
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

5-2018

Data Freshness Over-Engineering: Formulation
and Results
Dagaen Golomb
University of Pennsylvania, dgolomb@seas.upenn.edu

Deepak Gangadharan
University of Pennsylvania, deepakg@seas.upenn.edu

Sanjian Chen
University of Pennsylvania, sanjian@seas.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

IEEE ISORC 2018, Singapore, May 29 - 31, 2018

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/838
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Dagaen Golomb, Deepak Gangadharan, Sanjian Chen, Oleg Sokolsky, and Insup Lee, "Data Freshness Over-Engineering: Formulation
and Results", IEEE ISORC 2018 . May 2018.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/219378754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://cps-research-group.github.io/ISORC2018/
https://repository.upenn.edu/cis_papers/838
mailto:repository@pobox.upenn.edu

Data Freshness Over-Engineering: Formulation and Results

Abstract
In many application scenarios, data consumed by real-time tasks are required to meet a maximum age, or
freshness, guarantee. In this paper, we consider the end-to-end freshness constraint of data that is passed along
a chain of tasks in a uniprocessor setting. We do so with few assumptions regarding the scheduling algorithm
used. We present a method for selecting the periods of tasks in chains of length two and three such that the
end-to-end freshness requirement is satisfied, and then extend our method to arbitrary chains. We perform
evaluations of both methods using parameters from an embedded benchmark suite (E3S) and several
schedulers to support our result.

Keywords
real-time systems, data freshness, schedulability

Disciplines
Computer Engineering | Computer Sciences

Comments
IEEE ISORC 2018, Singapore, May 29 - 31, 2018

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/838

https://cps-research-group.github.io/ISORC2018/
https://repository.upenn.edu/cis_papers/838?utm_source=repository.upenn.edu%2Fcis_papers%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages

Data Freshness Over-Engineering: Formulation and
Results

Dagaen Golomb, Deepak Gangadharan, Sanjian Chen, Oleg Sokolsky, and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA, USA

{dgolomb,deepakg,sanjian}@seas.upenn.edu,{sokolsky,lee}@cis.upenn.edu

Abstract—In many application scenarios, data consumed by
real-time tasks are required to meet a maximum age, or freshness,
guarantee. In this paper, we consider the end-to-end freshness
constraint of data that is passed along a chain of tasks in a
uniprocessor setting. We do so with few assumptions regarding
the scheduling algorithm used. We present a method for selecting
the periods of tasks in chains of length two and three such that
the end-to-end freshness requirement is satisfied, and then extend
our method to arbitrary chains. We perform evaluations of both
methods using parameters from an embedded benchmark suite
(E3S) and several schedulers to support our result.

Index Terms—real-time systems; data freshness; schedulabil-
ity;

I. INTRODUCTION & MOTIVATION

In real-time systems it is common for applications to consist
of tasks which consume input data in order to perform a
particular function. Typically this input is either sensor data
that is crucial for determining the state of the system or to be
used as input to other tasks. In these types of systems, there
is usually an explicit or implicit timeliness requirement for
this data. The relevance of a computation can be intuitively
evaluated by the age, or “freshness,” of the data that was used
during the computation.

Traditionally, task sets have been over-engineered to provide
fresh data. Assuming a task must perform some computation
on its input data every one second, the obvious question is
what should be the rate at which the task producing the
required data execute? In these situations, engineers may err on
the side of caution and choose to produce the input data faster
than necessary, which then needs to be tested to check for
freshness in the worst-case scheduling scenario. For example,
a task that reads a sensor value and forwards it may be
dispatched fifty times a second although the consuming task
only needs data younger than one tenth of a second for safety.
While safe, this reduces the efficiency and schedulability of
the system, and there is no analytical framework to ensure the
freshness constraint. This leads to more dependence on testing
and several cycles of parameter tuning to ensure the safety,
while ultimately providing no guarantee of optimality, as noted
by others in the field [1], [2], [3], [4]. This paper outlines an
analytical formulation of this over-engineering strategy for 2
and 3 task chains, and then uses insight from these results
to build an optimization problem for arbitrary task chains.
Our solution provides a strategy for choosing the period of

producer tasks with nearly no information about the scheduling
algorithm used.

Real-time systems are ones where tasks must be executed in
a timely manner for correct results. For real-time systems that
require managing and passing data, it is understood that this
data may need some notion of timeliness as well. The most
intuitive way of time stamping data is to consider when it was
created or obtained, e.g. when a sensor polling task reads it.

In broad terms, the goal we wish to achieve is for the input
of a given task to meet predetermined freshness guarantees,
where freshness represents the age of the data. An example of
this would be a task B which needs to use speed sensor data
produced by a task A that is at most 100 milliseconds old.

The notion of freshness is not a new concept. A variety of
domains consider this notion, with the definition tailored to
each domain, all of which agree that the quality of data is not
merely a function of its “correctness” or accuracy. Common
notions use terms such as currency [5], which describes how
much time has passed since data collection, and timeliness
[6], which measures how old the data is when collected. We
will consider freshness to be the time elapsed since the data
was produced, particularly when it is output by a producer
task. In particular, we are going to examine the following
scenario: given a task Z with fixed period, which consumes
data that makes its way through a task chain A,B,C, . . .,
choose periods for A,B,C, . . . so as to ensure a freshness
bound, the desired maximum age of consumed data, is always
enforced. That is to say, when task Z runs, the age of the data
created by task A which was used to eventually produce Z’s
input is less than the given freshness bound.

The solution to this problem is not always unique. Given a
set of solutions, we wish to rank them against some metric to
select the one that best fits our needs. There are several metrics
one could use; in this work we focus on minimizing task
set utilization. More precisely, we will attempt to minimize
maximum system utilization. We chose this metric because
it is a common metric of schedulability and efficiency in
the real-time systems domain. Intuitively, a low task set
utilization provides the necessary performance at the lowest
computational cost, allowing for more tasks to be introduced to
the system and increasing the likelihood of schedulability. We
will attempt to solve this problem with minimal assumptions
about the system and scheduling policy. This could be useful

for task sets which may run on many hardware and software
combinations.

II. FORMALIZATION

A. Task Definitions

Our model assumes a periodic task set on a unicore system.
For periodic task sets, each task A is characterized by a period
PA, a relative deadline DA, and a worst-case execution time
(WCET) Eu

A. We additionally include a best-case execution
time (BCET) El

A.
A job is an instance of a task, i.e. one of the actual

executions of a task. Each task produces multiple jobs and
in the periodic model, a job is released every PA time. Each
ith job of task A has a release time riA and a finish time f iA.
Note that f iA− riA is lower bounded by BCET (when the task
is executed immediately and runs to completion) but not upper
bounded by the WCET if the job can be preempted. However,
assuming the system is schedulable, the job is completed
before its deadline. If this is not the case then the job has
experienced a deadline miss. In this work we will consider
deadlines to be equal to periods for simplicity and clarity, but
our model could be extended to account for other deadlines.

Since we wish to uphold a data freshness guarantee, we
define dA→B to be the desired upper bound on data freshness
for data produced by task A and consumed by task B. Lastly,
we define a value that will help us formulate the requirements
of our system. Let CA(r

i
B) denote the most recently completed

job of task A before the release of job i of task B. This will
be useful since we assume the most recently produced output
from a task is the freshest. This assumption holds because of
our deadline = period assumption since in this case multiple
jobs of a task in the system implies a deadline miss and hence
unschedulability. However, this is easily enforced when the
period = deadline assumption is removed by only allowing
jobs to output data if they are overwriting a value which was
last updated by an older (earlier release time) job.

B. Communication Definitions

We include communication, storage, or other latencies into
our formulation. For our purposes, data latency denotes any de-
lay in storing or transferring a value to another task. Examples
include the delay to store a value in a database, inter-processor
communication, and network delays. For our formulation, we
require the following values to be provided: Minimum Data
Delay DLmin and Maximum Data Delay DLmax.

Since our formulation will consider data to be available at
task completion, we can abstract the communication delay into
our task execution times as follows:

El,min
A = El

A +DLmin and Eu,max
A = Eu

A +DLmax

C. Assumptions

Since we do not know the nature of the tasks, particularly
when they produce and consume data, we choose to abstract
the specifics of data production and consumption. We assume
tasks consume data at the very beginning of their execution
as this results in shortest freshness deadline. Since execution

could happen immediately at release time, without knowledge
of the scheduler, we assume jobs read input values at the time
of their release.

On the other hand, we assume data is produced at finish
time. Therefore, we must wait until the completion of a job
before we can consider its data available, at which time it
overwrites the data from the last completed job of the task.
While we do not consider delay from the polling task, these
tasks are often small and we consider this trivial. If the initial
task has non-trivial execution time its WCET can be subtracted
from the desired freshness bound. While producing at the end
of a task does not produce the worst staleness, it is easy to
hold off production until the end of task in order to make this
hold. Additionally, similar to how we can account for WCET
in the producer task, one can subtract the difference between
the end of a job and the earliest it could produce data from
the freshness constraint.

Since the freshness of the final, fully-transformed data is
often of interest, we assume that the period of the final con-
suming task is fixed, i.e., if a designer wants the transformed
data to be at most 50 milliseconds old, it is intuitive that
they would select this as the period of the final task. We
will assume the designer selects an appropriate period for this
task and would like to compute the input tasks’ periods to
meet their freshness requirement. In this work we present our
approach considering unicore systems for simplicity. However,
our formulation easily scales to multi-processor architectures
as our single-core assumption provides stricter resource con-
straints and higher preemption. A more detailed discussion of
the extension to multi-processor systems is found in a later
section.

D. Requirements

Using the notation and assumptions above, for a producer
(A) and consumer (B) pair we define the freshness require-
ment of data produced by task A and consumed by job i of
task B as follows:

∀i, riB − f
CA(riB)
A ≤ dA→B

That is, at the release of any job i of task B, the time since
the completion of the last job of task A is less than or equal
to the freshness bound dA→B .

E. Problem Statement

The problem statement is as follows. Let E∗,∗k denote
that we have both worst-case and best-case execution times
including communication and other latencies for task k, and
let U(T) denote the system utilization. We have n tasks in the
chain.

Given ∀k,E∗,∗k ; and d1→n

Find ∀k < n, Pk

Minimizing U(T) =
∑
n

Eu,max
n

Pn

Subject To ∀i,
n∑

j=2

(rij − f
Cj(r

i
j−1)

j−1) +

n−1∑
j=2

Eu,max
n ≤ d1→n

In words, we minimize utilization while keeping the sum
of task WCETs between the original producer and the final
consumer plus the sum of any time spent between the end of
a job of task j and the release of a job of the next task j+1,
to be less than our freshness bound. This quantity is the total
time the data spends in flight. We use WCETs since this case
produces the most strict local deadlines, which we describe
later, for each pair of tasks.

We do not consider schedulability in the formulation as
to maintain maximum generality. Therefore, our solution will
not guarantee schedulability, which must be confirmed using
scheduler-specific methods afterwards. However, our solution
relies on an assumption of the schedulability of the final task
set, since we assume a job of each task runs to completion
during each task period, and is thereby invalidated if this is
not the case.

It is clear this minimization has a solution. Assume all
periods are low enough to ensure the freshness bound (all close
to 0 for example, as it is clear all periods arbitrarily close to
0 would cause the bound to hold). We can lower utilization
by increasing any Pk, but at some point increasing Pk will
violate our freshness bound. For example, if Pk = 2 · d1→n

freshness will not hold, while setting Pk arbitrarily closer to 0
will cause the bound to hold (disregarding schedulability). At
some point between these two the system switches between
upholding and violating the freshness bound. This point is one
solution.

III. TWO TASK RESULT

First we consider the simplest case where there are only
two tasks: one producer (task A) and one consumer (task B).
Considering just task A we see the worst case depicted in
Figure 1. This scenario assumes schedulability to ensure that
one job of A runs to completion in each period. This is where
our schedulability assumption becomes vital for our solution.

Fig. 1. Maximum Staleness Scenario for Data from Task A.

Figure 1 labels the maximum separation between two pub-
lishes of output data from the depicted task. To maximize
staleness, we assume a job of task B is released arbitrarily
close to the finish of the second job of task A and that the
first (BCET) job of task A ran to completion at the beginning
of the previous period.

We assume deadlines are equal to periods. However, it is
easy to see that a shorter deadline moves the latest possible
execution of the second job of task A earlier, and hence
decreases the max staleness. We will not consider this case
further but it will be clear later how this could be substituted
in place of our period = deadline example.

Theorem 1. The scenario in Figure 1 is the upper bound
scenario for data freshness for data produced by a task.

Proof. Note that one job must be executed within each period
as per the definition of periodic tasks and our schedulability
assumption. Consider any placement of two jobs of a task
within two consecutive periods. Assume this instance is not the
one depicted in Figure 1. Then one of the following applies:

Case 1. The job in the first period is not completed as soon
as possible. In this case, move the start of this job execution
ε earlier. This increases the staleness by ε.

Case 2. The job in the second period is not completed as late
as possible. In this case, move the start of this job execution
ε later. This increases the staleness by ε.

Since all other instantiations of the problem can be moved
closer to the depicted instance while strictly increasing data
staleness, it follows that the depicted instance is the unique
worst case for output data staleness.

Now that we have proven the above scenario is the worst
case freshness of data from task A, we can analytically solve
for the constraint on PA. From Figure 1, we can see that the
maximum staleness is composed of two periods of A less one
execution of A less ε. We want this less than our freshness
bound dA→B . We can then solve for PA to prove the following
lemma. We assume the BCET and data delay for the first job in
order to maximize staleness. The execution time of the second
job is irrelevant.

Lemma 1. To ensure the output of task A is always at most
dA→B old, choose PA ≤

dA→B+El,min
A

2 .

Proof.

dA→B ≥ 2PA − El,min
A − ε From Figure 1

PA ≤
dA→B + El,min

A

2
Rearrange; ε→ 0

Thus if we set PA equal to the above quantity we ensure
that the output of task A is always at most dA→B old, and
therefore can never be older when consumed by task B. We
can also set PA less than this quantity. Recall that our fitness
metric is total utilization. It is trivial to see that choosing PA as

large as possible will minimize the task set utilization. Thus the
solution for the two task scenario while minimizing utilization
is to set PA equal to the quantity in the lemma.

IV. THREE TASK RESULT

We now extend the above idea to three tasks. In this
scenario, let our tasks be denoted as A, B, and C. Task A
produces output consumed by task B, which in turn produces
output consumed by task C. We want to limit the age of the
output of A that is eventually used by C.

For this scenario, define dA→C as the maximum age of the
data produced by task A that is used by task C. Note that we
are not making any assumptions about when a job of task B
is executed between jobs of tasks A and C. The formalization
is similar to the two task scenario:

Given: E∗,∗A , E∗,∗B , E∗,∗C , PC and dA→C

Find: PA and PB

That Minimizes: U(T) =
∑
i

Eu,max
i

Pi

Subject To:

∀i, riC−f
CB(riC)
B +Eu,max

B +r
CB(riC)
B −fCA(r

CB(riC)

B)
A ≤ dA→C

Note that we assume worst case execution and data delay for
task B. This will produce a more urgent local deadline that
will enforce freshness also when this does not occur. More
rigorously, let δ = Eu,max

B −El,min
B . Using the max value as

we do instead of the least value decreases dB→C by δ. As can
be seen from Lemma 1 this decreases PB by δ/2. Viewing
task B and C alone as their pair, it is easier to see that the
freshness is made of two periods of B for a total decrease
of δ. Hence, in the case of minimal execution of task B the
execution increases by δ but this same amount has already
been compensated for in the formulation.

The execution of the three tasks is outlined in the figure 2.

Fig. 2. Maximum Staleness Scenario for Data from Task A.

Figure 2 labels the several intervals in the execution of the
three tasks. Note how between tasks A and B and between
tasks B and C we’ve added local freshness constraints. By
meeting these two freshness constraints, the freshness of data
from task A to task C is ensured. These added constraints will

not be present in our final solution but are added here to allow
us to introduce Lemma 1 while considering task B. These local
constraints are used as free variables in our optimization, and
once determined we will use our lemma to calculate period
assignments that rely only on the end-to-end constraint and
task execution times.

Note that there could be multiple jobs of B between A and
C but that this does not change the age of the data as it travels
from A to C. For any job of task B between A and C the
sum of the values depicted in Figure 2 remain unchanged.
Anyways, note that once we optimize for utilization it is
unlikely that multiple jobs of B will be executed since this
implies a shorter period of task B and hence higher utilization.

From Figure 2 we can see that the maximum age of the
data from task A used by task C, dA→C , is the sum of three
values. Concretely,

dA→C = dA→B + Eu,max
B + dB→C

We now use our lemma to extend the two task result to this
scenario. Using Lemma 1. . .

PA ≤
dA→B+El,min

A

2 and PB ≤
dB→C+El,min

B

2

Our lemma uses the BCET for the first task in each pair
in order to maximize the possible staleness. For our freshness
guarantee, we will use the BCET to be pessimistic with the
data age, whereas when calculating utilization we will use
the WCET. That is, our solution will ensure freshness even
with best-case execution of the first task, while minimizing
the maximum utilization the system could experience.

We simplify the objective by removing constants from the
utilization expression and then transform it by substituting
from Lemma 1, using equality since lower periods increase
utilization:

U(T) =

(
Eu,max

A

PA
+
Eu,max

B

PB

)
Objective

=
2Eu,max

A

dA→B + El,min
A

+
2Eu,max

B

dB→C + El,min
B

Substitution

We minimize this objective to arrive at the following solu-
tion.

Theorem 2. Given E∗,∗A , E∗,∗B , E∗,∗C , and PC , to minimize
utilization while enforcing the freshness bound dA→C , choose

PA =

√
Eu,max

A

Eu,max
B

(El,min
B + dA→C − Eu,max

B + El,min
A)

2(1 +
√

Eu,max
A

Eu,max
B

)

PB =

√
Eu,max

A

Eu,max
B

(El,min
A + El,min

B) + dA→C − Eu,max
B + 2El,min

B

2(1 +
√

Eu,max
A

Eu,max
B

)

Proof. Due to space constraint, we provide the detailed proof
in [7].

As intended, our solution is expressed solely in terms of
the task parameters and the end-to-end freshness requirement.

The formulation may assign non-integer periods which we
consider acceptable. The designer could floor such values to
the nearest platform-compatible value while preserving the
freshness guarantee. If the designer is concerned about a large
number of tasks in the system, several tasks with similar
periods could be combined into one task with the lowest period
of the component tasks. However, both of these modifications
will increase utilization.

Our solution may not be schedulable. In the case it is
not, there may be a schedulable parameter set that guarantees
the desired freshness, depending on the system’s scheduling
policies. Finding the optimal parameters in such a case may
be non-trivial.

It may be possible to extend this optimization using cal-
culus minimization problems for a given number of tasks.
The primary challenge would be solving increasingly difficult
optimizations. It may be possible to generalize this method
to n tasks in this manner. However, moving forward we will
express the formulation as a general optimization problem to
be solved with a software solver.

V. N-TASK EXTENSION

In this section we extend our formulation to task chains
of arbitrary length and with forks and merges. We do this
through the use of our 2-task and 3-task formulation insights,
as constraints in an optimization problem which can then be
solved using constrained optimization software.

We again formulate any end-to-end deadlines as the com-
bination of several local constraints. In particular, there is a
local freshness constraint from each producer task i to its
consumer task j. Let each pair {i, j} ∈ E and Ek be the
subset of pairs in a chain for a particular freshness constraint
Dk. Each of these local freshness constraints are between two
tasks, and thus we can ensure the consuming task receives
data according to the local constraint by using Lemma 1:
Pi ≤

di→j+El,min
i

2 , with this inequality being equal in order
to minimize utilization.

As we saw in the three task scenario, it is sufficient to solve
for local deadlines as they can be transformed into periods of
the tasks. Our optimization follows suit by using this idea
in the constraints and then solving for the local deadlines
which yield the least utilization. Once a solution is found
we convert the local constraints into periods for producers.
A concrete example to illustrate how we will encode our
freshness constraints, and hence period selection, is shown in
Figure 3.

Fig. 3. Example of chain with fork and merge.

Suppose data consumed by task 2 must be at most 10 time
units old and data consumed by task 5 must be at most 50 time
units old. Our optimization would look like the following:

Given: E∗,∗i for each i in 1 . . . 5

Find: P1, . . . , P5(i.e. d1→2...d4→5)

Minimize: Maximum Utilization
Subject To: d1→2 ≤ 10

and: d1→2 + Eu,max
2 + d2→3 + Eu,max

3 + d3→5 ≤ 50

and: d1→2 + Eu,max
2 + d2→4 + Eu,max

4 + d4→5 ≤ 50

and: each d?→? > 0

From here forward ? is a wild card for any valid value that
can be used in its place.

Note that this can be easily applied to several pieces of data
and is not limited to a single datum. Constraints can be added
for several pieces of data and the solution will select the most
stringent period required for any one particular data piece.

Below we present the optimization problem for any chain
and deadlines. Since we do not know the periods of the tasks
during the optimization, we must represent utilization using
the provided parameters. We do this using the local deadlines.
The optimization problem is as follows:

Given: El,min
i , Eu,max

i for each i in 1 . . . n

Find: di→j for each {i, j} ∈ E

Minimize: U =
∑

i:{i,?}∈E

Eu,max
i

Pi

=
∑

i:{i,?}∈E

2× Eu,max
i

min(di→?) + El,min
i

Subject To: ∀k,
∑

i:{i,?}∈Ek

Eu,max
i +

∑
i:{i,j}∈Ek

di→j ≤ Dk

and: ∀{i, j} ∈ E, di→j > 0

Note the problem is not linear due to the utilization objec-
tive, but the utilization monotonically increases as any local
deadline decreases. As each variable changes the objective in
the same manner (no saddles) and the constraints are simple
addition and comparisons, this problem appears convex. While
we cannot provide an analytical solution for the n, it performs
the same optimization as the analytical case would for any n.

Given our intuition from the theory evaluation (later) which
suggests earlier tasks in the chain are often assigned higher
priority, we extended the optimization problem to be specific
to rate-monotonic scheduling by adding additional constraints
dictating that the period of each producing task in a chain is
less than or equal to the period of its consuming task. Note
that this does not always hold in the 3 task scenario depending
upon the parameters, but it is a trend we noticed and was a
basis for our intuition. The added constraints will cause earlier
tasks to have higher priority with the intention of pushing new
values through the chain before consuming older ones. The

RM-specific formulation is the same as above but with the
added constraint:

∀{i, j} ∈ E,Pi ≤ Pj

=⇒ ∀{i, j} ∈ E,∀k : {j, k} ∈ E,

di→j + El,min
i

2
≤
dj→k + El,min

j

2
Other constraints may be added by the designer if desired.

For example, in either formulation, if a polling task T1 must
run at least every 50 time units as per the Nyquist requirement,
an additional constraint could be added: P1 ≤ 50. Note that
in this case, P1 would have to converted to a quantity which
uses local deadlines.

Finally, note that this method works for multiple discon-
nected task chains. Each chain can be encoded while the
objective function remains the utilization of all tasks. An
entire system of task chains with forks, merges, etc. can be
simultaneously optimized in a single optimization problem.

VI. PREEMPTION AND OTHER JOB DELAYS

While Figure 2 depicts task B running without preemption,
here we will explain why preemption (or other task delays
during execution) does not invalidate our theory.

Theorem 3. Preemption and other job delays do not cause
data freshness violations.

Proof. Assume this is not the case, i.e. that job preemption
and other delays cause a freshness miss. Let all preemption
and other job delays be denoted by p.

Consider any producer (A) and consumer (B) task pair. Note
the maximum wait scenario in Figure 1 holds regardless of
the execution time of the second job of task A and regardless
of the release time of task B. Thus our concern is the first
execution of A. Note that the first job of A experiencing
preemption produces fresher data, so preemption of the first
job does not extend dA→B either. Hence, preemption of task
A or B cannot extend dA→B as long as the task set remains
schedulable. Therefore each local deadline is not violated by
preemption.

Now consider the intermediate tasks in a chain, which are a
part of two, two-task scenarios. If preemption extends a job, its
does not affect the pair for which it is the consumer since the
execution time of consumers are irrelevant. In the pair where
it is a producer, preemption extends the completion time of
the job which results in fresher local data for its consumer.
Therefore preemption of intermediate jobs does not violate
freshness. Any preemption and other delays are experienced
entirely within a local constraint, i.e. p in preemption time
comes with data p newer than the task’s local constraint in
worst case.

Since all subcomponents of the freshness bound are not
violated by preemption, the end-to-end deadline is not violated
by preemption.

While preemption will not violate our freshness constraint,
note that preemptability may be key to determining schedula-
bility of the solution.

VII. MULTIPROCESSOR SYSTEMS

Our formulation extends nicely to multiprocessor systems
since we do not make assumptions on how to schedule tasks.
The worst case is that all tasks in the chain end up on the same
processor which is the case considered. However, no assump-
tions on task location were made so tasks could be executed on
different processors. Our formulation selects periods for each
producer and is agnostic to the consumer. For each producer-
consumer pair, the period of the producer is chosen so that the
output is updated within the desired freshness constraint. The
consumer’s location is irrelevant as long as delays introduced
in a multiprocessor system are accounted for in the data delay
values. With this, it is simple to see that the generality of the
formulation includes the multiprocessor scenario, and adding
processors does not change the correctness of our solution. On
the other hand, more processors helps ensure the schedulability
of the resulting task set by increasing the available resources
and reducing job preemption. However, one must remember
to use the schedulability test for the multiprocessor algorithm
used.

VIII. EVALUATION

A. 3-Task Theory Evaluation

For evaluating our three-task theory, we perform four exper-
iments. In the first, we run the tasks on a real-time system and
record the miss rate and average freshness of data. Next, we
take chains of tasks and a given freshness guarantee, and then
check if the produced results are theoretically schedulable.
Later, we evaluate how schedulability and utilization may
change when altering the desired freshness. Lastly, we examine
one task chain and see how the period assignments change
when we modify the freshness bound.

For our evaluation we consider uniprocessor systems for
simplicity. To test schedulability we use response time analysis
for rate monotonic (RM) scheduling and a utilization bound
of 1 for earliest deadline first (EDF) scheduling. For our
task parameters, we use values from the E3S benchmark1.
We used all sections of the benchmark, including task sets
from the automotive, consumer electronics, networking, office
automation, and telecommunications industries.

The task graphs we obtained have between 2 and 10 tasks.
To gather as many relevant examples as possible for these
special cases, we sometimes combined several serial tasks
into one large task, or used several branches of parallel tasks
as separate examples for 2-and-3-task evaluations. However,
we always included the beginning and ending tasks and some
chain from the former to the latter, so that the period values in
the benchmark could be used meaningfully. We used WCETs
of the first hardware configuration given in the benchmark, and
chose BCETs to be half of WCET. We considered communi-
cation negligible for evaluation as we global variables between
threads of the same process. In total, we collected 26 three-
task scenarios and 29 two-task scenarios from the benchmark
suite.

1http://ziyang.eecs.umich.edu/˜dickrp/e3s/

For our first experiment, we ran task chains with parameters
chosen by our theory on a real system, using a freshness
bound of 25% of the period of the final task so as to
have difficult enough chains for meaningful evaluation. We
used a Linux testbed2 with either the fixed priority scheduler
(SCHED FIFO) with priorities set to RM, or the EDF sched-
uler (SCHED DEADLINE). We set up the tasks to run for
99% of the specified WCET to account for scheduler overhead
and context switching. The final task maintains statistics such
as average freshness and freshness miss ratio. We ran this for
all task sets that passed the respective schedulability test after
having parameters selected by our formulation. The average
utilization of the task sets was 40.6% with a low of 1.9% and
a high of 97.4%. We ran each task set for one minute, which
resulted in hundreds to hundreds of thousands of executions
of each task. Tasks were all run on the same core with no
external loads added.

Under both RM and EDF, all reads by the last task were
within the desired freshness bound, i.e. there were no misses,
except for far outliers (3-5x the bound) which we discarded
as OS, background task, and other outside interferences, as
these are far larger than could be reasonably expected. The
average percentage of the freshness bound that was consumed
before reading a value as well as the average percentage
bound consumed for the stalest value were recorded. The
top section of Table I summarizes the results. We see that
on average the value was well within the maximum bound.
Our experiments suggest that RM slightly outperforms EDF
when considering average freshness. RM shows the greatest
advantages for maximum staleness observed. We believe this
is because our 2-and-3-task theory often assigns lower periods,
and hence higher priorities, to tasks earlier in the task chain.
This may help freshness since producer tasks are executed first
which prioritizes pushing newer values though the chain over
consuming older values.

TABLE I
COMPARISON OF AVERAGE FRESHNESS AND MISS PERCENTAGE FOR TASK

SETS UNDER RM AND EDF SCHEDULING

Original Task Set RM EDF
Freshness Miss Rate (%) 0 0

Average Freshness (% of bound) 7.8 10.3
Average Max Freshness (% of bound) 12.9 52.9

Stringent Task Set RM EDF
Freshness Miss Rate (%) 0 0

Average Freshness (% of bound) 11.5 13.2
Average Max Freshness (% of bound) 26.2 81.9

The statistics collected in the trial were weighted down by
several easily scheduled task sets. To get an idea of how the
formulation performed on heavier task sets, we removed task
sets where 20% or less of the bound was consumed on average.
In this case the average utilization was 45.2% with a low of
20.6% and a high of 83.4%. We observed the same trend as
before where RM outperforms EDF on average, and especially

2Ubuntu 14.04, i7-6770HQ CPU, 16GB DDR3 RAM

in the maximum staleness metric. The results are shown in the
bottom section of Table I.

For our second experiment, we looked at the theoretical
schedulability of the task sets. Figure 4 shows the percentage
of task chains which were schedulable using RM or EDF
scheduling. The first two sets of bars depict the schedulability
percentage when freshness bounds are set equal to the period
of the last task in the chain. The second two sets of bars depict
the schedulability after we quarter the freshness bound. If the
freshness bound is too tight, our formulation will sometimes
result in non-positive periods. These cases were included in
the evaluation and were considered unschedulable task chains.

2 Task 3 Task 2 Task 25% 3 Task 25%

40

60

80
75.9

73.1

35.1

29.6

75.9
73.1

35.1

31.5

Task and Freshness Parameter Set

Ta
sk

S
et

s
S

ch
ed

ul
ab

le
[%

]

RM

EDF

Fig. 4. Formulation Schedulability. The first two bar sets show schedulability
of task chains with freshness bound equal to period of the last task. The last
two bar sets show schedulability when the bound is quartered.

Both schedulers scheduled the same percentage of tasks for
the first 3 bar sets and inspection revealed both scheduled the
same task chains. The last bar set depicts a task set which
showed discrepancy between RM and EDF schedulers, where
EDF shows a slight schedulability advantage.

For our third experiment, we choose to repeatedly decrease
the freshness bound of each schedulable task set by 10% from
an original freshness bound (equal to the period of the last
task in the chain). We then recorded the average utilization
and percentage of task chains that are schedulable under EDF.
This gives us an idea of the trade-off between freshness and
schedulability. The results are charted in the top two lines of
Figure 5. We can see that above about 50% of the original
bound a 10% decrease in freshness bound results in about 5%
increase in utilization. The areas where utilization decreases
(30% and lower) is due to less task sets being considered, since
non-schedulable task chains were omitted from the utilization
calculation. We see schedulability is not greatly hindered until
we get to around 30% of the original freshness bound. The
primary significance of Figure 5 is that above 30% of original
freshness bound, where the task set stays largely the same, we
see only modest increases in utilization when we tighten the
freshness bound.

100 90 80 70 60 50 40 30 20 10
0

20

40

60

80

100

Freshness Bound [% of Original]

U
til

iz
at

io
n

/
%

Sc
he

du
la

bl
e

Schedulability / Freshness Tradeoff

Utilization
% Schedulability

Utilization of Sets Schedulable at 10% Bound

Fig. 5. Schedulability, Utilization vs. Freshness.

Next we modified the previous experiment by performing
the evaluation only on those chains which are schedulable at
10% of the original freshness bound, to prevent noise due to
the differences in the schedulable task chains. In the bottom
line of Figure 5 we see a more intuitive curve. It is lower
because more difficult chains were not schedulable with very
low freshness bounds. Note that a 10% reduction does not
change utilization much if above 50% of the original freshness
bound. We see again that utilization is more greatly affected
when below 30% of the original freshness bound.

For our fourth experiment, we chose a three task chain
which was schedulable with freshness bound of 10% of the
period of the last task. This chain was from the automotive
industry. We then calculated the periods of the input tasks
according to our theory in increments of 10% of the orig-
inal freshness bound. We’ll name our tasks in the chain as
A → B → C. In this case, task A has a WCET of 50, task
B a WCET of 155, and task C a period and WCET of 15000
and 50 milliseconds respectively. BCETs were set to half of
WCET. How the assigned periods of tasks A and B change
to reflect the change in freshness bound is displayed in Figure
6. We see that changes in freshness causes linear changes in
the periods of both tasks to account for the new bound.

B. Optimization Formulation Evaluation

To evaluate the optimization formulation we implemented
the described optimization problems in MATLAB. In our
figures we will denote the general formulation as “G-” and the
RM-targeting formulation as “R-” followed by the scheduler
used. For example, G-RM denotes data using solutions from
the general formulation ran under a RM scheduler.

For each chain length, we randomly generated tasks with
between 1 and 5 units of work for their BCET, and added
another 1 to 5 to the BCET to determine the WCET. We then
generated an end-to-end deadline equal to the sum of the task
WCETs multiplied by a random integer between 3 and 10, in
order to add slack to the system that depends on the number
of tasks and their execution lengths so that chain lengths
and WCETs do not adversely affect the results. All random

100 90 80 70 60 50 40 30 20 10
0

1,000

2,000

3,000

4,000

5,000

Freshness Bound [% of Original]

Pe
ri

od
(m

ill
is

ec
on

ds
)

Period Adjustment When Decreasing Freshness Bound

Task A Period
Task B Period

Fig. 6. Freshness vs. Periods. Using one task chain that is schedulable with
a freshness bound at 10% of task C’s period, we plot how our formulation
assigns periods tasks A and B to maintain freshness.

variables were drawn from a uniform distribution. We used the
same necessary and sufficient schedulability uniprocessor tests
for RM and EDF as before. Figure 7 depicts the schedulability
of the generated task sets. Each bar represents the percentage
of 1000 generated task sets that were schedulable. Note the
same 1000 task sets were used for each formulation-scheduler
combination.

3 4 5 6 7
0

20

40

60

80

100 9
7
.1

7
6
.4

5
1
.7

2
5
.7

5
.5

9
2
.3

6
8
.2

3
8

1
0
.2

0
.1

9
2
.5

7
0
.1

4
2
.6

1
7
.2

1

Chain Length

Ta
sk

S
et

s
S

ch
ed

ul
ab

le
[%

]

G-EDF

G-RM

R-RM

Fig. 7. Schedulability of Optimization Results with Differing Chain Lengths.

We see that EDF performs more favorably in terms of
schedulability. However, we do see a small improvement in
RM schedulability when we use our RM-targeted formulation.
This improvement seems to increase with chain length.

To show that our method is applicable to longer chain
lengths and to analyze the scaling ability of the method
according to the task set, we ran the above optimization and
analysis but with a harder and easier task sets. More precisely,
we kept the same task set as depicted in Figure 7 but with the
end-to-end freshness deadline either halved (twice as hard) or

doubled (half as hard). The results of the latter are shown in
Figure 8.

3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100 1
0
0

1
0
0

9
1

7
6
.8

6
7

5
5
.5

4
3
.9

3
4
.5

1
8
.9

7
.9

0
.2

1
0
0

9
8
.9

8
3
.3

7
0

5
3
.9

3
9
.9

2
5
.3

1
1
.1

1 0 0

1
0
0

9
8
.9

8
5
.7

7
3
.4

6
0
.1

4
7
.1

3
5
.7

2
2
.6

8
.4

0
.3 0

Chain Length

Ta
sk

S
et

s
S

ch
ed

ul
ab

le
[%

]

G-EDF

G-RM

R-RM

Fig. 8. Schedulability of Optimization Results with Differing Chain Lengths:
Deadlines Doubled.

We can see that the trend remains about linear in schedu-
lability after the modification. Similar scaling was seen in
the more difficult task set but the figure is omitted due
to space considerations. These experiments suggest that the
formulation’s schedulability generally scales inversely with
chain length. There is no chain length from our trials that
causes the schedulability to unexpectedly drop. It appears that
our formulation can handle approximately twice the chain
length for each halving in difficulty and vice versa, with some
small losses due to pessimism.

In our final evaluation we again referenced the E3S bench-
mark to evaluate real-world performance with multiple chain
lengths. We chose chains that all three formulations could
schedule. We ran the chains and collected freshness data as
we did in the three-task theory evaluation. The results are
summarized in the Table II.

TABLE II
COMPARISON OF FRESHNESS FOR TASK CHAINS UNDER RM OR EDF
SCHEDULING USING RESULTS FROM THE GENERAL OR RM-SPECIFIC

FORMULATION.

G-EDF G-RM RM-RM
Average Freshness (% of bound) 13.73 4.77 4.77

Average Max Freshness (% of bound) 56.20 33.75 31.89

RM scheduling provided better average and maximum stal-
eness when executing the results from either optimization,
further supporting that for real-world task sets similar to the
E3S benchmark, RM provides greater freshness than EDF.

Overall, our optimization formulation seems adequate for
short to moderate chain lengths. We suspect that many real-
life systems use chain lengths within the evaluated ranges,
including all of the E3S benchmark chains. As far as optimiza-
tion efficiency, the optimization problem finished on average

in less than a second. This suggests that the scaling of the
optimization problem would not be a limiting factor in the
use of our system.

IX. DISCUSSION

Although these results are promising, we consider possible
avenues of further improvement. Our approach abstracts away
the scheduling algorithm. Therefore, given information about
the scheduling algorithm, prioritization, and preemptability,
one could likely produce freshness-enforcing parameters that
result in lower utilization.

We reiterate the limitation that this method does not guar-
antee the schedulability of the task set. This is due to our
scheduler agnosticism. However, this is easily remedied by
scheduler-specific schedulability tests. If the particular value
produced by this method is unschedulable, there may or may
not exist other parameters that schedule the task set while
ensuring freshness for a given system.

While we aimed to remain scheduler agnostic, future work
will look into modifying the optimization problem to ensure
schedulability. The RM-specific formulation has most promise
since those results likely improve schedulability under RM.
The RM formulation could also be modified to produce
harmonic periods, which increases schedulability. It may be
possible to accommodate other schedulers with additional
constraints or added variables in the optimization problem.
For example, an EDF formulation may be able to represent
remaining deadline given our already-defined variables and
some notion of time.

Finally, our current formulation specifies data freshness,
network latencies, and other job latencies as absolute worse-
case values. This is acceptable for systems where these values
are well defined and bounded, such as dedicated hardware
running only specified software. Future work could broaden
these values to include functional values such as supply
curves. Alternatively, statistical values and guarantees could
be explored as apposed to absolute ones.

X. RELATED WORK

There are two lines of work in literature which are broadly
related to the problem we have outlined. The first line of
work looks into various aspects of data freshness as a data
quality metric in systems such as Web Servers [8], Real-Time
Databases [9], [10], etc. A second aspect which is important
in our work is the selection of parameters of a set of real-time
tasks such that the tasks are schedulable and particular system
objectives are optimized. However, there are few works which
have combined the problem of selecting periods of real-time
tasks while guaranteeing end-to-end data freshness. We now
present the differences between existing research and the work
which we present.

In [11], [12], the authors present a comprehensive overview
of freshness as a data quality metric and also a framework
for analysis of freshness. Freshness is defined with respect to
two notions, namely currency factor and timeliness factor. The
currency factor represents how stale a data is with respect to its

source, while the timeliness factor represents how old a data
is since its creation/update at the source. Several metrics are
described to measure freshness according to these definitions.
There are also works which have considered freshness related
problems in real-time databases. In [9], the effects of update
policies to maintain data freshness of derived data was studied
in the context of a distributed real-time database and a novel
update policy was proposed. Conversely, an immediate update
policy based on a QoS management architecture is used
by [10]. However, none of the above works consider freshness
in a task context or deriving parameters to maintain the target
freshness constraint.

The problem addressed in [13] was to optimize data fresh-
ness along with other objectives such as throughput in a
multi-server information-update system. The authors propose
a preemptive Last-Come First-Served policy and show that
it optimizes freshness, throughput, and delay performance in
infinite buffer systems. A deferrable scheduling algorithm is
proposed in [14] for maintaining data freshness so as to mini-
mize the update workload. The sampling time of a transaction
job is deferred as late as possible while guaranteeing the
temporal validity of the data. In contrast, our work provides
an analytical framework to derive the period of tasks in order
to provide the required end-to-end data freshness constraint
and does not restrict the scheduling policies.

There are prior works that look at choosing task periods
to meet individual latency requirements in real-time systems
using dynamic priority [15] and static priority [2] scheduling
methods. In [3], the authors propose a heuristic to derive a
feasible period-deadline combination such that the task set
becomes schedulable under the assumption that task dead-
lines are piecewise first-order differentiable functions of the
respective periods. Wu et. al. [16] presented an approach to
select the task periods and deadlines, under EDF scheduling,
to enhance the control performance of a system. However, the
above works do not consider data freshness as a constraint in
their frameworks.

There is one work [17] that has looked at the problem of
period selection combined with data freshness requirement.
Three classes of timing constraints are considered in [17]
namely freshness, correlation, and separation. An iterative
pruning-based heuristic is used to derive the period, offset,
and deadline of tasks such that the end-to-end constraints are
met. In contrast, our work proposes an analytical framework
to derive the task periods remaining completely agnostic to the
scheduling strategy. Moreover, in [17], the periods considered
for producer tasks were harmonic with respect to the periods
of the consumer tasks. We do not impose such a restriction,
which may allow for scheduling more task sets and allows
more flexibility when minimizing our optimization objective.

XI. CONCLUSION

In this paper we considered the freshness of data consumed
by tasks within a periodic task system. We aimed to select the
periods of input tasks in order to ensure the freshness of data
consumed later chain tasks. Without assumptions regarding the

scheduler, we proved upper bounds on the periods of tasks in
order to ensure the freshness of data through chains of tasks
of length two and three for uniprocessor systems. We then
extended the theory to an optimization problem suitable for
any chain length and configuration.

ACKNOWLEDGMENT

This work was supported in part by ONR N00014-16-1-
2195, NSF CNS 1138847, NSF CNS-1505799, and the Intel-
NSF Partnership for Cyber-Physical Systems Security and
Privacy.

REFERENCES

[1] E. Bini and M. Di Natale, “Optimal task rate selection in fixed priority
systems,” in Proceedings of 26th IEEE International Real-Time Systems
Symposium, Dec 2005, pp. 11 pp.–409.

[2] D. Seto, J. Lehoczky, and L. Sha, “Task period selection and schedu-
lability in real-time systems,” in Proceedings of 19th IEEE Real-Time
Systems Symposium, Dec 1998, pp. 188–198.

[3] T. Chantem, X. Wang, M. Lemmon, and X. Hu, “Period and deadline
selection for schedulability in real-time systems,” in Proceedings of
Euromicro Conference on Real-Time Systems, July 2008, pp. 168–177.

[4] C. Belwal and A. Cheng, “Generating bounded task periods for exper-
imental schedulability analysis,” in IFIP 9th International Conference
on Embedded and Ubiquitous Computing, Oct 2011, pp. 249–254.

[5] A. Segev and W. Fang, “Currency-based updates to distributed material-
ized views,” in Proceedings of Sixth International Conference on Data
Engineering, Feb 1990, pp. 512–520.

[6] R. Y. Wang and D. M. Strong, “Beyond accuracy: What
data quality means to data consumers,” J. Manage. Inf. Syst.,
vol. 12, no. 4, pp. 5–33, Mar. 1996. [Online]. Available:
http://dx.doi.org/10.1080/07421222.1996.11518099

[7] D. Golomb, D. Gangadharan, S. Chen, O. Sokolsky, and
I. Lee, “Technical report: Data freshness over-engineering,”
https://www.dagaengolomb.com/techrep.pdf.

[8] A. Labrinidis and N. Roussopoulos, “Exploring the tradeoff between
performance and data freshness in database-driven web servers,” The
VLDB Journal, vol. 13, no. 3, pp. 240–255, 2004.

[9] Y. Wei, S. H. Son, and J. A. Stankovic, “Maintaining data freshness
in distributed real-time databases,” in Proceedings of 16th Euromicro
Conference on Real-Time Systems. IEEE, 2004, pp. 251–260.

[10] K.-D. Kang, S. H. Son, and J. A. Stankovic, “Managing deadline
miss ratio and sensor data freshness in real-time databases,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 10, pp.
1200–1216, 2004.

[11] M. Bouzeghoub and V. Peralta, “A framework for analysis of data
freshness,” in Proceedings of the International Workshop on Information
Quality in Information Systems. ACM, 2004, pp. 59–67.

[12] V. Peralta, “Data freshness and data accuracy: a state of the art,” Reportes
Técnicos 06-13, 2006.

[13] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Optimizing data freshness,
throughput, and delay in multi-server information-update systems,”
arXiv preprint arXiv:1603.06185, 2016.

[14] M. Xiong, S. Han, and K.-Y. Lam, “A deferrable scheduling algorithm
for real-time transactions maintaining data freshness,” in Proceedings of
26th IEEE Real-Time Systems Symposium. IEEE, 2005, pp. 11–pp.

[15] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability
in real-time control systems,” in Proceedings of 17th IEEE Real-Time
Systems Symposium. IEEE, 1996, pp. 13–21.

[16] Y. Wu, G. Buttazzo, E. Bini, and A. Cervin, “Parameter selection for
real-time controllers in resource-constrained systems,” IEEE Transac-
tions on Industrial Informatics, vol. 6, no. 4, pp. 610–620, 2010.

[17] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing real-time require-
ments with resource-based calibration of periodic processes,” IEEE
Transactions on Software Engineering, vol. 21, no. 7, pp. 579–592, 1995.

	University of Pennsylvania
	ScholarlyCommons
	5-2018

	Data Freshness Over-Engineering: Formulation and Results
	Dagaen Golomb
	Deepak Gangadharan
	Sanjian Chen
	Oleg Sokolsky
	Insup Lee
	Recommended Citation

	Data Freshness Over-Engineering: Formulation and Results
	Abstract
	Keywords
	Disciplines
	Comments

	tmp.1530484106.pdf.i0aX_

