutations occur in the activation loop or the nucleotide binding loop [254, 112, 111],
though there are a few outside of these subdomains. These mutations are instructive of
the complexity of kinase based signaling networks. A number of mutations to the BRAF
active site result in kinase dead BRAF that nonetheless drives activation of downstream
partners: D594A/V, the aspartate of the DFG motif; G596R, the glycine in DFG; as well
as K483M, the catalytic lysine [254, 94]. It has been demonstrated that this effect is the
result of increased dimerization and can also be seen to result from drug treatment of cells
with WT BRAF, but not not constitutively active BRAF [94]. A detailed listing of BRAF,
as well as other kinase, mutations that have been characterized is in Table A.1. Examin-
ing the large number of BRAF mutations that have been characterized provides an object
lesson in the difficulties of model selection outlined in the chapter 1. Namely, that how we
perform an experiment will overdetermine the result (not determine; it is a dialectic and
not strictly a causal process). In [112, 111] many of the same BRAF mutations as in [254]
are measured. However, in [112, 111] a subphysiological [ATP] is used, whereas in [254] a
putatively more biologically relevant concentration is used. This casts some doubt on the
measurements in [112, 111] since BRAF WT is autoinhbited at physiological [ATP], but not
at subphysiological [ATP], by phosphorylation of S465 and S467 in the nucleotide binding
loop [102]. Also of note is the fact that several BRAF studies compare the kinase activity
to BRAF incubated in cells with mutant HRAS and find that under these conditions BRAF
activity is several fold higher in many mutations [269, 112, 111], with one study citing an
11.5 fold increase [112] and another a 6 fold increase [269] in BRAF activation under these
conditions. This is a proxy for measuring the activity of unphosphorylated versus phospho-
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rylated protein. Studies in ALK have shown that the activity of unphosphorylated protein
correlates well with transformation capacity in cells while phosphorylated protein activity
does not [24]. For this reason, activity in mutant HRAS cells are not reported here.

Two proteins in the ErbB receptor tyrosine kinase (RTK) family are seen on the list of
frequently mutated kinase proteins, and many mutations in both have been experimentally
characterized. In the epidermal growth factor receptor (EGFR), the most common mutation
is L858R, sometimes called L834R due to the presence of a cleaved signal peptide. This
mutation is in the activation loop and is known to cause constitutive activation [267, 268,
266]. Even though this mutation accounts for the plurality of the mutations that are listed
in COSMIC WGES v82 for EGFR, there are many other mutated residues. Most of these
mutations are of unknown consequence, but several have been shown to lead to constitutive
activation Table A.1. Other frequently observed mutations are the activation loop L861Q
mutation, the constitutively active nucleotide binding loop G719S mutation [267], and the
so-called gate-keeper mutation T790M, which is not located in any of the kinase subdomains
under consideration but does lead to constitutive activation and decreases sensitivity to
EGFR inhibitors [268]. Curiously, although some studies have shown that L861Q increase
kinase activity, transforms cell lines, and promote drug resistance [36, 41, 129], no study
to date has made a direct measurement of L861Q kinase activity. The EGFR mutations
E709G and S768I, which are often seen mutated in targeted EGFR mutation screens have
also been shown to lead to increased activity and resistance to targeted inhibition [41] but
have not undergone direct kinase activity measurements.

The ErbB family member HER2, also known as ErbB2, is frequently mutated in breast
cancer and also often mutated in colorectal cancer as well. The most frequent mutations
are the catalytic loop V842I and the αC helix I767M, D769Y, and V777L mutations. All
of these mutations have been studied in vitro and in vivo to determine their activity [21].
The L755S mutation, which is outside of any subdomain and is N-terminal to the αC helix,
has been shown to have minimal cell transforming abilities but to confer drug resistance,
and has as yet resisted attempts to characterize its catalytic activity [21, 131, 273].

Some insights can be gained by comparing the effects of mutations in these two ErbB
family members. The most striking difference in the mutation patterns of these two proteins
can be easily seen in Figure 2.1, which shows that EGFR is primarily mutated in the
activation loop while HER2 is mostly mutated in the αC helix. A few studies have also
sought to directly compare mutations in EGFR and HER2. One such study looked at the
HER2 L866M mutation, which is equivalent to the EGFR L858R mutation. While both
lead to the ability to transform cell lines, HER2 L866M only leads to moderate increase in
activity [66]. It is also of note that the BRAF activating mutation L597V [254] also aligns
to the same location as EGFR L858R and HER2 L866M, indicating that this site, which
follows immediately after the DFG motif, is conserved to maintain a precise hydrophobic
character and that minor steric alterations can lead to large changes in activity. As discussed
in chapter 1, there is an important salt bridge (the KE salt bridge) that is characteristic of
the active kinase conformation and generally requisite for binding ATP. The Lys of the KE
is L745 in EGFR and K753 in HER2 and in both cases mutation to Met leads to loss of
kinase activity, but in the HER2 this mutation is still transforming due to increased EGFR
phosphorylation. HER2 K753M also confers resistance to some targeted therapies [273].

Another kinase that is frequently mutated in many cancers is the stem cell growth factor
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receptor known as c-kit. Again the majority of the mutations in this protein are observed
in the activation loop, primarily consisting of the D816V or D816Y mutation, both of which
are known to lead to constitutive activation [75, 235, 6]. The case of D816V (and of the less
frequently observed D816H) highlights the need for detailed mechanistic analysis, as D816V
does not differ significantly from WT in terms of Kcat but is instead activated by a relatively
more rapid bimolecular autoactivation [75]. Another common activation loop mutation is
N822K, which has been shown to have weak transforming potential in cells [179] but has not
been investigated for changes in catalytic activity. Mutations are also observed in the αC
helix of c-kit or just KIT, with K642E being the most common. This mutation has been
demonstrated to have the potential to transform cells [116, 169] but again has not been
investigated for changes in catalytic activity. There is also one relatively frequent mutation
in kit that is not in a subdomain, namely the V654A mutation that falls in between the αC
helix and the catalytic loop and leads to increased kinase activity [75].

An interesting case is the protein CHEK2, which positively regulates the DNA damage
response by phosphorylating numerous proteins in response to DNA damage. This means
that CHEK2 cancer driver mutations would actually be inactivating mutations instead of
mutations that lead to constitutive activity, and this principle is demonstrated by the fact
that CHEK2 knockout mice are more prone to develop cancer from ionizing radiation than
CHEK2 positive mice [15]. This makes that fact that mutations in CHEK2 cluster in the
activation loop, as seen in Figure 2.1, interesting as it demonstrates that the same principle
that can lead to increased activity can lead to loss of activity. The only frequently observed
mutation that has been catalytically characterized is the K373E mutation, which leads to
a decrease in kinase activity comparable to the D368N mutation, which is the Asp of the
DFG motif and thus catalytically important [99]. The frequently observed Y390C mutation
has been shown in cells to be unable to activate p53 in response to DNA damage [258] but
has not been catalytically characterized.

Almost all of the activation loop mutations observed in FLT3, frequently mutated in
leukemia, occur at D835, with the rest of the observed mutations scattered throughout
the rest of the kinase domain. While many of these mutations have been shown to be
transforming in cells [265], only the most common, D835Y and D835H, have been shown to
result in increased kinase catalytic activity [42].

Perhaps the most remarkable case of constitutive activation of a kinase by a mutation
is that of JAK2. JAK2 has two kinase domains called JH1 and JH2, but the second
kinase domain, JH2, has only weak kinase activity and is thought to act to regulate the
activity of the JH1 kinase domain [247]. The V617F mutation is on the list of residues
mutated more than 100 times discussed in section on frequently mutated residues. This
mutation occurs in a loop in the N-lobe of the JH2 kinase domain, which lacks secondary
structure and leads to constitutive JAK2 activation [14]. The mechanism that causes this
mutation to be activating is still a subject of debate but results from microsecond molecular
dynamics (MD) simulations show that the V617F mutation may stabilize the αC helix of
JAK2 JH1 [14]. This would be an interesting corollary to the mechanism of the EGFR
L858R mutation which MD and hydrogen/deuterium exchange (H/DX) have indicated may
promote constitutive activation by stabilizing the helical character of the EGFR αC helix,
allowing access to an active conformation [255, 256, 223, 237] (see also chapter 1).

There are a number of clinically observed kinase domain mutations that have not been
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frequently observed in WGES but have been frequently seen in targeted cancer mutation
screens. Particularly well studied in this category are the members of the fibroblast growth
factor receptor (FGFR) family. As seen in Table A.1 there are a number of mutations of
FGFR2 and FGFR3 that have been demonstrated to lead to constitutive kinase activity
[272, 40, 62, 186] The most common FGFR2 mutations are various mutations to N549
which is just C-terminal to the αC helix and K659E in the activation loop. In FGFR3
the most common mutations are to K650 in the activation loop (in the same location as
FGFR2 K659) and G697C which is located in the C-lobe of the kinase domain. While the
K650E mutation in FGFR3 has been demonstrated to activate FGFR3 even in the absence
of activation loop phosphorylation, the mechanism of G697C activation is uncertain as this
residue is located on an unstructured loop distal from the active site [106] (also of note is that
different studies have measured widely varying catalytic activities for the G679C mutation
[106, 186]). Another protein that has an activating mutation outside of a kinase subdomain
is RET. The protein RET is frequently mutated in thyroid cancer at a M918T which is a
few residues N-terminal to the activation loop. This mutation has been shown to lead to
constitutive activation by decreasing the stability of closed activation loop conformation,
leading to rapid phosphorylation of activation loop tyrosines relative to WT RET [197].
This mutation as again a call to exercise care in experimental design. One study found
that RET M918T was not activating using a generic phosphorylation substrate [163] and
another study found little difference between a construct composed of kinase domain or of
kinase domain plus juxtamembrane (JM) [133]. However, a number of other studies have
shown increased catalytic activity using more physiologically relevant substrates for kinase
activity assays [198, 197, 196]. These studies also showed that the kinase activity of the
isolated kinase domain was lower than that of a construct containing the kinase domain
and the juxtamembrane segment [197, 196], in line with evidence from EGFR [206].

The protein ABL has been the subject of intense study owing to it being the first
kinase for which a targeted inhibitor, imatinib, was developed [33]. The first identified
genetic abnormality linked to cancer (leukemia), named the Philadelphia Chromosome,
was eventually shown to the result a a chromosomal rearrangement involving the coding
sequence of ABL and and a genomic loci call the breakpoint chromosome region (BCR),
leading to the BCR-ABL fusion protein [177, 33]. An emerging consensus has it that by
the time of diagnosis and treatment, clonal expansion of BCR-ABL WT containing cells
has already resulted in a small population of BCR-ABL mutated cells, that these cells are
selected for by targeted inhibition [232], and that further treatment with second and third
line inhibitors also select for mutations present in the population at the outset of treatment
[183, 184]. Most sequencing of patients who harbor BCR-ABL is done in a targeted manner
rather than via WGES due to the need for sensitivity in detecting low frequency mutations
[183, 184]. The most frequent clinical mutation in BCR-ABL is T315I, which is not in any
kinase subdomain and is known as the gate-keeper mutation since it has been observed to
inhibit drug binding in ABL and in many other kinases [13] The T315I mutation reduces
the catalytic activity while increasing affinity for ATP in ABL and BCR-ABL [85], and
the substitution of the larger and hydrophobic Ile for the smaller and hydrophilic Thr
sterically hinders the binding of ATP competitive inhibitors, and also biases the system
toward the active conformation by promoting hydrophobic spine formation [13, 207]. H/DX
experiments have also shown that the T315I mutation leads to increased flexibility in the
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αC helix relative to WT [110]. Two further ABL mutants are frequently observed in cancer
and known to lead to resistance to targeted therapy while maintaining or increasing kinase
activity, namely Y253H and E255K [166, 110]. Y253 is in the nucleotide binding loop
and E255 is one residue C-terminal to the nucleotide binding loop, and mutations at these
residues seem to have similar effect as mutations to the gate-keeper residue [85, 166, 110].
It is again worth sounding a note of caution related to how mutations are assessed as
kinase catalytic activity has been studied under many conditions: including only the kinase
domain (KD) [230, 85, 60], including the SH2 domain and the kinase domain (SH2-KD) [60],
including the SH3 domain which preceded the SH2 domain [22], using full length ABL [85],
for the effect of myristoylation [13, 110], and the fusion proteins p210 BCR-ABL [85, 166],
and p185 BCR-ABL [230, 210]. It can be difficult to compare the activity of mutations from
separate studies where catalytic activity is normalized to WT activity, and this problem is
illustrated forcefully by one study [60] which seeks to compare KD and SH2-KD activity
which for each plot normalizes KD activity to 1, resulting in 3 separate relative activities
between KD and SH2-KD (see Table A.1), precluding any easy comparison between these
two constructs. Finally, some studies [230, 22] only report KM and VMAX but not Kcat or
[protein] so that catalytic efficiency cannot be assessed.

In PDGFRα the D842V activation loop mutation is frequently observed in targeted
screens of patients with gastro-intestinal stromal tumors (GIST). This mutation, along
with a few other PDGFRα activation loop mutations seen in GIST have been shown to
lead to increase PDGFRα in cells, to lead to transformation in cell lines, and to confer
resistance to targeted inhibitors [95, 96], but have not to date had their catalytic activity
reported in the literature.

2.3.2 Similarities of kinase mutations

Interesting phenomena emerge when we look at the most prevalent mutations as a group
rather than individually. Already noted was the effect of the gate-keeper mutation, which
has been shown to confer resistance to targeted inhibition in ABL T315 [13], ALK L1196 [44,
24], BRAF T529 [94], CRAF T421 [94, 201], EGFR T790 [13, 268], ErbB2/HER2 T798 [129],
KIT T670 [75], PDGFRα T674 [13], PDGFRβ T618 [13]. Also previously mentioned was
the fact that EGFR L858R, HER2 L866M, and BRAF L597V are all activating mutations
[66, 254]. This points to the interesting fact that several prevalent mutations are actually at
the same residue in different proteins, as determined by sequence alignment. As previously
discussed, EGFR L858R, ERBB2 L861M, and BRAF L597V are at the same location, just
after the DFG motif which begins the activation loop, and are all constitutively active
[66, 254]. Another activation loop mutation site that leads to constitutive activation maps
to 4 residues past the DFG motif. The mutations BRAF V600D/E/F/K/R, EGFR L861Q,
FLT3 D835H/Y, KIT D816V/Y, and PDGFRα D842V all lead to constitutive activation.
It is of note that BRAF (see chapter 1 for a figure which shows this), EGFR [271], and KIT
[144] all have a short activation loop helix that is formed in the inactive conformation and
MD simulations in KIT have shown that KIT D816V may function by destabilizing this
helix [144]. It has also been proposed that this activation loop residue position can alter
the formation of the R-spine in BRAF [103]. In contrast to the above mutations which lead
to constitutive activation, there are a number of residues that have been studied for their
ability to prevent activation. One major thrust in this area has been to characterize the
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effects of mutations to phosphorylatable residues [143]. A large number of serine, threonine,
and tyrosine residues have been mutated to alanine to prevent phosphorylation or glutamate
or aspartate to mimic phosphorylation. A recent review of the literature found 145 such
kinase domain mutations that have been experimentally characterized [143]. Another class
of kinase mutations that have seen thorough investigation is mutations to the DFG motif
aspartate. ALK D1270G [24], BRAF D594V [112, 254], CHEK2 D368N [99], DAPK3
D161A [82], and LIMK1 D460A/N [168, 63] have all been shown to abolish or reduce kinase
activity. Finally, many studies include mutation of the lysine of the KE salt bridge as a
negative control. AKT1 K179A [9], EGFR K745M [66], ERK1 K71A [143], HER2 K753M
[66], NEK2 K37R [209], RET K758M [197], and RPS6KB1 K167N [93] all fall under this
category and all lead to loss of kinase activity.
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Chapter 3

Kinase MD

To dissimulate is to feign not to have what one has. To simulate is to feign to
have what one hasn’t.

Jean Baudrillard Simulacra and Simulation

3.1 Introduction

3.1.1 Kinase Activity

Kinase proteins play important roles in diverse cellular processes including signaling, differ-
entiation, proliferation, and metabolism [147], are frequently mutated in cancer [89] and are
the targets of a large and growing number of specific inhibitors [76]. These proteins have
large differences between the conformation of the active and inactive conformations [109]
and there is mounting evidence that drugs can specifically target one conformation over the
other [182] and that, paradoxically, kinase inhibitors can activate wild type (WT) kinases
[94]. While a large number of kinase domain mutations have been observed in patient tu-
mor samples [72], more detailed analyses have shown that only some of these mutations
can be classified as cancer driver mutations, which have a demonstrated impact on cancer
progression, while many others will be passenger mutations that have no known effect on
cancer progression as demonstrated by catalytic and colony formation assays (see chapter 2
for a detailed discussion on this topic).

Studies in anaplastic lymphoma kinase (ALK) have demonstrated the relationship be-
tween increases in isolated kinase domain catalytic efficiency (Kcat) and increased ability
of transfected cells to form foci in colony growth assays [24]. Changes in substrate binding
affinity (KM ) are less relevant here since the cellular ATP concentration is in the millimolar
range, and many mutations actually increase affinity for ATP, leading to decreased effi-
cacy of ATP competitive inhibitors [85, 66, 268, 75]. Tests of 23 ALK mutations observed
in neuroblastoma patients showed a correlation coefficient of 0.95 between in vitro Kcat

for non-phosphorylated ALK and colony transformation while analysis of phospho-ALK
showed no significant correlation. It is also noteworthy that every mutation that increased
Kcat by larger than 4.6 fold lead to colony transformation and variants with Kcat increase
of 3 fold could show activation [24]. Analysis of a series of 22 mutations in BRAF, which
is frequently mutated in melanoma and colorectal cancer showed that all tested mutants
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with a Kcat increase of more than 5 fold could transform cells in focus formation assays,
though not all variants were tested in focus formation assays [254]. A group of studies
on BRAF mutant catalytic activities with sub-physiological [ATP] showed that increases
in Kcat of more than 3 fold lead to colony formation in focus formation assays [112, 111],
though without KM measurements it is difficult to compare the different measurements of
BRAF kinase mutants. Studies in HER2, also known as ErbB2 and frequently mutated in
breast cancer, have again shown that increases in Kcat of greater than 4 fold in monomeric
assays lead to transformation in colony formation assays [21, 273], with mutations showing
increased catalysis of as little as 2.2x in monomeric assays also demonstrating transforma-
tion potential [21]. Enforced dimerization of HER2 leads to increased activation relative to
soluble monomers [21] and it has been demonstrated that HER2 mutation activation is not
a result of altered interactions with HSP90 [66]. Studies in BCR-ABL mutants have also
shown a good correlation between increased VMAX relative to WT p210 BCR-ABL and
increased transformation, though this comparison is complicated by the fact that WT p210
BCR-ABL is itself moderately transforming [230].

3.1.2 Kinase Structure

For a detailed elucidation of the intricacies of kinase structure, please refer to the chapter 1.

3.1.3 Computational studies

3.1.3.1 Kinase MD Methods

Given the large number of kinase domain mutations observed in cancer and the laborious
nature of performing kinase catalytic and colony assays, many workers have sought to de-
velop computational approaches to understand the effects of mutations on kinase dynamics.
One computational approach that gives unique insights into short time-scale dynamics is
a molecular dynamics (MD) simulation. These simulations probe motions on the order of
nanoseconds to microseconds while in kinases catalysis takes place on the scale of millisec-
onds to seconds [24, 254, 21], so careful analysis of a simulation trajectory is needed to
gain insight into how mutations affect dynamics. These analyses can generally be fit into 3
broad categories: (1) analysis of alteration in chemical or physical quantities, (2) analysis of
collective motions, and (3) computation of free energy landscapes. Under the first class are
methods such as analysis of hydrogen bonds and salt bridges, changes in solvent accessible
surface area, or analysis of hydration dynamics. In the second class are measurements such
as root mean squared deviation (RMSD) or fluctuation (RMSF), and calculations based
on interatomic covariance matrices such as protein structure networks (PSNs), or principal
component analysis (PCA). The final class contains a large and growing number of meth-
ods for understanding the energetic relationship between different conformational states of a
protein. These methods generally rely on some prior knowledge of different conformational
states of a protein and apply some sort of energetic potential to help the system explore
desired states.
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3.1.3.2 MD Studies

Nanosecond MD Early kinase mutation MD studies were limited by computational
power and were generally only tens of nanoseconds (ns) long but were still able to provide
insight into the impact of kinase mutations on kinase dynamics. Advances in computer
power quickly lead to simulations with hundreds of nanoseconds of simulation time. In
[58], 10 ns simulations in both active and inactive conformation of EGFR WT, T790M
and L858R, as well as ABL WT, T315I, and L387M were performed. On this timescale
no difference in RMSD was detected but in inactive conformation simulations increased
fluctuations were seen in the activation loop. Targeted MD and MM-GBSA calculations
showed a decrease in stability of the inactive and increase in stability of the active con-
formation. In [74], 15 ns simulations of BRAF WT, D594V, V600E, and K601E did not
show any differences in RMSD and RMSF on this timescale but hydrogen bond networks
were altered. An early study to investigate the effects of mutation on kinase dimers was
performed by Shih et al. [229]. Here 10 ns simulations on WT monomers of EGFR, Her2,
and HER4 in active and inactive conformation as well as inactive dimers of these three sys-
tems plus EGFR L858R, and the common EGFR deletion mutant del L771 P777 ins S (∆).
Both SASA and water density analysis, a measure of hydrophobicity, show that inactive
conformations of the ErbB kinases are stabilized in dimers relative to monomers. EGFR
L858R and ∆ are shown to counteract this hydrophobic stabilization. Further, the network
of hydrogen bonds that stabilize inactive ErbB conformations is shown to be disrupted by
mutations. Using four 200 ns replicates each in both active and inactive conformation of
EGFR WT and L858R [255] show that only one simulation of 16 displays substantial change
in RMSD, and this localized to the activation loop which moves from an active towards and
inactive conformation. Analysis of salt bridges shows a weakening of a salt bridge that
stabilizes the inactive conformation in the L858R relative to wild type but little difference
between active conformation salt bridge patterns. A combination of PCA and MM/PBSA
analysis of shows that in L858R the active conformation is favored whereas in WT inactive
is favored. The existence of an intermediate conformation between active and inactive in
L858R was also observed. A study in phosphotidylinositol 3-kinase alpha (PI3Kα) using
five 150 ns replicates of active WT and H1047R show changes in polar contacts lead to
greater activation loop flexibility and more positive charge on the protein surface known
to be involved in membrane binding. Surface plasmon resonance studies then confirmed
that H1047R has greater affinity for negatively charged membrane [78]. Another MD anal-
ysis of EGFR mutants, T790M, L858R, and the double mutant T790M/L858R using 50 ns
simulations showed that mutations alter collective motions as assessed by both PCA and
RMSF [118]. An analysis of protein structure using force constant analysis (FC), a scaled
form of Cα-Cα carbon distance correlation matrix, show results similar to PCA analysis.
This is as would be expected by the fact that they both rely on transformations of a corre-
lation matrix, in the case of FC using only Cα and PCA using all backbone heavy atoms.
In another analysis by the same group, a number of kinases from diverse kinase families
were simulated in WT active and inactive conformation for 20 ns and analyzed via PCA
[59]. Mutations were then mapped onto conformational flexibility profiles to suggest that
activating mutations cluster in more flexible regions while inactivating mutations cluster
in more rigid regions. One limitation of this study is that only some of the cancer muta-
tions considered have been functionally validated via studies of altered catalytic efficiency
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or colony transformation ability, calling in to question the generality of the identified trend.
A pair of articles [141, 140] investigates the impact of mutations on the active conformation
dynamics of Aurora kinase A (AurkA) with S155R simulated for 100 ns [141] and G325W
simulated for 200 ns [140]. A number of methods show differences between mutant and WT
dynamics including PCA, RMSD/RMSF, SASA, and radius of gyration. One limitation of
all of these studies is that they only simulate mutations that are known to be activating.
A pioneering paper to address this issue is the work of [24] which uses 40 ns simulations
of a series of 23 ALK mutants which range from inactivating to strongly activating. A
scoring function based on hydrogen bonding patterns, SASA analysis combined with free
energy perturbation, and PCA was shown to reliably distinguish between activating and
non-activating mutations as assessed by changes in catalytic efficiency.

Microsecond Conventional MD Supercomputers of various types have lead to the
ability to simulate microseconds worth of kinase motions. These timescales are not gener-
ally long enough to observe major conformational changes in proteins as large as kinases.
Although fluctuations as large as folding/unfolding events can be observed in peptides and
small, fast folding proteins on this timescale at physiological temperature [149], even in 100
amino acid proteins it is necessary to simulate near the melting temperature of a protein to
observe folding events on the millisecond timescale [194, 195], allowing a delineation of a full
conformational landscape. Nonetheless, longer simulation timescales have been important
both as a validation of insights from shorter timescales and also because they provide a
test of stability of various conformational (sub)states. An early use of long conventional
MD to understand the effects of mutations on kinase domain dynamics was carried out
to understand how mutations in the second kinase domain (denoted JH2) of JAK2, which
is kinase dead, leads to constitutive activation of the first kinase domain (denoted JH1)
[14]. Analysis of secondary structure of JH2 variants at this timescale showed that the
helical character of the αC helix of WT JH2 is low but that the V617F mutation common
in myeloproliferative neoplasms stabilized the helicity of the αC helix. This insight was in
agreement with the crystallographic evidence in the same report. Finally, the JAK2 JH2
double mutant F595A/V617F was shown in phosphorylation assays to bring JAK2 activity
down to levels similar to WT and shown in MD to destabilize the JH2 αC helix. One of
the most extensive uses of long conventional MD to understand dynamic effects of kinase
mutation was performed in [224]. Performing four replicates of 10 µs each on the active
conformation of EGFR, it was seen that in all four simulations the αC helix goes from an
’in’ conformation indicative of the active state to an ’out’ conformation generally associated
with the inactive conformation within 100 ns. At longer times, the WT αC helix was seen
to adopt a disordered conformation, which was confirmed by hydrogen/deuterium exchange
(H/DX) experiments. Even more intriguingly, in all four simulations the salt bridge between
Lys-745 and Glu-752 (KE salt bridge) which is characteristic of the active conformation is
broken within 40 ns. This provides good evidence that shorter MD simulations can still
provide insight into the effects of kinase mutations. Long simulations of active conformation
L858R show that the KE salt bridge is stable for between 2 and 30 µs, leading to a more
stable αC helix in the L858R system. Simulations of G719S, S768I, L861Q, and ∆ also show
αC helix stabilization. Interestingly, HER2/EGFR and HER4/EGFR heterodimers were
both shown to stabilize the αC in conformation in microsecond MD simulations, providing
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insight into the activation mechanism in non-mutant systems. Another study to investigate
microsecond dynamics in EGFR is [256] where 2 replicates each of WT and L858R in the
active conformation were run for 10 µs each. As in a previous study by the same group [255]
and the work of Shan et al. [224], this work showed that WT EGFR has a disordered αC
helix but that EGFR suppresses this disorder. Interestingly, the 2nd principal component
corresponds to unwinding of the αC helix. An interesting application of microsecond MD
is an investigation of the effects of protonation state on the active state dynamics of SRC
kinase [71]. When the Asp of the DFG motif in SRC is unprotonated, no change from
the αC-in active conformation or breaking of the salt bridge Lys290-Glu310 (similar to the
EGFR KE salt bridge; conserved in active kinases) is seen in simulation of between 167 and
375 ns. In the protonated state, this salt bridge is broken within 100 ns in 4 of 8 simula-
tions, with concomitant transition to αC-out and breaking of the R-spine, as measured by
contact area of R-spine residues. Simulations of protonated D404 with ADP but no Mg++

show ADP leaving the binding site after 225 and 385 ns while with the addition of Mg++

lead to ADP remaining bound to SRC for 3.5 µs of simulation time. While not simulating
any mutations, this work shows that changes in charge can greatly alter kinase and ligand
binding dynamics, which should apply as well to mutations. An application of microsecond
MD to understanding kinase mutations in the context of EGFR/HER3 heterodimers is [150]
which investigates HER3 WT, Q790R, and S827I with 9 µs simulations in the active confor-
mation. These simulations showed that in EGFR/HER3 WT a stable interaction between
HER3 and the EGFR juxtamembrane (JM) region, known to be important for activation,
is not formed while in both mutants there is a stable interaction between HER3 and EGFR
JM. Since HER3 has a low intrinsic catalytic activity [228] and since these mutations acti-
vate EGFR moderately over WT HER3 in vesicle assays but strongly activate in solution
assays [150], these simulations are in good agreement with experimental data.

Metadynamics Although there are a number of methods for determining either the free
energy or conformational landscape of a biomolecular system, the one that has seen the most
use in computational studies of kinase mutations is metadynamics. Without belaboring
the details of this method, it allows an efficient exploration of conformational and energetic
landscapes by adding energy to the system along a predefined reaction coordinate, termed a
collective variable, providing a description of both the conformation and energy at each point
along the reaction coordinate. These simulations generally require significant simulation
time, hence the distinction long conventional MD as compared to free energy calculations.
One of the first reports of the use of metadynamics on kinase mutations was an investigation
of monomeric EGFR WT, T790M, L858R, and the double mutant T790M/L858R [237]. The
conformational free energy landscapes reported here confirm the insight from short [255]
and long [256, 224] conventional MD that WT EGFR has disordered αC helix as a distinct
state in the inactive conformation, and also showed that a fully active conformation is
not accessible to monomeric WT EGFR. Again in line with previous work, these workers
showed that the L858R mutant suppresses the disordered αC helix while also allowing the
system to visit a fully active conformation. Interestingly, the T790M mutant is shown to
be able to access the disordered αC helix but to strongly prefer a fully active conformation
while the Y790M/L858R double mutant is shown to preferentially visit semi- and fully active
conformations. In none of the mutants is there a minimum corresponding to the WT inactive

25



conformation. In work with important lessons for minimal model selection, work on ABL
using 1 µs simulations showed that inclusion of the SH2 domain of ABL results in decreased
nucleotide binding and αC helix flexibility, and increased activation loop flexibility, as shown
by both RMSD and PCA analysis. This result was confirmed with metadynamics. One
microsecond simulations of ABL kinase domain mutants M297G and E294P/V299P were
shown to have similar flexibility with and without SH2 domain as part of the model. This
was confirmed by kinase activity assays that show these mutations have similar activity
whether or not the SH2 domain is part of the construct. A similar study combined two 500
ns simulations each of BRAF WT and V600E in active, DFG out (semi-active), and αC-out
(inactive) with metadynamics [157]. On the timescale of the conventional MD simulations
there are not significant differences between flexibility of WT and mutant, with the primary
difference being a persistent salt bridge formed between Glu600 and Arg603. Metadynamics
shows that BRAF V600E does not appreciably populate the inactive conformation but is
mostly found in what the authors call a semi-active conformation; the Glu600-Arg603 salt
bridge is common in this conformation. A metadynamics study of FGFR1 WT and V561M
showed that the WT has a much smaller energy well in the active state than the mutant,
even though both have similar activation barriers [28].

3.2 Methods

3.2.1 Simulations

Simulations and analysis were carried out using the BioPhysCode software suite1. The
initial structures of ALK are as previously reported [24]. BRAF active was modeled off pdb
4MNE while BRAF inactive was based on 3TV4. HER2 active was modeled after 3PP0
chain B while HER2 inactive was constructed from a homology model based on EGFR
structures 2GS7 chain A, 4HJO chain A, 3W32 chain A and ErbB4 structures 3BBW chain
A, 2R4B chain A. All homology models were constructed using MODELLER [216] and all
mutations were introduced using a BioPhysCode Automacs routine based on MODELLER.
Simulations were run with Automacs using GROMACS 4.6 [181] with the CHARMM27
force field [154] with TIP3P explicit solvent [124] in a periodic water box with at least
12 Å between the protein and box edge. An ionic concentration of 0.15 M NaCl was
used and the final charge of the full system was zero. Minimization was carried out using
steepest descent and the system was eqilibrated first at constant volume, then at constant
pressure using Berendsen [18] before production MD was carried out constant pressure using
Parinello-Rahman [185]. All equlibration and production MD were carried out at constant
temperature using velocity rescaling [31], using particle mesh Ewald electrostatics [65] with
linear center of mass motion removal. LINCS [98] was used to constrain all bonds during
equlibration and hydrogen bonds constrained during production MD. Simulations were run
for a total of 101 ns and two replicates were performed for each simulation.

1github.com/biophyscode
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3.2.2 Analysis

Analysis was performed, unless otherwise noted, on the last 100 ns and the two replicates
were averaged together. Structures were sampled from each trajectory at 20 ps intervals,
resulting in a total of 5001 structures for analysis. Plotting was performed with Omnicalc
using matplotlib [108].

3.2.2.1 Hydrogen bonding

Each amino acid is considered to have a maximum of 3 possible hydrogen bonds (H-bonds),
a main chain donor, a main chain acceptor, and the side chain, meaning that some residues
such as Arg or Asp can have more than one side chain H-bond in a single frame; however,
bonds are counted uniquely so that this could only happen if e.g. Arg-i and Asp-j side
chains make both possible H-bonds. For each structure in a trajectory and for each H-
bond the hydrogen bond occupancy (O) was calculated by dividing the number of frames
in which an H-bond is observed by the total number of frames. After computing the
occupancy for each residue i in the inactive WT (OWT,i) and residue i in the inactive
mutant (OMUT,i) the occupancy difference in mutation MUT for residue i (∆MUT,i) was
calculated as ∆MUT,i = OMUT,i − OWT,i. For each residue i occupancy difference, if
|∆MUT,i| > threshold then ∆MUT,i is added to an accumulator (∆MUT,Total). The
absolute value is checked against the threshold to allow for loss or gain of hydrogen bonds,
but the signed value is added to the accumulator to see whether an individual system is
gaining and/or losing H-bonds. Here threshold is set to 0.75 and a mutation considered to
have a different occupancy than WT if ∆MUT,Total is nonzero. The threshold value of 0.75
was chosen by varying the threshold from 0 to 2 and plotting either the receiver operating
characteristic area under the curve, a measure of how well a classifier can distinguish between
positive and negative examples, or true positives minus false positives. In both cases, each
system had a peak value between 0.7 and 0.8, though in some cases this peak spanned a
larger region (data not shown).

3.2.2.2 Solvent accessible surface area

The DSSP [126] algorithm implemented in BIOpython [48] was used to calculate solvent
accessible surface area for each residue in each structure. Residues used for analysis plots
are indicated in the plot.

3.2.2.3 Kinase activity assays

Kinase activity assays were performed by Jin Park as outlined previously [24]. Briefly,
mutations were introduced using the QuikChange method (Stratagene) on Sf9 cell lines.
Recombinant protein was then isolated and assayed using an ALK activation loop peptide
mimic.

3.2.2.4 Transformation assays

Colony transformation assays were performed by Jin Park as outlined previously [24].
Briefly, NIH 3T3 cells were transfected with ALK variants. Cells were then grown in serum
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before being fixed in formaldehyde and stained to assess transformation.

3.3 Results

3.3.1 Analysis of kinase activity

In a previous study we showed that analysis of hydrogen bonding and solvent accessible
surface area from molecular dynamics simulations correlates well with ALK activation [24].
To test the robustness of this method, which performed very well on activating activation
loop and αC helix mutations, we envisioned a series of activation loop and αC helix mutants
which we hypothesized would be non-activating. We also wanted to test the method out on
a further set of ALK mutations observed in patients. We also ran simulations on a series of
mutations in BRAF and HER2, since there are several mutations with known effect in these
kinases. The mutations analyzed here are given in Table 3.1, sorted by whether they are
non-activating, mildly activating, or activating and which kinase subdomain the mutation
occurs in. See the section on kinase structure (chapter 1) or kinase mutations (chapter 2) for
further information on kinase subdomains or the distribution of kinase domain mutations.

In order to understand the effects of the series of ALK mutations observed in patients and
designed as decoys for MD, Jin Park performed kinase activity and colony transformation
assays. The results of these experiments are shown in Figure 3.1.

3.3.2 H-bonds analysis

As discussed in MD studies, analysis of hydrogen bonding patterns on relatively short
timescales can be used to differentiate between structures with different energy landscapes
and that hydrogen bonds that persist for many 10s of nanoseconds are often stable for
much longer times. Previous work has generally only compared a WT protein and one or
a few mutants of a single kinase. We sought to undertake a more comprehensive study to
elucidate commonalities between a series of mutants in one kinase and between mutations
in different kinases. In order to come to an understanding of differences between hydrogen
bonding patterns of mutant kinases in the inactive conformation and the WT in the inactive
conformation, we sought to understand the general features of hydrogen bond occupancy
for a series of inactive conformation mutant simulations in ALK, BRAF, and HER2, as well
as active conformation simulations.

3.3.2.1 H-bonds occupancy maps

An example H-bonds occupancy for inactive WT of ALK, BRAF, and HER2 is given in
Figure 3.2 as well as a second longer (400 ns) ALK WT inactive contact map. One striking
feature of these plots is that they point out the dynamic nature of some H-bonds while
showing that most are relatively static. While most H-bonds are formed at the start of
a simulation and persist for the duration, some H-bonds flicker in and out of existence,
especially in the case of polar and basic residue types. Indeed, there are generally not more
than a few H-bonds that show a larger than 30% occupancy difference between the first and
second 50 ns of a simulation, as discussed further below. Mutations that can stabilize or
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Table 3.1: Experimental characterizations of mutant kinases

Activation status Kinase subdomain
ALK

Mutations
BRAF

mutations
HER2

mutations
Total

Non-activating

P-loop -
G466V
G466E

- 2

αC helix E1161A -
S760A
I767M

3

C-loop
I1250T
A1251T

- - 2

A-loop

F1271L
G1286R
Y1283E
R1279Q

D5994V
G596R

- 6

rest

C1079A
A1200V
G1201R
P1213C
R1231Q
T1343I
D1349H

G469E Y835F 9

total 14 5 3 22

Mildly activating

P-loop - - - 0
αC helix D1163N - - 1
C-loop - - V842I 1

A-loop

G1269A
Y1278A
Y1278E
Y1282E

F595L
T599I

- 6

rest

Y1096A
F1098V
I1183T
L1204F
R1212C
E1242K

-
R896C
L755S

8

total 11 2 3 16

Activating

P-loop -
G466A
G464E
G464V

- 3

αC helix

M1166R
I1170N
I1170S
I1170V
I1171N
F1174L
F1174S

-

V777L
D769H
D769Y
V773L
L768S

12

C-loop
F1245C
F1245V

- - 2

A-loop
R1275Q
Y1278S

L597V
K601E
V600R
V600K
V600E
V600D

- 8

rest

G1128A
T1151M
C1156Y
R1192P
L1196M

G469A
N581S
I463S
R462I

- 9

total 11 9 5 25

Total 41 20 11 72

destabilize these interactions may have impacts on the overall dynamics and conformational
landscape of a protein.

3.3.2.2 H-bonds occupancy patterns

To investigate the impact of mutations on H-bonds occupancy patterns, we computed the
total Hbonds occupancy difference, ∆MUT,Total, between a series of inactive conformation
mutant simulations in ALK, BRAF, and HER2, as well as active conformation simulations,
as outlined in H-bonds methods. This measure only takes into account H-bonds which have
rather large differences in occupancies between the mutant and WT simulation, as small
occupancy differences could be the result of fluctuations around a well defined minima. Any
mutant where the computed ∆MUT,Total is nonzero is taken to have an altered hydrogen
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Figure 3.1: ALK mutation catalytic and transformation assays

(a) ALK colonies − decoys

(b) ALK colonies − clinical

(c) ALK Kcat’s − decoys (d) ALK Kcat’s − clinical

A and C show designed mutations while B and D show patient derived mutations

bonding pattern. The reason to consider mutations with ∆MUT,Total close to but not zero is
that any mutant with ∆MUT,Total < 0.75 must actually have at least two altered H-bonds,
one gained and one lost, since in our scheme values less then 0.75 are not counted. The
maximum difference in occupancy for one H-bond between two simulations is 2 since side
chains are considered as a whole and some residues have two H-bond donors or acceptors.

It is important to take into account the extensive work that has gone into characterizing
the conformational dynamics of the kinase domain and the differences between the active
and inactive conformation as outlined in chapter 1. Confirming previous insights that
motions in a few functionally crucial subdomains are important in the kinase activation
process is the fact that looking at hydrogen bonding patterns in these subdomains are
better able to differentiate between activating and non-activating mutants than the kinase
domain as a whole.

In the entire series of mutations studied here, only one, HER2 I767M, shows no dif-
ference between WT and mutant ∆MUT,Total when looking at all residues in the kinase
domain. Considering only H-bonds within αC helix only finds an altered ∆MUT,Total in
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Figure 3.2: Inactive Hbonds contact maps

(a) ALK WT inactive 100 ns (b) ALK WT inactive replicate 400 ns

(c) BRAF WT inactive 100 ns (d) HER2 WT inactive 100 ns

Residues are colored by type of side chain. Darkness determined by number of H-bonds a
residue participates in during a single frame. Backbone and side chain contributions are
taken together. Only residues that participate in at least one H-bond for at least 10% of
frames are shown.
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the three ALK mutants E1161A, I1171N, and I1183T while considering H-bonds within the
nucleotide binding loop never finds a difference between WT and mutant simulations. In
contrast, analysis of H-bonds pattern in several kinase subdomains is assessed for ability to
differentiate between activating and non-activating mutation in Table 3.2. Only H-bonds
within the top 3 subdomains, or H–bonds within and/or between combinations of subdo-
mains, as assessed by balanced accuracy, (see Table 3.4 for descriptions of measures of binary
classifiers) are given in Table 3.2. For each kinase, the balanced accuracy is computed for
two different fold changes in catalytic activity, since a large body of evidence has accumu-
lated that mutations which increase activity by greater than 4.5 fold are transforming, but
changes of 2 fold could still reasonably be classified as ’altered’ (as discussed in the section
on kinase activity).

Table 3.2: H-bonds occupancy classificatory power by subdomain(s)

Protein
activating
Kcat cutoff

H-bonds region
Rank
Score

TP FP TN FN
BACC

(%)
TPR
(%)

TNR
(%)

ALK 2
(P-loop) αC helix &

A-loop
1 18 7 7 9 58.3 66.7 50.0

ALK 2 C-loop & A-loop 2 20 8 6 7 58.5 74.1 42.9

ALK 2 (P-loop) A-loop 3 15 4 10 12 63.5 55.6 71.4

ALK 4.5 C-loop & A-loop 1 13 15 10 3 60.6 81.3 40.0

ALK 4.5
(P-loop) αC helix &

A-loop
2 12 13 12 4 61.5 75.0 48.0

ALK 4.5 (P-loop) A-loop 3 10 9 16 6 63.3 62.5 64.0

BRAF 2 αC helix & C-loop 1 10 3 2 5 53.3 66.7 40.0

BRAF 2
(P-loop) αC helix &

A-loop
2 7 2 3 8 53.3 46.7 60.0

BRAF 2
(P-loop) αC helix &

C-loop & A-loop
3 13 3 2 2 63.3 86.7 40.0

BRAF 4.5
(P-loop) αC helix &

A-loop
1 6 3 4 7 51.7 46.2 57.1

BRAF 4.5 C-loop & A-loop 2 3 1 6 10 54.4 23.1 85.7

BRAF 4.5
(P-loop) αC helix &

C-loop & A-loop
3 11 5 2 2 56.6 84.6 28.6

HER2 2
(P-loop) αC helix &

C-loop
1 4 1 2 4 58.3 50.0 66.7

HER2 2 (P-loop) A-loop 2 3 0 3 5 68.8 37.5 100.0

HER2 2
(P-loop) αC helix &

A-loop
3 5 0 3 3 81.3 62.5 100.0

HER2 4.5 (P-loop) C-loop 1 3 1 5 2 71.7 60.0 83.3

HER2 4.5
(P-loop) αC helix &

C-loop & A-loop
2 5 3 3 0 75.0 100.0 50.0

HER2 4.5
(P-loop) αC helix &

A-loop
3 4 1 5 1 81.7 80.0 83.3

See Table 3.4 for definitions of column headers. If two or more sets of subdomains have the same
classificatory power they are listed together. Only the top 5 subdomain sets in terms of BACC are
shown and the BACC column is highlighted for ease of readability.
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Table 3.4: Measures of binary classifiers

Short name Full name Alternate name description or formula
P Positive - activating mutation
N Negative - non-activating mutation

TP True Positive - positive predicted positive
FP False Positive type I error negative predicted positive
TN True Negative - negative predicted negative
FN False Negative type II error positive predicted negative

TPR True Positive Rate Sensitivity TPR = TP
P

TNR True Negative Rate Specificity TNR = TN
N

BACC Balanced ACCuracy - BACC = TPR+TNR
2

A number of interesting features of hydrogen bonding patterns are discernible from
Table 3.2. In each of the proteins studied, not only does the nucleotide binding loop on
its own not differentiate between activating and non-activating mutations, there is no case
where adding the nucleotide binding loop increases balanced accuracy over leaving it out.
This is true even in the case of BRAF where many of the mutations are actually in the
nucleotide binding loop (see Table 3.1). This is highlighted in Table 3.2 where (P-loop)
indicates that addition of the nucleotide binding loop does not alter the scoring. Only
in 4 out of the 18 cases listed does adding the nucleotide binding loop alter the balanced
accuracy; in all four cases the balanced accuracy decreases. Another interesting feature
is that the cutoff used for catalytic threshold of an ’activating’ mutation does affect the
orderings of which set of subdomains changes. In order to find an objective measure of which
set of subdomains best discriminates between activating and non-activating mutations, we
score each of the top 3 sets of subdomains according to their rank. Using the lower threshold
of 2x increase in catalysis, the best set of kinase subdomains to use is αC helix and activation
loop with a score of 5, followed closely by only the activation loop with a score of 4. For
the higher threshold of 4.5x increase, again the best set of kinase subdomains to use is αC
helix and activation loop with a score of 5, but here looking at ∆MUT,Total in the αC helix,
catalytic loop, and activation loop also gives a score of 5. The fact that using the αC helix
and activation loop resulted in the best balanced accuracy score in both cases provides
verification of our previous work which used this as a scoring function in a series of ALK
mutations [24], which comprise about half the ALK mutations here. A plot of ∆MUT,Total

within and between the αC helix and activation loop for all mutations studied here is given
in Figure 3.3.

3.3.2.3 H-bonds occupancy histograms

Several salient features of Figure 3.3 can be noted. Since inclusion of the nucleotide binding
loop in H-bonds scoring has almost no effect it is not surprising that the only activating
mutations in this dataset to fall within the nucleotide binding loop, all in BRAF, are not
scored properly. This points to the need for alternate scoring functions since there may be
different activation mechanisms involved in different mutants. Indeed, there is evidence that
BRAF P-loop mutations function by reducing binding affinity between BRAF and MEK,
leading to increased BRAF-CRAF dimerization and increased downstream signaling [87].
BRAF has two false positives, D594V and G596R, which are both in the DFG motif that
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Figure 3.3: H-bonds occupancy plots

(a) BRAF (b) HER2

(c) ALK
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starts the activation loop in most kinases [109]. Both of these mutations have been shown to
be capable of activating their downstream partners even though they have very low intrinsic
kinase activity relative to WT, due to a propensity to promote dimerization with CRAF
[254, 94]. In the case of HER2, L755S has proven difficult to express at levels sufficient
for detailed catalytic measurements, but also to result in increased activation of EGFR in
some cell lines [21]. HER2 L755S is the only kinase mutation in this study that has not
been characterized in terms of it catalytic activity, but has been demonstrated to lead to
increased phosphorylation of downstream partners, to be able to transform cell lines, and to
confer lapatinib resistance [246, 129, 21, 131, 273, 264] and is given a moderately activating
score, though it could actually lead to a decrease in activity and still be transforming. In
the ALK case, L1204F ( from [24]), G1201R, and R1279Q (see Figure 3.1) have also proven
difficult to express in sufficient quantity for in vitro measurement. This may suggest that
some of the false positives in the ∆MUT,Total analysis presented in Figure 3.3 may adopt
a conformation distinct from the WT inactive conformation but still not be biased towards
an active conformation, as has been shown for some mutations studied via MD as discussed
in introduction on metadynamics simulations of kinase mutants (also see the discussion on
H-bonds false positives).

3.3.2.4 H-bonds occupancy is strongly influenced by labile hydrogen

In an effort to understand the variability in individual H-bonds, as illustrated in Figure 3.2,
we undertook an analysis of how labile individual H-bonds are. As a metric for labile H-
bonds, we investigated which H-bonds show a change in occupancy of greater than 30%
between the first and second half of any mutant simulation, again limiting our analysis to
H-bonds that show a change in occupancy of at least 0.75 between WT and mutant. We
found that only a small number of H-bonds are labile in this manner, across all systems.
The H-bonds most frequently found to be labile is given in Table 3.5.

We ran a total of 86 ALK simulations, 44 BRAF simulations, and 26 HER2 simulations,
in each case simulating each mutant twice and also two simulations each of WT in active
and inactive conformations. The total number of labile H-bonds across all simulations is
390 in ALK, 147 in BRAF, and 123 in HER2, an average of about 4 per simulation. This
confirms the intuition derived from Figure 3.2 that most H-bonds do not fluctuate much
over the course of a simulation.

The data in Table 3.5 shows that a small number of labile H-bonds recur across simu-
lations of different mutants and that this pattern is true for all three kinases studied here.
Remarkably, these labile H-bonds also account for most of the ∆MUT,Total value found
for the subdomains that contain them. This is shown in Table 3.6 which for each kinase
give BACC, TPR, and TNR for (1) the top 3 subdomains for the 4.5x Kcat cutoff as listed
in Table 3.2 but here using only the few labile bonds found in those subdomains, and (2)
the top three single residues as scored by BACC for differentiating activating from non-
activating mutations, also using the 4.5x Kcat cutoff. Not only does only considering labile
bonds effectively recapitulate considering all residues in a subdomain, in each kinase the
single labile residue with the highest BACC has a similar BACC to considering all residues
in a (set of) subdomain(s). Also of note is the fact that the H-bonds most frequently found
to be labile in Table 3.5 are not all found within a subdomain, but only one of the high
BACC residues in Table 3.6 is not in a subdomain.
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Table 3.5: Labile H-bonds

Kinase H-bond donor H-bond acceptor
# simulation
bond is labile

ALK

Arg-1181 side Glu-1197 side 47
Arg-1231 side Glu-1384 side 40

Arg-1253 side Asp-1249 side 33
Arg-1284 side Asp-1163 side 30
Arg-1279 side Asp-1163 side 23
Arg-1275 side Asp-1276 side 22
Arg-1284 side Asp-1276 side 21
Listed bonds/total labile bonds 216/390

BRAF

Arg-662 side Glu-611 side 23
Arg-701 side Asp-702 side 19
Arg-701 side Asp-629 side 19
Arg-626 side Asp-629 side 16
Arg-558 side Glu-715 side 9

Arg-603 side Glu-501 side 9
Arg-558 side Asp-555 side 8

Arg-575 side Glu-501 side 7
Listed bonds/total labile bonds 95/147

HER2

Arg-981 side Asp-982 side 12
Arg-868 side Glu-770 side 10
Arg-849 side Asp-845 side 10
Arg-844 side Asp-873 side 9
Arg-968 side Glu-837 side 8
Arg-970 side Glu-837 side 7

Listed bonds/total labile bonds 53/123
Residues are colored by location within the kinase domain as C-loop, αC helix, and A-loop. All

listed H-bonds are between residue side chains (side) but main chains were also considered.

Table 3.7: H-bonds at the same
position in kinase domain

αC helix BRAF Glu-501 HER2 Glu-770
C-loop ALK Asp-1249 HER2 Asp-845
C-loop BRAF Arg-575 HER2 Arg-844
C-loop ALK Arg-1253 HER2 Arg-849
A-loop ALK Arg-1279 BRAF Arg-603
A-loop ALK Arg-1275 HER2 Arg-868

- ALK Arg-1231 BRAF Arg-558
- ALK Glu-1384 BRAF Glu-715

Position within kinase domain is
given in the first column.

Finally, we point out that labile H-bonds are at
least partially conserved, as demonstrated by Ta-
ble 3.7 which shows labile H-bonds that are in the
same position in the kinase domain. Only 2 of the 8
conserved labile H-bonds in Table 3.7 are not found
in a subdomain. Three of the six labile H-bonds in
Table 3.7 are in the catalytic loop, and two of these
are found in the catalytically important HRD motif.
The highly conserved catalytic residue is the D of the
HRD motif [135] and the pair ALK-D1249:HER2-845
are at this position. The R of the HRD is thought
to help coordinate the active site, though it is some-
times absent in kinases that do not undergo activa-
tion loop phosphorylation [135] and the pair HER2-
R844:BRAF-R575 are at this position. A cross-referencing between residues in Table 3.6 and
Table 3.7 shows that many of the conserved labile H-bonds are also good at differentiating
activating from non-activating mutations based on BACC.
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Table 3.6: H-bonds occupancy classificatory power by residue(s)

Protein Donors Acceptors
BACC

(%)
TPR
(%)

TNR
(%)

ALK Arg-1275 Arg-1279 Arg-1284 Asp-1163 Asp-1276 60.1 56.3 64.0

ALK
Arg-1253,

Arg-1275 Arg-1279 Arg-1284
Asp-1249 Asp-1276 59.5 75.0 44.0

ALK Arg-1275, Arg-1279, Arg-1284 Asp1276 57.0 50.0 64.0

ALK - Asp-1163 55.6 31.3 80.0
ALK Arg-1275 - 56.5 25.0 88.0
ALK - Asp-1276 63.3 62.5 64.0

BRAF Arg-603 Glu-611, Glu-501 40.1 23.1 57.1
BRAF Arg-575, Arg-603 Glu-611 50.0 0 100
BRAF Arg-575, Arg-603 Glu-501, Glu-611 48.9 69.2 28.6

BRAF - Glu-501 48.9 69.2 28.6
BRAF - Glu-611 54.4 23.1 85.7
BRAF Arg-662 - 54.4 23.1 85.7

HER2 Arg-844 Arg-849 Asp-845 71.7 60.0 83.3
HER2 Arg-844 Arg-849 Arg-868 Glu-770 Asp-845 Asp-873 55.0 60.0 50.0
HER2 Arg-868 Glu-770 Asp-873 61.7 40.0 83.3

HER2 - Glu-770 71.7 60.0 83.3
HER2 - Asp-845 71.7 60.0 83.3
HER2 Arg-868 - 81.7 80.0 83.3
Residues are colored by location within the kinase domain as C-loop, αC helix, and A-loop.

3.3.3 Solvent accessible surface area analysis

3.3.3.1 R-spine

As outlined in the introduction to kinase structure in chapter 1, much recent work has gone
into elucidating the role of a regulatory spine in kinase activation. In the active conformation
the R-spine is assembled, with all four residues in close proximity. In the inactive DFG-out
conformation, the F of the DFG motif points towards the active site, breaking the R-spine
[135]. In the case of BRAF workers have shown that replacing L505 residue in the R-spine
with a Phe residue leads to constitutive kinase activation, potentially by promoting R-spine
formation [104]. In order to see if a similar activation mechanism may be at play in any
of the mutants considered here, we used changes in R-spine solvent accessible surface area
(SASA) as a proxy for R-spine assembly, as outlined in R-spine methods. The reason SASA
was chosen as a metric as opposed to a distance or dihedral angle based metric is that the
method originally used to discover the role of the R-spine was based on changes in surface
exposure as measured by SASA using DSSP [135], as we have done here. We note that in
[135] a probe radius of 1 Å is used but that we use here a 1.4 Å radius, the default in DSSP
since it is close to the radius of a water molecule [126]

None of the simulations considered here were prepared in the ‘DFG-out’ inactive con-
formation but instead have the catalytic Asp pointing towards the active site. This was
not a conscious modeling decision but the result of the crystal structures used for homology
modeling. Indeed, a majority of structures in the PDB adopt a DFG-in conformation, with
around 3 times more DFG-in structures than DFG-out [251]. Recent studies using free en-
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ergy calculations have shown that the DFG-in conformation is lower in energy in both ABL
and SRC kinases [164], though protonation of the DFG Asp can alter this [152], while free
energy studies of BRAF have shown that both the WT and V600E systems preferentially
adopt a DFG-in conformation [157].

Since all systems have a starting configuration with the R-spine formed, we should not
expect a large difference between the active and inactive WT R-spine SASA, and indeed
this is confirmed in Figure 3.4. Only in the case of BRAF do the means of the active
and inactive WT differ by more than 1 standard deviation. Curiously, BRAF is also the
only case where the active WT mean is higher than inactive WT. Mutational analyses
have demonstrated that R-spine substitutions of larger hydrophobic residues can lead to
constitutive kinase activation [104, 103], while free energy calculations have shown that
ABL has a larger active site SASA [152], so we hypothesized that mutations that lead to
larger R-spine SASA might correlate with activating mutation. Unfortunately, no such
patter is detectable in Figure 3.4. We also investigated whether there was any correlation
between activation status and the standard deviation of SASA, but again there was no
discernible relationship (data not shown).

3.3.3.2 Hydrophobic core

We also sought to measure changes in SASA of a hydrophobic core of residues as we had
previously for some of the ALK mutations under study here [24]. While in that earlier study
the hydrophobic core correlated well with activation status, the new set of ALK mutations
did not show a similar correlation, nor did BRAF or HER2 (data not shown). By analyzing
the contributions of each residue included in the hydrophobic core analysis, we determined
that the two ALK JM residues Y1096 and F1098, both located rather peripherally in the
hydrophobic core, are subject to larger fluctuations in SASA relative to other core residues.
When these residues were left of the hydrophobic core analysis the correlation to activation
status in the ALK mutants studied in [24] disappeared and SASA patterns of ALK mutants
more closely resembled those of BRAF and HER2, which only have the kinase domain in
the structures used here.

3.3.3.3 Genetic algorithm

Finally, in an attempt to determine whether there might be some previously unrecognized
pattern of hydrophobic residues that could separate activating from non-activating muta-
tions in the systems under study here. To this end, we implemented a genetic algorithm
(GA) that used as its fitness function (1) difference in SASA of the two classes, activat-
ing and non-activating mutations, (2) number of residues included in the analysis, and (3)
receiver operating characteristic area under the curve of classifying mutations activating
above or below a SASA threshold. In the case of both (1) and (2), both minimization and
maximization were tried. In all cases attempted, it was found that there is a set of residues
for which SASA can distinguish without error on the training set but do very poorly on a
test set. Combinations of residues as small as 11 and as large as 39 were able to achieve an
AUC of 1 on training sets (data not shown).
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Figure 3.4: H-bonds occupancy plots

(a) BRAF (b) HER2

(c) ALK
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3.4 Discussion

3.4.1 H-bonds false positives

As discussed in H-bonds occupancy histograms, the BRAF D594V and G596R mutations
diminish catalytic activity but lead to transformed cell lines. The same is also true of the
kinase dead BRAF mutation K483M and it is thought that the underlying mechanism in
these cases increased ability to act as a scaffold for CRAF [254, 94]. The K753E mutation
of HER2 is at the same position in the αC helix, which is conserved among kinases and
important for forming a salt bridge important for ATP binding and catalysis. This mutation
has been shown to lead to decreased kinase activity of HER2 but to increase signaling
through EGFR [66, 273]. In EGFR the K745M mutation, often discussed in the literature
as K721M due to a numbering scheme based on the removal of a targeting sequence from the
mature peptide, is also known to reduce kinase activity [66]. This kinase deficient EGFR is
still known to be able to stimulate activation of downstream targets upon EGF stimulation
and this stimulation is dependent on HER2 kinase activity, suggesting that EGFR is acting
as a scaffold for HER2 in this case [55]. It has also been shown that EGFR K745 may be a
target for monomethylation and that this methylation leads to EGF independent EGFR C-
terminal tail phosphorylation in cell lines [217]. This evidence, when taken together, points
to a mechanism where mutations that reduce kinase catalytic activity in several proteins
nonetheless result in increased activation of downstream signaling pathways. Also of note is
that HER2 L755S has been demonstrated to lead to cell line transformation and lapatinib
resistance [246, 129, 131, 273, 264] and is difficult to express for kinase activity assays [21].
The ALK mutations G1201R and L1204F both express poorly and lead to transformation in
cell lines [24] (also see Figure 3.1). It is noteworthy that though ALK G1201R and L1204F,
BRAF D594V and G596R, and HER2 L755S are all known to lead to transformation of
cell lines despite lessened (or difficult to measure) kinase activity relative to WT, all of
these mutations show strong changes in H-bonds occupancy within and between the αC
helix and activation loop, as shown in Figure 3.3. This raises the question of whether
these mutations are actually ’false positives.’ These mutations with diminished activity but
paradoxical activation of downstream targets could plausibly be attributed to structural
changes that bias the system away from the inactive conformation. Future studies of the
three dimensional structure or conformational free energy landscape of these mutants could
lead to interesting insights into how these mutants function and potentially validate the use
of ∆MUT,Total as a scoring function for kinase domain mutations.

3.4.2 Utility of SASA

As seen in Figure 3.4, SASA of the 4 R-spine residues undergo rather large fluctuations rel-
ative to their means. This also holds when a larger number of residues like the hydrophobic
core is considered. We were also able to find sets of residues using a GA which perfectly
separated activating and non-activating mutations in a training set, but which performed
poorly on cross-validation. This suggests that SASA may be inherently too noisy to be
useful for distinguishing between activating and non-activating mutations. However, we
cannot rule out that a measure that accounted for changes in solvent density as opposed to
solvent area [187] would yield better results.
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3.4.3 Importance of R-spines and H-bonds

The inability of SASA analysis of R-spine residues to distinguish activating from non-
activating mutations does not rule out their importance in kinase activation. Even if SASA
is a plausible metric for monitoring the DFG flip which would coincide with breaking of the
R-spine, the time scales of the simulations performed here may preclude actually observing
such an event. An NMR investigation of p38 MAP kinase found that the DFG flip occurs
in the microsecond to millisecond time scale, though only by inference as the actual flip was
not directly measured, only shown not to happen at sub-microsecond timescales and to have
already occurred at millisecond time scales [253]. For protein kinase A, NMR has shown
that DFG flip is not observed in the apo state but that upon nucleotide binding DFG flip,
and other rearrangements concomitant with activation, occur on millisecond time scales
with similar rates to measured Kcat time scales [159]. As such, the DFG flip and thus R-
spine (dis)assembly is unlikely to be observed on the time scales accessible to conventional
MD. One study did report R-spine breaking in SRC on the 100s of nanoseconds, but did
not observe DFG flip, only a change in orientation of the αC helix [71]. We also frequently
observe motion of the αC helix in our simulations. Many enhanced sampling studies have
computed free energy landscapes for DFG flip [152, 250, 148, 164, 171], showing that in
most cases the DFG-in conformation is energetically favorable. Taking into account both
the long time scales of DFG flip in R-spine (dis)assembly and the fact that an analysis of
H-bonds on much shorter time scales does seem to correlate with functional alterations, the
question of the priority of spines vs H-bond networks can be asked.

A small number of residues changing their hydrogen bond occupancy does seem to
correlate with mutational activation status and these residues also happen to be among
the only ones that are regularly seen to undergo large changes in occupancy during MD
simulations. This points towards a sensitive electrostatic switch that can be disrupted
by changes in charge such as BRAF V600E and ALK R1275Q or electrostatic screening
effects that result from changes in size or configuration of hydrophobic residues. This
could explain how HER2 V773L and ALK I1170V, which are at the same position, could
both be activating though in both cases the WT and mutant residues only differ by one
carbon. A similar argument could be made for HER2 V777L and ALK F1174L, or to
explain why, in addition to BRAF V600E/D/K/R all being activating, BRAF V600F also
leads to constitutive activation [103]. This electrostatic switch seems to be active on a much
shorter time scale than (dis)assembly of the R-spine or DFG flip, and thus it seems likely
that R-spine formation is a result of the changes in H-bonds patterns and not a driver of
these changes.
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Chapter 4

Biophyscode

Everything rests here on the mode in which the passage from potentiality to
act comes about.

Giorgio Agamben The Coming Community

4.1 Introduction

The use of molecular dynamics (MD) simulations to study and understand biomolecular
systems such as proteins and membranes allows insights into biophysical mechanisms that
can be difficult or impossible to gain with other techniques. This has combined with ongo-
ing decreases in cost and increases in availability of computational resources to make MD
an increasingly popular technique for investigating biomolecular systems [213]. A number
of popular software packages exist for setting up, running, and analyzing MD simulations,
but these operations are not always integrated into a complete pipeline and often require
extensive use of a command line interface (CLI). A recent report [213] showed that GRO-
MACS [203, 181, 2] was the most popular MD engine, followed by VMD [107], LAMMPS
[199], NAMD [193], CHARMM [26], and AMBER [37]. In this paper we will outline the
need for, and workings of, an integrated GROMACS simulation and analysis pipeline with
a web-based graphical user interface (GUI), but first we will give a brief overview of existing
tools and software used for biomolecular MD.

4.1.1 Existing MD tools

NAMD Not Another Molecular Dynamics program (NAMD [193]), and Visual Molecular
Dynamics (VMD [107]) are popular for running and analyzing MD simulations [213]. VMD
has a graphical user interface with plugins that allow for the generation of NAMD input
files for solvated and ionized protein or protein membrane system. Mutations can also be
made to proteins using VMD. These NAMD files can then be run using conventional MD
or enhanced sampling techniques such as replica exchange, accelerated MD, free energy
perturbation, and thermodynamic integration. VMD has a number of analysis tools such
as root mean squared deviation or fluctuation (RMSD, RMSF), hydrogen bonding and
salt bridges, solvent accessible surface area (SASA), normal modes, and tools for analyzing
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collective variables. It is in principle possible to write scripts to chain together simulation
setup, run, and analysis, but this requires knowledge of the tcl programming language since
that is what the VMD interface is written in. Recently, the QwikMD [213] package was
released to allow NAMD/VMD users to have an integrated pipeline for preparing, running,
and analyzing MD simulations. In addition to the features of NAMD and VMD, QwikMD
allows users to select a structure from the protein databank, select which chains or residues
from the structure to use, and to model in any missing residues. QwikMD also allows users
to run MD simulations on Amazon Webservice.

CHARMM Chemistry at HARvard Molecular Mechanics (CHARMM [26]) is another
popular MD engine. Although there is a free academic version of CHARMM available,
there is a fee to obtain a version compatible with high performance compute cluster usage.
CHARMM can be run at the command line using a CHARMM specific scripting language
but also has a graphical user interface called CHARMM-GUI [120]. CHARRM-GUI allows
users to download coordinates from the PDB, select chains, add any missing residues, and
solvate a protein and can also be used to create protein-membrane systems. Once the
system is set up CHARMM-GUI allows users to run conventional, targeted, steered, or
replica exchange MD, and is compatible with a number of all atom and coarse grain force
fields. The majority of the tools available in CHARMM-GUI are for setting up and running
protein, protein-membrane, and protein-ligand systems. The main CHARMM package has
a large number of analysis tools however, including measuring quantities such as RMSD
and RMSF, radius of gyration, principal component analysis (PCA) and autocorrelation,
SASA, hydrogen bonding, bond angle distributions, and density fluctuations.

AMBER Assisted Model Building with Energy Refinement (AMBER [37]) is another
non-free MD engine; the associated analysis suite, AmberTools is available free. AMBER
has command line tools for preparing PDB structures but users must generally already have
found or generated a complete protein structure. After obtaining a structure, AMBER
users can then solvate, minimize and equilibrate the system, and carry out conventional,
replica exchange, accelerated, and nudged elastic band MD; umbrella sampling and TI
are also available. Various analysis tools allow for the calculation of various quantities
such as RSMD and RMSF, bond angle distributions, secondary structure, density, radius
of gyration, diffusion, and velocity autocorrelation. Recently a Kepler workflow has been
introduced which allows for GUI based set-up, local or cluster based execution, and analysis
of AMBER MD simulations [204].

GROMACS The GROningen MAchine for Chemical Simulation (GROMACS) is the
most widely used biomolecular MD tool and supports a wide variety of use cases. GRO-
MACS has CLI tools that allow a protein structure to be solvated in a water box with ions,
minimized, equilibrated, and run as production MD with a number of different all atom or
coarse grained force fields and can be run either on a local machine or on a compute cluster.
Tools to create biomembranes and to place proteins on or in a membrane also exist. One
drawback of GROMACS is that users must already have a complete protein structure as no
mutation or homology modeling tools are provided. In addition to the core functionality
of setting up and running MD simulations, there are a large number of analysis tools that
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are included in the GROMACS package such as PCA, RMSD and RMSF, SASA and pro-
tein secondary structure, clustering structures, radius of gyration, density maps, hydrogen
bonds and salt bridges, bond angle distributions, velocity auto-correlation, as well as tools
for selecting subsets of atoms and timesteps from a trajectory. Additionally, GROMACS
works with a number of free energy calculation methods such as free energy perturbation,
thermodynamic integration, and replica exchange with built-in tools to analyze the result
of such calculations. One reason that GROMACS has such a large selection of features is
the admirable commitment of the developers to maintaining an open source codebase with
many contributors. One potential downside here is that all of these codes are run from
the command line with separate calls and runtime options, making it necessary to either
run each program manually from the command line in turn or to write scripts that chain
together large numbers of commands. Another drawback is that since many of the analysis
tools were written by independent contributors, there may not be ongoing support for some
analysis tools.

One tool that has seen extensive use in the MD community, and which is used extensively
in the work discussed here, is MDAnalysis [165, 80]. MDAnalysis is a python based interface
for reading in MD topology and trajectory files and performing analysis using built-in codes
such as RMSD, hydrogen bonding, water density, and PCA as well as any operation that can
be performed on the coordinates of the trajectory via NumPy or SciPy [248]. MDAnalysis
can read in topology and trajectory information from GROMACS, NAMD, CHARMM,
LAMMPS, or Amber and give programmatic access to the underlying coordinates as NumPy
arrays, making it a very important addition to the MD ecosystem. Another similar tool is
MDtraj [161], which offers trajectory readers for a number of MD engine trajectory formats
and also several NumPy and scikit-learn [190] based analysis tools. Although there have
been efforts to develop GUI based tools for GROMACS [214, 221, 155], as yet there has not
been a single tool which integrates simulation setup, execution, and analysis.

4.1.2 Need for a GROMACS framework

The fact that GROMACS is only available on the command line and requires several com-
mands to be run sequentially necessitates the creation of scripts to chain together GRO-
MACS calls. Discussions that the authors have had with other groups that run MD using
GROMACS points to each lab having its own in-house codebase to set up and run simu-
lations. One major drawback of this approach, and one of the major driving forces for the
development of BioPhysCodes, is the fact that taking an ad hoc approach whereby scripts or
inputs are modified as needed can make it very difficult to keep track of which simulations
were run under which conditions. The other principle diving force behind the creation of
BioPhysCodes is that having a relatively (or completely) automated system to set up and
run simulations allows workers unfamiliar with running MD simulations, or even with use
of the command line, to rapidly start running simulations and analysis. This has proven
especially useful for people who are only working on a project for a period of a few months
such as rotation, undergraduate, and even high school students. The need for an integrated
framework for setting up, running, and analyzing simulation data is widely appreciated,
as demonstrated by the recent development of such frameworks for NAMD [213] and AM-
BER [204], as well as the previous development of CHARMM-GUI [120]. The authors hope
that the BioPhysCodes can be a useful and welcome addition to the MD field that brings

44



GROMACS ease of use into line with other MD engines.

4.1.3 Need for “big green button”

Reproducibility has been shown to be a major problem in many fields of science [115], with
efforts to reproduce preclinical results proving successful only 11% [17] to 25% [202] of cases
in two widely cited studies. Leaving aside epistemological considerations [138], only issues
related to sampling should prevent easy reproducibility in a field like MD which has a rig-
orous underpinning in statistical mechanics. Nonetheless, one roadblock to reproducibility
is the large number of parameters that need to be set appropriately in order for an MD
simulation to run correctly. While small changes in temperature or pressure coupling, and
even large changes like simulating in a different ensemble, should theoretically eventually
lead to the same result [188], in practice and at shorter time scales choices of parameters
and minimization and equilibration protocols can lead to different results in systems with
the same atoms [180].

To ensure both ease of use and reproducibility, the BioPhysCodes, which consist of the
Automacs module for setting up and running simulations as well as the Omnicalc module
for analysis, is set up in a modular fashion. The underlying Python framework is minimal
and the actual analysis and simulation protocols are retrieved (automatically) from git

repositories. BioPhysCode also has a Factory module which is a web based interface built
on a Django framework that can be used both as a GUI and as a way to archive simulation
and analysis data. The combination of the Factory, Automacs, and Omnicalc codes which
are contained in BioPhysCodes allows for maximum reproducibility of MD experiments.

4.2 Methods

4.2.1 Inefficiency in standard methods

A typical simulation workflow for both experts and trainees starts when they conjure a
target simulation system from an interesting scientific question. This choice is often heavily
constrained by the molecules available in state-of-the-art force fields, or their purported
reliability for simulating the right physics. After selecting a target, researchers must build
a coherent model from a combination of useful experiments (e.g. X-ray, NMR, or cryo-
EM for protein structure), protein homology modeling (for incomplete proteins), or the
careful relaxation of an approximate structure for soft matter systems like polymers and
lipid bilayers. Rarely can complicated new systems or materials be simulated from scratch
in atomic detail without knowledge of some sort of constraints on possible configurations.

Because of their high computational cost, most simulation tools are written in fast,
low-level languages like C and Fortran. The scientist typically calls them from a linux
command line in a “bucket brigade” fashion in which the outputs for one simulation or
model-building step are fed into the next. The precise computational “experiment” they
create takes effort to generalize and automate. Moreover, there are often multiple, equally
valid ways to accurately construct a good model. For example, you can make a bilayer
by randomly scattering lipids in a box or by carefully arranging them in a grid. After the
data are generated, there are a number of different ways to package and archive the data for
analysis and future study. As a result, there are major barriers to auditing it, replicating the
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procedure precisely, or sharing the underlying methodology without personalized training.
Measuring physical properties from a simulation either generates a massive amount of new
data specific to that calculation (e.g. a pressure tensor calculation) or a highly-reduced
dataset that still needs to be paired with the source data to ensure that its conclusions are
robust. The necessary “manual” archival imposes a maintenance cost on many large sets of
data.

The process described above contains both community-developed standards and per-
sonal taste in seemingly equal measure. Each researcher has a unique, presumably rational
approach to building, simulating, and storing molecular dynamics trajectories. Neverthe-
less, constructing these systems can sometimes resemble a fine art. This is common to most
basic scientific research, and the commensurate training and development costs also ensures
that most molecular dynamics practitioners are experts in their trade. In the next section
we will describe some modernization methods which seek to automate and streamline this
task without replacing subject matter experts and instead making their (our) work more
transparent.

4.2.2 Modernizing methods

Despite the sometimes individual character of molecular simulations conducted in research
groups small and large, there are a number of community standards and best practices
that software developers have used to standardize the research in this field. Many of these
practices have informed our approach, and hence they are worth reviewing here.

(1) All popular integrators have extensive documentation, tutorials, and examples so
that new users can get started (c.f. AMBER1, CHARMM2, GROMACS3, VMD4). Most
codes are distributed in an open- or quasi-open-source format so that scientists can carefully
audit them.

(2) Users can build on existing codebases when they are combined with a scripting
language. One prominent example of this is VMD, which is built on top of the TCL scripting
language [107]. This provides two major advantages. First, users can easily interact directly
with VMD features, calculation functions, and even automate tasks that typically occur at
the GUI. Second, having access to the raw data makes it possible for users to save their
results in a more durable format. Other programs like Modeller [216] and pymol [220]
use python as a backend, and hence benefit from its well-known syntax. Interoperability
between simulation formats is also provided by tools that lack a graphical interface, like
MDAnalysis [165] or MDtraj [161], both of which are capable of reading data generated by
several different integrators.

(3) The integrators themselves provide a number of features that standardize their
outputs. For example, GROMACS and LAMMPS both use standard force field inputs
so that they can use force fields native to other integrators. GROMACS also outputs
simulation data in multiple common trajectory formats.

Embedding simulation tools in preexisting languages, writing standard trajectory for-
mats, and integrating analysis tools are all necessary components of a standard pipeline.

1ambermd.org/doc12/Amber14.pdf
2charmm.org/charmm/documentation/
3manual.gromacs.org/documentation/2016.4/manual-2016.4.pdf
4ks.uiuc.edu/Research/vmd/current/ug/
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However, there are many more modern software engineering tools that can help to improve
on these tools. First, many codes must be compiled to match underlying hardware. For
new users, this can be a major bottleneck. Virtual machines like Docker make it possible
to run these calculations in an isolated software environment which can be endlessly repli-
cated across different hardware (and also provides a reproducible compilation procedure).
Other language-specific tools, like Python Anaconda allow users to install a large set of
software dependencies (including external linux-packages). Modern software engineering
makes heavy use of so-called “test sets” which test developing codes on previous use cases
to ensure that backwards compatibility is not broken. Syntax formats like YAML (yet an-
other markup language) make it possible to describe arbitrary data structures and control
flow without clumsy programming syntax. Scientific python packages, namely SciPy [248],
are now competitive with native C and Fortran code when running expensive calculations
(typically because they call on these codes directly). Cross-platform binary output formats
provided by tools like HDF5 make it possible to store data in durable, machine and hard-
ware independent, format. Finally, multiple simulations or calculations can easily be run
at once by taking advantage of the embarrassingly parallel nature of running simulations
of or calculations on separate systems. Basic multiprocessing tools available in python also
make it possible to run many calculations in parallel without switching to a native-parallel
language or writing lower-level code manually.

The rich ecosystem of different software tools described above lends itself to many correct
solution methods, however many of the tools described above have peculiar limitations,
specific use-cases, and a lack of full interoperability. In the remainder of this methods
section we will outline a framework which uses all of these tools while making as few
arbitrary design choices as possible in order to close the loop and eliminate the high costs of
extending the functionality of a particular code. In the following results section, we outline
how different modular elements of BioPhysCode can be combined to set up and analyze
diverse protein, lipid, and carbohydrate systems.

4.2.3 Our objective

Our present task is to solve the “last mile” problem for molecular simulation tools by
building a single application that automates and supervises the construction, simulation,
and analyses of common models. Just as software design efforts have lead structure solution
methods like X-ray crystallography [3] and cryo-EM [219] to become common methods used
in support of answering biological questions, we hope that eventually MD can also become a
standard(ized) tool in the toolbox of anyone hoping to investigate biological questions. The
guiding design principle for this code is: “don’t be arbitrary”. Since there are many often
redundant molecular dynamics tools, our code is designed to resemble a software framework
in which codes interact in such a standardized way that one can easily swap in different
components. To this end, we have designed a modular framework with a few, strict rules
for making connections with other codes and datasets.

4.2.4 The BioPhysCode method

Given the design constraints outlined above, we have developed the following software
framework for organizing simulations from start to finish. Software frameworks are less a
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strict set of syntax rules that a coherent design philosophy. For that reason, we will describe
the framework by outlining some key features of the BioPhysCode workflow and how this
differs from a typical workflow described earlier.

4.2.4.1 Software dependencies

The pipeline begins with with either a basic linux workstation that has some pre-compiled
scientific software (GROMACS) or a Docker container. Dockerfiles (currently available
upon request from the authors) can be used to reliably generate the software environment
from a minimal linux installation, and they can serve as instructions for users who are
setting up new computer systems. We minimize the number of system-level packages users
must install; most users need only to install (1) GROMACS, which has detailed compilation
instructions5 and benefits from being compiled from source because this optimizes the code
to your hardware, and (2) mod wsgi, which is a server interface that allows python-django
to function. Both packages are found in many linux repositories and on homebrew for mac.
The remainder of the pipeline, specifically Python, required modules, and linux packages
necessary for serving the web interface, are all managed by the factory, which programati-
cally installs Anaconda with dependencies. An important design principle is that with the
two exceptions listed above, we choose never to formally “install” software, but instead to
build a local software environment. This allows users to run a factory instance with no
worry of conflicting versions of or dependencies on installed system packages.

Users clone the factory from github, download a copy of Anaconda, and run GNU make.
Users interact with a customized makefile to run the factory, automacs, and omnicalc
codes. Each instance is entirely local, and the use of Anaconda ensures that users do not
need superuser permissions to install software (with the rare exception of opening ports for
serving public websites). The factory maintains a list of installed software. Users that add
new calculations to the calculator can share customized lists with other users so there is no
ambiguity about which software is required to complete an analysis.

4.2.4.2 Managing the datasets

Once the factory installs the required Anaconda environment, users can modify a standard
connection file written in YAML. These connection files centralize all of the typically hard-
coded paths for a single computational project, including: where to store new simulations,
how to import preexisting simulation data, which analysis packages available on github to
use, and even which subsets of these analyses to activate (so that one analysis package can
be used on multiple projects), and even how to serve the interface (i.e. which ports). Users
then “connect” a project with a single command (make connect) and have the option to
non-destructively reconnect whenever they update these settings. This is particularly use-
ful when datasets move to other disks, when simulations must be merged into the current
dataset (each project can contain multiple distinct data sets). The default connection is
designed to parse simulations generated with automacs (described below), but the connec-
tion file specifies a set of regular expressions which allow users to parse existing datasets
without modifying them on disk.

5manual.gromacs.org/documentation/2016/install-guide/index.html
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4.2.4.3 Running simulations

Once a project is successfully connected, new simulations can be generated programatically
via recipes that are packaged as git repositories that function with automacs. These recipes
are easy to customize in a simple text editor. The factory also exposes their parameters to
the graphical interface so users can rapidly set system size, composition, starting structures,
and many other parameters. Most automacs functionality is written in plain Python, which
means that users who wish to make novel simulation construction procedures only need a
basic understanding of GROMACS (or the underlying integrator) and python. Automacs
is nothing more than a program designed to run a series of GROMACS commands auto-
matically, but it also includes explicit log files for each step. These logs can be used to
reproduce an automacs simulation without using the automacs codes. Developers can make
new simulation routines on-the-fly, without restarting, by continuing a stalled simulation
after modifying the code. Most importantly, automacs is highly modular, reusing many
common functions and parameters. For example, there is a single equilibration function
which allows users to define an arbitrary sequence of integrator parameter changes before
running the production simulation. There are also built-in tools for building bilayers that
work equally well for atomistic and coarse-grained systems. Using more generic, modular
functions enables users to adopt previous methods more easily. Automacs scripts are meant
to be human-readable and only call on python functions like “minimize” or “solvate”. The
interface to GROMACS is also rather independent from the data structures that govern
simulation protocols. This means that any future changes in the structure of command line
calls in GROMACS can easily be harmonized with automacs, and also that it is possible
to extend simulation protocols to other integrators or molecular simulation software like
NAMD or LAMMPS.

Automacs simulations are saved in a simple data structure, subdivided by modular
simulation steps, that the factory can automatically parse. It is important to note here
that the factory serves three primary purposes: it manages the connection files for multiple
projects, installs and updates the software environment provided by Anaconda, and it
runs the graphical user interface to automacs and omnicalc. It does so with almost no
customized message passing. Instead, it simply executes terminal commands via make that
more experienced users might do on their own. In that sense, the Django-based factory
interface can easily be replaced with a more advanced option in the future, particularly
since many graphical interface and web-based tools evolve quickly. Factory clones a fresh
copy of automacs for each new simulation, so it is always current and can be easily expanded.
It also reads arbitrary “experiment” files written in the automacs style, meaning that any
new simulation procedures will automatically have their settings exposed to the graphical
interface.

4.2.4.4 Performing analysis

Data generated from automacs are automatically available in the calculator package, called
omnicalc. Users can also merge and import previous datasets as long as they can formulate
a regular expression to identify their directories and files. Omnicalc is designed to read and
sub-sample large GROMACS datasets automatically and also accepts data from NAMD.
Calculations proceed by applying python-based analysis functions to groups of simulations.
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All user defined parameters, cutoffs, simulation names, and even plot labels can and should
be set in a single YAML file (the metafile) for easy readability and reproducibility. Each
calculation function must package data in a manner suitable for long-term storage via the
binary HDF5 format [240], which saves disk space and load times. This is the only constraint
on how calculations can be performed, but ensures that results are always accessible to
omnicalc. Calculations are never repeated once they are successful, and previous results
can be loaded into a “downstream” calculations in order to perform a chain of calculations.
This allows analyses to be built incrementally, and easily divided into small parts if they
are processor- or memory-intensive.

Analysis codes can use a number of trajectory readers which are not fixed by omnicalc.
The authors tend to use MDAnalysis [165] however it is easy to read simulations natively
in python, or use another package such as MDtraj [161]. Completed calculations can be
summarized using plotting software like matplotlib [108] in a customized interactive python
terminal which allows users to edit the code without reloading the data. All plotting
scripts are convertible to interactive Jupyter notebooks [191], which can be served within
the factory GUI and then customized for publication. This feature also allows easy sharing
and manipulation of plotting among collaborators. Omnicalc includes a number of utility
functions for saving large libraries of similar images with additional metadata so they are
easy to sort and filter. The factory GUI also has access to this metadata, allowing users
to easily select figures based on parameters set at the time of plot creation via the YAML
metafile. Each omnicalc instance is in bijection with a single git repo. The reason for this is
that while one omnicalc git repo can contain multiple calculation and plot functions which
manipulate data in specific ways, there is no reason to expect all developers to adhere to a
strict data structure (aside from the calculation data being HDF5 compatible). Omnicalc
only coordinates the execution of these functions and the organization of the data on disk.
If a user wants to analyze data with multiple omnicalc git repos, the factory connection
file can be set up so that different omnicalc instances have access to the same underlying
data.

By abstracting the analysis codes into simple functions, it is also easy for users to
understand how the authors have analyzed their data so they can implement these methods
outside of the BioPhysCode framework. This framework also allows for the development
of complex ecosystems of analysis codes that have been published in the literature, similar
to e.g. Kepler [262] or Taverna [130]. The authors hope that this can help to both make
molecular simulation and analysis procedures more reproducible, but also a more tightly
integrated part of answering biological questions.

4.3 Results

4.3.1 System setup

4.3.1.1 The starting protein structure

In order to learn about the biophysical properties of a protein system the user must first
select a 3-dimensional protein structure. This structure can itself be the result of a bio-
physical measurement such as X-ray crystallography, NMR, cryo-EM, or can be the result
of a previous modeling effort. Depending on the structure determination method used to
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obtain the initial structure, there may be missing residues that need to be filled in, multiple
chains from which a subset needs to be selected, heteroatoms that need to be removed, or
mutations that were made in the course of structure determination that need to be reverted
back to the wild type residue. Automacs, at the command line, and Factory at a GUI, have
a built in set of protein homology tools to address these problems. The Protein Data Bank
[19] (PDB6) has a standardized format to report missing residues, as well as sequence con-
flicts between the PDB chain sequence(s) and the sequence found in the Uniprot database
[51], as well as differences in numbering of the sequence. Automacs homology tools can
parse this data, renumber residues to match the sequence database (or any numbering the
user desires), and report sequence conflicts. The user may also select which chains, which
set of residues in each chain, and any point mutations to include in the final structure. The
homology tools will also determine if any residues are missing from the structure and use
Modeller [216] to ensure that the final structure is complete. Homology modeling can also
be used to make mutations in existing complete protein structures. It is also possible to
convert an all atom structure into a coarse-grained (CG) structure based on the Martini
force field [158, 170] Once a user is satisfied with their prepared starting protein structure,
they can proceed to further setup steps or to running simulations.

4.3.1.2 Building a bilayer

There are a number of ways to construct a membrane bilayer system, and efforts to automate
these procedures have resulted in the Membrane Builder [119] package which works with
CHARMM-GUI [120].

A common method is to programatically place lipids on either side of a plane normal to
the Z-axis of the simulation box that represents the midpoint of a bilayer and then perform
careful equilibration while gradually releasing constraints on Z-axis motion of the lipid,
or lipid head groups, while leaving XY motion unconstrained. As this procedure can be
computationally demanding for even systems of a few hundred lipids, another possibility
is to equilibrate a relatively small lipid solvent system and then to replicate this system
periodically in the X and Y directions until the desired system size is attained. It is
important to reinitialize particle velocities so that the system does not display anomalous
long-range order. This larger system composed of pre-equilibrated bilayer can then be
eqilibrated somewhat more rapidly than a similarly sized system that has not undergone
any equilibration.

While the above methods can in principle be used for all atom (AA) or CG systems,
there is another method available that is primarily computationally feasible for CG bilayer
systems. This method involves randomly placing the desired number of lipids for a bilayer
in random positions in a water box and running the simulation long enough for the lipids
to spontaneously assemble into a bilayer. One disadvantage of this method is that it does
not allow for explicit selection of bilayer asymmetry or geometry.

These methods of bilayer construction, for both AA and CG systems are available in
automacs. Users may select the number of each type of lipid to use, grid spacings for lipid
placement, initial distances between leaflets, membrane geometries such as flat, curved, or
wavy, and even different numbers of lipids in each leaflet, possibly resulting in membrane
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curvature. The modular nature of automacs allows for complex bilayer setup protocols to be
rapidly prototyped and deployed. For instance, in the case of equilibrating a small bilayer
patch and then replicating this in the XY plane, the steps can be broken down in such a
way that if any step in the process fails, the procedure can be restarted at that step without
having to start at the beginning.

4.3.1.3 Adding a protein to a bilayer

Adding a protein or proteins to a bilayer can be an especially challenging procedure. This
is because not only must the protein be placed in the correct orientation on or in the
correct leaflet(s) of the membrane bilayer, but also because this placement often necessitates
removal of some lipid molecules. Automacs has a number of procedures to allow users to
specify the orientation of proteins relative to the bilayer. Users can specify the orientations
of proteins relative to principle protein and bilayer axes, as well as specifying distances of
individual residues from the bilayer. As even this rather detailed level of control can still
lead to equilibrated systems in undesired configurations, the modular and multistep nature
of such complex procedures means that only a single equilibration step needs to be rerun.
This allows for, for instance, a detailed investigation of how rapidly to release restraints on
protein orientation, with all trials starting with the same equilibrated bilayer and leaving
behind a record of both the exact procedure used and the resulting biomolecular system
configuration.

4.3.1.4 Polymer systems

Automacs also has procedures for setting up polymer melt and gel systems. This allows
users to simulate systems of sugar n-mers constructed using either a lattice or non-lattice
based initial configuration. This is of course dependent on the existence of parameters for
sugar monomers and dihedral angles for their connectivity. Users can also collect statistics
on angle distributions of shorter n-mers to parametrize longer ones.

4.3.2 Simulation

Automacs is a command line interface for GROMACS, and thus the simulation of systems
constructed with automacs relies primarily on calls to the GROMACS (or potentially some
other) integrator. Nonetheless, there are a number of ways in which automacs eases this
process. The primary function of automacs in running simulations is to allow users to
globally set molecular simulation run parameters, or to locally modify these parameters,
while also keeping a concise log file of all such parameters. One of the design philosophies of
the BioPhysCodes is that users should have the ability to minutely control the execution of
the codes, but they should not have a necessity for such minute control most of the time. A
number of MD execution parameters can be set, including which version of GROMACS to
use, via Linux module commands, how many processors and cores to use, and how long in
system or simulation time to run the simulation for. These parameters, and their values for a
number of XSEDE compute resources [245] that the authors have found useful can be stored
in a single, globally accessible file, or in a local version. Automacs also includes headers
needed for execution on these XSEDE compute resources alongside functionality to upload
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and download relevant files to a cluster. It is easy to add execution parameters for novel
compute clusters, allowing utilization of local compute resources or extension to national
or international compute resources beyond XSEDE. Also, the fact that BioPhysCodes can
be utilized in a docker environment allows for the use of commercial compute resources
such as Amazon Webservices. Taken together, this means that a user can upload files,
start a simulation, and fetch the results with only a few commands. This not only allows
experienced users to focus on more demanding tasks like system construction and analysis,
it allows newer users to begin simulations even if they are relatively unfamiliar with the use
of compute clusters.

4.3.3 Analysis

4.3.3.1 Access to the data

Once the desired number of simulations has been run for the desired amount of simulation
time, and all data has been consolidated such that it is on a storage volume accessible to
omnicalc, analysis procedures can be run. We would like to stress that omnicalc is designed
to be very flexible in terms of how the underlying molecular simulation data is generated.
Just as is the case with automacs, the code that loads data for omnicalc analysis is relatively
independent of the bulk of the omnicalc codes. The reason for this is that omnicalc crucially
serves to organize data and expose it to the user for ease of analysis, and this should be
independent of how the data is stored on disk or the file format of the data as long as an
appropriate trajectory reader in MDAnalysis [165], MDtraj [161], or any other package is
available. This means that data does not have to be generated with automacs for it to be
used by omnicalc or the factory GUI; heterogeneous datasets, even comprising results in
different binary formats, can be incorporated into a single dataset. While any data generated
by a factory instance via automacs will automatically be available to omnicalc, users can
point to simulations in arbitrary directory structures by writing regular expressions to help
automacs parse the data.

4.3.3.2 Selection of data to process

Once simulation data has been exposed to automacs, the user may specify how to process
this data. These specifications are outlined in a YAML file, known as the metafile since
it contains all the relevant metadata, which passes on the user desired parameters to om-
nicalc. Before any calculations can be carried out, the underlying MD data must first be
subsampled to obtain ‘slices’ of each trajectory on which to perform calculations. Users
can specify: start and end simulation times, how many frames to skip in between recorded
frames, which molecules or molecule types from the simulation to keep, and how to handle
periodic boundary conditions for the molecules of interest. Once all slices have been made,
calculations can be performed on these slices, and all metadata relevant to the construction
of each slice is stored so that there is no ambiguity surrounding data generation. If a factory
instance is used to generate data, a template metafile can automatically be generated for
slice creation.
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4.3.3.3 Performing calculations

Calculations are performed on individual slices, allowing for an easy parallelization since the
results of a calculation involving one slice can never affect another calculation. If a single
calculation with different parameters needs to be performed (e.g. with varying distance
cutoffs), this can also be specified in the YAML-based metafile. All calculation parameters
are also specified in the metafile, and these parameters are again propagated to calculation
results to eliminate ambiguity. Calculations can either be performed on the simulation data
contained in the slices or can be performed on the results of previous calculations, allowing
for modular and memory efficient codes to be written. All calculation results must ulti-
mately be made compatible with the HDF5 data format, to ensure easy sharing of data
across different machines but also to ensure that omnicalc will always be able to read cal-
culation data. It is often not necessary to write calculation scripts from scratch as packages
such as MDAnalysis [165] and MDtraj [161] have previously implemented many simulation
analysis tools, and BioPython has many tools for analyzing PDB structures, which can
easily be generated from frames in a slice. Finally, since omnicalc can automatically pull
from a git repo, it is easy for authors to share analysis (and plotting) codes with the larger
molecular simulation community.

4.3.3.4 Visualization

Once simulation data has been adequately processed by calculations, users can plot the data
in a number of ways. Since calculations can only act on a single slice, plots are the only way
to aggregate data from multiple simulations. In practice this means that some calculations
may be necessary as part of a ‘plot’ function. However, plotting data is inherently a form
of data compression (n.b. a plot can be a few kilobytes in size yet display information from
100s of gigabytes of simulation data), so the philosophy of omnicalc is that data for use by
a plotting function should already be small enough to fit in memory. Just as in the case
of selecting data for processing and performing calculations, all data needed for plotting
should be stored in the YAML metafile to ensure that plots have metadata which details
how they were created. If the user is performing analysis with the aid of factory, any plot
scripts can be exported to a JuPyter Ipython notebook [191] that allows for interactive plot
development. This can be useful for collaborative efforts, as it is then easy for collaborators
to see the results of plotting using, for instance, different distance-based cutoff values.
Omnicalc also allows for a detailed inspection of the underlying calculation data, which is
exposed to the user after the plot script is executed; prototyping can occur in a JuPyter
notebook or as part of an Ipython [191] session. Another feature of the factory that can be
used to aid collaboration but which also allows for detailed comparison of different plotting
methods and styles is that the factory can generate lower resolution thumbnail images which
can then be displayed all on a single page. Since the factory is based on a Django interface,
this can also be served over the web.

4.4 Conclusion

The history of all hitherto existing MD interfaces is the history of the class (or object)
struggle. Expert and novice, undergrad and post-doc, stood to have to write a new interface
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for each question to which they wished to apply molecular dynamics. Here we have outlined
a flexible, modular, extensible interface to allow for easy setup, execution and analysis of
molecular dynamics simulations. We hope that other members of the MD community will
find it as useful for their own research as we have for ours and that the BioPhysCodes can
help make MD experiments easy to set up, analyze, and share.
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Figure 4.1: Schematic of the framework.

The factory (A) acts as a graphical user interface for the simulator and calculator and also
manages the software dependencies, locations of the data, and configuration of sub-modules.
The factory manages two separate codes which perform the simulation and calculation steps
of a typical experiment. The simulator (B) is designed to call the GROMACS molecular
dynamics integrator (C), however the interface to these codes (D) is concise and depends
only on a robust (Python-BASH-binary) call, hence it can easily be extended to other
popular integrators and even interfaced with other simulation methods to create a hybrid
simulation. Trajectories are organized and stored in their native formats in a structure that
makes it easy for the calculator to parse (E). The calculator (F) contains multiple methods
for reading simulation data which are appropriate for the integrator and also calls external
libraries (G) for performing the computations. At the end of this pipeline, calculations
are stored in a standardized, durable binary format so that they are computed once and
retrieved for more detailed analysis, plotting, and visualization.
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Chapter 5

Svm

The trick is to follow the line that links the experience of concrete situations in
everyday life to the spectacular falsification of totality.

McKenzie Wark The Spectacle of Disintegration

5.1 Introduction

5.1.1 Application of machine learning to protein sequences

The technological developments that lead to the sequencing of the human genome at the
end of the 20th century [49] lead to increasingly focused efforts to understand human genetic
diversity via efforts such as the 1000 genomes projects [50] and eventually to a regime where
targeted and even whole genome sequencing (WGS) are routinely used in the clinic as a
routine part of cancer treatment [128] This in turn has lead to a significant accumulation of
cancer mutation data and to the curation of cancer mutation databases such as the Catalog
of Somatic Mutations in Cancer (COSMIC) [72] and The Cancer Genome Atlas (TCGA)1.
Investigation of these mutations has had a number of effects.

A significant role has been ascribed to the role of mutations in cancer (see chapter 1).
The increasing understanding of the function of individual kinase domain mutations in
particular (see chapter 2) has lead to the development of targeted therapies for treatment
of specific mutations and a sustained effort to develop computational tools that can predict
the effect of point mutations in cancer. One widely used computational method, which has
only rarely been used to predict the effects of point mutations on protein function [24], is
molecular dynamics (MD) simulation of protein dynamics. The literature around the use
of MD to understand biophysical repercussions of kinase domain mutations is reviewed in
chapter 3. One major limitation to using MD to study large numbers of mutations in cancer
has been the difficulty of setting up, running, and analyzing large numbers of simulations.
The transcendence of this limitation by the development of an integrated MD workflow
is reported in chapter 4. The other principle limitation of using MD to study the large
number of clinically observed mutations (over 21,000 unique protein coding substitutions
in COSMIC, see chapter 2) is that the computer processing power required to study even

1cancergenome.nih.gov/
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a single mutation is on the order of thousands of processor hours. For this reason, and
since computer processing power was even more limited than today at the beginning of the
21st century when genome sequencing became widespread, much work has gone into finding
computationally inexpensive ways to classify large numbers of mutations.

The earliest attempts to understand how well sequence changes would be tolerated was
not in the context of cancer, but instead was used for understanding evolutionary distances
between sequences. These methods give probabilities of mutation frequencies based on
phylogenetic trees [54] or sequence alignments [97]. These methods, while innovative when
developed, were not designed to predict the effect of mutations on protein function. One of
the first methods to predict whether a mutation would be deleterious, and still a benchmark
in the field of mutation classification, is called sorts intolerant from tolerant (SIFT) and
uses sequence conservation to determine deleteriousness [175, 174]. Since this pioneering
method, several other algorithms that use sequence conservation or homology to predict
the effects of SNPs [46, 234, 25, 211, 4]. While these methods should in principle work on
any observed mutations, they have largely been developed and validated for use on SNP
data and not on cancer mutations specifically. As cancer genome sequences have become
more available, the desire to separate driver from passenger mutations has only increased.
An early attempt to solve this problem was that of [83], which used the mutation rate of
noncoding genomic regions as a baseline and then tried to determine genes in which there
was a statistically significant deviation from this baseline. More recently, several groups
have developed machine learning techniques to separate driver from passenger mutations.
Methods used include random forest [127, 200], entropic methods [212], and support vector
machines (SVM) [117, 244].

The SVM technique is a machine learning method that falls under the broad category of
supervised machine learning (see below for a detailed description of how SVM works). This
method has enjoyed some success in attempting to classify kinase somatic cancer mutations,
but has generally been applied to the whole protein as opposed to only the kinase domain,
causing one of the leading predictors of driver status to be location within the kinase domain
[117] in one predictor. While this is useful for determining which proteins are likely to be
involved in cancer, it is not necessarily accurate at the residue level, for e.g., to accurately
predict the effects of different mutations in the same protein. In particular, the SVM
methods listed here have focused on kinase proteins specifically since they play such an
outsized role in cancer progression. Machine learning methods can be quite powerful and
the have been somewhat successful when applied to cancer mutations but these methods
are generally only as good as their training sets, with a balanced training set giving better
results [260, 259]. Furthermore, the methods that are used to construct training sets may
be biasing the results of the methods. For instance, [117] took all mutations that were
found in a cancer sample to be driver mutations. In a comparison of various methods
for cancer mutant classification, [79] took every mutation that is observed to be mutated
at least twice in COSMIC to be a driver mutation. The method outlined in [34] reports
to have the ability to differentiate driver mutations from passengers 98% of the time but
uses a dataset where driver mutations are taken to be any mutations that are observed in
COSMIC and passenger mutations are taken from a synthetic dataset of computationally
generated mutations of unknown function. The reliability of a method should be suspect
if it is making a priori decisions about what is a driver or passenger mutation in a bid to
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predict driver or passenger mutations.

5.1.2 Support vector machines

A general problem in (supervised) machine learning can be formulated as being given a
labeled set of examples, each associated with a number of features, and trying to learn
a function which can distinguish between the different labels based solely on the features
[249, 29, 10]. In mathematical notation, the examples have labels yi ∈ {−1,+1}, i = 1, ..., n
with associated feature vectors xi ∈IRd, i = 1, ..., n where the number of features is equal
to the dimension, d, of the vector xi and the total number of examples is n. The goal then
is to find a classification function f : f(xi, α) = yi, ∀ xi, yi where α are a set of parameters,
that minimizes what is known as a loss function,

loss =
n∑
i=1

|yi − f(xi, α)|. (5.1)

An SVM solves the problem posed in Equation 5.1 by relying on a simple insight from
geometry, namely that any set of labeled points {(xi, yi) | xi ∈ Rd, yi ∈ {−1,+1}, i =
1, ..., n} that are linearly independent (i.e. are not found along a line) can be separated on
the basis of the labels by a line in IRd−1. In the case where n <= d and the xi’s are linearly
independent, this solution can be found by solving the system of linear equations Xw = y
where X is the data matrix composed of the xi’s, y is the vector composed of the yi’s, and
w is a line (or hyperplane; we don’t call a line or a point a hypoplane though) that separates
the data based on the labels. This is equivalent to linear regression.

In real world problems it is often the case that there are more examples in the data than
there are features, n > d, and in this case it may not be possible to find an exact solution.
There are two principle solutions to this problem that are taken advantage of by SVM. One
is to impose a cost on points which are miscorrectly classified. In this case the function
f will take the form f(xi, α) = 〈w,xi〉 + Cξ where ξi = |〈w,xi〉| is the distance from an
incorrectly classified point to the line w and C is a penalty selected by the user. The loss
function will then be

loss =
n∑
i=1

|yi − 〈w,xi〉+ Cξi|. (5.2)

A second method to overcome the problem of n > d is to use a simple trick: mapping
the data into an arbitrarily high dimension so that once again d > n. These mappings are
based on the fact that w is the solution to an eigenvalue problem for the matrix of inner
products between the data points. The matrix of inner products between the data points
is known as the Gram matrix, G, and has elements Gij = 〈xi,xj〉. This means that any
mapping that preserves distance relationships can also be used to solve for w. Note also
that the Gram matrix is invariant under rotations. While a number of potential mapping
functions exist, the one that has seen the most widespread use in machine learning is a
Gaussian radial basis function (RBF) of width γ:

〈xi,xj〉 = e−γ||xi−xj || (5.3)

Since the values of Equation 5.3 are based on the difference between points, this means that
RBF kernels are translation invariant.
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To conclude, SVM classifiers have many excellent qualities and are relatively easy to
interpret when compared to other methods such as artificial neural networks [227]. These
excellent qualities include that the solution of an SVM problem is invariant to translation
and rotation and only dependent on the distance between training examples. This allows
for preprocessing of data without affecting the final result. An SVM can in principle classify
an arbitrary number of points perfectly based on a limited number of features. There are
only two parameters in an SVM using RBF’s. The error penalty C in Equation 5.2 controls
how smooth the decision surface is, with larger values of C leading to an increasingly jagged
boundary that attempts to classify every example correctly. The Gaussian width γ in
Equation 5.3 controls how large of a region in feature space (or any mapping of feature
space) that the training examples take up, with larger values meaning training examples
are ‘felt’ in a smaller region. Both C and γ can be tuned in cross-validation.

5.2 Methods

5.2.1 Construction of training set

The dataset was constructed via text mining of the Uniprot database [52] using a perl
script. Regular expressions were used to parse the MUTAGEN and VARIANT fields in
Uniprot (unfortunately the MUTAGEN field is no longer included in the database). Mu-
tated residue entries in Uniprot were classified as non-activating if they contained any of the
following stings: ‘impairs’, ‘strongly impairs’, ‘reduce’,‘strongly reduce’, ‘abolishes’, ‘dimin-
ished’, ‘loss.+normal.+order’ (where .+ denotes at least one other character of any type),
and ‘abolishes down-regulation’. Mutated residue entries in Uniprot were classified as ac-
tivating: ‘increase’, ‘strongly increase’, ‘constitutive’, and ‘does not.+constitutive’. The
resulting training set was validated by searching the literature for a subset of the entire
dataset to ensure that class assignments were correct. This not only showed the utility of
the underlying method, but led to many papers that had mutations not in the original set
in addition to those in the original set. Final set used in this work contains 756 total mu-
tations with 192 positive, activating, and 564 negative, non-activating mutations (compare
to the Kinase mutation experimental measurements).

5.2.2 Creation of feature vectors

For each mutation, a feature vector of the following values was constructed. This leads to
a feature vector for each mutation with 68 elements. Each element of the resulting vectors
is normalized so that all values are in [-1,1]. A large number of the elements will be zero
for each mutation.

1. Wild type residue (one feature element for each of the 20 amino acids)

2. Mutant residue (one feature element for each of the 20 amino acids)

3. Wild type residue type (from aliphatic, acidic, basic, aromatic, and polar)

4. Mutant residue type (from aliphatic, acidic, basic, aromatic, and polar)

5. Difference between wild type and mutant residue for the following
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1. Kyte-Doolitle hydropathy [142]

2. Free energy of solvation [38]

3. Normalized van der Waals radius [67]

4. Polarity difference [81]

5. Charge difference

6. Difference between mutant residue and the average of all wild type residues at the
same position for the following

1. Kyte-Doolitle hydropathy

2. Free energy of solvation

3. Normalized van der Waals radius

4. Polarity difference

5. Charge difference

7. Whether the mutation falls in one of the following kinase subdomains

1. nucleotide binding loop

2. αC helix

3. catalytic loop

4. activation loop

8. PHD [215] prediction for the following

1. α helix

2. β sheet

3. turn

4. solvent accessibility

5.2.3 SVM parameter search

For this study, SVMperf [121, 122, 123] was used for model construction (training) and testing.
SVMperf , like any ML algorithm, has a number of parameters which can be optimized. We
elected to us a radial basis kernel function (RBF, see SVM introduction), and focused our
efforts on finding the best values of loss function, loss (see Equation 5.1 and Equation 5.2),
margin error, C (see Equation 5.2), and kernel width, γ (see Equation 5.3). To this end, we
performed a grid search over all combinations of values of γ ∈ [1× 10−5, 1× 104] increasing
by a factor of 10 in each iteration, C ∈ {0.01, 0.1, 1, 2, 3, 4, 5} for loss functions which
maximize one of {error rate, F1, AUC}. The grid search was conducted by performing
10 fold cross validation whereby for each of the 10 trials, 75% of examples are used for
training and the other 25% are used for testing. During each trial, a balanced dataset
was used to prevent model bias [259] by considering all examples from the smaller class
and randomly selecting the same number of examples from the larger class, meaning that
not every example is used in a single trial. We then average the test set results over all
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10 trials for F1 and AUC. For the dataset used here, The F1 value was maximized for
the parameters {(γ = 0.01, C = 4, loss =F1)}. AUC was maximized for the parameters
{(γ = 0.1, C = {2, 3, 4, 5}, loss =AUC)}. Further attempts at refining these parameters
yielded only small increases in either AUC or F1, but nonetheless allowed the selection of
{(γ = 0.1, C = 2, loss =AUC)} as the set of parameters which optimize AUC. Other SVMperf

parameters that are not default values are {-w 3;-# 50;-t 2;--b 0}. In words, we used a
1-slack dual structural learning algorithm, the QP suboptimization problem is terminated
after 50 iterations if no progress is made, a radial basis function was used, and no L2-bias
feature was used.

5.2.4 SVM model evaluation

Once a set of SVM parameters is chosen, the resulting model is again evaluated by making
predictions on a validation set. This procedure is similar to the cross-validation described
above, but instead of randomly assigning examples to training and test sets, the user supplies
a predetermined validation set on which predictions are made after a model is trained on
the training set. For this procedure, we again elected to use a balanced dataset. Since the
data we are using here is heavily skewed in favor of negative examples, we take all examples
from the smaller, positive class and an equivalent number of randomly selected examples
from the larger, negative class. Solving the problem of imbalance in the class sizes in this
way leads to a new problem, that not all examples in the larger class are considered. We
solve this problem by repeatedly training a model with different subsets of the training
set and making predictions on the same validation set. We keep a running average of the
prediction for each element in the validation set and call the difference between this average
in subsequent iterations the residual. Once the sum of the residuals for all elements in
the validation set is less than 0.01 and at least 10 iterations have been performed, the
prediction is considered to have converged as subsequent iterations have negligible impact
on the output validation set predictions. This procedure is mathematically valid since the
data only enters the picture in the form of a Gram matrix, which is invariant to translations
and rotations; since the model is trained on distances, taking the average distance should
not skew the result.

5.3 Results

5.3.1 Selection of model parameters

As outlined in SVM parameter search, we attempted to find an optimal set of parameters
by performing a grid search using 10-fold cross-validation. This resulted in two optimal pa-
rameter sets. The parameters which optimized the value of F1 gave values of F1=80.79 and
AUC=87.43 while the AUC optimal parameters had values of AUC=88.67 and F1=79.65.
Further attempts to refine the parameter values led to only small increases in F1 or AUC
values, on the order (a few percent), of the differences in F1 and AUC values that occur
between separate cross-validation attempts. To decide on which set of parameters to use,
we performed model evaluation as outlined in SVM model evaluation by using the same
dataset as training and validation set. In order to prevent biasing the resulting model
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towards performance on the actual validation set (the mutations studied with MD in chap-
ter 3), we performed model evaluation at this stage using a dataset with the validation set
removed. Thus on each iteration a model was trained using 152 each of positive, activating
and negative, non-activating examples while predictions were performed on 152 positive
and 539 negative examples. The results are given in Table 5.1.

Table 5.1: Results for separate iterations with different SVM model parameters.

Parameters TP FP TN FN Iterations BACC TPR TNR

F1

152 205 334 0 24 80.98 100 61.97
152 205 334 0 24 80.98 100 61.97
152 206 333 0 23 80.89 100 61.78

AUC

152 21 518 0 17 98.05 100 96.10
152 19 520 0 20 98.24 100 96.47
152 20 519 0 18 98.14 100 96.29

See Table 3.4 for definitions.

Of the false positives in the F1 validation, 184 occurred in all three iterations while 20
occurred twice and 13 occurred once. While it is possible that some of the false positives
from the F1 validation are incorrect entries in the dataset, many of the mutations are well
characterized enough to appear in the mutation table in chapter 2. This demonstrates that
the method used here for ensuring a balanced dataset leads to reproducible results. For
the false positives in AUC validation, 13 occurred in all three iterations while 5 occurred
twice and 11 occurred once. The majority of these false positives have been experimentally
characterized, with many showing up in the table of mutant kinase activities in Appendix A.
Given the much smaller number of false positives using the AUC validation, we elected to
use AUC further model validation.

5.3.2 SVM test set performance

In order to compare the results of SVM and MD, we made predictions on the same mutation
set used in chapter 3, training the algorithm only on mutations not in this data set. The
results are shown in Table 5.2. Results for SIFT [174] and Polyphen2 [4] on the same dataset
are also given as a comparison for algorithms that are frequently used to predict effects of
mutations.

Table 5.2: Prediction results for a number of different methods.

Method TP FP TN FN BACC TPR TNR
MD 22 17 21 12 59.98 64.71 55.26
SVM 19 8 22 20 61.03 48.72 73.33
SIFT 38 26 4 1 55.38 97.44 13.33

Polyphen-2 37 27 3 2 52.44 94.87 10.00

There are more predictions for MD due to several ALK JM mutations being considered
with MD. See Table 3.4 for definitions.

The results in Table 5.2 tell a number of stories. For one, the results of both SIFT and
Polyphen2 are quite poor, as they predict that almost all mutations are activating. This
result may be explained in both cases by noting that SIFT and Polyphen2 are designed
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to predict whether mutations will alter protein function at all [174, 4]; it may be the case
that only a few mutations have little to no effect on protein function. Further, in the case
of Polyphen2, any mutation listed as cancer related or of unknown function in Uniprot
is scored as ‘damaging’ for the model training data. Finally, the SVM classifier performs
better than the other machine learning based methods or MD based classifier.

5.3.3 SVM performance on synthetic datasets

In order to better evaluate the SVM classifier developed here, we sought to determine the
predictions of the classifier on datasets comprising all protein coding alterations in COSMIC
and all possible single nucleotide polymorphisms (SNP) in ALK, BRAF, and HER2. While
the actual effects of most of these mutations are not known, we hope that they can serve as a
proxy for a dataset biased towards (COSMIC) and against (SNP) activating mutations. For
some residues in each protein no prediction was able to be made based on the SVM model,
likely because of lack of training examples at these residues. In these cases, mutations were
scored as negative. The results of this analysis are given in Table 5.3.

Table 5.3: Prediction results on synthetic datasets.

Protein Dataset Positive Negative Total

ALK
COSMIC 23 33 56
all SNP 602 1026 1628

BRAF
COSMIC 45 36 81
all SNP 601 926 1527

HER2
COSMIC 26 23 49
all SNP 617 964 1581

As Table 5.3 shows, in all cases the number of predicted non-activating mutations is
higher in the SNP set than the number of predicted activating mutations. In the case of
BRAF and HER2, the number of predicted activating mutations is higher in the COSMIC
mutation set than the predicted non-activating mutations. While the actual activation
status of most of these variants is not known, this trend is as we would expect based on the
sources of the data, providing a further validation of the SVM classifier outlined here.

5.4 Future Directions

Recent studies have used structural information both to make predictions about the effects
of mutations [35] and about the conformation of kinase domain PDB structures [162]. The
work described in this chapter does not include any explicit three dimensional structural
information, though it does contain information about where in the kinase sequence a
mutation is found. Previous work (performed by Arjuna Keshevan under my supervision)
has lead to the generation of a set of active and inactive structures for a large number of
kinases. This work combined mining of Uniprot and the PDB for kinase structures and
the use of Modeller [216] to model missing residues for incomplete kinase structures. This
process is depicted in Figure 5.1 (a).

With this kinase structure dataset, it should be possible to improve upon the biochemi-
cal and sequence based classifier of the current SVM model. This can also allow for testing
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Figure 5.1: Structural Bioinformatics

(a) Structure curation

(b) Proportion of structures with missing residues (c) Missing residue location

of application of the results from kinase MD studies outlined in chapter 3. There, it was
shown that there are a small number of conserved charged residues that largely account
for the overall changes in hydrogen bonding occupancy that is well correlated with con-
stitutively active mutations. An example of a set of features that could be used based on
the combination of these insights is to have one set of features based on sequence distance
of a mutated residue to an ‘important’ charged residue and another set of features based
on distance from a mutated residue to an important residue in both active and inactive
conformation of that kinase.
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Chapter 6

Conclusion

Tout est possible et rien n’a d’important

Albert Camus L’homme Revolté

6.1 Overview of Thesis

In this thesis we have pursued a variety of avenues in investigating the effects of mutations
on the activity of kinases. In chapter 1 we examined the role of kinase mutations in cancer,
the structure of the kinase domain, and the problem that reification poses to modeling
specifically and science in general. We then moved on to evaluate the prevalence and
frequency of kinase domain mutations as well as to attempt an analysis of the extant
literature around mutant kinase catalytic activity in chapter 2. With this understanding of
the landscape of kinase domain mutations, we then sought to develop a molecular dynamics
based methodology to evaluate the effects of kinase domain mutations for a series of mutants
in ALK, BRAF, and HER2 in chapter 3. In this study, we found that there are only a few
conserved hydrogen bonds that change occupancy significantly in the course of simulations
of mutant and wild type protein models. Further, it was demonstrated that these residues,
which we denote as ‘labile’ due to their propensity to alternate between hydrogen bonding
partners, are useful in distinguishing between activating and non-activating mutations. In
chapter 4 we demonstrated how to set up, run, and analyze larger numbers of mutations
using a graphical user interface that allows for easy replication of simulation and analysis
protocols. Finally, in chapter 5 we demonstrated the use of a support vector machine based
kinase domain mutation classifier.
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Appendix A

Kinase mutation experimental
measurements

Table A.1: Experimental characterizations of mutant kinases

Kinase
Kcat (min−1) or
relative activity

Km,ATP

(µM)
Transforming

Inhibitor(s)
tested

Source

ABL WT 2.06±0.26 17.3±5.3 - - [85]
ABL T315I 0.28±0.25 5.64±1.96 - - [85]

ABL-KD WT 0.56±0.05 18.8±3.9 no - [85]
ABL-KD Y253F 1.06±0.1 23.1±5.0 yes - [85]
ABL-KD E255K 0.56±0.05 19.4±4.2 yes - [85]
ABL-KD T315I 0.17±0.005 12.1±0.8 no - [85]

ABL-KD M351T 0.1±0.01 12.6±4.7 no - [85]
ABL-KD H396P 0.4±0.04 18.9±4.6 no - [85]
BCR-ABL WT 0.71±0.04 39.6±4.9 - - [85]

BCR-ABL Y253F 1.87±0.22 61±14 - - [85]
BCR-ABL E255K 0.24±0.04 23.9±2.3 - - [85]
BCR-ABL T315I 0.064±0.004 19.4±3.4 - - [85]
BCR-ABL M351T 0.18±0.006 43.3±3.4 - - [85]
BCR-ABL H396P 1.04±0.39 33.5±1.4 - - [85]

ABL-KD WT 1 34.59±7.42 - - [60]
ABL-KD T291A 0.35 - - - [60]
ABL-KD T291F 0.2 - - - [60]
ABL-KD T291S 0.3 - - - [60]
ABL-KD T291V 0.5 - - - [60]
ABL-KD E294P 1.3 - - - [60]

ABL-KD
E294P/V299P

3.3 - - - [60]

ABL-KD M297G 1.7 - - - [60]
ABL-KD M297L 0.4 - - - [60]
ABL-KD V299P 1.0 - - - [60]
ABL-KD Y339P 0.2 - - - [60]
ABL-KD Y339G 2.2 - - - [60]

ABL-SH2-KD WT 1.9, 2.9, 5.1 17.42±2.30 - - [60]
ABL-SH2-KD D382N 0 - - - [60]
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AKT1 WT 1 - - - [9]
AKT1 K179A 0.3 - - - [9]
AKT1 S308A 0.9 - - - [9]
AKT1 S308D 5 - - - [9]
AKT1 WT 1 - - - [125]

AKT1 Y304F 1 - - - [125]
AKT1 Y315F 0.75 - - - [125]
AKT1 Y326F 0.95 - - - [125]

AKT1
Y315F/Y326F

0.7 - - - [125]

AKT1 WT 1 - - - [93]
AKT1 K158T 2 - - - [93]
AKT1 K163S 5 - - - [93]
AKT1 K182S 4 - - - [93]
AKT1 R222N 3.5 - - - [93]

AKT1
K182S/R222N

2 - - - [93]

AKT1
K158T/K163S/
K182S/R222N

0.5 - - - [93]

ALK WT 9.32±0.85 134±7 no crizotinib [24]
ALK Y1096A 27.65±6.6 - no - †
ALK C1097A 17.48±7.4 - yes - †
ALK F1098V 31.35±10.05 - no - †
ALK G1128A 43.4±13.8 152±8 yes crizotinib [24]
ALK T1151M 53.4±7.3 267±18 no crizotinib [24]
ALK C1156Y 48.79±13.6 - no - †
ALK E1161A 7.32±3.7 - no - †
ALK D1163N 37.66±0.2 - no - †
ALK M1166R 127±26 149±4 yes crizotinib [24]
ALK I1170N 200±59 297±15 yes crizotinib [24]
ALK I1170S 200±14 371±13 yes crizotinib [24]
ALK I1170V 46.57±1.8 - yes - †
ALK I1171N 188±34 250±13 yes crizotinib [24]
ALK F1174L 365±61 127±11 yes crizotinib [24]
ALK F1174S 148.4±6.87 - yes - †
ALK I1183T 31.5±5.6 158±18 no crizotinib [24]
ALK R1192P 139±33 192±7 yes crizotinib [24]
ALK L1196M 45.0±9.7 387±33 yes crizotinib [24]
ALK A1200V 11.1±0.9 208±9 no crizotinib [24]
ALK G1201R no expression - yes - †
ALK L1204F 27.7±1.1 159±2 no crizotinib [24]
ALK R1212C 23.36±5.2 - no - †
ALK P1213C 14.96±6.7 - no - †
ALK R1231Q 5.35±1.05 143±15 no crizotinib [24]
ALK E1242K 27.31±6.0 - no - †
ALK F1245C 329±65 138±1 yes crizotinib [24]
ALK F1245V 341±36 152±9 yes crizotinib [24]
ALK I1250T 2.68±0.18 150±8 no crizotinib [24]
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ALK A1251T 0 - no - †
ALK G1269A 33.76±17.6 - no - †
ALK D1270G 0.923±0.306 153±19 no crizotinib [24]
ALK F1271L 17.86±5.0 - yes - †
ALK R1275Q 119±13 326±33 yes crizotinib [24]
ALK Y1278A 21.4±2.9 - yes - †
ALK Y1278E 27.52±10.3 - no - †
ALK Y1278S 197.1±74.6 - yes - †
ALK R1279Q no expression - - - †
ALK Y1282E 37.65±1.6 - no - †
ALK Y1283E 17.73±4.0 - no - †
ALK G1286R 16.4±1.4 152±6 no crizotinib [24]
ALK T1343I 8.57±1.27 160±7 no crizotinib [24]
ALK D1349H 11.2±1.8 148±14 no crizotinib [24]
BRAF WT 1 - - - [269]

BRAF T599A 0.9 - no - [269]
BRAF S602A 1.0 - - - [269]
BRAF S613A 0.9 - - - [269]

BRAF
T599A/S602A

0.7 - - - [269]

BRAF
T599E/S602D

7.0 - yes - [269]

BRAF WT 1 - no - [112]
BRAF D594V 0.06 - no - [112]
BRAF F595L 3.6 - yes - [112]
BRAF G596R 0.23 - no - [112]
BRAF T599I 0.84 - no - [112]
BRAF V600E 11.2 - yes - [112]
BRAF K601E 9.0 - yes - [112]

BRAF WT 1 - no - [111]
BRAF R462I 0.89 - no - [112]
BRAF I463S 0.83 - no - [112]
BRAF G464E 0.77 - no - [112]
BRAF F468C 2.5 - yes - [112]
BRAF G469A 7.2 - yes - [112]
BRAF G469E 0.24 - no - [112]

BRAF WT 1 - no - [254]
BRAF R462I 6 - - - [254]
BRAF I463S 11 - - - [254]
BRAF G464E 28 - no - [254]
BRAF G464V 46 - yes - [254]
BRAF G466A 5 - yes - [254]
BRAF G466E 0.82 - no - [254]
BRAF G466V 0.65 - no - [254]
BRAF G469A 266 - yes - [254]
BRAF G469E 1.3 - no - [254]
BRAF N581 7 - yes - [254]

BRAF E586K 129 - - - [254]
BRAF D594V 0.32 - no - [254]
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BRAF F595L 60 - - - [254]
BRAF G596R 0.53 - no - [254]
BRAF L597V 64 - - - [254]
BRAF T599I 30 - yes - [254]
BRAF V600D 706 - - - [254]
BRAF V600E 478 - yes - [254]
BRAF V600K 162 - - - [254]
BRAF V600R 244 - - - [254]
BRAF K601E 138 - - - [254]

BRAF WT 1 - - multiple [102]
BRAF S464E - 33 - - [102]
BRAF S464V - 38 - - [102]
BRAF S465A 0.7 - - - [102]
BRAF S465D 0.4 - - - [102]
BRAF S467A 0.8 - - - [102]
BRAF S467E 0.5 - - - [102]
BRAF V600E - 44 - multiple [102]
BRAF S602A 1.0 - - - [102]
BRAF S602D 1.3 - - - [102]
BRAF S605A 0 - - - [102]
BRAF S607A 0.8 - - - [102]
BRAF S607D 1.0 - - - [102]
CHEK2 WT 1 - - - [99]

CHEK2 D368N 0.3 - - - [99]
CHEK2 K373E 0.4 - - - [99]

CHEK2 WT 1 - - - [86]
CHEK2 S372A 0.6 - - - [86]
CHEK2 T378A 1.1 - - - [86]
CHEK2 T378D 0.9 - - - [86]
CHEK2 S379A 0.25 - - - [86]
CHEK2 S379D 0.2 - - - [86]
CHEK2 T383A 0.3 - - - [86]
CHEK2 T383D 0.2 - - - [86]
CHEK2 T387A 0.3 - - - [86]
CHEK2 T387D 1.9 - - - [86]
CHEK2 T389A 5.5 - - - [86]
CHEK2 T389D 1.4 - - - [86]
CHEK2 Y390F 0.2 - - - [86]

CHEK2
T383A/T389D

0.6 - - - [86]

CRAF WT 1 - - multiple [102]
CRAF S357A 0.7 - - - [102]
CRAF S357D 0.6 - - - [102]
CRAF S359A 0.7 2 - - [102]
CRAF S359D 0.1 - - - [102]
CRAF S494A 0.5 - - - [102]
CRAF S494E 1.1 - - - [102]
CRAF S497A 1.1 - - - [102]
CRAF S497D 1.4 - - - [102]
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CRAF S499A 2.4 - - - [102]
CRAF S499D 1.3 - - - [102]
DAPK3 WT 1 - yes‡ - [82]

DAPK3 D161A 0 - no [82]
DAPK3 T180A 0 - - no [82]
DAPK3 T180D 0 - - no [82]
DAPK3 T225A 0.1 - - no [82]
DAPK3 T225D 0.15 - - no [82]
DAPK3 T265A 0.2 - - yes [82]

DAPK3 - - [82]
EGFR WT 0.780 6.9±0.9 - gefetinib [267]

EGFR G719S 8.580 97.4±1.8 - gefetinib [267]
EGFR L858R 14.040 31.5±1.7 - gefetinib [267]

EGFR WT 1.560 5.2±0.2 - gefetinib [268]
EGFR T790M 8.220 5.9±0.1 - gefetinib [268]
EGFR L858R 89.040 148±4 - gefetinib [268]

EGFR
T790M/L858R

27.36 8.4±0.3 - gefetinib [268]

EGFR WT 6.9±0.1 2.1±0.1 - - [66]
EGFR K745M 0 - - - [66]

EGFR WT 1 4.98±1.2 - gefetinib [266]
EGFR L858R 33.12 65.8±3.4 - gefetinib [266]

ERK1 WT 1 - - - [143]
ERK1 K71A 0.5 - - - [143]
ERK1 T198A 0.9 - - - [143]
ERK1 T207A 0.7 - - - [143]
ERK1 T207E 0.2 - - - [143]
ERK1 Y210E 0.1 - - - [143]
ERK1 Y210F 0.2 - - - [143]

ERK1
T198F/T207F

0.1 - - - [143]

ERK1 WT 1 - - - [32]
ERK1 H197A 1 - - - [32]
ERK1 T198A 8 - - - [32]
ERK1 G199A 1 - - - [32]
ERK1 F200A 1 - - - [32]
ERK1 F200Y 2 - - - [32]
ERK1 L201A 1 - - - [32]
ERK1 T202S 1 - - - [32]
ERK1 E203D 1 - - - [32]
ERK1 E203Q 1 - - - [32]
ERK1 Y204S 1 - - - [32]
ERK1 V205A 1 - - - [32]
ERK1 A206V 1 - - - [32]
ERK1 T207A 1 - - - [32]
ERK1 R208A 1 - - - [32]
ERK1 W209A 0 - - - [32]

ERK1
T198A/F200Y

1 - - - [32]
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FGFR1 WT 1 - - - [186]
FGFR1 R675G 35 - - - [186]

FGFR2 WT 1 - no - [77]
FGFR2 E475K 1.15 - no - [77]
FGFR2 D530N 0.65 - no - [77]
FGFR2 I642V 0.25 - no - [77]
FGFR2 A648T 0.1 - no - [77]

FGFR2 WT 1 - - multiple [62]
FGFR2 F492A 2.1 - - multiple [62]
FGFR2 K526E 23.0 - - multiple [62]
FGFR2 V564T 1.7 - - multiple [62]
FGFR2 E565K 21.0 - - multiple [62]
FGFR2 R678G 43.0 - - multiple [62]

FGFR2 WT 1 840±140 - - [40]
FGFR2 K525E 7.5 - - - [40]
FGFR2 N549T 16.0 - - - [40]
FGFR2 N549H 8 - - - [40]
FGFR2 E565A 32 300±60 - - [40]
FGFR2 E565G 7.5 - - - [40]
FGFR2 K641R 8 - - - [40]
FGFR2 K659N 20 1540±110 - - [40]
FGFR2 G663E 8 - - - [40]
FGFR2 R678G 9 - - - [40]

FGFR3 WT 1 - no - [7, 6]
FGFR3 Y823F 1 - no - [7, 6]
FGFR3 D816V 0.9 - no - [6]

FGFR3 WT 1 - no multiple [186]
FGFR3 A500T 2 - - - [186]
FGFR3 I538F 0.7 - - - [186]
FGFR3 I538V 6 - - multiple [186]
FGFR3 N540K 40 - yes multiple [186]
FGFR3 N540S 12 - - multiple [186]
FGFR3 V555M 6 - - multiple [186]
FGFR3 P572A 0.5 - - - [186]
FGFR3 C582F 1 - - - [186]
FGFR3 D617G 0 - - - [186]
FGFR3 E627D 1 - - - [186]
FGFR3 V630M 0.5 - - - [186]
FGFR3 G637W 0.3 - - - [186]
FGFR3 D641G 6 - - - [186]
FGFR3 D641N 5 - - - [186]
FGFR3 H643D 1 - - - [186]
FGFR3 D646Y 2 - - - [186]
FGFR3 Y647C 4 - - - [186]
FGFR3 K650E 44 - yes multiple [186]
FGFR3 K650N 19 - - - [186]
FGFR3 N653H 1 - - - [186]
FGFR3 R669G 55 - - multiple [186]
FGFR3 R669Q 10 - - - [186]
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FGFR3 V677I 1 - - - [186]
FGFR3 G697C 1 - no - [186]

FGFR3 WT 1 - - - [272]
FGFR3 G697C 23 - - - [272]

FLT3 WT 1 - - multiple [42]
FLT3 D835H 15 - - multiple [42]
FLT3 D835Y 15 - - multiple [42]
HER2 WT 1.4±0.2 20.8±2.3 - - [66]

HER2 K753M 0 - - - [66]
HER2 G776S 2.9±0.2 17.4±1.8 - - [66]
HER2 G778D 8.5±0.3 5.4±0.4 - - [66]

HER2
G776S/G778D

9.7±0.4 2.3±0.2 - - [66]

HER2 WT 1 - no
lapatinib
neratinib

trastuzimab
[21]

HER2 L755S no expression - no
lapatinib
neratinib

[21]

HER2 S760A 1.0 - no
lapatinib
neratinib

trastuzimab
[21]

HER2 I767M 1.2 - no
lapatinib
neratinib

trastuzimab
[21]

HER2 D769H 5.0 - no
lapatinib
neratinib

[21]

HER2 D769Y 4.7 - yes
lapatinib
neratinib

trastuzimab
[21]

HER2 V777L 22.0 - yes
lapatinib
neratinib

[21]

HER2 Y835F 0.3 - no
lapatinib
neratinib

[21]

HER2 V842I 3.3 - no
lapatinib
neratinib

[21]

HER2 R896C 2.2 - yes
lapatinib
neratinib

trastuzimab
[21]

HER2 WT 7.5 - no
neratinib

trastuzimab
[131]

HER2 L755S - - yes
neratinib

trastuzimab
[131]

HER2 V777L - - yes
neratinib

trastuzimab
[131]

HER2 V842I - - no
neratinib

trastuzimab
[131]

HER2 L866M 23.0 - no
neratinib

trastuzimab
[131]
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HER2 WT 1 - no
lapatinib
neratinib

trastuzimab
[273]

HER2 K753E 1.5 - no
lapatinib
neratinib

trastuzimab
[273]

HER2 L755S - - no
lapatinib
neratinib

trastuzimab
[273]

HER2 L768S 6 - yes
lapatinib
neratinib

trastuzimab
[273]

HER2 V773L 8 - yes
lapatinib
neratinib

trastuzimab
[273]

LIMK1 WT 34.8±3.2 - - - [63]
LIMK1 D460N 0.0 - - - [63]
LIMK1 Y507F 33.3±3.6 - - - [63]
LIMK1 T508V 11.8±4.2 - - - [63]

LIMK1 WT 1 - - - [168]
LIMK1 D460A 0.1 - - - [168]
LIMK1 T508A 0.8 - - - [168]
MAP3K5 WT 1 - - - [27]

MAP3K5 T813A 0.5 - - - [27]
MAP3K5 T838A 0.25 - - - [27]
MAP3K5 T842A 0.4 - - - [27]

MELK WT 1 - - - [20]
MELK T56A 0.9 - - - [20]
MELK T56D 1.05 - - - [20]
MELK Y163F 1 - - - [20]
MELK Y163D 0.95 - - - [20]
MELK T167A 0.1 - - - [20]
MELK T167D 0.7 - - - [20]
MELK S171A 0.1 - - - [20]
MELK S171D 0.15 - - - [20]
MELK S253A 1 - - - [20]
MELK S253D 0.7 - - - [20]

KIT WT 100.12 42.5 - sunitinib [75]
KIT D816H 77.40 22.0 - sunitinib [75]
KIT D816V 33.00 17.0 - sunitinib [75]
KIT V560D 88.20 35.0 - sunitinib [75]
KIT V654A 75.60 13.5 - sunitinib [75]

KIT
V560D/T670I

57.60 12.8 - sunitinib [75]

KIT WT 1 - no dasatinib [235]
KIT D816V 7 - yes dasatinib [235]

KIT WT 216.0±12.0 115.9±46.1 - sunitinib [57]
KIT Y823F 168.0±72.0 273.5±160 - sunitinib [57]
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NEK2 WT 1 - -
SU11652
SU11248

[209]

NEK2 K37R 0.1 - - - [209]
NEK2 T170A 1.0 - - - [209]
NEK2 T170E 2.4 - - - [209]
NEK2 S171A 1 - - - [209]
NEK2 S171D 1.7 - - - [209]
NEK2 T175A 0.5 - - - [209]
NEK2 T175E 1.7 - - - [209]
NEK2 T179A 0 - - - [209]
NEK2 T179E 0 - - - [209]
NEK2 S241A 0.1 - - - [209]
NEK2 S241D 0.1 - - - [209]

PAK4 WT 1 - - purvanalol [261]
PAK4 E329K 1.1 - - purvanalol [261]

RET WT 1 - no - [163]
RET M918T 8 - no - [163]

RET WT 36.57±1.62 164.1±15.6 - - [197]
RET E734A 31.06±1.23 159.4±14.3 - - [197]
RET K758M 0 - - - [197]
RET V804M 38.05±1.33 184.8±20 - - [197]
RET M918T 48.92±1.48 106.3±7.9 - - [197]
RET R912A 32.17±1.44 294.1±24.2 - - [197]

RPS6KB1 WT 1 - - - [93]
RPS6KB1 K167N 0.2 - - - [93]

TTK WT 1 - no - [160]
TTK D664A 0 - yes‡ - [160]
TTK T675A 3.2 - no - [160]
TTK T676A 0.7 - yes‡ - [160]
TTK S677A 1.8 - - - [160]
TTK S682A 2.1 - - - [160]
TTK T686A 0.3 - yes‡ - [160]
TTK Y689F 0.5 - - - [160]

Note that values without an error estimate are relative to WT in the respective study. In most of
these cases only graphs and not values are presented. † These ALK mutants are characterized in

chapter 3. ‡ Loss of activity is transforming.
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Sean L Seyler, David L Dotson, Sébastien Buchoux, Ian M Kenney, and Oliver Beck-
stein. MDAnalysis : A Python Package for the Rapid Analysis of Molecular Dynamics
Simulations MDAnalysis. Proc. 15th Python in Science Conference, (Scipy):102–109,
2016.

[81] R Grantham. Amino Acid Difference Formula to Help Explain Protein Evolution.
Science, 185(4154):862–864, 1974.

[82] Paul R Graves, Karen M Winkfield, Timothy A J Haystead, and North Carolina.
Regulation of Zipper-interacting Protein Kinase Activity in Vitro and in Vivo by
Multisite Phosphorylation *. Journal of Biological Chemistry, 280(10):9363–9374,
2005.

[83] Chris Greenman, Richard Wooster, P Andrew Futreal, Michael R Stratton, and Dou-
glas F Easton. Statistical analysis of pathogenicity of somatic mutations in cancer.
Genetics, 173(4):2187–98, aug 2006.

[84] Christopher Greenman, Philip Stephens, Raffaella Smith, Gillian L Dalgliesh, Christo-
pher Hunter, Graham Bignell, Helen Davies, Jon Teague, Adam Butler, Claire
Stevens, Sarah Edkins, Sarah O’Meara, Imre Vastrik, Esther E Schmidt, Tim
Avis, Syd Barthorpe, Gurpreet Bhamra, Gemma Buck, Bhudipa Choudhury, Jody
Clements, Jennifer Cole, Ed Dicks, Simon Forbes, Kris Gray, Kelly Halliday, Rachel
Harrison, Katy Hills, Jon Hinton, Andy Jenkinson, David Jones, Andy Menzies, Ta-
tiana Mironenko, Janet Perry, Keiran Raine, Dave Richardson, Rebecca Shepherd,
Alexandra Small, Calli Tofts, Jennifer Varian, Tony Webb, Sofie West, Sara Widaa,
Andy Yates, Daniel P Cahill, David N Louis, Peter Goldstraw, Andrew G Nichol-
son, Francis Brasseur, Leendert Looijenga, Barbara L Weber, Yoke-Eng Chiew, Anna
DeFazio, Mel F Greaves, Anthony R Green, Peter Campbell, Ewan Birney, Dou-
glas F Easton, Georgia Chenevix-Trench, Min-Han Tan, Sok Kean Khoo, Bin Tean
Teh, Siu Tsan Yuen, Suet Yi Leung, Richard Wooster, P Andrew Futreal, and
Michael R Stratton. Patterns of somatic mutation in human cancer genomes. Nature,
446(7132):153–8, mar 2007.

[85] Ian J Griswold, Mary MacPartlin, Thomas Bumm, Valerie L Goss, Thomas O’Hare,
Kimberly a Lee, Amie S Corbin, Eric P Stoffregen, Caitlyn Smith, Kara John-
son, Erika M Moseson, Lisa J Wood, Roberto D Polakiewicz, Brian J Druker, and

83



Michael W Deininger. Kinase domain mutants of Bcr-Abl exhibit altered transforma-
tion potency, kinase activity, and substrate utilization, irrespective of sensitivity to
imatinib. Molecular and cellular biology, 26(16):6082–93, aug 2006.

[86] Xin Guo, Michael D Ward, Jessica B Tiedebohl, Yvonne M Oden, Julius O Nyalwidhe,
and O John Semmes. Interdependent Phosphorylation within the Kinase Domain.
Journal of Biological Chemistry, 285(43):33348–33357, 2010.

[87] Jacob R Haling, Jawahar Sudhamsu, Ivana Yen, Steve Sideris, Wendy Sandoval, Wil-
son Phung, Brandon J Bravo, Anthony M Giannetti, Ariana Peck, Alexandre Mas-
selot, Tony Morales, Darin Smith, Barbara J Brandhuber, Sarah G Hymowitz, and
Shiva Malek. Structure of the BRAF-MEK Complex Reveals a Kinase Activity Inde-
pendent Role for BRAF in MAPK Signaling. Cancer Cell, 26(3):402–413, 2014.

[88] Douglas Hanahan and Robert A Weinberg. The Hallmarks of Cancer. Cell, 100:57–70,
2000.

[89] Douglas Hanahan and Robert a Weinberg. Hallmarks of cancer: the next generation.
Cell, 144(5):646–74, mar 2011.

[90] Steven K Hanks and Tony Hunter. The eukaryotic protein kinase superfamily : kinase
(catalytic) domam structure and classification. The FASEB Journal, 9(8):576–596,
1995.

[91] D. Haridas, M. P. Ponnusamy, S. Chugh, I. Lakshmanan, P. Seshacharyulu, and S. K.
Batra. MUC16: molecular analysis and its functional implications in benign and
malignant conditions. The FASEB Journal, 28(10):4183–4199, 2014.

[92] Tomio Hashimoto, Minoru Kato, Takeshi Shimomura, and Naomi Kitamura. TM-
PRSS13, a type II transmembrane serine protease, is inhibited by hepatocyte growth
factor activator inhibitor type 1 and activates pro-hepatocyte growth factor. FEBS
Journal, 277(23):4888–4900, 2010.

[93] Camilla Hauge, Torben L Antal, Daniel Hirschberg, Ulrik Doehn, Katrine Thorup,
Leila Idrissova, Klaus Hansen, Ole N Jensen, Thomas J Jørgensen, Ricardo M Biondi,
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J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus. All-Atom Empirical Potential for
Molecular Modeling and Dynamics Studies of Proteins <sup>†</sup>. The Journal
of Physical Chemistry B, 102(18):3586–3616, 1998.
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[200] Tirso Pons, Miguel Vazquez, Maŕıa Luisa Matey-hernandez, Søren Brunak, and Al-
fonso Valencia. KinMutRF : a random forest classifier of sequence variants in the
human protein kinase superfamily. BMC Genomics, 17(Suppl 2):207–217, 2016.

[201] Poulikos I Poulikakos, Chao Zhang, Gideon Bollag, Kevan M Shokat, and Neal Rosen.
RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type
BRAF. Nature, 464(7287):427–430, 2010.

[202] Florian Prinz, Thomas Schlange, and Khusru Asadullah. Believe it or not : how
much can we rely on published data on potential drug targets ? Nature reviews. Drug
discovery, 10(712), 2011.
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