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A Dynamical System for Prioritizing and Coordinating Motivations

Abstract
We develop a dynamical systems approach to prioritizing multiple tasks in the context of a mobile robot. We
take navigation as our prototypical task, and use vector field planners derived from navigation functions to
encode control policies that achieve each individual task. We associate a scalar quantity with each task,
representing its current importance to the robot; this value evolves in time as the robot achieves tasks. In our
framework, the robot uses as its control input a convex combination of the individual task vector fields. The
weights of the convex combination evolve dynamically according to a decision model adapted from the bio-
inspired literature on swarm decision making, using the task values as an input. We study a simple case with
two navigation tasks and derive conditions under which a stable limit cycle can be proven to emerge. While
owing along the limit cycle, the robot periodically navigates to each of the two goal locations; moreover,
numerical study suggests that the basin of attraction is quite large so that significant perturbations are
recovered with a reliable return to the desired task coordination pattern.
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A DYNAMICAL SYSTEM FOR

PRIORITIZING AND COORDINATING

MOTIVATIONS
PAUL REVERDY AND DANIEL E. KODITSCHEK∗

Abstract. We develop a dynamical systems approach to prioritizing multiple tasks in the
context of a mobile robot. We take navigation as our prototypical task, and use vector field planners
derived from navigation functions to encode control policies that achieve each individual task. We
associate a scalar quantity with each task, representing its current importance to the robot; this value
evolves in time as the robot achieves tasks. In our framework, the robot uses as its control input
a convex combination of the individual task vector fields. The weights of the convex combination
evolve dynamically according to a decision model adapted from the bio-inspired literature on swarm
decision making, using the task values as an input. We study a simple case with two navigation
tasks and derive conditions under which a stable limit cycle can be proven to emerge. While flowing
along the limit cycle, the robot periodically navigates to each of the two goal locations; moreover,
numerical study suggests that the basin of attraction is quite large so that significant perturbations
are recovered with a reliable return to the desired task coordination pattern.

Key words. limit cycles, geometric singular perturbation theory, relaxation oscillations, Hopf
bifurcation

AMS subject classifications. 37G25, 37D10, 37N35

1. Introduction. A prototypical example of an autonomous system is a forag-
ing animal that achieves its basic needs for food and shelter by periodically revisit-
ing different locations in its environment at different times apparently governed by
some internal sense of relative urgency or satiety. In the vocabulary of psychology,
the animal can be said to have drives which motivate it to perform actions that re-
duce those drives [26, 10, 21]. Inspired by the flexibility and robustness of natural
autonomous systems, we seek a simple model of their seemingly non-deliberative,
drive-based decision-making mechanisms that might be robustly embodied within the
dynamical sensorimotor layers of autonomous physical systems — a motivational dy-
namics for robots.

Dynamical systems approaches have been successful in understanding mechanisms
for decision making in biological systems such as human choice behavior in two-
alternative forced choice tasks [3], migration behavior in animal groups [17], and nest
site selection behavior [24] in honeybee swarms. Often, these decision mechanisms
are value based in the sense that the organism can be interpreted as associating a
numerical value with each available alternative and selecting the alternative with the
highest value. Decision making in biological systems tends to be embodied in the
sense that animals implement their decisions by moving their bodies in some way.
In the standard two-alternative forced choice task, an animal registers a decision by
pushing a button or by looking at a particular point on a screen. In the context of
migration or nest site selection, the animal moves its entire body to a new location.
We take navigation, interpreted broadly as the task of steering a system to a desired
goal state while avoiding obstacles, as the prototypical task for a mobile robot.

∗Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia,
PA (preverdy@seas.upenn.edu, kod@seas.upenn.edu)
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Vector field methods provide a natural way to encode the sensorimotor activ-
ity required to perform navigation tasks in dynamical systems language. When the
vector field arises as the gradient of a well-chosen function, such as a navigation func-
tion [22], the system dynamics readily admit performance guarantees, such as proofs
of convergence to the desired state while avoiding obstructions along the way. Fur-
thermore, such vector field methods naturally map to control inputs for mechanical
systems described by Lagrangian dynamics [13] and can be composed via linear com-
bination or more intricate sequential [4] and parallel [5] operations. There have been
exciting recent advances in logical approaches to dynamical task composition [14], but
they introduce hybrid (even-based) transitions and require derived logical representa-
tion of the underlying dynamics. Instead, we seek an intrinsically dynamical systems
approach to the composition and prioritization of potentially competing tasks that
interprets the coefficients of their representative fields’ linear combinations as a kind
of motivational state to be continuously adjusted in real time in a way that is flexible
and robust to perturbations.

The main result of this paper is captured in Figure 1 which summarizes a numeri-
cal study illustrating two central analytical insights stated as Theorem 1 and Theorem
2. The motivational feedback path has a gain parametrized by εv > 0 and a time scale
parametrized by ελ > 0. Numerical studies summarized by the four subsequent plots
referenced by the numbered points of the figure indicate the presence of a stable limit
cycle for a wide range of these parameter values. Analysis reveals that εv plays the
role of an ελ-dependent bifurcation parameter. Specifically, in the fast timescale limit
ελ → 0, Theorem 1 establishes the existence of a Hopf bifurcation at a critical value
of the feedback gain parameter ε∗v(0). Further numerical study confirms the value of
that formally-determined parameter, and suggests that the Hopf bifurcation persists
along a curve of critical values, ε∗v(ελ) for positive ελ.

Seeking formal confirmation of the limit cycles suggested by those simulations at
the physically interesting parameter values where ελ > 0, we next take recourse to a
singular perturbation analysis. Specifically, we consider the joint limit εv → 0, ελ →
0 and carry out a dimension reduction of the system in this limit yielding planar
dynamics exhibiting a limit cycle established by application of the Poincaré-Bendixson
theorem. Arguments from geometric singular perturbation theory together with its
conjectured (numerically corroborated) hyperbolicity then imply that this limit cycle
persists for finite εv, ελ > 0.

This work is related to prior literature on dynamical decision-making in biological
systems. Seeley et al. [24] studied nest site selection behavior in honeybee swarms and
discovered a mechanism called a stop signal, by which bees who were committed to
one nest site physically wrestled bees committed to other sites in order to get them to
abandon their commitment. Seeley et al. constructed a dynamical systems model of
this behavior and showed that the introduction of a stop signal allowed the system to
avoid the deadlock state where no clear majority emerges in favor of any given option.
We use the dynamical system from Seeley et al. [24] which models value-based nest
site selection in honeybee swarms to modulate the motivation state. We let the value
associated with each task be modulated by how far the agent is from the goal state
associated with that task. This introduces feedback into the motivation dynamics by
making the current system state influence the task values and thereby the motivation
state.

Pais et al. [20] studied Seeley et al.’s model [24] using singular perturbation theory
and showed that the stop signal also makes the model sensitive to the absolute value
of the alternatives, allowing the system to remain in deadlock if all alternatives are
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Fig. 1. In blue, we see the bifurcation value ε∗v(ελ) numerically computed for a variety of values
of ελ. Simulations run with parameter values above the line exhibit a stable deadlock equilibrium,
while values below the line exhibit oscillatory behavior. The red circles represent the values taken in
the simulations displayed in succeeding figures with the corresponding number. Corroborating these
numerical observations we establish the following formal results. In the single limit ελ → 0, Theorem
1 establishes a Hopf bifurcation at εv,0 ≈ 0.262, guaranteeing a family of stable limit cycles in a
small (one-dimensional) neighborhood of εv values (at the ελ = 0 limit) around the red star. In the
joint limit ελ, εv → 0, Theorem 2 uses a singular perturbation argument to establish the persistence
of stable limit cycles in some neighborhood of the abscissa of this plot.

equally poor. Pais et al. suggested that this sensitivity is useful to avoid prematurely
committing to a suboptimal alternative, and show that it results in hysteresis as a
function of the difference in the value of the alternatives. These convincing accounts
of the utility and potential analytical tractability of such bioinspired decision models
provide a direct point of departure for our work. Specifically, [20, 24] studied one-off
decisions where the value of each option (i.e., task) is static. In contrast, we allow the
values of the tasks to change dynamically as they are completed by feeding back the
system state, which allows the agent to determine the status of each task.

Other authors, particularly in the evolutionary dynamics literature, have studied
systems with similar types of feedback. In evolutionary dynamics [9], which seeks to
formalize Darwin’s ideas about natural selection, a set of populations each represent-
ing different strategies interact with each other and the interaction determines the
level of fitness of each strategy. Fit populations thrive and grow, while unfit popula-
tions die off. Pais, Caicedo, and Leonard [19] studied the replicator-mutator equations
from evolutionary dynamics with a particular network structure to the fitness function
and showed conditions under which the dynamics exhibit Hopf bifurcations resulting
in limit cycles. Mitchener and Nowak [18] studied evolutionary dynamics as a model
of language transmission and showed conditions under which the dynamics of distinct
grammars can exhibit limit cycles corresponding to periodic changes in the dominant
grammar. The feedback model adopted by [19] and [18] captures the evolutionary pro-
cess in which the fitness of a given strategy is determined by the relative fractions of
the population adopting that strategy. Such a model is inappropriate for our robotic
application, where the value of a task need not arise from competitive interactions
between tasks. Our Hopf analysis in Section 4 is similar to that in [19], but we go on
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to show the existence of limit cycles in a two-dimensional region in parameter space
using tools from geometric singular perturbation theory.

The remainder of the paper is structured as follows. In Section 2 we lay out the
broad class of systems under consideration before specifying the instance of the model
which we study and stating our formal results. In Section 3 we show the result of
several illustrative simulations, which suggest the existence of a Hopf bifurcation. In
Section 4 we study the system in the limit ελ → 0 and show the existence of a Hopf
bifurcation that results in stable limit cycles. In Section 5 we study the system in
the joint limit ελ → 0, εv → 0 and show the existence of a stable limit cycle in the
resulting two-dimensional reduced system; in Section 6 we show that this limit cycle
persists for finite values of εv and ελ. Finally, we conclude in Section 7.

2. Model, Problem Statement, and Formal Results. In this section we
define our system model, state the problem we address and the formal results we
obtain.

2.1. Model. Our model consists of three interconnected dynamical subsystems:
states representing the navigation tasks and associated control actions (vector fields);
the motivation state m; and the value state v. Implicit in the definition of the navi-
gation tasks is the definition of the physical agent, which comprises the agent’s body
and its workspace, or environment.

2.1.1. Body, Environment, and Motivational States. We model the robot
as a point particle located at x ∈ D, where the environment D ⊆ Rd is a domain
within Euclidean space. In general, D may be punctured by obstacles, but in this
initial work we restrict ourselves to unobstructed domains.

We represent motivation by the state m ∈ ∆N , where ∆N = {m ∈ RN+1 :

mi ≥ 0,
∑N+1
i=1 mi = 1} is the N -simplex. We index the first N elements of m by

i ∈ {1, . . . , N}: mi represents the motivation to perform task i. The last element we
label as mU : this represents undecided motivation, i.e., the decision to not perform
any task.

2.1.2. Tasks. The agent has a set of N tasks. Each task i ∈ {1, . . . , N} requires
navigating the agent to the location x∗i ∈ D. For each task i, we assume the existence
of a navigation function [22] ϕi : D → [0, 1]. The navigation function yields a gradient
field −∇ϕi such that ẋ = −∇ϕi obeys

lim
t→+∞

x(t) = x∗i .

That is, the gradient field −∇ϕi is a vector field that accomplishes task i. In the
following, where the domain is assumed to be unobstructed, we define the navigation
functions by the Euclidean distance

(1) ϕi(x) = ‖x− x∗i ‖2,

Since the gradient field ∇ϕi = (x−x∗i )/‖x−x∗i ‖ is not Lipschitz in the neighborhood
of x = x∗i , we introduce the scaled navigation vector fields

(2) fn,i(x) := − sat(ϕi(x), η)∇ϕi(x), i ∈ {1, . . . , N},

where sat is the saturation function

sat(y, η) := y/|y|η := y/
√
y2 + η2,
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where |x|η =
√
x2 + η2 is a thresholded absolute value and 1 � η > 0. For the

remainder of the paper we set η = 10−6. It is clear that the scaling leaves the
asymptotic properties of the navigation dynamics unchanged.

Finally, we define the matrix-valued function consisting of the N task navigation
vector fields plus the null gradient field associated with indecision

(3) Φ(x) =
[
fn,1(x) . . . fn,N (x) 0

]
∈ Rd×(N+1).

By taking convex combinations of these vector fields we can assign the agent weighted
combinations of the instantaneous (“greedy”) task plans they represent; the motiva-
tion state, defined below, will specify the convex combination to be taken at any given
time.

The agent’s high-level mission is to repeatedly carry out each of the N low-level
tasks, i.e., visit each of the N locations, in a specified order. In the vocabulary of
the LTL hybrid systems literature, this corresponds to a recurrent patrol or coverage
mission. We now develop the detailed model, introducing its states and dynamics,
then finally present statements of the problem we address and the formal results.

2.2. Model Dynamics. Having specified the system model and its state space,
we now define its dynamics. The system has state (x,m, v) ∈ D × ∆N × RN+ . The
state variables evolve according to the dynamics

ẋ = fx(x,m)(4)

ṁ = fm(m, v)(5)

v̇ = fv(v, x).(6)

The specific forms of the functions fx, fm, and fv are given in the following paragraphs.

2.2.1. Navigation dynamics. The body’s location dynamics are the convex
combination of the N navigation vector fields (plus the null field associated with
indecision), weighted by the motivation state:

(7) ẋ = fx(x,m) = −mTΦ(x).

For example, when m = [1, 0, · · · , 0], the navigation dynamics are ẋ = −mTΦ(x) =
− sat(ϕ1(x), η)∇ϕ1(x), and when m = [0, · · · , 0, 1], the dynamics are ẋ = 0.

2.2.2. Motivation dynamics. We take the motivation state dynamics from
Pais et al.’s work [20] studying group decision making behavior in honeybee swarms:

ṁi = ṽimU −mi (1/ṽi − ṽimU + σi(1−mi −mU )) .(8)

We set ṽi = v∗i vi, where vi ∈ [0, 1] is the normalized value of task i and v∗i > 0 is a
gain parameter that scales vi. Equation (8) holds for each i ∈ {1, . . . , N}, with the
dynamics for mU following from the constraint that defines the simplex.

The dynamics (8) were derived for group decision making in [24] from a micro-
scopic individual-level Markov process model that incorporates commitment, aban-
donment, recruitment, and stop signal mechanisms. The term ṽimU represents spon-
taneous commitment of an uncommitted individual to option i at a rate which is
proportional to the value ṽi, −mi/ṽi represents spontaneous abandonment, ṽimimU

represents recruitment of an uncommitted individual by one committed to option i,
and −σimi(1−mi −mU ) represents a signal from individuals committed to options
other than i telling individuals committed to option i to abandon their commitment.

5



In our context where m represents a single decision maker’s motivation state, each of
these mechanisms can be interpreted as modeling specific processes between neurons
in the decision maker’s brain rather than between individuals in a group.

2.2.3. Value dynamics. We define the value state dynamics as

v̇i = λi(1− vi)− λi(1− ϕi(x))(9)

= λi(ϕi(x)− vi), i ∈ {1, . . . , N},

Each vi lies in the interval [0, 1]. Recall that the navigation functions ϕi are defined
such that they tend to unity far from the goal x∗i and take the value zero at the goal.
The first term causes the value vi to drift upwards towards unity, while the second
term causes the value to decay when the goal x∗i is reached (and ϕi(x) tends to zero).
Both dynamics are exponential with time scale λi. The dynamics (9) corresponds
closely to the concept of drive reduction theory in social psychology, where motivation
is thought to arise from the desire to carry out actions that satisfy various intrinsic
drives [26, 10].

2.3. Formal Problem Statement and Analytical Results. The foregoing
presentation introduces a broad class of models whose application to specific problems
of reactive task planning and motivational control of multiple competing tasks we
intend to explore empirically on physical robots. For the analytical purposes of this
paper we find it expedient to consider a severely restricted instance from that class
entailing only two, greatly simplified tasks and affording, in turn, a low-dimensional
parametrization through imposition of various symmetries. In this section we first
introduce the details of that restricted problem class and then state the analytical
results we obtain.

2.3.1. Two Tasks, Their Essential Parameters, and New Coordinates.
We have four parameters for each task i ∈ {1, . . . , N}. Each task requires navigating
to a goal location x∗i ∈ D. In the motivation dynamics (8), there is a positive stop
signal parameter σi > 0 and value gain v∗i > 0. Finally, in the value dynamics (9),
there is a time scale λi > 0. We show that the number of parameters can be greatly
reduced and that the system’s behavior can be largely understood by varying the
value of v∗i .

For many parameter values, the system (7)–(9) exhibits a stable limit cycle in
numerical simulations. To systematically study the system, we specialize to the case of
a planar workspace D = R2 and N = 2 tasks. Then the state space of the system (7)–
(9) is R2 ×∆2 × [0, 1]2, for which we pick the coordinates ξ = (x1, x2,m1,m2, v1, v2).
Furthermore, we set the following parameter values.

We set the two goal locations to x∗1 = (l, 0) ∈ D, x∗2 = (0, l) ∈ D. This choice
is made without loss of generality, as it amounts to a translation and rotation of the
coordinates x for D. The distance between the goal locations defines a length scale
‖x∗1 − x∗2‖2 =

√
2l := c which remains a free parameter. We set the nominal value

of c to unity; again, this results in no loss of generality since it amounts to a scaling
of the coordinates. For the stop signal σi, we follow Pais et al. [20] and impose the
symmetry σ1 = σ2 = σ. Pais et al. set σ = 4, which we adopt as our nominal value.
Similarly, for ease of exposition and analysis we equate the value gain parameters
v∗1 = v∗2 = v∗ > 0 as well as the value time scale parameters λ1 = λ2 = λ > 0. With
these choices the set of system parameters is reduced to c, σ, v∗, and λ, each of which
must be positive. Fixing c and σ at their nominal values of 1 and 4, respectively, leaves
v∗ and λ as free parameters whose values determine the behavior of the system.

6



In the case N = 2 and assuming ϕi defined by (1), the equations (7)–(9) are

(10) ξ̇ = fξ(ξ),

where the components of fξ are given by

ẋ = −m1 sat(ϕ1(x), η)
x− x∗1
‖x− x∗1‖2

−m2 sat(ϕ2(x), η)
x− x∗2
‖x− x∗2‖2

ṁ1 = (v∗v1)mU −m1(1/(v∗v1)− (v∗v1)mU + σm2)

ṁ2 = (v∗v2)mU −m2(1/(v∗v2)− (v∗v2)mU + σm1)

v̇1 = λ(ϕ1(x)− v1)

v̇2 = λ(ϕ2(x)− v2).

Let e1 = x∗1−x∗2 and let e2 ∈ R2 be orthogonal to e1. Then P = {x ∈ R2|x = x∗1 +
αe1, α ∈ R} is the line in R2 that passes through the points x∗1, x

∗
2 ∈ R2. Equivalently,

P can be expressed as the level set fp(x) = 0, where fp(x) := eT2 (x− x∗1). For x ∈ P ,
we have eT2 (x− x∗2) = eT2 (x− x∗2 + (x∗1 − x∗1)) = eT2 (x− x∗1 + e1) = fp(x) + eT2 e1 = 0.
The set P is positively invariant, since for x ∈ P , we have

ḟp = eT2 (ẋ) = eT2 (−m1(x− x∗1)/|ϕ1(x)|η −m2(x− x∗2)/|ϕ2(x)|η)

= −eT2 (x− x∗1)m1/|ϕ1(x)|η − eT2 (x− x∗2)m2/|ϕ2(x)|η = 0.

Therefore, x cannot cross the line P , which divides the plane, and x is constrained
to remain in the half of the plane where it was initially. We denote this closed half
plane by H0 ⊂ R2. The navigation functions (ϕ1(x), ϕ2(x)) are coordinates for the
plane. The transformation H0 → R2

+ defined by x 7→ (ϕ1, ϕ2) is a bijection and it
is easily verified that it is a diffeomorphism. Therefore, without loss of generality
we can restrict the dynamics to the space H0 × ∆2 × [0, 1]2 with the coordinates
ζ = (ϕ1, ϕ2,m1,m2, v1, v2).

We make one further change of coordinates by transforming into mean and dif-
ference coordinates defined by

∆ϕ = ϕ1 − ϕ2, ϕ̄ =
ϕ1 + ϕ2

2

and likewise for ∆m, m̄,∆v, and v̄. Define the coordinates

(11) z = (∆ϕ, ϕ̄,∆m, m̄,∆v, v̄)

on the space [−1, 1]×R+×∆2× [0, 1]2 and parameters εv = 1/v∗ and ελ = 1/λ. It is
easy to see that the transformation from ζ to z is a diffeomorphism. (In fact (∆ϕ, ϕ̄)
are elliptic coordinates for H0 that are related to the standard elliptic coordinates
(σ, τ) [25] by ϕ̄ = σ,∆ϕ = cτ .) In the mean-difference coordinates, the dynamics (10)
are

(12) ż = fz(z),

where the components of fz are given by

∆̇ϕ = f∆ϕ(z) =
∆ϕ2 − 1

(4ϕ̄2 −∆ϕ2)2
(13)

×
(

(2m̄+ ∆m)(2ϕ̄+ ∆ϕ)2 sat (2ϕ̄+ ∆ϕ, 2η)

− (2m̄−∆m)(2ϕ̄−∆ϕ)2 sat (2ϕ̄−∆ϕ, 2η)

)
,

7



˙̄ϕ = fϕ̄(z) =− 1

2

4ϕ̄2 − 1

(4ϕ̄2 −∆ϕ2)2
(14)

×
(

(2m̄+ ∆m)(2ϕ̄+ ∆ϕ)2 sat (2ϕ̄−∆ϕ, 2η)

+ (2m̄−∆m)(2ϕ̄−∆ϕ)2 sat (2ϕ̄+ ∆ϕ, 2η)

)
,

˙∆m = f∆m(z) = −εv
(

2m̄+ ∆m

2v̄ + ∆v
− 2m̄−∆m

2v̄ −∆v

)
(15)

+ v̄∆m(1− 2m̄)/εv + ∆v(1− 2m̄)(1 + m̄)/εv,

˙̄m = fm̄(z) =
1

2

(
−εv

2m̄+ ∆m

2v̄ + ∆v
− εv

2m̄−∆m

2v̄ −∆v
(16)

+
2v̄ + ∆v

2εv
(1− 2m̄)(1 +

2m̄+ ∆m

2
)

+
2v̄ −∆v

2εv
(1− 2m̄)(1 +

2m̄−∆m

2
)

− σ

2
(2m̄+ ∆m)(2m̄−∆m)

)
,

(17) ελ∆̇v = f∆v(z) = −(∆v −∆ϕ),

(18) ελ ˙̄v = fv̄(z) = −(v̄ − ϕ̄).

2.3.2. Formal Results. In this section we state the two theorems which con-
stitute the formal results of the paper. As can be seen in the simulations presented in
Section 3, the dynamics (12) appear to exhibit a Hopf bifurcation as the parameters
εv and ελ approach zero, giving birth to stable limit cycles. We formalize this obser-
vation in two steps. First we consider the limit ελ → 0 which reduces the dimension
of the system (12) and permits an explicit computation showing the existence of a
Hopf bifurcation.

In the limit ελ → 0, the v dynamics are directly coupled to the ϕ dynamics, so
∆v = ∆ϕ and v̄ = ϕ̄, which are fixed points of Equations (17) and (18), respectively.
Define zr = (∆ϕ, ϕ̄,∆m, m̄) as the vector of the remaining state variables. Explicitly,
z and zr are related by the linear embedding z = h(zr) with left inverse given by the
linear projection h†, where

h(zr,1, zr,2, zr,3, zr,4) := (zr,1, zr,2, zr,3, zr,4, zr,1, zr,2); h†(z) := (z1, z2, z3, z4)

Then the dynamics (12) reduce to the restriction dynamics

(19) żr = fr(zr, εv) := Dh† · fz ◦ h(zr),

The restriction dynamics exhibit a Hopf bifurcation, as summarized in the following
theorem:

8



Theorem 1. Set σ = 4. The system żr = fr(zr, εv) defined by (19) has a deadlock
equilibrium zrd given by (22). For sufficiently small η > 0, the dynamics undergo a
Hopf bifurcation resulting in stable periodic solutions at (zrd, εv,0(η)), where η � 1 is
the saturation constant. In the limit η → 0, εv,0(0) ≈ 0.262 is the smaller of the two
real-valued solutions of (1− 4ε2v)

2 − 2εv = 0.

As we are ultimately motivated by the physically meaningful case of small but
non-zero values of εv and ελ, we study the singular perturbation limit εv, ελ → 0 under
which the system (12) can be reduced to a planar dynamical system and show the
existence of a limit cycle. We then employ tools from geometric singular perturbation
theory to show the persistence of this limit cycle for sufficiently small, but finite,
values of εv and ελ:

Theorem 2. Accepting Conjecture 21, below, for σ = 4, there exists a stable limit
cycle of (12) for sufficiently small, but finite, values of ελ and εv. Equivalently, fixing
λ, there exists a stable limit cycle of (12) for sufficiently large, but finite, values of
v∗.

3. Illustrative Simulations. Figure 1 summarizes the behavior of the system
(12) as a function of the two parameters εv and ελ. For large values of both param-
eters, the system exhibits a stable deadlock equilibrium, while for sufficiently small
values of both parameters the system exhibits a stable limit cycle composed of a
slow segment followed by a fast jump, which is characteristic of relaxation oscillations
[2, 7]. Section 4 studies the system in the limit ελ → 0 and analytically shows the ex-
istence of a Hopf bifurcation at εv = εv,0 ≈ 0.262. The blue line in Figure 1 shows the
numerically-computed bifurcation value ε∗v(ελ) for ελ > 0. The numerically-computed
limit limελ→0 ε

∗
v(ελ) corresponds well to the analytical value εv,0.

Figures 2–5 show simulations of the system (12) for four representative values of
the parameters εv, ελ. We set σ = 4. In ξ coordinates, the initial conditions were
x = 0,m1 = 0,m2 = 1/2, v1 = v2 = 0.1. In the mean-difference coordinates z this
corresponds to ∆ϕ = 0, ϕ̄ =

√
2/2,∆m = −1/2, m̄ = 1/4,∆v = 0, and v̄ = 0.1.

This choice of initial conditions was made to avoid the deadlock equilibrium but was
otherwise generic.

Figure 2 suggests that for large values of εv, ελ there is a stable deadlock equi-
librium in the system where no oscillations are present. Analyzing the dynamics, we
see that this equilibrium corresponds to the state zd = (∆ϕd, ϕ̄d,∆md, m̄d,∆vd, v̄d),
where ϕ̄d = 1/2, v̄d = ϕ̄d = 1/2,∆ϕd = ∆md = ∆vd = 0, and m̄d solves the following
quadratic equation:

(20) − 2(1 + σεv)m̄
2
d − (4ε2v + 1)m̄d + 1 = 0,

which has the solution m̄d(εv) given by

−(4ε2v + 1) +
√

(4ε2v + 1)2 + 8(1 + σεv)

4(1 + σεv)
(21)

=
−(4ε2v + 1) +

√
16ε4v + 8ε2v + 8σεv + 9

4(1 + σεv)
,

which is clearly positive, as σ and εv are both positive, which implies that the second
term under the radical in (21) is positive. Figures 2–5 suggest that the system under-
goes a Hopf bifurcation as the parameters εv and ελ are decreased. In the following
sections we carry out a series of analyses to characterize the bifurcation and study
the resulting limit cycle.
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Fig. 2. Large values of both scales, represented by εv = 1.5, ελ = 0.75. The system converges
to a stable deadlock equilibrium and no oscillations are present.
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Fig. 3. Parameter values εv = 0.8, ελ = 0.4 that are near the Hopf bifurcation but still in
the stable fixed point regime. The system displays damped oscillatory behavior that appears nearly
linear, as to be expected near a Hopf bifurcation.

4. Hopf analysis in the limit ελ → 0. Motivated by the numerical evidence
of a Hopf bifurcation occurring at the deadlock equilibrium, we consider the system
(12) in the limit ελ → 0 and analytically show the existence of a Hopf bifurcation in
this limiting case as εv is lowered through a critical value εv,0. We then numerically
consider the case of finite ελ and compute the bifurcation value ε∗v(ελ) for a range
of values of ελ; the numerically-computed limit limελ→0 ε

∗
v(ελ) matches the analytical

result εv,0, as shown in Figure 1.
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Fig. 4. Parameter values εv = 0.5, ελ = 0.25 that are near the Hopf bifurcation in the sta-
ble limit cycle regime. The system settles down to roughly “harmonic” oscillatory behavior whose
(nearly) linear appearance is consistent with its proximity to the Hopf bifurcation.
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Fig. 5. Both parameters εv, and ελ taken to be small, represented by εv = 10−3, ελ = 10−6. The
system displays oscillatory behavior that is suggestive of a relaxation oscillation. The ϕ variables
are tightly coupled to the v variables due to the small value of ελ in Equations (17) and (18). The
difference variables ∆ϕ,∆v undergo oscillations with sharp transitions, while ∆m oscillates in a
nonlinear manner. Also note that the mean variables ϕ̄, m̄, and v̄ appear to stably converge to
a value of 0.5: this, combined with the coupling between ∆ϕ and ∆v, strongly suggests that the
dynamics can be reduced to a two-dimensional system.

4.1. Dynamics in the limit ελ → 0. The limit dynamics (19) inherits the
deadlock equilibrium zrd := h†(zd) from the full dynamics (12), where

(22) zrd := h†(zd) = (∆ϕrd, ϕ̄rd,∆mrd, m̄rd),

ϕ̄rd = 1/2,∆ϕrd = ∆mrd = 0, and m̄rd again solves Equation (20).
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In Figure 6 we show the numerically-computed bifurcation diagram for the system
(19) with bifurcation parameter εv. For large values of εv, the deadlock equilibrium
is stable. As εv is lowered below the critical value εv,0, the system undergoes a Hopf
bifurcation that results in a limit cycle. In Figure 6, we plot the amplitude of the
oscillations of ∆ϕ for the limit cycle. As can be seen from Equation (11), ∆ϕ is
constrained to take values in [−1, 1], so the limit cycle’s amplitude is bounded above
by 1.

0.0 0.2 0.4 0.6 0.8 1.0

²v

−1.0

−0.5

0.0

0.5

1.0

j¢
'
j

Fig. 6. The numerically-computed bifurcation diagram for the system (19) with ελ → 0 and
bifurcation parameter εv. The amplitude of the limit cycle is computed as the amplitude of the
amplitude of the oscillations in ∆ϕ. We clearly see a supercritical Hopf bifurcation, with bifurcation
value εv,0. The free parameters were set to c = 1, σ = 4.

4.2. Analysis of the ελ → 0 dynamics. Inspired by the bifurcation diagram,
we now seek to show the existence of the Hopf bifurcation suggested by Figure 6. The
following theorem from [8] summarizes the conditions under which a system undergoes
Hopf bifurcation.

Theorem 3 (Hopf bifurcation, [8, Theorem 3.4.2]). Suppose that the system
ż = f(z, µ), z ∈ Rn, µ ∈ R, has an equilibrium (z0, µ0) and the following properties
are satisfied:

1. The Jacobian Dzf |(z0,µ0) has a simple pair of pure imaginary eigenvalues

λ(µ0) and λ̄(µ0) and no other eigenvalues with zero real parts,
2. d(Re λ(µ))/dµ|µ=µ0

= d 6= 0.
Property 1) implies that there is a smooth curve of equilibria (z(µ), µ) with z(µ0) = z0.
The eigenvalues λ(µ), λ̄(µ) of Dzf |(z(µ0),µ0) which are imaginary at µ = µ0 vary
smoothly with µ.

If Property 2) is satisfied, then there is a unique three-dimensional center manifold
passing through (z0, µ0) in Rn×R and a smooth system of coordinates (preserving the
planes µ=const.) for which the Taylor expansion of degree 3 on the center manifold is
given by [8, (3.4.8)]. If `1|(z0,µ0) 6= 0, there is a surface of periodic solutions in the cen-

ter manifold which has quadratic tangency with the eigenspace of λ(µ0), λ̄(µ0) agreeing
to second order with the parabaloid µ = −(`1|(z0,µ0) /d)(x2 + y2). If `1|(z0,µ0) < 0,

then these periodic solutions are stable limit cycles, while if `1|(z0,µ0) > 0, the periodic
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Fig. 7. The numerically-computed bifurcation diagram for the system (19) with ελ → 0 and
bifurcation parameter εv. The x-axis is the bifurcation parameter εv, while the y and z-axes are
∆m and ∆ϕ, respectively. As the bifurcation parameter is lowered below εv,0, the deadlock equilib-
rium becomes unstable and gives birth to a limit cycle which approaches the boundary of the space
(∆m,∆ϕ) ∈ [−1, 1]2 as εv → 0. The free parameters were set to c = 1, σ = 4.

solutions are repelling.

The formulae for `1|(z0,µ0), the first Lyapunov coefficient, are given in Appendix A.

Remark 4. In the statement of Theorem 3 we used µ as the bifurcation parameter
for consistency with the notation of [8]. In the analysis in this paper, εv plays the role
of bifurcation parameter.

The Hopf bifurcation theorem applies to our system, as summarized in Theorem
1 stated in Section 2.3.2 and repeated below.

Theorem 1. The system żr = fr(zr, εv) defined by (19) has a deadlock equilib-
rium zrd given by (22). For sufficiently small η > 0, the dynamics undergo a Hopf
bifurcation resulting in stable periodic solutions at (zrd, εv,0(η)), where η � 1 is the
saturation constant. In the limit η → 0, εv,0(0) ≈ 0.262 is the smaller of the two
real-valued solutions of (1− 4ε2v)

2 − 2εv = 0.

Proof of Theorem 1. Let εv,0 ≈ 0.262 be the smaller of the two real-valued solu-
tions of (1− 4ε2v)

2− 2εv = 0. By Lemma 5, in the limit η → 0, the Jacobian J0 of the
system żr = f(zr, εv) evaluated at the deadlock equilibrium zrd(εv) has a simple pair
of pure imaginary eigenvalues when εv = εv,0 that are shown to persist for sufficiently
small η > 0 as well. Therefore, the first condition of the Hopf bifurcation theorem is
satisfied for all sufficiently small 0 < η � 1.

Lemma 6 establishes that d(Re λ(εv))/dεv|εv,0 6= 0 for sufficiently small η so the
second condition of the Hopf bifurcation theorem is satisfied for 0 < η � 1. The
result then follows: the system (19) undergoes a Hopf bifurcation as the parameter
εv is lowered through its critical value εv,0(η).

The first Lyapunov coefficient `1|(zrd,εv,0) is negative, as summarized by Lemma
7. This implies that the resulting limit cycles are stable.
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The following two lemmas, corresponding to the two properties required by The-
orem 3, contain the detailed arguments behind the proof of Theorem 1.

Lemma 5. Let J0 := Dzrfr(zrd, εv) be the Jacobian of the system żr = fr(zr, εv)
defined by (19) evaluated at the deadlock equilibrium zrd given by (22), considered as
a function of εv. Then, for sufficiently small η > 0, J0 has a simple pair of two pure
imaginary eigenvalues λ(εv) and λ̄(εv) when εv = εv,0(η). In the limit η → 0, εv,0(0)
is the smaller of the two real-valued solutions of (1− 4ε2v)

2 − 2εv = 0.

Proof. The characteristic polynomial of J0 is computed in (45) in Appendix B.1
and can be expressed as

p4(λ) = |J0 − λI| = (λ− j22)(λ− j44)p2(λ),

where the final factor is given by coefficients arising directly from specific entries of
the (sparse) Jacobian as

p2(λ) = λ2 − (j11 + j33)λ+ j11j33 − j13j31

and the components jkl of the Jacobian are as given in Equations (38)–(44) of Ap-
pendix B.1.

The roots of p4 are given by

{j22 = −8m̄rd/
√

1 + 4η2, j44 = −2(εv + 4m̄rd)− (1 + 4m̄rd)/(2εv)} ∪ {λ|p2(λ) = 0}.

It is clear that the first two roots are negative for all εv > 0, so the stability properties
of the deadlock equilibrium are determined by the roots of p2.

The roots λ± of p2 are purely imaginary if j11+j33 = 0. The condition j11+j33 = 0
implies

(23) m̄rd =
1− 4ε2v

2 + 32η2εv/(1 + η2)3/2
.

Inserting this expression into the expression (20) for m̄d(εv), one finds that j11+j33 = 0
implies that

2

(16η2εv + (1 + η2)3/2)2

(
8ε2v(1 + η2)3 + 2εv(1 + 3η2 + 67η4 + η6)(24)

− (1 + η2)(1 + η4 + η2(2− 12
√

1 + η2))

− 16ε4v(1 + η2)(1 + η4 + η2(2− 4
√

1 + η2))

)
= 0.

Discarding the leading term, which is positive for all η ≥ 0, (24) can be written as

g1(εv, η) = 0.

In the limit η → 0, (24) reduces to

(25) g1(εv, 0) = (1− 4ε2v)
2 − 2εv = 0.

This equation has two real-valued solutions, of which only the smaller one, εv = εv,0 ≈
0.262, also solves j33 = 0. Therefore the smaller solution is the relevant one defining
the bifurcation value.

The derivative ∂g1/∂εv(εv,0, 0) = −64ε3v,0 + 16εv,0 + 2 ≈ 5.04 > 0, so the im-
plicit function theorem implies that there exists a continuously differentiable family
of solutions εv,0(η) of g1(εv, η) = 0 such that εv,0(0) = εv,0 ≈ 0.262.
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Lemma 6. Let λ(εv) and λ̄(εv) be the simple pair of pure imaginary eigenval-
ues and let εv,0(η) be as defined in Lemma 5. Then, for sufficiently small η > 0,
d(Re λ(εv))/dεv|εv,0(η) < 0.

Proof. Let εv,0 and p2(λ) = λ2− (j11 + j33)λ+ j11j33− j13j31 be defined as in the
proof of Lemma 5, where jkl are defined in Appendix B.1. Let ∆p = (j11 + j33)2 −
4(j11j33 − j13j31) be the discriminant of p2 with respect to λ.

At the bifurcation value εv,0, j11 + j33 = 0, so the discriminant ∆p = −4(j11j33−
j13j31), which is negative, as can be shown by substituting in the expressions for jkl
and grouping terms. This implies that the real part of the roots λ± are given by
(j11 + j33)/2. Therefore, since the coefficients of p2 are continuous functions of εv, the
sign of the derivative d(Re λ(εv))/dεv|εv=εv,0 is given by that of (j′11 + j′33)(εv,0) :=
d(j11 + j33)/dεv|εv=εv,0 . Computing the derivative, we get

(j′11 + j′33)|εv=εv,0
= g2(εv, η) := − 16η2m̄′rd

(1 + 4η2)3/2
− 2− 1− 2m̄rd

2ε2v
− m̄′rd

εv

∣∣∣∣
εv=εv,0

= −2− 2(1 + η2)3/2 + 8η2/εv
(1 + η2)3/2 + 16εvη2

− m̄′rd
(

16η2

(1 + 4η2)3/2
+

1

εv

)∣∣∣∣
εv=εv,0

,

where m̄′rd represents the derivative with respect to εv of the solution (21) and we
have used the value of m̄rd from (23) that holds at the bifurcation value.

The series expansion of g2(εv, η) in the neighborhood of (εv, η) = (εv,0, 0) is

g2(εv, η) = −4− m̄′rd
εv

+
∂g2(εv,0, 0)

∂εv
(εv − εv,0) +O

(
ε2v, η

2
)
,

where ∂g2(εv,0, 0)/∂εv = (1 − 2m̄rd)/ε
3
v,0 + 2m̄′rd/ε

2
v,0 + m̄′′rd/εv,0 and O

(
ε2v, η

2
)

rep-
resents second order and higher terms in εv and η. By the argument at the end of
the proof of Lemma 5, εv,0(η) is a continuously-differentiable function of η such that
εv,0(0) = εv,0. It is clear that g2 is analytic for all εv, η > 0, so for small η > 0, the
sign of g2(εv, η) is dominated by the sign of the constant (in η) term −4− m̄′rd/εv and
we proceed by studying it.

Consider Equation (21) defining m̄rd(εv) and define ∆ = (1+4ε2v)
2 +8(1+4εv) as

the discriminant of (20) which appears under the radical in (21). Direct computation
shows that

m̄′rd =
−20− 56εv + 32ε3v + 64ε4v

4
√

∆(1 + 4εv)2
+

√
∆(4− 8εv − 16ε2v)

4
√

∆(1 + 4εv)2

so that j′33(εv) = −4− m̄′rd/εv is equal to

(26)
1

εv
√

∆ (1 + 4εv)
2

(
n1(εv)−

√
∆n2(εv)

)
,

where n1 and n2 are the polynomials

n1(χ) := 5 + 14χ− 8χ3 − 16χ4; n2(χ) := 1 + 2χ+ 28χ2 + 64χ3.

The denominator is strictly positive, so it suffices to check the numerator of (26).
The following argument shows that the numerator is negative, i.e., n1(εv,0) −√

∆(εv,0)n2(εv,0) < 0. This holds if

n1(εv,0) <
√

∆(εv,0)n2(εv,0).
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It is clear that
√

∆(εv,0) > 4 and that n2(εv,0) > 0, so it suffices to show that

n1(εv,0) < 4n2(εv,0),

which is equivalent to (using the relation (1− 4ε2v,0)2− 2εv,0 = 0 from (25) that holds
at the bifurcation point)

6 + 12εv,0 − 8ε2v,0 − 8ε3v,0 < 4(1 + 2εv,0 + 28ε2v,0 + 64ε3v,0)

which holds if

2 + 4εv,0 − 120ε2v,0 − 264ε3v,0 = 2(1 + 2εv,0 − 60ε2v,0 − 132ε3v,0) < 0.

This last inequality clearly holds at the bifurcation value εv,0 ≈ 0.262 since εv,0 > 0.2
implies that 1 + 2εv,0 − 60ε2v,0 < 0.

Thus, the numerator of (26) is strictly negative and therefore g2(εv,0, 0) 6= 0. By
the series expansion argument, this also holds in a neighborhood of η = 0. This
implies that the derivative d(Re λ(εv))/dεv|εv=εv,0 6= 0 for sufficiently small η > 0.

Lemma 7. Let `1 = `1|(z0,ε0) be the first Lyapunov coefficient of the dynamics

(19) evaluated at the deadlock equilibrium zrd given by (22). Then `1|(z0,ε0) < 0.

Proof. See Appendix B.2.

Theorem 1 then follows as a consequence of Lemmas 5, 6, and 7.
The implication of Theorem 1 is that the system (19) resulting from the limit ελ →

0 has a Hopf bifurcation at ε∗v(0) = εv,0 ≈ 0.262. However, as can be seen in Figure 4,
limit cycle behavior persists for finite ελ. One can numerically compute the eigenvalues
of the linearization of the system (12) evaluated at the deadlock equilibrium zd and
numerically show that a Hopf bifurcation occurs at a value ε∗v(ελ). Figure 1 shows the
numerically-computed values of ε∗v(ελ) for a range of values of ελ. It is clear that the
numerical value for the limit limελ→0 ε

∗
v(ελ) coincides with the analytical value εv,0.

5. Reduction to a planar limit cycle in the joint limit ελ, εv → 0. The
results from Section 4 strongly suggest the existence of a stable limit cycle for finite
εv, ελ. In this and the following section we make this conclusion rigorous by performing
a series of reductions collapsing the dynamics (12) to a planar system in the joint
limit ελ → 0, εv → 0. A Poincaré-Bendixson argument affords the conclusion that
the planar system exhibits a stable limit cycle. Then, in the next section, we show
that this limit cycle persists for small but finite ε by applying results from geometric
singular perturbation theory.

5.1. A four dimensional attracting invariant submanifold. In our first re-
duction, we note that ϕ̄ and v̄ must asymptotically converge to c/2 independent of the
other states’ behavior. This observation reveals an attracting invariant submanifold
of dimension four whose restriction dynamics we then study.

We begin by considering the dynamics of ϕ̄ independently of the other five dynam-
ical variables, which gives us a nonautonomous system ˙̄ϕ = fϕ̄(t, ϕ̄). The following
results from [16] concern the asymptotic behavior of a nonautonomous system

(27) ẋ = f(t, x)

defined on G ⊆ Rn. Let G∗ be an open set of Rn containing Ḡ, the closure of G. We
assume that f : [0,∞)×G∗ → Rn is a continuous (nonautonomous) vector field.
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Definition 8. Let V : [0,∞) ×G∗ → R be a continuous, locally Lipschitz func-
tion. The function V is said to be a Lyapunov function of (27) on G if

i. given x in Ḡ there is a neighborhood N of x such that V (t, x) is bounded from
below for all t ≥ 0 and all x in N ∩G.

ii. V̇ (t, x) ≤ −W (x) ≤ 0 for all t ≥ 0 and all x in G, where W is continuous
on Ḡ. For t where V (t, x(t)) is not differentiable, V̇ is defined using the
right-hand limit.

If V is a Lyapunov function for (27) on G, we define

E = {x;W (x) = 0, x ∈ Ḡ} and E∞ = E ∪ {∞}.

Definition 9 ([23, Section 6.4]). A real-valued function f on a closed, bounded
interval [a, b] is said to be absolutely continuous on [a, b] provided for each ε > 0, there
is a δ > 0 such that for every finite disjoint collection {(ak, bk)}nk=1 of open intervals
in (a, b),

if

n∑
k=1

[bk − ak] < δ, then

n∑
k=1

|f(bk)− f(ak)| < ε.

Lipschitz continuity implies absolute continuity, as follows:

Proposition 10 ([23, Section 6.4, Proposition 7]). If the function f is Lipschitz
on a closed, bounded interval [a, b], then it is absolutely continuous on [a, b].

Theorem 11 ([16, Theorem 1]). Let V be a Lyapunov function for (27) on G,
and let x(t) be a solution of (27) that remains in G for t ≥ t0 ≥ 0 with [t0, ω) the
maximal future interval of definition of x(t).

a. If for each p ∈ Ḡ there is a neighborhood N of p such that |f(t, x)| is bounded
for all t ≥ 0 and all x in N ∩G, then either x(t)→∞ as t→ ω−, or ω =∞
and x(t)→ E∞ as t→∞.

b. If W (x(t)) is absolutely continuous and its derivative is bounded from above
(or from below) almost everywhere on [t0, ω) and if ω =∞, then x(t)→ E∞
as t→∞.

The following lemma shows that convergence of ϕ̄ implies convergence of v̄.

Lemma 12. If, for the dynamical system (12), ϕ̄(t)→ 1/2 as t→∞, then v̄(t)→
1/2.

Proof. Let x1 = v̄−1/2 and u1 = ϕ̄−1/2. Then the dynamics (18) can be written
as ẋ1 = −λ(x1−u1). It is easily shown that this system is input-to-state stable (ISS)
with u1 as its input. It is a well known result [12, Exercise 4.58] that if the input
to an ISS system converges to zero as t → ∞, then its state converges to zero also.
Therefore, ϕ̄(t)→ 1/2 as t→∞ implies v̄(t)→ 1/2 as t→∞.

We now show that ϕ̄ converges which, by the preceding lemma, implies the con-
vergence of v̄. For clarity of exposition, we write the argument as a series of lemmas.

Lemma 13. Let ε > 0 and M = H0×∆2× [0, 1]2, and let the set G be defined by

G := {z ∈M|v̄ ≥ 1/2, m̄ > ε}.

The set G is positive invariant under the dynamics ż = fz(z) defined by (12).

Proof. Let z = (∆ϕ, ϕ̄,∆m, m̄,∆v, v̄) be coordinates for M = H0 ×∆2 × [0, 1]2

and consider the dynamics ż = fz(z) defined by (12).

17



Recall that ϕ1(x) = ‖x − x∗1‖, ϕ2(x) = ‖x − x∗2‖. Writing (x − x∗1) + (x∗2 − x) =
x∗2 − x∗1, the triangle inequality implies that 1 = ‖x∗2 − x∗1‖ ≤ ‖x− x∗1‖+ ‖x∗2 − x‖ =
ϕ1(x) + ϕ2(x). Therefore ϕ̄ = (ϕ1(x) + ϕ2(x))/2 ≥ 1/2.

Furthermore, recall from (18) that ˙̄v = −λ(v̄−ϕ̄), so ˙̄v(v̄ = 1/2) = −λ(1/2−ϕ̄) ≥
0 by the lower bound on ϕ̄. Therefore the set {z ∈M|v̄ ≥ 1/2} is positive invariant.

Similarly, note that m̄ ≥ 0 by definition and that −2m̄ ≤ ∆m ≤ 2m̄, so m̄ = 0
implies that ∆m = 0. Therefore, from (16), ˙̄m(m̄ = 0) = v̄/εv, so v̄ ≥ 1/2 implies
that ˙̄m(m̄ = 0) ≥ c/2εv and therefore that m̄ > 0. Therefore, the continuity of the
˙̄m dynamics implies that for v̄ > 1/2, there exists an ε > 0 such that m̄ < ε implies

that ˙̄m(m̄) > 0. This implies that G is a positive-invariant set.

Lemma 14. Let ˙̄ϕ be defined by (14), which can be written as

(28) ˙̄ϕ = fϕ̄(t, ϕ̄) = −α(t)(ϕ̄2 − (1/2)2),

where the leading coefficient is

(29) α(t) :=
n(t)

d(t)
=
m1ϕ1|ϕ1|η +m2ϕ2|ϕ2|η

ϕ1ϕ2|ϕ1|η|ϕ2|η
.

Then α(t) ≥ 0 and ϕ̄(t) ≤ ϕ̄(0) for any t > 0.

Proof. Write the dynamics (14) in the form (28). We proceed by showing that
n(t) and d(t) in the definition of α(t) are non-negative.

Note that m1, m2, ϕ1, and ϕ2 are all non-negative by definition. Now, consider
n(t) = m1ϕ1|ϕ1|η +m2ϕ2|ϕ2|η. Each term is non-negative by definition, so n(t) ≥ 0.
Similarly, d(t) = ϕ1ϕ2|ϕ1|η|ϕ2|η ≥ 0 since it is the product of non-negative terms.

Therefore, α(t) ≥ 0, since it is the ratio of two non-negative numbers. The
quantity (ϕ̄2−(1/2)2) ≥ 0 since ϕ̄ ≥ 1/2. Thus, ˙̄ϕ ≤ 0, which implies that ϕ̄(t) ≤ ϕ̄(0)
for any t > 0.

Lemma 15. On G, the following lower bound holds:

α(t) >
2ηε

ϕ̄(0)(4ϕ̄(0)2 + η2)
> 0,

where α(t) is defined in (29).

Proof. Recall from the proof of Lemma 14 that α(t) = n(t)/d(t). We proceed by
developing a lower bound on n(t) and an upper bound on d(t).

Note that the fact that mi > 0 for i = 1, 2 and the definitions of m̄ and ∆m
imply that −2m̄ ≤ ∆m ≤ 2m̄. Consider n(t) and recall that |ϕi|η ≥ η for i = 1, 2.
The following series of inequalities holds

n(t) ≥ m1ϕ1η +m2ϕ2η

=
η

2
((m1 +m2)(ϕ1 + ϕ2) + (m1 −m2)(ϕ1 − ϕ2)) =

η

2
(4m̄ϕ̄+ ∆m∆ϕ)

≥ 2ηm̄(2ϕ̄−∆ϕ) ≥ 2ηε(2ϕ̄−∆ϕ) =: n(t),

where the second inequality follows from the fact that ∆m ≥ −2m̄ and the third from
the fact that m̄ > ε on G.

Now we turn to d(t). Note that ϕ1, ϕ2 ≥ 0 implies that ϕ1(t), ϕ2(t) ≤ 2ϕ̄(t) ≤
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2ϕ̄(0). Then the following series of inequalities holds

d(t) ≤ ϕ1ϕ2|2ϕ̄(0)|2η = ϕ1ϕ2

√
4ϕ̄(0)2 + η2

√
4ϕ̄(0)2 + η2

≤ (2ϕ̄(0))
2ϕ̄−∆ϕ

2
(4ϕ̄(0)2 + η2)

= ϕ̄(0)(2ϕ̄−∆ϕ)(4ϕ̄(0)2 + η2) =: d̄(t).

A lower bound on α(t) can then be stated as

α(t) >
n(t)

d̄(t)
=

2ηε(2ϕ̄−∆ϕ)

ϕ̄(0)(2ϕ̄−∆ϕ)(4ϕ̄(0)2 + η2)
=

2ηε

ϕ̄(0)(4ϕ̄(0)2 + η2)
,

which is clearly positive.

Let W (ϕ̄) = ηε(ϕ̄− 1/2)2/(ϕ̄(0)(4ϕ̄(0)2 + η2)). Then the following holds.

Lemma 16. The function V = 1
2 (ϕ̄−1/2)2 is a Lyapunov function of ˙̄ϕ = fϕ̄(t, ϕ̄)

obeying V̇ ≤ −W (ϕ̄). The function W (ϕ̄) takes its unique zero at ϕ̄ = 1/2.

Proof. Let V (ϕ̄, t) = 1
2 (ϕ̄− (1/2))2. Note that V ≥ 0, so it satisfies condition i of

Definition 8. Computing V̇ , we find

V̇ = ∂V/∂ϕ̄ ˙̄ϕ = −α(t)(ϕ̄2 − (1/2)2)(ϕ̄− (1/2))

= −α(t)(ϕ̄− 1/2)2(ϕ̄+ 1/2)

≤ −2ηε(ϕ̄− 1/2)2(ϕ̄+ 1/2)/(ϕ̄(0)(4ϕ̄(0)2 + η2))

≤ −2ηε(ϕ̄− 1/2)2/(ϕ̄(0)(4ϕ̄(0)2 + η2)) =: −W (ϕ̄),

where the first inequality derives from Lemma 15 and the second from the bound
ϕ̄ ≥ 1/2. Therefore condition ii of Definition 8 is satisfied and V is a Lyapunov
function for fϕ̄.

It is clear that W (ϕ̄) ≥ 0, with equality only if ϕ̄ = 1/2.

Lemma 17. The function W (ϕ̄(t)) is absolutely continuous in t.

Proof. Proposition 10 shows that Lipschitz continuity implies absolute continu-
ity. It is well known that a function is Lipschitz continuous if it has bounded first
derivative, so we proceed by bounding the derivative dW (ϕ̄(t))/dt. We require the
following bounds on parts of the derivative.

Define s± = |2ϕ̄ ±∆ϕ|2η and rewrite α(t) as ñ(t)/d̃(t), where the factors ñ and

d̃ are defined as ñ(t) = 2 ((2m̄+ ∆m)(2ϕ̄+ ∆ϕ)s+ + (2m̄−∆m)(2ϕ̄−∆ϕ)s−) and
d̃(t)=(4ϕ̄2 −∆ϕ2)s+s−. Finally, rewrite d(t) as d̃(t) = ((4ϕ̄2 −∆ϕ2)/4)|ϕ1|η|ϕ2|η.

Consider the quantity (4ϕ̄2 − 1)/(4ϕ̄2 − ∆ϕ2) and recall that ϕ̄ ≥ 1/2. Two
applications of the triangle inequality similar to the one in the proof of Lemma 13
show that −1 ≤ ∆ϕ ≤ 1, which implies that ∆ϕ2 ≤ 1. Taken together, these facts
imply that

(30) 0 ≤ 4ϕ̄2 − 1

4ϕ̄2 −∆ϕ2
≤ 1.

Furthermore, recall from the proof of Lemma 15 that ϕi ≤ 2ϕ̄(0) and that |ϕi|η ≥ η
for i = 1, 2. Taken together, these facts imply the following bounds on ϕi:

(31) η ≤ |ϕi|η ≤ |2ϕ̄(0)|η, i = 1, 2.
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Defining β = ηε/(ϕ̄(0)(4ϕ̄(0)2 + η2), where β is clearly finite, W can be written
as W (ϕ̄) = β(ϕ̄− 1/2)2. Then the time derivative is

dW

dt
=
∂W

∂ϕ̄
˙̄ϕ = 2β(ϕ̄− 1/2)(−α(t)(ϕ̄2 − (1/2)2))

= −β(ϕ̄− 1/2)n(t)

|ϕ1|η|ϕ2|η
4ϕ̄2 − 1

4ϕ̄2 −∆ϕ2
.

Then (30) implies that

(32) |dW/dt| <
∣∣∣∣β(ϕ̄− 1/2)n(t)

|ϕ1|η|ϕ2|η

∣∣∣∣ .
Now we bound the components of (32). The lower bound of (31) implies that

|ϕ1|η|ϕ2|η ≥ η2. The upper bound of (31) implies that

n(t) = m1ϕ1|ϕ1|η +m2ϕ2|ϕ2|η
≤ (m1ϕ1 +m2ϕ2)|2ϕ̄(0)|η
≤ 2ϕ̄(0)(m1 +m2)|2ϕ̄(0)|η
≤ 2ϕ̄(0)|2ϕ̄(0)|η,

where the second inequality follows from the fact that ϕi ≤ 2ϕ̄(0), and the third
inequality follows from the fact that m1 +m2 ≤ 1 from the definition of the simplex
∆2. Finally, Lemma 14 allows us to conclude that ϕ̄− 1/2 ≤ ϕ̄(0)− 1/2.

Putting together the bounds on the components, we arrive at the bound∣∣∣∣dWdt
∣∣∣∣ < β(ϕ̄(0)− 1/2)(2ϕ̄(0)|2ϕ̄(0)|η)

η2

=
2ε(ϕ̄(0)− 1/2)

η|2ϕ̄(0)|η
,

which shows that |dW/dt| is finite for all t. This implies that W (t) is Lipschitz on
[0, T ] for all finite T with Lipschitz constant at most 2ε(ϕ̄(0)− 1/2)/(η|2ϕ̄(0)|η).

Lemmas 13–17 imply that ϕ̄ → 1/2, which implies that v̄ → 1/2, as formalized
in the following lemma.

Lemma 18. The variables ϕ̄ and v̄ asymptotically converge to 1/2. Therefore, the
four-dimensional submanifold M4 defined by M4 = {z = (∆ϕ, ϕ̄,∆m, m̄,∆v, v̄) ∈
M|ϕ̄ = v̄ = 1/2} is an attracting invariant submanifold under the (autonomous)
dynamics (12).

Proof. Lemmas 16 and 17 show that V is a Lyapunov function for the dynamical
system ˙̄ϕ = fϕ̄(ϕ̄) whose total derivative V̇ is upper bounded by −W (ϕ̄). Therefore
condition b for Theorem 11 holds.

Applying Theorem 11, we get that ϕ̄ converges to the unique root of W (ϕ̄),
which is located at ϕ̄ = 1/2. Now, applying Lemma 12, we conclude that v̄ → 1/2.
Therefore, M4 is an attracting set.

5.2. A two-dimensional slow manifold in the limit ελ → 0, εv → 0. We
now proceed to eliminate ∆v and m̄ by taking the singular perturbation limit ελ →
0, εv → 0. The first limit couples ∆v to ∆ϕ, as in Section 4, while the second limit
pushes m̄ to a slow manifold m̄(∆ϕ,∆m). This results in a planar “singular” system.
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We study the dynamics (12) restricted to M4 defined in Lemma 18 by singular
perturbation in the small parameter εv. Further, let ` > 0 be a positive number
such that ελ = 1/λ = `εv. For a given value of `, this links ελ to εv. Defining1

x = (∆ϕ,∆m) ∈ X := [−1, 1]2 and y = ((1 − 2m̄)/εv,∆v) ∈ R+ × [−1, 1], the
restricted dynamics can be written in the standard form for a singular perturbation
problem:

ẋ = fx(x, y, εv)(33)

εv ẏ = gy(x, y, εv),(34)

where the slow dynamics is given by

ẋ1 = fx,1(x, y, εv) =
(1− εvy1 − x2)(1− x1)r+ − (1− εvy1 + x2)(1 + x1)r−

r+r−

ẋ2 = fx,2(x, y, εv) =− εv
(

1− εvy1 + x2

1 + x1
− 1− εvy1 − x2

1− x1

)
+
x2y1

2
+
y1

2
(3− εvy1)x1,

with r± = |1± x1|2η, and the fast dynamics is given by

εv ẏ1 = gy,1(x, y, εv) = εv

(
1− εvy1 + x2

1 + x1
+

1− εvy1 − x2

1− x1

)
− y1

2

(
(1 + x1)

(
1 +

1− εvy1 + x2

2

)
+(1− x1)

(
1 +

1− εvy1 − x2

2

))
+

σ

2
((1− εvy1)2 − x2

2)

εv ẏ2 = gy,2(x, y, εv) =− 1

`
(y2 − x1).

It can be easily verified that the vector field fx points inward on the boundary of
X = [−1, 1]2, so X is positive invariant.

The slow manifoldMs is given by the implicit function solution y = hy(x) of the
limiting fast dynamics g(x, hy(x), 0) = 0:

y1 =
σ(1− x2

1)

3 + x1x2
=: hy,1(x)(35)

y2 = x1 =: hy,2(x).

Figure 8 compares the analytically-computed slow manifold hy,1(x(t)) to the value
of y1(t) computed based on a numerical simulation of the full six-dimensional sys-
tem (12). The small value of the error between the two values shows that the low-
dimensional slow manifold is a good approximation to the trajectory of the high-
dimensional system. Figure 9 shows the analytically-computed slow manifold surface
hy,1(x) along with the trajectories hy,1(x(t)) and y1(t). The figure clearly shows the
relaxation oscillation structure of the limit cycle, which consists of alternating slow

1This definition, which we make for consistency with the literature on singular perturbation
problems, overloads the definition of x ∈ D from Section 2.
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and fast segments. The slow segments where ∆ϕ evolves correspond to the physical
dynamics of navigating from the goal x∗1 to x∗2 and vice versa, while the fast segments
where ∆m jumps correspond to the agent quickly changing its mind and deciding to
switch motivations after having achieved its task.
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Fig. 8. Error in the slow manifold approximation (35) computed for εv = 10−3, ελ = 10−3, plot-
ted on a logarithmic scale. The blue trace shows the error y1(t)−hy,1(x(t)) for y1(t) = (1−2m̄(t))/εv
computed from a simulated trajectory of the full six-dimensional system (12) and hy,1(x(t)), the an-
alytical expression for the slow manifold evaluated along the same trajectory. The spikes correspond
to the fast transitions between sections of the slow manifold (corresponding to fast jumps of x2 = ∆m
between +1 and −1), which can be clearly seen in Figure 9. The small magnitude of the error shows
that the analytical slow manifold is a good approximation to the full system.

The planar reduced dynamics on the slow manifold are given by the restriction
of (33) to the slow manifold Ms, now expressed in the coordinates of X = [−1, 1]2,

(36) ẋ = fx(x, hy(x), 0),

where the components are

ẋ1 = fx,1(x, hy(x), 0) =
(1− x1)(1− x2)r+ − (1 + x1)(1 + x2)r−

r+r−

ẋ2 = fx,2(x, hy(x), 0) =
σ

2

(1− x2
2)(x2 + 3x1)

3 + x1x2
.

As seen in Appendix C, the slow manifold Ms is hyperbolic if the initial layer
equation, (55), δ̇y = Dygy(x, 0, 0)δy (where δy = y − h(x)) has a hyperbolic equilib-

rium at the origin. The eigenvalues of the linearization
∂gy
∂y

∣∣∣
(x,0,0)

are equal to −1/`

and −(3 + x1x2)/2. The slow variables (x1, x2) lie in X = [−1, 1]2 and ` > 0 by
definition, so both eigenvalues are strictly negative. Therefore they never intersect
the imaginary axis and the slow manifold Ms is hyperbolic.

5.3. Existence of a stable limit cycle in the planar system. Now, we study
the planar dynamics (36) and show by a straightforward application of the Poincaré-
Bendixson Theorem [8, Theorem 1.8.1] that they exhibit an isolated periodic orbit —
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Fig. 9. Orbits on the slow manifold Ms defined by (35) computed for εv = 10−3, ελ = 10−6.
The blue trace shows y1(t) = (1 − 2m̄(t))/εv computed from a simulated trajectory of the full six-
dimensional system (12), while the magenta trace shows y1(t) = h1(x(t)), the analytical expression
for the slow manifold evaluated along the same trajectory. The shaded surface shows the slow man-
ifold surface h1(x). The close correspondence between the two traces shows that the analytical slow
manifold is a good approximation to the full system. The structure of these orbits (alternation of arcs
nearly-embedded in Ms connected by departing near-line segments) arises from the concatenation
of slow evolution corresponding to navigation (and changes in ∆ϕ) and fast jumps corresponding to
the agent changing its prioritization (reflected in switching the sign of ∆m).

a limit cycle — attracting an open annular neighborhood of the origin. We conjecture
(and all numerical evidence corroborates) that this is an asymptotically stable limit
cycle comprising the forward limit set of the entire origin-punctured state space. For
present purposes it suffices to observe formally that an open neighborhood of initial
conditions around the origin must take their forward limit set on this limit cycle.

Lemma 19. Let c = 1. For σ > 48η2/(1 + 4η2)3/2, there exists a periodic orbit of
the reduced system (36) whose basin includes an open annular neighborhood excluding
the (unstable) origin.2

Proof. Note that the set X = [−1, 1]2 is invariant set under the reduced dynamics
ẋ = fx(x, hy(x), 0). Furthermore, note that the only equilibria in X are the origin and
the four corners (x1, x2) = (±1,±1). It is easy to see that the boundary of X is an
invariant set; each corner is a saddle, and each edge is a heteroclinic orbit connecting
two saddles. Let X̊ be the interior of X . Then X̊ is pre-compact, connected, and
contains a single fixed point at the origin.

The linearization of the reduced dynamics at the origin is given by

Jr,0 =
1√

1 + 4η2

[
−8η2/(1 + 4η2) −2

σ/2 σ/6

]
.

The determinant det Jr,0 = (σ/(1 + 4η2)3/2)(1 + 8η2/3) > 0 for all σ, η > 0 and the
trace tr Jr,0 = σ/6 − 8η2/(1 + 4η2)3/2 > 0 for all σ > 48η2/(1 + 4η2)3/2. The trace

2In the limit η → 0, the periodic orbit exists for all σ > 0, as can be seen by taking the limit of
the expression in the Lemma.
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and determinant are, respectively, the sum and product of the two eigenvalues, so the
fact that they are both positive implies that the eigenvalues are themselves positive.
Therefore, for σ > 48η2/(1 + 4η2)3/2, the origin is an unstable focus. In the limit
η → 0, the condition becomes σ > 0.

Since the entire annular region, X̊ \ {0}, is a pre-compact, positive invariant set
possessing no fixed points it follows from the Poincaré-Bendixson Theorem that its
forward limit set consists of proper (non-zero period) periodic orbits. In particu-
lar, in the neighborhood of the excluded repeller at the origin, there must exist an
isolated periodic orbit comprising the forward limit set for that entire (punctured)
neighborhood.

6. Persistence of the limit cycle for finite εv, ελ. We now give conditions
(which were previously stated as Theorem 2 in Section 2.3.2) under which the limit
cycle whose existence was proven in the limit ελ → 0, εv → 0 in Lemma 19 persists
for finite values of ελ, εv. The result depends upon the conjectured hyperbolicity of
that cycle, for which we establish numerical evidence below.

Theorem 2. Accepting Conjecture 21, below, for σ = 4, there exists a stable
limit cycle of (12) for sufficiently small, but finite, values of ελ and εv. Equivalently,
fixing λ, there exists a stable limit cycle of (12) for sufficiently large, but finite, values
of v∗.

Lemma 19 shows that the singularly perturbed system with ε→ 0, i.e., εv, ελ → 0
exhibits a limit cycle γ0. The following result due to Fenichel [6] then allows us to
show that this limit cycle persists for sufficiently small εv, ελ > 0.

Two pieces of notation are required to state the result. The symbol EH represents
the open set on which the linearization of the dynamics normal to the slow manifold
has hyperbolic fixed points. In EH the reduced vector field XR is defined by

XR(m) = πE∂/∂εXε(m)|ε=0,

where πE is the projection onto E defined in Equation (57) of Appendix C. We can
now state the result.

Theorem 20 ([6, Theorem 13.1]). Let M be a Cr+1 manifold, 2 ≤ r ≤ ∞. Let
Xε, ε ∈ (−ε0, ε0) be a Cr family of vector fields, and let E be a Cr submanifold of M
consisting entirely of equilibrium points of X0. Let γ ∈ EH be a periodic orbit of the
reduced vector field XR, and suppose that γ0, as a periodic orbit of XR, has 1 as a
Floquet multiplier of multiplicity precisely one. Then there exists ε1 > 0 and there
exists a Cr−1 family of closed curves γε, ε ∈ (−ε1, ε1), such that γ0 = γ and γε is a
periodic orbit of ε−1Xε. The period of γε is a Cr−1 function of ε.

Theorem 13.2 of [6] states that, when γ0 is hyperbolic, the stability of the family
γε of periodic orbits for ε > 0 can be deduced from the stability of γ0 and the stability
of the linearization of fx, gy at ε = 0.

Conjecture 21. Let σ = 4. The periodic orbit, γ0, whose existence is guaran-
teed by Lemma 19 for the reduced dynamics ẋ = fx(x, hy(x), 0) defined by (36) is
asymptotically stable with Floquet multipliers ρ1 = 1, ρ2 < 1.

The Floquet multiplier associated with perturbations along the vector field is
always equal to 1, and the remaining n − 1 multipliers are the eigenvalues of the
linearized Poincaré map DP of the periodic orbit [8, Section 1.5]. We proceed by
computing the numerical approximation to P and DP for the case σ = 4, c = 1 using
the Poincaré section Σ = {(x1, 0)|0.1 < x1 < 1}. The results are shown in Figure
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10. From studying numerical solutions of the reduced dynamics, we know that the
periodic orbit crosses Σ at a point p near the border at x1 = 1. To five decimal
digits, P (p) is constant for p > 0.45. This suggests that the linearized map DP (p)
has a value less than 10−5 < 1. This implies that the two Floquet multipliers are
µ1 = 1, µ2 < 10−5 < 1.
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Fig. 10. Poincaré map of (36) computed for the section Σ = {(x1, 0)|0.1 < x1 < 1}, plotted on
logarithmic axes. Inset: an enlarged view of the map for the section 0.99 < x1 < 1, plotted on linear
axes. In both cases, the blue line represents the identity map, so values above the line represent
stable behavior.

In Conjecture 21, we only make claims about the Floquet multipliers in the case
where σ takes its nominal value σ = 4. However, numerical investigation suggests that
this result holds for generic positive values of σ. Theorem 2 then follows from applying
Theorem 20 to the (now conjectured to be stable) limit cycle found in Lemma 19.

Proof of Theorem 2. Let γ be a periodic orbit of the reduced system whose ex-
istence is shown in Lemma 19. By Conjecture 21, γ has 1 as a Floquet multiplier
of multiplicity precisely 1. The eigenvalues µ1, µ2 of the linearization ∂gy/∂y can be
computed in closed form and take the values

µ1 = −1

`
, µ2 = − (3 + x1x2)

2
.

On the slow manifold (x1, x2) ∈ X = [−1, 1]2 these are bounded away from the
imaginary axis, so γ ∈ EH . Then, by Theorem 20, there exists ε1 > 0 and a family of
periodic orbits γε, ε ∈ (−ε1, ε1) such that γ0 = γ.

Specifically, for each ε ∈ (0, ε1), there exists a stable limit cycle γε with εv = ε
and ελ = `ε. Equivalently, fix λ > 0 and define v∗1 = 1/ε1 < +∞. Then for v∗ > v∗1 ,
there exists a stable limit cycle γε for ε = εv = 1/v∗.

Corollary 22. Theorem 2 establishes the existence of a stable periodic orbit γ
of the reduced dynamics for (ελ, εv) ∈ R+× [0, ε1), i.e., the neighborhood of the ελ axis
for sufficiently small εv > 0 and generic ελ.

Proof. Note that the fast dynamics (34) defines ελ = `εv, specifying only that
` > 0. Therefore, the result of Theorem 2 applies for parameter values (ελ, εv) ∈
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{(`εv, εv)|εv ∈ [0, ε1), ` ∈ R+}.
7. Conclusion. In summary, we have developed a dynamical systems method

to managing motivations in physically-embodied agents, i.e., robots. This method
provides a novel way for a system to autonomously and continuously switch between
a set of vector fields, each of which defines a possible dynamics for the physical state
of the system that corresponds to performing a navigation task.

We specialize to the case where the system has two vector fields defined on a
simply-connected subset of R2. By imposing several symmetries on our system, we
are able to analyze the system in the limit where first one, and then both, of two
parameters approaches zero. In the joint limit we reduce the system to a planar dy-
namical system by means of a singular perturbation analysis; a Poincaré-Bendixson
argument shows that this planar system exhibits an isolated periodic orbit corre-
sponding to the physical system state oscillating between two fixed points, one for
each of the two vector fields. By appealing to geometric singular perturbation theory,
we show that this periodic orbit persists for finite values of the two parameters.

A natural extension of this work is to consider cases where the system has more
than two navigation tasks and where the domain D is punctured by obstacles, i.e.,
not simply connected. One natural way to extend this work to the case of multiple
tasks is to decompose tasks into hierarchies encoded in binary trees; then, a variant
of the system studied in this paper can run in each node to manage the motivations
represented by each of its child nodes. By designing an appropriate method to feed the
information from the child nodes back to their parent, it will be possible to maintain
the limit cycle behavior for the larger number of tasks. Extending the analysis in this
paper to the case of non-simply connected domains may prove more complex, as the
analysis relies on several coordinate transformations that will be difficult to extend
the more general case.

The other natural extension of this work is to apply it by implementing the
motivational system on a physical robot. This implementation work is already in
progress and will be the subject of a future report.

Appendix A. First Lyapunov coefficient calculation. Kuznetsov [15,
Section 5.4] provides the following formulae for computing `1|(z0,ε0), the first Lyapunov

coefficient of the dynamics ż = f(z, ε). Let J0 = Dzf |(z0,ε0). Property 1 of Theorem

3 implies that J0 has two pure imaginary eigenvalues λ(ε0), λ̄(ε0) = ±iω0, ω0 > 0. Let
q ∈ Cn be a complex eigenvector corresponding to λ(ε0):

J0q = iω0q, J0q̄ = −iω0q̄.

Introduce the adjoint eigenvector p ∈ Cn satisfying

JT0 p = −iω0p, J
T
0 p̄ = iω0p̄

and satisfying the normalization condition 〈p, q〉 = 1, where 〈·, ·〉 is the standard inner
product on Cn.

Then, Taylor expand f(z) = f(z, ε0) to third order in z:

f(z) =
1

2
B(z, z) +

1

6
C(z, z, z) +O

(
‖z‖4

)
,

where B and C are multilinear functions given by

Bi(x, y) =

n∑
j,k=1

∂2fi(ξ, ε)

∂ξj∂ξk

∣∣∣∣
ξ=0

xjyk :=

n∑
j,k=1

Bijkxjyk,
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Ci(x, y, z) =

n∑
j,k,l=1

∂3fi(ξ, ε)

∂ξj∂ξk∂ξl

∣∣∣∣
ξ=0

xjykzl

:=

n∑
j,k,l=1

Cijklxjykzl,

which define the coefficients Bijk and Cijkl. The coefficient `1|(z0,ε0) is then given by

Equation (5.62) of [15]:

`1|(z0,ε0) =
1

2ω0
Re
[
〈p, C(q, q, q̄)〉 − 2〈p,B(q, J−1

0 B(q, q̄))〉(37)

+〈p,B(q̄, (2iω0I − J0)−1B(q, q))〉
]
,

where I is the identity matrix.

Appendix B. Analysis of the Hopf bifurcation of (19). In this section, we
report computations relevant to the results in Theorem 1.

B.1. Jacobian computation. The following claim, which can be verified by
direct computation, establishes the value of the Jacobian J0 of the dynamics (19)
evaluated at the deadlock equilibrium zrd given by (22).

Claim 23. Let J0 = Dzrfr(zr, εv)|zr=zrd
be the Jacobian of (19) evaluated at the

deadlock equilibrium defined by (22). Then

J0 =


j11 0 j13 0
0 j22 0 0
j31 0 j33 0
0 j42 0 j44


where the non-zero components are given by

j11 =
∂∆̇ϕr
∂∆ϕr

∣∣∣∣∣
zr=zrd

= −16η2m̄rd/(1 + 4η2)3/2,(38)

j13 =
∂∆̇ϕr
∂∆mr

∣∣∣∣∣
zr=zrd

= −2/
√

1 + 4η2,(39)

j22 =
∂ ˙̄ϕr
∂ϕ̄r

∣∣∣∣
zr=zrd

= −8m̄rd/
√

1 + 4η2(40)

j31 =
∂ ˙∆mr

∂∆ϕr

∣∣∣∣∣
zr=zrd

= 4εvm̄rd + (1− 2m̄rd)(1 + m̄rd)/εv(41)

j33 =
∂ ˙∆mr

∂∆mr

∣∣∣∣∣
zr=zrd

= −2εv + (1− 2m̄rd)/(2εv)(42)

j42 =
∂ ˙̄mr

∂ϕ̄r

∣∣∣∣
zr=zrd

= 4εvm̄rd + (1− 2m̄rd)(1 + m̄rd)/εv(43)

j44 =
∂ ˙̄mr

∂m̄r

∣∣∣∣
zr=zrd

= −2εv + (1− 2m̄rd)/(2εv)− 8m̄rd − (1 + m̄rd)/εv(44)

= −2(εv + 4m̄rd)− (1 + 4m̄rd)/(2εv).
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The characteristic polynomial p4(λ) of J0 is given by the determinant |J0 − λI|,
where I is the identity matrix. This determinant can be computed directly using ex-
pansion by minors:

(45) p4(λ) = |J0 − λI| = (λ− j22)(λ− j44)(λ2 − (j11 + j33)λ+ j11j33 − j13j31).

Note that

lim
η→0

J0 = J1 =


0 0 −2 0
0 −8m̄rd 0 0
j31 0 j33 0
0 j42 0 j44

 .
Similarly, p4(λ) reduces to

lim
η→0

p4(λ) = (λ− j22)(λ− j44)(λ2 − j33λ+ 2j31).

B.2. Criticality of the Hopf bifurcation in Theorem 1. The following
result concerns the the Hopf bifurcation whose existence is proven in Theorem 1. It
implies that the Hopf bifurcation is supercritical, so the periodic solutions created by
the bifurcation are stable limit cycles.

The remainder of this section constitutes the proof of Lemma 7. As in Appendix
A, write `1|(z0,ε0) = 1

2ω0
Re[T1 + T2 + T3], where, from (37),

T1 = 〈p, C(q, q, q̄)〉
T2 = −2〈p,B(q, J−1

0 B(q, q̄))〉
T3 = 〈p,B(q̄, (2iω0I − J0)−1B(q, q))〉,

I is the identity matrix, and ω0, p, q, B, and C are as defined in Appendix A. We show
that Re [Ti] < 0 for each i ∈ {1, 2, 3}. Together, these imply that `1 < 0, since ω0 > 0
by definition.

Let J0 = Dz f |(z0,ε0) be the Jacobian of the dynamics (19) evaluated at the

bifurcation point and let J1 = limη→0 J0. As shown in (23), J1 has two purely
imaginary eigenvalues when j33 = 4−(1−2m̄rd)/ε

2
v = 0. This implies that 1−2m̄rd =

4ε2v at the bifurcation point.
As shown in Claim 23, the limiting Jacobian limη→0 J0 = J1 can be computed in

closed form and takes the value

J1 =


0 0 −2 0
0 j22 0 0
j31 0 j33 0
0 j42 0 j44



=


0 0 −2 0
0 −8m̄rd 0 0

8(1− 2ε2v)εv 0 0 0
0 4εv(1 + 2m̄rd) 0 −8m̄rd − (1 + m̄rd)/εv

 ,(46)

where we have used the relationship established in (23) 1− 2m̄rd = 4ε2v that holds at
the bifurcation point in the final expression.

The eigenvalue problems J1q = iω0q, J
T
1 p = −iω0p can be solved analytically,

yielding
ω0 =

√
2j31,
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q =
[
q1 0 q3 0

]T
=
[
i
√

2
j31

0 1 0
]T
,

p =
[
p1 0 p3 0

]T
=
[
i
2

√
j31
2 0 1

2 0
]T
.

The eigenvectors satisfy the required normalization condition 〈p, q〉 = 1. The sparsity
of p and q greatly simplifies the computations of T1, T2, T3.

B.2.1. Computing T1. First, we compute T1. Recall from (37) that T1 =
〈p, C(q, q, q̄)〉. Direct computation shows that Ci(q, q, q̄) = 0 for i ∈ {1, 2, 4}. The
relevant components of C3jkl are C3111 = 24εvm̄rd, C3113 = C3131 = C3311 = −4εv.
Substituting in the values of p and q then yields

T1 = −

(
4εv
j31

+ 12εvm̄rd

(
2

j31

)3/2

i

)

⇒ Re[T1] = −4εv
j31

= − 1

2− 4ε2v
,

which is negative for all εv <
√

2/2 ≈ 0.707, including εv = εv,0 ≈ 0.262.

B.2.2. Computing T2. Next, we compute T2. Recall from (37) that T2 =
−2〈p,B(q, J−1

1 B(q, q̄))〉. Direct computation shows that Bi(q, q̄) = 0 for i ∈ {1, 2, 3}
and that B4(q, q̄) has relevant terms B411 = −4εvm̄rd, B413 = B431 = 2εv, B433 = 2.
Then B4(q, q̄) = −4εvm̄rdq1q̄1 + 2εvq1q3 + 2εv q̄1q3 + 2q2

3 = − 8εvm̄rd
j31

+ 2. The matrix

J−1
1 can be computed from (46) in closed form, and is equal to

J−1
1 =


0 1/j31 0 0
0 1/j22 0 0
−1/2 0 0 0

0 −j42/(j22j44) 0 1/j44

 ,
where jkl are defined in (46), so the only non-zero component of J−1

1 B(q, q̄) is the
fourth one, which is equal to B4(q, q̄)/j44 = (− 8εvm̄

j31
+ 2)/j44. Direct computation

then shows that Bi(q, J
−1
1 B(q, q̄)) = 0 for i ∈ {1, 2, 4} and that B3(q, J−1

1 B(q, q̄)) =

(−1/εv + i(8εv − 2(1− m̄)/εv)
√

2/j31)(− 8εvm̄
j31

+ 2)/j44 and therefore that

Re [T2] = Re
[
−2〈p,B(q, J−1

1 B(q, q̄))〉
]

=
− 8εvm̄

j31
+ 2

εvj44

=
4ε2v − 3

(2ε2v − 1)(32ε3v + 4ε2v − 8εv − 3)
.

It is clear that the two quadratic factors are both negative for all εv <
√

2/2 ≈
0.707, including εv = εv,0 ≈ 0.262. The cubic factor can be shown to have one
real-valued root at εv ≈ 0.582 and is negative for all values of εv less than the root,
including εv = εv,0. Therefore, all three factors are negative when εv = εv,0 and
Re [T2] < 0.
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B.2.3. Computing T3. Finally, we compute T3. Recall from (37) that T3 =
〈p,B(q̄, (2iω0I − J1)−1B(q, q))〉. As in the case of T2, direct computation shows that
Bi(q, q) = 0 for i ∈ {1, 2, 3} and that B4(q, q) has relevant terms B411, B413 = B431,
and B433. Then B4(q, q) = 2− 8m̄rdεv/j31 + 4εv

√
2/j31i.

Let Γ = (2iω0I − J1)−1, which has the structure

Γ =


γ11 0 γ13 0
0 γ22 0 0
γ31 0 γ33 0
0 γ42 0 γ44

 ,
where γ44 = 1/(−j44 +2i

√
2j31) = (−j44−2i

√
2j31)/(8j31 +j2

44). The first three com-
ponents (ΓB(q, q))i = 0 for i ∈ {1, 2, 3} and the only non-zero component is the fourth
one given by γ44B4(q, q). Then direct computation shows that Bi(q̄,ΓB(q, q)) = 0 for
i ∈ {1, 2, 4} and that

B3(q̄,ΓB(q, q)) = (B314q̄1 +B334)γ44B4(q, q),

where B314 = 8εv − 2(1 + m̄rd)/εv and B334 = −1/εv. Therefore,

T3 = p3B3(q̄,ΓB(q, q)) =
(B314q̄1 +B334)γ44B4(q, q)

2
.

We proceed by bounding the real part of T3. Define the quantity δ1 +δ2i := (B314q̄1 +
B334)B4(q, q), where δ1, δ2 ∈ R. Direct computation using (23) shows that

δ1 = −5− 48ε2v + 256ε4v − 640ε6v + 512ε8v
εv(1− 2ε2v)

,

δ2 =
3− 2εv − 60ε2v + 480ε4v − 1536ε6v + 1536ε8v

εv
√
εv − 2ε3v

.

It can be shown that 0 < εv < 0.580 implies that δ1 < 0 and that 0 < εv < 0.280
implies that δ2 > 0. The bifurcation value of εv,0 ≈ 0.262 satisfies both of these
sufficient conditions.

Recall from above that

γ44 =
−j44 − 2i

√
2j31

8j31 + j2
44

.

Then the real part of T3 can be expressed as

(47) Re(T3) =
−δ1j44 + 2δ2

√
2j31

2(8j31 + j2
44)

.

It is clear that j31 > 0 for εv <
√

2/2, so at the critical value εv,0 ≈ 0.262 the
denominator of (47) is positive. Therefore, Re(T3) < 0 if the numerator −δ1j44 +
2δ2
√

2j31 < 0. Using (23) to express the numerator in terms of εv, we get

(48) − δ1j44 + 2δ2
√

2j31 =
f(εv)

−2ε2v(1− 2ε2v)
,

where

f(εv) = 15−8εv − 132ε2v + 512ε3v + 896ε4v − 6016ε5v − 2944ε6v(49)

+ 26624ε7v + 4096ε8v − 49152ε9v − 2048ε10
v + 32768ε11

v .
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It is clear that −2ε2v(1− 2ε2v) < 0 for εv <
√

2/2, so Re [T3] < 0 if f(εv) > 0. It can be
shown that f(εv) has one real-valued root at εv ≈ −0.568 and is positive for all values
of εv greater than this root. Therefore, f(εv) > 0 for all positive εv, which implies
that Re(T3) < 0.

Combining the results for T1, T2, and T3, we get that

Re(T1) + Re(T2) + Re(T3) < 0,

which implies that

`1|(x0,µ0) =
1

2ω0
Re(T1 + T2 + T3)

=
1

2ω0
(Re(T1) + Re(T2) + Re(T3)) < 0,

the desired result.

Appendix C. A tutorial on geometric singular perturbation theory.
Singular perturbation theory is a tool for studying dynamical systems characterized
by two time scales, slow time t and fast time τ . The time scales are related by τ = t/ε,
where ε > 0 is a small parameter. In the slow time scale, the dynamical system is
governed by differential equations that are singular at ε = 0. By taking the limit
ε→ 0, i.e., assuming that the fast dynamics are much faster than the slow dynamics,
one can often reduce a system to the slow dynamics.

Fenichel did fundamental work on this theory, for which [6] is a relatively com-
prehensive reference. Of particular interest to this paper is the theory he developed
that allows one to relate the behavior of (the invariant manifolds of) a system in
the limit ε → 0 to the behavior with finite ε > 0. In order to do this globally on a
compact subset of the state space, Fenichel developed a geometric, or coordinate-free,
notion of singular perturbation. The remainder of the section constitutes a summary
of the relevant material in [6]. We begin by summarizing the local results, which are
expressed in a given set of coordinates, before introducing the more abstract global,
coordinate-free results.

C.1. Local results. Let M be an open subset of Rµ × Rν , and let E = M ∩
(Rµ × {0}) be nonempty. We consider a system of the form

ẋ = f0(x, y, ε)(50)

εẏ = g(x, y, ε)

where ˙ denotes differentiation with respect to t, defined for (x, y) ∈ M , for small,
real ε. When ε = 0 the system (50) degenerates to the reduced system

ẋ = f0(x, y, 0)(51)

0 = g(x, y, 0).

The second equation of (51) is an implicit function that defines y as a function of x.
The relation can be expressed explicitly, at least locally, as a function y = h(x) [11].
The set {(x, y)|y = h(x)} is called the slow manifold. By translating the y coordinates
by −h(x), we can set y = 0 on the slow manifold, which we denote by E . Therefore,
we assume that

(52) g(x, 0, 0) = 0 for all (x, 0) ∈ E ,
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so that (51) defines a flow in E , and we assume that this flow has a periodic orbit
γ0 : x = p(t), y = 0. Fenichel’s aim is to describe the orbit structure of (50) for small
nonzero ε.

By rescaling time to τ = t/ε, we can transform (50) to

x′ = εf0(x, y, ε)(53)

y′ = g(x, y, ε),

where ′ denotes differentiation with respect to τ . The set E consists entirely of
equilibrium points of the system (53) in the limit ε→ 0.

The plan is to relate the orbit structure of (50) near γ0, for small nonzero ε, to the
orbit structure of the reduced system (51) near γ0 and to the linearization of limε→0

(53) at points of γ0. The linearization of limε→0 (53) at (x, 0) ∈ E is

(54)

[
δx
δy

]′
=

[
0 0
0 D2g(x, 0, 0)

] [
δx
δy

]
,

where D2g(x, 0, 0) denotes differentiation with respect to the second argument of g
evaluated at (x, 0, 0). The second component satisfies

(55) δy′ = D2g(x, 0, 0)δy,

a linear equation parametrized by (x, 0) ∈ E . We refer to (55) (Equation (3.8) of [6])
as the initial layer equation.

The first qualitative question that Fenichel asks about (50) is whether it has a
periodic orbit γε near γ0 for ε near zero. Fenichel [6] claimed that Anosov [1] obtained
the most general result in the literature. In particular [6, Section III], Anosov proved
that γ0 can be continued to a family γε if: (i) γ0, regarded as a periodic orbit of the
reduced system (51), has 1 as a Floquet multiplier of multiplicity precisely one, and (ii)
for each (x, 0) ∈ γ0, the initial layer equation (55) has a hyperbolic equilibrium point
at δy = 0. The first condition can be interpreted as a nondegeneracy requirement
on the periodic orbit γ0 itself, while the second condition is sometimes called normal
hyperbolicity of the slow manifold defined by g(x, y, 0) = 0. Theorem 13.1 of [6] makes
this result precise.

C.2. Global results. The definitions up to here have been in a given set of
coordinates. In order to properly account for limit cycles, Fenichel develops a global,
coordinate-free notion of the singular perturbation problem. Let M be a Cr+1 mani-
fold, 1 ≤ r ≤ ∞. Let Xε : M → TM be a family of vector fields on M , parametrized
by ε ∈ (−ε0, ε0), such that Xε is a Cr function of (m, ε). Let E be a Cr submanifold
of M consisting entirely of equilibrium points of X0, and let z = φ(m) be a Cr+1

local coordinate in M . In z-coordinates the flow of Xε satisfies

(56) z′ = Xεφ(φ−1(z))

subject to the condition

Xεφ(φ−1(z)) = 0 for z ∈ φ(E).

Let µ be the dimension of E and let ν be the codimension of E in M . Because
X0 vanishes identically on E , TmE is in the kernel of TX0(m) for any m ∈ M . In
coordinates, then, Tx0(m) will have µ eigenvalues equal to zero and ν additional
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eigenvalues, which we call the nontrivial eigenvalues. The subspace TmE is invariant
under TX0(m), and so TX0(m) induces a linear map

QX0(m) : TmM/TmE → TmM/TmE

on the quotient space. The eigenvalues of QX0(m) are the nontrivial eigenvalues of
the linearization of limε→0 (56) at z = φ(m).

Let ER be the open set where QX0 is invertible. For each m ∈ ER, TmE has
a unique complement Nm which is invariant under TX0(m). Let πE denote the
projection on TE defined by the splitting TM |ER = TE⊕N. Let EH ⊂ ER be the open
subset where QX0 has no pure imaginary eigenvalues; this is the normally-hyperbolic
component of the slow manifold.

In ER the reduced vector field XR is defined by

(57) XR(m) = πE∂/∂εXε(m)|ε=0.

Now we can state the main theorem that asserts conditions under which periodic
orbits of the reduced vector field XR defined in the limit ε→ 0 persist for ε > 0.

Theorem 24 ([6, Theorem 13.1]). Let M be a Cr+1 manifold, 2 ≤ r ≤ ∞. Let
Xε, ε ∈ (−ε0, ε0) be a Cr family of vector fields, and let E be a Cr submanifold of M
consisting entirely of equilibrium points of X0. Let γ ∈ EH be a periodic orbit of the
reduced vector field XR, and suppose that γ0, as a periodic orbit of XR, has 1 as a
Floquet multiplier of multiplicity precisely one. Then there exists ε1 > 0 and there
exists a Cr−1 family of closed curves γε, ε ∈ (−ε1, ε1), such that γ0 = γ and γε is a
periodic orbit of ε−1Xε. The period of γε is a Cr−1 function of ε.

For many applications, we are only interested in the case of small positive ε. In
[6, Section V], Fenichel explains how he is able to obtain results for ε ∈ (−ε0, ε0).
Furthermore, the stability results of [6, Theorem 13.2] are stated for ε > 0. Let us
now discuss how the theorem is applied. The main conditions are 1) that the periodic
orbit γ0 be contained in EH , the normally-hyperbolic component of the slow manifold,
and 2) that γ0 have 1 as a Floquet multiplier of multiplicity precisely one.

If one has a global coordinate system for E , testing for normal hyperbolicity re-
duces to verifying that the eigenvalues of ∂g/∂y|E have non-zero real parts; if the real
parts are negative, E is stable. The Floquet multipliers of γ0 are the eigenvalues of B,
the linearized Poincaré map of γ0, so a multiplier of 1 corresponds to a fixed point of
the Poincaré map, and multipliers less than (greater than) 1 correspond to stability
(instability) of the orbit. There are µ Floquet multipliers ρi, i ∈ {1, . . . , µ}, where µ is

the dimension of E . It can be shown [8] that det(B) =
∏µ
i=1 ρi = exp

∫ T
0

tr(A(s))ds,
where T is the period of the periodic orbit and A(s) is the linearization of the reduced
dynamics Df(x, 0, 0)|γ0(s). The existence of the periodic orbit means that there is one
Floquet multiplier equal to 1. In general, ρi have to be found by numerically com-
puting B, unless one can bound the sign of trA on the slow manifold. Alternatively,
if one can show that the limit cycle is asymptotically stable on the slow manifold, the
Floquet multiplier condition follows.

Acknowledgement. This work was supported in part by Air Force Research
Laboratory grant FA865015D1845 (subcontract 669737-1).

REFERENCES

33



[1] D. V. Anosov. On limit cycles in systems of differential equations with a small parameter in
the highest derivatives. AMS Translations, Ser. 2(33):233–275, 1963.

[2] S. M. Baer and T. Erneux. Singular Hopf bifurcation to relaxation oscillations. SIAM Journal
on Applied Mathematics, 46(5):721–739, 1986.

[3] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen. The physics of optimal decision
making: a formal analysis of models of performance in two-alternative forced-choice tasks.
Psychological review, 113(4):700, 2006.

[4] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential composition of dynamically
dexterous robot behaviors. The International Journal of Robotics Research, 18(6):534–
555, 1999.

[5] A. De and D. E. Koditschek. Parallel composition of templates for tail-energized planar hopping.
In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4562–
4569, May 2015.

[6] N. Fenichel. Geometric singular perturbation theory for ordinary differential equations. Journal
of Differential Equations, 31(1):53–98, 1979.

[7] J. Guckenheimer. Bifurcations of relaxation oscillations. Normal Forms, Bifurcations and
Finiteness Problems in Differential Equations, pages 295–316, 2004.

[8] J. Guckenheimer and P. J. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations
of vector fields, volume 42 of Applied Mathematical Sciences. Springer Science & Business
Media, 2013.

[9] J. Hofbauer and K. Sigmund. Evolutionary games and population dynamics. Cambridge Uni-
versity Press, 1998.

[10] C. L. Hull. Principles of Behavior. Appleton-Century-Crofts, New York, 1943.
[11] C. K. R. T. Jones. Geometric singular perturbation theory. In Dynamical systems, volume

1609 of Lecture Notes in Mathematics, pages 44–118. Springer, 1995.
[12] H. K. Khalil. Nonlinear systems. Prentice Hall, 3 edition, 2002.
[13] D. E. Koditschek. The application of total energy as a Lyapunov function for mechanical

control systems. Contemporary Mathematics, February 1989.
[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive mission and

motion planning. IEEE Transactions on Robotics, 25(6):1370–1381, 2009.
[15] Y. A. Kuznetsov. Elements of applied bifurcation theory, volume 112. Springer Science &

Business Media, 1998.
[16] J. LaSalle. Stability theory for ordinary differential equations. Journal of Differential Equa-

tions, 4(1):57–65, 1968.
[17] N. E. Leonard, T. Shen, B. Nabet, L. Scardovi, I. D. Couzin, and S. A. Levin. Decision versus

compromise for animal groups in motion. Proceedings of the National Academy of Sciences,
109(1):227–232, 2012.

[18] W. G. Mitchener and M. A. Nowak. Chaos and language. Proceedings of the Royal Society of
London-B, 271(1540):701–704, 2004.
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