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Design and Implementation of Attack-Resilient Cyber-Physical Systems

Abstract
Recent years have witnessed a significant increase in the number of security-related incidents in control
systems. These include high-profile attacks in a wide range of application domains, from attacks on critical
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drone [9]-[11]. These incidents have greatly raised awareness of the need for security in cyberphysical
systems (CPSs), which feature tight coupling of computation and communication substrates with sensing and
actuation components. However, the complexity and heterogeneity of this next generation of safety-critical,
networked, and embedded control systems have challenged the existing design methods in which security is
usually consider as an afterthought.
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Design and Implementation of Attack-Resilient
Cyber-Physical Systems

Miroslav Pajic, James Weimer, Nicola Bezzo, Oleg Sokolsky
George J. Pappas, Insup Lee

Recent years have witnessed a significant increase in the number of security related incidents
in control systems. These include high-profile attacks in a wide range of application domains
– from attacks on critical infrastructure, as in the case of the Maroochy Water breach [1], and
industrial systems (e.g., the StuxNet virus attack on an industrial SCADA system [2], [3] and
the German Steel Mill cyber attack [4], [5]), to attacks on modern vehicles [6], [7], [8]. Even
high-assurance military systems were shown to be vulnerable to attacks, as illustrated in the
highly publicized downing of the RQ-170 Sentinel US drone [9], [10], [11]. These incidents
have seriously raised security awareness in Cyber-Physical Systems (CPS), which feature tight
coupling of computation and communication substrates with sensing and actuation components.
However, the complexity and heterogeneity of this next generation of safety-critical, networked
and embedded control systems have challenged the existing design methods in which security
is usually consider as an afterthought.

This is well illustrated in modern vehicles that present a complex interaction of a large number
of embedded Electronic Control Units (ECUs), communicating over an internal network or
multiple networks. On the one hand, there is a current shift in vehicle architectures, from isolated
control systems to more open automotive architectures with services such as remote diagnostics
and code updates, and vehicle-to-vehicle communication. On the other hand, this increasing set
of functionalities, network interoperability, and system design complexity may introduce security
vulnerabilities that are easily exploitable. Security guarantees for these systems are usually based
on perimeter security where internal networks are resource constrained, mostly depending on
the security of the gateway and external communication channels. Thus, any successful attacks
on the gateway or external communication, or physical attacks on components connected to
an internal network, could completely compromise the system; as shown in [6], [7], [8], using
simple methods an attacker can disrupt the operation of a car, even taking complete control over
it.

In general, attacks on a cyber-physical system may affect all of its components – computational
nodes and communication networks are subject to intrusions, and physical environment may be
maliciously altered. Thus, control specific CPS-security challenges arise from two perspectives.
On the one hand, conventional information security approaches can be used to prevent intrusions,
but attackers can still affect the system non-invasively via the physical environment. For instance,
non-invasive attacks on GPS-based navigation systems [12], [13], [14], and anti-lock braking
systems [15] in vehicles illustrate how an adversarial signal can be injected into the control
loop using the sensor measurements. This highlights limitations of the standard cyber-based
security mechanisms, since even if employed communication protocols over the internal networks
ensure data integrity, they do not alone guarantee resilience of control systems to attacks on
physical components of the system. On the other hand, getting access to an internal network
would allow the attacker to compromise sensors→controller→actuators communication; from the
control perspective these attacks can also be modeled as additional adversary signals introduced
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via the sensors and actuators [16]. Although these types of attacks could be addressed with the
use of cryptographic tools that guarantee data integrity, resource constraints inherent in many
CPS domains may prevent heavy-duty security approaches from being deployed.

Therefore, it is necessary to address the security challenge related to the attacks against the
control system as the primary function of CPS, where the attacker can (1) take over a sensor
and supply wrong or untimely sensor readings, or (2) disrupt actuation. These attacks manifest
themselves to the controller as malicious interference signals, and the defenses against them have
to be introduced in the control design phase. Specifically, resilience against these attacks is built
into the control algorithm under the assumption that the controller itself executes according to
its specification. This approach have attracted a lot of attention, with several efforts focused on
the use of control-level techniques, which exploit a model of the ‘normal’ system behavior, for
attack-detection and identification in CPS (e.g., [17], [16], [18], [19], [20], [21], [22], [23]). For
instance, methods for attack-detection based on the use of standard residual probability based
detectors were presented in [24], [25], [22], [23], while the problem of state estimation in the
presence of sensors attacks was addressed in [18], [19], [26], [27].

By contrast, attacks on the execution platform prevent the correct operation of the control
system as in the cases where the attacker can disrupt execution of control tasks. Defense against
such attacks cannot rely on the control algorithm, which may not be running correctly. Instead, it
requires security and performance guarantees that the platform components provide to the control
system, and which have to be incorporated into the design of control-based security techniques.
For example, the attacker may try to affect control performance by dramatically slowing down
the controller task; one way to achieve this is by introducing a higher-priority, computationally
intensive task into the operating system. The key to addressing these types of attacks is to
explicitly specify the assumptions made about the platform during the control design. Real-
time issues such as sampling and actuation jitter, and synchronization errors between system
components directly affect quality of control and the level of guarantees provided by control-
based security mechanisms. For instance, execution timing directly affects the controlled plant’s
model that should be used for control-level security techniques; control engineers may determine
that the controller guarantees the required resiliency levels (e.g., attack-detection) and the desired
control performance, as long as the worst-case execution time of the control task is, for example,
20 milliseconds and output jitter is no more than 2 milliseconds.

Consequently, for attack-resilient control in CPS it is necessary to be able to capture platform
effects on the control-level security guarantees by providing robust security-aware control
methods that can deal with noise and modeling errors. This will enable the extraction of system
level requirements imposed by control algorithms on the underlaying OS and utilized networking,
and facilitate reasoning about attack-resilience across different implementation layers.

In this article, we describe our efforts on the development of attack-resilient CPS. Specifically,
a case study is considered – design of a resilient cruise controller for an autonomous ground
vehicle, focusing on one component of the system, namely attack-resilient state estimator (RSE)
and the performance guarantees in the presence of attacks. Hence, the article starts by addressing
the problem of attack-resilient state estimation, before providing robustness guarantees for the
implemented RSE (building on our work from [26]). It is shown that the maximal performance
loss imposed by a smart attacker, exploiting the difference between the model used for state
estimation and the real physical dynamics of the system, is bounded and linear with the size of
the noise and modeling errors. Furthermore, it is described how implementation issues such as
jitter, latency and synchronization errors can be mapped into parameters of the state estimation



2

procedure. This effectively enables mapping control performance requirements into real-time
(i.e., timing related) specifications imposed on the underlying platform. Finally, it is presented
how to construct an assurance case for the system that covers both a mathematical model of
the state estimator and its physical environment, as well as a software implementation of the
controller. While the models considered in the case study are specific to the control system and its
intended deployment platform, the modeling, robustness analysis, and assumptions encountered
on each level in this case study are typical of many other CPS control problems.

I. ATTACK-RESILIENT STATE ESTIMATION WITH NOISE AND MODELING ERRORS

The problem of state estimation in the presence of sensor and actuator attacks has attracted
significant attention in recent years. This has been motivated by the fact that the same controllers
can be used as in the case without attacks, if the controller is able to reasonably well estimate
the state of the controlled physical process even if some of the sensor measurements and
actuator commands have been compromised. For deterministic (i.e., noiseless) linear time-
invariant systems, the correct state estimate in the presence of sensor attacks can be obtained
as the solution of l0 optimization problems [18], [19]. In addition, in [27], [28], the authors
presented estimation techniques for linear and differentially-flat systems, respectively, based on
the use of Satisfiability Modulo Theories (SMT) solvers.

However, the initially proposed techniques for state estimation in the presence of attacks focus
on noiseless systems for which the exact model of the system’s dynamics is known. This, as
discussed in the introduction, limits their applicability in real systems since it is unclear what
level of resiliency guarantees they could provide with more realistic sensing, actuation, and
execution models. Hence, the focus of this section is on the attack-resilient state estimation for
dynamical systems with bounded noise and modeling errors, and derivation of a worst case bound
for performance degradation in the presence of attacks. First, the system model and how some
implementation effects can be mapped into the model’s parameters are presented, before the
estimator and the procedure to bound its worst-case estimation error in the presence of attacks
is introduced.

1) Notation and Terminology: In this article, the following notation is used. For a set S, |S|
denotes the cardinality (i.e., size) of the set, while for two sets S and R, S \ R is used to
denote the set of elements in S that are not in R. In addition, for a set K ⊂ S, K{ specifies the
complement set of K with respect to S – i.e., K{ = S \K. Also, R is used to denote the set of
reals, and 1′N to denote the row vector of size N containing all ones. Finally, for any sequence
of αi, i ≥ 0, since the sum

∑−1
0 αi contains no elements, to simplify the notation it is assumed

that it is equal to zero – i.e.,
∑−1

0 αi = 0.
Furthermore, AT is used to indicate the transpose of matrix A, while ith element of a vector

xk is denoted by xk,i. For vector x and matrix A, |x| and |A| denote the vector and matrix whose
elements are absolute values of the initial vector and matrix, respectively. Also, for matrices P
and Q, P � Q is used to specify that the matrix P is element-wise smaller than the matrix Q.

For a vector e ∈ Rp, the support of the vector is set

supp(e) = {i | ei 6= 0} ⊆ {1, 2, ..., p},

while l0 norm of vector e is the size of supp(e) – i.e., ‖e‖l0 = |supp(e)|. Note that, although
l0 is not formally a norm, in this article we will abuse the terminology and referred to it as a
norm in order to maintain consistency with the terminology used in previous work on this topic
(e.g., [19]).
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Also, for a matrix E ∈ Rp×N , e1, e2, ..., eN is used to denote its columns and E′1,E
′
2, ...,E

′
p

to denote its rows. The row support of matrix E is defined as the set

rowsupp(E) = {i | E′i 6= 0} ⊆ {1, 2, ..., p}.
As for vectors, l0 norm for a matrix E is defined as ‖E‖l0 = |rowsupp(E)|.

A. System Model
In this article, a Linear-Time Invariant (LTI) system is considered, specified as

xk+1 = Axk + Buk + vk

yk = Cxk + wk + ek,
(1)

where x ∈ Rn and u ∈ Rm denote the plant’s state and input vectors, respectively, while
y ∈ Rp is the plant’s output vector obtained from measurements of p sensors from the set
S = {1, 2, ..., p}. Accordingly, the matrices A,B and C have suitable dimensions. Furthermore,
v ∈ Rn and w ∈ Rp denote the process and measurement noise vectors, while e ∈ Rp denotes the
attack vector. The set K ⊆ {1, 2, ..., p}, containing sensors under attack, is used to model attacks
on plant sensors. This means that ek,i = 0 for all i ∈ KC and k ≥ 0, where KC = S \ K, and
therefore supp(ek) ⊆ K for all k ≥ 0. This work assumes that the noise vectors are constrained
in certain ways. Furthermore, v and w are used to capture different types of modeling errors
that may be caused by some implementation (e.g., real-time) issues.

Note that the setup presented in this article can be easily extended to include attacks on the
system’s actuators. In this case additional vector eak is added to the plant input at each step
k ≥ 0. As shown in [19], the same technique used for resilient-state estimation in the presence
of attacks on sensors can be used to obtain the plant’s state when both subsets of the plant’s
sensors and actuators are compromised. Consequently, the analysis and results presented in this
article can be easily extended to the case when a subset of the actuators is also under attack. It is
important to highlight that in cases where a small enough subsets of plant actuators and sensors
are compromised (i.e., enabling the resilient state-estimation), even with accurate estimates of
the plant’s state system stability can not be guaranteed due to attacks on actuators, and the
attacker could effectively gain complete control over the plant. This is consistent with the results
from [17].

1) Attack-resilient State Estimation for Noiseless Dynamical Systems: For linear systems
without noise (i.e., systems from (1) where wk = 0 and vk = 0, for all k ≥ 0), a l0-norm
based method to extract state estimate in presence of attacks is introduced in [19]. To obtain the
plant’s state at any time-step t (i.e., xt), the proposed procedure utilizes the previous N sensor
measurement vectors (yt−N+1, ...,yt) and actuator inputs (ut−N+1, ...,ut−1) to evaluate the state
xt−N+1; the state xt is then computed using the history of actuator inputs (ut−N+1, ...,ut−1)
by applying the system evolution from (1) for N − 1 steps. Specifically, the state xt−N+1 is
computed as the minimization argument of the following optimization problem

min
x∈Rn
‖Yt,N − ΦN(x)‖l0 . (2)

Here, Yt,N = [ỹt−N+1|ỹt−N+2| . . . |ỹt] ∈ Rp×N aggregates the last N sensor measurements while
taking into account the inputs applied during that interval

ỹk = yk, k = t−N + 1,

ỹk = yk −
k−t+N−2∑

i=0

CAiBuk−1−i, k = t−N + 2, ..., N
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Furthermore, ΦN : Rn → Rp×N is a linear mapping defined as ΦN(x) =[
Cx|CAx| . . . |CAN−1x

]
, which captures the system’s evolution over N steps caused by the

initial state x.
The rationale behind the problem (2) is that the matrix Et,N = Yt,N − ΦN(xt−N+1) presents

the history of the last N attacks vectors et−N+1, ..., et – i.e.,

Et,N = [et−N+1|et−N+2| . . . |et] ∈ Rp×N . (3)

The critical observation here is that for a noiseless LTI system there is a pattern of zeros
(i.e., zero-rows) in the matrix Et,N that corresponds to the non-attacked sensors and which
remains constant over time; if K is the set of compromised sensors then for all N, t such that
N ≥ 0, t ≥ N − 1

rowsupp(Et,N) ⊆ K.

As shown in [19], for noiseless systems the state estimator from (2) is optimal in the sense
that if another estimator can recover xt−N+1 then the one defined in (2) can as well. In addition,
the estimator from (2) can extract the system’s state after N steps when up to q sensors are
under attack if and only if for all x ∈ R \ {0},

|supp(Cx) ∪ supp(CAx) ∪ . . . ∪ supp(CAN−1x)| > 2q.

In this work, qmax is used to denote the maximal number of compromised sensors for which
the system’s state can be recovered after N steps despite attacks on sensors. However, note that
the size of the utilized measurement history N is considered to be an input parameter to the
resilient-state estimator; in the general case, the notation qmax,N should be used. Hence, if the
number of compromised sensors q satisfies that q ≤ qmax, for noiseless systems the minimal l0
norm of (2) is equal to q. In addition, note that for these systems qmax does not decrease with
N, and due to Cayley-Hamilton theorem [29] it cannot be further increased when more than n
previous measurements are used – i.e., qmax obtains the maximal value for N = n. Finally, beside
the measurement window size N , qmax only depends on the system’s dynamics (i.e., matrices A
and C), as was characterized in [30], [19]. To formally capture this dependency, consider the
following notation – for any set K = {k1, ..., k|K|} ⊆ S, where k1 < k2 < ... < k|K|, the matrices
OK and PK are defined as

OK =


PKC
PKCA

...
PKCAN−1

 PK =

 i′k1...
i′k|K|

 . (4)

Here, PK denotes the projection from the set S to the set K by keeping only rows of C with
indices that correspond to sensors from K, because i′j denotes the row vector (of appropriate
size) with a 1 in its jth position.

Definition 1 ([30]): An LTI system with the form as in (1) is said to be s-sparse observable
if for every set K ⊂ S of size s (i.e., |K| = s), the pair (A, PK{C) is observable.

From the results in [30], [19], the following lemma holds.
Lemma 1: qmax is equal to the maximal s for which the system is 2s-sparse observable.
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2) Sources of Modeling Errors: Beside process and measurement noise, vectors vk and wk

in (1) can be used in some cases to capture deviations in the plant model from the real dynamics
of the controlled physical system. One source of modeling errors is the uncertainty of parameters
estimation during the system modeling; in the general case, these types of errors are dominant
in the overall model error. However, in some cases significant modeling errors are introduced
by non-idealities of control system implementation and limitations of the utilized computation
and communication platforms. For instance, modeling errors can be caused by sampling and
computation/actuation jitter, and synchronization errors between system components in scenarios
where continuous-time plants are being controlled. Errors of this type are emphasized in control
systems in which underlying computation and communication platforms provide very loose
execution guarantees.

The described attack-resilient state estimator (2) is based on discrete-time model (1) of the
system. Consequently, to be able to deal with continuous-time plants it is necessary to discretize
the controlled plant, while taking into account real-time issues introduced by communication
and computation schedules. To illustrate this, consider a standard continuous-time plant model

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t),
(5)

with state x(t) ∈ Rn, output y(t) ∈ Rp and input vector u(t) ∈ Rm, where matrices Ac,Bc,Cc

are of the appropriate dimensions.
First, consider setups where all plant’s output are sampled (i.e., measured) at times tk, k ≥ 0

and where all actuators apply newly calculated inputs at times tk+τk, k ≥ 0, as shown in Fig. 1.
Here, the kth sampling period of the plant is denoted by Ts,k = tk+1 − tk, and the input signal
will have the form shown in Fig. 1(b). Using the approach from [31], [32], the system can be
described as

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t), t ∈ [tk + τk, tk+1 + τk+1),

u(t+) = uk, t ∈ {tk + τk, k = 0, 1, 2, . . .},
(6)

where u(t+) is a piecewise continuous function that only changes values at time instances
tk + τk, k ≥ 0. Thus, the discretized system model can be represented as [29]

xk+1 = Akxk + Bkuk + B−k uk−1,

yk = Cxk,
(7)

where xk = x(tk), k ≥ 0, and

Ak = eAcTs,k ,

Bk =

∫ Ts,k−τk

0

eAcθBcdθ, B−k =

∫ Ts,k

Ts,k−τk
eAcθBcdθ.

(8)

Note that the matrices Ak,Bk and B−k are time-varying (with k) and depend on the continuous-
time plant dynamics, inter-sampling time Ts,k, and latency τk. On the other hand, when control
(and state estimation) is performed using resource constrained CPUs, the designers usually utilize
the ‘ideal’ discrete-time model of the system of the form (1) where for all k ≥ 0, Ts,k = Ts and
τk = 0

A = eAcTs , B =

∫ Ts

0

eAcθBcdθ. (9)
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Hence, by comparing the discrete-time models (1) and (7), in this case sampling and actuation
jitter, and actuation latency (caused by computation and/or communication) introduce the error
component vjitk (k ≥ 0) defined as

vjitk = (eAcTs,k − eAcTs)︸ ︷︷ ︸
∆A

xk +

∫ Ts,k−τk

Ts

eAcθBcdθ︸ ︷︷ ︸
∆B

uk + B−k uk−1. (10)

Finally, from the equation above it follows that a bound on the size of the error vjitk can obtained
from the conservative bounds on the sampling jitter (i.e., Ts,k − Ts) and latency (i.e., τk), for a
predefined range of acceptable system states and actuator inputs. For example, boundedness of
the system state can be ensured in the case where the actual closed-loop system is stable.

a) Effects of Synchronization Errors: To simplify the presentation, only systems where the
sensors do not have a common clock source are considered – i.e., where there possibly exist
synchronization errors between sensors; the same approach can be extended to scenarios with
synchronization errors between plant actuators. In this case, although scheduled to sample at the
same time-instance tk, each sensor j will actually perform measurement at time tk,j . Therefore,
for every j = 1, ..., p, yk,j = C′jx(tk,j) instead of C′jx(tk), where C′j denotes the jth row of C,
meaning that the synchronization error introduces a measurement error defined as

vsynk,j = C′j(x(tk)− x(tk,j)) = C′j(e
Ac∆tk,jx(tk) +

∫ ∆tk,j

0

eAcθBcdθuk−1). (11)

Here, ∆tk,j = tk − tk,j captures the synchronization error for each sensor j. Hence, if the plant
state can be bounded (e.g., due to closed-loop system stability), for a predefined actuation range it
is possible to provide a bound on the size of the measurement error vector vsynk ∈ Rp describing
modeling errors caused by synchronization errors between sensors.

B. l0-based Method for Resilient State Estimation in the Presence of Noise

In the rest of this section, unless otherwise specified, the term noise will be used to both
include process and measurement noise, and capture modeling errors – i.e., discrepancy between
the model used to design the state-estimator and the real dynamics of the plant. The presence
of noise limits the use of the attack-resilient state estimator from (2). For example, in this
case the l0 norm of a solution of the problem in (2) may be larger than qmax, indicating that
more than the allowed number of sensors has been compromised, which violates requirements
for correct operation of the state estimator. Therefore, it is necessary to provide a method for
attack-resilient state estimators in presence of noise, with a provable bound on the worst-case
performance degradation of the introduced resilient-state estimator due to the bounded size noise.

As illustrated in the previous subsection, the effects of the input vectors uk are taken into
account when computing the matrix Yt,N . Thus, in the rest of this article it is assumed that
in (1) uk = 0 for all k ≥ 0. In addition, to further simplify the notation the case for t = N−1 is
considered, meaning that our goal is to obtain x0, and thus, the matrices Yt,N ,Et,N and ΦN(x)
are denoted as Y,E and Φ(x), respectively.

Consider x0, the state of the plant at k = 0, and the system’s evolution for N steps as
specified in (1) (for uk = 0) for some attack vectors e0, ..., eN−1 applied via sensors from set
K = {i1, ..., iq} ⊆ S, where |K| ≤ qmax and the corresponding matrix E = [e0|e1| . . . |eN−1].
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Furthermore, consider the case where |wk| � εwk
∈ Rp and |vk| � εvk ∈ Rn, k = 0, 1, ..., N − 1

– i.e., the process and element noise vectors are element-wise bounded – and let’s define

Yw,v = [y0|y1| . . . |yN−1] .

Note that the matrix Yw,v contains measurements of the system including noise. Finally, Ȳ =
[ȳ0|ȳ1...|ȳN−1] denotes the sensor measurements (plant outputs) that would be obtained in this
case if the system was noiseless – i.e., for ‖εwk

‖2 = ‖εvk‖2 = 0 (meaning that ȳk = CAkx0 +ek,
k = 0, 1, ..., N − 1).

Now, consider the following optimization problem

P0(Y) : min
E,x
‖E‖l0

s. t. E = Y − Φ(x).
(12)

As previously described
(x0,E) = arg maxP0(Ȳ), (13)

where q = ‖E‖l0 ≤ qmax. However, the ’ideal’ (noiseless) measurements from Ȳ are not available
to the estimator; the estimator can only use the measurements specified by the matrix Yw,v. In
addition, it is worth noting that (x0, E) may not even be a feasible point for problem P0(Yw,v)
that utilizes noisy sensor measurements. Consequently, there is need to adapt problem P0(Y) to
non-ideal models that capture noise and modeling errors.

To achieve this, consider the following problem that relaxes the equality constraint from (12)
by including a noise allowance

P0,∆(Y) : min
E,x
‖E‖l0

s. t. |Y − Φ(x)− E| �∆.
(14)

Here, the matrix ∆ ∈ Rp×N contains non-negative tolerances δj,i for each sensor i, i = 1, ..., p,
in each of the N steps j – i.e., ∆ = [δ0|δ1| . . . |δN−1], δi ∈ Rp, i = 0, 1, ..., N − 1. The solution
of the above problem is denoted as

(x0,∆,E∆) = arg maxP0,∆(Yw,v),

q∆ = ‖E∆‖l0 .
(15)

Note that P0,0p×N (Y) = P0(Y), for all Y ∈ Rp×N .
To allow for the use of (14) as an attack-resilient state estimator it is necessary to ensure that

P0,∆(Y) has a feasible point (x,E) such that ‖E‖l0 ≤ qmax; this condition has to be satisfied
for all Y ∈ Rp×N that could be ’generated’ by the system when at most qmax sensors have been
attacked. This can be guaranteed with an appropriate initialization of the matrix ∆. From (1),
it follows that for k = 0, 1, ..., N − 1

yk = CAkx0 + ek + C
k−1∑
i=0

Ak−1−ivi + wk

= ȳk + C
k−1∑
i=0

Ak−1−ivi + wk.
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If |(Ak−1−i)| is used to denote the matrix whose elements are absolute values of the
corresponding elements of the matrix Ak−1−i, the following bound can be obtained

|yk − ȳk| � |C|
k−1∑
i=0

|(Ak−1−i)||vi|+ |wk|

� |C|
k−1∑
i=0

|(Ak−1−i)|εvi + εwk
= δ̄k. (16)

Therefore, for δk � δ̄k (k = 0, ..., N−1) it follows that (x0,E) from (13) is a feasible point for
the problem P0,∆(Yw,v), meaning that there exists a solution of the problem – i.e., there exists
(x0,∆, E∆) from (15) such that q∆ = q ≤ qmax. This means that the solution of P0,∆(Yw,v)
from (14) can be used as a state-estimator in the sense that if at most qmax sensors have been
compromised it would provide a solution where the size of row-support of E∆ is not larger than
qmax.

C. Robustness of P0,∆(Y) State Estimation
To perform robustness analysis for P0,∆(Y) optimization problem, it is assumed that the

matrix ∆ satisfies the aforementioned conditions. Consider (x0,∆,E∆) from (15), and a matrix
Σ ∈ Rp×N such that

Y − Φ(x0,∆)− E∆ = Σ. (17)

Here, |Σ| �∆. In addition, because (x0,E) is a feasible point for P0,∆(Y), it follows that

q = ‖E‖l0 ≥ ‖E∆‖l0 = q∆,

implying that ‖E− E∆‖l0 ≤ 2q. Our goal is to provide a bound on ‖∆x‖2 where

∆x = x0,∆ − x0. (18)

If ∆E is defined as ∆E = E∆ − E it holds that

∆E = (Yw,v − Φ(x0,∆)−Σ)− (Ȳ − Φ(x0))

= (Yw,v − Ȳ −Σ)︸ ︷︷ ︸
∆Y

−Φ(∆x0).

Let’s denote by ∆y0, ...,∆yN−1 the columns of the matrix ∆Y (i.e., ∆Y =[
∆y0, ...,∆yN−1

]
). From (16) and (17) it follows that

|∆yk| � δ̄k + δk � 2δk.

Accordingly, to provide a bound on ‖∆x‖2, the following problem can be considered

max
∆x

‖∆x‖2 (19)

‖Φ(∆x)−Ω‖l0 ≤ 2q, (20)
Ω � 2∆. (21)

Since q ≤ qmax, the feasible space can be increased by relaxing constraint (20) to

‖∆Y − Φ(∆x)‖l0 ≤ 2qmax. (22)
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Therefore, our goal is to bound ∆x for which there exists Ω ∈ Rp×N that satisfies (21), and for
where at least p− 2qmax rows of the matrix Φ(∆x)−Ω are zero-rows. Lets use F and KF ⊂ S
to denote the number of rows Φ∆(x) that are zero-rows and the set of corresponding sensors,
respectively. This means that at least F1 = p− 2qmax−F rows of Φ(∆x) are equal to the rows
of Ω, which are non-zero, and let’s use KF1 ⊂ S to denote sensors corresponding to those rows.
It is worth noting here that |KF ∪ KF1| = p− 2qmax and KF ∩ KF1 = ∅.

Since KF ⊂ S contains indices of zero-rows of Φ(∆x), it follows that OKF
∆x = 0, where

OKF
is defined as in (4). In addition, OKF1

∆x = ΩKF1
, where for Ω = [ω1|ω2|...|ωN ] (i.e., ωi, i =

1, ...N are columns of Ω such that |ωi| � 2δi), and

ΩKF1
=


PKF1

ω1

PKF1
ω2

...
PKF1

ωN

 ∆KF1
=


PKF1

δ1

PKF1
δ2

...
PKF1

δN

 .
Consequently, for ∆x to satisfy constraints (22) and (21) there have to exist sets KF ,KF1 ⊂ S

such that

|KF | = F, |KF1| =p− 2qmax − F, (23)
KF ∩ KF1 = ∅, (24)

OKF
∆x = 0, (25)

|OKF1
∆x| � 2∆KF1

. (26)

Now, consider the polyhedron P defined with constraints (23)-(26). From its definition it
follows that the point ∆x = 0 belongs to the polyhedron. In addition, the polyhedron P is
bounded. To show this, start with the following lemma.

Lemma 2: For any two sets KF ,KF1 ⊂ S such that |KF | = F , |KF1| = p − 2qmax − F and
KF ∩ KF1 = ∅,

rank(OKF∪KF1
) = n. (27)

Proof: From [19], qmax = ds/2− 1e where s is the cardinality of the smallest set K ⊆
S for which the matrix OK{ has non-trivial kernel. Note that |K{| = p − s, and since s ≥
2qmax + 1 > 2qmax, it follows that |K{| < p − 2qmax. Now consider any set K1 for which
|K{

1| ≥ p− 2qmax, meaning that |K1| ≤ 2qmax < s. Thus, OK{
1

does not have non-trivial kernel
(since K is the smallest such matrix), meaning that columns of OK{

1
are linearly independent.

Thus, since OK{
1
∈ RN |K{

1|×n, it follows that rank(OK{
1
) = n. This implies that for any K{

1 with
at least p − 2qmax sensors, and hence (27) holds since the set KF ∪ KF1 contains p − 2qmax
sensors.

Theorem 1: The polyhedron P defined by constraints (23)-(26) is bounded.
Proof: Lets assume the opposite, that P is unbounded; there exist a feasible point ∆x ∈ P

and a direction d ∈ Rn such that d 6= 0 and for any ε > 0, ∆x + εd ∈ P [33]. Therefore,
OKF

(∆x + εd) = 0, and since ∆x ∈ P it follows that OKF
d = 0. In addition,

|OKF1
(∆x + εd)| � 2∆KF1

(28)

implies that OKF1
d = 0 (otherwise for any non-zero element of the vector OKF1

d, when ε→∞
the absolute value of that element in vector εOKF1

d will be unbounded and the constraint (28)
will be violated). Therefore, d belongs to the kernel of OKF∪KF1

– i.e., OKF∪KF1
d = 0. However,
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from Lemma 2, OKF∪KF1
has full rank (i.e., rank(OKF∪KF1

) = n), meaning that it has non-trivial
kernel and thus d = 0, which violates our initial assumption and concludes the proof.

As a direct consequence of the above theorem it follows that maximal ‖∆x‖2 is bounded,
and the attacker cannot use modeling errors and the corresponding relaxation of the l0
optimization problem to introduce an unbounded error in the attack-resilient state estimator.

1) Bounding the State-estimation Error: The above theorem allows us to bound ‖∆x‖2, the
error of the resilient state estimator P∆,0(Yw,v), by noticing that the maximal value of a convex
function over a polyhedron can be obtained in a vertex of the polyhedron [34]. Thus, to determine
the maximal ‖∆x‖2 over the polyhedron P it is sufficient to compute ‖∆x‖2 at each vertex of
the polyhedron. The vertices of the polyhedron satisfy that[

OKF

OKF1

]
︸ ︷︷ ︸
ÕKF∪KF1

·∆x =

[
0

2∆+−
KF1

]
, (29)

where ∆+−
KF1

denotes a vector such that |∆+−
KF1
| = ∆KF1

(i.e., with elements whose absolute
values are equal to the corresponding elements of ∆KF1

). It is worth noting that there are
2|KF1

|·N such elements and thus 2|KF1
|·N vertices of the polyhedron. Finally, since ÕKF∪KF1

is a
full rank matrix (rank(ÕKF∪KF1

) = rank(OKF∪KF1
) = n), vertex points can be found as

∆xver = (ÕT
KF∪KF1

ÕKF∪KF1
)−1ÕT

KF∪KF1

[
0

2∆+−
KF1

]
= Õ†KF∪KF1

[
0

2∆+−
KF1

]
, (30)

where Õ†KF∪KF1
denotes the pseudoinverse of matrix ÕKF∪KF1

. Consequently, for any sets KF
and KF1 that satisfy (23) and (24), by checking all 2|KF1

|·N vertices defined by (31), the maximal
‖∆x‖2 can be determined for the corresponding polyhedron. However, since

‖∆xver(∆
+−
KF1

)‖2 = ‖∆xver(−∆+−
KF1

)‖2,

where ∆xver(∆
+−
KF1

) denotes the solution of (31) for specific ∆+−
KF1

, it is only needed to evaluate
norms at 2|KF1

|·N−1 points (i.e., vertices). Furthermore, to provide a bound on ‖∆x‖2 for all
∆x that satisfy (21) and (22), all such sets KF and KF1 have to be considered. Therefore, it is
necessary to evaluate all possible values for F . From the definition F ≥ 0. On the other hand,
from (25) KF has nontrivial kernel, meaning that as in the proof of Lemma 2, F = |KF | ≤
p− s ≤ p− 2qmax − 1. Finally, from (31) the bound can be over-approximated as

‖∆x‖2 ≤ 2 max
F,F1

λmax
Õ†KF∪KF1

‖∆KF1
‖2 = 2 max

F,F1

‖∆KF1
‖2

λmin
ÕKF∪KF1

, (31)

where λmax
Õ†KF∪KF1

denotes the maximal singular value of matrix Õ†KF∪KF1
, while λmin

ÕKF∪KF1

denotes

the smallest singular value of matrix ÕKF∪KF1
(and this is non-zero as it is a full rank matrix).

Note that the matrix ∆ captures several sources of modeling errors (e.g., noise, jitter,
synchronization errors). Since (31) is linear in ∆, the estimation error bound obtained by
evaluating the ‖∆x‖2 in vertices of the polyhedron will be less than or equal to the sum of
estimation error bounds computed separately for each error component. Therefore, it is possible
to separately analyze the impact for each source of modeling errors on robustness of the state
estimator.
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However, to obtain the bound, in the general case the number of times that equation (31) needs
to be solved is

∑p−s
F=0

(
p
F

)(
p−F

p−2qmax−F

)
2(p−2qmax−F )N−1. Note that, for almost all systems, meaning

that for almost all pairs of matrices A×C ∈ Rn×n×Rp×n (i.e., the set of matrices for which the
property does not hold has Lebesgue measure zero), the number of correctable errors using the
previous N = n measurement vectors is (maximal and) equal to qmax = dp/2− 1e [19]; in this
case s = p, and thus F can only take the value 0, meaning that the error needs to be evaluated in
p · 2n−1 if p is an odd number, or p(p−1)

2
22n−1 if the system has an even number of sensors. This

effectively limits the above described exhaustive search for systems with large number of states
or sensors. In this case it is possible to utilize a more conservative bound introduced in [35],
which significantly reduces the complexity of the procedure used for the computation.

D. Evaluation
To evaluate conservativeness of the error bound described in the previous subsection, two

types of systems are considered – systems with n = 10 states and p = 5 sensors, and with
n = 20 states and p = 11 sensors. For each system type, 100 systems were generated with
measurement models satisfying that the rows of the C matrix have unit magnitude and matrices
∆ had elements between 0 and 2. In addition, for each of the 200 systems, the state-estimation
error ∆x = ‖x0,∆ − x0‖2 was evaluated in 1000 experiments for various attack and noise
realizations. Attacks and noise profiles were chosen randomly assuming uniform distribution of
the following: (a) The number of attacked sensors between 0 and 2 for systems with 5 sensors,
and between 0 and 5 for systems with 11 sensors, (b) Attack vectors on the compromised sensors
between −10 and 10, chosen independently for each attacked sensor, and (c) Noise realizations
between the noise bounds specified by matrices ∆.

The considered case was with the window size N equal to the number of system states
(i.e., N = n). Comparison between the bounds computed as described in the previous section
and simulation results are shown in Fig. 2 and Fig. 3. Fig. 2(a), Fig. 2(b) and Fig. 3(a) present
histograms of ‖∆x‖2 errors for all 1000 scenarios for three randomly selected systems. As can
be seen, the computed bound is an order of magnitude larger than the average state-estimation
error for each system. However, for each system S, more relevant is the ratio between the
worst-case observed state estimation error for all 1000 simulations – i.e., maxi=1:1000 ‖∆xS‖2,
and the computed error bound MAX ‖∆xS‖2 for the system. Thus, the relative estimation error
is considered, defined for each system S as

Rel errorS =
maxi=1:1000 ∆xS

MAX ‖∆xS‖2

.

A histogram of the relative errors for both types of systems are presented in Fig. 2(c) and
Fig. 3(b). For the systems with n = 10 states the maximal relative error reaches almost 20% of
computed bounds, while for larger system (with n = 20 states) the maximal relative error is 2%
of computed bounds.

Conservativeness of the presented results is (at least partially) caused by the fact that for each
system only random initial points were considered, and random uncorrelated attack vectors and
noise profiles/modeling errors. Thus, the errors obtained through simulation do not represent the
worst-case errors; for each system, to obtain scenarios that result in the worst-case estimation
errors it is necessary to derive the corresponding attack vector (and the initial state), which is
beyond the scope of this article. This is especially illustrated in histograms of relative estimation
errors for systems with different size. As in the histograms from Fig. 2(c) and Fig. 3(b), a
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decrease in the obtained maximal relative estimation error was observed in simulations, with an
increase in the system size n (and thus increase in the window size N = n). One of the reasons
is that with the increase of N the number of attack vectors also increases, and due to the random
actor selection of the vectors, probabilities to incorporate a worst-case attack are reduced.

On the other hand, for systems with smaller number of states (e.g., n = 1, 2, 3) we were able to
generate initial states and attack vectors for which the computed bounds are tight – i.e., the error
‖∆x‖2 is equal to the obtained bounds. For these attacks, it was assumed that the attacker, which
controlled up to qmax sensors, had full knowledge of the system state and the measurements of
non-compromised sensors; the attacker’s goal was to maximize the state-estimation error when
the proposed attack-resilient state estimation error is used.

II. CASE STUDY: ATTACK-RESILIENT CRUISE CONTROL ON AUTONOMOUS GROUND
VEHICLE

In this section, the use of the presented development framework is illustrated on a design of
secure cruise control of the LandShark vehicle [36], a fully electric Unmanned Ground Vehicle
(UGV) shown in Fig. 4(a). In a tethered mode, the robot can be fully tele-operated from the
Operator Control Unit (OCU). However, in our scenario the operator only specifies the desired
vehicle speed, while the on-board control has to ensure that all of the safety requirements are
satisfied even if some of the sensors are under attack.

Vehicle Modeling: To obtain a dynamical model of the vehicle, the standard differential drive
vehicle model can be used (Fig. 4(b)) [37]. Here, Fl and Fr denote forces on the left and right set
of wheels respectfully, and Br is the mechanical resistance of the wheels to rolling. The vehicle
position is specified by its x and y coordinates, θ denotes the heading angle of the vehicle
measured from the x axis, while v is the speed of the vehicle in this direction. The LandShark
employs skid steering, meaning that in order to make a turn it is necessary to generate enough
torque to overcome the sticking force Sl. Therefore, when B

2
|Fl − Fr| ≥ Sl the wheels start to

slide sideways (i.e., the vehicle begins to turn). Consequently, if it is assumed that the wheels
do not slip, the dynamical model of the vehicle can be specified as

v̇ =

{
1
m

(Fl + Fr − (Bs +Br)v), if turning
1
m

(Fl + Fr −Brv), if not turning

ω̇ =

{
1
Jt

(B
2

(Fl − Fr)−Blω), if turning
0, if not turning

θ̇ = ω,

ẋ = v sin(θ), ẏ = v cos(θ).

Also, w = 0 if the vehicle is not turning.
Finally, to estimate the state of the vehicle for cruise control (i.e., its speed and position),

three sensors are employed – two speed encoders, one on each sets of wheel side, and a GPS.
The GPS provides time-stamped global position and speed, while from the encoders the rotation
angle can be obtained (which can be translated into rotational velocity and finally into linear
velocity). Note that other sensors can be used to estimate the state of the vehicle; for instance,
linear acceleration measurements obtained from an IMU, or visual odometry estimates computed
by optical flow algorithms from a camera feed. However, to illustrate the use (and robustness)
of the attack-resilient state estimator, only the encoders and GPS are employed.

The above model presents a high-level model of the vehicle, describing only the motion
equations. The forces Fl and Fr, which can be considered as inputs to the model, are derived
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from the vehicle’s electromotors and are affected by the motors, gearbox and wheels. Thus, a
6-state linear model of this low-level electromechanical system based on the model from [37]
was derived, which is then used to obtain a local state (i.e., velocity) feedback controller that
provides the desired Fl, Fr levels.

System Architecture: All sensors on the LandShark vehicle are connected to the CPU, which
implements the state-estimator and controller, through independent serial buses, while the motors
are connected to the CPU via motor drivers (as presented in Fig. 4(c)). Since the speed of the
vehicle is bounded, the attack-resilient state-estimator from (14) can be formulated as a mixed
linear integer programming (MILP) problem

min
γ,E,x

1>p γ

−δk � yk −CAkx− ek � δk, k = 0, ..., N − 1,

−γjα · 1′N �E′j � γjα · 1′N , j = 1, ..., p,

where E′j and ek denote the jth row and kth column of the matrix E ∈ Rp×N , respectively.
Here, γ = [γ1, . . . , γp] ∈ {0, 1}p are binary optimization variables representing, for each sensor
j, whether the sensor is considered attacked (γj = 1) or safe (γj = 0), and α is a sufficiently
large positive constant. Note that since the robot cannot obtain a speed larger than 20 mph, all
sensor measurements larger than the value have to be obtained from compromised sensors and
thus can be discarded. Hence, it can be assumed that elements of attack vectors can not be larger
than the maximal speed.

The developed resilient controller is executed on top of Linux OS and the Robot Operating
System (ROS) middleware [38]. ROS is a meta-operating system that facilitates development of
robotic applications using a publish/subscribe mechanism in which a master superintends every
operation. Associated with each sensor there is a driver that takes care of getting time stamped
information from the sensor and publishing this data in the ROS format to the ROS master.
The controller written in C++ language subscribes to each sensor measurements (called topics)
through the master, and sends inputs to the motor driver to maintain the desired cruise speed.
The tool ROSLab [39] was used to describe the architecture of the control system.

Experiments: Fig. 5 presents a deployment of the robot during experiments run on a tiled
uneven surface and an uneven grass field. From the developed GUI, it is demonstrated that the
robot can reach and maintain the desired reference speed even when one of the sensors is under
attack, as shown in Fig. 6. Fig. 6(a) presents speed estimates from the encoders and GPS; each
of the sensors was attacked at some point, with attacks such that their measurements would
result in the speed estimate equal to 4 m/s, except in the last period of the simulation when the
experiment was switched to an alternating attack on the encoder left.

However, as shown in Fig. 6(b), when the attack-resilient controller is active the robot reaches
and maintains the desired speed of 1 m/s. On the other hand, if the state estimator is disabled
and instead a simple observer is employed (as in the interval between 68 s and 73 s – the
highlighted area in Fig. 6), even when one of the sensors is under attack the robot cannot reach
the desired state (e.g., it can even be forced to stop). Videos of the LandShark experiments can
be seen at [40].

Robustness Analysis: All ROS nodes are executed in the run-to-completion manner. Thus,
although the execution period for the controller node is 20 ms, other instantiated nodes might
affect its execution (i.e., the controller might execute with a variable period). Each sensor has its
own clock and all measurements are time-stamped before being transmitted to the controller. Yet,
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since relative changes in obtained measurements are used, time synchronization error between
sensors does not accumulate. In addition, there is a huge discrepancy between sensors’ sampling
jitters. For example, encoders’ sampling jitters are bounded by 100 µs (as shown in Fig. 7),
while GPS has highly variable jitter with maximal measured values up to 125 ms. Therefore,
it is not possible to use the idealized discrete-time model from (9), but rather the full input
compensation has to be done as in (7) and (8), before the state-estimator is executed.

Consequently, a bound on GPS error is determined from manufacturer specifications, worst-
case sampling jitter and synchronization error, and is experimentally validated to be δk,1 ≤
0.4 m/s. On the other hand, each encoder has 192 cycles per revolution, resulting in a measuring
error of 0.5%. Thus, since the maximal achievable vehicle speed is 20 m/s, it follows that for
both encoders δk,2 = δk,2 ≤ 0.1 m/s. For these values the computed state-estimation error bound
is 0.72 m/s. Note that the conservativeness of the bound is mostly caused by the large worst-case
GPS sampling jitter.

A. Assurance Case for the Resilient Cruise Control Implementation

In a complex CPS design project, when a large team is engaged in design and V&V
(i.e., validation and verification) activities it can be difficult to maintain a centralized, coherent
view of the system and its associated evidence in all its detail. Assurance cases have been
proposed as means to organize the evidence into a coherent argument that captures what evidence
is available, what assumptions have been made in the design process, how each piece of evidence
contributes to the overall assurance, etc. For the considered case study, a detailed assurance case
was constructed, covering both a mathematical model of the state estimator and its physical
environment, as well as a software implementation of the controller. The goal has been to gain
understanding of what levels of modeling are involved in the design and implementation of a
resilient control system, what reasoning techniques are used at each level, and what assumptions
are likely to be made at each level of abstraction, as well as how these assumptions can be
justified by guarantees established in a lower-level model. In this article, an overview of the
developed assurance case is presented, focusing on the implementation guarantees. The detailed
assurance case description can be found in [41].

In a straightforward generalization from [42], an assurance case can be defined as a
documented body of evidence that provides a convincing and valid argument that a system has
desired critical properties for a given application in a given environment. A common example
of such a critical property is system safety, even in the presence of attacks, in which case
the argument is known as a safety case. The top-level claims of the assurance case are shown
in Figure 8, and the argument is partitioned into two parts. One part is concerned with the
algorithmic correctness of the state estimator and the tracking PID controller. This part of the
assurance case can be referred to as the control-level argument, since it deals with mathematical
models of the estimator and relies on the robustness analysis presented in the previous sections.
The other part addresses the implementation of the overall controller and the way it is deployed
on the LandShark platform. The argument also specifies assumptions and the implementation
context. The assurance case relies on three categories of assumptions.

Attack assumptions represent our model of the attacker capabilities; attacks on sensor data
are considered, without any restrictions on the attacker’s capability to manipulate a stream of
sensor data. However, our assumption is that less than half of the sensors are attacked. Thus,
given that the LandShark platform has three sensors, at most one sensor can be compromised
at any time. There is no direct way to prove that this assumption holds, since it describes



15

the limitation on the capability of the attacker. Indirect justification for the attack model can be
derived from the implementation of the control system. In particular, sensors are implemented as
different ROS nodes and publish their readings on separate ROS topics, making it more difficult
for an attacker to compromise multiple sensor streams. Environmental assumptions describe the
intended operating environment of the vehicle, which are used to derive a model of its dynamics.
Finally, platform assumptions and the implementation context deal with the properties of the
LandShark platform, including a certain sampling frequency, expected latency of sensing and
actuation, and maximum actuation jitter, which have been validated on the platform as shown
in the previous section; in general, when an assurance case for the whole vehicle is constructed,
these platform assumptions correspond to claims made in other parts of the assurance case.
Implementation-level Assurance Arguments: This part of the argument is presented in Figure 9.
The strategy is to separate the argument into two sub-claims. The first one covers the platform-
independent implementation of the RSE algorithm and PID controller, implemented as a step
function periodically invoked by the platform. The second sub-claim considers the deployment
of the step function within a platform-specific wrapper, which handles periodic invocation of the
step function, its connection to the streams of sensor data, and makes speed estimates available
to other modules in the system. Arguments for both sub-claims are instances of the model-
manipulation strategy. The step function is obtained using Simulink Coder, and which has been
verified using the methods introduced in [43], [44]. The wrapper for the step function is produced
from the architectural model of the LandShark platform, which captures ROS topics and their
respective publishers and subscribers. The wrapper generator has been implemented in Coq [45]
and supplies a proof that (a) the wrapper subscribes to the sensor topics as specified in the
architectural model, and that subscribed values are passed to the parameters of the step function,
and also that (b) the step function is invoked with the period specified in the architectural model.
This proof is used as evidence for the technique sub-claim, and review of the architectural model
is performed as evidence for the model sub-claim.

III. DISCUSSION AND FUTURE WORK

In this article, methods to provide performance guarantees in CPS in the presence of sensor
attacks have been presented. By focusing on the design of attack-resilient cruise control for
autonomous ground vehicles, control-theoretic challenges in attack-resilient state estimation for
dynamical systems with noise and modeling errors have been described. Also, an l0-norm based
state estimator has been introduced along with an algorithm to derive a bound for the state
estimation error caused by noise and modeling errors in the presence of attacks. Furthermore,
methods to map control requirements into specifications imposed on the underlying execution
platform have been presented. Finally, an approach to construct an assurance case for the
considered system has been described. This overall assurance case is the subject of an on-
going multi-institutional project funded by the DARPA High-Assurance Cyber Military Systems
(HACMS) program. Some of the platform assumptions made in the argument have been claims
delivered by other parts of the overall assurance case.

Note that during the control design phase for resilient CPS, the designers are usually facing
limitations of the platform, as a certain degree of redundancy in the control loop is needed to
achieve the necessary detection and mitigation capabilities. Sensor redundancy is (relatively)
easy to handle by adding additional sensor payload to the platform, such as odometers, IMUs,
and GPS in the LandShark case study. This, on the other hand would assume that the attacker
is not able to compromise all (or more than qmax) of the available sensors, which could be
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violated if the attacker gets access to the local network used to communicate the measurements.
However, the biggest limitation is the redundancy of actuators. For example, if actuators on one
side of the vehicle are compromised, the skid-steer approach used in LandShark is not feasible.
Furthermore, synthesis of control task code and proof of its correctness relies on the guarantees
provided by the platform services. Therefore, in some cases the assumption needed to make the
proofs go through may turn out to be too restrictive for the platform operating system.

Furthermore, note that the proposed attack-resilient state estimation algorithm, while providing
accuracy guarantees, does not guarantee attack-detection and identification of compromised
sensors due to the presence of noise and modeling errors. Thus, an avenue for future work
would be to provide sound attack-identification procedure. In addition, the presented estimator
requires solving combinatorial optimization problems in each iteration. Therefore, it would be
beneficial to derive computationally more efficient methods for attack-resilient state estimation,
that would potentially provide relaxed performance guarantees.
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[16] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models and scenarios for networked control systems,”
in Proceedings of the 1st international conference on High Confidence Networked Systems, ser. HiCoNS ’12, 2012, pp.
55–64.

[17] R. Smith, “A decoupled feedback structure for covertly appropriating networked control systems,” Proceedings of the IFAC
World Congress, pp. 90–95, 2011.

[18] F. Pasqualetti, F. Dorfler, and F. Bullo, “Attack detection and identification in cyber-physical systems,” IEEE Transactions
on Automatic Control, vol. 58, no. 11, pp. 2715–2729, 2013.

[19] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for cyber-physical systems under adversarial attacks,”
IEEE Transactions on Automatic Control, vol. 59, no. 6, pp. 1454–1467, 2014.

[20] S. Sundaram, M. Pajic, C. Hadjicostis, R. Mangharam, and G. Pappas, “The Wireless Control Network: Monitoring for
malicious behavior,” in Proceedings of the 49th IEEE Conference on Decision and Control, 2010, pp. 5979–5984.

[21] F. Miao, M. Pajic, and G. Pappas, “Stochastic game approach for replay attack detection,” in IEEE 52nd Annual Conference
on Decision and Control (CDC), 2013, pp. 1854–1859.

[22] Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks on scada systems,” IEEE Transactions on Control
Systems Technology, vol. 22, no. 4, pp. 1396–1407, 2014.

[23] Y. Mo, S. Weerakkody, and B. Sinopoli, “Physical authentication of control systems: designing watermarked control inputs
to detect counterfeit sensor outputs,” Control Systems, IEEE, vol. 35, no. 1, pp. 93–109, 2015.

[24] Y. Mo, T.-H. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Sinopoli, “Cyber–physical security of a smart grid
infrastructure,” Proceedings of the IEEE, vol. 100, no. 1, pp. 195–209, 2012.

[25] C. Kwon, W. Liu, and I. Hwang, “Security analysis for cyber-physical systems against stealthy deception attacks,” in
American Control Conference (ACC). IEEE, 2013, pp. 3344–3349.

[26] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and G. Pappas, “Robustness of attack-resilient state
estimators,” in Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2014, pp.
163–174.

[27] Y. Shoukry, A. Puggelli, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and P. Tabuada, “Sound and complete state
estimation for linear dynamical systems under sensor attacks using satisfiability modulo theory solving,” in Proceedings
of the 2015 American Control Conference, 2015.

[28] Y. Shoukry, P. Nuzzo, N. Bezzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and P. Tabuada, “A satisfiability modulo theory
approach to secure state reconstruction in differentially flat systems under sensor attacks,” arXiv preprint arXiv:1509.03262,
2015.

[29] P. Antsaklis and A. Michel, Linear Systems. McGraw Hill, 1997.
[30] Y. Shoukry and P. Tabuada, “Event-triggered state observers for sparse sensor noise/attacks,” arXiv preprint

arXiv:1309.3511, 2013.
[31] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in networked control systems,” Proceedings of

the IEEE, Special Issue on Technology of Networked Control Systems, vol. 95, no. 1, pp. 138 – 162, 2007.
[32] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control systems,” IEEE Control Systems Magazine, vol. 21,

no. 1, pp. 84–99, 2001.
[33] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization, 1st ed. Athena Scientific, 1997.
[34] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
[35] M. Pajic, P. Tabuada, I. Lee, and G. Pappas, “Attack-resilient state estimation in the presence of noise,” in 54th IEEE

Annual Conference on Decision and Control (CDC), Dec 2015, pp. 5827–5832.
[36] “Black-I Robotics LandShark UGV.” [Online]. Available: http://www.blackirobotics.com/LandShark UGV UC0M.html
[37] J. J. Nutaro, Building Software for Simulation: Theory and Algorithms, with Applications in C++. Wiley, 2010.
[38] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Y. Ng, “ROS: an open-

source robot operating system,” in Proceedings of the Open-Source Software workshop at the International Conference on
Robotics and Automation (ICRA), 2009.

[39] N. Bezzo, J. Park, A. King, P. Gebhard, R. Ivanov, and I. Lee, “Demo abstract: Roslab – a modular programming
environment for robotic applications,” in ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2014,
p. 214.

[40] [Online]. Available: http://people.duke.edu/∼mp275/research/CPS security.html
[41] J. Weimer, O. Sokolsky, N. Bezzo, and I. Lee, “Towards assurance cases for resilient control systems,” in IEEE International

Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), 2014, pp. 1–6.
[42] ASCAD – The Adelard Safety Case Development (ASCAD) Manual, Adelard, 1998.
[43] M. Pajic, J. Park, I. Lee, G. J. Pappas, and O. Sokolsky, “Automatic verification of linear controller software,” in Proceedings

of the 12th International Conference on Embedded Software, ser. EMSOFT ’15, 2015, pp. 217–226.
[44] J. Park, M. Pajic, I. Lee, and O. Sokolsky, “Scalable verification of linear controller software,” in Tools and Algorithms

for the Construction and Analysis of Systems (TACAS). Springer, 2016, pp. 662–679.

http://www.blackirobotics.com/LandShark_UGV_UC0M.html
http://people.duke.edu/~mp275/research/CPS_security.html


18

[45] The Coq development team, The Coq proof assistant reference manual, LogiCal Project, 2004, version 8.0. [Online].
Available: http://coq.inria.fr

Fig. 1. Scheduling sampling and actuation.

http://coq.inria.fr


19

(a) Histogram for a system with the obtained error bound
equal to 41.43

(b) Histogram for a system with the obtained error bound
equal to 35.74

(c) Histogram of the maximal relative state-estimation error for
all 100 system

Fig. 2. Simulation results for 1000 runs of 100 randomly selected systems with n = 10 states and p = 5 sensors.
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(a) Histogram for a system with the obtained error bound
equal to 155.98

(b) Histogram of the maximal relative state-estimation error
for all 100 system

Fig. 3. Simulation results for 1000 runs of 100 randomly selected systems with n = 20 states and p = 11 sensors.

Fig. 4. LandShark unmanned ground vehicle; (a) The vehicle; (b) Coordinate system and variables used to derive the model;
(c) Control system diagram used for cruise control.
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Fig. 5. Deployment of the LandShark on a tiled pathway. The picture in the picture displays the user interface used in
experiments.

Fig. 6. Experimental results; (a) Comparison of velocity estimated from the encoders’ and GPS measurements; (b) Reference
speed, the estimated speed, and the input applied to the motors.

Fig. 7. Times between consecutive left encoder measurements.
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Fig. 8. Top level claims of the assurance case.

Fig. 9. Argument for the code-level claims.


	University of Pennsylvania
	ScholarlyCommons
	4-2017

	Design and Implementation of Attack-Resilient Cyber-Physical Systems
	Miroslav Pajic
	James Weimer
	Nicola Bezzo
	Oleg Sokolsky
	George Pappas
	See next page for additional authors
	Recommended Citation

	Design and Implementation of Attack-Resilient Cyber-Physical Systems
	Abstract
	Keywords
	Disciplines
	Comments
	Author(s)


	Attack-Resilient State Estimation with Noise and Modeling Errors
	Notation and Terminology
	System Model
	Attack-resilient State Estimation for Noiseless Dynamical Systems
	Sources of Modeling Errors

	l0-based Method for Resilient State Estimation in the Presence of Noise
	Robustness of P0,(Y) State Estimation
	Bounding the State-estimation Error

	Evaluation

	Case Study: Attack-Resilient Cruise Control on Autonomous Ground Vehicle
	Assurance Case for the Resilient Cruise Control Implementation

	Discussion and Future Work
	Acknowledgments

	References

