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Abstract

We study industries where prices are not limited to their allocative and distributive
roles, but also serve as an investment into lower costs or higher demand. While our model
focuses on learning-by-doing and the cost advantage that it implies, our conclusions also
apply to industries driven by network externalities. Existing literature does not have
a clear verdict on whether the investment role of prices benefits or hurts the overall
welfare, as there are a number of economic forces at work, e.g. motivation to move down
the learning curve faster could be offset by the ease of driving a weaker rival out of the
market. We compute both market equilibrium and first-best solution. The resulting
deadweight loss appears small, in the sense that eliminating the investment motive from
pricing decisions leads to much worse outcomes. Further investigation into components of
deadweight loss shows that while pricing distortions are the most important driver of the
deadweight loss, these distortions can be fairly small. Entry-exit distortions that arise
from duplicated set-up and fixed opportunity costs also contribute to the deadweight
loss, but these distortions are partially offset by more beneficial industry structure, as
the market equilibrium tends to result in more active firms than the first-best solution.

1 Introduction

In perfectly competitive markets, prices play two roles: allocative and distributive. Prices
serve as incentive devices that shape how scarce resources are allocated within and across
markets. Prices are also transfers between buyers and sellers, thus determining the distribu-
tion of consumer and producer surplus. Prices play these same roles when firms have market
power, but the distributive and allocative roles are typically in tension with each other in
this case.

∗We thank Guy Arie, Ariel Pakes, Robert Porter, Michael Raith, Mike Riordan, and Mike Whinston for
helpful discussions and suggestions. We also thank participants at seminars at Carnegie Mellon University,
DG Comp at the European Commission, Helsinki Center for Economic Research, Johns Hopkins University,
Toulouse School of Economics, Tulane University, and University of Rochester for their useful questions and
comments.

†Kellogg School of Management, Northwestern University, Evanston, IL 60208, d-
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‡Wharton School, University of Pennsylvania, Philadelphia, PA 19104, doraszelski@wharton.upenn.edu.
§Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, kryukov@cmu.edu.
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In many interesting settings, though, there is third role for prices: investment. The
investment role arises when firms jostle for competitive advantage through the prices they
set. Examples include competition to build cumulative experience on a learning curve or
customer base in markets with network effects, switching costs, or brand loyalty. In these
situations, competition is dynamic as current demand translates into lower cost or higher
demand in the future, which in turn implies that current prices determine the future evolution
of market structure.1 Settings in which firms jostle for advantage through pricing are a
feature of both “new economy” industries (e.g., Amazon versus Barnes and Noble in e-book
readers or Sony versus Microsoft in gaming consoles) and “old economy” industries (e.g.,
airframes, where each new generation of aircraft entails a learning curve).

In their review of the literature on network effects and switching costs, Farrell & Klem-
perer (2007) point out that the investment role of prices opens up a second dimension of
competition, namely competition for the market:

For a firm, it makes market share a valuable asset, and encourages a com-
petitive focus on affecting expectations and on signing up pivotal (notably early)
customers, which is reflected in strategies such as penetration pricing; competi-
tion is shifted from textbook competition in the market to a form of Schumpeterian
competition for the market in which firms struggle for dominance.

The central question of this paper is whether this dynamic competition is socially beneficial.
At first glance, it seems obvious that dynamic competition for advantage based on a

valuable asset such as cumulative know-how or installed base, even involving just a few
firms, would be extremely efficient. This point can be made by drawing a contrast with
rent-seeking models. In rent-seeking models firms compete for dominant market position
by engaging in socially wasteful activities (e.g., lobbying). In settings where price serves as
an investment, firms also compete for dominant market position, but not through socially
wasteful activities. Instead they do it by transferring surplus to consumers through low prices
(as they engage in competition for the market) and by creating positive social value through,
for example, the generation of demand-side economies of scale or learning economies. There
may indeed be some distortions due to deviations from first-best pricing, but we would
expect that these would be minimal in light of the investment value created by competition.

Though compelling, this intuition is incomplete. First, just because the investment role
of prices leads to prices that are less than static equilibrium prices does not imply that dead-
weight losses (DWLs) will be lessened relative to a static setting. Pricing to gain advantage
could lead to periods in which prices are less than first-best prices, resulting in a DWL from
overproduction. Second, when firms use price to jostle for advantage, Besanko et al. (2014)
show that firms have an advantage-denying motive—they choose low prices (in part) to slow
the pace at which rivals build their advantages and perhaps make it more likely that they
exit the industry. This motive can give rise to equilibria with predation-like behavior and
long-run market structures involving monopolization by a single firm. Monopolization could,
of course, lead to long-run distortions due to monopoly pricing, but it could also lead to wel-
fare losses from insufficient product variety when consumers have a taste for variety. Third,

1Some models of non-price competition have a similar structure; see Besanko, Doraszelski & Kryukov
(2014) for details and a list of these models.
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even though competition for dominant market position when price serves as an investment
does not involve socially wasteful expenditures on activities such as lobbying, it could lead to
distortions in entry conduct analogous to the coordination breakdowns in natural monopoly
markets highlighted in Bolton & Farrell (1990) or distortions in exit conduct due to war of
attrition dynamics (Maynard Smith 1974, Tirole 1988, Bulow & Klemperer 1999).

The question of whether imperfect competition comes close to achieving first-best welfare
levels when price has an investment role does not seem to have an “obvious” answer. The
goal of this paper is to answer this question. We do so by analyzing a model of learning-
by-doing along the lines of Cabral & Riordan (1994), Besanko, Doraszelski, Kryukov &
Satterthwaite (2010), and Besanko et al. (2014) (hereafter BDK) that involves dynamic
pricing competition in a differentiated product market with entry and exit. We compute
Markov perfect equilibria (MPE) and compare them to the solution to a social planner’s
first-best (FB) problem in which the planner chooses prices and entry and exit decisions
to maximize the discounted present value of total surplus. We use the solution to the FB
problem to calculate the DWL associated with a market equilibrium: the difference between
the discounted present value of total surplus under the FB solution and the MPE.

We show that dynamic price competition does indeed tend to lead to low DWLs. DWLs
are rarely greater than 20 percent of the industry’s value added, and are they less than 15
percent in 80 percent of the parameterizations for which we computed equilibria.2 Moreover,
the DWLs are also much lower than those that would arise in a counterfactual in which we
“strip out” the investment role of prices. This counterfactual, which in a setting without a
learning curve and product differentiation corresponds to Tirole’s (1988) presentation of the
war of attrition, gives rise to DWLs that are on average four times larger than under the
MPE.

We then point out that the low DWLs do not arise because equilibrium conduct and
market structure are similar to the conduct and structure implied by the FB solution. Indeed,
for many parameterizations, equilibrium pricing and entry-exit behavior differ markedly from
what the social planner would do. We also show analytically, using a “stripped-down” version
of our model, that there is nothing about dynamic competition when price is an investment
that precludes potentially costly entry-conduct or exit-conduct distortions. In fact, the
entry-exit distortions that can arise in our model are even potentially worse than those that
can arise in a rent-seeking model because not only can there be duplication of setup and
fixed opportunity costs (analogous to wasteful expenditures in a rent-seeking model), but
there can also be losses of surplus because too few firms enter the market in the first place.3

We next seek to identify the mechanisms by which dynamic competition leads to low
DWLs. To do so, we decompose the DWL under dynamic competition into three components,
which add up to the total DWL: the pricing conduct distortion that reflects deviations of
MPE market shares from FB market shares in each possible state the industry could be in;
the entry-exit conduct distortion that reflects the extra setup costs and fixed opportunity
costs due to excess capacity in the industry; and the market structure distortion, that reflects
the likelihood that the MPE ends up in less favorable states (higher costs, less product
variety) than does the FB solution.

2Added value is the difference between total surpluses of the first-best solution and an empty industry.
The reasons for this choice of scaling are explained in Section 3.2.

3In our model, the fixed opportunity cost is the foregone scrap value when a firm does not exit.
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The low DWLs under competition boil down to three regularities involving these com-
ponents that were exhibited over a wide range of parameterizations. First, pricing conduct
distortions are the largest contributor to DWL, but in the “best” equilibria they are quite
low. Second, the DWLs under the “worst” equilibria are “not so bad.” Third, the sum
of the exit-entry distortion and the market-structure distortion—which we refer to as the
non-pricing distortion—tends to be relatively small relative to the pricing distortions in all
equilibria. Each of these regularities is ultimately rooted in the presence of the learning
curve. The first regularity, for example, occurs because the learning-based cost advantage
that firms achieve in equilibrium marginalizes the outside (substitute) good, decreasing the
price elasticity of aggregate market demand, thus minimizing the distortion from imperfectly
competitive pricing. One the reasons for the third regularity (though not the only one) is
that the MPE typically involve excess entry and insufficient exit, which means that the MPE
is often more likely in the long run to provide consumers with greater product variety than
would arise in the FB solution.4 When learning economies are present, the enhanced variety
under the MPE is especially valuable and can go a long way in offsetting the excess setup
costs from overentry and the foregone scrap values from underexit.

All in all, we find that dynamic competition when price serves an investment role works
remarkably well—not because competition for the market is a “magic bullet” that achieves
full social efficiency, but because the components that contribute to DWL are either small
or partly offset each other. And this, in turn, happens because of the learning curve itself.
Learning economies, it turns out, tend to make the components of DWL under dynamic
competition fairly “forgiving.”

Our paper is related to a large literature of models of dynamic competition in which price
serves as an investment. Besides the aforementioned models of learning-by-doing, Dasgupta
& Stiglitz (1988) and Cabral & Riordan (1997) also study price competition when there
is learning by doing. Price also serves as an investment in the models of network effects
in Mitchell & Skrzypacz (2006), Chen, Doraszelski & Harrington (2009), Dube, Hitsch &
Chintagunta (2010), and Cabral (2011); habit formation in Bergemann & Välimäki (2006);
and switching costs in Dube, Hitsch & Rossi (2009) and Chen (2011). This work has generally
focused on characterizing the properties of equilibria rather than anatomizing the welfare
properties of competition.

Though not explicitly studying price as an investment, Segal & Whinston (2007) study
a model in which two firms engage in Schumpeterian competition for the market. They
investigate the impact on social welfare of antitrust policies that affect how an incumbent
can behave toward an entrant during the period in which a new entrant has just entered
the market with a disruptive innovation. They show that antitrust policy that protects new
entrants and the expense of incumbents can have the salutary effect of increasing the overall
rate of innovation. The paper thus highlights that there need not be a tension between
competition for the market and competition in the market. Our paper relates to Segal &
Whinston (2007) in its focus on the welfare effects of dynamic competition and on teasing
out the dynamic consequences of reducing sources of static welfare losses. But unlike our
paper, Segal & Whinston (2007) do not explicitly model dynamic price competition, nor do

4Interestingly, this latter finding contrasts with findings from static models of imperfect competition with
free entry (Dixit & Stiglitz 1977, Koenker & Perry 1981, Besanko, Perry & Spady 1990, Anderson, de Palma
& Thisse 1992).
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they diagnose the sources of welfare losses or gains from dynamic competition.
Finally, our paper has commonalities with Pakes & McGuire’s (1994) welfare analysis

of MPE in a quality ladder model. Like us, they find that equilibrium welfare losses under
competition can be quite low even though equilibrium conduct and market structure may
differ greatly from what a social planner would choose. Unlike our analysis, however, which
explores large swaths of parameter space, this result pertains to a single parameterization,
so it is not clear to what extent it generalizes. In addition, in the quality ladder model price
does not serve as an investment, so the mechanism driving the low DWLs in this model
could be different from the mechanisms uncovered here.

The organization of the remainder of the paper is as follows. Section 2 sets up the model
and characterizes the equilibrium. Section 3 analyzes the social planner’s first-best problem
and presents the relevant welfare metrics we use in our analysis. Section 4 provides an ana-
lytical characterization of the equilibrium in our model and the associated deadweight losses
for a special case using a two-step learning curve and price inelastic demand. Sections 5
presents computations of deadweight losses over a wide range of parameter space and char-
acterizes the regularities we observe. To put these computations in perspective, 6 compares
our equilibrium deadweight losses to those that arise in a counterfactual in which the in-
vestment role of pricing is removed. Section 7 seeks to identify why deadweight losses under
competition tend to be low by decomposing the DWL into the three components discussed
above and analyzing the behavior of the decomposition terms in our computations. Section
8 ties together the insights from the preceding sections and offers a summary explanation of
why the deadweight losses in our model are small.

Throughout the paper we distinguish between propositions that are established through
formal arguments and results. A result either establishes a possibility through a numerical
example or summarizes a regularity through a systematic exploration of the parameter space.
Unless indicated otherwise, proofs of propositions are in the Appendix. There will also be an
Online Appendix that will contain detail and background to support the analysis presented
in the paper.

2 Model {Section: Model

We study a discrete-time, infinite-horizon dynamic stochastic game between two firms in
an industry that is characterized by learning-by-doing. Our model is a special case of the
dynamic pricing model with endogenous competitive advantage and industry structure in
Besanko et al. (2014) which, in turn, builds on the learning-by-doing models in Cabral &
Riordan (1994) and Besanko et al. (2010).

At any point in time, firm n ∈ {1, 2} is described by its state en ∈ {0, 1, . . . ,M}. A firm
can be either an incumbent firm that actively produces or a potential entrant. State en = 0
indicates a potential entrant. States en ∈ {1, . . . ,M} indicate the cumulative experience
or stock of know-how of an incumbent firm. By making a sale in the current period, an
incumbent firm can add to its stock of know-how and, through learning-by-doing, lower its
production cost in the subsequent period. Competitive advantage and industry leadership
are therefore determined endogenously in our model. The industry’s state is the vector
of firms’ states e = (e1, e2). It completely describes the number of incumbent firms—and
therefore the extent of product variety—along with their cost positions. If e1 > e2 (e1 < e2),
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then we refer to firm 1 as the leader (follower) and to firm 2 as the follower (leader).
In each period, firms first set prices and then decide on exit and entry. During the price-

setting phase, the state changes from e to e′ depending on the outcome of the pricing game
between the incumbent firms. In particular, if firm 1 makes the sale and adds to its stock
of know-how, the state changes to e′ = e1+ = (min{e1 + 1,M}, e2); if firm 2 makes the sale,
the state changes to e′ = e2+ = (e1,min{e2 + 1,M}).

During the exit-entry phase, the state then changes from e′ to e′′ depending on the exit
decisions of the incumbent firms and the entry decisions of the potential entrants. We model
the entry of firm n as a transition from state e′n = 0 to state e′′n = 1 and exit as a transition
from state e′n ≥ 1 to state e′′n = 0. As the exit of an incumbent firm creates an opportunity
for a potential entrant to enter the industry, re-entry is possible. The state at the end of the
current period finally becomes the state at the beginning of the subsequent period.

Before analyzing firms’ decisions and the equilibrium of our dynamic stochastic game,
we describe the remaining primitives.

Learning-by-doing and production cost. Incumbent firm n’s marginal cost of produc-
tion c(en) depends on its stock of know-how through a learning curve with a progress ratio
ρ ∈ [0, 1]:

c(en) =

{
κρlog2 en if 1 ≤ en < m,

κρlog2 m if m ≤ en ≤M.
(1) {curve}

Because marginal cost decreases by 100(1 − ρ)% as the stock of know-how doubles, a lower
progress ratio implies stronger learning economies.

The marginal cost for a firm without prior experience, c(1), is κ > 0. Once the firm
reaches state m, the learning curve “bottoms out,” and there are no further experience-
based cost reductions. We accordingly refer to an industry in state e as a mature duopoly
if e1 ≥ m and e2 ≥ m and as a mature monopoly if either e1 ≥ m and e2 = 0 or e1 = 0 and
e2 ≥ m.

Demand. The industry draws customers from a large pool of potential buyers. One buyer
enters the market each period and purchases one unit of either one of the “inside goods”
that are offered by the incumbent firms at prices p = (p1, p2) or an “outside good” at an
exogenously given price p0. The probability that firm n makes the sale is given by the logit
specification

Dn(p) =
exp(v−pn

σ )
∑2

k=0 exp(
v−pk
σ )

=
exp(−pn

σ )
∑2

k=0 exp(
−pk
σ )

,

where v is gross utility and σ > 0 is a scale parameter that governs the degree of product
differentiation. As σ → 0, goods become homogeneous and the firm that sets the lowest price
makes the sale for sure.5 If firm n is a potential entrant, then we set its price to infinity so
that Dn(p) = 0.

Throughout we assume that the outside good is supplied competitively and priced at its
marginal cost of production c0 ≥ 0. The price of the outside good p0 = c0 determines the
overall level of demand for the inside goods. As it decreases, the market becomes smaller,
and ultimately the industry is no longer viable.

5If there is more than one such firm, each of them makes the sale with equal probability.
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Scrap values and setup costs. To facilitate the subsequent computations, we “purify”
mixed exit and entry strategies. If incumbent firm n exits the industry, it receives a scrap
value Xn drawn from a symmetric triangular distribution FX(·) with support [X−∆X ,X+
∆X ], where EX(Xn) = X and ∆X > 0 is a scale parameter. If potential entrant n enters the
industry, it incurs a setup cost Sn drawn from a symmetric triangular distribution FS(·) with
support [S−∆S, S+∆S], where ES(Sn) = S and ∆S > 0 is a scale parameter. Scrap values
and setup costs are independently and identically distributed across firms and periods, and
their realization is observed by the firm but not its rival.

Although in our model a firm formally follows a pure strategy in making its exit or entry
decision, the dependence of its decision on its randomly drawn, privately known scrap value,
respectively, setup cost implies that its rival perceives the firm as if it was following a mixed
strategy. As ∆X → 0 and ∆S → 0, the scrap value is fixed at X and the setup cost at S and
we revert to mixed exit and entry strategies (Doraszelski & Satterthwaite 2010, Doraszelski
& Escobar 2010).

2.1 Firms’ decisions

To analyze the pricing and exit decisions of incumbent firms and the entry decisions of
potential entrants, we work backwards from the exit-entry phase to the price-setting phase.
Combining exit and entry decisions, we let φn(e

′) denote the probability, as viewed from the
perspective of its rival, that firm n decides not to operate in state e′: if en 6= 0 so that firm
n is an incumbent, then φn(e

′) is the probability of exiting; if e′n = 0 so that firm n is an
entrant, then φn(e

′) is the probability of not entering.
We use Vn(e) to denote the expected net present value (NPV) of future cash flows to

firm n in state e at the beginning of the period and Un(e
′) to denote the expected NPV

of future cash flows to firm n in state e′ after pricing decisions but before exit and entry
decisions are made. The price-setting phase determines the value function Vn along with
the policy function pn with typical element Vn(e), respectively, pn(e); the exit-entry phase
determines the value function Un along with the policy function φn with typical element
Un(e

′), respectively, φn(e
′).

Exit decision of incumbent firm. To simplify the exposition, we focus on firm 1; the
derivations for firm 2 are analogous. If incumbent firm 1 exits the industry, it receives the
scrap value X1 in the current period and perishes. If it does not exit, its expected NPV is

X̂1(e
′) = β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
,

where β ∈ [0, 1) is the discount factor. The probability of incumbent firm 1 exiting the

industry in state e′ is therefore φ1(e
′) = EX

[
1
[
X1 ≥ X̂1(e

′)
]]

= 1−FX (X̂1(e
′)), where 1 [·]

is the indicator function and X̂1(e
′) is the critical level of the scrap value above which exit

occurs. Moreover, the expected NPV of incumbent firm 1 in the exit-entry phase is given
by the Bellman equation

U1(e
′) = EX

[
max

{
X̂1(e

′),X1

}]

= (1− φ1(e
′))β

[
V1(e

′)(1− φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
+ φ1(e

′)EX

[
X1|X1 ≥ X̂1(e

′)
]
, (2) {INCUMBENT VALUE
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where EX

[
X1|X1 ≥ X̂1(e

′)
]
is the expectation of the scrap value conditional on exiting the

industry.

Entry decision of potential entrant. There is a large queue of potential entrants.
Depending on the number of incumbent firms, up to two potential entrants can enter the
industry in each period. If a potential entrant does not enter, it perishes. If it enters, it
becomes an incumbent firm without prior experience in the subsequent period. Hence, upon
entry, the expected NPV of potential entrant 1 is

Ŝ1(e
′) = β

[
V1(1, e

′
2)(1− φ2(e

′)) + V1(1, 0)φ2(e
′)
]
.

In addition, potential entrant 1 incurs the setup cost S1 in the current period. The prob-
ability of potential entrant 1 not entering the industry in state e′ is therefore φ1(e

′) =

ES

[
1
[
S1 ≥ Ŝ1(e

′)
]]

= 1−FS(Ŝ1(e
′)), where Ŝ1(e

′) is the critical level of the setup cost be-

low which entry occurs. Moreover, the expected NPV of potential entrant 1 in the exit-entry
phase is given by the Bellman equation

U1(e
′) = ES

[
max

{
Ŝ1(e

′)− S1, 0
}]

= (1− φ1(e
′))
{
β[V1(1, e

′
2)(1 − φ2(e

′)) + V1(1, 0)φ2(e
′)]− ES

[
S1|S1 ≤ Ŝ1(e

′)
] }

, (3) {ENTRANT VALUE IN

where ES

[
S1|S1 ≤ Ŝ1(e

′)
]
is the expectation of the setup cost conditional on entering the

industry.6

Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of
incumbent firm 1 is

V1(e) = max
p1

D1(p1, p2(e))(p1 − c(e1)) +
2∑

n=0

Dn(p1, p2(e))U1

(
en+

)

= max
p1

D1(p1, p2(e))(p1 − c(e1)) + U1(e) +

2∑

n=1

Dn(p1, p2(e))
[
U1

(
en+

)
− U1(e)

]
, (4) {BELLMAN EQUATION

where we let e0+ = e and use the fact that
∑2

n=0Dn(p) = 1. Because the maximand on
the right-hand side of Bellman equation (4) is strictly quasiconcave in p1 (given p2(e) and
e), the pricing decision p1(e) is uniquely determined by the first-order condition

p1(e)−
σ

1−D1(p(e))
− c(e1) +

[
U1

(
e1+
)
− U1(e)

]
+Υ(p2(e))

[
U1(e)− U1

(
e2+
)]

= 0, (5) {LBDFOC}

where p(e) = (p1(e), p2(e)) and

Υ(p2(e)) =
D2(p(e))

1−D1(p(e))
=

exp
(
−p2(e)

σ

)

exp
(
−p0

σ

)
+ exp

(
−p2(e)

σ

)

6See Appendix A for closed-form expressions for EX

[
X1|X1 ≥ X̂1(e

′)
]

in equation (2) and

ES

[
S1|S1 ≤ Ŝ1(e

′)
]
in equation (3).

8



is the probability of firm 2 making a sale conditional on firm 1 not making a sale.
As discussed in Besanko et al. (2014), the pricing decision p1(e) impounds two distinct

goals beyond static profit D1(p(e))(p1(e)−c(e1)): the advantage-building motive U1

(
e1+
)
−

U1(e) and the advantage-denying motive U1(e) − U1

(
e2+
)
. The advantage-building motive

is the reward that the firm receives by winning a sale and moving down its learning curve.
The advantage-denying motive is the penalty that the firm avoids by preventing its rival
from winning the sale and moving down its learning curve. The advantage-building and
advantage-denying motives arise in a broad class of dynamic models and together capture
the investment role of price.

2.2 Equilibrium and industry dynamics

Because the demand and cost specification is symmetric, we restrict ourselves to symmetric
Markov perfect equilibria (MPE) in pure strategies of our learning-by-doing model. Exis-
tence follows from the arguments in Doraszelski & Satterthwaite (2010). In a symmetric
equilibrium, the decisions taken by firm 2 in state e are identical to the decisions taken
by firm 1 in state (e2, e1). More formally, we have V2(e) = V1(e2, e1), U2(e) = U1(e2, e1),
p2(e) = p1(e2, e1), and φ2(e) = φ1(e2, e1). It therefore suffices to determine the value and
policy functions V1, U1, p1, and φ1 of firm 1.

Despite the restriction to symmetric equilibria, there is a substantial amount of multi-
plicity (as in Besanko et al. 2010, Besanko et al. 2014). Because the literature offers little
guidance regarding equilibrium selection, we make no attempt to do so and thus view all
equilibria that arise for a fixed set of primitives as equally likely.

To study the evolution of the industry under a particular equilibrium, we use the policy
functions p1 and φ1 to construct the matrix of state-to-state transition probabilities that
characterizes the Markov process of industry dynamics. From this, we compute the transient
distribution over states in period t, µt, starting from state (0, 0) (the empty industry with
an outside good but without the inside goods) in period 0.7 The typical element µt(e) is
the probability that the industry is in state e in period t. Depending on t, the transient
distributions can capture short-run or long-run (steady-state) dynamics. We think of period
500 as the long run and, with a slight abuse of notation, denote µ500 by µ∞. We use
the transient distribution in period 500 rather than the limiting (or ergodic) distribution
to capture long-run dynamics because the Markov process implied by the equilibrium may
have multiple closed communicating classes.

7By starting from state (0, 0) we take an ex ante perspective. We have in mind a setting in which two
firms have developed versions of a new product that can potentially draw customers away from an established
product (the outside good) but which have not yet been brought to market. This is an interesting setting in its
own right: the jostle for competitive advantage by sellers of next-generation products is a pervasive feature
of the business landscape, and one where the investment role of price is particularly salient. In addition,
starting from state (0, 0) “stacks the deck” against finding small deadweight losses by fully recognizing any
distortions in the entry process (see Section 4).
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3 First-best planner, welfare, and deadweight loss {Section: First

3.1 First-best planner

Our welfare benchmark is a first-best planner who makes pricing, exit, and entry decisions to
maximize the expected NPV of total surplus (consumer plus producer surplus).8 In contrast
to the market, the planner centralizes and coordinates decisions across firms as in Bolton &
Farrell (1990). To “stack the deck” against finding small deadweight losses, we assume an
omniscient planner that has access to privately known scrap values and setup costs.9

Combining exit and entry decisions, we let ψFB
1,1 (e

′) denote the probability that the

planner in state e′ decides to operate both firms in the subsequent period, ψFB
1,0 (e

′) the

probability that the planner decides to operate only firm 1, ψFB
0,1 (e

′) the probability that the

planner decides to operate only firm 2, and ψFB
0,0 (e

′) the probability that the planner decides
to operate neither firm.

We use V FB(e) to denote the expected NPV of total surplus in state e at the beginning of
the period and UFB(e′) the expected NPV of total surplus in state e′ after pricing decisions
but before exit and entry decisions are made. The price-setting phase determines the value
function VFB along with the policy functions pFB

n for n ∈ {1, 2}; the entry-exit phase
determines the value function UFB along with the policy functions ψFB

ι
for ι ∈ {0, 1}2.

We refer to ι = (ι1, ι2) as the operating decisions of the first-best planner. Note that∑
ι∈{0,1}2 ψ

FB
ι

(e′) = 1 and that the probability that firm 1 does not operate in state e′ is

φFB
1 (e′) =

∑1
ι2=0 ψ

FB
0,ι2 (e

′).

Operating decisions. Define

UFB
ι

(e′,X,S) =





βV FB(e′1ι1, e
′
2ι2) +X1(1− ι1) +X2(1− ι2) if e′1 6= 0, e′2 6= 0,

βV FB(ι1, e
′
2ι2)− S1ι1 +X2(1− ι2) if e′1 = 0, e′2 6= 0,

βV FB(e′1ι1, ι2) +X1(1− ι1)− S2ι2 if e′1 6= 0, e′2 = 0,
βV FB(ι1, ι2)− S1ι1 − S2ι2 if e′1 = 0, e′2 = 0

(6) {EEPLANNER}

to be the expected NPV of total surplus in state e′ given operating decisions ι ∈ {0, 1}2,
scrap values X = (X1,X2), and setup costs S = (S1, S2). Equation (6) distinguishes between
firm n actively producing in the current period (e′n 6= 0) and it being inactive (e′n = 0). If
firm n is active, then the first-best planner receives the scrap value Xn upon deciding not
to operate it in the subsequent period (ιn = 0); if firm n is inactive, then the planner incurs
the setup cost Sn upon deciding to operate it (ιn = 1). The optimal operating decisions are

UFB
(
e′,X,S

)
= max

ι∈{0,1}2
UFB
ι

(e′,X,S),

with associated operating probabilities

ψFB
ι

(
e′
)
= EX,S

[
1
[
UFB

(
e′,X,S

)
= UFB

ι
(e′,X,S)

]]
(7) {eq:FBopprob}

8Mermelstein, Nocke, Satterthwaite & Whinston (2014) consider the expected NPV of total surplus and,
to a lesser extent, also the expected NPV of consumer surplus as possible objectives of an antitrust authority.
We follow them in using the same discount factor for firms and the planner.

9As Bolton & Farrell (1990) discuss, a central authority may often have more limited information.

10



for ι ∈ {0, 1}2. Finally, the Bellman equation in the exit-entry phase is

UFB(e′) = EX,S

[
UFB

(
e′,X,S

)]
. (8) {eq:FBbell}

Pricing decisions. In the price-setting phase, the expected NPV of total surplus is

V FB(e) = max
p

CS(p) +

2∑

n=1

Dn(p)(pn − c(en)) +

2∑

n=0

Dn(p)U
FB
(
en+

)
, (9) {eq:FullW}

where the first term

CS(p) = σ ln

(
2∑

n=0

exp

(
v − pn

σ

))
= v + σ ln

(
2∑

n=0

exp

(−pn
σ

))
(10) {eq: consumer surplus

is consumer surplus and the second term is the static profit of incumbent firms.10 Because
the outside good is priced at cost, its profit is zero.

The solution to the maximization problem on the right-hand side of Bellman equation
(9) can be shown to exist and to be unique and is given by

pFB
n (e) = c(en)−

[
UFB

(
en+

)
− UFB(e)

]

for n ∈ {1, 2}. The pricing decision pFB
n (e) reflects the marginal cost of production c(en) of

incumbent firm n net of the marginal benefit to society of moving the firm down its learning
curve.

Solution and industry dynamics. The solution to the first-best planner problem exists
and is unique from the contraction mapping theorem. It can be shown that the solution
is symmetric in that V FB(e) = V FB(e2, e1), U

FB(e) = UFB(e2, e1), p
FB
1 (e) = pFB

2 (e2, e1),
and ψFB

ι
(e) = ψFB

ι2,ι1(e2, e1) for ι ∈ {0, 1}2.
We again use the policy functions to construct the matrix of state-to-state transition

probabilities that characterizes the Markov process of industry dynamics and compute the
transient distribution over states in period t, µFB

t , starting from state (0, 0) in period 0.

3.2 Welfare and deadweight loss {Section: Welfare

To capture both short-run and long-run dynamics, our welfare metric is the expected NPV of
total surplus. Under a particular equilibrium, total surplus in state e is the sum of consumer
and producer surplus:

TS(e) = CS(e) + PS(e),

where, with a slight abuse of notation, we denote CS(p(e)) by CS(e), and PS(e) includes
the static profit Π(e) =

∑2
n=1Dn(p(e))(pn(e) − c(en)) of incumbent firms as well as their

10If firm n is inactive, then we again set its price to infinity so that Dn(p) = 0 and its contribution to
CS(p) is zero.
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expected scrap values and the expected setup costs of potential entrants.11 The expected
NPV of total surplus is

TSβ =

∞∑

t=0

βt
∑

e

µt (e)TS(e), (11) {eq:defTS}

where, recall, µt (e) is the probability that the industry is in state e in period t.
Under the first-best planner solution, we define the expected NPV of total surplus TSFB

β

analogously. By construction, TSFB
β = V FB(0, 0). The deadweight loss arising in equilib-

rium is therefore the difference

DWLβ = TSFB
β − TSβ. (12) {eq: DWL equation

Because DWLβ is measured in arbitrary monetary units, we normalize it to better
gauge its size and to make it more readily comparable across parameterizations. While
it seems natural to express DWLβ as a percentage of TSFB

β , in our learning-by-doing model

both TSFB
β and TSβ vary linearly with gross utility v (because consumer surplus does; see

equation (10)). Because v cancels out of DWLβ, we can therefore choose v to make DWLβ

any desired percentage of TSFB
β . Moreover, this does not affect the behavior of industry

participants in any way.
To avoid this issue, we normalize DWLβ by the maximum value added by the industry:

V Aβ = TSFB
β − TS∅

β ,

where TS∅

β = v−p0
1−β is the expected NPV of total surplus if the industry remains empty forever

with an outside good but without the inside goods. V Aβ can be interpreted as a bound on
the contribution of the inside goods to the expected NPV of total surplus. Similar to DWLβ,

V Aβ does not depend on v. We henceforth refer to
DWLβ

V Aβ
as the relative deadweight loss.

4 Is dynamic competition necessarily fully efficient? {Section Fully

In contrast to rent-seeking models, firms in our learning-by-doing model jostle for competitive
advantage by pricing aggressively rather than by engaging in socially wasteful activities. To
the extent that rents can be efficiently transferred from firms to consumers, one may thus
conjecture that dynamic competition is necessarily fully efficient. This conjecture, however,
overlooks that dynamic competition extends beyond pricing into exit and entry. Even if
pricing is efficient, exit and entry may not be. Distortions in exit and entry can take the
form of over-exit (too much or early exit), under-exit (too little or late exit), over-entry
(too much or early entry), under-entry (too little or late entry), and cost-inefficient exit
(lower-cost firm exits but higher-cost firm does not).

We highlight distortions in exit and entry and demonstrate that dynamic competition
is not necessarily fully efficient in an analytically tractable special case of our model with a
two-step learning curve, homogeneous goods, and mixed exit and entry strategies:

{ASS1}
Assumption 1 (Two-step learning curve)

11See Appendix A for the expression for PS(e) and its counterpart PSFB(e) under the first-best planner
solution.
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1. M = m = 2;

2. σ = 0;

3. ∆X = ∆S = 0.

Because goods are homogeneous by part (2) of Assumption 1, the firm that sets the lowest
price makes the sale. Moreover, aggregate demand for the inside goods is inelastic at prices
below p0. There are therefore no distortions in pricing.

We assume:
{ASS2}

Assumption 2 (Parameter restrictions)

1. p0 ≥ κ;

2. S > X ≥ 0;

3. β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
> S;

By part (1) of Assumption 2, the marginal cost of the outside good p0 = c0 is at least as
high as the marginal cost c(1) = κ of an incumbent firm at the top of its learning curve.
This rules out that the first-best planner opts for an empty industry. By part (2) the setup
cost is positive and partially sunk and the scrap value is nonnegative. Part (3) implies that
operating a single firm is socially beneficial.

The first-best planner solution is straightforward. Because goods are homogeneous and
product variety is not socially beneficial, the planner operates the industry as a natural
monopoly. In state (0, 0) in period 0, the planner decides to operate a single firm (say firm
1) in the subsequent period. In state (1, 0) in period 1, firm 1 charges any price below p0,
makes the sale, and moves down its learning curve. The industry remains in state (2, 0) in
period t ≥ 2 and firm 1 again makes the sale. The expected NPV of total surplus is thus12

TSFB
β = v−p0+β (v − κ)+

β2

1− β
(v − κρ)−S =

v − p0

1− β
+β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
−S,

and the maximum value added by the industry is

V Aβ = β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
− S.

{Proposition: characterizatio
Proposition 1 (Two-step learning curve) Under Assumptions 1 and 2, there exists the
equilibrium shown in Table 1. The deadweight loss is

DWLβ =
φ1(0, 0)(1 − β)

1− βφ1(0, 0)
2
V Aβ +

(1− φ1(0, 0))
2

1− βφ1(0, 0)
2

(
S − βX

)
(13) {eq: DWL}

and the relative deadweight loss is

DWLβ

V Aβ
=
φ1(0, 0) − βφ1(0, 0)

2

1− βφ1(0, 0)
2

. (14) {eq: percentage

12The term v − p0 arises because the consumer purchases the outside good in state (0, 0).
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Moreover,
d(1−φ1(0,0)

2)
dρ < 0 and

d(DWLβ/V Aβ)
dρ > 0: as learning economies strengthen, the

probability 1 − φ1(0, 0)
2 that the industry “takes off” increases and the relative deadweight

loss
DWLβ

V Aβ
decreases.

The deadweight loss arises because the entry process is decentralized and uncoordinated.
The industry can therefore suffer from over-entry and under-entry. To illustrate, we sketch
out the evolution of the industry in the equilibrium shown in Table 1. In state (0, 0) in
period 0, a single firm enters the industry with probability 2(1−φ1(0, 0))φ1(0, 0); both firms
enter with probability (1 − φ1(0, 0))

2, and no firms enter with probability φ1(0, 0)
2. The

industry continues to evolve as follows:

• Case 1. If a single firm (say firm 1) enters, then in state (1, 0) in period 1 it charges a
price just below the price of the outside good p0, makes the sale, and moves down its
learning curve. In state (2, 0) firm 1 remains in the industry (φ1(2, 0) = 0) and firm 2
does not enter (φ1(0, 2) = 1). The industry remains in state (2, 0) in period t ≥ 2, and
firm 1 again makes the sale.

• Case 2: Over-entry. If both firms enter, then in state (1, 1) in period 1 they charge
a price less than static marginal cost κ. One of the firms (say firm 1) makes the sale
and moves down its learning curve. In state (2, 1), the leader (firm 1) remains in the
industry (φ1(2, 1) = 0) and the follower (firm 2) exits (φ1(1, 2) = 1). The industry
moves to—and remains in—state (2, 0) in period t ≥ 2. Note that pricing in state

(1, 1) is so aggressive that both firms incur a loss of −
(

β
1−β (p0 − ρκ)−X

)
that fully

dissipates any future gains from monopolizing the industry.

• Case 3: Under-entry. If no firm enters, then the above process repeats itself in state
(0, 0) in period 1.

In short, the intuition that dynamic competition is necessarily fully efficient is incomplete.
In the equilibrium shown in Table 1, while the industry evolves towards the monopolistic
structure that the first-best planner operates, this may happen slowly over time due to either
over-entry or under-entry.13 Wasteful duplication and delay (Bolton & Farrell 1990) are both
integral parts of the equilibrium.

The equilibrium shown in Table 1 in state (2, 2) entails a war of attrition (Maynard Smith
1974, Tirole 1988, Bulow & Klemperer 1999), although state (2, 2) is off the equilibrium path
starting from state (0, 0). The war of attrition arises because a firm is better off staying in
the industry if its rival exits but worse off if its rival stays. The resulting non-operating

probability is φ1(2, 2) =
(1−β)X

β
1−β

(p0−ρκ)−βX
∈ (0, 1). In contrast, the first-best planner ceases to

operate one of the two firms in state (2, 2).
Proposition 1 describes one equilibrium in the two-step version of our model. Given

Assumptions 1 and 2, there are two other equilibria that can arise in addition to the one in

13The first term in equation (13) is due to under-entry and the “discount factor”
φ1(0,0)(1−β)

1−βφ1(0,0)
2 captures the

stochastic length of time over which under-entry may occur; the second term is due to over-entry and the

“discount factor” (1−φ1(0,0))
2

1−βφ1(0,0)
2 captures the stochastic length of time over which over-entry can occur after

potentially many periods of under-entry.
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e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 1) ∞ 1 – 0
(0, 2) ∞ 1 – 0

(1, 0) p−0 0 p0 − κ+ β
1−β (p0 − ρκ) β

(
p0 − κ+ β

1−β (p0 − ρκ)
)

(1, 1) κ−
(

β
1−β (p0 − ρκ)−X

)
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(1, 2) κ 1 X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β (p0 − ρκ)

(2, 1) κ− 0 (1− ρ)κ+ β
1−β (p0 − ρκ) β

1−β (p0 − ρκ)

(2, 2) ρκ
(1−β)X

β
1−β

(p0−ρκ)−βX
X X

Table 1: Equilibrium. Two-step learning curve. In column labelled p1(e), superscript − indicates that firm 1 charges just below
the price stated. {tbl: MPE in stripped
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Table 1. One is the same as the one in Table 1 except that there is positive probability of the
leader exiting in state (1, 0) and a positive probability of a new firm coming in.14 The other
is the same as Table 1’s equilibrium except the leader exits with certainty and the is replaced
by a new firm that enters with probability 1.15 It is straightforward to see that if we start at
state (0, 0), the entry-exit phase of state (1, 0) is never reached in these equilibria, and thus
the equilibrium paths starting with an empty industry in these two additional equilibria are
identical to that in the equilibrium in Table 1. Thus, these two additional equilibria give
rise to the deadweight loss given by (13) and (14).

Under other parameter conditions additional equilibria can arise that create the possi-
bility of different equilibrium paths and additional sources of deadweight loss. For example,
if in addition to Assumption 2 we have X ≥ β

1−βκ(1 − ρ), there is an equilibrium in which

both firms have a positive probability of exit in state (2, 1):16

φ(1, 2) =
X − β(κ− ρκ)− βX

β
(
p0 − κ+ β

1−β (p0 − ρ κ)
)
− βX

(15) {eq: phi (1,2)

φ(2, 1) =
X − βX

β
(
p0 − κ+ β

1−β (p0 − ρ κ)
)
− βX

. (16) {eq: phi(2,1) with

This gives rise to the possibility of over-exit (in this case, no firms as opposed to one). This
equilibrium also worsens the potential welfare losses from over-entry because, in contrast to
the equilibrium in Table 1, there is the possibility that two firms remain in the industry for
at least an additional period. Finally, this equilibrium also creates the possibility of cost-
inefficient exit in states (2, 1) and (1, 2). If this happens, there would be at least one period
in which total industry production costs are higher than they would have been under the
solution to the planner’s problem. In fact, in this particular equilibrium, not only is there a
possibility that the low-cost firm exits and the high cost firm does not, but the probability
that the low-cost firm exits is higher than the probability that the high-cost firm exits, i.e.,
φ(2, 1) > φ(1, 2). Thus, we have cost-inefficient exit in both an ex post sense and an ex ante
sense.

The special case of a two-step learning curve relies on extreme values of key parameters.
In doing so, it assumes away a meaningful role for product variety and competition from the
outside good that can be a source of distortions in pricing. Unfortunately, analytic tractabil-
ity rapidly declines beyond the two-step learning curve. Moreover, theoretical analysis seems
ill-suited to answer the question of how efficient dynamic competition is. We therefore turn
to numerical analysis.

14Specifically, in this equilibrium, the entries in Table 1 are replaced with φ1(1, 0) =
S−βX

β
(

p0−κ+ β
1−β

(p0− ρκ)
)

−βX
,

φ(0, 1) = (1−β)X

β
(

p0−κ+ β
1−β

(p0−ρκ)
)

−βX
, and U(1, 0) = X. The proof that this is an equilibrium will be in the

Online Appendix.
15Specifically, in this equilibrium, the entries in Table 1 are replaced with φ1(1, 0) = 1, φ(0, 1) = 0,

U(1, 0) = X, and U(0, 1) = β
(
p0 − κ+ β

1−β
(p0 − ρκ)

)
−S. The proof that this is an equilibrium will be in

the Online Appendix.
16The Online Appendix will provide details and the proof. Note that part (3) of Assumption 2 can be

shown to imply that X ≤ β

1−β
(p0 − ρκ), so this equilibrium arises if X ∈

[
β

1−β
κ(1− ρ), β

1−β
(p0 − ρκ)

]
.
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parameter value grid

maximum stock of know-how M 30
cost at top of learning curve κ 10
bottom of learning curve m 15
progress ratio ρ 0.75 ρ ∈ {0, 0.05, . . . , 1}
gross utility v 10
product differentiation σ 1 σ ∈ {0.2, 0.3, . . . , 1, 1.3, 1.6, 2,

2.5, 3.2, 4, 5, 6.3, 7.9, 10}
price of outside good p0 10 p0 ∈ {0, 1, . . . , 20}
scrap value X, ∆X 1.5, 1.5 X ∈ {−1.5,−1, . . . , 7.5}
setup cost S, ∆S 4.5, 1.5
discount factor β 0.95

Table 2: Baseline parameterization and grid points. {baseparms}

5 Numerical analysis and equilibrium {Section numerical

5.1 Computation and parameterization

To thoroughly explore the equilibrium correspondence and search for multiple equilibria
in a systematic fashion, we use the homotopy or path-following method in Besanko et al.
(2010).17 We caution that the homotopy algorithm cannot be guaranteed to find all equilibria
and refer to reader to Besanko et al. (2010) and Borkovsky, Doraszelski & Kryukov (2010,
2012) for additional discussion. We solve the first-best planner problem using value function
iteration combined with quasi-Monte Carlo integration (Halton sequences of length 10, 000)
to evaluate the operating probabilities in equation (7) and the Bellman equation (8).

Our learning-by-doing model has four key parameters: the progress ratio ρ ∈ [0, 1], the
degree of product differentiation σ > 0, the price of the outside good p0 = c0 ≥ 0, and
the expected scrap value X ∈ [−∆X , S + ∆S + ∆X ].18 To explore how the equilibria vary
with these parameters, we compute six two-dimensional slices through the equilibrium cor-
respondence along (ρ, σ), (ρ, p0), (ρ,X), (σ, p0), (σ,X), and (X, p0). We choose sufficiently
large upper bounds for σ and p0 so that beyond them “things don’t change much anymore.”
Back-of-the-envelope calculations yield σ ≤ 10 and p0 ≤ 20. Throughout we hold the re-
maining parameters fixed at the values in the second column of Table 2. While this baseline
parameterization is not intended to be representative of any particular industry, it is neither
entirely unrepresentative nor extreme.

An industry without firms is unlikely to attract the attention of a central authority. We
therefore exclude extreme parameterizations for which the industry is not viable in the sense
that the probability 1−φ1(0, 0)2 that the industry “takes off” is below 0.01. Unsurprisingly,
these parameterizations involve a highly attractive outside good with p0 < 5.

17The equilibrium correspondence is H−1(ω) = {x|H(x,ω) = 0}, where ω = (ρ, σ, p0, X, . . .) are the
parameters of the model, x = (V1,U1,p1,φ1) are the value and policy functions, and H(x,ω) = 0 are the
Bellman equations and optimality conditions that define an equilibrium.

18The bounds on X follow from the economic requirement that upon exit a firm’s assets are valuable
(Xn ≥ 0) but that their value is limited by the firm’s initial outlay at the time of its inception (Xn ≤ Sn).
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Due to the large number of parameterizations and multiplicity of equilibria, we require a
way to summarize them. In a first step, we average an outcome of interest over the equilibria
at a parameterization. This random sampling is in line with our decision to refrain from
equilibrium selection and ensures that parameterizations with many equilibria carry the
same weight as parameterizations with few equilibria.

In a second step, we randomly sample parameterizations. To make this practical, we
represent a two-dimensional slice through the equilibrium correspondence with a grid of
values for the parameters spanning the slice. The third column of Table 2 lists the grid
points we use for the four key parameters. We mostly use uniformly spaced grid points,
except for σ > 1, where the grid points approximate a log scale in order to explore very high
degrees of product differentiation. We associate each point in a two-dimensional grid with
the corresponding average over equilibria. We then pool the points on the six slices through
the equilibrium correspondence along (ρ, σ), (ρ, p0), (ρ,X), (σ, p0), (σ,X), and (X, p0) and
obtain the distribution of the outcome of interest.

5.2 Equilibrium and first-best planner solution {Section Showcase

To illustrate the types of behavior that can emerge in our learning-by-doing model, we
examine the equilibria that arise at the baseline parameterization in Table 2. For two of these
three equilibria Figure 1 shows the pricing decision of firm 1, the non-operating probability
of firm 2, and the time path of the probability distribution over industry structures (empty,
monopoly, and duopoly).19

The upper panels of Figure 1 exemplify what Besanko et al. (2014) call an aggressive
equilibrium. The pricing decision in the upper left panel exhibits a deep well in state (1, 1)
with p1(1, 1) = −34.78. A well is a preemption battle where firms vie to be the first to
move down from the top of their learning curves. Such a battle is likely to ensue because
φ1(0, 0) = 0.04 implies that the probability that both firms enter the industry in period
0 is 0.92. After the industry has emerged from the preemption battle in state (1,1), the
leader (say firm 1) continues to price aggressively (p1(2, 1) = 0.08). Indeed, the pricing
decision exhibits a deep trench along the e1-axis with p1(e1, 1) ranging from 0.08 to 1.24
for e1 ∈ {2, . . . , 30}.20 A trench is a price war that the leader wages against the follower.
We can think of a trench is an endogenous mobility barrier in the sense of Caves & Porter
(1977). In the trench the follower (firm 2) exits the industry with a positive probability
of φ2(e1, 1) = 0.22 for e1 ∈ {2, . . . , 30} as the upper middle panel shows. The follower
remains in this exit zone as long as it does not win a sale. Once the follower exits, the leader
raises its price and the industry becomes an entrenched monopoly.21 This sequence of events
resembles conventional notions of predatory pricing.22 The industry may also evolve into a

19The third equilibrium is essentially intermediate between the two shown in Figure 1.
20Because prices are strategic complements, there is also a shallow trench along the e2-axis with p1(1, e2)

ranging from 3.63 to 4.90 for e2 ∈ {2, . . . , 30}.
21While our model allows for re-entry, whether it actually occurs depends on how a potential entrant

assesses its prospects in the industry. In this particular equilibrium, φ2(e1, 0) = 1.00 for e1 ∈ {2, . . . , 30}, so
that the potential entrant does not enter if the incumbent firm has moved down from the top of its learning
curve.

22Besanko et al. (2014) formalize the notion of predatory pricing in a dynamic pricing model and disentangle
it from mere competition for efficiency.
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Figure 1: Aggressive (upper panels) and accommodative (lower panels) equilibrium. Pricing
decision of firm 1 (left panels), non-operating probability of firm 2 (middle panels), and
time path of probability distribution over industry structures (right panels). Dots above
the surface in left panels are p1(e1, 0) for e1 > 0 and dots in middle panels are φ2(0, e2) for
e2 > 0 and φ2(e1, 0) for e1 ≥ 0. Baseline parameterization. {fig:showcases}
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Figure 2: First-best planner solution. Pricing decision of firm 1 (left panel), non-operating
probability of firm 2 (middle panel), and time path of probability distribution over industry
structures (right panel). Dots beside the surface in left panel are p1(e1, 0) for e1 > 0 and dots
in middle panel are φ2(0, e2) for e2 > 0 and φ2(e1, 0) for e1 ≥ 0. Baseline parameterization. {fig:showcaseFCP

mature duopoly if the follower manages to crash through the mobility barrier by winning a
sale but, as the upper right panel of Figure 1 shows, this is far less likely than an entrenched
monopoly.

The lower panels of Figure 1 are typical for what Besanko et al. (2014) call an accom-
modative equilibrium. There is a shallow well in state (1, 1) with p1(1, 1) = 5.05 as the lower
left panel shows. A preemption battle is again likely to ensue because φ1(0, 0) = 0.05 implies
that the probability that both firms enter the industry in period 0 is 0.91. After the indus-
try has emerged from the preemption battle in state (1, 1), the leader enjoys a competitive
advantage over the follower. Without mobility barriers in the form of trenches, however, this
advantage is temporary and the industry evolves into a mature duopoly as the lower right
panel shows.

First-best planner solution. Figure 2 is analogous to Figure 1 and illustrates the first-
best planner solution. In state (0, 0) in period 0, the planner decides to operate a single firm
(say firm 1) in the subsequent period since ψFB

1,0 (0, 0) = ψFB
0,1 (0, 0) = 0.5. In period t ≥ 1,

the planner marches firm 1 down its learning curve. As the left panel shows, pFB
1 (e) = 3.25

if e1 ∈ {15, . . . , 30} so that at the bottom of its learning curve firm 1 charges a price equal
to marginal cost. In short, the planner operates the industry as a natural monopoly.

As the middle panel shows, there is an exit zone somewhat similar to the one in the
aggressive equilibrium. Although state (1, 1) is off the equilibrium path starting from state
(0, 0), ψFB

1,0 (1, 1) = ψFB
0,1 (1, 1) = 0.04 implies that if both firms are at the top of their learning

curves, then the first-best planner ceases to operate one of them with probability 0.07 to
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receive the scrap value. On the other hand, if both firms are part of the way down their
learning curves, then ψFB

1,1 (e) = 1 for e ≥ (3, 3) implies that the planner continues to operate
both to secure the social benefit of product variety.

Outside the baseline parameterization in Table 2, the first-best planner does not neces-
sarily operate the industry as a natural monopoly. In particular, if the degree of product
differentiation is sufficiently large, then the planner immediately decides to operate both
firms and continues to do so as they move down their learning curves.

aggr. accom. planner counter-
eqbm. eqbm. solution factual

structure:
expected short-run number of firms N1 1.92 1.91 1.00 2.00
expected long-run number of firms N∞ 1.08 2.00 1.00 2.00
conduct:
expected long-run average price p∞ 8.28 5.24 3.25 5.24
expected time to maturity Tm 19.09 37.54 15.02 53.91
performance:

expected NPV of consumer surplus CSβ 93.87 103.29 131.66 56.88
expected NPV of total surplus TSβ 96.02 105.45 110.45 92.02
deadweight loss DWLβ 14.43 5.01 – 18.43

relative deadweight loss
DWLβ

V Aβ
13.06% 4.54% – 16.69%

Table 3: Industry structure, conduct, and performance. Aggressive and accommodate equi-
librium, first-best planner solution, and static non-cooperative pricing counterfactual. Base-
line parameterization. {Table Industry

Industry structure, conduct, and performance. To succinctly describe an equilib-
rium and compare it to the first-best planner solution, we use several metrics of industry
structure, conduct, and performance.23 The second, third, and fourth columns of Table 3
show these metrics for the aggressive and accommodative equilibrium and the planner solu-
tion. (We discuss the last column of the table below.)

The expected short-run number of firmsN1 is just above 1.90 in both equilibria, compared
to NFB

1 = 1.00 in the first-best planner solution. In the aggressive equilibrium, the expected
long-run number of firms N∞ is 1.08, quite close to the planner solution. In contrast, in
the accommodative equilibrium, N∞ = 2.00. The aggressive equilibrium therefore mainly
involves over-entry and the accommodative equilibrium involves both over-entry and under-
exit.

The expected long-run average price pFB
∞ = 3.25 in the first-best planner solution is equal

to marginal cost at the bottom of the learning curve. It is much higher in both equilibria. In
the aggressive equilibrium, in particular, p∞ = 8.28 reflects the fact that the industry most
likely evolves into an entrenched monopoly.

23See Appendix A for formal definitions.
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The expected time to maturity Tm is the expected time until the industry first becomes
either a mature monopoly or a mature duopoly; it measures the speed at which firms move
down their learning curves. Learning economies are exhausted fastest in the first-best planner
solution with Tm,FB = 15.02, followed by the aggressive equilibrium with Tm = 19.10 and
the accommodative equilibrium with Tm = 37.50. This large gap arises because sales are
split between the inside goods in the accommodative equilibrium, as well as at least initially
with the outside good.

As the industry is substantially more likely to be monopolized in the aggressive equi-
librium than in the accommodative equilibrium, the expected NPV of consumer surplus
CSβ is lower, as is the expected NPV of total surplus TSβ. Consequently, the deadweight
loss DWLβ is higher in the aggressive equilibrium than in the accommodative equilibrium.

However, the relative deadweight loss
DWLβ

V Aβ
seems modest, with 13.06% of the maximum

value added by the industry in the aggressive equilibrium and 4.54% in the accommodative
equilibrium.

6 Does dynamic competition lead to low deadweight loss? {Section: DWL

The relative deadweight loss
DWLβ

V Aβ
is modest more generally. Summarizing a large number
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Figure 3: Distribution of relative deadweight loss
DWLβ

V Aβ
. All equilibria (solid line), best equi-

librium (dotted line), and worst equilibrium (dashed line). Parameterizations and equilibria
within parameterizations weighted equally. {fig:DWLcdf}

of parameterizations and equilibria, Figure 3 shows the cumulative distribution function
(CDF) of

DWLβ

V Aβ
as a solid line. Result 1 highlights some findings:

{Result: DWL under

Result 1 The relative deadweight loss
DWLβ

V Aβ
is less than 5%, 10%, and 20% in 26.4%,

65.8%, and 92.0% of parameterizations, respectively. The median of
DWLβ

V Aβ
is 7.8%.
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There is a large relative deadweight loss
DWLβ

V Aβ
in a small number of parameterizations

that occur when the industry almost fails to take off (in the sense that 1− φ1(0, 0)
2 ≈ 0.01)

because the outside good is highly attractive. Near this “cusp of viability” the contribution
of the inside goods to the expected NPV of total surplus is small and thus V Aβ ≈ 0.

Recall that we average over equilibria at a given parameterization to obtain the dis-
tribution of

DWLβ

V Aβ
. To look behind these averages, we consider the best equilibrium with

the highest value of TSβ at a given parameterization as well as the worst equilibrium with

the lowest value of TSβ. Figure 3 shows the resulting distributions of
DWLβ

V Aβ
using a dot-

ted line for the best equilibrium and a dashed line for the worst equilibrium, and Result 2
summarizes: {Result: DWL under

Result 2 (1) For the best equilibrium, the relative deadweight loss
DWLβ

V Aβ
is less than 5%,

10%, and 20% in 44.2%, 71.1%, and 92.1% of parameterizations, respectively. The median
of

DWLβ

V Aβ
is 5.7%. (2) For the worst equilibrium, the relative deadweight loss

DWLβ

V Aβ
is less

than 5%, 10%, and 20% in 18.7%, 56.4%, and 91.8% of parameterizations, respectively. The
median of

DWLβ

V Aβ
is 9.2%.

Hence, even in the worst equilibria the relative deadweight loss
DWLβ

V Aβ
is modest for a wide

range of parameterizations.
Closer inspection shows that the best equilibrium is often accommodative in nature

whereas the worst equilibrium is often aggressive. In Appendix C we offer formal definitions
of aggressive and accommodative equilibria and show that they are closely linked to the
worst, respectively, best equilibria. To facilitate the exposition and build intuition, in what
follows we therefore identify the best equilibrium with an accommodative equilibrium and the
worst equilibrium—to the extent that it differs from the best equilibrium—with an aggressive
equilibrium.24 If the equilibrium is unique, then we identify it with an accommodative
equilibrium.

6.1 Deadweight loss in perspective: static non-cooperative pricing coun-

terfactual

Is a relative deadweight loss
DWLβ

V Aβ
of 10% of the maximum value added by the industry

“small” and a relative deadweight loss of 30% “large”? To help put these percentages in
perspective, we show that the deadweight loss is lower than expected in view of the two
traditional roles of price (allocative and distributional). To this end, we shut down the
investment role of price. In the price-setting phase, incumbent firm 1 is thus left to maximize
static profit:

max
p1

D1(p1, p
SN
2 (e))(p1 − c(e1)).

Hence, the pricing decision pSN1 (e) in this static non-cooperative pricing counterfactual is
uniquely determined by the first-order condition

pSN1 (e) = c(e1) +
σ

1−D1(p
SN
1 (e), pSN2 (e))

.

24This association is not perfect. For some parameterizations (e.g., those with weak product differentiation),
there are multiple equilibria all of which are aggressive and none of which are accomodative.
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The expected NPV of incumbent firm 1 is

V SN
1 (e) = D1(p

SN
1 (e), pSN2 (e))(pSN1 (e)− c(e1))

+USN
1 (e) +

2∑

n=1

Dn(p
SN
1 (e), pSN2 (e))

[
USN
1

(
en+

)
− USN

1 (e)
]

and, in contrast to the pricing decision, accounts for the impact of a sale on the value
of continued play. Finally, the exit-entry phase remains unchanged.25 Our computations
always led to a unique solution.

The fifth column of Table 3 shows our metrics for industry structure, conduct, and perfor-
mance for the static non-cooperative pricing counterfactual at the baseline parameterization.
Similar to the accommodative equilibrium, the counterfactual involves both over-entry and
under-exit (NSN

1 = 2.00 and NSN
∞ = 2.00). Learning economies are exhausted even more

slowly than in the accommodative equilibrium (Tm,SN = 53.91 > 37.45 = Tm) because
firms ignore the investment role of price in making their pricing decisions. The deadweight
loss DWLβ increases more than threefold relative to the accommodative equilibrium and by
more than a quarter relative to the aggressive equilibrium.

The investment role of price is socially beneficial more generally. Figure 4 shows the
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Figure 4: Distribution of deadweight loss ratio
DWLSN

β

DWLβ
. Log scale. Parameterizations and

equilibria within parameterizations weighted equally. {fig:SNDWLgap}

distribution of the deadweight loss ratio
DWLSN

β

DWLβ
. Note that

DWLSN
β

DWLβ
is independent of our

normalization by V Aβ. Result 3 summarizes:
{Result: difference

Result 3 DWLSN
β is at least as large as DWLβ in 81% of cases, at least twice as large in

44% of cases, and at least five times as large in 14% of cases. The median of
DWLSN

β

DWLβ
is 11.

25Our static non-cooperative pricing counterfactual loosely corresponds to the version of the war of attrition
presented in Tirole (1988), with the addition of learning-by-doing and product differentiation.
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DWLSN
β is smaller than DWLβ in a number of parameterizations that mostly involve an

unattractive outside good (p0 ≥ 15). Because the outside good constrains pricing decisions
and profitability much more in a monopolistic than in a duopolistic industry, a less attractive
outside good sharpens the incentive to monopolize the industry in equilibrium. But if firms
ignore the investment role of price in the static non-cooperative pricing counterfactual, then
a duopolistic industry with a lower deadweight loss emerges.

Generally speaking, we conclude that dynamic competition leads to low deadweight loss.
The deadweight loss is low not only relative to the maximum value added by the industry,
it is also smaller than the deadweight loss that arises if firms ignore the investment role of
price.26 Put differently, the investment role of price is by and large socially beneficial. The
static non-cooperative pricing counterfactual also shows that a low deadweight loss is almost
certainly not hardwired into the primitives of our learning-by-doing model. Instead, there
is something in the nature of the investment role of price and dynamic competition that in
equilibrium leads to low deadweight loss.

6.2 Differences between equilibria and first-best planner solution

Dynamic competition leads to low deadweight loss despite distortions in pricing, exit, and
entry. Indeed, as we next show, there are typically substantial differences between the
equilibria and the first-best planner solution. Paradoxically, the best equilibrium can differ
even more from the planner solution than the worst equilibrium.

Recall that too low prices cause deadweight loss from overproduction, just as too high
prices cause deadweight loss from underproduction. To illustrate that the equilibria involve
prices that are too low, we first define 1 [p1(e) < c(e1) for some e ∈ {1, . . . ,M} × {0, . . . ,M}]
to indicate that a price is below the marginal cost of production in at least one state. Second,
we define 1

[
p1(e) < pFB

1 (e) for some e ∈ {1, . . . ,M} × {0, . . . ,M}
]
to indicate that a price

is below the first-best planner solution in some state. Figure 5 shows the distribution of
these indicators and Result 4 summarizes:

{Result: MPE prices

Result 4 (1) p1(e) < c(e1) for some e ∈ {1, . . . ,M}×{0, . . . ,M} in all equilibria in 80% of
parameterizations.(2) p1(e) < pFB

1 (e) for some e ∈ {1, . . . ,M}×{0, . . . ,M} in all equilibria
in 63% of parameterizations.

We caution that the states with too low prices are not necessarily on the equilibrium path
starting from state (0, 0).

We next turn from pricing to exit and entry and compare the expected short-run and
long-run number of firms between the equilibria and the first-best planner solution. Figure 6
shows the distribution of N1 −NFB

1 as a solid line and Result 5 highlights some findings:

{Result: MPE involves
Result 5 N1 is larger than NFB

1 in 78% of parameterizations and smaller than NFB
1 in less

than 1% of parameterizations.

26We also find that the deadweight loss under competition is lower than the deadweight loss that arises
when firms behave collusively with respect to both pricing and entry/exit decisions. For the baseline pa-
rameterization, the deadweight loss as a percentage of value added in the fully collusive solution is 14.32
percent.
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Figure 5: Distribution of 1 [p1(e) < c(e1) for some e ∈ {1, . . . ,M} × {0, . . . ,M}] and
1
[
p1(e) < pFB

1 (e) for some e ∈ {1, . . . ,M} × {0, . . . ,M}
]
. Parameterizations and equilibria

within parameterizations weighted equally. {Figure: MPE and
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Figure 6: Distribution of N1 − NFB
1 . All equilibria (solid line), best equilibrium (dotted

line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally. {Figure: distribution
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Thus, the equilibria typically have too many firms in the short run, consistent with over-
entry. They very rarely have too few firms in the short run. Figure 6 also breaks out the
best equilibrium as a dotted line and the worst equilibrium as a dashed line. Similar to our
examples in Section 5.2, there is no discernible difference between the best and the worst
equilibrium.

Figure 7 shows the distribution of N∞ − NFB
∞ as a solid line and breaks out the best

equilibrium as a dotted line and the worst equilibrium as a dashed line. Result 6 summarizes:
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Figure 7: Distribution N∞−NFB
∞ . All equilibria (solid line), best equilibrium (dotted line),

and worst equilibrium (dashed line). Parameterizations and equilibria within parameteriza-
tions weighted equally. {Figure: CDF of

{Result: MPE involves

Result 6 (1) N∞ is larger than NFB
∞ in 60% of parameterizations and smaller than NFB

∞

in 5% of parameterizations. (2) For the best equilibrium, N∞ is larger than NFB
∞ in 62%

of parameterizations and smaller than NFB
∞ in 1% of parameterizations. (3) For the worst

equilibrium, N∞ is larger than NFB
∞ in 62% of parameterizations and smaller than NFB

∞ in
7% of parameterizations.

Thus, the equilibria regularly have too many firms in the long run, consistent with under-
exit. This tendency is exacerbated in the best equilibrium. The equilibria very rarely have
too few firms in the long run.

We finally turn to the speed at which firms move down their learning curves. Recall
that the expected time to maturity Tm depends on both the number of incumbent firms and
their pricing decisions. Figure 8 shows the distribution of Tm − Tm,FB as a solid line and
breaks out the best equilibrium as a dotted line and the worst equilibrium as a dashed line.
Result 7 summarizes:

{Result:TM}
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Figure 8: Distribution of Tm − Tm,FB. All equilibria (solid line), best equilibrium (dotted
line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally. {fig:TM}

Result 7 (1) Tm is larger than Tm,FB in 91% of parameterizations and smaller than Tm,FB

in 8% of parameterizations. (2) For the best equilibrium, Tm is larger than Tm,FB in 94%
of parameterizations and smaller than Tm,FB in 7% of parameterization. (3) For the worst
equilibrium, Tm is larger than Tm,FB in 91% of parameterizations and smaller than Tm,FB

in 8% of parameterizations.

The speed of learning in the equilibria is generally too slow. Moreover, the best equilibrium
exhausts learning economies even more slowly than the worst equilibrium. This is because
pricing is initially less aggressive and more firms split sales in an accommodative equilibrium
than in an aggressive equilibrium.

7 Why does dynamic competition lead to low deadweight

loss? {Section: Decomposition

Section 6 leaves us with a puzzle. Dynamic competition leads to low deadweight loss, but this
is not because the equilibrium resembles the first-best planner solution. On the contrary, the
best equilibrium can differ even more from the planner’s solution than the worst equilibrium.

7.1 Decomposition

To better understand why dynamic competition leads to low deadweight loss, we quantify
the importance of three factors that together make up deadweight loss: pricing conduct, exit
and entry conduct, and market structure. We accordingly decompose the deadweight loss
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in equation (12) as

DWLβ = TSFB
β − TSβ = DWLPR

β +DWLEE
β +DWLMS

β ,

where

DWLPR
β =

∞∑

t=0

βt
∑

e

µt(e)
[
CSFB(e) + ΠFB(e)− (CS(e) + Π(e))

]
, (17) {eq:T1}

DWLEE
β =

∞∑

t=0

βt
∑

e

µt(e)
[
PSFB(e)−ΠFB(e)− (PS(e)−Π(e))

]
, (18) {eq:T2}

DWLMS
β =

∞∑

t=0

βt
∑

e

[
µFB
t (e)− µt (e)

]
TSFB(e), (19) {eq:T3}

and, recall, Π(e) =
∑2

n=1Dn(p(e))(pn(e)− c(en)). Π
FB(e) is defined analogously.

The pricing distortion DWLPR
β in equation (17) is the incremental deadweight loss due

to state-wise differences in pricing conduct between the equilibrium and the first-best planner
solution.27

PS(e)−Π(e) is the difference of producer surplus and the static profit of the incumbent
firms in state e and thus the part of producer surplus that accounts for scrap values and setup
costs. The exit and entry distortion DWLEE

β in equation (18) is therefore the incremental
deadweight loss due state-wise differences in exit and entry conduct between the equilibrium
and the first-best planner solution. Expected inflows from scrap values in state e contribute
positively to PS(e) − Π(e) and expected outflows from setup costs negatively. A positive
value ofDWLEE

β thus reflects a tendency for over-entry or under-exit relative to the first-best
planner solution while a negative value reflects a tendency for under-entry or over-exit.

The market structure distortion DWLMS
β in equation (19) is the incremental deadweight

loss due to differences in the evolution of the industry over time between the equilibrium
and the first-best planner solution. Recall that the state e completely describes the num-
ber of incumbent firms—and therefore the extent of product variety—along with their cost
positions. A negative value of DWLMS

β therefore indicates that the equilibrium puts more

weight on more favorable market structures with higher values of TSFB(e) than the planner
solution; a positive value indicates the reverse. Note that TSFB(e) is high if firms’ cost
positions in state e in relation to the price of the outside good yield large gains from trade.

27In our model, there is no distinction between price and quantity distortions. Indeed, consumer surplus
can be written as a function of quantities rather than prices as

CS(Q) = v − σ

2∑

n=0

lnQn −
2∑

n=0

Pn(Q)Qn,

where Q ≡ (Q0, Q1, Q2) and (P0(Q), P1(Q), P2(Q)) solve

P0(Q) = p0

Q1 = D1 (p0, P1(Q), P2(Q))

Q2 = D2 (p0, P1(Q), P2(Q)) .
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TSFB(e) is also high if a large number of firms fosters product variety. Perhaps less obvi-
ously, TSFB(e) is high if in state e there are too many firms from the perspective of the
first-best planner, thus allowing the planner to receive scrap values by ceasing to operate
excess firms. Of course, these last two effects of the number of firms are mutually exclu-
sive. The factors contributing to a negative value of DWLMS

β are therefore over-entry and
under-exit as well as fast exploitation of learning economies. Factors contributing to a pos-
itive value of DWLMS

β are under-entry, over-exit, slow exploitation of learning economies,
and cost inefficient exit. This last phenomenon—which we saw could arise in the two-step
version of our model—contributes to a positive value of DWLMS

β in the same way that slow
exploitation of learning economies does: it makes it more likely that the industry stays in
higher cost states than it would have under the planner’s solution. Table 4 summarizes the
distortions that the signs of DWLEE

β and DWLMS
β indicate.

term positive negative

DWLEE
β Over-entry, under-exit Under-entry, over-exit

DWLMS
β Under-entry, over-exit, slow ex-

ploitation of learning economies,
cost inefficient exit

Over-entry, under-exit, fast ex-
ploitation of learning economies

Table 4: Decomposition terms and contributing distortions. {Table: summary

DWLEE
β and DWLMS

β can offset each other as they depend on over-entry and under-exit

in opposite ways. We therefore define the non-pricing distortion as DWLNPR
β = DWLEE

β +

DWLMS
β . It reflects (1) the net social loss from a suboptimal number of firms (setup costs

net of scrap values net of social benefits of product variety) and (2) the gross social loss
from a suboptimal exploitation of learning economies and (3) the gross social loss from
cost-inefficient exit.

Examples. Table 5 illustrates the decomposition for the aggressive and accommodative
equilibria at the baseline parameterization. The pricing distortion DWLPR

β = 10.78 is the

DWLβ DWLPR
β DWLEE

β DWLMS
β DWLNPR

β

aggr. eqbm. 14.43 10.78 4.67 -1.01 3.66
accom. eqbm. 5.01 2.35 7.32 -4.67 2.66

Table 5: Decomposition. Aggressive and accommodative equilibrium. Baseline parameteri-
zation. {tbl:DecompBasel

largest part of deadweight loss DWLβ = 14.43 in the aggressive equilibrium. It is mainly
driven by the high expected long-run average price p∞ = 8.28 (see Table 3) that results as the
industry most likely evolves into an mature monopoly. In the accommodative equilibrium,
the pricing distortion DWLPR

β = 2.35 is a smaller part of deadweight loss DWLβ = 5.01

because the industry evolves into a mature duopoly. Interestingly, DWLPR
β is small even

though the expected long-run average price p∞ = 5.24 is almost two-thirds larger than in
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the first-best planner solution (pFB
∞ = 3.25).28

In the accommodative equilibrium, the largest part of deadweight loss DWLβ = 5.01
is the exit and entry distortion DWLEE

β = 7.32. This reflects both wasteful duplication
of setup costs due to over-entry and scrap values that firms forgo in equilibrium due to
under-exit. The latter is analogous to the wasteful duplication of per-period, avoidable fixed
costs that arises in the standard war of attrition model in Tirole (1988).29 In contrast, in
the aggressive equilibrium DWLEE

β = 4.67 is a smaller part of DWLβ = 14.43 because the
follower is likely to eventually exit the industry and receive the scrap value.

In both equilibria, the market structure distortion DWLMS
β is negative, indicating that

the industry spends more time in favorable market structures than in the first-best planner
solution. This is driven by over-entry and under-exit as opposed to fast exploitation of
learning economies. Indeed, in both equilibria learning economies are exhausted more slowly
(Tm = 19.10 and Tm = 37.50, see again Table 3) than in the planner solution (Tm,FB =
15.02).

As DWLMS
β partially offsets DWLEE

β , the non-pricing distortion DWLNPR
β = 3.66 is

much smaller than the pricing distortion DWLPR
β = 10.78 in the aggressive equilibrium.

In the accommodative equilibrium the non-pricing distortion DWLNPR
β = 2.66 is slightly

larger than the pricing distortion DWLPR
β = 2.35.

General results. Figure 9 shows the distribution of
DWLPR

β

DWLβ
,

DWLEE
β

DWLβ
,

DWLMS
β

DWLβ
, and

DWLNPR
β

DWLβ
. We scale each term of the decomposition by DWLβ to better gauge its size.

Result 8 highlights some findings:
{Result: Sign of

Result 8 (1) The pricing distortion DWLPR
β is positive in 98% of parameterizations. (2) The

exit and entry distortion DWLEE
β is positive in 81% of parameterizations. (3) The market

structure distortion DWLMS
β is negative in 70% of parameterizations. (4) The non-pricing

distortion DWLNPR
β is positive in 92% of parameterizations.

DWLEE
β is typically positive by part (2) of Result 8 because of over-entry and under-exit.

Also because of over-entry and under-exit, DWLMS
β is typically negative by part (3), as the

speed of learning in the equilibria is generally too slow (see Figure 8 and Result 7). Thus, as
highlighted in Result 9, DWLMS

β typically offsets DWLEE
β so that DWLNPR

β is very often
smaller than its largest component (in absolute value):

{Result: Offset

Result 9 |DWLNPR
β | is less than max

{∣∣∣DWLEE
β

∣∣∣ ,
∣∣∣DWLMS

β

∣∣∣
}

in 88% of parameteriza-

tions.

Parts (1) and (4) of Result 8 show that generally both pricing and non-pricing distortions
contribute to deadweight loss. As Result 10 shows, the pricing distortion is often larger than
the non-pricing distortion:

28Dynamic first-best prices
(
pFB
1 (e), pFB

2 (e)
)
, in turn, coincide with static first-best prices (c(e1), c(e2)) if

e1 ≥ m and e2 ≥ m.
29In the Online Appendix, we will establish that our model with scrap values is formally equivalent to a

model with per-period, avoidable fixed costs but without scrap values.
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Figure 9: Distribution of
DWLPR

β

DWLβ
,

DWLEE
β

DWLβ
,

DWLMS
β

DWLβ
, and

DWLNPR
β

DWLβ
. Parameterizations and

equilibria within parameterizations weighted equally. {fig:DecompMPE}

{Result: PR distortion
Result 10 The pricing distortion DWLPR

β is larger than the non-pricing distortion DWLNPR
β

in 73% of parameterizations.

7.2 Why is the best equilibrium so good?

The deadweight loss in the best equilibrium is small although it often differs greatly from
the first-best planner solution. Recall that the best equilibrium is often accommodative.

To see why the deadweight loss in an accommodative equilibrium is small, we show in
a first step that the pricing distortion DWLPR

β is small. Recall from Result 10 that the
pricing distortion is often larger than the non-pricing distortion. In a second step, we argue
that the non-pricing distortion DWLNPR

β is small because of the social benefit of product
variety.

Why is the pricing distortion small? At first blush, there appears to be no reason
for the pricing distortion in an accommodative equilibrium to be particularly small. At
the baseline parameterization, equilibrium prices (p1(e), p2(e)) substantially exceed static
first-best prices (c(e1), c(e2)) even once the industry becomes a mature duopoly.

Proposition 2, however, bounds the contribution CSFB(e) + ΠFB(e) − (CS(e) + Π(e))
to the pricing distortion DWLPR

β by the demand for the outside good D0(p(e)):

{Proposition: Taylor
Proposition 2 Consider a symmetric state e = (e, e), where e > 0. If p0 ≥ κ, p1(e) > c(e),
and D0(p(e)) <

1
2 , then

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) ≤ (p1(e)− c(e))2

σ
D0(p(e))(1 −D0(p(e))). (20) {eq: Taylor approx
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Note that the bound on the right-hand side of equation (20) approaches zero as the demand
for the outside good approaches zero. This often has bite: as the incumbent firms move
down their learning curves, they improve their cost positions relative to the price of the
outside good and drive the share of the outside good close to zero. Exceptions occur only if
learning economies are weak—ρ is close to 1—or inconsequential because the outside good
is highly attractive.

While the bound on the right-hand side of equation (20) relies on logit demand, the
intuition is more general. To a first-order approximation, the deadweight loss due to market
power decreases as market demand becomes less price elastic (Harberger 1954). With logit
demand, a decrease in the price elasticity of the aggregate demand D1 +D2 for the inside
goods is associated with a decreased share D0 of the outside good. In the Online Appendix,
we will show that a similar property holds for linear demand with differentiated products.

Why is the non-pricing distortion small? Recall that the non-pricing distortionDWLNPR
β =

DWLEE
β +DWLMS

β reflects the net social loss from a suboptimal number of firms as well
as the gross social losses from suboptimal exploitation of learning economies and cost ineffi-
cient exit. Recall, too, that, broadly speaking, in particular accommodative equilibria have
too many firms, both in the short run and in the long run, consistent with over-entry and
under-exit (Results 5, 6, and parts (2) and (3) of 8). Negative values of DWLMS

β thus tend

to offset positive values of DWLEE
β (Result 9).

Of course, too many firms give rise to a social loss from the wasteful duplication of setup
costs due to over-entry and scrap values that firms forgo in equilibrium due to under-exit.
However, there is a “silver lining”: too many firms give rise to a social benefit from additional
product variety. Because of the social benefit of product variety, the net social loss from
too many firms is small. This is especially relevant because accommodative equilibria tend
to arise when the degree of product differentiation σ is high. Hence, the social benefit of
product variety tends to be large.

Learning economies accentuate the silver lining of additional product variety. Suppose
the industry evolves into a mature duopoly in an accommodative equilibrium and into a
mature monopoly in the first-best planner solution, and that there is no further exit and
entry. Then there exists a period t∗ such that for period t ≥ t∗, the equilibrium transient
distribution µt (e) puts all mass on state e, where e1 ≥ m and e2 ≥ m, and the first-
best transient distribution µFB

t (e) puts all mass on state e, where either e1 ≥ m and
e2 = 0 or e1 = 0 and e2 ≥ m. Because learning economies are exhausted and there is
no further exit and entry, we have TSFB(e) = TSFB(m,m) if e1 ≥ m and e2 ≥ m, and
TSFB(e) = TSFB(m, 0) if either e1 ≥ m and e2 = 0 or e1 = 0 and e2 ≥ m. Moreover,
TSFB(m,m) = CSFB(m,m) and TSFB(m, 0) = CSFB(m, 0) because the planner sets static
first-best prices. Hence, the market structure distortion DWLMS

β can be approximated as

t∗∑

t=0

βt
∑

e

[
µFB
t (e)− µt (e)

]
TSFB(e)− βt∗+1

1− β

[
CSFB(m,m)− CSFB(m, 0)

]
,

where the last term can be thought of as a reduction in DWLMS
β —and thus in the non-

pricing distortion DWLNPR
β —due to the social benefit of additional product variety. From
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equation (10) it is straightforward to establish that

CSFB(m,m)− CSFB(m, 0)

= σ

(
ln

(
exp

(−p0
σ

)
+ 2exp

(−c(m)

σ

))
− ln

(
exp

(−p0
σ

)
+ exp

(−c(m)

σ

)))
,

where c(m) = κρlog2 m from equation (1), and

d(CSFB(m,m)− CSFB(m, 0))

dρ
= − (2D1(c(m), c(m)) −D1(c(m),∞)) κρlog2 m−1 log2m < 0,

since 2D1(c(m), c(m)) = 2

2+exp
(
−
(

p0−c(m)
σ

)) > 1

1+exp
(
−
(

p0−c(m)
σ

)) = D1(c(m),∞). Hence, as

learning economies strengthen, the reduction in DWLMS
β and DWLNPR

β due to the social
benefit of additional product variety increases.

7.3 Why is the worst equilibrium not so bad?

Recall that the worst equilibrium is aggressive. To see why the deadweight loss in an
aggressive equilibrium is small (albeit not as small as in the best equilibrium), we show
in a first step that the pricing distortion DWLPR

β is small. In a second step, we argue that

the non-pricing distortion DWLNPR
β is small because of a fairly efficient winnowing out of

firms.
We emphasize that the arguments below do not imply that the deadweight loss in an

aggressive equilibrium is close to zero. Rather, each one speaks to an economic force in the
model that serves as a “headwind” that keeps the deadweight loss from becoming excessively
large.

Why is the pricing distortion small? There again appears to be no reason for the
pricing distortion in an aggressive equilibrium to be small. At the baseline parameteriza-
tion, the industry evolves into a mature monopoly. Proposition 2 bounds the contribution
CSFB(e) + ΠFB(e) − (CS(e) + Π(e)) to the pricing distortion DWLPR

β by the degree of

product differentiation σ and the advantage-building motive U1

(
e1+
)
− U1 (e):

{Proposition: Monopoly
Proposition 3 Consider a state e = (e, 0), where e > 0. Then

CSFB(e) + ΠFB(e)− (CS(e) + Π(e))

<

{
σ if 0 ≤ U1

(
e1+
)
− U1 (e) < σ

(
1 + exp

(
p0−c(e)

σ

))
,

σ +
∣∣U1

(
e1+
)
− U1 (e)

∣∣ otherwise.

(21) {eq: Monopoly DWL

Note that the bound on the right-hand side of equation (21) approaches σ as the incumbent
firm moves down its learning curve and U1

(
e1+
)
− U1 (e) approaches zero. While Propo-

sition 3 relies on logit demand, the intuition that the threat of substitution to the outside
good holds market power in check transcends the logit specification.
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Proposition 3 has bite because aggressive equilibria tend to arise when the degree of
product differentiation σ is low. This is intuitive: pricing aggressively to marginalize one’s
rival or altogether force it from the industry is especially attractive if products are close
substitutes so that firms on an equal footing would fiercely compete.

Why is the non-pricing distortion small? While an aggressive equilibrium usually
involves delayed exit (relative to the first-best planner solution), it involves rather brisk
eventual exit. Thus, the industry usually quickly evolves towards the first-best market
structure in an aggressive equilibrium, which tends to keep DWLMS

β , and thus DWLNPR
β ,

small. The small non-pricing distortion reflects the resulting relatively low net social loss
from a suboptimal number of firms. Put another way, in an aggressive equilibrium, this net
social loss is small because competition for the market resolves itself quickly and winnows
out firms in a fairly efficient way.

8 Conclusion {Section: Conclusions

This paper studies a setting in which the traditional allocative and distributive roles of
pricing are supplemented by a third role: investment. The investment role, which arises
when firms jostle for competitive advantage through the prices they set, leads to dynamic
competition.

In the introduction we floated the idea that it should be obvious that dynamic competi-
tion along a learning curve would be extremely efficient. In contrast to dynamic competition
in rent-seeking models or even conventional wars of attrition where competition among firms
squanders resources, competition in our setting creates socially valuable know-how as firms
move down their learning curves. And instead of throwing this surplus away on wasteful
activities, firms transfer it to consumers through lower prices.

However, our computations illustrate that the conduct and market structure that arise
under dynamic competition often differ greatly from the conduct and structure that a first-
best planner prefers: dynamic competition usually does not look like the socially efficient
solution. Moreover, as the special case of our model with a two-step learning curve illus-
trates, even if price competition transfers all the benefits of learning economies from firms to
consumers, the presence of a learning curve does not eliminate wasteful coordination failures
that can arise in natural monopoly markets. In sum, dynamic competition when pricing has
an investment role is not a “magic bullet” that completely eliminates inefficiencies that can
arise in dynamic or static interactions in oligopoly markets.

Still, our results suggest the following conclusion: when price has an investment role
dynamic competition operates reasonably efficiently. Learning economies in our model re-
duce competition from the outside good so much that it minimizes quantity distortions from
oligopoly pricing. The presence of learning economies in our model also tends to bias the
entry process toward generating more entry rather than less, making it more likely that there
is eventually competition in the market. Of course, excessive entry into a market which a
planner would monopolize is inefficient because it gives rise to a duplication of setup costs.
But when there is sufficiently strong product differentiation, we tend to get accommodative
equilibria in which two firms persist in the industry, creating long-run gains from product
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variety that partially offset this inefficiency. And when product differentiation is weak, ag-
gressive equilibria arise which, although they usually involve delayed exit (relative to the
first-best planner solution), involve fairly quick eventual exit, evolving the industry rapidly
to the first-best market structure.

So why is dynamic competition reasonably efficient in our model? Ultimately, the answer
boils down to the key fundamental that creates the investment role of price in the first place:
the learning curve.

• The learning curve is a powerful force for minimizing pricing distortions in accom-
modative equilibria evolving into a mature duopoly in the long run.

• The learning curve helps lead to an outcome in which exit and entry distortions err
on the side of too many firms than too few firms, and the distortions are partly offset
by benefits from product variety (in accommodative equilibria) or eventual exit (in
aggressive equilibria).

• Learning economies accentuate the long-run benefits from product variety when there
is over-entry and under-exit in accommodative equilibria.

Put simply, when price serves as an investment, dynamic competition is efficient because of
the efficiency-enhancing properties of the investment.

From a policy perspective, our results suggest that in settings in which price serves as an
investment, the upside from competition policy or regulatory interventions—beyond those
aimed at preventing firms from colluding on price and entry/exit decisions—is likely to be
fairly limited.30 Though we show in Besanko et al. (2014) that welfare gains from conduct
restrictions on pricing are possible in the setting we analyze here, achieving those gains would
require detailed knowledge of demand and cost parameters. Unless a competition authority
executes flawlessly based on exact knowledge of market primitives, it may be better not to
intervene (except to police collusive behavior) and tolerate the “not so bad” welfare losses
that would typically arise under dynamic competition.

30Analysis (not shown in the paper) suggests that enforcement of statutes against collusion is likely to be
important in our setting. Not only does full collusion lead to higher deadweight losses than dynamic compe-
tition does, it results in significantly lower consumer surplus. For example, in the baseline parameterization,
the discounted present value of consumer surplus under the fully collusive solution is 32.54, as compared to
93.87 and 103.29 under the aggressive and acommodative equilibrium, respectively. (The latter two numbers
come from Table 3
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A Omitted expressions {Section: Appendix2

Exit decision of incumbent firm. The probability of incumbent firm 1 exiting the {ap:ExitExpress
industry in state e′ is

φ1(e
′) = 1− FX(X̂1(e

′))

=





1 if X̂1(e
′) < X −∆X ,

1
2 −

[X̂1(e′)−X]
2∆X

if X̂1(e
′) ∈ [X −∆X ,X +∆X ],

0 if X̂1(e
′) > X +∆X

and the expectation of the scrap value conditional on exiting the industry is

EX

[
X1|X1 ≥ X̂1(e

′)
]

=

∫ X+∆X

F−1
X

(1−φ1(e
′))
X1dFX(X1)

φ1(e
′)

=
1

φ1(e
′)

[
ZX (0)− ZX

(
1− φ1(e

′)
)]
,

where

ZX (1− φ) =
1

∆2
X





−1
6

(
X −∆X

)3
if 1− φ ≤ 0,

1
2

(
∆X −X

) (
F−1
X (1− φ)

)2
+ 1

3

(
F−1
X (1− φ)

)3
if 1− φ ∈

[
0, 12
]
,

1
2

(
∆X +X

) (
F−1
X (1− φ)

)2 − 1
3

(
F−1
X (1− φ)

)3 − 1
3X

3
if 1− φ ∈

[
1
2 , 1
]
,

1
6

(
X +∆X

)3 − 1
3X

3
if 1− φ ≥ 1

and

F−1
X (1− φ) = X +∆X





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12
]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1
]
,

1 if 1− φ ≥ 1.

Entry decision of potential entrant. The probability of potential entrant 1 not entering {ap:EntryExpres
the industry in state e′ is

φ1(e
′) = 1− FS(Ŝ1(e

′))

=





1 if Ŝ1(e
′) < S −∆S,

1
2 −

[Ŝ1(e′)−S]
2∆S

if Ŝ1(e
′) ∈ [S −∆S , S +∆S ],

0 if Ŝ1(e
′) > S +∆S

and the expectation of the setup cost conditional on entering the industry is

ES

[
S1|S1 ≤ Ŝ1(e

′)
]

=

∫ F−1
S

(1−φ1(e
′))

S−∆S
S1dFS(S1)

(1− φ1(e
′))

=
1

φ1(e
′)

[
ZS

(
1− φ1(e

′)
)
− ZS (1)

]
,
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where

ZS (1− φ) =
1

∆2
S





−1
6

(
S −∆S

)3
if 1− φ ≤ 0,

1
2

(
∆S − S

) (
F−1
S (1− φ)

)2
+ 1

3

(
F−1
S (1− φ)

)3
if 1− φ ∈

[
0, 12
]
,

1
2

(
∆S + S

) (
F−1
S (1− φ)

)2 − 1
3

(
F−1
S (1− φ)

)3 − 1
3S

3
if 1− φ ∈

[
1
2 , 1
]
,

1
6

(
S +∆S

)3 − 1
3S

3
if 1− φ ≥ 1

and

F−1
S (1− φ) = S +∆S





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12
]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1
]
,

1 if 1− φ ≥ 1.

Producer surplus (decentralized exit and entry). Producer surplus in state e is

PS(e) =

2∑

n=1

PSn(e),

where

PS1(e) = Π1(e) +

2∑

n=0

Dn(p(e))
{
1 [e1 6= 0]φ1

(
en+

)
EX

[
X1|X1 ≥ X̂1

(
en+

)]

−1 [e1 = 0]
(
1− φ1

(
en+

))
ES

[
S1|S1 ≤ Ŝ1

(
en+

)]}

is producer surplus of firm 1 in state e with

Π1(e) = D1(p(e))(p1(e)− c(e1)).

PS2(e) and Π2(e) are analogous.

Producer surplus (centralized exit and entry). Producer surplus in state e is

PSFB(e) = ΠFB(e) +

2∑

n=0

Dn

(
pFB(e)

)

×
{
ψFB
1,1

(
en+

)
EX,S

[
−1 [e1 = 0]S1 − 1 [e2 = 0]S2|UFB

(
en+,X,S

)
= UFB

1,1

(
en+,X,S

)]

+ψFB
1,0

(
en+

)
EX,S

[
−1 [e1 = 0]S1 + 1 [e2 6= 0]X2|UFB

(
en+,X,S

)
= UFB

1,0

(
en+,X,S

)]

+ψFB
0,1

(
en+

)
EX,S

[
1 [e1 6= 0]X1 − 1 [e2 = 0]S2|UFB

(
en+,X,S

)
= UFB

0,1

(
en+,X,S

)]

+ψFB
0,0

(
en+

)
EX,S

[
1 [e1 6= 0]X1 + 1 [e2 6= 0]X2|UFB

(
en+,X,S

)
= UFB

0,0

(
en+,X,S

)] }

with ΠFB(e) =
∑2

n=1Dn

(
pFB(e)

) (
pFB
n (e)− c(en)

)
.
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Industry structure, conduct, and performance. The expected short-run and long-run
number of firms is

N1 =
∑

e

µ1 (e)N(e), N∞ =
∑

e

µ∞ (e)N(e),

where number of firms in state e is

N(e) =

2∑

n=1

1 [en > 0] .

The expected long-run average price is

p∞ =
∑

e≥(0,0)

µ∞ (e)

1− µ∞(0, 0)
p(e),

where (share-weighted) average price in state e is

p(e) =
2∑

n=1

Dn(p1(e), p2(e))

1−D0(p1(e), p2(e))
pn(e).

The expected time to maturity is

Tm = E [min {t ≥ 0|et ∈ Ω}| e0 = (0, 0)] ,

where et is the state of the industry in period t and

Ω = {(m, 0), . . . , (M, 0), (0,m), . . . , (0,M), (m,m), . . . , (M,M)}

is the set of states in which the industry is either a mature monopoly or a mature duopoly.
min {t ≥ 0|et ∈ Ω} is the so-called first passage time into the set of states Ω. It can be shown
that Tm is the solution to a system of linear equations (Kulkarni 1995, equation (4.72)).

The expected NPV of consumer surplus CSβ is defined analogously to the expected NPV
of total surplus TSβ in equation (11).

B Proofs {Section: Appendix

Proof of Proposition 1. The method of proof is to show, first, that the value functions
and the policy functions in Table 1 are consistent with each other in every state and them to
show that in every state, firms would not make a one-shot deviation from their equilibrium
strategies. The details of this analysis will be presented in the Online Appendix.
Proof of Proposition 2. Define the sum of consumer surplus and static profit to be

Φ(p) = CS(p, p) + 2D1(p, p)(p − c(e)).

Using this definition, in a symmetric state e = (e, e), where e > 0, we can write

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) = Φ(pFB
1 (e))− Φ(p1(e)).
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We have

Φ′(p) = − 1

σ
(p− c(e))D0(p, p)(1 −D0(p, p)), (22) {eq: Deriv of NB(p)

Φ′′(p) = − 1

σ2
((p− c(e))(1 − 2D0(p, p)) + σ)D0(p, p)(1 −D0(p, p)). (23) {eq: 2nd derive

Hence, Φ(p) is strictly quasiconcave in p and attains its maximum at p = c(e). Thus, we
obtain

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) ≤ Φ(c(e)) − Φ(p1(e)). (24) {eq: preliminary

We bound the right-hand side of equation (24). Let p̃ be such that D0(p̃, p̃) = 1
2 , so

1−2D0(p, p) ≥ 0 for all p ≤ p̃ becauseD0(p, p) increases in p. Equation (23) implies that Φ(p)
is strictly concave in p over the interval [c(e), p̃]. This interval is non-empty: the assumption
p0 ≥ κ coupled with κ ≥ c(e) implies D0(c(e), c(e)) ≤ D0(κ, κ) ≤ 1

3 <
1
2 = D0(p̃, p̃). As

D0(p, p) increases in p, it must be that c(e) < p̃.
By assumption, p1(e) ∈ [c(e), p̃]. From Theorem 21.2 in Simon & Blume (1994) and

equation (22) we therefore have

Φ(c(e)) − Φ(p1(e)) ≤ Φ′(p1(e))(c(e) − p1(e))

=
(p1(e)− c(e))2

σ
D0(p1(e), p1(e))(1 −D0(p1(e), p1(e))). (25)

This establishes Proposition 2.
Proof of Proposition 3. Define the sum of consumer surplus and static profit to be

Φ(p) = CS(p,∞) +D1(p,∞)(p − c(e)).

Using this definition, in a state e = (e, 0), where e > 0, we can write

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) = Φ(pFB
1 (e))− Φ(p1(e)).

We have

Φ′(p) = − 1

σ
(p− c(e))D0(p,∞)(1 −D0(p,∞)),

Φ′′(p) = − 1

σ2
((p− c(e))(1 − 2D0(p,∞)) + σ)D0(p,∞)(1−D0(p,∞)).

Hence, Φ(p) is strictly quasiconcave in p and attains its maximum at p = c(e). Thus, we
obtain

CSFB(e) + ΠFB(e)− (CS(e) + Π(e)) ≤ Φ(c(e)) − Φ(p1(e)),

where Φ(c(e)) = v − c(e) + σ ln
(
1 + exp

(
c(e)−p0

σ

))
.

p1(e) is uniquely determined by the solution to the first-order condition (5); it can be
written as

p1(e) = c(e) −
[
U1

(
e1+
)
− U1 (e)

]
+ σ

(
1 +W

(
exp

(
p0 − c(e) +

[
U1

(
e1+
)
− U1 (e)

]

σ
− 1

)))
,
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where W (·) is the Lambert W function. Defining x = p0−c(e)
σ and y =

U1(e1+)−U1(e)

σ , this
can be further written as

p1(e) = c(e) + σ (−y + 1 +W (exp(x+ y − 1))) .

Hence,

Φ(p1(e)) = v − c(e) + σ

(
ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)
+

y

1 +W (exp(x+ y − 1))
− 1

)

and

Φ(c(e)) = v − c(e) + σ ln (1 + exp(−x)) .

It follows that

Φ(c(e)) − Φ(p1(e))

= σ

(
ln (1 + exp(−x))− ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)
− y

1 +W (exp(x+ y − 1))
+ 1

)

(26) {form1}

= σ

(
ln (1 + exp(x))− ln (1 +W (exp(x+ y − 1)))−W (exp(x+ y − 1)) +

yW (exp(x+ y − 1))

1 +W (exp(x+ y − 1))

)
.

(27) {form2}

Some properties of the Lambert W function are that W (z) is increasing in z, W (0) = 0,
and W (z exp(z)) = z for all z ≥ 0.

Case 1: y < 1 + exp(x). We first show that if y < 1 + exp(x), then

ln (1 + exp(−x))− ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)
+ 1 < 1. (28) {cond2}

To see this, note that equation (28) is equivalent to

ln (1 + exp(−x)) ≤ ln

(
1 +W (exp(x+ y − 1))

W (exp(x+ y − 1))

)

⇔ exp(−x) < 1

W (exp(x+ y − 1))

⇔ exp(x) > W (exp(x+ y − 1)) .

If y = 1+exp(x), then the right-hand side isW (exp(x+ exp(x))) =W (exp(x) exp(exp(x))) =
exp(x). Moreover, because W (z) is increasing in z, exp(x) > W (exp(x+ y − 1)) for all
y < 1 + exp(x).

Consider equation (26). From equation (28) it follows that

Φ(c(e)) − Φ(p1(e)) < σ

(
1− y

1

1 +W (exp(x+ y − 1))

)
.
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Moreover, 0 < 1
1+W (exp(x+y−1)) < 1. Therefore, if y < 0, then

Φ(c(e)) − Φ(p1(e)) < σ (1 + |y|) (29) {ineqa}

and, if y ≥ 0, then

Φ(c(e)) − Φ(p1(e)) < σ. (30) {ineqb}

Case 2: y ≥ 1 + exp(x). We first show that if y ≥ 1 + exp(x), then

ln (1 + exp(x)) − ln (1 +W (exp(x+ y − 1)))−W (exp(x+ y − 1)) < 1. (31) {cond3}

To see this, note that

ln (1 + exp(x))− ln (1 +W (exp(x+ y − 1)))−W (exp(x+ y − 1))

≤ ln (1 + exp(x))− ln (1 +W (exp(x+ exp(x))))−W (exp(x+ exp(x)))

= ln (1 + exp(x))− ln (1 + exp(x))− exp(x) = − exp(x) < 1.

Consider equation (27). From equation (31) it follows that

Φ(c(e)) − Φ(p1(e)) < σ

(
1 + y

W (exp(x+ y − 1))

1 +W (exp(x+ y − 1))

)
.

Moreover, 0 < W (exp(x+y−1))
1+W (exp(x+y−1)) < 1. Because y ≥ 1 + exp(x) > 0, we have

Φ(c(e)) − Φ(p1(e)) < σ (1 + y) . (32) {ineqc}

Collecting equations (29), (30), and (32) establishes Proposition 3.

C Aggressive and accommodative equilibria {Section: Appendix3

We offer formal definitions of aggressive and accommodative equilibria, but note from the
outset that any attempt to classify equilibria is fraud with difficulty because the different
equilibria lie on a continuum and thus morph into each other in complicated ways as we vary
the parameters of the model.

Our definition of an aggressive equilibrium hones in on a trench in the pricing decision,
and our definition of an accommodative equilibrium on a lack of exit from a duopolistic
industry:

Definition 1 An equilibrium is aggressive if

p1(e) < p1(e1, e2 + 1), p2(e) < p2(e1, e2 + 1), φ2(e) > φ2(e1, e2 + 1)

for some state e > (0, 0) with e1 > 1 and e1 > e2,
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aggressive accommodative unclassified

best 46.40% 98.04% 58.02%
worst 98.11% 66.17% 27.67%

Table 6: Percentage of parameterizations at which an aggressive, accommodative, or unclas-
sified equilibrium (if one exists) is best or worst. Unweighted. {TAB:CLASS1}

unique equilibrium multiple equilibria
best worst

aggressive 2.83% 43.19% 97.96%
accommodative 83.82% 40.66% 1.36%
unclassified 13.35% 16.15% 0.68%

Table 7: Percentage of parameterizations at which the best or worst equilibrium is aggressive,
accommodative, or unclassified. Unweighted. {TAB:CLASS2}

Definition 2 An equilibrium is accommodative if

φ1(e) = φ2(e) = 0

for all states e > (0, 0).

These definitions are not exhaustive. The percentage of equilibria classified as aggressive is
96.88%, the percentage of equilibria classified as accommodative is 1.99%, and the percentage
of unclassified equilibria is 1.13%. Our computations led always to a unique accommodative
equilibrium but often to multiple aggressive equilibria at a given parameterization.

Our definitions of aggressive and accommodative equilibria map into worst, respectively,
best equilibria. Table 6 shows that an aggressive equilibrium (if one exists) is the worst
equilibrium in 98.1% of parameterizations while an accommodative equilibrium (if one ex-
ists) is the best equilibrium in 98.0% of parameterizations. Conversely, Table 7 shows that
if there is a unique equilibrium, then it is classified as accommodative in 83.8% of pa-
rameterizations. If there are multiple equilibria, then the best equilibrium is classified as
accommodative in 40.4% parameterizations and as aggressive in 43.2% parameterizations,
However, the worst equilibrium is classified as aggressive in 97.9% of parameterizations. To
facilitate the exposition and build intuition, we therefore identify the best equilibrium with
an accommodative equilibrium and the worst equilibrium—to the extent that it differs from
the best equilibrium—with an aggressive equilibrium. If the equilibrium is unique, then we
identify it with an accommodative equilibrium.
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