
University of Pennsylvania
ScholarlyCommons

GSE Graduate Student Research Graduate School of Education

4-2018

The Gini Coefficient’s Magic Does Not Work on
Standardized Test Scores
Selene Sunmin Lee
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/gse_grad_pubs

Part of the Education Commons

Working paper presented at the Annual Conference of the American Educational Research Association (AERA), New York, NY, April 16, 2018.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/gse_grad_pubs/6
For more information, please contact repository@pobox.upenn.edu.

Lee, Selene Sunmin, "The Gini Coefficient’s Magic Does Not Work on Standardized Test Scores" (2018). GSE Graduate Student
Research. 6.
https://repository.upenn.edu/gse_grad_pubs/6

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fgse_grad_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/gse_grad_pubs?utm_source=repository.upenn.edu%2Fgse_grad_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/gse?utm_source=repository.upenn.edu%2Fgse_grad_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/gse_grad_pubs?utm_source=repository.upenn.edu%2Fgse_grad_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=repository.upenn.edu%2Fgse_grad_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/gse_grad_pubs/6?utm_source=repository.upenn.edu%2Fgse_grad_pubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/gse_grad_pubs/6
mailto:repository@pobox.upenn.edu


The Gini Coefficient’s Magic Does Not Work on Standardized Test Scores

Abstract
The Gini coefficient, an indicator that is often used to measure the inequality in the distribution of income
within countries, is meaningless when used on standardized test scores. This is because the value of the Gini
coefficient depends on the scale’s mean and standard deviation which are arbitrarily selected by the test
developers. Keeping the standard deviation of the scale constant, increasing the mean will decrease the Gini
coefficient, while keeping the mean of the scale constant, increasing the standard deviation will increase the
Gini coefficient. In addition, when Gini coefficients are estimated with scores on two different scales, not only
the values of the Gini coefficients but also the country rankings of the Gini coefficients will change. Therefore,
for standardized test scores, the value of the Gini coefficient is meaningless, as is comparing the size of the
Gini coefficients estimated from different countries. More generally, all relative measures of dispersion,
including the Gini coefficient, are meaningless for interval scales (i.e., a scale in which the distance between
any two consecutive points are equal, but the scale does not have an absolute zero), such as standardized test
scores.
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Abstract 

 

The Gini coefficient, an indicator that is often used to measure the inequality in the distribution 

of income within countries, is meaningless when used on standardized test scores. This is 

because the value of the Gini coefficient depends on the scale’s mean and standard deviation 

which are arbitrarily selected by the test developers. Keeping the standard deviation of the scale 

constant, increasing the mean will decrease the Gini coefficient, while keeping the mean of the 

scale constant, increasing the standard deviation will increase the Gini coefficient. In addition, 

when Gini coefficients are estimated with scores on two different scales, not only the values of 

the Gini coefficients but also the country rankings of the Gini coefficients will change. Therefore, 

for standardized test scores, the value of the Gini coefficient is meaningless, as is comparing the 

size of the Gini coefficients estimated from different countries. More generally, all relative 

measures of dispersion, including the Gini coefficient, are meaningless for interval scales (i.e., a 

scale in which the distance between any two consecutive points are equal, but the scale does not 

have an absolute zero), such as standardized test scores. 
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Introduction 

 

 In recent years, there have been noticeable shifts in the focus of international goals 

related to education. The first shift is an increased focus on students’ learning. For example, 

while the 2000 Millennium Development Goals (MDGs) aimed to “achieve universal primary 

education (Goal 2; United Nations, n.d.),” focusing on increasing students’ access to school, the 

2015 Sustainable Development Goals (SDGs) aim to “ensure inclusive and equitable quality 

education and promote lifelong learning opportunities for all (Goal 4; United Nations, 2015, p. 

17).” The first target of the latter goal is to “ensure that all girls and boys complete free, 

equitable and quality primary and secondary education leading to relevant and effective learning 

outcomes (United Nations, 2015, p. 17),” highlighting the international community’s 

commitment towards improving both learning and access to school.  

The increased focus on students’ learning has also increased the international 

community’s interest in assessments that can track countries’ progress towards the SDGs. These 

assessments include international large-scale assessments such as the Programme 

for International Student Assessment (PISA), Trends in International Mathematics and Science 

Study (TIMSS), and the Progress in International Reading Literacy Study (PIRLS). Regional 

assessments, such as the Southern and Eastern Africa Consortium for Monitoring Educational 

Quality (SACMEQ) in Southern and Eastern Africa, the Analysis Programme of the Conference 

of the Ministers of Education of French speaking countries’ Education Systems (PASEC) in West 

Africa, and the Latin American Laboratory for Assessment of the Quality of Education (LLECE) 

in Latin America, have also become important. Last but not least, citizen-led assessments, such 

as the Annual Status of Education Report (ASER) in India and Uwezo in several African 

countries, are also being used to measure students’ learning achievement.  

 The second shift in international goals related to education is the increased focus on 

equity, as mentioned above in the first target of SDG Goal 4. The international community’s 

commitment towards equity in education was reiterated in the 2015 Framework for Action for 

the implementation of SDG 4 which states that “inclusion and equity in and through education is 

the cornerstone of a transformative education agenda, and we therefore commit to addressing all 

forms of exclusion and marginalization, disparities and inequalities in access, participation and 

learning outcomes (World Education Forum, 2015, p. 7).” The Technical Advisory Group 

established by UNESCO to review and recommend indicators to track the implementation of the 

education-related SDG goals also stated that “education indicators should aim to capture not just 

national averages but also the variation across different population subgroups defined by group 

and individual characteristics, such as sex, wealth, location, ethnicity, language or disability 

(Technical Advisory Group, 2015, p. 5).” This focus on equity has increased researchers’ and 

practitioners’ interest in finding an indicator that can accurately measure the inequity in students’ 

learning, a combination of the two foci in the international goals related to education. 

 The objective of this paper is to analyze whether the Gini coefficient, an indicator often 

used to measure the inequality1 in income distribution within countries, can also be used as an 

indicator to measure the inequality in learning achievement within countries. This paper starts by 

                                                 
1
 Technically, “inequality” and “inequity” are different. “Inequality” refers to the distribution of a variable without 

taking into account the background characteristics of the subjects (i.e., a univariate measure), while “inequity” 

takes into account some of their background characteristics such as gender, ethnicity, and income (i.e., a bivariate 

or multivariate measure). The Gini coefficient is a measure of “inequality,” not “inequity,” because it does not 

take into account subjects’ background characteristics. 
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explaining the basic concept of the Gini coefficient. Next, an analysis of the relation between the 

Gini coefficient and the average score, the standard deviation, and other measures of dispersion 

are presented. Based on these analyses, the paper ends by explaining why the Gini coefficient is 

meaningless when it is used on standardized test scores.2 

 It should be noted that this paper only addresses the Gini coefficient estimated with 

standardized test scores and not the Gini coefficient estimated with years of schooling which is 

sometimes referred to as “the Gini coefficient of educational attainment” or “the Gini coefficient 

of education” (refer to Thomas, Wang, and Fan, 2001, for more details). This is because 

standardized test scores are measured on an interval scale (i.e., the distance between any two 

consecutive points on the scale are equal, but the scale does not have an absolute zero), while 

years of schooling is measured on a ratio scale (i.e., the distance between any two consecutive 

points on the scale are equal, and the scale has an absolute zero), a key difference that makes the 

Gini coefficient meaningless for standardized test scores. The differences between the interval 

scale and the ratio scale and how they affect the Gini coefficient will be explained in detail later. 

 

 

Gini coefficient of an income distribution 

 

History of the Gini coefficient. The history of the Gini coefficient can be traced back to 

1905, when Max Lorenz, an American economist, proposed a way to visually represent the 

distribution of income within a country in an article titled Methods of measuring the 

concentration of wealth. According to Derobert and Thieriot (2003), Lorenz was opposed to the 

idea of representing the inequality of an income distribution with a single numeric indicator, 

arguing that a better alternative would be to present this information graphically. Ironically, in 

1912, the Italian statistician Corrado Gini built upon the work of Lorenz to create the Gini 

coefficient, a numeric indicator to measure the inequality of an income distribution (Ceriani & 

Verme, 2012). The section below gives a brief explanation of both the Lorenz curve and the Gini 

coefficient. 

 

Presenting the income distribution with bar graphs. For illustrative purposes, several 

hypothetical countries will be used to explain the concept of the Lorenz curve and the Gini 

coefficient. In country A, there are 100 people, and everyone earns the same amount of income. 

In other words, everyone’s income is equal to the average income of the country. The income 

distribution of this country is presented in Figure 1. Each bar represents an income quintile and 

the values on the y-axis indicate the amount of income that is earned by each quintile (as a 

percentage of the total income in the country). In this hypothetical country, the bars are of equal 

height, because each quintile accounts for exactly 20% of the total income of the country.  

 

                                                 
2 Technically, “test” and “assessment” have different meanings. However, they will be used interchangeably in this 

paper, because “standardized test” is a commonly used word. 
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Figure 1. Income distribution of Country A, a country with equally distributed income. 

 

 In another country, Country B, there are also 100 people, but income is distributed 

unequally among them. The first quintile (the poorest 20% of the population) earns 10% of the 

total income, the second quintile earns 15% of the total income, the third quintile earns 20% of 

the total income, the fourth quintile earns 25% of the total income, and the fifth quintile earns 30% 

of the total income of the country. The income distribution of this country is presented in Figure 

2. The bars are of different height, because each quintile accounts for a different percentage of 

the total income of the country. 

 

 
 

Figure 2. Income distribution of Country B, a country with unequally distributed income. 

 

 Lastly, in Country C, there are also 100 people, but income is distributed very unequally 

among them. The first quintile earns 5% of the total income, the second quintile earns 8% of the 

total income, the third quintile earns 12% of the total income, the fourth quintile earns 15% of 

the total income, and the fifth quintile earns 60% of the total income of the country. The income 

distribution of this country is presented in Figure 3. The last bar is much taller than the other bars, 

because the top quintile earns most of the income of the country. 
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Figure 3. Income distribution of Country C, a country with very unequally distributed income. 

 

Presenting the income distribution as a Lorenz curve. The information in the bar 

graphs above can also be presented as a Lorenz curve. In a graph of a Lorenz curve, the values 

on the x-axis represent the cumulative proportion of the population, ordered in terms of each 

person’s income, ranging from 1 to 100. The subject at the 1st income percentile (the poorest 

person in the hypothetical countries) is represented by 1 on the x-axis, the subject at the 50th 

income percentile (the person earning the median income in the hypothetical countries) is 

represented by 50 on the x-axis, and the subject at the 100th income percentile (the richest person 

in the hypothetical countries) is represented by 100 on the x-axis. The values on the y-axis 

represent the cumulative proportion of the total income in the country. Using the example of the 

hypothetical countries above, for each person represented on the x-axis, that person’s income is 

added to the income of everyone who has a lower income than that person (i.e., the cumulative 

income up to that person), and this value is expressed as a percentage of the total income in the 

country. In other words, the values on the x-axis represent the income percentiles, while the 

values on the y-axis represent the cumulative proportion of the total income in the country up to 

that person. Connecting these points will produce the Lorenz curve. It should be noted that 

having many data points will produce a smooth Lorenz curve, but in the following examples, 

only five data points will be used for illustrative purposes. 

 The Lorenz curve for Country A, the country with equally distributed income, is 

presented in Figure 4. The Lorenz curve for this country is a straight line, because each income 

quintile earns exactly 20% of the country’s total income. Consequently, the cumulative income 

of each quintile is exactly 20 percentage points higher than the cumulative income of the 

previous quintile.  
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Figure 4. Lorenz curve of Country A, a country with equally distributed income. Refer to Figure 

1 for the income distribution in bar chart form. 

 

 The Lorenz curve for Country B, the country with unequally distributed income, is 

presented in Figure 5. The Lorenz curve for this country is not a straight line, because each 

quintile earns more income than the previous quintiles. 

 

 
 

Figure 5. Lorenz curve of Country B, a country with unequally distributed income. Refer to 

Figure 2 for the income distribution in bar chart form. 

 

 Lastly, the Lorenz curve for Country C, the country with very unequally distributed 

income, is presented in Figure 6. Compared to Country B, the Lorenz curve for Country C has a 

greater degree of curvature, because income is more unequally distributed.  
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Figure 6. Lorenz curve of Country C, a country with very unequally distributed income. Refer to 

Figure 3 for the income distribution in bar chart form.  

 

Estimating the Gini coefficient. The examples above show that the degree of curvature 

of a Lorenz curve depends on how unequally income is distributed within a country - the more 

unequal the income distribution, the greater the curvature of the Lorenz curve will be. To 

quantify the degree of the curvature, the area between the Lorenz curve (represented by a blue 

line in Figure 7) and the diagonal line (represented by a green line in Figure 7) can be estimated. 

While calculus is required to estimate this area precisely, it can be approximated using algebra. 

For Country B, the area between the Lorenz curve and the diagonal line (shaded in green in 

Figure 7) can be estimated to be 1,000. To standardize this value, it can be divided by the 

triangular area under the diagonal line (the sum of the areas shaded in green and blue in Figure 7). 

This triangular area is 5,000 for all countries (because 100*100/2 = 5,000). For Country B, 

dividing the green area by the triangular area is 0.20 (because 1,000/5,000 = 0.20). Multiplying 

this value by 100 is 20, which is the Gini coefficient for this country. 

 

 
 

Figure 7. Lorenz curve of Country B, a country with unequally distributed income. Refer to 

Figure 2 for the income distribution in bar chart form. 

 

* Gini coefficient: 20.0 
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 For Country C, the area between the Lorenz curve and the diagonal line is shaded in 

green in Figure 8. It can be noted that the green shaded area for Country C is larger than the 

green shaded area for Country B, because income in Country C is more unequally distributed 

than in Country B. Using algebra, the green shaded area in Figure 8 can be estimated to be 2,340. 

Dividing the green area by the triangular area results in 0.468 (because 2,340/5,000 = 0.468). 

Multiplying this value by 100 is 46.9. Thus, the Gini coefficient for Country C is 46.8, which is 

much larger than the Gini coefficient for Country B (which was 20.0).  

 

 
 

Figure 8. Lorenz curve of Country C, a country with very unequally distributed income. Refer to 

Figure 3 for the income distribution in bar chart form. 

 

 Thus, the Gini coefficient is a measure of how unequally income is distributed within a 

country, and the values can theoretically range from 0 to 100. The more unequally income is 

distributed within a country, the larger the area between the Lorenz curve and the diagonal line 

will be, resulting in a larger Gini coefficient. It should be noted that Country A, the country with 

equally distributed income, has a Gini coefficient of 0, because there is no area between the 

country’s Lorenz curve and the diagonal line. 

 

 

Gini coefficient of a test score distribution 

 

Estimating the Gini coefficient of a test score distribution. Using the same 

methodology as above, the Lorenz curve of a test score distribution can also be plotted on a 

graph. To illustrate this, another hypothetical country will be used. In Country D, 100 students 

took a test. The bottom 20 students scored 300 points, the middle 60 students scored 500 points, 

and the top 20 students scored 700 points, as portrayed in Figure 9. The average score for this 

country is 500 points, as represented by the grey horizontal line.  

 

 

 

* Gini coefficient: 46.8 
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Figure 9. Score distribution of Country D. 

 

 The Lorenz curve for this country’s score distribution is presented in Figure 10. The sum 

of all the scores in this country is 50,000 (because 300*20 + 500*60 + 700*20 = 50,000). Up to 

the 20th percentile, the range in which each student scored 300 points, a 1 unit increase on the x-

axis results in an increase of 0.6 units on the y-axis, because each additional student in this range 

accounts for 0.6% of the total score (because 300/50,000 = 0.006). Between the 21st percentile 

and the 80th percentile, the range in which each student scored 500 points, a 1 unit increase on 

the x-axis results in an increase of 1 unit on the y-axis, because each additional student in this 

range accounts for 1% of the total score (because 500/50,000 = 0.01). Between the 81st and the 

100th percentile, the range in which each student scored 700 points, a 1 unit increase on the x-

axis results in an increase of 1.4 units on the y-axis, because each additional student in this range 

accounts for 1.4% of the total score (because 700/50,000 = 0.014). The area between the Lorenz 

curve (in orange) and the diagonal line (in grey) is 640. Therefore, the Gini coefficient of this 

distribution is 12.8 (because 640/5,000 * 100 = 12.8). 

  

 
 

Figure 10. Lorenz curve of Country D. Refer to Figure 9 for the actual scores at each percentile. 

 

 

* Gini coefficient: 12.8 
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 As with the Gini coefficient for income distribution, a higher Gini coefficient of a test 

score distribution means that there is more dispersion in the test scores. However, the Gini 

coefficient is not a meaningful indicator of the dispersion of test scores, as will be explained later 

in this paper.    

 

Papers and books on the Gini coefficient and standardized test scores. A major 

attraction of the Gini coefficient is that it is dimensionless and has a range of 0 to 100 regardless 

of the units of the original scale. This gives the false impression that the Gini coefficient can be 

used with any kind of scale and that it can also be used to compare the dispersion of scores from 

different tests. For this reason, many researchers have estimated the Gini coefficient with test 

scores to measure the inequality in learning achievement within a country. 

 For example, Bedard and Ferrall (2003) used the Gini coefficient to measure the 

inequality in the distribution of test scores on the International Mathematics Examinations 

administered to 13-year-olds as well as the inequality in the distribution of wages later in life in 

11 countries. They claimed that the Gini coefficient would “reduce the spurious effects of the 

testing instrument and facilitate comparisons between test score and wage distributions that are 

robust to quite distinct distributions (p. 33).” They concluded that in most countries, wages were 

more equally distributed than test scores, because for a given country, the Gini coefficient of the 

wage distribution was generally smaller than the Gini coefficient of the test score distribution. 

They also examined the relation between the Gini coefficient of the test score distribution and the 

Gini coefficient of the wage distribution and concluded that there was a positive association 

between these two indicators.   

 A World Bank publication edited by Vegas (2005) also estimated Gini coefficients using 

scores on the National System for Basic Education Evaluation, a national educational assessment 

administered every two years in Brazil. The report concluded that “the Gini coefficients are small 

in relative terms, indicating that the variation in student test scores among and between regions is 

not substantial (p. 168).” They also claimed that the inequality in test scores had increased 

between 1995 and 2001, because the Gini coefficients of the test score distribution had increased 

during this period. 

 Sastry and Pebley (2010) also estimated Gini coefficients using reading and math scores 

from the Los Angeles Family and Neighborhood Survey and analyzed how much of the 

inequality in test scores could be explained by family characteristics such as family income, 

family assets, mother’s reading score, and mother’s years of schooling. A similar approach was 

taken by Freeman, Machin, and Viarengo (2011) who estimated the Gini coefficient using math 

scores from PISA 2000 and 2009. They subsequently analyzed the association between the Gini 

coefficient and various family background characteristics such as parents’ education and the 

number of books at home.  

 More recently, Wagner (2018) suggested that the Gini coefficient could be used as an 

indicator to measure the inequality in learning achievement at the national and sub-national 

levels. He claimed that Gini coefficients estimated from different scales would be comparable, 

providing a more culturally sensitive and practical way of comparing the inequality in learning 

achievement in different countries and sub-national groups. In addition, he suggested that the 

Gini coefficient would enable researchers and practitioners to measure changes in learning 

inequality over time, and to build on other Gini coefficients (e.g., Gini coefficient of income, 

Gini coefficient of years of schooling) in a coherent way. 

 In spite of the examples above, several papers and books, some dating back several 

decades, have advised against using the Gini coefficient on standardized test scores. The main 
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reason is that the Gini coefficient is meaningless when it is estimated with an interval scale (i.e., 

a scale in which the distance between any two consecutive points are equal, but the scale does 

not have an absolute zero). Scores on a standardized test are on an interval scale, because the 

distance between any two consecutive points represents the same amount of difference in 

students’ abilities,3 but the scale does not have an absolute zero (i.e., the zero of the scale has no 

inherent meaning). This is because the average score for a standardized test is arbitrarily selected 

by the test developer.4 In the case of PISA, the scores of the students in the OECD countries that 

took the first round PISA in 20005 were standardized to be on a scale with a mean of 500 and a 

standard deviation of 100 (OECD, 2003). However, the test developers of PISA could have 

selected another scale, for example, a scale with a mean of 600 and standard deviation of 200. In 

this scenario, a student who received a score of 500 on the original PISA scale would receive a 

score of 600 on the new scale, although the student’s actual ability would not have changed. This 

means that the value of 500 on the original PISA scale has no inherent meaning, which also 

means that the distance between zero and 500 on this scale has no inherent meaning. Since the 

zero on a standardized test is not meaningful, it makes standard test scores an interval scale 

rather than a ratio scale. 

 A statistics textbook by Kendall and Stuart in 1977 (as cited in Allison, 1978) had the 

following warning about using the Gini coefficient on distributions on an interval scale: 

 

[The Gini coefficient suffers] from the disadvantage of being very much affected by . . . 

the value of the mean measured from some arbitrary origin, and are not usually 

employed unless there is a natural origin of measurement or comparisons are being 

made between distributions with similar origins. 

  

 Jencks et al., in their 1972 book titled Inequality (also cited in Allison, 1978), 

specifically stated that the Gini coefficient should not be used for distributions on an interval 

scale, such as IQ scores. Allison (1978) backed this claim, saying that in general, valid inferences 

about inequality cannot be made using interval data, because “different origins will lead to 

different conclusions about the relative inequality of the two distributions (p. 871).”6  

 Ferreira and Gignoux (2014), in their paper on measuring the inequality of learning 

achievement, also gave several reasons why they decided not to use the Gini coefficient in their 

analyses. Most importantly, they proved mathematically that the value of the Gini coefficients 

estimated with pre-standardized scores (i.e., trait levels estimated with item response theory that 

have not been linearly converted to standardized test scores) were different from the values of the 

Gini coefficients estimated with post-standardized scores (i.e., trait levels estimated with item 

response theory that have been linearly converted to standardized test scores). Furthermore, they 

                                                 
3 This paper will assume that this is true, although some scholars may argue against this. 
4 For standardized tests, item response theory is used to estimate subjects’ scores, either anchoring the mean of the 

item difficulties (𝛽) to zero or the mean of the trait levels (𝜃) to zero (Embretson & Reise, 2000). In either case, 

after the trait levels are estimated for all the subjects, the trait levels are converted into standardized test scores 

through a linear conversion using an arbitrary mean and standard deviation for the new distribution, such as a 

mean of 500 and standard deviation of 100.  
5 While 28 OECD countries participated in PISA 2000, the Netherlands was excluded from the standardization 

procedure because it did not reach the PISA 2000 sampling standards. As a result, 27 countries were included in 

the standardization procedure, with the scores from each country weighted equally (OECD, 2002, p. 255). 
6 Allison makes an exception for interval scales which have an underlying non-negative ratio scale such as 

measures of social power. 
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showed that the country rankings of the Gini coefficients using pre-standardized scores were 

different from the country rankings of the Gini coefficients using post-standardized scores, a 

major flaw when using the Gini coefficient to make comparisons across countries.   

This paper builds on the works cited above to show that Gini coefficients estimated with 

distributions on an interval scale are meaningless. 

 

 

Method 

 

 The analyses and graphs in this paper are based on simulated data as well as empirical 

data from the 2015 PISA Reading assessment downloaded from the PISA database.7 PISA is an 

international assessment that is coordinated by the Organization for Economic Cooperation and 

Development (OECD) with the goal of measuring the knowledge and skills of 15-year-old 

students in reading, mathematics, and science (OECD, n.d.). The first round of PISA was 

administered in the year 2000 in 28 OECD and 15 non-OECD countries (OECD, 2003). Since 

then, PISA has been administered every 3 years, with the 6th and latest round administered in 

2015 in 35 OECD and 37 non-OECD countries (OECD, 2016). In this paper, data that are not 

nationally representative, such as data collected from certain cities or states of a country (e.g., 

Beijing, Shanghai, Jiangsu, Guangdong, Macao, and Hong Kong in China; Massachusetts and 

North Carolina in the United States; Buenos Aires in Argentina) were excluded from the data set. 

As a result, the data used in this paper included 66 countries comprised of 35 OECD and 31 non-

OECD countries. The list of countries included in the data set used in this paper can be found in 

the Appendix. 

 The IDB Analyzer,8 a tool developed by the International Association for the Evaluation 

of Educational Achievement (IEA), was used to estimate the score at each percentile for each 

country. This tool takes into account the complex sample design of PISA (i.e., multi-stage 

stratified and cluster sampling) as well as the missing data patterns caused by the fact that only a 

fraction of the items in the assessment are administered to each student.9 All subsequent 

analyses were conducted in Stata (version 14).  

 

 

Gini coefficients estimated with 2015 PISA reading scores 

 

Using the method described above, Gini coefficients were estimated for all 66 countries 

that had nationally representative data on the 2015 PISA Reading assessment. Among the 66 

countries, Vietnam had the lowest Gini coefficient of 8.1, while Lebanon had the highest Gini 

coefficient of 18.3. The Lorenz curve of these two countries are presented in Figure 11. 

Compared to the Gini coefficients estimated with income distribution, which can be as high as 50 

(World Bank, n.d.), the size of the Gini coefficients estimated with PISA scores are relatively 

small. However, the size of the Gini coefficients estimated with standardized test scores are 

meaningless, because it depends heavily on the mean and standard deviation of the scale that are 

                                                 
7 PISA database: http://www.oecd.org/pisa/data/2015database/ 
8 IDB Analyzer: http://www.iea.nl/data 
9 It should be noted that the IDB Analyzer would not estimate the score at the 100th percentile, so only the scores 

from the 1st to the 99th percentiles were used to estimate the Gini coefficients. The equation for the Gini 

coefficient was adjusted to take this into account. 
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arbitrarily selected by the test developers. This will be explained in more detail later.  

  

 
 

Figure 11. Lorenz curve for Vietnam and Lebanon using 2015 PISA Reading scores. 

 

 

Properties of the Lorenz curve and the Gini coefficient 

 

Slope of the tangent of the Lorenz curve  

 

The slope of the tangent of the Lorenz curve at a given point on the x-axis is directly 

related to the score of the subject at that percentile. This will be explained with the hypothetical 

score distribution of Country D, a country in which the bottom 20 students scored 300 points, the 

middle 60 students scored 500 points, and the top 20 students scored 700 points, as presented in 

Figure 9 above. In the graph of the Lorenz curve in Figure 10, each unit on the x-axis represents 

one student, because there are 100 students in the country and 100 units on the x-axis. Each unit 

on the y-axis represents 500 points, because each unit represents 1% of the sum of everyone’s 

score in the country (because 0.01 * [300*20 + 500*60 + 700*20] = 500). 500 is also the average 

score for the country (because [300*20 + 500*60 + 700*20]/100 = 500). So each unit on the y-

axis also corresponds to the average score. 

 In this country, students between the 21st and the 80th percentile received a score of 500 

points, the average score. In this range, a 1 unit increase on the x-axis of the Lorenz curve (which 

corresponds to one student) will result in a 1 unit increase on the y-axis (because the student will 

add 500 points to the cumulative score up to that point), resulting in a slope of 1. Thus, at a point 

on the x-axis which corresponds to a student who received the average score, the slope of the 

tangent of the Lorenz curve will be exactly 1.  

 In the range between the 1st and 20th percentile, students received a score of 300 points, 

which is below the average score. In this range, a 1 unit increase on the x-axis of the Lorenz 

curve (which corresponds to one student) will result in a less-than-one unit increase on the y-axis 

(because the student will add only 300 points to the cumulative score up to that point), resulting 

in a slope that is less than 1. Thus, at a point on the x-axis which corresponds to a student who 

received a score that is lower than the average, the slope of the tangent of the Lorenz curve will 

be less than 1.  
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 In the range between the 81st and the 100th percentile, students received a score of 700 

points, which is above the average score. In this range, a 1 unit increase on the x-axis of the 

Lorenz curve (which corresponds to one student) will result in a more-than-one unit increase on 

the y-axis (because the student will add 700 points to the cumulative score up to that point), 

resulting in a slope that is greater than 1. Thus, at a point on the x-axis which corresponds to a 

student who received a score that is higher than the average, the slope of the tangent of the 

Lorenz curve will be greater than 1.  

The relation between the slope of the tangent of the Lorenz curve and a student’s score at 

a given percentile is summarized in Figure 12. 

 

  
 

Figure 12. Relation between the slope of the tangent of the Lorenz curve and a student’s score at 

a given percentile. 

 

 Generally, at any given point on the x-axis, the slope of the tangent of the Lorenz curve 

can be estimated with the following equation: 

 

 Slope of the tangent of the Lorenz curve = 
Student′s score at the given percentile

Average score
        (1) 

  

 

Gini coefficient and the average score 

 

 Empirical evidence. One interesting (and perplexing) property of the Gini coefficient is 

that when the shape of the distribution is maintained, the Gini coefficient decreases when the 

average of the distribution increases. This is illustrated in Figure 13 which shows the score 

distributions of Hong Kong and the Dominican Republic on the 2015 PISA Reading assessment. 

The two distributions have similar standard deviations (85.8 for Hong Kong vs. 84.9 for the 

Dominican Republic) and the shape of the distribution is also similar. However, the average for 

Hong Kong is higher than that of the Dominican Republic (527 for Hong Kong vs. 358 for the 

Dominican Republic), but the Gini coefficient for Hong Kong is lower than that of the 

Dominican Republic (8.86 for Hong Kong vs. 13.05 for the Dominican Republic). 

 

 

Slope of tangent > 1 when a student’s score is above average 

 

Slope of tangent = 1 when a student’s score is average 

 

Slope of tangent < 1 when a student’s score is below average 
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Figure 13. Score distributions of the Dominican Republic and Hong Kong on the 2015 PISA 

Reading assessment. 

 

Figure 14 presents the scatter plot of the average scores and the Gini coefficients 

estimated with 2015 PISA Reading scores. The correlation between these two variables is -0.67, 

which means that as the average score increases, the Gini coefficient generally decreases. This 

may seem to suggest that countries with a high average score also tend to have less dispersion in 

their scores, a phenomenon described by Freeman, Machin, and Viarengo (2011) as “a virtuous 

efficiency-equity relation in test performance (pg. 5).” However, as explained above, this may 

just be a mathematical phenomenon - keeping the standard deviation constant, countries with a 

higher average score will always have a lower Gini coefficient. Thus, when a country has a lower 

Gini coefficient than another, it may be because the former has less dispersion in its score 

distribution, or simply because it has a higher average score (and the same amount of dispersion). 

 

 
 

Figure 14. Scatter plot of the average scores and the Gini coefficients estimated with 2015 PISA 

Reading scores. 

  

Mathematical explanation. The mathematical explanation for the inverse relation 

between the average score and the Gini coefficient is quite simple. Again, this will be explained 

* Hong Kong 

  - SD: 85.8 

  - Average: 527 

- Gini: 8.86 

 

* Dominican Republic 

  - SD: 84.9 

  - Average: 358 

- Gini: 13.05 

* Correlation: -0.67  

             (p = 0.00) 
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with the hypothetical score distribution of Country D, a country in which the bottom 20 students 

scored 300 points, the middle 60 students scored 500 points, and the top 20 students scored 700 

points, as presented in Figure 9 above. Using Equation 1, the slope of the tangent of the Lorenz 

curve at the bottom, middle, and upper percentiles can be estimated, as shown in Figure 15. As 

stated previously, the Gini coefficient for this distribution is 12.8. 

 

 
 

Figure 15. Lorenz curve of Country D. Refer to Figure 9 for the actual score at each percentile.  

 

 For illustrative purposes, another hypothetical country, Country E, is presented below. In 

Country E, everyone scored 500 points higher than in Country D. The bottom 20 students scored 

800 points, the middle 60 students scored 1,000 points, the top 20 students scored 1,200 points, 

making the average score of this country 1,000 points. The score distribution for Country E is 

presented in Figure 16. The shape of the score distribution for Country D (Figure 9) and Country 

E (Figure 16) are the same, but the score distribution curve for Country E moved up by 500 

points on the y-axis.  

 

 
 

Figure 16. Score distribution of Country E. 

 

Slope of tangent at P10 = 
Subject′s score at P10

Average score
 = 

300

500
 = 0.6 

 

Slope of tangent at P50 = 
Subject′s score at P50

Average score
 = 

500

500
 = 1 

 

Slope of tangent at P90 = 
Subject′s score at P90

Average score
 = 

700

500
 = 1.4 
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The Lorenz curve for this new score distribution is presented in Figure 17. The Gini 

coefficient for Country E is 6.5, which is smaller than the Gini coefficient for Country D (which 

was 12.8).   

 

 
 

Figure 17. Lorenz curve of Country E. Refer to Figure 16 for the actual score at each percentile. 

 

 In the bottom percentiles of Country E, the slope of the tangent of the Lorenz curve is 

0.8, which is steeper than the slope of the tangent of the Lorenz curve of the bottom percentiles 

of Country D (which was 0.6). This is because 500 is added to both the numerator and the 

denominator when estimating the slope of the new tangent. Since the numerator increases by 167% 

(from 300 to 800), while the denominator only increases by 100% (from 500 to 1,000), the 

relative increase in the numerator is greater than the relative increase in the denominator, 

resulting in a steeper tangent.  

 In the middle percentiles of Country E, the slope of the tangent of the Lorenz curve is 1, 

which is the same as the slope of the tangent of the Lorenz curve of the middle percentiles of 

Country D. This is because the numerator increases by 100% (from 500 to 1,000), while the 

denominator also increases by 100% (from 500 to 1,000), maintaining the ratio between the 

numerator and the denominator. Thus, the slope of the tangent is maintained. 

 In the upper percentiles of Country E, the slope of the tangent of the Lorenz curve is 1.2, 

which is flatter than the slope of the tangent of the Lorenz curve of the bottom percentiles of 

Country D (which was 1.4). Since the numerator increases by 71% (from 700 to 1,200), while 

the denominator increases by 100% (from 500 to 1,000), the relative increase in the numerator is 

smaller than the relative increase in the denominator, resulting in a flatter tangent. 

 Overall, the Lorenz curve for Country E is closer to the grey diagonal line than the 

Lorenz curve for Country D, because the curve is steeper in the bottom percentiles and flatter in 

the upper percentiles. Consequently, the area between the Lorenz curve and the diagonal line is 

smaller for Country E than Country D, resulting in a smaller Gini coefficient. This simple 

example shows that increasing the average of a distribution while maintaining its shape will 

result in a smaller Gini coefficient. In other words, the Gini coefficient is not translation invariant, 

because adding a constant to all the values in the distribution will change the value of the Gini 

coefficient.   

  

Slope of tangent at P10 = 
Subject′s score at P10 (old) + 500

Average score (old) + 500
 = 

300+500

500+500
 = 0.8 

 

Slope of tangent at P50 = 
Subject′s score at P50 (old) + 500

Average score (old)+ 500
 = 

500+500

500+500
 = 1 

 

Slope of tangent at P90 = 
Subject′s score atP90 (old) + 500

Average score (old)+ 500
  

                                    = 
700+500

500+500
 = 1.2 
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Gini coefficient and the standard deviation 

 

Empirical evidence. Both the Gini coefficient and the standard deviation are measures 

of dispersion, so naturally, there is a positive relation between these two indicators. This is 

illustrated in Figure 18 which shows the score distribution of Lebanon and Algeria on the 2015 

PISA Reading assessment. The two distributions have similar average scores (347 for Lebanon 

vs. 350 for Algeria). However, the standard deviation for Lebanon is much higher than that of 

Algeria (115.5 for Lebanon vs. 72.7 for Algeria), and the Gini coefficient for Lebanon is also 

higher than that of Algeria (18.34 for Lebanon vs. 11.31 for Algeria).  

 

 
 

Figure 18. Score distributions of Lebanon and Algeria on the 2015 PISA Reading assessment.  

 

 Figure 19 presents a scatter plot of the standard deviations and Gini coefficients 

estimated with the 2015 PISA Reading scores. The correlation between these two indicators is 

0.62, which means that as the standard deviation of the distribution increases, the Gini coefficient 

also generally increases. While the relation between the Gini coefficient and the standard 

deviation is positive, the correlation is not perfect, because these two indicators convey different 

information about the dispersion of a distribution. This will be explained in more detail later. 

 

* Lebanon 

  - Average: 347 

  - SD: 115.5 

- Gini: 18.34 

 

* Algeria 

  - Average: 350 

  - SD: 72.7 

  - Gini: 11.31 
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Figure 19. Scatter plot of the standard deviation and the Gini coefficient estimated with 2015 

PISA Reading scores.  

 

Mathematical explanation. One major difference between the standard deviation and 

the Gini coefficient is that the standard deviation takes into account the actual score at each 

percentile, while the Gini coefficient takes into account the cumulative score at each percentile. 

Again, this will be explained with the hypothetical score distribution of Country D, a country in 

which the bottom 20 students scored 300 points, the middle 60 students scored 500 points, and 

the top 20 students scored 700 points, as presented in Figure 20. The average of the distribution 

is 500, indicated with a grey horizontal line. In the lower percentiles, the students scored below 

average. The difference between the actual score and the average scores in this range is marked 

with an A. In the upper percentiles, the students scored above average. The difference between 

the actual score and the average score in this range is marked with a C. Both areas A and C affect 

the standard deviation, because the standard deviation is based on the squared difference between 

the actual score and the average score of a distribution. In the middle percentiles, students scored 

exactly at average, so their scores do not affect the standard deviation.   

 

 
 

Figure 20. Score distribution of Country D. 

A 

C  

* SD: 127.13 

 

* Correlation: 0.62 

             (p = 0.00) 
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 The Lorenz curve of the distribution above is presented in Figure 21. In this graph, the 

scores at all the percentiles affect the Gini coefficient, because the Lorenz curve is always below 

the grey diagonal line, even at points on the x-axis which correspond to students that scored 

exactly at average. This is because the Gini coefficient depends on the cumulative score, not the 

actual score, at each percentile. Thus, even though students in the middle percentiles scored 

exactly at average, because students in the bottom percentiles scored below average, the 

cumulative scores in the middle percentiles are still lower than what they would have been for a 

distribution in which everyone scored at average (represented by the grey diagonal line). 

Therefore, in this distribution, scores at all the percentiles affect the Gini coefficient, including 

scores in the bottom percentiles (marked with an A), middle percentiles (marked with a B), and 

the upper percentiles (marked with a C). 

 

 
 

Figure 21. Lorenz curve of Country D. Refer to Figure 20 for the actual score at each percentile.   

  

Differences in scores in the lower percentiles. To see how changes in the scores in the 

lower percentiles affect the standard deviation and the Gini coefficient, the score distribution of 

Country F is presented in Figure 22. Compared to Country D, the scores in the lower 20 

percentiles of Country F decreased by 200 points, but the scores in the other percentiles have not 

changed. Thus, the students in the lower 20 percentiles scored 100 points, students in the middle 

60 percentiles scored 500 points, students in the upper 20 percentiles scored 700 points, and the 

average is 460 points (represented by the grey horizontal line). In this distribution, the scores at 

all the percentiles affect the standard deviation, because there is a difference between the actual 

score and the average score at all the percentiles. The standard deviation for Country F’s score 

distribution is 196.95, which is an increase of 55% compared to the standard deviation for 

Country D’s score distribution (which was 127.13). 

 

 

* Gini coefficient: 12.80 

 



GINI COEFFICIENT AND STANDARDIZED TEST SCORES                        20 

 

  
 

Figure 22. Score distribution of Country F. 

 

 The Lorenz curve for Country F is presented in Figure 23. Compared to Country D 

which had a Gini coefficient of 12.80, the Gini coefficient of Country F increased to 20.87, 

which is an increase of 63%. This is a greater increase than the increase in the standard deviation 

(which increased by 55%). This example shows that when there is a decrease of scores in the 

lower percentiles, the percentage increase in the Gini coefficient is larger than the percentage 

increase in the standard deviation. Thus, when comparing the score distributions of two countries 

which have different scores only in the lower percentiles, the relative difference in the Gini 

coefficients of the two countries is greater than the relative difference in their standard deviations. 

In other words, when comparing two distributions, the Gini coefficient is more sensitive than the 

standard deviation to differences in scores in the lower percentiles.  

 

 
 

Figure 23. Lorenz curve of Country F. Refer to Figure 22 for the actual score at each percentile.  

 

Differences in scores in the upper percentiles. To see how changes in the scores in the 

upper percentiles affect the standard deviation and the Gini coefficient, the score distribution of 

Country G is presented in Figure 24. Compared to Country D, the scores in the upper 20 

 

* SD: 196.95 

 

 

* Gini coefficient: 20.87 
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percentiles of Country G increased by 200 points, but the scores in the other percentiles have not 

changed. Thus, the students in the lower 20 percentiles scored 200 points, students in the middle 

60 percentiles scored 500 points, students in the upper 20 percentiles scored 900 points, and the 

average is 540 points (represented by the grey horizontal line). In this distribution, as in the 

previous example, the scores at all the percentiles affect the standard deviation, because there is a 

difference between the actual score and the average score at all the percentiles. The standard 

deviation for Country G’s score distribution is 196.95, which is an increase of 55% compared to 

the standard deviation for Country D’s score distribution (which was 127.13). 

 

 
 

Figure 24. Score distribution of Country G. 

 

 The Lorenz curve of this new distribution is presented in Figure 25. Compared to 

Country D which had a Gini coefficient of 12.80, the Gini coefficient of Country G increased to 

17.78, which is an increase of 39%. This is a smaller increase than the increase in the standard 

deviation (which increased by 55%). This example shows that when there is an increase of scores 

in the upper percentiles, the percentage increase in the Gini coefficient is smaller than the 

percentage increase in the standard deviation. Thus, when comparing the score distributions of 

two countries which have different scores only in the upper percentiles, the relative difference in 

the Gini coefficients of the two countries is smaller than the relative difference in their standard 

deviations. In other words, when comparing two distributions, the Gini coefficient is less 

sensitive than the standard deviation to differences in scores in the upper percentiles.  

 

 

* SD: 196.95 
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Figure 25. Lorenz curve of Country G. Refer to Figure 24 for the actual score at each percentile.  

 

Summary of the differences between the Gini coefficient and the standard deviation. 

The examples above show how the standard deviation and the Gini coefficient are affected by 

changes in the scores in the lower and upper percentiles. The results are summarized in Table 1. 

Thus, when comparing the score distributions of two countries that have different scores only in 

the lower percentiles, the relative difference in the Gini coefficients of the two countries is 

greater than the relative difference in their standard deviations. On the contrary, when comparing 

the score distributions of two countries that have different scores only in the upper percentiles, 

the relative difference in the Gini coefficients of the two countries is smaller than the relative 

difference in their standard deviations. 

 

Table 1 

How changes in the distribution affect the standard deviation and the Gini coefficient 

 

 Standard deviation 

(% change in standard deviation 

  compared to Country D) 

Gini coefficient 

(% change in Gini coefficient  

  compared to Country D) 

Country D 

 

127.13 12.8 

Country F 

(Lower scores in  

lower percentiles) 

 

196.95 

(55%) 

20.87 

(63%) 

Country G 

(Higher scores in  

upper percentiles) 

196.95 

(55%) 

17.78 

(39%) 

 

 Another takeaway from this table is that the standard deviation is equally sensitive to 

differences in the lower percentiles as it is to differences in the upper percentiles. In the example 

above, the standard deviation for Country F (which has lower scores in the lower percentiles) is 

55% greater than the standard deviation for Country D, while the standard deviation for Country 

 

* Gini coefficient: 17.78 
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G (which has higher scores in the upper percentiles) is also 55% greater than the standard 

deviation for Country D. In other words, a decrease in the scores in the lower percentiles has the 

same effect on the standard deviation as an increase in the scores in the upper percentiles.  

 On the contrary, the Gini coefficient is more sensitive to differences in the lower 

percentiles than it is to differences in the upper percentiles. In the example above, the Gini 

coefficient for Country F (which has lower scores in the lower percentiles) is 63% greater than 

the Gini coefficient for Country D, while the Gini coefficient for Country G (which has higher 

scores in the upper percentiles) is only 39% greater than the Gini coefficient for Country D. In 

other words, a decrease in the scores in the lower percentiles has a greater effect on the Gini 

coefficient than an increase in the scores in the upper percentiles. This is because the Gini 

coefficient depends on the cumulative score at each percentile. When the scores decrease in the 

lower percentiles, it affects the Lorenz curve in all the subsequent percentiles, resulting in a large 

change in the Gini coefficient. On the contrary, when the scores increase in the upper percentiles, 

it affects the Lorenz curve mostly in the upper percentiles,10 resulting in a small change in the 

Gini coefficient. 

 

 

Gini coefficient and the scale of a standardized test 

 

 The fact that the Gini coefficient is negatively related with the average score and 

positively related with the standard deviation means that the Gini coefficient will change when a 

different scale (i.e., the mean and standard deviation) is selected for the standardized test scores. 

As explained above, for PISA, the scores of the students in the 27 OECD countries that took the 

first round PISA in 2000 were standardized to be on a scale with a mean of 500 and a standard 

deviation of 100 (OECD, 2003). The scores from the non-OECD countries that participated in 

PISA in 2000 were equated to this scale, as were the scores from all subsequent rounds of PISA. 

If the developers of PISA had chosen a different scale, for example, a scale with a mean of 600 

and a standard deviation of 200, all the standardized scores would be different. Using the 

following equation, the standardized scores on this new scale can be calculated by doing a linear 

transformation of the PISA scores: 

  

 Score on new scale = 600 + [200 * ( 
Score on PISA scale −500

100
 )]                     (2) 

 

 When Gini coefficients are estimated using scores on this new scale, the increase in the 

average score (from 500 to 600) will work towards decreasing the Gini coefficient, while the 

increase in the standard deviation (from 100 to 200) will work towards increasing it. To illustrate 

this, Figure 26 shows the Lorenz curve of the United States’ scores on the 2015 PISA Reading 

assessment using the original PISA scale (with a mean of 500 and standard deviation of 100) and 

the new scale (with a mean of 600 and standard deviation of 200). Simply choosing a different 

scale for the scores increased the Gini coefficient from 11.03 to 18.46, even though the 

distribution of students’ actual abilities did not change.  

 

                                                 
10 An increase in the scores in the upper percentiles will also affect the Lorenz curve in the lower percentiles to 

some degree, because the average of the distribution will change. As a consequence, the ratio between each score 

and the average score will change, resulting in a change in the slope of the tangent of the Lorenz curve at all the 

percentiles. 
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Figure 26. Lorenz curve of the United States’ scores on the 2015 PISA Reading assessment using 

the PISA scale and a new scale. 

 

 To further complicate the issue, doing a linear transformation of scores will affect the 

Gini coefficient of different countries to different degrees. This is because the degree of change 

in the Gini coefficient will depend on the average and standard deviation of each country’s 

underlying score distribution relative to the average and standard deviation of the old and new 

scales. To illustrate this, Figure 27 shows the scatter plot of the Gini coefficients estimated with 

the 2015 PISA Reading scores on the original scale (with a mean of 500 and standard deviation 

of 100) and scores that have been linearly transformed to a new scale (with a mean of 600 and 

standard deviation of 200).11 The correlation is not perfect at 0.9012. Also, it should be noted 

that there are many cases in which one country has a higher Gini coefficient than another when 

using the PISA scale, but the order is reversed when using the new scale. The two countries 

circled in Figure 27 is one such example. This gives empirical support to the mathematical 

equations of Ferreira and Gignoux (2014) which show that when Gini coefficients are estimated 

with scores on two different scales, one a linear transformation of the other, the values of the 

Gini coefficients as well as the country rankings of the Gini coefficients will change. This is a 

major flaw of the Gini coefficient when using it to make comparisons across countries. 

 

                                                 
11 Countries were excluded if it had negative scores after the linear transformation, because the Gini coefficient 

cannot be estimated with negative scores. Thus, only 49 countries were included in Figure 27. 

* Gini coefficient using PISA scale 

(500, 100): 11.03 

 

* Gini coefficient using a new scale 

(600, 200): 18.46 
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Figure 27. Gini coefficients estimated with scores on the 2015 PISA Reading assessment using 

the PISA scale and a new scale. 

 

 

Gini coefficient and other measures of dispersion 

 

Absolute and relative measures of dispersion. Measures of dispersion can be 

expressed in either absolute or relative terms. Absolute measures of dispersion are based on the 

difference between values and maintain the original unit of observation. On the other hand, 

relative measures of dispersion are based on the ratio of values. Since the unit of observation is 

included in both sides of the ratio, they are both cancelled out, and the ratio does not maintain the 

original unit of observation. Thus, relative measures of dispersion are dimensionless.   

 To illustrate the difference between absolute and relative measures of dispersion, another 

set of hypothetical countries, Country H and Country I, are presented below. The income 

distributions of these countries are presented in Figure 28. In both countries, income is normally 

distributed, and the shape of the distributions are identical. The only difference in the 

distributions is that everyone in Country I has 799 more dollars than everyone in Country H. In 

Country H, the poorest person’s income is 1 dollar, and the richest person’s income is 201 dollars, 

while in Country I, the poorest person’s income is 800 dollars, and the richest person’s income is 

1,000 dollars.  

 

 
 

Figure 28. Income distributions of Country H and Country I.  

 

* Correlation: 0.90  

            (p = 0.00) 

 

Country H Country I 

Income 

%
 o

f 
p

o
p

u
la

ti
o

n
 



GINI COEFFICIENT AND STANDARDIZED TEST SCORES                        26 

 

 In both countries, the absolute difference between the richest person and the poorest 

person is 200 dollars (because 201 - 1 = 200 and 1,000 - 800 = 200). This type of information is 

captured by absolute measures of dispersion which are based on the difference between values.  

In terms of relative differences, in Country H, the ratio of the poorest person’s income to 

the richest person’s income is 1:201 (because 201/1 = 201), while in Country I, the ratio is 1: 

1.25 (because 1,000/800 = 1.25). This type of information is captured by relative measures of 

dispersion which are based on the ratio of values. Thus, while the two countries have the same 

amount of absolute dispersion in their income distribution, they have different amounts of 

relative dispersion in their income distribution. 

 This simple example shows that absolute measures of dispersion and relative measures 

of dispersion convey different information about the dispersion of a distribution. It should be 

noted that while absolute measures of dispersion are meaningful for distributions on either an 

interval or ratio scale, relative measures of dispersion are only meaningful for distributions on an 

interval scale. This is explained in detail later. 

 

Absolute measures of dispersion. As explained above, absolute measures of dispersion 

are based on the difference between values, and they maintain the original unit of observation. 

These measures are meaningful for distributions on either an interval or ratio scale. 

 

Standard deviation. The standard deviation is an absolute measure of dispersion, 

because it is based on the squared difference between each score and the average score. Figure 19 

showed that the correlation between the standard deviation and the Gini coefficient was 0.62 for 

the 2015 PISA Reading scores. As explained above, the correlation is not perfect, because these 

two indicators convey different information about the dispersion of a distribution. The standard 

deviation is an absolute measure of dispersion, while the Gini coefficient is a relative measure of 

dispersion.  

 

90-10 achievement gap. Another absolute measure of dispersion is the 90-10 

achievement gap which is the difference between the score at the 90th percentile and the score at 

the 10th percentile (Miller & Fonseca, 2017). It can be calculated by using the following equation: 

 

 90-10 achievement gap = Score at 90th percentile – Score at 10th percentile          (3) 

 

 Figure 29 presents the scatter plot of the Gini coefficient and the 90-10 achievement gap 

estimated with the 2015 PISA Reading scores. The correlation between these two indicators is 

0.63. Again, the correlation is not perfect, because the 90-10 achievement gap is an absolute 

measure of dispersion, while the Gini coefficient is a relative measure of dispersion, which 

means that these two indicators convey different information about the dispersion of a 

distribution. 
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Figure 29. Scatter plot of the 90-10 achievement gap and the Gini coefficient estimated with the 

2015 PISA Reading scores. 

 

Relative measures of dispersion. As explained above, relative measures of dispersion 

are based on the ratio of two values. These measures are only meaningful for distributions on a 

ratio scale. This is because the ratio between two values depends on how far each value is from 

the zero of the scale. Thus, when the zero of the scale is meaningful (e.g., ratio scale), the ratio 

between two values is meaningful. However, when the zero of the scale is arbitrary (e.g., interval 

scale), the ratio between two values on this scale will depend on the choice of the scale (i.e., the 

arbitrary location of zero), and therefore, the ratio itself will be arbitrary. This can be illustrated 

with two different scales used for measuring temperature, Celsius and Fahrenheit. Both are 

interval scales, because the zero on each scale is arbitrary.12 On the Celsius scale, the values of 

50°C and 100°C have a ratio of 1:2. However, on the Fahrenheit scale, these values are converted 

to 122°F and 212°F, respectively, and the ratio drops to 1:1.74. Thus, even though the actual 

temperatures did not change, using different scales to measure temperature resulted in different 

ratios, because the distance between each value and the zero of the scale had changed. This 

example shows that when the zero of a scale is not meaningful, the ratio between two values on 

the scale (on which all relative measures of dispersion are based) is not meaningful. As explained 

above, standardized test scores do not have a meaningful zero, so it is an interval scale. Therefore, 

all relative measures of dispersion are not meaningful for standardized test scores. 

Several relative measures of dispersion are presented below for illustrative purposes. 

 

Gini coefficient. The Gini coefficient is a relative measure of dispersion. This can be 

illustrated with the example of Figure 28 which presented the income distributions of Country H 

(where the income ranged from 1 to 201 dollars) and Country I (where the income ranged from 

800 to 1,000 dollars). In these hypothetical countries, it can be intuited that income is more 

equally distributed in Country I than in Country H, because a difference of 200 dollars is not so 

large in a country where the average income is 900 dollars (Country I) as it is in a country where 

the average income is 101 dollars (Country H). In these comparisons, implicitly, the relative size 

                                                 
12 Even the zero on the Celsius scale is arbitrary rather than absolute, because it is the point at which water (an 

arbitrary substance) freezes, not the point at which all thermal motion ceases. The Kelvin scale has an absolute 

zero, because this is the point at which all thermal motion ceases, making the Kelvin scale a ratio scale. 

* Correlation: 0.63  

            (p = 0.00) 
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of a rich person’s income is being compared to a poor person’s income.  

The Gini coefficient takes this a step further by comparing the relative size of “the 

income of each person in the population” to “the average income.” This is because the Gini 

coefficient is determined by the Lorenz curve, the tangent of which is determined by the ratio 

between “the income of the subject at a given percentile” and “the average income,” as shown in 

Equation 1. Therefore, the Gini coefficient is a relative measure of dispersion that takes into 

account the income of every person in the population.  

If the Gini coefficients were to be estimated for Country H and Country I, the Gini 

coefficient for Country I would be much smaller than for Country H, because income is more 

equally distributed, in relative terms, in Country I than in Country H. This example again shows 

that countries with a higher average income will always have a lower Gini coefficient if the 

shape of the income distribution is maintained. 

It should be noted that the Gini coefficient in the example above is meaningful, because 

it is estimated with income, a ratio scale. However, it is not meaningful for standardized test 

scores, because it is an interval scale.13 

 

90/10 achievement gap. Another relative measure of dispersion is the 90/10 

achievement gap which is calculated by dividing the score at the 90th percentile by the score at 

the 10th percentile, as expressed in the following equation: 

 

 90/10 achievement gap = Score at 90th percentile / Score at 10th percentile          (4) 

 

 Figure 30 presents the scatter plot of the Gini coefficient and the 90/10 achievement gap 

estimated with the 2015 PISA Reading scores. The correlation between these two indicators is 

almost perfect at 0.9959. The correlation is very high, because the Gini coefficient and the 90/10 

achievement gap are both relative measures of dispersion, conveying similar information about 

the dispersion of a distribution.  

However, it should be noted that the 2015 PISA Reading scores have an approximately 

normal distribution within each country. For distributions that are not normal, the correlation 

between these two indicators may not be so high. Also, it is worth stressing again that relative 

measures of dispersion, such as the 90/10 achievement gap, are meaningless for standardized test 

scores. 

 

                                                 
13 If there were a way to measure students’ abilities on a ratio scale rather than an interval scale, the Gini coefficient 

may be a meaningful indicator to measure the relative dispersion in students’ abilities. Some may argue that the 

percentage of items correct on a standardized test is a ratio scale. However, a problem with the “percentage 

correct scale” is that it ignores the difficulty level of each item, giving the same weight to all items regardless of 

the item’s difficulty. This will incorrectly estimate a student’s ability, the construct that the standardized test is 

trying to measure. Another related problem is that the distance between any two consecutive points on the 

“percentage correct scale” will not represent the same amount of difference in students’ abilities, since it does not 

take into account the item’s difficulty. Thus, while “the percentage correct scale” has a meaningful zero, the 

distance between any two consecutive points on the scale are not equal, so it does not meet the criteria for an 

interval scale, let alone a ratio scale. Therefore, Gini coefficients are meaningless when estimated with scores on 

“the percentage correct scale.” 
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Figure 30. Scatter plot of the 90/10 Achievement gap and the Gini coefficient estimated with the 

2015 PISA Reading scores.  

 

 

Coefficient of variation.14, 15 The Coefficient of variation is another relative measure of 

dispersion which is calculated by dividing the standard deviation by the average score, as 

expressed in the following equation: 

 

 Coefficient of Variation = Standard deviation / Average score                    (5) 

 

 Figure 31 presents the scatter plot of the Gini coefficient and the Coefficient of variation 

estimated with the 2015 PISA Reading scores. The correlation between these two indicators is 

almost perfect at 0.9995. Since both the Gini coefficient and the Coefficient of variation are 

relative measures of dispersion, they convey similar information about the dispersion of scores, 

resulting in a very high correlation.  

Again, it should be noted that the 2015 PISA Reading scores have an approximately 

normal distribution within each country. For distributions that are not normal, the correlation 

between these two indicators may not be so high. Also, the Coefficient of variation is 

meaningless for standardized test scores, because it is a relative measure of dispersion. 

 

 

                                                 
14 I would like to thank Dr. Robert Boruch for suggesting that I examine the relation between the Gini coefficient 

and the Coefficient of variation. 
15 Refer to Snedecor and Cochran (1967, pp. 62 - 65) for more information on the Coefficient of variation. 

* Correlation ≈ 1.00  

            (p = 0.00) 
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Figure 31. Scatter plot of the Coefficient of variation and the Gini coefficient estimated with the 

2015 PISA Reading scores. 

 

Summary of the absolute and relative measures of dispersion. Table 2 summarizes 

the relation between the absolute and relative measures of dispersion presented above. The 

correlation between any two indicators of absolute dispersion or between any two indicators of 

relative dispersion is almost perfect when estimated with 2015 PISA Reading scores.16 However, 

the correlation between an absolute measure of dispersion and a relative measure of dispersion is 

approximately 0.60. This is because absolute measures of dispersion and relative measures of 

dispersion convey different information about the dispersion of a distribution.  

While the indicators above were presented for illustrative purposes, it should be noted 

that relative measures of dispersion, such as the Gini coefficient, are meaningless for 

standardized test scores, since it is an interval scale. 

 

Table 2 

Correlations between absolute and relative measures of dispersion estimated with 2015 PISA 

Reading scores 

 

Absolute measures of dispersion Relative measures of dispersion 

Standard deviation Gini coefficient  

90-10 achievement gap 90/10 achievement gap 

 Coefficient of variation 

 

 

 

  

 

 

                                                 
16 For non-normal distributions, the correlation between these indicators may not be so high. 

* Correlation ≈ 1.00  

            (p = 0.00) 

 

r ≈ 1.00 

r ≈ .60 

r ≈ 1.00 
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Implications for standardized test scores 

 

Value of the Gini coefficient is meaningless 

 

 The value of the Gini coefficient is meaningless when estimated with standardized test 

scores, because the value itself will depend on the mean and standard deviation of the scale that 

was arbitrarily selected by the test developer. Keeping the standard deviation of the scale 

constant, increasing the mean will decrease the Gini coefficient, while keeping the mean of the 

scale constant, increasing the standard deviation will increase the Gini coefficient. The example 

in Figure 26 showed that changing the scale for the PISA scores increased the Gini coefficient 

for the United States, even though the distribution of students’ actual abilities did not change. 

 More generally, all relative measures of dispersion (such as the Gini coefficient) are 

meaningless for distributions on an interval scale (such as standardized test scores), because the 

value will depend on the arbitrary location of zero on the scale. 

 

 

Comparing the Gini coefficients from the same test is meaningless 

 

 Some may argue that even though the absolute value of a Gini coefficient for 

standardized test scores is meaningless, it can still be useful to compare the relative size of the 

Gini coefficients estimated from the same test. However, even this is meaningless, because if a 

different scale had been selected for the test, not only the values of the Gini coefficients, but also 

the country rankings of the Gini coefficients can change, as shown in Figure 27. This is because 

when Gini coefficients are estimated with scores on two different scales, one a linear 

transformation of the other, the rank order of the Gini coefficients is not maintained. Thus, 

selecting different scales can lead to different conclusions about which countries have more 

dispersion in their score distribution, a major flaw when using the Gini coefficient to make 

comparisons across countries. 

 

 

Comparing the Gini coefficients from different tests is meaningless 

 

 Lastly, comparing the relative size of Gini coefficients estimated with scores from 

different tests is meaningless, because the value of the Gini coefficient depends on the choice of 

the scale. Thus, Gini coefficients estimated with scores on different scales are not directly 

comparable. Doing a linear transformation of the scores of one test to put them on the scale of 

the other will not solve this problem, because as explained above, a linear transformation of 

scores will change the values of the Gini coefficients as well as the country rankings of the Gini 

coefficients.  

 Even Gini coefficients estimated with scores from different tests that use the same scale 

(i.e., same mean and standard deviation) are also not directly comparable. This can be illustrated 

with the example of PISA and TIMSS which both use a scale with a mean of 500 and a standard 

deviation of 100. Even though the scale is the same, a score of 500 on PISA may not indicate the 

same level of ability as a score of 500 on TIMSS,17 because each score refers to the average 

score of the countries (or a subset of the countries) that took the test when it was first 

                                                 
17 Another problem of comparing scores from PISA and TIMSS is that they are not measuring the same construct. 
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administered. Even if we were to do a linear transformation of the scores of one test so that the 

same numeric score corresponds to the same level of ability, the problem will not be solved. This 

is because, as explained above, when Gini coefficients are estimated with scores on two different 

scales, one a linear transformation of the other, the rank order of the Gini coefficients are not 

maintained, making any comparisons of Gini coefficients meaningless. 

 

 

Conclusion 

 

 This paper examined whether the Gini coefficient, an indicator often used to measure the 

inequality in the distribution of income within countries, can also be used to measure the 

inequality in learning achievement within countries. A major attraction of the Gini coefficient is 

that it is dimensionless and has a range of 0 to 100, regardless of the scale of the test. This gave 

many scholars the false impression that it could be used with any kind of scale and that it could 

also be used to compare the dispersion of scores from different tests.  

However, a careful examination of the properties of the Gini coefficient revealed that it 

is problematic to estimate the Gini coefficient with standardized test scores. More generally, this 

research showed that all relative measures of dispersion (including the Gini coefficient) are 

meaningless for distributions on an interval scale (such as standardized test scores). This is 

because relative measures of dispersion are based on the ratio of two values, and this ratio 

depends on how far each value is from the zero of the scale. Thus, if the zero on the scale has no 

inherent meaning (which is the case for interval scales, such as standardized test scores), the ratio 

between two values on the scale (on which all relative measures of dispersion, including the Gini 

coefficient, are based) is meaningless. Therefore, all things considered, it can be said that the 

Gini coefficient’s magic does not work on standardized test scores. 
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Appendix: Countries included in the data set 

 

OECD (35) Non-OECD (31) 

Australia 

Austria 

Belgium 

Canada 

Chile 

Czech Republic 

Denmark 

Estonia 

Finland 

France 

Germany 

Greece 

Hungary 

Iceland 

Ireland 

Israel 

Italy 

Japan 

Korea (South) 

Latvia 

Luxembourg 

Mexico 

Netherlands 

New Zealand 

Norway 

Poland 

Portugal 

Slovak Republic 

Slovenia 

Spain 

Sweden 

Switzerland 

Turkey 

United Kingdom 

United States 

 

Albania 

Algeria 

Brazil 

Bulgaria 

Chinese Taipei (Taiwan) 

Colombia 

Costa Rica 

Croatia 

Dominican Republic 

Georgia 

Indonesia 

Jordan 

Kosovo 

Lebanon 

Lithuania 

Macedonia 

Malta, 

Moldova 

Montenegro 

Peru 

Puerto Rico  

Qatar 

Romania 

Russian Federation 

Singapore 

Thailand 

Trinidad and Tobago 

Tunisia 

United Arab Emirates 

Uruguay 

Vietnam 
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