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Contrasting Evidence Within and Between Institutions that Provide
Treatment in an Observational Study of Alternate Forms of Anesthesia

Abstract
In a randomized trial, subjects are assigned to treatment or control by the flip of a fair coin. In many
nonrandomized or observational studies, subjects find their way to treatment or control in two steps, either or
both of which may lead to biased comparisons. By a vague process, perhaps affected by proximity or
sociodemographic issues, subjects find their way to institutions that provide treatment. Once at such an
institution, a second process, perhaps thoughtful and deliberate, assigns individuals to treatment or control. In
the current article, the institutions are hospitals, and the treatment under study is the use of general anesthesia
alone versus some use of regional anesthesia during surgery. For a specific operation, the use of regional
anesthesia may be typical in one hospital and atypical in another. A new matched design is proposed for
studies of this sort, one that creates two types of nonoverlapping matched pairs. Using a new extension of
optimal matching with fine balance, pairs of the first type exactly balance treatment assignment across
institutions, so each institution appears in the treated group with the same frequency that it appears in the
control group; hence, differences between institutions that affect everyone in the same way cannot bias this
comparison. Pairs of the second type compare institutions that assign most subjects to treatment and other
institutions that assign most subjects to control, so each institution is represented in the treated group if it
typically assigns subjects to treatment or, alternatively, in the control group if it typically assigns subjects to
control, and no institution appears in both groups. By and large, in the second type of matched pair, subjects
became treated subjects or controls by choosing an institution, not by a thoughtful and deliberate process of
selecting subjects for treatment within institutions. The design provides two evidence factors, that is, two tests
of the null hypothesis of no treatment effect that are independent when the null hypothesis is true, where each
factor is largely unaffected by certain unmeasured biases that could readily invalidate the other factor. The two
factors permit separate and combined sensitivity analyses, where the magnitude of bias affecting the two
factors may differ. The case of knee surgery in the study of regional versus general anesthesia is considered in
detail.
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Contrasting Evidence Within and Between Institutions That 
Provide Treatment in an Observational Study of Alternate Forms 
of Anesthesia

José R. Zubizarreta, Mark Neuman, Jeffrey H. Silber, and Paul R. Rosenbaum1

1Department of Statistics, The Wharton School, University of Pennsylvania, 473 Jon M. 
Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 USA

Abstract

In a randomized trial, subjects are assigned to treatment or control by the flip of a fair coin. In 

many nonrandomized or observational studies, subjects find their way to treatment or control in 

two steps, either or both of which may lead to biased comparisons. By a vague process perhaps 

affected by proximity or sociodemographic issues, subjects find their way to institutions that 

provide treatment. Once at such an institution, a second process, perhaps thoughtful and 

deliberate, assigns individuals to treatment or control. In the current paper, the institutions are 

hospitals, and the treatment under study is the use of general anesthesia alone versus some use of 

regional anesthesia during surgery. For a specific operation, the use of regional anesthesia may be 

typical in one hospital and atypical in another. A new matched design is proposed for studies of 

this sort, one that creates two types of nonoverlapping matched pairs. Using a new extension of 

optimal matching with fine balance, pairs of the first type exactly balance treatment assignment 

across institutions, so each institution appears in the treated group with the same frequency that it 

appears in the control group; hence, differences between institutions that affect everyone in the 

same way cannot bias this comparison. Pairs of the second type compare institutions that assign 

most subjects to treatment and other institutions that assign most subjects to control, so each 

institution is represented in the treated group if it typically assigns subjects to treatment or 

alternatively in the control group if it typically assigns subjects to control, and no institution 

appears in both groups. By and large, in the second type of matched pair, subjects became treated 

subjects or controls by choosing an institution, not by a thoughtful and deliberate process of 

selecting subjects for treatment within institutions. The design provides two evidence factors, that 

is, two tests of the null hypothesis of no treatment effect that are independent when the null 

hypothesis is true, where each factor is largely unaffected by certain unmeasured biases that could 

readily invalidate the other factor. The two factors permit separate and combined sensitivity 

analyses, where the magnitude of bias affecting the two factors may differ. The case of knee 

surgery in the study of regional versus general anesthesia is considered in detail.
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1 Introduction: Regional or General Anesthesia; Outline

1.1 Does the method of anesthesia affect outcomes after surgery?

Anesthesia for surgery is intended to temporarily interrupt (i) the sensation of pain, (ii) 

awareness of the procedure, and (iii) movement by the patient that may interfere with 

surgery (Wiklund and Rosenbaum 1997). For procedures involving the extremities, regional 

anesthesia, most often involving injection of local anesthetic at specific sites within the 

spinal column (i.e. epidural or intrathecal injection) provides analgesia and immobility, and 

may be used with intravenous or inhaled medications to blunt or eliminate awareness. This 

approach is contrasted with techniques—which we refer to collectively as “general 

anesthesia alone”—that omit regional anesthesia and rely on any of several combinations of 

inhaled and intravenous medications. While use of regional anesthesia has been suggested to 

reduce the incidence of postoperative pain (Block et al. 2003), complications and mortality 

(Rogers et al. 2000) compared to general anesthesia alone, the small sample sizes of most 

studies have not yielded firm conclusions regarding patient outcomes or health care costs.

The Obesity and Surgical Outcomes study abstracted charts for nearly 16,000 Medicare 

patients at 47 hospitals in Illinois, New York and Texas, undergoing knee and hip surgery, 

colectomy or thoracotomy. The abstracted charts were combined with administrative data 

from Medicare, the U.S. government’s program that provides health care to the elderly. 

Chart abstraction provided information about: (i) type of anesthesia, (ii) type of diabetes, 

(iii) obesity as measured by the body mass index or BMI, (iv) physiological information, 

such as systolic blood pressure, with physiological information summarized in an 

approximate Acute Physiology and Chronic Health Evaluation (APACHE) score (Knaus et 

al. 1991), and (v) the American Society of Anesthesiologists (ASA) physical status 

classification. Medicare claims provided survival follow-up, and information about 

comorbid conditions, complications, length of stay, and readmission.

Some hospitals make extensive use of regional anesthesia while other hospitals typically use 

general anesthesia alone. Within a given hospital, some patients may receive some regional 

anesthesia while other patients receive only general anesthesia. Presumably these two 

processes operate in different ways. With the exception of obstetric care, patients do not 

typically choose a hospital based on anesthesia practices at that hospital; rather, patients 

typically end up at one hospital rather than another based on proximity, affiliation, or 

perhaps reputation. Within a given hospital, the choice between some regional anesthesia or 

just general anesthesia may reflect a mixture of, on the one hand, deliberate decision making 

in light of patient risk factors and, on the other hand, some haphazard elements such as the 

usual practices of different anesthesiologists at a single hospital. Unlike random assignment 

to local or general anesthesia in a clinical trial, both of these nonrandom processes may lead 

to biased comparisons, but the two processes are nonetheless different, and either could be 

severely biased when the other is subject to little or no bias. Proximity and affiliation are 

associated with sociodemographic and other issues that vary from place to place: Austin, 

Texas is not Houston, and Buffalo, New York is not Manhattan. Deliberate decision making 

guided by patient risk factors could severely bias comparisons, particularly when there is 

accurate and universal agreement about which risk factors matter. In the current study, 
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widely divergent practices at different hospitals suggest that such agreement is less than 

universal. As is standardly done, adjustments are made for measured covariates, that is for 

measured pretreatment characteristics of patients. However, if treatments are not randomly 

assigned to patients, then there is inevitably the concern that adjustments omit some 

unmeasured covariate and therefore fail to compare comparable patients under competing 

treatments.

1.2 Outline: Matched pairs unequally susceptible to types of unmeasured bias

We propose a new design for an observational study for use in this and related contexts. The 

design produces two independent tests of no treatment effect, that is, of no difference in 

outcomes between general anesthesia alone or some use of regional anesthesia. Moreover, 

each of these two tests is only slightly affected by unmeasured biases that might strongly 

affect the other. That is, the design produces two evidence factors (Rosenbaum 2010a, 

2011a; Zhang et al. 2011). An optimal matching algorithm yields two nonoverlapping sets of 

matched pairs. Each pair contains two patients with different treatments — some local 

anesthesia (say treated) or just general anesthesia (say control) — but with similar 

covariates, that is, the same operative procedure, similar age, ASA and APACHE scores, 

similar comorbidities, and so on. In the first set of matched pairs, the 47 hospitals are 

perfectly balanced: for h = 1,…,47, hospital h is represented equally often in the treated and 

control groups. In the second set of matched pairs, hospital h is represented in the treated 

group if it assigns most patients to treatment, and it is represented in the control group if it 

assigns most patients to control, but no one hospital h is represented in both groups. The first 

set of matched pairs, the ‘finely balanced set,’ is not much affected by unmeasured 

systematic differences between the types of hospitals that typically use some regional 

anesthesia and those that rarely use any regional anesthesia; after all, these two types of 

hospitals are represented equally often in the treated and control groups. The second set of 

matched pairs, the ‘usual practice set,’ is less affected by decision making about individual 

patients within hospitals; after all, the main reason that a patient received regional or general 

anesthesia in the second type of matched pair is that the patient received the care typically 

provided in that hospital. The description just given is qualitative, but there is a quantitative 

dimension also. Hospitals that assign almost all patients to treatment or almost all patients to 

control dominate the second type of match, the ‘usual practice match,’ while hospitals that 

divide their patients fairly evenly dominate the ‘finely balanced match,’ even though most 

hospitals contribute at least a few patients to both matched sets.

The case-study is presented first in §2, whereas the technical details of the new matching 

algorithm are described later in §4. In §2.1, the basic structure of the study is described. 

Then, §2.2 asks whether the matching has been effective in balancing 44 observed 

covariates. Of course, the key source of uncertainty in an observational study stems not from 

imbalances in observed covariates, which can be removed, but rather from possible 

imbalances in unobserved covariates. Section 2.3 looks at two outcomes and their 

combination, deep vein thrombosis, a serious complication of knee surgery, and readmission 

to an acute care hospital within 30 days. Section 2.5 discusses sensitivity to unmeasured 

biases. In §3, the assumptions underlying various analyses are contrasted, in particular, the 

assumptions that would lead both types of match to produce consistent estimates, violations 
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that would lead the two matches to disagree with each other, and the relationship with 

instrumental variable analysis.

1.3 Brief review of the logic of evidence factors

The proposed matched design is intended to produce two independent matched comparisons, 

each of which is not extremely susceptible to one type of unmeasured bias while being very 

susceptible to another. Differences between hospitals are largely controlled in the finely 

balanced match but they are intensified in the usual practice match. Selection biases within 

hospitals have reduced effect on the usual practice matches — each hospital is doing what it 

typically does — but they are intensified in the finely balanced match. Why is this structure 

desirable? Why is it advantageous to enlarge one bias while shrinking another when both 

biases may be present? The logic of evidence factors is related to the goals of replication in 

observational studies, which will now be discussed.

Because treatments are not assigned at random, observational studies may vary in their 

susceptibility to particular unmeasured biases but it is difficult if not impossible to design an 

observational study that is absolutely immune to all possible unmeasured biases. When a 

new investigator sets out to replicate a previous observational study, the new investigator 

has the choice of imitating the first study exactly as reported or, alternatively, of varying the 

design in specific ways to reduce its susceptibility to one worrisome bias while perhaps 

producing a study more susceptible to some other type of bias. The attempt to replicate 

exactly increases the sample size, but many observational studies are large and a limited 

sample size is not the principal source of uncertainty (Cochran 1965). An exact replicate 

may also serve as a check on the candor and competence of the first study, which is, alas, 

sometimes a source of genuine concern. On the other hand, the attempt to remove one 

source of potential bias in the original study comes closer to addressing the central concern 

in observational studies, namely bias from nonrandom treatment assignment. As expressed 

by Mervyn Susser, the investigator seeks “consistency of results in a variety of repeated 

tests” (Susser 1987, page 88) and “diverse approaches [which] produce similar results” 

(Susser 1973, page 148). Replicates that vary key design elements yield statistically 

independent tests of no treatment effect that are unequally susceptible to specific forms of 

bias, so consistent results from varied designs can gradually reduce, albeit not eliminate, 

uncertainty about unmeasured biases (Rosenbaum 2001).

Evidence factors attempt to produce independent replicates with varied design elements 

within a single study. Evidence factors are independent tests of the null hypothesis of no 

treatment effect that are especially susceptible to different type of unmeasured biases (see 

Rosenbaum 2010a, 2011a; Zhang et al. 2011). Unlike previous work, the current manuscript 

is concerned with the design of observational studies to yield two evidence factors, 

specifically with a matching algorithm that produces such a design.

2 Example: Knee Surgery with Regional or General Anesthesia

2.1 ‘Finely balanced’ and ‘usual practice’ matches

Although the Obesity and Surgical Outcomes Study (OBSOS; Silber et al. 2011a, b) 

abstracted charts for five categories of surgery, the discussion here will focus on the one 

Zubizarreta et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2015 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



largest category, namely knee replacements. Table 1 describes the distribution of 4596 

Medicare patients undergoing knee surgery in 2298 matched pairs. Each pair contains one 

patient who had only general anesthesia and one patient who had some regional anesthesia. 

The pairs were matched for the 44 covariates in Table 2. The pairs are of two types, 1 and 2. 

The 1354 pairs of type 1 finely balanced the 47 hospitals, which is to say that the number of 

regional patients from each hospital equals the number of general patients from that hospital; 

however, individual pairs are closely matched for the covariates in Table 2 and rarely 

matched for the hospital. In some hospitals, most patients receive regional anesthesia, while 

in other hospitals most patients receive general anesthesia, but this pattern has been removed 

from the type 1 pairs. The 944 type 2 pairs, or ‘usual practice pairs,’ are built from the 

remnant of the type 1 match. A hospital which gives most patients regional anesthesia 

contributes only regional patients to the type 2 match, while a hospital that gives most 

patients general anesthesia contributes only general patients to the type 2 match.

Consider, for example, hospital 8. Most patients in this hospital receive regional anesthesia 

during knee surgery. That hospital contributed 18 regional and 18 general patients to the 

type 1 match and 66 regional patients to the type 2 match. In contrast, in hospital 27 most 

patients receive general anesthesia. Hospital 27 contributed 35 regional and 35 general 

patients to the type 1 match and 168 general patients to the type 2 match. Because hospital 3 

gives regional anesthesia to about half its patients, it contributes many patients, 202 patients, 

to the type 1 match and only 4 to the type 2 match. This situation is reversed in hospital 6.

Hospitals that prefer regional anesthesia may differ from those that prefer general 

anesthesia, but to a large extent unmeasured bias from this source is controlled in the type 1 

match. After all, every hospital is represented in the regional and general groups with the 

same frequency in the type 1 match. However, we do not know how patients were divided 

between general and regional anesthesia in hospital 3. As will be seen in Table 2, we do 

know that the regional and general patients were similar in terms of 44 measured covariates 

from chart abstraction and Medicare claims, and we do know this was true in type 1 matches 

and in type 2 matches. Nonetheless, it is easy to imagine that in the type 1 matches in 

hospital 3, the division into regional and general groups involved consideration of some 

pretreatment risk factors that are not adequately represented by the 44 measured covariates, 

so the type 1 matches may be biased.

To a considerable extent, the type 2 matches are a comparison of hospitals such as 2 and 6, 

where most patients receive regional anesthesia, and hospitals 27 and 37, where most 

patients receive general anesthesia. In hospitals 6 and 27, the regional-versus-general 

decision reflects the usual practice in that hospital — the choice to have surgery in hospital 6 

or hospital 27 — not a patient-by-patient decision.

In brief, the type 1 matches suffer from one defect — anesthesiologists divided patients in 

the same hospital into regional and general groups for reasons we do not fully understand — 

while the type 2 matches suffer from a very different defect — hospitals that typically use 

regional anesthesia may differ from those that typically use general anesthesia. Although we 

can and do adjust for measured covariates, we cannot be certain that these adjustments have 

created a situation free of both defects; however, by contrasting results in type 1 and type 2 
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pairs, to a large extent we can view the situation without the first defect or without the 

second. This is less than we might like, but it is progress nonetheless. Possible biases 

simultaneously affecting both types of pairs are discussed in §2.5.

Treated and control subjects are paired using treatment, covariates and hospitals but not 

using outcomes, so this is “matching on the basis of covariates and hospitals alone” in the 

sense of Rosenbaum and Rubin (1985, §1.5), and therefore the matching does not alter 

conditional distributions of outcomes given treatments, covariates and hospitals.

2.2 Covariate balance attained by matching for 44 covariates

The matching algorithm sought to create matched pairs who were similar in terms of 44 

observed covariates. The algorithm did this in two steps: it first created the type 1 pairs 

finely balanced for the 47 hospitals, then took the unmatched remnants from the first step 

and constructed the type 2 pairs that reflect the usual practice in the hospitals, either regional 

or general anesthesia. How successful was the algorithm at balancing the 44 observed 

covariates? Figures 1 and 2 and Table 2 display covariate balance for 44 covariates 

describing a patient upon admission or the patient’s history. Some of the information, such 

as the ASA score and blood pressure, is from chart abstraction, while some information is 

from the patient’s history of Medicare claims.

It is, perhaps, easiest to begin with the four continuous covariates in Figure 1. Figure 1 

displays boxplots, four for each covariate, describing the distribution of the covariate in type 

1 and type 2 pairs, and for the regional and general patients in those pairs. One hopes to see 

that the first two boxplots, Gen-1 and Reg-1, are similar, and that the second two boxplots, 

Gen-2 and Reg-2, are similar; if one saw this, then the marginal distribution of the covariate 

would be approximately balanced. In fact, more than this has happened: all four boxplots for 

each covariate are similar, even though this is not the algorithm’s goal, nor is it likely to 

occur in all examples, nor for all covariates in any one example. In Figure 1, age is greater 

than or equal to 65 by the requirement of eligibility for Medicare and is at most 80 by the 

design requirements for the OBSOS study. Obesity places a strain on the knees and knee 

surgery is more common among the obese, so the median body mass index of 30.5 and the 

typical systolic blood pressure of 142 are high but not surprising.

Table 2 describes all 44 observed covariates. Many of these are binary indicators of other 

diseases or comorbid conditions that a patient undergoing knee surgery may have, such 

diabetes or congestive heart failure. The propensity score is the estimated probability of 

regional anesthesia given the covariates fitted using a logit model; it is a standard tool in 

multivariate matching (Rosenbaum and Rubin 1983, 1985). Recall that hospitals charts were 

abstracted for 47 hospitals in Illinois, New York and Texas, and only Medicare data are 

available for the remaining patients from these states. The risk score is an estimated 

probability of death within 30 days of surgery based on Medicare data from a logit model 

fitted to all patients undergoing knee surgery in Illinois, New York and Texas except the 

patients in the 47 hospitals in Table 1; it is an independent estimate of Hansen’s (2008) 

prognostic score which makes no use of outcomes at the 47 hospitals. Because knee surgery 

is typically elective surgery aimed at improving quality of life, it is not surprising that the 

estimated mortality risk is very low. (The OBSOS study also looked at colectomies and 
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thoracotomies often used in the treatment of cancer, and here the mortality within 30 days is 

higher.) The ASA score and systolic blood pressure were from chart abstraction and were 

missing for some patients, and the matching attempts to balance the observed values of these 

covariates and the binary indicators of missing values, both of which appear in Table 2; see 

Rosenbaum (2010b, §9.4).

The covariates in Table 2 are not perfectly balanced, but the balance on observed covariates 

is considerably greater than would have been expected had an equivalent number of patients 

been assigned completely at random to regional or general anesthesia. This is exhibited in 

Figure 2. If a two-sample randomization test, such as Wilcoxon’s rank sum test or Fisher’s 

exact test for a 2 × 2 table, is applied to a covariate in a large completely randomized 

experiment then the distribution of the resulting P-value is approximately uniform on the 

interval [0, 1]; it would be exactly uniform but for the discreteness of randomization 

distributions. Figure 2 depicts 132 = 3 × 44 such P-values, three for each covariate in Table 

2, using Wilcoxon’s rank sum test for continuous and scored covariates and Fisher’s exact 

test for binary covariates. The open circles in Figure 2 compare general and regional groups 

in the type 1 matches, while the x’s refer to the type 2 matches. The solid circles combine 

the type 1 and type 2 matches into a single group. None of the 132 P-values in Figure 2 is 

below 0.05, whereas 6.6 = 132 × 0.05 P-values below 0.05 would be expected by chance 

under complete randomization. Moreover, the entire distribution of P-values is 

stochastically larger than the uniform distribution, so there is greater balance for observed 

covariates in Table 2 than expected from complete randomization. Importantly, 

randomization tends to balance covariates that were not measured, but matching for 

observed covariates cannot be expected to do this.

An obvious concern about Figures 1 and 2 and Table 2 is that balance is appraised one 

covariate at a time. It is possible that the marginal distribution of each of the 44 covariates is 

balanced, yet the joint distribution is not. After all, the match in Table 2 was produced by an 

algorithm that was aiming for covariate balance, and it is conceivable that an algorithm has 

done something odd in a high-dimensional sense. We examine multivariate balance using 

the crossmatch test (Rosenbaum 2005) as suggested by Heller et al. (2011). The crossmatch 

test momentarily forgets who is treated, who is control and who is matched to whom, and 

then uses optimal nonbipartite matching (Lu et al. 2011, Derigs 1988, Papadimitriou and 

Steiglitz 1982, §11.3) to repair the momentarily unpaired groups using the covariates alone. 

Having done this, the crossmatch test counts the number of times a treated subject was 

paired with a control, rejecting the hypothesis of covariate balance if that count is small. The 

test is an exact, distribution-free randomization test of covariate balance. The idea is that if 

treated subjects are rarely paired with controls using covariates alone, the covariate 

distributions must differ. See Heller et al. (2011) for discussion of the relationship between 

the crossmatch test and the propensity score. When applied to the finely balanced pairs, the 

usual practice pairs and all the pairs, the P-values are 1.00, 0.98 and 0.99, because their are 

more, rather than fewer, crossmatches than expected under covariate balance. That is, in a 

multivariate sense also, the observed covariates exhibit greater balance than would be 

expected from assignment to treatment completely at random.
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In brief, the matching algorithm does appear to have balanced the 44 observed covariates, 

perfectly balanced the 47 hospitals in the type 1 match, and perfectly unbalanced the 

hospitals in the type 2 match.

2.3 Naïve Analysis: What would one conclude if matching had removed all bias?

In an observational study, a naïve analysis is one that assumes adjustments for observed 

covariates suffice to remove all bias; see §3. In §2.3, a naïve analysis is presented and then 

§2.5 examines the degree of sensitivity to unmeasured bias of one of the results in §2.3.

Mortality within 30 days of admission was low, 13 deaths among 4596 patients, with 6 

among general anesthesia patients and 7 among regional anesthesia patients. Of these 13 

deaths, 9 occurred prior to discharge from the hospital and four occurred shortly after 

discharge. Two further patients died prior to discharge from the hospital at 51 and 72 days 

after admission; both received general anesthesia. Albers (1988) proposed a rank test for 

censored matched pairs. Using this test three times to compare mortality over 180 days (i.e. 

six months) after admission in type 1, type 2 and all pairs yields three two-sided P-values, 

the smallest of which is 0.22. In brief, among the few deaths, there is no indication of a 

difference in survival associated with regional-versus-general anesthesia. An exponential 

distribution with a hazard rate of 13/4596 = 0.00283 per month would have an expectation 

of more than 29 years, far greater than the life expectancy in the Medicare population. Taken 

together, this suggests events following surgery may or may not have killed a few patients, 

but despite this their overall 30-day mortality was low compared with the Medicare 

population, perhaps because elective knee surgery is undertaken by a comparatively healthy 

subset of the Medicare population.

Although elective knee surgery often proceeds uneventfully, two of the more common but 

serious events associated with knee surgery are deep vein thrombosis and readmission to an 

acute-care hospital within 30 days. Table 3 examines deep vein thrombosis, readmission 

within 30 days, and their combination. Table 3 refers to “alive without readmission” or 

“alive without deep vein thrombosis,” so the small number of deaths are always counted in 

the unfavorable category. The McNemar-Mantel-Haenszel test for paired binary data is the 

large sample approximation to the uniformly most powerful unbiased test against a constant 

odds ratio not equal to one — see Birch (1964) and Cox (1966) — and this test focuses on 

discordant pairs, that is, the subset of matched pairs in which exactly one of the two people 

exhibited the binary response in question. For this reason, Table 3 counts discordant pairs. 

The null hypothesis that the odds ratio is the same in finely balanced (type 1) pairs and usual 

practice (type 2) pairs was tested using Gart’s (1969) test for interaction for paired binary 

responses; it is essentially Fisher’s exact test for a 2 × 2 table comparing type 1 and type 2 

discordant pairs.

In Table 3, the type 1 and type 2 pairs yield different impressions. In the finely balanced or 

type 1 pairs, the regional and general groups have the same number of patients drawn from 

hospital h, for h = 1,…,47, whereas the usual practice or type 2 pairs, one is contrasting 

patients at hospitals that typically use regional or typically use general anesthesia. In 

discordant finely balanced pairs, it is more common for the patient receiving regional 

anesthesia to be alive without deep vein thrombosis or readmission. In the usual practice 
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pairs, it is quite plausible that there is no difference, and the point estimates of odds ratios 

are closer to the null value of 1. However, Gart’s test does not reject the null hypothesis that 

the finely balanced and ususal practice pairs have the same odds ratio.

Not shown in Table 3 is an analysis of an ordinal 3-category outcome with score 0 for 

patients who had neither deep vein thrombosis, 1 for patients who either but not both, and 2 

for patients who had both or died. Although there were 52 patients with score 2, the analysis 

is barely distinguishable from the combined analysis in Table 3.

Figure 3 depicts time-to-readmission for up to 30 days after discharge, or more accurately, it 

depicts “alive without readmission at d days after discharge” for d = 0,…,30. The curves do 

not begin at 1 on d = 0 in part because of deaths prior to discharge, which again are included 

in Figure 3 as not “alive without readmission at d days after discharge.” The two-sided P-

values in Figure 3 are again from Albers (1988) test, with censoring imposed at 30 days to 

reflect the notion that a hospital admission in the Medicare population several months after 

knee surgery may not be connected with the surgery. All censoring occurred at exactly 30 

days because all patients were observed for at least 30 days. Generally, the impression from 

Figure 3 is consistent with the impression from Table 3.

2.4 Testing multiple hypotheses with multiple control groups

When several comparisons are made, as in Table 3, each test performed at level α, there is 

an increased chance, typically above α, of at least one false rejection simply by chance when 

all null hypotheses are true. Two simple testing plans control the chance of false rejection. In 

the first plan, the overall test — “All” in Table 3 — is performed first, and only if this test 

rejects at level α are the two types of pairs tested separately, each at level α. This plan 

performs either one test or three tests depending upon the outcome of the first test. In the 

second plan, priority is given to one type of pair, say the balanced type 1 pairs, which are 

tested at level α, and only if this P-value is less than or equal to α are the type 2 pairs also 

tested at level α. The second plan performs either one test or two tests. If each test separately 

has level α, then by the argument in Rosenbaum (2008; 2010b, §19.3), the chance that either 

testing plan tests and rejects at least one true hypothesis is at most α.

If the first testing plan were applied to deep vein thrombosis in Table 3, then it would reject 

no effect for all pairs at the conventional level α = 0.05, would therefore test both types of 

pairs at level 0.05, and would also reject no effect for the finely balanced pairs, but not for 

the usual practice pairs. For readmission, the first testing plan would not reject for all pairs 

and would stop, testing no further hypotheses.

2.5 Sensitivity analysis: What magnitude of unmeasured bias would need to be present to 
alter the conclusions of the naïve analysis?

The naïve analysis in §2.3 acted as if the matching had recreated a randomized pair 

experiment in which randomization tests, such as McNemar’s test and Albers’ test could 

safely be used. The current section performs in Table 4 a sensitivity analysis which asks 

about the magnitude of departure from random assignment that would need to be present to 

alter these conclusions. Because McNemar’s and Albers’ statistics equal a constant plus a 
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so-called “sign-score statistic,” the sensitivity analysis of I pairs is a special case of an 

available technique (Rosenbaum 1987; 2010b, §3.4), so the method will be described very 

briefly. As discussed in Rosenbaum (2010a, 2011a) and Zhang et al. (2011), the two 

sensitivity analyses for the two types of pairs may be combined using Fisher’s method for 

combining independent P-values, and this is done in Table 4. For a few alternative methods 

of sensitivity analysis, see Cornfield et al. (1959), Yanagawa (1984), Marcus (1997), Lin, 

Psaty and Kronmal (1998), Robins, Rotnitzky and Scharfstein (1999), Imbens (2003), Yu 

and Gastwirth (2005) and Small (2007).

The sensitivity analysis is indexed by a parameter Γ ≥ 1. The sensitivity parameter Γ says 

that two individuals with the same observed covariates may differ in their odds of treatment 

— here, regional anesthesia — by at most a factor of Γ. If Γ = 1, then two individuals with 

the same observed covariates have the same odds of treatment, and this results in the 

randomization distribution or the naïve analysis in §2.3. For each Γ > 0, the distribution of 

treatment assignments is unknown but to a bounded degree, so it is possible to determine 

upper and lower bounds on inference quantities such as P-values or point estimates or 

endpoints of confidence intervals. Table 4 presents upper bounds on one-sided P-values. 

The test statistics are of the form Σqi, where qi is a score for pair i, so that, under Fisher’s 

sharp null hypothesis of no treatment effect, pair i contributes ±qi and in a randomized 

paired experiment ±qi occur with equal probabilities 1/2. Under Fisher’s sharp null 

hypothesis, McNemar’s test has qi equal to 1, 0 or −1 with qi = 0 for a concordant pair, 

while for Albers’ (1988) test for censored paired times, qi is a score computed from the time 

and censoring distributions. For either test, allowing for a bias of Γ ≥ 1 in treatment 

assignment, the approximate upper bound on the one-sided P-value is:

(1)

where Φ (·) is the Normal cumulative distribution; see Rosenbaum (1987; 2010b, §3.4).

The value of Γ indexes the magnitude of departure from random assignment. It is sometimes 

useful to reinterpret a magnitude of Γ in terms of failure to adjust for a single unobserved 

covariate associated with both treatment assignment and matched pair outcome difference. 

Under mild conditions (Rosenbaum and Silber 2009, Proposition 1), a single value of Γ 

corresponds with a curve of values of two parameters, namely Γ = (ΔΛ + 1) / (Δ + Λ) where 

Λ controls the odds of assignment to treatment and Δ controls the odds of a positive 

response difference, and Λ → Γ as Δ → ∞. For instance, the curve for Γ = 1.25 includes (Δ 

= 2, Λ = 2) for an unobserved covariate that doubles the odds of treatment and doubles the 

odds of a positive response difference. In parallel, the curve for Γ = 1.1 includes (Δ = 2, Λ = 

4/3), (Δ = 4/3, Λ = 2), (Δ = 1.56, Λ = 1.56), and infinitely many other values of (Δ, Λ) 

satisfying 1.1 = (ΔΛ + 1) / (Δ + Λ). See Rosenbaum and Silber (2009) for detailed 

discussion.

Table 4 displays the upper bounds (1) on the one-sided P-values for a binary outcome using 

McNemar’s test and for a paired censored time using Albers’ test. Success for the combined 
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binary outcome is to be alive without deep vein thrombosis and without readmission at 30 

days. Success for the temporal outcome is to be alive without readmission at time t days for t 

∈ [0, 30]. In Table 4, Γ1 refers to biases affecting the type 1 pairs which balanced the 47 

hospitals, and Γ2 refers to biases affecting the type 2 pairs which contrast outcomes in 

hospitals with differing usual practices. For Γ1 = Γ2, the sensitivity analysis using all I = 

2298 pairs is given in the last column. Because type 1 and type 2 pairs do not overlap, the 

tests based on them are independent, and the upper bounds on their P-values may be 

combined using Fisher’s method which adds −2 times the logs of the two P-values and 

compares the result with the chi-square distribution on 4 degrees of freedom; see 

Rosenbaum (2010a, 2011a) for discussion of using Fisher’s method in sensitivity analyses. 

The table considers only Γ2 = 1 because no effect is plausible in the type 2 pairs even in a 

randomization test that assumes there is no unmeasured bias.

The combined binary outcome would be significant for type 1 pairs and for the combined 

analysis in the absence of biased treatment assignment, Γ1 = Γ2 = 1, and those analyses 

resist a small unmeasured bias of Γ1 = 1.1, Γ2 = 1, but even slightly larger biases could 

explain the somewhat better results for patients receiving regional anesthesia. In a two-sided 

test, the time-to-readmission outcome is only barely significant only for type 1 pairs even in 

the absence of bias Γ1 = Γ2 = 1. The multiple testing procedure of §2.4 may be combined 

with the sensitivity analysis, and at level α = 0.05 it would terminate testing in Table 4 at Γ1 

= 1.1, Γ2 = 1; see Rosenbaum (2010b, §19).

2.6 Is logit regression an alternative analytic strategy?

Our sense is that the analyses just described cannot easily be done using a model such as 

logit regression. A key element in the analysis just described is that there are two 

independent analyses, one largely unaffected by differences between hospitals, the other 

comparing different hospitals with different typical patterns of anesthesia practice. A logit 

regression would include the patient covariates in Table 2 and might or might not include 

the 47 hospital indicators in Table 1. Those two logit analyses, with and without hospital 

indicators, would use the same patients twice, so they would be far from independent 

replicates. Moreover, both analyses would derive some, perhaps most, of their information 

about the association of an outcome with regional-versus-general anesthesia from patients in 

the same hospital, where selection biases may assign one patient to regional, another to 

general. For instance, in Table 1, hospital 3 uses both types of anesthesia for knee surgery 

with about equal frequencies while hospital 6 typically uses regional anesthesia. Logit 

regression would not clarify the distinct types of information provided by hospitals 3 and 6. 

The comparison within hospital 3 is quite a different thing from the comparison of hospital 6 

with hospital 27, yet logit regression would not aid in distinguishing them.

At a purely practical level, there are 44 covariates and 47 hospitals, or 44 + 47 = 91 

predictors of just 172 cases of deep vein thrombosis, so even a logit model without 

interactions would be thinly supported by the data. Indeed, in the usual practice pairs, there 

are only 62 cases of deep-vein thrombosis but there are still 44 covariates. In contrast, 

matching balanced the 91 observed covariates to a greater degree than randomization is 
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expected to balance observed covariates, and it sought individually similar patients using a 

Mahalanobis distance, so it is attempting to control interactions among predictors.

2.7 Discussion of the example

Selection bias refers to the thoughtful, considered selection of some patients for treatment, 

others for control; it is one mechanism that can lead to biased comparisons in an 

observational study. A worry focused on selection biases within hospitals might lead to a 

comparison of different hospitals that typically prefer either regional or general anesthesia. 

Alas, two hospitals that differ in terms of typical anesthesia practice may differ also in other 

ways, such as other aspects of the care they provide and the populations they serve.

In §2.3, two sets of matched pairs were examined, one balanced for the 47 hospitals and 

hence largely controlling differences among hospitals, the other emphasizing comparisons of 

different hospitals with different usual anesthesia practices. Both sets of matched pairs 

controlled biases in measured covariates using matching; see Table 2 and Figures 1 and 2. In 

each set of matched pairs, one form of unmeasured bias is reduced while the other is 

enlarged. If one were viewing without bias an effect actually caused by regional anesthesia, 

then one would hope to see evidence of this in both matched sets.

How strong is the evidence in Tables 3 and 4 and Figure 3 that regional anesthesia reduces 

the risk of readmission or deep vein thrombosis? Clearly, the proposed design might have 

produced evidence that is considerably stronger or considerably weaker than the evidence it 

did produce. We might have seen, but we did not see, an association between regional 

anesthesia and the outcomes in both the balanced and usual practice pairs. There was, 

however, no compelling indication of an association in the usual practice pairs, albeit with 

no compelling indication that the two type of pairs were actually different; see the test for 

interaction in Table 3. In other words, looking inside hospitals that use both forms of 

anesthesia, we see somewhat better results with regional anesthesia, but comparing hospitals 

that mostly do one or mostly do the other, we see little evidence of better results at hospitals 

that mostly use regional anesthesia. Moreover, we might have seen, but we did not see, an 

association that was insensitive to moderately large unmeasured biases, whereas the 

combined analysis with 2298 pairs at the right in Table 4 is sensitive to biases Γ > 1.1, that 

is, to biases that might be produced by an unobserved covariate that increases the odds of 

both regional anesthesia and a favorable outcome by 50%, (Δ = 1.56, Λ = 1.56). In brief, 

stronger evidence in both senses was possible with this design. At the same time, the 

analysis on the left for the finely balanced pairs in Table 3 and Figure 3 would meet the 

usual standard in the typical empirical journal, with conventional tests that yield significant 

P-values and point estimates of odds ratios that are far from inconsequential in size. This 

evidence meets the standards usually set for studies that guide the treatment of patients, but 

the evidence is not overwhelmingly strong; that is, in our judgement, the evidence is 

interesting but not decisive. In helping us reach this cautious judgment, our sense is that the 

proposed design improved upon the usual design and analysis that omits evidence factors 

and sensitivity analyses.
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3 Assumptions for matching within and between institutions and for 

instrumental variables

The current section considers the relationship between the analysis in §2 and two other 

analyses, namely an analysis that matched for hospital H and one that used hospital H as an 

instrument for anesthesia type Z. Following Neyman (1923), Welch (1937), Rubin (1974) 

and Reiter (2000), write rT for the outcome a patient would exhibit if given the treatment, 

here regional anesthesia, and rC for the response of this same patient if given the control, 

here general anesthesia, and write Z = 1 if the patient does receive the treatment or Z = 0 if 

the patient does receive the control, so the response actually exhibited by the patient is R = Z 

rT + (1 − Z) rC, and the causal effect of the treatment on this patient, namely rT − rC, is not 

seen for any patient. Fisher’s sharp null hypothesis of no effect asserts rT = rC for all 

patients, so that, for instance, changing anesthesia type does not change whether a patient 

has deep vein thrombosis. Patients exhibit an observed covariate x but may also differ in 

terms of a relevant unobserved covariate u. Each patient is treated in some hospital H. 

Finally, following Dawid (1979), write A ⫫ B | C for A is conditionally independent of B 

given C.

The condition

(2)

says that the effects of regional-versus-general anesthesia on health outcomes (rT, rC) are 

biased neither by selection into particular hospitals H nor by selection for particular forms of 

anesthesia Z providing adjustments are made for measured covariates x, a condition similar 

to strong ignorability as defined in Rosenbaum and Rubin (1983). If (2) were true, then one 

could estimate an average treatment effect, such as E (rT − rC| x) or E (rT − rC), by 

comparing the observed responses R of treated and control subjects at any hospitals h, h′ 

adjusting for x, because (2) implies E (rT − rC| x) = E (R| Z = 1, H = h, x) − E (R| Z = 0, H = 

h′, x) for all h, h′. That is, if (2) were true, both the type 1 balanced matches and the type 2 

usual practice matches would provide consistent estimates of average treatment effects E (rT 

− rC| x) at x. If the two types of matches produce very different estimates of E (rT − rC| x), 

this suggests that condition (2) is false.

In parallel, if Fisher’s sharp null hypothesis of no effect were true, so R = rT = rC, then (2) 

would imply R ⫫ (Z, H) | x. Therefore, if (2) were true, Fisher’s null hypothesis could be 

tested by testing the hypothesis of conditional independence of observed response R and 

treatment Z given either x or (H, x). In particular, this test could be performed with pairs 

matched using (Z, H, x).

Condition (2) is related to two other conditions which underly certain analyses. By Dawid’s 

(1979) Lemma 4, condition (2) is equivalent to the conjunction of conditions (3) and (4):

(3)
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(4)

Here, after adjustment for x, condition (3) says there is no selection bias in treatment 

assignment Z within each hospital H, while condition (4) says that there is no selection bias 

in assigning patients to hospitals H. If (3) were true, an analysis that matched patients for x 
within the same hospital could estimate E (rT − rC| H = h, x) = E (R| Z = 1, H = h, x) − E (R| 

Z = 0, H = h, x) even when (2) is false, and could then estimate E (rT − rC| x) by direct 

adjustment as E (rT − rC| x) = Σh E (rT − rC| H = h, x) Pr (H = h| x) where Pr (H = h| x) is 

directly estimable. Moreover, pairs matched for x within hospitals could be used to test the 

null hypothesis of no treatment effect if (3) is true even if (2) is false. Aside from some 

relatively minor detail, the type 1 pairs could be used if (3) were true, whether or not (2) is 

true. (The minor detail has to do with balancing H and then ignoring it, rather than matching 

exactly for H, but this makes the comparison slightly conservative; see Hollander et al. 

(1974) with their λ1 = λ2 = 0.)

In contrast, at each x, condition (4) is one of the several assumptions underlying an 

instrumental variable analysis that views the hospital H as an instrument for the type of 

anesthesia received; see Angrist, Imbens and Rubin (henceforth AIR, 1996, Assumption 2). 

With additional assumptions (AIR 1996, Assumption 1-5), an instrumental variable analysis 

can estimate a treatment effect parameter when (4) is true but there is selection bias within 

hospitals, so (3) is false. Moreover, an attempt to strengthen the instrumental variable 

(Baiocchi et al. 2010) would focus attention on hospitals with Pr (Z = 1 | H = h, x) near 0 or 

1, such as H = 2, 6, 27, and 37 in Table 1, which are the hospitals that dominate the type 2, 

usual practice matches. In the analysis in §2.3, the type 2 matches are not entirely free of 

selection biases within hospitals — that is, violations of (3) — but they would be if one 

could use only hospitals h with Pr (Z = 1 | H = h, x) = 0 or Pr (Z = 1 | H = h, x) = 1. The 

sensitivity analysis in §2.5 assumes (2), (3), and (4) are all false with the magnitude of the 

violation of these conditions controlled by Γ.

4 Matching algorithms

4.1 Review of the optimal assignment algorithm

The remainder of the paper concerns the new algorithm used to create the matched 

comparison, an algorithm that extends two existing techniques, namely optimal matching 

with fine balance (Rosenbaum, Ross and Silber 2007) and optimal subset matching 

(Rosenbaum 2011b). There is a finite set of T treated subjects, , and a finite set of C 

potential controls, , with  ∩  = 0̸, and based on covariates there is a distance 0 ≤ δτ,γ < 

∞ between each τ ∈  and γ ∈ . For a finite set, S, the number of elements in S is |S|, so |

| = T. Write Δ for the T × C matrix of δτ,γ whose rows are indexed by τ ∈  and whose 

columns are indexed by γ ∈ C. If C ≥ T, then an assignment α pairs each τ with a different γ; 

that is, α :  →  with α (τ) ≠ α (τ′) if τ ≠ τ ′. An optimal assignment is an assignment α 

that minimizes the total distance within pairs, Στ∈ δτ,α(τ). Kuhn (1955) and Bertsekas 

(1981) proposed two solutions of the optimal assignment problem, and Bertsekas’ solution is 

available in R as the pairmatch function in Hansen’s (2007) optmatch package. Some 
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solutions to the optimal assignment problem can be produced in O (C3) arithmetic 

operations which is the same order as multiplying two C × C matrices in the conventional 

way. For a textbook discussion of optimal assignment algorithms, see Papadimitriou and 

Steiglitz (1982, §11) and Bertsimas and Tsitsiklis (1997, §7.8). Use of optimal assignment 

for matching in observational studies is discussed in Rosenbaum (1989).

4.2 Notation and definitions: fine balance, matching a subset

There are I institutions, i = 1,…,I, with Ti treated subjects, i = { τi1,…,τiTi}, and Ci 

potential controls, i = { γi1,…, γiCi, from institution i. Institutions and treated and control 

groups are disjoint; that is, i ∩ j = 0̸ and i ∩ j = 0̸ for i ≠ j and i ∩ j = 0̸ for all i, j. 

Write  = 1 ∪ … ∪ I and  = 1 ∪ … ∪ I, and T = ΣTi = |  |, C = ΣCi = | |. Also, 

write ι (E) for the indicator of event E, so ι (E) = 1 if E occurs and ι (E) = 0 otherwise, and 

define ∞ × ι (E) = ∞ if E occurs and ∞ × ι (E) = 0 if E does not occur.

A match indicates which treated subjects are matched and to which controls they are 

matched. That is, a match is a subset r ⊆  and a function μ : r →  such that μ (τ) ≠ μ 

(τ′) if τ ≠ τ′, so the match is ( r, μ). The total distance ζ ( r,μ) associated with a match 

( r,μ) is ζ ( r,μ) = Σ τ∈ r δτ,μ(τ). The size of a match is | r|.

A match ( r, μ) is finely balanced if the number of treated subjects from institution i equals 

the number of controls from institution i, even if treated subjects from institution i are not 

matched to controls from institution i, that is, if

(5)

Equation (5) extends the definition in Rosenbaum, Ross and Silber (2007) which required all 

treated subjects be matched, r = , and this in turn required Ci ≥ Ti, i = 1,…,I, so fine 

balance in this earlier sense may not be possible. In the current study, in some hospitals most 

patients receive regional anesthesia, Ti > Ci, whereas in others most patients do not, Ci > Ti, 

so r =  is not possible with pair matching.

In optimal subset matching (Rosenbaum 2011b), a particular distance δ̃ is selected with the 

view that it would be preferable to not match some treated subjects than to match them at a 

distance greater than δ̃. A slight subtlety must be addressed because the matching decisions 

are interdependent. If two finely balanced matches, ( r, μ) and , have the same 

size, , then ( r, μ) is better if it has smaller distance, 

. Fix a number δ̃ ≥ min (δτit,γi′c). As in Rosenbaum (2011b), 

if , we prefer ( r,μ) to , written , if

(6)

we prefer  to ( r,μ), written , if the inequality in (6) is reversed, 

and we are indifferent, written , if there is equality in (6), so we prefer to 
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use more treated subjects rather than fewer treated subjects provided they can be included at 

an average change in total distance of less than δ̃. Also write  if either 

 or .

4.3 A minimum distance finely balanced optimal subset match

Write mi = min (Ti, Ci), m̅i = max (Ti, Ci), M = Σmi, and M̅ = Σm̅i. Fine balance requires that 

at least Ti − mi treated subjects and at least Ci − mi controls be removed, so the maximum 

size | r| of a finely balanced match is M. Augment Δ to form the square M̅ × M̅ matrix Λ 

with entries λkl which has  additional rows labeled εik, k = 1,…,Ci − mi, i = 

1,…,I, and  additional columns labeled ∈iℓ, ℓ= 1,…,Ti − mi, i = 1,…,I 

defined in the following way:

Table 5 is a small illustration. There are I = 3 institutions, with 1 = {τ11}, 2 = {τ21, τ

22}, 3 = { τ31, τ32}, 1 = {γ11, γ12}, 2 = { γ21}, 3 = {γ31, γ32}, and Δ is 5 × 5. 

Therefore, m1 = 1, m2 = 1, m3 = 2, M = 1+1+2 = 4 and M̅ = 2 + 2 + 2 = 6, so one row, 

namely ε11 is added, and one column, namely ε21, is added. The patterns of 0’s and ∞’s in 

ε11 will force either γ11 or γ12 to be paired with ε11, while either τ21 or τ22 is paired with 

∈21. As shown in Proposition 1, an optimal assignment in Λ yields a minimum distance 

finely balanced match of maximum size M once pairs involving ε’s or ∈’s are removed.

Optimal subset matching combined with fine balance entails possibly using fewer than M 

pairs, guided by the preference (6), in such a way that fine balance is preserved. For each i, 

fix a number m̃i with 0 ≤ m̃i ≤ mi, where the algorithm will require at least m̃i treated 

subjects and m̃i controls from institution i; however, based on (6), the algorithm may use 

more than m̃i treated subjects and m̃i controls from institution i. Augment Λ to form  by 

appending mi − m̃i rows labeled ϰik and columns labeled κiℓ, so that  is square with M̅ + Σ 

(mi − m̃i) rows and columns, where column γ of ϰik has entry ∞ × ι (γ ∉ i) + δ̃ ι (γ ∊ i) /2 

and row τ of κiℓ has entry ∞ × ι (τ ∉ i) + δ̃ ι (τ ∊ i) /2, i = 1,…,I, ℓ = 1,…, mi − m̃i, the 

one diagonal entry linking ϰik and κik is zero, and all other entries in both ϰik and kiℓ are ∞. 

If m̃i = mi for all i, there is no augmentation and  = Λ. Table 5 is an example with m̃1 = m1, 

m̃2 = m2 and m̃3 = 0 so that m3 − m̃3 = 2 rows and columns are added to Λ to form .

Proposition 1—Let α be a minimum distance assignment in . Define r = {τ ∈  : α 

(τ) ∈ } and let µ be the restriction of α to the domain r. Then the match ( r, μ) is finely 

balanced with at least m ̃i treated subjects and m̃i controls from institution i,

(7)
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Moreover, if  is any other finely balanced match with at least m̃i treated subjects 

and m ̃i controls from institution i, then

(8)

and

(9)

Proof—First, we show that there exists an assignment α′ in  with finite total distance. To 

construct such an α′, assign ϰik to κik for all ik with a distance of 0, assign each εik to a 

different γij from the same institution i with a distance of 0, and assign each ∈ik to a different 

τij from the same institution i with a distance of 0 — this is always possible by the definition 

of mi — and complete the construction of α′ by arbitrarily pairing the unpaired τ’s and γ’s, 

yielding an assignment with finite total distance. Because there exists an assignment α′ in 

with finite total distance, an optimal assignment α must also have finite total distance. Let 

α* be any assignment in  with finite total distance, let  and let μ* 

be the restriction of α* to . Now α* has finite total distance if and only if it avoids all of 

the ∞’s in . In particular, α* must pair each εik to a different γij at a distance of 0, thereby 

removing i − mi of the γij from institution i. In parallel, α* must pair each ∈ik to a different 

τij at a distance of 0 thereby removing Ti − mi of the τij from institution i. Also, for each ik, 

if α* does not pair ϰik to κik with a distance of 0, then ϰik must be paired to some γij from 

institution i and κik must be paired to some τij from institution i with a total distance for 

these two pairs of δ̃/2 + δ̃/2 = δ̃. If follows that α* has

(10)

so it is finely balanced, and α* has a total distance of 

. So every assignment α* with finite total distance 

is finely balanced (10); moreover, any match μ* that satisfies (10) may be extended to an 

assignment α* with finite total distance. If α* has finite total distance and α is a minimum 

distance assignment, then D (α) ≤ D (α*) < ∞, so if  then (8) holds, whereas 

otherwise rearranging D (α*) − D (α) ≥ 0 yields (9).

4.4 Construction of two sets of matched pairs

The match in §2 first applied Proposition 1 to a distance matrix formed using a robust 

Mahalanobis distance with calipers on the propensity score; see Rosenbaum (2010b, §8) for 

discussion of these standard devices. Some patients were not matched in this first step. In the 

second step, hospitals were classified as either “predominantly general” or “predominantly 

regional,” and unmatched patients from their predominant group were candidates for 

matching in the second step. The second step used optimal subset matching (without fine 

balance), as discussed in Rosenbaum (2011b). Several values of δ̃ were tried until an 
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acceptable match was obtained. A good starting value for δ̃ is the lower 5% or 10% quantile 

of all of the distances in Δ. Matching makes no use of outcomes, so it is part of the design of 

the study.

5 Discussion

The design in §2 may be used in other contexts. The institutions need not be hospitals; 

instead, they might be schools, states, courts, judges, and so on. Indeed, the groups need not 

be defined by institutions that provide treatment. For instance, sometimes a new treatment 

replaces an older treatment gradually over a period of years. The process that selects 

individuals for the new treatment may be different in the early years, when the new 

treatment is something novel, compared to late years, when the older treatment has become 

a rarity. In this case, year of treatment may take the place of the institutions. One match 

balances the year, while the other compares early years to late years. Unlike the comparison 

that balances year of treatment, the comparison of early years to late years is confounded 

with time but compares usual practice in early and late years.

The new matching algorithm defined by Proposition 1 may be used on its own to construct a 

single set of matched pairs similar to the type 1 matched pairs. For instance, institutions 

might be replaced by all combinations or interactions of several nominal variables, and the 

algorithm would then create one set of matched pairs to balance the combinations of these 

nominal variables. As originally developed, fine balance required all treated subjects to be 

matched, r =  in (5), so it was a constraint on an optimization problem, but the 

constraint was not feasible if some Ci < Ti. The algorithm in Proposition 1 combines 

matching with fine balance and optimal subset matching so that fine balance (5) is always 

feasible, and it does this by permitting the matched treated subjects to be a proper subset of 

all treated subjects, r ⊂ . An alternative approach to maintaining feasibility is to require 

all treated subjects to be matched, r = , but to permit slight deviations from fine balance 

(5); see Yang et al. (2012) and Yang’s finebalance package in R.

In selecting multiple control groups, a general principle is Bitterman’s “control by 

systematic variation,” that is, select control groups likely to be differently influenced by 

unmeasured biases; see Campbell (1969) and Rosenbaum (2002, §8; 2010b, §5.2.2, 

§11.3.1). Typically, such control groups exist as groups prior to matching. In contrast, the 

current study created two types of controls, balanced or usual practice, from a single 

population in which these two types were not previously distinguished. The example in 

Heller et al. (2010) illustrates a different method for building two types of controls 

differently influenced by unmeasured biases; specifically, that method uses tapered 

matching applied a seemingly innocuous covariate.
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Figure 1. 
Covariate balance after matching for four continuous covariates. Gen = only general 

anesthesia, Reg = some regional anesthesia. The 1354 matched pairs of type 1 are finely 

balanced for the 47 hospitals, while the 944 pairs of type 2 contrast hospitals that typically 

use general anesthesia to those that typically use regional anesthesia.
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Figure 2. 
Balance on 44 covariates compared to balance expected from complete randomization. The 

figure contains three quantile quantile plots of 44 P values against the uniform distribution. 

The P-values contrast the marginal distributions of the 44 covariates in the regional and 

general anesthesia groups, for 2708 patients in type 1 matches, 1888 patients in type 2 

matches and 4596 = 2708 + 1888 patients in both types combined. For continuous 

covariates, the P values are from Wilcoxon’s rank sum test, and for binary covariates they 

are from Fisher’s exact test for a 2×2 table. All 132 = 3 × 44 P-values are greater than 0.05, 

and they are larger than expected from a uniform distribution.
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Figure 3. 
Kaplan-Meier curves for readmission within 30 days of discharge from the hospital. The 

figure plots the estimate of the probability of being alive without readmission at various 

days after discharge. The few patients who died in the hospital or who died within 30 days 

of discharge are counted at the appropriate time as not “alive without readmission”. The P-

values are from Albers (1988) test for paired censored survival times with Wilcoxon scores.
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Table 1

Counts of patients by hospital, general or regional anesthesia, and pair type. Type 1 pairs finely balanced 

hospitals, while type 2 pairs contrast hospitals with different usual practices.

Finely Balanced (type 1) Usual Practice (type 2)

Hospital General Regional General Regional

1 77 77 0 11

2 8 8 0 102

3 101 101 0 4

4 10 10 0 52

5 30 30 0 2

6 3 3 0 163

7 42 42 3 0

8 18 18 0 66

9 48 48 0 10

10 14 14 0 54

11 34 34 0 22

12 25 25 20 0

13 27 27 48 0

14 30 30 0 17

15 16 16 0 44

16 19 19 0 32

17 10 10 0 16

18 21 21 45 0

19 32 32 13 0

20 19 19 0 38

21 5 5 0 87

22 17 17 0 16

23 1 1 0 0

24 29 29 0 14

25 14 14 0 41

26 17 17 71 0

27 35 35 168 0

28 92 92 0 0

29 34 34 11 0

30 11 11 19 0

31 16 16 0 60

32 10 10 42 0

33 39 39 11 0

34 0 0 63 0

35 33 33 0 8

36 27 27 25 0

37 4 4 135 0
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Finely Balanced (type 1) Usual Practice (type 2)

Hospital General Regional General Regional

38 123 123 11 0

39 13 13 23 0

40 44 44 0 5

41 18 18 0 68

42 9 9 27 0

43 47 47 21 0

44 73 73 0 4

45 22 22 97 0

46 33 33 91 0

47 4 4 0 8
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Table 2

Balance on 44 covariates in matched pairs, regional-vs-general anesthesia. Type 1 pairs finely balance the 47 

hospitals, while type 2 pairs make contrasts between hospitals with different usual practices.

Finely Balanced Pairs (type 1) Usual Practice Pairs (type 2)

Covariate Regional General Regional General

Propensity score (mean) 52.3 52.3 52.7 52.6

Risk score (mean) 0.003 0.002 0.002 0.002

Knee 8154 % 97.5 97.0 98.9 99.0

Knee 8155 % 2.5 3.0 1.1 1.0

Age (mean) 72.4 72.5 72.6 72.4

Sex % Female 64.0 65.5 64.4 63.1

White % 92.8 92.8 95.9 95.8

Black % 2.8 3.4 2.1 2.0

Emergency Room Admission % 0.4 0.3 0.0 0.0

Body Mass Index, BMI (mean) 31.2 31.4 31.4 31.2

BMI<18 % 0.3 0.3 0.0 0.0

BMI ge 30 % 52.4 52.4 54.1 54.1

Height (mean) 65.7 65.6 65.9 66.1

ASA Score, 1-5 (mean) 2.5 2.5 2.5 2.5

ASA Score missing % 1.3 1.6 0.8 0.8

Systolic blood pressure (mean) 143.0 143.0 142.5 142.9

Blood pressure missing % 1.4 1.0 0.2 0.2

APACHE Score (mean) 22.4 22.6 22.3 22.4

Comorbid Conditions

Diabetic on medication % 15.7 15.2 13.9 15.4

Diabetic score, 1-3 (mean) 0.4 0.4 0.3 0.4

Number of cardiac comorbidities (mean) 0.4 0.4 0.4 0.4

Congestive heart failuare % 6.5 5.8 4.1 5.2

Past MI % 4.3 3.9 3.9 4.1

Past arrhythmia % 14.7 15.1 16.0 16.5

Unstable angina % 0.5 0.9 1.0 0.4

Angina % 2.0 2.5 2.3 1.5

Hypertension % 81.3 81.2 78.8 79.6

Coagulopathy % 0.2 0.1 0.0 0.0

Stroke % 3.8 4.6 1.1 1.5

Dementia % 2.1 1.5 0.6 1.5

Electrolyte abnormality % 2.3 2.7 1.9 2.4

Valvulardis % 10.4 10.1 8.2 8.2

Chronic pulmonary disease % 11.0 11.4 8.8 10.6

Asthma % 5.9 6.2 5.9 7.1

Liver disease % 1.2 1.3 0.1 0.3
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Finely Balanced Pairs (type 1) Usual Practice Pairs (type 2)

Covariate Regional General Regional General

Renal dysfunction % 2.0 2.3 0.5 0.6

Renal failure % 1.5 1.5 0.3 0.3

Paraplegia % 0.2 0.4 0.1 0.1

Smoking history % 5.3 6.3 2.6 3.0

Pulmonary fibrosis % 1.8 2.7 1.1 1.1

Cancer % 13.3 13.9 12.1 12.8

Abdominal cancer % 0.1 0.0 0.0 0.0

Weight loss % 0.2 0.2 0.1 0.1

Sleep apnea % 1.0 0.7 0.1 0.2
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Table 3

Counts of discordant pairs for two outcomes and their combination, with McNemar P-values, and Gart’s test 

for interaction with type. There are 2298 pairs, 1354 pairs that finely balance the 47 hospitals (type 1) and 944 

pairs that contrast hospitals with different usual practices (type 2). Only discordant pairs are recorded here. For 

readmission, there were 13 deaths within 30 days, 6 with general anesthesia, 7 with regional anesthesia, and 

these are included in the unfavorable outcome category in each comparison.

Alive without deep vein thrombosis

All Finely Balanced Pairs (type 1) Usual Practice Pairs (type 2)

General 72 42 30

Regional 100 66 34

P-value 0.040 0.027 0.708

Odds Ratio (OR) 1.39 1.57 1.13

95% CI for OR [1.03, 1.88] [1.07, 2.31] [0.69, 1.85]

P-value for interaction 0.34

Alive without readmission at 30 days

All Finely Balanced Pairs (type 1) Usual Practice Pairs (type 2)

General 106 61 45

Regional 135 84 51

P-value 0.071 0.068 0.610

Odds Ratio (OR) 1.27 1.38 1.13

95% CI for OR [0.99, 1.64] [0.99, 1.91] [0.75, 1.69]

P-value for interaction 0.51

Alive without both deep vein thrombosis and readmission at 30 days

All Finely Balanced Pairs (type 1) Usual Practice Pairs (type 2)

General 152 84 68

Regional 200 128 72

P-value 0.012 0.003 0.800

Odds Ratio (OR) 1.32 1.52 1.06

95% CI for OR [1.07, 1.62] [1.16, 2.01] [0.76, 1.47]

P-value for interaction 0.10
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