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Abstract

We characterize a class of dynamic stochastic games that we call separable dynamic games with noisy

transitions and establish that these widely used models are protocol invariant provided that periods are

sufficiently short. Protocol invariance means that the set of Markov perfect equilibria is nearly the same

irrespective of the order in which players are assumed to move within a period. Protocol invariance can

facilitate applied work and renders the implications and predictions of a model more robust. Our class

of dynamic stochastic games includes investment games, R&D races, models of industry dynamics, dynamic

public contribution games, asynchronously repeated games, and many other models from the extant literature.
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1 Introduction

The timing of decisions is an essential ingredient into modelling many strategic situations. Asynchronous

decisions are a type of commitment, and being able to move first and thus set the stage for rivals can confer

a considerable advantage on a player. Synchronous decisions, in contrast, take away the ability to commit

as players are neither leaders nor followers. From the basically static models in Cournot (1838) and von

Stackelberg (1934) to the genuinely dynamic models in Cyert and DeGroot (1970) and Maskin and Tirole

(1987, 1988a, 1988b) and the anti-folk theorems in Rubinstein and Wolinsky (1995) and Lagunoff and Matsui

(1997, 2001), a long and distinguished literature has pointed out cases where the protocol of moves matters

crucially for equilibrium behavior.

Our paper provides a counterpoint to this literature. We show that a fairly general and widely used class

of dynamic models is protocol invariant provided that periods are sufficiently short and moves are therefore

sufficiently frequent. Protocol invariance means that the set of equilibria of a model is nearly the same

irrespective of the order in which players are assumed to move within a period, including—and extending

beyond—simultaneous, alternating, and sequential moves. Protocol invariance can facilitate applied work

and renders the implications and predictions of a model more robust.

We focus on infinite-horizon dynamic stochastic games and their stationary Markov perfect equilibria

(henceforth Markov perfect equilibria for short). A dynamic stochastic game is a dynamic system that can be

in different states in different periods according to a discrete-time Markov process that players can influence

through their actions. Dating back to Shapley (1953), dynamic stochastic games have a long tradition in

economics and are central to the analysis of strategic interactions among forward-looking players in dynamic

environments. The main contribution of this paper is to characterize a class of dynamic stochastic games

that are protocol invariant provided that periods are sufficiently short. We call this class separable dynamic

games with noisy transitions.

We apply dynamic stochastic games to situations in which a player primarily influences his rivals’ payoffs

by taking action to change the state. While per-period payoffs and state-to-state transitions depend arbitrarily

on the state in a separable dynamic game, they are assumed to depend on players’ actions in an additive

manner: to a first-order approximation, per-period payoffs and state-to-state transitions are built from parts

that depend on the actions taken by individual players. To the extent that there are complementarities

between players’ actions and other non-separabilities in per-period payoffs and state-to-state transitions,

they must vanish as periods become short.

Noisy transitions preclude that there is an action that a player can take to guarantee a change in the

state. We model the evolution of the state by a discrete-time approximation to a continuous-time Markov

process in which the time spent in a state has an exponential distribution with a finite hazard rate. The finite

hazard rate implies that transitions are noisy. This assumption reflects the view that models are only an

approximation to reality, and so there always is some residual uncertainty associated with taking an action.

While the assumptions of separability and noisy transitions doubtlessly rule out some interesting ap-
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plications, many dynamic models in the literature are amenable to these assumptions. Examples include

investment games (Spence 1979, Fudenberg and Tirole 1983, Hanig 1986, Reynolds 1987, Reynolds 1991,

Dockner 1992), R&D races (Reinganum 1982, Lippman and McCardle 1987), models of industry dynam-

ics (Ericson and Pakes 1995), dynamic public contribution games (Marx and Matthews 2000, Compte and

Jehiel 2004, Georgiadis 2015), and the recent continuous-time stochastic games with moves at random times

(Arcidiacono, Bayer, Blevins, and Ellickson 2016, Ambrus and Lu 2015, Calcagno, Kamada, Lovo, and

Sugaya 2014, Kamada and Kandori 2017). We also show that some dynamic models that are not obviously

separable, including the asynchronously repeated Bertrand, Cournot, and coordination games in Maskin and

Tirole (1988a, 1988b) and Lagunoff and Matsui (1997), can be re-cast to satisfy our assumptions.

Our main result is that separable dynamic games with noisy transitions are protocol invariant provided

that periods are sufficiently short. To provide intuition, consider a prototypical investment game between

two firms. A firm can undertake a risky investment project to increase its capital stock. A firm’s per-period

payoff increases in its own capital stock and decreases in its rival’s capital stock. The separability assumption

is satisfied, as whether its rival invests affects directly neither the firm’s per-period payoff nor the probability

that the firm succeeds in increasing its capital stock. Moreover, transitions from one state to another are

noisy due to the risky nature of the investment project.

Now contrast two protocols of moves. When firms move alternatingly, a forward-looking firm deciding

whether to invest understands that its rival’s capital stock remains constant for (at least) the period. In

contrast, when firms move simultaneously, the firm has to take into account the probability that its rival’s

capital stock increases over the course of the period. This probability, however, becomes negligible as periods

become short because transitions are noisy. The protocol of moves is therefore almost immaterial to the

firm’s decision.

As intuitive as it may be that our assumptions imply protocol invariance, this intuition neither immediately

translates into a proof nor is it always salient in the literature. Consider the large literature on technology

adoption and the related debate about the persistence of monopoly (see Reinganum (1989) and the references

therein). In a prototypical model with two firms, the state-of-the-art technology evolves over time and a firm

decides whether to continue operating its current technology or pay a cost to undertake an upgrade to the

state-of-the-art technology. The separability assumption is satisfied as a firm’s per-period payoff depends

on its rival’s current technology but not directly on its rival’s adoption decision. Riordan and Salant (1994)

approximate a continuous-time game by a discrete-time game with alternating moves and establish that a

pattern of increasing dominance arises and all adoptions are by one of the firms. Giovannetti (2001) shows

in a discrete-time game with simultaneous moves that firms take turns to adopt in a pattern of perpetual

leapfrogging. Most recently, Iskhakov, Rust, and Schjerning (2017) show that a game with alternating

moves has a unique Markov perfect equilibrium whereas the game with simultaneous moves has a vast

number of equilibria, with some displaying increasing dominance and others leapfrogging.1 Our main result

1In the game with alternating moves uniqueness obtains under certain parameter restrictions; absent these restrictions, the “set
of payoffs shrinks dramatically” in the game with alternating moves as compared to the game with simultaneous moves (Iskhakov,
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clarifies that these stark differences between simultaneous and alternating moves hinge on the outcome of the

adoption decision being certain. Provided that periods are sufficiently short, these differences vanish under

the empirically plausible assumption that the process of updating to the state-of-the-art technology involves

at least some uncertainty.

The proof of our main result proceeds from the equilibrium conditions for a separable dynamic game with

noisy transitions. We fix an arbitrary protocol of moves and take the limit as periods become short and we

therefore pass from discrete to continuous time. We observe that the limit conditions are independent of the

protocol of moves used to pass to the limit. Protocol invariance follows immediately if the limit conditions

admit a unique solution.

However, due to the richness of the class of separable dynamic games with noisy transitions, the limit

conditions may admit multiple solutions. In this case, taking the limit of a sequence of equilibria under one

protocol of moves may potentially lead to a different solution of the limit conditions than taking the limit under

another protocol of moves, thereby causing protocol invariance to fail. To show that this does not happen,

we introduce differential topology tools to study the limit conditions. We prove that generically all solutions

of the limit conditions can be approximated by the Markov perfect equilibria of a separable dynamic game

with noisy transitions and an arbitrary protocol of moves provided that periods are sufficiently short. Our

proof draws on and expands ideas in Harsanyi (1973a, 1973b), who establishes robustness to perturbations of

payoffs and information in normal-form games. To the best of our knowledge, our paper is the first attempt

to use differential topology tools to establish robustness to the timing of decisions.

While we mostly treat the limit conditions as a technical device, they are of interest by themselves. The

limit conditions can be interpreted as the equilibrium conditions for a continuous-time stochastic game. We

also provide an equivalence result showing that the limit conditions are identical to the equilibrium conditions

for a dynamic stochastic game in which in any period one player is randomly selected to make a decision. In

this game with random moves, the fact that a player can revise his decision only at random times confers a

kind of commitment power on the player similar to that in the games with alternating moves in Maskin and

Tirole (1988a, 1988b) and Lagunoff and Matsui (1997). Our equivalence result therefore underscores that

the class of separable dynamic games with noisy transitions admits quite rich strategic interactions between

players.

Separability, noisy transitions, and Markov perfection appear to be the key properties that underpin

protocol invariance. We show that our assumptions are tight in the sense that counterexamples to protocol

invariance can be constructed if any one of them is relaxed. In particular, we show that protocol invariance

does not extend beyond Markov perfect equilibria to other equilibrium concepts.

Our main result facilitates and informs applied work in a number of ways. First and perhaps most

important, determining the protocol of moves that is most realistic and appropriate for the application at

hand may be amongst the most difficult choices a modeler has to make. In empirical work, in particular, the

Rust, and Schjerning 2017, p. 47).
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timing of decisions and the ability to commit is typically not observable to the researcher. Hence, we may

be suspicious of any implication or prediction from a model that is driven by the protocol of moves that the

modeler has chosen to impose, a point that has been made forcefully by Rosenthal (1991) and van Damme

and Hurkens (1996) for normal-form games and by Kalai (2004) for large Bayesian games. Protocol invariance

alleviates this concern and the burden of determining the protocol of moves for the class of separable dynamic

games with noisy transitions by ensuring that equilibrium behavior is independent of the timing of decisions

provided that periods are sufficiently short. Second, because the timing of decisions and the ability to commit

is typically not observable, empirical work sometimes averages over different protocols of moves (Einav 2010).

This average depends on the assumed probability distribution over protocols of moves and may be difficult

to interpret if it does not correspond to an equilibrium of any game. Protocol invariance renders averaging

unnecessary. Third, our main result cautions against the presumption that imposing asynchronous instead

of synchronous decisions on a dynamic stochastic game reduces the number of equilibria. Fourth, dynamic

stochastic games are often not very tractable analytically and thus call for the use of numerical methods.

Doraszelski and Judd (2007) show that the computational burden can vary by orders of magnitude with

the protocol of moves. For the class of separable dynamic games with noisy transitions, protocol invariance

justifies imposing the protocol of moves that is most convenient from a computational perspective.

We apply and extend our main result in three ways. First, we extend protocol invariance to the limiting

case of deterministic transitions and provide a novel dynamic programming characterization of separable

dynamic games with noisy transitions as moves become arbitrarily frequent and hazard rates arbitrarily

large. We emphasize that this extension relies on a particular way of taking the joint limit. We exposit a

discontinuity in the set of Markov perfect equilibria as moves become arbitrarily frequent and hazard rates

arbitrarily large and argue that many examples from the extant literature where equilibrium behavior hinges

on the protocol of moves can be seen as a manifestation of this discontinuity.

Second, we provide a new rationale for focusing on Markov perfect equilibria. Provided that periods are

sufficiently short, we show that if a strict finite-memory equilibrium payoff profile in a separable dynamic game

with noisy transitions and simultaneous moves is protocol invariant, then it is arbitrarily close to a Markov

perfect equilibrium payoff profile. Thus, the Markovian restriction on equilibrium strategies is not only

sufficient but also necessary for protocol invariance. Markov perfect equilibria are therefore the only equilibria

that are robust to changes in the protocol of moves. This result adds to the literature providing foundations

for Markov perfect equilibria (Maskin and Tirole 2001, Bhaskar and Vega-Redondo 2002, Sannikov and

Skrzypacz 2007, Faingold and Sannikov 2011, Bhaskar, Mailath, and Morris 2013, Bohren 2014).

Third, we contribute to the literature on computing Markov perfect equilibria (Pakes and McGuire 1994,

Pakes and McGuire 2001, Doraszelski and Judd 2007, Doraszelski and Judd 2012, Weintraub, Benkard, and

Van Roy 2008, Ifrach and Weintraub 2017). Doraszelski and Judd (2012) show that the limit conditions that

arise as we pass from discrete to continuous time are particularly easy to solve numerically, often reducing the

computational burden by orders of magnitude. Our main result provides a justification for solving the limit
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conditions by establishing that these solutions almost coincide with the Markov perfect equilibria of separable

dynamic games with noisy transitions and arbitrary protocols of moves provided that periods are sufficiently

short. Moreover, we show that this one-to-one correspondence between the solutions to the limit conditions

and the Markov perfect equilibria of dynamic stochastic games obtains more broadly. In particular, we can

dispense with the separability assumption if we restrict attention to games with simultaneous moves.

Our paper is related to two strands of literature. First, our notion of protocol invariance builds on and

extends the notion of a commitment robust equilibrium in Rosenthal (1991) and van Damme and Hurkens

(1996) from two-player normal-form games to N -player dynamic stochastic games. Rosenthal (1991) defines

a Nash equilibrium of a two-player normal-form game to be commitment robust if it is also a subgame perfect

equilibrium outcome of each of the two extensive-form games in which one of the players moves first, and

provides a series of illustrative examples. In contrast to the notion of a commitment robust equilibrium, our

notion of protocol invariance pertains to the entire set of equilibria of a fairly general class of dynamic models.

Our paper is also related to Kalai (2004), who shows that the Nash equilibria of large anonymous Bayesian

games are approximately robust to variations in the extensive-form version of the game. The driving force

behind Kalai’s (2004) result is the vanishing impact that a player’s action has on other players’ payoffs as

the number of players grows large. In our setting, the impact that a player’s action has on other players’

payoffs (other than through a change in the state) vanishes as periods become short. From a more technical

perspective, Kalai (2004) allows for ε-equilibria, while we impose exact equilibrium and prove results for

generic payoffs.

Second, previous attempts to exposit dynamic models where the protocol of moves does not matter for

equilibrium behavior are few and far between and confined to very specific models. Abreu and Gul (2000)

study bilateral bargaining and show that independent of the bargaining protocol the same limit is reached as

the time between offers becomes short. Caruana and Einav (2008) study a model in which players repeatedly

announce an action but only the final announced action is relevant for payoffs. While players can revise

their announcements, they pay a cost each time they do so; in this way, announcements play the role of

an imperfect commitment device. Caruana and Einav (2008) show that the order in which players make

announcements does not matter as long as the time between announcements is sufficiently short. In contrast

to Abreu and Gul (2000) and Caruana and Einav (2008), we do not presuppose that the limit conditions

admit a unique solution. Because our class of dynamic stochastic games is much less tightly specified, we

require differential topology tools to analyse the limit conditions.

The remainder of this paper is organized as follows. Section 2 introduces separable dynamic games with

noisy transitions. Section 3 develops our main result. Section 4 discusses a number of applications and

extensions of our main result and Section 5 concludes. Unless noted otherwise, proofs are in the Appendix.

An Online Appendix provides further examples and proofs.
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2 Separable Dynamic Games with Noisy Transitions

We focus on dynamic stochastic games with finite sets of players, states, and actions. Time t = 0,∆, 2∆, . . .

is discrete and measured in units of ∆ > 0. We refer to ∆ as the length of a period; as ∆→ 0, moves become

frequent. The time horizon is infinite. Let {1, 2, . . . , N} denote the set of players, Ω the set of states, and

Ai(ω) the set of actions of player i in state ω. Each player strives to maximize the expected net present value

of his stream of payoffs and discounts future payoffs using a discount rate ρ > 0. Monitoring is perfect.

The protocol of moves determines which players can take an action at time t and which players cannot.

We allow for a general protocol of moves that encompasses—and goes beyond—simultaneous, alternating,

and sequential moves. To this end, we allow the set of players who have the move to change from one period

to the next. The set of players J t ⊆ {1, 2, . . . , N} who have the move at time t thus becomes part of the

state of the system, and we refer to it as the “protocol” state to distinguish it from the familiar “physical”

state ωt ∈ Ω. In contrast to the physical state, for simplicity we assume that the protocol state evolves

independently of players’ actions. In the Online Appendix, we show that our protocol-invariance theorem

remains valid without this simplifying assumption.

The game proceeds as follows. It starts at time t = 0 from an initial state (ωt=0, J t=0). After observing

(ωt=0, J t=0), the players j ∈ J t=0 who have the move choose their actions at=0
Jt=0 =

(
at=0
j

)
j∈Jt=0 simultaneously

and independently from each other. Now two things happen, depending on the state (ωt=0, J t=0) and the

actions at=0
Jt=0 . First, player i receives a payoff u∆

i (ωt=0, J t=0, at=0
Jt=0). Second, the system transits from state

(ωt=0, J t=0) to state (ωt=∆, J t=∆). Independent of each another, the transition from ωt=0 to ωt=∆ happens

with probability Pr∆
(
ωt=∆|ωt=0, J t=0, at=0

Jt=0

)
and that from J t=0 to J t=∆ with probability Pr

(
J t=∆|J t=0

)
.

While player i receives a payoff irrespective of whether he has the move (i ∈ J t=0) or not (i 6∈ J t=0), the exact

amount depends on the actions at=0
Jt=0 of the players who have the move, as do the state-to-state transitions.

In the next round at time t = ∆, after observing (ωt=∆, J t=∆), the players j ∈ J t=∆ who have the move

choose their actions at=∆
Jt=∆ . Then player i receives a payoff u∆

i (ωt=∆, J t=∆, at=∆
Jt=∆) and the state changes

again from (ωt=∆, J t=∆) to (ωt=2∆, J t=2∆). The game goes on in this way ad infinitum.

To allow for a general protocol of moves, we partition the set of players {1, 2, . . . , N} and assume that

the set of players J t who have the move at time t evolves according to a Markov process that is defined over

this partition as follows:

Assumption 1 (Protocol of Moves) Let J be a partition of {1, 2, . . . , N} and P = (Pr (J ′|J))J,J ′∈J a

|J | × |J | transition matrix. P is irreducible and its unique stationary distribution is uniform on J .

In stating Assumption 1 and throughout the remainder of the paper we omit the time superscript whenever

possible and use a prime to distinguish future from current values.

We denote the protocol of moves as < J ,P > in what follows. Because J is a partition of {1, 2, . . . , N},
Assumption 1 ensures that player i always has the move in conjunction with the same rivals. By requiring

the transition matrix P to have a unique stationary distribution that is uniform on J , Assumption 1 further
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ensures that all players have the move with the same frequency over a sufficiently large number of periods.

Assumption 1 accommodates synchronous and asynchronous decisions and thus encompasses most dy-

namic stochastic games in the literature, including games with simultaneous moves (Shapley 1953, Ericson

and Pakes 1995), games with alternating moves (Maskin and Tirole 1987, Maskin and Tirole 1988b, Maskin

and Tirole 1988a, Lagunoff and Matsui 1997), and games with random moves (Doraszelski and Judd 2007,

Iskhakov, Rust, and Schjerning 2017). In games with simultaneous moves, the partition is J = {{1, . . . , N}}
with the trivial 1×1 transition matrix P; in games with alternating moves the partition is J = {{1}, . . . , {N}}
with the N×N transition matrix P with entries Pr({ mod N (i+ 1)}|{i}) = 1.2 In games with asynchronous

moves, J = {{1}, . . . , {N}} and the identity of the player who has the move in a given period may follow

a deterministic sequence as in games with alternating moves or it may be stochastic. Games with random

moves are another special case of games with asynchronous moves. In these games, the probability that a

player has the move in a given period is uniform across players and periods. Finally, Assumption 1 accommo-

dates more than one—but less than all—players having the move in a given period and thus settings where

decisions are partially synchronous.

In the Online Appendix, we show that Assumption 1 can be relaxed in several ways. First, we show that

our protocol-invariance theorem remains valid if the evolution of the protocol state J depends on players’

actions aJ and the physical state ω. Second, we show that the uniform stationary distribution in Assumption 1

can be replaced by a non-uniform stationary distribution. Third, we provide an extension of our protocol-

invariance theorem that does not require J to be a partition of the set of players.

We model the evolution of the physical state by a discrete-time approximation to a continuous-time

Markov process in order to impose that transitions are noisy:3

Assumption 2 (Noisy Transitions) The transition probability Pr∆ (ω′|ω, J, aJ) is differentiable in ∆ and

can be written as

Pr∆ (ω′|ω, J, aJ) =

 1− qJ(ω, aJ)∆ +O(∆2) if ω′ = ω,

qJ(ω, aJ)pJ(ω′|ω, aJ)∆ +O(∆2) if ω′ 6= ω,

where qJ : {(ω, (aj)j∈J) | aj ∈ Aj(ω)} → R+ ∪ {0}, pJ : {(ω, (aj)j∈J) | aj ∈ Aj(ω)} → P(Ω), and P(Ω) is the

set of probability distributions over Ω. We normalize pJ(ω | ω, aJ) = 0.

Without loss of generality, we decompose the transition probability Pr∆ (ω′|ω, J, aJ) into a probability

that the state changes in a given period—or that a jump occurs in the lingo of stochastic processes—and a

probability distribution over successor states conditional on the state changing. The probability that the state

changes is qJ(ω, aJ)∆ in proportion to the length of a period ∆ and, conditional on the state changing, the

probability that it changes from ω to ω′ is pJ(ω′|ω, aJ). Normalizing pJ(ω|ω, aJ) = 0 amounts to ignoring

2The notation mod N (x) refers to the modulo N congruence.
3An alternative modelling approach is to start from a discrete-time Markov process and then “rescale” it to shorter periods.

This presumes that the discrete-time Markov process is embeddable (Elfving 1937).
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a jump from a state to itself and adjusting the hazard rate qJ(ω, aJ) of a jump occurring accordingly.

Importantly, Assumption 2 restricts the model to have a finite hazard rate in a given state so that there is

no action that a player can take to guarantee a change in the state.

We finally assume that per-period payoffs and state-to-state transitions have an additively separable

structure:

Assumption 3 (Separability) The per-period payoff u∆
i (ω, J, aJ) is differentiable in ∆ and can be written

as

u∆
i (ω, J, aJ) = |J |

∑
j∈J

ui,j(ω, aj)∆ +O(∆2),

where ui,j : {(ω, aj) | aj ∈ Aj(ω)} → R. The hazard rate qJ(ω, aJ) and transition probability pJ(ω′ | ω, aJ)

can be written as

qJ(ω, aJ) = |J |
∑
j∈J

qj(ω, aj)

and

qJ(ω, aJ)pJ(ω′ | ω, aJ) = |J |
∑
j∈J

qj(ω, aj)pj(ω
′ | ω, aj),

where qj : {(ω, aj) | aj ∈ Aj(ω)} → R+ ∪ {0} and pj : {(ω, aj) | aj ∈ Aj(ω)} → P(Ω).

To a first-order approximation, Assumption 3 builds up the per-period payoff u∆
i (ω, J, aJ) of player i

from the flow payoff ui,j(ω, aj) by summing over the players j ∈ J who have the move. By taking action

aj in state ω, player j “contributes” |J |ui,j(ω, aj)∆ to the per-period payoff of player i in proportion to the

length of a period ∆. This restricts complementarities between players’ actions and other non-separabilities

to the higher-order term O(∆2).4 We discuss below our reason for scaling by the number of elements of the

partition J .

While at first glance Assumption 3 may seem to trivialize the strategic interactions between players, it

does not.5 Importantly, Assumption 3 does not restrict how per-period payoffs and state-to-state transitions

depend on the state. Because players are forward looking, this allows strategic interactions to be channeled

through continuation values. As mentioned in Section 1 and further discussed in Section 2.1, examples of

dynamic stochastic games that satisfy Assumption 3 range from investment games over the recent continuous-

time stochastic games with moves at random times to asynchronously repeated games.

In conjunction with Assumption 2, Assumption 3 builds up the components of the transition probability

Pr∆ (ω′|ω, J, aJ) from the player-specific hazard rate qj(ω, aj) and the transition probability pj(ω
′|ω, aj) by

4More explicitly, we assume that there exists c̄ > 0 and ∆̄ > 0 such that ‖u∆
i (ω, J, aJ) − |J |

∑
j∈J ui,j(ω, aj)∆‖ ≤ c̄∆2 for all

∆ < ∆̄.
5Assumption 3 has bite in conjunction with Assumption 2 but is a rather mild on its own. Consider the canonical dynamic

stochastic game in Shapley (1953). If the state space takes the form Ω =
∏N
i=1 Ωi and player i independently controls the evolution

of ωi ∈ Ωi, then the game can be considered separable even if the per-period payoff of player i is vi(ω, a)∆. To see this, redefine
the state in period t as ω̃t = (ωt−1, at−1, ωt) and let the flow payoff of player i be ui,i(ω̃

t, ati) = 1
δ
vi(ω

t−1, at−1) and ui,j(ω̃
t, atj) = 0

if j 6= i, where δ is the discount factor.
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summing over the players j ∈ J who have the move. Because it imposes a competing hazards model on the

transition probability, a change in the state is with high probability due to the action taken by one of the

players having the move.

In what follows, we call the above game a separable dynamic game with noisy transitions and denote it

by Γ =< ∆,J ,P, u, p, q, ρ >. We view the function ui,j : {(ω, aj) | aj ∈ Aj(ω)} → R as a vector ui,j ∈
R

∑
ω∈Ω|Aj(ω)| and denote ui = (ui,j)

N
j=1 ∈ R

∑N
j=1

∑
ω∈Ω|Aj(ω)| and u = (ui)

N
i=1 ∈ RN

∑N
j=1

∑
ω∈Ω|Aj(ω)|. We

further denote the collection of hazard rates and transition probabilities q = (qj(ω, aj))ω∈Ω,j=1,...,N,aj∈Aj(ω)

and p = (pj(ω
′|ω, aj))ω∈Ω,j=1,...,N,aj∈Aj(ω).

A stationary Markovian strategy for player i is a function σi : Ω→ ∪ω∈ΩP(Ai(ω)) with σi(ω) ∈ P(Ai(ω))

for all ω, where P(Ai(ω)) is the set of probability distributions over Ai(ω). Because J is a partition of

{1, 2, . . . , N}, Assumption 1 ensures that player i always has the move in conjunction with the same rivals.

Hence, while the state of the system comprises both the physical state ω and the protocol state J , it suffices

to consider Ω as the domain of σi. We use σi(ai | ω) to denote the probability that action ai ∈ Ai(ω) is

played in state ω. We explore more general strategies in Example 8 and Section 4.2.

From hereon, we denote by Σi the set of stationary Markovian strategies for player i and Σ =
∏N
i=1 Σi

the set of strategy profiles. To account for mixed strategies, we extend the flow payoff ui,j(ω, σj(ω)) =∑
aj∈Aj(ω) ui,j(ω, aj)σj(aj | ω) and transition probability

Pr∆ (ω′|ω, J, σJ(ω)) =
∑

aJ∈
∏
j∈J Aj(ω)

(
Pr∆ (ω′|ω, J, aJ)

∏
j∈J

σj(aj | ω)
)
.

A profile of stationary Markovian strategies σ = (σi)
N
i=1 is a stationary Markov perfect equilibrium if it is a

subgame perfect equilibrium of the game Γ. The set of Markov perfect equilibria of the game Γ is denoted

Equil(Γ). This set is nonempty (Shapley 1953).6

Our main interest is to compare equilibrium behavior under different protocols of moves. Assumption 1

lets us compare two models Γ =< ∆,J ,P, u, p, q, ρ > and Γ =< ∆,J ,P, u, p, q, ρ > that differ only in

the protocol of moves by ensuring that all players move with the same frequency. The scale factor |J | in

Assumption 3 further ensures that a player’s action brings about the same payoffs and chances of changing

the state in the two models. To see this, contrast a game with simultaneous moves Γ with a game with

alternating moves Γ. In the game with simultaneous moves Γ, player j takes an action aj every ∆ units

of time, yielding the payoff ui,j(ω, aj)∆ and the hazard rate qj(ω, aj)∆ (neglecting the higher-order term

O(∆2)). Over a stretch of N∆ units of time, the action aj thus yields the payoff ui,j(ω, aj)N∆ and the

hazard rate qj(ω, aj)N∆. In the game with alternating moves Γ, in contrast, player j has the move only

once every N∆ units of time. According to Assumption 3, if player j takes an action aj , then this yields the

payoff |J |ui,j(ω, aj)∆ = Nui,j(ω, aj)∆ and the hazard rate |J |qj(ω, aj)∆ = Nqj(ω, aj)∆. Hence, per-period

6Shapley (1953) establishes existence for dynamic stochastic games with simultaneous moves. To apply his result, we view the
game Γ as a dynamic stochastic game with simultaneous moves in which the players that do not have the move have no impact on
per-period payoffs and state-to-state transitions.
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payoffs and state-to-state transitions in the game with alternating moves Γ are comparable to those in the

game with simultaneous moves Γ.7

2.1 Examples

In the remainder of this section we discuss how prominent examples of dynamic stochastic games from the

literature can be cast as special cases of our model.

Example 1 (Entry Games and R&D Races) Consider N = 2 firms that may enter a new market. To

enter the market, firm i must complete K steps. For example, to build a cement plant and enter the market,

a firm needs to find a location, design the plant, obtain environmental permits, negotiate with contractors,

etc. Alternatively, consider an R&D race in which a firm gradually discovers an invention and obtains a

patent through a series of intermediate steps (Fudenberg, Gilbert, Stiglitz, and Tirole 1983, Grossman and

Shapiro 1987, Harris and Vickers 1987).

Let K ≥ 1 be the number of required steps and ωi ∈ Ωi = {0, 1, . . . ,K} the number of steps that firm i has

already completed. The state of the game is ω = (ω1, ω2) ∈ Ω1 × Ω2 = Ω. To take the next step, firm i can

make an investment, denoted by ai = 1, at cost ci > 0. Action ai ∈ Ai(ω) = {0, 1} induces the hazard rate

qi(ω, ai) =

 λai if ωi ≤ K − 1,

0 if ωi = K.

The transition probability is8

pi(ω
′ | ω, ai) =


1 if ω′i = ωi + 1, ω′−i = ω−i, ωi ≤ K − 1,

1 if ω′i = 0, ω′−i = ω−i, ωi = K,

0 otherwise.

Once firm i has completed all steps it enters the new market (or obtains the patent) and, depending on whether

its rival has also completed all steps, obtains the monopoly profit Bi > 0 or the duopoly profit bi < Bi. Its

flow payoff is

ui,i(ω, ai) =


Bi − ciai if ωi = K,ω−i ≤ K − 1,

bi − ciai if ωi = ω−i = K,

−ciai otherwise

and ui,j(ω, aj) = 0 if j 6= i. Assumptions 2 and 3 are satisfied.

7Instead of scaling by the number of elements of the partition J in Assumption 3, we can assume that interactions occur at
time t = 0,∆/|J |, 2∆/|J |, . . . . This alternative formulation ensures that a player has the move on average once every ∆ units of
time. Our results immediately carry over.

8Note that conditional on a jump occurring we specify a transition from ωi = K to ω′i = 0 with probability one. This is
immaterial, however, because no jump occurs as qi(ω, ai) = 0 if ωi = K.
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Example 2 (Industry Dynamics) Ericson and Pakes (1995) develop a discrete-time model of industry

dynamics. In their model and the large literature following it (see Doraszelski and Pakes (2007) for a survey),

incumbent firms decide on investment and exit and compete in the product market; potential entrants decide

on entry. Depending on the application, firm i’s state variable ωi ∈ Ωi encodes its current product quality,

production capacity, marginal cost, etc. It further encodes whether firm i is currently an incumbent firm

that competes in the product market or a potential entrant. The state of the game is ω = (ω1, ω2, . . . , ωN ) ∈∏N
i=1 Ωi = Ω.

Incumbent firm i earns a profit πi(ω) from competing in the product market (price or quantity competition,

depending on the application) that, following the literature, we treat as a reduced-form input into the model.

While πi(ω) depends on the current state of the game ω, it does not depend on the current investment and

exit decisions. The cost of investment ci(ω, ai) as well as any cost or benefit pertaining to exit are simply

added to πi(ω). As a result, per-period payoffs are separable in the sense of Assumption 3.

In many applications of the Ericson and Pakes (1995) model, firm i has exclusive control over the evolution

of ωi through its investment, exit, and entry decisions (e.g., Besanko and Doraszelski 2004, Chen 2009,

Doraszelski and Markovich 2007). Because the decisions of firm i affect its own state variable but not its rivals’

state variables, the transition probabilities are separable in the sense of Assumption 3. In other applications,

there is in addition a common shock such as an increase in the quality of the outside good or an industry-

wide depreciation shock (e.g., Berry and Pakes 1993, Gowrisankaran 1999, Fershtman and Pakes 2000, de

Roos 2004, Markovich 2008). Assumption 3 accommodates a common shock because transitions effected by

“nature” can be subsumed into those effected by one of the players.9

Because investment may or may not result in a favorable outcome, transitions due to investment decisions

are noisy as required by Assumption 2. Transitions due to entry and exit decisions present a difficulty because

in the Ericson and Pakes (1995) model, an incumbent firm can exit the industry for sure and a potential

entrant can enter the industry for sure. Doraszelski and Judd (2012) show how to formulate exit and entry

with finite hazard rates either by way of exit and entry intensities or by way of randomly drawn, privately

observed scrap values and setup costs (as in Doraszelski and Satterthwaite 2010). Their formulation satisfies

Assumption 2.

Example 3 (Continuous-Time Stochastic Games with Moves at Random Times) Arcidiacono, Bayer,

Blevins, and Ellickson (2016) develop a continuous-time stochastic game in which a player is given the move

at random times. Decisions are asynchronous as the probability that more than one player has the move

at a given time is zero. Ambrus and Lu (2015), Ambrus and Ishii (2015), Calcagno, Kamada, Lovo, and

Sugaya (2014), and Kamada and Kandori (2017) develop closely related continuous-time stochastic games

with moves at random times.

Arcidiacono, Bayer, Blevins, and Ellickson (2016) endow player i with a Poisson process with a constant

hazard rate λ. The time between jumps in this process is therefore exponentially distributed. If process i is

9One may alternatively represent nature by an extra player 0.
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the first of the N processes to jump, then player i is given the move and chooses an action ai. The state of

the game then changes from ω to ω′ with probability li(ω
′ | ω, ai), with li(· | ω, ai) ∈ P(Ω).

We can formulate this process in our framework by defining the hazard rate

qi(ω, ai) = λ(1− li(ω | ω, ai))

and the transition probability10

pi(ω
′ | ω, ai) =

 1
(1−li(ω|ω,ai)) li(ω

′ | ω, ai) if ω′ 6= ω,

0 if ω′ = ω.

Finally, the flow payoff of player i is

ui,j(ω, aj) =

 si(ω) + λπi(ω, ai) if i = j,

0 if i 6= j,

where si(ω) is a baseline payoff and πi(ω, ai) an additional payoff that player i receives if he is given the

move. To account for the likelihood that player i is given the move, πi(ω, ai) is multiplied by λ in the flow

payoff. The flow payoff and transition probability in Arcidiacono, Bayer, Blevins, and Ellickson (2016) clearly

conform to Assumptions 2 and 3.

Example 4 (Dynamic Public Contribution Games) Consider N players that contribute towards com-

pleting a public project (Marx and Matthews 2000, Compte and Jehiel 2004, Georgiadis 2015). Completing

the project requires K steps and ω ∈ Ω = {0, 1, . . . ,K} indicates the number of steps that have been completed.

Player i’s contribution ai ∈ Ai(ω) ⊆ R induces a hazard rate qi(ω, ai) which is strictly increasing in ai if

ω 6= K, while qi(ω, ai) = 0 if ω = K. The transition probability is

pi(ω
′ | ω, ai) =


1 if ω′ = ω + 1, ω ≤ K − 1,

1 if ω′ = 0, ω = K,

0 otherwise.

The public project is completed once state ω = K is reached and results in flow payoffs Bi for player i. The

cost of contribution is ci(ω, ai) for player i. We therefore specify its flow payoff as

ui,i(ω, ai) =

 Bi − ci(ω, ai) if ω = K,

−ci(ω, ai) otherwise,

and ui,j(ω, aj) = 0 if j 6= i. Assumptions 2 and 3 are satisfied.

10If li(ω | ω, ai) = 1, then pi(· | ω, ai) can be defined arbitrarily.
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Example 5 (Asynchronously Repeated Games) Maskin and Tirole (1988a, 1988b) study discrete-time

repeated games with asynchronous moves. These games can be re-cast to satisfy our assumptions.

Restricting Example 3 by setting N = 2, Ω = Ω1 × Ω2, Ai(ω) = Ωi,

li(ω
′ | ω, ai) = 1 if and only if ai = ω′i,

and ui,j(ω, aj) = si(ω), we obtain a game in which the state ωi of player i is simply a record of the last

chosen action. Depending on the application, si(ω) represents the payoff from Bertrand competition (Maskin

and Tirole 1988a), Cournot competition (Maskin and Tirole 1988b), or a coordination game (Lagunoff and

Matsui 1997).

A separable dynamic game with noisy transitions built from these primitives under a protocol of alternating

moves is similar to the asynchronously repeated games in Maskin and Tirole (1988a, 1988b) and Lagunoff

and Matsui (1997) in that changes in the payoff-relevant state do not occur at the same time.11 The key

difference is that in Maskin and Tirole (1988a, 1988b) and Lagunoff and Matsui (1997) the player who has

the move can change the state with probability one. We come back to this difference in Section 4.1.

3 Protocol-Invariance Theorem

Consider the separable dynamic game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >. We are interested in

exploring how the set of Markov perfect equilibria Equil(Γ) of the game Γ changes as we change the protocol

of moves < J ,P >.

We endow the set of all flow payoffs u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)| with the Lebesgue measure and say that a

property is generic if it does not hold at most on a closed subset of measure zero. In this case we say that

the property holds for almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|.

The main result of the paper is a protocol-invariance theorem:

Theorem 1 (Protocol-Invariance Theorem) Fix p, q, and ρ. For almost all u, all < J ,P > and

< J ,P >, and all ε > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄ and σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >),

there exists σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) such that ‖σ − σ‖ < ε.

In words, for any Markov perfect equilibrium σ of a game with a protocol of moves < J ,P >, the game

with another protocol < J ,P > has a Markov perfect equilibrium σ that is arbitrarily close to σ provided

that periods are sufficiently short. Theorem 1 thus shows that the set of Markov perfect equilibria of separable

dynamic games with noisy transitions is generically almost independent of the protocol of moves.

To begin establishing Theorem 1, consider a Markov perfect equilibrium σ∆ = (σ∆
i )Ni=1 of the separable

dynamic game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >. Let V ∆
i (ω, J) be the continuation value of

11Similar to Maskin and Tirole (1988a, 1988b), we restrict attention to Markov perfect equilibra from the outset. Lagunoff and
Matsui (1997) show that there is no loss in doing so in their model, as any outcome that can be sustained by a subgame perfect
equilibrium can also be sustained by a Markov perfect equilibrium.
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player i if players J ∈ J have the move and the state is ω ∈ Ω. The discrete-time Bellman equation for a

period length of ∆ is

V ∆
i (ω, J) = u∆

i (ω, J, σ∆
J (ω)) + exp(−ρ∆)

∑
ω′∈Ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr (J ′|J) Pr∆

(
ω′|ω, J, σ∆

J (ω)
)
,

where the player discounts payoffs accruing in the subsequent period by exp(−ρ∆) and σ∆
J (ω) =

(
σ∆
j (ω)

)
j∈J .

Under Assumptions 2 and 3 this becomes

V ∆
i (ω, J) = |J |

∑
j∈J

ui,j(ω, σ
∆
j (ω))∆ + exp(−ρ∆)

{ ∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J)

1− |J |
∑
j∈J

qj(ω, σ
∆
j (ω))∆


+
∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J)

|J |∑
j∈J

ϕj(ω
′|ω, σ∆

j (ω))∆

}+O(∆2), (3.1)

where we use the shorthand notation ϕj(ω
′ | ω, aj) = qj(ω, aj)pj(ω

′|ω, aj) and ϕj(ω
′ | ω, σj(ω)) =

∑
aj∈Aj(ω) ϕ(ω′ |

ω, aj)σj(aj | ω).

Let V ∆ =
(
V ∆
i

)N
i=1

be the profile of value functions corresponding to the Markov perfect equilibrium

σ∆. Consider a sequence (σ∆, V ∆) indexed by the period length ∆. Assuming that (σ∆, V ∆) → (σ0, V 0)

(where convergence is possibly through a subsequence ∆n) and taking the limit of equation (3.1) as ∆→ 0,

we deduce that

V 0
i (ω, J) =

∑
J′∈J

V 0
i (ω, J ′)Pr(J ′|J).

Stacking this equation for all J ∈ J yields the system of linear equations Px = x, where x is a |J |-dimensional

column vector with entries V 0
i (ω, J). Assumption 1 implies that V 0

i (ω, J) = V 0
i (ω, J ′) for all J, J ′ ∈ J .12

This means that in equilibrium the continuation value of player i is almost independent of the identity of the

players who have the move and equals V 0
i (ω): having the move does not imply a higher or lower payoff. From

hereon, let V 0
i : Ω → R be the value function of player i and V 0 = (V 0

i )Ni=1 be the profile of value functions

in the limit as ∆→ 0.

Equation (3.1) can equivalently be written as

1

∆
V ∆
i (ω, J)− exp(−ρ∆)

∆

∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J) = |J |

∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
j∈J

∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J)ϕj(ω

′|ω, σ∆
j (ω))−

∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J)qj(ω, σ

∆
j (ω))

+O(∆).

12The vector y = (1, . . . , 1)′ is always a right eigenvector since P is stochastic. Since P is irreducible, the Perron-Frobenious
theorem implies that both the left and right eigenvectors associated to the eigenvalue 1 are unique, up to scalar multiplication. It
follows that for any solution to the system Px = x, xi = xj for all i and j.
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Summing this equation for all J ∈ J yields

1− exp (−ρ∆)

∆

∑
J∈J

V ∆
i (ω, J) = |J |

∑
J∈J

∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
J∈J

∑
j∈J

∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J)ϕj(ω

′|ω, σ∆
j (ω))−

∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J)qj(ω, σ

∆
j (ω))

+O(∆2),

where we use the fact that, under Assumption 1,
∑
J∈J Pr(J ′|J) = 1.13 Taking the limit as ∆ → 0 yields

the continuous-time Bellman equation

ρV 0
i (ω) =

∑
J∈J

∑
j∈J

ui,j(ω, σ
0
j (ω)) +

∑
J∈J

∑
j∈J

∑
ω′ 6=ω

V 0
i (ω′)ϕj(ω

′|ω, σ0
j (ω))− V 0

i (ω)qj(ω, σ
0
j (ω))


=

N∑
j=1

ui,j(ω, σ
0
j (ω)) +

N∑
j=1

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕj(ω

′|ω, σ0
j (ω)), (3.2)

where the last equality uses that, under Assumption 1, there exists a unique J ∈ J such that j ∈ J and

the fact that
∑
ω′ 6=ω pj(ω

′|ω, ai) = 1. Importantly, condition (3.2) is independent of the protocol of moves

< J ,P > used to pass from discrete to continuous time.

The discrete-time optimality condition for a period length of ∆ is

σ∆(ai | ω) > 0⇒

ai ∈ arg max
ãi∈Ai(ω)

u∆
i (ω, J, ãi, σ

∆
J\{i}(ω)) + exp(−ρ∆)

∑
ω′∈Ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr (J ′|J) Pr∆

(
ω′|ω, J, ãi, σ∆

J\{i}(ω)
)
.

Since σ∆ → σ0, σ0
i (ai | ω) > 0 implies σ∆

i (ai | ω) > 0 if the period length ∆ is sufficiently small. Dividing by

∆, rearranging terms, and taking the limit as ∆ → 0 (as we did in the previous paragraph) thus yields the

continuous-time optimality condition

σ0
i (ai | ω) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
ui,i(ω, ãi) +

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕi(ω

′ | ω, ãi). (3.3)

Condition (3.3) is again independent of the protocol of moves. It formalizes that player i faces the same

tradeoff between current and future payoffs under any protocol of moves < J ,P > and that this tradeoff is

not directly affected by his rivals’ actions.

The intuition is best seen by contrasting two protocols of moves in a separable dynamic game with

noisy transitions. With alternating moves, if player i has the move, then to choose an action ai he must

consider the contribution ui,i(ω, ai)∆ to his per-period payoff that his action yields and the impact his action

13Recall that if the transition matrix P is irreducible and its unique stationary distribution is uniform on J , then P is doubly
stochastic.
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has on state-to-state transitions through qi(ω, ai)pi(ω
′|ω, ai)∆ (neglecting the higher-order term O(∆2)).

With simultaneous moves, two additional considerations arise. First, player i must consider how his rivals’

actions change the contribution to his per-period payoff that his action yields and the impact his action

has on state-to-state transitions. However, because complementarities between players’ actions and other

non-separabilities in per-period payoffs and state-to-state transitions are restricted to the higher-order term

O(∆2), player i can neglect his rivals’ actions if the period length ∆ is sufficiently small. Second, player i

must consider the possibility that his rivals’ actions further change the state of the game. The probability

that two or more players cause the state to change is, however, negligible if the period length ∆ is sufficiently

small. Assumption 1 finally ensures that irrespective of the protocol of moves all players move with the same

frequency over a sufficiently large number of periods. Thus, in the limit as ∆ → 0, player i faces the same

tradeoff between current and future payoffs.

Conditions (3.2) and (3.3) are the limit as ∆→ 0 of the equilibrium conditions for the separable dynamic

game with noisy transitions Γ. We provide economic interpretations of these conditions in Section 3.1.

Here we merely observe that they impose restrictions on the limit strategy and continuation value profiles

(σ0, V 0). Noting that the limit conditions (3.2) and (3.3) may admit multiple solutions and that V 0 is entirely

determined by σ0 using condition (3.2), we denote the set of strategy profiles σ0 ∈ Σ satisfying condition

(3.3) as Equil0(< u, p, q, ρ >). This set does not depend on the protocol of moves < J ,P > used to pass to

the limit.

We summarize the above discussion in a lemma:

Lemma 1 Consider a sequence
(
σ∆
)

with σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >). If σ∆ → σ0, then σ0 ∈
Equil0(< u, p, q, ρ >).

Unfortunately, Lemma 1 does not imply Theorem 1 because conditions (3.2) and (3.3) may admit multiple

solutions. In this case, taking the limit of a sequence of equilibria under different protocols of moves may

potentially lead to different solutions of the limit conditions. To overcome this difficulty, we would ideally

show that all solutions to the limit conditions (3.2) and (3.3) can be approximated by the Markov perfect

equilibria of a separable dynamic game with noisy transitions and an arbitrary protocol of moves provided

that periods are sufficiently short.

An example makes plain that this cannot always be done. Consider the entry game in Example 1 with

K = 1 and (ci, bi, Bi) = (c, b, B) for all i. We further restrict λB/ρ = c and b < 0 so that a duopolist incurs

a loss. A firm’s only nontrivial decision is whether to invest in state (0, 0). Define the pure strategy profile

σ0 in which both firms invest by σ0
i (1 | (0, 0)) = 1. Let us verify that σ0 ∈ Equil0(< u, p, q, ρ >). The limit

conditions (3.2) and (3.3) become

ρV 0
i (0, 0) = −c+ λ(

B

ρ
− V 0

i (0, 0)) + λ(0− V 0
i (0, 0))
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and

− c+ λ(
B

ρ
− V 0

i (0, 0)) ≥ 0, (3.4)

where we use the fact that V 0
i (ω) = B/ρ when ωi 6= ω−i = 0 and V 0

i (ω) = 0 when ωi 6= ω−i = 1. We deduce

that V 0
i (0, 0) = 1

ρ+2λ (−c+ λBρ ) = 0 and σ0 is indeed a solution to the limit conditions.

However, this solution cannot be approximated by a discrete-time game with simultaneous moves. In this

game, a firm has an incentive to invest if and only if

− c+ e−ρ∆∆λ2 b∆

1− e−ρ∆
+ e−ρ∆λ(1− λ∆)

B∆

1− e−ρ∆
≥ 0. (3.5)

Because λB/ρ = c and b < 0, this condition holds in the limit as ∆→ 0 but not for ∆ > 0.14

This example illustrates the problem we have to solve in establishing Theorem 1. While the expected net

present value of the stream of payoffs in a discrete-time game is virtually independent of the protocol of moves

and arbitrarily close to its continuous-time counterpart, equilibrium behavior is governed by differences in

continuation values. The mere fact that continuation values converge does not ensure that the sign of these

differences coincide in discrete and continuous time. In the example, condition (3.4) shows that in the limit

as ∆ → 0 the payoff from investing is greater than or equal to the payoff from not investing. Yet, in the

discrete-time game the fact that condition (3.5) does not hold for ∆ > 0 shows that the payoff from investing

is less than the payoff from not investing.

We proceed as follows. To rule out the above example, we first restrict attention to solutions σ0 ∈
Equil0(< u, p, q, ρ >) that are regular. The formal definition of regularity is in the Appendix and allows

for both pure and mixed strategy profiles.15 We note that a pure strategy profile is regular if it is strict,

i.e., if the maximization problem in condition (3.3) admits a unique solution. Our key insight is that for a

regular solution σ0 of the limit conditions (3.2) and (3.3), the differences in continuation values that govern

equilibrium behavior have the same sign as their discrete-time counterparts under any protocol of moves. As

a result, σ0 can be approximated by a Markov perfect equilibrium of a separable dynamic game with noisy

transitions and an arbitrary protocol of moves. We then use differential topology tools to establish that for

almost all flow payoffs u, the restriction to regular solutions is without loss of generality. This yields the

following lemma:

Lemma 2 Fix p, q, and ρ. For almost all u, all σ0 ∈ Equil0(< u, p, q, ρ >), all < J ,P >, and all ε > 0, there

exists ∆̄ > 0 such that for all ∆ < ∆̄, there exists σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) such that ||σ − σ0|| < ε.

Lemmas 1 and 2 finally combine to yield Theorem 1.

14This solution also cannot be approximated by a discrete-time game with alternating moves. In the Online Appendix, we com-
plement this example by showing that the solution can be approximated by a slightly modified discrete-time game with alternating
moves but not with simultaneous moves.

15In the Online Appendix we provide an example showing that the limit conditions (3.2) and (3.3) in general may not admit a
solution in pure strategies.
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The proof of Lemma 2 draws on and expands ideas in Harsanyi (1973a, 1973b). Existing genericity results

for dynamic stochastic games (Haller and Lagunoff 2000, Doraszelski and Escobar 2010) do not apply to our

setting because the limit conditions (3.2) and (3.3) are in continuous time and separable dynamic games

with noisy transitions restrict per-period payoffs and state-to-state transitions and are therefore a subset of

measure zero of the dynamic stochastic games considered in the literature.16

3.1 Interpretations of Limit Conditions

We offer two economic interpretations of the limit conditions (3.2) and (3.3). First, they can be interpreted

as the equilibrium conditions for a continuous-time stochastic game along the lines of Doraszelski and Judd

(2012). In this game, moves are simultaneous and the state follows a continuous-time Markov process that

players can influence through their actions. Properly defining mixed strategies in continuous time is, however,

subtle because it requires working with a continuum of independent and identically distributed random

variables that satisfy a law of large numbers. As in Bolton and Harris (1999), we can use time to “purify”

these strategies and avoid the continuum of independent and identically distributed random variables. Beyond

this observation, we follow the literature and alert the reader that a rigorous foundation for mixed strategies

in continuous time is an open problem (Bolton and Harris 1999, Faingold and Sannikov 2011).

Second, the limit conditions (3.2) and (3.3) can be interpreted as the equilibrium conditions for a dynamic

stochastic game with random moves. The following construction, known as uniformization (Serfozo 1979),

is adapted from single-agent decision problems. Fix any B > N maxj=1,...,N,ω∈Ω,aj∈Aj(ω) qj(ω, aj). Define

the per-period payoff ũi,j(ω, aj) = N
ρ+Bui,j(ω, aj), the discount factor β = B

ρ+B < 1, and the transition

probability

ϕ̃j(ω
′ | ω, aj) =

 N
Bϕj(ω

′ | ω, aj) if ω′ 6= ω,

1− N
B qj(ω, aj) if ω′ = ω.

Note that ϕ̃j(· | ω, aj) ∈ P(Ω) by construction of B. Now formulate a dynamic stochastic game with random

moves in which in any period one player j ∈ {1, . . . , N} is randomly and uniformly selected to make a decision

aj ∈ Aj(ω). Each player strives to maximize the expected net present value of his stream of payoffs and

discounts future payoffs using the discount factor β. Denote by EquilR(ũ, ϕ̃, β) the set of Markov perfect

equilibria of this game.

The following proposition shows that the Markov perfect equilibria of the dynamic stochastic game with

random moves constructed above are the solutions of the limit conditions (3.2) and (3.3):

Proposition 1 EquilR (< ũ, ϕ̃, β >) = Equil0 (< u, p, q, ρ >).

The proof of Proposition 1 is simple and illustrative. The equilibrium conditions for σ ∈ EquilR(<

16Our proof also shows that Equil0(< u, p, q, ρ >) consists of a finite number of isolated solutions. This generalizes results on
the generic finiteness of the set of Markov perfect equilibria in Haller and Lagunoff (2000) and Doraszelski and Escobar (2010) to
continuous-time stochastic games.
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ũ, ϕ̃, β >) are

Vi(ω) =

N∑
j=1

1

N

(
ũi,j(ω, σj(ω)) + β

∑
ω′∈Ω

Vi(ω)ϕ̃j(ω
′ | ω, σj(ω))

)
(3.6)

and

σi(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

ũi,i(ω, ãi) + β
∑
ω′∈Ω

Vi(ω
′)ϕ̃i(ω

′ | ω, ãi). (3.7)

These conditions can be equivalently written as

Vi(ω) =

N∑
j=1

1

N

 N

ρ+B
ui,j(ω, σj(ω)) +

B

ρ+B

∑
ω′ 6=ω

Vi(ω
′)
N

B
ϕj(ω

′ | ω, σj(ω)) + (1− N

B
qj(ω, σj(ω))Vi(w))


and

σi(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

N

ρ+B
ui,i(ω, ãi)+

B

ρ+B

∑
ω′ 6=ω

Vi(ω
′)
N

B
ϕi(ω

′ | ω, ãi) + (1− N

B
qi(ω, ãi)Vi(w))

 .

Rearranging terms, the limit conditions (3.2) and (3.3) are therefore identical to the equilibrium conditions

(3.6) and (3.7) for the dynamic stochastic game with random moves constructed above.

While dynamic stochastic games with random moves are sparsely used, several important papers study

repeated games with alternating moves. For example, Maskin and Tirole (1988a) explore a repeated Bertrand

game with alternating moves and show how Edgeworth cycles can arise. Maskin and Tirole (1988b) show

that an analog to limit pricing can arise in a model of repeated Cournot competition with alternating moves

and large fixed costs. Lagunoff and Matsui (1997) show how players can coordinate on the efficient outcome

in a repeated coordination game with alternating moves. These results are driven by the fact that a player

remains committed to his previously chosen action over a stretch of time.17 The dynamic stochastic game

with random moves constructed above shares this feature. Similarly rich dynamic phenomena thus appear in

the continuous-time stochastic game that we obtain as we pass to the limit and, by Theorem 1, in separable

dynamic games with noisy transitions and arbitrary protocols of moves provided that periods are sufficiently

short.

3.2 Discussion of Assumptions

To illustrate the tightness of our assumptions, we provide a series of examples showing that protocol invariance

may fail if any one of them is relaxed.

Example 6 (Separability) The literature provides a number of examples in which complementarities be-

tween players’ actions and other non-separabilities in per-period payoffs preclude protocol invariance. Our

17As Lagunoff and Matsui (1997) point out, what matters is that moves are asynchronous “rather than the specific structure of
asynchronous choice” (p. 1473).
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example with non-separable per-period payoffs is inspired by Lagunoff and Matsui (1997) and Wen (2002).

In the Online Appendix we present a closely related example with non-separable state-to-state transitions.

Consider a coordination game with the following payoff matrix:

L R

T 2, 2 0, 0

B 0, 0 1, 1

Denote by b(a) = (b1(a), b2(a)) the payoff profile given the action profile a = (a1, a2) ∈ {T,B} × {L,R}.
We construct a dynamic stochastic game with a trivial state space |Ω| = 1 (that we omit along with

specifying the transition probability) and contrast the set of Markov perfect equilibria under simultaneous and

alternating moves. In the game with simultaneous moves, the per-period payoff of player i is u∆
i (ω, {1, 2}, a) =

bi(a)∆. Irrespective of the period length ∆, there are two Markov perfect equilibria, namely σ1(T ) = σ2(L) = 1

and σ̃1(B) = σ2(R) = 1.

In the game with alternating moves, in violation of Assumption 3 the per-period payoff of player i is

u∆
i (ω, {1}, a1) = 0 and u∆

i (ω, {2}, a) = bi(a)∆, meaning that payoffs “materialize” after player 2 moves.

Since player 1’s action a1 is payoff relevant for player 2, a Markovian strategy for player 2 includes a1 as a

state variable. Irrespective of the period length ∆, the unique Markov perfect equilibrium is σ1(T ) = 1 and

σ2(T | L) = σ2(B | R) = 1 .

Example 7 (Noisy Transitions) Consider the entry game in Example 1 with K = 1. We further restrict

bi < 0 so that a duopolist incurs a loss.

We change Example 1 by assuming that if firm i takes action ai = 1, then its state changes for sure from

ωi = 0 to ω′i = 1. Irrespective of the protocol of moves, given a set of players J ⊆ {1, 2} who have the move,

the transition probability takes the form

Pr∆(ω′ | ω, J, aJ) =


1 if ω′J = aJ , ω = (0, 0),

1 if ω′ = ω, ωi = 1 for some i,

0 otherwise,

and does not satisfy Assumption 2. In the game with alternating moves, if ∆ is sufficiently small, then the

unique Markov perfect equilibrium outcome is that the firm that moves first enters whereas its rival never

enters. In contrast, in the game with simultaneous moves, there exists a Markov perfect equilibrium in which

both firms enter with positive probability.

Finally, we show that protocol invariance does not extend beyond Markov perfect equilibria to more general

equilibrium concepts. For a separable dynamic game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >, we

say that a strategy σTi for player i has finite memory T ≥ 0 if σTi (h) = σTi (h̃) for any two histories h and h̃

(perhaps of different length) that coincide in the current state and the outcomes of the previous T rounds of
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interactions between players. If T = 0, then we recover the definition of a stationary Markovian strategy in

Section 2.

Example 8 (Markov Perfect Equilibrium) Consider a partnership game and construct a separable dy-

namic game with noisy transitions and a trivial state space (that we again omit). There are N = 2 players.

The set of actions of player i is Ai = {0, 1}, his flow payoff is

ui,j(aj) =

 −aj if j = i,

2aj if j 6= i,

and the discount rate is ρ. Irrespective of the protocol of moves < J ,P > and the period length ∆, the unique

Markov perfect equilibrium of this game is σ1(0) = σ2(0) = 1 and has players repeating (0, 0).

We show that this not the case for strict subgame perfect equilibria in finite memory strategies. In the

game with simultaneous moves, consider a finite memory strategy σTi with T ≥ 1 for player i such that player

i chooses ati = 1 in period t if t = 0 or if the players have chosen the same action over the last min{T, t}
rounds: at̃1 = at̃2 for all t̃ ∈ {t− 1, . . . , t−min{t, T}}. The strategy profile σT = (σT1 , σ

T
2 ) is a strict subgame

perfect equilibrium if 1−e−ρ∆T
1−e−ρ∆ > eρ∆. This condition holds if T ≥ 2 and the period length ∆ is sufficiently

small. Hence, there exists a strict subgame perfect equilibrium in finite memory strategies in which players

repeatedly play (1, 1).

Turning to the game with alternating moves, consider a finite memory strategy σTi with T ≥ 1 for player

i. We argue that for any strategy profile σT to be a strict subgame perfect equilibrium it must be a Markov

perfect equilibrium. Hence, the unique strict subgame perfect equilibrium in finite memory strategies is the

Markov perfect equilibrium in which players repeat (0, 0).

To complete the argument, suppose player i moves in round t. Because player −i moves after player i and

conditions his decision on the previous T periods of interactions, the continuation value of player i depends

on ati and the previous T −1 periods of interactions. The current payoff of player i moreover depends only on

ati. Since σT is a strict subgame perfect equilibrium, the maximization problem of player i admits a unique

solution which depends, at most, on the previous T − 1 rounds of interactions. This means that σTi actually

conditions on the previous T − 1 periods of interactions. Continuing iteratively, we deduce that the strategy

profile σT cannot condition on any previous interactions.

4 Applications and Extensions

We apply and extend our main result in three ways. We first provide an extension to arbitrarily large hazard

rates. Then we offer a new rationale for focusing on Markov perfect equilibria and discuss computing these

equilibria.
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4.1 Protocol Invariance with Arbitrarily Large Hazard Rates

We modify the model in Section 2 by assuming that hazard rates are of form q̃i(ω, ai) = λqi(ω, ai), where

λ ≥ 1 is a parameter. As λ→∞, hazard rates become arbitrarily large. We explore how Equil0(< u, p, q̃, ρ >)

changes in response.

Consider σ0,λ ∈ Equil0(< u, p, q̃, ρ >) and assume that σ0,λ → σ0,∞ as λ → ∞. Taking the limit of

condition (3.2) yields the Bellman equation

ρV 0,λ
i (ω) =

N∑
j=1

ui,j(ω, σ
0,λ
j (ω)) +

N∑
j=1

∑
ω′ 6=ω

(
V 0,λ
i (ω′)− V 0,λ

i (ω)
)
λϕj(ω

′|ω, σ0,λ
j (ω)),

where ϕj(ω
′|ω, aj) = qj(ω, aj)pj(ω

′|ω, aj). Fix a state ω0 ∈ Ω and define the function hλi (ω) = λ(V 0,λ
i (ω)−

V 0,λ
i (ω0)). Assuming that hλi (ω)→ hi(ω) for some hi : Ω→ R, the Bellman equation becomes

vi =

N∑
j=1

ui,j(ω, σ
0,∞
j (ω)) +

N∑
j=1

∑
ω′ 6=ω

(hi(ω
′)− hi(ω))ϕj(ω

′|ω, σ0,∞
j (ω)), (4.1)

where vi ∈ R does not depend on ω.18 Analogously, taking the limit of condition (3.3) as λ→∞ yields the

optimality condition

σ0,∞
i (ai | ω) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
ui,i(ω, ãi) +

∑
ω′ 6=ω

(
hi(ω

′)− hi(ω)
)
ϕi(ω

′ | ω, ãi). (4.2)

Conditions (4.1) and (4.2) extend conditions (3.2) and (3.3) to arbitrarily large hazard rates and characterize

the solutions to the limit conditions.

The following proposition summarizes the discussion:

Proposition 2 (Protocol Invariance with Arbitrarily Large Hazard Rates) Consider a sequence
(
σ0,λ

)
with σ0,λ ∈ Equil0(< u, p, q̃, ρ >). Assume σ0,λ → σ0,∞ as λ → ∞. Fix ω0 ∈ Ω and assume that, for all i,

λ(V 0,λ
i (ω)− V 0,λ

i (ω0)) is uniformly bounded.19 Then, for all i, there exists hi : Ω→ R and vi ∈ R, such that

σ0,∞ satisfies conditions (4.1) and (4.2).

Proposition 2 extends protocol invariance to the limiting case of deterministic transitions and provides a novel

dynamic programming characterization of separable dynamic games with noisy transitions as moves become

arbitrarily frequent and hazard rates arbitrarily large.20

18To see this, note that for all ε > 0, there exists λ̄ such that for all λ > λ̄, |V λi (ω) − V λi (ω0) − h(ω)/λ| < ε/λ. As a result,
limλ→∞ V

λ
i (ω) = limλ→∞ V

λ
i (ω0).

19This type of condition appears in dynamic programming problems without discounting (Arapostathis, Borkar, Fernández-
Gaucherand, Ghosh, and Marcus 1993). It is simple to check in applications. To provide a sufficient condition, fix a strategy
profile σ and define τ = inf{t | ωt = ω0}. If Eσ[τ | ωt=0 = ω] is finite for all ω ∈ Ω, all σ ∈ Σ, and all λ sufficiently large, then
λ(V 0,λ

i (ω)− V 0,λ
i (ω0)) is uniformly bounded.

20This result contributes to the well-known literature drawing often subtle connections between discrete- and continuous-time
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Given our previous effort in Example 7 to show that protocol invariance fails if transitions are deterministic,

Proposition 2 may seem puzzling. Example 7 and Proposition 2 can be reconciled by noting that there is a

discontinuity in the set of Markov perfect equilibria as moves become arbitrarily frequent and hazard rates

arbitrarily large.

Many examples from the extant literature where equilibrium behavior hinges on the protocol of moves

even if periods are short (as in Maskin and Tirole 1988a, 1988b and Lagunoff and Matsui 1997) can be seen

as a manifestation of this discontinuity. To illustrate, consider the asynchronously repeated game in Example

5 with Ω1 = {T,B}, Ω2 = {L,R}, and si : Ω→ R given by the following payoff matrix:

L R

T 2, 2 0, 0

B 0, 0 1, 1

This is a repeated coordination game in the spirit of Lagunoff and Matsui (1997) and the specific example

used by Mailath and Samuelson (2006, Section 5.4.5) to illustrate their results.

In line with Proposition 2 but in stark contrast to Maskin and Tirole (1988a, 1988b) and Lagunoff and

Matsui (1997), protocol invariance arises. It is relatively easy to see that

lim
λ→∞

Equil0(< u, p, q̃, ρ >) = lim
λ→∞

lim
∆→0

Equil(< ∆,J ,P, u, p, q̃, ρ >) = {σ∗}

with σ∗1(ω) = T and σ∗2(ω) = L for all ω. With arbitrarily frequent moves and arbitrarily large hazard rates,

players therefore coordinate on the efficient state (T, L) regardless of the protocol of moves that the game

assumes.21

To expose the discontinuity in the set of Markov perfect equilibria, consider a protocol of simultaneous

moves < J sim,Psim >. Imposing λ∆ = 1, players determine the state with probability one when they move.

It is relatively simple to show that

Equil(< ∆,J sim,Psim, u, p, q, ρ >) = {σ∗, σ′},

where σ′1(ω) = B and σ′2(ω) = R for all ω. Intuitively, if λ∆ = 1, then players can coordinate on one of the

two Nash equilibria (T, L) and (B,R). We conclude that

lim
λ→∞

lim
∆→0

Equil(< ∆,J ,P, u, p, q̃, ρ >) ( lim inf
λ∆=1,∆→0

Equil(< ∆,J sim,Psim, u, p, q̃, ρ >)

stochastic games with infinite hazard rates (Fudenberg and Tirole 1985, Simon and Stinchcombe 1989). Fudenberg and Tirole
(1985), in particular, show that passing to the limit is non-trivial in games with infinite hazard rates even if strategies are restricted
to be Markovian. Proposition 2, in contrast, provides a quite tractable model of a dynamic game with arbitrarily frequent moves
and arbitrarily large hazard rates.

21Up to the fact that the limit as ∆→ 0 is a continuous-time stochastic game, the logic of this result follows from Lagunoff and
Matsui (1997). Note that if player 1’s state is ω1 = T , then player 2 has an incentive to choose a2 = L to obtain s(T,L) = 2. In a
given state ω, player 1 thus knows that if his state changes to T , then his rival will switch to a2 = L relatively soon as long as λ is
sufficiently large.
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and thus that there is a discontinuity in the joint limit as moves become arbitrarily frequent and hazard rates

arbitrarily large.

Moreover, the limit of the set of Markov perfect equilibria as ∆→ 0 keeping λ∆ constant depends on the

protocol of moves. Consider a protocol of alternating moves < J alt,Palt >. Imposing λ∆ = 1/2, a player

determines his state with probability one when he moves.22 From Theorem 1 in Lagunoff and Matsui (1997),

keeping λ∆ = 1/2 and taking the period length ∆ sufficiently small,23

Equil(< ∆,J alt,Palt, u, p, q̃, ρ >) = {σ∗}.

This implies that

lim
λ∆=1/2,∆→0

Equil(< ∆,J alt,Palt, u, p, q̃, ρ >) ( lim inf
λ∆=1,∆→∞

Equil(< ∆,J sim,Psim, u, p, q̃, ρ >).

In this sense, we can replicate the results in Lagunoff and Matsui (1997) that the protocol matters when

moves are frequent by taking the joint limit λ∆→ 1 and ∆→ 0, but this is just one of many ways of taking

the joint limit in our setting. Proposition 2, in contrast, shows that protocol invariance arises if we first take

moves to be arbitrarily frequent and then take hazard rates to be arbitrarily large.

4.2 Justification of Markov Perfect Equilibria

We apply our main result to provide a new justification for focusing on Markov perfect equilibria in a class

of dynamic stochastic games. Provided that periods are sufficiently short and a robustness requirement is

imposed, we show that the set of Markov perfect equilibrium payoffs in separable dynamic games with noisy

transitions and simultaneous moves almost coincides with the set of payoffs that can be attained under more

general equilibrium concepts.

We focus on strict subgame perfect equilibria in finite memory strategies. By definition, a strict equilibrium

involves only pure strategies. Strictness is a natural robustness requirement. In repeated public monitoring

games only strict subgame perfect equilibria in finite memory strategies are robust to private monitoring

(Mailath and Morris 2002, Mailath and Samuelson 2006, Bhaskar, Mailath, and Morris 2013). Equilibria

that fail to be strict are also fragile to perturbations of payoffs and information (Harsanyi 1973a, Harsanyi

1973b, Doraszelski and Escobar 2010).

As we change the protocol of moves < J ,P > of a separable dynamic game with noisy transitions

Γ =< ∆,J ,P, u, p, q, ρ >, the sets of histories change and are therefore difficult to compare. To circumvent

this difficulty, we explore how the set of payoff profiles PayoffsF (Γ) ⊆ RN associated with strict subgame

22Recall from Assumption 3 that the hazard rates are scaled by |J |. This is the reason we take λ∆ = 1 with simultaneous moves
and λ∆ = 1/2 with alternating moves.

23The restriction to a discount factor close to one in Lagunoff and Matsui (1997) translates into a period length ∆ close to zero
in our setting with λ∆ fixed.

25



perfect equilibria in finite memory strategies changes as we change the protocol of moves. We also define the

set of payoff profiles PayoffsM (Γ) ⊆ RN corresponding to the set of Markov perfect equilibria Equil(Γ).

Let Γsim =< ∆,J sim,Psim, u, p, q, ρ > denote a separable dynamic game with noisy transitions un-

der a protocol of simultaneous moves < J sim,Psim >, with J sim = {{1, . . . , N}}. We say that the

payoff profile v ∈ PayoffsF (Γsim) is approachable if for all ε > 0 there exists some protocol of asyn-

chronous moves < J asy,Pasy >, with J asy = {{1}, {2}, . . . , {N}}, and a payoff profile w ∈ PayoffsF (<

∆,J asy,Pasy, u, p, q, ρ >) such that ‖v − w‖ < ε. In words, focusing on strict subgame perfect equilibria in

finite memory strategies, an equilibrium payoff profile of the game with simultaneous moves is approachable

if there exists a nearby equilibrium payoff profile of the game for some asynchronous protocol of moves.

The following proposition shows that an approachable equilibrium payoff profile of the game with simul-

taneous moves almost coincides with a payoff profile corresponding to a Markov perfect equilibrium provided

that periods are sufficiently short:

Proposition 3 Fix p, q, and ρ. For almost all u, and all ε > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄,

if v ∈ PayoffsF (Γsim) is approachable, then there exists w ∈ PayoffsM (Γsim) such that ‖v − w‖ < ε.

Proposition 3 implies that there is no loss in restricting attention to Markov perfect equilibria in separable

dynamic games with noisy transitions and simultaneous moves and thus provides a rationale for doing so.

To prove Proposition 3, we build on related results for dynamic stochastic games with asynchronous moves

by Bhaskar and Vega-Redondo (2002) and Bhaskar, Mailath, and Morris (2009) and combine them with our

Theorem 1. The proof of Proposition 3 draws on the insight from Example 8 that although some payoff

profiles can be attained with strict subgame perfect equilibria in finite memory strategies when moves are

simultaneous, these payoff profiles cannot be attained when moves are alternating.

Proposition 3 complements several arguments in favor of Markov perfect equilibria given for a variety

of dynamic models (Maskin and Tirole 2001, Bhaskar and Vega-Redondo 2002, Sannikov and Skrzypacz

2007, Faingold and Sannikov 2011, Bhaskar, Mailath, and Morris 2013, Bohren 2014). Approachability is

conceptually similar to purifiability in Bhaskar, Mailath, and Morris (2013) in that both are robustness

requirements: approachability says that equilibrium payoffs should survive changes in the protocol of moves,

whereas purifiability says that equilibrium strategies should survive the introduction of private information.

We show that only Markov perfect equilibria are approachable in our separable dynamic games with noisy

transitions and simultaneous moves, whereas Bhaskar, Mailath, and Morris (2013) show that only Markov

perfect equilibria are purifiable in dynamic stochastic games with asynchronous moves.

Proposition 3 also limits possible extensions of Theorem 1. By showing that an equilibrium payoff that

is robust to alternative specifications of the protocol of moves must be a Markov perfect equilibrium payoff,

Proposition 3 implies that the assumption of Markov perfection is not only sufficient (as shown in Theorem

1) but also necessary for protocol invariance.24

24Note, however, that Proposition 3 applies only when strategies have finite memory. In the tightly specified model in Example
8, under arbitrary protocols of moves there exists a subgame perfect equilibrium with unbounded memory in which ati = 1 for all
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4.3 Computation of Markov Perfect Equilibria

Dynamic stochastic games are often not very tractable analytically and thus call for the use of numerical

methods. Our main result has a number of implications for computing Markov perfect equilibria.

First, Doraszelski and Judd (2007) show that the computational burden can vary by orders of magnitude

with the protocol of moves. For the class of separable dynamic games with noisy transitions, Theorem 1

justifies imposing the protocol of moves that is most convenient from a computational perspective.

Second, Doraszelski and Judd (2012) contrast the burden of computing Markov perfect equilibria in

discrete- and continuous-time stochastic games with simultaneous moves. They argue that, under widely

used laws of motion for the evolution of the state, computing the expectation over successor states ω′ in a

continuous-time stochastic game does not suffer from the curse of dimensionality that plagues the discrete-time

stochastic game, and that this can reduce the computational burden by orders of magnitude. While passing

from discrete to continuous time is computationally advantageous, a natural question is if this changes the

nature of the strategic interactions among players. Theorem 1 answers this question for the class of separable

dynamic games with noisy transitions. Moreover, the techniques we develop allow us to more broadly establish

a tight link between discrete- and continuous-time stochastic games even in the absence of Assumption 3.

Consider a dynamic stochastic game with noisy transitions and simultaneous moves. The per-period

payoff is u∆
i (ω, {1, . . . , N}, a) = ui(ω, a)∆ + O(∆2). The probability that the state changes is q(ω, a)∆ in

proportion to the length of a period ∆ and, conditional on the state changing, the probability that it changes

from ω to ω′ is p(ω′|ω, a). Hence, while Assumptions 1 and 2 are satisfied, Assumption 3 is not. Overloading

notation, let Equil(〈∆, u, p, q, ρ〉) be the set of Markov perfect equilibria of this game and Equil0(〈u, p, q, ρ 〉)
the set of solutions to the analog of the limit conditions (3.2) and (3.3).25

Proposition 4 Fix p, q, and ρ. For almost all u, lim∆→0 Equil(〈∆, u, p, q, ρ〉) = Equil0(〈u, p, q, ρ〉).

In words, provided that periods are sufficiently short the Markov perfect equilibria of the discrete-time

stochastic game with simultaneous moves almost coincide with those of the continuous-time stochastic game,

although the latter are much easier to compute than the former. We note that Proposition 4 does not carry

over from simultaneous to alternating moves. We also note that with a continuum of actions, a version of

Proposition 4 (and of Theorem 1) can be obtained by considering approximate equilibria as in Fudenberg

and Levine (1986).

i and after all on-path histories. Without restrictions on strategies, the properties of the set of equilibrium payoffs as ∆ → 0 are
generally not well understood in the literature. The existing results consider either the limit ∆→ 0 with simultaneous moves (Peski
and Wiseman 2015) or the limit ρ→ 0 (Dutta 1995, Yoon 2001, Hörner, Sugaya, Takahashi, and Vieille 2011).

25Given a sequence (Aν) indexed by ν ∈ N, with Aν ⊆ Rn, we define

lim inf
ν→∞

Aν = {x ∈ Rn | lim sup
ν→∞

d(x,Aν) = 0} and lim sup
ν→∞

Aν = {x ∈ Rn | lim inf
ν→∞

d(x,Aν) = 0},

where d(x,A) = inf {‖y − x‖ | y ∈ A}. If both limits coincide, we denote their common value by limν→∞Aν .
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5 Conclusions

The timing of decisions is an essential ingredient into modeling many strategic situations. Yet, determining

the protocol of moves that is most realistic and appropriate for the application at hand can be challenging.

While the literature abounds with examples where the protocol of moves matters crucially for equilibrium

behavior, our paper is a first attempt to show that the implications and predictions of a fairly general and

widely used class of dynamic models are independent of the timing of decisions and thus more robust for the

purposes of applied work.

We introduce separable dynamic games with noisy transitions and establish that they are protocol in-

variant provided that periods are sufficiently short and moves are therefore sufficiently frequent. Separable

dynamic games with noisy transitions are well-suited for situations in which a player primarily influences his

rivals’ payoffs by taking action to change the state and there is some residual uncertainty if the taken action

brings about such a change. A particular highlight of this class of dynamic stochastic games is that per-period

payoffs and state-to-state transitions can depend arbitrarily on the state. We show that investment games,

R&D races, models of industry dynamics, dynamic public contribution games, the recent continuous-time

stochastic games with moves at random times, asynchronously repeated games, and many other models from

the extant literature can be cast as special cases of separable dynamic games with noisy transitions.

In addition to alleviating the burden of determining the most realistic and appropriate protocol of moves,

our main result and its extensions have a number of implications for applied work. They provide a new

justification for focusing on Markov perfect equilibria in dynamic stochastic games and facilitate computing

these equilibria. They further clarify a driving force behind some of the well-known and important examples

in the literature where equilibrium behavior hinges on the protocol of moves. Many of these models, including

entry games and the asynchronously repeated Bertrand, Cournot, and coordination games in Maskin and

Tirole (1988a, 1988b) and Lagunoff and Matsui (1997), are separable but transitions are assumed to be

deterministic. If hazard rates are instead finite, the protocol of moves ceases to matter.
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Appendix

This Appendix consists of two parts. Appendix A.1 provides the proof of Theorem 1 and Appendix A.2

provides the proofs for Section 4.

A.1 Proof of Theorem 1

A.1.1 Notation and Preliminary Definitions

Enumerate the state space as Ω = {ω1, . . . , ω|Ω|} and the set of actions for player i asAi(ω) =
{
a1
i , . . . , a

|Ai(ω)|
i

}
.

Given a strategy profile σ = (σi)
N
i=1 ∈ Σ, define the matrix Pσ ∈ R|Ω|×

∑
ω∈Ω

∑N
i=1|Ai(ω)| as

σ1(a1
1 | ω1) . . . σ1(a

|A1(ω)|
1 | ω1) σ2(a1

2 | ω1) . . . σN (a
|AN (ω)|
N | ω1) 0 . . . 0 . . .

0 . . . . . . σ1(a1
1 | ω2) . . . σN (a

|AN (ω)|
N | ω2) . . .

0 . . . . . . . . . . . .

 .

Define the matrix Q ∈ R
∑
ω∈Ω

∑N
i=1|Ai(ω)|×|Ω| as

q1(a1, ω
1) 0 . . .

...

q1(a
|A1(ω)|
1 , ω1) 0 . . .

...

qN (a
|AN (ω)|
N , ω1) 0

0 q1(a1, ω
2) 0 . . .

...
...


and the matrix P ∈ R

∑
ω∈Ω

∑N
i=1|Ai(ω)|×|Ω| as

P(i,ai,ω),ω′ =

 ϕi(ω
′ | ai, ω) if ω′ 6= ω,

0 if ω′ = ω.

Given a player i ∈ {1, . . . , N}, limit condition (3.2) can be written as

(
ρ1 + Pσ(Q− P )

)
V 0
i = Pσui,

where 1 is the identity matrix, V 0
i ∈ R|Ω|, and ui ∈ R

∑N
j=1

∑
ω∈Ω|Aj(ω)|. The matrix ρ1+Pσ(Q−P ) is strictly

dominant diagonal and therefore invertible.26 We emphasize the dependence of the unique solution to limit

condition (3.2) by writing V 0
i (·) = V 0

i (·, σ). This solution is

V 0
i (·, σ) =

(
ρ1 + Pσ(Q− P )

)−1

Pσui.

26A strictly dominant diagonal matrix X is a square matrix with entries Xij such that |Xii| >
∑
j 6=i|Xij | for all i.
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Given i ∈ {1, . . . , N} and ui ∈ R
∑N
j=1

∑
ω∈Ω|Aj(ω)|, consider the vector

ui + (P −Q)V 0
i (·, σ) = ui + (P −Q) (ρ1 + Pσ(Q− P ))

−1 Pσui

= ui + (P −Q)
1

ρ

(
1− 1

ρ
Pσ(Q− P ) +

1

ρ2
(Pσ(Q− P ))2 . . .

)
Pσui

=

(
1− 1

ρ
(Q− P )Pσ +

1

ρ2
((Q− P )Pσ)2 − 1

ρ3
((Q− P )Pσ)3 + . . .

)
ui

=

(
1 +

1

ρ
(P −Q)Pσ

)−1

ui,

where the inversion is justified by strict diagonal dominance. The map

ui ∈ R
∑N
j=1

∑
ω∈Ω|Aj(ω)| 7→

(
1 +

1

ρ
(P −Q)Pσ

)−1

ui ∈ R
∑N
j=1

∑
ω∈Ω|Aj(ω)|

is invertible.

The above results have been presented for a given strategy profile σ ∈ Σ. Following Appendix A.1 in

Doraszelski and Escobar (2010), we construct an open set Σε ⊂ R
∑N
j=1

∑
ω∈Ω|Aj(ω)| that strictly contains Σ

such that all the preceding operations are valid for any σ ∈ Σε.

A.1.2 Regularity

We begin by providing a formal definition of regularity and establishing the key technical point that for almost

all flow payoffs u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, the restriction to regular solutions is without loss of generality.

Given i ∈ {1, . . . , N}, ω ∈ Ω, ai ∈ Ai(ω), and σ ∈ Σε, define the function

Ui(ω, ai, σ) = ui,i(ω, ai) +
∑
ω′ 6=ω

(
V 0
i (ω′, σ)− V 0

i (ω, σ)
)
ϕi(ω

′ | ω, ai).

In light of limit condition (3.3), we interpret Ui(ai, ω, σ) as the objective function that player i ∈ {1, . . . , N}
maximizes over ai ∈ Ai(ω) given state ω ∈ Ω and continuation play σ ∈ Σε.

Consider σ̄ ∈ Equil0(< u, p, q, ρ >). Choose aωi such that σ̄i(a
ω
i | ω) > 0 for all i ∈ {1, . . . , N} and all

ω ∈ Ω. Given ai 6= aωi and σ ∈ Σε, define

fi,ai,ω(σ) = σi(ai | ω)
(
Ui(ai, ω, σ)− Ui(aωi , ω, σ)

)
while

fi,aωi ,ω(σ) =
∑

ai∈Ai(ω)

σi(ai | ω)− 1.

By definition, f(σ̄) = 0. In this subsection, we sometimes emphasize the dependence of f on u by writing

f(σ, u). Note that f : Σε × RN
∑
ω∈Ω

∑N
i=1|Ai(ω)| → R

∑
ω∈Ω

∑N
i=1|Ai(ω)| is continuously differentiable.
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Definition 1 σ̄ ∈ Equil0(< u, p, q, ρ >) is regular if the Jacobian of f with respect to σ, ∂f
∂σ (σ̄), has full rank∑N

j=1

∑
ω∈Ω|Aj(ω)|.

We present two preliminary lemmas. We say that a strategy profile σ ∈ Σε is completely mixed if

σi(ai | ω) > 0 for all i ∈ {1, . . . , N}, ω ∈ Ω, and all ai ∈ Ai(ω).

Lemma 3 If σ ∈ Σε is completely mixed, then the Jacobian of f with respect to (σ, u), ∂f
∂(σ,u) (σ, u), has full

rank
∑N
j=1

∑
ω∈Ω|Aj(ω)|.

Proof. Define the matrix M(σ, i) ∈ R
∑
ω∈Ω(|Ai(ω)|−1)×

∑N
j=1

∑
ω∈Ω|Aj(ω)| such that, for all ai 6= āωi , its

(i, ai, ω) row equals 0 in all components save for the (i, ai, ω) column, where we write σi(ai | ω), and for the

(i, aωi , ω) column, where we write −σi(ai | ω). The function f can be expressed as

fi(σ, u) =



∑
ai∈Ai(ω) σi(ai | ω1)− 1,

...∑
ai∈Ai(ω) σi(ai | ω|Ω|)− 1,

M(σ, i)
(
1 + 1

ρ (P −Q)Pσ
)−1

ui.

Up to permutation (which are irrelevant to determine the rank of the Jacobian), we can write

∂f(σ, u)

∂(σ, u)
=



σ1 σ2 . . . σN u1 u2 . . . uN

X1 0 0 0 0 0 . . . 0

0 X2 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 0 XN 0 0 . . . 0

Z1 0 . . . 0

0 Z2 . . . 0

Y1 Y2 . . . YN
...

...
. . .

...

0 0 . . . ZN



,

where Xi equals



σi(· | ω1) σi(· | ω2) . . . σi(· | ω|Ω|)

1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1



and has rank |Ω|, while Zi = M(σ, i)
(
1 + 1

ρ (P − Q)Pσ
)−1

. Since M(σ, i) has full rank
∑
ω∈Ω(|Ai(ω)| − 1)
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and (1+ 1
ρ (P −Q)Pσ)−1 has full rank

∑
ω∈Ω

∑N
j=1|Aj(ω)|, Zi has rank

∑
ω∈Ω(|Ai(ω)| − 1). We deduce that

the Jacobian has full rank
∑N
j=1

∑
ω∈Ω|Aj(ω)| and the lemma follows.

Given σ ∈ Σ, i ∈ {1, . . . , N}, and ω ∈ Ω, define the best reply as

Bi(σ, ω) = arg max
ai∈Ai(ω)

Ui(ω, ai, σ)

and the carrier as

Ci(σ, ω) =
{
ai ∈ Ai(ω) | σi(ai | ω) > 0

}
.

Using this notation, σ ∈ Equil0(< u, p, q, ρ >) if and only if Ci(σ, ω) ⊆ Bi(σ, ω) for all i ∈ {1, . . . , N}. We

say that σ ∈ Equil0(< u, p, q, ρ >) is quasi-strict if Ci(σ, ω) = Bi(σ, ω) for all i ∈ {1, . . . , N}.

Lemma 4 For almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, any σ ∈ Equil0(< u, p, q, ρ >) is quasi-strict.

Proof. Given i ∈ {1, . . . , N}, consider correspondences B∗i : Ω → ∪ω∈ΩAi(ω) and C∗i : Ω → ∪ω∈ΩAi(ω),

with C∗i (ω) ⊆ B∗i (ω) ⊆ Ai(ω) for all ω ∈ Ω. Define G(B∗, C∗) as the set of all u having some σ ∈ Equil0(<

u, p, q, ρ >) with best replies B∗ = (B∗i )Ni=1 and carriers C∗ = (C∗i )Ni=1. Formally,

G(B∗, C∗) =
{
u | there exists σ ∈ Equil0(< u, p, q, ρ >) with Bi(σ, ·) = B∗i and Ci(σ, ·) = C∗i for all i = 1, . . . , N

}
.

Consider first σ̄ ∈ Equil0(< ū, p, q, ρ >) such that Bi(σ, ω) = B∗i (ω) for all ω ∈ Ω. Fix aωi such that σ̄i(a
ω
i |

ω) > 0 and note that the indifference condition Ui(ai, ω, σ̄)−Ui(aωi , ω, σ̄) = 0 holds for all i ∈ {1, . . . , N} and

all ai ∈ B∗i (ω). For all ω ∈ Ω and all i ∈ {1, . . . , N}, define the matrix Pi(σ) ∈ R
∑
ω∈Ω(|B∗i (ω)|−1)×

∑
ω∈Ω|Ai(ω)|,

such that for all ai ∈ B∗i (ω), its (ω, ai) row equals 0 save for the (ω, ai) component, where it equals 1, and

the (ω, aωi ) component, where it equals -1. We can therefore stack all the indifference conditions by writing

M(σ, u) =


P1(σ)

(
1 + 1

ρ (P −Q)Pσ
)−1

u1

...

PN (σ)
(
1 + 1

ρ (P −Q)Pσ
)−1

uN


and note that M(σ̄, ū) = 0. The Jacobian ∂M

∂u (σ, u) can be computed as

∂M

∂u
(σ, u) =



P1(σ)
(
1 + 1

ρ (P −Q)Pσ
)−1

0 · · · 0

0 P2(σ)
(
1 + 1

ρ (P −Q)Pσ
)−1

· · · 0

...

0 · · · PN (σ)
(
1 + 1

ρ (P −Q)Pσ
)−1


.

Since Pi(σ) has full rank
∑
ω∈Ω(|B∗i (ω)| − 1), the Jacobian ∂M

∂u (σ, u) has rank
∑N
i=1

∑
ω∈Ω(|B∗i (ω)| − 1).
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In particular, since M(σ̄, ū) = 0, we can construct open sets N , N1 ⊆ R
∑N
i=1

∑
ω∈Ω(N |Ai(ω)|−|B∗i (ω)|+1),

N2 ⊆ R
∑N
i=1

∑
ω∈Ω(|B∗i (ω)|−1), with σ̄ ∈ N and ū ∈ N1×N2, and a continuously differentiable function Φ such

that for all (σ, u1) ∈ N×N1 there exists a unique u2 = Φ(σ, u1) ∈ N2 which is a solution to M(σ, (u1, u2)) = 0.

Without loss, all these open sets are balls with rational centers and radii and we emphasize their dependence

on (σ̄, ū) by writing N σ̄,ū
1 , N σ̄,ū

2 , and N σ̄,ū.

Now take C∗ such that for some i ∈ {1, . . . , N} and some ω ∈ Ω, C∗i (ω) ( B∗i (ω). Consider the set

Rσ̄,ū(B∗, C∗) =
{
u ∈ N σ̄,ū

1 ×N σ̄,ū
2 | there exists (σ, u1) ∈ (N σ̄ ∩A(C∗))×N σ̄,ū

1 such that u2 = Φ(σ, u1)
}

⊆RN
∑
ω∈Ω

∑N
j=1|Aj(ω)|,

where A(C∗) = {σ ∈ Σ | Ci(·, ω) = C∗i (ω) for all i = 1, . . . , N}. Note that the dimension of (N σ̄ ∩A(C∗))×
N σ̄,ū

1 equals N
∑
ω∈Ω

∑N
j=1|Aj(ω)| −

∑N
i=1

∑
ω∈Ω|B∗i (ω)| +

∑N
i=1

∑
ω∈Ω|C∗i (ω)| < N

∑
ω∈Ω

∑N
j=1|Aj(ω)|.

Therefore, M σ̄,ū(B∗, C∗) has measure zero. Since we are choosing the neighborhoods from a countable set,

it follows that G(B∗, C∗) ⊆ ∪n∈NQn, where Qn = Rσ̄n,ūn(B∗, C∗), has measure zero as well.

The following is the main result of this subsection.

Proposition 5 For almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, all σ̄ ∈ Equil0(< u, p, q, ρ >) are regular.

Proof. From Lemma 4, we can rule out games u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)| having non quasi-strict solutions

and focus on games having only quasi-strict solutions. Since there is a finite number of correspondences

B∗i : Ω→ Ai, it is enough to prove that the set of games having a non-regular equilibrium σ with

Bi(σ, ω) = Ci(σ, ω) = B∗i (ω)

for all i ∈ {1, . . . , N} and all ω ∈ Ω has measure zero. Considering the submatrix J̄(σ, u) obtained from
∂f
∂σ (σ, u) by crossing out all rows and columns corresponding to components (ai, ω) with ai /∈ B∗i (ω), it

follows that J̄(σ) has full rank if and only if so does ∂f
∂σ (σ, u). Noting that J̄(σ, u) is the Jacobian of a

completely mixed solution, without loss of generality we can therefore assume that B∗(ω) does not depend

on ω and restrict attention to completely mixed solutions. Using Lemma 3 and the transversality theorem,

we deduce that for almost all games, all completely mixed equilibria are regular.

A.1.3 Establishing Lemma 2

Fix a game u ∈ RN
∑
ω∈Ω

∑N
i=1|Ai(ω)| and a regular solution σ0 ∈ Equil0(< u, p, q, ρ >). Let < J ,P >

be a protocol of moves and ∆ > 0 the period length. We establish that the regular solution σ0 can be

approximated by a Markov perfect equilibrium of a separable dynamic game with noisy transitions and an

arbitrary protocol of moves if the period length ∆ is sufficiently small. To do so, we apply a version of the

implicit function theorem to the limit conditions.
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Proof of Lemma 2. In the separable dynamic game with noisy transitions Γ =< ∆,J ,P, u, p, q, ρ >,

write the continuation value of player i ∈ {1, . . . , N} if players J ∈ J have the move and the state is ω ∈ Ω

as V ∆
i (ω, J). Note that the value function V ∆

i : Ω × J → R is uniquely determined by the strategy profile

σ ∈ Σ. We therefore write V ∆
i (·, ·) = V ∆

i (·, ·, σ). Note that V ∆
i (·, ·, σ) is a continuous function of (σ,∆) and its

differential with respect to σ at ∆ = 0 exists. In particular, for all J ∈ J and all σ ∈ Σ, V ∆
i (·, J, σ)→ V 0

i (·, σ)

as ∆→ 0.

A strategy profile σ∆ is a Markov perfect equilibrium of the separable dynamic game with noisy transitions

Γ =< ∆,J ,P, u, p, q, ρ > if for all i = 1, . . . , N , ω ∈ Ω, and all ai ∈ Ai(ω)

σ∆
i (ai | ω) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
U∆
i (ω, ãi, σ

∆)

with

U∆
i (ω, ai, σ

∆) = ui,i(ω, ai) + exp(−ρ∆)
∑
ω′ 6=ω

∑
J′∈J

(
V ∆
i (ω′, J ′, σ∆)− V ∆

i (ω, J ′, σ∆)
)
ϕi(ω

′ | ω, ai)Pr(J ′ | J) +O(∆)

and J ∈ J is such that i ∈ J .

Consider the profile (aωi )i=1,...,N,ω∈Ω that is used in the construction of the function f in Appendix A.1.2

for which σ0 is regular. Abusing notation, construct the function f : [0, 1] × Σε → R
∑
ω∈Ω

∑N
i=1|Ai(ω)| such

that for all ai 6= aωi

fi,ai,ω(∆, σ) = σi(ai, ω)
(
U∆
i (ω, ai, σ)− U∆

i (ω, aωi , σ)
)

while

fi,aωi ,ω(∆, σ) =
∑

ai∈Ai(ω)

σi(ai | ω)− 1.

Observe that f(∆, σ) is a continuous function, with a well-defined differential with respect to σ, Dσf(0, σ),

at (0, σ). Moreover, f(0, σ0) = 0 and Dσf(0, σ0) has full rank
∑N
j=1

∑
ω∈Ω|Aj(ω)|. A version of the implicit

function theorem (see Lemma 5 below) implies that for all r > 0 there exists ∆̄ > 0 such that for all ∆ < ∆̄,

there exists σ∆ ∈ Σε with ‖σ0 − σ∆‖ < r such that f(∆, σ∆) = 0. Moreover, we can take ∆̄ and r small

enough so that (i) σ∆
i (ai, ω) > 0 whenever σ0

i (ai, ω) > 0, and (ii) U∆
i (ω, ai, σ

∆) < U∆
i (ω, aωi , σ

∆) whenever

Ui(ω, ai, σ0) < Ui(ω, aωi , σ0).

To prove that σ∆ is a Markov perfect equilibrium of the separable dynamic game with noisy transitions

< ∆,J ,P, u, p, q, ρ >, consider first ai ∈ Ai(ω) and ω ∈ Ω such that σ0(ai | ω) = 0. Since σ0 is regular, it is

also quasi-strict and therefore Ui(ω, ai, σ0) < Ui(ω, aωi , σ0). From (ii), U∆
i (ω, ai, σ

∆) < U∆
i (ω, aωi , σ

∆). Since

f(∆, σ∆) = 0, it follows that σ∆(ai | ω) = 0. Next consider ai ∈ Ai(ω) and ω ∈ Ω such that σ0(ai | ω) > 0.

We can use (i) to deduce that σ∆(ai | ω) > 0 and, since f(∆, σ∆) = 0, U∆
i (ω, ai, σ

∆) = U∆
i (ω, aωi , σ

∆). All

of these observations prove that whenever σ∆(ai, ω) > 0, ai solves maxãi∈Ai(ω) U∆
i (ω, ãi, σ

∆). Therefore, σ∆

is a Markov perfect equilibrium of the separable dynamic game with noisy transitions < ∆,J ,P, u, , q, ρ >.
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Since for almost all u ∈ RN
∑N
j=1

∑
ω∈Ω|Aj(ω)|, all σ0 ∈ Equil0(< u, p, q, ρ >) are regular, Lemma 2 follows.

It remains to prove the implicit function theorem we used above. The textbook presentation of the

implicit function theorem (Section M.E in Mas-Colell, Whinston, and Green 1995) applies to continuously

differentiable functions defined on open sets. In our setup, the set of parameters ∆ ∈ [0, 1] is closed and,

moreover, we are interested in the boundary case ∆ = 0. The following result is a modification of Theorem

A in Halkin (1974).

Lemma 5 (Implicit Function Theorem) Assume f : [0, 1] × Σε → R
∑
ω∈Ω

∑N
i=1|Ai(ω)| is a continuous

function such that its differential with respect to σ ∈ Σε at ∆ = 0, Dσf(0, σ), exists. Let σ0 ∈ Σ be

such that f(0, σ0) = 0 and Dσf(0, σ0) has full rank
∑N
j=1

∑
ω∈Ω|Aj(ω)|. Then, for all r > 0 there exists

∆̄ > 0 such that for all ∆ < ∆̄, there exists σ∆ such that ‖σ0 − σ∆‖ < r and f(∆, σ∆) = 0.

Proof. Consider the function ϕ(σ,∆) = σ − [Dσf(0, σ0)]−1f(∆, σ) and note that the problem of finding

σ∆ such that f(∆, σ∆) = 0 reduces to the problem of finding a fixed point of ϕ(·,∆). Note thatDσϕ(0, σ0) = 0

and therefore we can assume, without loss, that r > 0 is small enough so that for all ‖σ − σ0‖ < r, σ ∈ Σε

and
‖ϕ(σ, 0)− ϕ(σ0, 0)‖

‖σ − σ0‖
<

1

2
.

Since ϕ(σ0, 0) = σ0, we can therefore deduce that for all ‖σ − σ0‖ ≤ r, ‖ϕ(σ, 0)− σ0‖ ≤ r/2.

Define now m(∆) = max{σ|‖σ−σ0‖≤r}‖ϕ(σ,∆) − ϕ(σ, 0)‖. Berge’s maximum theorem (Theorem 17.31 in

Aliprantis and Border 2006) implies that m is continuous in ∆ ∈ [0, 1]. Since m(0) = 0, there exists ∆̄ > 0

such that for all ∆ < ∆̄, m(∆) < r/2. We thus deduce that for all σ such that ‖σ − σ0‖ ≤ r and ∆ < ∆̄

‖ϕ(σ,∆)− σ0‖ ≤ ‖ϕ(σ,∆)− ϕ(σ, 0)‖+ ‖ϕ(σ, 0)− σ0‖

≤ m(∆) + ‖ϕ(σ,∆)− σ0‖

≤ r.

It follows that for all ∆ < ∆̄, the continuous function ϕ(·,∆) maps the convex and compact set {σ | ‖σ−σ0‖ ≤
r} into itself. For any such ∆ < ∆̄, Brouwer’s fixed point theorem (Theorem M.I.1 in Mas-Colell, Whinston,

and Green 1995) implies the existence of σ∆ within distance r of σ0 such that ϕ(σ∆,∆) = σ∆.

A.1.4 Proof of Theorem 1

Proof of Theorem 1. From Lemma 2, take one of the generic flow payoffs u ∈ RN
∑
ω∈Ω

∑N
j=1|Aj(ω)|

and any two protocols of moves as in the statement of Theorem 1. From Lemma 1, there exists ∆̃ > 0

such that for all ∆ < ∆̃ and all σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >), there exists σ0 ∈ Equil0(< u, p, q, ρ >)

such that ‖σ∆ − σ0‖ < ε/2. From Lemma 2 we can find ∆̂ > 0 such that for all ∆ < ∆̂, there exists
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σ̂∆ ∈ Equil(< ∆, J̄ , P̄, u, p, q, ρ >) such that ‖σ̄∆ − σ0‖ < ε/2. Taking ∆̄ = min{∆̃, ∆̂} > 0, Theorem 1

follows from the triangle inequality.

A.2 Proofs for Section 4

Proof of Proposition 3. Take any u as in Theorem 1. Define Payoffs0(< u, p, q, ρ >) ⊆ RN to be the set

of payoff profiles associated with solutions in pure strategy profiles to the limit conditions (3.2) and (3.3):

Payoffs0(< u, p, q, ρ >) ={
V 0(ωt=0) ∈ RN | (V 0, σ0) solves (3.2) and (3.3) for some pure strategy profile σ0

}
,

where ωt=0 ∈ Ω is the initial state of the game. For ε > 0 take ∆̄ such that for all ∆ < ∆̄, and all protocols

< J ,P >, the Hausdorff distance between Payoffs0(< u, p, q, ρ >) and PayoffsF (< ∆, < J ,P >, u, p, q, ρ >)

is less than ε/3.

Take v ∈ PayoffsF (Γsim). Because v is approachable, for all n ≥ 1, there exists an asynchronous protocol

< J n,Pn > and wn ∈ PayoffsF (< ∆,J n,Pn, u, p, q, ρ >) such that ‖v − wn‖ < 1/n. Restrict the sequence

such that 1/n < ε/3. From Bhaskar, Mailath, and Morris (2013), we can actually take wn ∈ PayoffsM (<

∆,J n,Pn, u, p, q, ρ >). By construction, for any such wn we can find w̃n ∈ Payoffs0(< u, p, q, ρ >) such

that ‖wn − w̃n‖ < ε/3. Since Payoffs0(< u, p, q, ρ >) has a finite number of elements, we can assume

that w̃n = w̃ does not depend on n (perhaps, by taking a subsequence). Now, take w ∈ PayoffsM (<

∆,J sim,Psim, u, p, q, ρ >) such that ‖w − w̃‖ < ε/3. It follows that

‖v − w‖ ≤ ‖v − wn‖+ ‖wn − w̃‖+ ‖w̃ − w‖ < ε

3
+
ε

3
+
ε

3
,

which proves the result.

Proof Sketch of Proposition 4. The proof follows from the analysis in Appendix A.1 and arguments

in Doraszelski and Escobar (2010). Details are available upon request. To provide a sketch, consider the

analog to the limit conditions (3.2) and (3.3) that arise without Assumption 3:

ρVi(ω) = ui(ω, σ(ω)) +
∑
ω′ 6=ω

(Vi(ω
′)− Vi(ω))ϕ(ω′ | ω, σ(ω))

and

σi(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

ui(ω, ãi, σ−i(ω)) +
∑
ω′ 6=ω

(Vi(ω
′)− Vi(ω))ϕ(ω′ | ω, ãi, σ−i(ω)).

From these limit conditions, we can construct a function f (as we did in Appendix A.1) such that all solutions

are zeros of f and, moreover, for almost all flow payoffs u, all solutions are regular. We then apply the implicit

function theorem to deduce the result.

36



References

Abreu, D., and F. Gul (2000): “Bargaining and Reputation,” Econometrica, 68(1), 85–117.

Aliprantis, C., and K. Border (2006): Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer

Science & Business Media.

Ambrus, A., and Y. Ishii (2015): “On Asynchronicity of Moves and Coordination,” Working paper, Duke

University.

Ambrus, A., and S. Lu (2015): “A Continuous-Time Model of Multilateral Bargaining,” American Eco-

nomic Journal: Microeconomics, 7, 208–249.

Arapostathis, A., V. S. Borkar, E. Fernández-Gaucherand, M. K. Ghosh, and S. I. Marcus

(1993): “Discrete Time Controlled Markov Processes with Average Cost Criterion: A Survey,” SIAM

Journal on Control and Optimization, 31(2), 282–344.

Arcidiacono, P., P. Bayer, J. Blevins, and P. Ellickson (2016): “Estimation of Dynamic Discrete

Choice Models in Continuous Time with an Application to Retail Competition,” Review of Economic

Studies, 83(3), 889–931.

Berry, S., and A. Pakes (1993): “Some Applications and Limitations of Recent Advances in Empirical

Industrial Organization: Merger Analysis,” American Economic Review, 83(2), 247–252.

Besanko, D., and U. Doraszelski (2004): “Capacity Dynamics and Endogenous Asymmetries in Firm

Size,” Rand Journal of Economics, 35(1), 23–49.

Bhaskar, V., G. Mailath, and S. Morris (2009): “A Foundation for Markov Equilibria in Infinite Hori-

zon Perfect Information Games,” Working paper, Department of Economics, University of Pennsylvania.

(2013): “A Foundation for Markov Equilibria in Sequential Games with Finite Social Memory,”

Review of Economic Studies, 80(3), 925–948.

Bhaskar, V., and F. Vega-Redondo (2002): “Asynchronous Choice and Markov Equilibria,” Journal of

Economic Theory, 103(2), 334–350.

Bohren, A. (2014): “Stochastic Games in Continuous Time: Persistent Actions in Long-Run Relationships,”

Working paper, Department of Economics, University of Pennsylvania.

Bolton, P., and C. Harris (1999): “Strategic Experimentation,” Econometrica, 67(2), 349–374.

Calcagno, R., Y. Kamada, S. Lovo, and T. Sugaya (2014): “Asynchronicity and Coordination in

Common and Opposing Interest Games,” Theoretical Economics, 9(2), 409–434.

Caruana, G., and L. Einav (2008): “A Theory of Endogenous Commitment,” Review of Economic Studies,

75(1), 99–116.

Chen, J. (2009): “The Effects of Mergers with Dynamic Capacity Accumulation,” International Journal of

Industrial Organization, 27, 92–109.

37



Compte, O., and P. Jehiel (2004): “Gradualism in Bargaining and Contribution Games,” Review of

Economic Studies, 71(4), 975–1000.

Cournot, A. (1838): Recherches sur les Principes Mathmatiques de la Thorie des Richesses. Hachette,

Paris.

Cyert, R., and M. DeGroot (1970): “Multiperiod Decision Models with Alternating Choice as a Solution

to the Duopoly Problem,” Quarterly Journal of Economics, 84(3), 410–299.

de Roos, N. (2004): “A Model of Collusion Timing,” International Journal of Industrial Organization, 22,

351–387.

Dockner, E. (1992): “A Dynamic Theory of Conjectural Variations,” The Journal of Industrial Economics,

pp. 377–395.

Doraszelski, U., and J. Escobar (2010): “A Theory of Regular Markov Perfect Equilibria in Dynamic

Stochastic Games: Genericity, Stability, and Purification,” Theoretical Economics, 5, 369–402.

Doraszelski, U., and K. Judd (2007): “Dynamic Stochastic Games with Sequential State-to-State Tran-

sitions,” Working paper, Stanford University.

(2012): “Avoiding the Curse of Dimensionality in Dynamic Stochastic Games,” Quantitative Eco-

nomics, 3(1), 53–93.

Doraszelski, U., and S. Markovich (2007): “Advertising Dynamics and Competitive Advantage,” Rand

Journal of Economics, 38(3), 557–592.

Doraszelski, U., and A. Pakes (2007): “A Framework for Applied Dynamic Analysis in IO,” in Handbook

of Industrial Organization, vol. 3, pp. 1887–1966. Elsevier.

Doraszelski, U., and M. Satterthwaite (2010): “Computable Markov Perfect Industry Dynamics,”

Rand Journal of Economics, 41(2), 215–243.

Dutta, P. (1995): “A Folk Theorem for Stochastic Games,” Journal of Economic Theory, 66(1), 1–32.

Einav, L. (2010): “Not All Rivals Look Alike: Estimating an Equilibrium Model of the Release Date Timing

Game,” Economic Inquiry, 48(2), 369–390.

Elfving, G. (1937): “Zur Theorie der Markoffschen Ketten,” Acta Societatis Scientiarum Fennicae Nova

Series A, 2(8), 1–17.

Ericson, R., and A. Pakes (1995): “Markov-Perfect Industry Dynamics: A Framework for Empirical

Work,” Review of Economic Studies, 62(1), 53–82.

Faingold, E., and Y. Sannikov (2011): “Reputation in Continuous-Time Games,” Econometrica, 79(3),

773–876.

Fershtman, C., and A. Pakes (2000): “A Dynamic Oligopoly with Collusion and Price Wars,” Rand

Journal of Economics, 31, 294–326.

38



Fudenberg, D., R. Gilbert, J. Stiglitz, and J. Tirole (1983): “Preemption, leapfrogging and com-

petition in patent races,” European Economic Review, 22, 3–31.

Fudenberg, D., and D. Levine (1986): “Limit Games and Limit Equilibria,” Journal of Economic Theory,

38(2), 261–279.

Fudenberg, D., and J. Tirole (1983): “Capital as Commitment: Strategic Investment to Deter Mobility,”

Journal of Economic Theory, 31(2), 227–250.

(1985): “Preemption and Rent Equalization in the Adoption of New Technology,” Review of Eco-

nomic Studies, 52(3), 383–401.

Georgiadis, G. (2015): “Projects and Team Dynamics,” Review of Economic Studies, 82(1), 187–218.

Giovannetti, E. (2001): “Perpetual Leapfrogging in Bertrand Duopoly,” International Economic Review,

42(3), 671–969.

Gowrisankaran, G. (1999): “A Dynamic Model of Endogenous Horizontal Mergers,” Rand Journal of

Economics, 30(1), 56–83.

Grossman, G., and C. Shapiro (1987): “Dynamic R&D competition,” Economic Journal, 97(386), 372–

387.

Halkin, H. (1974): “Implicit Functions and Optimization Problems without Continuous Differentiability of

the Data,” SIAM Journal on Control, 12(2), 229–236.

Haller, H., and R. Lagunoff (2000): “Genericity and Markovian Behavior in Stochastic Games,” Econo-

metrica, 68(5), 1231–1248.

Hanig, M. (1986): “Differential Gaming Models of Oligopoly,” Ph.D. thesis, Massachusetts Institute of

Technology.

Harris, C., and J. Vickers (1987): “Racing with uncertainty,” Review of Economic Studies, 54(1), 1–21.

Harsanyi, J. (1973a): “Games with Randomly Disturbed Payoffs: A New Rationale for Mixed-Strategy

Equilibrium Points,” International Journal of Game Theory, 2(1), 1–23.

(1973b): “Oddness of the Number of Equilibrium Points: A New Proof,” International Journal of

Game Theory, 2(4), 235–250.

Hörner, J., T. Sugaya, S. Takahashi, and N. Vieille (2011): “Recursive Methods in Discounted

Stochastic Games: An Algorithm for δ → 1 and a Folk Theorem,” Econometrica, 79(4), 1277–1318.

Ifrach, B., and G. Weintraub (2017): “A framework for dynamic oligopoly in concentrated industries,”

Review of Economic Studies, 84(3), 1106–1150.

Iskhakov, F., J. Rust, and B. Schjerning (2017): “The Dynamics of Bertrand Price Competition with

Cost-Reducing Investments,” International Economic Review, forthcoming.

Kalai, E. (2004): “Large Robust Games,” Econometrica, 72(6), 1631–1665.

39



Kamada, Y., and M. Kandori (2017): “Revision Games Part I: Theory,” Discussion paper, Harvard

University.

Lagunoff, R., and A. Matsui (1997): “Asynchronous Choice in Repeated Coordination Games,” Econo-

metrica, pp. 1467–1477.

(2001): “Are “Anti Folk” Theorems in Repeated Games Nongeneric,” Review of Economic Dynamics,

6, 397–412.

Lippman, S., and K. McCardle (1987): “Dropout Behavior in R&D Races with Learning,” Rand Journal

of Economics, 18(2), 287–295.

Mailath, G., and S. Morris (2002): “Repeated Games with Almost-Public Monitoring,” Journal of

Economic Theory, 102(1), 189–228.

Mailath, G., and L. Samuelson (2006): Repeated Games and Reputations. Oxford University Press,

Oxford.

Markovich, S. (2008): “Snowball: A Dynamic Oligopoly Model with Indirect Network Effects,” Journal of

Economic Dynamics and Control, 32, 909–938.

Marx, L., and S. Matthews (2000): “Dynamic Voluntary Contribution to a Public Project,” Review of

Economic Studies, 67(2), 327–358.

Mas-Colell, A., M. Whinston, and J. Green (1995): Microeconomic Theory. Oxford University Press,

Oxford.

Maskin, E., and J. Tirole (1987): “A Theory of Dynamic Oligopoly, III: Cournot Competition,” European

Economic Review, 31(4), 947–968.

(1988a): “A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and

Edgeworth Cycles,” Econometrica, 56(3), 571–599.

(1988b): “A Theory of Dynamic Oligopoly, I: Overview and Quantity Competition with Large Fixed

Costs,” Econometrica, pp. 549–569.

(2001): “Markov Perfect Equilibrium, I: Observable Actions,” Journal of Economic Theory, 100(2),

191–219.

Pakes, A., and P. McGuire (1994): “Computing Markov-perfect Nash equilibria: Numerical implications

of a dynamic differentiated product model,” Rand Journal of Economics, 25(4), 555–589.

(2001): “Stochastic algorithms, symmetric Markov perfect equilibrium, and the “curse” of dimen-

sionality,” Econometrica, 69(5), 1261–1281.

Peski, M., and T. Wiseman (2015): “A Folk Theorem for Stochastic Games with Infrequent State

Changes,” Theoretical Economics, 10(1), 131–173.

Reinganum, J. (1982): “A Dynamic Game of R and D: Patent Protection and Competitive Behavior,”

Econometrica, 50, 671–688.

40



(1989): “The Timing of Innovation: Research, Development, and Diffusion,” in Handbook of indus-

trial organization, ed. by R. Schmalensee, and R. Willig. North-Holland, Amsterdam.

Reynolds, S. (1987): “Capacity Investment, Preemption and Commitment in an Infinite Horizon Model,”

International Economic Review, pp. 69–88.

Reynolds, S. (1991): “Dynamic Oligopoly with Capacity Adjustment Costs,” Journal of Economic Dy-

namics and Control, 15(3), 491–514.

Riordan, M., and D. Salant (1994): “Preemptive Adoptions of an Emerging Technology,” Journal of

Industrial Economics, 42(3), 247–261.

Rosenthal, R. (1991): “A Note on Robustness of Equilibria with Commitment Opportunities,” Games and

Economic Behavior, 3, 237–243.

Rubinstein, A., and A. Wolinsky (1995): “Remarks on Infinitely Repeated Extensive-Form Games,”

Games and Economic Behavior, 9(1), 110–115.

Sannikov, Y., and A. Skrzypacz (2007): “Impossibility of Collusion Under Imperfect Monitoring with

Flexible Production,” American Economic Review, 97(5), 1794–1823.

Serfozo, R. (1979): “An Equivalence Between Continuous and Discrete Time Markov Decision Processes,”

Operations Research, 27(3), 616–620.

Shapley, L. (1953): “Stochastic Games,” Proceedings of the National Academy of Sciences, 39(10), 1095–

1100.

Simon, L., and M. Stinchcombe (1989): “Extensive form Games in Continuous Time: Pure Strategies,”

Econometrica, pp. 1171–1214.

Spence, A. (1979): “Investment Strategy and Growth in a New Market,” Bell Journal of Economics, pp.

1–19.

van Damme, E., and S. Hurkens (1996): “Commitment Robust Equilibria and Endogenous Timing,”

Games and Economic Behavior, 15, 290–311.

von Stackelberg, H. (1934): Marktform und Gleichgewicht. Springer, Wien.

Weintraub, G., L. Benkard, and B. Van Roy (2008): “Markov perfect industry dynamics with many

firms,” Econometrica, 76(6), 1375–1411.

Wen, Q. (2002): “A Folk Theorem for Repeated Sequential Games,” Review of Economic Studies, 69(2),

493–512.

Yoon, K. (2001): “A Folk Theorem for Asynchronously Repeated Games,” Econometrica, 69(1), 191–200.

41



Online Appendix

This Online Appendix consists of five parts. Appendix OA.1 presents a slightly modified version of the entry

game in Section 3, Appendix OA.2 shows that the limit conditions (3.2) and (3.3) may not admit a solution in

pure strategies, Appendix OA.3 provides a counterexample complementing Example 6, and Appendices OA.4

and OA.5 generalize our notion of a protocol of moves and provide extensions of Theorem 1.

OA.1 Modified Entry Game

We slightly modify the discrete-time entry game in Section 3 by assuming that the expected net present value

of the stream of payoffs to a monopolist is B(∆+∆2)
1−e−ρ∆ instead of B∆

1−e−ρ∆ . Clearly, this does not change the limit

conditions (3.2) and (3.3) and the fact that σ0 is a solution to these conditions provided that λB/ρ = c and

b < 0.

We first show that this solution can be approximated by the discrete-time game with alternating moves

provided that ρ < 2. A firm has an incentive to invest if and only if

−c+ e−ρ∆λB
∆ + ∆2

1− e−ρ∆
≥ 0.

This condition holds for ∆ sufficiently small. To see this, note that the inequality holds with equality at

∆ = 0 while the derivative of the left-hand side at ∆ = 0 equals −λB + λB(1/2 + 1/ρ) > 0.

Next we show that this solution cannot be approximated by the discrete-time game with simultaneous

moves. A firm has an incentive to invest if and only if

−c+ e−ρ∆∆(λ)2b
∆

1− e−ρ∆
+ e−ρ∆λ(1− λ∆)B

∆ + ∆2

1− e−ρ∆
≥ 0.

This condition holds in the limit as ∆→ 0 but not for ∆ > 0. To see this, note that the inequality holds with

equality at ∆ = 0 while the derivative of the left-hand side at ∆ = 0 equals λB(1/ρ− 1/2− λ) + λ2b/ρ < 0.

OA.2 Non-Existence of Solution in Pure Strategies

Consider a separable dynamic game with noisy transitions, N = 2 players, Ω = {1, 2}, Ai(ω) = {1, 2} if

ω = i, and Ai(ω) = {1} if ω 6= i. This means that player i makes a nontrivial decision only when ω = i. Flow

payoffs are ui,i(ω, ai) = 0 if ω = i for all ai ∈ {1, 2}, while

u1,2(a2, 2) =

10 if a2 = 1,

−10 if a2 = 2
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and

u2,1(a1, 1) =

−10 if a1 = 1,

10 if a1 = 2.

Hence, the flow payoff of player i is 0 when ω = i, but his decision determines whether the flow payoff of

player −i is 10 or -10. Transition probabilities are determined as in Example 3 with λ = 1 and

l1(1 | 1, a1)

0 if a1 = 1,

1 if a1 = 2

and

l2(1 | 2, a2) =

1 if a2 = 1,

0 if a2 = 2,

while li(i | i, a−i) = 1. This means that in state ω = i, player i (and only player i) determines a probability

distribution over the successor state ω′. (Note that given λ, l1, and l2, we can construct p and q as we did in

Example 3.)

We show that the limit conditions (3.2) and (3.3) do not admit a solution in pure strategies. The intuition is

similar to the non-existence of a Nash equilibrium in pure strategies in matching pennies. Consider a solution

σ∗ ∈ Equil0(< u, p, q, ρ >) in pure strategies. If σ∗1(· | 1) = (1, 0), then it must be the case that player 2 is

choosing σ∗2(1 | 2) = 1 for otherwise player 1 makes a loss in state ω = 2 while he can secure 0 by playing

a1 = 2. But this would mean that player 2 is willing to make a loss in state ω = 1, while he can secure 0

by playing a2 = 2. Similarly, it cannot be that σ∗1(· | 1) = (0, 1). Thus, the limit conditions (3.2) and (3.3)

do not admit a solution in pure strategies. They do, however, admit a solution in mixed strategies in which

player i chooses σi(· | ω) = (1/2, 1/2) when ω = i.27

OA.3 Non-Separable State-to-State Transitions

Consider a dynamic stochastic game with N = 2 players, Ω = {0, 1}, and Ai = {0, 1}. The hazard rate in

state ω = 0 is q(0, a1, a2) = 1 if and only if a1 = a2 = 1, and q(0, a1, a2) = 0 otherwise, whereas in state

ω = 1, q(1, a) = 0. The transition probability satisfies p(1 | 0, (a1, a2)) = 1. State ω = 1 is thus absorbing.

Flow payoffs do not depend on actions and take the form ui,i(ω) = ω. In the game with simultaneous moves,

it is simple to see that there exist two Markov perfect equilibria in pure strategies. In one of them, the state

is stuck in ω = 0. In contrast, in the game with alternating moves and transitions “materializing” only once

both players have made a decision (in a violation of Assumption 3 similar to Example 6), the unique Markov

perfect equilibrium is σ∗1 = 1, σ∗2(a1) = a1, and the state eventually jumps to ω′ = 1.

27This example can be easily adapted to show that additive-reward, additive-transition dynamic stochastic games may not admit
a Markov perfect equilibrium in pure strategies. It is much simpler than other examples in the literature.

43



OA.4 Generalized Protocol of Moves

We relax Assumption 1 by generalizing our notion a protocol of moves. We allow the evolution of the protocol

state J to depend on players’ actions aJ and the physical state ω. We maintain that J is a partition of the

set of players, but allow for a non-uniform stationary distribution. We show that Theorem 1 remains valid.

Assumption 4 (Generalized Protocol of Moves) Let J be a partition of {1, 2, . . . , N} and P = (Pr (J ′|J, ω, aJ))J,J ′∈J

a |J | × |J | transition matrix for all ω ∈ Ω and all selections J 7→ aJ ∈
∏
j∈J Aj(ω) = AJ(ω). Assume that

P(· | ·, ω, σJ) =
∑

aJ∈
∏
j∈J Aj(ω)

P(· | ·, ω, aJ)
∏
j∈J

σj(aj)

is irreducible for all ω ∈ Ω and all selections J 7→ σJ ∈
∏
j∈J Σj = ΣJ and its unique stationary distribution

π = (π(J))J∈J ∈ P(J ) is independent of ω and σJ .

We call < J ,P > a generalized protocol of moves. Under a generalized protocol of moves, the current physical

state and action profile may make a transition from one protocol state to another more likely, but on average

all protocol states are visited with frequencies that are independent of physical states and action profiles.

The remaining aspects of the model are unchanged.

Denote the above game by Γ =< ∆,J ,P, u, p, q, ρ > and consider a Markov perfect equilibrium σ∆ =

(σ∆
i )Ni=1. Under Assumptions 2, 3, and 4, the discrete-time Bellman equation for a period length of ∆ is

V ∆
i (ω, J) = |J |

∑
j∈J

ui,j(ω, σ
∆
j (ω))∆

+ exp(−ρ∆)

{ ∑
J′∈J

V ∆
i (ω, J ′)

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)Pr(J ′|J, ω, aJ)

1− |J |
∑
j∈J

qj(ω, aj)∆


+
∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)Pr(J ′|J, ω, aJ)

|J |∑
j∈J

ϕj(ω
′|ω, aj)∆

}+O(∆2). (OA.1)

Taking the limit as ∆→ 0, we deduce that

V 0
i (ω, J) =

∑
J′∈J

V 0
i (ω, J ′)Pr(J ′|J, ω, σ0

J(ω)).

Assumption 4 implies that the transition matrix Pr(J ′ | J, ω, σ0
J) has a unique (and uniform) right eigenvector

so that V 0
i (ω, J) = V 0

i (ω, J ′) for all J, J ′ ∈ J . Let V 0
i : Ω → R be the value function of player i and

V 0 = (V 0
i )Ni=1 be the profile of value functions in the limit as ∆→ 0.
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The Bellman equation can equivalently be written as

1

∆
V ∆
i (ω, J)− exp(−ρ∆)

∆

∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω, J ′)Pr(J ′|J, ω, aJ) = |J |
∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
j∈J

{ ∑
ω′ 6=ω

∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω′, J ′)Pr(J ′|J, ω, aJ)ϕj(ω
′|ω, aj)

−
∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω, J ′)Pr(J ′|J, ω, aJ)qj(ω, aj)

}
+O(∆).

Multiplying by π(J) and summing over J ∈ J yields

1

∆

∑
J∈J

π(J)V ∆
i (ω, J)− exp(−ρ∆)

∆

∑
J∈J

π(J)
∑
J′∈J

∑
aJ∈AJ (ω)

σ∆
J (aJ | ω)V ∆

i (ω, J ′)Pr(J ′|J, ω, aJ)

= |J |
∑
J∈J

π(J)
∑
j∈J

ui,j(ω, σ
∆
j (ω))

+ exp(−ρ∆)|J |
∑
J∈J

π(J)
∑
j∈J

{ ∑
ω′ 6=ω

∑
J′∈J

V ∆
i (ω′, J ′)Pr(J ′|J, ω, σ∆

J (ω))ϕj(ω
′|ω, σ∆

j (ω))

−
∑
J′∈J

V ∆
i (ω, J ′)Pr(J ′|J, ω, σ∆

J (ω))qj(ω, σ
∆
j (ω))

}
+O(∆2).

Using the facts that
∑
J∈J Pr(J ′|J, ω, σJ(ω))π(J) = π(J ′) and

∑
J′∈J Pr(J ′|J, ω, σJ(ω)) = 1, and taking the

limit as ∆→ 0, we obtain the continuous-time Bellman equation

ρV 0
i (ω) = |J |

∑
J∈J

π(J)
∑
j∈J

ui,j(ω, σ
0
j (ω))+|J |

∑
J∈J

π(J)
∑
j∈J

∑
ω′ 6=ω

V 0
i (ω′)ϕj(ω

′|ω, σ0
j (ω))− V 0

i (ω)qj(ω, σ
0
j (ω))

 .

(OA.2)

The discrete-time optimality condition for a period length ∆ is

σ∆(ai | ω) > 0⇒ ai ∈ arg max
ãi∈Ai(ω)

u∆
i (ω, J, ãi, σ

∆
J\{i}(ω))

+ exp(−ρ∆)
∑
ω′∈Ω

∑
J′∈J

∑
aJ\{i}

σJ\{i}(aJ\{i} | ω)V ∆
i (ω′, J ′)Pr

(
J ′|J, ω, ai, aJ\{i}

)
Pr∆

(
ω′|ω, J, ãi, aJ\{i}

)
.

Dividing by ∆, rearranging terms, and taking the limit as ∆→ 0, we deduce the continuous-time optimality

condition

σ0
i (ai | ω) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
ui,i(ω, ãi) +

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕi(ω

′ | ω, ãi). (OA.3)

Conditions (OA.2) and (OA.3) are the analogs of conditions (3.2) and (3.3) for a generalized protocol of

moves.
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Consider the generalized protocols of moves < J1,P1 > and < J2,P2 > with stationary distributions π1

and π2. For all j = 1, . . . , N , define J1(j) to be the unique element in J1 such that j ∈ J1(j). Define J2(j)

analogously. We say that the generalized protocols of moves < J1,P1 > and < J2,P2 > are comparable if

|J1|π1(J1(j)) = |J2|π2(J2(j)) for all j = 1, . . . , N . Given a protocol < J ,P >l, a player j moves a fraction

π(J(j)) of the time and has an impact on payoffs and transitions which is scaled by |J |. Thus, comparability

means that the total impact of a player’s strategy on payoffs and transitions does not depend on the particular

protocol that we use in the model. All protocols that satisfy Assumption 1 are comparable.

Theorem 1 remains valid for generalized protocols of moves that are comparable.28

Theorem 2 (Generalized Protocol-Invariance Theorem) Fix p, q, and ρ. For almost all u, all gen-

eralized protocols of moves < J ,P > and < J ,P > that are comparable, and all ε > 0, there exists ∆̄ > 0

such that for all ∆ < ∆̄ and σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >), there exists σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >)

such that ‖σ − σ‖ < ε.

OA.5 Non-Partition Protocol of Moves

We relax Assumption 1 and assume that J is not a partition of the set of players but contains subsets

J ⊆ {1, . . . , N} such that for all i = 1, . . . , N , there exists J ∈ J such that i ∈ J . This allows player i

to have the move in conjunction with different sets of rivals. To simplify the exposition, we assume that

|{J ∈ J | i ∈ J}| = κ for all i = 1, . . . , N . As before, there is an irreducible Markov chain P defined on J
that has a unique stationary distribution that is uniform on J . We call < J ,P > a non-partition protocol of

moves.

With a non-partition protocol of moves < J ,P >, the per-period payoff u∆
i (ω, J, aJ) is written as

u∆
i (ω, J, aJ) =

|J |
κ

∑
j∈J

ui,j(ω, aj)∆ +O(∆2),

and the hazard rate qJ(ω, aJ) and transition probability pJ(ω′ | ω, aJ) are written as

qJ(ω, aJ) =
|J |
κ

∑
j∈J

qj(ω, aj)

and

qJ(ω, aJ)pJ(ω′ | ω, aJ) =
|J |
κ

∑
j∈J

qj(ω, aj)pj(ω
′ | ω, aj),

where qj : {(ω, aj) | aj ∈ Aj(ω)} → R+ ∪ {0} and pj : {(ω, aj) | aj ∈ Aj(ω)} → P(Ω). The remaining aspects

of the model are unchanged.

With a non-partition protocol of moves < J ,P >, the identity of the players that have the move in

28Strictly speaking, here we only show that Lemma 1 remains valid. The proof that Lemma 2 remains valid is available upon
request.
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conjunction with player i is a state variable. Thus, a Markovian strategy for player i is a function σi : Ω×{J ∈
J | i ∈ J} → ∪ω∈ΩP(Ai(ω)). Overloading notation, we use Equil(< ∆,J ,P, u, p, q, ρ >) to denote the set of

Markov perfect equilibria. We say that a Markov perfect equilibrium σ is simple if σi(ai | ω, J) = σi(ai | ω, J̃)

for all i = 1, . . . , N , ω ∈ Ω, ai ∈ Ai, and all J, J̃ ∈ J . In this case, we write σi(ai | ω).

The following proposition partially extends Theorem 1 to a non-partition protocol of moves:

Proposition 6 Assume Equil0(< u, p, q, ρ >) only contains strict solutions. Then there exists ∆̄ > 0 such

that for all ∆ < ∆̄, σ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) is simple and

Equil(< ∆,J ,P, u, p, q, ρ >) = Equil0(< u, p, q, ρ >).

In contrast to Theorem 1, Proposition 6 restricts attention to strict and thus pure solutions. When mixed

solutions are considered, the limit conditions may have a continuum of solutions if players use the payoff-

irrelevant realization of J to randomize over actions and our differential topology tools therefore cannot be

directly applied.

Proof. Consider a sequence
(
σ∆
)

with σ∆ ∈ Equil(< ∆,J ,P, u, p, q, ρ >) and σ∆ → σ0 (possibly

through a subsequence) as ∆→ 0. Let V ∆ be the profile of value functions corresponding to σ∆ and assume

it converges to V 0. Similar to Section 3, we can deduce that V 0(ω, J) does not depend on J ∈ J and simply

write V 0(ω). We can also follow Section 3 to deduce that

ρV 0
i (ω) =

1

κ

∑
J∈J

∑
j∈J

ui,j(ω, σj(ω, J)) +
∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕj(ω

′ | ω, σj(ω, J))


and

σ0
i (ai | ω, J) > 0⇒ ai ∈ arg max

ãi∈Ai(ω)
ui,i(ω, ãi) +

∑
ω′ 6=ω

(
V 0
i (ω′)− V 0

i (ω)
)
ϕi(ω

′ | ω, ãi). (OA.4)

Define σ̃i(· | ω) = 1
κ

∑
J∈J σ

0
i (· | ω, J) for all i = 1, . . . , N and all ω ∈ Ω, and note that (σ̃, V 0) is a solution

to the limit conditions (3.2) and (3.3). Since Equil0(< u, p, q, ρ >) only contains strict solutions, the profile

σ̃ = (σ̃i)
N
i=1 must be a strict solution and thus the maximization problem in equation (OA.4) has a unique

solution. Therefore σ0
i (ai | ω, J) does not depend on J and σ0 is simple. In particular, σ0 ∈ Equil0(<

u, p, q, ρ >) and therefore there exists ∆̄ > 0 such that for all ∆ < ∆̄, σ∆ ∈ Equil0(< u, p, q, ρ >). To see

the converse, note that Equil0(< u, p, q, ρ >) has a finite number of pure solutions that are all strict. For

any solution (σ0, V 0) to the limit conditions (3.2) and (3.3), σ0 satisfies the conditions for a (simple) Markov

perfect equilibrium of a separable dynamic game with noisy transitions and the non-partition protocol of

moves < J ,P > since the continuation values in such a game converge to V 0 and, as a result, the incentive

constraints are satisfied if ∆ > 0 is sufficiently small.
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