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Abstract
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heterogeneous medical devices in a plug-and-play manner. This carries the potential to radically improve
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rise to security vulnerabilities in the cyber world. In this paper, we propose an authentication framework as
the first step to build an ICE security architecture. This framework is designed in a three-layered structure,
allowing it to fit in the variety of authentication requirements from different ICE entities and of networking
middleware from ICE instantiations. We implement the authentication framework on OpenICE, an open
source ICE instantiation. Our experiments shows that the framework can help OpenICE mitigate the
vulnerabilities caused by forged identity with negligible performance overload.
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ABSTRACT
The Integrated Clinical Environment (ICE) is a standard dedicated
to promote open coordination of heterogeneous medical devices in
a plug-and-play manner. This carries the potential to radically im-
prove medical care through coordinating, cooperating devices, but
also to undermine the patient safety by giving rise to security vul-
nerabilities in the cyber world. In this paper, we propose an au-
thentication framework as the first step to build an ICE security
architecture. This framework is designed in a three-layered struc-
ture, allowing it to fit in the variety of authentication requirements
from different ICE entities and of networking middleware from
ICE instantiations. We implement the authentication framework
on OpenICE, an open source ICE instantiation. Our experiments
shows that the framework can help OpenICE mitigate the vulnera-
bilities caused by forged identity with negligible performance over-
load.

Keywords
Integrated Clinical Environment; Authentication; Medical cyber
physical system

1. INTRODUCTION
Emerging interoperable medical systems indicate a promising

future for the healthcare domain: coordinating medical devices
from different vendors together to accomplish a clinical mission.
Many case studies [1, 3, 11, 12, 13, 19] have shown that enabling
the interoperability of medical systems can reduce medical errors
and improve the productivity of medical care, as compared to the
traditional practices that rely upon disconnected, standalone de-
vices. An exemplar effort of promoting medical device interop-
erability is the ASTM F2761 standard [4], which defines a model-
based system architecture to capture the general design principles

Copyright retained by the authors.

of integrating cross-manufacturer medical devices to create an In-
tegrated Clinical Environment (ICE). The ICE architecture defined
in the ASTM F2761 standard, as illustrated in Figure 1, consists of
two major components: the supervisor and the network controller.
The supervisor hosts ICE applications that interact with medical de-
vices and communicates with external information systems such as
an electronic health record (EHR) system. The network controller
facilitates communications between the supervisor and the medical
devices. Whenever a device connects to an ICE system, the net-
work controller discovers the device and sets up the communication
channel for it. Since its publication, the ASTM F2761 standard has
been adopted by many stakeholders, such as Massachusetts General
Hospital, Draeger Medical Systems and Kansas State University, to
develop interoperable medical systems compliant to the ICE archi-
tecture. We refer to such systems as ICE systems in the rest of the
paper.

Supervisor

Network Controller

ICE Apps

EHRDeviceDevice Data Logger

ICE system

Figure 1: ICE architecture, where ICE Apps refer to software ap-
plications running on the ICE system, and EHR is short for an Elec-
tronic Health Record system.

Most industrial and academic effort thus far focuses on prototyp-
ing various instantiations of ICE systems, while little attention has
been given to the cyber security properties of these systems. This
does not mean that security is not a priority for ICE systems. In-
stead, poor security can cause ICE entities (devices, applications,
and other equipments) to fail in coordinating with each other and
fulfilling their shared clinical missions as expected. For example,
ICE systems with security breaches may cause the connected med-
ical devices to act upon information crafted by an adversary and
pose unacceptable risk to patient safety. Furthermore, when health-
care organizations have doubt on the security of ICE systems, the
adoption of such systems in realistic clinical practices can be hin-



dered. It is thus critical to equip ICE systems with effective and
fairly comprehensive security mechanisms.

Unfortunately, the unique engineering characteristics of ICE sys-
tems pose several challenges in designing and implementing such
a security mechanism:

• The ICE architecture integrates devices from different man-
ufacturers through a collection of device interfaces. While
these device interfaces endow manufacturers the flexibility
of using their own methods and techniques to develop de-
vices with similar functionalities, they also cover the engi-
neering details of the devices from ICE system developers.
This makes it difficult for developers to conduct a compre-
hensive security analysis over the entire ICE systems, down
to the device level. Thus, ICE system developers have to
restrict the security analysis to the architectural level, focus-
ing on security properties like authentication of ICE com-
ponents or confidentiality of the information communicated
among ICE components. Meanwhile, they need to make ICE
systems secure enough to shield the security exploitation in
connected devices from the rest of the system.

• The dynamic composition of an ICE system makes it subject
to different security threats at different stages of the clinical
processes. For example, adding a patient physiology monitor
to an ICE system in the middle of a procedure may cause the
system to be vulnerable to man-in-the-middle attacks, which
fool the system with adulterated patient monitoring data. In
the mean time, an ICE system may be deployed in differ-
ent clinical scenarios throughout its lifecycle. Therefore, the
security mechanism in such a system should be adaptive,
in order to align with the changing environment and rebal-
ance security with the evolving clinical needs. To address
these issues, an effective security mechanism for ICE sys-
tems should not only offer essential security functions, but
also allow users to easily re-configure the mechanism to sat-
isfy the changing security needs.

Previous research (e.g., [9, 14, 8, 21]) has laid down some high-
level security requirements for ICE systems, but no security mech-
anism has yet been proposed for realistic ICE instantiations. This
is partly because there is lack of consensus among stakeholders on
what essential security features such a mechanism should realize
and how. We argue that one practical way to reconcile this dis-
agreement among stakeholders is to establish a baseline security
mechanism on top of a realistic, exemplar ICE instantiation, so that
the community can discuss the security of ICE systems over a con-
crete basis.

We have seen several efforts towards this direction. For exam-
ple, Salazar et al. [17] implemented a modularized prototype for
ICE device authentication and communication encryption on top of
the Medical Device Coordination Framework (MDCF) 1, an open-
source development/simulation environment of ICE systems. They
also designed a preliminary access control model with a break-the-
glass feature in the MDCF framework [18].

These efforts provide evidence for the feasibility of retrofitting
an authentication mechanism in ICE systems. However, there are
still gaps that need to be bridged before an effective security mech-
anism can be developed for realistic ICE instantiations. First of all,
it needs to consider all aspects of ICE systems. For instance, au-
thentication should cover all devices, equipments, applications, and
even human users that may involve in ICE systems.

Secondly, ICE security mechanisms should be designed as inde-
pendent of the network middleware utilized by the host ICE sys-
1Available at http://mdcf.santos.cis.ksu.edu/

tems. Network middleware is commonly used in ICE systems to
provide communication between ICE components. Existing ICE
instantiations adopt different network middleware, such as DDS-
based OpenICE [2] and Web Service-based OpenSDC2. Thus, a
security mechanism specially designed for a certain network mid-
dleware is not applicable in ICE systems where different middle-
ware is utilized, while a security mechanism independent of any
specific network middleware can be migrated across different ICE
instantiations with little re-configuration effort.

In this paper, we propose a middleware-independent authentica-
tion scheme for ICE systems, as the first step towards establish-
ing the envisioned baseline ICE security mechanism. Due to the
complexity of ICE systems, a practical way of designing an ICE
security mechanism is to design it using a module-based develop-
ment process. That is, security measures for mitigating different
security threats are categorized and grouped into different func-
tional modules, which are designed and validated separately. We
choose authentication as the first module of our envisioned ICE se-
curity mechanism to implement, because authentication provides
the fundamental security functionality for other security measures.
For example, access control relies on authentication to confirm the
identity of an entity before allowing it to access, within its privi-
leges, resources in ICE systems.

The key feature of our authentication module is its three-layer ar-
chitecture, which logically separates authentication interfaces, au-
thentication workflow, and authentication protocol implementation
in different levels. This enables ICE system developers to eas-
ily re-customize the module to fit in use with different network
middleware. Then we implemented our authentication module on
OpenICE, an open source ICE instantiation. This implementation
not only realizes ICE device authentication, but also covers authen-
tication of human users and ICE applications. Our experiments
demonstrated that the authentication module could avoid device re-
placement and impersonation attacks for OpenICE without causing
significant performance sacrifice.

2. GOALS
A primary goal of ICE systems, as for other medical systems

(standalone or interoperable), is to protect patient safety. That is,
ICE systems should protect patient safety from being harmed by
unexpected or undesirable accidents, including security breaches.
This requires ICE systems to adequately mitigate their security
risks and establish acceptable security.

Security risks in an ICE system can be categorized as: 1) security
vulnerabilities in individual entities in the ICE system, which allow
an adversary to steal valuable information from these entities, cause
them to behave unexpectedly, or disrupt their normal operation; and
2) security vulnerabilities pertain to the interaction among entities
in the system. Note that the information (data and commands) com-
municated across an ICE system is often privacy-sensitive or crit-
ical to the system’s mission. Vulnerabilities associated with the
interaction of ICE entities can subject such critical information to
malicious attacks, or cause the system to operate unexpectedly. For
example, an adversary can compromise the infusion settings com-
municated from the ICE supervisor to the infusion pump connected
to the system, posing over-infusion risk to the patient who receives
medication from the pump.

It has been widely studied on how to mitigate security vulnera-
bilities in single medical devices or medical software applications.
In this paper, we target at the second type of security risks in ICE
systems and, as the first step, present a universal solution to entity

2Available at http://opensdc.sourceforge.net.



authentication for ICE systems.
We choose to start with authentication for two reasons. Firstly,

a significant portion of security risks to ICE systems can be miti-
gated if strong authentication is in place to allow only legitimate,
authorized entities to operate in these systems. A common starting
step to attack ICE systems is for an adversary to gain unauthorized
access to these systems, which can cause the following security
risks:

1. Spoofing: gain access to the ICE system by using a false
identity. After successfully acquiring the access as a legiti-
mate user or host, the entity can elevate or abuse its privileges
to compromise the system.

2. Tampering: modify data beyond its authorization by using a
counterfeit identity of a privileged entity.

3. Repudiation: deny its actions or transactions even if its be-
havior is audited.

4. Information Disclosure: disclose private data beyond its au-
thorization by using a counterfeit identity of a privileged en-
tity.

5. Elevation of privilege: gain unauthorized access to privacy-
sensitive data or applications.

Authentication serves to confirm the identity of any entity re-
questing for access to ICE systems by verifying the validity of
its credential. Thus, enforcing strong authentication in ICE sys-
tems helps to substantially mitigate the above threats by making it
more difficult, sometimes impractical, for an adversary to gain such
unauthorized access to these systems.

One may argue that authentication is not absolutely necessary for
ICE systems (at least for devices and applications used in them), be-
cause healthcare organizations who run these ICE systems can en-
sure that only trustworthy devices and applications operate in these
systems. However, this argument is invalid, because it bases on an
invalid assumption that ICE system developers always have under-
standing of the full security profile of the devices and applications
they trust, and fails to consider the situation where trustworthy de-
vices and applications can be hacked or tampered (e.g. via online
software update) during their use and can no longer be trusted.

Secondly, authentication constitutes the foundation of other se-
curity mechanisms needed by ICE systems. For example, access
control, auditing and encryption all depend on a unique, unforge-
able identifier being assigned to any entity throughout its presence
in the ICE system, which is accomplished through authentication.
For security threats like Tampering and Information Disclosure that
require a collection of security measures to mitigate, authentication
can also be used as the trust base for these measures.

Establishing an effective and efficient authentication module for
ICE systems is more than just providing basic authentication func-
tions. It should also address the challenges arising from real-world
clinical practices in which the ICE systems are to be deployed. The
first challenge is to accommodate the complicated authentication
requirements of different types of ICE entities. According to the
ASTM F2761 standard, the operation of a typical ICE system in-
volves three types of entities:

1. Human users, including operators of the ICE system or a pa-
tient undertaking a clinical procedure provided by the ICE
system;

2. ICE Application, which is a piece of software running on
the ICE supervisor that interacts with human users and ICE-
compatible equipments to accomplish the shared clinical mis-
sion. An example ICE application is the safety interlock
app described in the PCA pump safety interlock scenario
(see section 5.1.1), which coordinates the infusion pump and

pulse oximeter devices to reduce the likelihood of over-/under-
dose incidents during medical care; and

3. ICE-compatible equipment, which is a medical device or elec-
trical equipment with an ICE equipment interface to interact
with other parts of the ICE system.

Different types of ICE entities pose different requirements for
their authentication. For example, authentication of human users
typically occurs in the ICE supervisor before human users log into
the system and invoke any ICE application. This is different than
authentication of ICE equipment, which typically occurs at a dif-
ferent architectural layer (e.g., in the ICE network or ICE platform)
before the equipment is allowed to connect to the ICE system. The
authentication module should acknowledge such difference among
different ICE entities, and provide a universal solution for validat-
ing their identities and managing their credentials.

The second challenge lies in the diversity of network middleware
components that may be deployed in arbitrary ICE systems. Differ-
ent ICE systems might use different network middleware compo-
nents to facilitate the communication among their entities. For ex-
ample, the subject ICE platform of our research, OpenICE, utilizes
the Data Distribution Service (DDS) middleware to facilitate the
network communication among entities running on the platform.
In comparison, OpenSDC, a communication library that facilitates
the data exchange between ICE devices and applications, is built on
Web Service. In order to achieve maximum applicability in more
than one class of ICE systems, an authentication module should be
designed in a middleware-independent manner and be compatible
with the specific network middleware deployed in the host ICE sys-
tems. Our authentication module is designed to be independent of
network middleware and can be easily re-configured to work with
different network middleware components in arbitrary ICE instan-
tiations, even though it is currently configured to work with the
DDS middleware for the demonstration purpose.

Moreover, legacy medical devices, which typically do not sup-
port any authentication protocols, are widely used in clinical prac-
tices. To allow these devices to be used in ICE systems, the au-
thentication module should provide a mechanism to accommodate
these devices, so that the adoption and usability of its host ICE sys-
tem are not likely impacted.

Lastly, the authentication module should not impose unaccept-
able computational overhead on its host ICE systems. Otherwise,
the function, performance, and quality of service of the host ICE
systems will be significantly affected, which may not only hinder
the adoption and use of these ICE systems but also, in worst cases,
pose risks to patient safety. For example, computationally expen-
sive authentication may delay a physiological monitoring device
to be used in the ICE system, which in turn may lead to delay of
diagnosis and treatment to the patient.

We elaborate the following requirements to clearly define the
functionality, usability, and performance expectations for our au-
thentication module and, more importantly, to address the chal-
lenges aforementioned.

• It should provide a set of middleware-independent authen-
tication mechanisms to establish the trust between the ICE
system and all legitimate entities requesting to enter into the
system [Functionality].

? It should assign every authenticated entity with a unique
ICE identifier, which should be the only identifier used
by other security modules to identify the entity.

? It should revoke the ICE identifier of an entity when the
entity is exiting, disconnected or uninstalled.



? It should ensure secure storage and transfer of ICE iden-
tifiers assigned to all entities.

• It should audit all security-related events during the authen-
tication process [Functionality].

• Its authentication interface should support mainstream au-
thentication protocols and different identity formats mandated
by these protocols [Usability].

• It should be able to deal with the connection requests from
stale devices that might not support any authentication pro-
tocol [Usability].

• It should not compromise the function and performance of
other services running on the ICE platform [Performance].

3. DESIGN OF THE ICE AUTHENTICATION
MODULE

Authentication Management

Identity 
Authentication

User 
Authentication

Entry Point 1

App 
Authentication

Entry Point 2

Device 
Authentication

Entry Point 3

Identity Property 
InquirySingle Sign-On

Authentication 
Protocol n

Authentication 
Protocol 1

Authentication Module

……

Figure 2: Architecture of the ICE authentication module. Solid
boxes represent mandatory components and dotted boxes denote
optional functionalities.

Our authentication module consists of three layers, as illustrated
in Figure 2. Entry points, residing on the top level in Figure 2,
intercept the connection requests from all ICE entities and initiate
the corresponding authentication processes. Note that a specific
ICE system may customize its protocol of establishing connection
with its entities. Thus, we design our authentication module as the
location of entry points can also be customized, in order to be com-
patible with the entity connection protocol of its host ICE system.

The middle (and core) level of Figure 2 encapsulates all function-
alities related to authentication, and includes a management com-
ponent to schedule these functionalities and collect relevant infor-
mation for them. This level is usually deployed in the ICE supervi-
sor, because the supervisor takes most responsibility of managing
ICE entities.

The bottom level of our authentication module is an assembly of
authentication protocol implementations utilized in different ICE
systems. These authentication protocol implementations can be
provided by the network middleware or the ICE network controller
of the host ICE system, and are invoked by the core level using
a series of predefined interfaces. Notably, the middle and bottom
levels of our authentication module separate the specific implemen-
tation of authentication protocols utilized by the host ICE system
and the interface to invoke it. This enables our authentication mod-
ule to operate in its host ICE system, irrespective of which network
middleware is used by the host ICE system.

Since the top and bottom levels of our module are essentially a
collection of interfaces that are not to be configured based on the
specific host ICE system, we focus on the design of the core level
in the rest of this section.

When an entry point requests an authentication-related task, the
Authentication Management (AM) component in the core level clas-
sifies the request and forwards it to the corresponding function-
ality component(s) in the module. In addition, the AM compo-
nent is also responsible for initializing the authentication module
upon the startup of the host ICE system. The AM component pro-
vides the following four functions, among which AM_AUTH() and
AM_REVOK() can be invoked by entry points at the top level to
start authentication:

1. AM_AUTH() for launching the authentication process and
invoking the Identity Authentication (IA) component to com-
plete authentication. It has three parameters: the request’s
type, the entity’s credential, and the session ID. The request’s
type specifies which operation the entity wants to invoke.
The entity’s credential, such as the certificate or token of the
entity, is the evidence to prove that the entity is who it claims
to be. The session ID is used to identify the session of its
request. Depending on the authentication result, the function
also updates the list of authenticated entities, and returns the
entity’s ICE identifier or an error code indicating that the en-
tity is refused for access.

2. AM_NEGO() for establishing an agreement between the ICE
supervisor and the requesting entity on which authentication
protocol the authentication process should follow. The func-
tion has only one parameter, the name of the authentication
protocol to be used. Invoking this function causes the IA
component to check whether or not the authentication mod-
ule supports the indicated authentication protocol. If yes, the
authentication process proceeds and IA_INTF() is then in-
voked; otherwise an error code is returned and the authenti-
cation process is aborted.

3. AM_AUDIT() for logging the information related to the au-
thentication process for future auditing. It has four parame-
ters: entity name, request type, authentication protocol, and
authentication status. The function assembles these parame-
ters into a record structure and sends it to the ICE’s logging
module. It returns a status code indicating if the logging suc-
ceeds or not.

4. AM_REVOK() for revoking the ICE identifier possessed by
an ICE entity. It has one parameter: entity name. This inter-
face destroys the data structure related to the ICE identifier,
adds it to a revocation list, and informs other security mod-
ules (such as the access control module) of the revocation.

The three components below the AM component in Figure 2 are
introduced to respectively realize each of the three primary authen-
tication functionalities: the IA component for verifying the identity
of an entity; the Single Sign-On (SSO) component for managing
the single sign-on of an entity; and the Identity Property Inquiry
(IPI) component for querying the property of an entity when ex-
plicitly required.

The IA component is a mandatory component, which conducts
the authentication process by invoking standard authentication pro-
tocol implementations (libraries) and returns the authentication re-
sult. These libraries need to be registered with the IA compo-
nent beforehand. The IA component provides two interfaces: the
IA_INTF() interface for interacting with the AM component;
and the IA_IMPL() interface for invoking a specific authenti-
cation protocol library. More specifically, IA_INTF() has two



parameters: the name of the authentication protocol and the en-
tity’s credential. It checks if the specified authentication protocol
implementation has been registered with the IA component and
loads it. If yes, the corresponding protocol is executed by invok-
ing IA_IMPL(), the return value of which is forwarded to the
AM component; otherwise, the authentication process fails and an
error code is returned.

The IA_IMPL() interface, on the other hand, takes only the
entity’s credential as input. It transforms the entity’s credential to
a format acceptable to the specified authentication protocol, and
then invokes the protocol to finish the authentication process. The
authentication result, including the information generated from the
entity’s credential and the public/private keys (if necessary), is re-
turned to IA_INTF().

3.1 Authentication workflow
Figure 3 describes the workflow of the components at the core

level coordinating to finish an authentication process. The work-
flow starts with invoking the AM_AUTH interface. Upon receiv-
ing the request for identity validation, the AM component first
negotiates with the entity (AM_NEGO()) on which authentication
protocol to use. If the negotiation succeeds, the IA component
(IA_INTF()) is invoked with the protocol name and the request
as parameters. The IA component conducts the authentication pro-
cess (IA_IMPL()) by invoking standard authentication protocol
implementations (libraries) and returns the authentication result.
Upon receiving the result, the AM generates the entity’s ICE identi-
fier by attaching the result with necessary system-wide information,
such as timestamp, session id and the entry point’s IP address, etc.
The ICE identifier will be the only identifier for the entity during its
presence in the ICE system. When the entity exits the system (e.g.
a device is disconnected, a user logs off, and an application termi-
nates its operation), its ICE identifier is revoked (AM_REVOK()).
All these activities are recorded and sent to the Logging system
(AM_AUDIT()).

Entry-point in 
Applications

Authentication 
Management

Identification 
Authentication

Protocol 
Library Security Log

AM_AUTH()

AM_REVOK()

AM_NEGO()

IA_INTF()

AM_AUDIT()

AM_AUDIT()

IA_IMPL()

Figure 3: A typical workflow of the authentication module.

3.2 Mitigation to existing security threats
An authentication module fulfilling the expectations listed in sec-

tion 2 makes the host ICE system more secure against the secu-
rity threats described in Section 2: the entry point can be placed
anywhere before the communication channel between the host ICE
system and an ICE entity is established, in order to invoke AM_AUTH
to start the authentication process. If the identity claimed by an
entity doest not match with its credential, the authentication fails,
leading to the termination of communication establishment and con-
sequently the rejection of entity’s request to access the ICE system.

In this way, the threat of Spoofing is mitigated. If the authentication
succeeds, AM_AUTH returns any entity connecting to host ICE sys-
tem with a unique ICE identifier that indicates the genuine identity
of the entity (as evidenced by the entity’s credential). With priv-
ileges granted to this ICE identifier by the access control module,
the attacks of Tampering, Information Disclosure and Elevation of
privilege will be much harder to achieve, because all these attacks
depend on the success of gaining a privileged ICE identifier. In the
meantime, AM_AUDIT can be placed where AM_AUTH is invoked
or the entity’s authentication status changes (e.g. its ICE identi-
fier expires after long time idling). AM_AUDIT ensures that those
authentication related operations are logged along with the corre-
sponding ICE identifier, which disables the attack of Repudiation.

4. IMPLEMENTATION OF THE AUTHEN-
TICATION MODULE ON OPENICE

We implement a prototype of the authentication module on top of
OpenICE to validate the compliance of the design specified in Sec-
tion 3 to the requirements specified in Section 2. OpenICE is an
open source, standard-based ICE instantiation, which utilizes Data
Distribution Service (DDS) as its network middleware. In this sec-
tion, we discuss in details the implementation and customization of
our authentication module on top of OpenICE, with special atten-
tion given to taking advantage of DDS utilized in OpenICE.

According to the DDS standard [16], the DDS middleware pro-
vides a set of interfaces, called Security Model and Service Plugin
Interface (SPI), for DDS-compliant implementations; and a set of
built-in security plugins for these SPIs. These DDS plugins and
APIs can be used to implement the basic functions of our authenti-
cation module. Therefore, we first establish the mapping between
the basic authentication functions of the authentication module and
the APIs of the corresponding functions provided by the DDS mid-
dleware. The rest authentication functions are then implemented
based on such mappings.

ICE Security Modules 

DDS Middleware

Medical 
Devices

Supervisor

Applications

OpenICE Data Model

Access 
Control

Security 
Logging AuthenticationSecurity 

Tagging

AM_AUDIT()IA_IMPL()

AM_AUTH()/AM_NEGO()

Login 
component

Authentication 
Protocols

DDS SPI

App 
LauncherDevice 

Adapter

Logger

Figure 4: Implementing authentication on OpenICE, which are de-
noted by green boxes. The authentication module and its support-
ing functionalities are represented by blue boxes. The grey arrows
show the way that authentication module interacts with OpenICE
via the interfaces defined in Section 3.

More specifically, Figure 4 illustrates how the authentication mod-
ule is integrated into the OpenICE platform. In Figure 4, compo-
nents of the OpenICE platform are colored in green and those of the
authentication module in blue. Grey arrowed lines in Figure 4 indi-
cate the interactions between components during the authentication
process. The authentication module works between the ICE super-
visor/device adapter and the DDS middleware. The App Launcher
and Login components, as part of the ICE supervisor, are responsi-



ble for invoking the authentication module to validate applications
and human users, respectively.

As described in the following subsections, different types of ICE
entities need to undergo different authentication processes, because
they interact with the OpenICE platform in different ways and cer-
tain parts of their authentication processes cannot map to DDS
APIs directly.

4.1 User authentication
The authentication of human users occurs when a user attempts

to log into the ICE system. The key question of implementing such
authentication functions is to determine the location of authenti-
cation entry points for human users. In our implementation, we
choose to place these entry points in a login session prior to the
user logs into the ICE system.

OpenICE initializes its applications and device adapters during
the startup of its ICE supervisor, which does not include a user lo-
gin session. We hence added a user login session before the ap-
plications and device adapters are initialized, which invokes the
AM_AUTH() interface for user authentication. In this way, every
time when the OpenICE system is powered on, a login window is
popped up requesting the user to be authenticated. If the authenti-
cation succeeds, AM_AUTH() returns the user’s ICE identifier, and
a unique identity (UID) is generated for the user. Otherwise, any
unauthenticated user is blocked by AM_AUTH() from launching
any ICE applications or device adapters.

The login session is responsible for collecting the user’s creden-
tial information (which could be a username-password combina-
tion, user’s biometrics, or certificate stored in the user’s ID card,
depending on the authentication protocol adopted), and transferring
it to AM_AUTH(). The corresponding authentication protocols for
such credential have to be registered with the IA component using
the IA_INTF() interface.

4.2 Application authentication implementation
Theoretically, the authentication of ICE applications can follow

a process similar to the authentication of mobile apps, which is
detailed as the following:

Step 1: An ICE application developer applies for a certificate
from the certificate authority (CA), such as the ICE industry asso-
ciation, who signs the developer identity information and seals it in
his/her certificate.

Step 2: The developer develops an application, signs the appli-
cation with his/her certificate, and packages the signature, the de-
veloper’s certificate, and the application as a package.

Step 3: When the application is distributed for installation, the
application installer in OpenICE retrieves the application’s signa-
ture using the developer’s certificate, and invokes AM_AUTH() to
decrypt the developer’s information from the certificate using the
CA’s public key. If the retrieved signature and identity information
match with those included in the distributed package, the applica-
tion is deemed as unadulterated, and manufactured by the claimed
developer. Otherwise, the application is untrustworthy and its in-
stallation is aborted.

However, applications are not installed by a dedicated installer in
current OpenICE implementation. Instead, they are hardcoded in
the initialization function of the ICE’s supervisor and launched as
part of the ICE supervisor’s startup process. In particular, OpenICE
uses the Java service loader mechanism to dynamically loads the
provider of each application from a configuration file, and runs the
provider to create the corresponding application. Considering this,
we placed the authentication entry point for an application prior to
where it is created. For each application, we also defined a data

structure cred to store its credential, and a function to retrieve the
credential from the application’s provider. The credential is then
delivered to AM_AUTH() by the entry point corresponding to the
application. Only the applications passing authentication can be
created by their providers.

We leveraged the DDS SPI authentication plug-ins to implement
IA_INTF() for application authentication. OpenICE assigns each
application and device with a unique DDS DomainParticipant
for message exchange, before they are put into operation. DDS
SPIs provide a series of security-related data structures and inter-
faces to protect the concept of DomainParticipant, which
include an object called IdentityCredential to encode the
identity information of an application instance, and validate_
local_identity() and validate_remote_identity()
operations to encapsulate how a specific authentication protocol
verifies IdentityCredential. Therefore, the IA_INTF()
function is implemented as assembling an IdentityCredential
object based on the cred structure in the application provider, and
invoking the operations of validate_*_identity() to per-
form the authentication.

4.3 Device authentication implementation
OpenICE utilizes DDS to create communication channels be-

tween non-human parties in the system, especially those between
ICE devices and the ICE supervisor. DDS implements a publish-
subscribe model for sending and receiving data among the network
nodes. Publishers (i.e., network nodes producing information) cre-
ate "topics" (e.g., patient’s heartbeat rate) and publish data "sam-
ples" (e.g., the reading of a cardiograph) in these topics. DDS deliv-
ers the data samples to subscribers that declare an interest in these
topics. In other words, once an ICE device has access to a specific
topic, it can send data to all subscribers of this topic and receive
messages from all publishers of this topic. Therefore, it is obvious
that the authentication interface should be placed before the device
starts to apply for any DDS topic dedicated to security-sensitive
data communication.

OpenICE provides a device adapter for each type of devices that
it supports and can be integrated into its network. The device
adapters convert the output data from the supported devices, typ-
ically in proprietary formats, into the common data fabric used
in OpenICE, and manage the exchange of messages between the
devices and the OpenICE supervisor. When a device is plugged
into the OpenICE system via its device adapter, the adapter first re-
trieves the device’s driver and invokes the create method in the
driver to initialize the device, which creates all topics required by
the device. Then the adapter creates a heartbeat topic and sends
heartbeat signals to the OpenICE supervisor. Upon receiving the
heartbeat signal from the device adapter, the supervisor updates the
device’s connection status, which allows the device to exchange
with other devices and applications messages on all topics it has
required.

This above protocol of establishing connection between a de-
vice and the OpenICE system suggests that the device has access
to other devices and the supervisor who subscribe the same topics,
even before the supervisor receives the connection request from the
device. To enforce device authentication without changing this pro-
tocol (which may affect the initialization procedure of devices and
applications, or the the communication modes among them), we
place the authentication entry point of a device before its adapter
starts to the initialize procedure. Then we create a public DDS topic
for delivering authentication-related information, typically authen-
tication result and entity credentials. The credential of a device is
stored in its driver, so that the entry point in its adapter can retrieve



and send the credential to AM_AUTH() via the authentication topic
to start the authentication process. If a device fails the authentica-
tion, its adapter is terminated by the OpenICE supervisor, which
disconnects the device from the rest of the system.

Similar to applications, OpenICE allocates a unique Domain
Participant to each device based on a user-input DomainID.
Thus, we implement the device-authentication function AM_AUTH()
in the same way as howIA_INTF() is implemented

4.4 OpenICE entity credentials
Although our authentication module intends to support most main-

stream authentication protocols, in its current prototype, we chose
X.509 certificates as the credentials for human users, ICE appli-
cations, and medical devices. The reason is threefold. First, the
X.509 standard is widely used in mainstream web browsers, smart-
cards, and security-sensitive applications such as on-line finance
and E-Government, due to its timeliness and scalability. Second,
the structure of X.509 certificates includes extension to allows dy-
namic modification, which can be used to store access control poli-
cies. Third, DDS SPI embodies X.509 as part of its mandatory
built-in authentication plug-ins, which makes it easier for us to im-
plement the authentication functions.

5. EVALUATION
We conducted a preliminary case study to evaluate the prototype

of our authentication module. The evaluation focused on two as-
pects of the module: its effectiveness in protecting ICE systems
from malicious attacks by authenticating ICE entities, and its im-
pact to the performance of ICE systems (in terms of computational
overhead caused by authentication).

5.1 Effectiveness
To examine the effectiveness of the authentication module, we

conducted a case study upon the PCA safety interlock clinical sce-
nario defined in the the ASTM F2761 standard. Notably, the current
OpenICE implementation includes a demo that instantiates this sce-
nario, which makes our case study easier. In the OpenICE demo,
no authentication is considered or implemented. Thus, we first con-
ducted a threat analysis on the demo to identify security threats due
to the lack of authentication. We then simulated an example at-
tack to compromise the OpenICE system by utilizing the security
threats identified in the first step. The same example attack are
then applied to the OpenICE platform twice, with our authentica-
tion module turned off and on, respectively. If the attack succeeds
in the first time, but fails in the second time, then the effectiveness
of our authentication module in protecting the OpenICE system (at
least against the example attack and alike) is confirmed.

5.1.1 Safety Interlock scenario
The PCA safety interlock scenario describes an ICE-compliant

interoperable system setting in the operating room, intended to au-
tomatically predict and prevent overdosing incidents caused by Pa-
tient Controlled Analgesic (PCA) infusion pumps before such inci-
dents cause harm to the patient. In this scenario, the OpenICE uses
a PCA pump to deliver pain-killing medication (such as morphine)
to the patient, and uses a pulse oximeter to continuously monitor
the vital signs of the patient (such as heart beat rate and blood oxy-
gen saturation level). If the patient’s vital signs, as monitored by
the pulse oximeter, are below pre-defined thresholds, a safety in-
terlock application running in the system sends instructions to the
PCA pump to shut off the medication delivery, so as to avoid over-
dosing incidents. In the mean time, the safety interlock application
issues an alarm to the nurse station via a distributed alarm system,

calling for human intervention. The interactions between different
parts of the system is shown in Figure 5.

SAFETY-INTERLOCK

1 CONNECT-TO-ICE(PulseOx, Pump,Alarm)
2 CONNECT-TO-PATIENT(PulseOx, Pump)
3 diag = ORDER-REQUEST(Patient)
4 VERIFY-VALUES(diag)
5 SEND-DATA(Pump, diag)
6 bolus = diag.bolus
7 while bolus > 0
8 SpO2 = RECEIVE-DATA(PulseOx)
9 if SpO2 < THRESHOLD

10 STOP-PUMP(Pump)
11 RIASE-ALARM(Alarm, RESP-DISTRESS)
12 EXIT
13 bolus = RECEIVE-DATA(Pump)
14 STOP-PUMP(Pump)
15 RIASE-ALARM(Alarm, MED-COMPLETE)

Figure 5: Safety Interlock Workflow

5.1.2 Threat analysis
For the above safety interlock scenario, ICE entities include all

parties that have connection or interaction with the OpenICE plat-
form, namely the PCA pump, the pulse oximeter, the safety inter-
lock application, the medical information system, the alarm system,
and the clinicians who has the privilege to operate the system. Our
threat analysis focuses only on the security threats coming from the
interactions among these ICE entities.

A basic assumption of our threat analysis is that the ICE platform
itself is trustworthy. This means that the OpenICE platform does
not need to verify the identifies of entities built within the platform.
Therefore, security threats considered in the analysis are threats
where a malicious entity can forge a fake identification to connect
to the ICE platform and then launch a series of attacks:

• Device replacement. This threat represents scenarios where
an adversary can disguise as a genuine device, such as the
pulse oximeter or the PCA pump. For example, a fake pulse
oximeter can use the ID of a genuine one to request to con-
nect to the ICE platform, and once connected, can constantly
deliver good SpO2 reading to the rest of the ICE system,
which disables the alarm system. The logging system only
records the ID of the genuine oximeter and has no way to
track to the fake pulse oximeter when overdosing occurs.

• Impersonation. An attacker can log into (if needed) the ICE
platform with a forged clinician id. Then s/he can operate
the safety interlock application and modify the alarm thresh-
old with a very high value, so that overdose will not trigger
an alarm or a request to stop the infusion process. Forensic
analysis can only find the forged id leading to a nonexistent
person.

5.1.3 Attacking the OpenICE system
Device replacement. OpenICE implements an ICE instantia-

tion and several applications to demonstrate ICE scenarios defined
in the ASTM F2761 standard. It also provides a collection of
simulated medical devices, including the PCA infusion pump and
the pulse oximeter in the PCA safety interlock scenario. Physi-
ological monitoring readings from the simulated pulse oximeter,
such as SpO2 and heart rate, can be adjusted from an application



called Simulation Control to simulate the patient’s health condition.
OpenICE uses DDS topics as the communication channels between
the ICE supervisor and its entities, and between the ICE supervisor
and a local simulated device.

In its current implementation of the PCA safety interlock sce-
nario, OpenICE does not include any authentication mechanism,
but simply assigns a unique device identifier (UDI), created by a
random number generator, to any device in the system during its
initialization (line 1 in Figure 5). This apparently makes OpenICE
vulnerable to Device Replacement attacks. To realize such attacks,
we developed a fake pulse oximeter, which duplicates the simu-
lated pulse oximeter device provided in OpenICE but constantly
publishes a fixed 98% SpO2 reading. The fake pulse oximeter was
registered in the OpenICE’s device list as "Simulated Fake Pulse
Oximeter".

The attack occurs when the fake oximeter instead of the real one
is connected to the system. In this case, when the patient’s health
is deteriorating (i.e., the SpO2 ratio decreases), the fake oximeter
still delivers the 98% reading to the safety interlock application
(line 8 in Figure 5), preventing it from issuing a respiratory distress
alarm at line 11. Although OpenICE can record the UDI of the
fake oximeter, it cannot determine whether the UDI is generated
for a genuine device or counterfeited by an adversary in forensic
analysis.

Our authentication module prevented this type of attacks suc-
cessfully, because the device authentication interface intercepts a
device’s request of DDS topics and verifies its authenticity during
its initialization. In the above scenario, the simulated fake oxime-
ter could not provide any certificate to the authentication module,
leading to its failure in establishing network connection with the
safety interlock application at Line 1.

Impersonation. OpenICE does not have a user login session,
which allows any person to enter into the system without under-
taking any identity check. To address this security threat, we de-
veloped a user login component for OpenICE along with the user
authentication interface, as well as a database to store the names
and credentials of a group of "virtual" valid users. The user login
component was placed at the beginning of the OpenICE supervi-
sor’s initialization procedure. Thus, an attacker cannot access to
the supervisor, as s/he cannot enter a valid pair of (user name, cre-
dential).

It is worth noting that authentication by itself cannot protect
against all the five types of security risks enumerated in Section 2.
For example, even with authentication in place, it is still possible
for a malicious device to eavesdrop some communication channel
in OpenICE to steal the identify of a genuine device and gain autho-
rized access to the system, if the channel is not protected by proper
encryption. Thus, ICE systems cannot establish adequate security,
unless they are equipped with a security mechanism that coordi-
nates a collection of security measures (including authentication)
to provide comprehensive security protection.

5.2 Efficiency
To estimate the performance tradeoff caused by our authentica-

tion module, we compared the performance of the original OpenICE
v1.8.0_453 in (simulated) clinical scenarios, with authentication
enabled and disabled. The experiment was run on a desktop with
4-core intel 3.3Ghz i5 CPUs with 6MB cache and 4GB RAM. We
also run the simulated ICE devices on another laptop with 2-core
intel 2.1Ghz i7 CPUs with 4MB cache and 8GB RAM to simulate
the environment in which these two versions of OpenICE systems

3Downloaded from https://github.com/mdpnp/mdpnp

operate. Both computers resided in the same local network, so they
can communicate with each other.

In the experiment two clinical scenarios were considered: one
with a PCA pump connecting to the OpenICE supervisor, and the
other with multiple PCA pumps concurrently connecting to the su-
pervisor. The latter was essentially a stress test: up to 20 simulated
devices were reliably connected to the supervisor, given the avail-
able resources (i.e., the memory size of the experiment computers).
The experiment results were illustrated in Figure 6.

In Figure 6, blue curves in all subfigures represent the resource
usage when the authentication module was turned off; red curves
denote the resource usage with the password authentication on, and
green curves illustrate the resource usage with the X.509 certifi-
cate authentication on. The starting 3 sharp spikes in Figure 6a are
caused by system initialization, where the highest CPU usage ratio
is 42%.

In Figure 6 the three curves, representing the resource consump-
tion of the system in three different settings, share a similar shape
for all experiment scenarios. For most of the course, the difference
among these curves is less than 10%, which suggests that authenti-
cation does not cause significant increases in CPU usage.

Moreover, the shape of the first spike for each mode shows more
difference than the other two spikes. This is because we enforced
authentication before devices and applications are initialized, which
causes authentication to pose more influence to system performance
at the beginning of system startup. The first spikes in all sub-
figures also suggest that certificate authentication was less CPU-
consuming than password authentication, which probably because
the latter needs to search the password database for the password
entered by the user. The highest CPU utilization observed after
system initialization was 12%, which was caused by password au-
thentication. We consider this level of overhead as acceptable. The
CPU usage curves for 3 modes in the stress test are also not signif-
icantly distinguishable, while verifying twenty X.509 certificates
simultaneously contributes the highest CPU usage spike (37%) in
Figure 6c.

Axis Y in Figure 6b and 6d represents the number of Megabyte
of memory consumed by the OpenICE supervisor. When authen-
tication was turned off, the OpenICE supervisor consumed up to
39 MB memory. In comparison, certificate authentication took up
to 50 MB memory when only one device was connected to the su-
pervisor, and up to 68 MB memory when 20 devices were con-
nected. The memory consumption of password authentication falls
in the middle of the other two modes in both tests, with a maximum
memory usage of 67 MB. It is obvious from Figure 6b and 6d that
our authentication module with two different authentication mech-
anisms entails a fixed but moderate level of memory utilization.

6. RELATED WORK
Security of ICE systems has been attracting more and more at-

tentions from stakeholders and the academia. One focus is what
security challenges are faced by current ICE technology. For ex-
ample, Krishna et al. [22, 20] enumerated 5 categories of possible
security attacks for the ICE platform. Hatcliff et al. discussed the
risk of malicious devices being connected to ICE systems and pro-
posed a solution to establish and reason the trustworthiness of ICE
entities [10]. The core concept of their solution is to build a trust
chain for verifying an entity’s provenance and integrity, by attach-
ing it with a credential issued by authorization bodies.

There is also heated discussion among stakeholders on what con-
stitutes acceptable security in ICE systems. For example, [9] and
[14] discussed the high-level goals and challenges of engineering
secure ICE systems. [8] and [21] defined a set of ICE security
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Figure 6: OpenICE resource consumption with different authentication mechanisms on.

requirements from different perspectives. However, their require-
ment sets are not assembled together as a whole, so it is hard to
implement them in an architectural way.

[19] suggested threat modeling as the first step to design a se-
curity architecture for ICE systems. They applied an attack-graph-
based analysis to an example interoperable medical system to dis-
cover its security threats and discussed possible mitigation mea-
sures. However, their analysis focused on threats faced by medical
devices in the system, and did not consider ICE security from the
system’s perspective.

Some research effort (e.g. [6, 5]) focuses on extending access
control models with the feature of break-the-glass, which is man-
dated in many clinical scenarios. In [5], break-the-glass policies
were defined as a generic extension to traditional access control
models, and were formalized as rules written in the XACML lan-
guage [15]. Ferreira et al. [6] developed a new BTG-RBAC model
to integrate the break-the-glass feature within the standard RBAC
model, which provided the third option to break the glass in ad-
dition to the standard grant/deny response to the subject’s request.
Their recent work [7] designed an access control application to fa-
cilitate patients’ access to their EHR records based on their own
access models. Unfortunately, the applicability of these approaches
to OpenICE systems remains unclear.

Although there has been plenty of research effort on ICE se-
curity, few security mechanisms have been proposed and imple-
mented on realistic ICE systems. In fact, the only security mech-
anism aware to the authors was proposed by Salazar and Vasser-
man [18, 17], which implements a modularized prototype for de-
vice authentication and communication encryption in the MDCF
framework. This mechanism provides a preliminary access control
model with a break-the-glass feature, and our authenticate module
has the following differences as compared to it:

1. Their mechanism focuses only on device authentication, while

we proposed an authentication solution for all types of ICE
entities that can be connected to the ICE platform.

2. Their authentication mechanism was designed solely based
on the device connection protocol of the MDCF framework,
which restricts its applicability to other ICE frameworks. For
instance, OpenICE creates all communication channels for
the devices before the heartbeat channel is established, which
is opposite to the workflow enforced by the MDCF device
connection protocol. Hence, their mechanism is not com-
patible with OpenICE. In contrast, the three-layer design of
our authentication module allows system developers to cus-
tomize the locations of entry points, which makes it suitable
for being deployed in a variety of ICE instantiations.

7. CONCLUSION
We have presented a three-layered, middleware-independent au-

thentication framework for ICE-compliant interoperable medical
systems: the top level of our framework incorporates a collection of
authentication entry points, the locations of which are customizable
for specific ICE systems, to intercept the communication between
ICE supervisor and its entities; the middle level integrates all func-
tionalities related to authentication, such as authentication protocol
management, task scheduling, and auditing; and lastly, the bottom
level provides a set of interfaces for the invocation of authentication
protocols, which can be provided by networking middleware.

Our authentication framework has been implemented on top of
OpenICE to evaluate and demonstrate its effectiveness in enhanc-
ing the security of ICE-compliant systems. Our experiments showed
that the authentication framework can avoid device replacement
and impersonation attacks to the OpenICE framework, with moder-
ate computational overhead. We have to admit that, due to realistic
difficulties, we could not deploy our authentication framework in a
realistic ICE system setting to fully evaluate its efficiency and other



engineering properties (e.g., scalability) in real clinical practices.
Our future research has two directions. On one hand, we plan

to ensure all possible entry points that can be used by potential at-
tacks are protected by appropriate authentication interfaces. To do
so, program analysis techniques could be used to verify the loca-
tions of authentication interfaces. More importantly, we plan to
fully evaluate our authentication module against the requirements
defined in Section 2 and its scalability in real clinical use. On the
other hand, we plan to develop other security modules (based on
the authentication module) for OpenICE, and eventually provide a
holistic security solution for ICE-compliant systems.
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