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Abstract—The paradigm of connected vehicles is fast gaining
lot of attraction in the automotive industry. Recently, a lot of
technological innovation has been pushed through to realize this
paradigm using vehicle to cloud (V2C), infrastructure (V2I) and
vehicle (V2V) communications. This has also opened the doors for
efficient delivery of data/service to the vehicles via edge devices
that are closer to the vehicles. In this work, we propose an
optimization framework that can be used to deliver data/service
to the connected vehicles such that a bandwidth cost objective
is optimized. For the first time, we also integrate a vehicle flow
model in the optimization framework to model the traffic flow in
the coverage area of the edges. Using the optimization framework,
we study the variation of the optimal bandwidth cost for varying
problem sizes and vehicle flow model parameter values for both
data and service delivery.

Index Terms—connected vehicles; edge computing; V2C; V2I;
data delivery; service delivery; bandwidth cost

I. INTRODUCTION

In the past few years, there has been a focus to develop
technologies that enable connectivity of vehicles in order to
improve the driving safety and experience. In particular, this
has been realized by connecting vehicles to cloud (V2C),
infrastructure (V2I) and other vehicles (V2V). The advent
of these modes of connectivity has also opened the doors
to efficiently deliver data and services to the vehicles. For
example, a driver travelling to a new destination may request
to download the map of a certain area or may want an update
to an already installed application in the vehicle. The above
mentioned data can be delivered to the vehicle either directly
from the cloud or through a device that is located in close
proximity to the vehicle (called the edge device or the edge).
Similarly, computation offloading is one service in which a
computation intensive function belonging to an application
residing in a vehicle, such as Lane Keep Assist (LKA), may
be offloaded to an edge device proximally closer to the vehicle
while on the move. The offloaded computation is then executed
on the edge and the results are sent back to the vehicle.

The hierarchical architecture that we consider in this work
is shown in Fig. 1. There are three distinct levels in the
architecture. The topmost level in the architecture is the
cloud. The cloud provides various kinds of services and
communicates with both the vehicle and the edge devices.
The communication between the cloud and the edge device,
denoted as Type 1 communication in Fig. 1, typically involves
transfer of a large amount of data. The middle level includes

the edge devices, which are intermediate devices between the
cloud and the vehicle. An example of an edge device would
be a traffic light control node. The edges may communicate
with each other (denoted as Type 2 communication in Fig. 1)
with lesser latency in comparison to Type 1 communication.
The bottom level in the architecture consists of the vehicles.
As a vehicle passes by an edge device, it may communicate
with the edge device (denoted as Type 3 communication). The
communication latency between the vehicle and the edge is the
smallest. In addition, the vehicles also communicate with the
cloud, which initiates data or service delivery. In this work, we
do not consider V2V communication as we do not consider
vehicles as relays to deliver data or service.

In order to deliver services, offloading to the edge is
more beneficial as it incurs much smaller delay compared to
offloading to the cloud. In the case of data also, delivery via the
edge is efficient for the following reason - if multiple vehicles
request for the same large sized data, multiple transmissions
of the same data from the cloud to the different vehicles can
be avoided if two or more vehicles pass through the same
edges. In the above case, it is enough to send the data once to
a group of edges so that all the vehicles passing through them
can receive the data. Therefore, delivery of data or services
via the edge is more efficient than delivering directly from the
cloud.
Problem Motivation In this work, we propose an optimization
framework to deliver data (such as update data) or service
(such as computation offloading) from the cloud to the vehicles
via the edges. The vehicle first interacts with the cloud letting
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Fig. 1: Illustration of the three layers and constituent entities
in vehicle connectivity architecture



the cloud know what data/service it wants and the route it
plans to take towards its destination. We do not consider the
scenario of route changes in this work. Let us assume that the
route of the vehicle consists of a set of edges. Further, let us
also consider that multiple vehicles send similar requests to
the cloud. The problem that needs to be solved in the cloud is
how to map the data/service requested by the vehicles to the
edges such that they receive the requested data/service during
their trip.

Given the resource availabilities at the various edges in
the edge network and the routes that the vehicles take, there
are multiple possibilities of how data can be partitioned and
mapped to the edges that belong to its route. It may be possible
to map all the requested data to one of the edges or the
data can be broken down into chunks and the data chunks
can be mapped to the set of edges. Similarly, it might be
possible to retrieve a service from any of the edges in the
route. Communication bandwidth is a scarce resource and
the available bandwidth at the edges depends on the number
of vehicles passing the coverage area of the edge and the
velocity of the vehicles in the coverage area. We utilize the
notion of bandwidth cost based on a well known bandwidth
pricing mechanism. Based on this notion, we present an
optimization framework that will be used in the cloud to map
the data chunks/service for all vehicles to the edges in order
to minimize the total bandwidth cost over all the edges.

The idea behind using the bandwidth pricing mechanism
is to increase the cost of bandwidth usage of an edge with
increase in its bandwidth utilization. Traditionally, bandwidth
pricing mechanism has been used in allocating bandwidth to
users on links in order to prevent link over congestion in
traditional networks. Therefore, we use this mechanism in our
optimization framework so that the requested data is mapped
to the edges such that all the vehicles can retrieve their data
from the edges without over congestion as it enables serving
higher number of vehicles. The likelihood of over congestion
of vehicles at an edge is very much expected in a realistic
scenario as evident in pilot projects started in New York City,
Tampa and Wyoming [2], which consider thousands or tens of
thousands of vehicles and few hundreds of edges.
Challenges and Contributions: To the best of our knowledge,
none of the earlier works on delivering data/service to mobile
nodes used any vehicle flow model to perform analysis. The
vehicle flow model is essential to capture the traffic flow in
the vicinity of an edge. The density of the traffic influences
the delivery of data/services to the vehicle requiring them.
We utilize a linear vehicle flow model in this work, but the
framework can easily handle other types of flow models.

To the best of our knowledge, this is the first work which
proposes a centralized (to be executed in the cloud) optimiza-
tion framework for bandwidth optimal data/service delivery
to connected vehicles via edges considering a vehicle flow
model and edge resource constraints. More specifically, our
main contributions in this work are

1) Proposed optimization constraints (which integrate a
linear vehicle flow model) for delivery of data and

service to mobile vehicles.
2) Demonstrated the usefulness of a bandwidth pricing

mechanism to minimize the bandwidth cost over all the
edges.

3) Performed several experiments for synthetic vehicle traf-
fic and showed the optimization results obtained.

The rest of the paper is organized as follows. In the next
section, we present the related work on mobile edge computing
and data/service delivery to mobile nodes. Subsequently, we
present the problem formulation in Section III. The optimiza-
tion constraints and objective functions for data and service
delivery are then presented in Section IV. The experimental
results are discussed in Section V. Finally, we conclude the
paper with our remarks in Section VI.

II. RELATED WORK

In this section, we first present a brief evolution of edge
computing and mobile edge computing (MEC) in particular
and their advantages and limitations. Then, we look at prior
research done in two areas namely resource allocation in edge
computing and data/service delivery to mobile nodes via edge
nodes, which are closely related to the problem we address in
this paper. The primary advantage of MEC is the proximity of
the edge nodes to the mobile devices, which brings a limited
amount of memory, compute and communication resources
close to the mobile devices thereby enabling low latency turn
around time of the results [9], [4], [11]. This is in sharp
contrast to its predecessor mobile cloud computing (MCC),
where the computation was offloaded to a cloud server situated
far away from the mobile user [3]. Although MCC provided
powerful compute and large amount of storage resources, the
communication latencies between the cloud server and the
mobile device are very long.

The first idea of edge computing was proposed in [13] and
was called cloudlet in which powerful computers were placed
in appropriate locations to give the mobile users the required
compute and storage resources near them. This presented the
challenge of switching between mobile network and WiFi
when using the resources on the cloudlet. Another alternative
that was proposed was to build adhoc clouds [14] from the
mobile devices themselves, but this presented its own set of
challenges such as finding the appropriate mobile devices
for computation and delivery of results, incentivizing the
mobile devices to provide their compute resources, security
and privacy, etc. Fog computing [5] generalizes the concept
of edge computing better than cloudlets and adhoc clouds,
where processing is performed on many connected devices
at the edge of the network. The problem with all the above
mentioned edge computing paradigms is that the computing is
not integrated into the architecture of the mobile network. In
order to solve this, European Telecommunications Standards
Institute (ETSI) came with a solution known as MEC [9],
which seamlessly integrates the computing into the mobile
network.

One of the key services provided in MEC is computation
offloading as it greatly reduces the energy and speeds up the



computation process. This service was earlier proposed in the
domain of MCC [18] where a code partitioning algorithm was
proposed for mobile code offloading. Once a decision is taken
to offload a task, adequate resources need to be allocated on
the edge. There are several works which present techniques
to allocate resources for computation offloading on a single
node such that the execution delay is minimized [19], [8].
In [8], power consumption is also optimized along with delay.
Similarly, there are few works that propose techniques for
resource allocation on multiple edge nodes while minimizing
execution delay [16] and a combination of delay with power
consumption [12]. While all these works present interesting
techniques to allocate resources on the edge for computation
offloading, they consider task offloading from a mobile device
and therefore do not consider any vehicle flow model, which
is very essential to incorporate in the scenario of data/service
delivery to connected vehicles via edges. Moreover, our ob-
jective function in this work is optimization of bandwidth cost
under delay constraints.

The research that is closest to our work are the papers
on data delivery from infrastructure to vehicles [10] and
online resource allocation to deliver services like computation
offloading [17] for mobile nodes. In [10], the authors propose
a trajectory-based forwarding scheme to deliver data from
infrastructure nodes to moving vehicles in vehicular adhoc
networks. A target node is determined based on the route of
the destination vehicle and data packets are forwarded to the
selected target node which the vehicle is expected to pass
by. The authors utilize packet’s delivery delay distribution
and destination vehicle’s travel delay distribution to select
the optimal target node which minimizes delivery delay and
satisfies a packet delivery probability. An online edge cloud
resource allocation algorithm is proposed in [17], which
considers arbitrary user movement and variation in resource
prices. Due to arbitrary user movement, the cloud does not a
priori know the route that the vehicle will take. In contrast, it is
a very likely scenario that a driver knows beforehand the route
to the destination. In such circumstances, the cloud can exploit
the route information to deploy data/service, which has been
used in [10]. However, both these techniques do not consider
any vehicle flow model, which characterizes the movement
of traffic near the edge or between edges. In this paper, our
proposed optimization framework addresses this problem in
the context of optimal bandwidth allocation.

III. PROBLEM FORMULATION

In this section, we present an optimization framework to
deliver data/service to connected vehicles such that bandwidth
cost incurred at the edges is minimized. The optimization flow
starts in the cloud when it receives requests from the vehicles
in order to either deliver some data or service. Along with the
request, the vehicles also send information regarding the route
that they intend to take. We assume that the cloud maintains
a route map from which it can infer the edges that the vehicle
will pass through. Let us assume that there are N vehicles

Cloud 

Edge 

Edge 

Edge Edge 

Edge 
n edges 

m edges 

V1 

V2 

V1 

V2 

V1 

V2 

data 

request service 

request 

data 

service app 

data 

download 

service  

access 

Edge Resource  

Constraints 

Time to Edge Constraints 

 

Bandwidth Schedulability  

Constraints  
 

data data 

Fig. 2: Flow in the connected vehicle scenario and associated
constraints

requesting for either data or service and there are M edges in
the network available for data/service delivery.

Before describing the constraints necessary for the opti-
mization, we introduce some terms that will be used in the
formulation of the constraints and the objective function.
Decision variables mi,j and servi,j : For data delivery, the
decision variable that we use is the amount of data mi,j

belonging to a vehicle Vi that the cloud partitions to an edge
Ej . It is an integer variable. For service delivery, we use the
binary decision variable servi,j , which denotes that vehicle
Vi receives its service from edge Ej if servi,j = 1 and the
contrary if servi,j = 0. For edges Ej that do not fall within
the route of vehicle Vi, mi,j = 0.
Route parameter: We use a binary variable xi,j to denote
whether an edge falls within the route of a vehicle. If xi,j = 0,
then edge Ej does not fall in the route of vehicle Vi and
therefore mi,j = 0. On the other hand, if xi,j = 1, then edge
Ej falls in the route of vehicle Vi and mi,j may assume a non
zero value.
Data: The data that a vehicle requests is characterized using
the amount of memory it requires on the edge memory re-
sources. Let us assume that the memory requirement for some
data that vehicle Vi requests for is Mi. The data transmitted
between the edge and the vehicle for service delivery is
described in Section IV.
Edge parameters: The edge is characterized by the memory,
processing resources and the bandwidth that it offers. Let
the memory capacity of an edge Ej be Mj . We also denote
the memory that is already occupied on edge Ej as Mocc

j .
Therefore, the available memory on the edge is given by
Mj−Mocc

j . The processing capacity at an edge is given by Pj

resource units (i.e., it could be the number of processing units
of time or the number of VMs available) and the number of
resources already in use is given by P occ

j units. The bandwidth
that the edge Ej offers is denoted by Bj .
Timing parameters: We denote the time that the vehicle Vi
takes to travel to edge Ej after initiating the download by



t trvi,j . Also, the time taken to send a data chunk mi,j to
edge Ej after the vehicle Vi initiates the download is given
by t commi,j .

The goal of optimization step in the cloud is to find the
values of mi,j (or chunks of the total data) and servi,j for
relevant edges of a vehicle (edges that fall in the route) such
that the total bandwidth cost is minimized while satisfying the
constraints.

IV. DATA/SERVICE DELIVERY OPTIMIZATION

In this section, we present the optimization constraints for
data delivery and service delivery. The first part of this section
includes the description of some basic constraints that will
be used for both data and service delivery. Subsequently, we
present the optimization constraints necessary specifically for
feasible service delivery to vehicles. Finally, the optimization
objective functions are formulated and discussed.

A. General Constraints for Data/Service Delivery

Firstly, we present two preliminary constraints and then we
present the timing and resource constraints that are relevant
to the connected vehicle scenario considered in this work.
These constraints are illustrated in Fig. 2 and described in
detail below.

1) Range Constraint: This constraint sets the upper and
lower bound for the decision variable mi,j and is given
as follows.

mi,j = 0, i = 1..N, j = 1..M : xi,j = 0

mi,j ≥ 0, i = 1..N, j = 1..M : xi,j = 1

mi,j ≤Mi, i = 1..N, j = 1..M : xi,j = 1

(1)

The upper bound for mi,j is the entire size of the data
that the vehicle requests for, while the lower bound is
0.

2) Accumulation Constraint: For data delivery, as data
may be broken into chunks and mapped to more than
one edge, the summation of the sizes of the data chunks
over all the edges should not exceed the entire data size
Mi. This constraint is formulated as shown below.

M∑
j=1

mi,j × xi,j =Mi, i = 1..N (2)

In the case of service delivery, the above constraint can
be used as follows

M∑
j=1

servi,j × xi,j = 1, i = 1...N (3)

which signifies that a vehicle Vi receives its service from
only one of the edges on the route.

3) Time to Edge Constraint: In the case of data delivery,
this timing constraint ensures that the data chunk has
been transferred by the cloud to the edge before a vehicle
reaches an edge. We formulate this constraint as follows.

mi,j×t commi,j ≤ mi,j×t trvi,j , i = 1..N, j = 1..M
(4)

We use the decision variable mi,j on both sides of the in-
equality in order not to map any data chunk to the edges
where the timing relationship t commi,j ≤ t trvi,j is
not satisfied. In the case of service delivery also, Eqn. 4
can be used by replacing mi,j with servi,j .

4) Edge Resource Constraint: The resource constraints
considered within this class of constraints are the mem-
ory constraint and the processing resource constraint.
Under the memory constraint, we ensure that the amount
of memory required for all the chunks belonging to all
the vehicles passing through an edge does not exceed
the memory capacity of the edge while considering the
memory that is already occupied by other applications or
data residing on the edge. This constraint is formulated
as below.

N∑
i=1

mi,j +Mocc
j ≤Mj , j = 1..M (5)

For service delivery to vehicle Vi, we assume that di is
the input data for processing and ri is the result data
that is sent back to Vi. Hence, the memory constraint
that needs to be satisfied for service delivery is

N∑
i=1

servi,j ∗ (di + ri) +Mocc
j ≤Mj , j = 1..M (6)

The processor resource constraint that needs to be
checked for service delivery is that processor resource
usage for all the vehicles {Vi} (given by pi) that
retrieve service from Ej does not exceed the maximum
processing capacity of the edge. This is given by

N∑
i=1

servi,j ∗ pi + P occ
j ≤ Pj , j = 1..M (7)

5) Bandwidth Schedulability Constraint: Given the band-
width Bj offered by the edge Ej , the amount of data
available to a vehicle Vi can be computed based on a
macroscopic vehicle flow model in the coverage area of
an edge, which is described in [15]. The macroscopic
flow model depends on three quantities - vehicle density
kj , vehicle flow qj and vehicle velocity vi,j . Vehicle
density kj is defined as the number of vehicles per unit
distance. Vehicle flow qj is defined as the number of
vehicles passing a fixed point per unit time. The three
quantities in the flow model are related as follows

qj = kj × vi,j

Greenshields [7] proposed a linear relationship between
speed and density based on field experiments given by

vi,j = vfj × (1− kj

kjamj

)

where vfj is the free flow velocity near edge Ej , which is
the velocity of the vehicle when it has no obstructions
from other vehicles (usually assumed to be the speed



limit) and kjamj is the vehicle density during a jam.
The vehicular traffic in the coverage area of the edge
can be modelled using a M/D/C/C queuing model for a
steady-state traffic flow model described above as shown
in [15], whereby the traffic arrival at the edge follows
a Poisson process, servicing the traffic is deterministic
and there are C servers. If the coverage distance of an
edge is Lj , then C = kjamj × Lj is the maximum
number of vehicles that can be accommodated in the
coverage range of the edge. As per M/D/C/C queue
model, the minimum number of bytes received by a
vehicle is given by (can be easily proved from Eqn 7
in [15] by considering that all vehicles receive the same
service weight)

Dmin
i,j =

Bj

kjamj × vi,j
(8)

where Bj is the bandwidth of the edge device.

The bandwidth schedulability constraint for vehicle re-
quiring data is given by

mi,j ≤ Dmin
i,j , i = 1..N, j = 1..M (9)

which simply depicts that the data chunk mapped to
edge Ej for vehicle Vi must be less than or equal to the
minimum number of bytes that Vi will receive from Ej

during its journey across the coverage distance.

B. Service Delivery Specific Constraints

We now present the constraint that is necessary to be
checked specifically for feasible service delivery to the ve-
hicles. For any service such as computation offloading to
the edges or some other application execution on the edge,
computation resources are used on the edge. The computation
resources on the edge are normally considered to be virtual-
ized. Therefore virtual machines (VMs) are the computation
resources allocated to the service required by a vehicle. In
this paper, we consider that the computation resource required
by vehicle Vi(denoted earlier as pi) is the number of VMs
for execution of the service and the VMs on all edges are
homogeneous with similar computing capability. We also
assume that the cloud is privy to information of how much
time it would take to execute a particular service if pi number
of VMs are allocated for the service. Let us denote this time
as tpi . One another assumption in our framework for service
delivery is that each service is allocated pi resources entirely
on one edge.

Considering all the above assumptions, the schedulability
constraint for processing the service on an edge resource is that
the time required to process the service and the time taken to
transfer the data and result between the vehicle and the edge
is lesser than the time the vehicle remains in the coverage
distance of the edge. The minimum number of bytes that a

vehicle may transfer during its transit in the coverage area is
given by

Dmin,serv
i,j =

Bj × (
Lj

vi,j
− tpi

)

kjamj × Lj

(10)

which signifies that the transfer of data must take place within
the time remaining after processing the service and before the
vehicle moves out of the coverage area. The time remaining
for a vehicle to transfer the data to process and get the result
back for a service required by vehicle Vi is tservrem,i =

Lj

vi,j
−tpi

.
From M/D/C/C queue modelling [15], it can be easily derived
that the minimum number of bytes that can be transferred
with equal bandwidth share to all vehicles in a coverage area
is given by

Bj×tservrem,i

kjam×Lj
. This results in Eqn. 10 by substituting

for tservrem,i.
The bandwidth schedulability constraint is then given by

servi,j ∗ (di + ri) ≤ Dmin,serv
i,j , i = 1..N, j = 1..M (11)

C. Objective Function

In this work, we use the following two objective functions
and demonstrate the results of optimization.

1) Objective 1: Minimization of maximum bandwidth uti-
lization over all edges
In the case of data delivery, the bandwidth utilization
at an edge is a summation of the bandwidth utilizations
of the vehicles which retrieve some data of size mi,j

and vehicles which demand a total bandwidth Bres. The
bandwidth utilization for vehicles requiring data can be
obtained as follows.

bwutil,data
j =

N∑
i=1

mi,j×vi,j
Lj

Bj
(12)

where mi,j×vi,j
Lj

is the bandwidth requirement of the
vehicle Vi retrieving data. For service delivery, the
bandwidth utilization at an edge of a vehicle is given
by

bwutil,serv
j =

N∑
i=1

di + ri(
Lj

vi,j
− tpi

)
×Bj

(13)

Let Bres
j be the bandwidth reserved for other vehicles

near edge Ej . Then the bandwidth utilization for other
vehicles with reserved bandwidth of Bres

j is computed
as follows.

bwutil,oth
j =

Bres
j

Bj
(14)

The total bandwidth utilization at edge Ej considering
vehicles requiring data and service both is then com-
puted as follows.

bwutil
j = bwutil,data

j + bwutil,serv
j + bwutil,oth

j (15)

Hence, the first objective function considered is given
by

minimize max
∀j=1..M

bwutil
j (16)



which denotes the minimization of maximum bandwidth
utilization considering all the M edges.

2) Objective 2: Minimization of total bandwidth cost over
all edges
The bandwidth cost is computed based on a pricing
mechanism used in [6], which balances the bandwidth
load across all the switches in cloud networks thereby
controlling congestion. We apply the same principle
in this work, where we use the pricing mechanism to
balance the bandwidth load considering the vehicles
which request data from the cloud. The bandwidth cost
at an edge Ej is computed using a non linear pricing
policy as follows.

bwcost
j = β × (1 + bwutil

j )2 (17)

where β is the cost factor. The second objective function
is obtained by

minimize

M∑
j=1

bwcost
j (18)

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the utility of our optimiza-
tion framework by obtaining solutions for different problem
sizes by varying the number of edges and the number of vehi-
cles requiring data/service. In the first two sets of experiments,
we show the results for optimal data delivery to vehicles via
the edges. The two sets of experiments corresponds to the
two objective functions discussed in Section IV - minimiza-
tion of max bandwidth utilization and minimization of total
bandwidth cost. The final set of experiments shows the results
for optimal service delivery to vehicles via the edges.

We will first explain the experimental settings and then
present our inferences from the results obtained. The data for
the experiments were generated using Matlab scripting and the
optimization was carried out using the IBM ILOG CPLEX
Solver.

A. Data Delivery: Variation of objective 1 with varying density
values for different N

The intention of this experiment is to study the effects of
variation of vehicle density values on the minimal maximum
bandwidth utilization for different values of N and M . Firstly,
we draw inferences regarding the general trend considering
different problem sizes and then observe more detailed varia-
tions in objective functions.

The parameters used in this experiment are as follows.
1) We used 4 values for the number of edges (M ) from

the set {25, 49, 81, 100}. Although, these edges were
generated as a square grid of sizes 5×5, 7×7, 9×9 and
10 × 10 respectively, the topology of the edge network
does not change our proposed optimization framework
including the formulated constraints.

2) Number of vehicles (N ) requiring update was varied in
steps between 20 and 200.

3) Vehicle jam density (kjamj ) was fixed to 50 at all edges.
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Fig. 3: Variation of minimal maximum bandwidth utilization
with vehicle density for varying N

4) The actual vehicle density (kj) in the coverage area was
varied between 35 and 10 in steps of 5.

5) Coverage distance (Lj) of each edge was assigned
arbitrary values between 0.6 miles and 1.6 miles.

6) Memory requirement of data requested by each vehicle
(Mi) was randomly generated using uniform distribution
between 60 Mbits and 80 Mbits. These values are very
much in the range of realistic software update sizes as
given in [1].

7) Memory capacity of the edge (Mj) was randomly gener-
ated using uniform distribution between 400 Mbits and
500 Mbits.

8) Maximum bandwidth capacity of the edges (Bj) was
randomly generated using uniform distribution between
8 Mbps and 15 Mbps.

9) Free flowing velocity (vfj ) of the vehicles in the coverage
area of edges was randomly generated between 50 and
70 mph.

10) The route of the vehicles was randomly generated by
picking connected edges randomly from a square grid.

11) The earliest travel times of the vehicles to the edges
on its route was generated based on the distance of
the edges from each other and free flowing velocity of
the vehicles between the edges, both being generated
randomly.

The results obtained from the above experimental setting
are shown in Fig. 3. The graphs demonstrate the variation
in minimal max bandwidth utilization across all the edges
for varying vehicle density values and for different number
of vehicles. The four sub-plots correspond to the four edge
network sizes we have used for this experiment. There are
three important characteristics we observe from the results in
Fig. 3a-Fig. 3d. Firstly, for any value of N , the minimum of the
max bandwidth utilization decreases as the vehicle density (kj)



at the edges increases. This clearly is because of the decrease
in the velocities of the vehicle in the coverage area of the
edge as the density increases resulting in more time spent in
the coverage area thereby requiring a lesser bandwidth.

The second result we observe is that at lower vehicle den-
sities, the minimum of the max bandwidth utilization across
all the edges increases rapidly with the increase in the value
of N and the increase in the objective function is marginal at
higher vehicle densities. This behaviour occurs because of the
combination of the earlier result where bandwidth requirement
increases at lower densities due to increased velocity and
the increase in bandwidth utilization at the edges due to
increase in the number of vehicles requiring data delivery
(N ). For higher vehicle densities, the increase in minimal
max bandwidth utilization is marginal because the increase in
bandwidth requirement for the additional number of vehicles
is marginal due to lower velocities.

Finally, for some lower vehicle density values, there is no
feasible solution, because the velocity of vehicles is high and
therefore does not receive enough bandwidth. This infeasible
density point shifts upwards to higher densities with increase
in the value of N . This is clear from all the sub-plots in
Fig. 3 and specifically highlighted in the case of N = 150 and
M = 81, where there is only feasibility for kj = 35. However,
the infeasibility density point can be lowered with increase in
the number of edges, which is explained below. There is no
feasible solution for kj = 15 for any plot from Fig. 3a-Fig. 3c.
But, feasibility for kj = 15 is found with increase in the value
of M to 100 and N = 60 as shown in Fig. 3d. This result
shows that there is a range of values of M for each N , which
will lead to feasibility for lower values of kj as the vehicle
bandwidth requirement can be shared across larger number
of edges resulting in lower requirement of bandwidth at each
edge. Based on the values of M and other parameters, there is
a limit on how many vehicles requiring update (N ) and what
vehicle densities can give feasible solution.

B. Data Delivery: Variation of objective 2 with varying density
values for different N

In this experiment, we vary some parameters of the vehicle
flow model along with N and M . The intention of this
experiment is to study the effects of variation of the flow model
parameters on the minimum bandwidth cost considering all the
edges in the network. Here, we draw inferences regarding the
general trend for different problem sizes and observe if there
are any important changes from the results in Fig. 3.

The parameters used in this experiment are as follows.
1) The bandwidth cost factor β was fixed to 1.5.
2) Rest of the parameters were used from the previous

experiment.
The results obtained from the above experimental setting

are shown in Fig. 4. The graphs demonstrate the variation
in minimum bandwidth cost for varying density values at the
edges and for different number of vehicles. The four sub-plots
correspond to the four edge network sizes we have used for
this experiment. The trends that we observed in the earlier
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Fig. 4: Variation of minimum bandwidth cost with vehicle
density for varying N

experiments for minimum of max bandwidth utilization are
valid in this set of experiments also, i.e., (a) the bandwidth
cost reduces with increase in vehicle density, (b) the rise in the
bandwidth cost with increasing values of N is higher for lower
densities than higher densities, and (c) there are no feasible
solutions for specific lower density values for each N in an
edge network with M edges.

Although the general trend in the results are the same in
this experiment also, the solutions obtained are more inclined
towards reducing the cost of bandwidth utilization at all the
edges. In the earlier experiment, we observed from the results
obtained that the minimum of max bandwidth utilization
objective led to solutions where the data was more evenly
distributed across the edges on the route of individual vehicles
all the time while this was not necessarily the best solution
in terms of the bandwidth cost considering all the edges. For
example, in the case of M = 25 and N = 40, we saw that the
bandwidth cost was minimal with non even data distribution
to the edges. The reason for this is that evenly distributing data
results in data being deployed on some edges, which incurs
more cost, which is something not considered when using the
objective function that minimizes max bandwidth utilization
objective. Minimizing bandwidth cost is a good objective
when pricing is attached to allocation of bandwidth, while
minimizing max bandwidth utilization is a good objective
when it is necessary to balance the bandwidth load over all
the edges.

In Fig. 3a, the minimum max bandwidth utilization for
kj = 35 is very close for N = 20 and N = 40. Additionally,
the increase in minimum max bandwidth utilization is very
less with increase in the values of N for kj = 35. This
characteristic does not hold in the case of minimum bandwidth
cost objective, where there is higher cost difference between
N = 20 and N = 40 for kj = 35. This is because



the first objective does not take into consideration the extra
cost incurred by adding the bandwidth load for new vehicles
due to deployment of data on edges with lower utilization.
Therefore, the minimum max bandwidth utilization value is
not affected significantly whereas there is significant increase
in the minimum bandwidth cost.

C. Data+Service Delivery: Variation of objective 2 with vary-
ing percentage of vehicles requiring service

In this section, we consider a practical scenario where
there are vehicles requiring both data and service. We use the
experiment in Section V-B as the starting point where all the
vehicles require data and increase the percentage of vehicles
that require delivery of some service. The parameters used in
this experiment are as follows

1) The parameters for vehicles requesting data remains the
same from previous experiment.

2) The computation capacity of the edges (Pj in number
of VMs) was randomly generated using uniform distri-
bution and is upper bounded by 40 and lower bounded
by 24.

3) P occ
j was randomly generated between 1 and 3, pi was

randomly generated between 1 and 10.
4) tpi was randomly generated between 1 and 10 sec.
5) di uses the same values generated for Mi in Section V-A,

while ri is randomly generated between 1 and 25 Mbits.
Due to space constraints we do not plot the graphs for this
result and give a brief overview of the results obtained only for
one problem size. The percentage of vehicles requiring service
was varied between 10% and 40% for M = 49 and N = 120.
The density values used were kj = 35 and kj = 30. The
two results observed in this experiment are described below.
The bandwidth cost increased only slightly with increase in
percentage of vehicles requiring service delivery for kj = 35,
i.e, total bandwidth cost increased from 94.96 (only vehicles
requiring data delivery) to 95.57 (40% vehicles requiring
service delivery). The amount of increase in bandwidth cost
depends on the values of di and ri. The larger these values,
higher will be the increase in bandwidth cost. For kj = 30, the
bandwidth cost increase was small, but feasible solution ended
after 20% increase in vehicles requiring service delivery.

VI. CONCLUSION

In this work, we introduced a centralized optimization
framework for data/service delivery to connected vehicles
via edges. Our optimization framework introduced constraints
necessary for both data and service delivery. In addition, we
integrated a well known vehicle flow model into our opti-
mization framework. This allowed us to optimize the delivery
of data/services for a bandwidth cost function considering
the traffic flow. The experiments demonstrated the effect of
considering the vehicle flow parameters in bandwidth optimal
data/service delivery.
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