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Reality Check: Combining Survey and Market Data to Estimate the
Importance of Product Attributes

Abstract
Discrete choice models estimated using hypothetical choices made in a survey setting (i.e., choice
experiments) are widely used to estimate the importance of product attributes in order to make product
design and marketing mix decisions. Choice experiments allow the researcher to estimate preferences for
product features that do not yet exist in the market. However, parameters estimated from experimental data
often show marked inconsistencies with those inferred from the market, reducing their usefulness in
forecasting and decision making. We propose an approach for combining choice-based conjoint data with
individual-level purchase data to produce estimates that are more consistent with the market. Unlike prior
approaches for calibrating conjoint models so that they correctly predict aggregate market shares for a
“baseline” market, the proposed approach is designed to produce parameters that are more consistent with
those that can be inferred from individual-level market data.

The proposed method relies on a new general framework for combining two or more sources of individual-
level choice data to estimate a hierarchical discrete choice model. Past approaches to combining choice data
assume that the population mean for the parameters is the same across both data sets and require that data sets
are sampled from the same population. In contrast, we incorporate in the model individual characteristic
variables, and assert only that the mapping between individuals' characteristics and their preferences is the
same across the data sets. This allows the model to be applied even if the sample of individuals observed in
each data set is not representative of the population as a whole, so long as appropriate product-use variables
are collected that can explain the systematic deviations between them. The framework also explicitly
incorporates a model for the individual characteristics, which allows us to use Bayesian missing-data
techniques to handle the situation where each data set contains different demographic variables. This makes
the method useful in practice for a wide range of existing market and conjoint data sets. We apply the method
to a set of conjoint and market data for minivan choice and find that the proposed method predicts holdout
market choices better than a model estimated from conjoint data alone or a model that does not include
demographic variables.
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Abstract 

Discrete choice models estimated using hypothetical choices made in a survey setting (e.g., choice-

based conjoint) are widely used to forecast the effects of product design and marketing mix decisions. Sur-

vey methods allow the researcher to estimate preferences for product features that do not yet exist in the 

market. However, parameters estimated from survey data often show marked inconsistencies with marginal 

effects inferred from the market, reducing their usefulness in forecasting and decision making. Several 

methods for adjusting survey-based choice models so that they more accurately predict market share have 

been suggested, but existing calibration methods are ad hoc and may change parameter values in ways that 

render them less consistent with other key empirical features of the data. We propose a new approach that 

produces more market-consistent parameter estimates by combining individual-level purchase data from 

the market with survey choice data in the formal estimation process. 

The proposed method relies on a new general framework for combining two or more sources of choice 

data to estimate a hierarchical discrete choice model. Past approaches to combining choice data assume that 

the population mean for the parameters is the same across both data sets and require that data sets are sam-

pled from the same population. In contrast, we incorporate individual demographic and product-use vari-

ables into the model and assert only that the mapping between individuals’ demographics and their prefer-

ences is the same across the data sets. This allows the model to accommodate differences in choice behav-

ior across the data sets driven by differences in observed demographics. The framework also explicitly in-

corporates a model for the individual demographics which allows us to use Bayesian missing data tech-

niques to handle the situation where each data set contains different demographic variables. This makes the 

method useful in practice for a wide range of existing market and survey data sets. We apply the method to 

a set of conjoint and market data for minivan choice and find that the proposed method predicts holdout 

market choices better than a model estimated from conjoint data alone or a model that does not include 

demographic variables. 

 

Key words: discrete choice modeling, conjoint analysis, choice experiments, data enrichment, hierarchical 

models, missing data methods, Bayesian estimation 

  



 

For many companies, decisions made today about which products should be developed will drive 

profitability for years or even decades to come (Krishnan and Ulrich 2001). For example, a typical auto-

motive product development program will invest hundreds of millions of dollars in design and tooling. In 

this capital intensive, mature market, the failure to meet sales targets by just a few percent can result in an 

unprofitable program (Urban, Hauser and Roberts 1990).  

A rich array of methods has been devised to guide managers in their product design decisions. 

Such methods typically attempt to measure consumer preferences for various product attributes and use 

those measurements to make predictions about future individual-level purchase behavior in the market. 

The most successful and widely-applied among these is conjoint analysis (Green and Rao 1971), a set of 

experimental techniques that present consumers with various combinations of product attributes and sta-

tistically estimate consumer preferences for various levels of the attributes. These survey-based methods 

have proven their worth in a remarkable variety of contexts (for examples see Green, Krieger and Wind 

2001), yet they are not without their drawbacks. Most notably, the attribute preferences estimated from 

conjoint tasks are sometimes inconsistent with preferences inferred from market data, an indication that 

respondents do not make hypothetical survey choices exactly as they make purchase decisions (Brown-

stone, Bunch and Train 2000, Blamey and Bennett 2001). One naïve response to this failing is to abandon 

conjoint and estimate models exclusively from market data. Unfortunately in practice it is difficult to es-

timate preferences for attributes directly from market data, primarily because there is insufficient varia-

tion in the products offered in the market, and the resulting parameter estimates sometimes lack face va-

lidity (c.f. Brownstone, Bunch and Train 2000).  For example, is impossible to use market data to esti-

mate preferences for new attributes that are not yet available in the market, which limits the value of mar-

ket-data models for informing product design decisions. In this paper, we develop a general method for 

combining different sources of choice data and apply it to the specific problem of combining conjoint and 

market data. The resulting parameter estimates are informed by both the conjoint task and what is ob-

served in the market and can be thought of as conjoint estimates with a “reality check”.   
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A new approach to combining choice data. Methods for combining sources of preference data 

to estimate a homogeneous discrete choice model have been demonstrated in a number of applications in 

transportation research and environmental economics (see Ben-Akiva, Bradley, Morikawa et al. 1994 and 

Louviere, Meyer, et al. 1999 for reviews). The key modeling insight in past work is that combining two 

sets of choice data requires a scale parameter to accommodate differences in error scaling between them 

(Ben Akiva and Morikawa 1990, Swait and Louviere 1993). While there are many demonstrated benefits 

to combining sources of preference data, there remain a number of unresolved modeling issues concern-

ing how to relate the two data sets together in the presence of consumer heterogeneity (Swait and An-

drews 2003). In past work, researchers estimating heterogeneous choice models from multiple data 

sources required that each individual decision maker be observed making choices in both settings. With 

such data, they could impose the constraint that each individual maintained his or her preferences across 

the two choice contexts (Brownstone, Bunch and Train 2000, Bhat and Castelar 2002). However, in GM’s 

experience, collecting such matched data would require effort in planning and recruitment that is imprac-

tical in commercial market research. Companies like GM that regularly conduct conjoint studies typically 

have access to individual-level market data that could readily be used to estimate joint models, but they 

seldom have this data for the same individuals that have completed the conjoint task. As we will discuss, 

the available data sources often have strengths that are complementary, and our goal is to build a flexible 

modeling framework that can be readily used with existing data collection methods and existing data.  

A key element of our approach is a hierarchical choice model in which an individual’s prefer-

ences depend on his or her personal characteristics (Allenby and Ginter 1995, Lenk et al. 1996). Incorpo-

rating individual characteristics in the joint modeling framework confers several advantages. Most impor-

tantly, if consumers taking part in a conjoint study differ systematically in a relevant way from those in 

the marketplace, the analyst should not impose the restriction that the distributions of preferences in these 

two groups are identical; doing so is an overt misspecification. So, instead of constraining the expected 

value of preferences themselves to be the same across the two data sets (as in Swait and Andrews 2003), 

we posit that the relationship between individual-level characteristics and preferences holds at the popu-
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lation level, and so is the same across data sets drawn from that population. Individual-level characteris-

tics can include not only relevant socioeconomic variables but also information from the consumer about 

what needs he of she desires the product to fulfill. We refer to the latter data collectively as product-use 

variables. When available, product-use variables are typically much more informative about preferences 

than are commonly available demographic data (Fennell et al. 2003, De Bruyn 2007). 

Because we assume that the underlying relationships between the product-use variables and pref-

erences are the same across data sets, the model structure can accommodate systematic differences in 

choice behavior between individuals observed in the market and those observed in the survey that can be 

related to the observed product-use variables. Thus, the approach can be applied even if the sample of 

individuals observed in each data set is not representative of the population as a whole, so long as appro-

priate product-use  variables are collected that can explain the systematic deviations. Past approaches to 

combining choice data are restricted to data sets that are random samples from the same population (Swait 

and Andrews 2003), which is difficult to achieve in practice. For example market research conducted by 

GM often samples a group that has a somewhat different distribution of demographics than the population 

as a whole (e.g. automotive market research respondents are typically older than the general population of 

automotive buyers).  

One potential disadvantage of incorporating individual characteristics using standard hierarchical 

choice models is that it requires that these variables are collected for all the decision makers observed in 

each choice data set. To maintain the assumption that the relationship between individual characteristics 

and attribute preferences is the same in each data set, it is critical that the same set of individual character-

istics is accounted for in the regression of individual preferences on individual characteristics in both data 

sets. If the individual characteristics are correlated with one another, then omitting one of those individual 

characteristics may produce a bias in the remaining coefficients. Thus if the individual characteristic is 

omitted from one data set and not the other, the equality restriction on the parameters cannot be main-

tained. This is referred to as the omitted variables bias in the literature on meta-analysis of regression 

studies, c.f. Dominici et al. (1997). We overcome this disadvantage by incorporating a likelihood-based 
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approach to missing characteristics (Little and Rubin 2002), which allows us to include any individual 

characteristic observed in at least one of the data sets. Bayesian estimation proceeds in a natural fashion 

using data augmentation for the missing characteristics.  

Benefits of combining market and survey data. The method we develop can be used to com-

bine any available sources of choice data, such as choices observed at different retailers or in different 

research clinics, but there are particular advantages to combining survey choices with market data. The 

typical weaknesses in these two data sources are complementary, and combining them to estimate a single 

discrete choice model mitigates these weaknesses (c.f. Louviere, Hensher and Swait 2000, chapter 8).   

Table 1. Relative strengths and weaknesses of survey and market data. 

Market Data Survey Data (e.g. Conjoint) 
 Face validity 

But,  
 Inaccurate data on attribute values 
 Missing some attributes of interest 
 Colinearity between attributes 
 Limited information on heterogeneity 
 Limited information on consideration set 
 Sample selection problems 

 Experimental design 
 Complete record of choice 

But,  
 People may not choose in the same way 

they would in the market 
 Information is not presented in the same 

way that it is in the market 

 

The crucial weakness of choice-based conjoint data (see Table 1) is that the hypothetical choices 

respondents make in the survey may not accurately reflect their behavior in the market. The conjoint task 

may provide the consumer with influential information that is not available in the normal shopping proc-

ess. Worse, respondents may take cues from the conjoint design itself, placing undue emphasis on attrib-

utes they suspect are important to the researcher—e.g., the number-of-levels effect (Verlegh, Shifferstein 

and Wittink 2002). Consumers may also honestly believe that they place strong emphasis on socially-

valued attributes (e.g., sustainability or ‘green’ technology) and make conjoint choices reflecting such 

values, yet ignore those attributes when making a purchase in the market (Blamey and Bennett 2001).  

Market data obviously provides excellent face validity, but is plagued by problems that make sta-

tistical estimation using market data difficult. In a typical market many product attributes are correlated 

across product offerings, due to manufacturers’ common objectives; such attribute colinearity makes it 
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difficult to parse out which attributes actually drive purchase behavior (Brownstone, Bunch and Train 

2000). For example, if every minivan on the market that includes a navigation system also includes a rear-

view camera, it is impossible in principle to disentangle these attributes’ distinct effects based on pur-

chase observations alone. For complex durables the situation is often exacerbated by physical design con-

straints. Because it is physically difficult to design a minivan that is both roomy and small, roominess and 

size are negatively correlated across minivans in the market. Most discrete choice models estimated from 

market data therefore restrict parameter estimation to marketing mix attributes (e.g., price, promotion, 

etc.) that tend to vary more independently than product design attributes. Market data is seldom used to 

estimate the importance of product design attributes (see Fader and Hardie 1996 for an exception). Fur-

thermore, companies designing new products often wish to assess preferences for product attributes that 

are not yet available in the market, an impossibility using market data alone.  

Combining data from a well-designed conjoint task with market data can improve the condition-

ing of the design matrix, providing the variation necessary to estimate main effects for all attributes of 

interest and resolving colinearity among attributes. Parameters that cannot be estimated from the market 

data, such as preferences for attributes that are not offered in the market, will be informed only by the 

conjoint data. When we combine conjoint and market data to estimate a joint model, the resulting parame-

ters will be consistent with the conjoint choices unless there is sufficient evidence in the market data to 

make an adjustment. Other approaches calibrate conjoint models to the market by making post hoc ad-

justments to the estimated brand parameters so that the predicted shares closely match aggregate shares 

from the market (Orme and Johnson 2006, Gilbride, Lenk and Brazell 2006). Although these approaches 

only require aggregate share data, incorporating individual-level market data directly in the estimation is 

preferred, as it will not force changes to the conjoint parameter estimates that are not justified by the in-

formation contained in the market data. Post hoc calibration methods raise the possibility of ‘overfitting’ 

the aggregate shares and thereby performing poorly when predicting future shares.  

There are additional benefits to combining conjoint and market data in the context of heterogene-

ous models. In market data for many product categories, we observe only one, or at most a few, choices 
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for each individual (Urban, Hauser and Roberts 1990). Without a sufficient number of choice observa-

tions per individual, it is difficult to estimate the amount of unexplained heterogeneity in preferences, 

even if the parametric models employed by the analyst are formally identified (Rossi, Allenby, and 

McCulloch 2005). By contrast, in a conjoint task it is relatively easy to collect multiple hypothetical 

choices for each respondent, and survey designs well-suited to estimating heterogeneous models can be 

readily developed (Sandor and Wedel 2005). When the data sets are combined, the conjoint data can serve 

to identify the distribution of heterogeneity, while still leveraging the observed preferences in the market 

data.   

In the next section, we develop the model formally and explore its parameter recovery properties. 

Then we present an application of the model to survey and market choice data for the US minivan market 

collected by General Motors. In the final section, we summarize our conclusions and discuss future re-

search directions. 

MODEL DEVELOPMENT 

Our model leverages the hierarchical discrete choice framework, where the part-worths of attrib-

utes are specified as a function of individual characteristics plus some error (Allenby and Gitner 1995, 

Lenk et al. 1996). We assume that each individual’s choices are related to a vector of attribute prefer-

ences, nβ , n ∈ {1, …, N}.  These preferences follow a multivariate normal linear model, i.e.,  

 ),MVN(~               0 νννββ Σ+Δ+= 0nnnn z  (1)  

where 0β is a vector of intercepts, zn is a vector of observed characteristics of the individual and Δ is an 

estimated matrix of regression parameters relating zn to βn. The error term, nν , is distributed multivariate 

normal with mean vector 0 and covariance matrix νΣ . The data sets are related to one another by assum-

ing that the parameters 0β  and Δ are common across data sets (see Figure 1). This implies that individu-

als with the same characteristics (zn) will have the same expected value of βn and will therefore make 
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similar choices regardless of which data set they are observed in. This assumption is reasonable when the 

two data sets draw from the same population of decision makers. 

By defining the relationship between the data sets through 0β  and Δ, we also gain a great deal of 

flexibility. Past approaches to combining choice data do not include individual characteristics in this re-

gression (i.e., they assume )0 nn νββ += , which implies that the mean of βn is the same across the two 

choice contexts. This assumption requires that the two data sets both represent random samples from the 

target population, which can be achieved through careful sampling (Swait and Andrews 2003) or by col-

lecting survey data for the same group of individuals as is observed in the market (Brownstone, Bunch 

and Train 2000, Bhat and Castellar 2002). In the proposed approach we can avoid assuming that all data 

sets are a random sample from the target population, if we have data to explain the relevant systematic 

differences between the two samples of decision makers. If there are differences in the distribution of zn 

between the data sets, then our model will predict that the distribution of βn and the resulting choices will 

be different across the two data sets. Because selection bias is prevalent in commercial marketing re-

search, it seems prudent to accommodate any observed differences in the distribution of individual char-

acteristics between the two samples. Of course, data with different empirical distributions of zn should 

only be combined in situations where the researcher is confident that the specification of the linear model 

is reasonable across the data sets. We do not recommend taking this approach to the extreme and combin-

ing, say, survey choices from 5 year-olds with market data from 55 year-olds in a situation where the rela-

tionship between age and preferences may be nonlinear (e.g., breakfast cereal choices.) 

Figure 1 depicts how the preference parameters 0β  and Δ tie the two data sets together. In addi-

tion to this core multivariate regression, the model also includes a lower-level choice model relating 

product attributes to observed choices and a higher-level model describing the distribution of the individ-

ual characteristics.  We describe these other components in more detail below.  
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Figure 1. Proposed model structure.  
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Conditional on a vector of preferences, βn, we assume that the likelihood of observing a particular 

choice follows the standard random utility formulation. Specifically, we assume that on each choice occa-

sion, , individual n will choose the alternative, },...1{ nTt ∈ },...1{ ntJj ∈ , with greatest utility, unjt , where  

  (2) 
⎩
⎨
⎧

∈+
∈+

=
2set  data if    

1set  data if    
nx
nx

u
njtnnjt

njtnnjt
njt εβμ

εβ

and xnjt is the row vector of attributes for alternative j faced by decision maker n on occasion t. Because 

we will be combining data sources where different sets of alternatives were included in the consideration 

set, we will assume that the error term, njtε , is distributed IID according to the standard Extreme Value 

distribution. The resulting model takes the familiar multinomial logit specification. In situations where the 

same set of alternatives appears in each choice task, a probit specification could be used to capture the 

error covariance between alternatives.  
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The Swait-Louviere scaling parameter, μ in equation 2, accounts for the possibility that the scale 

of the unexplained variation in unjt is different across the data sets (Ben-Akiva and Morikawa 1990, Swait 

and Louviere 1993). This can arise for a number of reasons. Individuals’ choice consistency is known to 

vary across choice contexts (Bradley and Daly 1994): for instance, consumers may make more consistent 

choices when making real purchase decisions than when making hypothetical survey decisions. The scale 

parameter can also be used to accommodate situations where the set of observed attributes differs across 

choice sets (Swait and Louviere 1993). Thus, the scale parameters make it possible to combine data 

sources that have different, but overlapping, sets of product attributes, so long as the missing attributes are 

not correlated with observed attributes. Equation 2 describes the approach for combining two data sets; 

extensions to three or more data sets would incorporate an additional scale parameter for each additional 

data set and are straightforward.  

It is crucial to note that, when this model is estimated, the resulting parameter estimates are not 

simply an ‘average’ (even suitably weighted) of those arising from each data set individually. For in-

stance, when we combine market and conjoint data, there are often attributes that do not vary sufficiently 

in the market data. A near-orthogonal conjoint task can improve the conditioning of the xnjt data; so, the 

resulting parameter estimates for those attributes will be based primarily on the conjoint data, where the 

data contains more information. The inclusion of conjoint data can even correct parameter estimates with 

incorrect signs caused by attribute colinearity in the market data (Brownstone, Bunch and Train 2000). 

Missing individual characteristics. While the model described by equations 1 and 2 allows for a 

great deal of flexibility by incorporating individual characteristics, it can not be applied as-is when indi-

vidual characteristics are correlated and there are missing individual characteristics in one data set. This 

limitation poses a serious challenge. Even within a company with a systematic marketing research pro-

gram, like GM’s, it is very seldom the case that precisely the same set of individual characteristics is 

available in both data sets. This is especially so when these individual characteristics are product-use 

questions (which are most likely to be informative about attribute preferences). The need for consistency 
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in ongoing market research programs (such as the survey of recent buyers that we use in our application) 

often limits opportunities for including new questions.  

Because the method would be far less widely applicable if it required the same set of individual 

characteristics in both data sets, it is critical to overcome this apparent limitation. But this is made diffi-

cult by the intrinsically correlated nature of the individual characteristics themselves. When two corre-

lated regressors affect a dependent variable in a linear regression, like that in equation 1, the omission of 

one regressor may produce biased estimates of the coefficient on the other regressor. Because of this 

omitted variables bias, it is difficult to combine regression data across multiple data sources when there 

are different sets of characteristics available in each data set (c.f. Dominici et al. 1997). If the regressors 

are correlated and each data set includes a different subset of the regressors, then regression coefficients 

for separately estimated models will both be biased in possibly different ways. This means the analyst can 

not assert that the regression coefficients are the same for those variables that are common across the two 

data sets. And if we cannot assert that the regression coefficients – 0β and Δ, in equation 1 – are the same 

across both data sets, then we no longer have a way to relate the two data sets together. Thus the model in 

equations 1 and 2 can not be applied in its stated form if different individual characteristics are available 

in each data set.  

To address this problem, we adopt a likelihood-based approach to missing data. Unlike imputa-

tion approaches to missing data, likelihood-based approaches simply define the likelihood of the observed 

data as the marginal of the complete data likelihood, integrating over the distribution of the missing data. 

This marginal likelihood can be maximized or used in Bayesian inference. Specifically, if ]|[ θY is the 

likelihood of the complete data, Y, given some parameters θ,  and the data are missing at random (MAR), 

then the likelihood of an observed subset of the complete data, ∈ Y, is the integral of the complete 

data likelihood over the missing data, , i.e.,  

obsY

misY

  (3) mis
Y

misobsobs dYYYY
mis

∫= ]|,[]|[ θθ
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This approach assumes that the process that caused the data to be missing is ignorable, which in turn re-

quires that the characteristics are missing at random (MAR); that is, the probability that a covariate is 

missing does not depend on the realized value for that covariate, but may depend on other observed data. 

This is a reasonable assumption in the case where the covariate data simply was not collected in one of 

the data sources. It may not be appropriate in situations where particular respondents choose not to com-

plete a particular survey question (e.g., if high income respondents are less likely to report their income). 

Importantly, the missing characteristics need not be missing completely at random (MCAR) for the ap-

proach to apply, and so the value of the missing characteristics can depend on the values of other charac-

teristics or on the observed choices. (See Little and Rubin 2002 for a complete discussion.) 

In the case of missing regressors, defining the complete data likelihood requires supplementing 

the usual likelihood for the dependent variables with a model for the regressors (Little and Rubin 2002, 

Dominici et al. 1997). The particular form of this model will depend on the nature of the regressors. For 

now, we will simply allow [ ]ϕ|nz  to denote the likelihood of observing a covariate vector dependent 

on some parameters 

nz

ϕ . 

Given an expression for the likelihood of the individual characteristics and the assumption that 

they are each MAR, we can write the joint likelihood of the observed choices and the characteristics (as-

suming everything was observed). To simplify notation, let },...,...,{ 11 NNTnt yyyy ≡ be the set of all ob-

served choices, let  be the (complete) set of individual characteristics, let 

 be the attribute data for a particular choice observation and let 

 be the set of all attribute data. The joint likelihood of y and Z conditional on 

X and the parameters is 

},...,{ 1 NzzZ ≡

},...,,...,{ 1 tnJnjttnnt nt
xxxX ≡

},...,,...,{ 11 NNTnt XXXX ≡
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where the probabilities ],,|[ μβnntnt Xy  and the densities ],,,|[ 0 νββ ΣΔnn z are defined by equations 1 

and 2.   

Specifying the joint likelihood of y and Z as in equation 4 is consistent with the standard regres-

sion, which only specifies the likelihood of y conditional on Z.  To see this, notice that the likelihood of 

]|[ ϕnz can be factored out of the joint likelihood in equation 4, and thus when Z is observed, the parame-

ters that maximize the joint likelihood are the same as those that maximize the usual conditional likeli-

hood.  

When there are missing characteristics, we marginalize the complete data likelihood to obtain the 

likelihood of the observed data. Let  be the subset of zmis
nz n that is missing and let Zobs be the subset of Z 

that is observed. The joint likelihood of observing a set of individual characteristics and a set of choices is 

   (5)  
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The integral over makes it impossible to factor out the terms involvingmis
nz [ ]ϕ|nz , so when there are 

missing characteristics, we must use this joint likelihood rather than the usual conditional likelihood. 

Once the model ]|[ ϕnz  is specified, the likelihood in equation 5 can be used in maximum likelihood or 

Bayesian estimation.  

The model for zn can be any model that appropriately captures the relationships among the char-

acteristics. If the zn are continuous with full support, they can be modeled via a multivariate normal model 

(Dominici et al. 1997). However, covariate data used in marketing is often discrete or measured using a 

discrete scale (e.g., employment status, income ranges). In our particular case study, the covariate data 

used was binary, so we illustrate the approach for binary data only; extensions to other common survey 

data types are analogous and straightforward. To model the vector of correlated binary characteristics, we 
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use a multivariate binary probit model (Chib and Greenberg 1998)1. We assume that the vector of zeros 

and ones that are observed, wn, arises from an underlying multivariate normal vector, zn , as follows,  

    where, 
⎩
⎨
⎧

≤
>

=
0 if   0
0 if   1

nl

nl
nl z

z
w ),MVN(~ zznz Σμ  (6) 

where l indexes the elements of zn and wn. The covariance matrix, Σz, is restricted so that the variance of 

each element of zn is one.  The parameters of this model, μz and Σz, can be estimated separately for each 

data set (i.e. conjoint versus market). We model an individual’s preference vector, βn, as a function of the 

latent continuous vector, i.e., nnn z νβ +Δ=  . This structure allows preferences to vary continuously as a 

function of the underlying constructs that gave rise to their binary responses, and also preserves conju-

gacy in the estimation algorithm.  

Estimation. Our approach to estimation is Bayesian, using diffuse but proper priors on all pa-

rameters (c.f. Rossi, Allenby and McCulloch 2005). The integrals over βn and  in equation 5 are han-

dled using data augmentation (Tanner and Wong 1987). The resulting Gibbs sampler draws sequentially 

from the posterior of the parameters β

mis
nz

0, Δ, νΣ , μ, μz, and Σz,  and the unobserved latent variables βn and 

. The parameters of the multivariate probit model, μnz z and Σz, are sampled over the unidentified space 

and posterior distributions for the identified parameters are obtained by marginalizing over the posterior 

draws (McCulloch and Rossi 1994). The full conditional densities of all parameters are standard distribu-

tions, with the exception of βn and μ, which were drawn using Metropolis-Hastings steps. Because βn is 

potentially a long vector, we used a normal random-walk proposal with an adaptive covariance matrix 

based on the covariance of all previous draws for individual n. This proposal density has been shown to 

maintain the convergence properties of the MCMC chain (Haario, Saksman and Tamminen 2001). The 

algorithm is described in detail in the e-companion.  

                                                      
1 Alternatively, Ibrahim, Lipsitz and Chen (1999) propose to model a vector of missing discrete regressors 
as a series of related univariate generalized linear models.  
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Insight into how the data informs the posterior for individual parameters. An important 

characteristic of the model is that the posterior distribution of βn implied by the likelihood defined in 

equation (5) depends on both the observed choices, {ynt}, and the individual characteristics, zn. Incorporat-

ing characteristics informative to βn is critical to obtaining accurate individual-level parameters when 

only one or a few choices are observed for each respondent. For instance, knowing whether a household 

intends to use a minivan to transport children (in addition to which minivan model they chose) gives in-

formation about the household’s preference for features like integrated DVD players. In data sets where a 

large number of choices are observed for each individual, such as conjoint data or long panel data, indi-

vidual-level parameters can usually be well-recovered based only on the likelihood of the observed 

choices. But in market data for durables, where there is just one observed choice, incorporating individual 

characteristics that are related to choice behavior can significantly improve individual-level parameter 

recovery. 

To demonstrate the value of individual characteristics, we generated a synthetic data set consist-

ing of 10 choice observations for each of 100 ‘conjoint’ respondents, and 1 choice observation for each of 

1000 ‘market’ respondents according to the complete-data model defined by equations 1-4. (Complete 

details of how the data was generated are included in the e-companion.) The data contained 5 individual 

characteristics, (i.e., zn was of length 5). Simulating the situation where some individual characteristics 

are not observed in one of the data sets, we assumed that the first characteristic was never observed for 

the conjoint respondents. We estimated the model using none, two or five individual-characteristics. (For 

example, in the case where two individual characteristics are used, the regression equation includes char-

acteristics 1 and 2 and we observe characteristics 1 and 2 for the market individuals and just characteristic 

2 for the conjoint individuals.)  

Table 2 shows the improvement in individual parameter recovery that is gained by using individ-

ual characteristics. For each data set, we compute the mean squared error between individuals’ true pa-

rameter value and their posterior mean for that parameter. We also compute the average standard error 
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around each individual’s posterior mean, indicating how diffuse the individual posteriors are. Table 2 

shows that as the number of individual characteristics included in the estimation is increased, the posterior 

means of βn for the market respondents approach their true values, even though we only observed one 

choice for each market respondent.  Thus if βn is poorly identified by the observed choices, including in-

formative characteristics improves posterior inference for βn. 

Table 2. Recovery of individual-level betas for conjoint and market respondents. 

MSE Avg.  SE MSE Avg.  SE MSE Avg.  SE MSE Avg.  SE
0 2.37 1.19 4.04 1.75 1.53 1.05 3.33 1.64
2 2.09 1.30 3.34 1.75 1.40 1.05 1.98 1.42
5 1.71 1.21 2.15 1.47 1.37 1.04 1.92 1.42

Recovery of β n1 Recovery of β n2

MarketConjoint Conjoint Market
Number of binary individual 

characteristics observed in market 
data

 

More importantly, we also find that increasing the number of observed choices improves infer-

ence about any missing individual characteristics. Because we use a likelihood-based approach to the 

missing individual characteristics, our inference about a particular individual’s latent characteristics (zn) is 

informed both by what we know about other individuals’ characteristics and the choices we have ob-

served for that individual. In fact, the likelihood of zn, conditional on the observed data and the other pa-

rameters, depends on both the model for the characteristics and on the choice parameters, nβ , as follows:  

 ],,|][,,|[],,,,,|[ ,00 zznnnnzznn wzzwz ΣΣΔ∝ΣΔΣ μβββμ νν  (7) 

This stands in contrast to other approaches to missing data, such as multiple imputation and hot-deck, 

where missing characteristics would be imputed based only on information about other respondents’ cha-

racteristics, ignoring the observed choices of the respondent in question.  

To demonstrate the importance of observed choices in imputing the latent zn and missing ele-

ments of wn, we conducted a second synthetic data study. Using the same 100 conjoint respondents and 

1000 market respondents, we assumed that two binary individual characteristics were observed for each 

market respondent (wn1 and wn2) and that just one characteristic (wn2) was observed for the conjoint re-

spondents. We estimated the model four times, with three, ten, fifty and one hundred observed choices for 
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each conjoint individual. Table 3 shows that as the number of observed choices increases, recovery of the 

latent continuous variable zn1 improves for the conjoint respondents.. As the number of choice observa-

tions increases, the posterior distributions for zn1 becomes less diffuse with means closer to the true val-

ues. Inference for the second covariate, zn2, for which we observe wn2 for the conjoint respondents, also 

improves slightly.  

Table 3. Recovery of individual characteristics for conjoint and market respondents. 

MSE Avg.  SE MSE Avg.  SE MSE Avg.  SE MSE Avg.  SE
3 0.87 1.08 0.36 0.75 0.35 0.56 0.32 0.59

10 0.79 1.00 0.36 0.70 0.31 0.52 0.32 0.62
50 0.74 1.08 0.37 0.83 0.25 0.56 0.33 0.71

100 0.69 0.93 0.36 0.72 0.22 0.49 0.32 0.63

Conjoint Market
Recovery of z n1 Recovery of z n2Number of choices observed for 

conjoint respondents Conjoint Market

 

APPLICATION: US MINIVAN MARKET 

General Motors is among the many companies that regularly use choice models based exclusively 

on conjoint data to predict how new products will perform in the market. Because GM managers use these 

models to make critical product development decisions, they are keenly interested in improving the pre-

dictive accuracy of these models. Methods that can be applied to existing conjoint data, with minimal ad-

ditional data collection, are extremely valuable to GM and other practitioners, as they can be applied in 

situations where a conjoint study has been fielded, and the resulting parameter estimates are found to lack 

face validity. Because our model can accommodate data where different groups of respondents are ob-

served in the conjoint setting and in the market setting, we can readily augment an existing conjoint data 

set with purchase data from a different set of consumers.   

In this section we describe how our method was used to adjust the parameters of a conjoint model 

for minivan purchase. Not surprisingly, the model estimated jointly from conjoint and market data fits the 

market data better than a model estimated from conjoint data alone and is therefore more useful when 

making predictions about the market. We also explore the value of including the product-use variables in 

the formulation by comparing our model to a model estimated without individual-level characteristics.  
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Conjoint and market data. The conjoint data for this application is a subset of data collected for 

a large conjoint study that was designed and fielded by GM in summer 2003. Our subset consists of 12 

choice responses for each of 199 respondents who were selected based on their interest in purchasing a 

new minivan. In each choice task the respondents chose from among three alternatives with three attrib-

utes: price (levels: $20,000, $23,000, $26,000, $29,000, $32,000, $35,000), styling appeal (levels: very 

unappealing, unappealing, neutral, somewhat appealing, very appealing) and brand (14 levels which we 

label A-M at the request of GM). Respondents were randomly assigned to one of two fixed designs and 

made forced choices from among three alternatives. The choice questions were designed by GM’s con-

joint vendor using a proprietary method that allows for efficient estimation of a heterogeneous multino-

mial logit model. Although product-use variables were not systematically collected for each respondent in 

the conjoint study, the demographic profile did include one variable that is related to minivan product 

needs: number of children in the household.  

To assemble market data that could be combined with the original conjoint study, we drew on an 

ongoing GM-proprietary survey of new vehicle buyers. This mail-out survey is sent quarterly to a sample 

of all new vehicle registrants. We selected from this survey all of the 7078 respondents who purchased a 

minivan during the 2004 model year (September 2003 – August 2004). For each respondent we observed 

one choice (the minivan purchase that qualified them for the survey) from among the 12 minivans that 

were on the market in 2004. The attribute data for the 12 minivans on the market were assembled from 

several sources. The average consumer price paid (negotiated price less consumer rebates) for each of the 

minivan models was estimated based on the price reported by other buyers in the same survey. Although 

the prices faced by a particular individual (who may have been a particularly good negotiator, or shopping 

for a minivan with many extra features) could be different than the average prices we use in estimation, 

we assume that the average prices reasonably reflect the relative prices faced by each respondent.2  These 

                                                      
2 Because vehicle prices in the US are privately negotiated between the buyer and the dealer, it is difficult 
for a manufacturer like GM to get transaction data for the particular individual that they have surveyed.  
Transaction data collected by third parties, such as J.D. Power PIN, does not contain the informative 
product-use variables that were included in the GM survey of recent buyers. 
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averages were computed by month to reflect seasonal price variation in the market data. We also assem-

bled data from another GM source on the average consumer-rated styling appeal of each van (on the same 

scale as the conjoint study). In addition to the three variables included in the conjoint task, we also chose 

to include the attribute “date of last design refresh” in the market data. Newer designs tend to have better 

features and performance as well as higher prices. By controlling for age of the design, we hoped to get a 

more accurate estimate of the importance of price in the market data. The attribute data for the minivans 

on the market is summarized in Table 4. Brands D and M are excluded from the market data, since there 

were no minivans on the market from brands D and M. Brands A and B launched re-designed products in 

April 2004 so we have used different attribute data for the old and the new designs.  

Table 4. Attribute data for alternatives available in the market.  

N K J B 
(old)

B 
(new)

H A 
(old)

A 
(new)

E L I C F G

3.48 3.52 3.29 3.59 3.59 3.47 4.03 4.03 3.67 3.65 3.46 3.47 3.31 3.27
Oct 03 16.8 18.8 20.4 16.3 NA 22.8 20.7 NA 18.8 21.2 21.4 22.0 12.7 17.5
Nov 03 16.4 19.7 20.4 17.5 NA 22.3 18.2 NA 19.0 22.0 20.5 21.3 12.8 16.3
Dec 03 16.3 18.1 19.8 15.2 NA 20.8 17.8 NA 18.1 20.8 21.1 20.4 12.6 15.4
Jan 04 17.6 19.4 20.3 16.4 NA 23.2 16.9 NA 19.3 21.8 20.9 20.4 11.8 14.5
Feb 04 17.1 19.6 20.8 15.3 NA 22.9 16.6 NA 18.5 22.0 22.5 18.5 11.7 14.4
Mar 04 16.6 18.5 19.0 16.0 NA 19.4 20.1 NA 18.1 20.8 21.4 20.7 12.0 15.9
Apr 04 17.6 18.8 22.2 NA 16.6 21.5 NA 21.0 18.3 18.9 22.0 17.8 10.3 12.9
May 04 18.2 18.4 20.6 NA 16.3 19.6 NA 18.7 17.1 21.4 21.1 19.0 10.4 13.9
Jun 04 16.0 19.2 19.1 NA 17.7 24.4 NA 19.4 17.5 21.1 22.3 18.7 10.2 13.7
Jul 04 15.3 18.8 19.6 NA 16.3 19.6 NA 18.7 18.8 20.8 20.6 16.3 11.2 15.1
Aug 04 14.5 16.4 17.8 NA 15.4 17.8 NA 18.0 17.4 21.4 22.9 19.6 11.9 13.4
Sep 04 16.4 17.0 18.6 NA 14.6 15.7 NA 19.3 18.8 22.9 16.8 12.5 11.7 15.3

1997 1997 1997 2001 2005 2004 2001 2005 1999 2004 2004 2004 2002 2000

Brand 

Price ($K)

Last Design Refresh

Styling Appeal

 

Because we have only one choice observation for each respondent in the market, it is helpful to 

incorporate individual characteristics for the buyers in the market data. To improve individual-level pa-

rameter recovery, such characteristics should be correlated with attribute preferences and observed choic-

es. Although past research has found relatively little correlation between standard demographic variables 

and attribute preferences (Fennell et al. 2003), variables that capture information about intended product 

usage or product needs have been found to be highly correlated with product choices (De Bruyn et al. 

2007). We were able to construct similarly informative individual characteristics using a section from the 

market survey where respondents could check off any of 78 potential “reasons for purchase”, such as 
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“Luggage/cargo capacity” and “Family oriented”. GM developed these questions over several years of 

fielding the survey; the reasons were designed to be an exhaustive set and GM had found that they were 

related to brand choice. GM grouped these 78 items into 25 blocks of similar reasons using a clustering 

approach that resulted in groups with high face validity (see Table 5). Using these blocks, we coded a bi-

nary variable for each respondent indicating whether the respondent had selected any item in the block. 

These 25 binary reasons-for-purchase variables entered the model as characteristics to the brand parame-

ters. (We excluded from the data 208 buyers who did not check any of the 76 reasons, indicating that they 

failed to respond to that section of the survey.) In addition to the 25 reasons-for-purchase variables, we 

also included binary variables for whether the household had income less than $75K per year (roughly the 

median in this sample) and for whether or not the household had children as covariates to the price pa-

rameters.  

Table 5. Summary of individual characteristics.  

Field Conjoint Field Conjoint
Household Income <75K 54.2% - Towing / Hauling 6.2% -
Household with Children 48.8% 48.4% Accident Safety 65.3% -
Usability 75.0% - Collision Avoidance 35.3% -
Dependability 63.6% - Kid Features 51.4% -
Rugged / AWD / RWD 12.0% - Exterior Styling 61.0% -
Dealer 57.0% - Fun to Drive 33.7% -
Warranty 44.8% - Country of Origin 20.2% -
Roominess 78.5% - Practical 51.8% -
Cargo / Versatility 52.2% - Environment 15.4% -
Fuel Economy / Value 58.7% - Manufacturer Reputation 58.9% -
Incentives 43.6% - Interior styling 59.2% -
Driving Performance 59.8% - Willing to Negotiate 30.6% -
No Negotiation 34.8% - Cargo Loading 35.6% -
Luxury 25.2% -

% of RespondentsCovariate Covariate % of Respondents

 

Because the reasons for purchase data and the income data were not collected for the conjoint re-

spondents, the likelihood-based missing data approach was used to account for these missing variables. 

As there is but one individual characteristic common across the two data sets, this represents a fairly ex-

treme instance of missing characteristics. Because there is no information available to estimate μz and Σz 

separately for the conjoint data set, we took them to be common across the two data sets. Note, however, 

that we observe a relatively large number of well-designed choices for the conjoint respondents and based 
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on these choices, the posterior for nβ  is often quite tight. (The conjoint study was, after all, designed to 

infer nβ  from the choices.) When the posterior for nβ  is tight, it is possible that the posterior for  

will also be quite tight and the distribution of  for the conjoint respondents may be different from the 

distribution implied by μ

mis
nz

nz

z and Σz.  

In the interest of parsimony, we placed restrictions on which individual characteristics were in-

cluded in the regression for each attribute preference. For instance, whether or not a respondent has chil-

dren or high income is excluded from the model of a respondent’s preferences for particular minivan 

brands; the effect on brand preference of the former is captured by the “Kid Features” and other reasons 

for purchase variables and the effect of the latter operates through its effect on price sensitivity. Also, we 

assumed that the reasons for purchase are not related to the respondent’s price sensitivity. 

The ongoing GM survey from which we collected the market data samples respondents on the ba-

sis of their chosen vehicle. The survey is mailed to a stratified sample of owners who have registered a 

new vehicle during the year, with the goal of receiving a fixed number of returns for each vehicle model. 

All returned surveys (typically around 20-25% of those mailed out) are included in the data set. To ap-

proximately adjust this choice-based sample to known market shares from national registration data, we 

adjust the likelihood of each individual’s choice following Manski and Lerman (1977), as follows  

 
( )

( )∑ +

+
=

j
jtnnjt

tyntyn
nntnt sx

sx
Xy ntnt

)log(exp
)log(exp

],,|[ ,,,

β
β

μβ , (8) 

where  is the sales-to-sample ratio for alternative j at time t. (Manski and Lerman developed this cor-

rection for homogeneous choice models.) Sales-to-sample ratios were computed for each month based on 

the number of survey responses and national sales data.  

jts

 The resulting market data consisted of 6870 respondents for whom we observed one purchase 

and the 27 individual characteristics. We divided this data set into 2356 randomly selected individuals to 

be used for estimation with the remainder reserved as a holdout sample.  
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Model estimates. The parameters of the model estimated from the minivan conjoint and market 

data are shown in Table 6. All reported estimates are based on 100,000 draws from each of two chains 

thinned to every 10th draw. Convergence was assessed by comparing the two chains and nearly all of the 

monitored parameters achieved Gelman-Rubin potential scale reduction factors below 1.1 (Brooks and 

Gelman 1998). Trace plots comparing the log-likelihood of the draws also indicated that the two chains 

had converged. 

Table 6. Estimated parameters for joint market/survey model. 
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mu.z

Intercept 2.74 -1.43 -0.24 1.08 3.92 2.07 0.40 0.35 -0.28 -6.17 -3.43 -0.04 -0.91 2.95 0.77 0.12 -1.69 NA
Household.Income.<75 NA -1.00 0.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.13
Household.with.Children NA -0.65 0.05 NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.04
Reason.Usability NA NA NA NA 0.38 1.02 0.06 NA -1.26 -0.01 -0.59 0.02 -0.58 0.69 0.39 -0.88 NA 0.67
Reason.Dependability NA NA NA NA -0.93 -0.27 -0.05 NA 1.59 0.36 0.64 -0.60 0.63 -0.35 -1.18 1.48 NA 0.37
Reason.Rugged_AWDRWD NA NA NA NA -0.33 -0.58 -0.25 NA -0.87 -1.04 -0.27 -0.79 -1.05 1.33 1.57 0.25 NA -1.17
Reason.Dealer NA NA NA NA -0.12 -0.05 1.11 NA -0.81 -0.09 0.02 1.48 -1.16 0.08 0.43 -1.45 NA 0.17
Reason.Warranty NA NA NA NA 0.16 0.73 -0.92 NA -0.09 3.24 0.85 -1.02 -0.25 0.08 -1.42 -0.85 NA -0.13
Reason.Roominess NA NA NA NA -0.38 -0.59 -0.73 NA 0.28 0.16 0.85 -0.28 0.82 -0.70 0.39 0.08 NA 0.79
Reason.Cargo_Versatility NA NA NA NA 0.30 0.12 0.73 NA 0.02 -1.34 -0.30 0.48 -0.16 0.23 0.10 0.08 NA 0.06
Reason.FuelEcon_Value NA NA NA NA -0.72 -0.08 -1.07 NA 0.19 0.80 1.41 -0.86 0.14 -0.54 0.23 0.51 NA 0.22
Reason.Incentives NA NA NA NA 0.49 0.47 1.57 NA -2.50 -0.05 -0.69 1.57 -2.68 1.70 1.81 -3.07 NA -0.18
Reason.DrivePerform NA NA NA NA 0.61 -0.13 0.74 NA -1.06 -0.10 -0.68 0.36 -1.28 0.70 0.76 -0.65 NA 0.25
Reason.No_Negotiation NA NA NA NA 0.07 -0.65 -0.23 NA 0.43 0.75 -0.21 -0.11 0.40 -0.37 0.18 -0.10 NA -0.39
Reason.Luxury NA NA NA NA 0.74 -0.45 -0.18 NA -0.37 -0.47 -0.32 0.85 1.54 -0.45 -1.28 1.00 NA -0.66
Reason.Tow_Haul NA NA NA NA 0.42 0.32 -0.25 NA 0.08 0.81 0.18 -0.34 0.32 -0.52 -0.64 0.07 NA -1.52
Reason.Safety_Security NA NA NA NA -0.62 -0.54 0.80 NA 0.47 0.72 0.18 0.39 0.00 -1.03 -1.41 1.02 NA 0.40
Reason.AvoidCollision NA NA NA NA -1.01 -1.11 0.61 NA -0.08 -0.64 -0.67 1.49 0.74 0.49 1.07 -0.04 NA -0.37
Reason.KidFeatures NA NA NA NA -0.14 0.21 -0.34 NA 0.96 -0.56 0.15 -1.20 0.92 -0.55 -0.03 0.59 NA 0.03
Reason.ExteriorStyling NA NA NA NA -0.12 0.08 -0.11 NA -0.57 -0.49 0.65 -0.03 0.46 0.10 0.52 -0.71 NA 0.28
Reason.FuntoDrive NA NA NA NA -1.37 0.02 -1.17 NA 0.28 0.75 1.35 -0.60 2.40 -0.49 -0.08 -0.04 NA -0.41
Reason.CountryofOrigin NA NA NA NA 0.38 0.63 0.14 NA -1.08 -1.74 -1.02 0.19 -0.85 1.25 1.44 -0.96 NA -0.83
Reason.Practical NA NA NA NA 0.32 0.30 0.11 NA -0.29 0.38 -0.52 -0.11 -0.89 0.20 0.64 -0.48 NA 0.04
Reason.Environment NA NA NA NA 0.91 0.39 0.34 NA 0.75 -0.59 -0.69 0.03 -0.80 -0.10 -0.40 0.39 NA -1.01
Reason.MfgReputation NA NA NA NA 0.35 0.08 -0.71 NA 2.23 -1.75 -0.40 -0.76 0.16 0.03 -1.09 1.96 NA 0.24
Reason.InteriorStyling NA NA NA NA 0.23 -0.48 -0.20 NA 0.11 1.57 0.00 0.25 -0.12 -0.35 -0.16 0.43 NA 0.23
Reason.WillingtoNegotiate NA NA NA NA 0.31 0.54 -0.43 NA 0.37 -0.25 0.01 -0.17 0.20 -0.06 0.00 -0.24 NA -0.50
Reason.CargoLoading NA NA NA NA 0.01 0.25 0.19 NA -0.01 -0.51 0.30 -0.23 0.31 -0.22 -0.53 0.58 NA -0.37

3.59 5.88 0.90 3.08 7.52 11.13 4.94 1.29 2.48 2.68 3.71 2.07 3.78 2.64 6.29 1.91 10.88

C
ov
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Sigma.nu

Delta
Other Attributes (X) Brands (X)

 

The central panel in Table 6 shows the parameters in Δ describing the relationship between the 

individual characteristics and the choice parameters. Consistent with intuition, the intercept for the Styl-

ing Appeal parameter is positive and the intercept for the Price (linear) parameter is negative. Households 

with lower than median income and households with children have higher price sensitivity. Many of the 

other parameters in Δ are consistent with GM managers’ intuition, for example, the estimate for the rela-
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tionship between the “Warranty” reason for purchase and preference for brand “F” is high, indicating that 

respondents for whom warranty is important are more likely than others to choose brand F. This is consis-

tent with brand F’s industry-leading warranty program. We also find that buyers who indicated “Country 

of Origin” as a reason for purchase had significantly lower preferences for brands E, F, G, I and L, which 

were the only non-US brands in the sample.  

The last row in Table 6 lists the estimated variances of the unexplained population heterogeneity 

for the attributes. There is more unexplained heterogeneity in preferences for styling and the linear term 

for price and less unexplained heterogeneity in preferences for age of vehicle design and the squared term 

for price. Heterogeneity in brand preferences varies widely depending on the brand. Some brands seem to 

be more universally liked or disliked while others appear to have more dispersion across individuals.   

The right-most column in Table 6 shows the estimated population means for the multivariate probit model 

that was used to estimate missing individual characteristics. 

The value of incorporating market data. The key benefit of the proposed modeling framework 

is that it allows us to incorporate both market and conjoint data to estimate a choice model. By combining 

these sources of data, the resulting model still benefits from the well-conditioned attribute data in the con-

joint study, yet should make more accurate predictions about choices in the market. To gain some insight 

into the effect of incorporating the market data, we compare the joint model to a model estimated from 

the conjoint data alone. We compare the ability of the joint model and the conjoint model to predict mar-

ket data based on the posterior predictive likelihood of the estimation and holdout choices. We compute 

the log posterior predictive likelihood (lppl) of an observed choice by individual n on occasion t as 

  (9) 
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where data]|,,,,[ 0 zz ΣΔ μβμ  is the posterior distribution of the population parameters. (Note that lppl 

is proportional to the deviance averaged over the posterior distribution of the population parameters.) The 

average hit rate associated with this probability can be estimated by exp(lppl/N) where N is the number of 
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choice observations. Note that the conjoint and the joint models have essentially the same structure and 

differ primarily on what data is used in estimation. Thus it would be less appropriate to compare the mod-

els using Bayes Factors, which compare how well two models with different structure fit the same data 

set. 

In this example, we find that the joint model does a substantially better job at predicting market 

choices than the conjoint model. The lppl of the market choices used in estimation is -4711 (average hit 

rate = 13.5%) for the joint model versus -6333 (average hit rate = 6.8%) for the conjoint model. In fact, 

the conjoint model does worse at predicting market data than a model that predicts according to the ag-

gregate shares in the market data (lppl=-5830, average hit rate = 8.4%), an indication that the preferences 

expressed in the conjoint study were inconsistent with market shares. Clearly, incorporating market data 

in the estimation is essential to producing a model that will make accurate predictions about the market. 

We find a similar pattern of results in the lppl of the holdout market data (see Table 7.) Interestingly, we 

also find that the joint model only does slightly worse than the conjoint model at predicting conjoint 

choices (lppl=-2325 versus lppl=-2249.) Thus, the joint model can predict market data much better than 

the conjoint model, yet still makes reasonably good predictions for the conjoint data.  

To understand why the conjoint model makes such poor predictions for the market data, we com-

pare the parameters of both models. Figure 2 shows the differences between the population mean of nβ  

estimated from the conjoint model versus the joint model. (When conjoint data are analyzed alone, the 

specifications of 0β , Δ and  differ from that in the joint model due to the missing characteristics in the 

conjoint data. We therefore compare the distributions of individual β

νΣ

n implied by each model, but we do 

not compare 0β , Δ and  directly. The conjoint-only parameter estimates for νΣ 0β , Δ and are in-

cluded in the e-companion.) The population means of the elements of 

νΣ

nβ  are plotted for the joint model 

versus the conjoint model and the error bars indicate the 5th and 95th percentile for the joint model esti-

mates.  
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The solid diagonal line in Figure 2 has a slope equal to the estimated scale difference (μ) between 

the conjoint and the market data and the dashed lines show the 5th and 95th percentiles of the posterior dis-

tribution of μ. When a parameter falls below this range, it suggests that the attribute level is less preferred 

in the joint model relative to the conjoint model. Parameters above the range are associated with attribute 

levels that are more preferred in the joint model. Although the joint model can change the parameters for 

styling and price, substantial adjustments to these parameters do not seem to be supported by the data. 

The joint model does substantially adjust preference for many of the brands, which we attribute to differ-

ences between the general brand attitudes that consumers express in the survey setting versus how the 

brands are perceived when the customer is shopping and is actively engaged in collecting information 

about the brands and specific products. Important product planning decisions, such as which brands 

should offer minivans in the future, would be misinformed by predictions made using the model esti-

mated from conjoint data alone. 

Figure 2. Comparison of estimated parameters for conjoint and joint models.  
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A key benefit of using the market data directly in the estimation of the model is that the parameter 

estimates obtained will only be adjusted away from the conjoint model if the information in the market 
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data justifies an adjustment. This contrasts with calibrations that are done after estimation that require the 

researcher to specify which parameters should be adjusted and may erroneously adjust the wrong parame-

ters in order to improve aggregate share predictions. In our approach it is the data that determines which 

parameters are adjusted; substantial differences between the conjoint and joint model suggest which at-

tributes might require better stimuli (i.e. more similar to the market) in future conjoint studies. 

The value of incorporating individual characteristics. To assess the benefits of incorporating 

individual characteristics, we also compare our model to one where all elements of Δ are fixed to zero, 

leaving only the intercepts. We will refer to this specification as the No-Individual-Characteristics (NIC) 

formulation. Similar to the model of Swait and Andrews (2003), this model forces the means of the part 

worths to be the same across the two data sets.  We find overwhelming support for our model over the 

NIC model. The Newton-Raftery estimator (Newton and Raftery 1994) of the marginal likelihood of the 

NIC model is -4216 versus -3273 for the proposed model, indicating a log Bayes Factor of -943 in favor 

of our proposed formulation. (Because of the unbounded sampling variance of the Newton-Raftery esti-

mator, we repeated this calculation individually for each chain. We found the estimated integrated log-

likelihood to be similar across the chains with a difference of no more than 40 points, still clearly favoring 

our proposed formulation.) We also found that the lppl of the holdout data is significantly better for our 

formulation (lppl=-9689 for the joint model versus -11100 for NIC model). In other data sets where the 

differences in the distribution of individual characteristics between the market and the conjoint data are 

better observed, we would expect our formulation to be even more strongly favored. 

Table 7. Log Posterior Predictive Likelihoods and Average Hit Rates  

lppl average 
hit rate lppl average 

hit rate lppl average 
hit rate

Joint Model -2325 37.8% -4711 13.5% -9689 11.7%
Conjoint Model -2249 39.0% -6333 6.8% -12019 7.0%
NIC model -2245 39.1% -5738 8.8% -11100 8.6%
Aggregate Shares -2618 33.4% -5830 8.4% -11180 8.4%
N 2388 2356 4514

Model

Fit to Estimation Data
Survey Market

Fit to Holdout Data
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Table 7 summarizes the lppl of the conjoint data, the market data used in estimation and the hold-

out market data relative to the joint model and our comparison models.  Overall, we find that the joint 

model does a better job than the conjoint model or the NIC model at predicting holdout market choices 

and thus it is better suited to making predictions about product planning decisions that will play out in the 

market.  

CONCLUSIONS 

Companies need to accurately predict the effects of product design and marketing mix decisions, 

and so have traditionally turned to forecasting methods from marketing science. Chief among these are 

discrete choice models estimated from survey data (e.g., choice-based conjoint). But it is well-known that 

certain critical quantities can be inaccurately measured by even the most scrupulous conjoint design, for 

example, reactions to price changes or socially-desirable attributes. Conversely, market data doesn’t allow 

product designers to assess the impact of attributes that are truly new, or do not vary sufficiently among 

products on the market. The two types of data have complementary strengths, yet prior work attempting 

to meld them had data requirements so stringent as to render most existing data sources unusable. In this 

article, we developed a framework for combining survey and individual-level market data originating 

from separate sources, in a way that adjusts all model parameters to be more consistent with purchase 

behavior observed in the market, without resorting to post hoc adjustments that are not part of the statisti-

cal estimation process.  

 Using conjoint and market data for minivans, we found that the model estimated jointly from both 

conjoint and market data predicts holdout market choices better than one estimated from conjoint data 

alone, demonstrating the benefits of pooling information from multiple data sources. A particularly useful 

aspect of the minivan market data was that it included each individual’s ‘reasons for purchase’, which—in 

contrast to the dominant findings in the empirical modeling literature about demographic variables—turn 

out to be effective at explaining choice behavior. Using our framework, we were able to incorporate these 

characteristics, which (along with the conjoint data) help to inform the distribution of heterogeneity for 

the choice parameters even though we only observe one choice for each individual in the market data. Our 
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joint model also fits the estimation data better and predicts holdout purchases better than a model which 

does not include the individual characteristics, demonstrating that including these individual characteris-

tics not only allows for flexibility, but also improves prediction. Such improvements in prediction accu-

racy are crucial to companies, like GM, that frequently make substantial capital decisions on the basis of 

such forecasts.  

 It would be valuable to test this method using other data sets, as the minivan data represented a 

rather extreme case of missing characteristics. In situations where there is more overlap between the char-

acteristics, we would expect the likelihood-based missing data method to perform even better. The present 

application also did not allow for a strong test of the ability of the model to accommodate situations 

where there are observed differences in the distributions of the individual characteristics. Finally, it would 

be straightforward to apply the method to three or more data sets. 

There are a number of extensions to this model that could be considered to accommodate differ-

ent data. Although we have chosen a logit specification for tractability and to conform to typical conjoint 

practice, a probit specification could be used if all alternatives were included in each conjoint question. In 

situations where there is selection bias based on the outcomes, it would also be possible to incorporate a 

model that accounts for selection on βn (Heckman 1979), such as might happen if the market data con-

tained buyers and the conjoint data sampled both buyers and non-buyers. In durables, it is also common to 

collect data on the consumer’s second choice product and this second-choice could be incorporated in the 

likelihood. Researchers can readily incorporate such extensions into the Bayesian MCMC sampler.  

In the present work, we have also assumed that the parameters that relate an individual’s charac-

teristics to his or her attribute preferences are common across choice data sets.  However, it is possible 

that there are systematic differences in choice behavior across different choice contexts.  If a large num-

ber of choice contexts were observed (say market data across different retailers or conjoint studies fielded 

at different locations) it would be possible to explicitly model the distribution of 0β  and across data 

sets, adding another level to the hierarchical model. The resulting estimates of

Δ

0β  and  for each choice Δ
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context would be optimally shrunk toward the population mean according to the number of individuals 

observed in each data set. Dominici et al. (1997) applied a similar idea in the context of hierarchical linear 

models for meta-analysis of regression studies.  

We envision uses for the proposed methodology outside product design, and even beyond empiri-

cal marketing. Among the most active areas of research in marketing is the analysis of web data. But un-

derstanding web behavior is bedeviled by the need to combine data sets across many web sites, product 

types, and consumer groups. The proposed model provides a framework to handle data spanning these 

dimensions, so long as a plausible unifying mechanism (relating, say, customer or product characteristics 

to the coefficient values) could be specified. A more grandiose issue involves the “internal vs. external 

validity debate” in experimental design. Note that experiments—with their tight controls and potential for 

orthogonalization—are the gold standard for internal validity, while matching market data is the very 

definition of external validity. In allowing the analyst to meld these sources, the proposed model offers a 

platform for capitalizing on both the rigorous checks of internally valid survey data and the empirical fi-

delity of externally valid market data. 
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E-COMPANION 

This e-companion contains a description of the priors and sampler algorithm used to estimate the joint 

model (section EC.1), a detailed description of the parameter recovery study (section EC.2) and estimates 

of the population parameters for the conjoint and No-Individual Characteristics (NIC) models (section 

EC.3).   

EC.1. Priors & Sampler Algorithm 

Throughout section EC.1, we will assume that zn includes the value 1 as its leading element for all 

n and that Δ includes an initial column to multiply these initial ones. Thus the intercept 0β  is incorpo-

rated into Δ.  

Priors 

We use proper but diffuse conditionally conjugate priors. Specifically,  

[ ] ( )( )))((,vecMVN Fvecdiag0Δ=Δ  

),2|(I][ IKW +Σ=Σ νν  

[ ] ( )IMVN zz 1000,| 0μμ =  

[ ] ( )ILIW zz ,2| +Σ=Σ  

 )= 1000 1/1000,|Gamma(][ μμ  

where I is the identity matrix, K is the number of attributes and L is the number of individual characteris-

tics plus one for the intercept. Note that we are not using the more common structured prior for Δ (c.f. 

Rossi, Allenby and McCulloch 2005, p. 71). The non-standard form of the prior on Δ allows us to specify 

tight priors on particular elements of Δ, which we use to restrict which individual characteristics relate to 

particular attribute preferences. F is a matrix of the same dimension as Δ that is used to determine which 

elements of Δ have tight priors near zero and which have diffuse priors. For a tight prior, the correspond-

ing element of F had a value of 10-12. For a diffuse prior, the corresponding element of F had a value of 

1000.  

 EC.1 



 
 

 
Sampler Algorithm 

Step 0. Initialize values for μ, Δ, Συ , μz and Σz, and for βn and  for all mis
nz n.  

The scale ratio μ is initialized to the maximum likelihood estimate from a non-homogeneous joint 

model. The parameters in Δ are initialized at their maximum likelihood estimates from a homogeneous 

logit model that includes interactions between elements of wn (coded -1,1) and xnjt and was estimated from 

the market data. The vector μz is initialized to zero. The matricies Συ  and Σz are initialized to identity ma-

trices. Starting values of zn are drawn based on μz, Σz and any observed wn. Then, we generate starting 

values for βn and according to the model.  mis
nz

Step 1. For each individual, n, draw βn.  
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This distribution is not a standard distribution and we use a Metropolis-Hastings step to complete 

the draw. The proposal is a multivariate normal random-walk from the most recent draw where the co-

variance of the random walk for individual n is based on the covariance of all previous draws for individ-

ual n. Haario, Saksman and Tamminen (2001) show that if all previous draws (not just a window) are 

used to compute the covariance used in the proposal, the ergodic properties of the chain are preserved. To 

simplify computation, a recursive formula is used to update the covariance for the proposal with each 

draw.  
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Step 2. Draw μ.  
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We make this draw using a Metropolis-Hastings step with a normal random walk proposal. Note 

that this draw depends only on the choice observations for the conjoint data. 

Step 3. Draw Δ.  
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where Z is the matrix obtained by stacking the row vectors nz′  and β is the matrix obtained by stacking 

the row vectors nβ ′ .  
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Recall that N is the number of individuals in the sample and K is the number of attributes.  

Step 5. For each n, draw zn.  
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where Δ~  is columns 2 through L of Δ. We sample from this truncated normal distribution by sequentially 

drawing univariate truncated normal Gibbs samples of each element of zn (McCulloch and Rossi 1994).  

Step 6. Draw μz. 
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Step 7. Draw Σz. 
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EC.2 Details of synthetic data generation for parameter recovery study 

To understand the parameter recovery properties of the model, we simulated data according to the 

model. The simulated data set had 1100 individuals: 100 from a hypothetical ‘conjoint data’ set and 1000 
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from a hypothetical ‘market data’ set. We generated a vector of 5 latent continuous characteristics for 

each individual (zn) according to a multivariate normal distribution with mean μz = 0. The variance for 

each element was 1 and the second and third characteristics had a correlation of 0.4. All other characteris-

tics were independent.  

We generated choice parameters (βn) for each individual according to the model 

nnn z νββ +Δ+= 0 , where zn is the original vector of length 5. The population parameters Δ and Σν were 

assumed to be:  
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For each individual in the conjoint study, we generated 100 choice observations for each individ-

ual from choice sets with three alternatives. The product attributes (xnjt) used in each choice observation 

were generated from independent standard normals, so each choice observation has a unique set of attrib-

ute values. We assumed that the scale ratio between data sets was μ = 1.5 and we generated choice obser-

vations for each individual in the market data using the choice parameters μβn. For the market data, we 

generated 1 choice observation for each individual from a choice set of size twelve. The product attributes 

for the market data were also generated from independent standard normals. (Note that this is unlikely to 

be true in real market data where there are often significant correlations between attributes. In this way, 

our synthetic market data is more informative than real market data is likely to be.)   

To show that we are able to recover the population parameters in circumstances similar to that in 

the GM minivan data, we ran our estimation algorithm assuming that for the 1000 market respondents, 

the researcher observed a vector of two binary variables (wn) indicating whether the first two characteris-

tics (zn1 and zn2) were positive or negative. We assumed the researcher did not observe anything about the 

other three continuous characteristics. For the conjoint respondents, we assumed that the researcher ob-
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served the binary indicator for just the second characteristic. So, for the conjoint respondents, the first 

binary indicator was ‘missing’ and is imputed based on the observed choices and the distribution of the 

covariates in the market data. We used diffuse, but proper priors. Inference was based on 20,000 draws 

from our MCMC algorithm with a burn-in of 6,000 draws. The draws were thinned to every twentieth 

draw to reduce data storage. Trace plots indicated that the chain had clearly converged after 6,000 draws. 

Table EC.1 shows that the recovery of the population level parameters is quite good for this base case. 

Table EC.1. Recovery of population-level parameters (Δ, Σν, μz and Σz)  

Parameter True 
Value

Posterior 
Mean

Posterior 
SD

Delta.11 3.00 3.07 0.18
Delta.21 -3.00 -3.02 0.17
Delta.12 -1.00 -1.08 0.16
Delta.22 0.50 0.54 0.15
Delta.13 1.00 1.34 0.16
Delta.23 2.00 2.23 0.16

mu 0.75 0.74 0.06
Sigma.11 4.00 3.60 0.62
Sigma.12 0.50 0.44 0.35
Sigma.22 1.00 0.83 0.27
mu.w.1 0.00 0.01 0.04
mu.w.2 0.00 0.03 0.04  

 
To understand recovery of the individual-level parameters, zn and βn, we computed the posterior 

means of these parameters for each individual. Figure EC.1 shows a plot of these posterior means against 

the true values that were used to generate the data. The closed red circles represent conjoint individual 

and the open circles represent market individuals. The top panels in Figure EC.1 show recovery of zn. The 

binary indicator for the second characteristic is observed for all individuals, so the model always predicts 

the correct sign for zn1. For the first characteristic, zn2, which is not observed for conjoint individuals, 

there are a number of conjoint individuals for which the mean of the posterior distribution is not the same 

sign as the true value.  

The bottom panels in Figure EC.1 shows the recovery of βn. For the conjoint individuals (indi-

cated with red circles) the posterior mean is a very good estimate of the true choice parameters. However, 
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we are also able to get reasonably good recovery of the individual-level parameters for the market re-

spondents (open circles), even with just one choice observation per respondent.  

Figure EC.1. Recovery of individual-level characteristics (zn) and choice parameters (βn) across all 
respondents.  
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EC.3 Parameter Estimates for Alternative Model Specifications 

Below we provide the posterior means of the population parameters for the conjoint and the No-
Individual-Characteristics models which are presented as alternatives to the joint model in Table 7.  
 
Table EC.2. Estimated parameters for conjoint model. 
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A B C D E F G H I J K L M mu.z
Intercept 1.38 -1.06 -0.31 0.0 0.76 0.65 0.19 -0.09 1.26 -1.61 -0.26 -0.15 -0.24 0.23 -0.98 1.11 -1.04 NA
Household.with.Children 0.00 -0.05 -0.01 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.06

1.14 2.26 0.45 2.45 3.43 2.76 2.03 3.93 2.76 1.89 2.28 3.34 2.31 3.06 6.21 6.31
* Values in boldface have a posterior mean more than two posterior standard errors different than zero. 

Delta
Other Attributes (X) Brands (X)

Sigma.nu

C
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Table EC.3 Estimated parameters for No Individual Characteristics formulation.  
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0.76
0.00
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1.86 -1.18 -0.23 1.07 1.27 1.18 0.23 -0.10 1.55 -1.94 -1.01 -0.22 -0.21 0.15 -0.51 0.94 -1.43
2.03 3.88 0.71 4.54 6.12 6.72 4.26 2.51 8.08 6.59 4.06 2.51 5.06 2.44 5.24 7.38 6.89

* Values in boldface have a posterior mean more than two posterior standard errors different than zero. 
Sigma.nu

Delta
Other Attributes (X) Brands (X)

Intercept
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