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Abstract

We introduce a new methodology that can capture and explain differences across a series of
cohorts of new customers in a repeat-transaction setting. More specifically, this new
framework, which we call a vector changepoint model, exploits the underlying regime structure
in a sequence of acquired customer cohorts to make predictive statements about new cohorts
for which the firm has little or no longitudinal transaction data. To accomplish this, we develop
our model within a Hierarchical Bayesian framework to uncover evidence of (latent) regime
changes for each cohort-level parameter separately, while disentangling cross-cohort changes
from calendar-time changes. Calibrating the model using multi-cohort donation data from a
non-profit organization, we find that holdout predictions for new cohorts using this model have
greater accuracy — and greater diagnostic value — compared to a variety of strong benchmarks.
Our modeling approach also highlights the perils of pooling data across cohorts without
accounting for cross-cohort shifts, thus enabling managers to quantify their uncertainty about
potential regime changes and avoid “old data” aggregation bias.
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Introduction

“In times of rapid change, experience could be your worst enemy” — Jean Paul Getty

Managers in industries focused on repeat transactions such as Internet retailing, non-profit
fundraising, catalog marketing, and hospitality/travel services rely on customer-base analysis to
track acquisition and retention performance, and to make resource allocation decisions based
on customer lifetime value (Jain and Singh 2002). Many data sets in such settings feature a time
series of cohorts, a sequence in which each cohort contains a group of individuals who share a
common feature (such as being acquired in the same year), and each successive cohort has a
smaller number of time observations. Customer-base models have been successful in modeling
within-cohort behaviors of interest such as customers’ interpurchase times and churn
propensities (Schmittlein, Morrison, and Colombo 1987), usage patterns of financial services
(Allenby, Leone, and Jen 1999), and donor giving and dropout propensities (Fader, Hardie, and
Shang 2010; Netzer, Lattin, and Srinivasan 2008), providing managers with tools to understand
and forecast the heterogeneous behavior of any given cohort with a sufficiently large number
of time observations. However, existing customer-base models remain largely silent on how to
develop forecasts for new cohorts for which data are sparse, and how to allow for “regime
changes” that differentially alter some cohorts’ behaviors that make it inappropriate (and
statistically “dangerous”) to pool data across all cohorts. We illustrate the managerial questions

that remain unaddressed as a result with an example.

Consider Anita, sales manager for an Internet retailer which has been in business since
2001. Each year, Anita is tasked with acquiring new customers and managing existing ones.
Anita has come to view the set of customers acquired in a given year as a cohort that she can
track over time, and she uses sophisticated models to understand and forecast the behavioral
patterns of each cohort. However, she has little to no data on brand-new customers and is
therefore unable to forecast their behavior so she turns to several colleagues for advice. Bob,
the data analyst, suggests pooling data from all cohorts to make an educated guess about the
behavioral patterns of the newest cohort. In contrast, Colleen, the business intelligence
manager, has the intuition that a competitor who entered the market in 2006 has been
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“skimming the best new customer prospects” such that the quality of newer cohorts may be
significantly different from pre-2006 ones. Colleen thinks it is important to understand what
changes may have occurred and when. Bob is unsure whether and how to incorporate Colleen’s
insights to address Anita’s needs. His conundrum is accentuated by the declining number of
time observations across cohorts; while he could run a stand-alone model on older cohorts
observed over a long period of time, new cohorts may feature a paucity of time observations

which are critical to identify any reasonable model.

From the above scenario, three managerial questions arise. First, is there evidence for
discrete shifts or “regime changes” in a sequence of cohorts? Second, what aspects of cohort
behavior drive these shifts and can multiple potential drivers of aggregate-level changes be
teased apart, including separating cohort-level shifts from temporal effects that impact all
cohorts? Third, how do we model and predict the behavior of new customer cohorts for which

time observations are sparse?

In this paper, we present two cross-cohort vector changepoint (“VC”) models that can
provide guidance to these important managerial questions and address the limitations of
existing customer-base models which implicitly assume that individuals across all cohorts can
be pooled to estimate a population-level model; an assumption that ignores the potentially
changing behavioral patterns across cohorts. Importantly, we highlight the challenge posed in a
multi-cohort setting of robustly estimating parameters for newer cohorts and demonstrate how

accurate predictions of future behavior for such cohorts can be generated using the VC models.

Using a multi-cohort data set from a U.S. non-profit organization, we compare our VC
models to a number of strong benchmarks: (1) a single fully pooled model that assumes all
cohorts share a base set of common parameters but allowing for heterogeneity using
parametric cross-cohort effects, (2) a Hierarchical Bayesian model without changepoints (HB-0)
that assumes each cohort’s parameters are drawn from a common hierarchical distribution,

and (3) a classical changepoint model that places restrictions (i.e. a single changepoint location



as discussed below) on regime change patterns across all parameters (HB-CC). The results
indicate that our proposed VC models outperform the benchmarks, with improved out-of-
sample prediction for new cohort donations (the problem that Anita, our hypothetical sales
manager, is facing), while providing new insights into the nature of the regime changes (i.e.,
what aspects of behavior are changing) that would be missed by these benchmarks, while also
accounting for calendar-time effects common to all cohorts. Moreover, the “HB-0” and “HB-CC”
benchmarks are themselves novel to the analysis of multi-cohort customer transactional data,

and our work suggests that the VC models can be a superior choice for data of this kind.

We introduce two “flavors” of VC models in this paper. The first assumes cohort
parameters are shared across cohorts but only within parameter-specific regimes that break up
the sequence of cohorts using changepoints (“B-VC” model). The second VC model jointly
estimates parameter-specific changepoints and cohort-specific parameters using an HB
framework (“HB-VC” model). The key difference between the models is within-regime
heterogeneity (which exists in the HB-VC and not within the B-VC) and we discuss what each
model brings to the table in empirical settings such as the one we study in this paper. We
emphasize that these VC models provide a new modeling twist on the conventional approach
to modeling changepoints in a multi-dimensional parameter space. In particular, the VC models
allow each parameter in a cohort-level model to be drawn from a regime-specific hierarchical
distribution and the number of regimes to possibly differ across parameters. In contrast, the
classical changepoint paradigm requires all cohort parameters to shift simultaneously across
regimes (Bai 1997; Bhattacharya 1987). Furthermore, the classical changepoint model is

inefficient if only a subset of parameters is affected by regime changes.

We also note that our VC framework is agnostic to the type of behavior being modeled
and is compatible with any setting in which a sequence of customer cohorts exists, individual-
level data is available, and a parametric cohort-level likelihood function can be defined. At the
cohort level, we use a general discrete-time model of donor attrition and transaction behavior

that allows for correlation between attrition and transaction propensities and time-varying



covariates that nests the Beta-Geometric Beta-Bernoulli (BG/BB) model developed by Fader,
Hardie and Shang (2010). A different cohort-level model can easily be accommodated in our
framework, which can be applied to other settings such as doctor visits for age-cohorts of
patients (Winkelmann 2004), online music purchasing (Fader, Hardie, and Lee 2005), effects of
aging on product consumption (Rentz and Reynolds 1991), and interpurchase times for financial

products (Allenby, Leone, and Jen 1999).

Our work is related to four strands of literature. First, our Bayesian approach to
detecting changepoints when the number of cohort regimes is unknown builds upon the
Reversible-Jump MCMC (R-J) method introduced by Green (1995), which (i) allows for
considerable flexibility in defining prior distributions for the number and location of
changepoints; (ii) enables the researcher to specify a broad range of allowed moves from one
model to the next; and (iii) uses a generalization of the Metropolis-Hastings algorithm to
estimate the posterior densities. We note that other approaches to changepoint detection,
notably the product-partition method of Barry and Hartigan (1995) and Bayesian model
selection approach of Carlin and Chib (1995) are popular alternatives but do not allow for the
flexibility in specifying priors and model moves that the R-J method enables®. To date, the R-J
method has had limited applications in marketing (Kim, Menzefricke, and Feinberg 2007; Ebbes,
Liechty, and Grewal 2013; Narayanan 2013) due to concerns about generating efficient
proposal distributions for Bayesian computation. We show that appropriate choices of model
moves can result in efficient traversal of large model spaces that can result from even a short

sequence (e.g., 10) of cohorts.

A second literature stream uses mixture models (Richardson and Green 1997; Allenby,
Leone and Jen 1999) and semi-parametric approaches (Ansari and lyengar 2006) to model

complex distributional shapes. However, since these models do not impose structure in the

! The product-partition approach outlined by Barry and Hartigan (1993) is popular due to the simplicity of using
data augmentation (Tanner and Wong 1987) for the presence or absence of changepoints in a sequence. However,
priors are specified in a non-intuitive form of “prior cohesions” and there is limited flexibility in traversing the
model space.



form of contiguous regimes of cohorts, they are not suitable for detecting regime changes, even

if they are able to capture multi-modal distributions in a fully pooled model.

A third stream of literature accounts for behavioral changes across cohorts by either
explicitly specifying covariates that capture systematic differences across cohorts (Schweidel,
Fader and Bradlow 2008; Yang and Allenby 2003; Zhang 2008) or by introducing hierarchical
priors that enable “information sharing” across spatially segmented cohorts (Hofstede, Wedel
and Steenkamp 2002; Hui and Bradlow 2012). Our approach is most closely related to these
hierarchical prior approaches — however, while spatial segments are on a “level playing field” in
terms of observations, the temporal structure of a sequence of cohorts ordered by time of
acquisition results in successive cohorts having fewer time observations, which is an additional
challenge in our setting. The main issues with parametric cross-cohort effects are over-fitting
due to noisy data within-sample to the detriment of out-of-sample fit, and the inability to
capture potentially multiple sharp transitions in cohort parameters parsimoniously. Our VC
model flexibly allows for arbitrary cross-cohort patterns without imposing high-degree
polynomial effects (as per one of our benchmarks above) that may predict implausible

parameters for future cohorts.

Finally, we use a general discrete-time model of donor attrition and transaction
behavior that nests the BG/BB model (Fader, Hardie and Shang 2010) to characterize cohort-
level donation behavior, linking our work to the literature on “Buy ‘til you die” (BTYD) models in
non-contractual settings. Our approach provides a natural extension to such models by avoiding
the extreme options of either estimating one model by fully pooling multi-cohort data (as
Fader, Hardie, and Shang 2010 did) or estimating cohort-specific models in isolation (which is
virtually impossible for newer cohorts), while allowing for correlation between attrition and

transaction propensities and time-varying covariates (e.g. calendar time effects).

The remainder of this paper is organized as follows. In Section 1, we present the model

and the “technology” to estimate the posterior distributions of interest. We then discuss model



identification in Section 2, and empirical results in Section 3. We conclude in Section 4 with
managerial implications and suggestions for future work. Technical appendices contain details
and choices made to implement our computational approach that will allow for replication by

other researchers interested in these methods.

1.0 Model Development

“You never change things by fighting the existing reality. To change something, build a new

model that makes the existing model obsolete” — Richard Buckminister Fuller

In this section, we specify the vector changepoint model starting with the cohort-level discrete-
time model of donor attrition and transaction behavior in Section 1.1, followed by the
changepoint model that drives the assignment of cohorts to regimes in Section 1.2. Since the R-
J method is less well-known compared to the Metropolis-Hastings and Gibbs samplers, we
provide a brief description of how it is used to estimate the model in Technical Appendices A

and B.

1.1 Cohort-level model

Our non-profit data set contains records of donations made over the history of each donor’s
association with the organization. In addition, we were able to obtain donor zip code data that
may provide relevant information regarding donation behavior (e.g., distance from the
organization’s headquarters, median household income and household size of zip code) and
demonstrate how our cohort-level model (described below) can allow for time-invariant
covariates. In the absence of covariates, the panel data of donation incidence across donors in
the same cohort (started giving in the same year) can be described by a standard BTYD model
such as the BG/BB, which captures donor transaction and latent attrition propensities while

allowing for heterogeneity in this non-contractual setting.



The BG/BB model, however, has the following three limitations that make it less than
fully appropriate for our problem: it (1) does not allow for correlation between transaction and
attrition propensities; (2) does not allow for time-invariant covariates; and (3) does not allow
for time-varying covariates. A hierarchical Bayesian BTYD model akin to Abe (2009) or Singh,
Borle and Jain (2009) defined for a discrete-time setting would relax the first two limitations but
not the third. We therefore propose a more general discrete-time BTYD model that allows for
the probability of transaction and attrition to vary by individual and time (cf. Schweidel and

Knox 2013).

For customer i in cohort c observed over T, repeat transaction opportunities (the initial
transaction which identifies the cohort an individual belongs to is excluded), we define the
attrition and transaction probabilities as follows, where y;. is the observed transaction
incidence, and z;.; is a latent indicator of attrition (z;.; = 0 connotes being alive, and z;,; = 1

leads to the donor entering an absorbing state of no transactions).

Pr(zict = 1|Zic,t—1 = 0, Xict) Xicz) ﬂz) = ®(Aicz + XicePz)
Pr(zict =1{zic1 = 1) =1

Pr(Yice = 1zice = 0, Xice, Hicy, ﬁy) = q)(aicy + Xict.By)
Pr(yict = 1|Zict =1)=0

The individual-specific random intercepts a;., and a;., are distributed multivariate
normal with mean . and covariance matrix X, while the slopes §, and f8,, are common across
individuals. We call this the mixed Correlated Probit-Normal/Probit-Normal (CPN/PN) model
given that the intercepts are heterogeneous and the slopes are common (hence a mixed
model), which allows for the attrition and transaction intercepts to be correlated. Further, X;.;
can contain a combination of individual-specific time-invariant covariates (e.g., demographics),
cohort-specific time-invariant covariates (i.e., to model cross-cohort effects), calendar-time

effects (i.e., modeling systematic changes over time affecting all cohorts) in which case we



denote the models as HB-VCT and B-VCT (T for time effects), and other time-varying covariates,

as we demonstrate in our application.

For an individual with observed incidences Y;. = {y;.:} V t and recency (time of most
recent transaction), rec;., the likelihood function is obtained by marginalizing the joint
likelihood of Y;. and unobserved lifetime L;. as shown in equation (1). Lifetime cannot be lower
than recency since a BTYD model does not allow transactions after attrition. L;. = T, indicates
that the individual survived till the end of the observed time periods without attrition. L;, = 0
indicates that the individual dropped out even before facing a single repeat transaction
opportunity. For a given lifetime L;., the joint likelihood is composed of three terms: the
probability of attrition (not included if we observe survival), the probability of observing the
transactional history over this lifetime, and the probability of not having dropped out prior to

the duration of this lifetime.

p(YiC|ai(,‘Z' aicy' .Bz' .By' {Xict})

I(Lic<Tc) .

Te Lic Yict
= ZLic:TeCic cI)(aicz + Xic,LL-+1.Bz) [Ht=min(1,Lic)(cD(aicy + Xict.By) ' (1 - cI)(aicy +

XiCtBY))l_int ’ (1 - CI)(a‘icz + Xictﬁz))]I(LiC>0) (1)

By setting all the elements of B, and B, to zero, and constraining the attrition and
transaction intercepts to be uncorrelated, the likelihood is analogous to the BG/BB model re-
parameterized with a Probit-link function in place of Bernoulli probabilities. The benefits of the
mixed CPN/PN model are three-fold. First, a;c, and a;c, can be correlated through the full
covariance matrix X, in the cohort-level prior, which provides the model with greater flexibility
to fit data patterns where such relationships may exist. Second, time-invariant covariates can
be incorporated in X, which would then apply across each time period for an individual.
Finally, X;.t can include time-varying covariates such as common temporal shocks affecting all
cohorts over calendar time. These covariate effects can differentially impact attrition and
transaction propensities through slopes 3, and 8y, and we discuss identification restrictions

relating to these in Section 2.1.



The likelihood function for all the individuals in the cohort (total of I.) as shown in

equation (2), is simply the product of individual-level likelihoods.

p(Yc | {aicz}' {aicy}: .Bz: .By: {Xict}) = Hiczl p(Yic | Ricz) aicy' ﬁz' .By' {Xict}) (2)

The prior for the individual-level intercepts is the multivariate normal cohort-level
distribution. The prior for the cohort-level distribution is obtained from the vector changepoint
model (whose parameters we denote as M) that we define in Section 1.2, which allows for
parameter and regime-specific shrinkage based on imputed cross-cohort effects. The conjugate
prior for the covariate slopes (B, f,) is also multivariate normal and we use standard
hyperparameters that enable a diffuse prior. We can now write down the joint posterior

distribution of the mixed CPN/PN model parameters conditional on My, Y, and X_.
p({aicz}: {aicy}' .Bz: .By' .UC; chMVCr Yc: Xc)

x p(YC|{aiCZ}I {aicy}' :Bzr By' {Xict}) ' p({aicz}r {aicy}lﬂcr Z:c) ) p(,uc, 2:cll\/[VC) ) p(ﬁz) ’ p(ﬁy)

For our setting, the main cohort-level parameters of interest are mean pu. and
covariance matrix Z.. To assign a multivariate normal prior to these parameters (that allows for

greater flexibility than the commonly used Normal-Inverse Wishart prior), we take the log
transform of the two variance terms in X, and a logit transformation of i (pzy + 1), where p,,,

is the correlation coefficient.

. . 1
The following parameter vector nc:{ucz,/,tcy,log(aczz),log(aczy),loglt <E (pzy + 1))}

then contains the same information as the cohort-level mean and covariance matrix, and is a

convenient form which we exploit in the VC model.

1.2 Vector Changepoint model

The crux of this paper lies in the definition of p(n.|Myc), where My represents the set of
parameters in the VC models. As mentioned previously, 7. is a five-dimensional cohort-specific

parameter vector that completely specifies the CPN/PN model for each cohort. We start with



how these priors are defined for two benchmark models (B-PE and HB-0), to build intuition for

how the VC models differ from these.

Let n. have a degenerate probability distribution with all its mass at pg. This
corresponds to a special case of the fully pooled B-PE model with cross-cohort effects absent,
where Mgpg = {ig}. This constrains all cohorts to be represented by an identical CPN/PN
model. In the HB-O0 model, n.~MVN (ug4,Z,), where I, is the covariance matrix capturing
cross-cohort heterogeneity while assuming that all cohort-specific parameter vectors 7. are
draws from the same distribution. This is the standard HB model that would be fit using

“Bayesian shrinkage 101”.

The intent of the VC models is to allow each parameter d in 1, to have its own regime
structure and therefore pool with “relevant peers” —i.e., parameter d’s prior will depend on the
number of changepoints K; € {0, ..., N — 1} in a sequence of N cohorts, the starting locations
of any changepoints Q; and the set of parameters (2; associated with each of the (K; + 1)
regimes (hereafter interchangeably referred to as a block). The set {K;, Q4, 2,4} then defines
the changepoint model for the d™ parameter of the cohort sequence. When ), is a set of
univariate normal distribution parameters (i.e., cohort parameters are i.i.d draws from the
regime-specific distribution), we refer to the model as HB-VC to reflect Bayesian shrinkage at
the cohort-level. When (2 is a set of parameters which are assumed to be constant within a
regime, we refer to the model as B-VC to reflect that there is no cohort-specific shrinkage. Both
are vector changepoint models, with the B-VC model being an important special case of the HB-
VC model that may perform well under sparse-data situations where the identification of
regime changes are possible, but the exact identification of heterogeneous parameters within a

block is less so.

In the HB-VC model, we allow for dependence between cohort-level parameters in 7,
through a correlation matrix R that is shared across regimes. Two points are important to note
regarding this correlation matrix: (1) allowing the correlation matrix to be regime-specific will
require aligning K;, Q4 = K, Q Vd, which translates to the HB-CC classical changepoint model

which forces synchronized regime changes across parameters, and (2) this correlation captures
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the relationship between pairs of cohort parameters such as the mean attrition and transaction
propensity in a cohort, and is entirely different from the individual-level correlation of attrition
and transaction intercepts within a cohort described in Section 1.1. The HB-VC model may
therefore be relatively parsimonious compared to the classical changepoint model as
estimating a large set of correlation coefficients reliably by regime is challenging even for a

moderate-sized cohort sequence.

It is straightforward to see that K; = 0V d,0; = {igq, 244} collapses the HB-VC to the
HB-O model. Unlike the HB-O model, the multivariate normal prior for 7. is constructed
element-by-element, with mean and variance of each cohort parameter 1., depending on the
regime membership b4 of this parameter. Similar to the HB-0 model, the correlation matrix R
denoting the relationships between cohort parameters is common across regimes.
'u.91:bc1
'u.gzlbcz
In the HB-VC model, n.~MVN (| Hgs.bcs |, ScRS.), where S, is a diagonal matrix whose

Hgybey
Hgs,bes

diagonal elements are the standard deviations of normal distributions that serve as priors for
cohort ¢’s parameters and g, 5, is the mean of the b.4-th block for parameter d. My¢ =
{{K4, Qq4,24}Vd, R} comprises the vector of changepoint models and the correlation matrix R.
We illustrate with an example of a data generating process with differing regime structures by
parameter in Figure 1. As can be observed, no two cohorts need have the same multivariate
normal prior unless all of their parameter-specific block memberships are exactly the same.
Further, even though cohorts have different priors, the elements corresponding to parameters
with just one regime are the same across these priors. If a changepoint is found at cohort 6, as
illustrated for parameter 1, cohorts are partitioned into two regimes (cohorts 1 through 5, and
cohorts 6 through 10). Inference for all cohorts pre- and post-changepoint are affected by
multiple regimes since newer cohorts do not share information with older cohorts and vice
versa. Importantly, the changepoint locations induce multiple regimes as opposed to either a

cohort-only model or a single-regime hierarchical model (HB-0).
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[INSERT FIGURE 1 HERE]

We now define hyperpriors for the parameters contained in Myc. We choose a uniform
prior over K;'s support (from O to N-1) and locations of changepoints Q,; are also assumed
non-informative conditional on K;. In this manner, we let the data “speak” as to the locations
and number of changepoints; however, in situations where informative priors exist they are
easily incorporated. ()4 consists of K; + 1 normal distributions with corresponding means and
variances. Each mean-variance pair is assumed to be Normal-Inverse-Chisquared (NIX)
distributed for conjugacy, with relatively non-informative yet proper hyperpriors (Gelman
2006). The prior on correlation matrix R is defined such that the marginal distribution for each

of the correlation coefficients is uniform (Barnard et al 2000). It follows that

p(Myc) < p(R) [15-1p(QalK4, Q) (Qal Ko)p(Ka),

where p(R) is the Barnard marginally uniform prior on the correlation coefficients,

p(QqlK4, Q4) is the product of NIX distributions depending on the number and location of

N-1\"
changepoints, p(Q41K,) = ( K ) ,and p(K;) = % For our empirical setting, we focus on a
d

more parsimonious nested version of the full HB-VC model in which R is set to the identity
matrix, and also estimate the B-VC model for comparison?. Alternative specifications that lie in
between the HB-VC and HB-CC models are possible where synchronization of regime changes in
subsets (e.g., pairs) of the parameter space are specified; this offers an important direction for

future research.

In equation (3), we specify the joint posterior distribution of the HB-VC and cohort-level

model parameters that we seek to estimate.

2 The B-VC model requires a more restrictive prior to avoid the boundary condition of fitting each cohort in its own
regime (since parameters are constant within a regime). Hence, we use a prior that provides an upper bound on
the number of changepoints and a lower bound on regime length, as discussed in Technical Appendix B. The HB-VC
fits each cohort with its own unique parameter vector (by design) and does not require these binding constraints.
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{aicz}r {aicy}' Bzr By' {Xict}) ' p({aicz}' {aicy}lnc) ’ P(Uc|Mvc) ) p(MVC) ’ p(ﬂz) ’ p(ﬂy)

(3)

There are four layers for estimation inherent in the above specification: (i) the
hierarchical changepoint model and its parameters, which we draw using Reversible-Jump
MCMC methods, (ii) the cohort-specific parameter vector 7., which we draw using a random-
walk Metropolis-Hastings sampler for each cohort, (iii) individual-level intercepts within each
cohort, which we draw using a partially collapsed Gibbs sampler (Park and van Dyk 2009) that
augments additional random variables for computational efficiency and better mixing, and (iv)
the common slopes for covariates, drawn using a Gibbs sampler. Technical Appendix A contains
computational details of how to implement our HB-VC model (including the full model that

entails an additional layer to estimate the correlation matrix R).
1.3 Summary of Models

A summary of the models we feature in our empirical analysis is given in Table 1. The HB-VCT
and B-VCT models allow for regime changes in cohort time as well as calendar-time effects. The
HB-VC model is equivalent to HB-VCT with calendar-time effects turned off. B-VC is a special
case of HB-VC with cohort parameters constant within regimes. HB-0 is equivalent to HB-VC
with regime changes in cohort time turned off. HB-CC allows for changepoints in cohort time
but constrains them to be the same across cohort-level parameters (i.e. a classic changepoint
model). B-PET allows for parametric cohort and calendar-time effects, and B-PE is identical to B-
PET with calendar-time effects turned off. However, B-PET and B-PE only allow for these effects
on the attrition and transaction mean propensities (see equation 1). This provides a rich set of

models to understand which model features improve performance.

All models include demographic covariates affecting attrition and transaction

propensities. While we estimate our models using common slopes for the covariates across
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cohorts, cohort-specific slopes could be identified, if for instance, individual-level marketing
variables were available that provided variation within a cohort above and beyond that driven
by parameter heterogeneity. In this case, cohort-specific slopes could be straightforwardly
incorporated into 1, and the changepoint model framework, and can be explored in future

research with data sets including such covariates.
[INSERT TABLE 1 HERE]

It is important to note that the HB-VCT and B-VCT models are able to separate regime
changes in cohort time from calendar-time effects, which capture an alternate source of non-
stationarity that affects customers in all cohorts over time. When all or a subset of newer
cohorts’ parameters are drawn from a different distribution than older cohorts, the VC models
will estimate the number and locations of these regime changes, along with the distributions
that best describe each regime. Older cohorts’ parameters do not experience changes due to a
regime shift in cohort time. These parameters (governed by a CPN/PN model) already capture
within-cohort non-stationary behavior through the absorbing attrition state and calendar-time
effects (which we capture using linear, quadratic and log-time terms similar to Khan et al.
2009). An interesting avenue for future research is to also allow for changepoints within
cohorts over time (e.g., Fader et al. 2004), but in most cases would require much longer time

series data.

What types of data characteristics would indicate the need for the VC models?
Observed aggregate cohort behaviors over time (e.g., number of transactions, recency-
frequency table) can be compared across cohorts after appropriate normalization for cohort
size. Should there be considerable variation in these patterns across cohorts, the VC models
would be the ideal approach to parse out what underlying regime changes may account for
these differences. Other models such as HB-0 do not allow for sufficient flexibility to capture
richer cross-cohort changes, and models such as B-PE suffer from out-of-sample generalization
issues due to the parametric form of cross-cohort effects. Even if aggregate patterns do not
indicate cross-cohort changes, there may be underlying regime changes due to heterogeneity

within a cohort that “cancel out” in aggregate data. Thus, visual inspection is not a sufficient
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condition to fit a simpler model. Further, the VC models are parsimonious in that changepoints
are not fit if there is insufficient signal in the data. If no changepoints are found across all
parameters, the HB-VC collapses to the HB-0 model, and the B-VC model collapses to a fully

pooled model (i.e., B-PE without parametric cross-cohort effects).

2.0 Model Identification

We now discuss identification of the cohort-level CPN/PN model with common slopes (Section
2.1), and the hierarchical vector changepoint model (Section 2.2) given our interest in
predicting the behavior of cohorts with very limited longitudinal data or a new cohort with no
observed repeat transactional data at all. We then discuss the empirical recovery of the HB-VCT

model using simulated data in Section 2.3.

2.1 Identification of CPN/PN model with common slopes

We separate the identification into two parts — first the identification of the CPN/PN model
without covariates, for which the recency-frequency (RF) table serves as sufficient statistics
(Fader, Hardie, and Shang 2010). We then discuss the identification of covariate coefficients

(which then relies upon the relationship between individual-level parameters and covariates).

T (To+1)

For a given cohort observed over T, repeat observations, J,. =T+ 1 unique

recency-frequency combinations exist. Identification is established if model parameters ., X,
have a one-to-one mapping with the probability distribution over these J. recency-frequency
patterns; in other words, Aj(uy,Zq1) = Aj(up, Z2) = 1y = o, 21 = Z,, where 4 is the

transformation mapping ., 2. to p(RF;|u., =.) and is defined as

Aj (.uc' Zc) = jp (RFj|aicz' aicy' .BZ =0, .By =0, {Xict}) ) p(aicz' aiczll’lc' ZC) ) daicz ) daicz

We first note that identification requires that /. = 5, since we have to estimate five
parameters for the CPN/PN model without covariates, which implies that T, = 3 is required. As

an illustration take T, = 1 which implies that there is only a single transaction period and thus
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the only outcomes are binary (0 or 1 repeat transactions). By turning off attrition (let the
attrition mean approach negative infinity) and transaction-rate heterogeneity (let transaction-
rate variance approach zero), we can exactly explain the data with the transaction-rate mean

alone. Adding these additional parameters leads to severe under-identification.

Suppose Aj(u1,21) = Aj(up, Z;) V j for two sets of model parameters and J. = 5. This
would then imply that the multivariate normal mixing distributions p(a;c,, @ic,|i,,Z1) and
P(@icz Xicz |1y, Z2) are identical, which is only possible if u; = p, and £; = X,. Thus, each set of
CPN/PN model parameters generates a unique probability distribution of RF patterns and a

given set of observed RF moments coincides with a unique set of model parameters.

Adding covariates means that the recency-frequency table of counts no longer serves as
sufficient statistics. Slopes for time-invariant covariates such as demographics would allow for
changes to an individual’s propensities and are identified through the covariation between
observed covariates and imputed behavior. For instance, if customers with higher incomes
were less likely to drop out, the data should reflect such patterns. Because we allow for
differential effects on transaction and attrition propensities, it is possible that controlling for
these covariates may reduce variances and correlation of the unobserved heterogeneity in

intercepts.

Identification of slopes of time-varying covariates is considerably more nuanced in the
case where these covariates do not vary across individuals in a cohort. For instance, suppose
we wish to add (as we do in HB-VCT and B-VCT) a parametric calendar time effect to capture
“common shocks” over time to all customers’ propensities in that cohort. The absence of cross-
sectional variation within a cohort makes it challenging (but not impossible) to pin down
calendar time effects compared to the (already latent) attrition propensity. The inclusion of
multiple cohorts to estimate common calendar time effects does provide variation due to
differing cohort birth times, and attrition rates and helps identify such effects. Hence, we use

common slopes across cohorts.
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We discuss empirical recovery of the CPN/PN model with common slopes (essentially
the B-PE model) using simulated data in Technical Appendix C. The results show that cross-
cohort and calendar-time effects can be teased apart in a sequence of ten cohorts (akin to our

data), along with the CPN/PN parameters.

2.2 Identification of regime changes using the changepoint model

Our VC algorithm searches (in our case probabilistically samples) over the space of possible
models ({K;, Q4,2,4}Vd) to identify the ones which best fit the data. The factors driving
identification are conceptually similar to those that can distinguish models in a likelihood ratio
test for model selection (Vuong 1989). For example, consider the null hypothesis as K = 0 (a
single regime) and what in the data would drive the selection of models where K > 0. If we
postulate two regimes, a large difference between the means of the two regimes combined
with low within-regime “noise” or variance would increase the odds of correctly rejecting the
null hypothesis, akin to classical signal-to-noise ratio (SNR) research (e.g., Box 1988; Pelli and
Farell 1999). In addition, the length of the second regime and within-regime variance can
influence whether the cohort parameter values in the new regime are interpreted as a one-off

statistical blip or a discrete shift.

We demonstrate empirical parameter recovery by simulating 10-cohort data sets in
which we manipulate the number of regimes by parameter (either 1 or 2), length of second
regime, within-regime variance (same in both regimes for convenience) and size of the mean
shift, and estimate the HB-VC parameters from the generated data. The cohort-level
parameters are held fixed for the MCMC estimation, in which we take 50,000 draws using the
R-J method discarding the first 10,000 as burn-in. Only the first parameter has a regime shift,
and the other four parameters are drawn from single regimes to contrast the recovery of true
versus possibly spurious changepoints. We then compute the average posterior probabilities

across 25 runs based on the true model parameters.

From Figures 2a and 2e, we find that the SNR (defined here as the ratio of across-regime
mean-shift to within-regime standard deviation) needs to be high enough to recover a true
changepoint. Above an SNR of roughly 4, a true changepoint is detected with high probability
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even for short new regimes. The patterns are similar for low (0.1) and high (0.75) mean shift,
indicating that SNR is the primary driver for empirical recovery. For SNRs below 3, the
probability of a true changepoint is attenuated and therefore downwardly biased. Importantly,
this conservatism helps avoid false positives when there is no changepoint. In Figures 2d and
2h, we show that for a parameter with no changepoints, the probability of a single regime is
recovered cleanly (> 90%) even for low SNRs. SNR also impacts recovery of changepoint
location — at high SNRs, a true changepoint location is practically perfectly recovered, and this

gets attenuated as SNR decreases, as shown in Figures 2c and 2g.

[INSERT FIGURE 2 HERE]

These results indicate that the model is able to pick up changes even for short new
regimes, as long as the SNR is high enough, which bodes well for “early detection” of regime

changes in actual datasets.

Finally, correctly identifying the number and locations of changepoints leads to recovery
of the normal distribution parameters in each cohort-regime, since the correct parameters will

be pooled to estimate the mean and variance of each distribution.

2.3 Empirical recovery of HB-VCT model using simulated data

Section 2.1 establishes the conditions to identify cohort-level parameters and discusses that
cohort- and calendar-time effects can be teased apart in a sequence of cohorts. Section 2.2
demonstrates that regime changes underlying a sequence of cohorts can be accurately
recovered as long as SNR is high enough, by holding the cohort-level parameters as knowns in
the analysis. In this section, our focus is to demonstrate empirical recovery of the HB-VCT

model using simulated data.

We simulate an eleven-cohort sequence with a changepoint for one of the parameters
at the seventh cohort. We then run the HB-VCT model on this data (detailed in Technical
Appendix D), holding out the final cohort and making out-of-sample transaction predictions for
each cohort (similar to our empirical setting). For cohorts included in model estimation, the HB-

VCT model computes posterior distributions for each cohort’s parameters, which are used to
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compute the posterior predictive distributions for the number of transactions. Mean Absolute
Percentage Error (MAPE) calculations were performed at each iteration of the MCMC sampler
and averaged across iterations to yield model performance measures for each cohort. Note that
the posterior distribution for the held-out cohort is identical to the hierarchical prior

distribution since its data are not used in model estimation.

As we show in Technical Appendix D, the HB-VCT model recovers the parameters of
older and newer cohorts while separating out calendar-time effects, and has accurate in-sample

and out-of-sample predictions for all cohorts, including the held-out eleventh cohort.

3.0 Empirical Analysis

In this section, we describe our data set (Section 3.1), discuss the criteria used for model

convergence and fit assessment (Section 3.2) and present the results (Section 3.3).
3.1 Dataset

The dataset consists of donation records of individual donors from a U.S. non-profit public
television broadcaster. This organization regularly runs television campaigns in which a special
show is broadcast (e.g., Andrea Bocelli’s Love in Portofino), which contains many breaks for the
station to request donations that can yield a souvenir item related to the show. These
campaigns support a significant portion of the operating budget, in contrast to competing cable

channels that do not solicit for funds to operate the channel in the same way.

In addition, we were able to obtain donor zip code data that we were able to match
with 1990 and 2000 census data to define distance from the organization’s headquarters,
median household income and household size as potentially relevant covariates. We track the
longitudinal giving history of donors who made their first donation between Jan 1, 1990 and
Dec 31, 2000, where the history is available from the time of acquisition through Dec 31, 2006.
Due to the annual cycle of fundraising programs, we divide donors into a sequence of 11 yearly

cohorts from 1990 through 2000. Each individual within a cohort is then observed for T, =
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(2006 — YearAcquired) repeat observations, where each observation is annual donation
incidence. We define a donor to have given if they made at least one donation in a calendar
year. Since this is a non-contractual setting, we do not observe a donor’s decision to churn, and
only have access to transactional patterns. We randomly sampled 33% of the donors in each
cohort for estimation, yielding a total of 56,423 donors across all cohorts. The breakdown of

their cohort membership is given in Table 2.
[INSERT TABLE 2 HERE]

For the remainder of this analysis, we focus on the observed data at the end of year
2002, at which point the final (year 2000) cohort would have had just two repeat transaction
opportunities. This presents identification challenges as discussed in Section 2 and severe
forecasting challenges for Anita, the hypothetical sales manager described in the Introduction.
In Figure 3, we show the percentage of active donors (those who gave in a given year) by cohort
(normalized by cohort size for ease of comparison) up through 2002 which indicates the
differing amounts of longitudinal data available for each cohort and the differing drop-offs in
active donors across cohorts. For instance, less than 16% of the original cohort is still active for
all but the 2000 cohort. As discussed in Section 2.1, variation in cohort birth times enables the

identification of any possible calendar-time effects.
[INSERT FIGURE 3 HERE]

In Figure 4, we provide a different view of the same information, comparing cohorts
since their year of acquisition, which more clearly highlights cross-cohort differences. Newer
cohorts appear to have a steeper fall-off in donation incidence as compared to older cohorts.
Using the classification tree approach of Schwartz et al. (2014), the BG/BB model (which we
extend to include covariates in the CPN/PN model) best fits the characteristics of each cohort’s
data as compared to other options such as Hidden Markov Models suggesting forward
transitions to a non-giving (“death”) state without periods of returning activity. One aspect of
the cohort transaction curves, however, is worth noting as unusual — for many cohorts, the
number of transactions in the most recent time period (2002) is flat or even slightly higher than
the previous time period (2001). Latent attrition models such as CPN/PN or BG/BB would not fit
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this particular pattern because the number of active donors within a cohort must necessarily
decrease over time. We point this feature out because of the implications if an analyst used
data up to 2001 to forecast future time periods of existing and new cohorts — i.e., any latent
attrition model will under forecast the actual transaction activity as it would never predict a flat
or slight increase in this measure. We study the effect this would have on model estimation as a

robustness check in Section 3.3.2.

[INSERT FIGURE 4 HERE]

Whether the overall patterns in Figure 4 can be attributed to multiple cohort regimes, a
single regime with “noise,” or a deterministic trend (e.g., a calendar-time effect) is unclear from
visual observation. Our data set spans a duration in which the Telecommunications Act of 1996
was passed, which increased access to a larger number of television channels for consumers,
thereby potentially affecting donation behavior to the public television broadcaster. In addition,
prime time household ratings for public television (percentage of US households viewing) fell
from 2.3% in 1990 to 1.4% in 2006, a drop of 39%3. It is therefore of particular interest to
understand in what ways cohort behaviors may have changed, both from cohort to cohort as

well as over the passage of calendar time for all cohorts.

3.2 Criteria for assessing model convergence and fit

We assess model convergence for the changepoint model using the non-parametric chi-squared
test (Brooks, Giudici and Philippe 2003) based on the counts of number of changepoints (K) and
changepoint locations (Q) from two over-dispersed MCMC chains. The null hypothesis is that
both chains’ counts come from the same underlying distribution, and a lack of evidence to

reject the null is taken as the metric for showing convergence (i.e., p-value > 0.05).

3 Source: http://tvbythenumbers.zap2it.com/2010/04/12/where-did-the-primetime-broadcast-tv-audience-
go/47976/
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We assess the convergence of cohort-level parameters (for all models) using the
Gelman-Rubin test statistic (Gelman et al 2004). The draws from two over-dispersed chains are

used to compute this statistic, and values less than 1.1 were used to reflect convergence.

As noted by Shirley et al (2010), model selection criteria such as DIC are well known to
be problematic for complicated hierarchical models and we therefore compare the
performance of the five models described in Table 1 using in-sample and out-of-sample MAPE.
We compute MAPE by first drawing individual-level binary transaction patterns over time for
each iteration. These are then aggregated to the cohort level to obtain the number of cohort
transactions over time for a given iteration. MAPE is then calculated iteration by iteration for
each cohort* and we report the average MAPE across iterations in accordance with prior
literature (e.g., Netzer et al. 2008; Ascarza and Hardie 2013). For each cohort, we use in-sample
MAPE as a “sanity check” for model fit but rely on holdout MAPE (for years 2003 — 2006) to
gauge each model’s predictive validity. In particular, we hold out the 2000 cohort from
estimation and use years 2003 — 2006 to compare the forecasts arising from the VC models and
benchmarks. Should there be evidence for changepoints, we expect the VC models to

outperform the benchmarks in terms of increased accuracy for the held-out 2000 cohort.

In addition, we also conduct a “rolling time window” analysis, which is especially
relevant for a multi-cohort data set. This analysis starts with the minimum number of cohorts
and time observations to identify all models, and holds out the next cohort at that point in
time. For example, let us assume we have data up till year 1995. The 1992 cohort will have
three repeat observations, which makes it the latest cohort that can be used in model
estimation (see Section 2.1 for why this is necessary for identification). We then compute MAPE
using a four-period-ahead forecast for the 1993 cohort as a holdout cohort. The rolling time
window arises from repeating this analysis by adding one more cohort and time period
incrementally. This analysis allows the researcher to examine model performance under limited

number of cohorts and time observations, and to study the effects of any data outliers on

4 For a given MCMC iteration and cohort ¢, the MAPE is the average percentage error between the aggregated
actual and predicted time series.
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model performance. Given some of the data features in Figure 4, this analysis can help shed

light on “what would happen” if the data set ended at 2001, instead of 2002, for example.

3.3 Results

We obtain posterior inferences using 1,000 draws obtained from the MCMC procedure outlined
in Technical Appendix A by running each model for 400,000 iterations, treating the first 200,000
iterations as burn-in and thinning every 200 iterations to reduce autocorrelation in cohort

parameter draws. The models’ parameters converge per the tests outlined in Section 3.2.

3.3.1 Model comparison (when 1990 through 1999 cohorts are included in the data set up till
time period 2002, holding out the 2000 cohort)

In Table 3, we report the in-sample MAPEs for each cohort and model. The HB models generally
fit better than the non-HB models in-sample since they allow for a more flexible cohort-level
model. In other words, the B-PE model allows cohorts to be different based on a parametric
functional form while the HB models balance the cohort-level likelihood with the hierarchical
prior. However, between the HB models, there is little difference in the model fit. All of these
HB models seemingly provide sufficient flexibility in capturing in-sample data patterns for this
data set. The B-VC model, as it does not allow for heterogeneity in cohort parameters within a

regime, features higher in-sample MAPE than the HB models.
[INSERT TABLES 3 AND 4 HERE]

In Table 4, we compare out-of-sample MAPEs to understand how well each model
generalizes for the 1990 through 1999 cohorts, and importantly for the held out 2000 cohort
whose prediction depends critically on the hierarchical assumptions of how cohorts “share”
information under each model. We find that the B-PE model has higher error for the 1998 and
1999 cohorts than HB-0. This arises from the parametric cross-cohort specification in B-PE while
HB-0 is able to allow for more flexibility in the parameters for these cohorts. Interestingly, HB-
CC and HB-0 have similar performance as HB-CC finds little evidence for a changepoint (thus
more or less collapsing to HB-0). As the specification of hierarchical priors (and

hyperparameters) differs between these models, the results indicate convergent validity via

23



robustness to the specifications. For the held out 2000 cohort, however, B-PE, HB-0, and HB-CC
all deliver high error. Under the B-PE, the 2000 cohort’s parameters are obtained by
extrapolating the flexible cross-cohort parametric form. Under HB-0O/HB-CC, the hierarchical
prior reflects a common distribution all cohorts are assumed to be drawn from. Both

assumptions lead to poor predictions for the 2000 cohort.

The HB-VC model improves upon the prediction of the 2000 cohort (MAPE of 22.6%
versus 38 to 40% for the B-PE, HB-0 and HB-CC models), as it finds evidence for a changepoint
at the 1996 cohort, thus changing the hierarchical prior that the 2000 cohort is assumed to be
drawn from. In other words, this model suggests that cohorts acquired in 1996 and later are
behaviorally different from pre-1996 cohorts, and thus the 2000 cohort is better estimated by
reducing the influence of those older cohorts on its hierarchical prior. It should not be
surprising, however, that the 1990 through 1999 cohorts’ predictions are similar in error
magnitude to the HB-O model since cohort-level parameter estimates are much more
influenced by the likelihood function for these cohorts (due to increased number of time
points) than the hierarchical prior. The B-VC model also improves predictive performance for
the 2000 cohort but has poorer performance than HB-VC for most in-sample cohorts due to its
lack of within-regime heterogeneity. The inclusion of a calendar-time effect (HB-VCT) improves
performance for the newer cohorts (1997 through 2000) relative to HB-VC. HB-VCT combines
the benefits of regime changes across cohorts and time effects and is the “winning model”
based on 2000 cohort performance. The B-VCT model in which cohort parameters are constant
within a regime (as opposed to drawn from a hierarchical prior like HB-VCT) is the “next best”
model in terms of the 2000 cohort’s performance. However, its poorer performance for several
of the other relatively new cohorts is again due to its lack of cohort-level flexibility. B-PET does
not improve performance substantially over B-PE as both model cross-cohort patterns only for
the attrition and transaction mean propensities, and therefore misses potential changes in

other CPN/PN parameters.

Overall, the HB-VCT model provides the most general description of cohorts of

customers over time, and the results demonstrate its efficacy, particularly for the newer
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cohorts in a sequence. If the analyst is focused only on holdout cohort performance and wishes
to run a non-HB model, the B-VCT model offers a reasonable alternative to the HB-VCT. As a
robustness check, we estimated the HB-VCT model holding out both 1999 and 2000 cohorts
(while using data up to year 2002 for the 1990 through 1998 cohorts) and obtain out-of-sample
MAPEs of 19.0% and 12.9% for the 1999 and 2000 cohorts, while the MAPEs of other cohorts
remain virtually unchanged. Across the suite of models, HB-VCT and B-VCT remain as the best
performing models for both held out cohorts. Given that data from the 1999 and 2000 cohorts
are completely held out from model estimation, these prediction errors suggest the robustness
of the changepoint model structure uncovered from the cohort sequence. We examine the

estimates from the HB-VCT model in Section 3.3.3.

3.3.2 Rolling time window analysis

As discussed in Section 3.2, it is helpful to study HB-VCT model performance under a subset of
the full data set used in Section 3.3.1 — which we term rolling time window analysis. We start by
assuming we have data up till year 1995 and include the 1990 through 1992 cohorts for model
estimation. We then add one more year of data and one more cohort until we reach the full
data set (which simply returns us to the analysis in Section 3.3.1). In Table 5, we present the
out-of-sample MAPEs (always over a four-year predictive horizon) for each cohort (including

the held out one).

[INSERT TABLE 5 HERE]

The bottom row of Table 5 describes the results including the first three cohorts and
forecasting the fourth cohort. We find that forecasts are reasonable considering the limited
amount of data used both in number of cohorts and time observations. The forecasts continue
to be reasonable (and slightly improve) with the addition of successive time observations and
cohorts until the 1998 and 1999 time points when the held out cohort’s forecast gets worse.
This finding is consistent with a changepoint that causes post-changepoint cohorts to be
different from previous ones. At the 1998 and 1999 time points, there is insufficient statistical
evidence for regime change and the model therefore considers all cohorts to be in the same
regime (i.e., probability of a changepoint is practically zero) — which is statistically the
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appropriate inference (as discussed in Section 2.2) — but therefore does not accurately capture

the future evolution of the held out cohort.

When the 2001 time point is the last observation used, the probability of a changepoint
at the 1996 cohort does increase. However, the MAPEs for all cohorts are substantially worse
than other windows. The reason for this surprising uptick in MAPE is related to the data
features discussed in Section 3.1 as relating to Figure 4. With several cohorts exhibiting an
uptick in the number of transactions after 2001, the model estimated on data up to 2001
underforecasts future transactions since latent attrition models do not allow for “dead”
customers to return — and are especially sensitive to the last period of transactions for inferring
customer “death”. Our initial analysis (which used data up till the 2001 point) yielded this
pattern of MAPEs, which enabled us to find this data outlier by adding the 2002 time point to
the cohorts (which is the full data set used in Section 3.3.1). As can be seen from the first row of
Table 5 (which is identical to the HB-VCT row of Table 4), MAPEs are significantly improved for
all cohorts while a high probability of a changepoint is inferred at the 1996 cohort (as we detail
in Section 3.3.3).

The main lesson to draw from this analysis is that the rolling time window approach can
be useful in multi-cohort data sets to parse out any unusual data patterns that may preclude

accurate forecasts, especially those that occur at the end of a time series.
3.3.3 Model estimates

The HB-VCT model estimates a 73% probability of at least one changepoint for the correlation
between attrition and transaction propensities, with the modal location being the 1996 cohort
(see Figure 5). The pre-1996 cohorts have a negative correlation (regime prior mean of -0.20)
between attrition and transaction propensities, meaning that a customer in these cohorts who
has a low probability of “death” also has a high probability of transacting while “alive”.
Conversely, this also indicates the double whammy of attrition-prone customers who are also
less likely to transact. The post-changepoint cohorts essentially have negligible correlation
(regime prior mean of 0.01) between attrition and transaction propensities and contain
relatively “less polarized” customers within the cohort. The other parameters do not exhibit
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strong evidence for a changepoint in the cohort sequence. Figure 5c shows the prior and
posterior means for each cohort parameter. The prior mean (dotted line) for the correlation
between attrition and transaction propensities, consistent with the estimated changepoint,
shows a shift at the 1996 cohort. The posterior mean for each cohort parameter incorporates
information from the cohort-level likelihood function and can therefore deviate from the prior

mean due to cohort heterogeneity.
[INSERT FIGURE 5 HERE]

We find that demographic covariate effects are directionally intuitive for the most part
(see Table 6). Attrition propensity decreases with income - indicating that wealthier
households are less likely to end their relationship with the organization. Transaction
propensity decreases with household size and increases with income — indicating that smaller
and wealthier households are also more likely to donate. Attrition propensity increases with
distance (which is directionally intuitive) as does transaction propensity (which is slightly
counter-intuitive, but may be indicative of a non-linear relationship). Importantly, the effect
sizes for these demographic covariates are small, such that the other model parameters (and

posterior predictive distributions) would be practically unchanged by their exclusion.
[INSERT TABLE 6 HERE]

From Table 6, we find that calendar-time effects are statistically significant for both the
attrition and transaction propensities. In Figure 6, we show the net trend implied over time for
each parameter. The attrition propensity trend increases with time and has a larger effect size
than the transaction propensity trend, which exhibits less variation over time. The calendar-
time effects suggest that customers from any cohort (old or new) are more likely to experience

attrition over time above and beyond that predicted by the CPN/PN model.
[INSERT FIGURE 6 HERE]

Our empirical findings suggest two different types of effects observed in the data. First,
the 1996 changepoint in the correlation between attrition and transaction propensities points

to a change in the mix of donors obtained from 1996 onwards. In older cohorts, donors on
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average seem more “polarized” — they are more likely to be long lifetime and frequent donors
(both positively affecting CLV) or short lifetime infrequent donors. In newer cohorts, there is
less evidence for such donors, with attrition and transaction behaviors largely uncorrelated.
Second, attrition propensity increases over time for all cohorts. These findings highlight that
changes in the regulatory landscape (1996 Telecommunications Act) and substitution from
public television programming to specialized cable channels likely had an effect on the mix of
acquired donors and the declining likelihood of being “alive” as donors over calendar time. An
interesting area for future research is to study the mechanisms by which viewership of public

television programs affect donation behaviors.

In summary, the suite of models we used to fit the multi-cohort donor data has yielded
the HB-VCT as offering best out-of-sample performance for the 2000 cohort, as well as most
other newer cohorts. As the HB-VCT is the most general model in our lineup, this suggests that
having the flexibility to separate cross-cohort regime changes by parameter along with account

for calendar-time effects offers promise as a method for future multi-cohort analyses.

4.0 Discussion and Future Work

4.1 Discussion

The comparison of the vector changepoint models with the benchmarks shows that utilizing our
approach yields new insights about the regime structure across cohorts that were not
previously accessible. In addition, the regime structure plays a significant role in enhancing the
predictive accuracy of the new 2000 cohort’s behavior in holdout data and our model helps
tease apart data patterns driven by a cross-cohort changepoint versus a common calendar-time
effect. Our findings suggest that simply using older cohorts as a proxy for predicting new
cohorts without understanding any potential regime changes may lead to inaccurate

predictions.

Returning to the managerial questions posed at the beginning of this paper, Bob the
data analyst is now able to draw parallels from the non-profit dataset to his own context. Using

the vector changepoint models, he is able to determine which cohorts would be relevant peers
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for the new cohorts that Anita, the sales manager is interested in. He realizes that pooling data
from all cohorts would likely decrease the accuracy of his predictions as older cohorts may be
part of a different regime as compared to the newest cohorts. Thus, decision making based on
heuristics of what is relevant can be augmented with data-driven evidence of regime change.
Further, Bob is able to use the VC models to yield robust predictions of cohorts’ future

behaviors and tease apart calendar time effects as well.

Anita has also learned that she can examine the parameters that have shifted at
changepoint locations to better understand the intuition of what cohort-level behavior is
responsible for the shift. She may be able to confirm Colleen’s intuition by analyzing what
aspect of newer cohorts may have undergone a significant shift since the new competitor’s
entry, which she was previously unable to quantify. The bulk of holdout transactions (2003 —
2006) for each cohort are contributed by donors with high in-sample recency. While this
validates the attrition process inherent in a BTYD model, there may not be much Anita can do
to bring back the customers who have already ended their relationship with the firm. Instead,
she should focus her retention efforts on customers in newer cohorts, who may still be
persuaded to remain active for a longer period of time through judicious use of targeted
marketing communications and inducements (e.g., Khan et al. 2009). In addition, the
acquisition strategy for new cohorts may need updating — if existing strategies are ineffective in
bringing in the desired portfolio of customers (e.g., Lewis 2006), new acquisition channels (e.g.,
mobile advertising) and incentives such as referral programs (e.g., Schmitt et al 2011) may be

needed to attract better prospects.

Forecasts based on older cohorts’ behavior, in the case of the non-profit dataset, would
lead management to forecast less accurate donation figures as well. Management of startup
companies whose valuations rely upon customer acquisition may portray a distorted view of
future growth if they project new cohorts to behave like the “average” of all previous cohorts.
This can have ramifications for allocating marketing budgets and in reporting projections to

stakeholders. Supposing that Anita’s firm (from our example) uses projected transactions to
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provide guidance to investors, large inaccuracies can hurt credibility and valuation in the

longer-run.

Further, managers may discover signs of saturation in the market they are targeting,
perhaps due to “over-fishing;” successive new cohorts may be less attractive than older ones in
which the better prospects may already be captured. Such cross-cohort shifts can be easily
missed when conducting analysis at the aggregate level, such as tracking overall revenue across
the entire customer base and our approach is a means to avoiding aggregation bias in multi-

cohort settings.

For researchers, these findings suggest that investigating cross-cohort patterns can be a
powerful tool when dealing with a dataset that has a multi-cohort structure. The vector
changepoint models allow for more flexible and robust cross-cohort patterns than a model with
parametric effects, can provide greater power to uncover parameter-specific regime changes
than the classical changepoint model, and adds a low computational burden as compared to a
no-changepoint Hierarchical Bayesian model. Our findings suggest that our most general vector
changepoint model with a hierarchical Bayesian structure can be a good starting point for multi-
cohort datasets given its ability to tease apart cross-cohort regime changes, cohort
heterogeneity, and global calendar-time effects. In addition, the “family tree” of simpler models
that can be obtained by turning off features of our most general model is also available for
researchers looking only for a subset of modeling features. For example, a researcher who has
strong reasons to believe there are no cross-cohort effects, could use the no-changepoint
Hierarchical Bayesian model and also allow for calendar-time effects, which is a model that was

not in our set of benchmarks, but nevertheless may be useful in other research settings.

Our robustness checks reveal a cautionary note in using the most general changepoint
model we propose along with calendar-time effects. In the presence of data outliers at the last
observed time period, we show in our data setting that the model can lead to higher prediction
errors than may be expected. It is difficult to provide general guidance on detection of such
data outliers as much of the issue can be dependent on what the cohort-level behavior being

modeled is. However, we recommend the rolling time window analysis as one method to
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detect if any given time end point leads to abnormally high prediction errors (relative to cutting
off the data at other time points). This is not entirely different (conceptually) than the results
of Van den Bulte and Lilien (1997) who show that the Bass model is highly sensitive to the

observed diffusion in the last (few) data points of a time series.

More broadly, our approach provides a general framework for the model selection
problem, which frequently arises in marketing. Instead of running thousands of possible models
to determine the “best fitting one,” our approach leverages Bayesian methods to deliver
inferences that incorporate uncertainty in the model in a single framework. Other contexts in
which there exist multiple models with varying number of parameters which could describe the
data, could benefit from the broad steps we have presented in defining a Reversible-Jump
MCMC algorithm that can traverse the model space efficiently and avoid the Davies problem

(Davies 1987; Hansen 1996) that arises in classical hypothesis testing.

4.2 Future Work

We discuss fruitful directions in which this work can be enhanced. First, it is possible that
cohorts are not necessarily related to each other in contiguous temporal blocks. Returning to
the idea of a more general model of relationships amongst cohorts (e.g., Hui and Bradlow
2012), the model could allow for cohorts exhibiting similar behaviors to be grouped together,
akin to a latent class model, even if this breaks the temporal sequencing. This may be
interesting if new cohorts follow a cyclical pattern of resembling earlier cohorts (perhaps due to
economic cycles), or if the segmentation is not based on period of acquisition. A more general
segmentation of customers may not have a cohort sequence structure but there can still be
underlying patterns which can be uncovered. Extending the vector changepoint framework to
Bayesian clustering methods (Francois et al 2006; Green and Richardson 2002) while addressing
the explosive increase in the number of possible groupings would enable such data structures

to be appropriately modeled.

Second, the power of this modeling approach can be further exploited by richer models
of customer behavior, which can allow for a range of behaviors such as timing, choice, and

monetary amounts. A hybrid of the vector and classical changepoint models can then be used
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to appropriately partition the priors on the full parameter space. We suggest that further work
in exploring alternative specifications lying in the spectrum between vector and classical

changepoint models can help uncover when each type of model is best suited for analysis.

Third, a limitation of our modeling approach is the assumption that a changepoint at a
given cohort does not affect the behavioral parameters of preceding ones. That is, while we
explored changepoints across acquired cohorts, there may well be changepoints that occur in
time that also differ across cohorts. This is an avenue for further research by integrating cross-

cohort and time- changepoints into a single model.

Fourth, marketing covariates could be incorporated at the individual level, if available,
to better understand the effect of targeted marketing on attrition and transaction behaviors. In
particular, our model presents statistical evidence for regime changes that can enable this non-
profit organization to optimize their cohort-management strategies. An interesting area for
future research would be to introduce time-varying marketing covariates (our model is general
enough to accommodate these, but the data do not contain them) to help organizations

understand the effectiveness of their implemented cohort-management strategies.

Cohort-specific slopes capturing response propensity can be added to the parameter
space of the vector changepoint model to further generalize the model. Given that these
marketing variables may be endogenously set with the customers’ expected responses in mind,
an appropriate model of firm-side decision making (e.g., Schweidel and Knox 2013) would need

to be integrated with the vector changepoint model.

Fifth, it is possible that cross-cohort changepoints may occur at future cohorts not
currently in the data set. Our model estimates changepoints based on patterns in cohorts
included for estimation. Future work can investigate predicting the timing of future

changepoints by incorporating an additional hierarchical layer above the changepoint model.

Sixth, a study of the mechanisms by which consumers of public television broadcasters
across the U.S. may have changed as a function of the shifting television programming

landscape is a substantive topic for exploration. As some of these changes are likely exogenous
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from the viewpoint of donation and viewership behavior (1996 Telecommunications Act), and
there may be regression discontinuities in the rates of change of local television markets (c.f.
Hartmann et al. 2011), there is potential for causal inferences to be drawn about changes in

consumer behavior.

The perils of pooling data without accounting for cross-cohort shifts have been
highlighted in this work. We hope our findings encourage further research in uncovering new
structural patterns in customer databases that help managers make the most effective use of

their data.
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Table 1: Summary of models

Model

Description

Single fully pooled model
(B-PE)

Only one CPN/PN parameter vector across all cohorts (1g)
plus a parametric cross-cohort effect using linear,
guadratic and log components.

HB no-changepoint
(HB-0)

All cohorts pool under a single regime but
each cohort i has its own parameter vector 1;

HB classical changepoint
(HB-CC)

All parameters share the same regime configuration and
each cohort i has its own parameter vector n);.

HB vector changepoint
(HB-VC)

Each parameter has its own regime configuration and
each cohort i has its own parameter vector 1

Vector changepoint without
HB (B-VC)

A special case of HB-VC where cohort parameters are
constant within a regime.

Single fully pooled model
with calendar-time effects
(B-PET)

Only one CPN/PN parameter vector across all cohorts (Kg)
plus parametric cross-cohort and time effects using linear,
guadratic and log components.

Vector changepoint without
HB and with calendar-time
effects

(B-VCT)

Each parameter has its own regime configuration and
each cohort’s parameter vector n; is a function of the
regime configuration plus time effects using linear,
guadratic and log components.

HB vector changepoint
(HB-VCT)

Each parameter has its own regime configuration and
each cohort i has its own parameter vector 1), plus time
effects using linear, quadratic and log components.
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Table 2: Number of initial donors by cohort (after sampling 33% of cohort)

Cohort 1990 1991 1992 1993 1994 1995 1996 1997 1998 | 1999 2000
Donors | 5,085 6,467 5,851 7,494 5,223 5,379 5,989 4,364 2,876 | 4,357 3,338
Table 3: In-sample MAPE by cohort for each model

Model 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
B-PE 4.3% 4.1% 4.7% 7.3% 3.3% 7.0% 6.4% 6.7% 6.8% 4.6%
HB-0 4.5% 3.3% 4.2% 3.5% 3.8% 4.7% 5.6% 5.6% 6.3% 4.4%
HB-CC 4.5% 3.4% 4.2% 3.4% 3.8% 4.7% 5.7% 5.5% 6.4% 4.4%
B-VC 7.6% 9.3% 7.8% 6.9% 13.2% | 12.1% | 6.8% 18.0% | 24.9% | 33.9%
HB-VC 4.5% 3.4% 4.3% 3.5% 3.7% 4.7% 5.7% 5.6% 6.5% 4.5%
B-PET 4.5% 4.5% 4.8% 7.3% 3.4% 7.0% 6.4% 6.5% 6.6% 4.4%
B-VCT 7.4% 3.6% 4.9% 5.4% 4.3% 7.7% 6.3% 5.4% 6.6% 14.9%
HB-VCT | 4.6% 3.8% 4.3% 3.4% 3.7% 4.6% 5.4% 5.5% 6.5% 4.4%

Table 4: Out-of-sample MAPE by cohort for the 2003-2006 time period for each model. The
2000 cohort (last column) is shaded to denote that its data are entirely held out from model

estimation.
Model 1990 | 1991 | 1992 | 1993 | 1994 | 1995 1996 | 1997 | 1998 | 1999 | 2000
(Heldout)

B-PE 7.0% 11.0% | 9.8% 5.1% | 10.4% | 14.5% | 9.8% 10.2% | 23.5% | 21.2% | 39.8%
HB-0 9.2% 9.5% 7.5% 6.8% | 10.4% | 11.6% | 8.7% 12.2% | 19.1% | 15.4% | 38.1%
HB-CC 9.2% 9.5% 7.6% 6.8% | 10.5% | 11.5% | 9.1% 11.9% | 18.1% | 14.5% | 39.2%
B-VC 11.6% | 15.6% | 10.4% | 9.9% | 20.5% | 15.9% | 6.8% 16.7% | 15.0% | 22.5% | 25.4%
HB-VC 8.7% 9.1% 7.6% 7.0% | 10.6% | 12.2% | 9.0% 12.7% | 19.7% | 15.4% | 22.6%
B-PET 11.0% | 14.4% | 11.5% | 4.6% | 11.4% | 15.6% | 10.4% | 10.5% | 23.3% | 20.5% | 39.2%
B-VCT 8.5% 17.3% | 15.6% | 5.4% | 12.8% | 13.7% | 17.7% | 11.7% | 17.0% | 7.1% 17.2%
HB-VCT | 9.3% 9.3% | 8.2% 7.3% | 10.2% | 12.4% | 8.8% 11.3% | 16.5% | 12.9% | 15.2%
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Table 5: HB-VCT four-period-ahead out-of-sample MAPE using a rolling validation time
window. Grayed cells refer to cohorts that were used for model estimation and cells in yellow
refer to the heldout cohort. Note that the results for last time period of 2002 exactly
corresponds to the HB-VCT results in Table 4 and is replicated for ease of comparison.

Out-of-sample MAPE by cohort

Lasttime  Last cohort Holdout

period used periods
2002 1999 2003-2006
2001 1998 2002-2005
2000 1997 2001-2004
1999 1996 2000-2003
1998 1995 1999-2002
1997 1994 1998-2001
1996 1993 1997-2000
1995 1992 1996-1999

20 91 92 93 94
9.3% 9.3% 8.2% 7.3% 10.2%
33.6% 34.7% 35.0% 34.9% 32.5%
17.8% 18.8% 16.6% 19.1% 17.7%
10.3% 10.2% 10.4% 10.3% 8.9%
12.6% 12.3% 13.9% 16.8% 15.4%
13.6% 11.2% 11.6% 12.1% 13.6%
13.2% 14.1% 17.4% 18.2% 22.5%
13.2% 12.8% 13.1% 22.6%

Table 6: HB-VCT model slope parameter estimates

95
12.4%
35.6%
22.0%
10.6%
13.4%
22.3%

Parameter Posterior mean (standard error)
Attrition: linear time -0.34 (0.71)
Attrition: quadratic time 0.03 (0.03)
Attrition: log time 4.71 (2.06)
Trans: linear time -1.58 (0.27)
Trans: quadratic time 0.07 (0.01)
Trans: log time 4.45 (0.69)
Attrition: In(distance+1) 0.09 (0.01)
Attrition: HH Size 0.01(0.01)
Attrition: In(HHIncome+1) | -0.22 (0.02)
Trans: In(distance+1) 0.06 (0.01)
Trans: HH Size -0.04 (0.01)
Trans: In(HHIncome+1) 0.18 (0.02)

96
8.8%
37.3%
23.8%
12.2%
21.8%

97
11.3%
39.5%
24.4%
24.7%

98
16.5%
42.3%
26.2%

99 00
12.9% 15.2%
31.1%
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Figure 1: Example of priors from the vector changepoint model. No two cohorts need have

the same multivariate prior unless their parameter-specific block memberships are identical.
Cohorts 1 through 5 have identical priors but the prior for Cohort 6 differs from the first five
cohorts due to the changepoint in parameter 1.
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Figure 2: Identification of HB-VC model using a simulated sequence of 10 cohorts (SNR = ratio

of across-regime mean shift to within-regime standard deviation). A true changepoint is

detected with high probability when SNR is large enough as shown in Fig 2a. The algorithm is

conservative and prefers a false negative at low SNRs (Fig 2b) to ensure a low probability of
false positives (Fig 2d). This also holds for changepoint location, and for various lengths of a
new regime (Fig 2e to 2h). The magnitudes of low and high mean shifts are 0.1 and 0.75

respectively.
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Figure 3: Percentage of active donors for each cohort in calendar time. Since cohorts are
acquired at different points in time, this helps identify any calendar-time effects.
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Figure 5: HB-VCT model estimates: (a) There is a 73% probability of a changepoint in the
attrition-transaction correlation parameter (with most of this mass at K = 1 changepoint); (b)
The most probable location of this changepoint is the 1996 cohort; (c) The HB-VCT prior mean
for each cohort is shown in dotted lines to demonstrate the mutual consistency of Kand Q
with priors. The posterior cohort parameters are also shown in Figure 5c (solid lines).
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Online Technical Appendix

accompanying

A Cross-Cohort Changepoint Model for Customer-Base Analysis
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Technical Appendix A — MCMC Implementation

Sampling cohort-specific parameters

We use a partially collapsed Gibbs sampler to efficiently obtain draws of cohort-specific
parameters. As an illustration, suppose we look to sample from the following joint posterior
distribution for a single cohort p(n., {aic;}, {aicy}, {Lich Yie b {AZi Yo, Xe, Bz, By, My ), where
Y;. is a vector of augmented random variables {Y;;;} such that y;., = I[(Y;z; = 0) and Z, is a
vector of augmented random variables {Z.;} such that z;., = I(Z;,; = 0). Y;; and Z;, enable
Gibbs sampling by simplifying the full conditional distributions. Y, is a matrix of transaction
incidences for customers in cohort ¢ over T, periods and X, contains (possibly) time-varying
covariates for each customer and time period. Our sampler is partially collapsed (Park and van
Dyk 2009) in that we marginalize and trim step 1 to speed up convergence and reduce

computation.

1. Draw Lic~p(Lic|@icz @icys Bz By, Yis Xic), from a multinomial distribution with support
{rec;, ....T.} whose probabilities are computed for each latent lifetime included in the
support — note the importance of conditioning on recency which acts as a lower bound

on lifetime.

* * 1 * *
2. Draw each Zict~p(Zict|Lic' Aicz, ﬁz; Xict) X €xp (_ E (Zict — Qjcz — Xictlgz)z) [I(Zict <

0,t<Li)+I1(Z,=0,t>L )Vt €{l,..L.+1}

* * 1 * 2 *
3. Draw each Yict"'p(yict Licr Hicy, Yi; ﬁy; Xict) X exp(— E (Yict — Qjcy — Xictﬁy) )[I(Yict =<

0,Yi: = 0) + I(YiZt =0,Yie = 1)] Vit € {11 ---Lic}

* min(Lj.+1,T,) 1, %
4. Draw each aicz~p(aicz|Zicr Lic' aicy' Beric' nc) x Ht:l exXp\— E (Zict — Uiz —

Xictﬁz)z) ’ N(aiczlaicy: nc)

* Lic 1
5. Draw each Aicy~P (aicy |Yic' Lic’ Aicz, .By' Xicr nc)) x [ t=min(1,L;c) €xp (_ 2 (Yict -

2 .
Aicy — Xictﬁy) )]I(LLC>O) : N(aicylaicz’ nc)
6. Draw n.~p(m:{aicz} {aicy}, My), which is a random-walk Metropolis-Hastings step,

whose jump size we tune during burn-in to optimize the acceptance rate

50



Steps 1 through 6 are repeated for each of the 10 cohorts used for model estimation, and
are parallelized for efficiency. Parallelization requires a multi-threaded environment for which
we used Amazon Web Services (AWS) elastic cloud computing resources. Steps 2 and 3 are
especially computationally intensive and benefit from a 10-fold speed increase due to
parallelization. We implemented this using the R library “parallel”, which allows the dynamic
creation and allocation of tasks to worker processes spawned as new threads. In this case, the
task is to compute steps 1 through 6 for any given iteration. When all cohorts’ parameters are
drawn, the algorithm continues on to sample the hierarchical model and common slope

parameters.
Sampling common slope parameters

Given that we store all augmented variables from each cohort’s draws in steps 1 through 6, it is
a straightforward Bayesian regression step to obtain the slopes. We use a diffuse Multivariate

Normal prior centered at zero for all coefficients.

7. Draw B,~p(B {aicz}, {Lic}, {Z;.}, X;), which is a Bayesian regression update step.
8. Draw ,8y~p(,8y|{aicy}, {L;:},{Y;i}, X)), which is a Bayesian regression update step.

Sampling hierarchical changepoint model parameters

We use a Reversible-Jump sampler for each parameter dimension (see Technical Appendix B for

a brief overview). T, = 0.5, 7, = 0.5 are set to allow for reasonably efficient R-J proposals.

9. For each parameter dimension d,

Draw new model (K’,Q’,Q)') based on current model (K, Q, ) and {n.4Vc}

a. f0O<K <N —1,K =Kwith prob 7y and K’ =K+1, or K’ = K-1 with prob 1;& each
Else if K = 0, K" = K with prob 75 and K’ = K+1 with prob 1 — 7,
Else K’ = K with prob 7, and K’ = K-1 with prob 1 — 7,

b. IfK' =K, Q" =Qwith prob t; and Q' new draws with prob 1 — 1

c. IfK'=K+1, Q’'=c(s,Q), where s is a randomly selected new changepoint from the feasible
set of changepoint locations.
If K’'=K-1, Q’=Q[-s], where s is a randomly selected changepoint to be removed.

e. Update means and variances of blocks which have changed from Q to Q’, by drawing
from posterior distributions. Other block parameters are the same.
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f. Calculate acceptance probability ratio, and either accept or reject the proposed model

To sample the hierarchical correlation matrix R (if not set to the identity matrix), we use

(k1)
a Metropolis-Hastings step with a Barnard prior p,(R) « |R|‘("+1)(Hi r”) 2, where k =

D is the number of diagonal elements in R and 7 is the i-th element on the main diagonal of
R~ (Barnard et al 2000). One challenge in step 10 is to propose valid correlation matrices (that
satisfy the positive definiteness constraint). While a number of algorithms have been proposed
to draw matrices that satisfy the positive definiteness constraint (Liechty et al 2004; Joe 2006;
Budden et al 2008; Hirlimann 2012), we implement a random-walk Metropolis-Hastings
version of Budden et al (2008) which exactly draws from the space of allowed correlation
matrices. The M-H approach uses the current draw of correlation coefficients and iteratively
proposes a new set of coefficients, while handling the scenarios where the coefficients in the

previous iteration are infeasible given some of the coefficients in the new iteration.

10. Draw R~p(R|My¢, {n.}) « [13-1 p(mcIMyc, R) - p(R)

Iterating over Steps 1 through 10 (with steps 1 to 6 executed in parallel for each cohort) leads

to draws from the joint posterior distribution in equation (3).

Modifications for the B-VC model

The B-VC model imposes that parameters of cohorts in the same regime are identical, as
opposed to being i.i.d draws from the same regime-specific distribution (HB-VC). Steps 1
through 5 in the HB-VC algorithm remain the same, but Step 6 is redundant since cohort-level

parameters are deterministically obtained from the changepoint model.

Step 9e changes since a single scalar parameter needs to be proposed for each regime
(in each dimension), which we draw from a known closed-form distribution (further detailed in
Technical Appendix B). Step 10 is redundant since cohort parameters are not i.i.d draws from a
regime-specific distribution. Conditional on the changepoint model, cohort parameters are

known values.
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Technical Appendix B — Reversible-Jump Sampler for Vector Changepoint Model
HB-VC Model

No closed-form density exists for the joint posterior distribution in equation (3) so we are
unable to sample directly from it. We therefore need to use Markov Chain Monte Carlo
(MCMC) methods such that the stationary distribution of the chain is the joint posterior density
in equation (3). Traditional samplers in the MCMC family include the Gibbs sampler (based on

the full conditional distribution for a parameter) and Metropolis-Hastings sampler.

However, the issue of changing parameter dimensionality arises in devising a sampler
for p(Ky4, Q4, Qql{ncqVc}, R). Suppose that K; = 0 in the current MCMC iteration so that there
is only one block and associated normal distribution. This corresponds to the standard HB
model without changepoints where pooling across all cohorts is enabled. However, in our
model, K; can take on any value between 0 and N-1. Suppose that the sampler proposes a
move to K; = 1. This would then generate two blocks, and therefore an additional normal
distribution (whose mean and variance parameters were previously non-existent). Standard
MCMC algorithms such as M-H assume that the number of parameters do not vary across
proposals. We therefore utilize the Reversible-Jump (R-J) sampler introduced by Green (1995)
that generalizes the M-H sampler to allow for proposals that change the dimensionality of the
parameter space. We then use D such R-J steps to update the vector changepoint model for
each of the D cohort-level parameters (which collapses to just one step for the classical

changepoint model).

Since the R-J sampler is not as commonly used as the M-H and Gibbs samplers, we
provide a brief description of how we apply it in this context. Readers can refer to Green (1995)
and Hastie (2005) for additional details. For notational ease, let {K, Q, Q} be the current draw
and {K’,Q’, Q'} be the proposal, which is obtained according to the researcher’s specification of
allowed moves. To respect the detailed balancing condition required for convergence, we
assume that a vector of random variables u and u’ are obtained such that [Q',u'] = T([Q, u]),

where T is a deterministic transformation and dim(Q’) + dim(u') = dim(Q) + dim(w). Let
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K 0 1) R(K,OIK )
»(K, Q, Q{n.avc} R)p(K, Q'IK, Q)raw

transformation T with respect to (£, u). The acceptance probability for the proposal is given by

min(1, 4).

[/, where J is the Jacobian of the

The intuition for the expression in A is similar to that of the M-H sampler. The ratio of

the posterior densities of the proposal and incumbent states is exactly the same as what would

. - . p(K, Q|K" Q’)
appear in a standard M-H acceptance probability. The expression ———51,—=< corrects for the
p(K',Q'|K, Q)
asymmetry in making this type of move. A move which is highly probable to be proposed will be
()

accounts for the

penalized if the reverse direction is not as probable. The expression I

asymmetry in drawing the random variables for the detailed balancing condition. Finally, the
determinant of the Jacobian matrix, surprisingly does not arise from changing dimensionality

(Hastie 2005) but from the indirect transformation T.

We allow for three types of K moves: split, combine and keep. A split move increments K
by one (K’ = K+1), a combine move decrements K by one (K’ = K-1), and a keep move (as the
name implies) leaves K’'=K at the same value. K changes with probability 7,, and so long as both
an increase and decrease are possible, will shift up or down with equal probability. If K happens
to be at 0 or N-1, then it will move in the only possible direction with probability 7,. In
alignment with the generation of K’, Q’ involves either adding a new changepoint location (split
move), removing an existing changepoint location (combine move), reshuffling all changepoint
locations (keep move), or no change (keep move). Given a keep move, the reshuffle of Q occurs
with probability 7;. A graphical depiction of the allowed moves is shown in Figure B-1 for the

case where K is neither 0 nor (N-1).

Split Move
K' =K+1

Combine Move

K = K-1 T Shuffle @’
Keep Move

K' =K

1-1, No change Q'=Q o



Figure B-1: Tree generating changepoint model moves

Q' is generated conditional on {K’,Q’, {n.4Vc}}. If a keep move has been chosen, then
Q' is drawn from the posterior NIX distributions for each block since a closed form exists for
p(Q'|K',Q',{n.qVc}). For a keep move, the acceptance probability reduces to an M-H step. For
a split or combine move, only the blocks affected by the change will have new parameters
drawn from the posterior NIX distributions for those blocks. Essentially, f(u) =
p(Q.|K', Q' {n:.qVc}), where Q is the set of parameters from blocks that require updating. For
detailed balancing, we set u’' = Q. so that f'(u") = p(Q.|K,Q,{n:.Vc}). The remaining
parameters are then identical across Q and Q'. The transformation described above results in T
being the identity matrix so that the determinant of the Jacobian is 1, which disappears from
the acceptance probability expression. The NIX hyperparameters {u, = 0,k, = 0.01,vy =
0.01,%, = 0.01} are Bayesian updated using as data the parameters from cohorts assigned to a

block.

Split/combine locations are equally likely to be selected from the feasible set of

p(K, Q|K,' QI)
p(K’, Q’|K, Q)

N-1-min(K,K")
min(K,K")+1

locations. Thus, log< )-

> = (K' — K)log(

Modifications for the B-VC model

Individual-level attrition and transaction propensities a = {aicz, aicy} Vi, ¢ serve as the data for
the B-VC model, instead of cohort-level parameters. The acceptance probability expression

becomes:

A= p(K,, Q,' Qlla)p(Kr Q|K,l Q,)f,(u’) |]|
~ oK, Q,Qa)p(K, Q'K Q)ray V"

K’ and Q" moves are unchanged, while Q' is drawn from a closed form distribution

conditioned on a for efficient mixing.
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The priors for K and Q need to be informative to avoid fitting boundary solutions such as
fitting each cohort to its own regime. Given that parameters are constant in a regime, the
likelihood of the data is maximized when each cohort is in its own regime. Without an
informative prior, the B-VC model would therefore fit “spurious changepoints” to maximize
model fit. We therefore used a prior that placed a floor of 4 cohorts for the minimum regime
size and at most one regime change. The issue does not arise in the HB-VC model since each

cohort is considered an i.i.d draw from a regime-specific distribution.

56



Technical Appendix C — Empirical Recovery of CPN/PN model with common slopes

We briefly discuss the empirical recovery of a standalone cohort with time-invariant covariates
before focusing on model recovery that includes time-varying covariates. Similar to other BTYD
models, true parameters that do not result in “too sparse a dataset” will be robustly recovered
as long as the number of repeat observations is sufficiently large. As an extreme example of
sparsity, imagine a cohort ¢ with parameters u., = =5, li¢, = —5, 02 = 0.25,04, = 0.25. A
dataset simulated with these parameters will consist of almost all individuals having zero repeat
transactions, because the transaction probability is extremely low for any given individual.
However, the algorithm will find it difficult to pin down whether the zeros are due to high
attrition propensity or low transaction propensity. A cohort with moderate attrition and
transaction means, and a reasonable amount of heterogeneity will be recovered, albeit
estimator variance is more sensitive to the length of the temporal window (number of repeat

observations) than the number of individuals in the cohort.

Of greater interest is the ability to tease apart cross-cohort and calendar-time effects in
a cohort sequence. Can these be recovered empirically for relevant parameter values in our
empirical setting? We use the B-PE model to highlight that even in a sequence of 10 cohorts,
recovery is robust. The difference between B-PE and the HB models is that the cross-cohort
effect, instead of being defined as a function of parametric curves, is introduced through the
structure in the hierarchical prior. In the simulations below, we turn on and off linear cross-
cohort and calendar-time effects on both the attrition and transaction processes, run the
algorithm and obtain the posterior means of all parameters to compare against the true ones.
The number of individuals in each cohort matches Table 2 to mirror the amount of data in each

. c—-1 c—1+t-1
actual cohort. The covariates are coded as follows: Xt conort = o Xictcaltime = X

Note that t € {1, ...T.} and indexes cohort repeat purchase opportunities whereas X;.; cqitime iS
a scaled version of calendar time. The cross-cohort slopes shift the attrition and transaction
mean parameters by cohort, and the calendar-time slopes shift the attrition and transaction

mean parameters at each calendar time period the same way for all cohorts.
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Simul # Hez Hey o, 0'c2y Oczy | Baconort | Bzcaitime | By,conort | By,catime
1:True |-0.89 |-0.38 |0.31 1.46 -0.18 | 0.00 0.00 0.00 0.00

1: Estim | -0.87 |-0.40 | 0.23 1.43 -0.18 | 0.17 -0.14 0.02 0.02
2:True |-135 |-0.36 |0.93 1.26 -0.31 | 0.00 1.14 0.00 0.17

2: Estim |-1.40 |-0.37 |0.97 1.30 -0.29 | -0.06 1.23* -0.04 0.16*
3:True |-1.26 |-0.37 |0.55 1.29 -0.30 |0.31 0.70 0.00 0.17

4: Estim | -1.28 |-0.38 | 0.55 1.29 -0.28 | 0.32* 0.72* -0.04 0.21*
4:True |-1.26 |-0.37 |0.55 1.29 -0.30 |-0.31 0.70 0.10 -0.20

4: Estim | -1.26 |-0.36 | 0.66 1.32 -0.30 | -0.36* 0.70* 0.15* -0.26*

Table C-1: True and estimated parameters (for slope parameters, * indicates that 95%

posterior interval excludes zero)

Model 1 is the null model in which all cross-cohort and calendar-time effects are

switched off, and none of the slope estimates are significantly different from zero. We observe

that the estimated CPN/PN parameters are close to the true ones. In Model 2, we turn on

calendar time effects and find they are robustly recovered. In Models 3 and 4, we enable both

cross-cohort and calendar-time effects and find that these are both recovered for the attrition

and transaction processes. Critical to identification of these slopes is having a multi-cohort

structure, as there would be no variation in calendar-time for individuals of the same cohort.
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Technical Appendix D: Empirical recovery of HB-VCT model using simulated dataset.

We simulate a sequence of 10 cohorts with a changepoint at the seventh cohort for the
correlation (between attrition and transaction propensities) parameter (similar results are
obtained for changepoints in other parameters). The first cohort has 12 time observations
(during the in-sample period) and every successive cohort features one fewer time observation.
We simulate an eleventh cohort and hold it out from estimation. In addition, the last four time
observations for each cohort are held out for model validation. The regime-specific mean

parameters were as follows:

Parameter Regime 1 (Cohorts 1 to 6) Regime 2 (Cohorts 7 onwards)
Attrition mean -1.75 -1.75

Transaction mean -0.50 -0.50

Attrition variance 0.75 0.75

Transaction variance 1.50 1.50

Correlation between -0.25 0.00

attrition and transaction

propensities

Table D-1: Simulated changepoint parameters.

The data generating process also included calendar-time effects for both the attrition
and transaction processes, using a combination of linear, quadratic and logarithmic time terms,
generating time effects as shown in Figure D-1. The parameters were chosen to resemble the

estimates from the HB-VCT model based on the actual data set used for empirical analysis.
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Figure D-1: Simulated calendar-time effects for attrition and transaction processes. Only the

first 12 time periods are covered in the in-sample data.

The model estimates a probability of exactly one changepoint as 93.0% for the
correlation parameter, and the probability of zero changepoints for other parameters are
98.8% or higher. The probability of a changepoint in the correlation parameter located at the
seventh cohort is estimated as 95.4%. The model therefore recovers the changepoint structure
with high accuracy for all parameters. The cohort-level parameters (Table D-2) reflect the

changepoint at the seventh cohort for the correlation parameter.
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Parameter/Cohort | 1 2 3 4 5 6 7 8 9 10
Attrition mean -1.82 |-182 |-1.78 |-1.80 |(-1.82 |-1.80 |-1.76 |-1.75 |-1.83 |-1.77
Transaction mean -0.51 |-051 |-051 |-053 |-050 |-0.50 |-0.51 |-0.50 |-0.51 |-0.52
Attrition variance 0.71 0.72 0.71 0.72 0.71 0.72 0.72 0.70 0.71 0.72
Transaction 1.50 1.49 1.48 1.49 | 1.48 1.48 1.50 1.50 1.49 1.51
variance

Correlation -0.22 |-0.21 |-0.20 |-0.22 |-0.22 |-0.26 | 0.02 0.02 0.02 0.02
between attrition &

transaction

Table D-2: Recovered cohort-level parameters
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Figure D-2: Recovered calendar-time effects. Solid line is the posterior median time effect.

fime

Large-dash dotted lines represent the 95% posterior interval for the time effect. Small-dash

dotted lines represent the true calendar-time effect. Vertical line shows in-sample cutoff.
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As shown in Figure D-2, the calendar-time effects for the attrition and transaction

propensities are recovered well, including out-of-sample (periods 13 through 16). Overall, this

analysis shows that the HB-VCT model is able to accurately recover changepoint structure and

cohort-level parameters, while separating calendar-time effects from simulated data.

Finally, we present the in-sample and out-of-sample MAPEs by cohort in Table D-3. Out-

of-sample MAPEs show that the model accurately generalizes beyond the in-sample time
periods, and also accurately forecasts an entirely held out eleventh cohort based on the

estimated changepoint structure and calendar-time effects.

Metric/Cohort | 1 2 3 4 5 6 7 8 9 10 11
(Heldout)

In-sample 33% [ 2.8% |3.2% |3.1% |4.7% |3.1% |3.5% |3.5% |4.6% | 4.0% | n/a

MAPE

Out-of-sample | 5.1% | 4.9% | 5.1% | 4.6% | 55% |51% |7.3% |6.4% | 6.6% | 7.0% | 9.0%

MAPE

Table D-3: In-sample and out-of-sample MAPEs for first ten cohorts used for model estimation,

and heldout eleventh cohort

62




	University of Pennsylvania
	ScholarlyCommons
	2017

	A Cross-Cohort Changepoint Model for Customer-Base Analysis
	Arun Gopalakrishnan
	Eric T. Bradlow
	Peter S. Fader
	Recommended Citation

	A Cross-Cohort Changepoint Model for Customer-Base Analysis
	Abstract
	Keywords
	Disciplines


	Microsoft Word - XCohort_ 08.01.16 FINAL.docx

